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The thesis document includes the following changes in answer to the external review process. 
 

Apart from the questions discussed below, some critical and valuable 

comments were considered in the thesis, along with typos and minor remarks. 

I am grateful to all the reviewers for their time and efforts spent on reading 

and understanding my thesis. 
 
Reviewer: Dr. Alexander Levchenko 
 
1) Please clarify how magnetism was treated in Co-Nb-V and Al-Ni-Ti alloys. 
 p.64, p.68 
To consider magnetic properties of Co(Ni) present in this alloy, we initialized 
calculations with parallel magnetic moments assigned to Co(Ni) atoms, and zero 
magnetic moments assigned to Nb and V (Al and Ti) atoms, thus searching for a 
ferromagnetic ground state of a certain structure. 
 
2) Please report distribution of errors for your application examples, including 

maximum errors, not only mean errors. 
p.63,p.64,p.69 
-he energy MAE, RMSE and max. error measured on the training sets: 
Cu-Pd: 
1.9 meV/atom, 2.3 meV/atom, and 10.1 meV/atom respectively, 
Co-Nb-V: 
6.2 meV/atom, 8.1 meV/atom, and 29 meV/atom respectively, 
Al-Ni-Ti 1st round: 
18 meV/atom, 27 meV/atom, and 91 meV/atom respectively, 
Al-Ni-Ti 2nd round: 
7 meV/atom, 9 meV/atom, and 24 meV/atom respectively. 
 

3)  Mention tight-binding and other quantum-mechanical force fields. 

p.19-20 
There are approaches which search the solution of (11) in a form of a 



 

 

linear combination of atomic orbitals, e.g., Hartree-Fock, post-Hartree-Fock methods. 
Among these are tight-binding model which treats electrons as "belonging" to atoms 
and uses linear combination of atomic orbitals to determine the electron energy levels. 
The opposite (in a sense of binding toatoms) approximation - nearly free electron 
model (modification of a free electron model) treats electrons as a gas with only weak 
interaction with ions, which allows for correct prediction of many features of the 
electronic structure, especially in metals, when outer electrons are essentially 
delocalized. Hybrid functionals in DFT (Section 2.3) also employ predictions by 
Hartree-Fock theory, and they are capable of calculating many chemical systems with 
high accuracy, introducing corrections to the exchange-correlation functionals 
(Section 2.3). Apart from relatively "heavy" methods like DFT hybrid functionals or, 
etc., quantum Monte Carlo (which operates with exact manybody wavefunction and 
treats quantum effects directly) some QM models are semi-empirical and adjusted for 
relatively fast calculations, providing approximate yet often accurate predictions for 
large systems, which evaluation with more costly methods would be prohibitively long; 
e.g., linear scaling DFT, which incorporates some screening of interatomic interaction 
leading to O(N) cost scaling with the number of atoms, versus O(N^3) for conventional 
DFT. 
 
4) There is no clear motivation for developing "yet another" approach (MTP) 

machine-learning potential. Please motivate clearly why your approach is 

better than the approaches currently developed by other groups.  
p.24 
Even with all variety of ML methods developed for atomistic modeling in recent years, 
this only reflects the immaturity of the present MLIPs field and continuous attempts to 
search for more generic, more accurate and more robust approaches. Of course, all 
the ML methods enlisted in this section suit for certain problems they were developed 
for, however they possess certain drawbacks, motivating the development of yet 
another ML approach, e.g.: the GAP [81] requires much more computational time 
to achieve the same accuracy compared to the single-component MTP (see [76]), NN-
based models usually require a lot of training data (see [32]), cluster expansion is 
limited to lattice-based structures. From my personal point of view, the drawbacks of 
contemporary MLIPs are a consequence of one of the following reasons: the concept 
of a MLIP can be too \physically-motivated" (e.g, EAM potentials) or vice-versa, largely 
inspired by ML and thus not well appropriate for describing the physical (atomistic) 
systems. Physically inspired models can suffer from lack of flexibility in their functional 
forms, thus failing to capture complex (features of interatomic interactions not 
reflected in \physics" of their design. On the other hand, ML-based models can neglect 
or not fully account for the origin of the data they are fit to, which results in excessive 
attempts required to capture basic physics phenomena (e.g., non-differentiable ML 
models like random forest predicting energy but not forces, which are essentially the 
derivatives of the energy). From this perspective the MTPs incorporate a balance 
between physically inspired descriptors and flexible polynomial functional form (see 
Section 3.4) making approximation of PES accurate with relatively small number of 
parameters [32] and allowing for making more accurate MTPs by employing more 
complex functional form. In addition, the active learning approach (Section 3.6) 
developed for MTPs solves the sampling problem (Section 3.2), which arises in any 
simulation involving ML models and can be more difficult to overcome, then the 
problem of accurate MLIP fitting. 
 
