Skol

Skolkovo Institute of Science and Technology

LOW RANK MODELS FOR RECOMMENDER SYSTEMS
WITH LIMITED PREFERENCE INFORMATION

Doctoral Thesis
by

EVGENY FROLOV

DOCTORAL PROGRAM IN COMPUTATIONAL AND DATA INTENSIVE
SCIENCE AND ENGINEERING

Supervisor

Professor Ivan Oseledets

Moscow — 2018

© Evgeny Frolov 2018

Contents

Abstract

Publications

Thesis outline

I Overview of low rank models in recommender systems

Chapter 1:

General concepts

1.1 Recommender systems at a glance

1.1.1
1.1.2
1.1.3

Content-based filtering
Collaborative filtering

Hybrid recommenders

1.2 Challenges for recommender systems

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8

Coldstart
Missing values
Implicit feedback
Model evaluation
Reproducible results
Real-time recommendations
Incorporating context information . .

Contentvs. context

1.3 Quick summary and outlook

Chapter 2:

Matrix Factorization

2.1 Problem formulation

22 SVD
2.2.1
2.2.2

-basedmodels

PureSVD

Biases and custom data transformation

.............

.............

.............

.............

.............

.............

viii

X1

O 00 00 NN N R W N -

10
10
11
12
14
16
19
20
22

2.3

2.4
2.5

2.6

Chapter 3: Tensor Factorization

3.1

3.2

3.3

11

2.2.3 Handling onlineupdates

2.2.4 The family of eigendecomposition algorithms

Weighted low-rank approximation

2.3.1 Optimization techniques

2.3.2 Biased matrix factorization
2.3.3 Confidence-based models

2.3.4 Combined latent representations

2.3.5 Remark on connection with SVD

Learning torank

Practical aspects

........................

2.5.1 Parallel implementations

2.5.2 Hyper-parameters tuning

Conclusion

Introduction to tensors . .

........................

3.1.1 Definitions and notations

3.1.2 Problem formulation

3.1.3 Tensor Factorization techniques

3.1.4 Optimization algorithms

Tensor-based models in recommender systems

3.2.1 Personalized search and resource recommendations

3.2.2 Social tagging . . .
3.2.3 Temporal models .

3.2.4 General context-awaremodels

Conclusion

........................

Chapter 4: Limited preference information problem

4.1
4.2
4.3

4.4

Local lack of preferences .
Global lack of preferences .
Related work

........................

43.1 Addressing the local problem
43.2 Addressing the global problem

The need for new methods

24
26
28
30
34
36
38
42
43
45
46
50
51
52
53
53
55
55
58
60
61
64
71
74
31
83
84
85
86
86
89
91

111

II Proposed models

Chapter 5: Higher order preference model

5.1 Problem formulation
5.1.1 Limitations of standard models
5.1.2 Resolving the inconsistencies
5.2 Proposedapproach
5.2.1 Efficient computation of recommendations
5.2.2 Shadesofratings,
53 Evaluation
5.3.1 Negativity bias compliance
5.3.2 Penalizing irrelevant recommendations
5.3.3 Evaluation methodology
54 Experimentalsetup L.
54.1 Datasets oo
542 Algorithms
543 Settings
55 Results
5.6 Conclusion and perspectives
Chapter 6: Hybrid factorization model
6.1 Understanding the limitationsof SVD
6.1.1 When PureSVD doesnotwork
6.1.2 Why PureSVD doesnotwork
6.2 Proposedapproach oL
6.21 HybridSVD
6.2.2 Sidesimilarity o oL
6.2.3 Efficient computations
6.3 Experiments
6.3.1 Evaluation methodology
6.3.2 Datasets L o
6.3.3 Baseline algorithms
6.3.4 Hyper-parameterstuning
6.4 Resultsanddiscussion. L.
6.4.1 Standard scenario

v

6.4.2 Coldstart scenario 132

6.5 Conclusions and further research 133

Chapter 7: Higher order hybrid preference model 134

7.1 Motivation for a jointmodel 135

7.2 Proposed approach L. 136

7.3 Efficient computations L. 137

7.3.1 Hybrid tensor factorization, 137

7.3.2 Online recommendations 139

7.3.3 Ranktruncation. 139

7.4 Evaluation methodology 140

75 Results 142

7.6 Discussion and futureworko 0oL 144

IIT Software 146
Chapter 8: Polara: a new open-source framework for recommender

systems research 147

8.1 Corecomponents 149

8.2 RecommenderData 150

8.3 Recommender Model 152

8.4 Evaluation 156

8.5 Supported scenarios and setups 157

8.6 Summary e e 159

Final conclusion 160

References 162

List of Figures

1.1

3.1
3.2

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4

7.1

Examples of contextual information. 11
Tensor matricization/unfolding 54
Higher order folding-in for Tucker decomposition 66
From a matrix to a third order tensor. 101
Higher order folding-in for Tucker decomposition 102
“Shades of ratings” 103
Definition of matching and mismatching predictions 105
Models’ learning time oL 109
Evaluation results for the tensor-based preference model 110
The effect of data sparsity on the quality of PureSVD model 117
Latent space of HybridSVD influenced by movie genre information . 120
Evaluation results for HybridSVD (standard scenario) 130
Evaluation results for HybridSVD (cold start scenario) 132
Evaluation results for hybrid tensor-based preference model 143

List of Tables

2.1 Low-rank approximation algorithms for explicit feedback data 46
3.1 Storage requirements for different tensor factorization methods . .. 58
3.2 Side-by-side comparison of popular tensor-based models 81
5.1 Similarity-based recommendationsissue. 99
5.2 Recommendations generated by the tensor-based preference model . 111
6.1 An example of insufficient preference data problem 115
6.2 HybridSVD and increased data sparsity 131
8.1 Comparison of recommendation frameworks 149

Vi

Listings

8.1
8.2
3.3
8.4
8.5
8.6

Declaring datamodel.o oo 151
Define a simple SVD-based model. 152
Create and evaluate themodel. 153
More efficient variant of definingamodel. 154
Preparing data model for experiments with custom holdout. 158

Example of cross-validation experiment for evaluating several models 158

Vil

Abstract

Learning from a collective behavior of crowds to predict individual user prefer-
ences is one of the major tasks in recommender systems. Among the key challenges
that make this task especially difficult is the very fact that behavioral data is inherently
incomplete, which leaves the room for various assumptions. One of the core assump-
tions implicitly used by conventional collaborative filtering models is that, despite
a largely missing data, it is still possible to uncover reliable patterns for generating
relevant recommendations. This, however, is not always the case and the resulting
models in practice tend to exhibit poor performance when the fraction of known user
preferences decreases.

In the light of this problem, we examine the shortcomings of a particular SVD-
based model, namely PureSVD, which in many cases outperforms other state-of-the-
art approaches and, most importantly, provides a number of practical advantages over
other solutions. In order to address its limitations, related to the lack of preference
data, without sacrificing its key benefits, we revisit the problem of a low rank approx-
imation and derive several generalized formulations based on classical results from
linear and multilinear algebra. As a result, we propose three new methods that use
both matrix and tensor factorization techniques.

All proposed methods tackle the problem of insufficient preference informa-
tion from different angles. The first tensor-based approach improves the warm start
regime. The hybrid SVD-based approach is suitable for extremely sparse data, which is
a frequent problem in many domains. It also partially addresses the cold start problem.
As a combination of these two methods, the third method inherits the key advantages
of both predecessors and at the same time allows to compensate for their major pit-
falls: an increased susceptibility to a high degree of data sparsity in the tensor case

and an emergence of undesired spurious correlations in the matrix case.

viil

1X

We evaluate our models on several benchmark datasets commonly used by re-
searchers in recommender systems field. Based on experimental results we justify the
choice of each particular model depending on the usage scenario and the properties
of input data. All experiments are performed with the help a new open-source recom-
mendation framework named Polara, which is developed by the author of the thesis
to facilitate an in-depth quality evaluation, support quick model prototyping and to

ensure research reproducibility.

Publications

1. “Fifty shades of ratings: How to Benefit from Negative Feedback in Top-n Rec-
ommendations Tasks”, Evgeny Frolov and Ivan Oseledets; Proceedings of the

10th ACM Conference on Recommender Systems, 2016, pp. 91-98.

2. “Tensor methods and recommender systems”, Evgeny Frolov and Ivan Os-

eledets; WIREs Data Mining Knowledge Discovery 2017, vol. 7, issue 3.

3. “Matrix Factorization in collaborative filtering”, Evgeny Frolov and Ivan Os-
eledets; Collaborative Recommendations: Algorithms, Practical Challenges and
Applications, book chapter, to be published by World Scientific Publishing Co.
Pte. Ltd. in Summer 2018.

4. “HybridSVD: When collaborative Information is Not Enough”, Evgeny Frolov
and Ivan Oseledets; arXiv:1802.06398, 2017.

5. “Revealing the Unobserved by Linking Collaborative Behavior and Side Knowl-
edge”, Evgeny Frolov and Ivan Oseledets; arXiv:1807.10634, 2018.

Thesis outline

Significance. The thesis is devoted to the development of new low rank models for
recommender systems. The work focuses on matrix- and tensor-based factorization
techniques [94, 54] widely used in industry. Matrices and tensors naturally arise in the
collaborative filtering approach, where information about collective human behavior
is used to build a recommendation model. In these settings, low rank methods allow
to conveniently model interactions between users and items and compactly represent
them in terms of a small number of latent features. This allows providing scalable
solutions, capable of dealing with millions of users and items which is a common
requirement in modern systems. Another important aspect is the ability to work in
highly dynamic online environments where users expect an immediate response from
a system to their actions. Many factorization techniques help to address that problem
by the means of the so-called folding-in approach [49].

Although various factorization techniques have been already developed to date,
there are still certain scenarios where a simple well known SVD-based model called
PureSVD [38] and its derivatives [112] allow to outperform other state-of-the-art ap-
proaches. It provides many additional benefits, such as lower storage requirements
and simplified model fine-tuning; it is based on a stable algorithm with deterministic
output and gives an efficient analytic solution for folding-in, which makes it espe-
cially attractive for practical applications. Moreover, the SVD algorithm has highly
optimized implementations in many programming languages. However, it also has
certain limitations and drawbacks.

First of all, as any standard matrix factorization-based model, PureSVD is sen-
sitive to input data. More specifically, the value of user feedback (e.g., rating) affects
the ability of the model to learn user interests: lower ratings will have a lower con-

tribution into the result, and the feedback with higher rating values will dominate.

X1

xi1

However, low ratings may provide as a strong signal about actual user preferences as
high ratings and, therefore, should not be neglected. The inability to take that into ac-
count potentially leads to an increased rate of irrelevant recommendations. This may
play a crucial role, especially in the case when a new user has only started to interact
with the system and has not provided a sufficient amount of information about his or
her preferences yet. Too many irrelevant recommendations, in that case, lower the
credibility of the service and user may never want to use it again.

Secondly, PureSVD relies on collaborative information only and ignores any
side information such as user attributes or item features. Given that interaction data is
often very scarce, this may prevent the model from reliably learning intrinsic relations
within the data and lead to considerable degradation of recommendations’ quality. In
such cases side information may serve as a valuable source of additional relational
data and may help to reveal important patterns, making the model more resistant to
the lack of collaborative information. In addition to that, side information allows to
alleviate the cold start problem when interactions for a user or an item data are not
yet available. However, the question of generalizing the purely SVD-based approach

to include both collaborative and side information is still an open research problem.

The primary goal of the thesis work is to develop efficient low rank factorization
methods, which inherit the key benefits of the PureSVD approach and do not suffer

from its major limitations induced by the lack of known user preferences.

Novelty. Three new methods based on matrix and tensor factorizations are pro-
posed in this work. The first method treats user feedback as an ordinal concept in
contrast to the commonly used real-valued representation. In this method, (user, item,
feedback) triplets are encoded into a third order tensor which is factorized with the
help of the Tucker decomposition. This allows to preserve orthogonality of factors
and, similarly to the PureSVD approach, leads to an analytic solution for folding-in.
More importantly, the model becomes equally sensitive to any user feedback and al-
lows to explicitly impose ordinal relations within the data which helps to generate
relevant recommendations even from negative-only feedback. This is especially im-
portant in the warm start, settings when only a little information about user prefer-

ences is known. In these settings, the model performs much better in terms of avoid-

xiil

ing irrelevant recommendations and may help users find relevant content much faster.
Due to common positivity bias (the tendency to favor highly rated items) of both con-
ventional recommendation models and standard evaluation metrics, a new debiased
evaluation methodology is also proposed. It provides a more detailed view on the
quality of recommendations, which takes into account not only a user satisfaction but
also a potential user disappointment.

The second proposed method extends PureSVD model with side information.
While there exists a number of factorization techniques, which allow taking side in-
formation into account (the so-called hybrid approach), they use different optimiza-
tion algorithms that do not provide the same set of benefits as SVD. In contrast, the
proposed approach allows to incorporate user attributes and item features directly
into the model while staying within the SVD-based computation paradigm. This is
achieved with the help of the generalized SVD formulation. An efficient compu-
tational scheme involving Cholesky decomposition is proposed to make the model
suitable for large scale data. The method inherits all the advantages of the original
PureSVD approach, including an analytical form of folding-in, and resolves the prob-
lem of insufficient preference data.

The third proposed method combines formulations of the previous two methods
into a single higher order factorization model. It incorporates the hybrid part of the
SVD-based approach into the Tucker decomposition. The corresponding new and
efficient optimization technique, which takes the specific structure of the problem
into account, is provided. The combined approach inherits the key advantages of
both predecessors and at the same time allows to compensate for their major pitfalls:
an increased susceptibility to a high degree of data sparsity in the tensor case and an

emergence of undesired spurious correlations in the matrix case.

Practicality. Any recommendation system faces the limited preferences informa-
tion problem. Both cold start and warm start cases are the most frequent examples of
that. More globally, even information about known users and items in an established
system is sometimes insufficient given that the variety of choice in a digital world may
grow far beyond human capabilities of exploring it. The problem may cause the so-
called “trust busters” effect when too many irrelevant recommendations make users

feel the service is not good enough. Disappointed users may stop using the service and

X1V

never want to return to it again. The proposed approaches tackle this problem from
different angles. The tensor-based approach focuses on avoiding irrelevant recom-
mendations by treating both positive and negative user feedback more appropriately.
The hybrid SVD-based approach employs side information and attempts to recover
possible unobserved relations even if no preference data is available at all. This also
allows to work with extremely sparse data, which is a frequent problem in the domains
with large item assortments (e.g., online retail stores). As a combination of these two
methods, the third tensor-based hybrid approach takes the best of their properties. It
aims to simultaneously increase the perceived quality of a recommendation service,
maintain high user satisfaction and ensure high user retention and user loyalty in the

long run.

Structure. The thesis is divided into three major parts consisting of one or several
chapters. The first part is introductory. It starts with a chapter on some general con-
cepts in the recommender systems field, followed by two chapters that provide an
overview of common matrix- and tensor-based factorization methods respectively.
The fourth chapter gives the necessary background on the main topic of this work
and presents a view on the current state of the field in this respect. The second part
includes three chapters that provide a detailed description of all three newly proposed
methods respectively. The third part focuses on software aspects and introduces a
new open-source recommendation framework Polara, developed by the author of the

thesis as a part of his research.

Acknowledgements

Writing a thesis work is a significant commitment that requires a lot of efforts,
time and energy. This is also a memorable journey, which wouldn’t be possible with-
out all the great people that were around me all these years. I would like to express
my gratefulness to all of them for making it a unique and delightful experience.

Of course, nothing of this would be ever possible without my supervisor — Ivan
Oseledets — who not only gave me an opportunity to start a new page in my profes-
sional life but also provided me with exceptional guidance and comprehensive sup-
port. A bit more than four years ago it was his distinctive teaching style and inspira-
tional way of expressing scientific ideas that motivated me to join his brilliant group.
Since then there was not a moment that I would regret my decision.

I would like to express words of appreciation to Maxim Rakhuba, who also
played a crucial role in my professional development. His positive influence on my
understanding of what it means to be a young scientist is hard to overestimate. Maxim
was helping me to catch up with many relevant topics, crucial for my research, and
conversations with him were always very productive, insightful and pleasing. His pa-
tience and willingness to help with non-trivial ideas, a never-ending encouragement
and optimism were invaluable to me.

I also feel grateful to Michael Thess for a gentle and very informative introduc-
tion to the field of recommender systems. Now, by looking back, I can clearly say
that it would be much harder to start off without all the insights and experience that
Michael kindly shared with me. I appreciate the opportunity to work with Michael

and his research team in the prudSys company during my two internships there.

XV

Part 1

Overview of low rank models

in recommender systems

Chapter 1

General concepts

We live in the era of data explosion and information overload. Managing it
would be impossible without the help of intelligent systems that can process and filter
huge amounts of information much faster than humans. The need for such systems
was already recognized in late 1970s in the Usenet, a distributed discussion platform,
founded at Duke University. One of its goals was to help users to maintain numerous
posts by grouping them into newsgroups. However, an active research on the topic
of information filtering started in 1990s. As it was noted in [4], the general term
Recommender Systems (RS) was brought to the academia in the mid-90’s with works
of Resnick, Hill, Shardanand and Maes and, according to [25], was preceded by several
famous projects: Tapestry, Lotus Notes, GroupLens. A significant boost in RS research
started after a famous Netflix prize competition with $1 million award for the winners,
announced back in 2006. This has not only attracted a lot of attention from scientists

and engineers, but also depicted the great interest from industry.

1.1 Recommender systems at a glance

Let us consider without loss of generality the task of product recommendations.
The main goal of this task is, given some prior information about users and items
(products), try to predict what particular items will be the most relevant to a selected
user. The relevance is measured with some relevance score (or utility) function f, and

can be schematically described as
f. : User x Item — Relevance Score, (1.1)

where User is a domain of all users and Item is a domain of all items.

2

There are several ways how this utility can be estimated from real data: either
based on the observed user feedback or based on available characteristics of users and
items. Feedback data can be either explicit or implicit, depending on whether it is di-
rectly provided in the form of explicit user preferences (e.g. ratings, likes/dislikes) or
implicitly collected through an observation of user actions (e.g. page clicks, product
purchases). In turn, characteristics may consist of various intrinsic features and at-
tributes. For example, users can be described by an age, gender or other demographic
data, while items may belong to some category and be additionally characterized by
a list of key properties.

Availability of the described two types of prior information defines what class
of techniques will be used to generate recommendations. When only preference data
can be accessed, then this is a task for the so called collaborative filtering (CF) ap-
proach. Alternatively, if only item properties and user attributes are available, then

the recommendation problem is solved with the content-based (CB) approach.

1.1.1 Content-based filtering

The CB approach exploits knowledge about user attributes and item features in
order to find the best matching (user, item) pairs that can be used to generate the most
relevant recommendations. This approach relies on the assumption that user choice
is influenced by a combination of certain item properties and individual user features.
As a trivial example, users with a certain income may prefer products of a particular
category or brand. In practice, such relations may have much more complicated nature
and require good domain knowledge in order to take into account more intricate cases.

One of the main advantages of the CB approach is the ability to alleviate the
so called cold start problem (Sec. 1.2.1), where preference data is unavailable and CF
algorithms are simply inapplicable. As long as all the needed content information is
collected, recommendations can be produced instantly even in the case of items that
were never recommended to any user before.

The focus on content features, however, leads to a number of issues, such as
limited content analysis, over-specialization and high sensitivity to user input [4,
102], which decrease the perceived quality of recommendations. Beyond that, from

purely practical point of view, it can be quite challenging to get descriptive and reliable

data, as users are not always motivated enough to provide comprehensive information
about themselves and items may have incomplete or corrupted descriptions.

More importantly, users’ decision making process typically has a multifaceted
nature and can be influenced by various internal and external aspects, which may
not necessarily be available for observation and may not align well with the collected
characteristic data. Therefore, the use of CB methods alone can be quite limiting.
On the other hand, while users interact with RS, they leave a “trace” of how actual
decisions are made. This information, if properly collected, can be used to uncover
some common patterns in user behavior that could potentially help to generate more

reasonable and relevant recommendations. This leads to the CF approach.

1.1.2 Collaborative filtering

In contrast to CB filtering, the CF approach does not require any specific knowl-
edge about users or items and only uses prior observation of collective user behavior
in order to generate new recommendations. It helps uncover general patterns from
collective behavior, even if it is governed by a set of unidentifiable effects, events, mo-
tives, etc. All CF methods are generally divided into two categories: memory-based
and model-based techniques. This classification was initially proposed in [24] and
became standard in the field [21, 2].

Memory-based collaborative filtering

A widely used and very popular approach in this category is based on the k
Nearest Neighbours (kNN) algorithm [73]. It finds relevance scores for any (user, item)
pair by considering weighted contributions of its neighbors. The neighborhood is typ-
ically determined by a similarity between either users (user-based approach) or items
(item-based approach) [148] in terms of some pre-defined similarity measure. This is
also called a similarity-based approach. In its simplest implementation, the method re-
quires to store in memory all similarity coefficients as well as prior information about
user-item interactions in order to make predictions.

Performance of the similarity-based models can be greatly impacted by a se-
lected measure of similarity (or a distance measure). Cosine similarity, Jaccard index,

Pearson correlation, Okapi BM25 [120] are a few examples of possible choices. Even

though such models may give a good recommendation quality in some application
domains, factorization models (see next section) are better suited for large-scale prob-
lems often met in practice, providing high computational performance and delivering

high quality recommendations [92, 21].

Model-based collaborative filtering

In the model-based approach a long enough history of observations is used to
build a predictive model first. Such models use collective behavior of a crowd (a “wis-
dom of crowds”) in order to extract general behavioral patterns and represent it in
a convenient, typically compact, form. Among the most successful model-based ap-
proaches are matrix factorization (MF), described in details in Chap. 2, and higher-
order tensor factorization (TF), described in Chap. 3.

The power of factorization models comes from the ability to embed users, items
and other entities involved in interactions between the former two as vectors in a
lower dimensional space of latent (also called hidden) features. These vectors not
only allow to describe the observed consumption patterns, but also help to predict
previously unseen user preferences and find new relevant items. For example, in the
matrix case the relevance score that corresponds to any user-item interaction can be

simply measured as an inner product between their vectors in the latent feature space.

1.1.3 Hybrid recommenders

Both CF and CB approaches tackle the problem of generating relevant recom-
mendations from very different angles and have their own set of advantages and dis-
advantages. Many successful RS use hybrid approach [26] to accumulate strengths of
both methods within a single model and compensate for their disadvantages. This al-
lows to improve recommendations not only in standard cases, but also in such extreme
scenarios as cold start (Sec. 1.2.1).

Hybrid recommender systems are closely related to the field of ensemble anal-
ysis in standard classification tasks. For example, you can treat collaborative filtering
models as a generalization of classification models. All ensemble systems in that re-
spect are hybrid models. The opposite, however, is not necessarily true. There are 3

top-level design patterns for building hybrid recommender systems.

The first one is ensemble. In this setup pre-selected recommender systems are
used in the true “black-box” or “off-the-shelf” fashion. Every model in the ensemble
produces scores in a unified way so that all the models are interchangeable and their
outputs can be easily combined. As an example, one could combine predictions of the
latent factors and the neighborhood-based models.

The second type is monolithic systems that are designed for heterogenous se-
tups with different sources of data or different classes of recommender models fused
together. One cannot use them in a purely “black-box” mode, as they typically require
additional efforts to process the input data and merge different algorithmic parts. In
some cases it may not be even possible to have a clear distinction between these parts.

Finally, mixed systems simultaneously present the outputs of several recom-
mender models. As an example, consider an online shop with several blocks of rec-
ommendations displayed in different locations of the web page. One block may be
responsible for current shopping trends, while the other one for more tailored recom-
mendations, based on a visitor’s purchase history.

This high-level taxonomy can be further divided into a number of more spe-
cific representative classes. Description of all the classes goes beyond the scope of
this work. However, we note one particular case of monolithic design based on the
feature combination pattern, where several heterogeneous data sources are combined
and then are used within a unified recommendation model. This pattern can be found
in a variety of hybrid recommenders, including some factorization methods, and will

be also used in this work (see Chap. 6 and Chap. 7).

1.2 Challenges for recommender systems

Building high quality RS is a complex problem that involves not only a certain
level of scientific knowledge, but also greatly depends on practical experience, accu-
mulated in real world applications. This makes the topic of challenges very broad and
we will only briefly discuss some of the most common aspects closely related to initial

model design and algorithmic implementations.

1.2.1 Cold start

Cold start is the problem of handling new entities, i.e. users or items or, in the
most sever case of the system cold start — both at the same time [49]. For example,
when a new (or unrecognized) user is introduced to the system, information about
user preferences is yet unavailable, which makes it nearly impossible to predict any
interesting and relevant items. Similar problem arises when a new item appears in a
product catalog. If an item has no content description or it was not rated by any user
it will be impossible to build recommendations with this item.

Even after a few interactions, i.e. in the so called warm start case, predicting
preferences can still be quite a difficult task prone to unintended biases. This, however,
gives more space for maneuver. Unlike the cold start case, where CF models are simply
inapplicable, knowing a few preferences allows to employ some sort of incremental
approach (e.g., folding-in, see Sec. 2.2.3) in order to quickly update a CF model with

new information and generate new recommendations.

1.2.2 Missing values

Users naturally engage with only a small subset of items and a considerable
amount of possible interactions stays unobserved. Collecting more data requires time
and efforts and its availability depends on various factors related to the domain of
application and user habits, which makes the task quite difficult. Excluding the trivial
case of the lack of interest in specific items, there can be many other reasons why
users do not interact with them. For instance, users can simply be unaware of ex-
isting alternatives for the items of their choice or just face interesting items not at
the right moment. Finding out such reasons helps to make better predictions. This
task, however, is accompanied with a high level of uncertainty, which may bring an
undesirable bias against unobserved data or even prevent recommender models from
learning representative patterns.

This is especially critical for the CF approach as it relies on the assumption that
collaborative information is sufficient, i.e. accommodates all important variations in
user behavior, so that intrinsic relations can be reliably learned solely from that data.

However, there is some evidence that when the observed user-item interactions are too

scarce, CF models may fail to generalize well and tend to produce unreliable predictions
[198, 5].

There are several commonly used techniques that help to alleviate these issues
and improve RS quality. In the MF case, simple regularization may prevent undesired
biases. Another effective technique is to assign some non-zero weights to the missing
data, instead of completely ignoring it [82]. Hybrid models can take advantage of con-
tent information in order to pre-process observations and assign non-zero relevance
scores to some of the unobserved interactions, which is sometimes called sparsity
smoothing. Alternatively, content information can be used to add additional regular-
ization. Data clustering is another effective approach, which is typically used to split
the problem into a number of subproblems of a smaller size with a more connected
information within each cluster.

Nevertheless, when data sparsity is not too extreme, even simpler methods can
work quite well. In the case of MF methods based on Singular Value Decomposition
(SVD) [65], simply imputing zeros in place of unobserved values is sometimes suffi-
cient [38, 96]. Additional smoothing can be achieved in that case with the help of a
kernel trick [154]. Other missing value imputation techniques based on various data

averaging and normalization methods are also possible [49].

1.2.3 Implicit feedback

In many real systems users are not motivated or not technically equipped to
provide any information about their actual experience after interacting with an item.
Hence, user preferences can only be inferred from an implicit feedback, which may
not necessarily reflect the actual user taste or even tell with guarantees whether the

user likes an item or dislikes it [82].

1.2.4 Model evaluation

Without a well designed evaluation workflow and an adequate quality measure
it is impossible to build a reliable RS model that behaves equally well in both labo-
ratory and production environments. Moreover, there are many aspects of a model
assessment beyond recommendation accuracy that are related to both user experience

and business goals. This includes metrics like coverage, diversity, novelty, serendipity

[153], and indicators such as total generated revenue or average revenue per user ses-
sion. This is still an open and ongoing research problem as it is not totally clear what
are the most relevant and informative offline metrics and how to align them with the
real online performance.

The most reliable evaluation of RS performance is an online testing and user
studies. However, researchers typically do not have an access to production systems
so a number of offline metrics, mostly borrowed from IR field, became widely used
as an alternative. The most important among them are the relevance metrics: pre-
cision, recall, F1-score; and the ranking metrics: normalized discounted cumulative
gain (NDCG), mean average precision (MAP), mean reciprocal rank (MRR), area un-
der the ROC curve (AUC). These metrics may to some extent simulate a real environ-
ment, and in same cases have a direct correlation with business metrics (e.g., recall
and clickthrough rates (CTR) [78]).

It is also important to emphasize that while there are some real-world systems
that target a direct prediction of a relevance score (e.g., rating), in most cases the
main goal of RS is to build a good ranked list of items, which is known as the top-n
recommendation task. This imposes some constraints on the evaluation techniques
and model construction. It might be tempting to use and optimize for error-based
metrics like root mean squared error (RMSE) or mean absolute error (MAE) due to
their simplicity. However, good performance in terms of RMSE does not guarantee
equally good performance on generating a ranked list of top-7n recommendations [49].
In other words, the predicted relevance score may not align well with the perceived

quality of recommendations.

1.2.5 Reproducible results

The problem of reproducibility is closely related to recommendations quality
evaluation. Careful design of evaluation procedures is critical for fair comparison
of various methods. However, independent studies show that in controlled environ-
ments it is problematic to get consistent evaluation results even for the same algo-
rithms on fixed datasets but within different platforms [142].

Situation gets even worse, taking into account that many models tackle similar

problems, while using different datasets (sometimes not even publicly available), dif-

10

ferent data pre-processing techniques [45] or different evaluation metrics. In order to
avoid unintended biases, we will focus mostly on the description of the key features

of existing methods rather than on a side-by-side comparison of quantitative results.

1.2.6 Real-time recommendations

High quality RS are expected not only to produce relevant recommendations but
also respond instantly to system updates, such as new (or unrecognized) users, new
items or new feedback [92]. Satisfying this requirement highly depends on implemen-
tation: predictive algorithms must have low computational complexity for producing
new recommendations and take into account a dynamic nature of real environments.
Recomputation of the full RS model in order to include the new entities may take
prohibitively long time and users may leave the system without actually seeing any
recommendations. This means that RS application should be capable of making incre-
mental updates and also be able to provide instant recommendations at a low compu-
tational cost outside of the full model computation cycle. A number of techniques has
been developed to fulfill these requirements for the MF case [56, 193, 23]. As it will be

shown in Sec. 3.2.2, these ideas can be also applied in the TF case.

1.2.7 Incorporating context information

As has been already mentioned, in real world scenarios interactions between
users and items exhibit a multifaceted nature. User preferences are typically not fixed
and may change with respect to a specific situation. For example, buyers may prefer
different goods depending on the season of the year or time of the day. A user may
prefer to watch different movies when alone or when with a group of friends.

We will informally call these situational aspects that shape user behavior a con-
textual information or context for short (see Fig. 1.1). Some other examples of context
are location, day of week, mood, the type of a user’s electronic device, etc. Essentially,
it can be almost anything [13, 46].

Context-aware recommender systems (CARS) can be built with 3 distinct tech-
niques [3]: contextual prefiltering, where a separate model is learned for every con-
text type; contextual postfiltering, where adjustments are performed after a general

context-unaware model was built; and contextual modelling, where context becomes

11

User
Morning Afternoon Night
Home Work Cinema

Companions ONE iends Farr

Figure 1.1: Examples of contextual information.

an essential part of the training process. The first two techniques may lose infor-
mation about interrelations within a context itself. Contextual modelling, in turn,
extends the dimensionality of the problem and promotes multi-relational aspect into
it. Therefore it may help to achieve more accurate results [85]. Following Eq. (1.1), we

can formalize it as follows:
: User x Item x Context; x ... x Contexty — RelevanceScore, 1.2
u 1 N

where Context; denotes one of N contextual domains and the overall dimensionality
of the model is N +2.

As we will see further, TF models fit perfectly into the concept of CARS. With
a very broad definition of context, tensor-based methods turn into a flexible tool that
allows to naturally model very interesting and non-trivial setups, where the concept

of context goes beyond a typical connotation.

1.2.8 Content vs. context

As a precaution, it should be noted that a nonspecifity of a context may lead to
interpretability problems. Using a general definition of a context, a content informa-
tion such as user profile attributes (e.g. age, gender) or items properties (e.g. movie
genre or product category) can also be regarded as some type of context (for example,
see [85], where age and gender are used to build new context dimensions). However,
in practice, especially for TF models, this mixing is typically avoided [184, 138]. One

possible reason is a deterministic nature of content information in contrast to what is

12

usually denoted as a context. Similarly to MF techniques, TF reveals new unseen as-
sociations (see Sec. 3.1.3), which in the case of deterministic attributes can be difficult
to interpret. It is easy to see in the following example.

For a triplet (user, movie, gender) the movie rating may be associated with only
one of two possible pairs of (user, gender), depending on the actual user’s gender.
However, once a reconstruction (with help of some TF technique) is made, a non-zero
value of rating may now pop-up for both values of gender. The interpretation of such

association may become tricky and highly depends on initial problem formulation.

1.3 OQuick summary and outlook

Many advantages provided by the collaborative filtering approach not only
make it a ubiquitous tool in real-world applications but also draw attention from
academia. A considerable part of this focus is specifically devoted to various matrix-
and tensor-based factorization methods due to their efficiency, flexibility and relative
simplicity. Factorization methods constitute the central part of this thesis work as
well. We revisit the general problem formulation and propose several new modifica-
tions, which allow to at least partially address the challenges mentioned above.

For example, in Chap. 5 we demonstrate how to improve the warm start sce-
nario with the help of a higher order tensor-based model. The model allows to better
represent known user preferences, remove an undesired positivity bias and improve
the general user experience. The proposed formulation treats user feedback as an in-
dependent categorical variable encoded within its own new dimension. This in many
ways resembles the context-aware approach: interactions between users and movies
are considered in the context of a certain feedback value.

Furthermore, as it was noted in Sec. 1.2.2, an extreme prevalence of missing
data may drastically limit the quality of CF models. Introducing more dimensions
can make the problem even worse. The method proposed in Chap. 6 allows to better
handle such cases with the help of a new hybrid approach based on a generalization
of SVD. It uses side information as an additional source of knowledge for recovering
unseen relations. Due to the use of side information, the method is also potentially

applicable in the cold start scenario.

13

In Chap. 7 we show how the previous two approaches can be combined into
a unified factorization model. The model allows to preserve the key advantages of
both approaches and at the same time circumvents their main shortcomings. It also
follows the concept of the content versus context dichotomy, mentioned in Sec. 1.2.8.
The context part, drawn from user feedback in our experiments, is encoded within
a separate dimension and gets its own latent representation along with users and
items. In contrast, the content part is directly encapsulated into the latent feature
space of the corresponding entity (user, item or context), which not only respects
the aforementioned deterministic nature of real features but also allows to avoid the
explosion of the latent space, when the number of real features gets high.

Another important feature shared by all three models is that they offer a
straightforward folding-in calculation based on an analytical formula. It, therefore,
allows to operate in highly dynamic environments and to almost instantly respond to
changes in the system without the need to perform expensive retraining of the models.

Finally, Chap. 8 introduces a new recommendation framework developed dur-
ing the course of this work. Through an abstraction level, it provides a set of conve-
nient tools for quick prototyping and evaluation of new models. It takes care of many
technical aspects, which makes exploration of new ideas a lot easier and also helps to
ensure reproducibility of experiments.

Before proceeding to the main part of the thesis, which provides more details
on each of the proposed methods, let us first give a broad overview of already existing

approaches and techniques, based on either matrix (Chap. 2) or tensor factorization

(Chap. 3).

Chapter 2

Matrix Factorization

Matrix factorization is one of the most successful and widely used collaborative
filtering techniques. One of the key advantages of MF models is the ability to reduce
an initial problem’s complexity and provide a compact representation of interaction
data generated from observed collective human behavior. With this approach users
and items are embedded as vectors in a lower dimensional space of latent features.
This procedure is known as a dimensionality reduction task. As a result, both user
tastes and relevant item characteristics can be described by a relatively small set of
parameters.

With this representation, the relations between users and items follow general
linear algebra rules and vector arithmetic. The utility of a particular item to a partic-
ular user can be simply estimated via a scalar product of their vectors in the obtained
lower dimensional latent feature space. This is the key concept that connects various MF
models presented in this chapter. From the geometric point of view, the angle between
user and item vectors is smaller for relevant items and is larger for irrelevant ones
(see [94, Figure 2] for an illustration). This can be conveniently expressed in terms of
the cosine similarity measure and also used for building more efficient neighborhood-
based models [2].

Unlike the neighborhood-based techniques, MF is less susceptible to the so-
called limited coverage problem [44]. For example, the lack of common preferences
information for a pair of users may lead to unreliable correlations in prediction mech-
anism for the neighborhood models. In contrast, MF models build a more meaningful
conceptual description of user interests in terms of latent features, which to a certain

extent allows alleviating that problem. A better expressiveness of the MF models also

14

15

makes them less sensitive to the data sparsity problem, typically observed in many
real applications.

As has been already stated, the concept of utility, is one of the key ingredients of
MF models. Its purpose is to adequately represent an undetermined decision-making
process driven by hidden motives behind a particular user choice. The decision mak-
ing is indirectly observed via partially available interaction data, expressed in the form
of a feedback provided by users to some (not all) items. The goal of any MF approach
is, given that data, to estimate the corresponding utility function f,, as defined in 1.1,
which will not only agree with the observed part of user preferences but will also help
to make predictions on the unobserved part.

In the simplest case the Relevance Score can be directly related to the user feed-
back. Consider a movie recommendation system, where users express how satisfied
they are with a certain movie by providing an explicit rating value on some Likert
scale. The problem of finding f,, can then be transformed into a well studied matrix
completion problem, which has become especially popular in the recommender sys-
tems community after the famous Netflix Prize competition'. Even though the rating
values are subjective in their nature [8], it is often neglected as the task of recover-
ing the unknown entries of the rating matrix enables many very practical and quite
efficient methods of solving the problem of recommendations. A considerable part of
Sec. 2.3 is devoted to such methods not only because of their popularity but also as
it helps to provide the necessary background for an understanding of more elaborate
models.

Standard matrix completion, however, may not be the best choice in the implicit
case, where the feedback is not intentionally provided by users and is collected via an
indirect observation of their actions, such as clicks on product web-pages, amount of
product purchases, time spent reading a product description, etc. Note, that the lack
of feedback from a user for a particular item does not immediately imply a negative
preference, which holds for both explicit and implicit cases. However, in the implicit
case, the fact that a user has interacted with an item may not necessarily correspond
to a positive preference. Taking that into account requires a more thoughtful prob-
lem formulation, which may lead to an alternative definition of the Relevance Score,

abstracted away from the observable feedback (see Sec. 2.3.3). Note that one of the

https://www.netflixprize.com

16

corner cases of implicit feedback when it simply denotes the fact of interaction is
often referred to as One-Class Collaborative Filtering (OCCF) [117, 178].

In addition to that, in many practical applications, it is often more important
to return an ordered list of correctly ranked recommendations, rather than simply pre-
dict rating values. This is known as a top-n recommendation problem, where n is the
number of recommended items. At first glance, this may seem like a trivial task: once
the rating predictions are available, one can simply select the items with the high-
est predicted score. However, being able to recover rating values accurately does not
necessarily guarantee the best performance in terms of generating a ranked list of the
most relevant recommendations [92]. This opens the doors for the so-called learning
to rank models with a substantially different objective (see Sec. 2.4), more coherent
with the task of top-n recommendations. Such models are typically not even suitable
for the completion task.

As the matrix completion models can be tuned and evaluated in terms of the
ranking problem as well, we will distinguish between the two major types of recom-
mendation tasks — the rating prediction and the top-n recommendation — and provide

a view on factorization models through the lens of this distinction where necessary.

2.1 Problem formulation

As has been already noted, the dimensionality reduction approach in recom-
mender systems allows to describe any user preferences and any item characteristics
in terms of a small set of model parameters. Along with a compact representation,
it also helps to uncover non-trivial patterns within the data and use them to gener-
ate meaningful recommendations. Generally speaking, this can be achieved with the
help of various methods, such as neural networks, markov decision processes, latent
dirichlet allocation and some others. However, in this chapter we focus specifically
on the matrix factorization approach.

