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ABSTRACT 

 

CRISPR-Cas is a prokaryotic immunity system against mobile genetic elements, such as viruses 

and plasmids. The system consists of two components: the clustered regularly interspaced short 

palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas). In the CRISPR array, 

short fragments of foreign DNA, called spacers, are interleaved with palindromic repeats. During 

the adaptation stage of the CRISPR-Cas immunity, new spacers are inserted into the CRISPR 

array, whereas during the expression and interference stages, spacers are transcribed, processed 

and complexed with Cas proteins to target the complementary foreign DNA or RNA molecules 

for degradation. CRISPR array is a fast-evolving part of the genome, with acquisition, 

duplication, and loss of spacers occurring concurrently to point mutations in the CRISPR repeat 

and spacer sequences. Thus, sequences of CRISPR arrays can be used to differentiate closely 

related bacterial lineages. Moreover, analysis of CRISPR spacers is a valuable source of 

information about virus-host interactions, particularly powerful when applied to metagenomic 

data.  

In this work, we explored the diversity of CRISPR spacers in different natural prokaryotic 

communities, including extinct Escherichia coli community from a mammoth intestine, 

Flavobacterium communities from Antarctic surface snow, Thermus communities from four 

distant hot springs in Italy and Chile, and Sulfolobales community from a Japanese thermal field. 

The comparison of obtained environmental spacer sets with each other and with spacers from 

public databases as well as with sequences of viruses allowed us to reach several non-trivial 

conclusions and to gain insights into virus-host and virus-virus interactions in natural microbial 

communities. 
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INTRODUCTION 

 

1. Defense systems of prokaryotes 

Bacteria and Archaea developed a wide range of immune mechanisms to defend themselves 

against foreign DNA. The restriction-modification (R-M), CRISPR-Cas, pAgos (prokaryotic 

Argonaute proteins) (1), and BREX systems are all based on self vs non-self DNA (or RNA) 

discrimination. By contrast, the abortive infection, and toxin-antitoxin systems induce 

programmed cell death or cell dormancy upon virus infection. Different defense mechanisms 

often coexist within one genome. Moreover, they are colocalized in genomic regions called 

“defense islands” (2).  

 

Restriction-modification systems 

The R-M systems consist of two enzymes: the endonuclease and the methyltransferase. 

Methyltransferase transfers methyl groups from S-Adenosyl-L-methionine to specific DNA 

motifs in the host genome, whereas endonuclease recognizes the same, but unmethylated motifs 

and cleaves the foreign DNA. R-M systems are classified into different types, depending on the 

subunit composition, location and type of cleavage and recognition sites (3). Type II R-M 

systems, which have been harnessed for molecular biology applications, consist of separate 

methylase and endonuclease enzymes. They recognize 4-8 bp palindromic sequences and cleave 

within or near the recognition site. Type I and III systems are ATP-dependent hetero-oligomeric 

complexes with non-palindromic recognition sites. Unlike in other R-M systems, in type IV 

systems the endonuclease recognizes and cleaves methylated DNA (4).  

 

BREX system 

Discovered as part of the “defense islands” in 10% of prokaryotic genomes, the BREX 

(bacteriophage exclusion) system consists of 6 genes (5). The key member of the BREX gene 

cassette, pglX gene, is a DNA methyltransferase, which was shown to methylate DNA inside of a 

6 nt motif (6). However, unlike in the R-M systems, no degradation of the virus or host DNA in 

the absence of methyltransferase was observed. Thus, BREX system prevents the replication of a 

wide range of phages by a mechanism, different from that of the R-M systems. 

 

Prokaryotic Argonaute proteins  

Prokaryotic Argonaute proteins (pAgos) are nucleic acid-guided nucleases, discovered in 32% of 

archaeal and 9% of bacterial genomes (7). They are homologous to proteins of the extensively 
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characterized eukaryotic Argonaute proteins, which play a central role in RNA silencing 

processes, as essential components of the RNA-induced silencing complex (8). Guided by small 

single-strand nucleic acids (13-25 nt in length), which are generated by a “chopping” mechanism 

(9), pAgos recognize and cleave the invader nucleic acid. All combinations of guide and target 

types of nucleic acid were observed: DNA-guided DNA interference in T. thermophilus (10), 

RNA-guided DNA interference in R. sphaeroides (11), DNA-guided RNA interference in A. 

aeolicus (12) and RNA-guided RNA interference in M. piezophila (13). Two types of pAgo 

proteins were characterised: 1) “long” pAgos have the same domain composition as eukaryotic 

Argonaute proteins (i.e., PIWI, MID, and PAZ domains); 2) “short”, much less studied, pAgos 

lack the oligonucleotide-binding PAZ domain and are associated with diverse nucleases (14). 

 

Abortive infection and toxin-antitoxin systems 

Abortive infection is an altruistic defense mechanism, when infected cell induces a programmed 

cell death process, which stops the virus propagation in the population (15). One of the best 

studied examples is a Rex system of the Escherichia coli bacteriophage lambda. The RexA 

protein senses the replication of the phage and activates the ion channel RexB, which depolarizes 

the membrane, causing cell death (16). A great diversity of 20 abortive infection systems, usually 

encoded in plasmids, was found in Lactococci (17). However, the exact mechanisms of action 

remain unknown in most cases. 

 

Toxin-antitoxin (TA) systems are composed of stable toxin proteins which target essential cell 

processes and unstable antitoxins, which prevent the toxin activity. Currently, TA systems are 

classified into six types, depending on the toxin-antitoxin interaction type and the nature of the 

antitoxin (18). In type I TA systems, the antitoxin is a small antisense RNA, which binds to the 

toxin mRNA and promotes the degradation of RNA duplex or inhibits the translation of toxin 

protein from mRNA by blocking Shine-Dalgarno sequence (19). In type II TA systems, the 

antitoxin is a protein, neutralizing the corresponding toxin by a protein-protein interaction (20). 

