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Abstract

Volume integral equation (VIE) methods seem to be promising approaches for simu-

lating 3-D nanophotonic devices, since they are dispersion free by construction, can

efficiently handle inhomogeneous materials, restrict the computational domain solely

to the volume of the scatterer, and in the case of finite scatterers, do not necessi-

tate any boundary conditions while truncation the computational domain. However,

many devices of interest, such as optical couplers, ring resonators, etc., include in-

put and output channels that cannot be terminated without generating reflections.

Generating absorbers for these channels is a new problem for VIE methods, as the

methods were initially developed for exterior scattering problems.

In this thesis, we describe the implementation and performance of adiabatic ab-

sorbing layers in a current-based volume integral equation (VIE) method for simu-

lating infinite or semi-infinite nanophotonics channels within a finite computational

domain. In order to minimize reflections from the channel’s truncations at the bor-

ders of the domain, we place artificial absorbing regions at the truncations sites,

in which the conductivity is increased gradually. In the continuous setting, such

adiabatic absorbers have been shown to produce reflections that diminish at a rate

related to the smoothness of the absorption profile function. The VIE formulation

we employ relies on uniform discretizations of the geometry over which the unknown
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currents and material properties are represented by piecewise constant functions.

SInce nanophotonic devices are man-made structures, they consist of homogeneous

or piecewise homogeneous regions. Thereby the only regions where continuously

varying material properties may take place are the artificial adiabatic absorbers.

We demonstrate via numerical experiments, that the asymptotic estimates of the

reflections from the continuous absorption profiles hold for the reflections from dis-

continuous ones. Hence, the piecewise constant functions, firstly, fairly represent the

materials inside the real structures of interest, and secondly, do not bother the wave

attenuation in artificial absorbers. Such a discretization enables the acceleration of

the method via the fast Fourier transform (FFT), resulting in 𝒪(𝑁 log𝑁) complexity

of the iterative solution of the linear system. Furthermore, the introduction of vary-

ing absorption can be performed in a straightforward manner without compromising

this speedup. Moreover, the employed formulation enables reduction from the orig-

inal volume-volume integrals, arising in the calculation of Galerkin inner products,

associated with the integral operators, to the series of surface-surface integrals over

the faces of mesh elements. We present the novel numerical method for evaluation

of singular integrals over quadrilateral patches, which take place when the elements

coincide or share a face or a vertex.

We demonstrate the performance of the proposed algorithms via numerical exper-

iments on different photonic devices: a rectangular waveguide channel, a waveguide

with periodic width corrugations (a Bragg grating), and a Y-brunch splitter. The nu-

merical results show that, in spite of the crude discrete approximation to the smooth

absorption profiles, our approach recovers the asymptotic estimates for the reflection

behavior of adiabatic absorbers with a continuous profile. Overall, we observe that

the proposed adiabatic absorber performs extremely well in the VIE setting when

truncating uniform guiding structures, and show the difficulties arising when truncat-
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ing periodic ones. In addition, we presented some results pertaining to the iterative

solution of the VIE’s discrete system, and show that using a circulant preconditioner

is extremely effective and renders the number of iterations small and independent

of the structure’s length. We thereby show that the FFT-accelerated VIE method

presented herein is an effective and fast tool for nanophotonics simulations, although

there is still great room for improvement and optimization.
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𝜇 magnetic permeability

𝜇𝑟 relative magnetic permeability

𝜇′
𝑟 real part of relative magnetic permeability

𝜇′′
𝑟 imaginary part of relative magnetic permeability
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𝜇0 free-space permeability

𝑐𝑒 𝑗𝜔𝜖0

𝑐𝑚 𝑗𝜔𝜇0

e electric field

h magnetic field

einc(hinc) incident electric (magnetic) field

esca(hsca) scattered electric (magnetic) field

jinc primary current source

j polarization (electric) current

m magnetization (magnetic) current

𝒩 /N continious/discrete operator

𝒮(𝑓) volume vector potential of 𝑓

𝐺 free-space scalar Green function

𝑘0 free-space wavenumber

ℐ identity operator

ℳ multiplication operator

p𝛼𝑖 piese-wise constant basis function associated with 𝛼̂-direction (𝛼 =

{𝑥, 𝑦, 𝑧}) and the support voxel 𝑖

𝜔𝛼𝑒𝑖 weight of the basis function p𝛼𝑖 in the expansion of the uncknown

electric current
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𝜔𝛼𝑚𝑖 weight of the basis function p𝛼𝑖 in the expansion of the uncknown

magnetic current

𝑤𝑒 vector consisting of the unknown weights 𝑤𝛼
𝑒𝑖

𝑤𝑚 vector consisting of the unknown weights 𝑤𝛼
𝑚𝑖

⟨·, ·⟩ standard 𝐿2 inner product

𝛿𝛼𝛽𝑖𝑗 generalized Kronecker delta

𝒞 (multilevel) circulant matrix

fftn{.} multidimensional Fast Fourier Transform

ifftn{.} multidimensional inverse Fast Fourier Transform

𝜆𝑖 the wavelength inside the material (interior wavelength)

𝐿 absorber length

𝜎𝐸(𝜎𝑀) electric (magnetic) conductivity

𝑠(𝑢) absorption profile

𝑢 coordinate scaled by the absorber length

𝑑 index of power of the monomial absorption profile

𝑍𝑖 intrinsic impedance of the non-conductive waveguide

𝑍𝑎𝑏𝑠 impedance of the conductive absorber region

𝑛 complex refractive index of the medium

𝑅𝑟𝑡 round-trip reflection coefficient

𝑐𝑟 amplitude of the reflected mode
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𝑀 coupling coefficient between the incident and reflected modes

𝛽𝑖 propagation constant of the incident mode

𝛽𝑟 propagation constant of the reflected mode

∆𝛽 difference between propagation constants of the incident and reflected

modes

𝑅𝑡 transition reflection coefficient

𝑣𝑔 group velocity

Λ period of the periodic structure

𝜆𝑒 the free-space wavelength (exterior wavelength)

ℒ2 function space of square integrable functions
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Chapter 1

Introduction

1.1 Silicon Photonics Applications

Silicon photonics [1, 2, 3] is poised to be a disruptive technology in several fields, from

high-speed data communications such as long-haul optical transmissions [4], short-

reach communications in datacenters and supercomputers, and intra- and inter- chip

connections [5, 6, 7], to healthcare [8] and environmental monitoring [9]. Moreover,

silicon photonic devices can be made exploiting the current equipment and meth-

ods already available for electronic chips, which brings optical communications into

the fabrication space of the semiconductor industry, enabling low-cost, high-volume

assembly. Another potential advantage is the possibility to create integrated opto-

electronic devices [10, 2].

Among the other photonic structures, silicon waveguides are of particular interest.

Being a part of a great diversity of more complex photonic devices, and also acting

as a self-sufficient optical functions, waveguides can be used for communications [2],

interconnect [7], biosensors [11, 12], as well as supporting the exotic nonlinear phe-
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nomena such as soliton propagation [13, 14, 15]. Moreover, by introducing a periodic

modulation into an optical waveguide channel, one can obtain plenty of additional

effects useful for photonic applications: periodicity creates the band gaps that can

be used for light confinement [16], and decreasing group velocity of light near the

band edge can increase the light-matter interaction for non-linear devices [17, 18, 19].

Furthermore, controlling the group velocity can be used for tunable time delays [20]

and dispersion compensation [21, 22, 23, 24, 25].

1.2 Terminating Waveguide Channels with Integral

Equation Methods

The emerging field of computational science is playing a crucial role in designing new

generations of silicon photonic systems and devices [26, 27]. Fast and reliable electro-

magnetics (EM) solvers facilitate studying the light behavior and light-matter inter-

action and are used to cheaply prototype new components such as ring resonators [12]

and Mach-Zehnder interferometers, and to test their resilience to manufacturing de-

fects such as surface wall roughness [28]. However, a truncation difficulty arises

with modeling of very long waveguide channels, which are, as mentioned above, very

common in photonics. In this thesis, we consider the application of volume integral

equation method (VIE) [29, 30] to study devices incorporating guiding structures

with uniform or periodic cross-section. In order to eliminate reflections fuelled by

the unavoidable truncation of the computational domain, we append the region with

gradually increasing absorption at the truncation places.

The most popular EM solvers in silicon photonics are, at present, those based

on approximating Maxwell’s equations directly via finite element [31] or finite differ-
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ence [32] methods. We shall refer to such approaches as differential equation (DE)

methods since they discretize the differential operator directly. One of the most

prominent advantages of DE methods is their high versatility and ease of adaptation

to couple the Maxwell equations with other differential equations so that a mul-

tiphysics problem can be solved [33]. Moreover, the DE-based methods are very

generic and can be applied to almost any geometry. Although there are subtleties

to be concerned about, The DE methods can be implemented in a straightforward

manner resulting in a shorter development cycle, which makes them propitious for

commercialization. For example, the finite difference time domain (FDTD) method

is used in Lumerical [34] and FullWAVETM [35], the finite elements (FE) method is

exploited in COMSOL Multiphysics R○, etc. However, there are also some disadvan-

tages.

When applied to a scattering problem on a finite obstacle, a DE method would

have to truncate the infinite domain at some distance from the obstacle. First, special

care should be taken to avoid numerical reflections from the boundaries. Indeed, the

boundary of a finite computational domain should reproduce as accurately as possible

a homogeneous nonlossy infinite medium, i.e. all the non-physical reflections must

be minimized. It is conventionally achieved by introducing a perfectly matched

layer (PML) [36] or absorbing boundary conditions [32, 31]. Second, the whole

computational domain should be discretized. In cases when the high-resolution is

required, e.g., to capture the sub-wavelength phenomena, this would inevitably lead

to the need for large computational resources and, consequently, in many cases to

an unfeasible computation. Another problem is the numerical dispersion, which may

potentially lead to large phase errors when considering the structures spanning many

wavelengths.

An alternative approach is to reformulate Maxwell’s equations in an integral form
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to solve for the EM field over the structure of interest. First of all, integral equations

(IE) satisfy the radiation condition at infinity by construction, hence a computation

over the infinite scattering domain can be restricted to one solely over the surface or

volume of the finite obstacle, which promises a more efficient computation than the

DE-based methods. Further, IE methods have the distinct advantage that they are

dispersion free owing to the fact that the Green function is an exact propagator of

the field [37]. This dispersion-free property is especially desirable in the nanopho-

tonics setting where the structures of interest may span hundreds or thousands of

wavelengths.

Unfortunately, the subsequent discretization of IEs using the method of moments

(MoM) algorithm [38] gives rise to a dense matrix system in contrast to the sparse

matrices of DE methods. The solution of this matrix system by a Krylov-space

iterative solver requires 𝒪(𝑁2) memory and 𝒪(𝑝𝑁2) computation time, where 𝑁 is

the number of unknowns and 𝑝 is the number of iterations to achieve the desired

accuracy. However, fast solvers reaching 𝒪(𝑝𝑁 log𝑁) complexity for IE methods,

such as multilevel fast multiple algorithm (MLFMA) [39, 40, 41, 42, 43, 44], the

conjugate gradient fast Fourier transform (CG-FFT) method [45, 46, 47], the integral

equation FFT (IE-FFT) method [48, 49, 50], the adaptive integral method (AIM) [51,

52, 53], the precorrected-FFT (p-FFT) method [54, 55, 56, 57], and the fitting Green

function FFT (FG-FFT) method [58, 59, 60] have been developed, thus allowing

them to be competitive with DE methods.

Traditionally, IE approaches found their applications in the exterior scattering

problem, where a wave impinges on a finite obstacle. When applied to unbounded

obstacles such as waveguides, IEs can be applied with a modified Green’s function

constructed especially to take into account the unbounded nature of the particular

geometry. However, this is an involved approach and so far has been applied suc-
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cessfully only for 2D waveguide-type problems, e.g., in [61, 62, 63]. A more straight-

forward approach is to introduce absorbing regions, as is done in DE methods. One

advantage of an IE approach over DE is that the deployment of absorbing regions can

be more flexible and, further, they are required over a much smaller region. Consider

Fig. 1-1 in which we compare the use of absorbing regions in DE and IE methods

for a simple waveguide splitter taken from [64]. In DE methods, one must artificially

truncate the entire computational domain, whereas in IE methods it is only neces-

sary to truncate the portions of the obstacle which extend away in an unbounded

fashion; here it is the waveguide branches or ports. The remainder of the domain

is truncated analytically via the IE formulation, leading to a considerably reduced

computation domain. Further note that the diagram in Fig. 1-1 is of a 2D slice.

In DE methods there must also be absorbing layers above and below the waveguide

whereas the IE method truncates in these directions analytically by construction.

We further note that since in the IE setting the absorbing regions geometrically

continue the waveguides, the evanescent waves propagating outside the waveguides

do not impinge on an absorbing region, as is the case for domain truncation in DE

methods. Therefore, we can side-step the additional modifications that are needed

to account for the reflections of evanescent waves [65, 66, 67].

For domain truncation, PMLs have previously been used in IE settings [68], how-

ever, it is known that for certain scenarios, PMLs fail, even in the limit of high

resolution [64]. In particular, when the material properties are not analytic func-

tions in the direction perpendicular to the PML boundary. We consider one such

example (a Bragg grating) in detail in Section 4.2. It is shown in [64] (albeit there

in the context of finite-difference methods) that a more robust approach to domain

truncation is to use adiabatic absorbers rather than PMLs. Adiabatic absorbers are

regions in which the conductivity (absorption) of the medium is gradually increased
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Absorbing region

(a) Differential equation methods

Absorbing regions

(b) Integral equation methods

Figure 1-1: A 2D-slice comparison of use of absorbing layers/PMLs in differential
equation methods and integral equation methods.

to minimize reflections. The key feature of PMLs is that they match the impedance

between the waveguide and the absorbing region, and this feature can be retained in

adiabatic absorbers as we demonstrate in Section 3.1 and Section 4.1.3. Indeed, it

was shown in [64] that such an impedance matching absorbing region performs al-

most as well as a PML in situations when PMLs do not fail, and outperforms PMLs

in the remaining scenarios.

In [69], adiabatic absorbers were implemented in the surface integral equation

(SIE) setting and shown to be effective there. In this thesis, we introduce the first

implementation of adiabatic absorbers in the volume integral equation method (VIE).
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1.3 Volume Integral Equation Method

The majority of IE-based methods used in nanophotonics applications can be split

into two groups. The first ones are the surface integral equation (SIE) methods [70,

71, 72, 73, 43, 44, 74], which reduce the computation of EM scattering problem to the

surface boundaries of materials, therefore work best for homogeneous or piecewise-

homogeneous medium. In these cases, the surface-only discretization scheme turns a

3D-geometry into a 2D-surface, which significantly reduces the computational costs.

For inhomogeneous medium, the efficiency of the SIE decreases as the number of the

subdomains increases, since boundary conditions must be enforced on the surface of

each homogeneous subdomain, and the Green function in different homogeneous me-

dia must be used in the formulation. Hence, in the case of inhomogeneous scatterers,

the volume integral equation (VIE) methods [75, 30, 76, 47, 52, 53, 49, 50, 56, 57, 60]

are a more popular choice. They transform Maxwell’s equations in an integral form

to solve for the electromagnetic field on a reduced volume and require only the Green

function of the background medium, thus can be applied for complex inhomogeneous

materials more easily than the SIE methods. For the composite objects containing

both dielectric and conductive regions, the hybrid volume-surface integral equation

(VSIE) formulation is sometimes also used [77, 78, 79].

Conventionally, the combination of fields-based (EH) or flux densities-based (DB)

VIE formulations with a set of div-conforming basis functions were used [80, 81, 82].

However, it was shown in [83, 84], that due to improper incorporation of finite energy

conditions in the above mentioned numerical schemes, the uniqueness and thereby

the stability of numerical approximation may be lost. Moreover, even when the

finite-energy conditions are imposed via the testing functions and employed bilinear

form or inner product, these schemes create a gap between the intended solution
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space and the actual solution space [83]. In addition, the DB formulation requires

the inverse of the permittivity and permeability dyadics, hence it breaks down when

the material contrast approaches zero. In contrast, the EH formulation leads to

an unstable system when the material contrast goes to infinity [76]. The authors of

[83, 84] proposed an alternative approach of using Galerkin VIE formulation based on

equivalent volumetric current densities. The convergence properties of such current-

based VIE formulations including the cases of the scattering from highly inhomoge-

neous isotropic, anisotropic and bi-anisitropic materials were further demonstrated

in [85, 76]. Another possible choice is the potential VIE formulation [86, 87], which

allows the use of fully continuous basis functions even for highly inhomogeneous me-

dia, since the unknown scalar and vector electric potentials are continuous across the

material interfaces. This discretization with fully continuous basis functions results

in a better-conditioned system matrix compared to those of other formulations with

the fully or partially discontinuous basis function [88, 89]. However, it was shown

in [90] that using either of two conventional testing schemes, namely, Galerkin and

collocation methods, optimal convergence may not be achieved, and moreover, the

spurious solutions may arise, especially for objects with negative permittivities and

sharp corners. This is because the testing functions do not span the proper function

space, that is, the dual space of the range space of the operator. Therefore, further

studies are required to find the proper set of testing functions.

In this thesis, we use the modified current-based VIE formulation proposed in [29],

which leads to the integral operators having the form identity plus diagonal multi-

plier times compact, which are the second kind integral operators, well behaved in

terms of accuracy and convergence. We exploit uniform space discretization and

approximate the unknown currents as well as the material properties, with piecewise

constant functions. It should be noted that most of nanophotonic devices consist of
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homogeneous or piecewise homogeneous regions since they are man-made structures.

Hence, in the context of this thesis, the only regions where continuously varying

material properties may take place are the artificial adiabatic absorbers, which we

introduce to minimize the spurious reflections from the domain boundaries. How-

ever, we will demonstrate via numerical experiments, that the asymptotic estimates

of the reflections from the continuous absorption profiles hold for the reflections from

discontinuous ones. We can conclude, that the piecewise constant functions, firstly,

fairly represent the materials inside the real structures of interest, and secondly, do

not bother the wave attenuation in artificial absorbers.

Following the Galerkin method of moments, the approximation is then tested

with the same basis functions. Besides the obvious ease of implementation, using

the square-integrable functions, which piecewise constant functions belong to, guar-

antee the convergence of the solution in norm [83, 84]. Moreover, the employed

uniform discretization makes the governing integral kernels translationally invariant,

hence the resulting system matrix has the block-Toeplitz structure and the associated

matrix-vector products can be accelerated with the help of fast Fourier transform

(FFT) [91, 46, 92, 47, 93]. Furthermore, the introduction of varying absorption can

be performed in a straightforward manner without compromising this speedup.

In addition, recently developed method [94] allows reducing the 6D volume-

volume integrals, arizing in the evaluation of Galerkin inner products, to the series

of surface-surface integrals over the faces of support elements. In most of the cases,

these integrals can be easily evaluated by readily available standard quadratures.

However, the singularity arises in the integral kernels, when the source and observa-

tion points coincide, namely, when the faces of the support elements coincide or share

a common edge or a common vertex. To tackle this problem, we have developed a

novel fully numerical method of evaluating the 4D surface-surface singular integrals
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over quadrilateral patches.

Unlike standard singularity subtraction [95, 96, 97, 98, 99] and singularity can-

cellation [100, 101, 102, 103, 104] methods, which are focused on the regularization

of the inner 2D integrals of the original 4D Galerkin inner products, the proposed

method consider the complete 4D integrals. As it was demonstrated recently, such

an approach has certain advantages, especially in the case of strongly singular kernels

or when high accuracy is needed [105, 106, 107, 108, 109, 110, 111, 112]. Exploiting

the series of coordinate transformations together with the integration re-orderings,

the algorithm yields the sufficiently smooth integrals that can be easily computed

via simple Gaussian integration.

Arguably, the vast majority of the numerical methods mentioned above were de-

veloped for evaluating singular integrals over triangles, mainly due to the profound

impact of the celebrated paper by Rao, Wilton, and Glisson [113] on the compu-

tational electromagnetics community, and the flexibility the triangular tessellations

offer in modeling arbitrary geometries. However, modern computer-aided design

software enables the analysis of complex geometries in terms of flat or curvilinear

quadrilateral patches, which can describe just as accurately the geometry with far

fewer degrees of freedom [114, 115, 116, 117, 118]. To the best of our knowledge, there

are only a handful of papers in the literature dedicated to the evaluation of singular

integrals over flat and curvilinear quadrilateral patches [117, 119, 99, 120, 121, 122],

and it is quite clear that they haven’t reached the performance levels of those for

triangular patches.

The method presented herein is an extension of original DIRECTFN method [123],

devoted to triangular patches. As we demonstrate further, the proposed scheme re-

quires a series of complicated algebraic manipulations, therefore this extension from

triangular to quadrilateral domains is by no means trivial. It’s worth mentioning that
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there is always a less sophisticated approach to handling these integrals by splitting

the quadrilateral patches into triangular ones and applying the original DIRECTFN

to their combinations. However, the computation of several integrals instead of one

is likely to require more computation time for the same accuracy.

1.4 Novelty

The novel contributions of this thesis can be summarized as follows:

∙ The concept of adiabatic absorbers is applied in the volume integral equa-

tion setting. Specifically, we employ a current-based VIE formulation that al-

lows these absorbers to be introduced in a simple and straightforward manner

which does not affect the acceleration of the method via Fast Fourier Transform

(FFT), thereby enabling rapid nanophotonics simulations.

∙ The new fully numerical method for evaluation of the singular integrals over

quadrilateral elements was developed. These integrals arise in the calculation

of Galerkin inner products, after the reduction of original volume-volume inte-

grals to surface-surface ones. Besides being applied to planar square elements,

which are the case in this thesis, the proposed method can be applied without

modification to the planar and bilinear quadrilaterals of arbitrary shape, as

well as for curvilinear elements.

1.5 Thesis Outline

This thesis is organized as follows. In Chapter 2 we establish the general scattering

problem to solve, without the specification of any particular nanophotonic device.
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Next, we introduce a current-based volume integral equation formulation (JM-VIE)

and define the discretization of the resulting VIE system. Further, we briefly de-

scribe the reduction of the dimensionality of volume-volume integrals, arising in the

evaluation of Galerkin inner products associated with the integral operators, and

present the novel fully numerical method of evaluation of singular integrals over

quadrilateral patches. Moreover, we provide numerical examples, demonstrating the

effectiveness and accuracy of the developed algorithms. Finally, we briefly explain

how the iterative solution is accelerated with FFT, and propose the preconditioning

method. In addition, we provide some additional information regarding the memory

requirements, iteration count, operator assembly and computational time. At the

and of the chapter, we summarize all the stages of the proposed algorithm and its

numerical implementation. Finelly, we perform the simulation of scattering from

a homogeneous sphere and compare the results with analytical solutions, obtained

with the Mie series.

Chapter 3 provides details of the adiabatic absorbers and contains the evaluation

of the reflection coefficients.

In Chapter 4 we examine the performance of adiabatic absorbers in three exam-

ples: a straight dielectric strip waveguide, a Bragg grating, and a Y-branch splitter.

We observe that the adiabatic absorber performs extremely well in the VIE set-

ting when terminating uniform structures, and show the difficulties arising when

terminating periodic ones. Nonetheless, In both cases, the numerical experiments

reproduce the asymptotic results from the literature. Moreover, in the case of strip

waveguide, we managed to compare the solution with the guided TE mode, obtained

for the same waveguide by using the COMSOL Multiphysics R○ software.

Next, in Chapter 5 we discuss the advantages and disadvantages of the proposed

method and propose the possible alternatives and improvements that could help in
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diminishing the drawbacks and can be considered as the directions of future research.

Finally, in Chapter 6 we provide the concluding remarks and discuss again pos-

sible directions of future work.

In Appendix A we present the additional numerical examples related to the appli-

cations of DIRECTFN-quad that go beyond its use in the described JM-VIE solver,

including the usage of higher-order basis functions, and integration over non-squared

elongated and curvilinear elements.
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Chapter 2

Numerical Simulation Method

In this chapter, we describe all the stages of the numerical simulation method we

use for electromagnetic analysis of nanophotonic structures. First of all, we establish

the general scattering problem to solve, without the specification of any particular

nanophotonic device. Next, we briefly introduce the volume integral equation for-

mulation based on equivalent currents. We proceed with defining the discretization

of the volume integral equations using the Galerkin method of moments, and pro-

vide the final linear system. Next, we describe the reduction from volume-volume

integrals, arising in the evaluation of the Galerkin inner products, to the series of

surface-surface integrals over the faces of voxels. We further provide the novel fully

numerical method of fast and accurate evaluation of singular integrals over quadri-

lateral patches and demonstrate its effectiveness via numerical experiments. Finally,

we briefly explain how the iterative solution is accelerated with FFT, and provide

some additional information regarding the memory requirements, iteration count and

preconditioning. At the and of the chapter, we summarize all the stages of the pro-

posed method and its numerical implementation. To validate our solver, we consider
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the scattering on the Mie sphere and compare the numerical solution obtained with

the VIE method presented herein, to the analytical one.

2.1 Problem Statement

The general problem we aimed to solve in this thesis can be formulated as fol-

lows. Consider the inhomogeneous isotropic dielectric object in a homogeneous back-

ground, occupying domain Ω in 3D space R3. The domain can be either bounded

(e.g. a sphere) or unbounded (infinite or semi-infinite waveguide). The object is il-

luminated by a time-harmonic electromagnetic wave with angular frequency 𝜔 ∈ R,

assuming the time-dependence is 𝑒𝑗𝜔𝑡 with 𝑗 =
√
−1. The incident fields (einc,hinc)

satisfy Maxwell’s equations in the absence of the dielectric object and are produced

by primary sources. The object and the background are characterized by their elec-

tric and magnetic permittivity and permeability:

𝜖 = 𝜖0, 𝜇 = 𝜇0 in R3∖Ω,

𝜖 = 𝜖𝑟(r)𝜖0, 𝜇 = 𝜇𝑟(r)𝜇0 in Ω.
(2.1)

Here, the free-space permittivity 𝜖0 and permeability 𝜇0 are real positive values,

whereas the relative permittivity 𝜖𝑟(r) and permeability 𝜇𝑟(r) read

𝜖𝑟(r) = 𝜖′𝑟(r) − 𝑗𝜖′′𝑟(r),

𝜇𝑟(r) = 𝜇′
𝑟(r) − 𝑗𝜇′′

𝑟(r),
(2.2)

with 𝜖′𝑟, 𝜇
′
𝑟 ∈ (0,∞) and 𝜖′′𝑟 , 𝜇

′′
𝑟 ∈ [0,∞). The non-zero imaginary part of the relative

permittivity (permeability) implies that the material possesses an electric (magnetic)

conductivity at that particular point.
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To summarize, the scattering problem to solve can be formulated as follows:

Given the incident fields (einc(r),hinc(r)) (or, equivantly, the primary sources jinc(r)),

and the dielectric object (2.1), characterized by its material properties (2.2), deter-

mine the total fields (e(r),h(r)).