Let us start from the matrix completion case as it provides a good illustration of
some major concepts and serves as a ground for further improvements and general-
izations to higher order cases (Chap. 3). Consider an imaginary scenario in which all
known users of some recommendation system have provided their preferences for all

available items. This can be conveniently represented in the form of a complete matrix

17

of interactions A € RM*N The rows of the matrix correspond to users and its columns
correspond to items. Its elements would correspond to some form of a feedback pro-
vided by users and this would represent a snapshot of a real “noisy” data. The “noise”
may have different nature. It can be caused by variations in individuals’ behavior and
their tastes or by occasional changes in a context of an interaction, or it can be the
result of some other uncontrollable and mostly unpredictable factors. All of it leads to
a certain level of unavoidable randomness making the problem of recommendations
very complex.

Nevertheless, at a large scale the collective behavior may reveal some regular-
ities and exhibit some common patterns that could be potentially described with a
relatively small set of parameters. Therefore, while the dimensionality reduction may
lead to a loss of some information, it can still help to uncover and generalize at least
some of the hidden commonalities in users’ behavior. With this assumption the ob-

served data can be modelled as:
A=R+E,

where the matrix E denotes the “noise” and R is an approximate utility matrix which
accommodates the behavioral patterns and have a certain inner structure. The task of
building a recommendation model then translates into the task of recovering R.

The solution to this problem in the case of a matrix factorization approach can

be generally represented in the form of a matrix product:
R=rQT, (2.1)

where matrices P € RM*" and Q € RN*" represent users and items respectively. Each
row p; of the matrix P reflects a preference vector of user i, described in terms of
latent features. In other words it gives a representation of user i in the latent feature
space. Similarly, each row q;fr of the matrix) describes an association of item j with
those latent features, i.e. it gives a representation of an item in the latent feature space.

Vectors p; and q; are also called an embedding of users and items onto the latent
feature space. The utility function f, of an item j to a user i is, therefore, represented
by a scalar product p/q j- The number of latent features r is called the rank of an
approximation. This number is typically much smaller than the number of items or

users. Such a representation of a matrix as a product of two other matrices of smaller

18

sizes is also called a low rank approximation and the resulting matrix R is said to have
a low rank structure.
The final form of the matrices P and Q depends on the formulation of a corre-

sponding optimization problem described in terms of a specific loss function &£
rn@inE(A, R(©)), (2.2)

where © := {P,Q} is a set of model parameters and & penalizes deviation of the
model from observations. Worth noting here, that the term deviation should be treated
in a broad sense. As we discussed in the introduction, a particular form of the function
£ may go far beyond standard matrix completion formulation (see Sec. 2.4).

Also recall, that in the majority of real systems the observed interactions are
typically very scarce and the vast amount of data is missing, which makes the matrix
A overly incomplete. Therefore, the optimization problem described by Eq. (2.2) remains
ambiguous unless we explicitly define how to deal with the missing values of A or at least
define in what sense a complete matrix R approximates an incomplete matrix A. Due
to this reason we prefer to avoid the commonly used and intuitive notation A =~ R.

We also note, that in some cases an additional processing of the data may help
to create a better representation of the observed user behavior and potentially help to
improve the quality of recommendations. As an example, in a music recommendation
service the logarithmic scaling of a listening frequency (i.e. the number of times a user
has listened to a track) may help to generate more accurate recommendations com-
paring to a naive use of raw counts data as a measure of utility. There is a number of
transformation techniques such as data centering and normalization, value binariza-
tion, cutting by a threshold, tf-idf transformation and many others which may help to
build more accurate recommendation models.

Even in the systems with a fixed explicit feedback, such as a 5-star rating scale,
used in many movie recommendation services, a transformation of that scale may
improve recommendations. It has an intrinsic connection to a subjective nature of a
perceived utility of goods. For example, some users may assign a rating value of 3
to a movie they believe is “OK”, i.e. nothing special but still "watchable", whilst for
other users this can be a way to indicate that the movie is completely uninteresting,
a total waste of time. In addition to that, some empirical studies show that even for a

single user the perceived "distance" between different ratings may vary and the uni-

19

form rating scale from 1 to 5 used as a measure of a user enjoyment may not be that
accurate [8]. All of this, along with the fact that the unobserved data is missing not
at random (MNAR) [161, 151], may potentially introduce unintended biases in both
recommendation models and evaluation measures.

Both described aspects — the way missing data is handled and the choice of
a data preprocessing technique — create additional degrees of freedom for a model
construction. Sometimes it may directly affect an optimization procedure and lead to
very different factorization algorithms. In other cases it may lead to several variations
of the same method. In order to explicitly signify the role of these degrees of freedom
we will formulate the optimization problem Eq. (2.2) not in terms of an approximation

of the matrix A, but rather as an approximation of some function of A:
min Z'(T(A),R(0)), (2.3)

where T(-) denotes a problem-dependent transformation of the data which may in-
clude missing values imputation and/or various data preprocessing steps. In the next
sections we will cover some of the most famous factorization models resulting from
a combination of different data transformation techniques, various loss functions and

optimization algorithms.

2.2 SVD-based models

One of the first factorization algorithms used in the field of recommender sys-
tems is the singular value decomposition (SVD) [66]. It is a well-established compu-
tational tool with efficient implementations in many programming languages, which
is included in many modern machine learning libraries and frameworks. SVD is used
within a wide range of applications in various domains of data analysis, information
retrieval and natural language processing.

Speaking about the latter, SVD has a straightforward relation to the latent se-
mantic indexing/analysis (LSI/LSA) [56, 42]. However, the task of revealing words’
semantics based on their occurrence in text documents is in some sense similar to the
task of finding alike items based on users’ consumption patterns. Not surprisingly,
the first SVD-based technique for recommender systems was proposed already in the

late 90’s, just a few years after this vibrant research field emerged [49].

20

Generally, early application of SVD in recommender systems had an enabling
role in a sense that it was used as an intermediate dimensionality reduction step and
in order to generate a final list of recommendations its output was fed into a differ-
ent algorithm based on, for example, a neural network [19] or a nearest neighbors
approach [146]. The authors of the latter work also used SVD in a standalone regime
(with a certain preliminary data normalization) for the rating prediction task with a
little to no improvement over the competing CF algorithm. However, an even simpler
SVD-based model, named PureSVD [38], has been later demonstrated to outperform
some state-of-the-art algorithms in terms of the top-n recommendation task.

We find it necessary to also introduce here some formal definitions and common
results from linear algebra, which will help in further explanations. Any complete

RMXN

matrix A € can be represented in the form:

A=UxVT,

where U € RM*M and V € RNXN are orthogonal matrices, their columns are called
the left and the right singular vectors respectively; X~ € RM*N is a diagonal matrix
with non-negative elements o; > ... > ok on its main diagonal called singular values;
K = min(M, N) is a rank of SVD. According to the Eckart-Young theorem [48], the
truncated SVD of rank r < K with o,,,..., 0 set to 0 gives the best rank-r approxi-
mation of the matrix A. NOTE In fact, even though the problem is non-convex, it can

be shown that all possible minima in that case are global [160].

2.2.1 PureSVD

Unfortunately, the result of the Eckart-Young theorem cannot be directly ap-
plied in recommender systems settings as SVD is undefined for incomplete matrices.
As a workaround the PureSVD model uses a simple imputation technique: to replace
the missing entries of A with zeroes. Hence, an incomplete matrix A is transformed into
a sparse matrix A, with zero values inplace of the unknown elements, i.e. T(A) = A,.

The corresponding loss function can then be expressed as
Z(T(A),R) =4, - RIIF (24)

where || - ||r denotes the Frobenius norm. As the loss function is now well defined, we

can apply the Eckart-Young theorem to find a globally optimal solution to the resulting

21

optimization task defined by Eq. (2.3):
R=U,X,V/], (2.5)

where factor matrices U, € RM*" and V, € RN*" have orthonormal columns and rep-
resent users and items in the reduced latent space with r < min(M, N) distinct latent
features. Square diagonal matrix ¥, € R™" has r largest singular values on its main
diagonal. U € RM*" VV € RN*" are orthogonal factor matrices that embed users and
movies respectively onto a lower dimensional space of latent (or hidden) features, ¥
is a matrix of singular values 0 > ... > 0, > 0 that define the strength or the contri-
bution of every latent feature into resulting score. Equation (2.5) can be equivalently
rewritten in the form of Eq. (2.1) simply by allowing P = UrEf and Q = VrZi_ﬁ , Where
f3 is some real number in the interval [0, 1], typically assigned to 1/2 or 1.

As was noticed by the authors of the PureSVD model, the orthonormality
of columns of the factor matrices allows to rewrite Eq. (2.5) in a more convenient
form. Assuming that A, = UX V7T is the full SVD of the completed matrix, we
have A,V,VI = UXVTV,VT = U,X,VT. The last equality is due to the fact that
VTV, =[1,0]7, where I, is the identity matrix of size r and 0 denotes a matrix of all

zeros with a conforming size. From here it reads:
R=A,V, VI (2.6)

This induces a natural geometrical interpretation: once the right singular vectors are
determined, every row of the prediction matrix R can be computed as an orthogonal
projection of the corresponding user preferences onto the latent feature space. Note, that
this eliminates the need for the matrix of user factors U,, as it can be restored by the
means of U, Y, = AyV,. This can be used to reduce both computational overhead and
storage requirements of the model. From now on for brevity we will omit the subscript
r in the equations for both matrix- and tensor-based factorizations (Chap. 3), always
assuming a low-rank approximation. In other words, we will denote a factor matrix
U, simply as U and likewise for other factor matrices.

Taking into account that in many practical cases a typical sparsity of the ma-
trix is higher than 99%, setting zeros inplace of the missing data introduces a strong
bias of the model prediction towards zero values. This makes the model very bad

from the matrix completion perspective and totally unsuitable for the rating prediction

22

task. Nevertheless, despite such a bias, the PureSVD approach is known to serve as a
strong baseline in the top-n recommendation problem outperforming even more elab-
orate state-of-the-art methods [38, 96]. Of course, it does not imply that PureSVD is
always an optimal choice. However, it should be considered by beginner practitioners
as a good starting model.

The truncated SVD can be computed with the help of an iterative Lanczos proce-
dure [66] which invokes a Krylov subspace method and internally uses efficient bidiag-
onalization techniques supported by a Gram-Schmidt orthogonalization process. The
key benefit of such approach is that in order to find r leading singular vectors and cor-
responding singular values it is only required to provide a rule of how to multiply an
interaction matrix by an arbitrary vector from the right and from the left. More specif-
ically, given the number of non-zero elements nnz, of the matrix A that corresponds
to the number of the observed interactions, the overall computational complexity of
the SVD algorithm can be estimated as O(nnz, - r) + O((M + N) - r?) [71], where the
first term corresponds to the complexity of a sparse matrix-vector product and the

second term is related to an internal orthogonalization process.

2.2.2 Biases and custom data transformation

It has been already noted that user feedback is intrinsically subjective. One of
the ways to partially address that subjectivity at least in the rating-based systems is to
introduce the concept of the so called user and item bias. User bias captures a tendency
of a user to systematically assign higher (or lower) ratings depending on how critical
the user is in comparison with an average person. Likewise, item bias can be described
as a tendency of items to receive higher (or lower) ratings. In practice, it turns out that
the most part of an interaction “signal” (e.g. rating value) is accommodated by these
biases. This allows for even non-personalized recommendation models, called baseline
predictors, to demonstrate a fairly good prediction quality in the rating prediction task
[94].

These biases can be estimated with the help of simple statistics such as an aver-
age of user and item ratings calculated over the observed data sample. It is also possi-
ble to use more sophisticated estimation methods, e.g. averaging with value damping

or even gradient-based optimization [49]. An overall bias b;; (i.e. baseline predictor)

23

can be expressed as a combination of all systematic biases®:

bij :’/l+ti+f}', (27)

where p is a global bias constant (e.g. global average rating); ¢; denotes a user bias or a
tendency to give higher or lower ratings; in turn f; reflects an item bias, its favouredness
or in some sense quality (based on the opinions of raters).

In the PureSVD model these biases can be used as a replacement for the missing
data, which therefore reduces the distortion introduced by a straightforward zero-
based imputation step and allows to partially address the subjectivity of user prefer-
ences. In the simplest scenario one could use Eq. (2.7) to replace the missing entries
of A with the corresponding values of the baseline predictor. In this case the transfor-
mation T of the data is trivial. It is sufficient to simply subtract the bias values from
the known entries of A. The unknown values can then be set to 0, preserving the
same sparsity pattern as in A. After the preprocessing is done the standard PureSVD
model is built on top of the centered data. When generating recommendations the
bias term should be added back to the predicted scores of the model.

More elaborate data preprocessing techniques can also be supported without
sacrificing the computational efficiency. As an example, consider the case when the
missing elements of the rating matrix are first filled-in with the values of item average
ratings f € RY and then the resulting complete matrix is additionally normalized by
subtracting user average ratings t € RM [146]. The elements of the obtained centered

matrix T(A) = A can be expressed as:

A

djj = a;;—t; if ajj is known,

djj = fi—t; otherwise.

By construction, the complete matrix A is likely to be dense. However, it can be split

into the sum of a sparse matrix A with two rank-1 terms (outer products of vectors):

A=A—tel +eyfT, (2.8)

2 The notation we use here slightly differs from what can be commonly seen in the literature — we assign different letters
to user and item bias variables, as it helps to avoid an ambiguity in mathematical formulations which involve matrix-vector

operations.

24

where e, ey denote vectors of all ones of a conforming size and the elements of A

are defined as follows:
dl-]- = (ll']' — f} if aij is kHOWH,
;=0 otherwise.

Recall that in order to compute the truncated SVD it is only required to provide a

matrix-vector multiplication rule. Multiplying Eq. (2.8) by an arbitrary vector v gives:
Av=Av—tley,v)+ey(f,v), (2.9)

where (-,-) stands for the scalar product of two vectors. Note, that the first term in
Eq. (2.9) has the same computational complexity as in the original PureSVD approach
as the matrix A by construction follows the sparsity pattern as A,. The last 2 terms
are linear with respect to the number of users and items, and therefore the added
complexity is only O(M + N), which is negligible as it is dominated by the complexity
of the standard Lanczos procedure. Moreover, there is clearly no need to explicitly
form the dense matrix A to compute SVD, which allows to avoid unnecessary memory
overhead. This technique can be further used for an iterative variant of SVD [88] for

achieving a better performance in terms of the rating prediction task.

2.2.3 Handling online updates

Many recommendation services aim to provide an instant engagement for both
known users and newcomers as well as quickly update the information about new
items in the assortment. In the modern online world with its highly dynamic en-
vironment and an overwhelming amount of information this requires the ability to
generate recommendations instantly. This, however, would be impossible for large
scale recommender systems if the only way to accomplish that would be to recom-
pute the whole model for every new (or unrecognized) user or a newly introduced
item.

One common technique designed to support an instant service is called folding-
in [49], which was initially proposed in the field of information retrieval for the se-
mantic document-term analysis [56]. As long as at least one interaction with a new
entity (i.e. user or item) is observed, it allows to approximately update the corre-

sponding latent representation and quickly generate recommendations for this new

25

entity without the need for the whole model recomputation. Note, that this setting
is different from the so called cold start regime (Sec. 1.2.1), where no interactions are
available.

One of the greatest advantages of the SVD-based approach is an analytical form
of the folding-in. Unlike many other MF methods it does not require any additional
optimization steps to calculate recommendations for a new user/item not present in
the training data. Once the latent factors are computed one can use the folding-in
formula to generate recommendations without recomputing the whole model. This
makes SVD-based models very plausible for use in highly dynamic online environ-
ments. For illustration purposes we will consider the new user scenario. New item
scenario is trivially obtained by analogy.

Assuming that the model is expressive enough, a new user can be represented
with high accuracy as a combination of previously seen users. Therefore, the prefer-
ence vector a of a new user (with imputed zeroes inplace of the unknowns) can be
approximated as a’ ~ uT Y VT, where u is unknown. Multiplying from the right both
parts of this approximate equality by VX! and using the orthonormality property

VTV =1 one arrives at the following expression:
ul ~avy (2.10)

This represents an approximate embedding of a new user to the latent feature space.
The formula can be further used to directly generate recommendations. By the virtue
of Eq. (2.5) one could perform a reverse operation and restore the corresponding new

row for the matrix R, which after transposing the result reads:
r~VVia, (2.11)

where r is a vector of predicted relevance scores. Provided that there are k items in
the preference vector a, the overall complexity of generating recommendations for a
single user is O(N kr), which is the result of the chain of matrix-vector multiplications.

From the geometrical point of view, Eq. (2.11) can be treated as an orthogonal
projection of user preferences onto the space of latent features represented by V. Com-
paring this result to Eq. (2.6) suggests that it can be used to generate recommendations
for both known and new users. All it requires is a list of user preferences. This also

means that one can generate recommendations based on any combination of items

26

even if it does not correspond to any particular known user. In the latter case it gives
an estimate of possible user preferences, implicitly relying on the assumption that the
learned model is expressive enough. In turn, for the known users it corresponds to
the exact prediction formula.

As a precaution remark, the folding-in approach is only approximate and leads
to the loss of orthogonality of factors. In the long run it accumulates an error and once
in a while it is advised to fully recalculate the model, especially if a lot of new data is
collected. Alternatively, incremental update techniques can be employed in order to

avoid expensive recomputations [17, 194, 23].

2.2.4 The family of eigendecomposition algorithms

The PureSVD model can be viewed as a member of a broader family of eigen-
decomposition algorithms. Consider an SVD-based approximation A ~ UXVT for
some complete matrix A with standardized data. The corresponding correlation ma-
trix ATA ~ VX2V T would represent the well known PCA with principal components
given by AV = UX. The principal components can be then utilized to indicate simi-
larity between users (or items in the transposed case) and build a neighborhood-based
recommender system.

This path was initially explored by the authors of the Eigentaste model [64]
designed for the jokes recommendation system. The authors selected a subset (called
the gauge set) of the observed data, where only items rated by all users were present.
This has led to a complete dense matrix of ratings A. The only transformation T(A)
the authors used on top of it was the standardization of rating values, allowing to
build a Pearson correlation matrix and apply classical PCA. The authors used the first
2 principal components and a clustering technique in this lower dimensional space in
order to group like-minded users. In every group (or cluster) the rating for every non-
gauge item was estimated as a mean value averaged across those users of the group
who has provided rating for this item. As for the new users, they were requested to
firstly provide ratings on the gauge items. After that the ratings were projected to the
lower dimensional space allowing to assign the newcomers to the known clusters and

generate averaging-based recommendations similarly to the known users.

27

Note, that rating predictions generated by Eigentaste are not fully personalized
as they are assigned to a whole cluster of users at once. Moreover, the requirement
of the dense gauge set can be fully satisfied only in specific environments with suf-
ficiently large amount of user feedback and/or relatively small number of items to
interact with (which is exactly the case with the jokes dataset used in the work). In
many real-world settings with very high sparsity of the data these can be difficult or
even impossible to guarantee. However, it turns out, that at least in the case of top-n
recommendation task such restrictions can be alleviated. As shown by the authors of
the EIGENREC model [112], as long as the rating prediction is not one of the goals of
a recommender system, one could build a more flexible and more general approach
following the paradigm of PureSVD.

The authors make the following observation: PureSVD can be viewed as an eigen-
decomposition of a scaled user-based or item-based cosine similarity matrix. For in-
stance, in an item-based case it solves an eigendecomposition problem for the follow-

ing matrix cross-product:
AlAy=DCD = VX?VT, (2.12)

where the scaling matrix D € R™*M is diagonal with diagonal elements d;; = ||a;|,
and a; denotes the ratings of the item i encoded within the i-th column of the matrix
Ay. Each element c;; of the symmetric matrix C € RM*M equals to the cosine similarity

between item 7 and item j:

ij = COS(i,j) = i . (213)

From here it follows, that by altering the scaling factors D and/or by replacing

C with some other inter-item proximity or correlation matrix S:
DCD — DPS D?,

one can obtain a new model with a different inner structure of the latent space. Here
p is some real number (the authors used values in the range [-2, 2]) and S is a new
proximity matrix, which can be based on Pearson correlation, Jaccard index or many
other similarity measures. The authors emphasize, that in fact even the choice of a

scaling factor may have a significant impact on the quality of recommendations. This

28

scaling allows to control the sensitivity of the model to the popularity of items, and
therefore to some extent mitigates the problem of unbalanced observation data present
in the majority of recommender systems.

Similarly to PureSVD the authors use the Lanczos procedure in order to build an
orthogonal basis. They propose their own parallel and highly efficient implementation
of it. Therefore, the EIGENREC approach allows to preserve the benefits of PureSVD
which include a good scalability and a quick way to generate recommendations ac-
cording to Eq. (2.11) for both known and newly introduced users. The approach also
gives more flexibility comparing to the standard PureSVD model and unlike the Eigen-
taste model allows to operate on the full assortment of items from the very beginning.
It provides an instrument for a more intricate tuning, potentially making it suitable

for a wider class of problems.

2.3 Weighted low-rank approximation

A straightforward data imputation is not the only way of dealing with missing
values. Alternatively, one could try to avoid making any strict assumptions on the
missing values and either ignore them completely or introduce some confidence-based
description of it. Indeed, the fact that some interactions between users and items are
unobserved does not immediately suggest that these interactions will never happen.
For example, a user may never interact with an item simply due to inability to notice
it among many other similar items in a large assortment. On the other hand, if a user
consumes one item more often than another one, it may increase our confidence that
the item is more relevant or more interesting for a user.

Hence, bringing the concept of a confidence-based weighting for both observed
and unobserved interactions into a factorization model may help to create more accu-
rate recommender systems. A common way to express the corresponding loss func-

tion reads:

Z(T(A),R)=||W o(T(A)-R)|, (2.14)

where W = [‘/wij] is a matrix of non-negative weights w;; > 0 and o denotes
Hadamard product, i.e. an elementwise multiplication between two matrices. The
weight values of W typically depend on the observed data W = W(A). We take the

square root of weights w;; in order to conform with an equivalent elementwise for-

29

mulation of the loss function:

F(T(A),R) = Zw,-]-(aﬁ.f) —r)?, (2.15)
ij

where ag) denotes an element of the matrix T(A) at the intersection of the i-th row
and j-th column.

One of the most popular choices of the weights is based on {0, 1} values simply
indicating the fact of interaction. The corresponding binary weight matrix W is then

defined by:

w;i=1 if a;; is known, (2.16)
w;; =0 otherwise.

With this formulation, no data imputation is required as all missing elements of the ma-
trix A are simply ignored. More elaborate weighting schemes are discussed in Sec. 2.3.3.

Typically, the number of users and items is very large while at the same time the
number of observed interactions between them is very small. Therefore, the model
obtained as a result of minimization of the loss function defined by Eq. (2.14) is likely
to overfit and produce poor prediction quality on the unobserved part of the data. In
order to prevent this overfitting additional constraints are typically imposed on the
parameters of the model. Most commonly, a simple regularization is used for that

purpose leading to the following regularized optimization objective:
F(0)=Z(0)+0Q(0), (2.17)

where £ (0) is defined by Eq. (2.14) (we omit the full notation of the input arguments
for brevity) and ()(®) is some regularization function typically expressed in terms of
some vector or matrix norm. Many factorization models use a simple quadratic term,

allowing to penalize an undesired growth of the parameters’ values:
Q@) = A(IIPIZ +I1QIF), (2.18)

where A > 0 is an additional model’s hyper-parameter called regularization coeffi-
cient. In some cases a separate value is assigned to each factor matrix for more granu-
lar tuning of the model, which sometimes helps to achieve a better prediction quality.
Altering the regularization function may also help to induce a specific structure on

the resulting latent space, e.g. one could use /; norm to obtain sparse latent factors. In

30

some other cases, when the data is strictly non-negative, imposing a non-negativity
constraint on the factors helps to avoid meaningless predictions and may also improve
generalization. In the case of binary input data it has a meaning of soft clustering or

“fuzzy membership” [173].

2.3.1 Optimization techniques

A recommendation model is learned as a solution to the corresponding opti-
mization problem:

O = argmin £ (©). (2.19)
®

This can no longer be directly solved with the help of classical SVD and alternative
optimization methods are required. Some of the most popular options are gradient-
based methods, especially the stochastic gradient descent (SGD) [22], and alternating
minimization methods such as alternating least squares (ALS) [201] and coordinate
descent (CD) [190].

In general, these methods no longer guarantee global convergence and, there-
fore, the optimization requires careful initialization and hyper-parameters tuning.
Nevertheless, the methods in practice exhibit fairly good convergence behavior which
makes them the main building blocks for many recommender models. More advanced
optimization techniques based on Riemannian optimization [177] also seem promising
in recommender systems settings, offering quick convergence and high scalability in

low-rank approximation tasks [190].

Gradient-based techniques

The main idea of the gradient-based approach (also called batch gradient) is
to iteratively make steps in the direction that is opposite to the gradient of the op-
timization objective. Each iteration step in its naive implementation is based on the

following sequential update rule for the model parameters:

31

where 7] is a step size also called learning rate; its value can be a constant real number
determined empirically with cross-validation or, in more advanced cases, depend on
iterations.

The algorithm makes a full pass through all observations, called epoch, in order
to perform a full update of matrices P and Q. Iterations continue until the maximum
number of epochs is reached or a convergence criteria is met. Note that finding the
gradient at each iteration can be quite computationally demanding and suffers from
many redundant calculations. At large scale this may lead to both slow convergence
and high memory load.

A more efficient implementation, which is the essence of SGD, is to approximate
a full gradient with the gradient computed over a single observation or a small group
of them (called mini-batch). Such smaller updates are easier to find at the cost of a
less straightforward convergence. This allows to sweep through the entire dataset in
a single pass for the full update of parameters and has a very low memory footprint.

In the case of a single observation update, the update rules are as follows:

pi—pi+1leq;—Ap))
q; —4q;+1(e;p;,—Aq;),

(2.20)

T
where ¢;; = agj)

step from the ground-truth.

— r;; measures how off is the prediction of the model at the current

The method strongly depends on initialization of its parameters, performed at
the beginning. A quite common practice is to use a normal distribution with zero
mean and small deviation. It is also advised to shuffle the data prior to optimization
in order to avoid unintended biases in the resulting model. The overall complexity of
the approach is O(nnzy - r).

Note that SGD is inherently incremental, which gives an “out-of-the-box” equiv-
alent of the folding-in technique for the model updates. For example, in the case of a
newly introduced user with at least a few known preferences one can simply iterate
over these preferences with the first line of Eq. (2.20) until it converges. The other
parameters related to items stay fixed in that case. New items can be handled in a

similar fashion.

32

Alternating minimization techniques

In turn, the ALS-based methods decompose the optimization task into the se-
quence of the least squares problems. Note that while the optimization problem de-
fined by Eq. (2.19) is non-convex, it is bi-convex with respect to its parameters. In other
words, for fixed P it is convex in Q and for fixed Q it is convex in P. Moreover, the
optimization problem can be solved independently for every row of P and Q. There-
fore, one can iteratively minimize the objective function by switching between user

and item factors and updating their rows as follows:

p, < argmin ¢ (©),
bi (2.21)

q; < argmin ¢ (O).
j

After each iteration the objective function is guaranteed not to increase. However,
unlike the unweighted case, there are no global guarantees for convergence in general.
In practice, the algorithm is reported to require only around 10 or slightly more epochs
to achieve a good approximation [14, 82].

In order to find the update rules for Eq. (2.21), it is convenient to rewrite both
Z defined by Eq. (2.14) and Q defined by Eq. (2.18) in the row-wise and column-wise
forms, corresponding to p; and q j respectively. For example, in the user-wise case it

reads:

F©)=) (a;-0p) W (a;=Qp)+ A1) plp,+AIQR (22)
i i

where W) = diag{w;,, w;,,...,w;y} is a diagonal matrix of weights and a; is the i-th
row of the matrix T(A), i.e. it represents the preference vector of user i with respect to
all items. After finding the derivative d _#/dp, and setting it to zero one arrives at the

following equation for p;:
(Q"WWQ+AI)p; = Q"TWa,. (2.23)

This gives a standard linear system of equations with the r x r symmetric positive
definite matrix (QTW(i)Q + Al) Direct solution of the system can be found in O(r>)
time, for example, by the means of Cholesky decomposition. The resulting expression

for the p, update reads:

p;—(Q"WIQ+ L) Q"W (2.24)

33

Due to the symmetry of the objective function, in order to find an update rule for g j
one can simply replace Q, W) and a; with their corresponding counterparts:

— -1 — .
q; — (PTWOP+ 1) PTWYa

i (2.25)

where W0 = diag{wlj,wzj,...,wMj} and a denotes the j-th column of the matrix
T(A), i.e. the preference vector of all users against item j. At each epoch the algorithm
updates all rows of the matrices P and Q, which can be done in parallel. As in the
SGD case, the iteration process repeats until either the number of epochs exceeds
some threshold value or the objective function ceases to decrease (with respect to a
predefined tolerance). The overall complexity of the algorithm is estimated as O(nnz,-
r2+ (M + N)r®) [124].

Note, that the same update rules can also be used to calculate approximate pre-
dictions for the new entities. Indeed, as every update is just the solution of the corre-
sponding least squares problem, one can replace a; or a; with the preference vector of
a newly introduced user or item respectively. This technique is similar to the folding-
in update used in PureSVD.

Another important consideration is that the time, required to solve Eq. (2.23),
can be further reduced with additional computational tricks. For example, the
straightforward application of the Sherman-Woodbury-Morrison formula gives an an-
alytic expression for incremental calculations of the matrix inverse at each iteration.
This, however, may not always provide a considerable speed-up and highly depends
on the data sparsity [124].

Alternatively, instead of the direct approach one could use iterative linear sys-
tem solvers in order to find an approximate solution. A worth noting candidate is the
conjugate gradient (CG) method [66], which is closely related to the Lanczos process
and similarly requires only matrix-vector multiplications for performing the task. The
method allows to reduce the complexity of the matrix inverse computation to O(r)
instead of O(r°) as in the original approach. It gives a decent trade-off between the
accuracy of each individual update and the overall convergence speed [171] and works

quite well in practice’.

3Its open-source implementation available at https://github.com/benfred/implicit is shown to provide a remarkable

speedup almost without the drop in quality.

34

Coordinate descent

Another iterative approach for performing the optimization task is to employ
the (block) coordinate descent method (CD) [18, Section 2.7]. In the context of the
low-rank approximation of complete matrices it was explored in [35], where the au-
thors additionally consider nonnegativity constraints. A few efficient variations of the
method were also proposed for the missing value estimation in the recommender sys-
tems with explicit feedback [15, 124, 190]. Recently, several efficient implementations
were also proposed for the OCCF case [189, 12].

Generally, instead of the bulk update of latent feature matrices performed in
ALS, CD successively updates either blocks of variables (e.g. rows or columns of the
factor matrices) or simply a single variable. Such formulation leads to a convex opti-
mization and avoids computation of a matrix inverse. For example, by declaring the
result of an update in the variable p;; as O one arrives at the following optimization

subproblem:
f(0) = Zwij (aij - (PiTq]' _pikqjk) - quk)z + 162, (2.26)
ij
where f(0) is a univariate quadratic function. Its optimum value is then given by:
_ Xywij(as - Pl 4y + Pindie) 4

0" d
A+ L wijq

(2.27)

Similar expression can be obtained for updates in the matrix Q. This approach also
offers a trade-off. The algorithm may require more epochs to converge, however, each
iteration within every epoch becomes much cheaper. Despite being less popular than
ALS and SGD, CD offers a competitive quality of recommendations with a number of

computational advantages [190].

2.3.2 Biased matrix factorization

As was already noted in Sec. 2.2.2, the rating prediction quality can be improved
with the concept of biases, which absorb a significant part of the feedback signal. A
similar data transformation procedure with manually crafted biases can be applied for

the weighted MF problem as well. However, unlike the SVD-based case, the weighted

35

formulation of the problem is more flexible and allows to declare bias variables as
additional model parameters [121, 94].
With this approach, the predicted value of the rating r;; assigned by user i to

item ; is modelled as follows:

T’i]' :Pl+ti+f]'+pquj, (228)

where all bias variables {t;} and {f;} are learned along with other model parameters, i.e.
O ={t, f,P,Q}. The global average y is usually pre-estimated based on the known
values of ratings. One may conveniently rewrite the prediction formula in a compact

matrix form, following the outer product rule similarly to Eq. (2.8):
R=puE+PQ7,

where the block matrices P = [t ey, P] and Q = [ey f Q] have a particular form of the
first two columns comprised by the bias vectors and vectors of all ones; E = e)el; is
an M x N matrix of all ones.

Clearly, shifting the data values by p would give similar to Eq. (2.1) form. How-
ever, the bias terms increase an overall rank of the solution by 2. Moreover, the result
does not correspond to an arbitrary unbiased MF model of rank r + 2 due to a cer-
tain structure of the first 2 columns in the factor matrices. In some sense biases can
be viewed as a specific constraint on the factors, which is used to reflect the core
assumption about the underlying rating mechanism.

The SGD-based variation of this matrix factorization approach became popular
after it was published in the famous blog post * by Simon Funk, when he attended
the Netflix Prize competition. Due to that, sometimes this algorithm is also called

FunkSVD. It has become an internal part of many other MF algorithms. The full update

rule, including additional bias updates, reads:

p; < p;+nleq;,—Ap)),
{%*—%+ﬂ@M%—A%%
t,—t; + 1”](61']' — /\tl‘),
f}- «— f} + 1”](61']' - /\f])

*http://sifter.org/simon/journal/20061211.html

36

As a practical remark, such a representation via the bias terms also allows to
quickly estimate the rating values for previously unobserved items or users with no
associated ratings. In that case it falls back to the baseline value contained in the
corresponding bias term and there is no contribution of the factorization part. This
estimate can be further improved after at least one rating value is provided into the

system with the incremental approach similarly to the unbiased MF case.

2.3.3 Confidence-based models

Another important example of the weighted matrix factorization approach is
based on a more flexible treatment of both observed and unobserved interactions.
Consider the case, where users exhibit different behavior depending on how much
they like a particular item. For example, when a user plays a particular sound track
several times while skipping some other track just after listening to the first 10 sec-
onds, this would be a clear indication that the first track is more interesting for the
user. In other words, our confidence that the user enjoys the music is higher in the
case of the first track. Likewise, the fact that user has never played some track does
not immediately suggest that the track is not interesting - the user may be simply
unaware of it. However, our confidence in the relevance of the track is lower in this
case.

In order to account for such an uncertainty it seems reasonable to associate some
confidence measure with every possible interaction. Instead of simply ignoring the
missing data and assigning constant weights to the known interactions as in Eq. (2.16)
we would like to change the weights of interactions depending on various conditions
and to treat both observed and unobserved data in a more thorough way. The general

form of a confidence-based loss function is slightly different from Eq. (2.14):

Z(T(A),R)=[[W(A)o (S-R)IF. (2.29)

BMXN

where the binary matrix S € with elements

5ij = 1, if aj; is known, (2.30)
Sij = 0, otherwise

37

indicates whether a particular interaction has occurred. The weights matrix
W =[yw;;] encodes a confidence in the observed feedback and directly depends on
the values of A.

Note that this approach is not designed to predict an exact rating value. It rather
focuses on the prediction of a probability of a certain event taking into account an
additional information, be it a rating value, a browsing behavior or any other form of
an explicit or implicit feedback that allows to quantify the corresponding confidence
level. A particular choice of the confidence measure may significantly impact the
performance of a recommendation model. A few different techniques were proposed
independently by several research groups [82, 117]. The substantial difference in the
proposed models is in the way the weighting is applied.

The authors of the so called Weighted Regularized Matrix Factorization model
(WRMF) [82], sometimes also called implicit ALS or iALS, propose to assign constant
weight of 1 to the unobserved interactions, and increase the weight for any observed
interaction proportionally to a satisfaction of a user with an item estimated from the
expressed feedback:

wii=1+ ag(af-].T)), (2.31)

where a is an empirically determined coefficient of proportionality. The estimation
function g is the most subjective part of the model and may vary depending on the
domain of application and the type of available data. The authors give a few examples
of it based on linear g(x) = x and logarithmic g(x) = log(1 + %) approximation (with
an extra tuning parameter €), which work well in practice.

The authors propose to use ALS optimization as it allows to efficiently handle
computations with complete matrices S and W. The general form of the solution stays

the same as in standard ALS:
. -1 .
p,—(QTWIQ+AI) QTWlls,

. -1 o
q; < (PTWUP+AI) PTWYs,,

(2.32)

where W) = diag{w;;, wiy,..., wiy}, WU = diag{w, j, wyj,...,wy;}; s; is a binary
preference vector of user i with respect to all items, and §; is a binary preference
vector of all users against item j. The authors came up with an elegant computational

trick wich allows to avoid redundant computations making the algorithm highly scal-
able.

38

Alternatively, the authors of the second approach, referred to as weighted ALS
or wALS [117], propose to assign the constant weight value of 1 for all known obser-
vations and in contrast to WRMF use alternate weighting schemes for the unobserved
part. The weighting scheme can be based either on small constant values in the range
[0, 1] or on some data aggregation which takes into account popularity effects. For
example, in the user oriented approach the weights for the unobserved data are pro-
portional to the number of ratings provided by user. The rationale behind is that the
higher is the number of ratings provided by user, the more likely it is that the remain-
ing non-rated items are irrelevant for that user. Likewise, in the item oriented case the
lower popularity of an item would increase the corresponding weights for negative

(unobserved) interactions.

2.3.4 Combined latent representations

A high level intuition behind latent features is often provided in terms of the
ability to capture intrinsic item properties as well as user motivation and interests.
Latent features are often treated as indicators of some user tastes and items’ affinity
to them. However, in practice, it can be quite difficult to directly map a single real
feature to its latent representation [174]. It is more likely that each latent feature will
instead characterize some tangled combination of various aspects.

Moreover, the number of these aspects can be large and they may have a com-
plicated, multifaceted nature making it hard to interpret them by a virtue of standard
parametrization. On the other hand, this information may play an important role in
the decision making process. Ignoring it may not only limit the expressiveness of a
recommendation model, but also hinder its ability to uncover valuable implicit rela-
tions within the observed data.

One of the ways to improve sensitivity of a model to a multi-aspect input is
to explicitly impose an aspect-based structure on the latent representation of users
and items. As an example, consider an online retail shop where customers tend to
purchase only a few items and rarely provide an explicit feedback. This would lead to
a very sparse interaction matrix and make the decision making process obscure for a

recommendation model.

39

Meanwhile, it is typically possible to collect additional information such as what
pages users visit during their search for a product, what information they look for,
what products they consider together, etc. Including such information into a model
allows to increase an understanding of user interests, and therefore help to create a
better prediction model. With the flexibility of a weighted matrix factorization this
can be achieved directly by adjusting the optimization objective.

One of the earliest examples of such approach is the NSVD model [121], where
every user is characterized by a combination of items he or he interacted with. It can be
especially helpful in the case of extreme sparsity and the lack of any side information,
giving a more “smooth” representation of the data. The author of the model proposed
2 variations of such representation: based on binary vectors (simply denoting the fact
of interaction) and based on latent features of items. In the latter case the solution can

be sought in the following form:
R=5QQT (2.33)

where S is a sparse matrix of aggregation coefficients with binary elements defined
simialrly to Eq. (2.30). Here we omit biases as they can be trivially added.

The matrix product SQ in Eq. (2.33) gives an aggregated representation of every
user via the latent features of consumed items. As a result, the contribution into the
prediction score is defined by all the actions taken by the user, independently of the
user-assigned rating values. Note that the model has a reduced number of parame-
ters which can be especially suitable in the systems with very large amount of users
and may potentially help to avoid a certain redundancy. It also has inspired further
research in this direction and has led to more elaborate models such as SVD++ and
Asymmetric-SVD [93]. Later it was shown to be a special case of the more general
models, namely SVDFeature [30] and Factorization Machines [132].

In the SVD++ model, which turned out to provide results superior to
Asymmetric-SVD, the latent features of users are not replaced, but rather are aug-
mented with an additional information about multiple aspects of user-item interac-

tions in the following way:
R=(P+SL)QT, (2.34)

where L represents an independent of Q latent subspace, which is used to build neigh-

borhoods of items rated together by the same user. The sparse aggregation matrix S

40

has the same sparsity pattern as S. In contrast to NSVD, its values are not binary and
are row-normalized, so that the norm of every row would be equal to 1,i.e. S = D!,
where D = diag{||s;||5, |Is2ll2,-- -, |Isumll2} and s; is an i-th row of S. Such normalization
prevents susceptibility of the model to popularity of items and to contribution of very
active raters.

