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Defects

7 Very small concentrations of defects can
significantly alter materials properties

Small concentration of Fe
impurities are visible by
naked eye in intrinsically
transparent MgO

50 ppm Fe

P

)i stwmesae N

Si semiconductors contain 10~°-1073 intentional
impurities per atom




“My precious!”: Perfect defected gems




“My precious!”: Perfect defected gems

Cr:Al, 0O, V:Al,O,

Impurities are responsible for the color
of sapphire and many other precious
stones

Typical concentrations: 100-10000 ppm Fe,Ti:Al,O,
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“Physics of dirt”

1939: First p-n junction made at Bell Labs (accidental
observation of light effect on resistivity of a cracked silicon
crystal)




“Physics of dirt”

1948: W. Shockley (Bell Labs) - First bipolar (n-p-n) transistor

Vae

Emitter: heavily P-doped Si, base: B-doped Si,
collector: lightly n-doped Si




Technology: fine control of “dirt” (doping)

1950-1954: (Bell Labs) — High-precision doping of a purified Ge
(but the small band gap of Ge made the device properties
temperature-dependent)

1958: J. Kilby (Texas Instruments) — First integrated circuit on Ge;
R. Noyce (Fairchild Electronics, CA) — First integrated circuit on Si

1960: J. Atalla (Bell Labs) — First metal-oxide-semiconductor
(MOS) field-effect transistor (Al-SiO,-Si) — basis of modern

electronics CUCATE

GATE OXTDE
INVERSION LAYER

BACK CONTACT




“Let there be light!”: solid-state lighting

1907: H.J. Round — discovery of light emission from SiC diode
under a voltage bias; this was the first light-emitting diode (LED),
but very inefficient

1962: Infrared and red LEDs and lasers (GaAs, AlGaAsP)

~1990: First blue LEDs (GaN)

P-electrode

Ni/Au qi
GaN:Mg -

InxGa1-xN e
GaN A——‘—W
(MQWs) GaN:Si

=T Ly

00000000

p-type GaN InGaN n-type GaN




Why oxides are semiconductors?

TiO, — a versatile functional material (paint, sunscreen,
photocatalyst, optoelectronic material)

Rutile

Brookite




Why oxides are semiconductors?

TiO, — a versatile functional material (paint, sunscreen,
photocatalyst, optoelectronic material)

Rutile E .,
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Why oxides are semiconductors?

\

O

TiO, is an n-type
semiconductor, whose
conductivity depends on
O, pressure

M.D. Earle, Phys. Rev. 61, 56 (1941)
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Why oxides are semiconductors?

OXIDISED

EXTREMELY STRONGLY | REDUCED
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Different regimes correspond to different intrinsic defect

distributions in ultrapure TiO, M. K. Nowotny, T. Bak, and J. Nowotny,
J. Phys. Chem. B 110, 16270 (2006)




Why oxides are semiconductors?

ZnO — another example of a very promising functional
material, understood less than TiO,

zinkblende (can be obtained
by growth on substrates with
cubic lattice structure)

wurtzite (stable)

Band gap ~3.3 eV (direct), but (almost?) exclusively n-
type semiconductor




Why oxides are semiconductors?

ZnO — another example of a very promising functional
material, understood less than TiO,

zinkblende (can be obtained
by growth on substrates with
cubic lattice structure)

wurtzite (stable)

Can be used for blue/UV LED/lasers, and, in contrast to
GaN, is available as large bulk single crystals




Why oxides are semiconductors?

ZnO — another example of a very promising functional
material, understood less than TiO,

There is no consensus on the

nature of n-type conductivity,

and whether reliable p-type

doping is possible. However,

there is hope (GaN story
wurtzite (stable) repeats itself):

“...native point defects cannot explain the often-observed n-type
conductivity, but the latter is likely to be caused by the
incorporation of impurities during growth or annealing.”

