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Abstract 

Lifespan of an organism is a variable demonstrating significant variation both 

across- and within the species. Indeed, maximum lifespan of mammals ranges between 3.2 

years in Etruscan shrew to more than 200 years in bowhead whale. Within the species, 

lifespan can also be shortened and most importantly extended by some environmental and 

genetical interventions, resulting in up to 10-fold increase in longevity in certain animal 

models. However, molecular signatures and mechanisms responsible for such lifespan 

variation remain unclear. 

Here, we examined this problem by performing high-throughput analysis of both 

across- and within-species models. We performed RNA sequencing of fibroblasts of 

exceptionally long-lived naked mole rat (NMR) and mouse in response to DNA damage, 

induced by γ-irradiation. We then identified and experimentally validated gene expression 

signatures associated with high resistance of the NMR to DNA damage. 

We further extensively characterized DNA methylation changes occurring during 

aging in mice, using 141 individuals representing 16 age groups. We identified general 

trends and pathways associated with these changes along with the effect of lifespan-

extending intervention (caloric restriction) on them. 

Finally, we performed RNA sequencing of 8 lifespan-extending interventions in 

mouse and aggregated this data with publicly available gene expression data, resulting in 

the coverage of 17 different healthspan- and lifespan-extending interventions. We 

characterized similarity of gene expression profiles across interventions and examined their 

feminizing effect in males. We then identified common signatures of longevity 
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interventions along with the signatures associated with the degree of lifespan extension. 

We further applied these signatures for the identification of new lifespan-extending 

conditions and estimation of differences in lifespan across mouse strains. 

We observed common and distinct signatures associated with lifespan extension 

across- and within-species models. We note the importance of NRF2-regulated acute stress 

response and antioxidative defense along with apoptosis as a mechanism of NMR 

resistance to DNA damage and lifespan extension by interventions. Other processes, such 

as oxidative phosphorylation, glucose metabolism and immune response seem to be 

uniquely associated with interventions while autophagy appears to be distinctive for 

response in NMR. Notably, gene expression signatures obtained from the analysis of 

lifespan-extending interventions were shown to properly predict the effect of other 

conditions on longevity based on gene expression profile, pointing to a possibility of their 

application for the identification of new lifespan-extending interventions, facilitating the 

development of novel antiaging therapies. 
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Chapter 1. Review of Literature 

1.1 Aging and lifespan control 

Aging is characterized by the gradual reduction in the ability to cope with 

physiological challenges, which ultimately leads to death (Johnson et al., 1999). From the 

mechanistic perspective, it is associated with accumulation of deleterious changes 

(deleteriome) with age (Gladyshev, 2016). Such changes include mutations, protein 

aggregation, generation of reactive oxygen species (ROS), mitochondrial dysfunction, 

telomere shortening, stem cell exhaustion, etc. (Lopez-Otin et al., 2013) These damages 

seem to lead to aging-associated diseases, such as cancer, atherosclerosis, cardiovascular 

diseases, cataracts, type 2 diabetes and neurodegenerative disorders (e.g., Alzheimer’s, 

Parkinson’s and Huntington’s diseases). For example, incidence of different types of 

cancer was shown to be very well correlated with mutation accumulation over time 

(Podolskiy et al., 2016). Aging-related diseases, in the end, significantly decrease fitness 

of an organism, leading to its death. 

Therefore, accumulation of deleterious changes seems to be the main driver of 

aging (Gladyshev, 2016). Such age-related changes effect different levels of biology, 

ranging from the organs (and systems of organs) to the individual molecules. For example, 

methylation profile of DNA in cells was shown to demonstrate consistent age-related 

changes in both human (Horvath et al., 2012; Johansson et al., 2013; Jones et al., 2015; 

McClay et al., 2014; Rakyan et al., 2010; Sun et al., 2010) and mice (Maegawa et al., 2010). 

Indeed, DNA methylation is gradually decreased during aging, but certain genomic 

regions, such as CpG islands (CGIs) and gene promoters, are known to gain methylation 
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with age (Cole et al., 2017; Stubbs et al., 2017). Such changes formed the basis of 

methylation clock, developed to predict the biological age of an organism based on 

methylation profile of it cells. The clock was created for individual tissues, such as blood 

and liver, in human (Hannum et al., 2013) and mice (Petkovich et al., 2017; Wang et al., 

2017) as well as across different tissues (Horvath, 2013; Stubbs et al., 2017) with a good 

precision (mean absolute error (MAE) equal to ~5% of lifespan). Moreover, in human, only 

3 individual methylation sites, measured in blood, allowed to predict biological age with 

similar quality (Weidner et al., 2014). Importantly, such clocks reflect biological rather 

than chronological age of individuals. Indeed, in humans, accelerated methylation age was 

associated with higher all-cause mortality in later life (Marioni et al., 2015). In mice, 

epigenetic aging was accelerated in response to ovariectomy or high-fat diet, both of which 

reduce the average lifespan (Stubbs et al., 2017). In humans, no significant effect of specific 

diet on methylation clock was detected, but body mass index (BMI) was found to be 

significantly associated with epigenetic age (Quach et al., 2017). Finally, biological age is 

reset close to zero after reprograming of adult somatic cells into induced pluripotent stem 

cells (iPSCs) both in human (Horvath, 2013; Weidner et al., 2014) and mice (Petkovich et 

al., 2017). 

From demographical perspective, however, aging may be thought simply as an 

increase in probability of death with time. Indeed, for the majority of animal species, 

including human, the dependence of mortality rate of an organism on time follows 

Gompertz law (Gompertz, 1825). Based on the law, regardless of any extrinsic factors, the 

mortality rate of the organism increases exponentially with time. In human, it doubles every 
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8 years. Gompertz law leads to a standardized shape of survival curve (Figure 1). However, 

although increase in mortality with age is a common feature of different species from 

different clades, in some species mortality rate does not increase (e.g., Hydra 

maginpapillata) or even decreases (e.g., desert tortoise Gopherus agassizii) with age (Jones 

et al., 2014). Such examples exist in mammals as well. Small rodent, naked mole rat 

(NMR), doesn’t show any change of mortality rate with time (Ruby et al., 2018). At the 

same time, it seems to be highly resistant against age-related diseases, such as cancer 

(Buffenstein, 2008). Therefore, the most direct consequence of aging seems to be lifespan, 

which is highly variable across tree of life as relative species may have strikingly different 

lifespans as can be demonstrated by mice and naked mole rats with maximum lifespans 

(ML) equal to approximately 4 and 31 years, respectively (de Magalhães et al., 2005). 

 

Figure 1. Typical survival curve and its response to lifespan-reducing and -extending 

interventions 

 

Lifespan seems to be also significantly variable across individuals within the certain 

species. Not surprisingly, lots of environmental and genetic factors affect survival curve 
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by increasing mortality rate and, therefore, reducing lifespan (Tyner et al., 2002; Zhang et 

al., 2015). Other interventions, however, may lead to the decrease of mortality rate and, 

therefore, to extension of lifespan (Figure 1). Up to date, number of such lifespan-extending 

interventions has been identified for plenty of model organisms, ranging from yeasts to 

mice and even primates (Fontana et al., 2010; Mattison et al., 2017). Their effect may be 

quite significant, reaching 10-fold increase of lifespan in certain animal models 

(Ayyadevara et al., 2008). From demographical point of view, they effect one or both 

parameters of Gompertz model, being basal level of mortality (vulnerability) and rate of 

increase in mortality with age (aging rate). Interestingly, different interventions extend 

lifespan through downregulation of different parameters of Gompertz model, and same 

intervention may work through different parameters in different species (Garratt et al., 

2016). Meta-analysis on all longevity studies of rapamycin and caloric restriction (CR) 

effect in different species revealed that in mice rapamycin mainly effects vulnerability 

while CR effects aging rate. At the same time, in C. elegans rapamycin effects aging rate, 

but not vulnerability (Garratt et al., 2016). 

Thus, significant variation of lifespan may be observed both across and within the 

species. Even within pretty tight in evolutionary sense class of mammals (with the last 

common ancestor dated approximately 210 million years ago) lifespan of different species 

varies by more than 100 times (de Magalhães et al., 2005). Lifespan within the specific 

species is also variable and may be decreased or increased by variety of different 

environmental and genetic factors. This review will specify certain molecular and 

physiological mechanisms behind variation of lifespan across and within the species.  
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1.2 Lifespan variation across species 

Mammals exhibit remarkable variety of lifespan ranging from small short-lived 

Etruscan shrews (Suncus etruscus), weighting only 1.8 grams and living up to 3.2 years, to 

large long-lived bowhead whales (Balaena mysticetus), weighting more than 100 tons and 

having maximum lifespan of more than 200 years (de Magalhães et al., 2005; Figure 2). 

Interestingly, the maximum lifespan of bowhead whale was estimated based on harpoon 

points found in captured whales in 2007. Remarkably, such harpoon points were last time 

manufactured in 1880s, which provided minimum estimate of maximum lifespan in these 

creatures (George and Bockstoce, 2008). 

Generally, there is a strong positive association between body mass and lifespan 

across species (Sacher, 1959; Figure 2). Besides longer life, bigger animals also tend to 

have longer development, fewer offsprings, lower mass-specific metabolic rates and bigger 

female time to maturity, i.e. the time to reach puberty (Fushan et al., 2015; Sacher, 1959; 

Western, 1979). Therefore, from evolutionary perspective bigger lifespan in large animals 

seems to be a byproduct of natural selection acting on other features, such as period of 

development and female time to maturity. Generally, larger animals need more time for 

growth and development to adult state, capable of reproduction. Not surprisingly, extension 

of these periods leads to extension of lifespan in general. 
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Figure 2. Correlation between adult body mass and maximum lifespan across mammalian 

species 

Individual dots represent specific species colored based on taxonomic orders. Values for 995 

mammalian species are taken from AnAge Database (de Magalhães et al., 2005). Figure is taken 

from (Ma and Gladyshev, 2017) with permission. 

 

However, such dependence couldn’t explain long lifespan in so-called 

exceptionally long-lived species. These species defy the trend defined by correlation 

between body mass and maximum lifespan and, therefore, are outliers on the corresponding 

plot. In other words, they live significantly longer than expected based on body mass 

dependence (Figure 2). These outliers include famous rodent naked mole rat 

(Heterocephalus glaber) (Buffenstein, 2008), some small bats, such as Brandt’s bat (Myotis 

brandtii) (Seim et al., 2013), and humans. Indeed, maximum recorded lifespan for human 

is 122.5 years, while other primates live only up to 60 years in captivity (de Magalhães et 
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al., 2005). Therefore, although longevity and body mass generally coevolve together, they 

are, at least partially, defined by different molecular and physiological mechanisms. 

Analysis of molecular patterns associated with lifespan adjusted for body mass across 

mammals, along with study of features of exceptionally long-lived animals may point to 

the mechanisms related to variation of lifespan across species. 

1.2.1 Molecular signatures of lifespan across mammals 

Several recent studies examined associations of different molecular features, such 

as gene expression (Fushan et al., 2015; Ma et al., 2016), metabolome (Ma et al., 2015a), 

ionome (Ma et al., 2015b) and lipidome (Bozek et al., 2017), with maximum lifespan across 

mammals. For accurate conclusions, results were adjusted for body mass to filter out 

associations, which can be completely described by this factor. 

Gene expression associations with maximum lifespan were identified both at the 

level of organs, such as liver, brain and kidney (Fushan et al., 2015), and at the level of 

cultured fibroblasts (Ma et al., 2016) obtained from different mammalian species. DNA 

repair genes, including base-excision repair and nonhomologous end-joining pathways 

(e.g., Xrcc5, Xrcc6 and Prkdc), were positively associated with longevity in fibroblasts and 

across the organs, consistent with previous studies (Hart and Setlow, 1974). Interestingly, 

some genes coding for DNA repair enzymes were also identified to be positively selected 

in several exceptionally long-lived species, including Apex1 in naked mole rates (Kim et 

al., 2011), Rad40 and Xrcc5 in Brandt’s bat (Seim et al., 2013), and Ercc1 and Ercc5 in 

bowhead whale (Keane et al., 2015), supporting the association between DNA repair 

system and longevity at genetic level. Fibroblasts obtained from long-lived species also 
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showed higher resistance to stress-inducing compounds, such as paraquat and cadmium 

(Ma et al., 2016). Besides, upregulation of immune response was detected in long-lived 

species across the organs, supported by positive selection of c-Rel (Zhang et al., 2013) and 

expansion of immunoglobulin-coding gene families (Seim et al., 2013) in long-lived 

microbats. On the other hand, genes negatively associated with longevity across mammals 

included fatty acid metabolism, TCA and oxidative phosphorylation, and ubiquitin 

complex across organs (Fushan et al., 2015), and proteolysis and apoptotic genes (e.g., 

Tp53, Foxo3 and Bax) in fibroblasts (Ma et al., 2016). Interestingly, several exceptionally 

long-lived species demonstrate genomic signatures associated with apoptotic genes. Thus, 

bowhead whale demonstrates positive selection of pro-apoptotic gene Foxo3 (Keane et al., 

2015), while microbats show positive selection of Atm and Mdm2 coding for checkpoint 

proteins. Finally, African elephant (Loxodonta africana), the largest land mammal, has 19 

additional copies of Tp53 gene in the genome, and its cells are approximately 2 times more 

sensitive to DNA-damage-induced apoptosis than human cells (Abegglen et al., 2015). 

These features may explain how “Peto’s paradox”, being that larger animals don’t have 

higher incidence of cancer despite higher number of cells in the body (Peto et al., 1975), is 

resolved in elephants. Indeed, such big number of p53 copies in the genome increases 

resistance to tumor by decreasing threshold of DNA damage required for cell cycle arrest 

and apoptosis of mutant cells. Moreover, if p53 is mutated in a certain cell, there will be 

still 19 other copies of this gene, preventing cancer transformation. Based on mathematical 

modeling of cancer incidence, only 2-fold decrease in mutation rate may result in 100-fold 
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increase in cell mass free from cancer (Caulin et al., 2015). Therefore, mentioned above 

features may be enough to provide cancer resistance in elephants. 

Metabolome analysis across brain, heart, liver and kidney of 26 mammalian species 

identified positive association with longevity for sphingomyelins (in brain) along with 

negative association for amino acids (in brain), triglycerides with polyunsaturated fatty 

acids (PUFA) (in kidney), lysophosphatidyl-cholines (in brain and heart) and                                        

-ethanolamines (in brain and kidney) (Ma et al., 2015a). Interestingly, high levels of 

sphingomyelins and low levels of PUFA triglycerides were also found to be associated 

with female familial longevity in a study on human plasma lipidome of nonagenarians (i.e., 

people of 90-99 years old) offsprings (Gonzalez-Covarrubias et al., 2013). Lower level of 

PUFA triglycerides may be related to higher resistance to oxidative stress, as these 

molecules are highly sensitive to peroxidation, especially when incorporated to cell 

membrane (Hulbert, 2008). This hypothesis is confirmed by significant negative 

correlation between peroxidation index for membrane composition and longevity across 

mammals, birds and even invertebrates (Hulbert et al., 2014). Role of lipids in 

determination of lifespan across mammals was further described by high-throughput 

lipidome study across 6 organs in 35 mammalian species (Bozek et al., 2017). Logistic 

elastic net regression built in this study was able to predict lifespan of the certain species 

based on its lipidome composition with higher than 90% accuracy. Most significant 

positive predictors included triglycerides, while negative predictors included 

glycerophospholipids and sphingolipids. Interestingly, significant stabilizing selection was 

detected for genes linked to metabolism of corresponding lipids in human and naked mole 
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rat (Bozek et al., 2017), pointing to the interaction between genetic and metabolomic 

patterns of longevity. 

Besides, positive association with lifespan was identified for urate-allantoin ratio 

(Ma et al., 2015a), consistent with the lower level of uricase expression in liver in long-

lived species (Fushan et al., 2015). Finally, 2 tryptophan degradation products were 

negatively associated with longevity. This finding is nicely confirmed by experiments in 

C. elegans (van der Goot et al., 2012) and Drosophila melanogaster (Oxenkrug, 2010), 

where knockdown of Tdo, coding for tryptophan catabolism enzyme, was shown to extend 

lifespan. 

Finally, ionome study across 3 organs revealed significant negative association of 

selenium level with longevity in liver (Ma et al., 2015b). Selenium, in selenocysteine form, 

is incorporated into 25 mammalian proteins involved in antioxidant response (Kryukov and 

Castellano, 2003). On the other hand, cadmium, being a toxic element, was found to be 

positively associated with lifespan in kidney and liver. As there is no known biological 

function of cadmium, this association may be a consequence of poor excretion of this 

element and, therefore, its accumulation in the bodies of long-lived animals. 

1.2.2 Longevity molecular signatures of naked mole rat 

Naked mole rat (NMR) (Heterocephalus glaber) seems to be one of the most 

interesting exceptionally long-lived mammals and even has a title of “Vertebrate of the 

year” given by Science in 2013 (2013). Weighting about 35 grams, comparable to the 

weight of a house mouse (Mus musculus), this creature has a maximum recorded 

lifespan of 31 years, typical for the animals with the body size of lion (Panthera leo; 
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ML = 27 years) or bison (Bison bison; ML = 33.5 years) (de Magalhães et al., 2005). 

Besides, it doesn’t show number of standard ageing-associated physiological declines 

until very late of their lives (Buffenstein, 2008). Indeed, over age, no significant changes 

in body mass, percentage body fat, basal metabolic rate (BMR) and bone mineral density 

are observed (O’Connor et al., 2002). Moreover, NMR females don’t exhibit 

menopause, staying fertile even after 20 years (Buffenstein, 2008). NMRs are also 

poikilotherms, meaning that their rate of oxygen consumption and body temperature are 

almost completely dependent on ambient temperature, switching to partially 

endothermic mode only under high temperature (> 31°C) (Buffenstein and Yahav, 

1991). Finally, due to living in subterranean environment, NMR exhibits extraordinary 

resistance to hypoxia. Indeed, it can live in an atmosphere with 80% CO2 and only 20% 

O2. When placed in 5% O2 conditions for 5 hours, no deviations from normal activity 

and side effects are detected, while mice, under the same conditions, die within 5 

minutes. Mole rats can even survive in 0% O2 atmosphere for 18 minutes and return to 

normal physiological state after reoxygenation (Park et al., 2017). In response to such 

super-hypoxic conditions, NMR was shown to switch to fructose-fueled anaerobic 

glycolysis, producing lactic acid. Such physiological features of NMR were associated 

with higher gene expression of the GLUT5 fructose transporter and ketohexokinases 

KHK-A and KHK-C, compared to mice (Park et al., 2017). Finally, NMRs show 

decreased metabolic rates, being about 70% of that in mice, which is a typical signature 

of subterranean mammals (Buffenstein, 2005). 
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Besides all physiological features, NMRs are known to be unique in their 

extreme resistance to cancer.  Indeed, only few cases of cancer have been detected in 

these organisms (Taylor et al., 2017). At the cellular level, NMR fibrobalsts also 

demonstrated resistance to malignant transformation induced by transfection of 

activated Ras and SV40 LT (Seluanov et al., 2009). Consistently, NMR induced 

pluripotent stem cells (iPSCs) are inefficient in forming teratomas (Lee et al., 2017; 

Miyawaki et al., 2016). Combination of several genetic and cellular mechanisms 

explaining such phenomenon, has been proposed. Studies of NMR fibroblasts revealed 

their higher sensitivity to contact inhibition compared to mice, named “early contact 

inhibition” (ECI) (Seluanov et al., 2009). In other words, cell cycle arrest in NMR 

occurs at much lower cell density. ECI was shown to be regulated through induction of 

p16Ink4a, contrary to regular contact inhibition, regulated by p27Kip1 similar to human 

and mice. Therefore, NMR cells have two layers of contact inhibition associated cell 

cycle arrest. Genomic sequencing of NMR revealed two early stop codons in p16Ink4a 

transcript (Kim et al., 2011), and cloning confirmed shorter length of the corresponding 

protein compared to mice, although it was still functional (Miyawaki et al., 2015). 

Furthermore, besides p15Ink4b and p16Ink4a proteins, encoded in INK4a/b (inhibitors of 

cyclin dependent kinase 4) locus, additional protein isoform is encoded there, which is 

unique to NMR and is absent in both human and mouse cells (Tian et al., 2015). This, 

so-called pALTInk4a/b isoform, being a hybrid of p15Ink4b and p16Ink4a, was shown to be 

activated by ECI and number of stresses (e.g., UV, expression of oncogenes and γ-

irradiation), and had higher ability to induce cell cycle arrest than either p15Ink4b or 
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p16Ink4a, as shown both in NMR and human cell models (Tian et al., 2015). Finally, ECI 

was shown to be mediated through hyaluronic acid (HA), which has higher molecular 

mass in NMR and is secreted in larger amounts compared to mice and humans (Tian et 

al., 2013). Such finding is further supported by genomic sequencing, which has revealed 

unique amino acid changes in NMR hyaluronan synthase 2 (HAS2) (Kim et al., 2011). 

Increased level of high-molecular-mass HA results in viscous extracellular matrix, 

providing higher level of contact inhibition. Consistently, knockdown of Has2 or 

overexpression of HA degradation enzyme, hyaluronidase HYAL2, makes NMR cells 

susceptible to malignant transformation and tumor formation (Tian et al., 2013). 

Besides, NMR cells have unique 28S ribosomal RNA structure, associated with 

much higher translation fidelity compared to mouse cells, resulting in up to 10 times 

fewer amino acid mis-incorporations in the protein sequence (Azpurua et al., 2013). In 

addition, NMR demonstrates unique amino acid changes in proteins associated with 

DNA integrity and repair, such as Apex1, Rfc1 and Top2a (Kim et al., 2011), together 

with upregulation of DNA repair genes compared to mouse at the gene expression level, 

similar to human (MacRae et al., 2015). Altogether, these mechanisms provide low rate 

of mistake appearance together with their strong control. This may lead to decreased 

rate of damage accumulation in NMR cells and, consequently, reduced rate of cancer 

and aging, according to deleteriome theory (Gladyshev, 2016). 

Several other molecular and cellular signatures may also contribute to longevity 

of the NMR. Thus, cytoprotective activity of NRF2 along with its mRNA and protein 

level is higher in NMR compared to mouse, while the level of its main negative 
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regulator, KEAP1, is lower in long-lived rodents (Leiser and Miller, 2010). Moreover, 

the level of Keap1 expression was shown to be negatively associated with maximum 

lifespan across rodents, pointing to the importance of acute stress response system for 

achieving longevity. Gene expression analyses also revealed lower expression of genes 

involved in insulin and IGF1 signaling pathway (IIS) in the NMR liver compared to 

mouse (Kim et al., 2011). IIS is known to be negatively associated with lifespan within 

the species, as confirmed by many lifespan-extending interventions, acting through this 

pathway (Figure 3). Proteasome activity seems to be higher in NMR compared to 

mouse, while accumulation of ubiquitinated proteins and irreversibly oxidized cysteines 

is significantly lower (Perez et al., 2009). At the same time, less urea-induced protein 

unfolding is observed. Altogether, this points to higher level of protein stability and 

better mechanism for protein removal and replacement in NMR, consistent with 

previous findings of lower damage accumulation in NMR. 

If cellular senescence (CS), being a state of permanent cell-cycle arrest that cells 

adopt in response to stress, occurs in NMR is, however, still unknown. CS is usually 

induced by many stresses, including telomere shortening (replicative senescence), 

expression of oncogenes (oncogene-induced senescence) and DNA damage, such as γ-

irradiation (stress-induced premature senescence, SIPS). CS is believed to be an 

important mechanism to prevent cancer (Collado et al., 2005; Xue et al., 2007). 

However, CS also has its deleterious effects. Accumulation of senescent cells impairs 

tissue function and promotes aging. Persistent senescent cells also display senescence-

associated secretory phenotype (SASP), which may result in aging-related diseases, 
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including cancer (Coppé et al., 2010a, 2008, 2010b). Remarkably, elimination of 

senescent cells extends the health and life span of mice (Baar et al., 2017; Baker et al., 

2016), indicating that CS contributes to aging and age-related diseases (Tacutu et al., 

2011; Yanai and Fraifeld, 2018). It is known that similarly to other small rodents, NMR 

do not display replicative senescence and express telomerase in somatic tissues (Kim et 

al., 2011; Seluanov et al., 2007, 2008). However, other types of senescence have not 

been investigated in this exceptionally long-lived species. 

1.3 Lifespan variation within species 

Variation of lifespan across individuals of the same species seems to be also 

quite broad. Lifespan can be both reduced or extended by number of different genetic 

and environmental factors. Indeed, simple change of temperature by 5°C effects lifespan 

of C. elegans by about 25% (Zhang et al., 2015). Importantly, different species generally 

demonstrate consistent effect of different interventions on their lifespan, although there 

are some differences in size of an effect and particular physiological features (Fontana 

et al., 2010). Up to date, the best example of such consistency is caloric restriction (CR), 

which was shown to extend lifespan, at least under one experimental design, in all tested 

species, including yeasts (Lin et al., 2000), worms (Lakowski and Hekimi, 1998), flies 

(Mair et al., 2003), mice (Mitchell et al., 2016), domestic dogs (Kealy et al., 2002), grey 

mouse lemurs (Pifferi et al., 2018) and rhesus monkeys (Mattison et al., 2017). On the 

other hand, some interventions may significantly extend lifespan in a certain organism 

but not provide such substantial effect in the other. For example, resveratrol provides 

significant lifespan-extending effect in C. elegans (Wood et al., 2004) but not in mouse 
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(Miller et al., 2011), although it still improves some healthspan age-related disorders in 

the latter, such as cardiovascular and locomotor function (Pearson et al., 2008a).  

Another general feature of lifespan-effecting interventions appears to be their 

reversibility. If certain intervention extends or shortens lifespan or healthspan, the 

opposite intervention compared to control conditions typically has an opposite effect. 

For example, while increase in temperature from 20° to 25° in C. elegans shortens its 

lifespan by about 23%, decrease of temperature from 20° to 15° extends it by 

comparable 27% (Zhang et al., 2015). Similarly, high-fat diet reduces lifespan of mouse 

(Baur et al., 2006), while CR (Mitchell et al., 2016) and low-fat ketogenic diets 

(Newman et al., 2017) typically extend it. However, extreme version of lifespan-

extending intervention may have an opposite effect. Thus, not surprisingly, too extreme 

restriction of calories would result in starvation and decrease of fitness and longevity of 

the individual (Fontana et al., 2010). 