The type III antitoxin is a repeat-containing RNA, which sequesters the toxin by an RNA-protein 

interaction (21). In type IV systems the antitoxin protein prevents the binding of the toxin to its 

target (22). Type V antitoxins are specific ribonucleases, which cleave the mRNA of the toxin 

(23). The antiviral defense functions of TA systems were demonstrated for types I, II and III (24-

26). The arrested translation of host proteins or altered transcription regulation during virus 

infections may change the ratio of toxin-antitoxin components, which leads to the activation of 

the toxin and subsequent cell suicide. Although the infected cell dies, the clonal population 

prevails. 
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CRISPR-Cas systems 

CRISPR-Cas system is an RNA interference-like prokaryotic immune system directed against 

mobile genetic elements, such as viruses and plasmids (27). The system consists of one or 

several CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) arrays and Cas 

(CRISPR-associated) proteins. All Cas proteins can be functionally assigned to adaptation, 

expression and interference modules (28) (Figure 1). Cas proteins from the adaptation module 

incorporate fragments of the viral DNA into the CRISPR array as spacers sandwiched between 

repeats. Transcription and processing of CRISPR array result in production of protective 

CRISPR RNAs (crRNAs). Interference module proteins, directed by crRNA, recognize and 

cleave cognate regions in the DNA or RNA of mobile genetic element. By composition of 

interference and adaptation modules CRISPR-Cas systems are classified into 2 classes, 6 types 

and ~30 subtypes (29). CRISPR-Cas systems are the focus of this PhD thesis and will be 

described in more detail in the following sections. 

 

 

Figure 1. Modular organization of CRISPR-Cas systems. All CRISPR-Cas types have similar modular 

organization. Cas proteins can be assigned to adaptation (blue), expression (purple) and interference (red+yellow) 

modules. Functionally dispensable Cas proteins are shown with dashed outlines. Reproduced with permission from 

(30). 

 

2. CRISPR arrays 

CRISPR array is a genomic region containing palindromic repeat sequences interspaced by 

nonrepetitive sequences, called spacers. Sequences of CRISPR repeats are species- or sometimes 

even strain-specific and may slightly vary along the length of the CRISPR array. Many, but not 

all, CRISPR repeat sequences are palindromic and are able to form hairpin structure (31, 32). 
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One genome can contain several CRISPR arrays with similar or different CRISPR repeats. 

CRISPR arrays vary in size from ~100 bp with 1 spacer to more than 40000 bp with 587 spacers 

(type I-U CRISPR array of Haliangium ochraceum) (33). CRISPR arrays and cas gene operons 

are thought to be subject to horizontal gene transfer, possibly via mobile genetic elements 

carrying CRISPR loci (34, 35).  

 

A region upstream of the first CRISPR repeat is called the ‘leader’. The leader sequence 

comprises a promoter for transcription of the CRISPR array and sequence elements required for 

the adaptation process. New spacers are primarily incorporated in the leader-proximal end of 

array, between the leader and the first CRISPR repeat (36). The replacement of promoter 

sequence in the leader does not affect spacer acquisition, so transcription of the CRISPR array is 

not essential for adaptation. Upon deletion or replacement of first 20 or 40 bp of the leader 

sequence, new spacers were not incorporated in the I-E CRISPR array of E. coli (37), 

illuminating the critical role of the repeat-proximal region in the adaptation process. Leader 

sequences are conserved in genomes of the same species, genus or even order. Short conserved 

nucleotide sequences, probably involved in regulation of adaptation and transcription, were 

found in similar leader sequences (38). 

 

After transcription, long pre-crRNA is processed by endoribonucleases into small crRNAs. In 

class 1 CRISPR-Cas systems, Cas6 protein produces individual crRNAs with the spacer 

sequence and CRISPR repeat-derived 3’ and 5’ handles by cleaving pre-crRNA inside CRISPR 

repeat sequences (Figure 2). The processing of pre-crRNA by Cas6 depends on the structure of 

CRISPR repeat. If CRISPR repeat is palindromic and the canonical stem-loop structure can be 

formed, Cas6 acts as a single-turnover enzyme: it binds to the stem-loop, cleaves RNA at the 

base of the stem-loop and later becomes a part of the Cascade effector complex (in type I 

systems). In the case of a nonpalindromic structure of CRISPR repeat, Cas6 forces the formation 

of an RNA stem-loop, cleaves pre-crRNA and releases the crRNA (39, 40). In class 2 systems, 

the processing of pre-crRNA involves binding of tracrRNA to complementary CRISPR repeat 

sequences in pre-crRNA and their cleavage by RNase III in the presence of Cas9 effector (41) 

(Figure 2). 

 

New spacers are predominantly incorporated after the leader sequence (42). As a result, the 

leader-distal end of the CRISPR array contains the oldest spacers and is more conserved than the 

leader-proximal end (43). Spacers from the leader-distal end of CRISPR array are transcribed 

less efficiently than the leader-proximal spacers (44). To maintain the optimal number of spacers 
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in the CRISPR array, old spacers from the trailer end are eliminated, possibly via homologous 

recombination between CRISPR repeat sequences (45, 46).   

 

Figure 2. Processing of pre-crRNA in type I, II and III CRISPR-Cas systems. In type I CRISPR-Cas systems 

(left panel), Cas6 cleaves pre-crRNA inside the repeat sequence producing crRNA with 8-11 nt repeat-derived 5’ 

tag. In type II CRISPR-Cas systems (right panel), pre-crRNA is processed by RNase III in the presence of Cas9 and 

tracrRNA. Reproduced with permission from (39).  