A. Janotti and C.G. van de Walle, Rep.




When imperfections are useful

Tailoring defect properties has a tremendous potential
for designing novel functional materials in many areas of
technology (electronics, optics, catalysis, photocatalysis,
thermoelectrics, optoelectronics, spintronics, etc.)

il

Understanding the electronic and atomic structure of
defects is of great importance




The “invisible agent”

“...The problem is that defects are often elusive
species, highly diluted, and therefore difficult to detect.
It is as if one wanted to identify all the men with a
beard among the population of Europe from a satellite
which is a few hundreds of kilometers away from the
earth surface: the task is difficult, and it is easy to get
confused.” (G. Pacchioni, ChemPhysChem 4, 1041
(2003))

In fact, the situation is even more complex: The nature and
concentration of defects depend on temperature, pressure, and
charge-carrier doping




Common point defect types

e

(a) perfect lattice (b) interstitial impurity

SR

(e) substitution of cation (f) substitution of anion




Common point defect types

e

(c) cation vacancy (d) anion vacancy

SRR

(g) B 5 antisite defect (h) Ap antisite defect




Common point defect types

Defect complexes

Schottky defects

Stoichiometric charge-
compensated vacancy
combinations (V,, +V*,
V¥ +2V,%, etc.)

Frenkel defects

Pairs of a vacancy and
the corresponding self-
interstitial (V,,” + Na,*)




Larger-scale symmetry breaking

Spatial scale

precipitates, interfaces, grain
boundaries, surfaces, etc.

100 nm

10 nm clusters (aggregates)

1nm
point defects and complexes

0.1 nm

Nanometer-size defects are building blocks for the larger defects




Defect formation energy (7=0)




Defect formation energy (7=0)
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Defect formation energy (7=0)

\

defected
total T E A T E

zero-point energy

Efiff{eCt contribution
ota

AE __ rrdefected perfect\AE
f = Etotal T EA T Eq o Etotal T /ZPE




Defect formation energy (7=0)

__ rrdefected perfect
AE f = E total E total T AL /PE

Formation energy depends on the final (initial) state of
the removed (added) species




Defect formation energy (7=0)

__ rrdefected perfect
AE, =Ega  +EA+E, —FEo, +AEzp:

Contributions to the formation energy:

1) Bond breaking/making
2) Atomic relaxation and polarization (screening)
3) Change in zero-point vibrational energy

4) Final/initial state of removed/added atoms and charges




Gibbs free energy of defect formation
T=0:
defected erfec
AEf :Etotalt +EA +Eq_EtI())tal t+AEZPE

l

T>0:

AG (T, {p})=G**“(T,{p})- Zﬂ,- (T, p)AN; +qu (T)

-G (T, {p})




Electronic chemical potential

AG, (T 1p}) = G (I'.{p})~ 3. (T AN, +

-G (T, {p})

M. is a property of the electronic reservoir

In a doped system, (. is close to the Fermi level (the energy
level separating occupied states from the empty states at 7= 0)




Electronic chemical potential

AG, (T 1p}) = G (I'.{p})~ 3. (T AN, +

-G (T, {p})

conduction band minimum
(CBm)

—"-—{-’— 41—1—— defect level

valence band maximum
(VBM)

n-doped p-doped
M. near CBm H. near VBM

The defects will charge when LI, is below the defect level




Electronic chemical potential

AG, (T 1p}) = G (I'{p})~ 3. (T p)AN, +

-G (T, {p})

Band structures of O vacancies in MgO bulk (HSE06)
F*

spin down

‘ spin up ?

Energy (eV)




Electronic chemical potential

MG (T 1p}) =G (T {p})~ 3 i(T, p)AN, +

. Gperfect (T, {p}) + AFVib (T)

MgO(100)

1
]
1
1

6 |
4 t
2|
0+
8 |
6 *
4 L
2 I
0

=)
||
~
S
<
3

. __— charge transition levels

. M (can be measured!)
01 2 3 4 5 6 7
EFermi [eV]




Entropy
G=U+pV-T1§

S=kInQ

() — number of microstates

1) Solid: vibrational entropy (phonons)
2) Solid: electronic entropy
3) Gas: vibrational, rotational, translational, etc. (part of L/; )

4) Solid: defect disorder




Configurational entropy

n~/

G = [U + pV o T(S o Sconfig )] o TSconfig =G — TSconfi
N equivalent defect sites in the sold

n defects

0

S =kInZ + kT2, Z = ¥, e ~Fi/KT

sum over different defect
distributions




Configurational entropy

n~/

G = [U + pV o T(S o Sconfig )] o TSconfig =G — TSconfi
N equivalent defect sites in the sold

n defects
N!

nl(N—n)!