The effect of intervention on lifespan is tested through longevity studies (Figure 

1), where a cohort of organisms is observed till the death of all its individuals. Then 

survival curve is built based on distribution of deaths with time. Afterwards, the 

distribution is compared to the survival curve of control individuals, and statistical 

significance of the difference is estimated (e.g., log-rank test for comparison of median 

lifespans). Apparently, the power of this test is highly dependent on the sample size. 

Therefore, although in simple short-lived animals, such as C. elegans with a lifespan of 

several weeks, lots of individuals can be used for longevity study, and the length of 

study seems to be pretty short, for other animals and, most importantly, for mammals 
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such study would be significantly longer (about 3-4 years for mouse) and more 

expensive. Therefore, longevity studies for mammals are rare and less reliable because 

of the typically low sample size. 

To overcome this problem, a multi-institutional study called Interventions 

Testing Program (ITP) was designed by National Institute of Aging (NIA). Every year, 

ITP tests 4-7 pharmacological interventions for the longevity effect in genetically 

heterogenous mouse strain (UM-HET3) (Miller et al., 2007). Independent study of every 

intervention in 3 laboratories across the USA together with high sampling within each 

site (80 and 170 in treatment and control group, respectively) ensures high reliability of 

the results. To date, this program has identified significant median lifespan-extending 

effect, at least in one sex, for aspirin (Strong et al., 2008), acarbose (Harrison et al., 

2014; Strong et al., 2016), 17-α-estradiol (Harrison et al., 2014; Strong et al., 2016), 

Protandim™ (Strong et al., 2016), rapamycin (Harrison et al., 2009; Miller et al., 2011, 

2014) and nordihydroguaiaretic acid (NDGA), whereas other treatments such as 

oxaloacetic acid, green tea extract, simvastatin, fish oil, resveratrol and metformin 

showed no statistically significant effect on lifespan (Miller et al., 2011; Strong et al., 

2013, 2016). 

Interestingly, longevity interventions unequally affect different sexes. Thus, 

introduction of rapamycin (14 ppm) in mice leads to 21% increase of median lifespan in 

females, but only to 13% in males (Miller et al., 2014), whereas NDGA only increases 

male median lifespan (by 9-12%) and does not affect female lifespan (Harrison et al., 2014; 

Strong et al., 2008). The male-only effects were also observed for 17-α-estradiol (Harrison 
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et al., 2014; Strong et al., 2016) and Protandim™ (Strong et al., 2016). Generally, except 

for rapamycin, interventions have larger effect on the longevity of males than females. At 

the same time, UM-HET3 control females live about 13% longer than males, on average 

(Strong et al., 2013). Several theories tried to connect these observations by focusing on 

the role of sex hormones in determination of lifespan (Viña et al., 2005). Indeed, estrogen 

seems to provide some properties beneficial for healthspan, such as increased antioxidative 

defense (Mann et al., 2007) and, consequently, lower rate of oxidative DNA damage in 

females compared to males as shown in human leukocytes (Proteggente et al., 2002), along 

with anti-inflammatory effect (Benedusi et al., 2012). Moreover, castration of male rats 

leads to lifespan extension (Drori and Folman, 1976), whereas ovariectomy of females 

decreases average lifespan (Asdell et al., 1967). For some lifespan-extending interventions, 

such as CR and growth hormone mutants, feminizing effect was observed in males at the 

level of gene expression (Buckley and Klaassen, 2009; Estep et al., 2009; Fu and Klaassen, 

2014). Altogether, the effect of lifespan-extending interventions may be associated with 

recapitulation of estrogen feminizing effect, which would explain the consistent difference 

in size of effect between males and females along with the exclusive beneficial effect of 

17-α-estradiol in males. However, interestingly, lifespan of males subjected to this drug 

outperforms lifespan of female controls (Strong et al., 2016). Therefore, it seems that 

feminizing effect of sex hormones couldn’t completely explain the effect of interventions, 

although there are certainly some shared mechanisms and features between them on 

systemic level. In general, molecular signatures associated with many individual lifespan-
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extending interventions have been identified but universal necessary and sufficient 

mechanisms of the lifespan extension effect remain unclear. 

1.3.1 Molecular and physiological signatures of lifespan-extending interventions 

Despite wide range of individual lifespan-extending interventions, they can be 

generally divided into several categories based on their types, such as environmental, 

dietary, pharmacological and genetic. Environmental interventions do not require any 

direct manipulations with an organism and include temperature decrease (Zhang et al., 

2015) and hypoxia (Honda and Honda, 2002) in C. elegans. Dietary interventions differ in 

amount, composition and regime of food consumption. Most popular of them are caloric 

restriction, a decrease in amount of food (typically by 20-40% in mouse) without any 

change in food composition (Mitchell et al., 2016); every-other-day feeding (EOD), a 

repeated regime of one day of full starvation following by one day of full ad libitum access 

to the food (Xie et al., 2017); methionine restriction (MR), a normal diet with the restriction 

in only one amino acid (methionine) (Richie et al., 1994), and ketogenic diet, which is a 

change in food composition so that 89% kcal are obtained from fat (compared to 17% kcal 

in the control diet) and less than 1% is represented by carbohydrates (compared to 65% in 

the control diet) (Roberts et al., 2017). Genetic lifespan-extending interventions are 

represented by knockout and overexpression models. Major group of such interventions 

includes different mutants associated with growth hormone production and signaling 

deficiency, such as growth hormone receptor (Ghr) knockout (GHRKO) (Zhou et al., 

1997); Little mice, knockouts of growth hormone-releasing hormone receptor (Ghrhr) 

(Sun et al., 2013), and Ames (Brown-Borg et al., 1996) and Snell (Flurkey et al., 2001) 
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dwarf mice, knockouts of Prop1 and Pit1 genes, respectively, involved in the development 

of pituitary gland and production of growth hormone (GH). Other genetic interventions 

include overexpression of fibroblast growth factor 21 (Fgf21) (Zhang et al., 2012), deletion 

of S6K1 (Selman et al., 2009) and haploinsufficiency of MYC (Hofmann et al., 2015). 

Finally, pharmacological interventions are individual chemical compounds or 

combinations of them including rapamycin (Miller et al., 2011), acarbose (Harrison et al., 

2014) and others tested by ITP. 

Although wide range of interventions of different kind is currently identified, many 

of them seem to share common molecular and physiological signatures and even act 

through the same signaling pathways. One of the most conserved pathways linked to 

longevity is insulin and IGF1 signaling (IIS) pathway (Figure 3). Activated by growth 

hormone (GH), insulin-like growth factor (IGF1) and insulin through corresponding 

receptors, this pathway is significantly negatively associated with longevity across yeasts, 

worms, flies and mammals (Fontana et al., 2010). Important downstream targets of this 

pathway include mTOR complexes and the FOXO family of transcription factors, also 

involved in aging and lifespan extension. Downregulation of all members of the IIS 

pathway, including GH receptor (Zhou et al., 1997), IGF1 receptor (van Heemst, 2010), 

insulin receptor (Bartke, 2011), PI3K (Foukas et al., 2013) and AKT (Nojima et al., 2013), 

was shown to increase lifespan across model organisms. Thus, homozygous nonsense 

mutation in age-1, PI3K ortholog in C. elegans, resulted in the most significant extension 

of lifespan in this organism, being 10-fold increase (Ayyadevara et al., 2008). Interestingly, 

number of studies supports the role of the IIS pathway in determination of longevity in 
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humans. Thus, mutations in the IGF1 receptor gene are overrepresented among Ashkenazi 

Jewish centenarians (Suh et al., 2008), and genotype associated with reduced level of IGF1 

in plasma was overrepresented among long-lived people (Bonafè et al., 2003). Moreover, 

gene variants of AKT and FOXO3A were found to be consistently associated with human 

lifespan in number of cohorts (Pawlikowska et al., 2009). 

Interestingly, GH and IGF1 levels seem to decrease during natural aging as well as 

in models of accelerated aging (Schumacher et al., 2008). This is a nice counterargument 

to hypothesis that lifespan-extending interventions act simply by reversing all age-related 

changes. In fact, it seems that some of the changes, like this, are defensive response of an 

organism to accumulation of damage, and increase its fitness (Garinis et al., 2008). It’s 

important to distinguish such compensatory mechanisms from harmful drivers of aging.  

 

Figure 3. Nutrient sensing pathways associated with longevity 

The majority of known lifespan-extending interventions act through certain components of these 

pathways. Some of the most famous and well-studied interventions are shown in green along with 
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their targets. The picture is taken from (Ma and Gladyshev, 2017) with permission and modified 

by the author. 

Important downstream target of IIS pathway is mammalian target of rapamycin 

(mTOR) (Figure 3). mTOR is a major amino-acid and nutrient sensor presented in two 

protein complexes, mTORC1 and mTORC2. Much more is known about regulation and 

function of mTORC1 complex. mTORC1 is activated by the IIS and amino acids, and 

repressed by AMP-activated protein kinase (AMPK), main sensor of energy status in the 

cell. mTORC1 is responsible for plenty of functions including cell growth and 

proliferation, translation, lipid biosynthesis, mitochondrial function and autophagy 

(Johnson et al., 2013). In particular, it upregulates protein synthesis by activating ribosomal 

protein S6 kinase 1 (S6K1) and inhibiting eukaryotic translation initiation factor 4E-

binding protein 1 (4E-BP1). mTOR inhibition by genetic manipulations (mutations and 

knockdown) or compounds, such as rapamycin, consistently extends lifespan across 

different model organisms, such as yeasts (Kaeberlein, 2012), worms (Robida-Stubbs et 

al., 2012), flies (Bjedov et al., 2010) and mice (Miller et al., 2014), making it one of the 

most conservative longevity-associated targets. Moreover, inhibition and activation of its 

downstream targets S6K1 (Selman et al., 2009) and 4E-BP1 (Zid et al., 2009), respectively, 

alone are enough for lifespan extension. Interestingly, lifespan-extending effect of S6K1 

deletion in mice was sex-specific, with only females receiving longevity benefit. 

AMP-activated protein kinase (AMPK) is a main sensor of energy status in cell 

activated in response to low ATP levels (Figure 3). By inhibiting mTOR, it switches off 

growth and synthesis program in the absence of nutrients (Alers et al., 2012). 

Overexpression of AMPK (Apfeld et al., 2004) along with its activation by metformin (De 
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Haes et al., 2014) were found to extend lifespan in C. elegans. Interestingly, AMPK is 

required for longevity effect of daf-2 (IGF1 ortholog) mutation in C. elegans (De Haes et 

al., 2014). 

Sirtuins, NAD+-dependent protein deacetylases, seem to be positively associated 

with longevity. Their overexpression or activation by resveratrol have been shown to 

extend lifespan in yeasts (Kaeberlein et al., 1999), worms (Wood et al., 2004) and mice 

(Kanfi et al., 2012). In yeasts, their activity is associated with inhibition of formation of 

toxic extrachromosomal ribosomal DNA circles. In C. elegans, sir-2.1 was shown to 

activate FOXO ortholog, DAF-16 (Berdichevsky et al., 2006). Interestingly, SIR-2.1 was 

shown to directly deacetylate FOXO protein and was not required for the lifespan-

extending effect of IIS pathway, pointing to independent regulation of FOXO factors by 

sirtuins and IGF1. In mammals, SIRT6 was shown to regulate genomic stability, NF-κB 

signaling and glucose homeostasis through histone H3K9 deacetylation. Its overexpression 

significantly extended longevity of male, but not female, mice, once again demonstrating 

sex-specific differences common for lifespan-extending interventions (Kanfi et al., 2012). 

Therefore, generally nutrient sensing pathways seem to be related to growth and 

proliferation program, which is associated with accumulation of damage and low control 

over it, whereas inhibition of these pathways leads to the switch to survival mode, 

characterized by significant defense response and removal of accumulated damage. Such 

defense mechanisms include upregulation of acute stress and antioxidative response 

regulated by NRF2, associated with the lower level of damage accumulation (Steinbaugh 

et al., 2012), autophagy, important for removal of dysfunctional components of the cell 
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(Madeo et al., 2015), and stem cell function, required for regenerative potential of the 

tissues (Yilmaz et al., 2012), along with downregulation of mRNA translation, which may 

be beneficial for protein homeostasis and preference for protein repair over synthesis of 

new molecules (Kaeberlein and Kennedy, 2008), and cellular senescence and associated 

secretory phenotype, leading to the lower level of inflammation (Laberge et al., 2015). 

Interestingly, long-lived rodent naked mole rat demonstrates some similarities at the level 

of longevity-associated mechanisms. Thus, it also shows increased level of autophagy 

(Zhao et al., 2014), higher level of NRF2 activity (Leiser and Miller, 2010), and decreased 

expression level of genes involved in IIS pathway (Kim et al., 2011). 

Consistently, direct regulation of some of these processes may extend organism 

lifespan. Thus, overexpression of Atg5, involved in autophagosome formation, in mice 

significantly increases its median lifespan by 17% (Pyo et al., 2013). Overexpression of 

regulator of acute stress SKN-1, ortholog of NRF2, in C. elegans extends their lifespan 

(Tullet et al., 2008), similar to heterozygous deletion of NRF2 inhibitor, Keap1, in flies 

(Sykiotis and Bohmann, 2008). Inhibition of translation through overexpression of 4E-BP1 

extends longevity of Drosophila melanogaster (Zid et al., 2009). Finally, mouse lifespan 

may be significantly increased by the elimination of naturally occurring senescent cells 

(Baker et al., 2016). 

Caloric restriction seems to work through the different nodes of nutrient sensing 

pathways (Figure 3). Thus, ketone bodies, such as β-hydroxybutyrate, generated in 

response to CR, activate FOXO3A (Shirakawa et al., 2013), linking it to the mechanism of 

ketogenic diet (Roberts et al., 2017). CR also leads to increase of IGF binding protein 1 
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(IGFBP1) in plasma, decreasing the concentration of bioavailable IGF1 (Fontana et al., 

2016). In addition, diet inhibits mTOR and activates AMPK and SIRT1 through inhibition 

of the IIS pathway and deprivation of absorbed amino acids, decrease in level of ATP as a 

consequence of fewer sources of energy received with the food, and increase in NAD+ 

availability, respectively. Through these cellular sensors, CR seems to activate survival 

modes of an organism, including upregulation of autophagy (Galluzzi et al., 2014), and 

acute stress response and antioxidative defense system regulated by NRF2 (Pearson et al., 

2008b; Steinbaugh et al., 2012). 

However, although CR and many other lifespan-extending interventions act 

through common nutrient sensing pathways and linked molecular targets, their effect is not 

completely reproduced by each other. Indeed, CR applied to growth hormone deficient 

mice is able to further extend their lifespan, and vice versa (Bartke et al., 2001). In addition, 

combination of rapamycin and metformin has more effect on lifespan extension than 

rapamycin alone, although metformin doesn’t have any statistically significant effect on 

lifespan by itself (Strong et al., 2016). On the other hand, manipulation of some nutrient-

sensing hubs does not necessarily lead to lifespan extension. Besides metformin, good 

example of this phenomenon is resveratrol, a sirtuin activator (Gertz et al., 2012), which 

could only increase the lifespan of mice subjected to a high calorie diet, apparently by 

alleviation of hepatosteatosis consequences caused by such diet (Baur et al., 2006; Pearson 

et al., 2008a), but was ineffective in mice on a regular diet (Miller et al., 2011; Pearson et 

al., 2008a; Strong et al., 2013). Therefore, it is still unclear what aspects of the drug, diet, 

or mutant effect is either necessary or sufficient for lifespan extension. 
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1.4 Project objectives 

Main goal of the project was to identify specific molecular patterns associated with 

lifespan extension both across and within the species. For that, we specified 2 main studies 

related to the goal, being (i) response to DNA damage in exceptionally long-lived rodent 

naked mole rat, and (ii) response to lifespan-extending interventions in mouse at the level 

of DNA methylation and gene expression. 

In Chapter 2, we identify molecular mechanisms responsible for high resistance to 

DNA damage and cancer in naked mole rat compared to other rodents, such as mouse. To 

do that, we perform RNA sequencing of NMR and mouse embryonic and skin fibroblasts 

subjected to γ-irradiation, one of the standard DNA-damage inducers. We analyze common 

and distinct gene expression responses of the species to DNA damage and validate our 

findings with experimental data. 

In Chapter 3, we identify age-associated changes in DNA methylation profile in 

mouse blood samples, together with the effect of caloric restriction on these changes. We 

perform detailed analysis of methylation profile change with age in mice using 141 samples 

from 16 different age groups and characterize main patterns associated with it, including 

role of specific functions, genomic regions and entropy effect. Then we characterize how 

lifespan-extending intervention (CR) effects age-related molecular changes with time and 

prove our findings using another mouse strain. 

In Chapter 4, we perform high-throughput analysis of hepatic gene expression 

response to 17 different interventions, associated with lifespan- and healthspan extension 

in mouse. We characterize common genes and pathways regulated by lifespan-extending 
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interventions and characterize similarity of interventions based on their effect on mouse 

transcriptome. Finally, we identify new candidates for lifespan-extending interventions 

based on obtained longevity signatures and validate this approach, using two mouse strains 

with significantly different lifespans. 

In Chapter 5, we conclude our findings and specify molecular patterns and 

mechanisms associated with different perspectives of lifespan extension. We discuss 

signatures of lifespan on both across- and within-species levels. 
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Chapter 2. Molecular Mechanisms of Cellular Resistance to DNA 

Damage in Naked Mole Rats 

2.1 Materials and Methods 

2.1.1 Cell Culture 

Mouse embryonic fibroblasts (MEFs) and skin fibroblasts (MSFs) were grown at 

37 °C in an atmosphere of 5% CO2 and 3% O2. Naked mole rat (NMR) embryonic 

fibroblasts (NEFs) and skin fibroblasts (NSFs) were grown at 32 °C (in vivo body 

temperature of naked mole rat) with 5% CO2 and 3% O2. All cells were cultured in EMEM 

medium (ATCC) with 15% (vol/vol) FBS, 100 µg/mL penicillin, and 100 U/mL 

streptomycin (Gibco). 

2.1.2 γ-Irradiation-Induced Cellular Senescence 

Growing mouse and naked mole rat fibroblasts were subjected to 10 Gy or 20 Gy 

γ-irradiation, and allowed to grow for 12 days for SA-β-gal assay and RNA extraction for 

RNA sequencing (RNAseq), or 2 days for BrdU assay and western blot. 

2.1.3 SA-β-Gal Assay 

For SA-β-gal staining, cells were fixed and stained using a commercial senescence 

β-galactosidase staining kit (Cell Signaling). Images were captured for 5 replicates and 

counted at least 100 cells for each replicate.  

2.1.4 RNAseq Data Processing and Analysis  

Raw reads generated from the Illumina HiSeq2500 sequencer were demultiplexed 

using configurebcl2fastq.pl, version 1.8.4. Quality filtering and adapter removal were 
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performed using Trimmomatic version 0.32. Processed/cleaned reads were then mapped 

with STAR (version 2.5.2b) (Dobin et al., 2013) to the set of orthologs common to naked 

mole rats and mice (Ma et al., 2016) to ensure consistent annotation between the species 

and, therefore, to make them appropriate for subsequent cross-species analyses. Read 

counting was performed by featureCounts (Liao et al., 2014). To filter out genes with low 

number of reads and expressed only in one species, only genes with at least 1 count per 

million (cpm) in at least 3 samples (25%) in each species were included, which resulted in 

the expression set of 11,178 genes across 24 samples. Filtered data was then passed through 

RLE normalization (Anders and Huber, 2010). Principal component analysis (PCA) was 

performed on the standardized expression values and the first 2 principal components were 

extracted with the corresponding percentage of explained variance. Differential expression 

analysis was performed with the R package edgeR (Robinson et al., 2009). We declared 

gene expression to be significantly changed, if p-value, adjusted by the Benjamini-

Hochberg procedure, was smaller than 0.05 and fold change was larger than 2 in any 

direction. When identifying commonly changed genes across NMRs and mice, we included 

factors responsible for each of the 4 phenotype groups (MEF, MSF, NEF and NSF) to the 

model but specified an IR effect 19 as a single factor common to all groups, and tested its 

difference from 0. When identifying genes with the differential response to IR between 

NMR and mice, we added a factor responsible for the NMR-specific IR effect to the 

previous model and tested its difference from 0. Unpaired Mann-Whitney test against two-

sided alternative hypothesis was used to examine statistical significance of difference 

between standard deviations of mice and NMR genes logFC before and after γ-irradiation. 
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The Z-score proportion test against two-sided alternative hypothesis was used when 

examining if differences in the number of enriched functions between NMR and mice in 

each of functional groups could be explained by difference in the number of enriched 

functions. The total number of enriched functions was considered as the number of trials, 

and the number of enriched functions corresponding to a particular functional group were 

considered as the number of successes. The Benjamini-Hochberg method was used to 

adjust for multiple comparisons. FDR threshold of 0.05 was used to select statistically 

significant functional groups. GSEA (Subramanian et al., 2005) was performed on a pre-

ranked list of genes based on z-scores, calculated as: 

𝑧‐ 𝑠𝑐𝑜𝑟𝑒 = − ln(𝑝𝑣) × 𝑠𝑔𝑛(𝑙𝑓𝑐), 

where pv and lfc are p-value and logFC of certain gene, respectively, based on edgeR output 

and sgn is signum function (is equal to 1 if value is positive, -1 if negative and 0 if equal 

to 0). REACTOME, KEGG and GO biological process and molecular function from 

Molecular Signature Database (MSigDB) have been used as gene sets for GSEA 

(Subramanian et al., 2005). q-value cutoff of 0.05 was used to select statistically significant 

functions. 

2.1.5 Western Blotting 

Two days after γ-irradiation (IR), cells were harvested and lysed in Laemmli 

Sample Buffer (Bio-Rad) with 1 mM PMSF. Extracts were boiled and centrifuged at 

14,000 × g for 15 min at 4 °C. Protein samples were resolved by SDS-polyacrylamide gel 

electrophoresis and transferred to PVDF membranes (Bio-Rad). Membranes were 

incubated with a rabbit monoclonal anti-p21 primary antibody (ab109199; Abcam). A 
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horseradish peroxidase (HRP)-conjugated antirabbit IgG (Abcam) secondary antibody was 

used. Proteins were visualized using an ECL kit (BioRad). 

2.1.6 BrdU-Incorporation Assay 

Two days after IR, cells were cultured in the presence of 5-bromo-2'-deoxyuridine 

(BrdU) (3 µg/ml) for 48 h, and fixed using 4% paraformaldehyde for 60 min, washed with 

PBS for 5 times, followed by treatment with 2N HCl for 30 min. After washed with PBS 

for 3 times, cells were blocked with 5% FBS in PBS with 0.2% Triton X-100 for 2 h. A 

FITC-conjugated anti-BrdU antibody (Sigma; 1:200) was used to incubate the cells at 4 °C 

overnight. Cells were then incubated 18 with Hoechst for 10 min at room temperature, and 

observed under a fluorescence microscope. Images were acquired for five replicates and 

counted for at least 100 cells for each replicate. 

2.1.7 Comet Assay 

Cells were kept on ice and subjected to 10 or 20 Gy IR, and were then harvested 

immediately. DNA damage was detected by using a commercial comet assay kit (Trevigen) 

following the manufacture. Images were acquired and the percentage of tail DNA was 

analyzed from 100 cells per sample using CaspLab software. 

2.1.8 Apoptosis Assay 

Mouse and NMR fibroblasts were subjected to 10 or 20 Gy γ-irradiation. Three 

days after irradiation, cells were harvested and stained using an Annexin V-Fluo staining 

kit (Roche). Cell death was measured using FACS on a BD LSR II Flow Cytometer. 
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2.2 Results 

2.2.1 Comparison of Gene Expression Changes in Response to γ-Irradiation in NMR and 

Mouse Fibroblasts 

γ-Irradiation induces stress-induced premature senescence (SIPS) in human and 

mouse fibroblasts by activating a DNA damage response (D’Adda Di Fagagna, 2008). To 

perform an unbiased characterization of the differences in response to DNA damage, 

between NMR and the mouse at the gene expression level, we subjected embryonic and 

skin fibroblasts derived from three animals of each species (MEF, MSF, NEF, and NSF 

cells) to 20 Gy of γ-irradiation and performed RNA sequencing (RNAseq). Total RNA was 

collected from both treated and untreated cells 12 d later, a time point when irradiated cells 

displayed positive SA-β-gal staining (Figure 9A), and sequenced. Three biological 

replicates (primary cells isolated from three different animals) were sequenced for each 

condition. 

To achieve uniform annotation of sequenced genes between the species, we mapped 

the reads to the set of mouse and NMR orthologs, which, after filtering and normalization, 

resulted in the coverage of 10,959 genes. Following this procedure, samples across species 

and cell types showed similar gene expression profile distribution, making them 

appropriate for subsequent analysis. To assess the gene expression patterns across cell 

types and species, we performed principal component analysis (Figure 4). The samples 

segregated more predominantly by species (first component; 51.5% variance explained) 

than by the type of fibroblasts (mainly second component; 24.7% variance explained). 
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Figure 4. Principal component analysis of mouse and NMR individual samples 

Samples generally segregated by species (first principal component explaining 51.5% of variance). 

Irradiation samples tend to group together with their paired controls. PC: Principal Component; IR: 

After γ-irradiation. 

 

As expected, irradiated samples also tended to cluster with their paired controls, 

confirmed by Pearson correlation matrix of gene expression profiles (Figure 5). 

Interestingly, gene expression across different NMR samples was more tight than across 

mouse samples (Figure 5), possibly reflecting chromosomal instability typical of cultured 

mouse cells (Gaztelumendi and Nogués, 2014). To compare within-species and within-

cell-type variation of gene expression changes in response to γ-irradiation, we calculated 

gene fold changes averaged across replicates for each species and cell type and built a 

Pearson correlation matrix of the four analyzed groups. The correlation matrix showed 

clear separation by species, confirming that within-species variation is lower than variation 

in the within-cell types. 
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Figure 5. Pearson correlation matrix for mouse and NMR individual samples  

Within species, samples generally cluster based on types of fibroblasts. NMR samples show higher 

similarity across samples compared to mouse samples. NEF: NMR Embryonic Fibroblasts; NSF: 

NMR Skin Fibroblasts; MEF: Mouse Embryonic Fibroblasts; MSF: Mouse Skin Fibroblasts; CON: 

Control; IR: After γ-irradiation. 