 

3. Adaptation module 

Adaptation module is conserved in all types of CRISPR-Cas systems and is considered to be a 

hallmark of the CRISPR-Cas systems. It includes Cas1, Cas2 and, optionally, Cas4 proteins, all 

of which are nucleases. The mechanism of new spacer integration is similar to site-specific 

integration of cut-and-paste transposons (Figure 3):  

 

 leader-repeat boundary of CRISPR array is recognized by the Cas1-Cas2 heterohexameric 

complex carrying prespacer DNA (47);  

 two nucleophilic attacks by two 3’ OH terminal groups of prespacer are catalyzed by Cas1 

nuclease; one 3’ end of prespacer is connected to the first nucleotide of repeat sequence on 

one strand, whereas the other 3’ end of the prespacer is connected to the last nucleotide of 

the repeat on the opposite strand (48); 

 the ssDNA gaps formed by the first CRISPR repeat are fill-in repaired and ligated by cell 

factors. 

15



 
 

 

 

Figure 3. Spacer integration mechanism by Cas1-Cas2. Cas1 catalyzes nucleophilic attacks by two 3’ OH 

terminal groups of prespacer, connecting prespacer with the first nucleotide of repeat sequence on one strand and the 

last nucleotide of the repeat on the opposite strand. Single-stranded gaps are fill-in repaired by unknown cell factors, 

resulting in spacer integration and duplication of the Leader-proximal repeat. Reproduced with permission from 

(42).  

 

The integration of spacers by type I-E system in E. coli requires supercoiled target DNA or DNA 

bound by IHF (integration host factor), which introduces a stationary bend (49). Off-target 

spacer acquisition into sequences, which resemble CRISPR repeats and are preceded with IHF 

binding site, was demonstrated in vivo (50). Recognition of the leader sequence defines 

specificity of Cas1-Cas2 spacer integration after the first repeat in vitro (51). Although Cas1 

protein alone is capable of spacer integration in vitro (48), the addition of Cas2 greatly enhances 

the efficiency of integration. Enzymatic activity of the Cas2 nuclease is not important for the 

spacer integration (48). Transcription of cas genes is silenced by H-NS factor in E. coli, and 

reactivated with LeuO protein (52).  

 

In types I and II CRISPR-Cas systems, for the most of adapted spacers, a protospacer is preceded 

by protospacer adjacent motif (PAM). PAM is a specific sequence located near 3’ end (for type 

II systems) or 5’ end (for type I systems) of the protospacers (53, 54). PAM is recognized by 
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Cas1 (53) and defines the polarity of spacer integration. During the integration process in type I-

E systems, the last nucleotide of PAM in the prespacer becomes the last nucleotide of the 

CRISPR repeat (55).  

 

In type II CRISPR-Cas systems, adaptation process requires Cas9 with tracrRNA, which forms a 

complex with Cas1, Cas2 and Csn2 proteins. In this complex, Cas9 is responsible for the 

selection of protospacers with correct PAM sequence, while nuclease activity of Cas9 can be 

removed with no influence on the spacer acquisition (56). 

 

In type III CRISPR-Cas systems, Cas1 protein can be fused to a reverse transcriptase (RT) 

domain. A complex of Cas1-RT and Cas2 was shown to incorporate new spacers originating 

from either DNA or RNA, with RNA-derived spacers largely matching the highly transcribed 

genes. The orientation of spacers in the CRISPR array was random with no preference to sense 

or antisense strand (57). 

 

In type I systems, two variants of the adaptation process – naïve and primed – were 

demonstrated. Naïve adaptation is mediated by Cas1 and Cas2 proteins. Only ~35% of spacers 

acquired by naïve adaptation mechanism contain correct AAG PAM sequences, required for the 

interference in E. coli (37). Spacers selected by Cas1-Cas2 were clustered near double-strand 

break hotspots, such as replication fork stalling sites (Ter sites), suggesting the involvement of 

DNA repair machinery in the process of naïve adaptation (58). By contrast, primed adaptation 

besides the Cas1-Cas integrase requires Cas3 nuclease and the Cascade complex (55). This 

mechanism is activated under conditions of attenuated interference, when crRNA matches 

protospacer with one or several mismatches or PAM sequence is not optimal. In this case, the 

acquisition of spacers located in cis with the targeted protospacer (referred to as a “priming 

protospacer”) is strongly accelerated. The positions of new spacers acquired from the target are 

characterized by a strand bias and a gradient in the acquisition efficiency with respect to the 

priming protospacer (55, 59). In contrast to naïve adaptation, most of acquired spacers contain a 

correct PAM sequence.   

 

Cas4 protein is an exonuclease with a RecB-like domain (60), present in some type I adaptation 

modules or outside of the context of CRISPR-Cas systems, as standalone protein (61). Cas4 

forms a complex with Cas1 and processes the 3’ overhangs of prespacer by exonuclease activity 

(62); increases the number of spacers with valid PAM and reduces the length of acquired spacers 

(63); and defines the orientation of prespacer integration (64). A similar function has been 
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attributed to DnaQ exonuclease-like domain fused to Cas2 in type I-E CRISPR-Cas system 

(PMID: 29891635). 

 

Evolutionary origins of adaptation module components 

The adaptation module and CRISPR arrays may have evolved from casposons (65, 66), a 

recently discovered superfamily of transposon-like elements. Casposons are flanked by terminal 

inverted repeats and encode a family B DNA polymerase and a Cas1-like protein, termed 

casposase, which acts as an integrase. The mechanism of casposon integration is highly similar 

to the integration of spacers in the CRISPR array – the insertion site contains a leader sequence 

and the target site is duplicated during the casposon insertion (67). Sequential insertion of 

casposons, one after another, separated by repeats and thus resembling CRISPR arrays was 

observed in several genomes (68). Besides the universally conserved DNA polymerase and 

casposase, casposons carry a diverse gene complement, including homologs of Cas4 nucleases. 