If defects do not interact: S5, =k In

Stirling’s formula:

In(n!)) =n(lnn—-1+0), n>>1, 0 ~ In(27m1)

2n

Seonfig X k[NlnN—nlnn —(N—n)ln(N—n)]

Good approximation only on a macroscopic scale




Defect concentration

Minimize the free energy of the system with respect to the
number of defects

G(n) =G, +nAG, —TS,, ..(n)

Seonfig & k[NlnN—nlnn —(N—n)ln(N—n)]
G

— =0
on
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Vacancy concentration




Defect concentration

Minimize the free energy of the system with respect to the
number of defects

G(n) =G, +nAG, =TS, s, (1)
If defects do not interact:

n _ 1
explAG, kT )+1

5
—
=
()
O
3=
75
o)
=
O

Vacancy concentration

% <1l eXp(AGf/kT)>> 1
% ~ exp(— AGf (T, p)/kT)— textbook formula




Internal defect disorder

LI S=kin(W,_.__ W

-~ internal ™ " external )
o0 ® o0 S

internal T S

external

spatial , spin, electronic
degeneracy

AG, = AG, — kT In(W,

internal )

1

1

exp(AG, /KT )+1

/4

internal




Constrained equilibrium: Competing defects

A practically relevant constrained defect equilibrium
(e.g., at surfaces):

X X X
X X X

X

X

N\
N

spatially separated sites

Let there be a global equilibrium (gas + surface)

What is the number of different defects (without
assuming small concentrations)?




Constrained equilibrium: Competing defects

config

G=G,+ )Y N,(AG, —kTInW,)-TS
k

oG
— =0, N, <N
ON, Z :




Constrained equilibrium: Competing defects

config

G=G,+ )Y N,(AG, —kTInW,)-TS
k

oG
— =0, N, <N
ON, Z :

Ny (Ng — Ny)! (No — 2kxi Ni)! )

S o =kl X oo X
config = 71 (Nl! (No — Np!N,! (Ng — Ny — N))! Ni! (No — 2 Ni)!

= kI To
~ NN NI (N — 3 V!




Constrained equilibrium: Competing defects

config

G=G,+ )Y N,(AG, —kTInW,)-TS
k

oG
— =0, N, <N
ON, Z :

aS config
ON;

= —klIn




Constrained equilibrium: Competing defects

config

G=G,+ )Y N,(AG, —kTInW,)-TS
k




Constrained equilibrium: Competing defects

Coupled equations, but easy to solve:

AG AG,,

1 1

N,—e* =N —e"
W, W

l

All concentrations can be expressed through one:

Nk :Nk(Ni)
1 AG

}V?;;Te o ::}Vb":E:]Vk(AC)::>AAC
k

I




Constrained equilibrium: Competing defects

The condition:

Zniﬁl

is automatically fulfilled, due to the correctly counted
microstates




Charged defects and charge compensation

n 1
N exp(AG, /kT)+1

for non-interacting defects

But can charged defects be considered as non-interacting?!

@ @
Q, 20 Q,#0

_ 99

I/interact _

Coulomb interaction — long-range!
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Charged defects must be compensated in realistic materials

For a system of charges




Periodic and cluster models of defects

Embedded cluster model Periodic model

Mg 0

+ Higher-level ab initio methods + Robust boundary conditions

can be applied + Higher defect concentrations

+/- Defects in dilute limit +/- Higher defect concentrations

- Effect °.f embedding on the _ - Artificial defect-defect
electronic structure and Fermi interactions

level -7 PV. Sushko, A.L. Shluger, and C.R.A. Catlow, Surf. Sci. 450, 153 (2000)
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Charged defects and charge compensation

Concentration of defects (%)
0.06 020 046

Typical dependence of the
defect formation energy as a
function of unit cell size

0.04 0.08 0.12
/L (A7)
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In standard periodic calculations the charge per unit cell is
compensated by a uniform background charge (occurs naturally as
a regularization of the Ewald summation)

The compensated defects interact much weaker with each other

But they do interact strongly with the background (~1/L)




Local and global effects of doping

In realistic semiconductors, charged defects can be compensated
by the depletion of charge carriers (electrons or holes)

electrons occupying hole

. . states (localized or not)
interaction

Local effect of doping Global effect of doping
(chemical bond formation) (interaction with the

compensating charge)

Formation energy and concentration of charged defects depend
strongly on the distribution of the defects and the compensating
charge