 

To identify changes induced by γ-irradiation in the NMR and mouse 

transcriptomes, we examined differentially expressed genes for each species and cell type 

using edgeR (Robinson et al., 2009). We used a Benjamini–Hochberg procedure to adjust 

for multiple comparisons and qualified as significantly changed the genes with the adjusted 

P < 0.05 and fold change of >2 in any direction. Approximately two times more 

differentially expressed genes were detected in mouse fibroblasts (651 for MEF and 751 

for MSF) compared with NMR fibroblasts (323 for NEF and 220 for NSF) (Figure 7A). 

Notably, the number of statistically significant upregulated genes exceeded the number of 

downregulated genes for all analyzed groups (Figure 7A). In addition, many upregulated 

genes were shared across cell types and species (Figure 6). Although we observed within-
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species clustering of gene fold changes, we also observed statistically significant positive 

Pearson correlation of genes logFC between any two analyzed groups (Pearson correlation 

test P < 2·2.10−16 for all comparisons), even when comparing different cell types of NMR 

and mice (ρ = 0.17 for mice EF vs. NMR SF and ρ = 0.2 for mice SF vs. NMR EF), pointing 

to the existence of a general gene expression response of fibroblasts to γ-irradiation across 

species and types of fibroblasts. 

 

Figure 6. Numbers of differentially expressed in mouse and NMR 

Many differentially expressed genes (adjusted p-value < 0.05; FC > 2) overlap between different 

analyzed groups, especially between different types of fibroblasts within the same species. EF: 

Embryonic Fibroblasts; SF: Skin Fibroblasts; IR: After γ-irradiation. 

 

To further investigate the transcriptome response of NMR and mice fibroblasts to 

γ-irradiation, we performed Gene Set Enrichment Analysis (GSEA) for each of the four 

analyzed groups using the GO Biological Process (GO BP) and Molecular Function (GO 

MF), Kyoto Encyclopedia of Genes and Genomes (KEGG) and REACTOME database 

gene sets as a reference. Interestingly, although more genes were identified as differentially 

expressed in mouse fibroblasts, more pathways were detected as enriched in NMRs (1,151 

for NEF and 551 for NSF) than in mice (140 for MEF and 262 for MSF) (Figure 7B), 
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indicating that gene expression changes in the NMR are less drastic, but more systematic 

and nonstochastic. Indeed, SDs of logFC induced by γ-irradiation in mouse samples are 

statistically significantly higher than those in NMR samples (P = 0.015), as determined by 

Mann–Whitney U test, pointing to higher stochasticity and scale of transcriptome changes 

in mice. 

 

Figure 7. Changes induced by γ-irradiation in NMR and mouse fibroblasts 

(A) Numbers of identified statistically significant differentially expressed genes (Benjamini-

Hochberg adjusted p-value < 0.05; fold change (FC) > 2 in any direction) and enriched 

functions (q-value < 0.05) in NMR and mouse fibroblasts in response to γ-irradiation. Up- and 

downregulated entities are shown in red and blue, respectively. (B) Pathways enrichment of genes 
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differentially induced by γ-irradiation based on GSEA. Z-scores (in logarithmic scale) 

corresponding to presented functions are shown for each analyzed group. Z-scores of mouse and 

NMR fibroblasts are colored in red and green, respectively. Dotted line corresponds to q-value = 

0.05. SASP: senescence-associated secretory phenotype genes; Interferon: Interferon alpha/beta 

signaling (REACTOME); TNF response: Response to Tumor Necrosis Factor (GO BP); Apoptosis: 

Apoptosis (REACTOME); Proteasome: Proteasome (KEGG); Lysosome: Lysosome (KEGG); 

Response to ROS: Response to Reactive Oxygen Species (GO); Extracell Matrix: Extracellular 

Matrix Binding (GO); Ribosome: Ribosome (KEGG); Translation: Translation (REACTOME); 

DNA Replication: DNA Replication (KEGG); Cell cycle: Cell cycle (KEGG); Mito Translation: 

Mitochondrial translation (GO BP); Transcription: Transcription (REACTOME); Spliceosome: 

Spliceosome (KEGG). 

 

Many enriched functions and pathways were shared across cell types and species. 

They include upregulation of genes involved in the immune response and downregulation 

of genes involved in cell cycle, DNA replication, translation, and ribosome protein genes 

(Figure 7B). When we analyzed the number of enriched functions (with a GSEA adjusted 

P < 0.05) shared by embryonic and skin fibroblasts within each species, we discovered 

more functions perturbed in NMR fibroblasts (213 upregulated and 257 downregulated) 

than in mouse cells (61 upregulated and 42 downregulated), consistent with the results for 

every individual cell type. 

We also tested if genes related to senescence-associated secretary phenotype 

(SASP) are differentially expressed in response to γ-irradiation in NMR and mice. We 

performed enrichment of differentially expressed genes by SASP gene set as characterized 

in (Coppé et al., 2010a, 2008, 2010b), and observed their consistent activation in all 

analyzed groups (GSEA P < 10−3 for MSF, NEF, and NSF), except MEF samples (GSEA 

P = 0.26) (Figure 7B). Correlation and linear model analyses showed consistency between 

expression of SASP genes in the NMR and mouse with the Pearson correlation coefficient 

equal to 0.53 (P = 2.8·10−5) for SF and 0.63 for EF (P = 2.9·10−7). 
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In addition to common functions, we discovered many enriched pathways specific 

for certain species. Naked mole rat cells displayed unique downregulation of transcription, 

spliceosome, and mitochondrial translation, which may indicate a more profound inhibition 

of cellular metabolism. On the other hand, pathways involved in protein and glycoprotein 

metabolism, lipid metabolism, lysosome, extracellular matrix, and oxidative stress 

response were uniquely activated in the NMR. In addition, apoptotic processes were 

activated in the mouse (GSEA adjusted P = 9·10−3 for MEF and 10−3 for MSF), but not in 

the NMR (GSEA adjusted P = 0.125 for NEF and 0.302 for NSF), pointing to the avoidance 

of apoptosis by NMR cells when subjected to γ-irradiation (Figure 7B). 

2.2.2 Identification of Common and Distinct Gene Expression Changes in Response to γ-

Irradiation between NMR and Mouse 

To obtain further insights into similarities and differences in the transcriptome 

response to γ-irradiation in mice and NMRs, we examined genes with the most similar and 

distinct expression changes across these species. With the Benjamini–Hochberg adjusted 

P value threshold equal to 0.05 and the fold change threshold equal to 2, we detected 224 

genes with common changes and 782 genes with distinct changes between the NMR and 

mouse (Figure 8A). Interestingly, the majority of genes with distinct behavior were genes 

upregulated in the mouse but not in the NMR. These genes included apoptotic genes 

(GSEA adjusted P = 0.045), consistent with individual GSEA results (Figure 8B). Among 

them, we could identify the transcription factor E2f1, which mediates p53-dependent and 

-independent apoptosis, together with its positive regulator Tfdp1, apoptosis activators 

Cflasr, Dapk1, and Pmaip1 (Noxa), with the latter known to be associated with radiation 
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response, cell-surface death receptor Fas, several cytoskeleton-related genes (Plec, Lmnb1, 

Dsp), as well as several genes related to proteasome structure and activity (Psmb3, Psmc4, 

Psmd6, Psme4). Other enriched pathways associated with genes activated in mice 

compared with NMR include transcription (GSEA adjusted P = 3.87·10−3) and spliceosome 

(GSEA adjusted P = 8.2·10−3). On the other hand, genes associated with ribosome (GSEA 

adjusted P = 3.28·10−3) and lysosome (GSEA adjusted P = 3.28·10−3) show significantly 

stronger inhibition in mice compared with the NMR. 
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Figure 8. Genes with common and distinct gene expression response to γ-radiation in NMR 

and mouse 

(A) Heatmap of genes identified as commonly or distinctly responded to irradiation in NMR 

and mouse (Benjamini-Hochberg adjusted p-value < 0.05, fold change > 2 in any direction). 

224 genes were identified as commonly changed, and 782 as distinctly changed. (B) Functions 

enriched by genes with common (SASP genes, Cell cycle) and distinct (Apoptosis) response 

to γ-irradiation in NMR and mouse fibroblasts (q-value < 0.05). Differentially expressed genes 

(adjusted p-value < 0.05, fold change > 1.5 in any direction) are shown for each pathway. NEF: 

NMR Embryonic Fibroblasts; NSF: NMR Skin Fibroblasts; MEF: Mouse Embryonic Fibroblasts; 

MSF: Mouse Skin Fibroblasts; SASP: senescence-associated secretory phenotype. 
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GSEA performed on the list of commonly changed genes showed that pathways 

such as tumor necrosis factor (TNF) signaling (GSEA adjusted P < 3.53·10−5), ribosome 

(GSEA adjusted P < 1.43·10−5), and cell cycle (GSEA adjusted P < 1.43·10−5) together 

with SASP genes are commonly changed not only at the level of functional enrichment, 

but also at the level of the same individual genes involved in these pathways (Figure 8B). 

Together, these results indicate that NMR and mice share many common gene 

expression signatures in response to γ-irradiation, both at the level of individual genes and 

at the level of enriched pathways. They include DNA replication, transcription, translation, 

cell cycle, and immune response. At the same time, some biological processes, such as 

apoptosis, glycoprotein metabolism, lysosome, extracellular matrix, and oxidative stress 

response, show distinct behavior in these species, pointing to unique adaptations of NMR 

fibroblasts to DNA damage. Generally, mouse fibroblasts demonstrate more substantial 

and variable transcriptome remodeling at the level of individual genes, whereas response 

of NMR fibroblasts seems to be less drastic and more robust. 

2.2.3 Attenuated Senescence and Apoptosis in NMR Fibroblasts in Response to γ-

Irradiation 

To validate results obtained by RNAseq and observe if NMR cells recapitulate 

behavior of mice fibroblasts in response to DNA damage, we subjected MEF, MSF, NEF 

and NSF to 2 different doses of γ-irradiation, being 10 and 20 Gy. Senescence was 

quantified by SA-β-gal staining and BrdU incorporation. All four cell types showed SA-β-

gal–positive staining in response to γ-irradiation. Notably, at 10 Gy of γ-irradiation NMR 

showed fewer SA-β-gal–positive cells than mouse cells. At the higher 20-Gy dose both 
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mice and NMR displayed similar numbers of SA-β-gal–positive cells (Figure 9A,B). 

Consistent with the SA-β-gal staining result, at 10 Gy NMR cells did not show a significant 

drop in BrdU incorporation, while in mouse cells BrdU incorporation dropped 

significantly. In the NMR cells, a significant drop in BrdU incorporation occurred only at 

20 Gy (Figure 9C), consistent with the RNAseq results, where cell cycle pathway was 

found to be commonly downregulated in both species. Taken together, these results suggest 

that NMR cells are more resistant to induction of SIPS than mouse cells and require a 

higher dose to achieve the same percentage of senescent cells. 
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Figure 9. The γ-irradiation–induced CS of mouse and NMR fibroblasts 

(A) Images of SA-β-gal staining of mouse and NMR embryonic and skin fibroblasts in 

response to 10 or 20 Gy of IR. (B) Quantification of β-gal–positive cells of mouse and NMR 

fibroblasts in response to IR. (C) BrdU incorporation in mouse and NMR fibroblasts 2 d after 

IR. (D) Expression of p21 in response to IR. Samples were harvested 2 d after IR and tested 

using Western blot. (E) Quantification of p21 expression. (F) Apoptosis of mouse and NMR 
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fibroblasts in response to IR. Three days after IR, cells were harvested and subjected to an 

Annexin V apoptosis assay using FACS. (G) Comet assay quantifying DNA damage in mouse 

and NMR fibroblasts induced by IR. MEF, mouse embryonic fibroblasts; MSF, mouse skin 

fibroblasts; NEF, NMR embryonic fibroblasts; NSF, NMR skin fibroblasts. For all except G, results 

are mean ± SD (n = 5); for comet assay (G), results are mean ± SEM (n = 100). *P < 0.05, **P < 

0.01, ***P < 0.001. 

 

Cell-cycle arrest and SIPS are triggered by the induction of p21 cyclin-dependent 

kinase inhibitor. Strong p21 induction occurred in MEF and NEF cells, but the p21 

response was lower in the NSF cells compared with the NEF and MSF cells (Figure 9D, 

E). 

In addition to senescence, cells may undergo DNA-damage–induced apoptosis, 

particularly when the DNA damage is severe (Childs et al., 2014). Both MEF and MSF 

cells underwent massive apoptosis in a dose-dependent manner while NEF and NSF cells 

showed only a slight increase in apoptosis after 20Gy irradiation, and no significant 

apoptosis was observed under 10Gy irradiation (Figure 9F), suggesting that NMR cells are 

resistant to γ-irradiation (IR)-induced apoptosis, consistent with the RNAseq results, where 

apoptosis activation was observed only in mice cells. 

To examine if the NMR and mouse fibroblasts experienced the same physical DNA 

damage in response to γ-irradiation, we subjected cells to 10 and 20 Gy of γ-irradiation and 

collected immediately for comet assay. All four types of cells had similarly increased tail 

DNA in response to γ-irradiation (Figure 9G), suggesting that NMR and mouse cells 

sustain similar levels of DNA damage. Taken together, these results completely confirmed 

RNAseq findings and further showed that NMR fibroblasts undergo SIPS in response to γ-

irradiation, but senescence and apoptotic responses are attenuated. 
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2.3 Discussion 

CS plays important roles in developmental tissue remodeling (Muñoz-Espín et al., 

2013) and tumor suppression in response to DNA damage (Campisi, 2005). We previously 

showed that NMRs, similarly to mice and other small-bodied rodents, do not display 

replicative senescence and continuously express telomerase (Seluanov et al., 2007, 2008). 

Here, we demonstrate that NMR cells undergo IR-induced senescence. These results show 

that despite their exceptional longevity and resistance to age-related diseases, NMRs still 

possess CS program. 

Senescent cells accumulating in adult organisms have been linked to multiple age-

related pathologies including cancer (Campisi, 2005), atherosclerosis (Childs et al., 2016), 

and osteoarthritis (Jeon et al., 2017). Elimination of senescent cells in mice displaying 

premature aging due to genomic instability increases animal life span, and elimination of 

senescent cells in wild-type mice increases their health span (Baar et al., 2017; Baker et 

al., 2016). However, our results indicate that the naked mole rat did not achieve longevity 

by eliminating the process of CS. Remarkably, senescent NMR cells exhibit a typical 

signature of SASP response including the conserved SASP factor CXCL-1 (GRO-α), 

which is believed to promote the growth of premalignant epithelial cells (Coppé et al., 

2010b). Thus, the SASP response, which is linked to the proinflammatory and disease-

promoting effects of senescence, is also preserved in the NMR. 

NMRs may be somewhat protected from the induction of SIPS due to their higher 

resistance to the damaging agents. We observed that at 10 Gy of IR NMR cells displayed 

markedly fewer senescent cells then at 20 Gy, while mouse cells displayed a high level of 
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senescent cells at both IR doses. Thus, NMRs may accumulate fewer SIPS senescent cells 

during aging. This could be partly a result of better repair mechanisms or the protective 

role from the high-molecular-mass hyaluronan (HA) secreted by NMR cells (Tian et al., 

2013). Ultimately, it would be interesting to quantify senescent cells in aged NMRs. This 

would shed light on whether senescent cells accumulate in vivo at similar rates to the 

shorter-lived species. This experiment, however, is logistically challenging as aged, 20- to 

30-year-old NMRs are not readily available. 

Furthermore, NMR fibroblasts were resistant to IR-induced apoptosis. Our RNAseq 

data demonstrated clearly that, unlike the mouse fibroblasts, in the NMR p53 and apoptosis 

signaling pathways were not induced by IR. Therefore, we hypothesize that the resistance 

of NMR cells to IR-induced apoptosis may be due to the blunted induction of p53 signaling. 

Reaching confluence and cell-cycle extension have been shown to promote resistance to 

apoptosis by allowing additional time to repair damage (Childs et al., 2014; Rochette and 

Brash, 2008). The NMR fibroblasts have a very slow rate of cell proliferation in culture, 

with early contact inhibition associated with the induction of p16INK4a and the additional 

INK4a/b hybrid product pALTINK4a/b (Seluanov et al., 2009; Tian et al., 2015). The 

pALTINK4a/b hybrid product induces stronger cell-cycle arrest in response to UV and IR 

(Tian et al., 2015). The strong cell-cycle arrest in NMR cells likely plays important roles 

in resistance to apoptosis. Generally, the resistance to IR-induced apoptosis in NMR may 

reflect its higher threshold for stress tolerance due to better DNA repair mechanisms or the 

protective effects of HA. 
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Since the naked mole rat is extremely cancer-resistant and long-lived, a question 

that could be raised is whether the resistance to apoptosis provides any benefit for cancer 

resistance or longevity. In terms of eliminating preneoplastic cells, apoptosis seems to have 

stronger ability to prevent tumorigenesis (Childs et al., 2014). However, too much 

apoptosis may deplete stem-cell reserves and contribute to frailty in old age (Gatza et al., 

2007; Tyner et al., 2002). 

Gene expression analysis of NMR cells made senescent by IR exposure (Figure 10) 

showed that many gene expression changes upon CS were conserved with mice such as 

induction of SASP, TNF response, and inhibition of protein translation and the cell cycle. 

The changes unique to NMR included induction of lysosomal genes, oxidative stress 

response, changes in extracellular matrix, and inhibition of transcription, spliceosome, and 

mitochondrial translation. These unique changes may have a cytoprotective effect. 

Induction of lysosomal genes suggests activation of autophagy. Autophagy plays important 

roles in response to DNA damage (Czarny et al., 2015; Wang et al., 2016). Previous study 

has shown that NMR has higher autophagy (Zhao et al., 2014). Here, we show that NMR 

fibroblasts are likely to undergo autophagy and induction of oxidative stress response upon 

exposure to IR, possibly contributing to NMR resistance to stresses. Furthermore, 

inhibition of transcription and mitochondrial translation, observed only in the NMR, 

suggests that senescent NMR cells inhibit metabolic activities, thereby reducing 

pathogenesis of senescent cells. It has been observed that downregulation of the mTOR 

pathway in senescent cells ameliorates the senescent phenotype (Laberge et al., 2015; 

Leontieva et al., 2014). 
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Figure 10. Summary of common and distinct features of IR-induced SIPS between the NMR 

and the mouse 

 

Interestingly, fewer genes were changed in the senescent NMR cells, compared 

with mouse cells, but these genes organized in markedly more functional pathways. This 

result suggests that the senescence-related gene expression changes in the NMR are more 

systematic and nonrandom. Taken together, these unique features of NMR senescent cells 

may reduce the pathogenic properties of senescent cells and contribute to NMR longevity. 

In summary, we have demonstrated that NMR cells undergo stress-induced 

senescence. This result shows that evolution of a long lifespan does not eliminate the CS 

response. On the contrary, NMR cells were more resistant to apoptosis than mouse cells, 

suggesting that NMR cells favor senescence to apoptotic response. While the SASP 

phenotype was conserved in the NMR cells, these cells displayed a unique transcriptional 

signature that may reduce the pathogenic effects of senescent cells and contribute to naked 

mole rat longevity and cancer resistance. 
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Chapter 3. Global Remodeling of the Mouse DNA Methylome during 

Aging and in Response to Calorie Restriction 

3.1 Materials and methods 

3.1.1 Reduced Representative Bisulfite Sequencing 

Reduced Representation Bisulfite Sequencing (RRBS) of mouse blood samples was 

performed previously (Petkovich et al., 2017). Quality of high throughput sequence 

libraries was verified using “FastQC v.0.10.1” package 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/). Trim Galore! v.0.4.0 was used for 

adapter removal and quality trimming. The TrimGalore tool 

(www.bioinformatics.babraham.ac.uk/projects/trim_galore/) was performed with settings 

optimized for RRBS. Methylation sites were detected using Bismark v.0.14.5 according to 

the program’s manual. 

3.1.2 Genomic Databases 

We used several databases to annotate CpG sites. RnBeads R package (Assenov et 

al., 2014) was employed to annotate genes (Genes-1) and promoters (Promoters-1), and the 

RnBeads package used Ensembl gene definitions and defined promoters as regions 

spanning 1,500 bases upstream and 500 bases downstream of the transcription start site 

(TSS) of the corresponding gene. We used annotatr R package (Cavalcante and Sartor, 

2017) to annotate genes (Genes-2; original database: UCSC genes), promoters (Promoters-

2; 1 kb upstream of the TSS), CpG islands (CGIs), CGI shores (CGI-shores; 2 kb 

upstream/downstream from the ends of CGIs), CGI shelves (CGI-shelves, 2 kb 

upstream/downstream of the farthest upstream/downstream limits of CGI shores), the 
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remaining CGI Open Sea genomic regions (CGI-open-sea), 1-5 kb upstream of the TSS 

(Genes-upstream-1-to-5-kb), 3’- and 5’-untranslated regions (3’UTRs, 5’UTRs), exons 

(Exons), first exons (First-exons), introns (Introns), intergenic regions (Intergenic), exon-

intron and intron-exon boundaries (Exon-intron-boundaries, Intron-exon-boundaries; 

defined as 200 bp up/downstream of any boundary between an exon and intron), enhancers 

(Enhancers-fantom5; original database FANTOM5 (Andersson et al., 2014)), long non-

coding RNA (Long-noncoding-RNAs; original database: GENCODE). We used the Mouse 

ENCODE Consortium (Yue et al., 2014) data to annotate seven different histone 

modifications (Histone-H3K27m3, Histone-H3K36m3, Histone-H3K4m1-m3, Histone-

H3K4m1-H3K36m3, Histone-H3K4m1, Histone-H3K4m3, Histone-Unmarked; the 

database was merged from 15 different mouse tissues and cell types), DNase hypersensitive 

sites (DHS), predicted promoters (Promoters-encode), predicted enhancers (Enhancers-

encode), transcription factor binding sites (TFBS) and the mouse specific and human-

mouse homologs of the listed genomic regions.  

We downloaded genomic repetitive regions (Repeats) using the UCSC Table 

Browser (Karolchik et al., 2004; Rosenbloom et al., 2015), and super-enhancers from the 

SEA database (Super-enhancers-1) (Wei et al., 2016) and the dbSUPER database (Super-

enhancers-2) (Khan and Zhang, 2016). Evolutionary conserved regions (Ecr) were defined 

as at least 100 bp long and 70% identity regions, and core evolutionary conserved regions 

(Core-ecr) were at least 350 bp and 77% identity regions between mouse and 10 different 

species (Human, Macaque, Chimp, Rat, Dog, Opossum, Chicken, Frog, Zebrafish, and 

Fugu). These regions were downloaded from https://ecrbase.dcode.org (Loots and 
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Ovcharenko, 2007). Ultra-conserved regions (UCR) were downloaded from 

http://ucbase.unimore.it (Bejerano et al., 2004; Lomonaco et al., 2014). Micro RNA 

(microRNAs) genomic coordinates were downloaded from http://www.mirbase.org 

(Kozomara and Griffiths-Jones, 2014). Genomic coordinates were mapped to mm10 with 

UCSC Batch Coordinate Conversion (liftOver) tool (Hinrichs et al., 2006) when the 

original genome assembly was not mm10 in certain databases. Genomic coordinates of 

regions were filtered out; if we could not detect DNA methylation, we kept the coordinates 

of the regions, in which at least one methylated CpG could have been measured. 

3.1.3 Statistical Analysis 

After data preprocessing and filtering, we used linear regression to examine the 

relationship between age and methylation levels and included 4 confounding factors: flow 

cell, library, adaptor and the number of aligned paired end reads of the samples. When site-

by-site linear regressions and multiple data transformations were performed, we added the 

value 1 to every methylation fraction value to avoid incompatibility between the 

methylation value 0 and certain data transformations. We further chose the best fitting 

model based on the Akaike information criterion (Table 1). We declared a site to be 

significant, if the p-value, adjusted by the Benjamini-Hochberg procedure, was smaller 

than 0.05. To avoid overfitting, we excluded significant sites, for which there was a 

direction change in the regression slope upon comparison of the linear regression with all 

our confounders and without the confounders. To determine the enrichment of increasing 

or decreasing (I/D) sites in certain genomic regions, we created a contingency table 

including the number of I/D sites in the genomic region, the number of I/D sites outside 
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the region, the number of non-I/D sites in the region and the number of non-I/D sites 

outside the region, followed by a Fisher exact test. 

To visualize the overall methylation change pattern in genes, we calculated relative 

positions for CpGs. The relative position 0 was assigned to the TSS, and 1 was the end of 

the gene. We also extended this analysis to the regions of the same length upstream and 

downstream of the gene and subjected them to the generalized additive model, using 

RnBeads R package, with a modification wherein we only included the significantly 

changing sites. To investigate the differences between the homolog elements, mouse-

specific elements and all predicted elements, we performed Mann-Whitney U test between 

the regression slopes of every site in these regions and calculated adjusted p-values, using 

Benjamini-Hochberg procedure. When we examined the effect of the CpG islands, shores 

and shelves, we removed, from every region, the sites that could be assigned to (i) CGI, 

(ii) CGI and CGI shores, and (iii) CGI, CGI shore and CGI shelves, based on the built-in 

annotation of the RnBeads R package for these genomic regions, and performed a linear 

regression for every region using just the significantly changing sites. We included the four 

technical confounders, as described previously, and normalized every site by extracting the 

mean and dividing it by the standard deviation. In addition, we included, as confounders in 

every site, whether the site was present in a CGI shore, shelf or Open Sea region to avoid 

bias of the different aging trends. 

Permutation tests were calculated by extracting the mean of the two compared 

groups, then merging the two groups into one. From the merged group, we randomly 
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selected values for two groups (including the same number of values as the original 

groups). We extracted the means and repeated the process 10,000 times. P-value was 

calculated by counting the number of cases, where the absolute value of the mean 

extraction of the randomly selected groups was larger than the absolute value of the original 

mean extraction, divided by 10,000. When testing the difference between increasing, 

decreasing and all sites, we aggregated the age groups by calculating the mean methylation 

across lifespan for every site. 

3.1.4 Pathway Enrichment Analysis 

To identify pathways associated with genes and promoters with changing 

methylation status during aging, we performed a pathway GSEA on a pre-ranked list of 

promoters and genes (Subramanian et al., 2005). This list included the sites annotated as 

promoters or gene bodies and z-scores, calculated as: 

– 𝑙𝑛(𝑃) ∗ 𝑆, 

where P is the p-value of the linear regression of the site and S is the sign of the 

regression slope. For every promoter and gene, we calculated the mean of the z-scores of 

every site annotated to that genomic region. Kyoto Encyclopedia of Genes and Genomes 

(KEGG) and Gene Ontology (GO) Biological Process (BP) and Molecular Function (MF) 

databases were used in this analysis. 