2.2 JM-VIE formulation

In this section, we describe the volume integral equation formulation based on equiv-

alent currents (JM-VIE) [29, 30] we use in this thesis.

Consider the scattering problem posed above. The total electric and magnetic

fields (e,h) in the presense of isotropic inhomogeneous object are composed of inci-

dent and scattered fields⎛⎝ e

h

⎞⎠ =

⎛⎝ einc

hinc

⎞⎠+

⎛⎝ esca

hsca

⎞⎠ , (2.3)

where the incident fields (einc,hinc) are generated by primary sources in the absence of

the scatterer. The scattered fields can be expressed in terms of equivalent polarization

and magnetization currents (j,m) as

⎛⎝ esca

hsca

⎞⎠ =

⎛⎝ 1
𝑐𝑒

(𝒩 − ℐ) −𝒦

𝒦 1
𝑐𝑚

(𝒩 − ℐ)

⎞⎠⎛⎝ j

m

⎞⎠ , (2.4)

where 𝑐𝑒 := 𝑗𝜔𝜖0, 𝑐𝑚 := 𝑗𝜔𝜇0, and ℐ is the identity operator. The integro-differential
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operators are defined as

𝒦𝑓 := ∇× 𝒮(𝑓), (2.5)

𝒩 𝑓 := ∇×∇× 𝒮(𝑓), (2.6)

where

𝒮(𝑓) :=

∫︁
Ω

𝐺(r− r′)𝑓(r′)dr′ (2.7)

is the volume vector potential, 𝐺 is the free-space scalar Green function

𝐺(r) :=
e−𝑗𝑘0|r−r′|

4𝜋|r− r′|
, (2.8)

and 𝑘0 = 𝜔
√
𝜖0𝜇0 is the free-space wavenumber. The equivalent current densities are

given in terms of the fields as

j(r) = 𝑐𝑒(𝜖𝑟(r) − 1)e(r),

m(r) = 𝑐𝑚(𝜇(r) − 1)h(r).
(2.9)

The JM-VIE formulation can be derived by combining (2.3), (2.4) and (2.9) to

obtain (see [29, 85] for more details):

(ℐ −ℳ𝒯 )

⎛⎝ j

m

⎞⎠ = 𝒞ℳ

⎛⎝ einc

hinc

⎞⎠ , (2.10)

where

𝒯 =

⎛⎝ 𝒩 −𝑐𝑒𝒦

𝑐𝑚𝒦 𝒩

⎞⎠ , (2.11)
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and

ℳ =

⎛⎝ ℳ𝜖 0

0 ℳ𝜇

⎞⎠ , 𝒞 =

⎛⎝ 𝑐𝑒ℐ 0

0 𝑐𝑚ℐ

⎞⎠ . (2.12)

Here ℳ𝜖 and ℳ𝜇 are multiplication operators that multiply by the respective local

functions (𝜖𝑟(r) − 1)/𝜖𝑟(r) and (𝜇𝑟(r) − 1)/𝜇𝑟(r).

The full JM-VIE formulation (2.10) is not necessary for the photonics applications

of interest here since magnetic currents are not present. However, we include this

formulation since we will later consider the effect on absorber quality of introducing

magnetic conductivity alongside electric conductivity in order to match impedances.

For the majority of this thesis we shall instead use the J-VIE formulation which is

simply obtained from (2.10) by setting the magnetic current densities, m, to zero,

giving

(ℐ −ℳ𝜖𝒩 ) j = 𝑐𝑒ℳ𝜖einc. (2.13)

Observe that the integral operators in the formulations (2.10) and (2.13) are

both of the form identity plus diagonal multiplier times compact. Such operators are

desirable in our setting for two main reasons: firstly, they are second kind integral

operators which are well behaved in terms of accuracy and convergence; secondly, the

influence of the material properties is confined to the diagonal multiplier ℳ. This

second point means that the implementation of absorbing regions is particularly sim-

ple in this VIE setting since all we have to do is alter the entries in the multiplier ℳ in

order to introduce absorption, with the rest of the machinery remaining unchanged.

Furthermore, as we discuss in the next section, after the Galerkin testing procedure,

the discrete forms of 𝒩 and 𝒦 both have block-Toeplitz structure when uniform

meshing is employed, which enables the FFT-acceleration of the matrix-vector prod-

ucts associated with the iterative solver. This desirable structure is unaffected by
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perturbing ℳ, hence the fast nature of the method remains.

2.3 Galerkin Discretization

There are numerous discretization techniques available for numerically solving the

JM-VIE (2.10). Here we employ the Galerkin method over a uniform (“voxelized”)

discretization of the domain. We embed the inhomogeneous dielectric object in a

rectangular box of side lengths 𝐿𝑥, 𝐿𝑦 and 𝐿𝑧 and discretize it into voxels with side

length ∆. That is, the constructed voxel grid consists of 𝑁 = 𝑋𝑥×𝑁𝑦×𝑁𝑧 = 𝐿𝑥/∆×

𝐿𝑦/∆×𝐿𝑧/∆ elements. Next, the uncknown equivalent currents should be expanded

in terms of suitable basis functions. The equivalent currents are unlikely to satisfy

any continuity conditions across the material interfaces, therefore [ℒ2(R3)]3 is their

natural function space, where ℒ2 is a function space of square integrable functions. In

order to guarantee the convergence in norm of the solution, testing functions should

span the ℒ2 dual of the range space of the associated operator [83, 84]. The mapping

properties of the JM-VIE formulation (2.10) read as

[ℒ2(R3)]3 → [ℒ2(R3)]3 (2.14)

and ℒ2 is dual to itself, therefore when the Galerkin method with the identical

basis and testing functions from [ℒ2(R3)]3 is applied, the convergence in norm of

the solution is guaranteed. Therefore, we can approximate the unknown currents as

43



piecewise constant functions on the voxelized grid:

j ≈
𝑁𝑥∑︁
𝑖=1

𝑤𝑒
𝑥
𝑖 p

𝑥
𝑖 +

𝑁𝑦∑︁
𝑖=1

𝑤𝑒
𝑦
𝑖p

𝑦
𝑖 +

𝑁𝑧∑︁
𝑖=1

𝑤𝑒
𝑧
𝑖p

𝑧
𝑖 ,

m ≈
𝑁𝑥∑︁
𝑖=1

𝑤𝑚
𝑥
𝑖 p

𝑥
𝑖 +

𝑁𝑦∑︁
𝑖=1

𝑤𝑚
𝑦
𝑖p

𝑦
𝑖 +

𝑁𝑧∑︁
𝑖=1

𝑤𝑚
𝑧
𝑖p

𝑧
𝑖 ,

(2.15)

where the weights 𝑤𝑒
𝛼
𝑖 , 𝑤𝑚

𝛼
𝑖 , 𝛼 = 𝑥, 𝑦, 𝑧 are to be determined, and

p𝛼𝑖 (r) =

⎧⎪⎨⎪⎩
𝛼̂√
𝑉
, r ∈ 𝑉𝑖,

0, r /∈ 𝑉𝑖,

(2.16)

where 𝑉𝑖 is the support voxel. The scaling by the square root of the voxel volume 𝑉

is included so that

⟨p𝛼𝑖 ,p
𝛽
𝑗 ⟩ = 𝛿𝛼𝛽𝑖𝑗, (2.17)

where ⟨·, ·⟩ is the standard 𝐿2 inner product and 𝛿𝛼𝛽𝑖𝑗 is the generalized Kronecker

delta. Applying the Galerkin method to the JM-VIE (2.10) with the same testing

functions p𝑖 gives rise to the linear system of 6𝑁 equations:

(I−A)

⎛⎝ w𝑒

w𝑚

⎞⎠ = C

⎛⎝ be

bh

⎞⎠ , (2.18)

where I is the identity matrix; w𝑒 = (w𝑥
𝑒 ,w

𝑦
𝑒 ,w

𝑧
𝑒)
𝑇 and w𝑚 = (w𝑥

𝑚,w
𝑦
𝑚,w

𝑧
𝑚)𝑇 are

the vectors consisting of the unknown weights 𝑤𝛼
𝑒𝑖

and 𝑤𝛼
𝑚𝑖

, respectively, and A is
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the discrete form of the integro-differential operator ℳ𝒯 (2.10):

A =

⎛⎝ A11 −𝑐𝑒A12

𝑐𝑚A21 A22

⎞⎠ , (2.19)

where

(A11)
𝛼𝛽
𝑖𝑗 = ⟨ℳ𝜖𝒩p𝛽𝑗 ,p

𝛼
𝑖 ⟩, (A12)

𝛼𝛽
𝑖𝑗 = ⟨ℳ𝜖𝒦p𝛽𝑗 ,p

𝛼
𝑖 ⟩, (2.20)

(A21)
𝛼𝛽
𝑖𝑗 = ⟨ℳ𝜇𝒦p𝛽𝑗 ,p

𝛼
𝑖 ⟩, (A22)

𝛼𝛽
𝑖𝑗 = ⟨ℳ𝜇𝒩p𝛽𝑗 ,p

𝛼
𝑖 ⟩; (2.21)

and the right-hand side is

(be)
𝛼
𝑖 = ⟨ℳ𝜖einc,p

𝛼
𝑖 ⟩, (bh)𝛼𝑖 = ⟨ℳ𝜇hinc,p

𝛼
𝑖 ⟩. (2.22)

In this thesis, we represent the material properties, encapsulated in ℳ𝜖 and

ℳ𝜇, as piecewise constant functions across the voxel grid. That is, we assume that

ℳ𝜖 and ℳ𝜇 are constant on each voxel with values defined at the voxel centers.

This enables ℳ𝜖 and ℳ𝜇 to be removed outside the inner products above, thereby

allowing (2.18) to be written in the following simplified form:

(I−MT)

⎛⎝ w𝑒

w𝑚

⎞⎠ = CM

⎛⎝ einc

hinc

⎞⎠ , (2.23)

where the diagonal material properties multipliers are

M =

⎛⎝ M𝜖 0

0 M𝜇

⎞⎠ , C =

⎛⎝ 𝑐𝑒I 0

0 𝑐𝑚I

⎞⎠ . (2.24)
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Here M𝜖 and M𝜇 are the diagonal matrices, corresponding to ℳ𝜖 and ℳ𝜇, evaluated

at voxel centers, respectively. The discrete form of the integral operator 𝒯 (2.11) is

T =

⎛⎝ N −𝑐𝑒K

𝑐𝑚K N

⎞⎠ , (2.25)

where

N𝛼𝛽
𝑖𝑗 = ⟨𝒩p𝛼𝑗 ,p

𝛽
𝑖 ⟩, K𝛼𝛽

𝑖𝑗 = ⟨𝒦p𝛼𝑗 ,p
𝛽
𝑖 ⟩; (2.26)

and the right-hand side is

(einc)
𝛼
𝑖 = ⟨einc,p𝛼𝑖 ⟩, (hinc)

𝛼
𝑖 = ⟨hinc,p

𝛼
𝑖 ⟩, (2.27)

where 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧.

In the case when magnetic currents are not present, (2.23) reduces to

(I−M𝜖N)w𝑒 = 𝑐𝑒M𝜖einc (2.28)

The uniform discretization we use is desirable because, as we will show in the next

section, it results in the matrices N and K being block-Toeplitz, hence matrix-vector

products using N and K can be performed in 𝒪(𝑁 log𝑁) operations with the use

of the FFT, where 𝑁 is the number of voxels. Further, the piecewise constant rep-

resentation of the material properties means that introducing varying conductivity

in an absorbing region does not interfere with the Toeplitz structure of N and K. It

only affects the diagonal entries in the multiplier M. This makes the implementa-

tion of absorbing regions in the VIE method particularly straightforward and does

not compromise the speed-up. We will further provide the description of FFT-based

acceleration in more detail in Section 2.6. Moreover, we will show in Chapter 4,

46



that even with this crude piecewise constant representation for higher-order polyno-

mial conductivity profiles, our approach still recovers the asymptotic behavior of the

reflection.

2.4 Reduction to surface-surface integrals

To assembly the matrices associated with the integro-differential operators, we need

to evaluate the following integrals:

N𝛼𝛽
𝑖𝑗 =

∫︁
𝑉𝑖

p𝛼𝑖 · ∇ ×∇×
∫︁
𝑉𝑗

𝐺(r− r′)p𝛽𝑗 𝑑𝑉
′𝑑𝑉, (2.29)

and

K𝛼𝛽
𝑖𝑗 =

∫︁
𝑉𝑖

p𝛼𝑖 · ∇ ×
∫︁
𝑉𝑗

𝐺(r− r′)p𝛽𝑗 𝑑𝑉
′𝑑𝑉, (2.30)

where 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧 and 𝑉𝑖, 𝑉𝑗 are the volumes of testing and basis voxels, respec-

tively. The evaluation of these 6D (volume-volume) integrals can be rather involved,

especially in the case when the support voxels of the basis and testing functions

coincide or are adjacent. To avoid these complications, we use the dimensionality

reduction method, proposed in [94] for the piece-wise constant basis and testing

functions.

Moving the outer derivative in (2.29) to the testing function and using the diver-
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gence theorem, we get

N𝛼𝛽
𝑖𝑗 = −

∮︁
𝑆𝑖

(n̂× p𝛼𝑖 ) ·
∫︁
𝑉𝑗

∇𝐺(r− r′) × p𝛽𝑗 𝑑𝑉
′𝑑𝑆

= − 1

𝑉

∮︁
𝑆𝑖

(n̂× 𝛼̂) ·
∫︁
𝑉𝑗

∇𝐺(r− r′) × 𝛽 𝑑𝑉 ′𝑑𝑆,

(2.31)

where 𝛼̂,𝛽 = x̂, ŷ, ẑ, 𝑆𝑖 is the surface of the testing voxel and n̂ is the outer normal

vector to the surface 𝑆𝑖.

The basis and testing functions are obviously shift invariant from voxel to voxel,

hence the integrals could be written as

N𝛼𝛽
𝑖𝑗 = − 1

𝑉

∮︁
𝑆0

(n̂× 𝛼̂) ·
∫︁
𝑉0

∇𝐺(r− r′ + r𝑖 − r′𝑗) × 𝛽 𝑑𝑉 ′𝑑𝑆, (2.32)

where the support is fixed to one element (e.g. the 0th or reference element), and

r𝑖, r
′
𝑗 denotes the centers of voxels 𝑖 and 𝑗, respectively. Next, the constant vector 𝛽

can be moved outside the inner integral, therefore, with the help of the vector form

of the divergence theorem and using the fact that ∇𝐺 = −∇𝐺′,

N𝛼𝛽
𝑖𝑗 = − 1

𝑉

∮︁
𝑆0

(n̂× 𝛼̂) · 𝛽 ×
∮︁
𝑆′
0

𝐺(r− r′ + r𝑖 − r′𝑗)n̂
′ 𝑑𝑆 ′𝑑𝑆 (2.33)

and the original volume–volume integral is given by a series of surface–surface inte-

grals over the faces of the voxels

N𝛼𝛽
𝑖𝑗 = − 1

𝑉

∑︁
𝑘

∫︁
𝑆𝑘

(n̂𝑘 × 𝛼̂) · 𝛽 ×
∑︁
𝑙

∫︁
𝑆𝑙

𝐺(r− r′ + r𝑖 − r′𝑗)n̂
′
𝑙𝑑𝑆

′𝑑𝑆, (2.34)
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where 𝑘, 𝑙 = −𝑥,+𝑥,−𝑦,+𝑦,−𝑧,+𝑧 and n̂𝑘, n̂
′
𝑙 are the associated normal vectors.

Finally, the discrete operator N reads

N𝑖𝑗 =

⎡⎢⎢⎢⎣
N𝑥𝑥
𝑖𝑗 N𝑥𝑦

𝑖𝑗 N𝑥𝑧
𝑖𝑗

N𝑦𝑥
𝑖𝑗 N𝑦𝑦

𝑖𝑗 N𝑦𝑧
𝑖𝑗

N𝑧𝑥
𝑖𝑗 N𝑧𝑦

𝑖𝑗 N𝑧𝑧
𝑖𝑗

⎤⎥⎥⎥⎦ (2.35)

where

N𝛼𝛽
𝑖𝑗 =

1

𝑉

∑︁
𝑘

∑︁
𝑙

(n̂𝑘 × 𝛼̂) · (n̂′
𝑙 × 𝛽)𝑁𝑘𝑙

𝑖𝑗 (2.36)

and

𝑁𝑘𝑙
𝑖𝑗 =

∫︁
𝑆𝑘

∫︁
𝑆𝑙

𝐺(r− r′ + r𝑖 − r′𝑗)𝑑𝑆
′𝑑𝑆. (2.37)

Due to the convolutional nature of the discrete kernels in (2.37), i.e.,

𝑁𝑘𝑙
𝑖𝑗 = 𝑁𝑘𝑙

𝑖−𝑗 ⇒ N𝛼𝛽
𝑖𝑗 = N𝛼𝛽

𝑖−𝑗 ⇒ N𝑖𝑗 = N𝑖−𝑗, (2.38)

the generated matrix is three- level block-Toeplitz Toeplitz-block, since we are dealing

with the 3D case. As a result, the N operator can be constructed by simply fixing

the basis function (e.g. for the first voxel 𝑗 = 1) and sweeping the testing function

over all voxels of the solution domain.

The integral (2.30) can also be simplified in the case of piece-wise constant basis

and testing functions:

K𝛼𝛽
𝑖𝑗 = −(p𝑖 × p𝑗) ·

∫︁
𝑉𝑖

∫︁
𝑉𝑗

∇𝐺𝑑𝑉 ′𝑑𝑉 = − 1

𝑉
(𝛼̂× 𝛽) ·

∫︁
𝑉𝑖

∫︁
𝑉𝑗

∇𝐺𝑑𝑉 ′𝑑𝑉. (2.39)
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Next, using the divergence theorem for the inner integral, we obtain

K𝛼𝛽
𝑖𝑗 =

1

𝑉
(𝛼̂× 𝛽) ·

∫︁
𝑉𝑖

∮︁
𝑆𝑗

𝐺n̂′ 𝑑𝑆 ′𝑑𝑉 =
1

𝑉
(𝛼̂× 𝛽) ·

∮︁
𝑆𝑗

n̂′
∫︁
𝑉𝑖

𝐺𝑑𝑉 𝑑𝑆 ′. (2.40)

The remaining volume integral ∫︁
𝑉𝑖

𝐺(R)𝑑𝑉 (2.41)

can be handled with the technique proposed by Knockaert [124]:

∫︁
𝑉𝑖

𝐺(R)𝑑𝑉 =

∫︁
𝑉𝑖

∇F(R)𝑑𝑉 =

∮︁
𝑆𝑖

n̂ · F(R)𝑑𝑆, (2.42)

where

F(R) =
1

(j𝑘)2
∇{𝐺(R) −𝐺0(R)} (2.43)

with 𝐺0(R) = 1/4𝜋𝑅 being the "static" Green function. Finally, the original volume-

volume integral is represented as a following surface-surface integral:

K𝛼𝛽
𝑖𝑗 = (𝛼̂× 𝛽) ·

∮︁
𝑆𝑗

n̂′
∮︁
𝑆𝑖

n̂ · F(R)𝑑𝑆𝑑𝑆 ′. (2.44)

The next logic is the same as for N operator. Note that the contribution from

coincident surfaces to K operator is identically zero, since n̂·F(R) = 0 when 𝑆𝑖 ≡ 𝑆𝑗.

We have reduced the original 6D volume-volume integrals into the series of 4D

surface-surface integrals over the faces of the basis and testing voxels. It should be

noted that the resulting surface-to-surface integrals have less singular kernels than

the original volume-volume ones when the support of the basis and testing function

coincide or are adjacent. The method of the integration of such kernels is described
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in the next section.

2.5 Evaluation of Singular Integrals

We have demonstrated, that the original 6D volume-volume integrals required to the

computation of the Galerkin inner products associated with the integral operators 𝒩

and 𝒦, can be represented as a series of 4D surface-surface integrals over the faces of

basis and testing voxels. In most of the cases, these integrals can be easily evaluated,

e.g., using standard Gaussian quadratures. However, when the two faces of basis and

testing voxels coincide, share an edge or share a vertex, the kernels of that integrals

become singular when the observation point coincides with the source point. To

evaluate these weakly and strongly singular integrals over the faces of voxels, we

have developed the new fully numerical method for quadrilateral elements, which is

an extension of DIRECTFN [123], previously developed for triangular ones.

In the following, we consider the general case of 4-D integrals,

𝐼 =

∫︁
𝐸𝑝

∫︁
𝐸𝑄

𝐾(r, r′)𝑑𝐴𝑄𝑑𝐴𝑃 , (2.45)

where the two quadrilateral elements 𝐸𝑃 and 𝐸𝑄 may coincide (self-term (ST) in-

tegration), share a common edge (edge adjacent (EA) integration), or share a com-

mon vertex (vertex adjacent (VA) integration). The scalar kernel 𝐾(r, r′) is typi-

cally singular when the observation points r coincide with the source points r′, i.e.,

𝐾(r, r′) ∼ |r − r′|−𝑝 where 𝑝 = 1 in weakly singular case and 𝑝 = 2 in strongly

singular case. By the various numerical tests presented further in this section, we

demonstrate that the proposed algorithm is able to provide results with very high

accuracy. We also show that the overall efficiency can be further enhanced by a
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judicious choice of the integration order for each of the four dimensions. Finally, the

complete set of codes is available as free, open-source software [125].

2.5.1 Rectangular Parametric Space

As a first step, we introduce a parametric space {𝑢, 𝑣}, where

−1 ≤ 𝑢 ≤ 1, −1 ≤ 𝑣 ≤ 1,

to transform the original arbitrary quadrilateral to a square (See Fig. 2-1):

r(𝑢, 𝑣) =

⎡⎣ (1 − 𝑢)(1 − 𝑣)r1 + (1 + 𝑢)(1 − 𝑣)r2

+(1 + 𝑢)(1 + 𝑣)r3 + (1 − 𝑢)(1 + 𝑣)r4

⎤⎦ /4. (2.46)

For simplicity, we derive all the formulas in this section for planar quadrilaterals,

1

1-1

-1

u

v

x

y

z

1
1

2

3

4

Figure 2-1: Geometry of parametric transformation of the original quadrilateral to
a square.

since the extension to curvilinear elements is trivial. The remaining part of the

algorithm, described in the next subsections, is completely the same for both cases.

We have to note that this parametrization and all the successive formulas are not
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only valid for planar elements, but they can also be applied without any changes for

bilinear surfaces [114].

The area of the element 𝑑𝑆 can be expressed as

𝑑𝑆 = |r𝑢 × r𝑣| 𝑑𝑢 𝑑𝑣, (2.47)

hence, the associated Jacobian reads

𝐽(𝑢, 𝑣) = |r𝑢 × r𝑣|, (2.48)

where

r𝑢 ≡
𝜕r

𝜕𝑢
=

−r1 + r2 + r3 − r4 + 𝑣 (r1 − r2 + r3 − r4)

4
, (2.49)

r𝑣 ≡
𝜕r

𝜕𝑣
=

−r1 − r2 + r3 + r4 + 𝑢 (r1 − r2 + r3 − r4)

4
. (2.50)

In the new parametric space the original integral (2.45) takes the following form:

𝐼 =

1∫︁
−1

𝑑𝑢

1∫︁
−1

𝐽𝑃𝑑𝑣

1∫︁
−1

𝑑𝑢′

1∫︁
−1

𝐽𝑄𝐾(r, r′)𝑑𝑣′. (2.51)

For simplicity, in all successive derivations we will omit the integrands, when no

confusion exists. The orientation of the quadrilaterals of the edge adjacent and

vertex adjacent cases before the transformation to square space is shown in Fig. 2-2.
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Figure 2-2: Orientation of the quadrilateral elements in space: (a) edge adjacent
case; (b) vertex adjacent case.

2.5.2 Coincident Integration

First Step

We begin our derivation with introducing a polar coordinate system {𝜌, 𝜃} centered

at the point (𝑢, 𝑣) (depicted schematically in Fig. 2-3(a)),

u

v

-1

-1

1

(u,v)

(u’,v’)

Θ1

Θ2

ρ
θ

tu-1 1
-1

1

Ψ1

Ψ2
v

(a) (b)

ρL

Figure 2-3: Geometry of the parametric transformations for the coincident case: (a)
{𝑢′, 𝑣′} → {𝜌, 𝜃}; (b) {𝑡, 𝑣} → {Λ,Ψ}.
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𝑢′ = 𝑢 + 𝜌 cos(𝜃), 𝑣′ = 𝑣 + 𝜌 sin(𝜃). (2.52)

Since the upper limit of 𝜌, denoted as 𝜌𝐿, is different as 𝜃 traverses each edge,

the (𝜌, 𝜃) integration must be split in four subtriangles. Here we present only the

calculation for the lower subtriangle; the remaining three subtriangles can be handled

by rotating the elements accordingly and using the formulas for the lower one, as

shown in the following. For the lower subtriangle, the integration limits are

0 ≤ 𝜌 ≤ 𝜌𝐿, Θ1 ≤ 𝜃 ≤ Θ2, (2.53)

where

𝜌𝐿 =
𝑣 + 1

cos
(︀
𝜋
2

+ 𝜃
)︀ , Θ1 = −𝜋

2
− tan−1

(︂
𝑢 + 1

𝑣 + 1

)︂
, Θ2 = −𝜋

2
+ tan−1

(︂
1 − 𝑢

𝑣 + 1

)︂
.