Defect-defect interactions
oG(T,{py},

He, {n}) — O%nl ~ Ngites eXp(_ AGf /kT

on,

Long-range (global)

Local interactions: interactions:

¢ Local relaxation e Charging

e Chemical bonding e Fermi level shifting

Dopant Vacancy Vacancy
NZ 4

Charged defects at any finite
concentration cannot be considered non-
interacting and must be compensated

Dopant




Charged defects in a doped material

AG(n)=nAG;(n —0)+ % o I g(r)‘E‘zd 1 =TS eonsia (1)

formation energy electrostatic energy
in the dilute limit at finite n

0

Scontig = kInZ + kT 2, Z = ¥, e Fi/KT

The charged defects are screened by the compensating charge:

N!

Secontig = K In
e n!(N —n)!
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The compensation depends on the spatial distribution of the

density of states near the Fermi level

uniform

1) A standard model for a uniform distribution

background charge

compensating

Surface

Bulk — OK
(somewhat

artificial)

E

density largely in

the vacuum region

(a posteriori corrections exist)

H.-P. Komsa and A. Pasquarello, Phys. Rev. Lett. 110, 095505 (2013)
C. Freysoldt and J. Neugebauer, Phys. Rev. B 97, 205425 (2018)
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Freysoldt-Neugebauer-Van de Walle
correction

Isolated charged defect:

T pr———
— T

1/er

V(r)

Charged defect in a supercell:

W WM

V(T) — Vshort—range(r) 1+ Vlong—range (1‘)

C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011)




Freysoldt-Neugebauer-Van de Walle
correction

Charged defect in a supercell:

V(T) — Vshort—range (1‘) 1+ Vlong—range (1‘)

Ir+ R — 1’|

qmodel(rr)
plong—range ;) — z f d>r’ =~ model charge
R

distribution

lattice sum

C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011)




Freysoldt-Neugebauer-Van de Walle
correction

Charged defect in a supercell:

V(r) — Vshort—range (1‘) 1+ Vlong—range (1‘)

|G|<cht

21T {qmodel(lal)}z 1 )
long—range _ — T model
B Q) z \nef dG{q (G)}
—

G|
G=0

Ewald summation remove self-interaction

(long-range part)
C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011)




Freysoldt-Neugebauer-Van de Walle
correction

Charged defect in a supercell:

|G|<cht

del 2
plong-range _ Z_T[ {qmo i (|G|)} — ! dG{ mOdEI(G)}Z
X0) |G|? e !

G+0

Gisolated (CI) — Gsuercell (CI) . Elong—range + qC

formation formation

from compensating background (alignment term)
C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011)




Freysoldt-Neugebauer-Van de Walle
correction

Gisolated (CI) — Gsuercell (CI) . Elong—range + qC

formation formation

0.2

defect
0.1

e
e
p
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=
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0.0

— from DFT
—— long-range
—— short-range
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10.46 20.92 31.38
Z (bohr)

C = %j d37 {Vshort—range (1‘) . Vshort—range (1‘)}

model defect

C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011)




Freysoldt-Neugebauer-Van de Walle
correction

|G|<cht

del 2
plong-range _ 2n z {qu ) (lGD} — ij dG{qudel(G)}z
Q |G| e

£
\ G+0
screened Coulomb interaction:

e originally formulated for electronic response only (£,)

e was shown to work when ionic response is included (&), but
this is not general (can fail for polarons)

* can be easily generalized to anisotropic materials (¢ — &;})

The method is for calculating formation energy of isolated defect

C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011)




Charged defects must be compensated

2) Impurity donors/acceptors — large concentrations, artificial
interactions

3) Simulate distributed doping with virtual crystal approximation
— arbitrarily small concentrations with finite unit cells, correction
for the dilute limit is needed

Ivg = 12 = Gyere/ N = Pp-type doping in MgO

7 fffffffffffffffffffffffffff 2
/Aconductlon band / / conductlon band @

AT T TS T TS /IIIIIIIIIIIIIIIIIIIIIIIIII

- valence band - valence band
o

L. Vegard, Z. Phys. 5, 17 (1921); M. Scheffler, Physica B+C 146, 176 (1987); O.
Sinai and L. Kronik, Phys. Rev. B 87, 235305 (2013)




Energy (eV)

O vacancies (F-centers) in MgO

MgO bulk with
oxygen vacancy

Band structures of O vacancies in MgO bulk (HSE06)

FO

F"

2+

/—\/_\-_1
== ~—

spin down

spin up

:@K%‘S
i ———




Atomic relaxation

Relaxation energies for F centers in MgO bulk and at MgO (100)

F** at MgO (100), PBE
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Sensitivity to approximations in DFT

Energy differences between different charge states?