To identify pathways associated with age-related changes of methylation status, 

which can or cannot be explained by increasing entropy, we performed pathway 



67 

  

enrichment analysis for promoters and genes that showed changes based on the original 

methylation fraction (OMF) or the residual methylation fraction (RMF) using Database for 

Annotation, Visualization and Integrated Discovery (DAVID) (Huang et al., 2009a, 

2009b). Z-scores were calculated by using the equation (1) for sites showing increasing or 

decreasing changes based on (i) just the OMF; and (ii) both in OMF and RMF. Increasing 

or decreasing trends were determined by the changes based on the OMF. Average z-score 

was calculated for every site annotated to promoters or genes. We used the first 2,000 

genomic regions with the highest absolute z-scores as an input for the DAVID analysis. 

We used KEGG, GO BP and MF databases with the threshold FDR = 0.05.   

3.1.5 Analyses of Calorie Restriction  

Investigating the effect of the calorie restriction (CR), we analyzed 20 C57BL/6 

male mice in 4 age groups (10, 18, 23, 27 months). Using the original 141 C57BL/6 mice 

(16 age groups) as controls, we built a linear model including age, CR (0 for control and 1 

for CR) and the time after treatment (TAT), which is the difference between the age of 

mouse and 4 months (i.e. the start of CR) in the case of the intervention group and 0 in 

control animals. Using this model, we could estimate the initial shift (IS) at the beginning 

of the CR treatment (4 months) and calculate the difference in the rate of changes during 

aging in the CR group versus the control group, using the TAT which represents the 

cumulative change. We performed a site-by-site linear regression including the above 

mentioned variables and used a partial F-test to decide if IS and the TAT had a significant 

effect together (Benjamini-Hochberg FDR = 0.05). Partial F-test was calculated by fitting 

the reduced (including only the age) and the full (including the age, CR and TAT) models 
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separately and thereafter comparing them using Analysis of variance (ANOVA). Then we 

used the significant sites based on the F-test and determined, for every site, whether IS and 

TAT had a significant effect separately (Benjamini-Hochberg FDR = 0.05). To investigate 

the relation between the age-, initial shift- and cumulative effect-related changes we 

performed a linear regression between the linear model coefficients of these features. 

We also investigated DNA methylation of blood samples from 22 (10 control and 

12 CR) B6D2F1 male mice. Two age groups were analyzed in both subsets (20 and 27 

months in controls, 21 and 27 months in CR). We applied a linear model and included age, 

intervention and flow cell as technical confounders. We compared the CR-related changes 

between the B6D2F1 and the C57BL/6 strain. To be able to make this comparison, we 

recalculated the C57BL/6 analysis, including only age and CR, but not TAT. Comparison 

between the two strains was by a linear regression between the CR-related linear model 

coefficients of the strains. 

3.1.6 Analysis of Publicly Available Data 

We downloaded publicly available human and mouse data for comparative analyses 

of our findings. The dataset of 656 human whole blood samples (Hannum et al., 2013) was 

downloaded from NCBI’s Gene Expression Omnibus: GSE40279. We performed 

multidimensional scaling and 5 samples were identified as outlier samples and excluded 

from further analyses. Site-by-site linear regressions and multiple data transformations 

were performed as detailed above and four confounding factors were included in the linear 

regressions: gender, ethnicity, source and plate information. Entropy analysis was 
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performed on the human data as detailed above for mouse samples. We downloaded 24 

mouse liver methylation data (Cole et al., 2017; Hahn et al., 2017) with accession numbers 

GSE89275 and GSE92486. We used the sites that were present in all samples and had 

higher coverage than 5x in more than 50% of samples in any age group and in calorie 

restriction samples. Furthermore, we used RnBeads R package to aggregate the measured 

sites, which belonged to the same CpG, to exclude high coverage outliers and sites that 

were overlapping with single nucleotide polymorphism. We built a linear model, including 

age (2, 5, 22, 26 months), calorie restriction (0 for control and 1 for CR), time after 

treatment and the source of the sample. To investigate the relationship between the age-, 

initial shift- and cumulative effect-related changes we performed linear regression between 

the linear model coefficients of these features. 

3.2 Results 

3.2.1 Global Trends in DNA Methylation during Aging 

We assessed age-related changes in DNA methylation based on reduced 

representation bisulfite sequencing (RRBS) of blood of 141 C57BL/6 male mice 

representing 16 age groups (Petkovich et al., 2017). The youngest mice were 3 months old 

(young adults), and the oldest 35 months old (corresponding to the survival of the 

remaining 10% animals). After filtering and preprocessing, the dataset included 

approximately 800,000 CpG sites present in every sample. We performed 

multidimensional scaling to investigate global changes in the DNA methylome with age 

(Figure 11A). The average methylation status of CpG sites was slightly below 0.5 (one 

sample Student’s t test, p-value = 1.99.10-134), that is, the genome was slightly 
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hypomethylated. Linear regression was then performed, accounting for every site and 

possible confounding factors. There was a slight, but significant decrease in the global 

methylome with age (p-value = 6.05.10-152; Figure 11b).  

 

Figure 11. Global state of the mouse blood DNA methylome 

(A) Multi-dimensional scaling (MDS) of 141 C57Bl/6 male samples. Colors represent ages as 

shown on the right. Samples are represented by sample ID, wherein the first two numbers represent 

age and the second two represent identification number in an age group. (B) Mean methylation 

fraction of every site. Linear regression parameters were calculated by using every site. 

 

Linear regression (fraction methylated vs age of animal) was further performed in 

a site-by-site manner, again accounting for possible confounding factors, and multiple data 
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transformations were used to investigate nonlinear trends during aging, with Akaike 

information criterion (AIC) indicating the best fitting models (Table 1). We found that 

21.2% of the sites were significantly correlated with age, including 10.2% that gained 

methylation and 11% that lost it. Linear regression for significant sites revealed a slight 

decrease in methylation level (p-value = 6.49.10-17) with age. The best fitting model 

between significantly changing sites was age vs methylation percentage to the power of 

−
1

3
, observed in about 86% of the significant sites. These sites either gained methylation 

with age (41.6%; Figure 12a) or lost it (44.3%; Figure 12b) and changed predominantly in 

late life. In addition, 14% of the sites showed robust changes during early adulthood. We 

similarly investigated the dataset of 651 human samples from the age of 19 to 101 years 

(Hannum et al., 2013), and the best fitting models were highly consistent with the mouse 

data (𝑎𝑔𝑒~𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛−
1

3: 81%, ln(𝑎𝑔𝑒) ~𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛−
1

3: 19% of the significant 

sites). 

 

Table 1. Models of methylation change with age 

Data transformations used 

Number of 

significant 

sites 

Percent of 

significant 

sites (%) 

Sites gaining 

methylation 

(%) 

Sites losing 

methylation 

(%) 

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏− 
𝟏
𝟑 146067 85,9 41,6 44,3 

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏− 
𝟏
𝟑 24059 14,1 6,5  7,6  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟐 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟐 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟑 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟑 0  0   0   0  
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We further separately examined the sites that gained and lost methylation with age 

(Figure 12e). Sites with increasing methylation were characterized by the low methylation 

status, and those with decreasing methylation by high methylation, compared with the 

average methylation levels (permutation test, p-value < .0001 in both cases). The 

relationship between the regression slope and the mean methylation fraction for every site 

revealed a significant negative correlation (Pearson’s correlation coefficient = -0.384, 

linear regression p-value < 2.10-16). Again, sites with increasing methylation were 

hypomethylated, and those with decreasing methylation hypermethylated. 

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 
𝟏
𝟐 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 
𝟏
𝟐 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 
𝟏
𝟑 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 
𝟏
𝟑 0  0   0   0  

𝒂𝒈𝒆~𝒍𝒏(𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏) 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒍𝒏(𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏) 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟐

+ 𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟐

+ 𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟏 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟏 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟐 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟐 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟑 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟑 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏− 
𝟏
𝟐 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏− 
𝟏
𝟐 0  0   0   0  
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Figure 12. Global and region-specific changes in DNA methylation with age 

(a) Mean of the increasing and accelerating sites with the best model: 𝐚𝐠𝐞~𝐦𝐞𝐭𝐡𝐲𝐥𝐚𝐭𝐢𝐨𝐧−
𝟏

𝟑. 

(b) Mean of the decreasing and accelerating sites with the best model: 𝐚𝐠𝐞~𝐦𝐞𝐭𝐡𝐲𝐥𝐚𝐭𝐢𝐨𝐧−
𝟏

𝟑. 

(c) Linear regression slope of CpG sites that changed with age based on their assignment to 

indicated regions of the genome. (d) Enrichment analysis of significantly changing sites in 

indicated genomic regions. (e) Boxplot of the average methylation fraction across lifespan for 

all (All), gaining (Gain) and losing (Lose) methylation sites. 
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3.2.2 Various Genomic Regions Show Distinct Remodeling Patterns in DNA Methylation 

In addition to the global trends, we investigated changes in DNA methylation in 

distinct genomic regions. We performed linear regression analysis for various parts of the 

genome, following assignment of significant age-related sites to annotated genomic 

regions (Figure 12c). The CpG methylation fraction was normalized by extracting the mean 

and dividing it by the standard deviation. Using this approach, we could examine dominant 

changes based on the number of changing sites, diminishing the effect of the degree of 

change for different sites that could potentially bias the results. We observed a strong age-

related gain in methylation in CpG islands (CGIs), 5’- UTRs, first exons of genes and gene 

promoters; a strong increase in methylation could also be observed around the transcription 

start sites (TSSs; Figure 13a). We observed an age-related methylation gain in many gene 

regions, such as exons and exon–intron boundaries, with the exception of introns and 3’-

UTRs, which tended to lose methylation with age. More broadly, increasing methylation 

was observed at the 5’-ends and decreasing at the 3’-ends of genes. Regulatory elements, 

such as microRNAs, long noncoding RNAs, DNase hypersensitivity sites, and 

transcription factor binding sites (TFBS) tended to gain methylation during aging. We also 

observed increasing methylation in evolutionary conserved regions, core conserved 

regions, and ultra-conserved regions. Regions with decreasing methylation included 

intergenic and repetitive regions, the latter representing various classes of retrotransposons. 

Overall, the mouse blood DNA methylome was characterized by robust remodeling with 

age, and its patterns and directions of change were dependent on the location of CpG sites 

within various functional regions of the genome. We further investigated enrichment 
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(Fisher exact test) of increasing and decreasing sites in different genomic regions (Figure 

12d). Increasing sites tended to be enriched in regions that gained methylation and 

decreasing sites in regions that lost it with age. After correction for cell type composition 

changes during aging (Houseman et al., 2016), we found somewhat fewer significant sites 

(7%), revealing a pattern reminiscent of the original regional regression analysis. Finally, 

we compared changes during aging (regression slope) in promoters (Promoters-Encode), 

enhancers (Enhancers-Encode), and TFBS between all sites, sites in regions with human– 

mouse homology and sites in mouse-specific regions (Figure 13b). Sites in homologous 

regions tended to gain, and sites in mouse-specific groups to lose methylation during aging 

compared to all sites in that region and to each other (Mann-Whitney U test, adjusted                           

p-value < 0.05). 
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Figure 13. Genomic regions are characterized by distinct age-related changes 

(a) Age-related changes in DNA methylation of genes. Relative position was calculated for every 

gene (0 corresponds to the TSS and 1 to the end of the gene) and extended in both directions up to 

the length of the gene. Dotted lines (individual samples) and thick lines (age groups) were 

calculated by generalized additive model using significant sites. (b) Regression slope of 

significantly changing sites in three genomic regions and differences between all sites (all 

predicted elements), human–mouse homologs (homolog elements), and mouse-specific 

regions (mouse-specific elements). (c) Significantly enriched pathways in promoters that 

gained methylation (red) and lost it (blue) during aging. KEGG and GO databases were used as 

pathway annotation for the analysis. (d) Linear regression slope of genomic regions after 

removal of significant sites that overlap with CpG islands (CGI), CGI shores, or CGI shelves. 
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Consistent with previous studies (Florath et al., 2014; Horvath et al., 2012; Rakyan 

et al., 2010), we found that the distance between the sites and CGIs strongly influenced 

methylation changes during aging, as CGIs gained and non-islands lost methylation. CGIs 

may overlap with other genome regions, and the aging changes in them may be driven by 

overlapping islands and may be less characteristic of the region itself or non-island parts 

of the genome. To examine this possibility, we removed, from every region, sites that could 

be assigned to (i) CGI, (ii) CGI and CGI shores, and (iii) CGI, CGI shore, and CGI shelves 

(Figure 13d). In most regions, CGIs had a strong effect on the overall pattern and mostly 

influenced regions that gained methylation. Many regions even changed their overall 

direction of change during aging after the removal of CGIs, but the most increasing regions, 

such as promoters, 5’-UTRs and first exons, still gained methylation with age. Methylation 

changes during aging in ultra-conserved regions tended to be less influenced by the 

overlapping CGIs than other regions that gained methylation. CGI island shores and 

shelves showed a minor additional effect. 

3.2.3 Pathway Enrichment of Promoters and Genes with Age-associated Methylation 

Changes 

To get a deeper understanding of the possible biological impact of methylation 

changes during aging, we carried out pathway GSEA (Subramanian et al., 2005) on 

promoters. We found 102 significantly enriched pathways (adjusted p-value < .05) 

associated with the loss of methylation and 1,162 pathways associated with its gain in 

promoters during aging. Among the pathways with decreased methylation were those 

related to DNA repair, immune processes, and inflammation. In the increasing group, the 
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most overrepresented pathways were related to developmental processes. There were also 

significantly enriched pathways related to aging and lifespan-extending interventions, such 

as the response to growth factors, insulin-like growth factor and TGFβ, MAPK cascade, 

WNT and Notch signaling pathway, regulation of stem cells, estradiol response, and fatty 

acid metabolism- and transcription regulation-related pathways (Figure 13c) (Carlson et 

al., 2008; Harrison et al., 2014; van Heemst, 2010; Heilbronn and Ravussin, 2003; Lopez-

Otin et al., 2013; Ott and Grune, 2014). 

We also investigated the enrichment for genes and found 39 significant pathways 

that lost methylation and 987 pathways that gained it during aging. We observed similar 

patterns in gene bodies compared to promoters. Pathways with decreasing DNA 

methylation included DNA repair, immune function, and inflammation-related pathways, 

and those with increasing methylation included various developmental pathways. There 

were aging-related enriched pathways in the increasing group, including regulation of cell 

aging and senescence, growth factor response such as the response to TGFβ stimulus, stem 

cell proliferation and differentiation, MAPK cascade, WNT, Notch signaling, and fatty 

acid metabolism-related pathways. In addition, a pathway involving DNA methylation 

itself was detected, including the gene DNMT1. 

3.2.4 Increased Entropy of DNA Methylation Patterns during aging 

As discussed above, a characteristic feature of age-related changes in DNA 

methylation was that the sites that gained methylation with age were initially 

hypomethylated, and those that lost it were hypermethylated. To further characterize age-

related methylation changes, we prepared density plots for every age group, including all 
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sites (Figure 14a) or only the sites that showed significant changes with age (Figure 14b). 

Methylation levels for most sites were close to either 0 or 1; during aging, these extreme 

methylation states moved toward intermediate levels. These changes were even more 

pronounced among the sites that changed with age, pointing out to an age-related increase 

in entropy. We quantified these changes by calculating Shannon entropy (Hannum et al., 

2013) for individual samples and performing linear regression against age and 

confounders, verifying a significant increase in entropy with age. The rise in Shannon 

entropy was found for all sites (Pearson’s correlation coefficient = 0.468, p-value < 2.10-

16) and for the significant sites only (Pearson’s correlation coefficient = 0.769, p-value < 

2.10-16), the latter with the stronger effect (permutation test, p-value < .0001; Figure 14c). 

We applied multiple data transformation to the age-entropy dependence in the same way 

as described above and identified age~entropy−
1

3 as the best fitting model based on AIC. 

We also found that entropy changed dominantly close to the end of life. Interestingly, there 

was a difference between entropy of the sites with increasing (Pearson’s correlation 

coefficient = 0.682, p-value < 2.10-16) and decreasing (Pearson’s correlation coefficient = 

0.801, p-value < 2.10-16) methylation (Figure 14d): Entropy of the decreasing sites was 

higher for all age groups than of the sites with age-related increased methylation 

(permutation test, p-value < .0001). This could be seen in the density plots, wherein the 

peak with high methylation was wider than that with low methylation, and hypomethylated 

sites were more consistent in their methylation levels that the sites with high methylation. 

In addition, an analysis of 651 human samples revealed increasing entropy with the best 

model: 𝑎𝑔𝑒~𝑒𝑛𝑡𝑟𝑜𝑝𝑦−
1

3, showing higher overall entropy of significant compared to 
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nonsignificant sites and higher overall entropy of decreasing compared to increasing sites. 

Overall, increased entropy during aging was reflected in the methylation patterns and 

differentially affected the sites with increasing, decreasing, and unaffected methylation. 

 

Figure 14. Age-related changes in entropy of the DNA methylome 

(a) Age-related changes in DNA methylation, shown as a density plot accounting for all 

detected CpG sites. (b) Same as in (a), but the plots include only the CpG sites that 

significantly change with age. (c) Shannon entropy of the sites that significantly change (or 

do not change) with age. (d) Shannon entropy of the sites that significantly increase and 
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decrease with age. (e) Intercept of the linear regression vs. the regression slope for every site 

that significantly changed with age. The red curve represents generalized additive model fit. (f) 

Venn diagram of significantly changed sites, based on the original age-related changes 

(Original) and entropy-normalized residuals (Residuals). 

 

To investigate sites, whose changes cannot be explained by the global change in 

entropy, we examined the relationship between the intercept of significant sites and the 

regression slope (Figure 14e) using a generalized additive model. Expected slope was then 

calculated for all sites, based on the intercept of linear regression and fitted values of 

generalized additive model, and the residual methylation fraction (RMF) was calculated by 

subtracting age 9 expected slope from the original methylation fractions (OMFs). After 

normalizing for the average entropy effect, linear regression was calculated for every RMF, 

accounting for confounding factors, using multiple data transformation, and choosing the 

best fitting model based on AIC. We found many sites (496,383 sites, 61.9%) without age-

related changes in OMF, but the RMF changed with age (Figure 14f). These sites had low 

or high methylation levels and resisted changes during aging. We observed 96,231 sites 

(12%), where OMF changed with age, but the entropy-normalized RMF did not. 

Methylation of these sites changed during aging, but these changes could be explained by 

the average entropy effect. We also detected 73,895 (9.2%) sites that changed based on 

both OMF and RMF. These sites showed age-related changes: 32.8% changed more than 

the average entropy, 49.5% less than the average entropy, and 17.7% changed in the 

opposite direction, that is, these sites were already highly methylated, but further increased 

methylation during aging and vice versa. Finally, 16.9% of the sites did not change in either 

analysis: These sites showed intermediate methylation levels and did not change with age. 

We conclude that most of the sites retain the early age methylation state, some follow or 
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even exceed the average entropy trajectory, and few sites change in the direction against 

entropy.  

Human data revealed a similar trend. We performed pathway enrichment analyses 

using the mouse samples and (i) sites that changed based on OMF and RMF, which showed 

age-related changes that cannot be explained by the average entropy; and (ii) sites that 

changed based on just the OMF, which could be fully explained by the average entropy. 

We detected similar trends during this analysis; both average entropy-driven and other sites 

were similarly enriched in pathways that changed during aging. 

3.2.5 Regulation of the Blood DNA Methylome by Caloric Restriction 

We further investigated the effect of calorie restriction (CR), a classical lifespan-

extending intervention, on the blood DNA methylome by analyzing four groups of mice, 

from 10 till 27 months old, that were subjected to CR starting at the age of 4 months. We 

created a linear model and examined the sites characterized by the initial shift (IS) in 

response to CR (estimated shift at the age of 4 months) and the sites that changed with a 

different rate than the control group over time in response to treatment (designated time 

after treatment (TAT)), which represents the cumulative change (Figure 15). We detected 

139,803 significant sites (22.6%; F test, adjusted p-value < .05), where both IS and TAT 

had a significant effect. We then examined which effect, instantaneous or cumulative, may 

characterize CR. Our analysis revealed 5,093 sites that changed with TAT and 14,516 with 

IS (adjusted p-value < .05). The identified sites were investigated in detail, revealing 

changes during (i) aging and IS, (ii) aging and TAT, and (iii) IS and TAT (Figure 16a). 

First, we examined the relationship between the sites that changed significantly during 
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aging in the control group and IS. There was a significant positive correlation between the 

linear model coefficients (Pearson’s correlation coefficient = 0.681, p-value < 2.10-16; 

Figure 16b). Thus, most sites with the initial shift following the intervention changed in 

the same direction as they did during aging. 

 

Figure 15. Examples of sites that change methylation with age following CR 

(A) Site with the initial shift, but no significant cumulative effect. (B) Site with the cumulative 

effect, but without a significant initial shift. (C) Site with both significant initial shift and 

cumulative effect. In each case, the control group has a significant age-related change. 

 

The same comparison between the sites changing both during aging and TAT 

showed a significant negative correlation (Pearson’s correlation coefficient = -0.484, p-
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value < 2.10-16; Figure 16c). The cumulative effect during CR, represented by the TAT, 

seemed to exhibit an opposite direction than the age-related changes, and it slowed down 

the influence of aging on the methylome. We also investigated the sites, which change 

during both IS and TAT (including, but not limited to the sites with age-related changes), 

and observed a strong negative correlation (Pearson’s correlation coefficient = -0.988, p-

value < 2.10-16; Figure 16d). The data suggest that these sites initially change after the start 

of the intervention, but then the cumulative effect drives methylation back to the level of 

the control group. In addition, we examined 24 publicly available mouse samples (Cole et 

al., 2017; Hahn et al., 2017), which revealed similar trends in response to CR. To get the 

end point of changes in the methylome in response to long-term CR, we compared the 

oldest CR group (27 months) with the age-matched control. For sites significantly changing 

during aging, we examined the relation between the regression slope throughout lifespan 

and the average difference in their methylation level between every control and CR site in 

the oldest age group. We observed a significant negative correlation, consistent with the 

idea that long-term CR slows down aging of the methylome. We further compared the 

average methylation difference between every control and CR site in the oldest age group 

and the age-related regression slope of every site in all CR samples (4 age groups) and 

observed a significant positive correlation, showing that the long-term cumulative changes 

shifted the methylome toward the direction of the cumulative effect itself. Based on these 

findings, we conclude that the initial and cumulative effects of CR show different effects 

and that the cumulative changes seem to slow down aging of the methylome during a long-

term treatment. 
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Figure 16. Age-related DNA methylation changes associated with CR effect 

(a) Venn diagram of CpG sites that significantly change with age in the control group (Age), 

sites with the initial shift (IS) in response CR, and sites with cumulative changes following the 

intervention (TAT). (b) Correlation between linear model coefficients of significant age-

related changes in the control group and significant IS changes. (c) Correlation between 

linear model coefficients of significant age-related changes in the control group and 

significant cumulative changes under the CR regime. (d) Correlation between the coefficients 

of significant cumulative changes and significant IS changes in response to CR (including, 

but not limited to sites with age-related changes). 

 

To investigate whether our findings on CR apply to mice in a different genetic 

background, we investigated blood samples from 22 B6D2F1 male mice in two age groups. 

We detected 334 (0.048%) CpG sites differentially methylated between intervention and 

age-matched control mice. We further investigated whether CR affected the same sites in 

a similar way in mice in different genetic backgrounds, that is, in B6D2F1 and C57BL/6 

mice. For this, we examined the relation between the linear model coefficients of 

significant CR-related changes in C57BL/6 mice and the same sites in B6D2F1 mice, 

assessing general relation of trends after CR in the two strains. Significant positive 
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correlation was observed (Pearson’s correlation coefficient = 0.295, p-value < 2.10-16). 

Then, we performed a similar analysis, but included only the sites, which showed 

significant CR-related changes in both strains, by focusing on most reliable 204 sites. We 

again detected a significant positive correlation (Pearson’s correlation coefficient = 0.969, 

p-value < 2.10-16). These data suggest that CR shifted the methylome in the same direction 

and generally affected the same sites in the two strains. 

3.3 Discussion 

3.3.1 Global and Local Changes in DNA Methylation throughout Adult Lifespan 

Analysis of the blood DNA methylome of 141 mice representing 16 age groups 

spanning the entire adult lifespan (3-35 months of age) allowed us to examine changes in 

DNA methylation in great detail and at a high resolution. The Robust changes were 

observed in late (86% sites) and early (14% sites) life, whereas few changes were seen 

throughout middle ages, suggesting that the primary changes during aging are not linear 

and that they either accelerate or decelerate with age in both mice and humans. 

Accelerating nature of the majority of CpG changes is consistent with the exponential 

increase in molecular damage and with the model of the rising deleteriome (Gladyshev, 

2016), whereas developmental processes appear to underlie the decelerating sites during 

aging. 

We observed strong methylation gain with age at the 5’-ends of genes. In contrast, 

loss of methylation occurred at the 3’-UTRs and noncoding (introns) and intergenic 

regions. These findings in mice agree with previous human studies (Johansson et al., 2013; 

McClay et al., 2014), indicating conservation of age-related changes in DNA methylation 
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across species. We also observed increasing DNA methylation in other regulatory regions, 

such as microRNAs and long noncoding RNAs. CGI-related methylation was previously 

shown to suppress the expression of microRNAs and contribute to human cancers 

(Lujambio and Esteller, 2009). These observations support interactions between different 

epigenetic mechanisms of aging. Repetitive regions showed decreasing methylation with 

age. These changes in retrotransposons may promote the expression of these elements and 

increase damage to the genome in late life (Robertson and Wolffe, 2000; Yoder et al., 

1997). Evolutionarily conserved elements, most notably ultra-conserved regions (100% 

sequence identity between human, mouse, and rat) gained methylation during aging. 

Increasing evidence suggests that these regions may be differentially expressed in human 

lymphomas and carcinomas (Calin et al., 2007). CGI hypermethylation suppresses the 

expression of the ultra-conserved regions, which is not uncommon in human cancers 

(Lujambio et al., 2010). Human–mouse homologs seemed to be mostly gaining, whereas 

mouse-specific regions losing methylation during aging. Overall, evolutionarily conserved 

elements tended to gain methylation during aging. 