Cas2 proteins have an RNA recognition motif fold similar to one found in VapD proteins from 

toxin-antitoxin systems, which are known to co-localize with CRISPR-Cas systems (69). The 

leader sequences and CRISPR repeats have likely originated from the preexisting target site of 

casposon integration. Notably, CRISPR repeats and PAM sequences were shown to coevolve 

with Cas1 (Figure 4) (54). 
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Figure 4. Coevolution of Cas1 proteins (A, left part), CRISPR repeat sequences (A, right part) and PAMs (B) 

in Sulfolobales genomes. Cas1 proteins and CRISPR repeats of Sulfolobales can be classified into four groups (I-

A1, I-A2, I-D and I-B). Groups are associated with different PAM sequences (shown as sequence logos). Reproduced 

with permission from (54). 

 

4. Interference modules 

CRISPR-Cas systems are divided into two classes based on the composition of the effector 

complexes involved in the interference: in class 1 systems (type I, type III and type IV), the 

interference is conferred by multisubunit complexes, whereas in class 2 systems (type II, type V 

and type VI), the effector complex consists of a single multidomain protein (29). 

 

Type I interference 

Type I interference modules include the Cascade complex (CRISPR-associated complex for 

antiviral defense) and the Cas3 nuclease. In I-E system of E. coli, Cascade complex consists of 

the 61 nt crRNA bound to Cas5 and 6 subunits of Cas7, the Cas6 processing nuclease (which 

holds the 3’ end hairpin of the crRNA), large subunit named Cas8, and two small Cse2 subunits 

(70-72). The mechanism of target recognition and interference for the I-E CRISPR-Cas system is 

well understood: 

1. Large subunit Cas8 recognizes the PAM sequence upstream of the protospacer in the target 

DNA (73).  

2. Binding of Cascade to foreign DNA induces conformational changes in the complex: small 

Cse2 subunits slide to the 5’ end of crRNA and push the C-terminal domain of the Cas8 

between the two DNA strands, melting the dsDNA duplex (74).  

3. The crRNA hybridizes with the target DNA strand, displacing the nontarget strand and 

forming an R-loop. Nontarget strand is stabilized by Cse2 and Cas7 subunits (75). Cascade 

complex can adopt two conformational states depending on the presence of interfering PAM 

and complementarity between crRNA and protospacer sequences, which determine the size 

of the R-loop (76).  

4. If PAM is recognized and full-size R-loop is formed, the binding site for Cas3 becomes 

exposed on the Cas8 surface (77). Cas3 nicks the displaced nontarget strand within the 

protospacer region (78, 79). Through its ATP-dependent helicase activity, Cas3 moves along 

the nontarget strand in 5’ -> 3’ direction, unwinding the DNA and generating DNA loops 

(77, 80).  

5. If PAM is not recognized, but protospacer sequence is complementary to crRNA, Cas1-Cas2 

complex is recruited before the Cas3 (71).  
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6. After initial cleavage inside the protospacer, Cas3 nuclease unspecifically degrades the DNA 

of targeted mobile genetic element (81).  

 

Type II interference 

Type II effector complex consists of the endonuclease Cas9 with HNH and RuvC nuclease 

domains, a crRNA and a trans-activating CRISPR RNA (tracrRNA – a small RNA molecule, 

partially complementary to the CRISPR repeat). Interference by Cas9 requires a PAM sequence 

and complementarity between the crRNA and the target protospacer. The type II interference 

mechanism is relatively simple: 

1. Loading of crRNA and tracrRNA onto Cas9 induces conformational changes in the complex, 

converting Cas9 into an active state (82). 

2. Effector complex scans for PAM sequences in target DNA (83). If PAM is found, the 

formation of R-loop is initiated by bending of the DNA duplex (84).  

3. RuvC domain cuts the displaced nontarget strand, while HNH domain cuts the target strand 

in the RNA-DNA duplex (85). Both cuts are located inside the protospacer, 3 nt upstream of 

the PAM sequence, which makes Cas9 a blunt-end generating nuclease (86).  

 

Type III interference 

Type III interference modules contain the signature Cas10 protein and different sets of accessory 

proteins: Csm proteins in types IIIA/D and Cmr proteins in types IIIB/C. Effector complexes 

Csm and Cmr have similar structures: Csm4 or Cmr3 holds 5’ tag of the crRNA and is connected 

to Cas10, while two backbone proteins (Csm3 and Csm2 or Cmr4 and Cmr5) form a filament 

around the crRNA and are capped by Csm5 or Cmr1. Type III effector complexes recognize a 

protospacer sequence in RNA, which matches the crRNA, and degrade target RNA and DNA. 

Type III effector complexes harbor several nuclease activities: 

 

1. The Cas10 HD domain is an ssDNA nuclease. Cas10 acts as a nonspecific nuclease, cleaving 

the nontemplate strand of target DNA, from which the target RNA recognized by crRNA is 

transcribed. Cas10 is only activated when the target is transcribed and is repressed, when the 

3’ region of a protospacer is similar to the CRISPR repeat sequence (87, 88). Cas10 is 

temporally regulated – binding of the crRNA to a protospacer induces a conformational 

change in the HD domain and activates the single-stranded DNase activity. When target 

RNA is destroyed by other nucleases, HD domain reverses back to its inactive state (89, 90).  

2. Csm3 and Cmr4 backbone proteins are ssRNA nucleases. Csm3 is present in multiple copies 

in the effector complex, covering crRNA. The number of copies depends on the length of 
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crRNA. Csm3 cleaves RNA complementary to the crRNA in multiple sites separated by 6 nt 

increments (91, 92).  

3. Csm6 HEPN domain is a ribonuclease. Csm6 is not part of the effector complex and requires 

secondary messenger molecule for the activation. Following the target recognition by the 

effector complex and specific DNA cleavage by the Cas10 HD domain, the Palm domain of 

Cas10 synthesizes cyclic oligoadenylates from ATP (93, 94). Oligoadenylates bind to the 

CARF (CRISPR Associated Rossman Fold) domain of unspecific ribonuclease Csm6 and 

allosterically activate RNA degradation activity of Csm6 HEPN domain. CARF domains 

were also found in Cas proteins containing HTH (helix-turn-helix) and other nuclease 

domains, including PIN, RelE and PD-(D/E)xK. Thus, oligoadenylates generated by Cas10 

may activate other nucleases and transcription factors (87).  