(2.54)

Note that here and below the counter-clockwise angle direction is taken as positive.

Hence, the integral for the lower subtriangle is given by

𝐼sub1 =

1∫︁
−1

𝑑𝑢

1∫︁
−1

𝑑𝑣

Θ2∫︁
Θ1

𝑑𝜃

𝜌𝐿∫︁
0

𝜌𝑑𝜌. (2.55)

Second Step

We proceed by introducing the variable t, −1 ≤ 𝑡 ≤ 1, via

𝜃 = −𝜋

2
+ tan−1

(︂
𝑡− 𝑢

1 + 𝑣

)︂
,

𝑑𝜃

𝑑𝑡
=

1 + 𝑣

(1 + 𝑣)2 + (𝑡− 𝑢)2
= 𝐹 (𝑢, 𝑣, 𝑡),

(2.56)
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which results in

𝜌𝐿 =
√︀

(1 + 𝑣)2 + (𝑡− 𝑢)2. (2.57)

Interchanging the order of integration, (2.55) becomes

𝐼sub1 =

1∫︁
−1

𝑑𝑢

1∫︁
−1

𝑑𝑡

1∫︁
−1

𝐹 (𝑢, 𝑣, 𝑡)𝑑𝑣

𝜌𝐿∫︁
0

𝜌𝑑𝜌. (2.58)

Next, we replace {𝑡, 𝑣} with a new polar coordinate system {Λ,Ψ} :

𝑡 = 𝑢 + Λ cos(Ψ), 𝑣 = −1 + Λ sin(Ψ), (2.59)

with the Jacobian of this new transformation being 𝐽 = Λ. With the two changes of

variables, 𝜃 → 𝑡 and {𝑡, 𝑣} → {Λ,Ψ}, we obtain the following:

cos(𝜃) → cos(Ψ), sin(𝜃) → − sin(Ψ),

𝜌𝐿 → Λ, 𝐹 → sin(Ψ)

Λ
.

(2.60)

We have to notice that the {𝑡, 𝑣} domain is a rectangle (Fig. 2-3 (b)), and integrating

over {Λ,Ψ} will require a decomposition into three subdomains:

Ψ0 ≤ Ψ ≤ Ψ1, Ψ1 ≤ Ψ ≤ Ψ2, Ψ2 ≤ Ψ ≤ Ψ3,

where

Ψ0 = 0, Ψ1 =
𝜋

2
− tan−1

(︂
1 − 𝑢

2

)︂
, Ψ2 =

𝜋

2
+ tan−1

(︂
1 + 𝑢

2

)︂
,

Ψ3 = 𝜋,

(2.61)
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and (2.58) is written as

𝐼sub1 =
2∑︁

𝑚=0

1∫︁
−1

𝑑𝑢

Ψ𝑚+1∫︁
Ψ𝑚

ℱ(Ψ; Λ𝐿)𝑑Ψ, (2.62)

where

ℱ(Ψ; Λ𝐿) = sin Ψ

Λ𝐿∫︁
0

𝑑Λ

Λ∫︁
0

𝜌𝑑𝜌 (2.63)

is the kernel that is omitted in the following derivations. The limit Λ𝐿 for integration

over Λ depends upon the subdomain (m = 0,1,2) being considered, as shown below.

Third step

We have reduced the singular integral (2.51) to an integration over {𝑢,Ψ} with the

Ψ integral decomposed into three subintegrals. The final objective is to regularize

further the integral with respect to 𝑢 by placing it in front of the Ψ integral, so

each subintegral has to be considered individually. The partition of the integral with

respect to Ψ and the limits of integration with respect to Λ read

0 ≤ Ψ ≤ Ψ1, Λ𝐿 =
1 − 𝑢

cos(Ψ)
,

Ψ1 ≤ Ψ ≤ Ψ2, Λ𝐿 =
2

sin Ψ
,

Ψ2 ≤ Ψ ≤ Ψ3, Λ𝐿 =
1 + 𝑢

− cos Ψ
.

(2.64)

Integration over region 0 ≤ Ψ ≤ Ψ1 The domain of integration is depicted

schematically in Fig. 2-4(a), below the curve Ψ1(𝑢). After interchanging the 𝑢 and
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Ψ integration, we get

1∫︁
−1

𝑑𝑢

Ψ1∫︁
0

𝑑Ψ =

𝜋
4∫︁

0

𝑑Ψ

1∫︁
−1

𝑑𝑢 +

𝜋
2∫︁

𝜋
4

𝑑Ψ

1∫︁
𝑢1𝜓

𝑑𝑢, (2.65)

where

𝑢1𝜓 = 2 tan
(︁

Ψ − 𝜋

2

)︁
+ 1. (2.66)

Ψ

u1-1

π/4

3 /4π

π

Ψ2(u)

Ψ1(u)

0

Ψ

u1-1

3 /4π

π

Ψ2(u)

0

π/2

(a) (b)

π/2

Figure 2-4: Geometry of the parametric space {𝑢,Ψ}: (a) 0 ≤ Ψ ≤ Ψ1 and Ψ1 ≤
Ψ ≤ Ψ2; (b) Ψ2 ≤ Ψ ≤ 𝜋.

Integration over region Ψ1 ≤ Ψ ≤ Ψ2 The domain of integration is shown as the

shaded area in Fig. 2-4(a). After re-ordering the integration, we end up the following

two integrals:
1∫︁

−1

𝑑𝑢

Ψ2∫︁
Ψ1

𝑑Ψ =

𝜋
2∫︁

𝜋
4

𝑑Ψ

𝑢1𝜓∫︁
−1

𝑑𝑢 +

3𝜋
4∫︁

𝜋
2

𝑑Ψ

1∫︁
𝑢2𝜓

𝑑𝑢, (2.67)

where

𝑢1𝜓 = 2 tan
(︁

Ψ − 𝜋

2

)︁
+ 1, 𝑢2𝜓 = 2 tan

(︁
Ψ − 𝜋

2

)︁
− 1. (2.68)
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Integration over region Ψ2 ≤ Ψ ≤ 𝜋 The domain of integration in this case is

depicted in Fig. 2-4(b). After re-ordering the integration, we obtain

1∫︁
−1

𝑑𝑢

𝜋∫︁
Ψ2

𝑑Ψ =

3𝜋
4∫︁

𝜋
2

𝑑Ψ

𝑢2𝜓∫︁
−1

𝑑𝑢 +

𝜋∫︁
3𝜋
4

𝑑Ψ

1∫︁
−1

𝑑𝑢, (2.69)

where

𝑢2𝜓 = 2 tan
(︁

Ψ − 𝜋

2

)︁
− 1. (2.70)

Final Formulas

Finally, the singular integral (2.51) for the lower subtriangle has been reduced to the

following 6 sufficiently smooth integrals:

𝐼sub1 =

𝜋
4∫︁

0

𝑑Ψ

1∫︁
−1

𝑑𝑢 +

𝜋
2∫︁

𝜋
4

𝑑Ψ

1∫︁
𝑢1𝜓

𝑑𝑢 +

𝜋
2∫︁

𝜋
4

𝑑Ψ

𝑢1𝜓∫︁
−1

𝑑𝑢

+

3𝜋
4∫︁

𝜋
2

𝑑Ψ

1∫︁
𝑢2𝜓

𝑑𝑢 +

3𝜋
4∫︁

𝜋
2

𝑑Ψ

𝑢2𝜓∫︁
−1

𝑑𝑢 +

𝜋∫︁
3𝜋
4

𝑑Ψ

1∫︁
−1

𝑑𝑢,

(2.71)

where

𝑢1𝜓 = 2 tan
(︁

Ψ − 𝜋

2

)︁
+ 1, 𝑢2𝜓 = 2 tan

(︁
Ψ − 𝜋

2

)︁
− 1. (2.72)

The overall Jacobian after all parametric transformations is given by

𝒥 ST = (𝐽𝑃𝐽𝑄)𝜌 sin Ψ, (2.73)
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while the original variables take the following form:

𝑢 → 𝑢, 𝑣 → Λ sin(Ψ) − 1,

𝑢′ → 𝑢 + 𝜌 cos(Ψ), 𝑣′ = −𝜌 sin(Ψ) + Λ sin(Ψ) − 1.
(2.74)

Exploiting the symmetry of the rectangular parameter space, we can derive the

formulas for the other three subtriangles by simply rotating them accordingly and

employing the formulas for the lower one. Hence, the final formula for the original

singular integral (2.51) is given by

𝐼 = 𝐼sub1 + 𝐼sub2 + 𝐼sub3 + 𝐼sub4 , (2.75)

where

𝐼sub2 = 𝐼sub1
⃒⃒⎡⎢⎢⎢⎣𝑢
𝑣

⎤⎥⎥⎥⎦→
⎡⎢⎢⎢⎣0 −1

1 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣𝑢
𝑣

⎤⎥⎥⎥⎦
, 𝐼sub3 = 𝐼sub1

⃒⃒⎡⎢⎢⎢⎣𝑢
𝑣

⎤⎥⎥⎥⎦→
⎡⎢⎢⎢⎣ 0 −1

−1 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣𝑢
𝑣

⎤⎥⎥⎥⎦
(2.76)

and

𝐼sub4 = 𝐼sub1
⃒⃒⎡⎢⎢⎢⎣𝑢
𝑣

⎤⎥⎥⎥⎦→
⎡⎢⎢⎢⎣ 0 1

−1 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣𝑢
𝑣

⎤⎥⎥⎥⎦
. (2.77)
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2.5.3 Edge Adjacent Integration

First Step

Based upon the coincident integration scheme, we employ a polar coordinate trans-

formation for the inner integration to cancel the line of singularity defined by

𝑣 = 𝑣′ = −1, 𝑢 = −𝑢′,

𝑢′ = 𝜌 cos(𝜃) − 𝑢, 𝑣′ = 𝜌 sin(𝜃) − 1.
(2.78)

The integration with respect to 𝜃 should be split into three terms, as illustrated in

u

v

u’

v’

-1

-1

1

1

(u,v)

(u’,v’)
ρ

θ

Θ2

Θ1

Θ

u1-1

3 /4π

π

π/4
Θ (u)1

Θ2(u)

0

(a) (b)

π/2

1

ρL

Figure 2-5: Edge adjacent integration: (a) polar coordinate transformation {𝑢′, 𝑣′} →
{𝜌, 𝜃}; (b) the {𝑢, 𝜃} domain for the second shift of the integral, Θ1 ≤ 𝜃 ≤ Θ2.

Fig. 2-5(a):

𝐼 = 𝐼sub1 + 𝐼sub2 + 𝐼sub3 , (2.79)
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where

𝐼sub1 =

1∫︁
−1

𝑑𝑢

1∫︁
−1

𝑑𝑣

Θ1(𝑢)∫︁
0

𝑑𝜃

𝐿1∫︁
0

𝜌𝑑𝜌,

𝐼sub2 =

1∫︁
−1

𝑑𝑢

1∫︁
−1

𝑑𝑣

Θ2(𝑢)∫︁
Θ1(𝑢)

𝑑𝜃

𝐿2∫︁
0

𝜌𝑑𝜌,

𝐼sub3 =

1∫︁
−1

𝑑𝑢

1∫︁
−1

𝑑𝑣

𝜋∫︁
Θ2(𝑢)

𝑑𝜃

𝐿3∫︁
0

𝜌𝑑𝜌

(2.80)

and
Θ1(𝑢) =

𝜋

2
− tan−1

(︂
1 + 𝑢

2

)︂
,

Θ2(𝑢) =
𝜋

2
+ tan−1

(︂
1 − 𝑢

2

)︂
,

(2.81)

𝐿1 =
1 + 𝑢

cos(𝜃)
, 𝐿2 =

2

sin(𝜃)
, 𝐿3 =

𝑢− 1

cos(𝜃)
. (2.82)

Since the break-points in 𝜃 are only functions of 𝑢, the integration can be rearranged

as follows:

𝐼sub1 =

1∫︁
−1

𝑑𝑢

Θ1(𝑢)∫︁
0

𝑑𝜃

1∫︁
−1

𝑑𝑣

𝐿1∫︁
0

𝜌𝑑𝜌,

𝐼sub2 =

1∫︁
−1

𝑑𝑢

Θ2(𝑢)∫︁
Θ1(𝑢)

𝑑𝜃

1∫︁
−1

𝑑𝑣

𝐿2∫︁
0

𝜌𝑑𝜌,

𝐼sub3 =

1∫︁
−1

𝑑𝑢

𝜋∫︁
Θ2(𝑢)

𝑑𝜃

1∫︁
−1

𝑑𝑣

𝐿3∫︁
0

𝜌𝑑𝜌.

(2.83)

Now the singularity occurs when 𝑣 = −1 and 𝜌 = 0, therefore we proceed by intro-

ducing a second polar coordinate transformation,

𝜌 = Λ cos(Ψ), 𝑣 = −1 + Λ sin(Ψ), 𝐽2 = Λ. (2.84)
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The original integral can be represented as a sum:

𝐼 =
2∑︁
𝑙=0

1∑︁
𝑚=0

1∫︁
−1

𝑑𝑢

Θ𝑙+1∫︁
Θ𝑙

𝑑𝜃

Ψ𝑚+1∫︁
Ψ𝑚

𝒢(Ψ; Λ𝐿)𝑑Ψ, (2.85)

where

𝒢(Ψ; Λ𝐿) = cos Ψ

Λ𝐿∫︁
0

Λ2𝑑Λ (2.86)

can be evaluated numerically and is omitted in the following derivations. The inte-

gration limits in (2.85) are given by

Θ0 = 0, Θ1 =
𝜋

2
− tan−1 1 + 𝑢

2
,

Θ2 =
𝜋

2
+ tan−1 1 − 𝑢

2
, Θ3 = 𝜋,

(2.87)

and

Ψ0 = 0, Ψ1 = tan−1

(︂
2

𝐿(𝑢, 𝜃)

)︂
, Ψ2 =

𝜋

2
, (2.88)

while the integration limits with respect to Λ are given below.

Second Step

Integration over region Θ1 ≤ 𝜃 ≤ Θ2 In this case, the splitting of Ψ integrals is

independent of 𝑢 and the integral is given by

𝐼𝜃12 =

1∫︁
−1

𝑑𝑢

Θ2∫︁
Θ1

𝑑𝜃

Ψ12
1∫︁

0

𝑑Ψ +

1∫︁
−1

𝑑𝑢

Θ2∫︁
Θ1

𝑑𝜃

𝜋
2∫︁

Ψ12
1

𝑑Ψ, (2.89)
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where the upper limit of Λ in (2.86) is different in the two terms:

Λ𝐿 =

⎧⎪⎨⎪⎩
𝐿2

cos(Ψ)
= 2

sin(𝜃) cos(Ψ)
, 0 < Ψ < Ψ12

1 ,

2
sinΨ

, Ψ12
1 < Ψ < 𝜋

2
.

(2.90)

Moreover,

𝜃1𝑢 ≡ Θ1 =
𝜋

2
− tan−1

(︂
1 + 𝑢

2

)︂
, (2.91)

𝜃2𝑢 ≡ Θ2 =
𝜋

2
+ tan−1

(︂
1 − 𝑢

2

)︂
, (2.92)

and the integral with respect to Ψ is split at

Ψ12
1 = tan−1

(︂
2

𝐿2

)︂
= tan−1 (sin 𝜃) . (2.93)

Hence, once 𝑢 and 𝜃 are interchanged, the 𝑢 can be moved immediately past the Ψ

integral. Noting that

𝜃1𝑢(−1) =
𝜋

2
, 𝜃1𝑢(1) =

𝜋

4
, 𝜃2𝑢(−1) =

3𝜋

4
, 𝜃2𝑢(1) =

𝜋

2
, (2.94)

the geometry for interchanging 𝑢 and 𝜃 is shown in Fig. 2-5(b). Inverting the rela-

tionships between 𝑢 and 𝜃 yields

𝑢1𝜃 = 2 tan
(︁𝜋

2
− 𝜃
)︁
− 1, 𝑢2𝜃 = 2 tan

(︁𝜋
2
− 𝜃
)︁

+ 1, (2.95)
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while switching the integrals results in

𝐼𝜃12 =

𝜋
2∫︁

𝜋
4

𝑑𝜃

Ψ12
1∫︁

0

𝑑Ψ

1∫︁
𝑢1𝜃

𝑑𝑢 +

3𝜋
4∫︁

𝜋
2

𝑑𝜃

Ψ12
1∫︁

0

𝑑Ψ

𝑢2𝜃∫︁
−1

𝑑𝑢

⏟  ⏞  
𝐼𝜃12,Ψ

−

+

𝜋
2∫︁

𝜋
4

𝑑𝜃

𝜋
2∫︁

Ψ12
1

𝑑Ψ

1∫︁
𝑢1𝜃

𝑑𝑢 +

3𝜋
4∫︁

𝜋
2

𝑑𝜃

𝜋
2∫︁

Ψ12
1

𝑑Ψ

𝑢2𝜃∫︁
−1

𝑑𝑢

⏟  ⏞  
𝐼𝜃12,Ψ

+

. (2.96)

Integration over region 0 < 𝜃 ≤ Θ1 In this case, the breakpoint in Ψ is a

function of 𝜃 and 𝑢 both, and re-ordering of integrations will produce eight integrals.

The two first integrals are given by

𝐼𝜃1 =

1∫︁
−1

𝑑𝑢

Θ1∫︁
0

𝑑𝜃

Ψ1
1∫︁

0

𝑑Ψ +

1∫︁
−1

𝑑𝑢

Θ1∫︁
0

𝑑𝜃

𝜋
2∫︁

Ψ1
1

𝑑Ψ, (2.97)

where

Λ𝐿 =

⎧⎪⎨⎪⎩
𝐿1

cos(Ψ)
= 1+𝑢

cos(𝜃) cos(Ψ)
, 0 < Ψ < Ψ1

1,

2
sin(Ψ)

, Ψ1
1 < Ψ < 𝜋

2
,

(2.98)

and

Ψ1
1 =

𝜋

2
− tan−1

(︂
1 + 𝑢

2 cos(𝜃)

)︂
. (2.99)

Again, the 𝜃 and 𝑢 integrals are easily interchanged. The domain of integration is

depicted schematically at Fig. 2-5(b), below the curve Θ1(𝑢). We end up with the
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1-1 u0

tan (
-1

cos )θ

Ψ

1-1 u0

tan (
-1

sin )θ

Ψ

u ( )1 θ

Ψ1( )u
Ψ1( )u

(a) (b)

π/2 π/2

Figure 2-6: Polar coordinate transformations employed in the edge adjacent inte-
gration: the domain for interchanging the integrals {𝑢,Ψ}, for a fixed value of 𝜃
(0 ≤ 𝜃 ≤ Θ1): (a) 𝑢1(𝜃) = 1 (0 ≤ 𝜃 ≤ 𝜋/4); (b) 𝑢1(𝜃) < 1 (𝜋/4 < 𝜃 ≤ 𝜋/2).

following four integrals:

𝐼𝜃1 =

𝜋
4∫︁

0

𝑑𝜃

1∫︁
−1

𝑑𝑢

Ψ1
1∫︁

0

𝑑Ψ +

𝜋
2∫︁

𝜋
4

𝑑𝜃

𝑢1𝜃∫︁
−1

𝑑𝑢

Ψ1
1∫︁

0

𝑑Ψ

⏟  ⏞  
𝐼𝜃1,Ψ

−

+

𝜋
4∫︁

0

𝑑𝜃

1∫︁
−1

𝑑𝑢

𝜋
2∫︁

Ψ1
1

𝑑Ψ +

𝜋
2∫︁

𝜋
4

𝑑𝜃

𝑢1𝜃∫︁
−1

𝑑𝑢

𝜋
2∫︁

Ψ1
1

𝑑Ψ

⏟  ⏞  
𝐼𝜃1,Ψ

+

, (2.100)

where the expression for 𝑢1𝜃 is given in (2.95). The next step is to regularize further

the integral by interchanging of 𝑢 and Ψ.

Integration over region 0 < Ψ ≤ Ψ1
1 The domain under consideration is

shown in Figs. 2-6(a-b), below the curve Ψ1(𝑢). Moving the 𝑢 integral to the front

in the first two integrals in (2.100), corresponding to the case of 0 < Ψ ≤ Ψ1
1, results
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in

𝐼𝜃1,Ψ
−

=

𝜋
4∫︁

0

𝑑𝜃

Ψ1
𝜃∫︁

0

𝑑Ψ

1∫︁
−1

𝑑𝑢 +

𝜋
4∫︁

0

𝑑𝜃

𝜋
2∫︁

Ψ1
𝜃

𝑑Ψ

𝑢1𝜓∫︁
−1

𝑑𝑢

+

𝜋
2∫︁

𝜋
4

𝑑𝜃

Ψ2
𝜃∫︁

0

𝑑Ψ

𝑢1𝜃∫︁
−1

𝑑𝑢 +

𝜋
2∫︁

𝜋
4

𝑑𝜃

𝜋
2∫︁

Ψ2
𝜃

𝑑Ψ

𝑢1𝜓∫︁
−1

𝑑𝑢, (2.101)

where
𝑢1𝜓 = 2 cos(𝜃) · tan

(︁𝜋
2
− Ψ

)︁
− 1,

𝑢1𝜃 = 2 tan
(︁𝜋

2
− 𝜃
)︁
− 1,

Ψ1
𝜃 = Ψ1

1

⃒⃒
𝑢=1

= tan−1(cos(𝜃)),

Ψ2
𝜃 = Ψ1

1

⃒⃒
𝑢=𝑢1𝜃

= tan−1(sin(𝜃)).

(2.102)

Integration over region Ψ1
1 < Ψ ≤ 𝜋/2 After interchanging 𝑢 and Ψ the last

two integrals in (2.100), corresponding to Ψ1
1 < Ψ ≤ 𝜋/2 (the region depicted in

Figs. 2-6(a-b) under the curve Ψ1(𝑢)), become

𝐼𝜃1,Ψ
+

=

𝜋
4∫︁

0

𝑑𝜃

𝜋
2∫︁

Ψ1
𝜃

𝑑Ψ

1∫︁
𝑢1𝜓

𝑑𝑢 +

𝜋
2∫︁

𝜋
4

𝑑𝜃

𝜋
2∫︁

Ψ2
𝜃

𝑑Ψ

𝑢1𝜃∫︁
𝑢1𝜓

𝑑𝑢. (2.103)

Integration over region Θ2 < 𝜃 ≤ 𝜋 This case is similar to the previous one.

The two first integrals are given by

𝐼𝜃2 =

1∫︁
−1

𝑑𝑢

𝜋∫︁
Θ2

𝑑𝜃

Ψ2
1∫︁

0

𝑑Ψ +

1∫︁
−1

𝑑𝑢

𝜋∫︁
Θ2

𝑑𝜃

𝜋
2∫︁

Ψ2
1

𝑑Ψ, (2.104)
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where the upper limit of Λ is

Λ𝐿 =

⎧⎪⎨⎪⎩
𝐿3

cos(Ψ)
= 𝑢−1

cos(𝜃) cos(Ψ)
, 0 < Ψ < Ψ2

1,

2
sin(Ψ)

, Ψ2
1 < Ψ < 𝜋

2
,

(2.105)

and

Ψ2
1 =

𝜋

2
− tan−1

(︂
𝑢− 1

2 cos(𝜃)

)︂
. (2.106)

The 𝜃 and 𝑢 integrals can be interchanged, and the domain is depicted in Fig. 2-7(a)

under the curve Θ2(𝑢). After the interchanging we obtain

𝐼𝜃2 =

3𝜋
4∫︁

𝜋
2

𝑑𝜃

1∫︁
𝑢2𝜃

𝑑𝑢

Ψ2
1∫︁

0

𝑑Ψ +

𝜋∫︁
3𝜋
4

𝑑𝜃

1∫︁
−1

𝑑𝑢

Ψ2
1∫︁

0

𝑑Ψ

⏟  ⏞  
𝐼𝜃2,Ψ

−

+

3𝜋
4∫︁

𝜋
2

𝑑𝜃

1∫︁
𝑢2𝜃

𝑑𝑢

𝜋
2∫︁

Ψ2
1

𝑑Ψ +

𝜋∫︁
3𝜋
4

𝑑𝜃

1∫︁
−1

𝑑𝑢

𝜋
2∫︁

Ψ2
1

𝑑Ψ

⏟  ⏞  
𝐼𝜃2,Ψ

+

, (2.107)

where 𝑢2𝜃 is given in (2.95). The final step is the interchanging of 𝑢 and Ψ, and the

associated geometry is shown in Figs. 2-7(b-c).
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Figure 2-7: Polar coordinate transformations employed in the edge adjacent integra-
tion: (a) the {𝑢, 𝜃} domain for the third shift of the integral, Θ2 ≤ 𝜃 ≤ 𝜋; (b) the
domain for interchanging the integrals {𝑢,Ψ}, for a fixed value of 𝜃 and 𝑢2(𝜃) = −1
(𝜋/2 ≤ 𝜃 ≤ 3𝜋/4); and (c) the domain for interchanging the integrals {𝑢,Ψ}, for a
fixed value of 𝜃 and 𝑢2(𝜃) > −1 (3𝜋/4 < 𝜃 ≤ 𝜋).

Integration over region 0 < Ψ ≤ Ψ2
1 After moving the 𝑢 integral to the front,

the first two integrals in (2.107) read

𝐼𝜃2,Ψ
−

=

3𝜋
4∫︁

𝜋
2

𝑑𝜃

Ψ2
𝜃∫︁

0

𝑑Ψ

1∫︁
𝑢2𝜃

𝑑𝑢 +

3𝜋
4∫︁

𝜋
2

𝑑𝜃

𝜋
2∫︁

Ψ2
𝜃

𝑑Ψ

1∫︁
𝑢2𝜓

𝑑𝑢

+

𝜋∫︁
3𝜋
4

𝑑𝜃

−Ψ1
𝜃∫︁

0

𝑑Ψ

1∫︁
−1

𝑑𝑢 +

𝜋∫︁
3𝜋
4

𝑑𝜃

𝜋
2∫︁

−Ψ1
𝜃

𝑑Ψ

1∫︁
𝑢2𝜓

𝑑𝑢, (2.108)
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where
𝑢2𝜓 = 2 cos(𝜃) · tan

(︁𝜋
2
− Ψ

)︁
+ 1,

𝑢2𝜃 = 2 tan
(︁𝜋

2
− 𝜃
)︁

+ 1,

−Ψ1
𝜃 = Ψ2

1

⃒⃒
𝑢=−1

= − tan−1(cos(𝜃)),

Ψ2
𝜃 = Ψ2

1

⃒⃒
𝑢=𝑢2𝜃

= tan−1(sin(𝜃)).