Note that multiple types of feedback can be easily incorporated into the model
simply by adding more aggregation terms, i.e. P+ S,L; + S,L, + ..., corresponding
to different types of feedback (e.g. purchase activity, browsing history, etc.). The key
drawback of such approach is an increased number of parameters, which makes the
model more difficult to train and prone to overfitting.

Eq. (2.34) can be reformulated as R = (XP)Q7, where X = [IS] and PT =
[PTLT] are block matrices of aggregation coefficients and joint latent features respec-
tively. Up until now we have used coefficients matrix X to combine items rated by
the same user. However, it can also be used to reflect any sort of additional informa-
tion which helps better describe the observed interactions. For example, instead of
(or along with) indicating the rated-together items, it can be used to encode relevant
user attributes and group users with respect to these attributes. The matrix P will
be extended with the corresponding embeddings of these attributes onto the latent
feature space similarly to how it was performed for items with the matrix L.

The same reasoning can be applied with respect to the matrix Q which can be
replaced with an aggregated view on different item properties and the item-related
interaction aspects. The most general formulation of such representation can be com-
pactly described as:

R=XP(YQ)T, (2.35)

where the block matrices PT = [P P/ ...] and QT = [Q] Q...] now represent var-
ious user-based, item-based and mutual aspects of the observed interactions. Sparse
coefficient matrices X = [X; X,...] and Y = [Y; Y,...] with the corresponding block
structure allow to aggregate various latent vectors to represent every interaction from
a multi-aspect perspective. This aggregated model is known as SVDFeature [30]. Due
to its ability to take side information into account it can be considered as a represen-
tative of the so called hybrid approach (see Sec. 1.1.3).

There is one nuance that is worth noting here. The authors of the model propose

to represent the global bias as a weighted sum of global biases calculated with respect

41

to different aspects. It is more convenient to demonstrate it with an equivalent to

Eq. (2.35) elementwise formulation, now including all bias terms:
rij =bo+ tTx; + ny]. + xiTPQTy]., (2.36)

where by = }_ .. V¢ H, 1s a global bias aggregated over the group of aspects denoted
by G with individual weight coefficients), and bias values p,.

Note that the bilinear form of Eq. (2.36) can be viewed as a special case of a
polynomial expansion:

r(z)=by+b z+2z"Hz+... (2.37)

The connection to the SVDFeature model can be seen with the following substitution:
b" =[tT f']and 2T = [xT y7], where xT and p” are some rows of the matrices X and
Y. The coefficients vector z now encodes the full information about an interaction
between some user and some item with respect to all related aspects®, as was discussed
previously. Hence, the quadratic term zT Hz with symmetric positive semi-definite
matrix H allows to account for an interplay between any entities and any aspects in
their contribution to the final prediction score. Note that H subsumes matrices P and
Q in a certain way and the parameters of the model are described as © = {b,, b, H}.
Such a generalization leads to the next hybrid approach and a popular machine
learning algorithm, namely Factorization Machines (FM) [132], which has been proven
to perform well in recommender systems. The author of the model notes that the
matrix H should have a low-rank structure in order to deal with the sparsity problem

and increase the expressiveness of the model:
H=vVv’

where V embeds all users, items and the corresponding side information onto the
lower dimensional latent feature space. In addition to that, all self-influence terms (i.e.
xiz) are excluded and the symmetry of the model (i.e. the equivalent contribution of
both x;x; and x;x; interplay terms) is taken into account, which produces the following

relevance score function:

r(z) =by+ Zbizi + Z Z (vi,v))zz; (2.38)

i j=itl

>In the case of categorical data, e.g. user or item id, user gender, movie genre, etc., this method of building a sparse

representation of the multidimensional input data is called one hot encoding.

42

The task of generating recommendations, therefore, boils down to solving the poly-
nomial regression problem given the observation data.

Note that unlike SVDFeature or SVD++ the model allows to take into account
additional interaction factors, e.g. it allows to include a “within-class” influence — an
influence of entities and aspects of the same type on each other within a single obser-
vation. Indeed, indices 1, in z;zj term may belong to 2 different items or 2 different
features describing the same item. Depending on the problem, such extra interactions
can be meaningless or undesirable. In order to control which interactions are allowed
in the model one can replace z;z; with 6;;2;z;, where binary variable 6;; would indicate
whether the corresponding interaction is allowed. Clearly, FM can be reduced to any
of the previously discussed models by a proper choice of the model parameters and
indicator coefficients. A popular variation of FM that uses this technique to separate
the latent space for various groups of features is called Field-Aware FM (FFM) [84].

FM models also have a close connection to a higher order approach based on
Pairwise Interaction Tensor Factorization (PITF) model [134]. Unlike matrix-based
models, PITF uses an array with 3 dimensions, called a 3rd order tensor, to encode
pairwise relations between users, items and additional interaction aspects (tags). The
model uses 2 independent latent feature spaces for tags: one for user-tag and another
one for item-tag relations respectively. The PITF model per se is a member of a broader
family of tensor-based methods, which allow to model n-ary relations (ternary, qua-
ternary, etc.) not only in a pairwise but in a mutual way.

The topic of tensor methods in recommender systems deserves a separate dis-
cussion and we refer the reader to [54] for a comprehensive overview. Worth noting
here that tensor-based methods are often used for context-aware recommender sys-
tems. There are also several direct extensions of the FM idea to higher order cases,
e.g. Tensor Machines [188], Higher Order FM [20], Exponential Machines [115].

2.3.5 Remark on connection with SVD

As can be seen, there are some matrix factorization methods that have SVD
acronym in their names. This may lead to a certain confusion, that should be avoided.
Strictly speaking, most of these methods, like FunkSVD, SVD++, SVDFeature and their

derivatives have very little in common with a mathematical formulation of SVD. Un-

43

like conventional SVD, these methods do not build a space of singular vectors and do
not compute singular values. Most of them do not preserve the orthogonality property.
Weighted matrix factorization approach is designed specifically to work with incom-
plete matrices, often ignoring unknown entries or treating them not in the same way
as in PureSVD. They form a separate family of methods with different optimization
objectives and more flexible tuning. However, due to historical reasons, they are still
sometimes are referenced as SVD-based methods.

As a matter of fact, it is, of course, possible to orthogonalize latent factors in
Eq. (2.1) and get an equivalent to Eq. (2.5) form with orthonormal basis. This can be
achieved by the virtue of the QR decomposition applied to both P and Q matrices
(in order to get singular values as well one would have to additionally apply SVD to
the product of the low dimensional upper triangular matrices resulted from the QR
decomposition). Nevertheless, whenever the optimization objective Eq. (2.17) includes
specific constraints other than simple quadratic regularization and the loss function is
considerably different from Eq. (2.14), performing orthogonalization potentially leads
to a loss of structure in the latent feature space imposed by those special conditions.

Also note that a simple regularization constraint similar to Eq. (2.18) can be
added for SVD factors as well. Optimization of the corresponding loss function defined
by Eq. (2.4) with this added constraint can be performed without the need to switch to
general matrix factorization framework. The solution to such optimization problem,
known as quadratically regularized PCA, has the same analytical form as the standard
SVD and preserves its properties [176]. There is also a connection of the latter to an
iterative SVD-based approach called softImpute suitable for the rating prediction task
[72].

2.4 Learning to rank

There is an overwhelming amount of factorization models that implement so-
phisticated modifications to standard MF formulation in order to achieve a certain
goal or address a specific problem. To name a few, factorization models may include
the concept of metric learning [81] or impose additional locality constraints [31] to
generate a better latent representation; rely on a more flexible probabilistic inference

techniques [105, 143]; use kernel methods to capture non-linear effects [133], etc. An

44

overview of such a variety of methods falls beyond the scope of this work. We, how-
ever, find it necessary to briefly describe a particular example which is directly related
to the top-n recommendation problem.

One of the main concerns with the standard formulation of matrix factoriza-
tion problems is that it is especially suitable for the rating prediction task, however,
one can argue that this may not be the best choice for top-n recommendations (see
Sec. 1.2.4), where the correct ranking of recommended items is more important than
any particular prediction score. It turns out that there is a formal way to address this
issue with the help of the learning to rank approach [101]. In order to do that, let us
consider three general categories of optimization objectives, which lead to different
ranking mechanisms in recommender systems: pointwise, pairwise and listwise [28].

Pointwise objective directly depends on a pointwise loss function between the
observations and the predicted values. This is the simplest case, which corresponds
to previously discussed optimization problems, e.g. Eq. (2.4) or Eq. (2.14), and is not
designed for the ranking task. Nevertheless, like in the case with PureSVD, which is
formulated as a matrix completion problem and yet can be tuned to provide reasonably
good precision-recall scores, it is also possible to empirically find a set of model hyper-
parameters, which improve the ranking of recommendations. However, it is unlikely
to get a significant improvement in this case.

Pairwise objective depends on a pairwise comparison of the predicted values
and penalizes those cases where their ordering does not correspond to the ordering

of observations. The total loss in that case may take the following (or similar) form:

Z(AR) = ZZ r—Tij?)

i j,jaij>a;p

where [(x; — x,) is a pairwise loss function that decreases with the increase of the
difference x; — x, (e.g. sigmoid function) and r;; is the predicted score. It allows to
smoothly approximate an indicator function I(x; > x,).

One of the most popular examples of the pairwise optimization is Bayesian
Personalized Ranking (BPR) technique [135], which optimizes a smooth version of
AUC with the help of SGD. Another variation of the pairwise approach is Weighted
Approximate-Rank Pairwise (WARP) [183, 80], which implements an efficient itera-

tive sampling procedure for negative examples. Alternatively, the authors of RankALS

45

[172] propose a modification of the WRMF model for the pairwise objective and pro-
pose an ALS-based optimization procedure.

Listwise objective optimizes the predicted ordering over entire lists of items at
once. The corresponding listwise loss function can be schematically expressed as
I({ai;}, {ri;}). It penalizes the deviation of the predicted ranking of a given list of items
from the ground truth ranking based on observations. This approach is considered
to be the most suitable for the top-n recommendation task as it allows to directly op-
timize listwise metrics, e.g. mean average precision (MAP), normalized discounted
cumulative gain (NDCG) or mean reciprocal rank (MRR). The listwise approach fol-
lows a similar trick of a smooth approximation of the ranking metrics. For example,

the reciprocal rank RR;; of an item j recommended to a user i can be approximated

by:
1

U 1 4ei

A few remarkable examples of this approach are CoFiRank [181], which implements

RR

a convex upper bound approximation of NDCG, and CLiMF [156], which instead op-
timizes a lower bound of a smooth reciprocal rank.

Worth noting here, although both pairwise and listwise algorithms are likely
to improve the quality of predicted ranking of elements, they are typically harder to
implement and may require additional heuristics to reduce the computational com-
plexity [157].

2.5 Practical aspects

There are many practical aspects that make particular algorithms more suit-
able in certain environments depending on the desired balance between technical and
business requirements. For example, achieving the highest quality of recommenda-
tions with a state-of-the-art method may require a lot of computational resources or
depend on a complex setup which is hard to maintain and support in production. In
such cases a simpler approach with a more straightforward configuration and flexi-
ble tuning may become more favorable and help to find a better trade-off between a
solution’s complexity and the recommendations quality. The latter point is especially

crucial when latent factors are used to build neighborhood-based models. In large

46

Table 2.1: Comparison of low-rank approximation algorithms for explicit feedback

data.

Algorithm Overall complexity Update complexity Sensitivity Optimality

SVD* O (nnzA 4+ (M + N)rz) O(nnz,-r) Stable Global
ALS O (nnzA 2+ (M + N)r3) @) (nnza 4 r3) Stable Local

CD O(nnzy-r) O(nnz,-r) Stable Local
SGD O(nnzy-r) O(nnz,-r) Sensitive Local

* For both standard and randomized implementations [71].

scale setting an exact search of neighbors may take a prohibitively long time and has
to be replaced with approximate solutions (see [10]).

A thorough technical analysis of different algorithms is a non-trivial task and
depends on various aspects. One of the most crucial ones is the scalability question,
which includes an overall time complexity, memory and storage requirements, online
updates support, parallelization efficiency in shared- and distributed-memory envi-
ronments. Other aspects include stability of an algorithm and its convergence guar-
antees. General differences between the main algorithms discussed in this chapter
are provided in Table 2.1. Note that unlike ALS and SVD, standard implementations
of SGD and CD are inapplicable for OCCF problems, as their complexity becomes

proportional to the total size of the rating matrix.

2.5.1 Parallel implementations

From the parallelization viewpoint, multi-core shared-memory systems are typ-
ically more preferred than distributed shared-nothing environments with multiple
computational nodes. This allows to avoid the between-node communication and
system state synchronization costs induced by hardware I/O capabilities and specific
software implementations.

Moreover, a wide class of large-scale problems can be tackled in the shared-
memory settings with the help of an up-to-date hardware [79] and appropriate data
preprocessing (e.g. cleansing, subsampling). For example, modern cloud computing
services provide instances for memory-intensive applications with several terabytes

of physical memory onboard, which may help to cover the needs in many practical

47

cases. Therefore, as a rule of thumb, distributed setups should be avoided unless the

data and/or model parameters do not fit into a single machine’s memory [7].

Parallel SGD

As has been noted, the SGD algorithm is inherently sequential. Model’s param-
eters are updated after every single learning step and parallelization of the algorithm
becomes a challenging task. Within such computational environment various archi-
tectural choices on the data and model sharing, on data-accessing and data-passing
strategies may have a dramatic impact on the algorithm’s performance [195, 145].

A straightforward implementation of SGD in shared-memory environment di-
rectly leads to overwriting conflicts when, for example, several parallel workers op-
erate on the ratings of the same user/item and, therefore, modify the same vector of
user/item latent features. As a result, some of the standard techniques for SGD par-
allelization, such as Hogwild! [130], may not be suitable for the matrix factorization
case, unless the data is extremely sparse. As a lock-free algorithm, Hogwild! does
not restrict parallel overwrites and it’s performance is highly influenced by the data
imbalance. Latent features of very popular items or very active users are likely to be
updated and recomputed more frequently than latent features of entities with fewer
ratings. In practice, this may result in a slower convergence and a degradation of an
overall performance of the approach.

In turn, in the distributed case the synchronization of updated parameters of
SGD between computational nodes may easily become the main bottleneck of compu-
tations. The described problems has led to many different approaches, which achieve
certain trade-off’s between effective communications and state synchronization, use
various data partitioning techniques, implement elaborate locking strategies and rely
on aggressive caching. Some of the approaches are only suitable for shared-memory
systems [202, 118], others are designed for distributed systems [62, 149] and some
support both regimes [192].

Note that in production environments the stochastic nature of SGD may prevent
a normal execution of some standard operations. One of the examples is a (non)-
regression testing, which is executed on a regular basis to ensure that the behavior of
a system during its lifecycle is predictable and stable. An asynchronous execution of

SGD in this case may suffer from an uncontrollable randomization at the operating

43

system level and render an unreproducible state, which makes it harder to track down
potential sources of issues and to resolve inconsistencies. In this sense, SVD with its

deterministic output and global guarantees provides a reliable alternative.

Parallel ALS

In contrast to SGD, parallel implementation of the standard ALS algorithm for
weighted matrix factorization is much more straightforward as latent feature vectors
for any user or item can be updated independently at each epoch. It is often said that
the algorithm is embarrassingly parallel. However, at large scale and in the distributed
settings the task may become more involved and IO intensive [190], requiring elabo-
rate data partitioning and parameters’ synchronization [39, 150].

As an example, if factor matrices are too large to fit into a single machine’s
memory than one have to distribute rows of factor matrices P and Q across nodes and
properly coordinate the between-node communications to ensure a consistent global
state. The interaction data may also be distributed so that all interactions related to a
single item or to a single user belong to the same computational node [201]. As this
would require switching between columns and rows of the ratings matrix, which is
typically stored in the compressed sparse row/column formats (CSR/CSC), two dis-
tributed copies of data are used: a column-wise copy for item-related interactions and
a row-wise copy for user-related interactions. This allows to avoid redundant com-
putations and reduce the intensity of data transfer.

Nevertheless, communication overhead of the ALS in that case can still be con-
siderable due to random access to the latent feature matrices and may not play well
with widely accepted distributed data processing paradigms, such as map-reduce [79].
Alternatively, in the shared-memory settings both ALS and iALS can be implemented
very efficiently [60].

Parallel CD

The CD method can be considered as an attempt to combine the advantages
of both ALS and SGD methods. It performs alternating optimization similar to ALS

and consists of a more lightweight iteration steps. The authors of cyclic CD approach

49

(CCD++) [190] demonstrate that the method can be relatively easy adapted for both
multi-core and distributed environments.

Similarly to [15, 35], in CCD++ the standard row-wise updating scheme is re-
placed with the column-wise scheme, where the same component of the latent space is
updated for all users or items at once. Basically, the CCD++ approach transforms the
optimization problem into a sequence of local rank-1 subproblems, where the columns
of latent feature matrices are alternatively updated and each alternating step is dis-
tributed across several parallel workers. The authors also note that repeating several
alternating update cycles within a single subproblem allows to achieve better results.

Implementation of the algorithm is straightforward in the shared-memory set-
tings. In distributed environment it requires additional synchronization of column
factors after a complete rank-1 update. However, the authors estimate an overall com-
munication overhead of the approach to be not significantly larger than in the case of
popular distributed SGD algorithm [62]. Moreover, it provides a more stable conver-
gence. As demonstrated by the authors the approach shows favorable performance

and scales well in both distributed and shared-memory environments.

Parallel SVD

As has been previously discussed, computation of SVD relies on the Lanczos
procedure, which requires only matrix-vector products and can be made very effi-
cient with the help of broadly available linear algebra kernels, such as Inte]l MKL
or ARPACK. Internally, the computations are performed by calling highly optimized
BLAS/LAPACK routines, tuned for a better utilization of hardware capabilities on the
shared memory devices.

Implementation of the algorithm in the distributed setup is typically achieved

via the distribution of the Gram matrix-vector product (assuming A is a tall matrix):

(ATAw = Zui(aiTv).
i
After gathering the result one can use a linear algebra kernel locally to compute the
top leading right singular vectors V by the virtue of an eigendecomposition of the
Gram matrix. After that the matrix-matrix product AV can also be obtained in a

distributed manner. The result is then collected and fed into the standard SVD to

50

finally get the leading left singular vectors U and the corresponding singular values
Y. The main bottlenecks of the process are parallel data reads and communication
overheads incurred by the matrix products. As has been demonstrated in [63] the
scaling is very sensitive to implementation details of the distributed calculations and
requires a careful investigation to achieve a better scalability.

One of the ways to achieve a better performance in both shared-memory and
distributed setups is to replace exact SVD with its approximate variant, such as Ran-
domized SVD [71]. A higher computational efficiency of the algorithm comes at the
cost of a less accurate result. This, however, is not a stopper as the exact rating pre-
diction is not the main focus of the majority of recommender systems. Moreover, the

quality of approximation can be improved by a higher rank.

2.5.2 Hyper-parameters tuning

Due to differences in convergence properties, the methods discussed above re-
quire various levels of involvement during the model selection process. Some of the
methods are less demanding with respect to the hyper-parameters’ choice, others ex-
hibit more sensitive behavior (see Sensitivity column in Table 2.1).

Apparently, SVD can be treated as the most convenient method in this regard.
Indeed, it only requires to tune a single parameter — the rank of the decomposition
[38]. Moreover, due to optimality of the algorithm, once the PureSVD model is com-
puted for some rank value r, one can immediately obtain a model of any rank r’ < r
simply by truncating the factor matrices to the first " components and without any
extra computations.

Both CD and ALS depend on at least one extra parameter related to regulariza-
tion. However, the choice of its value in some reasonable range does not significantly
affect the quality of the resulting model and the initialization may play a more impor-
tant role due to potential abundance of local minima. Nevertheless, WRMF methods
introduce additional parameters related to the weighting scheme and require a careful
tuning.

Lastly, SGD-based methods are the most sensitive to both initialization and
hyper-parameters tuning. This is especially true for the learning rate [202] and many

practical implementations employ additional adaptive techniques [22] to automati-

51

cally select a more appropriate value depending on the convergence pattern and the

distance from a minimum.

2.6 Conclusion

This chapter gives an overview of the most popular and widely spread matrix
factorization techniques used in collaborative filtering models. It provides the key
concepts related to the problem formulation, learning methods, tuning of models and
their practical applications. Due to outstanding composability of the MF approach, it
allows to address a high number of problems and challenges, arising in recommender
systems, that go far beyond simple rating prediction task.

MF methods allow to naturally incorporate additional sources of information
and impose specific constraints on the latent feature space, offering more meaningful
interpretations and a better quality of recommendations. The algorithms offer various
trade-offs between simplicity, computational efficiency, flexibility in tuning, online
scenarios support, and quality of recommendations. This remains up to a practitioner
to validate the choice of a particular model based on a domain of application, available
infrastructure, and business requirements.

Overall, the field of matrix factorization methods in recommender systems has
advanced significantly in recent decades. An increasing complexity of problems, espe-
cially in hybrid and learning to rank models, has led to the dominance of approximate
optimization methods based on ALS, CD, and SGD. These techniques have become a
versatile instrument containing a flexible framework for optimization objective ma-
nipulation. On the other hand, there are certain practical issues with this approach
and, as we argue in Chap. 4, it does not always pay-off in terms of the quality of
recommendations.

This naturally raises the question, whether it is possible to employ a more ef-
ficient algorithm, like the one used in PureSVD with all its advantages, for solving
more complex problems and without giving up on recommendations quality. It turns
out that the answer is affirmative. Even though SVD has a very rigid formulation and
allows to solve a very specific optimization problem, in Chap. 6 we demonstrate, how
it can be tweaked in order to construct an efficient hybrid model, which uses side

information to saturate collaborative data and learn more viable behavioral patterns.

Chapter 3

Tensor Factorization

Conventional RS deal with two major types of entities which are typically users
(e.g., customers, consumers) and items (e.g., products, resources). Users interact with
items by viewing or purchasing them, assigning ratings, leaving text reviews, placing
likes or dislikes, etc. These interactions, also called events or transactions, create an
observation history, typically collected in a form of transaction/event log that reflects
the relations between users and items. Recognizing and learning these relations in
order to predict new possible interactions is one of the key goals of RS.

As we will see further, the definition of entities is not limited to users and items
only. Entities can be practically of any type as long as predicting new interactions be-
tween them may bring valuable knowledge and help to make better decisions. In some
cases, entities can be even of the same type, like in the task of predicting new connec-
tions between people in a social network or recommending relevant paper citations
for a scientific paper.

Modern recommender models may also have to deal with more than two types
of entities within a single system. For instance, users may want to assign tags (e.g.,
keywords) to the items they like. Tags become the third type of entity that relates to
both users and items, as it represents the user motivation and clarifies items relevance
(more on that in Sec. 3.2.2). Time can be another example of an additional entity,
as both user preferences and items relevance may depend on time (see Sec. 3.2.3).
Taking into account these multiple relations between several entities typically helps
to provide more relevant, dynamic and situational recommendations. It also increases
the complexity of RS models, which in turn brings new challenges and opens the door

for new types of algorithms, such as tensor factorization (TF) methods.

52

53

The topic of building a production-ready recommender system is very broad and
includes not only algorithms but also concerns a lot about business logic, dataflow de-
sign, integration with infrastructure, service delivery and user experience. This also
may require specific domain knowledge and always needs a comprehensive evalua-
tion. Speaking about the latter, the most appropriate way of assessing RS quality is
an online A/B testing and massive user studies [74, 49, 89], which are typically not
available right at hand in academia. In this work, we will only touch mathematical
and algorithmic aspects which will be accompanied with examples from various ap-

plication domains.

3.1 Introduction to tensors

In this section we briefly introduce some general concepts needed for better
understanding of further material. For a deeper introduction to the key mathematical
aspects of multilinear algebra and tensor factorizations we refer the reader to [90, 37,
68]. As in the case of MF in RS, TF produces a predictive model by revealing patterns
from the data. The major advantage of a tensor-based approach is the ability to take

into account a multifaceted nature of user-item interactions.

3.1.1 Definitions and notations

We will regard an array of numbers with more than 2 dimensions as a tensor.
This is a natural extension of matrices to a higher order case. A tensor with m distinct
dimensions or modes is called an m-way tensor or a tensor of order .

Without loss of generality and for the sake of simplicity we will start our con-

siderations with a 3rd order tensors to illustrate some important concepts. We will

RMxNxK

denote tensors with calligraphic capital letters, e.g. A € stands for a 3rd

order tensor of real numbers with dimensions of sizes M, N, K. We will also use a
M,N,K
ijk=1°
and will assume everywhere in the text the values of the tensor to be real.

compact form A = [a;] where a;j is an element or entry at position (i, j, k),

Tensor fibers. A generalization of matrix rows and columns to a higher order case

is called a fiber. Fiber represents a sequence of elements along a fixed mode when all

Figure 3.1: Tensor of order 3 (top) and its matricization/unfolding (bottom). Arrow

denotes the mode of matricization.

but one indices are fixed. Thus, a mode-1 fiber of a tensor is equivalent to a matrix
column, a mode-2 fiber of a tensor corresponds to a matrix row. A mode-3 fiber in a

tensor is also called a tube.

Tensor slices. Another important concept is a tensor slice. Slices can be obtained
by fixing all but two indices in a tensor, thus forming a two-dimensional array, i.e.
matrix. In a third order tensor there could be 3 types of slices: horizontal, lateral, and

frontal, which are denoted as A;., A.;., A. respectively.

Matricization. Matricization is a key term in tensor factorization techniques. This
is a procedure of reshaping a tensor into a matrix. Sometimes it is also called unfolding
or flattening. We will follow the definition introduced in [90, Section 2.4]. The n-mode
matricization of a tensor A € RM*N*K arranges the mode-n fibers to be the columns
of the resulting matrix (see Fig. 3.1). For the 1-mode matricization A ;) the resulting
matrix size is M x (NK), for the 2-mode matricization A, the size is N x (M K) and
the 3-mode matricization A3, has the size K x (MN). In the general case of an m-
th order tensor A € R Iw the n-mode matricization A,y will have the size I,, x
(I I,...1,_,1,....1,). For the corresponding index mapping rules we refer the reader
to [90].

Diagonal tensors. Another helpful concept is a diagonal tensor. Tensor A €

RI*I2xxIn jg called diagonal when i iy.i, #* 0 onlyif iy =1, =... = 1i,. This con-

cept helps to build a connection between different kinds of tensor decompositions.

35

3.1.2 Problem formulation

As in the matrix case (Sec. 2.1), the main goal is to learn a latent factor model
from real observations, which turns into a dimensionality reduction problem with a

similar loss function, given by:
Z (T (A), R(©)),

where R is a low rank tensor approximation that may have several distinct forms
depending on the type of decomposition used to calculate it (see Sec. 3.1.3); T(-) de-
notes a problem-dependent data transformation as in the matrix case and © stands
for model parameters. We will keep this notation throughout the text, i.e. A will al-
ways be used to denote observation data and R will always be used to represent the

reconstructed model, learned from A.

3.1.3 Tensor Factorization techniques

In order to draw a connection to the matrix case and prepare the ground for
further generalization to higher order cases we start by introducing an alternative MF
notation, which is convenient for our purposes, albeit typically unused. Let us rewrite

Eq. (2.5) in the following form:
Rzle UX2 V, (31)

where X, is an n-mode product, which is typically defined for the product of a tensor
with a matrix. Evidently, in the case of two conformable matrices A and B it has the

following form:

(Ax; B);j = Z“kibjkt (A x, B);; = Zﬂikbjk-

k k

Expanding this notation to a more general case with some tensor .4 gives a conven-

tional definition of an n-mode product [90, Section 2.5]:

(A Xy B)iy iy iy = Zailiz...im bii, (3.2)
in

56

For the same purpose of further generalization we also rewrite Eq. (3.1) in two

alternative forms, namely, the index form

;
Tij = E OaUiaVjar
a=1

and the sum of rank-1 terms
r
R= Zaaua RV, (3.3)
a=1

where u,, v, denote columns of the factor matrices, e.g. U = [u;...u, |,V =[v;...v,],
and ® denotes the vector outer product (or dyadic product). Depending on the way
these two forms are transformed into a higher order representation, one can arrive at
either CANDECOMP/PARAFAC (CP) or Tucker decomposition (TD).

CP decomposition

The most straightforward way of extending SVD to higher orders is to add new
factors in Eq. (3.3). In the third order case this will have the following form:

R = AU, @V, W, (3.4)

r
a=1
where each summation component u, ® v, ® w, is a rank-1 tensor. We can also

equivalently rewrite Eq. (3.4) in a more concise notation:
R=[AU,V, W], (3.5)

where A is a vector of length r with elements A; > ... > 1, > 0 and U € RM*",
V € RN W € RKX" defined similarly to Eq. (3.3). The expression assumes that
factors U, V, W are normalized. As we will see further, in some cases values of A can
have a meaningful interpretation. However, in general, the assumption can be safely
omitted, which yields:

r

R=[U,V, W] = Zua@)va@wa, (3.6)
a=1
or in the index from: .
tijk = Z UiqVjq Wa- (3.7)

57

The right-hand side of Eq. (3.6) gives a rank-r approximation of real observations in
the form of CP decomposition. Despite being similar to Eq. (3.3) formulation, there
is a number of substantial differences in the concepts of tensor rank and low-rank
approximation, thoroughly explained in [90].

Apart from technical considerations, an important conceptual difference is that
there is no higher order extension of the Eckart-Young theorem (mentioned in Sec. 2.2),
i.e. if an exact low-rank decomposition of A with rank r is known, then its truncation
to the first ' < r terms may not give the best rank-r’ approximation. Moreover, the
optimization task in terms of low-rank approximation is ill-posed [41] which is likely
to lead to numerical instabilities and issues with convergence, unless additional con-

straints on factor matrices (columns orthogonality, non-negativity, etc.) are imposed.

Tucker decomposition

A stable way of extending SVD to the higher order case is to transform the
diagonal matrix ¥ from Eq. (3.1) into a third order tensor G and add an additional

mode-3 tensor product, defined by Eq. (3.2), with a new factor matrix W:
R = [[g, U, V, W]] ngl UX2V><3 W, (38)

where U € RM*1 vV € RN W € RXX"s are typically required to be columnwise or-
thonormal and have a similar meaning of the latent feature matrices as in the case
of SVD. Tensor G € R"*"2*"3 g called a core tensor of the TD and a tuple of numbers
(r,15,73) is called a multilinear rank. The index form of TD reads:

1,72,13

Tijk = Z Sapy Uia Vjp Wiy (3.9)

a,By=1
The decomposition is not unique; however, the optimization problem with respect to
multilinear rank is well-posed. Also note that setting the core tensor G to be diagonal
turns the decomposition into CP form.

The definition of TD is not restricted to have 3 modes only. Generally, the num-
ber of modes is not limited; however, storage requirements depend exponentially on
the number of dimensions (see Table 3.1), which is often referred as a curse of dimen-
sionality. This imposes strict limitations on the number of modes for many practical

cases, whenever more than 4 entities are modelled in a multilinear way (e.g. user, item,

38

'CP TD TT HT

storage‘dnr dnr+r? dnr? dnr+dr’

Table 3.1: Storage requirements for different TF methods. For the sake of simplicity,
this assumes a tensor with d dimensions of equal size n and all ranks (or rank in case

of CP) of a tensor decomposition set to r.

time, location, company or any other context variables, see Fig. 1.1). In order to break
the curse of dimensionality, a number of efficient methods has been developed re-
cently, namely Tensor Train (TT) [116] and Hierarchical Tucker (HT) [67]. However,
we are not aware of any published results related to TT- or HT-based implementations
in RS.

3.1.4 Optimization algorithms

TF techniques rely on the same concepts of pointwise, pairwise and listwise opti-
mization, introduced in Sec. 2.4. An optimization problem can be written in a similar

form, keeping in mind the difference in model parameters, i.e.,
Q" = argmin ¢ (0), (3.10)
©

where O := {U, V, W} for CP-based models and © := {G, U, V, W} in the case of TD.
The difference in factorization techniques also leads to variations in how exactly the

solution to Eq. (3.10) is obtained. Below we provide some typical examples.

Pointwise algorithms for TD

In case of TD-based model the solution to Eq. (3.10) in a standard least squares
sense can be found with help of two well-known methods proposed in [40]: Higher-
Order SVD (HOSVD) [163, 168, 127] or Higher-Order Orthogonal Iteration (HOOI)
[197, 165].

The HOSVD method can be described as a consecutive application of SVD to all
3 matricizations of A, i.e. A(l),A(z),A(3) (assuming that missing data is imputed with
zeros). Generally it produces a suboptimal solution; however, it is worse than the best
possible solution only by a factor of Vd, where d is the number of dimensions [70].

Due to its simplicity this method is often used in recommender systems literature.

59

Algorithm 1: Practical HOOI algorithm for Tucker decomposition
Input : Tensor A in sparse COO format,

Tensor decomposition ranks ry, 15,13
Output: G,U,V,W
Initialize V and W by random matrices with orthonormal columns.

repeat
U « r, leading left singular vectors of AV (W ® V)

V « r, leading left singular vectors of A®) (W @ U)
W, X, Z « r; leading singular triplets of A®)(V ® U)

G « reshape matrix ¥ Z7 into shape (75,7, 7,) and transpose
until norm of the core ceases to grow or exceeds maximum iterations;

The HOOI method uses an iterative procedure based on an alternating least
squares (ALS) technique, which successively optimizes the objective with the help of
SVD (see Alg. (1)). In practice it may require a small amount of iterations to converge
to an optimal solution, but in general it is not guaranteed to find a global optimum [90].
The choice of any of these two methods for particular problem may require additional
investigation in terms of both computational efficiency and recommendations quality
before the final decision is made.

The orthogonality constraints imposed by TD may in some cases have no
specific interpretation. Relaxing these constraints leads to a different optimization
scheme, typically based on gradient methods, such as stochastic gradient descent

(SGD) [85]. The objective in that case is expanded with a regularization term ()(©):
F(0)=Z(T(A), R(©))+Q(0), (3.11)
which is commonly expressed as follows:
Q(0) = AGlIGlIE + AullUIE + AvlIVIE + AwlIWIEE, (3.12)

where Ag, Ay, Ay, Ay are regularization parameters and usually Ay = Ay = Ayy.

Pointwise algorithms for CP

As has been noted in Sec. 3.1.3, CP is generally ill-posed and if no specific do-

main knowledge could be employed to impose additional constraints, a common ap-

60

proach to alleviate the problem is to introduce regularization similarly to Eq. (3.12):
Q(0) = AU+ AVIVIE + AwlIWIEE, (3.13)

Indeed, depending on the problem formulation it may also have more complex form
both for CP (e.g. as in Sec. 3.2.3) and TD models. In general, regularization allows to
ensure convergence and avoid degeneracy (e.g. when rank-1 terms become close to
each other by absolute value but their magnitudes go to infinity and have opposite
signs [90]); however, it may lead to a sluggish rate of convergence [110]. In practice,
however, many problems can still be solved with CP using variations of both ALS [78,

91] and gradient-based methods.

Pairwise and listwise algorithms.

Pairwise and listwise methods are considered to be more advanced and accurate
as they are specifically designed to solve ranking problems. The objective function is
often derived directly from a definition of some ranking measure, e.g. pairwise AUC
or listwise MAP (see [137] for CP-based and [157] for TD-based implementations), or
constructed in a way that is closely related to those measures [134, 138].

These methods typically have a non-trivial loss function with complex data in-
terconections within it which makes it hard to optimize and tune. In practice, the
complexity problem is often resolved with help of handcrafted heuristics and problem-
specific constraints (see Sec. 3.2.2 and Sec. 3.2.4), which simplify the model and im-

prove computational performance.

3.2 Tensor-based models in recommender systems

Treating data as tensor may bring new levels of flexibility and/or quality into
RS models; however, there are nuances that should be taken into account and treated
properly. This section covers different tensorization techniques used to build ad-
vanced RS in various application domains. For all the examples we will use a unified
notation (where it is possible) introduced in Sec. 3.1, hence it might look different from
the notation used in the original papers. This helps to reuse some concepts within dif-

ferent models and build a consistent narrative throughout the text.

61

3.2.1 Personalized search and resource recommendations

There is a very tight connection between personalized search and RS. Essen-
tially, recommendations can be considered as a zero query search [6] and, in turn,
personalized search engine can be regarded as a query-based RS.

Personalized search systems aim at providing a better search experience by re-
turning the most relevant results, typically web pages (or resources), in response to a
user’s request. A clicktrough data (i.e. an event log of clicks on the search results after
submitting a search query) can be used for this purpose as it contains an information
about users’ actions and may provide valuable insights into search patterns. The es-
sential part of this data is not just a web page that a user clicks on, but also a context,
a query associated with every search request that carries a justification for the user’s

choice. The utility function in that case can be formulated as:
f. : User x Resource x Query — Relevance Score,

where Resource denotes a set of web pages and Query is a set of keywords that can be
specified by users in order to emphasize their current interests or information needs.
In the simplest case a single query can consist of one or a few words (e.g. “jaguar” or
“big cat”). More elaborate models could employ additional natural language process-
ing tools in order to breakdown queries into a set of single keywords, e.g. a simple
phrase “what are the colors of the rainbow” could be transformed into a set {“rain-

bow”, “color”} and further split into 2 separate queries, associated with the same (user,

resource) pair.

CubeSVD

One of the earliest and at the same time very illustrative works where this for-
mulation was explored with help of tensor factorization is CubeSVD [163]. The au-
thors build a 3-rd order tensor A € RM*N*K with values representing the level of
association (the relevance score) between user i and web-page j in the presence of
query k:

a;x >0, if(i,j,k) €S,

ajjk = 0, otherwise,

62

where S is an observation history, e.g. a sequence of events described by the triplets
(user, resource, query). Note that authors in their work use simple queries without
processing, e.g. “big cat” is a single query term.

The association level can be expressed in various ways, the simplest one is to
measure a co-occurrence frequency f, e.g. how many times a user has clicked on
a specific page after submitting a certain query. In order to prevent an unfair bias
towards the pages with high click rates, it can be restricted to have only values of 0
(no interactions) or 1 (at least one interaction). Or it can be rescaled with a logarithmic
function:

fh=logy(1+f/fo),
where f’ is a new normalized frequency and f; is, for example, an IDF (Inverse Docu-
ment Frequency) measure of a web page. Another scaling approach can also be used.

The authors proposed to model the data with a third order TD Eq. (3.8) and
in order to find it they applied the HOSVD. Similarly to SVD Eq. (2.5), factors U €
RM*1 v ¢ RN*2 and W € RX*"3 represent embedding of users, web pages and
queries vectors into a lower-dimensional latent factors space with dimensionalities
11,1, and r3 correspondingly. The core tensor G € R"*"2*"3 defines the form and the
strength of multilinear relations between all three entities in the latent feature space.
Once the decomposition is found, the relevance score for any (user, resource, query)
triplet can be recovered with Eq. (3.9).

With the introduction of new dimensions the data sparsity becomes even higher,
which may lead to a numerical instabilities and general failure of the learning al-
gorithm. In order to mitigate that problem, the authors propose several smoothing
techniques: based on value imputation with small constant and based on the content
similarity of web pages. They reported an improvement in the overall quality of the
model after these modifications.

After applying the decomposition technique the reconstructed tensor R will
contain new non-zero values denoting potential associations between users and web
resources influenced by certain queries. The tensor values can be directly used to
rank a list of the most relevant resources: the higher the value 7, is the higher the
relevance of the page j to the user i within the query k.

This simple TF model does not contain a remedy for some of the typical RS

problems such as cold start or real-time recommendations and is most likely to have

63

issues with scalability. Nevertheless, this work is very illustrative and demonstrates

the general concepts for building a tensor-based RS.

TOPHITS

As has been discussed in Sec. 1.2.6, new entities can appear in the system dy-
namically and rapidly, which in the case of higher order models creates even more
computational load, i.e. full recomputation of tensor decomposition quickly becomes
infeasible and incremental techniques should be used instead. However, in some
cases simply redefining the model might lower the complexity. As we mentioned
in Sec. 1.1.2, a simple approach to reduce the model is to eliminate one of the entities
with some sort of aggregation.