 

To sum up, the interference in type III systems includes the following steps: specific DNA 

degradation by Cas10 and RNA degradation by Csm3 upon crRNA recognition and 

unspecific RNA degradation by Csm6 (93, 94) (Figure 5).  

 

 

 

Figure 5. Enzymatic activities of the type III effector complex. Domain composition of type III effector 

complexes is shown in the top left. Upon target recognition, RNase activity of Csm3 proteins and DNase activity of 
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HD domain of Cas10 are initiated. In addition to in-built nuclease activities, an independent ssRNase – Csm6 – is 

activated by c-oligoA synthesized by the Palm domain of Cas10. Reproduced with permission from (94). 

 

Type IV interference 

A proposed type IV effector complex consists of the large subunit Csf1 and homologs of Cas5 

and Cas7 backbone proteins. In many cases, type IV interference modules are not associated 

with adaptation modules and probably use crRNAs of other CRISPR types (95). Recently, the 

structure of type IV effector complex was resolved, confirming protein functions, predicted by 

homology. Csf5 protein was shown to process the pre-crRNA generating unusual 7 nt 5’ end 

repeat tag of crRNA (96). Type IV-B interference modules are generally encoded on mobile 

genetic elements (plasmids or viruses) and are associated with several accessory proteins (97). 

 

Type V interference 

Type V interference complex includes the Cas12 protein with RuvC and Nuc nuclease domains 

and a crRNA. The system is characterized by a T-rich PAM sequence, present at the 5’ end of 

protospacer required for the interference (86, 98, 99). RuvC domain performs cleavage of both 

target and nontarget DNA strands generating staggered ends with 7 nt overhangs (100). Nuc 

endoribonuclease domain is involved in the processing of pre-crRNAs (101). Different subtypes 

of type V CRISPR-Cas systems demonstrated great diversity in structure of effector complexes, 

dependence on tracrRNAs, PAM requirements and nuclease activities (102). 

 

Type VI interference 

Type VI effector complex is an RNA-guided RNA nuclease, which consists of Cas13 protein 

with two HEPN ribonuclease domains and crRNA. Type VI complex is capable of sequence-

specific degradation of ssRNA. Similarly to Cas12, Cas13 is responsible for crRNA maturation 

and does not require a tracrRNA (103). After recognition and cleavage of the main target, Cas13 

becomes a nonspecific RNase (104). Cas13 activity is regulated by small accessory proteins. 

 

5. Distribution of CRISPR-Cas systems 

CRISPR-Cas systems are found in 90% of Archaea, but only in 50% of Bacteria (105). 

Furthermore, the distribution of different CRISPR-Cas types across the two domains is not even: 

type II and type IV CRISPR-Cas systems are present exclusively in Bacteria, while type V is 

specific to Archaea (95, 106) (Figure 6). In Bacteria, the distribution of CRISPR-Cas systems is 

mosaic – closely related strains can differ in the presence/absence of CRISPR-Cas systems (107, 

108). Furthermore, thermophilic organisms are especially enriched in CRISPR-Cas systems (and 
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other defense systems) when compared to mesophilic and psychrophilic prokaryotes (106). 

According to theoretical predictions (109), the CRISPR+ hosts benefit over CRISPR- hosts in 

conditions of low virus diversity, which is the case in hot geothermal environments. Multiple 

negative and positive correlations between distribution of CRISPR-Cas systems of particular 

type in prokaryotic genomes and distribution of components of double-strand break repair 

systems were reported, suggesting interaction between these two systems (110).  

 

Figure 6. Distribution of CRISPR–Cas system types (a) and subtypes (b) in bacteria and archaea. Incomplete 

or ambiguous loci are shown with grey color. The dataset was analyzed in 2015, before the identification of type VI 

CRISPR-Cas systems. Reproduced with permission from (95). 

 

6. CRISPR-Cas immunity of Sulfolobales 

Hyperthermophilic archaea from the order Sulfolobales have some of the most complex 

CRISPR-Cas systems known. For example, the genome of Sulfolobus solfataricus contains six 

CRISPR arrays, two adaptation modules, five complete and several incomplete interference 

modules (Figure 7). CRISPR arrays A-E of S. solfataricus are constitutively transcribed from 

promoters located in long leader sequences (111), whereas CRISPR array F lacks the leader 

sequence (112). The resulting transcripts are processed by Cas6 into crRNA with 8 nt 5’ handle 

(113). CRISPR arrays A and B are associated with the first adaptation module Cas1AB-Cas2AB, 

while arrays from C to F are served by the second adaptation module, named Cas1CD-Cas2CD. 

The CRISPR repeats from A-B and C-D arrays have the same last 8 nucleotides, so the 5’ 

handles of crRNAs generated from these arrays are indistinguishable. As a result, the 

interference modules of types I-A, III-D, and III-B are not specific to CRISPR array type and can 

utilize crRNA from all active CRISPR arrays (113).  

 

The Csm (III-D) complex was copurified with crRNAs from all active CRISPR arrays, but 

mostly with crRNA from A-B CRISPR arrays (114). By contrast, Cmr (III-B) complex showed 
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preferences to crRNAs from C-D CRISPR arrays (115). This bias can be explained by specificity 

of Cas6 paralogs. Cas6-1 protein is a multiple turnover enzyme which binds preferably to C-D 

CRISPR repeats in pre-crRNAs, while Cas6-3, a single-turnover enzyme, associates with the 

Csm complex and has no preferences to CRISPR repeats (116).  

 

Figure 7. Schematic representation of S. solfataricus CRISPR-Cas modules. Six CRISPR arrays (A-F) are 

shown as boxes, with an arrow indicating the leader sequence. Two adaptation modules (green and yellow) are 

associated with the CRISPR arrays of the same colors. Complete interference modules are shown against the grey 

background. 