(2.109)

Integration over region Ψ2
1 < Ψ ≤ 𝜋/2 The last two integrals in (2.107),

corresponding to the case of Ψ2
1 < Ψ ≤ 𝜋/2, become

𝐼𝜃2,Ψ
+

=

3𝜋
4∫︁

𝜋
2

𝑑𝜃

𝜋
2∫︁

Ψ2
𝜃

𝑑Ψ

𝑢2𝜓∫︁
𝑢2𝜃

𝑑𝑢 +

𝜋∫︁
3𝜋
4

𝑑𝜃

𝜋
2∫︁

−Ψ1
𝜃

𝑑Ψ

𝑢2𝜓∫︁
−1

𝑑𝑢. (2.110)

According to (2.85), the initial integral for edge adjacent case will read

𝐼 = 𝐼𝜃1,Ψ
−

+ 𝐼𝜃1,Ψ
+

+ 𝐼𝜃12,Ψ
−

+ 𝐼𝜃12,Ψ
+

+ 𝐼𝜃2,Ψ
−

+ 𝐼𝜃2,Ψ
+

. (2.111)

The resulting Jacobian (including the part of the rectangular parameter space) is

given with the help of (2.86) and reads

ℐEA = (𝐽𝑃𝐽𝑄)Λ2 cos Ψ (2.112)

and the original variables can be written as

𝑢 → 𝑢, 𝑣 → −1 + Λ sin Ψ,

𝑢′ → Λ cos Ψ cos 𝜃 − 𝑢, 𝑣′ → Λ cos Ψ sin 𝜃 − 1.
(2.113)
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Figure 2-8: Polar coordinate transformations employed in vertex adjacent integra-
tion: {𝑢, 𝑣} → {𝜌𝑝, 𝜃𝑝}, {𝑢′, 𝑣′} → {𝜌𝑞, 𝜃𝑞}.

2.5.4 Vertex Adjacent Integration

In the case where the source and observation quadrilaterals share only a single vertex,

we begin by orienting the elements so that the singular point is at 𝑢 = 𝑢′ = −1, 𝑣 =

𝑣′ = −1. Next, we introduce a separate coordinate system for each element, as shown

at Fig. 2-8:
𝑢 = −1 + 𝜌𝑝 cos(𝜃𝑝), 𝑣 = −1 + 𝜌𝑝 sin(𝜃𝑝),

𝑢′ = −1 + 𝜌𝑞 cos(𝜃𝑞), 𝑣′ = −1 + 𝜌𝑞 sin(𝜃𝑞).
(2.114)

This results in four integrals:
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𝐼 =

𝜋
4∫︁

0

𝑑𝜃𝑝

𝐿1
𝑝∫︁

0

𝜌𝑝𝑑𝜌𝑝

𝜋
4∫︁

0

𝑑𝜃𝑞

𝐿1
𝑞∫︁

0

𝜌𝑞𝑑𝜌𝑞 +

𝜋
4∫︁

0

𝑑𝜃𝑝

𝐿1
𝑝∫︁

0

𝜌𝑝𝑑𝜌𝑝

𝜋
2∫︁

𝜋
4

𝑑𝜃𝑞

𝐿2
𝑞∫︁

0

𝜌𝑞𝑑𝜌𝑞

+

𝜋
2∫︁

𝜋
4

𝑑𝜃𝑝

𝐿2
𝑝∫︁

0

𝜌𝑝𝑑𝜌𝑝

𝜋
4∫︁

0

𝑑𝜃𝑞

𝐿1
𝑞∫︁

0

𝜌𝑞𝑑𝜌𝑞 +

𝜋
2∫︁

𝜋
4

𝑑𝜃𝑝

𝐿2
𝑝∫︁

0

𝜌𝑝𝑑𝜌𝑝

𝜋
2∫︁

𝜋
4

𝑑𝜃𝑞

𝐿2
𝑞∫︁

0

𝜌𝑞𝑑𝜌𝑞,

(2.115)

where

𝐿1
𝑝 =

2

cos(𝜃𝑝)
, 𝐿2

𝑝 =
2

sin(𝜃𝑝)
,

𝐿1
𝑞 =

2

cos(𝜃𝑞)
, 𝐿2

𝑞 =
2

sin(𝜃𝑞)
.

(2.116)

The singularity is at the common vertex 𝜌𝑝 = 𝜌𝑞 = 0, so it’s reasonable to use a

polar coordinate transformation,

𝜌𝑝 = Λ cos(Ψ), 𝜌𝑞 = Λ sin(Ψ). (2.117)

Since the {𝜌𝑝, 𝜌𝑞} domain is rectangular, the Ψ integration must be split into two

pieces, which leads to the final eight integrals,

𝐼 =
2∑︁

𝑚=1

2∑︁
𝑛=1

Θ𝑚∫︁
Θ𝑚−1

𝑑𝜃𝑝

Θ𝑛∫︁
Θ𝑛−1

𝑑𝜃𝑞

×

⎡⎢⎣ Ψ𝑚,𝑛1∫︁
0

ℋ(Ψ;𝐿𝑚,𝑛1 )𝑑Ψ +

𝜋
2∫︁

Ψ𝑚,𝑛1

ℋ(Ψ;𝐿𝑚,𝑛2 )𝑑Ψ

⎤⎥⎦ , (2.118)

where

ℋ(Ψ;𝐿𝑚,𝑛𝑖 ) = cos Ψ sin Ψ

𝐿𝑚,𝑛𝑖 (Ψ)∫︁
0

Λ3𝑑Λ, 𝑖 = 1, 2, (2.119)
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and the integration limits are given by

Θ0 = 0, Θ1 =
𝜋

4
, Θ2 =

𝜋

2
,

𝐿𝑚,𝑛1 (Ψ) =
𝐿𝑚𝑝 (𝜃𝑝)

cos(Ψ)
, 𝐿𝑚,𝑛2 (Ψ) =

𝐿𝑛𝑞 (𝜃𝑞)

sin(Ψ)
,

Ψ𝑚,𝑛
1 = tan−1

(︂
𝐿𝑛𝑞
𝐿𝑚𝑝

)︂
.

(2.120)

The final Jacobian takes the form

𝒥 VA = (𝐽𝑃𝐽𝑄)Λ3 cos Ψ sin Ψ (2.121)

and the original variables are given by

𝑢 → −1 + Λ cos Ψ cos 𝜃𝑝, 𝑣 → −1 + Λ cos Ψ sin 𝜃𝑝,

𝑢′ → −1 + Λ sin Ψ cos 𝜃𝑞, 𝑣
′ → −1 + Λ sin Ψ sin 𝜃𝑞.

(2.122)

2.5.5 Numerical tests

Here we demonstrate the effectiveness of the proposed algorithm in terms of con-

vergence rate and the computational efficiency for singular surface-surface integrals

over coincident (ST), edge adjacent (EA), and vertex adjacent (VA) quadrilaterals.

More specifically, we compute the following weakly singular integral:

𝐼WS =

∫︁
𝐸𝑃

∫︁
𝐸𝑄

𝐺(r, r′)𝑑𝑆 ′𝑑𝑆. (2.123)

Here 𝐺(r, r′) = 𝑒−𝑖𝑘|r−r′|

4𝜋|r−r′| is the free-space Green function and 𝐸𝑃 and 𝐸𝑄 are obser-

vation and source quadrilateral elements. As reference, we use the results obtained
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by the method presented herein (dubbed DIRECTFN-quad) with a high order of

Gaussian quadrature for all four one-dimensional integrations, i.e., 𝑁1 = 𝑁2 = 𝑁3 =

𝑁4 = 25. We compare the convergence of the novel algorithms with the original

DIRECTFN method (dubbed DIRECTFN-tri) [125], applied to the combination of

coincident, edge-adjacent or vertex-adjacent triangles obtained by splitting accord-

ingly the quadrilaterals 𝐸𝑃 and 𝐸𝑄. The singular integral (2.123) is computed for

all possible configurations, i.e. 𝐸𝑃 ≡ 𝑄1 and 𝐸𝑄 ≡ 𝑄1, 𝑄2, 𝑄3 for ST, EA and VA

elements, respectively (See the inset at Fig. 2-9). All the squares 𝑄𝑖 have the sides

with lthe ength 𝑑 = 0.1𝜆, where 𝜆 is the wavelength associated to the operating

frequency. The relative errors, defined as

𝜀 =

⃦⃦⃦⃦
‖𝐼 − 𝐼ref‖2
‖𝐼ref‖2

+ 𝜖

⃦⃦⃦⃦
2

, (2.124)

(with ‖.‖2 being the 2-norm and 𝜖 the machine epsilon) are presented in Fig. 2-9,

from which the exponential convergence with respect to the integration order can be

clearly observed. This behavior suggests that the proposed series of transformations

and the reordering of the integrations lead to sufficiently smooth kernels. Moreover,

the presented algorithm appears to converge substantially faster in the coincident and

edge-adjacent cases. Next, we compare the computational efficiency of the proposed

scheme with the original DIRECTFN method for the same example. As evinced by

the results depicted in Fig. 2-10, the proposed algorithm is significantly more efficient

for the most challenging case, i.e. the coincident elements.

The example with strongly singular integrals can be found in the Appendix A.

In addition, we would like to note that the proposed scheme is not restricted to the

case of piecewise constant basis functions and flat square elements, which are the

case in the VIE method exploited in this thesis. Hence, the additional numerical
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Figure 2-9: Relative error in computing the singular integrals (2.123) as a function of
the order of the 1-D Gaussian quadrature rules, DIRECTFN-quad comparison with
DIRECTFN-tri.

examples with first-order vector basis functions [126, 117], non-squared elongated

quadrilaterals, and curvilinear elements are also presented in the Appendix A..

2.6 FFT-based solver

The direct solution of linear systems, arising in VIE formulations, involves the inver-

sion of huge matrices. Hence, using iterative solvers is the natural choice to tackle

realistic problems. In this thesis, we use the generalized minimum residual (GMRES)
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Figure 2-10: Relative CPU times of the proposed scheme with respect to the original
DIRECTFN as a function of the order of the 1-D Gaussian quadrature rules.

method for the dense non-symmetrical linear systems (2.23) or (2.28) in the case of

non-magnetic material. The bottleneck of any iterative solver is the matrix-vector

product that needs to be computed at each iteration and takes 𝒪(𝑁2) time in a naive

implementation, where 𝑁 is the total number of unknowns. Moreover, the explicit

storage of the system matrix is expensive, requiring 𝒪(𝑁2) memory. However, let

us note again, that the discretized version of the full JM-VIE formulation (2.10), we
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exploit in this thesis, looks as follows:⎛⎝I−

⎛⎝ M𝜖N −𝑐𝜖M𝜖K

𝑐𝑚M𝜇K M𝜇N

⎞⎠⎞⎠ ·

⎛⎝we

wm

⎞⎠ =

⎛⎝ 𝑐𝑒M𝜖einc

𝑐𝑚M𝜇hinc

⎞⎠ . (2.125)

For simplicity, consider the reduced form of (2.125), correspomding to the absence

of magnetic conductivity:

(I−M𝜖N)w𝑒 = 𝑐𝑒M𝜖einc. (2.126)

Without losing the generality, all the successive explanations are valid for the full

system as well. Note that we have assumed that both the material properties and

incident field piecewise constant functions on the voxel grid. The discrete system

(2.126) has the following form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M𝑥

M𝑦

M𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N𝑥𝑥 N𝑥𝑦 N𝑥𝑧

N𝑥𝑦 N𝑦𝑦 N𝑦𝑧

N𝑥𝑧 N𝑦𝑧 N𝑧𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w𝑥

w𝑦

w𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑗𝜔𝜖0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M𝑥e𝑥inc

M𝑦e𝑦inc

M𝑧e𝑧inc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.127)

Here the blocks M𝑥, M𝑦, M𝑧 are diagonal. Since we are using piece-wise constant

basis functions on a voxelized grid, the translation invariance of Green function leads

to the fact that each of the blocks N𝛼𝛽 has block-Toeplitz Toeplitz-block (BTTB)
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structure on three levels, corresponding to the three physical dimensions of the prob-

lem. (See [29] for more details). Note the symmetry in these blocks, i.e., only six of

them are unique. Further, each of these blocks is either symmetric or anti-symmetric.

This combined with their BTTB structure allows them each to be defined by a single

row. Hence the storage cost for the dense operator matrix N is only 𝒪(6𝑁), where 𝑁

is the number of voxels (The same holds for K matrix). Every 𝑁𝑥×𝑁𝑦 ×𝑁𝑧 BTTB

block N𝛼𝛽, 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧, can be embedded into 2𝑁𝑥×2𝑁𝑦×2𝑁𝑧 block-circulant with

circulant blocks (BCCB) matrix 𝒞𝛼𝛽, then its multiplication with a column vector J

can be produced via well-known procedure [127]:

𝒞 · J = ifftn{fftn(𝒞1). * fftn(J)}, (2.128)

where 𝒞 is BCCB matrix, 𝒞1 corresponds to the elements of the first block of 𝒞,

.* is element-wise multiplication, ffftn{.} and ifftn{.} mean multidimensional fast

Fourier transform and inverse fast Fourier transform, respectively. We further note

that the FFT of 𝒞𝛼𝛽 needs to be computed only once before the iteration process

starts. Therefore, the MVP of N with a vector can be computed in 𝒪(𝑁 log𝑁) with

the use of the FFT. Then, since M𝜖 is diagonal, the total cost of the MVP with

I−M𝜖N is also 𝒪(𝑁 log𝑁). Therefore the linear system (2.126) can be solved via

an iterative method such as GMRES with 𝒪(𝑝𝑁 log𝑁) cost, where 𝑝 is the number

of iterations required to achieve the desired accuracy.

2.7 Preconditioning

A single MVP is fast owing to extremely efficient implementations of the FFT, e.g.,

[128]. However, if the matrix system (2.126) is ill-conditioned or the eigenvalues
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of (I − M𝜖N) are not clustered near 1, then potentially hundreds or thousands of

GMRES iterations, and hence MVPs, are required to solve the system. Thereby

creating a huge constant in the aforementioned 𝒪(𝑁 log𝑁) cost. Thus keeping this

iteration count small is crucial for the efficiency of the VIE method.

For low-frequency problems with the permittivity values considered here (for Si

and SiO2), only a handful of GMRES iterations are required to solve the integral

equation, and so the VIE method employed without a precondtioner is extremely

fast. However, as the number of wavelengths fitting across the domain of our problem

increases, so does the iteration count.

0 50 100 150 200 250 300
10

-8

10
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10
-4

10
-2

10
0

Figure 2-11: Convergence history of GMRES (tol = 10−8) without restarts for a
straight waveguide of lengths 10𝜆𝑖 and 30𝜆𝑖. Observe how, with no preconditioner,
the iteration count grows with the waveguide length. The circulant preconditioner,
on the other hand, leads to an iteration count independent of the waveguide length.
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𝐿𝑎𝑏𝑠 Operator No prec. Blocked-circulant prec. E field #voxels
(𝜆int) assembly(s) Its. Solve(s) Its. Build(s) Solve(s) calculation(s)
10 33 294 339 28 38 45 0.48 388800
15 34 327 495 27 42 48 0.46 437400
20 36 358 651 25 47 53 0.47 486000
25 38 390 774 27 51 59 0.57 534600
30 39 426 894 26 56 64 0.68 583200

Table 2.1: Performance of block-circulant preconditioner for the strip waveguide with
𝐿 = 30𝜆𝑖, terminated by the absorbers with different lengths.

𝐿 Operator No prec. Blocked-circulant prec. E field #voxels
(𝜆int) assembly(s) Its. Solve(s) Its. Build(s) Solve(s) calculation(s)
10 25 160 64 28 19 23 0.19 194400
15 27 192 106 27 24 29 0.23 243000
20 28 229 171 28 28 35 0.3 291600
25 30 262 246 27 32 38 0.35 340200
30 33 294 339 28 38 45 0.48 388800

Table 2.2: Performance of block-circulant preconditioner for strip waveguide with
different lengths, terminated by the absorber of the length 𝐿𝑎𝑏𝑠 = 10𝜆𝑖.

The problems arising in photonics involve light being channeled by waveguides

such as that in Fig. 4-1, with typical dimensions

(𝑋, 𝑌, 𝑍) ≈ (20𝜆𝑖 → 2000𝜆𝑖, 𝜆𝑖, 𝜆𝑖/2), (2.129)

where 𝜆𝑖 is the wavelength within the silicon. That is, the geometry is small in the

𝑦- and 𝑧-dimensions, but potentially very long (and hence high-frequency) in the

𝑥-dimension. For such high-frequency problems, the iteration count of GMRES is

not small. In Fig. 2-11 we see the performance of GMRES with tolerance 10−8 and

without preconditioner for the waveguide in Fig. 4-1 of lengths 10𝜆𝑖 and 30𝜆𝑖, and

with a 10𝜆𝑖 absorber. The details of this simulation setup are given in Section 4.1.
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Observe the stagnation of GMRES at a relative residual of around 0.1 before it

rapidly converges; this is characteristic of high-frequency wave problems. It can be

shown [129] that this stagnation period, and hence the iteration count, increases

approximately linearly with the waveguide length. This growth quickly leads to

infeasibly large iteration counts. Therefore, one must seek to precondition the system

(2.126).

A popular preconditioning strategy for Toeplitz systems is to approximate the

discrete operator by a circulant matrix. We employed such a strategy for all the

computations in Section 4.1 and Section 4.2. Here we give a brief overview of this

strategy, which detailed description is provided in [129]. We implemented a modified

version of the technique proposed in [130] to create a block-circulant matrix W which

is closest to (I−M𝜖N) in the Frobenius norm. Circulant matrices are diagonalized by

the FFT, hence cheaply inverted. Moreover, the cost of applying the preconditioner is

about 2 times of the MVP cost of the unpreconditioned system matrix. (See [129] for

details). After constructing and inverting the circulant preconditioner, the following

preconditioned system is solved via GMRES:

W−1(I−M𝜖N)w𝑒 = W−1𝑐𝑒M𝜖w𝑒. (2.130)

The preconditioned system has a matrix with eigenvalues well-clustered near

unity and hence, as can be seen in Fig. 2-11, the convergence of GMRES is greatly

improved. To further illustrate the performance of the proposed preconditioning

strategy, we present the computation times and iteration counts with and without

the preconditioner for the simulation of strip waveguide (See Section 4.1 for the de-

tails of the setup). Table 2.2 contains the results of the simulations of the waveguide

with increasing length and the fixed length of the absorber 𝐿𝑎𝑏𝑠 = 10𝜆𝑖. We observe
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that the preconditioned iteration count is small and does not grow at all with the

length of the system. However, assembling and inverting the preconditioner takes

about the same amount of time as the iterative solution of the preconditioned system.

Nonetheless, the total time remains to be several times less than it takes to solve

the non-preconditioned system. Therefore, the VIE method with a block-circulant

preconditioner is an extremely effective simulation tool for long nanophotonics struc-

tures.

2.8 Fields Computation

The solution of the linear system (2.126) provides the equivalent currents (j,m) at

the center of each voxel, expressed by the coefficients (w𝑒,w𝑚). Once we have these,

we can compute the electric fields using a discrete version of (2.3) and (2.4):

e = einc +
1

𝑐𝑒
(N− I)w𝑒 −Kw𝑚,

h = hinc + Kw𝑒 +
1

𝑐𝑚
(N− I)w𝑚.

(2.131)

Again, to accelerate the multiplication of vectors by the N and K operators, we

exploit the FFT-based technique, described previously. Hence, the electric (or mag-

netic) field at the center of each voxel can be computed with 𝒪(𝑁 log𝑁) cost.

2.9 Summary of the Numerical Method

Now we would like to briefly recall all the stages of the described VIE method to help

the reader to grasp it in a logically connected form. The key steps of the proposed

approach are the following:
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1. The input parameters, consisting of the geometry and material properties of

the isotropic object (2.1)-(2.2) and the excitation electric and magnetic fields

are defined.

2. The system of 2nd kind integral equations, connecting the equivalent currents

with the incident fields, is formulated (2.4) (or (2.13)).

3. This system is discretized using the Galerkin method of moments with the

piece-wise constant basis functions on a voxelized grid (2.18) (or (2.28)). The

incident fields and the material properties are approximated by piece-wise con-

stant functions as well.

4. The obtained discrete linear system is solved iteratively.

5. The electromagnetic fields are calculated from the obtained equivalent currents

using (2.131).

Next, we would like to explicate the part related to matrix assembly, preconditioning,

and iterative solution. Algoritm 1 presents pseudocode for this implementation, and

the steps required are summarized next.

Algorithm 1 Integral Equation Solver
Input: 𝜔,E𝑖𝑛𝑐(r),H𝑖𝑛𝑐(r), 𝜖𝑟(r), 𝜇𝑟(r)

Define resolution. Discretize domain.
Constract right-hand side ◁ Eq. (2.22)
Construct N and K operators. ◁ Algorithm 1
Construct block-circulant operators from N and K. ◁ See [29] for details
Construct preconditioner. Invert preconditioner. ◁ See [129] for details
Solve (2.23) for w𝑒,w𝑚

Compute E𝑡𝑜𝑡,H𝑡𝑜𝑡 ◁ Eq. (2.131)
Output: E𝑡𝑜𝑡,H𝑡𝑜𝑡
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1. "offline" stage

A. Assembling the discrete N and K operators for a given discretization and

frequency.

∙ The operators are constructed by simply fixing the basis function (e.g.

for the first voxel 𝑗 = 1) and sweeping the testing function over all

voxels of the solution domain, as described in Alhorithm 2. Note

that we only need to assemble and store the unique elements of the

complete matrix.

∙ The volume-volume integrals in Galerkin inner products are reduced

to the series of surface-surface integrals over the faces of voxels.

∙ The non-singular surface-surface integrals are evaluated using 2D

Gaussian quadratures, and the singular ones are evaluated using the

novel DIRECTFN-quad method proposed herein.

B. Constructing and inverting the circulant preconditioner.

∙ Circulant matrices are diagonalized by the FFT, hence cheaply in-

verted.

∙ The MVP cost of the preconditioner is close to the MVP cost of the

unpreconditioned system matrix.

2. "online" stage

Solving the linear system with the iterative solver.

∙ The GMRES solver is used

∙ The FFT-accelerated MVP is performed with 𝒪(𝑁 log𝑁) cost.

∙ Using the preconditioner, the iteration count is independent of the waveg-

uide length.
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3. post-processing

Calculating the fields from the solution of the system.

∙ The electric and magnetic fields are computed from the equivalent currents

with 𝒪(𝑁 log𝑁) cost (2.131).

Algorithm 2 Pseudocode for generating the N operator.
𝑗 = 1 ◁ Fix the basis function
for 𝑖 = 1 : 𝑁 do ◁ 𝑁 = 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 is the number of voxels

Compute 𝑁𝑘𝑙
𝑖𝑗 ◁ Eq. (2.37)

Compute N𝛼𝛽
𝑖𝑗 ◁ Eq. (2.36)

Construct N𝑖−𝑗 ◁ Eq. (2.35)
end for

2.10 Numerical Results and Error Analysis

Mie theory [131, 132, 133, 134] provides an analytical solution for the scattered and

interior fields by a lossy dielectric Mie sphere that is illuminated by an incident x-

polarized z-propagating plane wave, as depicted in Fig. 2-12. In this section, the elec-

tromagnetic field inside the Mie sphere is computed by solving the discretized version

of the J-VIE formulation (2.28) and the numerical results are compared to analytical

solutions. The spherical shape is represented using the staircase approximation, as

shown in Fig. 2-12(b). The radius of the sphere is 1𝜆𝑖, where 𝜆𝑖 is the wavelength in

the sphere medium. The center of the sphere is at the origin. The relative permittiv-

ities of the sphere and exterior medium are 𝜖𝑟 = 5.7861− j𝜖′′𝑟 and 1, respectively. The

relative permeability of both the media is 1. The sphere is illuminated by a plane

wave with a free-space wavelength 𝜆𝑖 = 1073 nm, which corresponds to the interior

wavelength 𝜆𝑖 ≈ 446 𝑟𝑚𝑛𝑚. First, we have considered the scattering by the spheres
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Figure 2-12: (a) A Mie sphere illuminated by a plane wave; (b) a discretized Mie
sphere.

with three different electric conductivities: 𝜎𝐸 = 0 S/m, 100 S/m and 1000 S/m, cor-

responding to the imaginary part of relative permittivity of the sphere material

𝜖′′𝑟 = 0, 0.006 and 0.064.

Figs. 2-13–2-15 show different components of interior electric field along the x,

y and z axes. We can observe that refining the mesh the solution goes closer to

the analytical one. It should be noted that deviation from the analytical solution is

caused not only by the error of the numerical method but also by inaccurate staircase

approximation of the geometry.

Next, the convergence rate of the interior fields calculated for the spheres of

conductivities 0 S/m, 100 S/m and 1000 S/m is examined in Fig. 2-16 by showing

numerical error versus the side length of the voxels ℎ. The maximum relative error
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Figure 2-13: The components of interior electric field inside the Mie sphere, 𝜎𝐸 =
0 S/m.

of the interior electric fields, defined as

errmax = max

(︂
‖E− EMie‖2
‖EMie‖2

)︂
(2.132)

is measured. The field is observed along the x-axis and the Mie analytical solution is

used as a reference. The convergence rate appears to be 𝒪(ℎ) due to numerical inac-
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Figure 2-14: The components of interior electric field inside the Mie sphere, 𝜎𝐸 =
100 S/m.

curacies originating from the staircase approximation of a sphere, when discretized

with voxels [135].
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Figure 2-15: The components of interior electric field inside the Mie sphere, 𝜎𝐸 =
1000 S/m.
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Figure 2-16: Relative error of interior electric fields observed along the x-axis with
respect to resolution.
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Chapter 3

Absorbers and Reflections

In this chapter, we describe an adiabatic absorber technique for terminating optical

waveguides with the volume integral equation method, which otherwise has diffi-

culties with waveguides extending to infinity. In order to attenuate waves reflected

from truncated waveguides, we append conductive regions to the terminations. The

transition between the non-absorbing and absorbing regions will generate reflections

that can be minimized by making the transition as smooth as possible. We provide

an estimation of the two types of reflections generated by the absorber, namely, the

round-trip and transition reflection. We derive the asymptotic power-law behavior

of transition reflections as a function of the length of the absorber and demonstrate

that the power law is determined by the smoothness of the transition. In addition,

we evaluate the effect of the group velocity on the transition reflection.