For example, instead of considering (user, resource, query) triplets we could work
with aggregated (resource, resource, query) triplets, where every frontal slice A.., of the
tensor is simply an adjacency matrix of a resources browsed together under a specific
query. Therefore users are no longer explicitly stored and their actions are recorded
only in the form of a co-occurrence of resources they searched for.

An example of such a technique is TOPHITS model [91]. This analogy requires
an extra explanation as the authors are not modelling users clicking behavior. The
model is designed for web-link analysis of a static set of web pages referencing each
other via hyperlinks. The data is collected by crawling those web pages and collecting
not only links but also keywords associated with them. However, the crawler can
be interpreted as a set of users browsing those sites by clicking on the hyperlinked
keywords. This draws the connection between CubeSVD and TOPHITS model as
the keywords can be interpreted as a short search queries in that case. And, as we
stated earlier, users (or crawlers) can be eliminated from the model by constructing
an adjacency matrix of linked resources.

The authors of the TOPHITS model extend an adjacency matrix of interlinked
web pages with additional keyword information and build the so called adjacency

tensor A € RN*NxK

that encodes hubs, authorities and keywords. As has been men-
tioned, the keyword information is conceptually very similar to queries, hence it can
be also modelled in a multirelational way. Instead of TD format the authors prefer
to use CP in the form of Eq. (3.5) with U,V € RN¥*" and W € R®*" with ALS-based

optimization.

64

The interpretation of this decomposition is different from the CubeSVD. As the
authors demonstrate, the weights A;, (1 < k < r) have a straightforward semantic
meaning as they correspond to a set of r specific topics extracted from the overall web
page collection. Accordingly, every triplet of vectors (uy, v, wy) represents a collection
of hubs, authorities and keyword terms respectively, characterized by a topic k. The
elements with higher values in these vectors provide the best-matching candidates
under the selected topic, which allows a better grouping of web pages within every
topic and provide means for a personalization.

For example, as the authors show, a personalized ranked list of authorities a*

can be obtained with:
a=VAWyg, (3.14)

where A = diag(A) is a diagonal matrix and q is a user-defined query vector of length
K with elements g; = 1 if term ¢ belongs to the query and 0 otherwise, t = {1,...,K}.
Similarly, a personalized list of hubs can be built simply by substituting factor V with
U in Eq. (3.14).

The interpretation of tensor values might seem very natural; however, there
is an important note to keep in mind. Generally, the restored tensor values might
turn both positive and negative, and in most applications the negative values have no
meaningful explanation. The non-negative tensor factorization (NTF) [36, 200] can be
employed to resolve that issue (see example in [32], and also the connection of NTF

to probabilistic factorization model under a specific conditions [33]).

3.2.2 Social tagging

A remarkable amount of research is devoted to one specific domain, namely
social tagging systems (STS), where predictions and recommendations are based on
commonalities in social tagging behavior (also referred as collaborative tagging). A
comprehensive overview of the general challenges and state-of-the-art RS methods
can be found in [104].

Tags carry a complementary semantic information that helps STS users to cat-
egorize and organize items of their choice. This brings an additional level of interpre-
tation of the user-item interactions, as it exposes the motives behind the user prefer-

ences and explains the relevance of particular items. This observation suggests that

65

tags play an important role in defining the relevance of (user, item) pairs, hence all
the three entities should be modelled mutually in a multirelational way. The scoring

function in that case can be defined as follows:
f. : User x Item x Tag — Relevance Score.

The triplets (user, item, tag), coming from an observation history S, can be easily

M,N K
i kel where M, N, K denote the number

of users, items and tags respectively. Users are typically not allowed to assign the same

translated into a 3rd order tensor A = [a;]

tags to the same items more than once, hence the tensor values are strictly binary and

defined as:
aijkzl! 1f(l,],k)€S,

a;jx =0, otherwise.

Unified framework

As in the case of keywords and queries, tensor dimensionality reduction helps
to uncover latent semantic structure of the ternary relations. The values of the recon-
structed tensor A can be interpreted as the likeliness or weight of new links between
users, items and tags. These links might be used for building recommendations in var-
ious ways: help users assign relevant tags for items [169], find interesting new items
[170], or even find like-minded users [167].

The model that is built on top of all three possibilities is described in [168].
The authors perform a latent semantic analysis on the data with help of the HOSVD.
Generally, the base model is similar to CubeSVD (see Sec. 3.2.1): items can be treated
as resources and tags as queries.

The authors also face the same problem with sparsity. The tensor matricizations
A, 1 £ n < 3 within the HOSVD procedure produce highly sparse matrices which
may prevent the algorithm from learning the accurate model. In order to overcome
that problem they propose a smoothing technique based on a kernel trick.

In order to deal with the problem of real-time recommendations (see Sec. 1.2.6)
the authors adopt a well known folding-in method [56] to a higher order case. The
folding-in procedure helps to quickly embed a previously unseen entity into the latent

features space without recomputing the whole model. For example, an update to a

66

<> o[v]

Q

Figure 3.2: Higher order folding-in for Tucker decomposition. A slice with new user
information in the original data (left) and a corresponding row update of the factor

matrix in TD (right) are marked with solid color.

users feature matrix U can be obtained with:
-1
Uyey = le Zl ’

where p is a new user information that corresponds to a row in the matricitized tensor
A(1y; V; is an already computed (during HOSVD step) matrix of right singular vectors
of R(;), and ¥ is a corresponding diagonal matrix of singular values; u,,,, is an up-
date row which is appended to the latent factor matrix U. The resulting update to

reconstructed tensor R,,,, is computed with (see Fig. 3.2):

U

’

Rnew = [g X2 14 X3 W] X1

unew

where the term within the left brackets of the right hand side does not contain any
new values, e.g. does not require the full recomputation and can be pre-stored, which
makes the update procedure much more efficient.

Nevertheless, this typically leads to a loss of orthogonality in factors and neg-
atively impacts the accuracy of the model in the long run. This can be avoided with
an incremental SVD update, which for the matrices with missing entries was initially
proposed by [23]. As the authors demonstrate, it can be also adopted for tensors.

It should be noted that this is not the only possible option for incremental up-
dates. For example, a different incremental TD-based model with HOOI-based opti-
mization is proposed in [197] for a highly dynamic, evolving environment (not related
to tag-based recommendations). The authors of this work use an extension of a two-

dimensional incremental approach from [139].

67

RTF and PITF

The models, overviewed so far, has a common “1/0” interpretation scheme for
a missing values, i.e. all triplets (i, j, k) € S are assumed to be positive feedback and
all others (missing) are negative feedback with zero relevance score. However, as the
authors of ranking with TF model (RTF) [137] and more elaborate pairwise interaction
TF (PITF) [134] model emphasize, all missing entries can be split into 2 groups: the true
negative feedback and the unknown values. The true negatives correspond to those
triplets of (i, j, k) where the user i has interacted with the item j and has assigned tags
different from the tag k. More formally, if Ps is a set of all posts that correspond to all
observed (user, item) interactions, than true negative feedback within any interaction

between user i and item j is defined as:
- o= k(i) € Ps A Gi,j,k) € S},
Likewise, true positive feedback is:

A;_] = {kl(zf])GPS /\(Z,],k) ES}

All other entries are unknowns and are to be uncovered by the model.
Furthermore, both RTF and PITF models do not require any specific values to
be imposed on either known or unknown entries. Instead they only impose pairwise

ranking constraints on the reconstructed tensor values:

Tiik, > Tij, © (1,],k1) € A;L]- A1,] k) € A

These post-based ranking constraints become the essential part of an optimiza-
tion procedure. The RTF model uses the Tucker format; however, it aims at directly

maximizing AUC measure, which, according to the authors, takes the following form:

AUC(O,1,j) = Z Z o (Tijk+ = Tijk-)s
|A 1] kteAl keA;;

where © are the parameters of the TD model (as defined in Eq. (3.11)) and o(x) is a

sigmoid function, introduced to make the term differentiable:

o(x)= : (3.15)

68

As we are interested in maximizing AUC, the loss function takes the form:

FL(T(A), R) = - Z AUC(®,i, j).
(i,j)€Ps
The regularization term of the model is defined by Eq. (3.13).

The authors adopt a stochastic gradient descent (SGD) algorithm for solving
the optimization task. However, as they state, directly optimizing the AUC objective
is computationally infeasible. Instead, they exploit a smart trick of recombining and
reusing precomputed summation terms within the objective and its derivatives. They
use this trick for both tasks of learning and building recommendations.

The PITF model is built on top of ideas from RTF model. It adopts Bayesian
Personalized Ranking (BPR) technique proposed for MF case in [135] to the ranking
approach. The tags rankings for every observed post (i, j) are not deterministically
learned like in RTF model but instead are derived from the observations by optimizing
the maximum aposteriori estimation. This leads to a similar to RTF optimization ob-
jective with similar regularization (excluding the tensor core term which is not present

in CP) and slightly different loss function:
Z(T(A), R) ==) Ino(r, — i)
(i,j,k1,k2)€Ds

where the same notation as in RTF is used; o is a sigmoid function from Eq. (3.15) and

Dy is a training data, i.e. a set of quadruples:
DS = {(iljxkllkZ)l(i/j)kl) €S A (i;j;kz) € S} (316)

An important difference of PITF from RTF is that the complexity of multilinear
relations is significantly reduced by leaving only pairwise interactions between all
entities. From the mathematical viewpoint it can be considered as a CP model with a

special form of partially fixed factor matrices (cf. Eq. (3.7)):

_ 2 U 14
Tijk = Ujg Wi, + > Vig Wy > Uig Vigs (3.17)

a a a

where w, and w, are the parts of the same matrix W responsible for tags relation

to users and items respectively; u;, and v;, are interactional parts of U and V.

69

The authors emphasize that the user-item interaction term does not contribute
to the BPR-based ranking optimization scheme which yields even more simple equa-

tion that becomes an essential part of the PITF model:

U 1%
tijk = Zui“ Wi, + Zvj“ Wy, (3.18)

a [44

Another computational trick that helps to train the model even faster without
sacrificing the quality is random sampling within the SGD routine. All the quadruples
in Dy corresponding to a post (i,]) are highly overlapped with respect to the tags
associated with them. Therefore, learning with some randomly sampled quadruples
is likely to have a positive effect on learning the remaining ones.

In order to verify the correctness and effectiveness of such simplifications the
authors conduct experiments with both BPR-tuned TD and CP and demonstrate that
PITF algorithm achieves close or even better quality of recommendations while learn-
ing features faster than the other two TF methods.

Despite its computational effectiveness, the original PITF model is lacking the
support for the real-time recommendation scenarios, where rebuilding the full model
for each new user, item or tag could be prohibitive. The authors of [99] overcome this
limitation by introducing the folding-in procedure compatible with the PITF model
and demonstrate its ability to provide high recommendations quality. Worth noting
here that a number of variations of the folding-in technique are available for different
TF methods, see [196].

The idea of modelling higher order relations in a joint pairwise manner similar
to Eq. (3.18) has been explored in various application domains and is implemented in
various settings, either straightforwardly or as a part of a more elaborate RS model
[57, 75, 199, 152]. There are several generalized models [182, 138], [78], which also
use this idea. They are covered in more details in Sections Sec. 3.2.4 and Sec. 3.2.4 of

this work.

Improving the prediction quality

As has been already mentioned in Sec. 3.2.2 high data sparsity typically leads to
a less accurate predictive models. This problem is common across various RS domains.

Another problem, specific to STS, is tag ambiguity and redundancy. The following are

70

the examples of some of the most common techniques, developed to deal with these
problems.

The authors of CubeRec [187] propose a clustering-based separation mecha-
nism. This mechanism builds clusters of triplets (user, item, tag) based on the proxim-
ity of tags derived from the item-tag matrix. With this clustering some of the items
and tags can belong to several clusters at the same time, according to their meaning,.
After that the initial problem is split into a number of sub-problems (corresponding to
clusters) of a smaller size and hence, with a more dense data. Every subproblem is then
factorized with the HOSVD similarly to [163], and the resulting model is constructed
as a combination of all the smaller TF models.

The authors of the clustering-based TD model (ClustHOSVD) [165] also employ
clustering approach. However, instead of splitting the problem, they replace tags by
tag clusters and apply the HOOI method (which is named AlsHOSVD by the authors)
directly to the modified data consisting of (user, item, tag cluster) triplets. They also
demonstrate the effect of different clustering techniques on the quality of RS.

As can be seen, many models benefit from clustering either prior to or after the
factorization step. This suggests that it can also be beneficial to perform simultaneous
clustering and factorization. This idea is explored by the authors of [55], where they
demonstrate the effectiveness of such an approach.

A further improvement can be achieved with hybrid models (see Sec. 1.1.2),
which exploit a content information and incorporate it into a tensor-based CF model.
It should be noted, however, that there is no “single-bullet” approach, suitable for all
kinds of problems, as it highly depends on the type of data used as a source of content
information.

The authors of [109] exploit acoustic features for music recommendations in a
tag-based environment. The features, extracted with specific audio-processing tech-
niques, are used to measure the similarity between different music samples. The au-
thors make an assumption that similarly sounding music is likely to have similar tags,
which allows to propagate tags to the music that was not tagged yet. With this as-
sumption the data is augmented with new triplets of (user, item, tag), which leads to
a more dense data and results in a better predictive quality of the HOSVD model.

The TF and tag clustering (TFC) model [127] combines both content exploita-

tion and tag clustering techniques. The authors focus on the image recommendations

71

problem, thus they use an image processing techniques in order to find items’ sim-
ilarities and propagate highly relevant tags. Once the tag propagation is completed,
the authors find tag clusters (naming them topics) and build new association triplets
(user, item, topic), which are further factorized with the HOSVD.

As a last remark in this section, the idea of model splitting, proposed in the Cu-
beRec model, was also explored in a more general setup in [179]. The authors consider
a multiple context environment, where user-item interactions may depend on various
contexts such as location, time, activity, etc. This is generally modelled with an N-th
order tensor, where N > 3. Instead of dealing with higher number of dimensions and
greater sparsity, the authors propose to build a separate model for every context type,
which transforms the initial problem into a collection of a smaller problems of order
3. Then all the resulting TF models are combined with specific weights (based on
the context influence measure proposed by the authors) and can be used to produce
recommendations. However, despite the ability to better handle the sparsity issue,
the model may loose some valuable information about the relations between different
types of context. A more general methods for multi-context problems are covered in
Sec. 3.2.4.

3.2.3 Temporal models

User consumption patterns may change in time. For example, the interest of TV
users may correlate not only with a topic of a TV program, but also with a specific time
of the day. In retail user preferences may vary depending on the season. Temporal
models are designed to learn those time-evolving patterns in data by taking the time

aspect into account, which can be formalized with the following way scoring function:
f.. : User x Item x Time — Relevance Score.

Even though the general problem statement looks already familiar, when work-
ing with the Time domain one should mind the difference between the evolving and

periodic (e.g. seasonal) events which may require a special treatment.

72

BPTF

One of the models that exploits periodicity of events is the Bayesian Probabilistic
TF (BPTF) [186]. It uses seasonality to reveal trends in retail data and predict the
orders that will arrive in the ongoing season based on the season’s start and previous
purchasing history. The key feature of the model is the ability to produce forecasts on
the sales of the new products that were not present in previous seasons. The model
captures dynamic changes in both product designs and customers’ preferences solely
from the history of transactions and does not require any kind of an expert knowledge.

The authors develop a probabilistic latent factors model by introducing priors
on the parameters; i.e. the latent feature vectors are allowed to vary and the variance

of relevance scores is assumed to follow a Gaussian distribution:
rijk|U’ V,W~ N(< Ui:! ‘/jzl Wk: >, 7/_1)1

where is an observations precision and < U, V}., W;. > denotes a right hand side of
Eq. (3.7). Note that in the original work the authors use a transposed version of the
factor matrices, e.g. any column of the factor U in their work represents a single user,
the same holds for two other factors.

In order to prevent the overfitting the authors also impose prior distributions
on U and V:

Ui: ~ N(O, 0'[2]1),

V..~ N(0,01).

Furthermore, the formulation for the time factor W takes into account its evolving

nature and implies smooth changes in time:

2
Wk: ~ N(Wk—lzf GdWI)J
2
Wo. ~ N (pw, og1).
The time factor W rescales the user-item relevance score with respect to the time-

evolving trends and the probabilistic formulation helps to account for the users who

do not follow those trends.

73

The authors show that maximizing the log-posterior distribution
logp(U,V,W,W,.|A) with respect to U,V,W and W, is equivalent to an op-

timization task with the weighted square loss function:

Z(TAR) =) (ai—rip) (3.19)

(i,7,k)eS

and a bit more complex regularization term:
A A it o A
d
Q@) = Ul + FVIE+ 5 ;nwk; = WierllP+ S Wo. = P,

where A, = (aoy) ™LAy = (aoy) ™, Ayw = (aoyw) L Ag = (@oy)™! and the last two
terms are due to a dynamic problem formulation. The number of parameters of this
model makes the task of optimization almost infeasible. However, the authors come
up with an elaborate MCMC-based integration approach that makes the model almost

parameter-free and also scales well.

TCC

The authors of TF-based subspace clustering and preferences consolidation
model (TCC) [180] exploit the periodicity in usage patterns of the IPTV users in order
to, at first, identify them and, secondly, provide with more relevant recommendations,
even if those users share the same IPTV account (for example, across all family mem-

bers). This gives a slightly different definition of a utility function:
f. : Account x Item x Time — Relevance Score,

where Account is the domain of all registered accounts and the number of accounts
is not greater than the number of users, i.e. |Account| < |User|. Initial tensor A is
built from the triplets (account, item, time) and its values are just the play counts.

In order to be able to find a correct mapping of the real users to the known
accounts, the authors introduce a concept of a virtual user. Within the model the real
user is assumed to be a composition of particular virtual users u,; which express the

specific user’s preferences tied to a certain time periods, e.g.:

uge = 1{(a,pr)|la € A, py € P,py # 3},

74

where a is an account from the set of all accounts A, p; is a sub-period from the set
of all non-overlapping time periods P.

As the authors state, manually splitting the time data into the time slots p; does
not fit the data well and they propose to find those sub-periods from the model. They
first solve the SGD-based optimization task for TD with the same weighted squared
loss function as in Eq. (3.19) and regularization term as in Eq. (3.12) (with A = Ay =
Ay =Aw = %)\). Once the model factors are found, the sub-periods p; can be obtained

by clustering the time feature vectors:
P <« k-Means clustering of the rows of W.

Then the consolidation of virtual users into the real ones can be done in 2 steps.
At first, a binary similarity measure is computed between different pairs of virtual
users (U, U,y) corresponding to the same account a. The second step is to combine
similar virtual users so that every real user is represented as a set of virtual ones.
This is done with help of a graph-based technique. Once the real users are identified,
recommendations can be produced with a user-based kNN approach. As the authors
demonstrate, the proposed method not only provides a tool for user identification,
but also outperforms standard kNN and TF-based methods applied without any prior

clustering.

3.2.4 General context-aware models

In previous sections we have discussed TF methods targeted at specific classes of
problems: keyword- or tag-based recommendations, temporal models. They all have
one thing in common - the use of a third entity leading to a higher level of granularity
and better predictive capabilities of a model. This leads to an idea of generalization of

such approach, which is suitable for any model formulated in the form of Eq. (1.2).

Multiverse

One of the first attempts towards this generalization is the Multiverse model
[85]. The authors define context as any set of variables that influence users’ prefer-

ences and propose to model it by the N-th order TD with N—2 contextual dimensions:

A= [[g) Uu,Vv,W,W,,..., WN—Z]]’

75

where factors W;, i € {1,..., N —2} represent a corresponding embedding of every
contextual variable into a reduced latent space and all factors including U and V are
not restricted to be orthogonal. As the authors state, the model is suitable for any
contextual variables over a finite categorical domain. It should be noted that the main
focus of the work is systems with an explicit feedback and the model is optimized for
the error-based metrics, which does not guarantee an optimal items ranking as has
been discussed in Sec. 1.2.4.

Following the general form of an optimization objective stated in Eq. (3.11), the
authors use the weighted loss function:

1
gTA,R: li'li'l
(T(A), R) ”gnl(i;)es (@it Tisk)

where [(a;j, 1ij;) is a pointwise loss function, which can be based on [}, I, or other
types of distance measures. The example is provided for the 3rd order case; however,
it can be easily generalized to a higher orders. The authors also use the same form of
the regularization term as in Eq. (3.12), as it enables trivial optimization procedure.
In order to fight against the growing complexity for the higher order cases they
propose a modification of the SGD algorithm. Within a single optimization step the
updates are performed on every row of the latent factors independently. For example,

an update for i-th row of U:
Ui. < Up—n AU =19, aijp 1ijx)

is independent on all other factors and thus all the updates can be performed in par-
allel. The parameter # defines the model’s learning step.

In addition to the general results on the real dataset, this work features a com-
prehensive experimentation on the semi-synthetic data that shows the impact of a
contextual information on the RS models performance. It demonstrates that high con-
text influence leads to a better quality of the selected context-aware methods, among
which the proposed TF approach gives the best results, while a context-unaware

method’s quality significantly degrades.

TFMAP

Similarly to the previously discussed PITF model, the TF for MAP optimiza-
tion model (TFMAP) [157] also targets optimal ranking; however, it exploits the MAP

76

metric instead of AUC. The model is designed for an implicit feedback systems which
means that the original tensor A is binary with non-zero elements reflecting the fact
that an interaction has occurred:

1, if(i,j,k) €S,

@i = (3.20)
0, otherwise.

The optimization objective is drawn from the MAP definition:

N 8ijk x-N
) i=1 Piik Y -1 aij'kH(Pijrk =< pijk)

1 M K
MAP:WZZ = ,

j=1%ijk

where p;;; denotes the position (or rank) of item j in the item list of user i under the
context of type k; I(-) is an indicator function, which is equal to 1 if the condition is
satisfied and 0 otherwise, both depend on the reconstructed values of A. In order to

make the metric smooth and differentiable the authors propose two approximations:

1
Pijk

H(pij'k < pijk) ~ 0 (Tijk = Tijk)s

~ U(Yijk);

where 7;j; is calculated with Eq. (3.7) (which makes the model a CP-based) and o is a
sigmoid function defined by Eq. (3.15). Notably, 7;j—7;jx =< U;,, V;».=V}.,, Wy, >, where
we use the same notation as in BPTF model, see Sec. 3.2.3. The model also follows the
standard optimization formulation stated in Eq. (3.11), where the loss function is just
a negative MAP gain, i.e.

F(T(A),R) = -MAP,

and the regularization has the form of Eq. (3.13).

Note that MAP optimization also has a weighted form due to Eq. (3.20). How-
ever, the computation complexity would still be prohibitively high due to its complex
structure. In order to mitigate that, the authors propose the fast learning algorithm:
for each (user, context) pair only a limited set of a representative items (a buffer) is con-
sidered, which in turn, allows to control the computational complexity. They also pro-
vide an efficient algorithm of sampling the “right” items and constructing the buffer,

which does not harm the overall quality of the model.

77

CARTD

The CARTD model (Context-Aware Recommendation Tensor Decomposition)
[182, 138] provides a generalized framework for an arbitrary number of contexts and
also targets an optimal ranking instead of a rating prediction. Under the hood the
model extends the BPR-based ranking approach used in the PITF model to the higher
order cases.

The authors introduce a unified notion of an entity. A formal task is to find
the list of the most relevant entities within a given contextual situation. Remarkably,
all information that is used to make recommendations more accurate and relevant, is
defined as a context. In that sense, not only information like tag, time, location, user
attributes, etc. is considered to be a context, even users themselves might be defined as
a context of an item. This gives a more universal formulation for the recommendations
task:

f,. : Entity x Context; x ... x Context,, — Relevance Score. (3.21)

As an illustration to that, a quadruple (user, item, time, location) maps to
(context,, entity, context,, context;). Obviously, the definition of the entity depends
on the task. For example, in case of social interactions prediction with (user, user,
attribute) triplets, the main entity as well as one of the context variables will be a user.

The observation data in a typical case of a user-item interactions can be encoded

similarly to Eq. (3.16):
Ds :={(e, f,c1,...,¢c,) | (e,c1,...,¢c,) €S A(f,cq,...,c,) €S},

where e and f are the entities (i.e. items) and ¢;,i = {1,...,n} denotes a context type
(includes users). As the authors emphasize, this leads to a huge sparsity problem,
and instead they propose to relax conditions and instead build the following set for

learning the model:

Dyi={(e,frcr, 00 [Ver#(e) > #, ()},

where #. () indicates the number of occurrences of an entity within the context c;.
The rule # . (e) > #..(f) denotes the prevalence of the entity e over the entity f with

respect to all possible contexts.

78

The optimization objective will also look similar to the one used in the PITF

model with the loss function defined as:

Z(T(A), R)=- Z In o (7o =iz)
(e,f,cl,...,cn)eDA
where {c} denotes a set of all context variables ¢; and the tensor values 4, are calcu-
lated with help of the reduced CP model with the pairwise only interactions, similarly
to Eq. (3.18):

n

. E,C; C;E
r{c},e_ Ve V¢

i=1
E,C; Ci,E . :
where v,” " and v;," " are the elements at the cross section of the e-th row and the i-th
column of the factor matrices VEC¢i and V% respectively. As in the previous cases,
the regularization term () (©) have similar to Eq. (3.13) form, which includes all the

factors from O:
© = {VEa, vt [vEG yert)

iTALS

As has been mentioned in the introduction (see Sec. 1.2.3), an implicit feed-
back does not always correlate with the actual user preferences, thus a simple binary
scheme (as in Eq. (3.20)) may not be accurate enough. For this reason, the authors of
the iTALS model (ALS-based implicit feedback recommender algorithm) [77] propose
to use the confidence-based interpretation of an implicit feedback introduced in [82]
and adopt it for the higher order case.

They introduce the dense tensor)V that assigns non-zero weights for both ob-
served and unobserved interactions. For the n-th order tensor it has the following

form:

o =iy i), i (if,...,0,) €S, 522

=1, otherwise,

where #(iy,...,1,) is the number of occurrences of the tuple (iy,...,1,) (e.g. the com-
bination of the user i; and the item i, interacted within the set of contexts is,...,1,)
in the observation history; « is set empirically and « - #(i;,...,1,) > 1 which means
that the observed events provide more confidence in the user preferences than the

unobserved ones.

79

The loss function will then take the form:

.....

.....

reconstructed tensor.

The model uses CP with an ALS-based optimization procedure and a standard
regularization similar to Eq. (3.13). The latent feature vectors are encoded in the rows
of the factor matrices, not the columns, i.e. following the authors’ notation, we should
rewrite Eq. (3.6) as:

A=[M],.... M;T,

where M; (1 <i < n) are transposed factors of the CP decomposition.

The authors show, how an efficient computation over the dense tensor can be
achieved with the same tricks that are used in [82] for the matrix case. The model also
has a number of modifications [76]: based on the conjugate gradient approach (iTALS-
CG) and the coordinates descent approach (iTALS-CD) where an additional features
compression is achieved by the Cholesky decomposition. This makes the iTALS-CD
model to learn even faster than MF methods. While performing on approximately the
same level of accuracy as the state-of-the-art Factorization Machines (FM) method
[136], it is capable of learning more complex latent relations structure. Another mod-

ification is the pairwise “PITF-like” reduction model, named iTALSx [75].

GFF

The General Factorization Framework (GFF) [78] further develops the main
ideas of the family of iTALS models. Within the GFF model different CP-based fac-
torization models (also called a preference models) are combined in order to capture
the intrinsic relations between users and items influenced by an arbitrary number of
contexts. As in many other works the authors of GFF model fix the broad definition
of the context as an entity, which “value is not determined solely by the user or the

item”, i.e. not a content information (see Sec. 1.2.7).

80

The model can be better explained with the example. Let us consider the prob-

lem of learning the scoring function as follows:
fu : UxIxSxQ — RelevanceScore, (3.23)

where U and I are the domains of users and items respectively; S stands for season
and denotes the periodicity of the events (see Sec. 3.2.3); Q describes the sequential
consumption patterns, e.g. what are the previous items that were also consumed with
the current one (see [77] for broader set of examples). Let us also define the pairwise
interactions between users and items as Ul (standard CF model), between items and
seasons as IS and so forth. Using the same notation we can also define multi-relational
interactions, such as UIS for a 3-way user-item-season interactions or UISQ for the
4-way interactions between all 4 types of entities.

In total, there could be 2047 different combinations of interactions, yet not all of
them are feasible in terms RS model, as not all of them may contribute to the preference
model.

As the result, GFF generates a very flexible multirelational model that allows to
pick the most appropriate scheme of interactions, which does not explode the com-
plexity of the model and meanwhile achieves a high quality of recommendations.
Based on the experiments the authors conclude: “leaving out useless interactions re-
sults in more accurate models”.

As it can be seen, tensors-based methods help represent and model complex
environments in a convenient and congruent way, suitable for various problem for-
mulations. More examples, starting from multi-criteria learning to cross-domain rec-
ommendations, can be found in [54]. Nevertheless, as we have already stated earlier,
the most common practical task for RS is to build a ranked list of recommendations (a
top-n recommendations task). In this regard, we summarize related features of some
of the most illustrative, in our opinion, methods in Table 3.2. We also note that while,
technically, incremental learning is applicable to any of these methods, not all au-
thors provide the specific steps to implement it. We therefore emphasize, whether
the presented models explicitly address the problem of real-time recommendations in

dynamic environments (the last column of the table).

81

Table 3.2: Comparison of popular TF models. The Ranking prediction column shows
whether a method is evaluated against ranking metrics. The Online column denotes

a support for real-time recommendations for new users (e.g. folding-in).

)) o o Ranking)

Name Type Algorithm Domain Entities Optimization .. Online
prediction

TOPHITS [91], 2005 CpP ALS Link prediction Resources, Keyword pointwise v
CubeSVD [163], 2005 TD HOSVD Personalized Search User, Resource, Query pointwise v
RTF [137], 2009 TD SGD Folksonomy User, Item, Tag pairwise v
BPTF [186], 2010 CP MCMC Temporal dynamics User, Item, Time pointwise
Multiverse [85], 2010 TD SGD Context-awareness User, Item, Contexts pointwise
PITF [134], 2010 CP* SGD Folksonomy User, Item, Tag pairwise v
TagTR [168], 2010 TD HOSVD Folksonomy User, Item, Tag pointwise v v
TFMAP [157], 2012 CP SGD Context-awareness User, Item, Context listwise v
CARTD [138], 2012 CP* SGD Context-awareness Item, Contexts pairwise v
ClustHOSVD [165], 2015 | TD ~ HOOI Folksonomy User, Item, Tag pointwise v
GFF [78], 2015 CpP* ALS Context-awareness User, Item, Contexts pointwise Ve

* Method uses pairwise reduction concept, initially introduced in PITF.

3.3 Conclusion

In this chapter, we have attempted to overview a broad range of tensor-based
methods used in recommender systems to date. As we have seen, these methods pro-
vide a powerful set of tools for merging various types of additional information and are
aimed at increasing flexibility, customizability and quality of recommendation mod-
els. Tensorization enables original and non-trivial setups, going far beyond standard
user-item paradigm, and finds its applications in various domains. Tensor-based mod-
els can also be used as a part of more elaborate systems, providing compressed latent
representations as an input for other well-developed techniques.

One of the main concerns for the higher order models is inevitable growth of
computational complexity with increasing number of dimensions. Even for mid-sized
production systems that have to deal with highly dynamic environments, this might
have negative implications, such as the inability to generate recommendations for new
users in a timely manner. This type of issues can be firmly addressed with incremental
updates and higher order folding-in techniques.

Despite a numerous amount of various TF techniques, we note a common pat-
tern shared by all of them: user feedback, if present in the form of rating-like values, is

always treated as a direct measure of item relevance on a continuous real-valued scale.

82

On the other hand, as we will discuss in Chap. 4, it seems more natural to treat rat-
ings as ordinal values. In Chap. 5 we explore this idea more carefully with the help of
tensor-based formulation, where user feedback is encoded within a third dimension.
In some sense, it resembles context-aware and tag-based approaches, like Multiverse
or TagTR, if we view it from the ternary relations perspective.

We demonstrate that our model can potentially increase the perceived relevance
of recommendations, especially in the warm start scenario, where generated predic-
tions are highly sensitive to user input and, therefore, the ability to build a more
adequate preference model plays a crucial role. Our method also supports a simple
analytic form of the folding-in calculation, which results from a direct higher order
generalization of the one used in PureSVD.

In addition to that, as we will show in Chap. 5, even though the formulation of
our tensor approach is pointwise, it can also be viewed as a special kind of a ranking
task. Moreover, it has a much simpler formulation, comparing to pairwise or listwise
learning to rank methods like PITF or TFMAP; it does not bring additional complexity
and does not require any heuristic-based simplifications for solving the problem.

Finally, in Chap. 7 we combine both tensor-based preference model and our
hybrid model from Chap. 6 within a new tensor factorization approach. Unlike the
methods like Multiverse, it is more economical in a sense that it does not require
building a separate latent feature space for incorporating additional side knowledge

into the model.

Chapter 4

Limited preference information problem

As we note in Sec. 1.1.2, the general premise of the CF approach is that it does
not require any expert or domain knowledge for generating a model. Intrinsic rela-
tions within the data are expected to be learned directly from the observed user-item
interactions and in the case of latent factor models enclosed in the latent feature space.
While it may hold true in many cases, there are still situations when the output of CF
models becomes unreliable.

A particular example of that is the problem of the insufficient amount of user
feedback used to build CF models and to generate recommendations with their help.
We will denote that problem with the term limited preference information. It can be
divided into two distinct subproblems: the local lack of preferences and the global lack
of preferences, both having different implications on the behavior and the outcome of
the models.

The local problem arises right after an entity is introduced to the system for the
first time and lasts until a certain amount of preferences is collected. Predictions for
the entity during this phase are typically less reliable and less stable, especially in the
beginning. While this phase is inevitable for any entity, we implicitly assume here
that there are no general obstacles for collecting more data with time, which eventu-
ally resolves the problem. In other words, the problem does not affect the quality of
recommendations in general; hence the name “local”.

In contrast, the main driver for the global problem is the very mechanism of
user-item interactions, which limits an overall amount of preferences that can be po-
tentially collected. As it was noted in Sec. 1.2.2, this may have a negative impact

on general quality of recommendations. We note, however, that unlike the previous

33

84

case, the problem is not always present and significantly depends on the domain of
application, the nature of decision making and some other factors.
Below we provide a more detailed view on each subproblem and demonstrate a

few “blind spots” in existing approaches, which we aim to resolve in this work.

4.1 Local lack of preferences

In the definition of the local problem, we assume that the observed data is gen-
erally “nice” in a sense that it contains enough collaborative information for learning
representative patterns and building an adequate CF model. This corresponds to the
cases of a comparatively high density of user-item interactions. In this setting, the
task of generating relevant recommendations becomes problematic only in particular
cases of new users or new items with insufficient or unavailable feedback data, i.e., in
the warm start and the cold start scenarios introduced in Sec. 1.2.1. We refer to this
subproblem as the local lack of preferences.

There are several possible ways of dealing with this problem. One way is to
use the so-called rating elicitation technique. In this case, a recommender system is
designed to explicitly ask newly arrived or unrecognized users to provide feedback
on a pre-selected non-personalized list of items before they can actually start using
a recommendation service. Conversely, in the case of newly introduced items, a pre-
defined group of existing users can be asked to provide some feedback on them.

The selection process, however, is a very challenging task. For example, in the
new user case, a trivial strategy of presenting randomly picked items is ineffective and
can be frustrating for users. A more adequate approach is to find a collection of the
most representative items [53]. However, deriving a list of items that helps to better
learn user preferences without making a user feel bored by the elicitation process is a
non-trivial problem. In fact, it represents only a small part of a more general research,
devoted to the so-called active learning approach [51].

The problem becomes even worse if a pre-built list of items resonates poorly
with actual user tastes. In this case provided feedback will be mostly negative, i.e.,
full of items with low scores or low ratings assigned by users. Taking into account
the tendency of conventional CF algorithms to favor positively rated items, which we

demonstrate in Sec. 5.1.1, the elicitation process, in the end, may lead to an undesired

85

outcome with a lot of irrelevant recommendations. This is often alleviated by gener-
ating more items until enough positive feedback (e.g., items with high scores or high
ratings) is gathered. However, this makes engagement with the system less effortless
for users and may even lead to a loss of interest in it.

As an alternative to the rating elicitation option, one can infer user interests and
item relevance based on their side information. For example, one can restrict the list
of shown items based on which category of items a user is currently browsing. This is
where various content-based models can be applied. However, this approach should
be primarily considered as a last resort due to limitations mentioned in Sec. 1.1.1. If
side information is broadly available, a more elaborate but more fruitful alternative
is to use a hybrid approach. This may not only help to better handle the cold start,
but also allows to mitigate the global problem of insufficient preference information

described next.

4.2 Global lack of preferences

The aforementioned “nice” structure of data is not something that can be always
easily achieved. In practice, data sparsity is often very high, and in the most severe
cases, it may prevent CF models from discovering non-trivial and reliable relations
within the data, which in turn leads to substantial degradation of the resulting quality
of recommendations. We will refer to this subproblem as the global lack of preferences.

A trivial example of the global lack of preferences is a fresh system start when
there is yet not enough data collected by a recommender system. Clearly, in some
cases, the problem can be resolved merely by allowing a recommender system to run
for a longer period of time. However, there are more challenging situations, when,
for example, due to domain specifics users interact with only a small fraction of all
available items and the sparsity problem may even get worse with time. This is often
the case in online stores with a large (and potentially increasing) assortment. The
availability of side information plays a crucial role in such cases.

Indeed, as we have mentioned in Sec. 1.1.1, user choice can be influenced by
intrinsic properties of items. For example, users may prefer products of a particular
brand or products with specific characteristics. Even if item properties are unknown,

the knowledge about users themselves, such as demographic information or occupa-

86

tion, may help to explain their choice and to reveal certain behavioral patterns. By
using some hybrid CF approach, one may try to uncover at least some of these patterns
and build a better predictive model. In addition to an improved quality of recommen-
dations, using side information may help to make algorithms more stable and less

susceptible to extreme data sparsity.

4.3 Related work

The described subproblems can be addressed with a broad range of methods and
techniques. Below we provide a brief overview of such methods with respect to the

subproblem they are suitable for.

4.3.1 Addressing the local problem

Let us first consider the rating elicitation process. The majority of rating elici-
tation systems seem to focus only on a positive experience of users without properly
addressing the negative part. Roughly, a common approach across many standard
models can be summarized with a short line “people who like this item also like ..”.
This dictates how the rating elicitation is performed as well: users are asked to pro-
vide information about items they like. Obviously, this approach covers at most only
half of possible scenarios, as users may also dislike items, presented to them during
the rating elicitation phase. At best, the disliked items are simply filtered out. How-
ever, it seems more natural to engage with a complementary “people who dislike this
item do like ... instead” scenario. This, in turn, requires a more careful analysis of
user feedback, which can also improve the quality of recommendations in a general
scenario.

Nevertheless, only a few research papers have studied an effect of different types
of user experience on the quality of recommender systems in general. For example,
the authors of [96] proposed to split user ratings into categories and compute the
relevance scores based on user-specific rating values distribution. The authors of SLIM
method [113] have compared models that learn ratings either explicitly (r-models) or
in a binary form (b-models). They compare initial distribution of ratings with that

of recommended items by calculating a hit rate for every unique rating value. The

87

authors show that r-models have a stronger ability to predict top-rated items even if
ratings with the highest values are not prevalent.

The authors of [27] state that discovering what a user does not like can be easier
than discovering what the user actually likes. They propose to simply ignore all neg-
ative preferences of individuals to avoid unsatisfactory recommendations to a group.
Meanwhile, excessive focus on high ratings can lead to an even more pronounced bias
of recommendation algorithms towards top-rated items [51]. Thus, for example, the
authors of [50] explore the effect of items with the lowest predicted score on the out-
come of the personalized rating elicitation procedure. Their conclusion, however, is
that while it helps to improve performance in terms of error-based metrics, the tech-
nique is ineffective for improving the ranking of recommendations. The authors of
the MinRating approach [86], used for exploration of items, additionally show that the
lowest score predictions, made by MF models, are often inaccurate (leading to higher
gradients in parameter updates), which additionally exposes models’ biases.