 

Adaptation 

Two adaptation modules Cas1AB-Cas2AB and Cas1CD-Cas2CD are capable of integration of 

new spacers in vitro. Acquisition of new spacers into arrays A-B and C-D-E requires “TCN” and 

“CCN” PAMs, respectively. While in vitro, only Cas1 and Cas2 were required for integration of 

spacers, in vivo all components of adaptation module were essential: Cas1, Cas2, Cas4, and Csa1 

(117). Multiple spacers were incorporated into C, D, and E CRISPR arrays in vivo during 

infection of S. solfataricus with a mixture of viruses (118). Similarly to I-E CRISPR-Cas system 

of E. coli, the intact leader sequence and the beginning of the first CRISPR repeat are necessary 

for spacer integration. Unspecific integration into random positions of plasmid carrying a 

CRISPR array was observed in in vitro experiments. The addition of known archaeal chromatin 

proteins did not change this. However, the specificity of spacer integration was restored by 

unknown host factor(s) from the cell lysate. Cas4 protein slightly increased the specificity of 

spacer integration and was shown to be involved in trimming of prespacer 3’ ends (119).  
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Interference 

Several types of interference modules of Sulfolobus provide immunity against DNA in the 

presence of PAM, transcribed DNA, or RNA of mobile genetic elements.  

 

Type I-A (Cascade) 

Type I-A effector complex consists of Cas7, Cas5, Csa5, Cas8, Cas3 and Cas3’’ proteins. In 

contrast to I-E type, two domains of Cas3 – helicase domain Cas3’ and nuclease domain Cas3’’ 

are part of the effector complex. The possible explanation is that recruitment of the trans-acting 

Cas3 to the pre-formed Cascade complex is inefficient in high temperature environments (120).  

 

When S. solfataricus cells were challenged with MGEs (mobile genetic elements) carrying 

perfectly matching protospacer or protospacers with mutations, a transcription-independent DNA 

interference by type I-A interference module occurred. It required an intact PAM sequence and 

tolerated up to 3 mismatches between the protospacer sequence and crRNA spacer (121). 

Positions 3-7 and 21-25 of the protospacer were the most important for recognition by the I-A 

interference complex (122).  

 

Type III-B (Cmr) 

The DNA and RNA interference activities of III-B module were demonstrated for S. islandicus. 

Only plasmids with antisense transcription of protospacer were restricted. PAM sequence was 

not required for III-B DNA interference, but the presence of 5` sequence similar to the last 6 

nucleotides of the CRISPR repeat resulted in loss of targeting (123). The RNA interference 

occurs when spacer is complementary to the targeted gene transcript, with no PAM sequence 

required, and multiple mismatches between crRNA spacer and target RNA are tolerated. Two 

distinct III-B interference modules of S. islandicus have different patterns of RNA cleavage: 

Cmr-a complex implements a 5’ ruler mechanism, cleaving at specific positions, located at 6 nt 

distance from each other, while Cmr-b complex cuts RNA between UA or UU dinucleotides 

(124). 

 

Regulation 

Transcriptional regulator Csa3a, encoded by a gene located adjacent to the Cas1CD-Cas2CD 

encoding operon activates the acquisition of new spacers in S. islandicus. Overexpression of the 

Csa3a protein from a plasmid activates the transcription of the adaptation module genes and 

leads to the acquisition of hundreds of new spacers with conserved CCN PAM from the host 
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genome and from the plasmid carrying the csa3a gene. Binding sites for Csa3a were identified in 

the promoter in front of the adaptation module genes and in the leader sequence of the CRISPR 

array (125). 

 

Another transcriptional factor, Csa3b, is encoded near type I-A interference modules in S. 

islandicus and S. solfataricus. Csa3b binds to a palindromic site in the promoter of the 

interference complex (Cascade-encoding) operon and represses its transcription. The interference 

complex itself is also shown to interact with a promoter and participate in autorepression of the 

transcription of its own genes, forming a negative-feedback loop. During virus infection, if 

protospacer matches the crRNA and a correct PAM is found, Cascade and Csa3b are released 

from the promoter and transcription of the Cascade genes is reactivated (Figure 8) (126).  

 

Dynamics of cas genes’ expression was studied during the infection of S. islandicus with the 

SIRV2 virus. All cas genes were expressed in uninfected cells, but transcription level for 

different interference modules varied with I-A and III-B Cmr-B being the most expressed. After 

1h of infection the expression of interference modules and CRISPR arrays greatly increased (2-

10 fold) and remained at this level during the entire length of the SIRV2 infection cycle (127). 

 

Another regulator of CRISPR-Cas systems in Sulfolobus is Cbp1 protein. Unlike in the case of 

Csa3a and Csa3B, the gene coding for the Cbp1 is not located near CRISPR-Cas loci. Cbp1 

specifically binds to CRISPR repeats (preferring C and D arrays in S. solfataricus), thereby 

modulating the transcription of CRISPR arrays. Smaller amounts of long pre-crRNAs were 

found in the cbp1 deletion mutant, whereas overexpression of Cbp1 led to an increased level of 

pre-crRNAs (128).  
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Figure 8. Proposed regulation of type I-A CRISPR-Cas system of Sulfolobus by Csa3b and Csa3a. A. In the 

absence of virus infection Csa3b and Cascade repress the transcription of interference genes. B. Upon virus infection 

Csa3a activates transcription of adaptation module and pre-crRNA. Cascade complex is released from promoter of 

interference genes and transcription of interference module is reactivated. Reproduced with permission from (117). 