In the following, we define the conductivity profile as

𝜎(𝑥) =

⎧⎪⎨⎪⎩0, 𝑥 < 0,

𝜎0𝑠(𝑥/𝐿), 0 ≤ 𝑥 ≤ 𝐿,

(3.1)
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where 𝑥 = 0 is the beginning of the absorber of length 𝐿. Observe that we have

introduced a scaled coordinate 𝑢 = 𝑥/𝐿 ∈ [0, 1] for ease of presentation later on. Note

further that 𝜎 can represent either of the electric or magnetic conductivities, 𝜎𝐸, 𝜎𝑀 .

In this thesis, we consider the first four monomials as our candidate absorption

profiles:

𝑠(𝑢) =

⎧⎪⎨⎪⎩0, 𝑢 < 0,

𝑢𝑑, 0 ≤ 𝑢 ≤ 1,

(3.2)

for 𝑑 = 0, 1, 2, 3.

3.1 Adiabatic absorbers in the EM setting

Here we discuss the two types of adiabatic absorbers. First, we consider the absorber

with only electric conductivity. Next, we allow the magnetic currents to present in the

absorber’s material, that is, we include both electric and magnetic conductivities. As

we will see, the latter allows for impedance matching and hence superior absorbers,

but at the cost of solving for twice as many unknowns.

Consider the simple waveguide setup depicted in Fig. 3-1. Suppose that the

waveguide begins at the origin and extends to 𝑥 = 𝑋 before the absorbing region

begins, and this region terminates at 𝑥 = 𝑋 + 𝐿. Assume that the absorber has the

electric conductivity 𝜎𝐸(𝑥), then the relative permittivity for 0 ≤ 𝑥 ≤ 𝑋 +𝐿 has the

form:

𝜖𝑟(𝑥) =

⎧⎪⎨⎪⎩𝜖′𝑟, 0 ≤ 𝑥 ≤ 𝑋,

𝜖′𝑟 − j𝜎𝐸(𝑥)
𝜔𝜖0

= 𝜖′𝑟 − j𝜖′′𝑟 , 𝑋 < 𝑥 ≤ 𝑋 + 𝐿.

, (3.3)

where 𝜔 is the working frequency and 𝜖0 is the electric constant. That is, the relative

permittivity is real inside the waveguide and complex inside the absorber. Consider
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Figure 3-1: The waveguide with the absorber attached. The waveguide begins at
the origin and extends to 𝑥 = 𝑋 before the absorbing region begins, and this region
terminates at 𝑥 = 𝑋 + 𝐿.

the normal-incident wave from the interior region to the absorber region in the yz

plane, whose reflection is determined by the mismatch of the intrinsic impedance of

the two regions. The intrinsic impedance of the interior region is 𝑍𝑖 =
√︁

𝜇𝑖
𝜖𝑖

, where

𝜇𝑖 and 𝜖𝑖 are the permittivity and permeability of the interior material, respectively.

In our case,

𝑍𝑖 =

√︃
𝜇0𝜇′

𝑟

𝜖0𝜖′𝑟
, (3.4)

where 𝜇0 is the magnetic constant and 𝜇′
𝑟 is the relative permeability of the waveguide

(𝜇′
𝑟 = 1). The impedance of the conductive region is

𝑍𝑎𝑏𝑠 =

√︃
𝜇0𝜇′

𝑟

𝜖0𝜖′𝑟 − j𝜎𝐸
𝜔

. (3.5)

When 𝜎𝐸 increases from zero, the impedances of the two regions start to mismatch,

making some of the incident waves reflected back to the interior region without being

dissipated in the conductivity region. Moreover, in the case of the absorber with

non-constant electric conductivity 𝜎𝐸 = 𝜎𝐸(𝑥), the impedance mismatches between

93



different slices of the absorber produce more reflections. Therefore, with the electric

conductivity only, it is difficult to match the impedances between different regions. If

we include the magnetic conductivity, having that the relative magnetic permeability

is

𝜇𝑟(𝑥) =

⎧⎪⎨⎪⎩𝜇′
𝑟, 0 ≤ 𝑥 ≤ 𝑋,

𝜇′
𝑟 − j𝜇′′

𝑟 = 𝜇′
𝑟 − j𝜎𝑀 (𝑥)

𝜔𝜇0
, 𝑋 < 𝑥 ≤ 𝑋 + 𝐿,

(3.6)

the condition for the impedances to match would be:

√︃
𝜇0𝜇′

𝑟

𝜖0𝜖′𝑟
=

⎯⎸⎸⎷𝜇0𝜇′
𝑟 − j𝜎𝑀 (𝑥)

𝜔

𝜖0𝜖′𝑟 − j𝜎𝐸(𝑥)
𝜔

, (3.7)

or equally
𝜎𝑀(𝑥)

𝜎𝐸(𝑥)
=

𝜇0𝜇
′
𝑟

𝜖0𝜖′𝑟
, 𝑋 < 𝑥 ≤ 𝑋 + 𝐿. (3.8)

However, if we are not including magnetic conductivity, we have that

𝜇𝑟(𝑥) = 1, for all 𝑥. (3.9)

In this case, we may simply set m = 0 in (2.10), thereby halving the number of

unknowns.

3.2 Round-trip reflection and transition reflection

We consider two types of reflection caused by the adiabatic absorber, namely the

round-trip and transition reflections (See Fig. 3-2). The round-trip reflection, 𝑅rt, is

the reflection due to the wave propagating all the way to the end of the absorber,

reflecting off the end, and returning back. Whereas the transition reflection, 𝑅t, is
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Figure 3-2: Types of the reflections produced by the absorber.

the reflection of the wave at the absorber’s interface. We can derive approximate

expressions for these two types of reflection. For the round-trip reflection, we can just

consider the exponentially decaying wave as it propagates to the end of the absorber

and back. For the transition reflection, we appeal to results from coupled-mode

theory [136].

Round-trip reflection

In order to calculate the round-trip reflected power, we begin by considering the

plane wave travelling in +𝑥-direction in a conductive medium, which can be written

in the form:

e−𝑗𝑘0𝑛𝑥, (3.10)

where 𝑘0 = 𝜔
√
𝜖0𝜇0 is the free-space wavenumber, and 𝑛 =

√
𝜖𝑟𝜇𝑟 is the complex

refractive index of the medium. Recalling that

𝜇𝑟 = 𝜇′
𝑟 − j𝜇′′

𝑟 and 𝜖𝑟 = 𝜖′𝑟 − j𝜖′′𝑟 , (3.11)

where

𝜇′′
𝑟 =

𝜎𝑀
𝜔𝜇0

, 𝜖′′𝑟 =
𝜎𝐸
𝜔𝜖0

, (3.12)
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the product 𝜇𝑟𝜖𝑟 can then be expanded out as follows

𝜇𝑟𝜖𝑟 = 𝜇′
𝑟𝜖

′
𝑟 − 𝜇′′

𝑟𝜖
′′
𝑟 − j(𝜇′′

𝑟𝜖
′
𝑟 + 𝜇′

𝑟𝜖
′′
𝑟) (3.13)

In the case where we match the impedances by setting 𝜇′′
𝑟𝜖

′
𝑟 = 𝜇′

𝑟𝜖
′′
𝑟 (see Eq. (3.8)),

we have that

𝜇𝑟𝜖𝑟 =
𝜇′
𝑟

𝜖′𝑟
(𝜖′𝑟 − j𝜖′′𝑟)

2. (3.14)

Hence the original plane wave can be written as

exp

(︃
−j𝑘0

√︃
𝜇′
𝑟

𝜖′𝑟
(𝜖′𝑟 − j𝜖′′𝑟)𝑥

)︃
= exp(−j𝑘0

√︀
𝜇′
𝑟𝜖

′
𝑟𝑥) exp

(︃
−𝑘0

√︃
𝜇′
𝑟

𝜖′𝑟
𝜖′′𝑟𝑥

)︃
, (3.15)

so we see that the wave decays as

exp

(︃
−𝑘0

√︃
𝜇′
𝑟

𝜖′𝑟
𝜖′′𝑟𝑥

)︃
= exp

(︂
−
√︂

𝜇0

𝜖0

𝜎𝐸√
𝜖′𝑟
𝑥

)︂
, (3.16)

where we have also made use of the identity 𝑘0 = 𝜔
√
𝜇0𝜖0. The round-trip reflec-

tion 𝑅rt is proportional to the intensity of the wave which is returned back to the

waveguide and can be shown to take the form

𝑅rt ∼ exp

(︂
−𝐷𝜂𝑥

√︂
𝜇0

𝜖0

1√
𝜖′𝑟

∫︁ 𝐿

0

𝜎𝐸(𝑥)d𝑥
)︂
, (3.17)

where 0 ≤ 𝜂𝑥 ≤ 1. For a plane wave propagating purely in the +𝑥-direction, 𝜂𝑥 = 1.

When the impedance is matched, we have that 𝐷 = 4; this comes from the fact that

the wave travels a distance 2𝐿, then this is squared to obtain the reflected power.

When the impedance is not matched, it can be shown that 𝐷 = 2. The factor of two

difference can be attributed to the presence of two attenuating mechanisms in the
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matched impedance case, namely the decay due to both the magnetic and electric

conductivities, whereas there is only the electric conductivity in the unmatched case.

Using 𝜎𝐸(𝑥) = 𝜎0𝑠(𝑥/𝐿) and making the change of variables 𝑢 = 𝑥/𝐿 leads to the

following form of (3.17):

𝑅rt ∼ exp

(︂
−𝐷𝜂𝑥

√︂
𝜇0

𝜖0𝜖′𝑟
𝐿𝜎0

∫︁ 1

0

𝑠(𝑢)d𝑢
)︂
. (3.18)

For the monomial absorption profiles (3.2) under consideration in this thesis, this

simplifies to

𝑅rt ∼ exp

⎛⎝−
𝐷𝐿𝜂𝑥

√︁
𝜇0
𝜖0𝜖′𝑟

𝜎0

𝑑 + 1

⎞⎠ , (3.19)

where 𝑑 is the index of power of the monomial profile. Now we can choose 𝜎0 such

that we obtain a desired round-trip reflection 𝑅rt via the following formula

𝜎0 = −(𝑑 + 1) ln(𝑅𝑟𝑡)

𝐷𝐿𝜂𝑥

√︃
𝜖0𝜖′𝑟
𝜇0

. (3.20)

For a propagating mode, we expect 𝜂𝑥 < 1 to be the ratio of the propagation constant

to the interior wavenumber, but we do not in general know 𝜂𝑥 a priori. We further

obtain the approximate value of 𝜂𝑥 in our setup via calculating numerically the field

decay rate inside the absorber of constant electric conductivity, and fitting the decay

dependence from 𝜎𝐸.

Transition reflection

An effective way to analyze the propagation of waves along a waveguide with slowly

varying properties (in this case, the conductivity) is via coupled-mode theory (CMT).

Here we quote the appropriate results from [136] where the details can be found in
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full. For a concise summary of the pertinent details of CMT and the results of [136],

the reader is referred to [64]. It is shown in [136] that in the limit of slow variation

in conductivity (equivalently, the large 𝐿 limit), the amplitude 𝑐𝑟 of a reflected mode

has the asymptotic form

𝑐𝑟(𝐿) = 𝑠(𝑑)(0+)
𝑀(0+)

∆𝛽(0+)
[−𝑗𝐿∆𝛽(0+)]−𝑑 + 𝒪(𝐿−(𝑑+1)), (3.21)

where 𝑠(𝑑)(0+) is the first non-zero derivative of the absorption profile 𝑠(𝑢) evaluated

at 𝑢 = 𝑥−𝑋
𝐿

= 0+, ∆𝛽 = 𝛽𝑖 − 𝛽𝑟 ̸= 0 is the difference between the propagation

constants of the incident and reflected modes, and 𝑀 is a coupling coefficient between

the incident and reflected modes, which depends on the field spatial pattern, but is a

smooth function of 𝑢 [136, 64]. From Eq. (3.21) it follows that for uniform structures,

the transition reflection 𝑅t(𝐿) ∼ |𝑐𝑟|2 scales as |𝑀 |2/𝐿2𝑑 = 𝐿−2(𝑑+1). That is,

𝑅t = 𝒪(𝐿−2(𝑑+1)), as 𝐿 → ∞. (3.22)

This is confirmed by the numerical results given in the next chapter.

The situation is more complicated in the case of periodic structures where the

phenomenon of slow light occurs near and in a band gap. In such scenarios, while

approaching a flat band edge, we have that ∆𝛽 = 𝛽𝑖−𝛽𝑟 = 2
(︀
𝛽 − 𝜋

Λ

)︀
∼ 𝑣𝑔 [136, 64],

where Λ is the period of the structure and 𝑣𝑔 is the group velocity. Also, the coupling

coefficient 𝑀 is proportional to 1/𝑣𝑔 [136, 64], therefore we have that the transition

reflection scales as

𝑅𝑡 ∼ |𝑐𝑟|2 = 𝒪(𝑣−2(𝑑+2)
𝑔 ), for small 𝑣𝑔, (3.23)

for periodic structures. “Slow light” corresponds to small 𝑣𝑔, hence we anticipate
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the need for much longer absorbers in order for the 𝒪(𝐿−2(𝑑+1)) decay of (3.22) to

overcome this unfavorable scaling when operating close to a band edge. Such a

periodic structure is the Bragg grating considered in Section 4.2. There we observe

in practice this predicted worsening in the performance of adiabatic absorbers.
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Chapter 4

Numerical Results of Absorbers

In this chapter, we demonstrate the performance of the proposed algorithms via

numerical experiments on different photonic devices. We show that the asymptotic

results for adiabatic absorbers discussed in the previous chapter are achieved in our

VIE setting. Three different nanophotonics structures are examined: a dielectric

strip waveguide (see Fig. 4-1), a Bragg grating waveguide similar to that in [137]

(see Fig. 4-16), and a Y-branch splitter. All structures considered consist of a silicon

(Si) core surrounded by silicon dioxide (SiO2). The relative permittivity of Si is

wavelength dependent and we assume it obeys the Lorentz model [26, 138], and

the relative permittivity of SiO2 is taken to be 1.4442 [26]. Note that in Chapter 2,

where the VIE method is described, we assume the exterior medium has unit relative

permittivity. In order to make this equivalent to our physical problem, we must scale

the relative permittivity of Si and the wavelength of the incident field accordingly

(dividing by 1.4442 and 1.444, respectively).

Throughout this chapter, we describe the absorber lengths both in terms of the

interior wavelength, 𝜆𝑖, and the exterior wavelength, 𝜆𝑒. We recall that, contrary to
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the DE setting where the absorbing regions must surround the exterior region, in the

IE setting we are only required to place the absorbing regions within the dielectric

(as illustrated in Fig. 1-1). This means that absorber lengths are described in terms

of 𝜆𝑒 in DE methods whereas it seems more natural to describe the lengths in terms

of 𝜆𝑖 in the IE setting. We utilize both in this thesis since, although 𝜆𝑖 is more

natural, using 𝜆𝑒 enables easy comparison with the more abundant results in the DE

setting. Note that the relative refractive index for interchanging between 𝜆𝑖 and 𝜆𝑒

is approximately 2.41 for silicon in silicon dioxide.

In the first set of numerical experiments we consider the simple scenario of the

straight uniform waveguide of Fig. 4-1 with an absorber of length 𝐿 appended to the

right end. First of all, to make sure of the convergence of our numerical solution, we

calculate the electric field distribution inside the waveguide, terminated by the ab-

sorber of the length 𝐿 = 4500 nm, which equals approximately 10𝜆𝑖(4.15𝜆𝑒), having

a quadratic conductivity profile. Using 5 different mesh resolutions, we demonstrate

that refining the mesh the solution converges to a certain field distribution. Next,

we examine the dependence of field decay rate from the electric conductivity by

considering the absorbers with constant conductivities. We show that the numeri-

cally calculated decay rate is aligned with the estimation from the previous chapter.

We further compare the reflections produced by the absorbers with different con-

ductivity profiles. While keeping the round-trip reflection fixed, we examine the

transition reflection dependency on the absorber length. Values of 𝐿 from 450 nm

to 9450 nm in increments of 450 nm are considered; this equates approximately to

1𝜆𝑖 (0.4𝜆𝑒) to 20𝜆𝑖 (8.3𝜆𝑒). The absorption profiles are the monomials (3.2). For

this example, we observe the asymptotic behavior (3.22) of the transition reflec-

tion. From these experiments, the absorbers with quadratic conductivity profile

appear to be optimal in most scenarios. We proceed by considering the absorber
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having both electric and magnetic conductivities. We observe that matching the

impedances improves the absorber, however only by a constant factor. Finally, we

compare the electric field components, observed in a cross-section of a waveguide with

the length 𝐿 = 22𝜇m ≈ 50𝜆i, terminated with a quadratic absorber of the length

𝐿 = 4.4𝜇m ≈ 10𝜆i, with the first TE-mode profile, obtained by solving the eigen-

value problem with the finite element solver employed in COMSOL Multiphysics R○

software [139].

Next, we examine the behavior of adiabatic absorbers while terminating an in-

finitely long periodic channel, which is, in our case, the Bragg grating. First, to

demonstrate a typical simulation of the Bragg grating, we obtain the transmission

spectrum for the finite grating of 𝑁 = 100 periods. Next, we terminate the grating

of 𝑁 = 50 periods by an absorber of the same shape and with length ranging from

1Λ (0.7𝜆𝑖/0.3𝜆𝑒) to 800Λ (585𝜆𝑖/243𝜆𝑒), where Λ = 320 nm is the grating’s period.

The simulations performed using an absorber of length 900Λ are used to generate

the reference solutions. We show that adiabatic absorbers can perform well, when

the periodic channel is excited away from a band gap, however near a band gap,

where the group velocity goes close to zero, the effectiveness of adiabatic absorbers

deteriorates. We note that this is a problem inherent to such absorbers (and other

taper transitions [137]), as well as PMLs, and is predicted by theory.

Finally, we examine the performance of absorbers of fixed length and profile to

truncate a Y-branch splitter which is an oft-simulated nanophotonics structure [26].

In addition, we introduce the signal-to-noice ratio as an alternative measure of

absorber performance and study its dependence on the absorption rate when the

absorber length is fixed.

For all simulations performed, we use an iterative GMRES solver with tolerance

10−8 to solve the arising discrete system (2.125)-(2.126).
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4.1 Dielectric strip waveguide

In this section, we examine the reflections from an adiabatic absorber used to trun-

cate a silicon strip waveguide, as shown in Fig. 4-1. We begin by describing the

geometrical setup for these simulations. The waveguide we consider occupies the

space

0 ≤ 𝑥 ≤ 13500 nm, 0 ≤ y ≤ 500 nm, 0 ≤ z ≤ 200 nm. (4.1)

This size, or similar, for the (𝑦, 𝑧) cross-section is a popular choice owing to its support

of one dominant TE guided mode in the free-space wavelength range of 1500 nm to

1600 nm. The free-space wavelength of light considered is 1550 nm which equates

approximately to a wavelength of 𝜆𝑖 = 446 nm within the silicon core. Therefore,

the length of the waveguide is roughly 30𝜆𝑖 (13𝜆𝑒).

𝑥

𝑦

𝑧 AbsorberSi

SiO2

Figure 4-1: Problem setup for a Gaussian beam source within a silicon strip waveg-
uide with one absorber attached. Only one absorber is necessary for this problem
since the source has directionality and we anticipate no reflections propagating in
the −𝑥-direction. The cladding medium is silicon dioxide.

The waveguide is excited using a Gaussian beam produced by a dipole located in

complex space [140]. The real part of the dipole position is inside the waveguide on

the center-line, 𝜆𝑖/4 from the left end. It can be shown that if the imaginary part of
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the 𝑥-position of the dipole equals −𝑏𝑗, with 𝑏 > 0, it produces a beam propagating

in the +𝑥-direction, which is equivalent to that produced by a source distribution

on the circular disc of radius 𝑏 in real-space [141]. In our simulations, we use 𝑏 = 𝜆𝑖,

which was found to give a good compromise between directionality and localization.

In order for the quasi-TE mode to be established by this excitation, we found that a

straight portion of a waveguide of approximately 5𝜆𝑖/2.1𝜆𝑒 is required. In this strip

waveguide scenario, we expect all the waves to propagate in the +𝑥-direction, hence

we append only one absorber, on the right-hand end of the waveguide. First of all,
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Figure 4-2: The absolute value of y-component of the electric field along the 𝑥̂ - axis.

to make sure that our numerical solution converges, we compare the fields calculated

using different mesh resolution, i.e., we consider the electric field distribution along

the three axes: on the center-line of the waveguide along the 𝑥̂-axis, and along the

𝑦- and 𝑧- axes in the cross-section at the half-length of the waveguide. We use a
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quadratic function for electrical conductivity 𝜎𝐸(𝑥) = 𝜎0(𝑥 − 𝑥0)
2/𝐿2, where the

absorber length 𝐿 equals 4500 nm, which is approximately 10𝜆𝑖(4.15𝜆𝑒), and the

constant 𝜎0 was calculated from (3.20) in order to obtain the round-trip reflection

𝑅𝑟𝑡 = 10−10. The results were obtained using the voxels of sizes 50 nm, 25 nm, 50/3

nm, 50/4 nm, and 10 nm. From Figs. 4-2–4-4 one can clearly observe the convergence

of the solution to a certain field distribution. In the successive experiments with strip
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Figure 4-3: The absolute value of y-component of the electric field along the 𝑦 - axis.

waveguides, we use voxels of size 50/3nm since this perfectly divides the dimensions

of the structure. Further, this represents approximately 27 voxels per 𝜆𝑖 which is a

high enough resolution to ensure accurate simulations [142].

Next, we investigate the effect of using absorbers with different conductivity

profiles. In Fig. 4-5 we show the complex magnitudes of the electric field on the

center-line of the waveguide along the 𝑥̂− axis calculated for the waveguides with

105



-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

z(
i
)

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

E
(V

/m
)

10
15

 x = 50 nm

 x = 25 nm

 x = 16.6667 nm

 x = 12.5 nm

 x = 10 nm

Figure 4-4: The absolute value of y-component of the electric field along the 𝑧 - axis.

several different absorbers. The absorber is in the region where 𝑥0 < 𝑥 < 𝑥0 + 𝐿 in

which 𝑥0 is the position of the interface and 𝐿 is the absorber length. The electric

conductivity in this region is given by 𝜎𝐸(𝑥) = 𝜎0(𝑥 − 𝑥0)
𝑑/𝐿𝑑, where 𝑑 = 0, 1, 2

for constant, linear and quadratic profiles. As is easily seen in Fig. 4-5, there are

substantial reflections when using a constant conductivity, smaller reflections when

using a linearly increasing conductivity, and almost no reflections for a quadratically

increasing conductivity. We quantify the reflection by use of the standing wave ratio

(SWR), the ratio of the maximum field magnitude to the minimum field magnitude

in the standing-wave region, evaluated on the waveguide axis. From the SWR, a

reflection coefficient is then readily obtained as in a conventional transmission line.

The magnitudes of the field reflection coefficients 𝑅 are listed in Table 4.1.
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Conductivity profile constant linear quadratic
SWR 1.0844 1.0070 1.0057

Reflection (dB) -27.8520 -49.1963 -50.9086

Table 4.1: The standing wave ratio (SWR) and field reflection versus the conductivity
distribution of the absorber, whose length is ∼ 10𝜆𝑖.
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(b) linear conductivity along x direction
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(c) quadratic conductivity along x direction

Figure 4-5: The complex magnitude of the electric field inside a waveguide and
absorber. The dashed line indicates the position of the waveguide-absorber interface.
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4.1.1 Field Decay Rate

In this section, we examine the exponential decay rate of waves propagating through

the absorber region. We demonstrate the relation between the decay rate and the

conductivity using an example of an absorber with uniformly distributed electric

conductivity. Figure 4-6 shows the complex magnitude of electric field along the
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Figure 4-6: The complex magnitude of the electric field along the 𝑥̂-axis inside the
absorber with uniform conductivity.

𝑥̂-axis inside absorbers with different constant electric conductivities. As expected

from (3.16), the field decays exponentially with the distance with a conductivity-

dependent rate. It can also be seen that the wave reflects back from the right end,

and conceivably these reflections decay as they travel to the left. An approximation
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to the rate of exponential decay can be determined by fitting the field plots. The

fitted decay rates 𝛼 for a range of 𝜎𝐸 are shown in Fig. 4-7. One can see for this

range of 𝜎𝐸 the decay constant depends linearly from the elcetric conductivity, which

is in agreement with the estimation we obtain earlier: recalling the equations (3.16)
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Figure 4-7: The rate of field exponential decay along the propagation direction versus
electric conductivity.

and (3.17), the decay constant 𝛼 is

𝛼(𝜎𝐸) = 𝜂𝑥

√︂
𝜇0

𝜖0

1√
𝜖′𝑟
𝜎𝐸. (4.2)

Fitting the dependency in Fig. 4-7, we obtain 𝜂𝑥 ≈ 0.5.

Further analyzing the field decay, one can admit, that for the conductivities

higher than 2 · 104 S/m the field decays exponentially near the start of absorber, as

expected from however, but after some distance the exponential decay breaks. This

can be explained by the presense of coupled radiation. The radiation is generated
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by inevitable mismatch between the exitation source and the waveguide modes. The

situation is similar to a source radiating in a lossy half-space, in which the dominant

field contribution is due to a lateral wave that decays algebraically [143].