The presence of 5-methylcytosine at CpG dinucleotides created a fivefold depletion 

of this sequence during vertebrate evolution, probably due to spontaneous and enzyme-

induced mutations (Bird, 1980; Gonzalgo and Jones, 1997). This may provide an 

explanation for hypomethylation of evolutionarily conserved regions and suggests that 

methylation gain during aging may promote mutations in the conserved elements in late 

life, contributing to the aging process. CGIs were found to be among the regions that gained 

methylation most, similar to the results of human studies (Jones et al., 2015), and 



88 

  

overlapping CGIs had a strong effect on the increasing regions. Regions with the strongest 

methylation gain, such as promoters, first exons, and 5’-UTRs, showed a general 

methylation increase with age even when the overlapping CGIs were removed. 

Methylation gain in promoters was frequently associated with overlapping CGIs (Saxonov 

et al., 2006), although our findings suggest that promoters even without overlapping CGIs 

gain methylation during aging. Pathway enrichment analysis of promoters and genes 

illuminated the biology behind the changes. Genes and promoters that lost methylation 

tended to be enriched in pathways that maintain cell homeostasis, for example, DNA 

repair-related pathways. These pathways are expected to become more expressed during 

aging, based on the idea of the inverse relationship between promoter methylation and gene 

expression (Jones et al., 2015). Many immunological and inflammation-related pathways 

were also enriched, in agreement with the known increase in inflammation in late life 

(Lopez-Otin et al., 2013). The most dominant pathways of genes and promoters gaining 

methylation during aging were developmental genes (Maegawa et al., 2017), which may 

indicate the decreasing expression of at least a subset of developmental genes during aging. 

There were also pathways in this group of promoters known to contribute to aging and 

lifespan-extending interventions, such as regulation of cell response to growth factor 

stimulus (Lopez-Otin et al., 2013), regulation of stem cell proliferation and differentiation 

(Heilbronn and Ravussin, 2003), insulin-like growth factor and response to insulin-related 

pathways (van Heemst, 2010), response to estradiol (Harrison et al., 2014), and ubiquitin-

mediated proteolysis (Ott and Grune, 2014). Promoters involved in fatty acid metabolism 

(Hahn et al., 2017), and WNT-, Notch-, and TGFβ-related pathways also showed changes 
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during aging (Carlson et al., 2008). Methylation changes in the MAPK cascade were 

reported previously during aging in mice (Hahn et al., 2017). There were pathways gaining 

methylation in gene bodies that were enriched for regulation of cellular aging and 

senescence. We also observed methylation-related pathways enriched in gene bodies 

gaining methylation. Interestingly, a previous study showed decreased expression of 

DNMT1 (Ray et al., 2006) in mouse T cells during aging; this is the main DNMT expressed 

in adulthood that maintains DNA methylation of adult dividing cells (Armstrong et al., 

2014). These changes may contribute to misregulation of methylation machinery and a 

consequent entropy increase during aging. Cancer-related pathways in promoters and gene 

bodies gained methylation, supporting the known relation between aging and cancer 

development (Lopez-Otin et al., 2013). These changes may contribute to misregulation of 

methylation machinery and a consequent entropy increase during aging. Cancer-related 

pathways in promoters and gene bodies gained methylation, supporting the known relation 

between aging and cancer development (Lopez-Otin et al., 2013). These enriched pathways 

indicate that DNA methylation may have a critical role during aging in mice. 

3.3.2 Increased Entropy Alters the Developmental Pattern 

Most CpG sites changed with age toward intermediate methylation states, pointing 

to altered entropy of the methylome. Previous studies revealed increased entropy in human 

DNA methylation (Hannum et al., 2013) and in mouse livers aged 0.2 to 7.1 months old 

(Wang et al., 2017). We were able to examine changes in entropy across the whole mouse 

and human lifespan at a high resolution. Interestingly, we observed acceleration of entropy 

changes in older ages, in agreement with the rise in accumulating damage and the 



90 

  

deleteriome (Gladyshev, 2016). Around 20% of the sites changed during aging, with the 

nearly equal numbers of those that increased and decreased methylation, but the global 

trend was associated with slightly decreased methylation with age, suggesting that the 

hypermethylated sites decrease somewhat more than the hypomethylated sites increase. 

Interestingly, however, hypomethylated sites that gained methylation were enriched in 

more pathways, including some with relevance to aging. The data suggest that these sites 

are more conserved and may underlie the features of aging associated with genetic 

programs, whereas the highly methylated sites that lost methylation with age may be 

associated with the more stochastic processes. After normalization for the average entropy 

effect, we observed that many sites fully resisted changes (61.9%), defining the extremes 

in methylation levels. Some sites changed slower than the entropy changes (4.6%), other 

sites followed the average entropy effect (12%), but some changed even faster than the 

average entropy (3%). There were also few sites that changed in the direction opposite to 

entropy changes (1.6%). A recent study of human aging found that the majority of DNA 

methylation changes were associated with epigenetic drift and accumulating damage, 

supporting the disposable soma theory of aging, whereas targeted changes in methylation 

also exist, as predicted by the mutation accumulation theory, and may mediate the effects 

of aging-related genes (Robins et al., 2017). Our results agree with these findings as the 

increasing and accelerating entropy, representing damage accumulation, disrupts the global 

methylation pattern, whereas fewer entropy-independent targeted changes were observed 

in mouse and human samples, which may drive aging-related biological functions. 

Interestingly, both entropy-driven and nonentropy-driven sites contributed similarly to the 
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pathways changed during aging, indicating that the entropy growth of the methylome may 

have biological consequences. The early developmental program may define global and 

region-specific methylation patterns and segregate functionally relevant CpG sites to fully 

methylated and unmethylated. This pattern may have multiple regulatory effects, with the 

respective sites contributing to certain biological functions. Other sites may follow entropy 

increase, which accelerates in late life and disrupt the developmental patterns. 

3.3.3 Long-term CR Slows Down Aging of the Methylome 

CR is known to extend lifespan of mice and many other species (Bordone and 

Guarente, 2005). We could detect two distinct responses to this longevity intervention. 

First, our analyses revealed that, initially, CR shifted the DNA methylome in the same 

direction as aging. This initial shift may be at least partly a response to stress caused by 

CR. Second, the cumulative change during CR affected the methylation pattern differently 

(compared to aging and compared to the initial shift by CR), and this cumulative trend 

seemed to shift the methylome toward a younger state (compared to control) and/or slow 

down aging of the methylome. Cumulative changes may influence the methylome in two 

different ways. On the one hand, they may affect sites with the initial shift caused by CR; 

in this case, the cumulative effect counteracts this shift. This effect may be compensatory 

with regard to the initial shift, as 98.2% of these sites do not differ from control in the 

oldest age group. On the other hand, the cumulative effect may influence the initially 

nonchanging sites and slow down the aging process. These sites appear to represent the 

long-term, lifespan-extending biological effect of CR. We observed that, initially, the 

methylome seemed to become older, whereas in the oldest age group the methylome 
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appeared to be younger in the CR group, suggesting that the cumulative effect has a larger 

longevity impact following long-term CR. The cumulative nature of CR is also confirmed 

by the meta-analysis of longevity studies in mice, wherein aging rate, but not vulnerability 

parameter, was shown to be a crucial coefficient of the Gompertz model explaining the CR 

influence on lifespan (Garratt et al., 2016). Furthermore, the earlier start of the treatment 

strongly increases the degree of lifespan extension via CR in mice (Simons et al., 2013). 

Previous studies are consistent with our findings. Heterozygous DNMT1 knockout 

mice are characterized by slower immune senescence (Richardson, 2003). Young DNMT1 

knockout mice feature general hypomethylation, the same trend as control mice during 

aging. On the other hand, older knockout mice showed hypermethylation and decreased 

immune senescence. Another study revealed that different sites change in response to CR 

in young and old mice (Hahn et al., 2017). A negative correlation was also shown between 

the methylation drift during aging and methylation changes following long-term CR in 

mice and monkeys (Maegawa et al., 2017), and the severity and duration of CR may have 

influenced the resulting methylation patterns. Based on these findings, the cumulative 

effect of CR seems to slow down the aging pattern of the methylome and it may have a 

more important role for lifespan extension, compared to the transient initial shift. In 

addition, the role of the cumulative effect in our and other studies suggests a strong link 

between DNA methylation and aging. It should also be noted that the pattern of methylome 

changes following CR was similar in mice in different genetic backgrounds. 

Overall, we characterized changes in the blood DNA methylome of mice at 

unprecedented detail, uncovering nonlinear trends in DNA methylation remodeling during 
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aging. Promoters and genes with significant age-related changes in methylation turned out 

to be enriched in many known aging-related pathways, pointing to an important link 

between DNA methylation and control of the aging process at the molecular level. In 

addition, analyses of CR revealed differences between the initial and cumulative effects of 

the intervention on the DNA methylome, the latter being important for lifespan extension. 

Analysis of DNA methylation allowed us to quantify entropy that both increased and 

accelerated with age and altered the developmental methylation patterns, even though 

many CpG sites resisted these changes. Finally, sites with low methylation levels were 

more conserved, and associated with biological functions relevant to aging. Taken together, 

our findings define the biological relevance of DNA methylation to aging. 
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Chapter 4. Identification and Application of Gene Expression 

Signatures of Lifespan-Extending Interventions 

4.1 Materials and Methods 

4.1.1 Animal Samples 

Mice were subjected for methionine restriction (MR) as following. Seven-weeks 

old male C57BL/6J mice were purchased from The Jackson Laboratory (Stock #000664, 

Bar Harbor, ME, USA) and housed in a conventional animal facility maintained at 20 ± 

2°C and 50 ± 10% relative humidity with a 12 h light: 12 h dark photoperiod. During a 1-

week acclimatization, mice were fed Purina Lab Chow #5001 (St. Louis, MO, USA). Mice 

were then weight matched and fed either a control (CF; 0.86% methionine w/w) or MR 

(0.12% methionine w/w) diet consisting of 14% kcal protein, 76% kcal carbohydrate, and 

10% kcal fat (Research Diets, New Brunswick, NJ, USA) for 52 weeks. Body weight and 

food consumption were monitored twice weekly. Young mice were 8 weeks old (2 months) 

at the initiation of the experiments and 60 weeks old (14 months) upon termination. On the 

day of sacrifice, animals were fasted for 4 hours at the beginning of the light cycle. After 

mice were sacrificed by CO2 asphyxiation, liver samples were collected, flash frozen, and 

stored at 80ºC until analyzed. 

Other mice used in this study were obtained from the colonies at University of 

Michigan Medical School. Liver samples were taken at 6 and 12 months of age from male 

and females treated by drugs or exposed to caloric restriction (CR) diet from 4 months of 

age along with untreated littermate control mice of the same ages, being fed ad libitum. 
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Interventions analyzed at 6 months of age included 40% CR, Protandim™ (1200 ppm, as 

in (Strong et al., 2016)), rapamycin (42 ppm, as in (Miller et al., 2014)), 17-a-estradiol 

(14.4 ppm, as in (Strong et al., 2016)) and acarbose (1000 ppm, as in (Harrison et al., 

2014)), while interventions analyzed at 12 months of age included 40% CR, acarbose (1000 

ppm, as in (Harrison et al., 2014)) and rapamycin (14 ppm, as in (Miller et al., 2011, 2014)). 

Both males and females were subjected to the mentioned interventions. Genetically 

heterogenous UM-HET3 strain, in which each mouse had unique genetic background but 

shared the same set of inbred grandparents (C57BL/6J, BALB/cByJ , C3H/HeJ, and 

DBA/2J), was used in this setting. 

Liver samples from Snell dwarf (Flurkey et al., 2001) and GHRKO (Coschigano et 

al., 2003) males, and their corresponding littermate controls, were taken from mice at 5 

months of age belonging to (PW/J x C3H/HeJ)/F2 and (C57BL/6J x BALB/cByJ)/F2 

strains, respectively. 

In all cases, interventions continued until the animals were sacrificed. Each 

analyzed group, including both treated and control mice, contained 3 biological replicates, 

resulting in the total of 78 liver samples from different mice being sequenced in the work. 

RNA was extracted from liver tissues with PureLink RNA Mini Kit as described in the 

protocol and passed to sequencing. 

4.1.2 RNAseq Data Processing and Analysis 

Paired end sequencing was done on the Illumina HiSeq2000 platform generating 

approximately 25 to 50 million reads per sample, with read length of 100 nucleotides. 

Quality filtering and adapter removal were performed using Trimmomatic version 0.32. 
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Processed/cleaned reads were then mapped with STAR (version 2.5.2b) (Dobin et al., 

2013). Read counting was performed by featureCounts (Liao et al., 2014). To filter out 

genes with low number of reads, only genes with at least 2 counts per million (cpm) in at 

least 3 samples were left, which resulted in 11053 detected genes according to Entrez 

annotation. Filtered data was then passed to RLE normalization (Anders and Huber, 2010). 

Differential expression analysis was performed with R package edgeR (Robinson 

et al., 2009). For individual interventions, we declared gene expression to be significantly 

changed, if p-value, adjusted by Benjamini-Hochberg procedure (Benjamini and 

Hochberg, 1995), was smaller than 0.05 and fold change (FC) was bigger than 1.5 in any 

direction. When several doses and age groups were presented, we added separate factors 

accounting for that to the model and looked for genes significantly changed across these 

settings. As dose and age groups experiments were run separately and had their own 

controls, such factors allowed us to adjust for possible batch effect. The effects of certain 

interventions on different sexes were investigated separately. To determine the statistical 

significant of overlap between differentially expressed genes of certain interventions, we 

performed Fisher exact test separately for up- and downregulated genes, considering 

11,053 detected genes as a background. 

When performing analysis of feminizing effect, “feminizing changes” were defined 

as gene expression changes between control males and females from UM-HET3 strains. 

When calculating Pearson correlation between response to certain intervention in specific 

age group (6 or 12 months) and feminizing changes, the latter were calculated based on 

control males and females from the other age group (12 or 6 months, respectively). This 
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technique provided us with unbiased correlations, based on different control samples. In 

case of MR, GHRKO and Snell dwarf mice, which possess their own control, feminizing 

changes were aggregated across age groups. For that we used single edgeR model with the 

age specified as a separate factor. In cases of both individual and aggregated age groups, 

we declared the feminizing gene to be significantly changed, if p-value, adjusted by 

Benjamini-Hochberg procedure, was smaller than 0.05 and FC was bigger than 1.5 in any 

direction. 

The statistical significance of Pearson correlation between feminizing changes and 

response to certain intervention (“feminizing effect”) was calculated with Pearson 

correlation test and adjusted for multiple comparisons with Benjamini-Hochberg 

procedure. Difference in feminizing effect of certain intervention in certain age group 

between males and females was tested by Pearson correlation test, applied to the difference 

in log2FC of feminizing genes (from the other age group) in response to the specified 

conditions between males and females, and feminizing changes based on the other age 

group, with the following Benjamini-Hochberg adjustment. Overlap between statistically 

significant feminizing genes and gene differentially expressed in response to interventions 

was estimated by Fisher exact test similarly to comparison of individual interventions. 

Heatmap of feminizing genes was created based on feminizing changes, aggregated 

across age groups, and log2FC of corresponding genes in response to individual 

interventions, aggregated across age groups as well (using edgeR).  Only genes 

differentially expressed between control males and females (637 genes) were used to build 
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the heatmap. Clustering was performed with average hierarchical approach and Pearson 

correlation distance. 

To investigate genes responsible for feminizing effect, we used single edgeR model 

to identify genes with changes associated with feminizing effect, calculated within 

unbiased correlation analysis. We declared a gene to be significantly changed, if its 

Benjamini-Hochberg adjusted p-value was smaller than 0.05. We then took an intersection 

of feminizing genes, aggregated across age groups, and genes associated with feminizing 

effect, separately for up- and downregulated genes, to obtain the final list of common 

genes. This resulted in 164 upregulated and 153 downregulated common genes. 

4.1.3 Functional Enrichment Analysis 

For identification of functions enriched by genes differentially expressed in 

response to individual interventions within our RNAseq data and aggregated across 

datasets (CR, rapamycin and GH deficiency interventions), commonly changed across 

interventions (common signatures) as well as associated with lifespan effect, we performed 

GSEA (Subramanian et al., 2005) on a pre-ranked list of genes based on z-scores, 

calculated as: 

𝑧‐ 𝑠𝑐𝑜𝑟𝑒 = − ln(𝑝𝑣) × 𝑠𝑔𝑛(𝑙𝑓𝑐), 

where pv and lfc are p-value and logFC of certain gene, respectively, obtained from edgeR 

output, and sgn is signum function (is equal to 1, -1 and 0 if value is positive, negative and 

equal to 0, respectively). REACTOME, BIOCARTA, KEGG and GO biological process 

and molecular function from Molecular Signature Database (MSigDB) have been used as 

gene sets for GSEA (Subramanian et al., 2005). q-value cutoff of 0.1 was used to select 
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statistically significant functions. Adjusted z-scores of enriched functions were calculated 

as: 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑧‐ 𝑠𝑐𝑜𝑟𝑒 = − log10(𝑞𝑣) × 𝑠𝑔𝑛(𝑁𝐸𝑆), 

where 𝑁𝐸𝑆 and 𝑞𝑣 are normalized enrichment score and q-value, respectively. 

Horizontal and vertical barplots were shown for manually chosen statistically 

significant functions with size of barplot being dependent on value of adjusted z-score. For 

functions associated with lifespan effect, heatmap colored based on adjusted z-score was 

used. Clustering of functions enriched by individual interventions within RNAseq data was 

performed based on NES of functions with statistically significant enrichment (q-value < 

0.1) by at least one intervention. Clustering has been performed with hierarchical average 

approach and Pearson correlation distance. 

To identify functions enriched by genes shared by differences between males and 

females along with changes in response to lifespan-extending interventions in males, we 

performed Fisher exact test using Database for Annotation, Visualization and Integrated 

Discovery (DAVID) (Huang et al., 2009a, 2009b). INTERPRO, KEGG and GO BP and 

MF databases were used. We declared functions to be enriched if their Benjamini-

Hochberg adjusted Fisher exact test p-value was smaller than 0.1. 

To perform further functional enrichment analysis of molecular pathways by CR 

and GH deficiency, we applied iPANDA method (Ozerov et al., 2016) to every individual 

dataset related to these interventions and obtained corresponding pathway activation scores 

(PAS) for each of them. PAS is based on both statistical significance and the strength of 

activation of the certain pathway. As some of the individual datasets measure response to 
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certain intervention using the same control sampling, to calculate the aggregated PAS 

together with its p-value for the certain intervention, we used mixed-effect model, based 

on all single PAS values obtained from individual datasets with random term 

corresponding to the use of the same control sampling for calculation of gene expression 

change. Mixed-effect model was built with R package metafor (Viechtbauer, 2010). 

Obtained p-values were adjusted for multiple comparisons with Benjamini-Hochberg 

procedure. Functions were considered to be significantly enriched if their adjusted p-value 

was smaller than 0.1. Barplots with manually chosen enriched functions were built with 

the size of bars corresponding to the value of adjusted z-score, calculated as: 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑧‐ 𝑠𝑐𝑜𝑟𝑒 = − log10(𝑎𝑑𝑗.  𝑝𝑣) × 𝑠𝑔𝑛(𝑎𝑔𝑃𝐴𝑆), 

where 𝑎𝑑𝑗.  𝑝𝑣 and 𝑎𝑔𝑃𝐴𝑆 are BH adjusted p-value and aggregated PAS obtained from 

mixed-effect model output, respectively. 

4.1.4 Aggregation of RNAseq and Microarray Datasets for Meta-Analysis 

To aggregate data across different platforms and studies, we developed the 

following method. First, data within each study is preprocessed independently and log-

transformed to conform to normal distribution if needed. Then, filtering of low-covered 

genes is performed with soft threshold. Then, all identifiers are mapped to Entrez ID gene 

format, and genes not detected in our RNAseq data are filtered out. This results in the 

coverage of 11053 genes or less if some of these genes have been filtered out because of 

the low coverage. Afterwards, samples within every study are normalized by quantile and 

z-score normalization, followed by multiplication by the certain value to make it on the 

same scale as RNAseq data with more natural interpretation. Finally, mean and standard 
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error of logFC of every gene for every response to intervention is calculated together with 

p-value (along with Benjamini-Hochberg adjusted p-value) estimated by edgeR (Robinson 

et al., 2009) and limma (Ritchie et al., 2015) for RNAseq and microarrays datasets, 

respectively. This results in 2 values representing every gene from every dataset. 

Importantly, one study may lead to several datasets if several interventions or settings have 

been analyzed there. Sometimes, different interventions or doses share the same control 

sampling. This may lead to some batch effect, which we, however, removed at the 

subsequent steps. In total, our meta-analysis resulted in 17 different interventions presented 

in 77 control-intervention datasets from 22 different sources (including ours) (Figure 19D). 

Z-score normalization of every sample, performed before calculation of logFC, 

results in similar and comparable distribution of gene changes across different studies and 

platforms. Importantly, z-score normalization is not performed after calculation of logFC 

as different interventions may lead to different scale of gene expression profile 

perturbation. Indeed, lifespan-extending genetic manipulations generally lead to bigger 

perturbation of transcriptome compared to diets and compounds (Figure 20). To 

demonstrate this effect, we calculated median and standard deviation of logFC distribution 

across the whole transcriptome for every individual dataset. Median may be interpreted as 

imbalance between up- and downregulated changes whereas standard deviation 

corresponds to the scale of perturbation. To visualize distribution of specified metrics for 

different kinds of interventions (pharmacological, dietary and genetic manipulations), we 

used violinplots. Unpaired Mann-Whitney test was used to compare medians and standard 

deviations of logFC distributions corresponding to different kinds of interventions. 
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4.1.5 Identification of Genes Associated with Individual Interventions 

logFC calculated for every dataset were further used as inputs to the statistical tests 

for meta-analysis. To account for standard error of logFC and remove batch effect related 

to the belonging of several datasets to the same study or same control sampling within the 

study, we applied mixed-effect model using R package metafor (Viechtbauer, 2010). As 

an input, we used both mean and standard error of logFC. Such approach allowed us to 

account for the size of the effect and variance of estimated gene expression change within 

each individual dataset, which provides more sensitive and accurate analysis compared to 

previous studies focused on comparison of lists of differentially expressed genes. 

When calculating gene expression changes of individual interventions across 

different sources (such as CR and rapamycin), to remove batch effect, we considered 

belonging to the same study or control group as random term. When calculating such 

changes for GH deficiency interventions, we also included type of intervention as a random 

term. Using this procedure, we obtained aggregated logFC and corresponding p-value for 

every gene. Besides standard p-value, we also calculated leave-one-out (LOO) and robust 

p-value. ‘LOO p-value’ is defined as the highest p-value after removal of every study one 

by one. On the other hand, ‘robust p-value’ is the lowest p-value after the same procedure. 

Benjamini-Hochberg procedure was used to adjust every type of p-value for multiple 

comparisons. We declared genes to be differentially expressed in response to CR, 

rapamycin and GH deficiency across datasets if adjusted p-value was smaller than 0.01 and 

their LOO p-value was smaller than 0.01. The significance of overlap between lists of 

differentially expressed genes obtained from meta-analysis was estimated by Fisher exact 
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test separately for up- and downregulated genes, considering 11,053 detected genes as a 

background. 

To identify upstream regulators of detected gene expression response to CR, 

rapamycin and GH deficiency, we applied the Biobase Transfac platform (Matys, 2006). 

First, for every individual dataset, we identified transcription factors binding to sequences 

enriched in promoters of differentially expressed genes using the platform. This resulted in 

matrix, where every transcription factor was either enriched (1) or not (0) for the certain 

dataset. At this step, we excluded redundant IDs corresponding to different binding patterns 

of the same factor by considering factor to be enriched if at least one of its patterns is 

enriched. This resulted in 1466 different upstream regulators. To identify factors 

overrepresented across different datasets of the same intervention, we applied permutation 

version of binomial statistical test as described in (Plank et al., 2012). Briefly, to identify 

the p-value threshold corresponding to the desired FDR (equal to 0.01), permutation test is 

performed, where 1 and 0 (corresponding to enrichment of different transcription factors) 

are shuffled within each dataset and number of false positives for different binomial test p-

value thresholds are calculated. Based on the obtained numbers, p-value threshold ensuring 

FDR threshold of 0.01 is determined. The significance of overlap between enriched 

upstream regulators of different interventions was estimated by Fisher exact test, 

considering 1466 non-redundant transcription factors as a background. 

Similarly, aggregated logFC together with p-values were calculated for all 

interventions presented in our data by multiple sources. For interventions presented as a 

single dataset, logFC and p-values were obtained from individual datasets as described 
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previously. For interventions measured in several datasets from the same source, single 

edgeR or limma model was used depending on the origin of the data (RNAseq or 

microarray). This resulted in matrix containing aggregated log2FC values of every gene in 

response to different interventions. To visualize change of each gene within each individual 

intervention, we built barplots representing aggregated log2FC of the certain gene in 

response to all intervention where it has been detected. Statistically significant changes 

were defined based on Benjamini-Hochberg adjusted p-value. 

4.1.6 Analysis of Mutual Organization of Interventions 

To assess similarity of gene expression response across interventions, we built a 

heatmap of aggregated log2FC of genes significantly changed in response to CR, rapamycin 

and GH deficiency interventions (2507 genes in total). Complete hierarchical clustering 

was employed for the heatmap. Correlation matrix representing similarity between 

aggregated logFC of different interventions was calculated based on Pearson correlation 

coefficient. 

To calculate correlations between interventions in unbiased way, we applied the 

following approach. For every pair of interventions, including comparison of intervention 

with itself, we examined all pairs of datasets from different sources. For each such pair we 

took a union of 100 genes with the most significant expression change (defined by p-values 

calculated for individual datasets) and calculated Spearman correlation coefficient between 

the datasets. We reiterated this algorithm and, as a result, for every pair of interventions 

obtained distribution of Spearman correlation coefficients, calculated between datasets 

from different sources. For CR and rapamycin, we visualized these distributions using 
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violinplot. One-sample Mann-Whitney test and Benjamini-Hochberg adjustment were 

used to check if means of correlation coefficients are different from 0 with statistical 

significance. We declared correlation coefficient to be significant if adjusted p-value was 

smaller than 0.1. 

For correlation matrix we employed median values of Spearman correlation 

coefficients. By filtering out comparisons of datasets from the same source, we removed 

possible batch effect and ended up with independent and unbiased comparison of 

interventions. However, as some interventions were presented only within the same source, 

we couldn’t estimate unbiased correlation for such cases. This missing data was visualized 

by grey boxes. The same was sometimes true for comparison of intervention with itself, as 

in this case we also employed only datasets from different sources. For this reason, 

correlation coefficient of intervention with itself was not equal to 1 in resulted unbiased 

correlation matrix. Complete hierarchical clustering approach was employed for 

visualization of correlation matrix. To demonstrate similarities between different 

interventions in network mode, we employed Cytoscape (Shannon et al., 2003). Only edges 

between interventions with significant positive correlation coefficients (median Spearman 

correlation coefficient > 0 and adjusted Mann-Whitney p-value < 0.1) were shown. The 

width of edge was defined by the log10(adjusted p-value). Smaller p-value led to wider 

edge. 