5) Please motivate better why one needs to study the considered alloy 

systems. 



 

 

p.63,p.64,p.68 
- We chose the Cu-Pd system because the structure of both pure Cu and Pd is fcc, 
while the stable equimolar CuPd structure is a bcc derivative structure. This system is 
a good test of whether or not our   MTP-based model is able to simultaneously handle 
multiple lattice types. 
- We next test our algorithm on constructing a convex hull for the ternary Co-Nb-V 
system in the region where the concentration of Co is 50% or more. The choice is 
motivated by the several Co-Nb and Co-V binaries present in this region of the phase 
diagram, which our approach should predict. 
- Finally, we applied our algorithm to the Al-Ni-Ti system.  This system is well-studied 
and has many known ternary structures, some of which have over 20 atoms in the 
unit cell, therefore we considered this system a good test for our approach. 
 
6) Eq. 11 (Born-Oppenheimer approximation) and others: discuss spin   
p.19 
Though no electronic (or nuclear) spins were considered in the derivation of (11), they 
can be included in (11) directly as its derivation takes into account only spatial degrees 
of freedom. 
p.21 (spins in density functional theory) 
To account for spin degrees of freedom, similarly to (2.3) spin-up and spin-down 
densities can be introduced, calculated from corresponding spin-up and spin-down 
wave functions. 
 
7) "However, in practice it is unsolvable in principle" - clarify that for some 

choices of F(theta) it is solvable (namely linear; maybe some others?)   
p.29 
Exact solution of the optimization problem can be found only in case of polylinear or 
polyquadratic L(theta). i.e., the minimizing functional has linear/quadratic dependence 
on the internal parameters. 
 
8) "Their typical values are: Ce = 1; Cf = 0.01 A^2; Cs = 0.001 A^6 ..." - explain 

where these typical values come from  
p.39  
The numbers from (21) come from practice and reflect the condition of optimal relative 
importance of the energy, forces, and stresses factors in the fitting procedure. I.e., too 
small or too large value of any coefficient from (21) will result in 
neglecting/overprevailing of a certain factor among the others.  
 
9) "Though such a shallow ground state is typically not significant beyond 

academic interest" - clarify your criterion for shallow/non-shallow ground 

state  
p.63  
The value of 0.5 meV is comparable to thermal energy of one atom at 6K temperature, 
thus this ground state can easily be escaped due to thermal fluctuations in any realistic 
scenario. 
 
Reviewer: Dr. Ferenc Tasnadi 
 
10) I suggest to elaborate/extend the last paragraph of section 2.4 as a state-

of-the-art and put the MLIP approach into a context of other methods in 

crystal structure prediction with applications and limitations. 



 

 

p. 24 
See question 4 where the last paragraph of the section 2.4 is provided. 
 
11) On page 33 you write that validation can be done with predicting “high-

level” quantities. Fitting the model with quantum mechanical total energies and 

the predict derivatives of energy, such as elastic constants, phonons can be 

inaccurate. Is there any argument/motivation to underline your statement? 
Comment: the purpose of “validation” is to somehow check the performance of the 
potential apart from the fitting quality (which is more related to the errors on the training 
set). To that end, fitting energies and predicting their derivatives ofc. can be 
inaccurate, but performing training and validation with the data of different origin is a 
factor can be seen as positive. 
p.36 
A common way of checking the performance of the potential outside the training set 
is using a validation set (see Section 3.1). However, it is not always possible to 
construct a validation set. It requires configurations relevant to the simulation of 
interest with provided ab initio energies/forces/etc., which is not always possible. The 
reasons can be: the potential can be used for large supercell calculations, for which 
ab initio calculations are not possible, or the configurations from the simulation are not 
known in advance, because the trajectory of the MD is known only during actual 
simulation. Therefore, sometimes validation of the potential is done versus more 
“high-level" quantities like vacancy migration energy barrier, elastic moduli or heat 
capacity: the potential can be used to calculate some of these quantities with further 
comparison to their known values. This allows for estimation of the potential quality: if 
the potential reproduces some quantities well, it can be expected that it will properly 
predict other properties of interest. Obviously this is not a systematic criterion as 
opposite to the active learning approach, see Section 3.6. 
 