4.1.2 Transition reflection length dependency

To measure the transition reflection dependency on the absorber length, we first

extract the field along the central axis of the waveguide: 0 ≤ 𝑥 ≤ 13500nm, 𝑦 =

250nm, 𝑧 = 100nm. The field on this axis obtained using the longest absorber

(𝐿 = 9450nm) is taken as the “exact” solution and denoted E∞. Then the reflection

coefficient, which is identified with the transition reflection up to some constant, is

calculated as follows

R :=
||E∞ − E(𝐿)||2

||E∞||2
. (4.3)

Recall we are considering the reflected power, hence the powers of 2. The norm is

the 𝐿2 norm, that is we have that

||E∞ − E(𝐿)||2 :=

∫︁ 𝑋

0

|E∞(𝑥) − E(𝐿)(𝑥)|2d𝑥. (4.4)

We considered the values of absorbers’ length 𝐿 from 450 nm to 9450 nm in increments

of 450 nm; this equates approximately to 1𝜆𝑖 (0.4𝜆𝑒) to 20𝜆𝑖 (8.3𝜆𝑒). To focus on

the transition reflection, we fix the round-trip reflection to 𝑅𝑟𝑡 = 10−25 by choosing

the constant 𝜎0 appropriately using (3.19). Initially we solve for the electric currents

(related to e via (2.9)) alone, that is, we do not match the impedances of the absorber

and the waveguide. The reflection coefficients R for the first three absorption profiles

as functions of 𝐿 are shown as the lines labeled e (for electric) in Fig. 4-8. The figure

shows that the observed transition reflection agrees with the asymptotic result (3.22)
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Figure 4-8: Reflection coefficient versus absorber length 𝐿 for first three monomial
absorption profiles when 𝑅rt = 10−25. The lines labeled e correspond to the case
where only the electric field is solved for. The lines labeled e&m correspond to the
case where both the electric and magnetic fields are solved for, with the impedance
matched. Note that this impedance matching reduces the reflection coefficient by
approximately a factor of 100. We observe that each of the first three monomials
achieves the asymptotic convergence rate of 𝒪(𝐿−2(𝑑+1)).

for the first three monomials. The reflection for the cubic profile, as shown in Fig. 4-

9, appears not to have reached the asymptotic regime before stagnating at a value

of R ≈ 10−11. In this regime, the quadratic profile produces the smallest transition

reflections for absorbers of length less than 3.3𝜆𝑒 (8𝜆𝑖). For absorbers of length 3.3𝜆𝑒

or more, the cubic profile is superior. In general, we remark that, although increasing

the polynomial degree (and hence the smoothness of the transition from waveguide to

absorber) improves the asymptotic rate at which the transition reflection diminishes,

it also requires ever longer absorbers in order to reach this asymptotic phase.
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Figure 4-9: Reflection coefficient versus absorber length 𝐿 for cubic absorption pro-
files when 𝑅rt = 10−25. The blue squares correspond to the case where only the
electric field is solved for. The red circles correspond to the case where both the elec-
tric and magnetic fields are solved for, with the impedance matched. Observe that
the convergence is faster than the predicted asymptotic rate, implying the asymp-
totic range is not achieved for these absorber lengths. In fact, for cubic and higher
order profiles, the asymptotic range is not achieved for any of the practical examples
considered in this thesis.

4.1.3 Electric and magnetic conductivities

Up to now, we have investigated the adiabatic absorbers with electric surface con-

ductivity. Next, it is interesting to observe the improvement in the absorbing layer

when magnetic currents are introduced, thus allowing the impedance to be matched

(albeit at the cost of doubling the number of unknowns). The lines labeled with

e&m (for electric and magnetic currents) in Fig. 4-8 are the matched impedance

counterparts of the lines labeled e. The reflection coefficient is reduced by a factor of
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approximately 100, which is good, but not overwhelmingly so, and does not justify

the increase in computational cost of solving for the additional magnetic currents.

This reduction factor, however, is not the piece of information we are really

interested in. We would like to know by how much we can reduce the absorber length

to maintain the same reflection. Suppose we desire R = 10−8, which is sufficiently

small for practical purposes. The required absorber lengths to achieve this are shown

in Table 4.2. Considering 𝑅rt = 10−25, we see that, the reduction in required absorber

length when going from unmatched impedances to matched impedances diminishes as

the monomial degree increases. For 𝑑 = 0, the decrease is thousands of wavelengths,

whereas when 𝑑 = 3, the decrease is less than 0.5𝜆𝑒 (1.2𝜆𝑖). Curiously, we observe

that, depending on which technique is used, either 𝑑 = 2 or 𝑑 = 3 provide the superior

absorber. In any case, the small saving in the simulation domain for 𝑑 = 2, 3 does

not justify doubling the degrees of freedom.

Monomial Absorber length (𝐿/𝜆𝑒)
degree, 𝑑 𝑅rt = 10−25 𝑅rt = 10−10

e e&m e e&m

0 5,400 150 1,900 96
1 20.4 5.8 13 3.7
2 3.9 2.1 3.0 2.0
3 3.0 2.5 2.6 2.5

Table 4.2: Absorber length (in units of number of exterior wavelengths) required
to obtain R = 10−8. We choose such a value for R since it is sufficiently small for
practical purposes. Some of the values for 𝑑 = 0, 1 have been extrapolated from
Fig. 4-8 and Fig. 4-10.

A more practical way to reduce the transition reflection, and hence the required

size of the absorber, is to reduce the imposed round-trip reflection 𝑅rt. Previously,

we have fixed the round-trip reflection to a very small value ∼ 10−25 in order to

isolate the effect of the transition reflection. However, in a real application, one is
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unlikely to require such low reflections, thus it is reasonable to fix 𝑅𝑟𝑡 to a larger

value, corresponding to a lower 𝜎0. Consider 𝑅rt = 10−10: the corresponding results

are shown in Fig. 4-10 and Table 4.2. To obtain R = 10−8 with a quadratic profile,

say, we require an absorber of length 3𝜆𝑒 (7.1𝜆𝑖) for 𝑅rt = 10−10(e), compared

to 3.9𝜆𝑒 (9.5𝜆𝑖) for 𝑅rt = 10−25(e), and 2.1𝜆𝑒 (5.1𝜆𝑖) for 𝑅rt = 10−25(e&m). The

reduction is not quite as large as observed when introducing magnetic currents (about

a wavelength less for the quadratic absorber), but it is significant and we do not have

to double the number of unknowns.

It is also worth noting that in all our convergence graphs, the reflection coefficient

stagnates at some small value. This is due to the difference between the phases of

the round-trip reflections contained in E(𝐿) and E∞, for each 𝐿. Therefore, we would

anticipate that this small stagnation value should be close to the enforced round-trip

reflection. Indeed, this is the case when 𝑅rt = 10−10 in Fig. 4-10. However, this is

not the case when 𝑅rt = 10−25 in Fig. 4-8. In the latter scenario, this is because

the numerical discretization error and iterative solver tolerance are greater than the

enforced round-trip reflection.

The next step to optimize the adiabatic absorber is to balance the round-trip

and transition reflections for a given length 𝐿. This entails enforcing the round-trip

reflection to also follow the power law (3.22). This leads to larger values of 𝑅rt for

smaller 𝐿, hence a smaller 𝜎0 ∝ − ln(𝑅rt), and thus a smaller transition reflection.

Fig. 4-11 shows the result of balancing 𝑅rt and 𝑅t for a constant absorption profile.

We observe that the reduction in the transition reflection is substantial for small

𝐿. For larger 𝐿 the reduction is less dramatic; this is due to an additional factor

of ln𝑅rt ∼ ln𝐿 that now appears in the asymptotic convergence rate. Note further

that the line is jagged rather than straight. This is due to the interference of the

now similar size round-trip and transition reflections. In Fig. 4-11 are shown the
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Figure 4-10: Reflection coefficient versus absorber length 𝐿 for first three monomial
absorption profiles for two different round-trip reflections: 𝑅rt = 10−25 (blue crosses)
and 𝑅rt = 10−10 (red diamonds). An order of magnitude reduction in the reflection
coefficient is achieved by decreasing the imposed round-trip reflection in this way.

reflection coefficients for the first three monomial profiles. The improvement gained

by balancing 𝑅rt and 𝑅t appears to reduce as the polynomial degree of the absorption

profile is increased. Finally, we note that, although balancing these two reflections

gives a reduction in transition reflection, it requires some trial and error in order

to choose the optimal constant 𝐶opt in the imposed power law for the round-trip

reflection 𝑅t = 𝐶opt𝐿
−2(𝑑+1). For practical purposes, one would wish to perform

such an optimization over all problem parameters such as wavelength and refractive

index. This is a non-trivial task and, as can be seen, in this simple scenario yields

little gain. However, such optimization may be useful in more complicated cases,

such as terminating channels with periodic corrugations.
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Figure 4-11: Reflection coefficient versus absorber length 𝐿 for first three monomial
profiles for two different round-trip reflections: 𝑅rt = 10−10 (blue crosses) and 𝑅rt =
𝐶opt𝐿

−2(𝑑+1) (red diamonds). The second case is equivalent to balancing the round-
trip reflection with the transition reflection. Observe the improvement achieved; this
gain diminishes as the polynomial degree increases.

4.1.4 Comparison with COMSOL Multiphysics R○

In order to compare our numerical solver with other methods, we have calculated

the guided modes for the rectangular silicon waveguide with 500 nm× 220 nm cross-

section in a dioxide cladding, using the COMSOL Multiphysics R○ package [139] to

solve the eigenvalue problem. To obtain the propagating modes, COMSOL exploits a

finite element method on a triangulated mesh. Fig.4-12 shows the components of the

electric field of the lower order mode, scaled by its maximum absolute value, obtained

using the mesh with 184861 triangles, at a wavelength 1500 nm. This solution cor-

responds to the first quasi-TE mode and is in agreement with the example given on
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(a) Re(Ey) (b) Re(Ez)

(c) Im(Ex) (d) Field intensity, |𝐸𝑥|2 + |𝐸𝑦|2 + |𝐸𝑧|2

Figure 4-12: TE (first) mode profile of a 500 nm×220 nm strip waveguide at 1550nm
wavelength obtained with COMSOL. The three field components in the x, y, z di-
rections are shown.

pp.51-52 of [26]. Next, we perform the JVIE simulation of 500 nm× 220 nm× 22𝜇m

waveguide at the same wavelength. The waveguide constitutes approximately 50𝜆𝑖,

where 𝜆𝑖 is the wavelength inside the silicon core. We terminated the waveguide

with a quadratic absorber of length 4.4𝜇𝑚, which is approximately 10𝜆𝑖. The com-

ponents of the electric field in the yz-plane, scaled by its maximum absolute value,

are presented in Fig. 4-13. The field is observed at 𝑥 = 15.84𝜇m, which is 0.72 of the

waveguide length. To compare the two solutions, we first interpolate the COMSOL

data onto the uniform grid, using the Matlab in-built griddata function, and then

calculate the absolute and relative differences between electric field components. The
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Figure 4-13: JVIE solution, obtained for 500 nm × 220 nm × 22𝜇m waveguide with
quadratic absorber of length 4.4𝜇m at 1500 nm wavelength. The components of
electric field in yz-plane, obtained at 𝑥 = 15.84𝜇m (0.72 of waveguide length) from
the left end of the waveguide, are shown. Observe the qualitative agreement with
the TE-mode obtained with COMSOL.

corresponding relative difference of field components is shown in Fig. 4-14. It can be

seen that for the y-components of the electric field |𝐸𝑦| and the complex magnitudes

|𝐸| the relative difference is less than 2% inside the waveguide and about 5 − 6%

outside. For the z- and x-components 𝐸𝑧 and 𝐸𝑥 it doesn’t exceed 10%, except the

central line along y-axis for 𝐸𝑦 and the lines along y and z axes for 𝐸𝑥. However,

this greater discrepancy has a simple explanation: if we look at the field components

along the central lines, e.g., 𝐸𝑥 along the z-axis, we can observe that the absolute

difference ∆𝐸𝑥 falls to ∼ 10−9 at 𝑧 = 0(see Fig 4-15(a)), whereas the fields them-

selves at this point are of the same order of magnitude (see Fig. 4-15(b)). Hence,

to achieve the relative difference near 10%, the fields should be calculated with less
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than 10−10 error, which is hindered by the lower accuracy of the numerical solver.

Overall, we can conclude that the solutions obtained using the JVIE method

proposed herein and COMSOL Multiphysics R○ software are in a good agreement.
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Figure 4-14: The relative difference between interpolated COMSOL and JVIE solu-
tions. The fields are scaled by their maximum values.

4.2 Bragg grating

Previously, we have examined the adiabatic absorbers performance when terminating

the uniform cross-section waveguides. Unlike uniform channels, the periodic channels

can be excited at a band-gap edge, where the group velocity is close to zero, resulting

in a large transition reflection at the waveguide-absorber interface. In this section, we

consider the example of such periodic structure - the Bragg grating, which generates

the phenomenon of slow-light for certain wavelengths. A typical Bragg grating is
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Figure 4-15: x-component of the electric field along the z-axis: (a) absolute difference
between COMSOL and JVIE solutions; (b) COMSOL and JVIE solutions.

depicted in Fig. 4-16. Here we shall use the following values for the geometrical

parameters in the figure:

𝐷 = 220 nm, 𝑊 = 500 nm, ∆𝑊 = 40 nm,

Λ = 320, nm, 𝑁 = 100.

The periodic part of the structure is preceded by a uniform region of length 10Λ

(7𝜆𝑖/2.9𝜆𝑒), which is excited using the dipole located in the same position as in the

previous setup for the strip waveguide. The characteristic modulation in the waveg-

uide leads to reflections and hence waves propagate in both directions. Therefore,

we require adiabatic absorbers on both ends to truncate this structure.

To discretize this geometry, and the Y-branch splitter to follow, we use voxels

of size 20 nm. This size of voxel is chosen since it can perfectly represent the cross

section of the waveguides. Furthermore, at approximately 22 voxels per 𝜆𝑖, this
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Figure 4-16: Top view of the layout for Bragg grating with period Λ, width 𝑊 ,
corrugation depth ∆𝑊 , and length 𝑁 × Λ, where 𝑁 is an integer. Since the waves
propagate in both directions due to reflections from the corrugations, absorbers are
required on both ends for simulations. To generate the 3D structure, this layout is
extruded a distance 𝐷 in the 𝑧-direction (out of the page).

resolution is fine enough to ensure accurate simulations.

Before analyzing the reflections from adiabatic absorbers in the infinite version

of this structure, we first present a simulation to obtain the broadband transmission

through a Bragg grating of finite length. In order to do so, we perform simulations

on the setup in Fig. 4-16 over the free-space wavelength range [1520,1570]nm at a

sampling resolution of 0.5 nm. A quadratic absorber of length 2.2 𝜇m (5𝜆𝑖/2.1𝜆𝑒)

is used on either end. For each wavelength, the transmission 𝑇 through the Bragg

grating is defined as the integrated square of the electric field over a voxel-wide

(𝑦, 𝑧)-slice of the structure:

𝑇 =

∫︁∫︁
|E|2d𝑦d𝑧. (4.5)

This chosen slice must be located after the Bragg grating terminates and before the

absorber begins. The normalized transmission is plotted in Fig. 4-17. The band gap

where the transmission drops is clearly visible around a Bragg wavelength of 1545nm.

If one were to analyze the group velocity, 𝑣𝑔, it would be seen to be positive away

from the band gap, approach zero at the band gap edge, then be negative within
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Figure 4-17: Transmission through the Bragg grating of length 100 periods. The
Bragg wavelength is 1545 nm and the band gap is approximately 20 nm wide.

the band gap (see [16] for in-depth details on band gaps in periodic structures).

Now suppose we were to introduce an adiabatic absorber within the periodically

modulated region of the Bragg grating, as depicted in the inset in Fig. 4-18. As

discussed at the end of the Chapter 3, the transition reflection from this absorber

would be dominated by the 𝒪(𝑣
−2(𝑑+2)
𝑔 ) term as we go past a band gap edge. Thus

we would require extremely long absorbers before returning to our asymptotic (in 𝐿)

convergence rate of 𝒪(𝐿−2(𝑑+1)).

From a purely physical point of view, we should expect such a deterioration in

performance of absorbing layers in this scenario. The aim of employing an absorbing

layer is to allow the truncation of the domain without incurring reflections. However,

the slow light phenomenon described above occurs precisely due to the reflections

from all the way along the Bragg grating. By terminating the structure with an

122



10
0

10
1

10
2

10
-10

10
-5

10
0

1520nm

Figure 4-18: Reflection coefficient versus absorber length 𝐿 for monomial profiles
with the round-trip reflection set to 𝑅𝑟𝑡 = 10−10. The Bragg grating is excited at
1520 nm free-space wavelength. The asymptotic convergence rates are eventually
achieved for the first three monomials.

absorber, we lose these important reflections and, more importantly, we lose period-

icity which is essential for the propagation of Bloch waves. Therefore, we anticipate

that extremely long absorbers will be required to retain a sufficient number of these

reflections in order to mimic the field within the infinite periodic structure.

We proceed by performing such a set of simulations in order to model the infinite

Bragg grating and thereby observe the aforementioned behavior of the absorber.

That is, we terminate the periodically varying region with an absorber of the same

shape, as shown in Fig. 4-18. The absorption profiles are again the monomials (3.2).

First, we excite the system at a free-space wavelength of 1520 nm, away from
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the band gap edge, and thus the group velocity is relatively large and positive. The

round-trip reflection is fixed at 𝑅𝑟𝑡 = 10−10. The absorber length is ranging from 1Λ

(0.7𝜆𝑖/0.3𝜆𝑒) to 800Λ (585𝜆𝑖/243𝜆𝑒), where Λ = 320 nm is the grating’s period. To

generate the reference solution, we use an absorber of length 900Λ. The reflection co-

efficient R for the four monomial profiles is shown in Fig. 4-18. Immediately apparent

is a clear stagnation in the transition reflection for absorbers up to approximately

40𝜆𝑖 (16.6𝜆𝑒). Beyond this point, the transition reflections converge towards zero

and we achieve close to the asymptotic convergence rate 𝒪(𝐿−2(𝑑+1)) for constant,

linear, and quadratic profiles.

Next, we excite the grating close to the band gap edge, at a free-space wavelength

1538 nm, corresponding to a lower group velocity. Comparing Fig. 4-19 with Fig. 4-

18, we can clearly see that reflections worsen dramatically when the system is excited

near the band gap edge. Moreover, for all the profiles, the asymptotic regime is not

reached for the examined range of absorber lengths, and the higher-order profiles be-

come superior only for very long absorbers with length greater than approximately

80𝜆𝑒 (200𝜆𝑖). In fact, note that the quadratic absorber is superior to the cubic ab-

sorber even for the longest absorber considered. By extrapolation from the results at

this wavelength, a quadratic absorber of length approximately 375𝜆𝑒–415𝜆𝑒 (900𝜆𝑖–

1000𝜆𝑖) would be required to provide adequately small transition reflections, and

hence well-approximate the infinite Bragg grating.

We conclude this section on the Bragg grating by exploring the dependency of this

growth in reflection coefficient as a function of wavelength. We fix the absorber length

at 50 periods (36𝜆𝑖/15𝜆𝑒) and consider a quadratic conductivity profile, and calculate

the reflection coefficient at each free-space wavelength in the range [1520,1570]nm,

with the reference solutions being calculated with quadratic absorbers of length 650

periods. The results are shown in Fig. 4-20. We observe that the reflection has two
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Figure 4-19: Reflection coefficient versus absorber length 𝐿 for monomial profiles
with the round-trip reflection set to 𝑅𝑟𝑡 = 10−10. The Bragg grating is excited at
1538 nm free-space wavelength.
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maxima, at 1540 nm and 1550 nm which correspond to the band gap edges which

can be observed in Fig. 4-17. These are the points where the group velocity 𝑣𝑔 passes

through zero as it changes sign. Recall that the CMT predicts that this curve has

the shape 𝒪(𝑣−8
𝑔 ) (from substituting 𝑑 = 2 into 𝒪(𝑣

−2(𝑑+2)
𝑔 )). In light of these large

reflections near or across the band gap, we anticipate that a large improvement can

be achieved by balancing the predicted reflections of size 𝒪(𝑣
−2(𝑑+2)
𝑔 ) with the round-

trip reflections (in a similar way to the balancing of 𝑅t and 𝑅rt for the strip waveguide

in Section 4.1). We expect that such a balancing could lead to a significant reduction

in the transition reflection, however the optimized absorbers would still have to be

much longer than those for wavelengths away from the band gap due to the fact

that reflections from far down the Bragg grating are important in approximating the

infinite Bragg when we are near the band gap.

For Bragg grating applications, typically the entire finite grating is simulated, as

was done at the beginning of this section. Therefore, this difficult behavior of ab-

sorbing layers in periodic media can be avoided. However, there are scenarios, such

as photonic crystals [16], where simulating the propagation of light through infinite

periodic structures is of interest. For analyzing infinite periodic structures, it is nat-

urally more efficient to resort to an eigenvalue formulation of the problem (see, e.g.,

[16]) or exploit the periodic Greem function in IE formulation [144]. Nevertheless, a

case can be made for simulations with adiabatic absorbers when periodic structures

with defects or aperiodic features are to be considered. For such cases, it is inter-

esting to further understand the behavior of these absorbers in the slow-light regime

in order to optimize their performance. Such a study and optimization shall be pre-

sented separately since it is not directly pertinent to the majority of nanophotonics

applications.
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Figure 4-20: The reflection coefficient versus free-space wavelength for an absorber
inside the “infinite” Bragg grating. The adiabatic absorber has a quadratic profile and
length 50 periods (36𝜆𝑖/15𝜆𝑒). Comparing to Fig. 4-17, observe that the reflection
from the absorber is large in and close to the band gap, with the peaks corresponding
to the band gap edges where the group velocity changes sign.

4.3 Y-branch splitter

As the final example, we consider a practical nanophotonics simulation: the propaga-

tion of a guided mode through a Y-branch splitter, depicted in Fig. 4-21. Simulations

are useful tools for optimizing the design of such structures. Indeed, the particular

geometry used here is taken from [145] where numerical simulations are used to create

this low-loss design.

The individual waveguide branches each have (𝑥, 𝑦)-cross section dimensions

(𝑊,𝐷):

𝑊 = 500 nm, 𝐷 = 220 nm, (4.6)
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and the geometry of the junction is described in detail in [145]. The structure is

Figure 4-21: Top view of the layout of a Y-branch splitter with adiabatic absorbers
appended to the waveguide-branch ends. This structure is excited by a Gaussian
beam injected just to the right of the left absorber. A right-propagating mode
is established, is split in half at the junction, and each half propagates along its
respective curved branch.

excited at the left end by a Gaussian beam, establishing a quasi-TE guided mode

in the straight waveguide which is then split at the Y-branch junction. To perform

this simulation, each of the three branches is truncated with an adiabatic absorber.

We choose these absorbers to have quadratic profiles and to be of length 2.2 𝜇m

(5𝜆𝑖/2.1𝜆𝑒). We saw for the strip waveguide that this absorber with 𝑅rt = 10−10

yielded a reflection coefficient of approximately 5× 10−8 (see Fig. 4-10). The square

of the field’s magnitude is shown in Fig. 4-22. Here one can see that small reflections

from the junction are propagating back down the left waveguide. This suggests that

there is still some room for improvement when it comes to optimizing this Y-branch

geometry. Ideally, precisely half of the energy of the incident mode would propagate

down each of the two curved branches, thus requiring no reflection or scattering from

the junction.

It is interesting to look at how effective the adiabatic absorbers are in this simu-
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Figure 4-22: |E|2 for a silicon Y-branch splitter with SiO2 cladding at 1550 nm.

lation. We do this by running the same simulation but now with absorbers of length

8.8𝜇m (≈ 20𝜆𝑖). The field produced by this simulation, E20𝜆𝑖 , is used as the reference

solution to which we compare the field from the 2.2 𝜇m absorber simulation, E5𝜆𝑖 .

The relative difference
|E20𝜆𝑖 − E5𝜆𝑖 |2

max(|E20𝜆𝑖 |)2
(4.7)

is shown in Fig.4-23. This difference is similar to that analyzed previously and can

be attributed to the reflection from the 2.2𝜇m absorbers. We observe the that the

error is largest at the right ends of the curved branches and reaches a maximum

of 5 × 10−6 which is substantially larger than the 5 × 10−8 observed for the strip

waveguide of Section 4.1. This increase is due to the oblique propagation of the

guided waves after having traveled through the bends. In the straight waveguide

of Section 4.1, the waves within the structure are propagating almost perfectly par-

allel to the waveguide walls and hence they enter the absorber at a perpendicular

angle. Such perpendicular incidence leads to the smallest possible reflections at an
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Figure 4-23: Relative difference in solution (|E|2) obtained using absorbers of length
5𝜆 and 20𝜆. This difference can be attributed to the reflection from the 5𝜆-length
absorbers.

interface (as can be seen from the classical Fresnel equations, see, e.g., [146]). In the

Y-branch, after the waves pass through the junction and travel round the bends, it

is to be expected that the waves will now have a traverse propagation component

in addition to dominant longitudinal component. This means that the waves enter-

ing the absorbers appended to the right of the structure are doing so at a slightly

oblique angle, leading to larger reflections. Therefore, when choosing appropriate

length absorbers for bent waveguide structures, one must be cognisant of this effect.