4.1.7 Identification of Common Signatures and Genes Associated with Lifespan Effect 

To identify genes with expression change shared across lifespan-extending 

interventions and, therefore, served as qualitative predictors of lifespan extension, we 
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filtered out all interventions and settings with unproved lifespan extension effect. Only 

settings, for which reliable longevity study was performed, were considered in the 

subsequent analysis. Therefore, for example, 40% CR in C57BL/6 females was excluded 

from the analysis as this setting doesn’t lead to statistically significant lifespan extension, 

contrary to 20% CR applied to the same mouse strain. 

First, for every single gene we calculated number of interventions, where it is 

differentially expressed based on adjusted aggregated p-value estimated as described 

previously. We considered gene to be differentially expressed if its adjusted aggregated p-

value was smaller than 0.1. However, this approach overfits genes changed in response to 

similar interventions (such as GH deficiency interventions) and doesn’t take into account 

possible consistent changes, which may be, however, not significant due to low sampling 

size or high variance. To overcome this problem, we applied single mixed-effect model to 

every gene as described previously and looked for genes, which aggregated logFC across 

lifespan-extending interventions is significantly different from 0. Here, however, we also 

included type of intervention as a random term together with correlation matrix specifying 

similarities between general response of the interventions. This correlation matrix was 

taken from unbiased mutual organization analysis described previously. We declared genes 

to be significantly shared across interventions if Benjamini-Hochberg adjusted robust p-

value, obtained after removal of every type of intervention one by one, was smaller than 

0.05. Heatmap with expression changes of significant genes across individual datasets was 

clustered with complete hierarchical approach. 
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To identify genes associated with lifespan effect, we estimated three main metrics 

of lifespan for every available setting, including median lifespan ratio (in logarithmic 

scale), maximum lifespan ratio (in logarithmic scale), defined as ratio of average lifespan 

of 10% most survived individuals, and median hazard ratio, defined as ratio of slopes of 

survival curves at the median point (timepoint where 50% of cohort is remained survived). 

We calculated these metrics for all available longevity studies related to the certain 

intervention setting (sex, dose and strain), and calculated average value across the studies 

to obtain most consistent and reliable value. Interventions or settings, for which no 

appropriate longevity study was available, were excluded. 

Afterwards, we applied mixed-effect model as described previously to identify 

genes associated with each of the 3 numeric metrics of lifespan effect. Control group and 

type of intervention were considered as random term, and correlation matrix between 

interventions was used to define covariance matrix. We declared genes to be significantly 

associated with lifespan effect if Benjamini-Hochberg adjusted p-value and LOO p-value, 

obtained after removal of every intervention one by one, were both smaller than 0.05. The 

significance of overlap between lists of genes associated with different metrics of lifespan 

effect was estimated by Fisher exact test separately for genes with positive and negative 

association, considering 11,053 detected genes as a background. Complete hierarchical 

clustering was used to sort genes on heatmap, representing logFC of genes with significant 

association across individual datasets. Individual datasets were sorted there based on their 

effect on maximum lifespan. 
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4.1.8 Test on Association with Longevity Signatures 

To test association of interventions with longevity signatures related to individual 

interventions (CR, rapamycin and GH deficiency), common changes and lifespan effect 

association, we employed GSEA-based approach. First, for every signature we specified 

250 genes with the lowest p-values and divided them into up- and downregulated genes. 

These lists were considered as gene sets. Then we ranked genes related to interventions of 

interest based on their z-scores, calculated as described in functional enrichment section. 

When running association test for lifespan-extending interventions (Figure 21A), we used 

p-values obtained from aggregated analysis as described previously. For interventions 

without known association with lifespan (Figure 24E), we downloaded them from GEO 

under the following accession numbers: GSE21060 (Ramadoss et al., 2010), GSE77082 

(Alonso et al., 2017), GSE15891 (Baze et al., 2010a), GSE11287 (Osburn et al., 2008) and 

GSE10421 (Kautz et al., 2008). We preprocessed each dataset, performed quantile 

normalization and Entrez ID transformation and applied limma model for calculation of p-

values, which were converted to z-score as explained previously. 

We calculated GSEA scores separately for up- and downregulated lists of gene set 

as described in (Lamb et al., 2006) and defined final GSEA score as a mean of the two. To 

calculate statistical significance of obtained GSEA score, we performed permutation test 

where we randomly assigned genes to the lists of gene set maintaining their size. To get p-

value of association between certain intervention and longevity signature, we calculated 

the frequency of real final GSEA score being bigger by absolute value than random final 

GSEA scores obtained as results of 3,000 permutations. To adjust for multiple 
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comparisons, we performed Benjamini-Hochberg procedure. Resulted adjusted p-values 

were converted into adjusted z-scores as: 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑧‐ 𝑠𝑐𝑜𝑟𝑒 = − log10(𝑎𝑑𝑗.  𝑝𝑣) × 𝑠𝑔𝑛(𝐺𝑆𝐸𝐴 𝑠𝑐𝑜𝑟𝑒), 

where 𝑎𝑑𝑗.  𝑝𝑣 and 𝐺𝑆𝐸𝐴 𝑠𝑐𝑜𝑟𝑒 are BH adjusted p-value and final GSEA score, 

respectively. Heatmaps were colored based on values of adjusted z-scores. 

4.2 Results and Discussion 

4.2.1 RNAseq Analysis across Lifespan-Extending Interventions 

We subjected young adult mice to 8 interventions previously established to extend 

lifespan, including acarbose, 17-α-estradiol, rapamycin, Protandim, CR (40%), MR (0.12% 

methionine w/w), GHRKO and Pit1 knockout (Snell dwarf mice) (Figure 17A). This set 

included 4 interventions that have never been analyzed at the gene expression level 

(acarbose, 17-α-estradiol, Protandim and MR). All compounds and diets were applied to 

genetically heterogeneous UM-HET3 mice and started at 4 months of age, except for MR, 

which was applied to 2-month-old C57BL6/J mice. Duration of treatment exceeded 8 

months in at least one age group for all compounds and diets and was equal to 5 months 

for the long-lived mutants. We then performed RNAseq on liver samples of these mice, 

together with corresponding controls, analyzing both males and females, except for MR, 

GHRKO and Snell dwarf mice, where only males were examined. Since some of these 

interventions are known to be effective when used at different concentrations and different 

ages (Harrison et al., 2009, 2014; Mercken et al., 2014; Miller et al., 2014; Mitchell et al., 

2016; Strong et al., 2016), we used 2 different age groups for CR, rapamycin and acarbose 
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(6- and 12-month-old, representing 2- and 8-month treatment, respectively), and 2 different 

effective concentrations of rapamycin (14 and 42 ppm) (Figure 17A). 

 

Figure 17. RNAseq analysis of hepatic gene expression in mice subjected to lifespan-extending 

interventions 

(A) RNAseq dataset. Mice were subjected to indicated lifespan-extending interventions for several 

months (from 2 to 12 for different interventions and age groups; n=3 for each control and treatment 

group within each sex and age setting resulting in 78 samples in total). Interventions, which have 

not been previously analyzed at the level of gene expression, are colored in green. Sex and age of 

mice corresponding to each intervention is shown with X marks. Cases where an intervention failed 
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to extend lifespan with statistical significance in females are shown with grey X mark. (B) Overlap 

of gene expression changes in response to longevity interventions. Overlap of differentially 

expressed genes (BH adjusted p-value < 0.05 and FC > 1.5 in any direction) in response to MR in 

males, CR in males and females and in Snell dwarf males is shown. 44.3% of upregulated and 

41.8% of downregulated genes in response to MR are shared with at least one other lifespan-

extending intervention. (C) Heatmap of functions enriched by gene changes in response to 

lifespan-extending interventions. Normalized enrichment score (NES) of functions are shown for 

every intervention. All functions enriched by at least one intervention are presented. FDR threshold 

of 0.1 was used to filter out functions nonsignificant for every individual intervention. Clustering 

has been performed with hierarchical average approach and Pearson correlation distance. (D) 

Functions enriched by upregulated (up) and downregulated (down) genes across different 

interventions based on GSEA. Z-score, calculated as log10(FDR q-value) corrected by sign of 

regulation, is plotted on the y axis. FDR threshold of 0.1 is shown by dotted lines. Shown functions 

were selected manually. Ribosome: Ribosome (KEGG); Cytochrome P450: Drug metabolism by 

cytochrome P450 (KEGG); Glutathione: Glutathione metabolism (KEGG); Ox Phosph: Oxidative 

phosphorylation (KEGG); TCA cycle:  Citrate Cycle/TCA Cycle (KEGG); FA oxidation: Fatty 

acid β-oxidation (GO); Mito Translation: Mitochondrial translation (GO); MR: Methionine 

Restriction; CR: Caloric Restriction; Snell: Snell dwarf mice; F: Females; M: Males. 

 

Differentially expressed genes associated with each intervention were initially 

examined separately for males and females. With false discovery rate (FDR) threshold of 

0.05 and fold change (FC) threshold of 1.5, we detected 230 upregulated and 92 

downregulated genes for MR males, 364 upregulated and 270 downregulated genes for 

acarbose males, 289 upregulated and 69 downregulated genes for acarbose females, 207 

upregulated and 34 downregulated genes for 17-α-estradiol males, 313 upregulated and 

268 downregulated genes for 17-α-estradiol females, 30 upregulated and 2 downregulated 

genes for Protandim males and 90 upregulated and 70 downregulated genes for Protandim 

females. Many differentially expressed genes were found to be common to interventions. 

For example, almost half of MR genes (44.3% upregulated and 41.8% downregulated 

genes) were altered significantly and in the same direction in Snell dwarf males and CR 

males and females (Figure 17B). Moreover, genes affected only in Snell dwarfs covered 
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37% of MR upregulated and 36.5% of MR downregulated genes (Fisher exact test p-value 

< 2.2.10-16 in both cases). This observation supports the idea of common molecular 

mechanisms shared by MR and other interventions such as CR and Snell dwarf mice. It is 

also consistent with the previous findings that the lifespan extension effect of CR in flies 

is highly dependent on the presence of methionine in the diet and can be abrogated by the 

addition of amino acids only if they include methionine (Grandison et al., 2009). 

Analysis of enriched functions using gene set enrichment analysis (GSEA) 

(Subramanian et al., 2005) revealed many similarities among the interventions (Figure 

17D). For example, ribosomal protein genes were upregulated in response to all 

interventions except MR (q-value < 0.001), and other commonly upregulated functions 

included drug metabolism by cytochrome P450, glutathione metabolism, oxidative 

phosphorylation and TCA cycle. These patterns are consistent with the reports on 

individual lifespan-extending interventions, including Ames and Snell dwarf mice, Little 

mice, GHRKO, CR and rapamycin (Amador-Noguez et al., 2004; Miller et al., 2014; 

Steinbaugh et al., 2012). 

In addition to common strategies, we detected distinct signatures. For example, 17-

α-estradiol in females and MR resulted in downregulation of oxidative phosphorylation. 

Although ribosomal protein genes, in general, represented the most common upregulated 

pattern across the interventions, this was not the case for mitochondrial ribosomal protein 

genes. Some interventions, including CR, GHRKO, Snell dwarf mice and acarbose in 

males, showed significant upregulation of these genes, whereas 17-α-estradiol in both 

sexes and MR showed their downregulation. Finally, fatty acid oxidation, which is known 
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to be positively associated with the lifespan extension effect of several interventions 

(Amador-Noguez et al., 2004; Plank et al., 2012; Tsuchiya et al., 2004), was significantly 

downregulated when applied to females (Figure 17D). 17-α-estradiol, acarbose and CR 

showed significant downregulation of fatty acid oxidation genes in females, whereas in 

males we observed an opposite effect for acarbose and CR. 

Interestingly, although MR mice resemble CR mice in stress resistance and 

endocrine changes, and MR mice share many differentially expressed genes with CR and 

growth hormone (GH) deficiency-associated interventions (i.e. GHRKO and Snell dwarf 

mice), MR displayed a quite distinct pattern at the level of functional enrichment (Figure 

17C, D). It shared some common signatures with CR and GH-associated mutants, including 

upregulation of glutathione metabolism, drug metabolism by cytochrome P450 and 

regulation of telomere maintenance and downregulation of complement and coagulation 

cascades. However, it also exhibited upregulation of PI3K, insulin receptor and mTOR 

pathways and downregulation of oxidative phosphorylation and genes coding structural 

constituents of ribosome, which was distinct from CR and most other interventions.  Data 

from other tissues, once they become available, may add to the understanding of 

similarities and differences across these interventions. 

To get a more global view on the similarities among interventions in terms of 

regulation of cellular pathways, we built a heatmap of normalized enrichment scores (NES) 

of all functions enriched by at least one intervention and clustered the data using an average 

hierarchical approach (Figure 17C). MR clustered separately from other interventions, but 

together with acarbose in females (unfortunately, we lacked tissues of female mice 
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subjected to MR). Not surprisingly, GHRKO and Snell dwarf mice, which are both 

associated with growth hormone deficiency, showed a very similar pattern of gene 

expression both at gene and functional enrichment levels, consistent with previous studies 

that examined gene expression response of GH deficiency (Amador-Noguez et al., 2004). 

Finally, females and males showed a similar response to CR and 17-α-estradiol at the level 

of functional enrichment, whereas their responses to acarbose and Protandim were quite 

different. Interestingly, although both 17-α-estradiol and Protandim lead to statistically 

significant lifespan extension only in males, similarities in the response to them across 

sexes seem to be different at the level of cellular pathways. High similarity in the functional 

response to 17-α-estradiol between males and females together with its substantial effect 

on median lifespan in males (increase by 19%) and absence of effect in females (Strong et 

al., 2016) point to the role of sex in the lifespan effect even when molecular changes 

induced by interventions are similar across sexes. 

4.2.2 Feminizing Effect of Lifespan-extending Interventions 

The finding of sex-specific changes in gene expression in response to longevity 

interventions allowed us to examine this question in more detail. Several previous studies 

noted a feminizing effect of CR and GH deficiency on gene expression in males (Buckley 

and Klaassen, 2009; Estep et al., 2009; Fu and Klaassen, 2014; Li et al., 2013). To test sex-

specific effects in our broad dataset of interventions, we first identified “feminizing” 

changes, defined as significant gene expression changes between control males and 

females from UM-HET3 strains in 6- and 12-month-old age groups. We then examined if 

interventions in different sexes feminize the gene expression profile. To test this in an 
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unbiased way, for every intervention in a certain age group, we calculated the correlation 

of its response with feminizing changes, calculated for another age group (feminizing 

effect), except for Snell dwarf mice, GHRKO and MR, where we used feminizing changes 

aggregated across both ages for correlation calculation, as these interventions had separate 

controls.  

We detected a tendency for genetic (GHRKO and Snell dwarf mice) and dietary 

(CR and MR) interventions in males to produce statistically significant feminizing-like 

patterns at the gene expression level (Figure 18A). Indeed, sex-specific changes calculated 

for the 12-month-old age group shared more than 45% of up- and downregulated genes 

with GHRKO and 6-month-old CR males and showed a statistically significant overlap 

with both (Fisher exact test adjust p-value < 4.1.10-8) (Figure 18B). The feminizing effect 

was especially strong for genetic mutants, reaching 70.1% correlation for GHRKO 

(Pearson correlation test adjusted p-value = 4.8.10-94; Figure 18C). Besides mutants and 

diets, acarbose applied for 8 months in males also produced a significant feminizing effect. 

Interestingly, it was similar to the CR effect, as acarbose prevents the digestion of starch 

and disaccharides to glucose in the intestine by inhibiting α-glucosidases (Balfour et al., 

1993), and it is the only drug showing the feminizing effect in males in our data. Other 

drugs didn’t lead to a significant feminizing effect in males or even produced a significant 

negative effect, such as rapamycin in 12-month-old males (Pearson correlation test 

adjusted p-value = 0.012; Figure 18A). 
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Figure 18. Feminizing effect of lifespan-extending interventions 

(A) Feminizing effect across interventions and age groups. Genetic (GHRKO, Snell dwarf mice) 

and dietary (CR, MR) interventions together with acarbose at 12 months of age show a significant 

feminizing effect in males. For all interventions and age groups, except for Protandim, males show 

a significantly higher feminizing effect than females (Pearson correlation test adjusted p-value < 
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8.4.10-3 for all interventions and age groups). The feminizing effect is defined as correlation of 

log2FC of feminizing genes between response to intervention and feminizing changes in the other 

age group. (B) Overlap of genes differentially expressed between males and females and in 

response to feminizing lifespan-extending interventions. Fisher exact test BH adjusted p-value 

< 4.1.10-8 for overlap of all presented interventions with feminizing genes. (C) Correlation 

between feminizing changes and changes induced by GHRKO in males. log2FC of genes 

differentially expressed between males and females (BH adjusted p-value < 0.05 and FC > 1.5 in 

any direction) aggregated across age groups are shown. Genes statistically significantly changed in 

response to GHRKO (BH adjusted p-value < 0.05 and FC > 1,5 in any direction) are colored in red. 

Regression and identity lines are shown as grey and black dotted line, respectively. (D) Heatmap 

with log2FC of genes differentially expressed between females and males (Feminizing genes) 

and in response to different interventions within each sex. log2FC of genes differentially 

expressed between females and males (BH adjusted p-value < 0.05 and FC > 1.5 in any direction) 

aggregated across age groups are shown. (E) Functional enrichment of feminizing genes 

significantly associated with feminizing effect across interventions. Drug metabolism, fatty acid 

metabolism and complement and coagulation cascades are annotated by KEGG database; major 

urinary proteins are annotated by INTERPRO database. Estradiol: 17-α-estradiol; GHRKO: 

Growth hormone receptor knockout; MR: Methionine Restriction; CR: Caloric Restriction; Snell: 

Snell dwarf mice; F: Females; M: Males; 12m: 12 months; 6m: 6 months; 5m: 5 months. 

 

To better understand the nature of the feminizing pattern of genetic and dietary 

interventions, we identified sex-specific genes, whose change in response to interventions 

is, at the same time, associated with the feminizing effect. With the FDR threshold of 0.05 

and FC threshold of 1.5, we detected 355 sex-specific genes differentially expressed at a 

higher level in females and 282 genes expressed at a lower level (Figure 18D). Among 

them, 153 (out of 355) and 164 (out of 282) genes were positively and negatively associated 

with the feminizing effect, respectively. Functional enrichment of these genes using 

DAVID (Huang et al., 2009a, 2009b) revealed upregulation of drug metabolism (Fisher 

exact test BH adjusted p-value = 1.5.10-9) and fatty acid metabolism (Fisher exact test BH 

adjusted p-value = 0.026) (Figure 18E). Cytochrome P450 genes, involved in drug 

metabolism, are well known to be differentially expressed between sexes in mice and be 

regulated by GH, and in particular by sex-specific differences in daily GH pulse frequency 
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and amplitude (Waxman and Holloway, 2009). However, it was previously unclear 

whether the same xenobiotic metabolizing enzyme (XME) genes are altered in response to 

different lifespan-extending interventions. Here, we show that this is indeed the case. 

Among downregulated genes, we detected enrichment of complement and coagulation 

cascades (Fisher exact test BH adjusted p-value = 9.8.10-3) and major urinary proteins 

genes (Fisher exact test BH adjusted p-value = 0.021) (Figure 18E). 

In females, the effect on sex-specific genes was mostly similar to that in males. For 

example, 6-month-old CR females also exhibited a significant feminizing-like pattern 

(Pearson correlation test adjusted p-value = 7.7.10-4), and rapamycin females showed a 

significant masculinizing pattern in both age groups (Pearson correlation test adjusted p-

value = 3.3.10-10 and 0.02 for 12 and 6 months, respectively) (Figure 18A). Interestingly, 

one of the strongest masculinizing patterns in females was produced by 17-α-estradiol, 

while it had no significant effect on sex-specific genes in males, hinting that its selective 

effect on males is not due to simple recapitulation of the female hormonal profile. Based 

on our data, feminization does not explain the effect of interventions on lifespan extension. 

Indeed, 17-α-estradiol does not lead to any feminizing changes in males but increases their 

median (by 19%) and maximum (by 12%) lifespan (Strong et al., 2016). Besides, in 

females rapamycin and 17-α-estradiol showed a similar and significant masculinizing 

effect, although the first drug extended lifespan in females even stronger than in males 

(Miller et al., 2014), whereas the second compound did not lead to lifespan extension in 

females (Strong et al., 2016). Therefore, it seems that feminizing, or masculinizing, effects 

are neither necessary nor sufficient for lifespan extension, although a number of 
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interventions, including GH mutants and diets, regulate some pathways associated with 

sex-specific differences. 

Although various interventions had a different effect on feminizing genes across 

sexes, we detected a consistently stronger feminizing effect in males compared to females 

for every individual intervention and age group, except for Protandim (Pearson correlation 

test adjusted p-value < 6.8.10-3) (Figure 18A). In other words, regardless of the direction 

and size of the effect of certain intervention on sex-specific genes in males, it will most 

likely lead to more masculinizing changes in females. Moreover, lifespan-extending 

interventions seem to converge gene expression profiles of males and females to some 

middle “asexual” state. This finding may suggest that the survival state, induced by 

lifespan-extending interventions, is mainly universal across sexes, and sex-specific 

differences of organisms start disappearing when moving to that state. Therefore, we 

believe that different sexes share general mechanisms of lifespan extension, although they 

have different initial states defined by sex-specific features. 

Overall, the data show that the feminizing effect is shared by genetic and dietary 

lifespan-extending interventions in males, and that there are certain common genes and 

functions that define this effect. The feminizing effect does not explain lifespan extension, 

but is consistently higher in males compared to females subjected to the same intervention, 

regardless of its direction and size, pointing to the converging effect of lifespan-extending 

interventions on sex-specific gene expression differences. 



120 

  

4.2.3 Signatures of CR, Rapamycin and Growth Hormone Deficiency 

To obtain a comprehensive picture of gene expression responses to interventions, 

we collected all publicly available microarray datasets for mouse liver and conducted a 

meta-analysis across aggregated data. We first focused on 3 interventions for which many 

independent studies were previously performed: CR, rapamycin and interventions related 

to GH deficiency (Snell and Ames dwarf mice, GHRKO and Little mice). The latter group 

was combined, as these interventions, although targeting different genes involved in GH 

production and sensing, result in a similar effect on liver due to inability to activate GHR. 

In addition to this mechanistic notion, similarity among these interventions could also be 

seen at the level of hepatic gene expression as demonstrated by other groups (Amador-

Noguez et al., 2004) and our results (Figure 19F and Figure 21C). As we were interested 

in the general effects of interventions regardless of experimental design and effect on 

lifespan, we combined all data across different sexes, strains, ages, durations of 

interventions and doses. In total, data from 29 datasets (across 13 different studies), 9 

datasets (across 3 different studies) and 20 datasets (across 7 different studies) were 

aggregated for CR, rapamycin and GH deficiency, respectively. 

To overcome issues associated with differences in platforms across different 

studies, along with batch effects, we developed an integrative method, based on 

independent preprocessing and normalization of individual datasets and following 

aggregation of means and standard deviations of logFC for all genes detected in our 

RNAseq data (resulting in 11,053 genes). Importantly, to account for possible differences 

in the general effect of interventions on mouse transcriptome, we did not normalize 
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distributions of logFC across datasets. To include information about standard deviations of 

logFC and account for possible batch effects due to the use of several datasets sharing the 

same control (e.g., if several doses were tested), we applied a mixed-effect model, 

considering shared control as a random term. We used this method to identify genes up- or 

downregulated across datasets (and, as a result, different doses, strains, age groups, etc.) of 

the same intervention type. Our approach, contrary to the comparison of lists of 

differentially expressed genes used in previous meta-analyses (Plank et al., 2012; Swindell, 

2008), accounts for the size of the effect and variance of gene expression change within 

each individual dataset and, therefore, provides a more accurate and sensitive analysis. 

Besides standard p-value, obtained from the mixed-effect model test, we calculated “leave-

one-out” (LOO) p-value as the largest (least significant) p-value after removal of every 

study one by one. 

In this procedure, genes were designated statistically significant if their BH adjusted 

p-value was < 0.01 and LOO p-value was < 0.01. With these thresholds, we identified 419 

up- and 370 downregulated genes for CR, 894 up- and 879 downregulated genes for GH 

deficiency, and 127 up- and 100 downregulated genes for rapamycin (Figure 19A). 

Interestingly, CR and GH interventions significantly overlapped (37% of CR upregulated 

and 26.3% of CR downregulated genes were shared with GH interventions; Fisher exact 

test p-value < 10-28 for both up- and downregulated genes), whereas rapamycin did not 

show a statistically significant overlap. Upregulated genes shared by CR and GH 

deficiency were enriched for oxidative phosphorylation (Fisher exact test BH adjusted p-

value = 1.52.10-9), and downregulated genes were enriched for complement and 
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coagulation cascades (Fisher exact test BH adjusted p-value = 5.21.10-6). The difference in 

the gene expression response between CR and rapamycin was previously noted (Fok et al., 

2014; Miller et al., 2014), but is not well understood. Our data provide a clear case for 

largely distinct mechanisms by which these interventions act in the liver. Not surprisingly, 

all GH deficiency interventions showed downregulation of Igf1 and its stabilizer Igfals 

along with upregulation of 2 genes encoding its inhibitors, IGF-binding proteins Igfbp1 

and Igfbp2. Interestingly, Igf1 expression showed no significant changes in response to CR 

and was even slightly upregulated in response to rapamycin. Both its binding proteins 

(Igfbp1 and Igfbp2), however, were significantly upregulated in response to CR. Therefore, 

inhibition of the Igf1 pathway in response to CR seems to happen due to the increased 

repression of Igf1 by its binding proteins and not due to a change in its expression. GH-

deficient mutants, on the other hand, repress the pathway by both downregulation of Igf1 

(along with its stabilizer Igfals) and upregulation of its inhibitors. 
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Figure 19. Genes significantly changed in response to CR, rapamycin and GH-deficiency 

across multiple datasets 

(A) Genes identified as significantly up- and downregulated in response to CR, rapamycin 

and GH deficiency. FDR threshold of 0.01 and p-value LOO threshold of 0.01 were used to 

select significant genes. There is significant overlap between the genes changed in response to 
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CR and GH deficiency (Fisher exact test p-value < 2.2.10-16). (B) Functions enriched by 

upregulated and downregulated genes in response to CR, rapamycin and GH deficiency 

based on GSEA. Z-score, calculated as log10(FDR q-value) corrected by sign of regulation, is 

plotted on y axis. q-value threshold of 0.1 is shown by dotted lines. Presented functions were 

selected manually. Ox Phosph: Oxidative phosphorylation (KEGG); TCA cycle:  Citrate 

Cycle/TCA Cycle (KEGG); Parkinsons: Parkinson’s Disease (KEGG); Huntingtons: 

Huntington’s Disease (KEGG); Ribosome: Ribosome (KEGG); Amino Acid Catabolism: 

Cellular Amino Acid Catabolic Process (GO); Glycolysis: Glycolysis/Gluconeogenesis (KEGG); 

Metabolism by P450: Drug metabolism by cytochrome P450 (KEGG). (C) Overlap of 

transcription factors IDs enriched by genes differentially expressed in response to CR, 

rapamycin and GH deficiency. Permutation FDR of 0.01 was used to obtain the list of 

overrepresented IDs. Transcription factors specified in the text were selected manually. (D) 

Interventions included into meta-analysis. 17 interventions associated with increased lifespan 

or healthspan are included in the aggregated dataset. Two interventions (metformin and 

resveratrol, shown in grey) are included into the dataset despite their inability to significantly 

increase lifespan in healthy mice as shown by the ITP program. (E) Fold changes of genes up- 

and downregulated in response to CR, rapamycin and GH deficiency across different 

lifespan- and healthspan-extending interventions. GH-deficiency interventions form a tight 

cluster with similar transcriptome profile behavior, pointing to the same molecular mechanisms. 