 

7. Strain subtyping 

Even before CRISPR-Cas system was found to be a prokaryotic immune system, analysis of 

CRISPR arrays was used for subtyping of pathogenic strains (129). CRISPR array is a fast-

evolving part of the genome: acquisition, duplication, and loss of spacers occurs together with 

point mutations in CRISPR repeat and spacer sequences. Thus, sequences of the CRISPR arrays 

could be used to differentiate closely related bacterial lineages (130). Several CRISPR-based 

subtyping methods were designed:  

 

1. Spoligotyping: CRISPR spacers are amplified with primers complementary to CRISPR 

repeat sequences. Labeled PCR products are hybridized with probes containing known 

spacer sequences (131, 132).  

2. Amplification and sequencing of CRISPR arrays: spacer composition of CRISPR arrays 

and analysis of point mutations in spacer sequences allowed the reconstruction of 

phylogenetic relationships between Yersinia pestis strains. The similarity of spacer sets 

correlates with the distance between sites of strain isolation (133). A similar sequence-

based method was designed for Salmonella (134).  

3. Strain detection with real-type PCR using strain-specific spacer sequences (135). 

4. Subtyping based on CRISPR array lengths (136). 

 

CRISPR-subtyping methods demonstrate the best performance in not very active CRISPR-Cas 

systems, such as I-E system of E.coli. In addition to high rate of spacer acquisition, deletions of 

spacers and horizontal transfer of CRISPR arrays might hinder the CRISPR-based reconstruction 

of phylogeny (137, 138).  

 

8. CRISPR in metagenomics 

CRISPR spacers represent a catalog of past viral infections and, as such, are a valuable source of 

information about virus-host interactions. Analysis of spacers can be particularly powerful when 

applied to metagenomic data. Several bioinformatic tools were implemented for the extraction of 

CRISPR spacers and reconstruction of CRISPR arrays from metagenomics reads (e.g., CRASS, 
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CRISPRFinder, PILER-CR, MetaCrast (139-142)). Examples of metagenome-derived spacers 

matching sequences of phages from the same sampling site were reported, with some spacers 

targeting low-abundance viruses in the virome (143). In this way, CRISPR spacers can be used 

to identify viral sequences in metagenomes and monitor changes in viral populations (144, 145). 

Besides extraction from metagenomic data or CRISPR loci (144, 146), CRISPR spacers can be 

directly amplified and analyzed either from individual bacterial isolates or whole communities 

(147, 148). Matching of CRISPR spacers to unannotated metagenomic reads allows 

identification of plasmid and viral metagenomic sequences (149, 150). Diversity of CRISPR 

spacers was studied in metatranscriptome data of the human gut (151). Several new variants of 

CRISPR repeats were identified and long CRISPR arrays were assembled. Most of reconstructed 

CRISPR arrays were transcribed in one direction, however, several examples of bidirectional 

transcription were found. Despite relative abundance of type III spacers in matched metagenomic 

data, only few RNAs were found from type III CRISPR arrays (151).  

 

9. Anti-CRISPR proteins 

Mutations in targeted protospacers or associated PAM sequences allow viruses to evade the 

CRISPR-Cas immunity. In response to such escape mutations, prokaryotes update the collection 

of spacers via naive or primed adaptation. In addition to mutation-based anti-CRISPR 

mechanism, some viruses encode small anti-CRISPR proteins (Acrs), which block the action of 

CRISPR interference complexes (152). More than 20 diverse families of Acrs acting against I-D, 

I-E, I-F, II-A, II-C, and V-A CRISPR-Cas types have been characterised and Acrs specific for I-

A and III-B CRISPR types have been predicted (153, 154).  

Several approaches were used for identification of new families of anti-CRISPR proteins: 

1. Isolation and analysis of CRISPR-Cas resistant viruses (155). 

2. Search for viral genes co-localized with transcriptional regulator aca (anti-CRISPR 

associated) genes (156). 

3. Testing of anti-CRISPR activities of gene products from MGEs integrated in genomes 

harboring autoimmune spacers (157). 

 

For a few of the discovered Acrs the mechanism of CRISPR-Cas blockage has been studied in 

detail (Figure 9): 

1. I-F anti-CRISPR proteins AcrF1 and AcrF2 interact with different subunits of the 

Cascade complex and prevent dsDNA binding. AcrF3 freezes Cas3 in an inactive state, 

preventing the recruitment of Cas3 by the Cascade (156, 158, 159). 
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2. II-A anti-CRISPR protein AcrIIA4 is a dsDNA mimic, which binds to the PAM 

recognition site of Cas9 and blocks its activity (160). 

3. II-C anti-CRISPR proteins AcrIIC1 and AcrIIC3 have distinct mechanisms of action: 

AcrIIC1 blocks the DNA cleavage by binding to the Cas9 HNH nuclease domain, 

whereas AcrIIC3 hinders the binding of Cas9 to dsDNA (160, 161).  

4. I-D anti-CRISPR protein AcrID1 contains a lot of negatively charged residues on its 

surface and probably acts like a dsDNA mimic, similar to ACrIIA4 (162).  

 

 

Figure 9. Different strategies of anti-CRISPR proteins for blocking CRISP-Cas activity. In type I systems (A) 

AcrF1 and AcrF2 prevent binding of Cascade complex to the target sequence and AcrF3 blocks the Cas3 nuclease 

activity. In type II systems (B) AcrIIC3, AcrIIA2, AcrIIA4 block Cas9 target recognition and AcrIIC1 inhibits Cas9 

nuclease activity. Reproduced with permission from (163). 

 

10. Alternative functions of CRISPR-Cas systems 

The role of CRISPR-Cas system in adaptive immunity has been thoroughly studied for different 

CRISPR-Cas system types in multiple species using variety of conditions. In some cases, for 

example, I-E CRISPR system of E. coli, CRISPR-Cas machinery does not fulfill its primary 

purpose as a defense system (164), but rather has alternative functions (165). Below are listed 

some of the most notable noncanonical CRISPR-Cas functions.  
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The transcription of cas genes in E. coli is repressed by H-NS factor (52), and no turnover of 

spacers in CRISPR arrays was observed for a long period of time (108, 166), but potentially 

harmful immune system is still maintained in the E. coli genome (167). Cas1 protein in E. coli 

was shown to cooperate with a DNA repair system RecBCD, with the deletion of Cas1 resulting 

in increased sensitivity to DNA damage stress in mutant cells (168).  