However, in the nanophotonics examples of interest here, where light is channeled by

waveguides, the propagation direction is never too far from perfectly longitudinal,

hence this effect will not lead to catastrophically large reflections from absorbers.
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4.4 Signal-to-Noise ratio

As we observe in the previous section, with different incident angles, the absorber

has different reflection coefficients. Moreover, two beams with equal incidence angle,

but with different bean profiles would be reflected differently, since, e.g., the coupling

coefficient 𝑀 between the incident and reflected modes depends on the field spatial

pattern and affects the transition reflection 𝑅𝑡 (3.21). Furthermore, the reflection

coefficient depends on the frequency of the incident light. As a result, when the

reflection coefficients are mentioned, the incidence angle, frequency of the wave and

the beam profile should also be noted. Hence, a practically more convenient and

comprehensive measure of the effectiveness of the absorber is the signal-to-noise ratio

(SNR), which differentiates the computational wave field from the standard field in

an unbounded channel as a whole. We define the SNR as

SNR = −10 log10

⎛⎜⎝
∑︀
𝑛

(E− Eref)
2

∑︀
𝑛

(Eref)
2

⎞⎟⎠ (4.8)

where 𝑛 is the voxel index which goes through all the voxels inside the waveguide, and

Eref is the reference solution, obtained using the longest absorber. For a given ab-

sorber length and the monomial electric conductivity profile 𝜎𝐸(𝑥) = 𝜎0(𝑥−𝑥0)
𝑑/𝐿𝑑,

where 𝑑 = 0, 1, 2, 3, the round-trip reflection 𝑅rt is defined by 𝜎0 (3.19). Thus, it

would be interesting to study the SNR dependence on 𝜎0, for a given profile and

fixed absorber length. Fig. 4-24 contains the results of evaluating the SNR for the

range of 𝜎0 from 104 to 105 S and absorbers with quadratic profile and lengths from

5𝜆𝑖 to 20𝜆𝑖. The system is excited with 1550 nm free-space wavelengths. To obtain

the reference solution, the absorber of length 𝐿 = 100𝜆𝑖 and quadratic profile was

used. As we can see, the SNR dependence on 𝜎0 is not monotonical. Indeed, for
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Figure 4-24: SNR dependence on 𝜎0 for a given profile and fixed absorber length.

the low values of 𝜎0 the transition between the waveguide and the absorber is very

smooth so the transition reflection is low and the round trip-reflection dominates,

resulting in a decrease of total reflection and increase of the SNR with increasing

integrated absorber loss. Further increasing the 𝜎0 the transition reflection grows

higher and become to prevail, therefore the SNR reaches its maximum and then

starts to decrease. The second observation is that using a longer absorber leads to

better average performance over the range of 𝜎0. However, for the certain lengths

of absorber, e.g., for 𝐿𝑎𝑏𝑠 = 7𝜆𝑖 and 𝐿𝑎𝑏𝑠 = 10𝜆𝑖, the peak SNR is greater that of

the longer absorbers with the same sigma 𝜎0. This sharper peaks may occur due

to destructive interference of the round-trip and the transition reflection, which we

have already encountered when trying to balancing between these two reflections. In

addition, we have investigated the effect of discretization. Fig 4-25 present the SNR
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Figure 4-25: SNR dependence on resolution.

obtained with the absorbers of equal parameters, discretized with 50/3nm and 25nm

voxels. We can observe that the curves for the different resolutions are very close

except the vicinity of the peaks.

Although it is obvious that for each length of the absorber there is a certain

maximum SNR, and discretization, apparently, shifts the maxima only a little, it is

necessary to solve the problem of multi-parameter optimization in order to achieve

maximum performance. Performing such optimization is an interesting task which

we preserve for future work.
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Chapter 5

Discussion

In this chapter, we will discuss the advantages and disadvantages of the proposed

method when applied to the modeling of nanophotonic structures. Moreover, we will

propose the possible alternatives and improvements that could help in diminishing

the drawbacks and can be considered as the directions of future research.

First of all, the staircase error introduced by the uniform grid to achieve the

Toeplitz system matrix and enable the FFT acceleration can be a major limitation

for objects with curved surfaces and thin coatings. Evidently, a discretization with

tetrahedra could be more efficient in a sense that with the same average size of the

element it is able to approximate the structures with non-planar surfaces or complex

geometries more accurately. Moreover, there are several FFT-based methods with

𝒪(𝑁 log𝑁) complexity, which are able to speed-up the VIE discretized on irregular

meshes. We would like to note that right-angled photonics structures such as waveg-

uide channels or gratings, which are considered this thesis, can be fairly represented

by voxels with much less number of discretization elements than it would be with

tetrahedra. Nonetheless, the concept of the adiabatic absorber is not restricted to
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regular meshes. Furthermore, one of the key features of the proposed VIE method is

the reduction from 6D volume-volume to 4D surface-surface integrals. This reduction

technique is also not restricted to a specific discretization scheme, namely, the sup-

port of the basis/testing functions could vary from voxels to general polyhedra. We

can conclude that the proposed algorithms can be extended to irregular geometries

without the lost of their fast nature.

Next, it is worse mention again, that nanophotonic devices are typically com-

posed of piecewise homogeneous regions. Indeed, in all the examples considered in

this thesis, the only inhomogeneous regions are the absorbers, which are in most

cases occupy a relatively small part of the computational domain, and the other

regions, e.g. the core of the waveguide, are homogeneous. Therefore, the memory

requirements and computational complexity can be reduced significantly by utiliz-

ing the surface integral equation formulation for large homogeneous regions, and use

VIE formulation for the absorbers regions only. Such hybrid volume-surface integral

equation formulation is typically used for the numerical studies of electromagnetic

scattering from the composite conducting-dielectric objects, where the volume inte-

gral equation is applied to the inhomogeneous lossy or lossless dielectric region, and

the surface integral equation is applied on the surfaces of perfectly conductive objects

(or to the open or closed perfectly conductive surfaces) [77, 78, 79]. Nonetheless, it

can be easily reformulated for our case of the combination of homogeneous dielectric

regions and inhomogeneous ones. Moreover, this approach together with domain

decomposition [147] could be very useful in the modeling of combinations of several

different nanophotonic devices, e.g., ring resonator and waveguides. With this ap-

proach, for each subdomain, the individual IE formulation (VIE, SIE or VSIE for

composite domains) and discretization can be chosen according to its shape, material

properties and the fraction of homogeneity. This would make the method computa-
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tionally efficient for the modeling of large complex systems and give more flexibility

in the representation of the geometry of the devices.

Finally, we have mentioned that in some cases optimization of the absorber’s

parameters could further reduce the reflections, and there are several possible di-

rections of improvement, such as balancing the round-trip and transition reflection,

finding less-reflective conductivity profile function than monomial, etc. As we have

mentioned in Section 4.4, for practical purposes, an optimization of the absorber for

all problem parameters such as wavelength, refractive index, period and corrugation

width of the grating, should be performed. At this stage, the turn of machine learn-

ing techniques [148, 149], which are capable to obtain a compact representation of

multi-parameter design space revealing the relationship between different design pa-

rameters, naturally comes. Exploiting the machine learning techniques would enable

a fast optimization of the absorber’s parameters, allow making informed decisions

based on the relative priorities of different performance metrics (e.g., reflection level

and computational time, both depending on the length of the absorber), and fur-

thermore, could provide new insights about the absorber’s behavior in a challenging

slow-light regime when the periodic structure is excited near the band edge.
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Chapter 6

Conclusions

Integral equation methods are traditionally used to simulate the scattering of waves

from finite obstacles. However, when the obstacle is infinite in extent, such as

nanophotonic waveguide structures, something must be done to truncate the do-

main in order to make the simulation feasible and minimize spurious reflections. In

this thesis, we presented and analyzed one such truncation approach, namely the

introduction of adiabatic absorbing regions. The novelty of this thesis lies in the

application of adiabatic absorbers within the VIE method. In particular, we em-

ploy a VIE formulation that allows these absorbers to be introduced in a simple and

straightforward manner which importantly does not affect the “fast” nature of the

solver, thereby enabling rapid nanophotonics simulations. Moreover, we have devel-

oped the new fully numerical method for evaluation of the singular integrals over

quadrilateral elements, arising in the calculation of Galerkin inner products, associ-

ated with the integral operators. We demonstrate via various numerical experiments

the performance of the proposed algorithms in terms of accuracy and computational

efficiency. The presented method, dubbed DIRECTFN-quad, is applicable to evalu-
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ation the weakly and strongly singular integrals over arbitrary planar, bilinear and

curvilinear quadrilaterals without modification of algorithms.

We have outlined the application of the VIE method and the appropriate im-

plementation of monomial adiabatic absorbers within the VIE setting, and derived

the asymptotic relations for the reflection coefficients. We have examined the perfor-

mance of adiabatic absorbers in three examples: a straight dielectric strip waveguide,

a Bragg grating, and a Y-branch splitter. We have shown that the behavior of the re-

flections from adiabatic absorbers is in keeping with the asymptotic results from the

coupled-mode theory. In particular, the transition reflections decay as 𝒪(𝐿−2(𝑑+1)),

where 𝐿 is the length of the absorber and 𝑑 the degree of the monomial absorption

profile.

Next, we have compared the results of our simulation of light propagation inside

the silicon strip waveguide, which is a very common structure in practical appli-

cations, with the first TE mode profile, obtained using COMSOL Multiphysics R○

software, and demonstrated that the results are in a good agreement.

In Section 4.2, we performed simulations for a practical problem arising in pho-

tonics applications, namely the broadband simulation of the transmission through a

Bragg grating. It was seen that, if the Bragg grating is simulated in its entirety and

is truncated on the straight portions by adiabatic absorbers, accurate simulations

result with short absorbers (approximately 5𝜆𝑖/2.1𝜆𝑒 long).

We further analyzed how the effectiveness of adiabatic absorbers depends on

the group velocity within a periodic structure. We truncated a Bragg grating in

its region of periodic modulation and demonstrated that, in such cases, adiabatic

absorbers can perform well when the system is excited away from the band-gap edge.

However, near the band gap when the group velocity approaches zero, extremely long

absorbers are required to reduce transition reflections. Again, this is in keeping with
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asymptotic results from coupled-mode theory. In the nanophotonics applications

of interest here, where devices are to be simulated in their entirety, one is unlikely

to truncate a periodic structure with an absorber within the region of modulation.

Moreover, a more natural approach of analyzing infinite periodic structures is to

resolve an eigenvalue problem, or, within the context of IE methods, to exploit the

periodic Green function). Nevertheless, a case can be made for simulations with

adiabatic absorbers when periodic structures with defects or aperiodic features are

to be considered. That being said, there is a great deal of room for the optimization

of adiabatic absorbers in these slow-light scenarios. Such optimization requires a

careful study of the slow-light behavior and is left for future work.

The final structure we simulated was the Y-branch splitter. We saw that, with

quadratic absorbers of length 5𝜆𝑖/2.1𝜆𝑒, the reflections from the absorbers were neg-

ligible when compared to the total field. This was even in spite of the slightly

larger than anticipated reflections from the right-hand absorbers where the propa-

gating waves had picked up a small transverse component due to traveling round

the waveguide bends. When the waves enter the absorbers with off-perpendicular

incidence, the reflections are increased. However, in nanophotonics structures, this

transverse component will always be small, therefore, the increase in reflection will

not be too large.

In addition, we have introduced the Signal-to-Noice ratio as an alternative mea-

sure of absorber performance and investigated its dependence on the absorption rate

with the fixed length of the absorber.

Overall, we observe that the proposed adiabatic absorber performs extremely well

in the VIE setting when terminating uniform unbounded structures, and show the

difficulties arising when terminating periodic ones.

In addition, in Section 2.7 we presented some results pertaining to the iterative
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solution of the VIE’s discrete system. For high-frequency problems (as encountered

in photonics), the number of iterations required for an iterative solver to converge

is large, regardless of the numerical method employed (e.g., finite difference, finite

element, integral equation). Therefore, all numerical methods require effective pre-

conditioners in order to make their application efficient. When the VIE (2.13) is

discretized on a uniform grid, the resulting matrix in the discrete system has a

three-level block-Toeplitz form. An effective preconditioner for this matrix can be

obtained by making a circulant approximation on one or more levels of this Toeplitz

matrix. The results showed that such a preconditioner is extremely effective and

renders the number of iterations small and independent of the structure’s length.

Although constructing and inverting the preconditioner takes time comparable to

that of the iterative solution of the preconditioned system, the total time appears to

be several times less, than the solution of the unpreconditioned one.

We can conclude that the presented VIE method together with appropriate pre-

conditioning is an effective and fast simulation tool for the modeling of nanophotonic

devices, although there is still great room for improvement. Nonetheless, the existing

limitations of the presented method open the directions for future research.

As we have mentioned in the Discussion chapter, the concept of adiabatic absorber

in IE formulation is not restricted to uniform discretization. Moreover, one of the

key features of the proposed VIE solver is the reduction technique from 6D volume-

volume to surface-surface integrals, which is also not restricted to specific support

of the basis/testing functions. Finally, there are plenty of FFT-based acceleration

methods with 𝒪(𝑁 log𝑁) complexity, which can work with irregular meshes [49, 50,

52, 53, 56, 57]. Taking into account all of the above, we come to the conclusion that

the proposed method can be extended to irregular grids while maintaining its fast

nature. It would be helpful in the cases when the adequate representation of the
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geometry is not feasible using the voxelized grid.

Another promising direction of future work is the hybridization of the proposed

VIE method with the SIE formulations. Within the VSIE formulations [77, 78, 79],

for inhomogeneous regions such as absorbers, the VIE formulation is used, whereas

homogeneous regions such as dielectric waveguides and/or metallic surfaces are han-

dled using the SIE formulations. This leads to a substantial reduction in memory

requirements and computational complexity. By further enhancement of this ap-

proach with the domain decomposition method [147], modeling of large complex

systems consisting of many devices become computationally efficient.

Next, exploiting the machine learning techniques [148, 149] would enable a fast

optimization of the absorber for all range of input parameters such as wavelength,

refractive index, period and corrugation width. This would allow making informed

decisions about the particular choice of the absorber parameters based on the relative

priorities of different performance metrics (e.g., reflection level and computational

time, both depending on the length of the absorber), and furthermore, could provide

new insights of how to improve the absorber’s performance in a challenging slow-light

regime when the periodic structure is excited near the band edge.
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Appendix A

Numerical Tests of DIRECTFN-quad

In this thesis, we have introduced the novel fully numerical method for evalua-

tion of weakly and strongly singular integrals over quadrilateral elements, dubbed

DIRECFTN-quad. As we have already mentioned, the proposed algorithm can be

applied without modification to the cases with basis functions of any order, as well

as for integration over non-squared and curvilinear elements. Here we demonstrate

this via numerical examples. Firstly, we investigate the robustness of the proposed

scheme to the quality factor of the elements. Next, we provide an example with first-

order vector basis functions [126, 117]. Finally, we consider the case of curvilinear

elements.

A.1 Sensitivity to the quality factor of the elements

Here we present some additional results in order to investigate the sensitivity of the

proposed method to the mesh quality, i.e. various levels of skewness of elongated
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Figure A-1: Relative error in computing the weakly singular integrals (2.123) over
coincident elongated quadrilaterals as a function of the order of the 1-D Gaussian
quadrature.

quadrilaterals, where skewness is defined by

𝑠 = max

[︂
𝜃𝑚𝑎𝑥 − 𝜋/2

𝜋/2
,
𝜋/2 − 𝜃𝑚𝑖𝑛

𝜋/2

]︂
. (A.1)

As shown in Fig. A-1, the proposed method becomes less efficient and require more

integration points for more elongated elements. Indeed, the natural drawback of

the methods involving such coordinate transformation, e.g. the original DIRECTFN

for triangles, is that they quickly become much less efficient as skewness increases
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to very high values. However, the standard mesh generation tools used for real-life

applications, are likely to exclude such poorly-shaped elements.

A.2 Weakly and strongly singular integrals with vec-

tor basis functions

In the next set of experiments, the following weakly and strongly singular integrals

are computed:

𝐼WS
𝑚,𝑛 =

∫︁
𝐸𝑃

f𝑚(r) ·
∫︁
𝐸𝑄

𝐺(r, r′) · f ′𝑛(r′)𝑑𝑆 ′𝑑𝑆, (A.2)

𝐼SS𝑚,𝑛 =

∫︁
𝐸𝑃

f𝑚(r) ·
∫︁
𝐸𝑄

(∇𝐺(r, r′) × f ′𝑛(r′))𝑑𝑆 ′𝑑𝑆, (A.3)

where 𝐸𝑃 and 𝐸𝑄 are observation and source quadrilateral elements, respectively.

Here f𝑚(r) and f𝑛(r′), (𝑚,𝑛 = 1, 2, 3, 4) are first-order vector basis functions [126,

117]. Again, we consider the three singular integrals with coincident, edge adjacent

and vertex adjacent patches. All patches are squared with edge-length equal to

𝑑 = 0.1𝜆. The choice of the order of the quadrature rule for the associated 1-D

integrals used in the previous example is by no means optimal. Hence, this time we

vary the order of the integration rule for each one of the 1-D integrals while keeping

the other three fixed and equal to 𝑁 = 20. The reference values are obtained by

using a high number of integration points for all four one-dimensional integrations,

i.e., 𝑁1 = 𝑁2 = 𝑁3 = 𝑁4 = 20. Finally, we evaluate the maximum relative error,

defined as

𝜀𝑚𝑎𝑥 = max
𝑚,𝑛=1,2,3,4

𝜀𝑚,𝑛, (A.4)
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where

𝜀𝑚,𝑛 =

⃦⃦⃦⃦
⃦‖𝐼𝑚,𝑛 − 𝐼ref𝑚,𝑛‖2

‖𝐼ref𝑚,𝑛‖2
+ 𝜖

⃦⃦⃦⃦
⃦
2

. (A.5)

One can easily conclude by inspecting the results in Figs. A-2–A-4, that the 1-

D integrals that can be in principle evaluated analytically (in the case of simple

geometries), e.g., integration over Λ in all the cases, require fewer integration points

for the specified accuracy.
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Figure A-2: Relative error in computing the weakly singular integrals (A.2) over

coincident squares as a function of the order of the 1-D Gaussian quadrature.

Hence, the efficiency of DIRECTFN-quad can be significantly improved by a
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judicious choice of integration orders for the different 1-D integrals. The optimal

choice of the various integration orders is left for future work.
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Figure A-3: Relative error in computing the strongly singular integrals (A.3) over

edge-adjacent squares as a function of the order of the 1-D Gaussian quadrature.

A.3 Singular integrals over quadratic curvilinear quadri-

laterals

In the last set of experiments the case of quadratic curvilinear elements, i.e. 9-node

generalized quadrilaterals, is presented. The only difference from the algorithm for
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planar elements is in the surface parametrization: equation (2.46) should be replaced

by

r(𝑢, 𝑣) =
3∑︁
𝑖=1

3∑︁
𝑗=1

𝐿2
𝑖 (𝑢)𝐿2

𝑗(𝑣)r𝑖𝑗, (A.6)

where 𝐿2
𝑖 (𝑢) and 𝐿2

𝑗(𝑣) are Lagrange interpolation polynomials of second order and

r𝑖𝑗 are position vectors of the interpolation nodes [114].
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Figure A-4: Relative error in computing the strongly singular integrals (A.3) over

vertex-adjacent squares as a function of the order of the 1-D Gaussian quadrature.

The weakly singular integrals (A.2) are computed for 𝐸𝑃 ≡ 𝐸𝑄 ≡ 𝑄1, correspond-

ing to ST case, and strongly singular integrals (A.3) are computed for 𝐸𝑃 ≡ 𝑄1,
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𝐸𝑄 ≡ 𝑄2, 𝑄3, corresponding to EA and VA cases, respectively.
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Figure A-5: Relative error in computing the weakly and strongly singular integrals

over quadratic curvilinear elements as a function of the order of the 1-D Gaussian

quadrature

The geometrical details of the curvilinear elements can be found in [125]. As

illustrated in Fig. A-5, the fully numerical method presented herein can successfully

handle the weakly and strongly singular integrals arising in Galerkin SIE formulations

over curvilinear quadrilateral elements, without the need of modifying the main

algorithms.

148



Bibliography

[1] Richard Soref. The Past, Present, and Future of Silicon Photonics. IEEE J.

Sel. Top. Quantum Electron., 12(6):1678–1687, 2006.

[2] Graham T. Reed, editor. Silicon Photonics: The State of the Art. Wiley,

Chichester, UK, 2008.

[3] Leonid Khriachtchev. Silicon Nanophotonics: Basic Principles, Present Status,

and Perspectives. Jenny Stanford Publishing, 2nd edition, 2016.

[4] A. Biberman, S. Manipatruni, N. Ophir, L. Chen, M. Lipson, and K. Bergman.

First demonstration of long-haul transmission using silicon microring modula-

tors. Optics Express, 18:15544, July 2010.

[5] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson. All-optical

control of light on a silicon chip. Nature, 431:1081–1084, 2004.

[6] J. K. Doylend and A. P. Knights. The evolution of silicon photonics as an

enabling technology for optical interconnection. Laser Photon. Rev., 6(4):504–

525, 2012.

[7] Po Dong, Young Kai Chen, Guang Hua Duan, and David T. Neilson. Silicon

photonic devices and integrated circuits. Nanophotonics, 3(4-5):215–228, 2014.

149



[8] Lukas Chrostowski, Samantha Grist, Jonas Flueckiger, Wei Shi, Xu Wang,

Eric Ouellet, Han Yun, Mitch Webb, Ben Nie, Zhen Liang, Karen C. Cheung,

Shon A. Schmidt, Daniel M. Ratner, and Nicolas A. F. Jaeger. Silicon photonic

resonator sensors and devices. volume 8236, page 823620. International Society

for Optics and Photonics, 2012.

[9] N. A. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, Z. Hens, and

R. Baets. Integrated Optical Gas Sensors on Silicon-on-Insulator Platform. In

Integr. Photonics Res. Silicon Nanophotonics Photonics Switch., page JTuB17,

Washington, D.C., 2010. OSA.

[10] M. Lipson. Guiding, Modulating, and Emitting Light on Silicon-Challenges

and Opportunities. Journal of Lightwave Technology, 23:4222, 2005.

[11] Sahba Talebi Fard, Samantha M. Grist, Valentina Donzella, Shon A. Schmidt,

Jonas Flueckiger, Xu Wang, Wei Shi, Andrew Millspaugh, Mitchell Webb,

Daniel M. Ratner, Karen C. Cheung, and Lukas Chrostowski. Label-free sil-

icon photonic biosensors for use in clinical diagnostics. In Joel Kubby and

Graham T. Reed, editors, Silicon Photonics VIII, volume 8629, page 862909.

International Society for Optics and Photonics, 2013.

[12] Valentina Donzella, Ahmed Sherwali, Jonas Flueckiger, Samantha M. Grist,

Sahba Talebi Fard, and Lukas Chrostowski. Design and fabrication of SOI

micro-ring resonators based on sub-wavelength grating waveguides. Opt. Ex-

press, 23(4):4791, 2015.

[13] I-Wei Hsieh, Xiaogang Chen, Jerry I. Dadap, Nicolae C. Panoiu, Richard M.

Osgood, Sharee J. McNab, and Yurii A. Vlasov. Ultrafast-pulse self-phase

150



modulation and third-order dispersion in Si photonic wire-waveguides. Opt.

Express, 14(25):12380, 2006.

[14] Jidong Zhang, Qiang Lin, Giovanni Piredda, Robert W. Boyd, Govind P.

Agrawal, and Philippe M. Fauchet. Optical solitons in a silicon waveguide.

Opt. Express, 15(12):7682, 2007.

[15] W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V.

Skryabin, M. Gnan, M. Sorrel, and R. M. De La Rue. Solitons and spec-

tral broadening in long silicon-on- insulator photonic wires. Opt. Express,

16(5):3310, 2008.

[16] John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert D.

Meade. Photonic Crystals: Molding the Flow of Light. Princeton University

Press, 2011.

[17] Youg Xu, Reginald K. Lee, and Amnon Yariv. Propagation and second-

harmonic generation of electromagnetic waves in a coupled-resonator optical

waveguide. J. Opt. Soc. Am. B, 17(3):387, 2000.

[18] Marin Soljačić, Steven G. Johnson, Shanhui Fan, Mihai Ibanescu, Erich Ippen,

and J. D. Joannopoulos. Photonic-crystal slow-light enhancement of nonlinear

phase sensitivity. J. Opt. Soc. Am. B, 19(9):2052, 2002.

[19] Hatice Altug and Jelena Vučković. Experimental demonstration of the slow

group velocity of light in two-dimensional coupled photonic crystal microcavity

arrays. Appl. Phys. Lett., 86(11):111102, 2005.

[20] M. L. Povinelli, Steven G. Johnson, and J. D. Joannopoulos. Opt. Express.

151



[21] R. Ramaswami, K.N. Sivarajan, and Galen H. Sasaki. Optical Networks: A

Practical Perspective. Morgan Kaufmann, 3rd edition.

[22] A. Yu. Petrov and M. Eich. Zero dispersion at small group velocities in photonic

crystal waveguides. Appl. Phys. Lett., 85(21):4866–4868, 2004.

[23] Daisuke Mori and Toshihiko Baba. Wideband and low dispersion slow light by

chirped photonic crystal coupled waveguide. Opt. Express, 13(23):9398, nov

2005.

[24] Shousaku Kubo, Daisuke Mori, and Toshihiko Baba. Low-group-velocity

and low-dispersion slow light in photonic crystal waveguides. Opt. Lett.,

32(20):2981, 2007.

[25] Daisuke Mori, Shousaku Kubo, Hirokazu Sasaki, and Toshihiko Baba. Ex-

perimental demonstration of wideband dispersion-compensated slow light by a

chirped photonic crystal directional coupler. Opt. Express, 15(9):5264, 2007.

[26] Lukas Chrostowski and Michael Hochberg. Silicon photonics design: from

devices to systems. Cambridge University Press, 2015.

[27] Pieter Dumon, Gino Priem, Luis Romeu Nunes, Wim Bogaerts, Dries Van

Thourhout, Peter Bienstman, Tak Keung Liang, Masahiro Tsuchiya, Patrick

Jaenen, Stephan Beckx, Johan Wouters, and Roel Baets. Linear and nonlinear

nanophotonic devices based on silicon-on-insulator wire waveguides. Japanese

Journal of Applied Physics, 45(8B):6589–6602, August 2006.

[28] Dong Ho Lee, Sung Joong Choo, Uiseok Jung, Kyung Woon Lee, Kwang Woong

Kim, and Jung Ho Park. Low-loss silicon waveguides with sidewall roughness

152



reduction using a SiO2 hard mask and fluorine-based dry etching. Journal of

Micromechanics and Microengineering, 25(1):015003, 2014.

[29] A. G. Polimeridis, J. Fernández Villena, L. Daniel, and J. K. White. Stable

FFT-JVIE solvers for fast analysis of highly inhomogeneous dielectric objects.

Journal of Computational Physics, 269:280–296, 2014.

[30] John Volakis. Integral equation methods for electromagnetics. The Institution

of Engineering and Technology, 2012.