Union of genes differentially expressed in response to CR, rapamycin and GH-deficiency 

interventions (BH adjusted p-value < 0.01 and p-value LOO < 0.01) and log2FC scale was used 

to create the heatmap. Complete hierarchical clustering approach was employed. (F) Pearson 

correlation between genes differentially expressed in response to CR, rapamycin and GH 

deficiency. The major cluster is formed by GH deficiency (Snell and Ames dwarf mice, GHRKO, 

Little mice), dietary interventions (CR, MR, EOD), FGF21 overexpression and others. Pearson 

correlation coefficient was calculated based on gene logFC aggregated across different datasets 

for every intervention. Complete hierarchical clustering approach was employed. Snell: Snell 

dwarf mice; Ames: Ames dwarf mice; Little: Little mice; CR: Caloric Restriction; GH: Growth 

Hormone; GHRKO: Growth Hormone Receptor Knockout; FGF21 over: FGF21 overexpression. 

 

By applying GSEA, we further identified several pathways shared by 2 or all 3 

analyzed interventions (Figure 19B). Oxidative phosphorylation was commonly 

upregulated across these interventions (q-value < 0.008 in all cases). Other shared 

upregulated functions included TCA cycle, ribosome and genes involved in age-associated 

diseases (Parkinson’s and Huntington’s), consistent with the RNAseq data.  
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To obtain further details on the regulation of molecular pathways by CR and GH 

deficiency, we used the iPANDA algorithm (Ozerov et al., 2016), which is another method 

of functional enrichment that utilizes the sign of the effect of a certain gene on pathway 

activation or inhibition. We applied it to every individual dataset included in our meta-

analysis and calculated an aggregated pathway activation score (PAS) along with its 

statistical significance using the mixed effect model described previously. Consistent with 

the GSEA output, we observed activation of TCA cycle (BH adjusted p-value = 1.5.10-4 

and 2.2.10-4), respiratory electron transport chain (BH adjusted p-value = 0.013 and 0.023), 

urea cycle (BH adjusted p-value = 0.036 and 0.068) and PPAR pathway (BH adjusted p-

value = 0.06 and 7.6.10-3) along with inhibition of the alternative complement (BH adjusted 

p-value = 8.9.10-4 and 5.8.10-7), interferon (BH adjusted p-value = 0.032 and 0.024) and 

insulin processing (BH adjusted p-value = 0.035 and 0.034) pathways in both CR and GH 

deficiency. Pathways activated in response to CR also included transcriptional activation 

of mitochondrial biogenesis (BH adjusted p-value = 1.3.10-3), triglyceride biosynthesis (BH 

adjusted p-value = 0.032) and circadian clock (BH adjusted p-value = 6.6.10-3), while 

inhibited pathways included translational initiation regulated by mTOR signaling (BH 

adjusted p-value = 0.028). GH deficiency interventions, in turn, showed activation of 

caspase cascade (BH adjusted p-value = 1.8.10-8) and GSK3 signaling pathway (BH 

adjusted p-value = 3.4.10-7) together with inhibition of IGF1R signaling (BH adjusted p-

value = 1.5.10-14) and MAPK (BH adjusted p-value = 7.9.10-7), biosynthesis of 

mineralocorticoids (BH adjusted p-value = 6.8.10-10) and cholesterol (BH adjusted p-value 
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= 9.2.10-3), mTOR (BH adjusted p-value = 1.5.10-9) and estrogen (BH adjusted p-value = 

9.4.10-6) pathways. 

To identify upstream regulators of observed gene expression changes, we analyzed 

enrichment of transcription factors associated with differentially expressed genes using the 

Biobase Transfac platform (Matys, 2006). First, for each individual dataset we identified 

transcription factors binding to sequences enriched in promoters of genes differentially 

expressed in the corresponding dataset. We then applied a binomial statistical test to 

identify factors whose enrichment was overrepresented across datasets within the same 

type of intervention. A permutation FDR threshold of 0.01 resulted in the identification of 

161 transcription factor IDs enriched for CR, 213 IDs enriched for GH-deficient 

interventions and 17 IDs enriched for rapamycin (Figure 19C). As at the level of individual 

genes, CR and GH-deficient interventions shared many transcription factors (>50% of their 

enriched transcription factors were shared; Fisher exact test p-value < 10-26). However, in 

this case rapamycin also showed significant overlap with other interventions (58.8% and 

47.1% of enriched transcriptional factors were shared with CR and GH deficiency, 

respectively; Fisher exact test p-value < 0.002 in both cases). Interestingly, 8 factors shared 

by all 3 interventions included receptors related to glucose sensitivity and sterol 

metabolism, such as glucocorticoid receptor NR3C1 and sterol regulatory element binding 

transcription factor SREBP-1. Factors shared by CR and GH deficiency included NRF2, 

PPARα, PPARγ and a number of interferon regulatory factors, consistent with the results 

observed at the level of functional enrichment. 
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4.2.4 Mutual Organization of Gene Expression Profiles of Lifespan-extending 

Interventions 

We next performed a meta-analysis of the dataset that included, in addition to the 

gene expression data we generated, all publicly available microarray data on lifespan-

extending interventions in mouse liver. We also included resveratrol and metformin, which 

are interventions that did not increase lifespan in the ITP mouse cohort at the 

concentrations used (Miller et al., 2011; Strong et al., 2013, 2016), but are known to share 

some molecular mechanisms with lifespan-extending CR (Barger et al., 2008; Dhahbi et 

al., 2005; Martin-Montalvo et al., 2013; Pearson et al., 2008a), increase healthspan of 

mammals, including improvement of cardiovascular function and physical performance 

along with inhibition of inflammation (Baur and Sinclair, 2006; Martin-Montalvo et al., 

2013; Pearson et al., 2008a), and lead to increased longevity of the nematode 

Caenorhabditis elegans (De Haes et al., 2014; Viswanathan et al., 2005; Wood et al., 

2004), short-lived fish Nothobranchius furzeri in case of resveratrol (Valenzano et al., 

2006), and mice under certain conditions (Baur et al., 2006; Martin-Montalvo et al., 2013; 

Pearson et al., 2008a). After integration of all available data, our dataset included 17 

different interventions and 77 control-intervention comparisons across 22 different sources 

(Figure 19D). Importantly, our list of analyzed interventions included multiple 

representatives of each of the different intervention types, i.e. dietary, genetic (mutations, 

overexpression) and pharmacological. 

Aggregation of data was performed using the approach discussed above. 

Interestingly, comparison of standard deviations of gene expression fold change 
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distributions in response to different interventions showed that genetic manipulations had 

the largest effects on gene expression profile (Mann-Whitney test p-value = 0.003 between 

dietary and genetic intervention groups), whereas pharmacological interventions had the 

smallest effect (Mann-Whitney test p-value = 1.71.10-6 between pharmacological and 

dietary intervention groups) and dietary interventions were in the middle (Figure 20A). As 

control, we examined possible differences between medians of gene fold change 

distributions, and did not observe significant differences between any pair of intervention 

groups (Figure 20B). As expected, genetic manipulations caused more significant changes 

of transcriptome profiles compared to diets and, especially, to drugs. Therefore, it was 

particularly important to avoid normalization of mean fold change distributions across 

different datasets, as in that case the described important features of different interventions 

would be lost. 
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Figure 20. Amplitude of gene expression changes induced by different types of interventions 

(A) Standard deviations of gene expression changes (log2FC) across three main types of 

interventions. All differences are statistically significant (Mann-Whitney test p-value is equal to 

1.71.10-6 between pharmacological and dietary and 0.003 between dietary and genetic). (B) 

Medians of gene expression changes (log2FC) across three main types of interventions. 

Medians of gene expression changes are distributed similarly across different types of 

interventions (Mann-Whitney test p-value > 0.05 for all three comparisons). 

 

To examine how similar various interventions are in terms of gene expression 

signatures identified for CR, GH deficiency and rapamycin, we created a heatmap 

representing aggregated gene expression data across interventions for the identified genes 

(Figure 19E). Not surprisingly, interventions associated with GH deficiency formed a tight 

cluster, indicating convergence of their molecular mechanisms in the liver. In general, we 

found that interventions resemble changes induced by CR, GH deficiency and rapamycin. 

Indeed, we observed positive Pearson correlation between aggregated gene expression 

changes for most interventions (Figure 19F). However, some interventions turned out to 
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show distinct gene expression patterns. Thus, we observed a small separate cluster formed 

by rapamycin, Protandim and 17-α-estradiol, in which only the latter intervention showed 

positive correlation with the interventions representing the main cluster. Furthermore, 

acarbose and 17-α-estradiol showed positive correlation with both major and minor 

clusters, pointing to the existence of certain gene expression patterns within each of them, 

which do not necessarily conflict with each other. To see if different interventions 

recapitulate the gene expression changes separately induced by CR, rapamycin and GH 

deficiency, we performed GSEA for every intervention, using genes identified as 

signatures of the 3 specified interventions as input subsets. Using a BH adjusted 

permutation test p-value threshold of 0.1, we identified interventions with statistically 

significant positive association with CR, rapamycin and GH deficiency (Figure 21A). 

Interestingly, the majority of interventions, including all GH deficiency interventions, all 

diets (CR, every-other-day feeding (EOD) and MR), acarbose, FGF21 overexpression, 17-

α-estradiol and resveratrol, shared the changes induced by CR and GH deficiency, pointing 

to the commonality of gene expression responses to these interventions. On the other hand, 

rapamycin again showed a distinct pattern, which was, however, partially shared by some 

interventions (acarbose, GHRKO, Snell dwarf mice, 17-α-estradiol and Protandim). This 

approach, however, may include some batch effects resulting from comparison of datasets 

from the same source and even because of the use of the same, shared, controls (e.g., 

resveratrol and EOD along with Protandim and 17-α-estradiol obtained from the same data 

and compared against common controls). 
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Figure 21. Mutual organization of gene expression profiles of lifespan-extending 

interventions 

(A) GSEA enrichment of interventions by genes regulated by CR, rapamycin and GH 

deficiency. Each cell represents adjusted z-score calculated based on GSEA against subsets of 

genes significantly affected by CR, rapamycin and GH-deficient interventions. Only statistically 

significant associations (BH adjusted p-value < 0.1) are colored. (B) Spearman correlation 

coefficient distribution between gene expression profiles of CR and other interventions. At 

the level of gene expression, CR showed statistically significant (BH adjusted Mann-Whitney test 

p-value < 0.1) positive correlation with the majority of interventions, including itself (median 

Spearman correlation coefficient = 0.32; BH adjusted Mann-Whitney test p-value = 2.9.10-93). For 

every intervention, violinplot shows distribution of Spearman correlation coefficients between gene 

expression changes of every dataset of CR and the indicated interventions. Union of 100 genes with 

the lowest p-value in each pair of examined datasets was used for calculation. (C) Gene expression 

profile correlation matrix aggregated for every intervention pair. The majority of lifespan-

extending interventions show significant positive correlation at the level of gene expression 

changes. For each pair of interventions, the matrix represents median Spearman correlation value 

across all possible comparisons of datasets representing corresponding interventions from different 

sources. Union of 100 genes with the lowest p-value in each pair of examined datasets was used 

for calculation. To make results unbiased, only data from different sources was used for calculation. 

For this reason, correlation couldn’t be estimated for interventions, for which no independent pair 

of datasets from different sources was available. This missing data is shown by grey boxes. (D) 

Network of interventions based on similarity of their gene expression profiles. Protandim, 

rapamycin, MYC +/- and S6K1 -/- didn’t show statistically significant positive association with 

any other intervention.  The width of edge is defined by BH adjusted Mann-Whitney test p-value 

of Spearman correlation between interventions (in logarithmic scale). Only statistically significant 
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(BH adjusted Mann-Whitney test p-value < 0.1) connections are shown. Estradiol: 17-α-estradiol; 

Snell: Snell dwarf mice; Ames: Ames dwarf mice; CR: Caloric restriction; MR: Methionine 

Restriction; EOD: Every-other-day feeding; FGF21 over: FGF21 overexpression; Little: Little 

mice; GHRKO: Growth Hormone Receptor Knockout. 

 

To overcome the batch effect and investigate mutual organization of gene 

expression profiles of different interventions at the level of whole transcriptomes, we 

compared interventions pairwise, considering, for every pair of interventions, only pairs of 

control-intervention comparisons from different sources. For each of them, we calculated 

the Spearman correlation coefficient using the union of their 100 most statistically 

significant differentially expressed genes. We then examined the distribution of these 

correlation coefficients among all pairs of control-intervention comparisons. Using this 

approach, we could get rid of the batch effect in that datasets from the same study were not 

compared when calculating the correlation coefficient. We also used the same unbiased 

procedure to obtain the distribution of correlation coefficients between different datasets 

of the same intervention.  This let us investigate how consistent gene expression response 

to certain intervention is across different studies and experimental design settings. 

CR showed a statistically significant positive correlation with the majority of 

interventions, including all GH deficiency interventions (BH adjusted Mann-Whitney p-

value < 1.5.10-8 for all of them), dietary interventions, such as MR (BH adjusted Mann-

Whitney p-value = 1.8.10-6), EOD (BH adjusted Mann-Whitney p-value = 1.9.10-6) and 

itself (BH adjusted Mann-Whitney p-value = 2.9.10-93), FGF21 overexpression (BH 

adjusted Mann-Whitney p-value = 2.5.10-7), acarbose (BH adjusted Mann-Whitney p-value 

= 6.1.10-6), 17-α-estradiol (BH adjusted Mann-Whitney p-value = 0.023), metformin (BH 

adjusted Mann-Whitney p-value = 0.039) and resveratrol (BH adjusted Mann-Whitney p-
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value = 4.8.10-4) (Figure 21B). Interestingly, although rapamycin was thought to be a CR 

mimetic, it, instead, showed a slight (median Spearman correlation coefficient = -0.049) 

but significant (BH adjusted Mann-Whitney p-value = 2.10-3) negative correlation with CR 

when compared at the gene expression level, consistent with the previous findings (Figure 

19A, F and Figure 21A). The same analysis applied to rapamycin revealed its significant 

positive correlation only with itself (median Spearman correlation coefficient = 0.099; BH 

adjusted Mann-Whitney p-value = 5.9.10-3). 

Using the same approach, we obtained a matrix with median Spearman correlation 

coefficients for every pair of interventions aggregated across all control-intervention 

comparisons from different sources (Figure 21C). We detected a tight cluster formed by 

GH deficiency interventions and Fgf21 overexpression. Dietary interventions, including 

CR, MR and EOD, showed positive correlation with this cluster and each other. Other 

interventions showed either week positive correlation with the main cluster (resveratrol, 

17-α-estradiol, acarbose, metformin and S6K1 -/-) or quite distinct gene expression 

patterns with no significant positive correlation with the group of highly correlated 

interventions defined by CR and GH deficiency (DGAT1 -/-, MYC +/-, Protandim and 

rapamycin). To clearly visualize similarity between gene expression profiles of different 

interventions, we built a network where the width of an edge connecting a pair of 

interventions reflected the level of statistical significance of Spearman correlation between 

them across datasets (Figure 21D). Here, only the edges with statistically significant 

positive associations (BH adjusted Mann-Whitney p-value < 0.1) are shown. Consistent 

with the results discussed above (Figure 21A), most interventions shared similarity with 
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CR and GH deficiency interventions (such as Ames and Little dwarf mice) at the level of 

gene expression (Figure 21D). The lack of statistically significant associations between 

many interventions may be explained by insufficient number of independent datasets. The 

relatively high value of median Spearman correlation between interventions forming the 

main cluster (Figure 21C) suggests that increase in the number of datasets will fill many 

edges missing in the network.  

Overall, most lifespan-extending interventions showed similar gene expression 

patterns both at the level of whole transcriptomes and particular genes. However, some 

interventions, such as rapamycin, Protandim, S6K1 -/- and MYC +/-, showed quite distinct 

transcriptional patterns in liver, and did not demonstrate statistically significant positive 

correlation with any other intervention (Figure 21D). This was especially interesting in the 

case of rapamycin, which, although thought to be a CR mimetic, showed positive 

correlation neither with CR nor with GH deficiency interventions, consistent with the 

results of other groups (Fok et al., 2014; Miller et al., 2014), and even showed statistically 

significant negative correlation with CR. The data suggest distinct molecular mechanisms 

at the level of gene expression that mediate the effects of rapamycin and other 

interventions. However, based on the unbiased comparison of rapamycin datasets, we 

detected low (although significant) positive correlation of this intervention with itself 

(median Spearman correlation coefficient = 0.099), which may point to high variability of 

the response to rapamycin at the level of gene expression and a large effect of experimental 

design on the response. The higher level of noise observed in the transcriptome response 

to rapamycin may also be a consequence of the generally lower extent of gene expression 
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changes in response to drugs compared to diets and genetic manipulations (Figure 20A).  

Therefore, a more comprehensive study of the rapamycin effect on the transcriptome is 

needed to validate our findings and better understand cellular mechanisms responsible for 

this unique pattern. 

4.2.5 Common Signatures across Lifespan-extending Interventions 

To identify gene signatures commonly up- or downregulated by lifespan-extending 

interventions, which could serve as an approximation of ‘necessary’ features and 

qualitative predictors of lifespan extension, we first identified statistically significant genes 

regulated by each individual intervention using the same approach as in case of CR, 

rapamycin and GH deficiency interventions, where datasets from several independent 

sources were present. Here, we only considered the datasets and interventions with the 

experimental design (strain, dose and sex), statistically proven to lead to lifespan extension. 

Using this intervention-wise approach, for every gene we calculated the number of 

interventions, where it was up- or downregulated (Figure 22A). One gene (Gsta4) was 

statistically significantly upregulated in 9 different interventions (out of 15) and 7 genes 

(Gstt3, Abcb1a, Slc22a29, Slc15a4, Ak4, Serpina6 and Cers6) were upregulated in 8 

interventions (BH adjusted p-value < 0.1). These genes are involved in xenobiotic (Gsta4, 

Gstt3, Abcb1a and Slc22a29), glucocorticoid (Serpina6) and sphingolipid (Cers6) 

metabolism. In addition, 2 genes (C9 and C8a, both are complement components) were 

identified as significantly downregulated in 9 and 8 interventions, respectively. However, 

this approach has several disadvantages. First, it does not account for the difference in the 

number of datasets associated with every intervention along with the difference in quality 
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of individual datasets (e.g., number of samples). Second, it does not consider possible 

similarity of different interventions at the level of global gene expression (as in case of GH 

deficiency interventions which showed very similar effects on the hepatic transcriptome). 

Therefore, this method leads to overfitting of common signatures by genes differentially 

expressed in response to GH deficiency. 

 

Figure 22. Common signatures of lifespan-extending interventions 

(A) Number of genes identified as statistically significantly up- (red) and downregulated 

(blue) in response to different lifespan-extending interventions. Genes effected by the largest 

number of individual interventions encode cytochrome P450s and glutathione metabolism 
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proteins. FDR threshold of 0.1 was used to select significant genes within each intervention. (B) 

Fold change of genes commonly regulated in response to lifespan-extending interventions. 

166 upregulated and 134 downregulated genes were identified as common signatures of lifespan-

extending interventions. Genes significantly regulated across interventions (BH adjusted robust 

p-value < 0.01) were included in the heatmap. Individual control-intervention datasets are shown 

on the x axis. (C) Cth fold change across different lifespan-extending interventions (upper 

panel) and across individual datasets used in the analysis (lower panel). Cystathionine 

gamma-lyase (Cth) gene is significantly upregulated across different lifespan-extending 

interventions (BH adjusted robust p-value = 0.0033) and within 7 individual interventions. On the 

upper barplot, red asterisk denotes interventions with the BH adjusted p-value < 0.05. On the 

lower plot, dots representing gene fold change within each individual dataset are colored based 

on the intervention type. Estradiol: 17-α-estradiol; Snell: Snell dwarf mice; Ames: Ames dwarf 

mice; Little: Little mice; CR: Caloric restriction; MR: Methionine Restriction; EOD: Every-other-

day feeding; FGF21 over: FGF21 overexpression; GHRKO: Growth Hormone Receptor 

Knockout. (D) GSEA functional enrichment of up- (red) and downregulated (blue) genes 

associated with common changes across lifespan-extending interventions. Statistically 

significantly enriched functions (FDR q-value < 0.1) are shown. Adjusted z-score, calculated as 

log10(FDR q-value) corrected by sign of regulation, is presented on x-axis. Presented functions 

were selected manually. 

 

To overcome this problem, we searched for genes shared by different interventions 

using a single mixed-effect model with an additional random term corresponding to 

intervention type and correlation matrix for this term composed from means of correlation 

coefficients of gene expression changes between the corresponding interventions across all 

possible pairs of datasets (Figure 21C). This approach addresses the shortcomings of the 

previous method by increasing the weight of well-represented interventions and decreasing 

the weight of similar interventions (e.g., GH deficient mutants). Therefore, gene expression 

changes induced only by GH deficiency will have a higher probability of being realized by 

null hypothesis and, as a consequence, higher p-values. Using this method, we detected 

only 7 up- and 5 downregulated genes shared by all interventions with BH adjusted p-value 

< 0.05. In other words, although there may be shared molecular mechanisms among 

different interventions, they are usually supported by different gene expression changes. 
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To detect genes commonly shared by most interventions, we weakened the criteria 

by letting one intervention to be an outlier. We realized it by removing each intervention 

one by one and taking the best remaining p-value (“robust p-value” approach). Using the 

BH adjusted robust p-value threshold of 0.05, we identified 166 upregulated and 134 

downregulated genes (Figure 22B). Interestingly, one of the most significant commonly 

upregulated genes was Cth (BH adjusted robust p-value = 0.0033) (Figure 22C). It encodes 

cystathionine gamma-lyase, which participates in the conversion of cystathionine (derived 

from methionine) to cysteine, which is an important step in glutathione synthesis and H2S 

production (Kabil et al., 2011). Cth has previously been shown to be upregulated in 

response to DR-mediated stress and sulfur amino acid restriction (Hine et al., 2015). Our 

data suggest that, at least at the transcript level, this gene is increased in liver by most 

lifespan-extending interventions and could be used as a simple test for the shift in gene 

expression associated with longevity. 

Another interesting example of a gene commonly upregulated across lifespan-

extending interventions is Brca1 (BH adjusted p-value = 0.04). This well-known tumor 

suppressor, whose loss-of-functions mutations are associated with breast and ovary cancer 

in humans with frequency of 80% and 40%, respectively (Narod and Foulkes, 2004), has 

also been found in several studies to be related to longevity in mice. In particular, its 

haploinsufficiency (Brca1 +/-) led to shortened lifespan (by 8% in mean lifespan) with 

70% tumor incidence vs about 10% in wild-type animals (Cao et al., 2003). Interestingly, 

besides being related to DNA repair, BRCA1 was also shown to physically interact with 

NRF2 and increase its stability and activation (Gorrini et al., 2013). Consequently, it may 
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act by activating the NRF2-dependent antioxidant response. Thus, the common 

upregulation of Brca1 may be due to activation of NRF2 signaling, which is one of the 

shared signatures of lifespan-extending interventions (Figure 19C and Figure 22D). 

Several glutathione S-transferase genes were also significantly upregulated across 

lifespan-extending interventions, including Gstt2 (BH adjusted robust p-value = 0.014), 

Gsto1 (BH adjusted robust p-value = 0.037) and Gsta4 (BH adjusted robust p-value = 

0.013). All of them are involved in glutathione metabolism, known to be activated at the 

gene expression level in response to CR (Fu and Klaassen, 2014) and several GH 

deficiency states (Sun et al., 2013; Tsuchiya et al., 2004). Administration of GH was shown 

to decrease GST activity in several tissues including liver (Brown-Borg et al., 2005). 

Overall, upregulation of Gst genes is a common signature of lifespan-extending 

interventions and they are significantly changed not only by GH deficiency and CR, but 

also by FGF21 overexpression, acarbose, MR, MYC deficiency and others. 

To identify pathways associated with common up- and downregulated gene 

signatures, we performed functional GSEA (Figure 22D). Consistent with the RNAseq 

findings, most significant upregulated functions included metabolism of xenobiotics by 

cytochrome P450 (q-value = 0.0055) and glutathione metabolism (q-value = 0.017) mainly 

regulated by the NRF2 pathway, oxidative phosphorylation (q-value = 0.001), ribosome 

(q-value = 0.016), TCA cycle (q-value = 0.028), glucose (q-value = 0.074) and amino acid 

metabolism (q-value = 0.075). Downregulated functions included primary 

immunodeficiency (q-value = 4.8.10-4), RNA polymerase (q-value = 0.022) and tRNA 

metabolic process (q-value = 0.061). Interestingly, several age-related diseases associated 
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at the molecular level with age-dependent changes in regulation of many cellular pathways, 

including mitochondrial function, oxidative phosphorylation, apoptosis and proteolysis, 

such as Alzheimer’s (q-value = 0.034), Parkinson’s (q-value = 2.2.10-3) and Huntington’s 

(q-value = 0.036) diseases, were enriched for common signatures, pointing to direct 

connection between changes induced by aging and lifespan-extending interventions. 