The authors of [8] provide an insightful study of subjective nature of ratings
from a user perspective. They demonstrate that a rating scale is non-uniform in a
sense that distances between different rating values are perceived differently even by
the same user. The work raises an important question of a more adequate preference
modeling. As the authors show, the nature of user ratings is very different from its
common representation in terms of a simple real-valued scale or as a set of cardi-
nal numbers and is better interpreted in terms of an ordinal concept. The studies in
neoclassical economics [103] also support this observation.

An ordinal representation, in turn, can be achieved with a number of methods.
For example, one can apply several variants of ordinal regression [191, 95]. Alterna-
tively, it is possible to use various probabilistic frameworks, e.g., Bayesian inference
for matrix factorization [119], Boltzmann Machines (BM) [122] or Restricted Boltz-
mann Machines (RBM) [144]. An improper explicit dependence on the values of feed-
back can also be alleviated within the learning to rank framework, briefly described in
Sec. 2.4, and in particular with the methods like xCLiMF [158] (an extension of CLiMF
to explicit feedback data) or CoFiRank [181].

Nevertheless, while all these methods have their own unique set of advantages,
they also come with some drawbacks and limitations. For example, the methods based

on the BM approach are incredibly versatile and provide a natural formulation for or-

88

dinal data representation; however, they have high computational complexity and
cannot be easily applied to large-scale problems [144, 95]. Moreover, finding an op-
timal structure of BMs can be quite cumbersome due to the need to tune additional
hyper-parameters, including the number of hidden units and connectivity in the input
layer.

A more scalable alternative would be OrdRec [95], an ordinal regression-based
model. The model additionally allows to have a personalized rating scale, which ad-
dresses individual differences in user perception, and at the same time, it does not
require any additional latent features to encode rating values. However, its latent
space for items is twice the size of that in standard MF models: for every interaction,
it encodes an item’s neighborhood with a separate set of latent features. In addi-
tion to that, while the model is based on the SVD++ approach, it takes more time to
train without providing a significant improvement in the quality of recommendations.
Thus, it may not always be worth the efforts, especially taking into account that in
some cases comparable or even better improvement over SVD++ can be achieved by
PureSVD [38, 96] with much fewer efforts spent on its tuning '.

As we have noted in Sec. 2.4, learning to rank models also employ more elab-
orate optimization objectives, which may involve special tricks and depend on non-
trivial optimization techniques. For example, CoFiRank [181] optimizes the upper
bound approximation of nDCG, which additionally invokes a linear program along
with the SGD-based optimization. The xCLiMF model [158] in that sense is more ad-
vantageous, as it implements a more straightforward SGD-based optimization of a
smooth approximation of the Expected Reciprocal Rank. Nevertheless, even though
both models are designed to optimize a ranking metric, they may still underperform
a fine-tuned SVD++ algorithm in top-#n recommendations task [98].

Moreover, as we have discussed in Sec. 2.5.2, any SGD-based approach, in-
cluding SVD++, requires careful hyper-parameters’ tuning, which is far more labor-
intensive than tuning an SVD-based model. Indeed, assuming that we have 60 unique
points on a hyper-parameter grid, we would have to retrain and evaluate an SGD-

based model 60 times. In contrast, the SVD-based model needs to be trained only

'Metrics used in [95] and [38, 96] are not precisely the same; however they are still of the same type and are expected
to correlate. The difference between them in comparative analysis is unlikely to be as dramatic as the difference between
the ranking- or relevance-based metrics on the one hand and the error-based metrics on the other, which was mentioned

in Sec. 1.2.4 and also discussed in [38].

89

once with some sufficiently high rank value, and then all models of a lower rank are
obtained simply by truncating the number of columns in factor matrices. Even if an
SVD-based model would depend on additional hyper-parameters, still for every fixed
set of their values one can quickly evaluate the model for a range of ranks by comput-
ing it only for the highest one. This can significantly reduce the time for finding an
optimal configuration and favorably distinguishes SVD-based models from other MF
models.

In addition to that, while implementing some advanced MF method is typically
not too hard, making it computationally efficient can be quite challenging. We have
covered a few significant difficulties concerning both shared-memory and distributed
environments in Sec. 2.5.1, which require good engineering skills and a certain level of
experience in multicore programming and high-performance computing. Inefficient
implementations may easily result in days of training time, which can make them
infeasible in rapidly changing environments that require more frequent updates of
the entire model.

On the other hand, while there are a few production-level implementations, still
many advanced algorithms, even if publicly available, are often distributed in the form
of an unparalleled code running on a single-core, which requires substantial efforts
for making them really efficient. Moreover, new and more elaborate optimization ob-
jectives would require writing new optimization code. In that sense, the ability to
reuse SVD seems more beneficial, as it already has highly optimized implementations
in many programming languages and takes advantage of efficient linear algebra ker-
nels. This minimizes the amount of new code to be written, which in turn saves both
time and efforts and also allows to enjoy additional guarantees backed by solid linear

algebra.

4.3.2 Addressing the global problem

We have already discussed the problem of sparsity in Sec. 1.2.2 and provided
a few examples that allow to address it with some sort of “smoothing” techniques
or data clustering. It is also possible to use the compressed sensing technique in CF

settings [198].

90

In this work we are more interested in the cases where additional information
about relations is also available. We will specifically focus on content data, i.e., side
information about users and items, which allows using the hybrid approach with a
number of versatile and powerful techniques. We consider a particular category of
hybrid algorithms that are based on the MF approach. For convenience, we infor-
mally group them into several categories, depending on a particular choice of data
preprocessing steps and optimization objectives.

We have already described a few hybrid models in Sec. 2.3.4, namely FM and
SVDFeature. These models represent a wide class of hybrid factorization approaches,
where real attributes and properties are mapped to latent features with the help of
some linear transformation. In the majority of models feature mapping is a part of op-
timization process [123, 29, 140]; however, it can also be used as a post-processing step
[58]. Several other models can be categorized into an aggregation approach [114, 185],
where feature-based relations are imposed on interaction data and are used for learn-
ing aggregated representations. Alternatively, in the augmentation approach features
are represented as dummy variables that extend the model [108].

Another wide class of models uses regularization-based techniques to enforce
proximity of entities in the latent feature space based on their actual features. Some
of these models are based on probabilistic frameworks [69, 126], others extend stan-
dard MF objective [111, 31] with additional terms. One of the most straightforward
and well-studied regularization-based approach is collective MF [159]. In its simplest
variant, sometimes also called coupled MF, the corresponding loss function can be for-
mulated as [52]:

Z(4,0)=||W o (a~PQT)|+a(IH - PWil +IG - QWel?),

where © = {P,Q, Wy, W} represents model parameters, matrices H and G encode
side information, i.e. user attributes and item characteristics, and « controls the con-
tribution of the side information into the resulting model.

There are also several variations of the coupled factorization technique, where
parametrization of the content matrices H, G is replaced with parametrization of the
content-based similarity between users and items [155, 11]. The authors of the Local
Collective Embeddings (LCE) model [147] propose to add a locality constraint, so that

the entities, which are close to each other in terms of real features, remain close to

91

each other in the latent feature space as well. The authors use the model to specifically
address the cold-start problem.

Many of the described techniques can be generalized to the tensor case as well.
As an example, the coupled tensor factorization approach is explored in [128]. How-
ever, as we have shown in Chap. 3, the tensor format provides great flexibility in data
representation and problem formulation. For example, one of the most well-known
TD-based models called Multiverse (Sec. 3.2.4) encodes any data, including side infor-
mation, within additional dimensions. This model, however, can be hardly applied to
the problems with many side features encoded in a separate dimension, as the storage
required for TD factors depends exponentially on the number of dimensions. This
leads to the curse of dimensionality problem, mentioned in Sec. 3.1.3. Moreover, as we
have discussed in Sec. 1.2.8, encoding side information within additional dimensions
may lead to interpretation issues.

Alternatively, the Contextual Tensor-Based Approach for Personalized Expert
Recommendation (TAPER) model [61] uses CP format as a workhorse for a unified
representation. Various sources of information in TAPER are glued together with the
help of additional regularization constraints. The model also imposes locality con-
straints, requiring similar entities to remain close to each other in the latent feature
space. The curse of dimensionality problem is avoided due to the use of CP format.
However, as have been already mentioned in Sec. 3.1.3, the CP decomposition is gener-
ally unstable and may require some efforts in order to ensure convergence. Moreover,
in general, it does not impose orthogonality constraints on the columns of factor ma-
trices. This leads to a more complicated folding-in procedure that requires additional
optimization steps.

Worth noting that the majority of these methods are also based on SGD opti-
mization. This leads to the same technical issues, which were discussed at the end of

the previous section.

4.4 The need for new methods

To summarize, the described methods offer great flexibility in solving the prob-
lem of insufficient preference information. However, in many cases, it comes at the

cost of elaborate optimization schemes that require substantial engineering efforts

92

for implementing them and a special care on hyper-parameter tuning, which may not
necessarily result in significant quality improvement.

Moreover, different methods focus on either the local or the global aspect of
the problem. Meanwhile, both subproblems can be present at the same time within
a single system. Switching between different methods to address particular aspects
of the problem would inevitably increase maintenance costs. In turn, a joint model
based on some derivative of these methods is likely to increase an overall complexity
of the solution and can potentially magnify the aforementioned technical issues.

On the other hand, in Sec. 2.2 and Sec. 2.5 we have demonstrated that SVD-
based methods can be adjusted quite considerably and, in addition to that, offer many
advantages in terms of scalability, hyper-parameter tuning and support for online
settings. Moreover, the deterministic output and global guarantees, provided by SVD,
can play a crucial role in production environments. All this naturally leads to the
question, whether it is possible to derive a new approach, which would help to solve
the problems described in this chapter and at the same time preserve all the advantages
provided by SVD. Ideally, we would like to have a method that satisfies the following

criteria:
« uses SVD or applies it sequentially for optimization,
« requires minimal tuning of hyper-parameters,
« supports highly dynamic online settings via folding-in,
« efficiently handles a large number of different side features,

« provides a unified solution to the limited preference information problem and

can be easily adapted to each of its subproblems.

In the next part, we will gradually develop a new approach that meets all the
aforementioned requirements. In Chap. 5 we firstly address the problem of proper
feedback modeling. We propose a tensor-based method, where feedback values are
encoded within an additional dimension along with users and items, which allows to
naturally impose ordinal relations in the model. Technically it resembles the context-
aware methods and can also be viewed as a simplified version of the learning to rank

approach. In Chap. 6 we step back to the matrix case in order to see how the PureSVD

93

model can be modified in order to incorporate side information into it. We propose a
generalized formulation, which allows to achieve that while staying within the com-
putational paradigm of SVD. Finally, in Chap. 7 we combine both approaches into a
single framework, that preserves the advantages of its both predecessors and provides

a unified solution to the problem of limited preference information.

Part 11

Proposed models

94

Chapter 5

Higher order preference model

We argue that the situation with the local lack of preferences, described in the
previous chapter, can be alleviated if the system is able to learn equally well from
both positive and negative feedback. Consider the following movie recommendation
example. A new user marks the “Scarface” movie with a low rating, e.g., 2 stars out of
5, and no other user preferences are available. This is likely to indicate that the user
does not like movies about crime and violence. It also seems natural to assume that
the user probably prefers “opposite” features, such as sentimental story, which can be
present in romantic movies, or happy and joyful narrative provided by animation or
comedies. If this is the case, asking to rate or simply recommending the “Godfather”
movie is a redundant and inappropriate action. Similarly, if a user provides some
negative feedback for the first part of a series (e.g., the first movie from the “Lord of
the rings” trilogy), it is quite natural to expect that the system will not immediately
recommend another part from the same series.

A more proper way to engage with the user, in that case, is to leverage a sort
of “users, who dislike that item, do like these items instead” scenario. Users certainly
can share preferences not only in what they like but also in what they do not like
and it is fair to expect that techniques, based on the CF approach, could exploit this
for more accurate predictions even from solely negative feedback. In addition to that,
negative feedback may have a greater importance for a user, than a positive one. Some
psychological studies demonstrate that emotionally negative experience not only has
a stronger impact on an individual’s memory [87], but also has a more significant

effect on human behavior in general [141], known as the negativity bias.

95

96

Of course, many heuristics and tweaks (e.g., user and item biases discussed in
Sec. 2.2.2 and Sec. 2.3.2) could be proposed for traditional techniques to fix the prob-
lem; however, there are intrinsic limitations within standard models that make the
task hardly solvable. For example, algorithms could start looking for less similar items
in the presence of an item with negative feedback.

However, there is a problem of preserving relevance to the user’s tastes. It is
not enough to just pick the most dissimilar items, as they are most likely to lose the
connection to user preferences. Moreover, it is not even clear when to switch between
the “least similar” and the “most similar” modes. If a user assigns a 3-star rating for
a movie, does it mean that the system still has to look for the least similar items or
should it switch back to the most similar ones? User-based similarity approach is also
problematic, as it tends to generate a very broad set of recommendations with a mix of
similar and dissimilar items, which again leads to the problem of extracting the most
relevant, yet unlike recommendations.

In order to deal with the denoted problems, we propose a new tensor-based
model that treats feedback data as a special type of categorical variable. We show that
our approach not only helps to improve user cold start scenarios but also increases

general recommendations accuracy.

5.1 Problem formulation

The goal of conventional recommender system is to be able to accurately gen-
erate a personalized list of new and interesting items (top-n recommendations), given
a sufficient number of examples with known user preferences. As has been noted, if
preferences are unknown this requires special techniques, such as rating elicitation, to
be involved first, which in turn may disappoint users. In order to avoid that extra step
or at least make it less frustrating we introduce the following additional requirements

for a recommender system:
« the system must be sensitive to a full user feedback scale and do not disregard
its negative part,

« the system must be able to respond properly even to a single feedback and take

into account its type (positive or negative).

97

These requirements should help to gently navigate new users through the catalog of
items, making an overall experience more personalized, as with every new feedback

the system will gradually improve preference predictions.

5.1.1 Limitations of standard models

Let us consider without the loss of generality the problem of movie recommen-

dations. Traditionally, this is formulated as a rating prediction task:
f. : User x Movie — Rating, (5.1)

where User is a set of all users, Movie is a set of all movies and f, is a utility func-
tion, which assigns predicted values of ratings to every (user, movie) pair. The utility
function in CF models is learned from a prior history of interactions, i.e. previous ex-
amples of how users rate movies, which can be conveniently represented in the form
of a matrix A € RM*N with M rows corresponding to the number of users and N
columns corresponding to the number of movies. Elements 4;; of the matrix A denote
actual movie ratings assigned by users. As users tend to provide feedback only for a
small set of movies, not all entries of A are known, and the utility function is expected
to infer the missing values.

In order to provide recommendations, the inferred values of ratings R = [r;]]%i\{
are used to rank movies and build a ranked list of top-n recommendations, which in

the simplest case is generated as:
. n
toprec(i, n) := arg maxt;;. (5.2)
j€Movie

where toprec(i, n) is a list of n top-ranked movies predicted for user i. The way values
r;; are calculated depends on a CF algorithm and we argue that standard algorithms
are unable to accurately predict relevant movies given a user with only low ratings in his

or her preferences.

Example with matrix factorization

Let us first start with the MF approach. As we do not aim at predicting the exact

values of ratings and are more interested in correct ranking, it is adequate to employ

98

the PureSVD model of some rank r < min(M, N) described in Sec. 2.2.1. The matrix

of predictions in that case can be expressed as:
R=UxVT=pQT, (5.3)

where we also provide an equivalent form with factors P = UX? and Q= Ve,
commonly used in other matrix factorization techniques.

In contrast to many other MF techniques, one of the key properties of SVD is an
orthogonality of columns in factor matrices U and V. As it was shown in Sec. 2.2.3,
this property helps to find approximate values of ratings even for users that were not

a part of the original matrix A with a very simple and easy to compute expression:
r~VVia, (5.4)

where a € RY is a sparse vector of known user preferences, where a position of every
non-zero element corresponds to a movie, rated by a new user, and its value corre-
sponds to the actual user rating on that movie. Respectively, r € RY is a dense vector
of all predicted movie ratings.

Nevertheless, there is a subtle issue here. If, for instance, a contains only a
single rating, then it does not matter what exact value it has. Different values of the
rating will simply scale all the resulting scores, given by Eq. (5.4), and will not affect
the actual ranking of recommendations. In other words, the recommendation list in
the case of a single 2-star rating is going to be the same as in the case a 5-star rating.
In the case of a well-known user with a lot of known ratings this effect can be less
pronounced. However, when preference information is limited, like in the case with
new users in the cold start setting, this effect may play a crucial role in the willingness

of a user to continue using such an insensitive recommendation service.

Example with similarity-based approach

It may seem that the problem can be alleviated if we exploit some user similarity
technique with the help of a user-based kNN approach mentioned in Sec. 1.1.2. Indeed,
if users share not only what they like, but also what they dislike, then users, similar to

the one with a negative only feedback, might give a good list of candidate movies for

99

Table 5.1: Similarity-based recommendations issue.

Scarface Toy Story Godfather

Observation
Alice 2 5 3
Bob 4 5
Carol 2 5
New user
Tom 2 ? ?
Prediction
2.6 3.1

recommendations. The list can be generated with help of the following expression:

1 .
;= EkZNrkj sim (i, k), (5.5)
eN;

where N is a set of users, the most similar to user i, sim(i,k) is some similarity
measure between users i and k; K is a normalizing factor, equal to }_;c . [sim(i, k)| in
the simplest case. Similarity between users can be computed by comparing either their
latent features given by the rows of matrix U or simply by the preferences encoded
in the rows of the initial matrix A. It can be also modified to a more advanced forms,
which take into account user biases [2].

However, even though more relevant items are likely to get higher scores with
this user-similarity approach, it still does not guarantee an isolation of irrelevant
items. Let us demonstrate it on a simple example. For illustration purposes we will
use a simple kNN approach, based on a cosine similarity measure. However, it can be
generalized to more advanced variations with different similarity measures as well.

Let a new user Tom have rated the “Scarface” movie with rating 2 (see Table 5.1)
and we need to decide which of two other movies, namely “Toy Story” or “Godfather”,
should be recommended to Tom, given an information on how other users — Alice,
Bob and Carol — have also rated these movies. As it can be seen, Alice and Carol,
similarly to Tom, do not like criminal movies. They also both enjoy the “Toy Story”
animation. Even though Bob demonstrates an opposite set of interests, the preferences

of Alice and Carol prevail. From here it can be concluded that the most relevant (or

100

safe) recommendation for Tom would be the “Toy Story”. Nevertheless, the prediction
formula Eq. (5.5) assigns the highest score to the “Godfather” movie, which is the result

of a higher value of cosine similarity between Bob’s and Tom’s preference vectors.

5.1.2 Resolving the inconsistencies

The problems described above suggest that in order to build a model, which ful-
fills the requirements, proposed in the beginning of Sec. 5.1, we have to move away
from traditional representation of ratings. Our idea is to restate the problem formula-

tion in the following way:
f. : User x Movie x Rating — Relevance Score, (5.6)

where Rating is a domain of ordinal (categorical) variables, consisting of all possible
user ratings, and Relevance Score denotes the likeliness of observing a certain (user,
movie, rating) triplet. With this formulation relations between users, movies and rat-
ings are modelled in a ternary way, i.e. all three variables influence each other and the
resulting score.

This type of relations can be modelled with several methods, such as Factor-
ization Machines [136] or other context-aware methods [3]. We propose to solve
the problem with a tensor-based approach, as it seems to be more flexible and nat-
urally fits the formulation in Eq. (5.6) (see Fig. 5.1). More formally, with this approach
the observed (user, movie, rating) triplets are encoded within a third order tensor
AeRMN>K with M,N and K corresponding to the total number of unique users,
movies and ratings respectively. We set the values of A to be binary:

aijx=1, 1if(i,j,k) €S,

(5.7)
ajjx = 0, otherwise,

where S is a history of known interactions, i.e. a set of the observed (user, movie,
rating) triplets. Similarly to the MF case represented by Eq. (5.3), we are interested in
finding such a tensor factorization that helps to reveal common patterns in data and

to build a latent representation of users, movies and additionally ratings.

101

Rat\ngs

Users
Users

-
‘—"
-—
=

Items N/\S
e/bS 2 3 4

Figure 5.1: From a matrix to a third order tensor.

5.2 Proposed approach

The corresponding tensor approximation problem can be formulated in terms

of minimization of the following square loss function:

where R is a low rank tensor approximation and || - || denotes Frobenius norm simi-
larly to the matrix case, i.e. ||X]|2 = Y Xy iy xizliz...id'

Both CP and TD decompositions are suitable for this task. However, following
the SVD-based approach we additionally require orthogonality of columns in factor
matrices. Later we will show that this requirement allows for quick computation of
recommendations, similarly to Eq. (5.4) in the SVD case.

The orthogonality constraint can be naturally satisfied with the TD decompo-

sition, hence we seek for the solution in the following format (see Sec. 3.1.3):
R:gxl UX2VX3W,

where G € R"*"2*"3 ig the core of decomposition; U € RMxrn 7 e RNx2 (W e RKx73
are columnwise orthogonal factor matrices. The first two of them represent embedding
of users and items onto a reduced latent feature space, similarly to the SVD case. The
third matrix W gives an additional latent representation of ratings. The decomposi-

tion is computed with the help of HOOI algorithm described in Sec. 3.1.4.

102

Q

Figure 5.2: Higher order folding-in for Tucker decomposition. A slice with a new user
information in the original data (left) and a corresponding row update of the factor

matrix in Tucker decomposition (right) are marked with solid a color.

5.2.1 Efficient computation of recommendations

Recommender systems typically have to deal with large number of users and
items, which renders the problem of fast computation of recommendations. For exam-
ple, factorizing the tensor for every new user can take prohibitively long time, which
is inconsistent with the requirement of real-time engagement with users. In order to
address that problem we propose a higher order folding-in method (see Fig. 5.2). Sim-
ilarly to the SVD case, it helps to find approximate recommendations for any unseen

user with comparatively low computational cost (cf. Eq. (5.4)):
Ry=VV'PyWww', (5.9)

where P is an N x K binary matrix that encodes preferences of an user i and R;) €
RN*K is a relevance score prediction matrix. Similarly to the SVD-based folding-in
given by Eq. (5.9), it can be treated as a sequence of orthogonal projections to latent

spaces of movies and ratings.

5.2.2 Shades of ratings

Note that even though Eq. (5.9) looks very similar to Eq. (5.4), there is a substan-
tial difference in what is being scored. In the case of a matrix factorization we score
ratings (or other forms of feedback) directly, whereas in the tensor case we score the

likeliness of a rating to have a particular value for an item. This gives a new and more

103

Movie id

Rating

Figure 5.3: An example of predicted user preferences that we call shades of ratings.
Every horizontal bar can be treated as a likeliness of some movie to have a specific

rating for a selected user. More dense colors correspond to higher relevance scores.

informative view on the predicted user preferences (see Fig. 5.3). Unlike the conven-
tional methods, every movie in recommendations is associated not just with a single
score, but rather with a full range of all possible rating values that users are exposed
to.

Another remarkable property of “rating shades” is that it can be naturally uti-
lized for both ranking and rating prediction tasks. The ranking task corresponds to find-
ing a maximum score along the movies mode (2nd mode of the tensor) for a selected

(highest) rating. For example, in the case of 5-star scale, the task can be expressed as:

toprec(i, n) := arg’fnax Tiik- (5.10)

jeMovie; k=5
We also note that ranking can be performed within every rating value. Moreover, if
a positive feedback is defined by several ratings (e.g. 5 and 4), then the sum of scores

from these ratings can be used for ranking as well:

toprec(i,n) := arg max Z iiks
jEMOVie kap
where k, is a positivity threshold, e.g. k, = 4. Our experiments show that this typically
leads to an improved quality of predictions comparing to Eq. (5.10).
Rating prediction can be performed in a similar fashion as it simply corresponds
to maximization of relevance scores along the ratings mode (i.e. the 3rd mode of the

tensor) for a selected movie.

104

5.3 Evaluation

As has been discussed in Sec. 5.1.1, standard recommender models are unable
to properly operate with a negative feedback and more often simply ignore it. As
an example, a well known recommender systems library MyMediaLite [59] that fea-
tures many state-of-the-art algorithms, does not support a negative feedback for item
recommendation tasks.

In addition to that, a common way of performing an offline evaluation of recom-
mendations’ quality is to measure only how well a tested algorithm can retrieve highly
relevant items. Nevertheless, both relevance-based (e.g. precision, recall) and ranking-
based (e.g. nDCG, MAP) metrics, are completely insensitive to irrelevant items predic-
tion: an algorithm that recommends 3 positively rated and 7 negatively rated items
will gain the same evaluation score as an algorithm that recommends 3 positively
rated and 7 items with unknown (not necessarily negative) ratings.

This leads to several important questions, which are typically obscured and

which we aim to find an answer to:

« How likely is an algorithm to place irrelevant items in top-n recommendation

list and rank them highly?

« Does high evaluation performance in terms of relevant items prediction guar-

antee a lower number of irrelevant recommendations?

Answering these questions is impossible within standard evaluation paradigm and we
propose to adopt commonly used metrics in a way that respects crucial difference
between the effects of relevant and irrelevant recommendations. We also expect that
modified metrics will reflect the effects, described in the beginning of this chapter (the

Scarface and Godfather example).

5.3.1 Negativity bias compliance

The first step for a proper modification of metrics is to split rating values into 2
classes: the negative feedback class and the positive feedback class. This is achieved by
selecting a positivity threshold value, such that the values of ratings equal to or above

this threshold are treated as positive examples and all other values — as negative.

105

User preferences

? tn ? fp fn fp tp
+ |+ + + +

Recommendations

Figure 5.4: Definition of matching and mismatching predictions. Recommendations
that are not a part of the known user preferences (question marks) are ignored and

not considered as false positive.

The next step is to allow generated recommendations to be evaluated against
the negative user feedback, as well as the positive one. This leads to a classical notion
of true positive (tp), true negative (tn), false positive (fp) and false negative (fn) types
of predictions [153], which also renders a classical definition of relevance metrics,
namely precision (P) and recall (R, also referred as True Positive Rate (TPR)):

_ Lt
tp+fp’ tp+fn’

Similarly, False Positive Rate (FPR) is defined as

FPR= P
tp + fp

The TPR to FPR curve, also known as a Receiver Operating Characteristics (ROC)
curve, can be used to assess the tendency of an algorithm to recommend irrelevant
items. Worth noting here that if items, recommended by an algorithm, are not rated
by a user (question marks on Fig. 5.4), then we simply ignore them and do not mark
as false positive in order to avoid fp rate overestimation [153].

The Discounted Cumulative Gain (DCG) metric will look very similar to the orig-
inal one with the exception that we do not include the negative ratings into the cal-

culations at all:
Tp _ 1

D = —_ 5.11
G ;1082(17"'1) G-11)

where p : {r, > positivity threshold} and r, is a rating of a positively rated item. This

gives an nDCG metric:
DCG

nDCG = m,

106

where iDCG is a value returned by an ideal ordering or recommended items (i.e. when

more relevant items are ranked higher in top-n recommendations list).

5.3.2 Penalizing irrelevant recommendations

The nDCG metric indicates how close tp predictions are to the beginning of a
top-n recommendation list, however, it tells nothing about the ranking of irrelevant
items. We fix this by a modification of Eq. (5.11) with respect to a negative feedback,

which we call a Discounted Cumulative Loss:

27— 1
DCL = , (5.12)

where n : {r, < positivity threshold} and r, is a rating of a negatively rated item.

Similarly to nDCG, nDCL metric is defined as:

nDCL = -D&’
iDCL
where iDCL is a value returned by an ideal ranking or irrelevant predictions (i.e. when
more irrelevant items are ranked lower). Note that as nDCL penalizes high ranking
of irrelevant items, the lower are the values of nDCL the better.

In the experiments all the metrics are measured for different values of top-n
list length, i.e. the metrics are metrics at n denoted as @n. The values of metrics are

averaged over all test users.

5.3.3 Evaluation methodology

For the evaluation purposes we split datasets into two subsets, disjoint by users
(e.g. every user can only belong to a single subset). First subset is used for learning a
model, it contains 80% of all users and is called a training set. The remaining 20% of
users (the test users) are unseen in the training set and are used for models’ evaluation.
We holdout a fixed number of items from every test user and put them into a holdout
set. The remaining items form an observation set of the test users. Recommendations,
generated based on an observation set are evaluated against the holdout set.

The main difference from common evaluation methodologies is that we allow

both relevant and irrelevant items in the holdout set (see Fig. 5.4). Furthermore, we

107

vary the number and the type of items in the observation set, which leads to various

scenarios:

« leaving only one or few items with the lowest ratings leads to the case of “no-

positive-feedback” cold start;

. if all the observation set items are used to predict user preferences, this serves

as a proxy to a standard recommendation scenario for a known user.

Using this scheme we perform a 5-fold cross validation by selecting different 20% of

users each time and averaging the results across all 5 folds.

5.4 Experimental setup

This section describes various settings, including dataset preprocessing, selec-

tion of algorithms and problem specific modifications to evaluation methodology.

5.4.1 Datasets

We use publicly available Movielens' 1M and 10M datasets as a common stan-
dard for offline recommender systems evaluation. We have also trained a few models
on the latest Movielens dataset (22M rating, updated on 1/2016) and deployed a movie
recommendations web application for online evaluation. This is especially handy for
our specific scenarios, as the content of each movie is easily understood and contra-
dictions in recommendations can be easily eye spotted (see Table 5.2). We preprocess

these datasets to contain only users who have rated no less than 20 movies.

5.4.2 Algorithms

We compare our approach with the state-of-the-art matrix factorization meth-
ods, designed for item recommendations task as well as two non-personalized base-

lines.

« CoFFee (Collaborative Full Feedback model) is the proposed tensor-based ap-

proach.

Ihttps://grouplens.org/datasets/movielens/

108

« SVD, also referred as PureSVD described in Sec. 2.2.1. Missing values in this

model are simply imputed with zeros.

« WRMF is the MF method, described in Sec. 2.3.3, where missing values are uni-
formly weighted.

« BPRMF [135] is a matrix factorization method, powered by a Bayesian person-
alized ranking approach (BPR), which optimizes pairwise preferences between

observed and unobserved items.

« Most popular model always recommends top-7 items with the highest number

of ratings (independently of ratings value).

« Random guess model generates recommendations randomly.

SVD is based on Python’s Numpy, and SciPy packages, which heavily use BLAS
and LAPACK functions as well as MKL optimizations. CoFFee is also implemented
in Python, using the same packages for most of the linear algebra operations. We
additionally use Pandas package to support sparse tensors in COO format.

BPRMF and WRMF implementations are taken from the MyMediaLite [59] li-
brary. Only positively rated data is used for training these two models. In the case
of BPRMF it is additionally binarized. We wrap the command line utilities of these
methods with Python, so that all the tested algorithms share the same namespace and
configuration. Command line utilities do not support online evaluation and we imple-
ment our own (orthogonalized) folding-in on the factor matrices generated by these
models. Learning times of the models are depicted on Fig. 5.5. The source code as well

as the link to our web app can be found at Github?.

5.4.3 Settings

The number of holdout items is always set to 10. The top-# values range from
1 to 100. We perform 3 different selection mechanisms for observation set. In the first
one we sample either 1 or 3 negatively rated items from test user preferences. In the
second scheme we select 1, 3 or 5 items at random. Finally, in the third case we select

all available test user items (see Sec. 5.3.3 for details).

2https://github.com/Evfro/fifty-shades

109

03:10.5
01:19.6
- 00:002 00:17.7
[]
BRPMF WRMF SVD CoFFee

Figure 5.5: Models’ learning time, mm:ss.ms (single laptop, Intel i5 2.5GHz CPU,
Movielens 10M).

We include higher values of top-n (up to 100) as we allow random items to ap-
pear in the holdout set. This helps to make experimentation more sensitive to wrong
recommendations that match negative feedback from users. Both observation and
holdout sets are cleaned from the items that are not present in the training set. The
number of latent factors for all matrix factorization models is set to 10, CoFFee multi-
linear rank is (13, 10, 2). Regularization parameters of WRMF and BPRMF algorithms
are set to MyMedialLite’s defaults.

The positivity threshold is set to 4 for both Movielens 1M and Movielens 10M.
Worth noting here that lower values of positivity threshold (e.g., 3 or 2) mostly lead
to the changes in absolute numbers, while the general behavior of models stays ap-
proximately the same with only minor rearrangements. Due to this reason we only

report results for one fixed value of the positivity threshold.

5.5 Results

Evaluation results are presented on Fig. 5.6. Rows A and C correspond to Movie-
lens 1M dataset, rows B and D correspond to Movielens 10M dataset. We also report
a few interesting hand-picked examples of movies recommendations, generated from

a single negative feedback (see Table 5.2).

How to read the graphs. The results are better understood with particular exam-
ples. Let us start with the first two rows on Fig. 5.6 (row A is for Movielens 1M and
row B is for Movielens 10M). These rows correspond to a performance of the models,

when only a single (random) negative feedback is provided.

0.7 0.14 0.14
.7 0.6 0.12 0.12
@ .
g0 s = 05 0.10 0.10 // —— BPRMF
- 1] = = —
g i < 04 S 008 S 0.08 CoFfree

A Zo010 P S Q] — s
3 . 803 2 0.06 g 0.06
o 7 4 Q 2 —— WRMF
2 005 /. a 0.2 0.04 0.04 most popular
= 724 0.1 0.02 0.02 random

0.00 0.0 £ 0.00 0.00

0.00 0.05 0.10 0.15 0.00 0.05 010 015 020 0.25 20 0 60 80 100 20 10 60 80 100
False Positive Rate Recall@n top-n top-n

0.30 0.6 0.16 0.27
8025 05 0.14 0.20
< 420 7 5 0.4 012 —— BPRMF
g 7 % 2 / & 010 S 0.15 —— CoFFee
2 7% S .. Q —

B 015 Z g 03 3 0.08 o SVD
010 7 202 / 2 0.06 2 0.10 WRME
] o / 0.04 005 most popular

| y .05
=005 / 0.1 0.02 /// random
0.00 0.0 0.00 0.00
0.00 005 0.10 015 020 025 0.30 0.00 0.05 0.10 0.15 020 0.25 0.30 20 0 60 80 100 20 10 60 80 100
False Positive Rate Recall@n top-n top-n
0.8 0.35 0.30
0.7 0.30 0.25
~ 06 0.25 —— BPRMF
905 5 s 020 CoFF
s 9 0.20 S oFFee
3 04 S'V o 015 — SVD
203 g 015 2 00 —— WRMF
a 02 0.10 most popular
0.1 0.05 0.05 random
Z 0.0 0.00 0.00
00 01 02 03 04 05 00 01 02 03 04 05 20 10 60 80 100 20 0 60 80 100
False Positive Rate Recall@n top-n top-n
0.7 0.35
) 0.40
0.6 0.30 0.35
= 0.5 0.25 0.30 — BPRMF
(] = =
§ 04 & 020 Q 0.25 CoFFee
D 203 2015 g 020 SVD
g - Ch 2o — WRMF
& 02 0.10 0.10 most popular
0.1 0.05 0.05 random
0.0 0.00 0.00
0.0 01 02 03 04 05 06 00 01 02 03 04 05 06 20 0 60 80 100 20 0 60 80 100
False Positive Rate Recall@n top-n top-n

Figure 5.6: The ROC curves (1st column), precision-recall curves (2nd column),
nDCG@n (3rd column) and nDCL@#n (4th column). Rows A, B correspond to a cold
start with a single negative feedback. Rows C, D correspond to a known user recom-
mendation scenario. Odd rows are for Movielens 1M, even rows are for Movielens
10M. For the first 3 columns the higher the curve, the better, for the last column the
lower the curve, the better. Shaded areas show a standard deviation of an averaged

over all cross validation runs value.

First of all, it can be seen that the item popularity model gets very high scores
with TPR to FPR, precision-recall and nDCG metrics (first 3 columns on the figure).
One could conclude that this is the most appropriate model in that case (when almost
nothing is know about user preferences). However, high nDCL score (4th column)
of this model indicates that it is also very likely to place irrelevant items at the first
place, which can be disappointing for users. Similar poor ranking of irrelevant items
is observed with SVD and WRMF models. On the other hand, the lowest nDCL score

belongs to the random guess model, which is trivially due to a very poor overall per-

111

Table 5.2: Hand-picked examples from top-10 recommendations generated on a sin-

gle feedback. The models are trained on the latest Movielens dataset.

Scarface LOTR: The Two Towers Star Wars: Episode VII - The Force Awakens

) o’ eAghgis L9’ exgAgis KA A

Toy Story Net, The Dark Knight, The

CoFFee Mr. Holland’s Opus Cliffhanger Batman Begins
Independence Day Batman Forever Star Wars: Episode IV - A New Hope

Reservoir Dogs LOTR: The Fellowship of the Ring Dark Knight, The
SVD Goodfellas Shrek Inception
Godfather: Part II, The LOTR: The Return of the King Iron Man

formance. The same conclusion is valid for BPRMF model, which has low nDCL (row
A), but fails to recommend relevant items from a negative feedback.

The only model that behaves reasonably well is the proposed CoFFee model. It
has low nDCL, i.e. it is more successful at avoiding irrelevant recommendations at the
first place. This effect is especially strong on the Movielens 10M dataset (row B). The
model also exhibits a better or comparable to the item popularity model’s performance
on relevant items prediction. At first glance, the surprising fact is that the model has
a low nDCG score. Considering the fact that it can not be due to a higher ranking of
irrelevant items (as it follows from low nDCL), this is simply due to a higher ranking
of items, which were not yet rated by a user (recall the question marks on Fig. 5.4).

The model makes a safe guess by filtering out irrelevant items and proposing
those items that are more likely to be relevant to an original negative feedback (unlike
popular or similar items recommendation). This conclusion is also supported by the
examples from the first 2 columns of Table 5.2. It can be easily seen that, unlike SVD,
the CoFFee model makes safe recommendations with “opposite” movie features (e.g.
Toy Story against Scarface). Such an effects are not captured by standard metrics and
can be revealed only by a side by side comparison with the proposed nDCL measure.

In standard recommendations scenario, when user preferences are known (rows
C, D on Fig. 5.6) our model also demonstrates the best performance in all but nDCG
metrics, which again is explained by the presence of unrated items rather than a poor
quality of recommendations. In contrast, MF models — SVD and WRMF - while also
being the top-performers in the first three metrics, demonstrate the worst quality in

terms of nDCL almost in all cases.

112

5.6 Conclusion and perspectives

To conclude, let us first address the two questions, posed at the beginning of
Sec. 5.3. As we have shown, standard evaluation metrics that do not treat irrelevant
recommendations properly (as in the case with nDCG), might obscure a significant
part of a model’s performance. An algorithm that highly scores both relevant and
irrelevant items is more likely to be favored by such metrics while increasing the risk
of a user disappointment.

We have proposed modifications to both standard metrics and evaluation pro-
cedure, which not only reveal a positivity bias of standard evaluation but also help
to perform a comprehensive examination of recommendations’ quality from the per-
spective of both positive and negative effects.

We have also proposed a new model that is able to learn equally well from full
spectrum of user feedbacks and provides state-of-the-art quality in different recom-
mendation scenarios. The model is unified in a sense that it can be used both at an
initial step of learning user preferences and at standard recommendation scenarios
for already known users. We believe that the model can be used to complement or
even replace standard rating elicitation procedures and help to safely introduce new
users to a recommender system, providing highly personalized experience from the

very beginning.

Chapter 6

Hybrid factorization model

Since the very beginning of the recommender systems field, there was active
research devoted to various dimensionality reduction methods allowing to build more
expressive and more accurate latent factor models. A considerable part of this research
was specifically devoted to elaborate MF techniques. As we have seen in Chap. 2, these
techniques offer a very flexible framework for addressing many different aspects of
the recommendation task.

The interest in the MF approach had been additionally warmed up by the famous
Netflix prize competition. However, one of its main critiques was a narrow focus on
rating prediction. As has been noted in Sec. 1.2.4, good rating prediction performance
cannot be straightforwardly translated to a good performance in terms of the top-n
recommendations task. In fact, one of the simplest SVD-based models called PureSVD,
which is not even suitable for rating prediction, was proven to outperform other much
more sophisticated MF algorithms (see Sec. 2.2.1).