AGP (g =+1)=AG, (¢ =0)-A, +1P,
Y l

efect level IPVBI}/I
|

O
|
-

e- = VBM
w= 0.11 bohr™"

>
2
=
e
=
[
=
T
=
g

-
o

0.0 0.2 0.4 0.6 0.8
Fraction of exact exchange o

(Mgs0O9 embedded
Also important for optical properties cluster model )

1) Rinke et al., Phys. Rev. Lett. 108, 126404 (2012)
2) Kappers, Kroes, and Hensley, Phys. Rev. B 1, 4151, (1970)




Interacting defects: Space-charge effects

Intrinsic p-doped p-doped
material | before equilibration after equilibration

CB CB CB

-2-0-

Energy (eV)

Bulk Fermi level

VB VB

Distance to 0 Distance to 0
An(f') surface surface

o

| No space charge | No space charge

Space charge region z = (])-V causes band bending and electric field
e

D

Ny, :Dopant concentration

o : Surface charge due to vacancy concentrations o=(en, +2emn,)




Electrostatics in periodic calculations of charged defects

1
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Electrostatics in periodic calculations of charged defects

VCA (G d) Egac (Gad)(_l_ngBM) _Ehost (69 d) +%E02

. 0
Dilute limit Surface vacancy concentration (%)
,L 0.6 14 3.1 5.5
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F2* concentration at p-Mg0(001)

semi—infinite __ slab
AGf — AGf — Epand bending in slab + Eteal band bending

—
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I'=1,000 K T=1,000 K

[E—

S
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7'=400 K

Vac. concentration (%)

i0'"® ip* 1

10% 06 10" 1020 107
Dopant concentration (cm™) Dopant concentration (¢cm™)




Polarons

Conduction

bands

Conduction
bands

%Phonc:&@

_hole

&

Valence bands

POT@
@ olaron level

Valence bands

Polaron (quasiparticle): An electron or hole dressed in phonons

(lattice relaxation)




Polaron properties

Prediction of polaron
properties:

Conduction ands

,
 Geometry (radius) and orbital ‘
character of the polaron "4 =a

e Binding energy (stability,
mobility)

Ebind — Edistort(N + 1) — Eperfect(N + 1)

\
Valence bands

e Polaron level (luminescence,
absorption) hole polaron in B-Ga,0,




Before modern electronic-structure calculations:
Polaron models

Frohlich model:

-~

Hpolaron - Hyin eff + H ph T Hel-ph

2 )
— —h—vg + Z thoa;aq + Z (anqeiqr + h.c.)
q q

frequency of longitudinal Fourier components of

optical phonon mode electron-phonon
interaction

0 WLO (4mF)1/2( h )1/4
= —1
q Iq| 0 2MpwLo

With Frohlich coupling constant: band mass (curvature of band)

2 mb’(l
OF =— €

QHSLULO
electronic dielectric response ™ static dielectric constant




Before modern electronic-structure calculations:
Polaron models
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Small versus large polarons

Polaron = Charge + Lattice Distortion

e 6 o o .O.

O ® O

L @ . .
e o 0 o O

Large (Frolich) polaron Small polaron (metal
(llI-V and lI-VI materials, oxides, polymers)
alkaline halides)

Aqi{ Mobility L

~ [exp(hwpo/kpT) — 1] ~exp(—E,/kgT)




Approximations in Frohlich model

1) Only one LO mode (simple crystals)
2) Polaron radius is large compared to lattice constant

3) LO mode’s dispersion in neglected




Modeling polarons with DFT

.O.

O @ O

e & o o .O.