[31] J Jin. Finite Element Method in Electromagnetics. Wiley, 2002.

[32] A. Taflove and S. C. Hagness. Computational Electrodynamics: The Finite-

Difference Time-Domain Method. Norwood, MA: Artech House, 2000.

[33] Ming Fang, Zhi Xiang Huang, Wei E.I. Sha, Xiaoyan Y.Z. Xiong, and

Xian Liang Wu. Full hydrodynamic model of nonlinear electromagnetic re-

sponse in metallic metamaterials. Prog. Electromagn. Res., 157:63–78, 2016.

[34] Lumerical. https://www.lumerical.com/.

[35] FullWAVETM . https://www.synopsys.com/optical-solutions/rsoft/

passive-device-fullwave.html.

[36] Jean-Pierre Berenger. A perfectly matched layer for the absorption of electro-

magnetic waves. Journal of computational physics, 114(2):185–200, 1994.

[37] Weng Cho Chew, Mei Song Tong, and Bin Hu. Integral equation methods

for electromagnetic and elastic waves. Synthesis Lectures on Computational

Electromagnetics, 3(1):1–241, 2008.

153

https://www.lumerical.com/
https://www.synopsys.com/optical-solutions/rsoft/passive-device-fullwave.html
https://www.synopsys.com/optical-solutions/rsoft/passive-device-fullwave.html


[38] R. F. Harrington. Field computation by moment methods. New York: Macmil-

lan, FL, Krieger, 1983.

[39] Jiming Song. Multilevel fast multipole algorithm for electromagnetic scattering

by large complex objects. IEEE Trans. Antennas Propag., 45(10):1488–1493,

1997.

[40] X.Q. Sheng, J.-M. Jin, J. Song, W.C. Chew, and C.-C. Lu. Solution of

combined-field integral equation using multilevel fast multipole algorithm

for scattering by homogeneous bodies. IEEE Trans. Antennas Propag.,

46(11):1718–1726, 1998.

[41] Kubilay Sertel and John L. Volakis. Multilevel fast multipole method solu-

tion of volume integral equations using parametric geometry modeling. IEEE

Transactions on Antennas and Propagation, 52(7):1686–1692, 2004.

[42] Cai Cheng Lu and Chun Yu. Simulation of radiation and scattering by large

microstrip patch arrays on curved substrate by a fast algorithm. In ICMMT

2002 - 2002 3rd Int. Conf. Microw. Millim. Wave Technol., pages 401–405.

Institute of Electrical and Electronics Engineers Inc., 2002.

[43] Özgür Ergül, Tahir Malas, and Levent Gürel. Analysis of dielectric photonic-

crystal problems with MLFMA and Schur-complement preconditioners. J.

Light. Technol., 29(6):888–897, 2011.

[44] Özgür Ergül. Solutions of large-scale electromagnetics problems involving di-

electric objects with the parallel multilevel fast multipole algorithm. J. Opt.

Soc. Am. A, 28(11):2261, nov 2011.

154



[45] T. Sarkar, Ercument Arvas, and S. Rao. Application of FFT and the conjugate

gradient method for the solution of electromagnetic radiation from electrically

large and small conducting bodies. IEEE Transactions on Antennas and Prop-

agation, 34(5):635–640, 1986.

[46] M.F. Catedra, E. Gago, and L. Nuno. A numerical scheme to obtain the RCS of

three-dimensional bodies of resonant size using the conjugate gradient method

and the fast Fourier transform. IEEE Trans. Antennas Propag., 37(5):528–537,

1989.

[47] P. Zwamborn and P.M. van den Berg. The three dimensional weak form of the

conjugate gradient FFT method for solving scattering problems. IEEE Trans.

Microw. Theory Tech., 40(9):1757–1766, 1992.

[48] Seung M. Seo and Jin F. Lee. A fast IE-FFT algorithm for solving PEC

scattering problems. In IEEE Trans. Magn., volume 41, pages 1476–1479, may

2005.

[49] Nilufer A. Ozdemir and Jin Fa Lee. IE-FFT algorithm for a nonconformal

volume integral equation for electromagnetic scattering from dielectric objects.

IEEE Trans. Magn., 44(6):1398–1401, jun 2008.

[50] Jiliang Yin, Jun Hu, Han Guo, and Zaiping Nie. Fast analysis of 3D inhomoge-

neous dielectric objects using IE-FFT. In APMC 2009 - Asia Pacific Microw.

Conf. 2009, pages 84–87, 2009.

[51] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz. AIM: Adaptive integral

method for solving large-scale electromagnetic scattering and radiation prob-

lems. North, 31(5):1225–1251, 1996.

155



[52] Zhong Qing Zhang and Qing Huo Liu. A Volume Adaptive Integral Method

(VAIM) for 3-D inhomogeneous objects. IEEE Antennas Wirel. Propag. Lett.,

1:102–105, 2002.

[53] Jing-Li Guo, Jian-Ying Li, and Qi-Zhong Liu. Analysis of arbitrarily shaped

dielectric radomes using adaptive integral method based on volume integral

equation. IEEE Trans. Antennas Propag., 54(7):1910–1916, jul 2006.

[54] Joel R. Phillips and Jacob K. White. A Precorrected-FFT method for elec-

trostatic analysis of complicated 3-d structures. IEEE Trans. Comput. Des.

Integr. Circuits Syst., 16(10):1059–1072, 1997.

[55] L.-W Li, Y.-J Wang, and E.-P Li. MPI-BASED PARALLELIZED PRECOR-

RECTED FFT ALGORITHM FOR ANALYZING SCATTERING BY ARBI-

TRARILY SHAPED THREE-DIMENSIONAL OBJECTS. Technical report,

2003.

[56] Xiao Chun Nie, Le Wei Li, Ning Yuan, Tat Soon Yeo, and Yeow Beng Gan.

Precorrected-FFT solution of the volume integral equation for 3-D inhomoge-

neous dielectric objects. IEEE Trans. Antennas Propag., 53(1 II):313–320, jan

2005.

[57] Xiao Chun Nie, Ning Yuan, Le Wei Li, Yeow Beng Gan, and Tat Soon Yeo.

A fast combined field volume integral equation solution to EM scattering by

3-D dielectric objects of arbitrary permittivity and permeability. IEEE Trans.

Antennas Propag., 54(3):961–969, mar 2006.

156



[58] Jia Ye Xie, Hou Xing Zhou, Wei Hong, Wei Dong Li, and Guang Hua. A novel

FG-FFT method for the EFIE. In 2012 Int. Conf. Comput. Probl. ICCP 2012,

pages 111–115, 2012.

[59] Jia Ye Xie, Hou Xing Zhou, Wei Hong, Wei Dong Li, and Guang Hua. A highly

accurate FGG-FG-FFT for the combined field integral equation. IEEE Trans.

Antennas Propag., 61(9):4641–4652, 2013.

[60] Shu Wen Chen, Hou Xing Zhou, Wei Hong, and Jia Ye Xie. VIE-FG-FFT for

analyzing em scattering from inhomogeneous nonmagnetic dielectric objects.

Int. J. Antennas Propag., 2014, 2014.

[61] G. W. Hanson, A. I. Nosich, and E. M. Kartchevski. Green’s function ex-

pansions in dyadic root functions for shielded layered waveguides. Progress In

Electromagnetics Research, 39:61–91, 2003.

[62] Mohammad Kamandi, Reza Faraji-Dana, et al. Integral equation analysis of

multilayered waveguide bends using complex images Green’s function tech-

nique. Journal of Lightwave Technology, 33(9):1774–1779, 2015.

[63] Oscar P. Bruno, Emmanuel Garza, and Carlos Pérez-Arancibia. Windowed

Green Function Method for Nonuniform Open-Waveguide Problems. IEEE

Transactions on Antennas and Propagation, 65:4684–4692, 2017.

[64] Ardavan F. Oskooi, Lei Zhang, Yehuda Avniel, and Steven G. Johnson. The

failure of perfectly matched layers, and towards their redemption by adiabatic

absorbers. Optics Express, 16(15):11376–11392, 2008.

157



[65] J.-P. Bérenger. Evanescent waves in PML’s: Origin of the numerical reflection

in wave-structure interaction problems. IEEE Transactions on Antennas and

Propagation, 47:1497 – 1503, 11 1999.

[66] J.-P. Bérenger. An effective PML for the absorption of evanescent waves in

waveguides. IEEE Microwave and Guided Wave Letters, 8:188 – 190, 06 1998.

[67] J.-P. Bérenger. Application of the CFS PML to the absorption of evanes-

cent waves in waveguides. IEEE Microwave and Wireless Components Letters,

12:218–220, 2002.

[68] Erwin J. Alles and Koen W. A. van Dongen. Perfectly matched layers for

frequency-domain integral equation acoustic scattering problems. IEEE trans-

actions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(5):1077–1086,

2011.

[69] Lei Zhang, Jung Hoon Lee, Ardavan Oskooi, Amit Hochman, Jacob K White,

and Steven G Johnson. A novel boundary element method using surface con-

ductive absorbers for full-wave analysis of 3-d nanophotonics. Journal of Light-

wave Technology, 29(7):949–959, 2011.

[70] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, Garnett W. Bryant, and

F. J. García de Abajo. Optical Properties of Gold Nanorings. Phys. Rev. Lett.,

90(5):4, 2003.

[71] F. J. García de Abajo and A. Howie. Retarded field calculation of electron

energy loss in inhomogeneous dielectrics. Phys. Rev. B - Condens. Matter

Mater. Phys., 65(11):1154181–11541817, mar 2002.

158



[72] Guy A E Vandenbosch, V. Volski, Francisco P G De Arquer, Niels Verellen,

and Victor Moshchalkov. On the use of the method of moments in plasmonic

applications. Symp. Dig. - 20th URSI Int. Symp. Electromagn. Theory, EMTS

2010, 46(November 2010):257–260, 2010.

[73] Andreas M. Kern and Olivier J. F. Martin. Surface integral formulation for 3D

simulations of plasmonic and high permittivity nanostructures. J. Opt. Soc.

Am. A, 26(4):732, apr 2009.

[74] M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and

F. Obelleiro. Comparison of surface integral equation formulations for elec-

tromagnetic analysis of plasmonic nanoscatterers. Opt. Express, 20(8):9161,

apr 2012.

[75] M. Costabel, E. Darrigrand, and E. H. Kon. Volume and surface integral

equations for electromagnetic scattering by a dielectric body. J. Comput. Appl.

Math., 234(6):1817–1825, 2010.

[76] J. Markkanen, P. Yla-Oijala, and Seppo Jarvenpaa. Volume integral equation

methods in computational electromagnetics. Proc. 2013 Int. Conf. Electro-

magn. Adv. Appl. ICEAA 2013, I:880–883, 2013.

[77] Tapan K. Sarkar and Ercument Arvas. An Integral Equation Approach to the

Analysis of Finite Microstrip Antennas: Volume/Surface Formulation. IEEE

Trans. Antennas Propag., 38(3):305–312, 1990.

[78] C. C. Lu and W. C. Chew. A coupled surface-volume integral equation ap-

proach for the calculation of electromagnetic scattering from composite metallic

and material targets. IEEE Trans. Antennas Propag., 48(12):1866–1868, 2000.

159



[79] Xiao-Chun Nie, Ning Yuan, L.-W. Li, Y.-B. Gan, and Tat Soon Yeo. A

fast volume-surface integral equation solver for scattering from composite

conducting-dielectric objects. IEEE Trans. Antennas Propag., 53(2):818–824,

feb 2005.

[80] D. Schaubert, D. Wilton, and A. Glisson. A tetrahedral modeling method

for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric

bodies. IEEE Trans. Antennas Propag., 32(1):77–85, 1984.

[81] Peter Zwamborn and Peter M. van den Berg. The Three-Dimensional Weak

Form of the Conjugate Gradient FFT Method for Solving Scattering Problems.

IEEE Trans. Microw. Theory Tech., 40:1757–1766, apr 1992.

[82] Peter Zwamborn and Peter M. van den Berg. Computation of electromagnetic

fields inside strongly inhomogeneous objects by the weak-conjugate-gradient

fast-Fourier-transform method. J. Opt. Soc. Am. A, 11:1414–1421, apr 1994.

[83] M. C. van Beurden and S. J. L. van Eijndhoven. Gaps in present discretization

schemes for domain integral equations. In 2007 Int. Conf. Electromagn. Adv.

Appl., pages 673–675. IEEE, sep 2007.

[84] M. C. van Beurden and S. J. L. van Eijndhoven. Well-posedness of domain

integral equations for a dielectric object in homogeneous background. Journal

of Engineering Mathematics, 62(3):289–302, 2008.

[85] Johannes Markkanen, Pasi Yla-Oijala, and Ari Sihvola. Discretization of vol-

ume integral equation formulations for extremely anisotropic materials. IEEE

Transactions on Antennas and Propagation, 60(11):5195–5202, 2012.

160



[86] P. De Doncker. A potential integral equations method for electromagnetic

scattering by penetrable bodies. IEEE Trans. Antennas Propag., 49(7):1037–

1042, jul 2001.

[87] Ruinan Chang and Vitaliy Lomakin. Potential-based volume integral equa-

tions. In IEEE Antennas Propag. Soc. AP-S Int. Symp., pages 2712–2715,

2011.

[88] Johannes Markkanen and Pasi Ylä-Oijala. Numerical comparison of spectral

properties of volume-integral-equation formulations. J. Quant. Spectrosc. Ra-

diat. Transf., 178:269–275, 2016.

[89] Johannes Markkanen. Volume potential-integral-equation formulation for elec-

tromagnetic scattering by dielectric objects. 2016 URSI Int. Symp. Electro-

magn. Theory, EMTS 2016, (7):468–471, 2016.

[90] Johannes Markkanen. Numerical Analysis of the Potential Formulation of

the Volume Integral Equation for Electromagnetic Scattering. Radio Sci.,

52(10):1301–1311, oct 2017.

[91] D.T. Borup and O.P. Gandhi. Fast-Fourier-Transform Method for Calculation

of SAR Distributions in Finely Discretized Inhomogeneous Models of Biological

Bodies. IEEE Trans. Microw. Theory Tech., 32(4):355–360, apr 1984.

[92] C.Y. Shen, K.J. Glover, M.I. Sancer, and A.D. Varvatsis. The discrete Fourier

transform method of solving differential-integral equations in scattering theory.

IEEE Trans. Antennas Propag., 37(8):1032–1041, 1989.

161



[93] H. Gan and W.C. Chew. A discrete bcg-fft algorithm for solving 3d inhomoge-

neous scatterer problems. Journal of Electromagnetic Waves and Applications,

9(10):1339–1357, 1995.

[94] A. G. Polimeridis, J. F. Villena, L. Daniel, and J. K. White. Robust J-EFVIE

solvers based on purely surface integrals. 2013 International Conference on

Electromagnetics in Advanced Applications, ICEAA’13, pages 379–381, 2013.

[95] D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak,

and C. M. Butler. Potential integrals for uniform and linear source distributions

on polygonal and polyhedral domains. 32(3):276–281, March 1984.

[96] P. Ylä-Oijala and M. Taskinen. Calculation of CFIE impedance matrix ele-

ments with RWG and 𝑛̂× RWG functions. 51(8):1837–1846, August 2003.

[97] S. Järvenpää and M. Taskinen and P. Ylä-Oijala. Singularity subtraction tech-

nique for high-order polynomial vector basis functions on planar triangles.

54(1):42–49, January 2006.

[98] I. Hänninen and M. Taskinen and J. Sarvas. Singularity subtraction integral

formulae for surface integral equations with RWG, rooftop and hybrid basis

functions. Prog. Electromagn. Res. PIER, 63:243–278, 2006.

[99] B. M. Notaroš. Higher order frequency-domain computational electromagnet-

ics. 56(8):2251–2276, August 2008.

[100] M. G. Duffy. Quadrature over a pyramid or cube of integrands with a singu-

larity at a vertex. SIAM. J. Numer. Anal., 19(6):1260–1262, 1982.

[101] J. S. Asvestas, S. P. Yankovich, and O. E. Allen. Calculation of the impedance

matrix inner integral to prescribed accuracy. 58(2):479–487, February 2010.

162



[102] M.-D. Zhu, X.-L. Zhou, and W.-Y. Yin. Radial integration scheme for handling

weakly singular and near singular potential integrals. 10:792–795, 2011.

[103] F. Vipiana and D. R. Wilton. Numerical evaluation via singularity cancellation

schemes of near-singular integrals involving the gradient of Helmholtz-type

potentials. 61(3):1255–1265, March 2013.

[104] M. M. Botha. A family of augmented Duffy transformations for near-singularity

cancellation quadrature. 61(6):3123–3134, June 2013.

[105] D. J. Taylor. Accurate and efficient numerical integration of weakly singular

integrals in Galerkin EFIE solutions. 51(7):1630–1637, July 2003.

[106] A. G. Polimeridis and T. V. Yioultsis. On the direct evaluation of weakly

singular integrals in Galerkin mixed potential integral equation formulations.

56(9):3011–3019, September 2008.

[107] A. G. Polimeridis and J. R. Mosig. Complete semi-analytical treatment of

weakly singular integrals on planar triangles via the direct evaluation method.

Int. J. Numerical Methods Eng., 83:1625–1650, 2010.

[108] A. G. Polimeridis, J. M. Tamayo, J. M. Rius, and J. R. Mosig. Fast and

accurate computation of hyper-singular integrals in Galerkin surface integral

equation formulations via the direct evaluation. 59(6):2329–2340, June 2011.

[109] A. G. Polimeridis and J. R. Mosig. On the direct evaluation of surface integral

equation impedance matrix elements involving point singularities. 10:599–602,

2011.

[110] DEMCEM package, 2011.

163



[111] M. T. H. Reid, J. K. White, and S. G. Johnson. Generalized Taylor-Duffy

method for efficient evaluation of Galerkin integrals in boundary- element

method computations. 63(1):195–209, January 2015.

[112] D. R. Wilton, F. Vipiana, and W. A. Johnson. Evaluation of 4-D Reaction Inte-

grals in the Method of Moments: Coplanar Element Case. IEEE Transactions

on Antennas and Propagation, 2017.

[113] S. M. Rao, D. R. Wilton, and A. W. Glisson. Electromagnetic scattering by

surfaces of arbitrary shape. 30(3):409–418, May 1982.

[114] B. M. Kolundzija and A. R. Djordjevic. Electromagnetic modeling of composite

metallic and dielectric structures. Boston, MA: Artech House, 2002.

[115] B. M. Kolundzija and A. R. Djordjevic. Analysis of dipole antenna with corner

reflector. In Proc. 7th Colloquium on Microwave Communication, pages 319—

-322, Budapest, Hungary, 1982.

[116] M. D. Deshpande. Electromagnetic scattering from a polygonal thin metallic

plate using quadrilateral meshing. NASA/TM-2003-212165.

[117] M. Djordjević and B. M. Notaroš. Double higher order method of moments

for surface integral equation modeling of metallic and dielectric antennas and

scatterers. 52(8):2118–2129, August 2004.

[118] B. M. Kolundzija and A. R. Djordjevic. WIPL-D: Electromagnetic Modeling

of Composite Metallic and Dielectric Structures. Software and User’s Manual.

Boston, MA: Artech House, 2000.

164



[119] E. Jørgensen, J. L. Volakis, P. Meincke, and O. Breinbjerg. Higher order hier-

archical Legendre basis functions for electromagnetic modeling. 52(11):2985–

2995, November 2004.

[120] W. Ding and G. Wang. Treatment of singular integrals on generalized curvilin-

ear parametric quadrilaterals in higher order method of moments. 8:1310–1313,

2009.

[121] H. Yuan, N. Wang, and C. Liang. Combining the higher order method of

moments with geometric modeling by NURBS surfaces. 57(11):3558–3563,

November 2009.

[122] A. Manić, M. Djordjević, and B. M. Notaroš. Duffy method for evaluation of

weakly singular SIE potential integrals over curved quadrilaterals with higher

order basis functions. 62(6):3338–3343, 2014.

[123] A. G. Polimeridis, F. Vipiana, J. R. Mosig, and D. R. Wilton. DIRECTFN:

Fully numerical algorithms for high precision computation of singular integrals

in Galerkin SIE methods. 61(6):3112–3122, June 2013.

[124] L. Knockaert. On the analytic calculation of multiple integrals in electro-

magnetics. 2011 International Conference on Electromagnetics in Advanced

Applications, ICEAA’11, pages 595–598, 2011.

[125] DIRECTFN package. https://github.com/thanospol/DIRECTFN, 2017.

[126] Jianming Jin. The Finite Element Method in Electromagnetics. Wiley-IEEE

Press, 3rd edition, 2014.

[127] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.).

Johns Hopkins University Press, Baltimore, MD, USA, 1996.

165

https://github.com/thanospol/DIRECTFN


[128] Matteo Frigo and Steven G. Johnson. The design and implementation of

FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005.

[129] Samuel P. Groth, Athanasios G. Polimeridis, Alexandra Tambova, and Ja-

cob K. White. Circulant preconditioning in the volume integral equation

method for silicon photonics. J. Opt. Soc. Am. A, 36(6):1079, jun 2019.

[130] Tony F. Chan and Julia A. Olkin. Circulant preconditioners for Toeplitz-block

matrices. Numerical Algorithms, 6(1):89–101, 1994.

[131] H. C. van de (Hendrik Christoffel) Hulst. Light scattering by small particles.

Dover Publications, 1981.

[132] M. Kerker. The Scattering of Light and Other Electromagnetic Radiation. El-

sevier, 1969.

[133] Craig F. Bohren and Donald R. Huffman. Absorption and Scattering of Light

by Small Particles. Wiley, apr 1998.

[134] Roger F. Harrington. Time-harmonic electromagnetic fields. IEEE Press, 2001.

[135] A. Farjadpour, David Roundy, Alejandro Rodriguez, M. Ibanescu, Peter

Bermel, J. D. Joannopoulos, Steven G. Johnson, and G. W. Burr. Improving

accuracy by subpixel smoothing in the finite-difference time domain. Technical

Report 20, 2006.

[136] Steven G. Johnson, Peter Bienstman, M. A. Skorobogatiy, Mihai Ibanescu,

Elefterios Lidorikis, and J. D. Joannopoulos. Adiabatic theorem and contin-

uous coupled-mode theory for efficient taper transitions in photonic crystals.

Physical Review E, 66(6):066608, 2002.

166



[137] M. L. Povinelli, Steven G. Johnson, and J. D. Joannopoulos. Slow-light,

band-edge waveguides for tunable time delays. Optical Society of America,

13(18):7145–7159, 2005.

[138] Kurt E. Oughstun and Natalie A. Cartwright. On the Lorentz-Lorenz formula

and the Lorentz model of dielectric dispersion. Optics Express, 11(13):1541–

1546, 2003.

[139] COMSOL Multiphysics R○ . https://www.comsol.com.

[140] E. Erez and Y. Leviatan. Electromagnetic scattering analysis using a model

of dipoles located in complex space. IEEE Transactions on Antennas and

Propagation, 42(12):1620–1624, 1994.

[141] Lei Zhang. A boundary element method with surface conductive absorbers for

3-D Analysis of nanophotonics. Ph. d dissertation, Massachusetts Institute of

Technology, 2010.

[142] Benjamin Gallinet, Jérémy Butet, and Olivier J.F. F. Martin. Numerical meth-

ods for nanophotonics: standard problems and future challenges. Laser Photon.

Rev., 9(6):577–603, nov 2015.

[143] W. C. Chew. Waves and Fields in Inhomogeneous Media. New York: Van

Nostrand, 1990.

[144] Nguyen Dinh-Liem. A volume integral equation method for periodic scattering

problems for anisotropic Maxwell’s equations. Appl. Numer. Math., 98:59–78,

2015.

167

https://www.comsol.com


[145] Yi Zhang, Shuyu Yang, Andy Eu-Jin Lim, Guo-Qiang Lo, Christophe Galland,

Tom Baehr-Jones, and Michael Hochberg. A compact and low loss Y-junction

for submicron silicon waveguide. Optics Express, 21(1):1310–1316, 2013.

[146] J. David Jackson. Electrodynamics. Wiley Online Library, 1975.

[147] Xianjin Li, Lin Lei, Yongpin Chen, Ming Jiang, and Jun Hu. A Domain

Decomposition Method Based on Volume-Surface Integral Equation for com-

plex Dielectric/Metallic Composite Objects. 2018 12th Int. Symp. Antennas,

Propag. EM Theory, ISAPE 2018 - Proc., c:1–3, 2019.

[148] Darko Zibar. Machine learning in photonics: From components to system

optimization. In Opt. InfoBase Conf. Pap. OSA - The Optical Society, jul

2014.

[149] Daniele Melati, Mohsen Kamandar Dezfouli, Yuri Grinberg, Siegfried Janz,

Jens H. Schmid, Pavel Cheben, and Dan-Xia Xu. Machine learning design of

subwavelengh integrated photonic devices. pages 135–136. Institute of Electri-

cal and Electronics Engineers (IEEE), aug 2019.

168


	Introduction
	Silicon Photonics Applications
	Terminating Waveguide Channels with Integral Equation Methods 
	Volume Integral Equation Method
	Novelty
	Thesis Outline

	Numerical Simulation Method
	Problem Statement
	JM-VIE formulation
	Galerkin Discretization
	Reduction to surface-surface integrals
	Evaluation of Singular Integrals
	Rectangular Parametric Space
	Coincident Integration
	Edge Adjacent Integration
	Vertex Adjacent Integration
	Numerical tests

	FFT-based solver
	Preconditioning
	Fields Computation
	Summary of the Numerical Method
	Numerical Results and Error Analysis

	Absorbers and Reflections
	Adiabatic absorbers in the EM setting
	Round-trip reflection and transition reflection

	Numerical Results of Absorbers
	Dielectric strip waveguide
	Field Decay Rate
	Transition reflection length dependency
	Electric and magnetic conductivities
	Comparison with COMSOL Multiphysics®

	Bragg grating
	Y-branch splitter
	Signal-to-Noise ratio

	Discussion
	Conclusions
	Numerical Tests of DIRECTFN-quad
	Sensitivity to the quality factor of the elements
	Weakly and strongly singular integrals with vector basis functions
	Singular integrals over quadratic curvilinear quadrilaterals