Moreover, as we have discussed in Sec. 2.5 and summarized in Sec. 4.4, PureSVD
offers a number of practical advantages, such as global convergence with determin-
istic output backed by solid linear algebra, highly optimized implementations based
on BLAS and LAPACK routines, a lightweight hyper-parameter tuning achieved by
a simple rank truncation, analytical expression for instant online recommendations,
scalable modifications based on randomized algorithms. Therefore, we find it neces-
sary to distinguish this approach from all other MF methods. Even though some of
them are inspired by SVD and have its acronym in their names (e.g., FunkSVD, SVD++,

etc.), they are not SVD-based and do not provide the same set of advantages.

113

114

However, as any other CF technique, PureSVD relies solely on the knowledge
about user preferences expressed in the form of ratings, likes, purchases or other types
of feedback, either explicit or implicit. On the other hand, as has been discussed in
Chap. 4, this information may not always be sufficient for learning a representative
model. If interaction data is too scarce, it may become extremely difficult to dis-
cover reliable patterns from the observations without considering additional sources
of knowledge about users and items.

Addressing the described problems of insufficient preference data has lead to
the development of hybrid models, introduced in Sec. 1.1.3. As we have also discussed
in Sec. 4.3, a significant body of work is specifically devoted to incorporating side
information into MF methods. Surprisingly, the SVD-based approach has received
much lower attention in this regard, despite having many practical advantages.

It was shown to be a convenient tool for factorizing aggregated representations
of feature matrices and collaborative data [166]. However, in this case, the structure of
interactions vanishes due to the aggregation process and the obtained factors can only
be used as an intermediate result. Therefore, unlike PureSVD, it requires some other
CF algorithm for generating predictions and leads to a more complicated solution.

To the best of our knowledge, there were no attempts for developing an inte-
grated hybrid approach, where interaction data and side information would be jointly
factorized with the help of SVD, and the obtained result would be used as an end model
that allows to immediately generate recommendations as in the PureSVD approach.
With this work, we aim to fill that gap and extend the family of hybrid methods with

a new approach based on a straightforward modification of PureSVD.

6.1 Understanding the limitations of SVD

As we have demonstrated in Chap. 2, MF methods offer a great level of flexi-
bility allowing to tackle various RS problems and fine-tune a desired solution. This
includes the already mentioned ability to blend both interaction data and additional
side knowledge within a single optimization objective, which, among other benefits,
produces a more meaningful latent feature space with a certain inner structure, con-

trolled by side information.

115

Table 6.1: An example of insufficient preference data problem

Item1 Item2 Item3 Item4 Itemb5

Observed interactions

Alice 1 1 1
Bob 1 1 1
Carol 1 1
New user
Tom 1 ? ? 1 1

PureSVD: 0.3 0.3
Our approach: 0.1 0.6

Table note: Item5 is a cold-start item. Item3 and Item5, highlighted with blue color, are assumed to be
similar to each other in terms of their characteristics. This assumption is reflected in the Our approach
row. The PureSVD row corresponds to the PureSVD model of rank 2. The code to reproduce this result
can be found at https://gist.github.com/Evfro/c6ec2b954adftf6aaa356f9b3124b1d2.

This technique, however, is not available off-the-shelf in the PureSVD approach
due to the classical formulation of the truncated SVD problem with its fixed optimiza-
tion objective given by Eq. (2.4). In this work we aim to find a new way to formulate the
optimization problem so that, while staying within the same computational paradigm
of the truncated SVD, it would allow us to account for additional sources of information
during the optimization process. In order to do this we first need to decompose SVD

internals and see what exactly affects the formation of its latent feature space.

6.1.1 When PureSVD does not work

Consider the following simple example on fictitious interaction data depicted in
Table 6.1. Initially we have 3 users (Alice, Bob and Carol) and 5 items, with only first
4 items being observed in interactions (the first 3 rows and 4 columns of the table).
The last column corresponds to a cold start (i.e. previously unobserved) Item5. We
use this toy data to build PureSVD of rank 2 and generate recommendations for a new
user Tom (New user row in the table), who has already interacted with Item1, Item4

and Item5.

https://gist.github.com/Evfro/c6ec2b954adfff6aaa356f9b3124b1d2

116

Let us suppose that in addition to interaction data we are also provided with
some prior knowledge about item relations. More specifically, we assume that Item3
and Item5, highlighted with blue color, are more similar in their characteristics to each
other than to other items. For example, they can be of the same unique category. In
that case, since Tom has expressed an interest in Item5, it seems natural to expect
from a good recommender system to favor Item3 over Item2 in recommendations.
This, however, does not happen with PureSVD.

With the help of the folding-in technique given by Eq. (2.11) it can be easily ver-
ified that the scores predicted by SVD will be equal for both items as shown next to
the PureSVD entry in the bottom of Table 6.1. This example demonstrates a general
limitation of the PureSVD approach related to the lack of preference data: the lower is
the density of data the harder it is for SVD to recover meaningful relations (see Fig. 6.1).
Obviously, this problem cannot be resolved without taking into account additional
problem-specific knowledge. In this chapter we show how to remove this limitation by
employing side data and help an SVD-based model generate more reasonable predic-
tions (see Our approach entry in Table 6.1 as an example).

It should be also noted that if Carol would have additionally rated both Item3
and Itemb5, this would build a connection between these items in the model and lead
to the appropriate scores even without side information. This leads to an idea that de-
pending on the sparsity of interactions, using side information may not always provide
additional benefits. We investigate this idea in Sec. 6.4. This also opens up a perspec-
tive of addressing (at least partially) an important question, “why SVD works well for

some recommender applications, and less well for others”, raised in [146].

6.1.2 Why PureSVD does not work

The formal explanation of the observed result requires understanding of how
exactly computations are performed in the SVD algorithm. A very rigorous mathemat-
ical analysis of that is performed by the authors of the EIGENREC model, described
in Sec. 2.2.4. As the authors demonstrate, the latent factor model of PureSVD can be
viewed as an eigendecomposition of a scaled user-based or item-based cosine similarity

matrix.

117

Degradation of SVD quality

0.10{ B PureSVD

=2 MP

2

e 0.05

0.00-

0.04% 0.05% 0.10% 0.23% 0.70%
Density of data

Figure 6.1: The quality of PureSVD recommendations is very sensitive to the lack
of preference data and may even fall below the non-personalized popularity-based
model (denoted as MP) with extreme sparsity. Results from Movielens-10M dataset
(see Sec. 6.3 for details). At every sparsity level the rank of PureSVD is tuned to provide
the best result.

Recall that, for example, in the user-based case each element of the similarity
matrix is proportional to the scalar product between the corresponding rows of the
original rating matrix:

T
Cij ~a; a]', (61)

where a; is a sparse vector that encodes preferences of user i. This observation imme-
diately suggests that any cross-item relations are simply ignored by SVD as it takes only
item co-occurrence into account. In other words, the contribution of a particular item
into the final user similarity score c;; is counted only if the item is present in preferences
of both user i and user j. Similar conclusion also holds for the item-based case. This
fully explains the uniform scores assigned by PureSVD in our fictitious example.
The authors of EIGENREC propose to replace the scaling factors as well as the
similarity matrix with some new matrices, which fit more adequately into an under-
lying relations model. Among various proposed replacement options, one particular
similarity measure, namely Jaccard Index, could partially solve the described problem,
as to some extent it allows to account for cross-entity relations. However, it does not
take into consideration how similar entities are. Indeed, depending on a set of fea-

tures particular items or users can be more similar to each other than to others and

therefore should have a higher contribution into a final similarity score.

118

6.2 Proposed approach

In order to account for cross-entity relations in a more appropriate way we have
to find a different similarity measure that would consider all possible pairs of entities
and allow us to fuse side information in there. A straightforward way to achieve this

is to modify the inner product in Eq. (6.1) as follows:

Cij ~ alTS a]-. (62)

where symmetric matrix § € RNV

reflects auxiliary relations between items based on
side information. This matrix be constructed in many ways. As an example, one can
represent items as vectors of their real features (e.g., movie genres) and then compute
cosine similarity between different pairs of these vectors in order to fill-in off-diagonal
entries of S. More details about the properties of such matrices are given in Sec. 6.2.2.

Effectively, this matrix creates “virtual” links between users even if they have no
common items in their preferences, i.e., have never rated the same item. Occasional
links will be filtered out by dimensionality reduction, whereas more frequent ones
will contribute into the model and help to reveal valuable consumption patterns. In
a similar fashion we can introduce a matrix K € RM*M to incorporate user-related
information. We will use the term side similarity to denote these matrices. Their

entries encode similarities between users or items based on side information, such as

user attributes or item features.

6.2.1 HybridSVD

Equation (6.2) generates the following matrix cross-product:
A SAT, (6.3)

where, as previously, A, denotes a rating matrix with unknown elements replaced
by zeroes. We omit scaling factors, used in the EIGENREC model, to have a clearer
picture of the effects related purely to side information handling. Scaling, however,
adds an additional degree of freedom in model tuning and can be brought back at any

time. In a similar fashion, matrix K gives

ALKA,. (6.4)
0 0

119

These two cross-products have an effect on either rows or columns of A, and are
independent of each other. Our ultimate goal is to bring them together into a joint
problem formulation with a single solution based on standard SVD.

In order to achieve that, we note that if A = UYX VT is an SVD of some matrix

A, then an eigendecomposition of the corresponding Gram matrices reads:

AAT = Ux?UT,

6.5
ATA=V32VT, 9

By plugging Eq. (6.3)-(6.4) into Eq. (6.5), we arrive at the following system of equa-
tions:
AgSA) =UX*UT,
(6.6)
AlKA,=VX2VT,
where matrices U and V represent embeddings of users and items onto a common
latent feature space.
The system of equations in Eq. (6.6) has a close connection to the Generalized

SVD [66] and can be solved via the standard SVD of an auxiliary matrix A [1]:
A=K2A,S7=0UxVT, (6.7)

where matrices U, ¥ and V represent singular triplets similarly to the PureSVD model.
Matrix ¥ here is the same as in Eq. (6.6) and the connection between the auxiliary and

the original latent feature space is established by the following relations:
U=K:U, V=SV, (6.8)

There are certain technical challenges, related to the computation of matrix
square roots in Eq. (6.7) and the need to calculate their inverses for finding U and
V in Eq. (6.8). In Sec. 6.2.3 we show how to avoid these problems with the help of
Cholesky decomposition. Meanwhile, let us fix the fact that solving the joint problem
of Eq. (6.6) turns out to be as simple as finding standard SVD of an auxiliary matrix
A. We call this model HybridSVD. As it can be seen, matrix A “absorbs” additional
relations encoded by matrices K and S and allows to model them jointly.

Orthogonality of factor matrices U and V allows to shed the light on the struc-
ture of factors U and V. Using the fact that UTU=VTV =1, one gets:

UTKU =VTsV =1,

120

" PureSVD » Casablanca (Drama)

. BN HybridSVD @ Good Will Hunting (Drama)
“g % One Flew Over the Cuckoo's Nest (Drama)
Q
g A
© A Breaveheart (History, War)
& , - ® o

m Terminator 2 (Sci-Fi) >

® Start Wars: Episode VI (Sci-Fi)

1st component 1st component

Figure 6.2: The effect of genre-based movie similarity. Scatter points correspond to
different movies in the latent feature space (the first two principal components). Our
model tends to pull movies of different genres apart and place movies of the same
genre close to each other. Uniform, distance-preserving scaling is applied to make

models comparable.

i.e. columns of the matrices U and V are orthogonal under the constraints imposed
by matrices K and S respectively!. In other words, the structure of the latent space
is directly shaped by side information. We also note that enitities with high similarity
in their own feature space are likely to become closer to each other in the latent feature
space of HybridSVD (see Figure 6.2).

6.2.2 Side similarity

Construction of the matrices K and S to a certain extent is a feature engineer-
ing task and therefore, it is difficult to provide a universal recipe. We have already
mentioned one possible way based on a simple cosine similarity calculation. Indeed,
there can be many other ways. However, we will limit possible options by restricting

these matrices to be:
1. symmetric: K = KT, S = ST,
2. positive definite: K > 0, S > 0.

Cases when the above requirements do not hold are out of the scope of this work as

the problem becomes more complex and computationally infeasible.

This property of matrices U and V is sometimes called K- and S-orthogonality [162].

121

The first requirement is typically easily satisfied, however the second one is
more restrictive since side information may come from heterogeneous sources and
may have an arbitrary structure. In order to resolve the uncertainty we impose the

following form on side similarity matrices:

S=1+aZ,
K=I+pW,

(6.9)

where Z, W are zero-diagonal real symmetric matrices with elements satisfying —1 <
zijpwij < 1 ¥i,j, and a, p € R are free model parameters. Note that with a = =0
the model turns back into PureSVD.

When side similarity matrices are not strictly positive definite reducing the val-
ues of @ and f allows to fix that®. Additional benefit provided by « and f is the ability
to control an overall contribution of side information in the model and avoid undesirable
dominance of feature-based relations over co-occurrence patterns.

In our experiments we used a simple procedure to construct similarity matri-
ces. Assuming there are k different classes of features fi, f,,..., f¢ one can build k
matrices Sy, S,,..., S corresponding to a similarity or proximity of objects with re-
spect to each particular feature class. Depending on the nature of features, one can
use different similarity measures, e.g. based on a Euclidian distance, cosine similarity
or Jaccard Index. The final single representation S can then be obtained using an in-
clusive S = %Zle S; or exclusive S =]_[f:1 S; rule. The latter produces the sparsest
result, which is beneficial from both computational and storage efficiency, however in
our case decreased the overall quality of the model, and we went with the former.

We note that independently of the type of transformations described above the
effect of changing o and p (i.e. downvoting or upvoting off-diagonal elements of similar-
ity matrices) is typically the most pronounced, leading to a noticeable change in quality

of recommendations.

6.2.3 Efficient computations

Matrix square root. Finding square root of an arbitrary matrix is a computation-

ally intensive operation. However, by construction, matrices K and S are symmetric

2A sufficient (however not necessary) upper bound for the values of & and f8 can be estimated from the matrix diagonal

dominance condition [66].

122

positive definite (SPD) and therefore can be represented in the Cholesky decomposition
form: S = LSLg, K = LiLL, where Lg and Lg are lower triangular real matrices. This
decomposition can be computed much more efficiently than the standard square root.

By a direct substitution it can be verified that SVD of the following auxiliary

matrix

A=LIAL;=UZVT, (6.10)

also provides a solution to Eq. (6.6) and, therefore, it can be used to replace Eq. (6.7)
with expensive square root computation. The connection between the auxiliary latent

space and the original one in this case is given by (c.f. Eq. (6.8)):
U=LLU, V=LV, (6.11)

Note that after singular vectors U and V are computed, there is no need to explicitly
calculate inverses of Lg and L for finding U and V. It only requires to solve a cor-
responding triangular system of equations, which can be performed very efficiently
[66].

Furthermore, matrices K and S are likely to be sparse for a broad set of real fea-
tures and attributes. This can be also exploited via computation of the sparse Cholesky
decomposition or, even better, incomplete Cholesky decomposition [66], additionally
allowing to skip negligibly small similarity values. We note that for sparse similar-
ity matrices the corresponding triangular part of their Cholesky factors also become
sparse.

As an additional remark, Cholesky decomposition is fully deterministic and al-
lows symbolic factorization to be used for finding the non-zero structure of its factors.
This feature makes tuning HybridSVD more efficient: once the resulting sparsity pat-
tern of the Cholesky factors is revealed it can be reused to speedup further calcula-
tions performed for different values of & and f due to Eq. (6.9), as it does not affect

the sparsity structure.

Computing SVD. Note that there is also no need to directly compute the matrix
product in Eq. (6.10), which would lead to a new potentially dense matrix. Instead,
one can exploit the Lanczos procedure simialrly to the way it is used in PureSVD
(Sec. 2.2.1). In order to find r principal singular vectors and corresponding singular

values it is sufficient to simply provide a rule of how to multiply matrix product from

123

Eq. (6.10) by an arbitrary dense vector from the right and from the left. This can be
implemented as a sequence of 3 matrix-vector multiplications. Hence, the added com-
putational cost of the algorithm over the standard SVD is controlled by the complexity
of multiplying Cholesky factors by a dense vector.

More specifically, given the number of non-zero elements nnz, of the
matrix A that corresponds to the number of the observed interactions, an
overall computational complexity of the HybridSVD algorithm is estimated as
O(nnzy-r)+ O((m+mn)-r?)+ O((Jx +Js) - r), where the first 2 terms correspond to
PureSVD’s complexity and the last term depends on the complexities Jx and Jg of
multiplying triangular matrices Ly and Ly by a dense vector. In the scope of this
work we are interested in the case when matrices K and S are sparse and therefore
sparse Cholesky decomposition can be employed. Hence, Jx and] are determined
by the corresponding number of non-zero elements nnz; and nnz; of the Cholesky
factors. The total complexity in that case is O(nnz,, - r) + O((m + n) - r?), where

NNz, = NNZy + NNZp, +NNZL .

Generating recommendations. HybridSVD inherits the key properties of
PureSVD, including simplified folding-in computation. Combining equations Eq. (6.7)
and Eq. (6.10) and applying the folding-in technique gives the following very similar

to Eq. (2.11) expression for the vector of predicted item scores:
r~LTVVILIa=V,V a, (6.12)

where V, = LgTV, V.=Lg V and a is a vector of user preferences. This can be applied
to both known users and warm-start users. Here we assume that the matrix K is
equal to identity (i.e. no side information about users is given). This corresponds to

our experimental setup, described in Sec. 6.3.

6.3 Experiments

We conduct three types of experiments. The first experiment measures an impact
of data sparsity on the performance of recommendation models. The key purpose of
this experiment is to verify the main claims from Sec. 6.1 regarding the dependence on

data sparsity. Another two experiments are standard top-n recommendation scenario

124

and item cold start scenario. Every experiment starts with a hyper-parameter tuning
phase with n = 10 fixed and after the optimal parameter values are found they are

used for final evaluation of recommendations quality.

6.3.1 Evaluation methodology

In the sparsity test experiment we sequentially take 1, 3, 10, 30 and 100% of
interaction data to vary its density and build recommendation models on top of it.
We preliminarily exclude all known preferences of a set of randomly sampled test
users. We additionally exclude any test user preferences that are not present in all
data subsamples simultaneously. This ensures a fair and consistent comparison. For
each test user we holdout a single item at random from his or her preferences. The rest
of the items are used to generate recommendations which are then evaluated against
the holdout.

In the standard scenario we consequently mark every 20% of users for test. Each
20% partition always contains only those users who have not been tested yet. We
randomly withdraw a single item from every test user and form a holdout set based
on these items. After that the test users are merged back with the remaining 80% of
users and form a training set. During the evaluation phase we generate a ranked list
of top-n recommendations for every test user based on their known preferences and
evaluate it against the holdout.

In the cold start scenario we perform 80%/20% partitioning of the list of all unique
items. We select items from a 20% partition and mark them as cold start items. Users
with at least one cold start item in the preferences are marked as the test users. Users
with no items in their preferences, other than cold start items, are filtered out. The
remaining users form a training set with all cold start items excluded. Evaluation of
models in that case is performed as follows: for every cold start item we generate a
ranked list of the most pertinent users and evaluate it against one of the test users
chosen randomly among those who have actually interacted with the item.

In both sparsity test and standard scenario we try to predict which items will
be the most relevant for a set of selected test users. Alternatively, in the cold start
scenario we try to find those users who are likely to be the most interested in a set

of selected cold start items. In both standard and cold start experiments we perform

125

a 5-fold cross validation and average the results over all 5 folds. We also report 95%
confidence intervals based on the paired t-test criteria.

The quality of recommendations is measured with the help of hit-rate (HR) and
average reciprocal hit-rank (ARHR) metrics [43]. In our settings with a single holdout
entity the ARHR metric is equivalent to mean reciprocal rank (MRR). The resulting
evaluation scores computed for different values of n (from 1 to 30) are denoted as
MRR@n or HR@n. We also use the MRR score as a selection criterion during the

hyper-parameter tuning phase.

6.3.2 Datasets

We have used MovieLens-10M (ML10M), MovieLens-1M (ML1M) and BookCross-
ing (BX), datasets hosted by Grouplens®. These datasets provide snapshots of real
users’ behavior and are widely used in a research literature for benchmarking recom-
mendation algorithms. Beyond that, we choose these particular datasets due to their
substantial differences in an internal data structure. ML1M dataset contains very ac-
tive users with a lot of feedback provided for various items. Conversely, interaction
data in the BX dataset is very scarce as users tend to provide their feedback to a con-
siderably fewer number of items comparing to the full assortment. ML10M is very
similar to ML1M, however its size is sufficient for reliable subsampling of data and
performing gradual transition from high to low sparsity levels.

These datasets allow us to assess whether the resulting sparsity of the data af-
fects the importance of side information in terms of recommendations quality. As has
been noted, the hypothesis behind this assessment is that the lack of collaborative
information makes it more difficult to reveal intrinsic relations within the data with-
out any side knowledge. In contrast, a sufficient amount of collaborative information
may totally hinder the positive effect of side knowledge. Moreover, if chosen side fea-
tures do not play a significant role in a user decision-making process, recommendation
models may suffer from learning non-representative relations.

As we are not interested in the rating prediction, the settings with only binary
feedback are considered in our experiments. In the case of the BX dataset we select

only the part with an implicit data. In these settings a recommendation model predicts

Shttps://grouplens.org/datasets/

126

how likely is a user to interact with a recommended book. We additionally prepro-
cess the data by filtering out users with more than 2000 or less than 3 items in their
preferences. Items with only one interaction are also removed. This resulted in the
dataset with 15936 users, 87068 items and 0.033% density. The information about au-
thors and publishers available in the dataset is used to build side similarity matrices.
We employed simple cosine similarity measure for that purpose.

Both Movielens datasets are binarized with a threshold value of 4: lower ratings
are filtered and the remaining ratings are set to 1. With this setup in the standard
scenario a recommendation model predicts how likely is a user to rate a recommended
movie with 4 or 5 stars. As the result, ML1M consists of 6038 users, 3532 items and
has a 2,7% density, while ML10M has 69797 users, 10255 items and 0.7% density.

The Movielens datasets contain only genres information. We have crawled the
TMDB database?* to additionally extract cast, directors and writers information. As
the lists of cast and directors are meaningfully ordered (e.g. movie actors are sorted
according to the importance of their role) we employed Weighted (a.k.a. generalized)
Jaccard Index [34]. It allows to compare sets with respect to the weights associated
with set elements and in our case the weights are obtained as reciprocal ranks of
actors and directors respectively. For other features with used cosine similarity with
standard row normalization.

Due to a high number of movies with Drama listed as one of their genres, the
resulting density of similarity matrices for Movielens datasets was around 50%, which
can already be considered a dense matrix. One simple way to reduce the density is
to remove that genre entirely as uninformative or leave it only for a smaller subset
of items (e.g., for long-tail items). We, however, proceeded as is. Even in that case

computing Cholesky decomposition took less than 10s on a laptop for ML10M.

6.3.3 Baseline algorithms

We compare the proposed HybridSVD model to several standard baseline mod-
els, including PureSVD. We also provide comparison with Factorization Machines (FM)
[132] as one of the most popular models, used to win several recommendation chal-

lenges in the past. FM allows to easily incorporate any sort of side information in the

*https://www.themoviedb.org

127

form of sparse one-hot encoded vectors. Below is the description of implementation

details for each model:

« CBis a hybrid approach based on an aggregation of similarity scores (content-
based information) computed with the help of known user preferences (collab-
orative information). In the standard scenario the aggregated item scores are
r = Sa. It is used to directly order items by their similarity to a test user’s pref-
erences, encoded by a sparse binary vector a. In turn, in the cold start scenario
we calculate the aggregated user scores ¥ = Ayc, where ¢ denotes the similarity
vector of a cold start item to other items. The resulting vector of scores 7 rep-
resents how pertinent each user is to the cold start item. This vector is also used
for the SVD-based models as a replacement of known user preferences in the cold

start regime (see below).

« PureSVD is the model described in Sec. 2.2.1. The model is not directly applicable

in the cold start regime, as there is no preference information available.

« FM is a Factorization Machines model with ranking optimization objective used
instead of a standard one. We use implementation from Graphlab Create soft-
ware package®. The model uses general formulation with user and item biases
and incorporates it into a binary prediction objective based on a sigmoid func-
tion. The optimization task is performed by SGD with adaptive learning rate.
Note that in the case of implicit feedback the interaction matrix becomes com-
plete (even though sparse), which would make the SGD-based optimization in-
feasible. However, instead of learning over all data points, the algorithm em-
ploys a negative sampling technique. It learns over all positive examples (rated
items) and a fixed pre-defined number of negative examples (unrated items)

sampled randomly®.

« MP model recommends top-# the most popular items (in the standard scenario)
or the most active users with the highest overall number of preferences (in the

cold start scenario).

Shttps://turi.com/download/install-graphlab-create.html

%as defined in the RankingFactorizationRecommender class from the GraphLab documentation at https://turi.com/

128

« RND model generates recommendations based on random item/user selection

in standard/cold start scenarios.

Recall that in the cold start scenario we try to recommend known users to cold
start items. Hence, the preference data is not available and the folding-in approach is
not directly applicable. To alleviate the problem we take an output of the CB model
7 as a preference vector of a cold start item against all known users. Then, for every
cold start item we can generate prediction scores as r ~ UUT#, where matrix U
is computed by either PureSVD or HybridSVD. To explicitly denote this change we
mark PureSVD as PureSVD+CB. We do not add CB to HybridSVD name to avoid visual

cluttering.

6.3.4 Hyper-parameters tuning

We assess the quality of algorithms in terms of MRR@10 and HR@10 with the
main focus on the MRR metric. We note that in our experiments the performance
demonstrated by algorithms in terms of the HR metric is highly correlated with the
performance in terms of MRR. However, we used HR scores to monitor the gener-
alization of algorithms. For example, during the model tuning phase in the FM case
some sets of hyper-parameters could provide high values of MRR and considerably
lower values of HR comparing to other sets. In order to avoid such overfitting, we
shifted the selection of hyper-parameters towards slightly lower MRR but reasonably
high HR.

We test all factorization models on a wide range of rank values (i.e. a number
of latent features). The HybridSVD model is also evaluated for 3 different values of
a: 0.1, 0.5 and 0.999. Similarly to the standard SVD case (see Sec. 2.5.2) and unlike
the majority of MF methods, once the model is computed for some rank r,,,, with
a fixed value of a, we immediately get an access to all the models with a lower rank
r < Tyax by a simple rank truncation. In other words, in order to obtain a rank-r
model of HybridSVD it only requires to select the first r principal components of the
model of rank r,,,, without any additional optimization. This significantly simplifies
the hyper-parameter tuning procedure as it eliminates the need for expensive model

recomputation during the parameter grid search.

129

Configuration of the FM model consists of the following hyper-parameters: reg-
ularization coefficients for the bias terms, interaction terms and ranking (negative sam-
pling) terms, initial SGD step size, the number of negative samples and the number of
epochs. In our experiments simpler SGD optimization was performing slightly better
than ADAGRAD [47].

Note that hyper-parameter space of the FM model quickly becomes infeasible
with the increased granularity of a parameter grid. Not only this model requires more
parameters to tune, we also do not have the luxury of a simplified rank optimization as
in the case of HybridSVD. The problem is magnified by significantly longer training
times in the case of FM. For example, on the ML1M dataset the FM model of rank
50 requires about 300s to converge (16-core Intel Xeon CPU E5-2640 v2 @2.00GHz),
while HybridSVD takes only about 10s and PureSVD takes less than 1s.

In order to deal with this issue we employ a Random Search strategy [16] and
limit the number of possible hyper-parameters combinations to 120. We additionally
perform an extensive grid-search in the closest proximity of the hyper-parameters
found during the Random Search phase. This allows to quickly test for more optimal
values that could be missed due to randomization. The tuning is always performed
on a single fold of cross-validation by additionally splitting it into train and validation

sets. The parameters, found during this step are then fixed for all folds.

6.4 Results and discussion

Results for standard and cold start scenarios are depicted in Fig. 6.3 and Fig. 6.4.
We report confidence intervals only for the final top-n recommendation results (bot-
tom rows). Confidence regions for the rank estimation experiments (top rows) are not
reported for the sake of picture clarity.

As can be seen, HybridSVD models exhibit very different behavior on the two
datasets. For highly sparse BX data, where the number of known preferences per
user is much lower than in the ML1M case, even a simple information such as book
author helps HybridSVD to learn a better representation of behavioral patterns, which
is reflected by a generally higher quality of recommendations. The difference is more
pronounced in the standard scenario (see the right column in Fig. 6.3) than in the cold

start settings.

130

Movielens BookCrossing

HybridSVD (a=0.1)
HybridSVD (a = 0.5)
—— HybridSVD (a = 0.999)

0.015+

—-—: PureSVD 0.010 1
— FM
CB 0.005 1
AAAAAAA MP
RND
0000 . : S '
10° 10! 102 103

I HybridSVD (a=0.5)
BN PureSVD 0.015
B HybridSVD (a=0.1)
s FM 0.010
s MP

cB 0.005 1
[RND

0.000"
1 3 10 20 30 1 3 10 20 30
top-n top-n

Figure 6.3: Experimentation results for standard scenario. The left column corre-
sponds to Movielens-1M, the right column - to BookCrossing. The first row represents
rank estimation experiments, the second row - final evaluation of top-n recommen-
dations quality. The confidence intervals are reported as black vertical lines on top of
the bars.

6.4.1 Standard scenario

Remarkably, the highest MRR score in the BX case, achieved by PureSVD at rank
2000 in standard scenario, can be achieved with HybridSVD (a = 0.5) at rank 100.
Moreover, unlike PureSVD, the score of some HybridSVD models exhibits a positive
growth rate even at the rank 3200, at which we simply stopped our experiments. This
means that potentially even higher evaluation scores can be achieved (leaving aside
the practical aspect of huge rank values).

It should be noted that FM model also performs well on BX data in standard
settings and achieves the best PureSVD score at the lowest among other models value
of rank (around 30). However its maximum MRR score is much lower than the max-
imum score achieved by HybridSVD (see bottom-right graph of Fig. 6.3). The quality
of the FM model also seems to be less sensitive to the rank value, when other hyper-
parameters are optimally tuned. This is indicated by several almost flat regions on the

rank estimation curves (top row).

131

Table 6.2: HybridSVD is more stable and reliable when the data sparsity is increasing.
Reported numbers are the MRR@10 scores, obtained on the Movielens-10M dataset.

Fraction of data 1% 3% 10% 30% 100%
Resulting density 0.04% 0.05% 0.10% 0.23% 0.70%
HybridSVD 0.045 0.049 0.056 0.077 0.105
PureSVD 0.037 0.038 0.054 0.076 0.112
MP 0.039 0.045 0.042 0.044 0.042

In the ML1M case we were unable to outperform PureSVD in standard scenario
(the left column in Fig. 6.3) and almost all factorization models achieve similar scores.
The FM model requires slightly lower ranks to achieve the comparable quality in that
case. Interesting to note that HybridSVD with the highest value of a equal to 0.999
underperforms other factorization models. All this suggests that relying too much on
side information confuses the model in that case.

This observation resonates well with the results in [123]. As the authors argue,
“even a few ratings are more valuable than metadata”. Indeed, on the relatively dense
movie ratings data additional features such as movie genres or actors seem to bring
not enough new knowledge into an understanding of common patterns and probably
lead to overspecialization of models.

In contrast, in the case of very sparse BX data higher contribution of item fea-
tures (i.e. higher values of «) lead to a generally better quality of recommendations,
which indicates that without side knowledge factorization models are unable to reliably
recover hidden relations and that using only the collaborative information in this case
may be insufficient.

This result is also suported by our sparsity test experiment on the ML10M
dataset (see Table 6.2). As can bee seen, while PureSVD achieves the highest score
on full data, its quality quickly decreases as less information about user preferences
is given. At extreme sparsity levels it even falls below the quality of non-personalized
popularity-based model. In contrast, HybridSVD exhibits more reliable behavior and
handles extreme sparsity much better.

With the help of HybridSVD we demonstrate that side knowledge allows to
create additional “virtual” connections between related entities, which in turn helps

to alleviate the lack of preferences data. Inability to account for such information in

132

Movielens BookCrossing
0.031 —— HybridSVD (a=0.1) 0.041
—— HybridSVD (a =0.5)
—— HybridSVD (@ =0.999) .03
—-— PureSVD+CB
—— FM 0.021
CB
....... MP 0.01
RND
0.001 L 0.001
10° 10t 102 103 10° 10! 102 103
rank rank
0.031
0.04
B HybridSVD (a = 0.999)
< 0.021 B PureSVD+CB 0.031
© CcB
g . FM 0.021
0.014 mm MP
RND 0.011
0.00- 0.00-
1 3 10 20 30 1 3 10 20 30
top-n top-n

Figure 6.4: Experimentation results for item cold start scenario. The left column cor-
responds to Movielens, the right column - to BookCrossing. The first row represents
rank estimation experiments, the second row - final evaluation of top-n recommen-
dations quality. The confidence intervals are reported as black vertical lines on top of

the bars.

the PureSVD approach leads to its high sensitivity to the sparsity structure of an input
data. This result addresses (at least partially) the question from the end of Sec. 6.1.1.

6.4.2 Cold start scenario

In the cold start settings HybridSVD consistently outperforms the FM model
sometimes by a significant margin (see Figure 6.4). A possible reason is that Hy-
bridSVD uses more data to generate recommendations. It utilizes the information
about similarity of items based on their features, while the FM model directly relies
on the latent representations of the features, when no preferences data is available.
This puts the models into a sort of unfair comparison.

One possible way to avoid that is to perform the folding-in optimization in the
FM model and try to fit the similarity data instead of interactions. Such incremental
updates could potentially improve the quality of the model. However, this is not as
straightforward as a simple matrix-vector multiplication provided by HybridSVD and

requires additional model modifications.

133

Another common observation is that the CB approach, which relies on a simple
heuristic, performs remarkably well comparing to more sophisticated models. Even
though it is formally outperformed by the HybridSVD approach, the difference be-
tween them is negligibly small. Moreover, even the PureSVD+CB model behaves com-
parably to HybridSVD, except that the rank of HybridSVD to achieve the same quality
is 5 to 10x smaller (mind the logarithmic scale for rank values).

The performance of the HybridSVD approach is consistent, favoring the higher
values of a. Unsurprisingly, in the cold start regime it relies a lot on side information
for both datasets. Generally, the proposed approach provides a flexible tool to control
the contribution of side features into the model’s predictions. It allows to adjust rec-
ommendations based on the meaningfulness of side information. Moreover, it allows
to enforce the desired latent feature space structure as in the example with genres in
Fig. 6.2.

6.5 Conclusions and further research

We have generalized PureSVD approach to support user and item side informa-
tion. The model allows to saturate collaborative data with additional feature-based
relations and in certain cases improve the quality of recommendations. The model
seems to be especially suitable for the data with scarce user activity when the num-
ber of observed user preferences is low. In a “saturated” environment with a high
amount of user feedback the model seems to provide no benefit over PureSVD. We
have also proposed an efficient computation scheme for both model construction and
recommendation generation in online settings.

Despite being a flexible instrument for adjusting the contribution of side in-
formation into the final prediction quality, the pre-processing step of HybridSVD re-
quires some amount of efforts. Finding a way to avoid an explicit construction of side

similarity matrices seems to be an interesting direction for further research.

Chapter 7

Higher order hybrid preference model

Up until now, we have proposed two models that address different aspects of the
limited preference information problem. The CoFFee model, introduced in Chap. 5,
tackles the problem of a proper feedback representation, which fits nicely into a
tensor-based formulation. The main benefit of this representation is that it helps to
account for additional commonalities in user behavior and improve the quality of rec-
ommendations without the need for any additional data. Its advantage over conven-
tional models becomes especially vivid in the “almost” cold start case, when known
user preferences consist of only one or a few items.

On the other hand, HybridSVD approach, introduced in Chap. 6, makes use of
additional data sources, not related to actual user preferences. For this purpose, it
employs a generalized formulation of SVD and enriches standard SVD-based models
with side information about users and items. Based on that information, the model
measures how similar users or items are and virtually links them within collaborative
data. This allows uncovering more valuable patterns, which would otherwise stay
unrecognized. Moreover, it helps to battle extreme data sparsity.

Clearly, the fundamental ideas behind the proposed models are complementary,
which raises the question of whether it is possible to integrate one model into another.
In this chapter, we address this question by presenting a new model that directly com-
bines our previous models within a unified hybrid tensor-based approach. It allows to
represent user preferences adequately and at the same time leverages side information
in order to improve recommendations’ quality and handle data sparsity. We provide
efficient computational schemes for both offline learning and online recommendation

generation in dynamic environments.

134

135

7.1 Motivation for a joint model

In the experiments with HybridSVD, we have only considered binary feedback
data. It is a reasonable formulation when user-item interactions have the simplest
form of an implicit feedback (e.g., likes or purchases). However, in general, user feed-
back may have a more complex nature and often embodies several distinct types or
modalities, which require careful treatment.

For example, implicit feedback may split into different types of actions, such as
click on a product page, placing an order or actual product purchase. Evidently, this
corresponds to different levels of user engagement. Assigning appropriate weights to
these actions in order to generate a single number (i.e., relevance score) used in the
matrix-based formulations is a challenging empirical task.

Similar reasoning applies to explicit feedback as well. We have already touched
this problem in Chap. 5. In addition to what was discussed there, we find it necessary
to provide another intuitive example of a common feedback representation fallacy
with more general implications. Consider a user who has assigned a 5-star rating to
one movie and gave only 2 stars to another. From here it does not immediately follow
that the user admires the former movie exactly 2.5 times higher than the latter. It only
implies that the user prefers one movie to another. This difference cannot be expressed
with simple arithmetic rules and should be treated in terms of an ordinal nature of
feedback.

There is an even more substantial problem particularly related to the
HybridSVD formulation, which can be illustrated with the following example. If user
Alice rates “Scarface” movie with 2 stars (negative preference) and user Bob rates
“Godfather” with 5 stars (positive preference), then even though these two movies are
quite similar in terms of a genre, it is unlikely that Alice and Bob have similar tastes.
However, this is not what the HybridSVD model will actually learn, as it will create an
additional link between users based on movie genre similarity and users will become
closer to each other in the latent feature space. In our combined model we aim to
resolve that problem as well by separating rating values in the third dimension.

From the CoFFee model perspective, side information not only serves the pur-
pose of generating a more meaningful latent representation of users and items but

also helps to address one of the key challenges of the tensor-based formulation — an

136

increased data sparsity. Indeed adding new dimensions without providing more data
inevitably reduces the density. This, in turn, may have a substantial negative impact

on the generalization ability and the quality of the model.

7.2 Proposed approach

Following the same way SVD is generalized by Tucker decomposition, an aux-

iliary matrix from Eq. (6.10) can be generalized by an auxiliary tensor A:

A= Ax, L %y LS x5 Ly,
where Ly is a Cholesky factor of some SPD similarity matrix R that corresponds to
the feedback dimension. With this formulation the model allows to naturally handle
cases described in Sec. 7.1 by linking only items with the same feedback value. This is
achieved by setting R = I. The model, however, provides much more flexibility and
allows to go beyond that scenario. In the presence of feedback similarity/correlation
data (i.e. when R is not just the identity matrix), the model allows to diffuse connections
across feedback dimension when it is required by the task or dictated by the structure
of feedback data, e.g. when some feedback values are “closer” to each other in some
sense. We will leave the discussion of its meaning for the later (see Section 7.6).

The recommendation model is obtained from a low rank approximation of A

As in the CoFFee case, it can be achieved with the help of TD:
Ax~Gx, Ux, Vxs W, (7.1)

where factor matrices are also required to have orthonormal columns. We call this
model HybridCoFFee to emphasize its ability to adequately represent higher order pref-
erence data and saturate it with side information.

Note that factor matrices U € RM X1 V e RV and W € R are defined in
an auxiliary latent space. The latent representation of users, items and feedback in

the original space is then given by
U=LU, V=L'V, W=LW. (7.2)

Columns of the resulting factor matrices satisfy K-, S- and R-orthogonality property,
ie. UTKU = I, VISV = I,, and WTRW = I,, (I, is an identity matrix of size r).