4.2.6 Signatures Associated with the Degree of Lifespan Extension  

To identify genes positively and negatively associated with the degree of lifespan 

extension, serving as quantitative predictors of this effect, we applied a previously 

described mixed-effect regression model with the response value equal to one of 3 

commonly used metrics of lifespan extension: median lifespan ratio, maximum lifespan 

ratio, calculated as the ratio of average lifespan of 10% longest-surviving individuals, and 

the median hazard ratio, calculated as the ratio of slopes of survival curves at the timepoint 

where 50% of cohort is alive. We used these metrics as they seem to be the most consistent 

and robust to the effects of sampling size (Moorad et al., 2012). As in the case of common 

signatures, we considered source and type of intervention as random terms and used the 

correlation matrix of interventions to account for similarity between them. Using 

thresholds of BH adjusted p-value and LOO p-value, obtained after removal of every 

intervention one by one, equal to 0.05, we detected 351, 258 and 183 genes with positive 

and 264, 191 and 108 genes with negative association with maximum lifespan ratio, median 

lifespan ratio and median hazard ratio, respectively (Figure 23A and Figure 24D). These 

gene sets showed a significant overlap (Fisher exact test p-value < 10-18 in all cases), which 

was especially large between median and maximum lifespan. Indeed, 65.1% and 47.9% of 
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genes with positive and 52.9% and 38.3% with negative association with median and 

maximum lifespan, respectively, were shared between them. As the median hazard ratio is 

more volatile compared to other metrics, median and maximum lifespan provide more 

reliable sets of genes. One of the strongest positive associations with maximum and median 

lifespan was found for Hint3 (BH adjusted p-value = 3.2.10-7 and 2.5.10-4, respectively) 

encoding nucleotide hydrolase (Figure 23C). On the other hand, Irf2 encoding interferon 

regulatory transcription factor showed a significant negative association with these metrics 

(BH adjusted p-value = 2.57.10-6 and 1.2.10-5, respectively) (Figure 23D). 

 

Figure 23. Gene expression signatures associated with the degree of lifespan extension 

(A) Fold change of genes associated with the maximum lifespan effect across different 

datasets. Genes identified as significantly associated with maximum lifespan effect (BH adjusted 



142 

  

p-value < 0.05 and p-value LOO < 0.05), calculated as ln(maximum lifespan ratio), are shown in 

the heatmap. 351 and 264 genes were found to have positive and negative association with 

maximum lifespan effect, respectively. Plot on the top shows maximum lifespan effect for 

corresponding dataset. (B) Association of Dgat1 fold change with maximum lifespan. Although 

Dgat1 deletion is associated with lifespan extension in female mice, its fold change shows a slight 

positive association with the maximum lifespan ratio (slope coefficient = 0.38 and BH adjusted 

p-value = 0.007). (C-F) Association of Hint1 (C), Irf2 (D), Eci1 (E) and Ndufab1 (F) fold 

change with maximum (left) and median (right) lifespan ratio. All specified genes show 

statistically significant associations with both maximum and median lifespan. CR: Caloric 

Restriction; FGF21 over: FGF21 overexpression; EOD: Every-Other-Day Feeding; Snell: Snell 

dwarf mice; Ames: Ames dwarf mice; Little: Little mice; GHRKO: Growth Hormone Receptor 

Knockout. 

 

Interestingly, the fat synthesis enzyme Dgat1, those knockout is associated with 

extension of average and maximum lifespan in female mice by 23% and 8%, respectively 

(Streeper et al., 2012), was found to be slightly positively associated with median and 

maximum lifespan effects across interventions (slope coefficient = 0.38 and 0.29 and BH 

adjusted p-value = 0.007 and 0.04 for maximum and median lifespan, respectively) (Figure 

23B). However, the change in expression of Dgat1 is relatively small compared to all 

lifespan-extending interventions, except for Dgat1 deletion. This example demonstrates 

that different initial targets of lifespan-extending interventions can be unique and not 

shared across them, but may lead to similar downstream systemic responses, which define 

the lifespan extension effect. 

Other genes positively associated with changes in both maximum and median 

lifespan included members of fatty acid metabolism, including acyl-coenzyme A 

dehydrogenase Acadm (BH adjusted p-value = 0.001 and 0.005 for maximum and median 

lifespan, respectively) and enoyl-coenzyme A delta isomerase Eci1 (BH adjusted p-value 

= 2.2.10-6 and 6.4.10-6) (Figure 23E), and oxidative phosphorylation pathway, including the 



143 

  

b subunit of ATP synthase Atp5f1 (BH adjusted p-value = 5.3.10-4 and 0.004), cytochrome 

c oxidase assembly protein Cox17 (BH adjusted p-value = 5.10-4 and 0.01) along with 

dehydrogenase 1 subcomplexes Ndufb3 (BH adjusted p-value = 2.6.10-5 and 0.048) and 

Ndufab1 (BH adjusted p-value = 0.005 and 0.003) (Figure 23F). 

To identify pathways enriched by genes positively and negatively associated with 

the lifespan extension effect, we ran GSEA for all 3 metrics of lifespan extension and 

observed general consistency among them in terms of functional enrichment (Figure 24C). 

Thus, genes related to TCA cycle (q-value < 10-3 for all metrics), oxidative phosphorylation 

(q-value < 0.015 for all metrics), amino acid catabolism (q-value < 0.02 for all metrics) 

and Huntington’s (q-value < 0.093 for all metrics) and Parkinson’s diseases (q-value < 

0.004 for all metrics) were significantly positively associated among all three metrics used 

in the analysis, whereas fatty acid (q-value < 0.003) and propanoate metabolism (q-value 

< 0.081) genes showed significant positive association with maximum and median lifespan 

changes. On the other hand, regulation of interleukin 1 beta production showed significant 

negative associations with specified metrics (q-value < 0.096 for median lifespan and 

median hazard ratio) (Figure 24C). However, some functions, such as peroxisome (q-value 

= 0.03 for maximum lifespan) and DNA replication (q-value = 0.026 for median hazard 

ratio), were specific to single lifespan extension metrics. This may explain how certain 

interventions increase specific lifespan characteristics without affecting others. 
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Figure 24. Analysis of signatures associated with lifespan extension effect and identification 

of new lifespan-extending interventions 

(A-B) Fold change of Nqo1 (A) and Slc15a4 (B) across different interventions and their 

association with the maximum lifespan extension effect. Nqo1 (coding for NADH 
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dehydrogenase 1) and Slc15a4 (coding for lysosomal amino acid transporter) are examples of 

genes both significantly shared by lifespan-extending interventions (BH adjusted robust p-value 

= 0.011 and 0.008, respectively) and positively associated with the lifespan extension effect (BH 

adjusted p-value = 0.002 and 0.02, respectively). Red asterisk denotes interventions with BH 

adjusted p-value < 0.1. Estradiol: 17-α-estradiol; Snell: Snell dwarf mice; Ames: Ames dwarf 

mice; Little: Little mice; CR: Caloric restriction; MR: Methionine Restriction; EOD: Every-other-

day feeding; FGF21 over: FGF21 overexpression; GHRKO: Growth Hormone Receptor 

Knockout. (C) GSEA functional enrichment of genes positively (upper) and negatively 

(lower) associated with the lifespan extension effect. Functions statistically significantly 

associated with at least one lifespan extension metric (FDR q-value < 0.1) are shown. Cells are 

colored based on adjusted z-score, calculated as log10(FDR q-value) corrected by sign of 

regulation. Presented functions were selected manually. (D) Number of genes showing positive 

(left) and negative (right) association with different metrics of the lifespan extension effect. 

Generally, different metrics show significant overlap in genes significantly associated with them 

(Fisher exact test p-value < 10-18 in all cases). Genes were considered significantly associated if 

BH adjusted p-value < 0.05 and p-value LOO < 0.05. (E) Association of individual 

interventions from publicly available datasets with the identified longevity signatures. 

Longevity signatures include genes aggregated across individual interventions (CR, rapamycin 

and GH deficiency interventions), common signatures and signatures associated with the lifespan 

extension effect (maximum and median lifespan change). Cells are colored based on adjusted z-

score, calculated as log10(BH adjusted p-value) corrected by sign of regulation. 

 

Interestingly, some of the genes or pathways could serve as both qualitative and 

quantitative predictors of lifespan extension, being both common signatures and signatures 

associated with the lifespan extension effect or enriched by these signatures. We identified 

26 genes being both commonly changed across interventions and associated with either 

median or maximum lifespan extension effect in the same direction (Table 2). 17 of them 

were upregulated and positively associated with lifespan extension, while 9 were 

downregulated and negatively associated. The identified genes are involved in regulation 

of apoptosis (Aatk, Net1, Rb1, Sgms1), immune response (C4bp, P2ry14, Slc15a4, Tap2, 

Rb1), transcription (Pir, Sall1), stress response (Net1, Nqo1, Pck2, Rb1), glucose 

metabolism (Pck2, Pgm1) and cellular transport (Ldlrad3, Slc15a4, Slc25a30 and Tap2). 
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Table 2. Genes being both common signatures and signatures associated with the degree of 

lifespan extension effect 

 
 

For example, Nqo1, encoding NAD(P)H-dependent quinone oxidoreductase 

involved in oxidative stress response, showed a significant positive association with 

maximum and median lifespan (BH adjusted p-value = 0.002 and 7.74.10-5, respectively) 

and was also commonly upregulated across lifespan-extending interventions (BH adjusted 

robust p-value = 0.011) (Figure 24A). Interestingly, this gene is one of the well-known 

targets of the transcription factor NRF2, an upstream regulator of gene expression response 

to various lifespan-extending interventions (Leiser and Miller, 2010; Mutter et al., 2015) 

(Figure 19C). 

Another interesting example is Slc15a4, which codes for lysosome-based proton-

coupled amino-acid transporter of histidine and oligopeptides from lysosome to cytosol. In 
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dendritic cells, this protein regulates the immune response by transporting bacterial 

muramyl dipeptide (MDP) to cytosol and, therefore, activating the NOD2-dependent innate 

immune response (Nakamura et al., 2014). In addition, its activity affects endolysosomal 

pH regulation and probably v-ATPase integrity, required for mTOR activation (Kobayashi 

et al., 2014). Our data shows that Slc15a4 is a common signature of lifespan-extending 

interventions (BH adjusted robust p-value = 0.008) along with some other transporters 

(Figure 22D) and is positively associated with maximum lifespan (BH adjusted p-value = 

0.02) (Figure 24B), pointing to importance of lysosomal integrity and amino acid transport 

in lifespan extension. 

As for the pathways, oxidative phosphorylation showed positive association with 

both common and lifespan effect associated signatures, and some functions involved in 

liver regulation of immune response showed negative association (Figure 22D and Figure 

24C). The role of oxidative phosphorylation in lifespan extension may explain the effect 

of some direct regulators of the electron transport chain, such as methylene blue, leading 

to 6% increase in female maximum lifespan in mice (Harrison et al., 2014). Indeed, serving 

as an alternative electron carrier in the electron transport chain in mitochondria, the 

compound increases its activity together with cellular oxygen consumption (Wen et al., 

2011). This is a nice example of an intervention with a distinct molecular mechanism, 

whose effect, however, converges at the level of regulated cellular pathways. 
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4.2.7 Application of Longevity Signatures for the Identification of New Candidates for 

Lifespan Extension 

In this work, we obtained gene expression patterns (signatures) associated with the 

response to particular well-studied interventions (CR, rapamycin and GH deficiency 

interventions), as well as signatures based on gene sets commonly regulated across 

different lifespan-extending interventions and associated with the lifespan extension effect. 

We considered the possibility that these ‘longevity signatures’ could be used as predictors 

of new lifespan-extending interventions at the gene expression level. To test this 

possibility, we examined 4 publicly available datasets containing data on hepatic gene 

expression in response to certain in vivo interventions and ran a GSEA-based association 

test using longevity signatures as input subsets (Figure 24E). These datasets included 

injection of interleukin 6 (IL-6) (GSE21060) (Ramadoss et al., 2010), knockout of 

methionine adenosyltransferase gene (Mat1a) (GSE77082) (Alonso et al., 2017), hypoxia 

conditions (GSE15891) (Baze et al., 2010b) and knockout of Keap1, coding for an inhibitor 

of acute stress regulator NRF2 (GSE11287) (Osburn et al., 2008). 

Interleukin-6 (IL-6) is one of the best studied pro-inflammatory cytokines secreted 

by T cells and macrophages to support the immune response. It was shown to stimulate the 

inflammatory and auto-immune response during progression of diseases, including 

diabetes (Kristiansen and Mandrup-Poulsen, 2005), Alzheimer’s disease (Swardfager et 

al., 2010), multiple myeloma (Gadó et al., 2000) and others. Moreover, IL-6 was shown to 

induce insulin resistance directly by inhibiting insulin receptor signal transduction (Senn 

et al., 2002). Finally, functions related to liver regulation of the immune response 
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stimulated by IL-6 were enriched for genes both commonly downregulated and negatively 

associated with the lifespan extension effect of longevity interventions. We tested if the 

intraperitoneal injection of interleukin-6 into mouse bloodstream leads to hepatic gene 

expression changes associated with longevity signatures and detected a significant negative 

association with all longevity signatures (BH adjusted p-value < 0.025) (Figure 24E), 

pointing to a potential negative effect of IL-6 on mouse lifespan. 

Methionine adenosyltransferase 1A (Mat1a) is an enzyme that catalyzes conversion 

of methionine to S-adenosylmethionine. This gene plays a crucial role in methionine and 

glutathione metabolism.  Its activity in liver is increased 205% in Ames dwarf mice 

compared to wild-type animals (Uthus and Brown-Borg, 2003), and the introduction of GH 

to these mice led to ~40% decrease in MAT activity in liver (Brown-Borg et al., 2005). 

Moreover, due to the role of MAT in methionine metabolism, MAT deficiency in liver 

leads to persistent hypermethioninemia (Ubagai et al., 1995), which can be thought of as 

the opposite of MR. Therefore, we expected that knockout of Mat1a could be negatively 

associated with longevity signatures. Indeed, the test for longevity association revealed a 

negative association of this intervention with 4 out of 6 longevity signatures, the exceptions 

being GH deficiency and median lifespan effect signatures (BH adjusted p-value < 0.02) 

(Figure 24E). Therefore, Mat1a knockout leads to the changes in gene expression opposite 

to those caused by longevity signatures, and is expected to diminish mouse longevity. 

Hypoxia, a reduction in oxygen levels, has suggestive associations with longevity 

that are not yet well understood.  First, aging is associated with hypoxia, e.g. showing 38% 

reduction in oxygen levels in adipose tissue (Zhang et al., 2011). Second, studies 
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investigating the effect of hypoxia on longevity show contrasting results. Thus, one group 

showed that, in C. elegans, growth in low oxygen and mutation of VHL-1, a negative 

regulator of the main modulator of hypoxia HIF-1, extended worm lifespan up to 40% 

(Mehta et al., 2009). However, another group reported an increased lifespan in C. elegans 

following the deletion of HIF-1 gene under slightly different conditions (Chen et al., 2009). 

Also, by generating reactive oxygen species (ROS), hypoxia leads to activation of NRF2, 

one of the upstream regulators associated with the response to lifespan-extending 

interventions (Figure 19C). Finally, hypoxia was found to be among the most effective 

protectors against mitochondrial disfunction associated with virtually all age-related 

degenerative diseases (Balaban et al., 2005; Jain et al., 2016). In mammals, chronic hypoxia 

leads not only to a compensatory increase in oxygen delivery due to increased production 

and affinity to hemoglobin, decreased weight, higher ventilation rate and capillary density 

and larger mass of lung, liver and left ventricle (Aaron and Powell, 1993; Baze et al., 

2010b), but also to a decrease in demand for oxygen through alterations in metabolism, 

including increased rate of anaerobic metabolism (glycolysis) along with decreased whole 

animal metabolic rate and body temperature (Gautier, 1996; Steiner and Branco, 2002). 

Therefore, we were particularly interested to investigate whether chronic hypoxia would 

affect hepatic gene expression in mice in ways that were correlated to lifespan gene 

expression signatures. We examined changes in gene expression in mice subjected to 11.5 

kPa Po2 hypoxia (11.8% oxygen in the air) for 32 days, and detected a significant positive 

association of hypoxia with all longevity signatures, except for rapamycin (BH adjusted p-
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value < 0.034) (Figure 24E), suggesting a potential positive effect of this intervention on 

mouse healthspan and/or lifespan. 

NRF2 is one of the key acute stress regulators, which, among others, activates 

XMEs (Baird and Dinkova-Kostova, 2011) commonly upregulated at the level of gene 

expression across different lifespan-extending interventions (Figure 22D). Overexpression 

of the NRF2 ortholog SKN-1 in C. elegans leads to a 5-20% increase in average lifespan 

(Tullet et al., 2008), whereas mutation of its inhibitor, Keap1, was shown to increase 

median lifespan by 8-10% in Drosophila melanogaster males (Sykiotis and Bohmann, 

2008). Moreover, Protandim, a mixture of 5 botanical extracts known to stimulate Nrf2 

activation, was proved to increase median lifespan in male mice by 7% (Strong et al., 

2016). However, whether Nrf2 directly affects longevity of mammals remain unclear. We 

examined how hepatic gene expression is changed by hepatocyte-specific conditional 

knockout of Keap1 in mice and identified statistically significant positive association with 

almost all longevity signatures, except for rapamycin (BH adjusted p-value < 0.0015) 

(Figure 24E). This finding points to a potential positive effect of NRF2 activation on mouse 

healthspan and lifespan. 

Finally, we tested if longevity signatures could be used to predict the difference in 

lifespan between different mouse strains, known to have such a difference. The GSE10421 

dataset includes gene expression of for livers of male mice of 2 mouse strains tested at the 

same chronological age (7 weeks old): C57BL/6 and DBA/2 (Kautz et al., 2008). We ran 

a statistical model testing for genes with significant difference between these strains and 

subjected them to the longevity association test. All longevity signatures except for 
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rapamycin showed a significant positive association with C57BL/6 gene expression profile 

compared to that of DBA/2 (BH adjusted p-value < 5.3.10-4) (Figure 24E). Lifespan of 

C57BL/6 mice (median lifespan = 901 days) is significantly higher than that of DBA/2 

(median lifespan = 701 days) (Yuan et al., 2009). This difference was captured by the 

longevity signatures, which predicted the strain with greater lifespan. These findings 

further support the notion that the longevity signatures can be used for the prediction of 

new lifespan-extending interventions as well as for the assessment of differences in 

expected lifespan. 

To conclude, we collected and characterized RNAseq data on several lifespan-

extending interventions, including four that had never been analyzed at the level of gene 

expression, across sexes, doses and age groups. We observed a significant feminizing 

pattern of gene expression changes in males in response to genetic (GHRKO and Snell 

swarf mice) and dietary (CR and MR) interventions along with acarbose in 12-month-old 

males. We identified functional gene groups responsible for this feminizing effect, most 

notably drug metabolism by cytochrome P450 and complement and coagulation cascades. 

However, the feminizing effect is neither necessary nor sufficient for lifespan extension, 

as other interventions showed no such effect in males or even demonstrated a significant 

masculinizing effect (e.g., rapamycin in 12-month-old males). However, we also observed 

consistent tendency of lifespan-extending interventions to induce more masculinizing 

changes in females compared to males, therefore, leading to convergence of gene 

expression profile across sexes. 
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Expanding this analysis to encompass all available microarray data on longevity 

interventions allowed us to define gene expression signatures associated with individual 

interventions or groups of related interventions (rapamycin, CR and GH deficiency) as well 

as functions commonly changed across different lifespan-extending interventions. We 

observed that, despite some differences, most lifespan-extending interventions share 

altered genes and pathways, including upregulation of genes encoding XMEs regulated by 

NRF2 along with TCA cycle, oxidative phosphorylation, glucose and amino acid 

metabolism, and ribosome protein genes, and downregulation of complement and 

coagulation cascades. Interestingly, some genes, involved in stress response, apoptosis, 

glucose metabolism, transcription and immune response, and pathways, such as oxidative 

phosphorylation and hepatic regulation of the immune response, were found to be 

commonly regulated by interventions and associated with lifespan extension effect, serving 

as both qualitative and quantitative predictors of the lifespan extension effect. These genes 

and processes seem to be the most reliable and consistent determinants of longevity in 

mouse and deserve further exploration. By comparing the response to different 

interventions at the level of gene expression, we observed that the majority of interventions 

showed significant positive correlations with each other, although others, including 

rapamycin, showed a distinct pattern. 

Finally, we employed gene expression signatures to identify new lifespan-

extending interventions based on gene expression data. Here, our algorithm could 

distinguish two strains of mice differing in lifespan. It was also applied to several 

interventions considered to be positively or negatively associated with changes in lifespan, 
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suggesting that they indeed may influence lifespan. Thus, we propose hypoxia and 

hepatocytes-specific Keap1 knockout to be significantly associated with longevity 

signatures at the level of gene expression and, therefore, to be strong candidates for 

experimental validation. Based on our findings, we believe that the described approach 

may be used to identify promising candidates with the potential lifespan extension effect 

among environmental, genetic and pharmacological interventions. Thus, it may facilitate a 

search for new interventions and help screen candidate genes and drugs prior to costly 

lifespan analyses. 
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Chapter 5. Conclusion 

In this work we expanded our understanding of mechanisms behind lifespan 

extension on both across- and within-species level. Using high-throughput approach and 

different models of lifespan extension, we identified molecular signatures associated with 

longevity and validated them through experiments and proper predictions. 

By performing RNAseq analysis of response of naked mole rat fibroblasts to DNA 

damage, induced by γ-irradiation, we identified common and unique gene expression 

signatures of this long-lived rodent compared to mice. We observed common upregulation 

of senescence-associated secretory phenotype (SASP) genes together with downregulation 

of cell cycle. On the other hand, apoptosis and p53 pathways were upregulated in mice 

significantly stronger than in NMR. We validated these findings experimentally by 

showing that both species undergo cell arrest but NMR fibroblasts are highly resistant to 

IR-induced apoptosis and favor cellular senescence over apoptosis, contrary to the mouse. 

We also showed that NMR cells were significantly more resistant to γ-irradiation than mice 

despite the comparable level of DNA damage. Unique transcriptional changes in NMR 

indicate that this effect may be linked to certain cytoprotective mechanisms, including 

activation of autophagy and antioxidative response. 

By performing analysis of the blood DNA methylome of 141 mice representing 16 

different age groups, we identified reliable aging methylation patterns at a high resolution. 

We observed acceleration of methylation change along with accelerated increase in entropy 

with age, consistent with the exponential behavior of Gompertz mortality model and 

deleteriome theory of aging, explaining aging through accumulation of damage with time. 
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We further identified pathways enriched by genes with significant change of methylation 

status with age and observed number of longevity-related processes there, including DNA 

repair, inflammation, insulin and IGF1 signaling (IIS), fatty acid metabolism and stem cell 

proliferation. Finally, we demonstrated anti-aging effect of caloric restriction (CR) on 

significant methylation changes. Its effect was cumulative, gradually slowing down the 

aging-related changes with time. This finding is consistent with meta-analysis of longevity 

studies in mice, proposing that CR acts on aging rate, but not vulnerability, parameter of 

Gompertz model in mouse, contrary to the rapamycin. 

Finally, we identified gene expression signatures of existing lifespan-extending 

interventions in mouse. By performing RNAseq analysis of 8 lifespan-extending 

interventions in liver, we observed regulation of some common processes. We also 

detected significant feminizing pattern in males in response to genetic and dietary 

interventions and acarbose, while other drugs showed no feminizing or even slightly 

masculinizing pattern (e.g., rapamycin), suggesting that feminizing effect is neither 

necessary nor sufficient for lifespan extension. Most interestingly, we observed that 

lifespan-extending interventions consistently induced more feminizing changes in males 

compared to females, resulting in convergence of gene expression profile across sexes. 

By aggregating our data with publicly available datasets on longevity interventions 

in mouse liver, we identified consistent signatures associated with individual interventions, 

such as rapamycin, CR and GH deficiency, as well as common signatures across lifespan-

extending interventions, including upregulation of xenobiotic metabolizing enzymes 

(XMEs) regulated by NRF2, TCA cycle and oxidative phosphorylation, and 
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downregulation of immune-response-related functions. We then detected signatures 

associated with the degree of lifespan extension effect and demonstrated that some genes 

and functions seem to be both qualitative and quantitative predictors of lifespan, including 

stress response, apoptosis, glucose metabolism, immune response and oxidative 

phosphorylation. We observed that the majority of genetic and dietary interventions along 

with some drugs turned out to be positively correlated at the level of gene expression, while 

other interventions including rapamycin showed a distinct pattern. Finally, we applied 

obtained longevity signatures to identify new lifespan-extending interventions based on 

their transcriptome profile. Using the signatures, we successfully distinguished between 

two strains of mice with differences in lifespan and proposed pro- or anti-longevity effect 

for several interventions considered to be positively or negatively associated with lifespan, 

such as hypoxia and conditional Keap1 knockout in hepatocytes. 

Based on analyzed models, we observe that longevity phenotype may be achieved 

through regulation of common and distinct mechanisms across- and within the species. 

One of the common mechanisms turned out to be acute stress response and antioxidant 

defense activated by NRF2. Indeed, this pathway distinguished NMR response to γ-

irradiation compared to mouse and was one of the most significantly upregulated pathways 

across lifespan-extending interventions. Apoptosis-related genes also showed unique 

pattern in NMR cells and were associated with lifespan extension within the species. 

However, many cellular processes appear to be uniquely associated with longevity across 

NMR and interventions models. Thus, autophagy seems to play important cytoprotective 

role in NMR resistance to DNA damage, as confirmed by other studies. On the other hand, 
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regulation of oxidative phosphorylation and TCA cycle, glucose metabolism and immune 

response are significantly associated with lifespan extension by interventions in mouse. 

Notably, we observe that these effects are generally negatively correlated with aging as 

shown by effect of CR on methylation profile and detection of differences in biological age 

between two mouse strains by longevity signatures. Moreover, identified gene expression 

signatures may be applied for prediction of new lifespan-extending interventions and 

methylation profile may be used for validation of identified signatures. Therefore, 

investigated longevity-associated molecular signatures may not only shed the light on 

crucial mechanisms lying in the basis of lifespan extension but also substantially facilitate 

research and development of new antiaging therapies. 
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