12) Is it possible to extend the ordinary 3D space and define a descriptor for 

magnetic materials? (Introduce magnetic implementation of MTPs) 
p.46 
Despite the magnetic moments of the atoms are neglected in the current 
implementation, they can be included in the current implementation by adding a 
dependence of the radial functions  f  from (26) on the magnetic moments of atoms in 
each pair participating in the tensor moment construction. The below formula provides 
generalized radial functions expression for a case of collinear magnetic moments: 

 
 
Compare to radial functions of non-magnetic MTPs: 

 



 

 

 
In this implementation (27) the magnetic moments of atoms are treated as 
independent variables on which the potential energy depends, which adds two 
dimensions (as radial functions are constructed for pairs of atoms) to a space of 
independent variables on which  f  depends, and two additional sums in the expansion 
of this function through polynomials Q(k). In a general case of 3-d magnetic moments, 
it will be 6 additional dimensions and 6 sums over corresponding indexes. 
 
13) Could you please explain the meaning of non-locality, because both Figure 

22 and equation (32) in the thesis suggest rather the incompleteness of the 

models MTM1 and MTM2 instead of non-locality. If both MTM1 and MTM2 

were complete then they would provide the same result, or? 

 
p.84-85 
 



 

 

Taking into account relatively poor performance of conventional MTMs for HOMO and 
LUMO molecular quantities (see 3) we decided to include nonlocal effects by 
introducing two different local models v1 and v2 (each with its own set of parameters) 
and let:  

Molecular orbitals get occupied by electrons not independently of each other, hence 
we assume a nonlinear dependence of the answer on the local features (32).  
E.g., on Figure 23 the neighborhoods of atoms 1 and 4 do not intersect, therefore 
neither pair interaction 1-4 nor triple interactions 1-2-4 or 1-3-4, etc. cannot be 
approximated by the local MTM model.  

As opposite, following the formulas (32) and (31), the approximated nonlocal quantity 
will include, e.g., the following terms:  

 
 
The underbraced summand in (33) depends on both r12 and r34. Similarly, after 
expanding all v1’s and v2’s in (32) the expression for Fnl(x) contains polynomials of rij 
mutually multiplied independently of the distance between the corresponding atoms 
and thus forms a basis for approximating nonlocal  properties similarly to local model, 
see Section 3.4.  
 



 

 

14) Can one use [the Figure with a single-component case from the Ref.[60]] 

with force error to validate the MaxVol approach to multicomponent systems, 

why?  
p.51 
Obviously, to some extent the extrapolation grade correlates with the error which MTP 
is expected to have for a certain configuration. Though, the authors emphasize that 
the essence of this criterion is measure of proximity of configuration to the training 
domain of a certain MTP. Nevertheless, it would be illustrative to provide such 
dependence for a case of MTP designed for a TiN binary system. The MTP used for 
this test has 50 parameters and configurations are taken from NPT simulations of B1 
TiN at 300K. 

 
15) Can you explain how to choose DFT calculation parameters for the best 

“accurate prediction/computational demand” ratio? Do you have any strategy? 

Can you consider to add some description to the thesis? 
Comment: My strategy is rather to have robust and accurate enough calculation even 
if it is not very computatutationally fast, and I use recommendations from VASP 
website and from more experienced users. I essentially skip providing comments on 
choosing the settings, as this is a separate big discussion, falling beyond the scope 
of the thesis. 
p.63,p.64,p.69 
 
 - PAW_PBE GGA potentials 
 - Automatic K-mesh with KSPACING=0.15 
 - Energy cutoff: Cu-Pd 500meV, Co-Nb-V and Al-Ni-Ti 400meV 
 
16) What type of relaxation approach has been used? 
p.59 
To perform relaxation we treat energy of configuration as a function of atomic positions 
and lattice vectors. As we know the derivatives of energy function w.r.t. this variables 
(calculated from forces and stresses), we use BFGS optimization algorithm (as in 
Section 3.1) for minimizing energy, which simultaneously provides zero forces and 
stresses. 
 