137

Similarly to the HybridSVD case, this imposes an additional constraint that structures
the latent feature space according to real characteristics of the modelled entities.

We also add a control of an overall contribution of side information into the
learned latent representation by representing the similarity matrices in the form
K=1+aK, S =1+pSyand R =1+ YR\, where zero-diagonal matrices K, S
and R, actually encode side information-based relations and «, f3, y are non-negative
weighting parameters. Obviously, by setting «, 3,7 to zero one gets the standard
CoFFee model.

Despite its similar look, the model, however, has a few substantial differences
from the standard TD that require careful handling. In the next section we show how

to efficiently compute it by a corresponding modification of the optimization objective.

7.3 Efficient computations

As in the CoFFee model case, a low rank approximation, defined by Eq. (7.1),
can be obtained with a HOOI algorithm. It solves the corresponding least squares
problem by an alternating optimization procedure, where the objective is minimized
with respect to one of the latent feature matrices while the other two are fixed. As
shown by the authors of HOOI, the problem conveniently reduces to the following
maximization task:

m)?XHZ x, U %, VI xs W13, (7.3)

where X is picked iteratively from {U\, v, W} at each alternating optimization step.
The task can be efficiently solved by the means of SVD (see Alg. (2)).

7.3.1 Hybrid tensor factorization

Note, however, that unlike the preference tensor in the CoFFee case, tensor Ais
not necessarily sparse and computing it quickly becomes the main bottleneck in terms
of system resources usage with the growth of the problem size. In order to avoid its

explicit formation we rewrite the inner term of Eq. (7.3) as

,zl\xl UTx, VI xs WT = Ax, Ug x, VJ x3 W, (7.4)

138

Algorithm 2: Practical algorithm for hybrid HOOI
Input : Tensor A in sparse COO format,

Tensor decomposition ranks ry, 1, 13,

Cholesky factors L, Lg, L
Output: G, ﬁ, V, 1%
Initialize V, W by random matrices with orthonormal columns.
Compute Vg = Lg v, Wi = LRW.
repeat
U« r1 leading left singular vectors of LIT<A(1) (Wr® Vs)
Ug « Lg U
V < r, leading left singular vectors of LI AP (W ® Ug)
Vg «— Lg %
W, X, Z « r; leading singular triplets of LL AP (Vg ® Uy)

WR «— LRW

G « reshape matrix XZ7 into shape (r5,7;,7,) and transpose

until norm of the core ceases to grow or exceeds maximum iterations;

where we use the substitution Uy = Ly U, Vs = Lg v, W = LRW and utilize the
multiplication properties of a series of matrices in the n-mode product.

With the latter representation in Eq. (7.4) one can follow a standard technique to
separate any factor matrix from the other two in order to perform an alternating op-
timization step. This is achieved by the virtue of tensor unfolding defined in Sec. 3.1.1
and with the help of an n-mode product properties. For example, to optimize for U
one arrives at the following expression after combining Eq. (7.3) and Eq. (7.4) with the

aforementioned properties:

max||UT LAY (Wr ® Vs) 17,
U

where matrix A" denotes mode-i unfolding of A and ® stands for Kronecker prod-
uct. The corresponding solution is then given by the leading left singular vectors of
LEAM (Wi ® V). Similar transformations along modes 2 and 3 give the update rules
for Vand W respectively. See Alg. (2) for full description of the optimization process.

Note that the product A" (W, ® Vi) has the same structure as in the standard

TD case. Therefore, for moderately sized problems it can be computed without ex-

139

plicit construction of Wy ® V5 by performing a series of matrix multiplications with
a corresponding tensor unfolding [9]. For larger problems the memory bottleneck
induced by intermediate computation results can be circumvented by iteratively up-
dating entries of the final result in a simple nested loop instead of performing matrix

multiplications.

7.3.2 Online recommendations

As in the case with CoFFee or HybridSVD the orthogonality of columns in factor
matrices allows to derive an efficient expression for higher-order hybrid folding-in. In
the user case, it helps to solve the problem of recommendations for unrecognized or
newly introduced users with only a few known preferences. Likewise, in the item case
it allows to quickly find an item’s representation in the latent feature space based on a
few interactions with it. As an example, the following expression is a generalization of
the tensor folding-in to the hybrid case, which allows to estimate new user preferences
(c.f. Eq. (5.9)):

P=VvVviPw,wT, (7.5)

where V and W are defined according to Eq. (7.2). This allows to avoid recomputing
the whole model in response to frequent system updates. As has been noted in the pre-
vious chapters, it is especially viable in highly dynamic online environments, where
users expect an instant response from recommendation services or where new items
arrive rapidly. In our experiments we use this formula to generate recommendations for

the known users as well, not only newcomers.

7.3.3 Rank truncation

Hyper parameter-tuning can be a tedious task. As we have already mentioned
in Sec. 2.5.2, unlike many other approaches SVD-based methods provide a luxury of
minimal hyper parameter tuning via simple rank truncation of latent factors. Even
though it is not directly applicable in the tensor case, it is still possible to avoid redun-
dant computation of the model with lower multilinear rank values by the means of
tensor rounding technique. More formally, given some factor matrix X € {ﬁ, V\, W},
which corresponds to some mode i € {1, 2, 3}, and a new rank value r < rank(X), the

first step is to compute r leading singular triplets U,,Y,, V, of the unfolded core G'*).

140

Then the new factor matrix X, of the reduced rank r is calculated as X, = XU, and
the new truncated core G, is obtained by reshaping matrix ¥, V. back into the tensor
of order 3 with the conforming dimensionality. Note that due to typically small mul-
tilinear rank values, finding SVD of an unfolded core is computationally cheap and an

overall procedure is very efficient.

7.4 Evaluation methodology

We conduct a 5-fold cross-validation (CV) experiment for standard top-# recom-
mendation scenario by performing splits by users. At every fold we randomly mark
20% of users that were not yet tested. We randomly hide 10 consumed items of every
marked user to form the holdout set. This allows to have both high and low ratings
in the holdout and, therefore, to evaluate recommendations against both negative and
positive user preferences. User feedback is considered to be positive if the rating value
is equal or above 4 (including 4.5 if it is present in data) with the highest rating being
5. The remaining items from the marked users as well as all the preferences of 80% of
unmarked users form the training set. At each fold we generate recommendations for
the marked users and evaluate them against the holdout. CV results are averaged and
reported along with 95% confidence intervals based on the paired t-test criterion. We
also repeat the sparsity test experiment described in Sec. 6.3.1. This time we do not

binarize ratings. No cross-validation is available in this case due to a fixed testset.

Metrics. As has been shown in Chap. 5, standard evaluation metrics exhibit a posi-
tivity bias, i.e. only consider the performance in terms of how relevant recommended
items are and completely disregard how likely it is to get recommended something
irrelevant. The latter, however, may have a dramatic impact on the perceived qual-
ity of a recommendation service and affects user retention. In order to account for
such effects we follow the evaluation scheme introduced in Sec. 5.3 and in addition to
the standard relevance- and ranking-based metrics also report performance of models
against the nDCL score. As we have shown, the latter serves as a proxy measure for
user disappointment and estimates how likely is a user to remain unsatisfied with pro-
vided recommendations. We note that models with similar nDCG may have different
nDCL score.

141

Datasets. We use the same benchmark datasets as in previous chapters: MovieLens-
IM (ML1M), MovieLens-10M (ML10M), and BookCrossing (BX). These datasets have
very different levels of data sparsity and therefore allow to examine how sensitive
our model is to the lack of collaborative information in comparison to other models.
In addition to that we randomly sample 3% of ratings from the ML10M dataset to
conduct the sparsity test experiment. We do not perform any special preprocessing
for the Movielens datasets. In the BX case we filter out users with more than 1000
ratings as they are unlikely to represent real consumption patterns. We also remove
books with only one rating provided by a single user as unreliable. Ratings in the BX
dataset range from 1 to 10. In order to have uniform representation across all datasets,
we divide them by 2, giving a range from 0.5 to 5 with 0.5 step, similarly to ML10M.
Ratings in the ML1M dataset are integer values from 1 to 5.

Algorithms. We compare our method to both CoFFee and HybridSVD approaches.
We additionally use standard baseline models, namely PureSVD, WRMF (as in
Chap. 5), a heuristic model that recommends items based on their aggregated sim-
ilarity to known user preferences (CB), and a non-personalized model that simply
recommends the most popular items (MP). Models are tuned on the first CV fold and
the best found configuration corresponding to the highest nDCG score is then used
across the remaining folds. In the case of PureSVD the only varying hyper-parameter
is the number of latent factors. For WRMF tuning we perform Random Search on the
hyper-parameter grid by sampling 60 points, corresponding to different combinations
of weighting function parameters (according to Eq. (2.31)), regularization coefficients
and rank values. In the CoFFee model we tune its multilinear rank with the require-
ment for mode-1 and mode-2 ranks to be always equal and take values from the same
range as the rank of PureSVD. Mode-3 rank takes values from {2, 3, 4}. In the Hy-
bridSVD case we firstly tune its rank with a fixed weight value for side information
set to 0.5. After an optimal rank is found we perform additional evaluation to find
the most suitable weight value from {0.1, 0.5, 0.9}. Similar procedure is performed for
HybridCoFFee with the same requirement on rank values as for the CoFFee model.
SVD-based models use rank truncation to avoid redundant calculations during rank

tuning. Likewise, tensor-based models use tensor rounding described in Sec. 7.3.3.

142

Side information. As in the HybridSVD case we used the information from TMDB
database' to complete movie data in the Movielens datasets with information about
cast, directors and writers along with already present genre information. BX dataset
provides additional information about authors and publishers. There is no additional
information about users or ratings, which renders Ly and Ly to be simply identity
matrices. For each dataset we inclusively merge all side data by independently con-
structing similarity matrices S; for each particular feature i and then combining them
into a single similarity matrix with a simple summation S = % Zz 1 Sis where ng =4
in the Movielens case and n F= 2 in the BX case. Accordingly, we used the same

similarity measures for constructing S; as in the HybridSVD case.

7.5 Results

We report 3 key evaluation metrics for all three datasets, which allow to assess
the quality of recommendation models: an overall ratio of relevant recommendations
to irrelevant, measured by Reciever Operator Characteristic curve (ROC), position of
relevant predictions in top-n recommendation list, measured by nDCG and position of
irrelevant predictions in top-n recommendation list measured by nDCL (see Fig. 7.1).
Note, that there is typically some balance between high relevance of recommendations
and high probability to generate irrelevant recommendations as well.

In order to correctly interpret results it is important to note, that low nDCG
scores do not necessarily mean low quality of recommendations. If a model with low
nDCG produces high enough ROC curve and at the same time shows low nDCL it
simply means that the model makes more “safe” recommendations. Instead of recom-
mending something irrelevant it pushes to the top more of unrated items, which is
generally a better strategy. In contrast, if the relevance-based scores as well as nDCL
score are all low, it indicates a poor performance.

For example, as can be seen from the first row of Fig. 7.1, both CB and MP models
have low nDCL; however, their relevance-based scores are also low, which means
that these models provide unsatisfactory recommendations. In contrast, HybridSVD
provides the highest (or one of the highest) nDCG score in general. However, it also

pushes one of the highest numbers of irrelevant items to the top of recommendations

Thttps://www.themoviedb.org

143

B HybridCoFFee I CoFFee B HybridSVD I PureSVD s WRMF mm CB = MP

True Positive Rate

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
nDCG@n
o
Do
> ;
nDCL@n
o
no
)

T T T 0.0 0.0-
0.2 0.4 0.6 1 3 10 30 1 3 10 30

False Positive Rate top-n top-n

True Positive Rate
o o o
o [N} (S
o ot o
Ay
\
\
\
\
AY
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
nDCG@n
o
(3]
. ;
nDCL@n

. . T T 0.0
0.0 0.2 0.4 0.6 1 3 10 30

False Positive Rate top-n top-n

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
nDCG@n
o
=)
ot
- A
nDCL@On

True Positive Rate

T ; y 0.00
0.05 0.10 0.15 1 3 10 30

False Positive Rate top-n top-n

°
& e 0.041

© 0.2 e & 0.0501 S

3 S o

< 0.1 e 2 0.025 3 0.021

P .04 . . 0.000 - 0.00

0.0 0.1 0.2 1 3 10 30 1 3 10 30
False Positive Rate top-n top-n

Figure 7.1: The ROC curves (1st column), nDCG@n (2nd column) and nDCL@n (3rd
column). Colors of lines and bars encode different models. Rows correspond to dif-
ferent datasets in top-down order: ML1M, ML10M, BX and 3% fraction of ML10M. In
the first 2 columns the higher the curve/bar the better; in the last column the lower
the bar the better. Shaded areas in the 1st column as well as black vertical lines in the
other two columns denote confidence intervals; no cross-validation is performed in

the case of the sparsity test experiment, hence no intervals in the 4th row.

list, as indicated by its nDCL score. As has been argued in Sec. 7.1, this is likely to be
the result of unreliable connections, created by the model, between items with very
different rating values.

Likewise, in terms of nDCG score, WRMF performs comparably to other fac-
torization models on both Movielens datasets; yet it fails in terms of the other two

metrics. Its nDCL score is the worst among all models and the ratio of relevant to ir-

144

relevant recommendations drops below PureSVD. In the case of BX dataset the WRMF
model achieves lower nDCL score comparing to the majority of other models; how-
ever, it performs poorly in terms of other metrics. In the sparsity test experiment with
3% of the ML10M dataset WRMF produces the most controversial results among all
models: it amplifies the amount of both relevant and irrelevant recommendations at
the same time. Irrelevant items, however, dominate, which drops the model’s ROC
below the curves of competing factorization methods.

As it follows from the results, HybridCoFFee outperforms all other models in
terms of the proportion of relevant recommendations to irrelevant ones. There are two
interesting results, where the model demonstrates its superiority. In the second row
of the figure, which corresponds to the ML10M dataset, our model is able to decrease
nDCL score below the standard CoFFee model, while keeping nDCG score at the same
fairly high level. This decrease of irrelevant recommendations is immediately reflected
by the ROC curve and also indicates that the model was able to make a good use of
side information.

An even more remarkable result can be seen on the 4th row of the figure, which
corresponds to the subsampled ML10M data with high sparsity. HybridCoFFee in
that case achieves almost as high nDCG score as WRMF, whereas its nDCL score is
significantly lower. Interestingly, both CoFFee and especially CB model on the same
data exhibit a poor performance, which indicates that HybrdCoFFee, in turn, greatly
benefits from blending collaborative data and side information together and effectively
learns some non-trivial patterns.

Generally, our model exhibits the best balance between the key 3 evaluation
aspects. It does not suffer from the sparsity of data as, for example, the tensor-based
CoFFee model in the BX case (see the ROC curve on the third row of the Fig. 7.1).
It maintains high relevance of recommendations and generates more safe predictions,

allowing to avoid potential user disappointment.

7.6 Discussion and future work

We have presented a tensor-based approach that combines the ability to more
adequately model user preferences and allows to incorporate side knowledge in order

to handle data sparsity and improve the quality of recommendations. Based on the

145

evaluation results we show that the proposed model demonstrates the best balance
between providing good recommendations and avoiding undesired user disappoint-
ment.

Note that the general formulation of our approach allows handling context in-
formation, such as time, place, mood, situation, etc., within additional dimensions,
similarly to various types of feedback. This can be an interesting direction for fur-
ther research, especially in the cases where context contains additional information
about correlations between its different values. The key benefit of the model, in that
case, is that it would allow to handle even more extreme sparsity levels induced by
multidimensional representation.

Based on the remark about the curse of dimensionality problem of TD, another
interesting direction for research is applying the key ideas presented in this work to
more appropriate tensor formats such as TT or HT. The potential downside for such
methods is the need to tune multiple rank values. Devising techniques for efficient

rank selection is a challenging task and presents another vital research direction.

Part 111

Software

146

Chapter 8

Polara: a new open-source framework for

recommender systems research

One of the critical aspects of creating new recommender models is their eval-
uation and fair comparison. Many software libraries have been developed to date;
however, none of them are concerned with the idea of feedback polarity as described
in Chap. 5, and the related implementation aspects of proper model evaluation are not
taken into consideration in their system design. This has led the author of this work to
the development of a new framework called Polara — the first recommendation frame-
work that allows a more in-depth analysis of recommender systems’ performance,
based on the idea of feedback polarity.

Polara, however, is not just an evaluation library and it is not limited to polarity-
driven evaluation paradigm. From the very beginning, it was envisioned as a gen-
eral purpose framework for quick model prototyping and comprehensive comparative
analysis, featuring various evaluation regimes and testing scenarios. The framework’s
design and its internal structure aim to minimize the risk of unintended mistakes in
routine tasks, reduce the number of potential bugs in the code and ensure consistent
experimental settings. All of this allows pursuing another higher-level goal — research
reproducibility.

The framework has also become a convenient playground for students and
helped facilitate teaching in classes. For those who have just started learning about
recommender systems, it makes the learning experience generally more smooth. For
more advanced students it allows to focus on creative tasks. Curious minds, however,

can always make a deep dive into the code and see how everything works internally.

147

148

Polara provides exceptional flexibility in both model creation and experiment
setup. At the same time, it is designed to follow recommender system for humans
paradigm, providing a high-level abstraction of general workflows with a significant
focus on the usability and the ease of use.

To achieve these goals, Polara is written in Python programming language' -
de facto, the leading platform for data science and machine learning®. The framework
supports both Python 2 and Python 3 versions. In addition to that Polara is boosted by
the Python’s scientific computing ecosystem, which helps to ensure efficient opera-
tions not only in model computations but also during the evaluation phase. The latter
at first glance might seem like a minor point, however in many cases evaluation takes
a much longer time than actual model training, which affects the way experiments
are conducted. Polara avoids running experiments user by user and, where it is pos-
sible, takes advantage of highly optimized vector operations and parallel execution to
reduce an overall experiment time.

Another essential feature of Polara is the possibility to easily extend its default
set of models with the help of external libraries and frameworks. This allows conduct-
ing more rigorous research that requires comparison with various existing techniques.
Implementing all of them in Polara from scratch would be a tedious task, and it would
be hard to keep up with the most recent advances. Instead, Polara defines a clear pro-
tocol for such interoperability and implements many convenience methods that make
this process transparent and straightforward.

Table 8.1 provides a brief comparison of Polara with some popular frameworks.
Besides some basic characteristics, we assess additional aspects related to function-
ality and usability. For example, Customizable evaluation column indicates whether
the framework supports and allows to chose from several evaluation scenarios, which
includes various data splitting protocols, data sampling strategies and flexible con-
figuration of experimental settings. The Warm start regime denotes the support of a
new user/new item scenario, which includes appropriate data preprocessing and/or
explicit implementation of folding-in for the provided models. The names of other

columns are self-descriptive.

https://www.python.org/
2https://www.kdnuggets.com/2017/09/python-vs-r-data-science-machine-learning.html

149

Table 8.1: Comparison with popular recommendation frameworks.

g - 5
o < £ a
2 2 5, 3 E g
> g ¢ E v o T 9
v g 5 B g S ©° =
T T 5 & £ W T & =
7 $ 2 3z 5 ¢ & g & 3
g 2 ¢ 8555 £ % o5
E > . £ v S & £ E o
éo = Z RO = = O En g
Framework S S a8 <85 3J & & & 3
Polara [125] Python v v v v v v Vv v MIT
Mrec [106] Python v BSD
Surpise [164] Python v v v v' BSD-3 Clause
MyMediaLite* [107] C# / Java v GNU GPL
Turi / GraphLab* [175] C++ / Python v v' Apache 2.0
Implicit* [83] Python v v MIT
RankSys [129] Java v MPL 2.0
LensKit [97] Java v v v v v LGPL v2.1
LibRec [100] Java v v v v v v Vv v GNUGPL
RecommenderLab [131] R v v v" GNU GPL v.2

* Supported as external models in Polara.
** Last checked: September 2018.

8.1 Core components

The framework has a modular structure and is built on top of three key compo-
nents, Recommender Data, Recommender Model and Evaluation, which consist of basic
classes and standalone methods. The components are designed to support a general
workflow and take care of many technical aspects, related to the stable and reliable
functioning of the framework as a whole. There is also much flexibility included in
these components, allowing for a high degree of customization.

The general workflow is based on the following paradigm. An instance of Rec-
ommender Data, holding actual user-item interactions, provides a single entry point
for all Recommender Model instances. Recommender Data instance has a mutable state,
i.e., a specific configuration, corresponding to the desired experimental setup. In turn,
Recommender Model instances, i.e., actual algorithmic implementations, take the data

model instance as an input argument and depend on its state. In that sense, all depen-

150

dent recommender instances are subscribers that are immediately notified on the data
state changes and take appropriate actions on their side.

For example, changing train-test splitting configuration in a data model instance
will lead to recomputation of a dependent recommender model instance at the very
next attempt of using it (e.g., when calling for recommendations or trying to evaluate
the model’s performance). Alternatively, changing the number of holdout items in the
test data will leave the recommender model intact; however, will flush previously cal-
culated recommendations and will ensure that evaluation scores are refreshed at next
calculation. Worth noting, the subscriber interface is exposed to a user, and it is pos-
sible to define custom actions that are executed in response to certain state changes.
This mechanism can be especially useful in non-standard user-defined experiments
with specific evaluation pipelines.

Overall, an interplay of the described components allows to freely experiment
with various evaluation settings and be sure that all changes in experimentation setup
are taken into account by recommender models without any additional actions needed
from the user side. This also minimizes the amount of code, required to conduct ex-
periments. Below are the key implementation details of each component, also demon-

strating the ease of use of the framework.

8.2 Recommender Data

Recommender Data component is the central part of the framework, imple-
mented as a standalone class with pre-defined properties and methods. It provides
a rich interface with a number of tuning parameters that opens up a great level of
flexibility in experiment design and ensures consistent data state across all compared
models.

The component is designed in a data-agnostic way. As an input it takes a history
of transactions in the form of a Pandas® dataframe, which is internally transformed
into a standardized representation, allowing for efficient data manipulation and quick
conversion between internal and external representations. It only requires to define,

which columns of the dataframe correspond to users, items, and feedback data. As

Shttps://pandas.pydata.org/

151

an example, the code presented on the listing below allows to start working with the

Movielens-1M dataset.

Listing 8.1: Declaring data model.

1 from polara import RecommenderData

2 from polara import get_movielens_data

3 data = get_movielens_data ()

4 data_model = RecommenderData(data, "userid", "movieid", "rating")

The component also implements various methods for data preprocessing, data
splitting and data indexing. All configurable parameters for the data manipulation and
their current values can be listed with the help of data_model.get_configuration()
call. These parameters include test_fold to control the fold selection in the CV ex-
periment, test_ratio to define the fraction of users for test, holdout_size to control
the number of held out items, warm_start to exclude test users from the training, and
some other parameters that control data randomization and sampling mechanisms.

One can easily achieve almost any data configuration by assigning the ap-
propriate values to the aforementioned parameters. For example, standard 5-fold
CV experiment with 20% of users marked for test and a single top-rated hold-
out item per each test user can be implemented with the following configura-
tion setup: data_model.test_ratio = 0.2, data_model.holdout_size = 1. Alterna-
tively, in order to hold out 5% of all consumed items from every available user, one
needs to assign data_model.test ratio = 0, data_model.holdout _size = 0.05 and
data_model.warm_start = False®.

Configuration parameters are wrapped with “lazy update” routines in order
to prevent early triggering of subscriber notification calls and avoid multiple ex-
ecution of the same commands. Configuration is applied only after calling the
data_model.prepare() method. An attempt to read an altered configuration before
calling this method will result in a warning message, informing the user that some of
the changes are not yet effective.

The system of state change notifications is based on a variant of the Observer de-
sign pattern and uses callback functionality for communication. Several default events
trigger notifications. These events correspond to modification of parameters related

to either training or test data. Notification processing for the default events is imple-

*More examples can be found at https://github.com/Evfro/polara/tree/master/examples

152

mented on the recommender model’s side and does not require any user involvement.
It is also possible to register custom events with notifications, handled by custom user

routines if the standard functionality is not sufficient for the user.

8.3 Recommender Model

Recommender Model component provides a generic interface for creating new
models ready for recommendations’ generation and evaluation. As with the previous
component, it holds some common properties and methods that are designed to sup-
port a unified workflow independently of specific implementation details. There are
several standard recommender models already implemented for user convenience, in-
cluding the models based on matrix and tensor factorization. The default models are
subclassed directly from the abstract base class called RecommenderModel. New models
can be subclassed either from the base class or from already defined models to inherit
some of their unique properties and extend upon them.

When creating custom models, there are two primary methods that should be
implemented prior to the usage: build and get_recommendations. The former com-
putes a recommendation model, and the latter takes its result to generate recommen-
dations for the test users. All generated recommendations are stored as an array
within the model and can be used to evaluate the model’s performance or asses its
behaviour for further fine-tuning.

There are several control parameters shared by all models. Among them:
filter_seen attribute defines whether the previously consumed items are allowed to
be recommended again; topk attribute determines the number of recommendations
generated by the model; feedack_threshold attribute defines whether only the feed-
back above a certain threshold value (e.g., only ratings above 4) should be used for
computing the model. These parameters are all automatically initialized with some
default values when a model is created (so that users do not have to set them every
time manually) and can be redefined later. The default values can be found in the
polara.recommender.defaults module. Listing 8.2 below demonstrates an example of

creating a simple SVD-based model with Polara.

Listing 8.2: Define a simple SVD-based model.

1 from polara import RecommenderModel

153

2 from scipy.sparse.linalg import svds

3

4 class SimpleSVD (RecommenderModel):

5 def _ _init__ (self, data_model):

6 super (SimpleSVD, self). __init__ (data_model)

7 self .rank = 40

8 self .method = "SVD"

9

10 def build(self):

11

12 train_matrix = self.get_training_matrix (dtype="18")
13

14 _, _, items_factors = svds(train_matrix , k=self.rank,
15 return_singular_vectors="vh")
16

17 self.items factors = items factors

18

19 def get_recommendations(self):

20

21 test_data , test_shape, _ = self._get_test_data()

22

23 test_matrix , test_idx = self.get_test_matrix(test_data,
24 test_shape)
25

26 v = self.items factors

27 svd_scores = (test_matrix.dot(v.T)).dot(v)

28 if self.filter seen:

29

30 self .downvote_seen_items(svd_scores, test_idx)

31

32 top_recs = self.get_topk_elements(svd_scores)

33 return top_recs

The newly created model can now be used in a general workflow. It only takes a few

lines of code and the commands for that are self-explanatory, as illustrated below.

Listing 8.3: Create and evaluate the model.

1 svd = SimpleSVD(data_model)
2 svd.build ()

3 svd.evaluate("relevance")

154

We note that defining the build method is entirely on the user’s responsibility
and depends only on the choice of a particular algorithmic implementation. In turn,
the get_recommendations method provides two options. The first option is to manually
implement all of its internal logic similarly to the example in Listing 8.2. In that case,
the user is responsible for making the code efficient in terms of both computational
resources and available memory. This can be a reasonable option when data is small,
and the framework is used for learning purposes.

However, in order to deal with real data, special care must be taken on the pro-
cess of recommendations generation. If the number of items as well as the number of
test users is huge, intermediate calculation results may consume all available mem-
ory (e.g., line 27 of Listing 8.2, where a complete dense matrix is created). Moreover,
as the memory I/O is generally slower than CPU operations, even if there is enough
memory it is more efficient to limit its consumption by the model and expose memory
resources in pieces of a fixed size.

In order to achieve that the default implementation of the get_recommendations
method in the base class splits the test data into chunks. Every chunk will include a
number of unique test users, typically more than one. This relies on the assumption
that computing recommendations for a group of users at once is much more efficient
than looping over every user individually. This is the case in a number of scenarios
(e.g., standard scenario of recommending to the known users) and for a wide range of
algorithms, including SVD, MF, TF, etc., as it may take advantage of BLAS operations.

In order to operate over the chunks of data, one only needs to de-
clare a slice_recommendations method, which is by default the key part of the
get_recommendations method. The code in Listing 8.4 indicates the necessary changes

in the new model creation to activate this functionality.

Listing 8.4: More efficient variant of defining a model.

class SimpleSVD (RecommenderModel):
def __init__ (self, data_model):

1
2
3
4
5 def build(self):
6

155

7

8 def slice_recommendations(self, test_data, test_shape,

9 start , stop, test_users=None):

10 test_slice = (start, stop)

11 test_matrix , slice_data = self.get_test_matrix (test_data,
12 test_shape ,
13 test_slice)
14 v = self.items factors

15 scores = (test_matrix.dot(v)).dot(v.T)

16 return scores, slice data

The slice_recommendations method here operates on a group of users, selected by
an index range. The predicted scores are computed only for these users and then
are returned to the get_recommendations method to generate final recommendations.
The method also returns index data to allow filtering out previously seen items from
recommendations. Note, that there’s no need to define get_recommendations anymore
and the code becomes slightly simpler.

The size of chunks (i.e., the number of test users in it) is controlled by a pre-
defined memory limit, which can be set via the MEMORY_HARD_LIMIT attribute from the
polara.recommender.utils module. Its optimal value depends on the hardware ca-
pabilities and should be determined empirically. It may range from one gigabyte to
several dozens of gigabytes. Setting it to lower values will lead to a computational
overhead with many small iterations, while too high values (if there’s enough avail-
able memory) are unlikely to improve performance due to I/O bounds.

The I/O bound, however, can be alleviated with parallel execution. When data is
large, I/O operations like reading the data of a group of test users may take more time
than actual computations. Such operations typically lock Python’s Global Interpreter
Lock. In order to mitigate that limitation, the slice_recommendations method can be
executed in parallel threads. This behavior is controlled by the max_test_workers pa-
rameter of a recommender model. Setting it to a non-zero value defines the num-
ber of parallel threads. The maximum amount of memory consumed by a model
during the recommendations generation can be estimated as MEMORY_HARD_LIMIT =

max_test_workers gigabytes.

156

Note that in the examples above only one model is created. However, as has been
previously mentioned, several recommender models can share the same data_model
in order to conduct bulk experiments with fair model comparison.

Polara can be easily extended with the help of external libraries and frameworks.
It uses the concept of wrapper — an interface between internal methods and external
sources. The general process of creating new wrappers is no different from creating
new models within the framework and requires minimum efforts. By default, Polara
already implements several wrappers for the well-known software tools, which ex-
tends the list of supported algorithms. This includes MyMediaLite [107], GraphLab
Create [175] and implicit [83].

8.4 Evaluation

Unlike the previous components, the evaluation component is not a particu-
lar class but rather is a set of convenience methods, designed to support various
evaluation scenarios in a unified way. The major focus of evaluation is shifted to-
wards the relevance of recommendations and the quality of recommendation ranking.
There are several standard evaluation metrics supported by this component, namely
Precision, Recall, HR, MRR, nDCG, nDCL and a number of others.

Two key features distinguish this component from evaluation components in
other recommendation libraries and frameworks. The first one is a native control
over the false positive rate estimation. As described in Sec. 5.3.1, recommender mod-
els may recommend items that have no user feedback (this happens very often, in
fact). Treating them as false positives in some cases leads to an undesired fp rate
overestimation and spoils the precision-recall curve.

Polara allows users to assign more appropriate weighting in this case via the
not_rated_penalty argument of the model.evaluate() method. Setting its value to
1 will force the evaluation process to count recommendations with unknown user
feedback as false positives while setting it to 0 will filter out such recommendations
from the final score calculation. Values between 0 and 1 will lead to a “smooth” fp
rate estimation.

The second feature is a native support for the positivity threshold, also described

in Sec. 5.3.1. As has been demonstrated in the results of Chap. 5, taking into account

157

the performance of models with respect to both positive and negative aspects of rec-
ommendations plays a crucial role in an understanding of the overall quality of recom-
mendations. Hence, every recommender model is provided with the switch_positive
trigger, which allows defining, what values of feedback should be treated as positive
or negative examples when evaluating recommendation quality. This trigger not only
affects how metrics are computed but also allows to calculate the nDCL score, in-
troduced in Sec. 5.3.2. It also defines which recommendations are counted as false
positive.

The technical implementation of the component relies on a sparse data repre-
sentation and bulk computations without loops. This not only improves computa-
tional efficiency but also allows to conduct a more in-depth analysis of model per-
formance, going beyond aggregated evaluation and in some cases helping to create a
better picture of model behavior. One particular method worth mentioning in this re-
gard is assemble_scoring_matrices from the polara.recommender.evaluation module.
It takes generated recommendations and holdout data as an input and returns various

indicators of correct and incorrect recommendations in the form of sparse matrices.

8.5 Supported scenarios and setups

As a multi-purpose evaluation framework, Polara provides the necessary instru-
ments and controls for various setups that cover all major evaluation scenarios. There
are three main experiment setups, supported natively by Polara. The standard evalua-
tion scenario allows test users to be a part of the training data and only the items from
holdout set remain unknown until the evaluation phase. In the warm start scenario
the test users are also hidden from the training phase. During the evaluation phase,
their known preferences are used to generate recommendations, which are then eval-
uated against the holdout items. Finally, the cold start scenario is represented by a
separate polara.recommender.coldstart module, which currently provides item cold
start functionality. The module additionally provides a few methods to manipulate
content information to support cold start regime.

Polara supports both implicit and explicit feedback, independently of whether

it is represented by rating values, binary data, frequency counts or other data formats.

158

Note that categorical feedback naturally fits the tensor-based representation and can
also be handled within Polara.

In addition to standard data splitting methods, Polara also supports custom
fields that can be used to order elements and split data. The simplest example is the
timestamp data. Assuming there is an additional column named “timestamp” in the
original pandas dataframe, the following modification of the Recommender Data con-

structor allows to take this information into account:

RecommenderData(data, "userid", "itemid", custom_order="timestamp"),

where for illustration purposes we also omit the feedback field to demonstrate how to
handle purely implicit positive-only data.

An important part of the general evaluation framework is the ability to set cus-
tom test data, provided externally (e.g. in some online recommender system chal-
lenge). For example, if one is provided with some external holdout data, which is not
a part of the training data, however contains only known users, the following setup

allows to seamlessly work the data:

Listing 8.5: Preparing data model for experiments with custom holdout.

1 data_model = RecommenderData(data, "userid", "itemid", "feedback")
2 data_model. prepare_training_only ()

3 data_model.set_test_data(holdout=external holdout ,

4

warm_start=False)

It should be noted that by default Polara will reindex external_holdout data to con-
form with the internal data representation. This behavior can be disabled by providing
reindex = False argument into the set_test_data method.

Fine-tuning of many recommendation models is not as simple as the tuning of
SVD and often requires an extensive hyper-parameter search. Current implementa-
tion of Polara provides basic functionality for the random grid search, which can be
accessed via the random_grid method from the polara.evaluation.pipelines module.
This functionality will be extended in future versions and include customizable all-in-
one pipelines.

As a final example of the framework functionality, the listing below demon-
strates how to conduct a top-n recommendation experiment for several models in

bulk with a few lines of code in the current version of the framework:

159

Listing 8.6: Example of cross-validation experiment for evaluating several models

from polara import PopularityModel
from polara import RandomModel

from polara.evaluation import evaluation_engine as ee

svd = SVDModel(data_model)
popular = PopularityModel (data_model)

random = RandomModel(data_model)

O 0 I N TR W DN =

models [svd, popular, random]

—_
[e)

metrics = ["ranking", "relevance"]
topk_values = [1, 5, 10, 20, 50]

_—
w N =

topk_result = {}
for fold in [1, 2, 3, 4, 5]
data _model. test _fold = fold

— =
[52 BTSN

16 topk_result[fold] = ee.topk_test(models, topk_values, metrics)

This will store the result of all models’ evaluation for all 5 folds in the topk_result
variable, which can be further used to perform comparative analysis and report on

findings.

8.6 Summary

In this chapter, we have described the key design aspects and demonstrated the
main functionality of the Polara framework. It takes care of the most of the data pro-
cessing and data handling hassles, providing a thin, abstract layer for the user with a
rich set of controls. The framework also provides a number of convenient and flexible
software tools for quick prototyping of recommender models and performing a com-
prehensive evaluation. Apart from the boilerplate functionality, Polara also supports
several external frameworks and libraries, allowing to incorporate their models into
the general workflow. Internally, the framework uses various tweaks and controls in
order to perform operations efficiently and wisely consume system resources. The
framework is suitable for both beginners and advanced users; it can be used in classes

for teaching or as a part of a daily research.

Final conclusion

In this work, we have considered various aspects of the limited preference in-

formation problem. This includes both cold start and warm start regimes, as well as

the general problem of the insufficient amount of collaborative information, which

often raises due to low user activity or overwhelmingly large collection of items. The

main contribution of this work consists of the following parts:

A new method for a proper modelling of user feedback is proposed. It allows
to better handle both positive and negative user feedback and improve user ex-
perience during the rating elicitation phase or in a general warm start scenario.
The method is based on the Tucker Decomposition and can be viewed as an

expansion of the PureSVD approach to higher order cases.

The second proposed method uses a generalized formulation of SVD in order
to add the ability to use side information along with collaborative data. This
allows to handle cases of extreme data sparsity and maintain high quality of

recommendations. The method is also suitable for cold start regime.

The third proposed method combines the previous two methods into a unified
approach. We provide efficient optimization technique, which takes the specific
structure of the problem into account. Remarkably, the method demonstrates
all the advantages of its predecessors and at the same time does not suffer from

their major shortcomings.

All three methods use SVD as an atomic operation during the optimization pro-
cess and preserve the orthogonality of columns in factor matrices. This allows
to maintain high scalability and makes all methods especially suitable for online

settings due to simplified folding-in computation.

160

161

« The methods also have minimal requirements for optimal hyper-parameter
search. This is achieved with a simplified rank tuning, which can be performed
by rank truncation in the SVD case and tensor rounding in the higher order

case.

« A new open-source recommendation framework written in Python is devel-
oped. The framework proved to be useful for quick model prototyping, com-

prehensive quality evaluation and also research reproducibility.

Despite considerable attention given to the rating data, the proposed unified
model is potentially applicable to other types of feedback as well, including different
response to the system, different user actions, emojis, multiple criteria ratings, etc.
Due to a general formulation of its underlying principles, the model is also suitable for
context-aware or multi-aspect settings. Based on side information, the model helps
to reasonably restore missing connections between various aspects or entities and
impose additional constraints on them. We believe the model can be applied in many
domains, going beyond entertainment systems.

Despite the encouraging results, there is a general issue related to solving prob-
lems with multiple types of context and feedback values. When the number of dimen-
sions becomes much higher than 3, application of TD-based methods becomes infea-
sible due to the explosion of storage requirements. A possible cure for this problem is
to use TT/HT formats for tensor decomposition. Incorporating the ideas, developed
in this work, into a more appropriate tensor format for higher dimensional problems

remains a promising direction for further investigations.

Bibliography

[1]

Hervé Abdi. “Singular value decomposition (SVD) and generalized singular
value decomposition”. In: Encyclopedia of measurement and statistics. Thousand

Oaks (CA): Sage (2007), pp. 907-12.

Gediminas Adomavicius and Alexander Tuzhilin. “Toward the next generation
of recommender systems: A survey of the state-of-the-art and possible exten-
sions”. In: IEEE transactions on knowledge and data engineering 17.6 (2005),
pp. 734-749.

Gediminas Adomavicius et al. “Context-Aware Recommender Systems.” In: Al
Magazine 32.3 (2011).

Gediminas Adomavicius et al. “Incorporating contextual information in rec-
ommender systems using a multidimensional approach”. In: ACM Transactions
on Information Systems (TOIS) 23.1 (2005), pp. 103—145.

Deepak Agarwal and Bee-Chung Chen. “Regression-based latent factor mod-
els”. In: Proceedings of the 15th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM. 2009, pp. 19-28.

James Allan et al. “Frontiers, challenges, and opportunities for information
retrieval: Report from SWIRL 2012 the second strategic workshop on infor-
mation retrieval in Lorne”. In: ACM SIGIR Forum. Vol. 46. 1. ACM. 2012, pp. 2—
32.

Xavier Amatriain and Deepak Agarwal. “Tutorial: Lessons Learned from
Building Real-life Recommender Systems”. In: Proceedings of the 10th ACM
Conference on Recommender Systems. ACM. 2016, pp. 433-433.