Large (Frolich) polaron Small polaron (metal
(llI-V and lI-VI materials, oxides, polymers)
alkaline halides)

Mobility
~ [exp(hwpo/kpT) — 1] ~exp(—Eq/kgT)

Perturbation theory explicit calculation




Modeling polarons with DFT

Embedded cluster model Periodic model

+ Isolated polaron + Long-range ionic response

+ Higher-level methods can be - Artificial periodic repeat (finite-
applied size effects)

- No long-range phononic response

- Artificial finite-size effects




Supercell calculations of small polarons

o , :
Approximation of the

exchange correlation functional E, .:

¢ LDA, PBE, EXX, ... o

: Self-interaction error
Delocalization -
Finite-size errors Localization

- Finite-size supercell errors
- Localization/Delocalization errors




The polaron potential energy surface

Conventional approach: Relax charged supercell (add or
remove electron):

II}?i_n{E (N —1)}

Number of atoms
1000 512 216

hole polaron in
MgO, HSE(a=1)

Finite-size
correction ~0.2 eV

i Note: for polarons this
1 ___is not always the case
~—+ (e.g., TiO,), depends
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Conventional approach: Dependence on functional

o Fixed geometry
o Full relaxation
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 Polaron properties show strong dependence on XC functional
« Even qualitative predictions are not possible




Theoretical challenges

Self-interaction error 2;

« Convex curvature
« PBE

total energy

No correlation 1.

e Concave curvature 8)%%)
« Exact exchange |

N-1
electrons
From (exact) DFT: IP Theorem

“Plecewise linearity of total energy with fractional occupation”

E(N—1)—E(N)=—e, (N)HII HX HA

L

Best hvbrid functional [4]: \
da: Il + X = Agc = 0| Finite-size errors

[3] Perdew et al., Phys. Rev. Lett. 49, 1691 (1982)
[4] Lany and Zunger, Phys. Rev. B 80, 085202 (2009)




Polaron binding energy
Epind = Egistort(N — 1) — Eperfect(N —1)

Eperfect(N - 1) — Eperfect(N) = —eypm(NV)
+Hperfect + 2perfect + Aperfect

Ebind = Edistort(N T 1) T [Eperfect(N) T EVBM(N)] + Hp + Zp + Ap

@ Edistort(N — 1) _ Edistort(N) — _EHO(N)

+Hdistort + Zdistort + Adistort

Ebind — Edistort(N) _ Eperfect(N) — [EHO(N) _ EVBM(N)] +
(Hd - Hp) + (Zd - Zp) + (Ad - Ap)

1) Only neutral system needs to be calculated
2) Only differences in exchange-correlation corrections
are present

Zawadski et al., Chem. Phys. Lett. 506, 42 (2011)
Sadigh et al., PRB 92 ., 075202 (2015




The polaron potential energy surface

Conventional approach:

II}?i_n{E (N —1)}

electrons

Exact functional: E(N —1) — E(N) = —eyo(N)

min{E(N) — eyo(N)} - closed-shell calculations!
R;

Force evaluation from neutral system properties:

Fy = 3R, (E(N) — eno(N))

Sadigh et al., PRB 92 , 075202 (2015)




Functional dependence for the new
potential energy surface
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The functional dependence is greatly reduced!

Qualitatively correct for the whole range of a




Finite-size effects

Number of atoms
1000 51 216
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MgO, HSE(a=1)

I
N,
OS] W ()

s~
>
L
~—~
S
en
—
O
5
en-1.5
=
o
=
i '
=
o
—
—
o
Ay

+
- : Ebind
Bersm

ety A NN SR SRR SUNE——

0 0.1 0.2 0.3 0.4
Inverse supercell size (in units of ,"?)

The supercell dependence is stronger for the “neutral”

potential energy surface!

1
('S)
N




Finite-size effects

Number of atoms
1000 51 216 64
A ~_& A(E(N) — e(N))
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Long-range behavior of the polaron

Y

Increasing .
supercell size ~1/Kr /' Dilute limit

Landau-Pekar: Small polarons in a classical polarizable
: Ir 1 1)\1
medium 2> Vg, ~ (— — —) —

Pekar, Zh. Eksp. Teor. Fiz 16, 335 (1946)




Long-range behavior of the polaron level E,
with respect to the band edge

Pekar’s 1:2:3:4 theorem (strong coupling):
Hpolaron — Hkinetic T thonon T Hel—phe

Exinetic: Ephonon: —Eo: —Eej—pnh = 1:2:3: 4 >

Evina = Exinetic a Ey = Exjnetic




Hole polarons in rock-salt MgO
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Electron polarons in rutile TiO,
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Polaron eigenstate density and radius

hole polaron in MgO electron polaron in rutile TiO,
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Frohlich coupling constant ay = /Z'Zb (
LO

Ap = 4.4