Reviewer: Dr. Biswanath Dutta 



 

 

 
17) How important in the choice of the initial set of configurations for the 

quality of MTP? 
p.54  
It is assumed that the starting training set is empty and is only composed al- 
gorithmically as is described below. This allows for excluding the human factor on this 
stage and therefore making the procedure more generic and more automatized. One 
can, however, still start from some initial set of congurations to end the procedure 
faster with ssome final training set as the result (which is still more or less the same 
regardless of the initial training set). To benefit from the active learning approach one 
should not provide too much configurations from the beginning, to leave the space for 
new incoming configurations. While the size of the final training set would be about 
2m, where m is the amount of parameters in the MTP, we recommend to take not 
more than roughly m=2 configurations for initialization. 
 
18) Will it be possible to see a phase transition if the MTP is trained with data 

from only one of the phases? 
p.59 
The active learning approach proposed in this section allows for "exploring" the 
unknown parts of the configurational space during a simulation: e.g., if an atomistic 
system during an MD is in the state preceding a phase transition, the system will 
evolve towards the new phase with increasing number of extrapolative configurations 
occurring. Whether the phase transition will be reproduced correctly depends on many 
factors, among which the accuracy of the MTP fitting is crucial. However in principle, 
atomistic simulations with active learning are designed to be suitable for such 
problems without the a priori knowledge about the studying system: the only source 
of information which "guides" the simulation is the QM values for energies, forces and 
stresses. 
 
19) In the present thesis the machine-learning approach previously developed 

for single-component systems has been extened to multiple component alloys. 

Can you describe what were the key challenges you faced and how did you 

handle those challenges? 
p.46 
While training of a single-component MTP means solving the overdetermined sys- 
tem of linear algebraic equations (a single-component MTP is linear w.r.t its 
parameters [76]), which is purely procedural and straightforward task, training a 
multicomponent MTP requires solving the non-linear optimization problem in high-
dimensional space. For being able to use the gradient-based optimization methods 
like gradient descent one needs to compute the rst (at least) derivatives of the loss 
function (19) w.r. its parameters, which takes much more computational effort then 
calculating just a loss function value. Therefore I have implemented a back-
propagation algorithm for derivatives calculation which calculates all the loss function 
derivatives w.r.t MTP coecients (which are hundreds) only 4.8 times slower than the 
actual loss function calculation. Another important question arising during non-linear 
optimization is choosing the optimization method. 
 
20) Can MTPs handle short-range ordering? 
p.56 
MTPs cannot predict the long-range ordering in materials  as they are essentially local 
(see Section 2.1). Due to the same reason MTPs by their nature learn the short-range 



 

 

order by intrinsically assigning different energy contributions to different atomistic 
environments. This way, more energetically favourable short-range orderings will be 
distinguished among all possible orderings. 
 
Reviewer: Dr. Nikolay Gippius 
   
21) The chemistry application appear to predict properties of equilibrium 

molecules. Are MTPs able to predict chemical reactions? 
p.86 
As MTPs allow calculating forces due its differentiable analytical form (Section 3.3) 
they are in principle capable of describing chemical reactions. However, this have not 
been explicitly tested for any particular reaction. 
 
22) MTP compute the interaction energy based on the atomic coordinates. 

What happens if there are atomic charges and spins present in the system? 

 
Charges are not treated explicitly, comments added on p. 46: 
 
The only means by which the MTPs can describe charged systems are screening of 
electrostatic interaction, which makes the locality assumption (2) applicable. In the 
case of essentially non-local electrostatic interaction the acharges should be included 
explicitly within hypothetical non-local implementation.  
 
Spins: see question 12, p.46 
 
23) In what sense do MTP extrapolate? 
p.49  
MTP "extrapolates" when configuration does not belong to the interior of the 
configurational space, covered by the training set. This essentially means proximity of 
the configuration to the training set of MTP. Definition and detailed description of the 
extrapolation grade concept is given in section 3.6.1. The approach we propose is 
based on the so-called D-optimality criterion, which provides a numerical criterion for 
“novelty" of a certain configuration for interatomic potential (namely, MTP).  



 

 

 

 