Xavier Amatriain, Josep M Pujol, and Nuria Oliver. “Ilike it... i like it not: Eval-

uating user ratings noise in recommender systems”. In: International Confer-

162

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

163

ence on User Modeling, Adaptation, and Personalization. Springer. 2009, pp. 247-
258.

Claus A Andersson and Rasmus Bro. “Improving the speed of multi-way algo-
rithms:: Part I. Tucker3”. In: Chemometrics and intelligent laboratory systems
42.1-2 (1998), pp. 93-103.

Yoram Bachrach et al. “Speeding up the xbox recommender system using a
euclidean transformation for inner-product spaces”. In: Proceedings of the Sth

ACM Conference on Recommender systems. ACM. 2014, pp. 257-264.

Iman Barjasteh et al. “Cold-start item and user recommendation with decou-
pled completion and transduction”. In: Proceedings of the 9th ACM Conference
on Recommender Systems. ACM. 2015, pp. 91-98.

Immanuel Bayer et al. “A generic coordinate descent framework for learning
from implicit feedback”. In: Proceedings of the 26th International Conference on
World Wide Web. International World Wide Web Conferences Steering Com-
mittee. 2017, pp. 1341-1350.

Mary Bazire and Patrick Brézillon. “Understanding context before using it”. In:
International and Interdisciplinary Conference on Modeling and Using Context.

Springer. 2005, pp. 29-40.

Robert M Bell and Yehuda Koren. “Scalable collaborative filtering with jointly
derived neighborhood interpolation weights”. In: Data Mining, 2007. ICDM
2007. Seventh IEEE International Conference on. IEEE. 2007, pp. 43-52.

Robert Bell, Yehuda Koren, and Chris Volinsky. “Modeling relationships at
multiple scales to improve accuracy of large recommender systems”. In: Pro-
ceedings of the 13th ACM SIGKDD international conference on Knowledge dis-
covery and data mining. ACM. 2007, pp. 95-104.

James Bergstra and Yoshua Bengio. “Random search for hyper-parameter op-
timization”. In: Journal of Machine Learning Research 13.Feb (2012), pp. 281-
305.

Michael W Berry, Susan T Dumais, and Gavin W O’Brien. “Using linear algebra
for intelligent information retrieval”. In: SIAM review 37.4 (1995), pp. 573-595.

Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

164

Daniel Billsus and Michael] Pazzani. “Learning Collaborative Information Fil-
ters.” In: Icml. Vol. 98. 1998, pp. 46—54.

Mathieu Blondel et al. “Higher-order factorization machines”. In: Advances in

Neural Information Processing Systems. 2016, pp. 3351-3359.

Jests Bobadilla et al. “Recommender systems survey”. In: Knowledge-based sys-
tems 46 (2013), pp. 109-132.

Léon Bottou. “Stochastic gradient descent tricks”. In: Neural networks: Tricks
of the trade. Springer, 2012, pp. 421-436.

Matthew Brand. “Incremental singular value decomposition of uncertain data
with missing values”. In: European Conference on Computer Vision. Springer.
2002, pp. 707-720.

John S Breese, David Heckerman, and Carl Kadie. “Empirical analysis of pre-
dictive algorithms for collaborative filtering”. In: Proceedings of the Fourteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publish-
ers Inc. 1998, pp. 43-52.

Peter Brusilovsky. “Social information access: the other side of the social web”.
In: International Conference on Current Trends in Theory and Practice of Com-

puter Science. Springer. 2008, pp. 5-22.

Robin Burke. “Hybrid web recommender systems”. In: The adaptive web.
Springer, 2007, pp. 377-408.

Dennis L Chao, Justin Balthrop, and Stephanie Forrest. “Adaptive radio:
achieving consensus using negative preferences”. In: Proceedings of the 2005 in-
ternational ACM SIGGROUP conference on Supporting group work. ACM. 2005,
pp. 120-123.

Olivier Chapelle and Mingrui Wu. “Gradient descent optimization of smoothed
information retrieval metrics”. In: Information retrieval 13.3 (2010), pp. 216-
235.

Tianqi Chen et al. “Combining factorization model and additive forest for col-
laborative followee recommendation”. In: KDD CUP (2012).

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

165

Tiangi Chen et al. Feature-based matrix factorization. 2011. arXiv: 1109.2271.
URL: https://arxiv.org/abs/1109.2271.

Yifan Chen, Xiang Zhao, and Maarten de Rijke. “Top-N recommendation with
high-dimensional side information via locality preserving projection”. In: Pro-
ceedings of the 40th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval. ACM. 2017, pp. 985-988.

Yun Chi and Shenghuo Zhu. “FacetCube: a framework of incorporating prior
knowledge into non-negative tensor factorization”. In: Proceedings of the 19th
ACM international conference on Information and knowledge management.
ACM. 2010, pp. 569—578.

Yun Chi et al. “Probabilistic polyadic factorization and its application to per-
sonalized recommendation”. In: Proceedings of the 17th ACM conference on In-

formation and knowledge management. ACM. 2008, pp. 941-950.

Flavio Chierichetti et al. “Finding the jaccard median”. In: Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms. SIAM. 2010,
pp. 293-311.

Andrzej Cichocki and Anh-Huy Phan. “Fast local algorithms for large scale
nonnegative matrix and tensor factorizations”. In: IEICE transactions on fun-
damentals of electronics, communications and computer sciences 92.3 (2009),
pp- 708-721.

Andrzej Cichocki et al. Nonnegative matrix and tensor factorizations: applica-
tions to exploratory multi-way data analysis and blind source separation. John
Wiley & Sons, 2009.

Pierre Comon. “Tensors: a brief introduction”. In: IEEE Signal Processing Mag-
azine 31.3 (2014), pp. 44-53.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. “Performance of rec-
ommender algorithms on top-n recommendation tasks”. In: Proceedings of the
fourth ACM conference on Recommender systems. New York, NY, USA: ACM,
2010, pp. 39-46.

https://arxiv.org/abs/1109.2271
https://arxiv.org/abs/1109.2271

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

166

Ariyam Das et al. “Collaborative Filtering As a Case-Study for Model Paral-
lelism on Bulk Synchronous Systems”. In: Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management. CIKM °17. New York, NY,
USA: ACM, 2017, pp. 969-977.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. “A Multilinear Sin-
gular Value Decomposition”. In: SIAM 7. Matrix Anal. Appl. 21.4 (Jan. 2000),
pp. 1253-1278.

Vin De Silva and Lek-Heng Lim. “Tensor rank and the ill-posedness of the
best low-rank approximation problem”. In: SIAM Journal on Matrix Analysis
and Applications 30.3 (2008), pp. 1084-1127.

Scott Deerwester et al. “Indexing by latent semantic analysis”. In: Journal of

the American society for information science 41.6 (1990), p. 391.

Mukund Deshpande and George Karypis. “Item-based top-n recommendation
algorithms”. In: ACM Transactions on Information Systems (TOIS) 22.1 (2004),
pp- 143-177.

Christian Desrosiers and George Karypis. “A comprehensive survey of
neighborhood-based recommendation methods”. In: Recommender systems
handbook. Springer, 2011, pp. 107-144.

Stephan Doerfel, Robert Jiaschke, and Gerd Stumme. “The role of cores in rec-
ommender benchmarking for social bookmarking systems”. In: ACM Transac-

tions on Intelligent Systems and Technology (TIST) 7.3 (2016), p. 40.

Paul Dourish. “What we talk about when we talk about context”. In: Personal

and ubiquitous computing 8.1 (2004), pp. 19-30.

John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for
online learning and stochastic optimization”. In: Journal of Machine Learning
Research 12.Jul (2011), pp. 2121-2159.

Carl Eckart and Gale Young. “The approximation of one matrix by another of
lower rank”. In: Psychometrika 1.3 (1936), pp. 211-218.

Michael D Ekstrand, John T Riedl, Joseph A Konstan, et al. “Collaborative
filtering recommender systems”. In: Foundations and Trends® in Human—

Computer Interaction 4.2 (2011), pp. 81-173.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

167

Mehdi Elahi, Valdemaras Repsys, and Francesco Ricci. “Rating elicitation
strategies for collaborative filtering”. In: International Conference on Electronic

Commerce and Web Technologies. Springer. 2011, pp. 160-171.

Mehdi Elahi, Francesco Ricci, and Neil Rubens. “A survey of active learning in
collaborative filtering recommender systems”. In: Computer Science Review 20
(2016), pp. 29-50.

Yi Fang and Luo Si. “Matrix co-factorization for recommendation with rich
side information and implicit feedback”. In: Proceedings of the 2nd International
Workshop on Information Heterogeneity and Fusion in Recommender Systems.
ACM. 2011, pp. 65-69.

Alexander Fonarev et al. “Efficient rectangular maximal-volume algorithm for
rating elicitation in collaborative filtering”. In: Data Mining (ICDM), 2016 IEEE
16th International Conference on. IEEE. 2016, pp. 141-150.

Evgeny Frolov and Ivan Oseledets. “Tensor methods and recommender sys-
tems”. In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discov-
ery 7.3 (2017).

Xiao Fu et al. “Joint tensor factorization and outlying slab suppression with
applications”. In: I[EEE Transactions on Signal Processing 63.23 (2015), pp. 6315—
6328.

George W Furnas et al. “Information retrieval using a singular value decompo-
sition model of latentsemantic structure”. In: Proc. 11th Annu. Int. ACM SIGIR
Conf. Res. Dev. Inf. Retr. ACM. 1988, pp. 465-480.

Zeno Gantner, Steffen Rendle, and Lars Schmidt-Thieme. “Factorization mod-
els for context-/time-aware movie recommendations”. In: Proceedings of the

Workshop on Context-Aware Movie Recommendation. ACM. 2010, pp. 14-19.

Zeno Gantner et al. “Learning attribute-to-feature mappings for cold-start rec-
ommendations”. In: Data Mining (ICDM), 2010 IEEE 10th International Confer-
ence on. IEEE. 2010, pp. 176-185.

Zeno Gantner et al. “MyMediaLite: a free recommender system library”. In:
Proceedings of the fifth ACM conference on Recommender systems. ACM. 2011,
pp. 305-308.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

168

Mark Gates et al. “Accelerating collaborative filtering using concepts from
high performance computing”. In: Big Data (Big Data), 2015 IEEE International
Conference on. IEEE. 2015, pp. 667-676.

Hancheng Ge, James Caverlee, and Haokai Lu. “Taper: A contextual tensor-
based approach for personalized expert recommendation”. In: Proceedings of
the 10th ACM Conference on Recommender Systems. ACM. 2016, pp. 261-268.

Rainer Gemulla et al. “Large-scale matrix factorization with distributed
stochastic gradient descent”. In: Proceedings of the 17th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM. 2011, pp. 69—
77.

Alex Gittens et al. “Matrix factorizations at scale: A comparison of scientific
data analytics in Spark and C+ MPI using three case studies”. In: Big Data (Big
Data), 2016 IEEE International Conference on. IEEE. 2016, pp. 204-213.

Ken Goldberg et al. “Eigentaste: A constant time collaborative filtering algo-
rithm”. In: Information Retrieval 4.2 (2001), pp. 133-151.

Gene H Golub and Christian Reinsch. “Singular value decomposition and least
squares solutions”. In: Numer. Math. 14.5 (1970), pp. 403-420.

Gene H Golub and Charles F Van Loan. Matrix computations. 4th. The Johns
Hopkins University Press, 2012.

Lars Grasedyck. “Hierarchical singular value decomposition of tensors”. In:
SIAM j. Matrix Anal. Appl. 31.4 (2010), pp. 2029-2054.

Lars Grasedyck, Daniel Kressner, and Christine Tobler. “A literature survey
of low-rank tensor approximation techniques”. In: GAMM-Mitteilungen 36.1
(2013), pp. 53-78.

Asela Gunawardana and Christopher Meek. “A unified approach to building
hybrid recommender systems”. In: Proceedings of the third ACM conference on
Recommender systems. ACM. 2009, pp. 117-124.

Wolfgang Hackbusch. Tensor spaces and numerical tensor calculus. Vol. 42.

Springer Science & Business Media, 2012.

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

169

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. “Finding structure
with randomness: Probabilistic algorithms for constructing approximate ma-
trix decompositions”. In: SIAM review 53.2 (2011), pp. 217-288.

Trevor Hastie et al. “Matrix completion and low-rank SVD via fast alternating
least squares.” In: Journal of Machine Learning Research 16 (2015), pp. 3367-
3402.

Trevor Hastie et al. “The elements of statistical learning: data mining, inference
and prediction”. In: Math. Intell. 27.2 (2005), pp. 83-85.

Jonathan L Herlocker et al. “Evaluating collaborative filtering recommender
systems”. In: ACM Transactions on Information Systems (TOIS) 22.1 (2004),
pp- 5-53.

Balazs Hidasi. “Factorization models for context-aware recommendations”. In:

Infocommun 7 VI (4) (2014), pp. 27-34.

Balazs Hidasi and Domonkos Tikk. Context-aware recommendations from im-
plicit data via scalable tensor factorization. 2013. arXiv: 1309.7611. URL: https:
//arxiv.org/abs/1309.7611.

Balazs Hidasi and Domonkos Tikk. “Fast ALS-based tensor factorization
for context-aware recommendation from implicit feedback”. In: Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases.

Springer. 2012, pp. 67-82.

Balazs Hidasi and Domonkos Tikk. “General factorization framework for
context-aware recommendations”. In: Data Mining and Knowledge Discovery
30.2 (2016), pp. 342-371.

Balazs Hidasi and Domonkos Tikk. “Speeding up ALS learning via approxi-
mate methods for context-aware recommendations”. In: Knowledge and Infor-
mation Systems 47.1 (2016), pp. 131-155.

Liangjie Hong, Aziz S Doumith, and Brian D Davison. “Co-factorization ma-
chines: modeling user interests and predicting individual decisions in twitter”.
In: Proceedings of the sixth ACM international conference on Web search and data
mining. ACM. 2013, pp. 557-566.

https://arxiv.org/abs/1309.7611
https://arxiv.org/abs/1309.7611
https://arxiv.org/abs/1309.7611

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

170

Cheng-Kang Hsieh et al. “Collaborative metric learning”. In: Proceedings of the
26th International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee. 2017, pp. 193-201.

Yifan Hu, Yehuda Koren, and Chris Volinsky. “Collaborative filtering for im-
plicit feedback datasets”. In: 2008 Eighth IEEE International Conference on Data
Mining. IEEE. 2008, pp. 263-272.

implicit: Fast Python Collaborative Filtering for Implicit Feedback Datasets. URL:
https://github.com/benfred/implicit (visited on 09/12/2018).

Yuchin Juan et al. “Field-aware factorization machines for CTR prediction”. In:
Proceedings of the 10th ACM Conference on Recommender Systems. ACM. 2016,
pp. 43-50.

Alexandros Karatzoglou et al. “Multiverse recommendation: n-dimensional
tensor factorization for context-aware collaborative filtering”. In: Proceedings

of the fourth ACM conference on Recommender systems. ACM. 2010, pp. 79-86.

Rasoul Karimi et al. “Non-myopic active learning for recommender systems
based on matrix factorization”. In: Information Reuse and Integration (IRI), 2011
IEEE International Conference on. IEEE. 2011, pp. 299-303.

Elizabeth A Kensinger. “Remembering the details: Effects of emotion”. In: Emo-
tion review 1.2 (2009), pp. 99-113.

Dohyun Kim and Bong-Jin Yum. “Collaborative filtering based on iterative
principal component analysis”. In: Expert Systems with Applications 28.4 (2005),
pp. 823-830.

Bart P Knijnenburg and Martijn C Willemsen. “Evaluating recommender sys-
tems with user experiments”. In: Recommender Systems Handbook. Springer,

2015, pp. 309-352.

Tamara G Kolda and Brett W Bader. “Tensor decompositions and applications”.
In: SIAM review 51.3 (2009), pp. 455-500.

Tamara Kolda and Brett Bader. “The TOPHITS model for higher-order web
link analysis”. In: Workshop on link analysis, counterterrorism and security.
Vol. 7. 2006, pp. 26—29.

https://github.com/benfred/implicit

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

171

Joseph A Konstan and John Riedl. “Recommender systems: from algorithms to
user experience’. In: User modeling and user-adapted interaction 22.1-2 (2012),
pp. 101-123.

Yehuda Koren. “Factorization meets the neighborhood: a multifaceted collab-
orative filtering model”. In: Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM. 2008, pp. 426—434.

Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix factorization tech-

niques for recommender systems”. In: Computer 42.8 (2009).

Yehuda Koren and Joe Sill. “OrdRec: an ordinal model for predicting person-
alized item rating distributions”. In: Proceedings of the fifth ACM conference on
Recommender systems. ACM. 2011, pp. 117-124.

Jongwuk Lee et al. “Improving the accuracy of top-N recommendation using

a preference model”. In: Information Sciences 348 (2016), pp. 290-304.

LenSkit. Open-Source Tools for Recommender Systems. URL: https://lenskit.
org (visited on 09/12/2018).

Gai Li and Qiang Chen. “Exploiting explicit and implicit feedback for person-
alized ranking”. In: Mathematical Problems in Engineering 2016 (2016).

Zhi-fang Liao et al. “A tripartite tensor decomposition fold-in for social tag-

ging”. In: Tamkang Journal of Science and Engineering 17.4 (2014), pp. 363-370.

Librec. A Leading Java Library for Recommender Systems. URL: https://www .
librec.net (visited on 09/12/2018).

Tie-Yan Liu et al. “Learning to rank for information retrieval”. In: Foundations
and Trends® in Information Retrieval 3.3 (2009), pp. 225-331.

Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. “Content-based
recommender systems: State of the art and trends”. In: Recommender systems
handbook. Springer, 2011, pp. 73-105.

Michael W Mahoney, Mauro Maggioni, and Petros Drineas. “Tensor-CUR de-
compositions for tensor-based data”. In: SIAM Journal on Matrix Analysis and

Applications 30.3 (2008), pp. 957-987.

https://lenskit.org
https://lenskit.org
https://www.librec.net
https://www.librec.net

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

172

Leandro Balby Marinho et al. “Social tagging recommender systems”. In: Rec-

ommender systems handbook. Springer, 2011, pp. 615-644.

Andriy Mnih and Ruslan R Salakhutdinov. “Probabilistic matrix factorization”.

In: Advances in neural information processing systems. 2008, pp. 1257-1264.

mrec recommender systems library. URL: https://mendeley.github.io/mrec
(visited on 09/12/2018).

MyMediaLite Recommender System Library. URL: http://www.mymedialite.net
(visited on 09/12/2018).

Amir Hossein Nabizadeh et al. “Predicting User Preference Based on Matrix
Factorization by Exploiting Music Attributes”. In: Proceedings of the Ninth In-
ternational C* Conference on Computer Science & Software Engineering. ACM.
2016, pp. 61-66.

Alexandros Nanopoulos et al. “Musicbox: Personalized music recommenda-
tion based on cubic analysis of social tags”. In: IEEE Transactions on Audio,

Speech, and Language Processing 18.2 (2010), pp. 407-412.

Carmeliza Navasca, Lieven De Lathauwer, and Stefan Kindermann. “Swamp
reducing technique for tensor decomposition”. In: Signal Processing Confer-
ence, 2008 16th European. IEEE. 2008, pp. 1-5.

Jennifer Nguyen and Mu Zhu. “Content-boosted matrix factorization tech-
niques for recommender systems”. In: Statistical Analysis and Data Mining 6.4
(2013), pp. 286-301.

Athanasios N Nikolakopoulos et al. “EigenRec: generalizing PureSVD for ef-
fective and efficient top-N recommendations”. In: Knowledge and Information
Systems (2018), pp. 1-23.

Xia Ning and George Karypis. “Slim: Sparse linear methods for top-n recom-
mender systems”. In: Data Mining (ICDM), 2011 IEEE 11th International Con-
ference on. IEEE. 2011, pp. 497-506.

Xia Ning and George Karypis. “Sparse linear methods with side information
for top-n recommendations”. In: Proceedings of the sixth ACM conference on
Recommender systems. ACM. 2012, pp. 155-162.

https://mendeley.github.io/mrec
http://www.mymedialite.net

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

173

Alexander Novikov, Mikhail Trofimov, and Ivan Oseledets. Exponential ma-

chines. 2016. arXiv: 1605.03795. URL: https://arxiv.org/abs/1605.03795.

Ivan V Oseledets. “Tensor-train decomposition”. In: SIAM Journal on Scientific
Computing 33.5 (2011), pp. 2295-2317.

Rong Pan et al. “One-class collaborative filtering”. In: Data Mining, 2008.
ICDM’08. Eighth IEEE International Conference on. IEEE. 2008, pp. 502-511.

Xinghao Pan et al. “Cyclades: Conflict-free asynchronous machine learning”.

In: Advances in Neural Information Processing Systems. 2016, pp. 2568—2576.

Ulrich Paquet, Blaise Thomson, and Ole Winther. “A hierarchical model for
ordinal matrix factorization”. In: Statistics and Computing 22.4 (2012), pp. 945-
957.

Denis Parra and Peter Brusilovsky. “Collaborative filtering for social tagging
systems: an experiment with CiteULike”. In: Proceedings of the third ACM con-
ference on Recommender systems. ACM, 2009, pp. 237-240.

Arkadiusz Paterek. “Improving regularized singular value decomposition for
collaborative filtering”. In: Proceedings of KDD cup and workshop. Vol. 2007.
2007, pp. 5-8.

Dinh Q Phung, Svetha Venkatesh, et al. “Ordinal Boltzmann machines for col-
laborative filtering”. In: Proceedings of the twenty-fifth conference on uncer-

tainty in artificial intelligence. AUAI Press. 2009, pp. 548-556.

Istvan Pilaszy and Domonkos Tikk. “Recommending new movies: even a few
ratings are more valuable than metadata”. In: Proceedings of the third ACM
conference on Recommender systems. ACM. 2009, pp. 93-100.

Istvan Pilaszy, David Zibriczky, and Domonkos Tikk. “Fast als-based matrix
factorization for explicit and implicit feedback datasets”. In: Proceedings of the
fourth ACM conference on Recommender systems. ACM. 2010, pp. 71-78.

Polara: Recommender Systems framework. URL: https://github.com/evfro/
polara (visited on 09/12/2018).

Ian Porteous, Arthur U Asuncion, and Max Welling. “Bayesian Matrix Factor-

ization with Side Information and Dirichlet Process Mixtures.” In: AAAIL 2010.

https://arxiv.org/abs/1605.03795
https://arxiv.org/abs/1605.03795
https://github.com/evfro/polara
https://github.com/evfro/polara

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

174

Dimitrios Rafailidis and Petros Daras. “The TFC model: Tensor factoriza-
tion and tag clustering for item recommendation in social tagging systems”.
In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 43.3 (2013),
pp. 673-688.

Dimitrios Rafailidis and Alexandros Nanopoulos. “Modeling users preference
dynamics and side information in recommender systems”. In: IEEE Transac-

tions on Systems, Man, and Cybernetics: Systems 46.6 (2016), pp. 782-792.

RankSys. Java 8 Recommender Systems framework for novelty, diversity and

much more. URL: https://www.ranksys.org/ (visited on 09/12/2018).

Benjamin Recht et al. “Hogwild: A lock-free approach to parallelizing stochas-
tic gradient descent”. In: Advances in neural information processing systems.
2011, pp. 693-701.

recommenderlab: A Framework for Developing and Testing Recommendation
Algorithms. URL: http : / / s2 . smu . edu / IDA / recommenderlab (visited on
09/12/2018).

Steffen Rendle. “Factorization machines”. In: Data Mining (ICDM), 2010 IEEE
10th International Conference on. IEEE. 2010, pp. 995-1000.

Steffen Rendle and Lars Schmidt-Thieme. “Online-updating regularized kernel
matrix factorization models for large-scale recommender systems”. In: Pro-
ceedings of the 2008 ACM conference on Recommender systems. ACM. 2008,
pp. 251-258.

Steffen Rendle and Lars Schmidt-Thieme. “Pairwise interaction tensor factor-
ization for personalized tag recommendation”. In: Proceedings of the third ACM

international conference on Web search and data mining. ACM. 2010, pp. 81-90.

Steffen Rendle et al. “BPR: Bayesian personalized ranking from implicit feed-
back”. In: Proceedings of the twenty-fifth conference on uncertainty in artificial
intelligence. AUAI Press. 2009, pp. 452-461.

Steffen Rendle et al. “Fast context-aware recommendations with factorization
machines”. In: Proceedings of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval. ACM. 2011, pp. 635-644.

https://www.ranksys.org/
http://s2.smu.edu/IDA/recommenderlab

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

175

Steffen Rendle et al. “Learning optimal ranking with tensor factorization for
tag recommendation”. In: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM. 2009, pp. 727-736.

Achim Rettinger et al. “Context-aware tensor decomposition for relation pre-
diction in social networks”. In: Social Network Analysis and Mining 2.4 (2012),
pp. 373-385.

David A Ross et al. “Incremental learning for robust visual tracking”. In: Int. J.
Comput. Vis. 77.1-3 (2008), pp. 125-141.

Sujoy Roy and Sharat Chandra Guntuku. “Latent factor representations for
cold-start video recommendation”. In: Proceedings of the 10th ACM Conference

on Recommender Systems. ACM. 2016, pp. 99-106.

Paul Rozin and Edward B Royzman. “Negativity bias, negativity dominance,
and contagion”. In: Personality and social psychology review 5.4 (2001), pp. 296—
320.

Alan Said and Alejandro Bellogin. “Comparative recommender system evalu-
ation: benchmarking recommendation frameworks”. In: Proceedings of the 8th
ACM Conference on Recommender systems. ACM. 2014, pp. 129-136.

Ruslan Salakhutdinov and Andriy Mnih. “Bayesian probabilistic matrix factor-
ization using Markov chain Monte Carlo”. In: Proceedings of the 25th interna-
tional conference on Machine learning. ACM. 2008, pp. 880-887.

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. “Restricted Boltz-
mann machines for collaborative filtering”. In: Proceedings of the 24th interna-
tional conference on Machine learning. ACM. 2007, pp. 791-798.

Scott Sallinen et al. “High performance parallel stochastic gradient descent in
shared memory”. In: Parallel and Distributed Processing Symposium, 2016 IEEE
International. IEEE. 2016, pp. 873-882.

Badrul Sarwar et al. Application of dimensionality reduction in recommender
system-a case study. Tech. rep. Minnesota Univ Minneapolis Dept of Computer
Science, 2000.

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

176

Martin Saveski and Amin Mantrach. “Item cold-start recommendations: learn-
ing local collective embeddings”. In: Proceedings of the 8th ACM Conference on
Recommender systems. ACM. 2014, pp. 89-96.

J Ben Schafer et al. “Collaborative Filtering Recommender Systems”. In: The
Adaptive Web: Methods and Strategies of Web Personalization. Ed. by Peter
Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl. Berlin, Heidelberg: Springer,
2007, pp. 291-324. 1SBN: 978-3-540-72079-9.

Sebastian Schelter, Venu Satuluri, and Reza Zadeh. Factorbird-a parameter

server approach to distributed matrix factorization. 2014.

Sebastian Schelter et al. “Distributed matrix factorization with mapreduce us-
ing a series of broadcast-joins”. In: Proceedings of the 7th ACM conference on
Recommender systems. ACM. 2013, pp. 281-284.

Tobias Schnabel et al. “Recommendations As Treatments: Debiasing Learning
and Evaluation”. In: Proceedings of the 33rd International Conference on Inter-
national Conference on Machine Learning - Volume 48. ICML’16. New York, NY,
USA: JMLR.org, 2016, pp. 1670-1679.

Lili Shan et al. “Predicting ad click-through rates via feature-based fully cou-
pled interaction tensor factorization”. In: Electronic Commerce Research and
Applications 16 (2016), pp. 30-42.

Guy Shani and Asela Gunawardana. “Evaluating recommendation systems”.

In: Recommender systems handbook. Springer, 2011, pp. 257-297.

John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis.
Vol. 47. Cambridge University Press, 2004, p. 462.

Yue Shi, Martha Larson, and Alan Hanjalic. “Mining mood-specific movie sim-
ilarity with matrix factorization for context-aware recommendation”. In: Pro-
ceedings of the workshop on context-aware movie recommendation. ACM. 2010,
pp. 34-40.

Yue Shi et al. “CLiMF: learning to maximize reciprocal rank with collaborative
less-is-more filtering”. In: Proceedings of the sixth ACM conference on Recom-
mender systems. ACM. 2012, pp. 139-146.

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

177

Yue Shi et al. “TFMAP: optimizing MAP for top-n context-aware recommenda-
tion”. In: Proceedings of the 35th international ACM SIGIR conference on Research
and development in information retrieval. ACM. 2012, pp. 155-164.

Yue Shi et al. “xCLiMF: optimizing expected reciprocal rank for data with mul-
tiple levels of relevance”. In: Proceedings of the 7th ACM conference on Recom-
mender systems. ACM. 2013, pp. 431-434.

Ajit P Singh and Geoffrey J Gordon. “Relational learning via collective matrix
factorization”. In: Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM. 2008, pp. 650-658.

Nathan Srebro and Tommi Jaakkola. “Weighted low-rank approximations”. In:
Proceedings of the 20th International Conference on Machine Learning (ICML-
03). 2003, pp. 720-727.

Harald Steck. “Training and testing of recommender systems on data missing
not at random”. In: Proceedings of the 16th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. ACM. 2010, pp. 713-722.

Gilbert Strang. Linear Algebra and Its Applications. 4th. Brooks Cole, 2006.

Jian-Tao Sun et al. “Cubesvd: a novel approach to personalized web search”.
In: Proceedings of the 14th international conference on World Wide Web. ACM.
2005, pp. 382-390.

Surprise. A Python scikit for recommender systems. URL: http://surpriselib.
com (visited on 09/12/2018).

Panagiotis Symeonidis. “Clusthosvd: item recommendation by combining se-
mantically enhanced tag clustering with tensor hosvd”. In: IEEE Transactions

on Systems, Man, and Cybernetics: Systems 46.9 (2016), pp. 1240-1251.

Panagiotis Symeonidis. “Content-based dimensionality reduction for rec-
ommender systems”. In: Data Analysis, Machine Learning and Applications.
Springer, 2008, pp. 619-626.

Panagiotis Symeonidis. “User recommendations based on tensor dimensional-
ity reduction”. In: IFIP International Conference on Artificial Intelligence Appli-
cations and Innovations. Springer. 2009, pp. 331-340.

http://surpriselib.com
http://surpriselib.com

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

178

Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos.
“A unified framework for providing recommendations in social tagging sys-
tems based on ternary semantic analysis”. In: IEEE Transactions on Knowledge

and Data Engineering 22.2 (2010), pp. 179-192.

Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos.
“Tag recommendations based on tensor dimensionality reduction”. In: Proceed-
ings of the 2008 ACM conference on Recommender systems. ACM. 2008, pp. 43—
50.

Panagiotis Symeonidis et al. “Ternary Semantic Analysis of Social Tags for

Personalized Music Recommendation.” In: Ismir. Vol. 8. 2008, pp. 219-224.

Géabor Takacs, Istvan Pilaszy, and Domonkos Tikk. “Applications of the conju-
gate gradient method for implicit feedback collaborative filtering”. In: Proceed-
ings of the fifth ACM conference on Recommender systems. ACM. 2011, pp. 297-
300.

Gabor Takacs and Domonkos Tikk. “Alternating least squares for personalized
ranking”. In: Proceedings of the sixth ACM conference on Recommender systems.
ACM. 2012, pp. 83-90.

Gabor Takacs et al. “Investigation of various matrix factorization methods
for large recommender systems”. In: Proceedings of the 2nd KDD Workshop
on Large-Scale Recommender Systems and the Netflix Prize Competition. ACM.
2008, p. 6.

Gabor Takéacs et al. “Major components of the gravity recommendation sys-
tem”. In: ACM SIGKDD Explorations Newsletter 9.2 (2007), pp. 80-83.

Turi. URL: https://turi.com/ (visited on 09/12/2018).

Madeleine Udell et al. “Generalized low rank models”. In: Foundations and
Trends® in Machine Learning 9.1 (2016), pp. 1-118.

Bart Vandereycken. “Low-rank matrix completion by Riemannian optimiza-
tion”. In: SIAM Journal on Optimization 23.2 (2013), pp. 1214-1236.

Koen Verstrepen et al. “Collaborative filtering for binary, positiveonly data”.
In: ACM SIGKDD Explorations Newsletter 19.1 (2017), pp. 1-21.

https://turi.com/

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

179

Licai Wang, Xiangwu Meng, and Yujie Zhang. “Applying HOSVD to allevi-
ate the sparsity problem in context-aware recommender systems”. In: Chinese
Journal of Electronics 22.4 (2013), pp. 773-778.

Zhijin Wang and Liang He. “User identification for enhancing IP-TV recom-
mendation”. In: Knowledge-Based Systems 98 (2016), pp. 68-75.

Markus Weimer et al. “Cofi rank-maximum margin matrix factorization for
collaborative ranking”. In: Advances in neural information processing systems.

2008, pp. 1593-1600.

Hendrik Wermser, Achim Rettinger, and Volker Tresp. “Modeling and learn-
ing context-aware recommendation scenarios using tensor decomposition”.
In: Advances in Social Networks Analysis and Mining (ASONAM), 2011 Interna-
tional Conference on. IEEE. 2011, pp. 137-144.

Jason Weston, Samy Bengio, and Nicolas Usunier. “Wsabie: Scaling up to large

vocabulary image annotation”. In: IJCAL Vol. 11. 2011, pp. 2764-2770.

Wolfgang Woerndl and Johann Schlichter. “Introducing context into recom-
mender systems”. In: Proceedings of AAAI workshop on recommender systems
in E-commerce. 2007, pp. 138-140.

Xin Xin et al. “FHSM: Factored Hybrid Similarity Methods for Top-N Recom-
mender Systems”. In: Asia-Pacific Web Conference. Springer. 2016, pp. 98-110.

Liang Xiong et al. “Temporal collaborative filtering with bayesian probabilistic
tensor factorization”. In: Proceedings of the 2010 SIAM International Conference
on Data Mining. SIAM. 2010, pp. 211-222.

Yanfei Xu, Liang Zhang, and Wei Liu. “Cubic analysis of social bookmarking
for personalized recommendation”. In: Asia-Pacific Web Conference. Springer.
2006, pp. 733-738.

Jiyan Yang and Alex Gittens. Tensor machines for learning target-specific poly-
nomial features. 2015. arXiv: 1504 .01697. URL: https://arxiv.org/abs/1504.
01697.

Hsiang-Fu Yu, Mikhail Bilenko, and Chih-Jen Lin. “Selection of negative sam-
ples for one-class matrix factorization”. In: Proceedings of the 2017 SIAM Inter-
national Conference on Data Mining. SIAM. 2017, pp. 363-371.

https://arxiv.org/abs/1504.01697
https://arxiv.org/abs/1504.01697
https://arxiv.org/abs/1504.01697

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

180

Hsiang-Fu Yu et al. “Scalable coordinate descent approaches to parallel matrix
factorization for recommender systems”. In: Proceedings of the 2012 IEEE 12th
International Conference on Data Mining. ICDM "12. IEEE. 2012, pp. 765-774.

Shipeng Yu et al. “Collaborative ordinal regression”. In: Proceedings of the 23rd
international conference on Machine learning. ACM. 2006, pp. 1089-1096.

Hyokun Yun et al. “NOMAD: Non-locking, stOchastic Multi-machine algo-
rithm for Asynchronous and Decentralized matrix completion”. In: Proceedings
of the VLDB Endowment 7.11 (2014), pp. 975-986.

Hongyuan Zha and Horst D Simon. “On updating problems in latent semantic
indexing”. In: SIAM Journal on Scientific Computing 21.2 (1999), pp. 782-791.

Hongyuan Zha and Zhenyue Zhang. “Matrices with low-rank-plus-shift struc-
ture: partial SVD and latent semantic indexing”. In: SIAM Journal on Matrix
Analysis and Applications 21.2 (2000), pp. 522-536.

Ce Zhang and Christopher Ré. “Dimmwitted: A study of main-memory statis-
tical analytics”. In: Proceedings of the VLDB Endowment 7.12 (2014), pp. 1283—
1294.

Miao Zhang, Chris Ding, and Zhifang Liao. “Tensor fold-in algorithms for so-
cial tagging prediction”. In: Data Mining (ICDM), 2011 IEEE 11th International
Conference on. IEEE. 2011, pp. 1254-1259.

Wancai Zhang, Hailong Sun, Xudong Liu, et al. “An incremental tensor factor-
ization approach for web service recommendation”. In: Data Mining Workshop
(ICDMW), 2014 IEEE International Conference on. IEEE. 2014, pp. 346-351.

Yongfeng Zhang et al. “Understanding the sparsity: Augmented matrix fac-
torization with sampled constraints on unobservables”. In: Proceedings of the
23rd ACM International Conference on Conference on Information and Knowl-
edge Management. ACM. 2014, pp. 1189-1198.

Xingiang Zhao et al. “Crafting a time-aware point-of-interest recommendation
via pairwise interaction tensor factorization”. In: International Conference on

Knowledge Science, Engineering and Management. Springer. 2015, pp. 458-470.

[200]

[201]

[202]

181

Guoxu Zhou et al. “Nonnegative matrix and tensor factorizations: An algo-
rithmic perspective”. In: IEEE Signal Processing Magazine 31.3 (2014), pp. 54—
65.

Yunhong Zhou et al. “Large-scale parallel collaborative filtering for the netflix

prize”. In: Lecture Notes in Computer Science 5034 (2008), pp. 337-348.

Yong Zhuang et al. “A fast parallel SGD for matrix factorization in shared
memory systems”. In: Proceedings of the 7th ACM conference on Recommender

systems. ACM. 2013, pp. 249-256.

	Abstract
	Publications
	Thesis outline
	I Overview of low rank models in recommender systems
	General concepts
	Recommender systems at a glance
	Content-based filtering
	Collaborative filtering
	Hybrid recommenders

	Challenges for recommender systems
	Cold start
	Missing values
	Implicit feedback
	Model evaluation
	Reproducible results
	Real-time recommendations
	Incorporating context information
	Content vs. context

	Quick summary and outlook

	Matrix Factorization
	Problem formulation
	SVD-based models
	PureSVD
	Biases and custom data transformation
	Handling online updates
	The family of eigendecomposition algorithms

	Weighted low-rank approximation
	Optimization techniques
	Biased matrix factorization
	Confidence-based models
	Combined latent representations
	Remark on connection with SVD

	Learning to rank
	Practical aspects
	Parallel implementations
	Hyper-parameters tuning

	Conclusion

	Tensor Factorization
	Introduction to tensors
	Definitions and notations
	Problem formulation
	Tensor Factorization techniques
	Optimization algorithms

	Tensor-based models in recommender systems
	Personalized search and resource recommendations
	Social tagging
	Temporal models
	General context-aware models

	Conclusion

	Limited preference information problem
	Local lack of preferences
	Global lack of preferences
	Related work
	Addressing the local problem
	Addressing the global problem

	The need for new methods

	II Proposed models
	Higher order preference model
	Problem formulation
	Limitations of standard models
	Resolving the inconsistencies

	Proposed approach
	Efficient computation of recommendations
	Shades of ratings

	Evaluation
	Negativity bias compliance
	Penalizing irrelevant recommendations
	Evaluation methodology

	Experimental setup
	Datasets
	Algorithms
	Settings

	Results
	Conclusion and perspectives

	Hybrid factorization model
	Understanding the limitations of SVD
	When PureSVD does not work
	Why PureSVD does not work

	Proposed approach
	HybridSVD
	Side similarity
	Efficient computations

	Experiments
	Evaluation methodology
	Datasets
	Baseline algorithms
	Hyper-parameters tuning

	Results and discussion
	Standard scenario
	Cold start scenario

	Conclusions and further research

	Higher order hybrid preference model
	Motivation for a joint model
	Proposed approach
	Efficient computations
	Hybrid tensor factorization
	Online recommendations
	Rank truncation

	Evaluation methodology
	Results
	Discussion and future work

	III Software
	Polara: a new open-source framework for recommender systems research
	Core components
	Recommender Data
	Recommender Model
	Evaluation
	Supported scenarios and setups
	Summary

	Final conclusion
	References