 

 

Figure 10. Noncanonical CRISPR-Cas functions. Alternative functions of CRISPR-Cas systems of different 

types, origin of CRISPR-Cas system, Cas proteins or CRISPR array participation in the function are indicated in the 

table. Reproduced with permission from (169).  

 

Deletion, disruption or mutation of different CRISPR-Cas system components may affect other 

physiological processes of the cell (Figure 10). The formation of fruiting body in Myxococcus 

xanthus was significantly reduced by disruption of cas8, cas7 or cas5 genes of I-C CRISPR-Cas 

system present in the genome (170-172). Moreover, the Cas8 protein was shown to activate the 

expression of FruA regulator, required for the sporulation process in M. xanthus (171). Another 

type of group behavior altered in CRISPR-Cas mutants is the biofilm formation in Pseudomonas 

aeruginosa. Deletion of interference-related cas genes in Pseudomonas strain infected with the 

temperate phage DMS3 restored the ability to form biofilms (173). The mechanism of biofilm 

formation regulation by CRISPR-Cas system may involves one of the spacers in Pseudomonas 

CRISPR array, which is partially complementary to the DMS3 genome (174).  
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A link between virulence and Cas proteins was demonstrated for several pathogens. In 

Francisella novicida bacterium, Cas9 protein, tracrRNA and scaRNA (small CRISPR-Cas-

associated RNA) downregulate the production of surface lipoprotein BLP, which is involved in 

recognition of Francisella by the host immune system (175). Similarly, the absence of Cas9 in 

Campylobacter jejuni influenced binding of host antibodies to the cell surface and altered the 

swarming behavior (176). Finally, CRISPR adaptation related gene cas2 is necessary for the 

infectivity of Legionella pneumophila, the mechanism of this regulation, however, remains 

unknown (177).  
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AIMS OF THE STUDY 

 

The aim of my PhD thesis project was to answer the following questions: 

● How well the CRISPR spacer diversity is represented in current databases? (Chapters I, 

II, III, IV) 

● How variable are the spacer contents in natural populations in short and long terms? 

(Chapters I, IV) 

● Do geographically close/distant prokaryotic populations have similar/different spacer 

collections? (Chapters II, III, IV) 

● Is there biogeographical pattern in virus targeting by CRISPR spacers, i.e., do 

prokaryotic populations have stronger CRISPR immunity against local viruses? (Chapters 

II, III, IV, V) 

● How do different CRISPR-Cas systems interact with each other in terms of spacer 

content? (Chapters III, IV) 

● Can new facets of virus-host and virus-virus interactions be revealed by studying the 

spacer diversity in natural microbial populations? (Chapters IV, V) 

● What is short-term dynamics of CRISPR spacers during cultivation with viruses? 

(Annex) 

● What are properties of spacer sequences? (Chapter VI, Annex)  
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CHAPTER I 

 

Dynamics of Escherichia coli type I-E CRISPR 

spacers over 42 000 years 
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Introduction:  

This chapter describes the development and the first application of CRISPRome (metagenome of 

CRISPR spacers) analysis by our group. A targeted metagenomics approach was used to assess 

the diversity of E. coli community from the intestinal content of a mammoth. In addition to 

natural E. coli community, the model experiment with E. coli strains was performed to evaluate 

the methodology used. Several pipelines for analysis of CRISPRome data were implemented: 

extraction of spacers from NGS reads, hierarchical clustering of similar spacer sequences, 

evaluation of our clustering procedure by comparison to other clustering methods. Developed 

software was later used for data analysis in Chapter II. 

 

Contribution:  

This project had started several years before I joined K. Severinov’s lab. By that time, NGS data 

of E. coli community have been obtained and processed by coauthors and spacer extraction and 

spacer clustering pipelines were already developed. I applied the developed pipelines to the 

model experiment with laboratory E. coli strains (Figure 1B). I created the local database of 

spacers from fully sequenced E. coli genomes and compared the diversity of ancient natural 

community from a mammoth with diversity of spacers in contemporary E. coli genomes by 

BLASTN (Figure 2A). I searched for protospacer sequences in sequences of E. coli phages and 

plasmids with BLASTN (Table 2). Finally, I attempted to reconstruct long CRISPR arrays from 

the CRISPRome data (Figure 3). I modified the spacer extraction pipeline to obtain pairs and 

triplets of spacers. De novo reconstruction of CRISPR arrays by overlapping pairs and triplets of 

spacers led to ambiguous result (possibly due to high number of spacer combinations in pairs). 

With reference-based CRISPR array reconstruction (using sequences of CRISPR arrays from 

databases), I was able to find several contemporary CRISPR arrays in the ancient CRISPRome 

data, suggesting inactivity of I-E CRISPR-Cas system of E. coli.  I prepared some figures and 

tables for the manuscript and contributed to the Methods section. The main text, however, was 

written by the first author. 
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Abstract

CRISPR-Cas are nucleic acid-based prokaryotic immune systems. CRISPR arrays accu-

mulate spacers from foreign DNA and provide resistance to mobile genetic elements

containing identical or similar sequences. Thus, the set of spacers present in a given

bacterium can be regarded as a record of encounters of its ancestors with genetic inva-

ders. Such records should be specific for different lineages and change with time, as

earlier acquired spacers get obsolete and are lost. Here, we studied type I-E CRISPR

spacers of Escherichia coli from extinct pachyderm. We find that many spacers recov-

ered from intestines of a 42 000-year-old mammoth match spacers of present-day

E. coli. Present-day CRISPR arrays can be reconstructed from palaeo sequences, indi-

cating that the order of spacers has also been preserved. The results suggest that E. coli
CRISPR arrays were not subject to intensive change through adaptive acquisition dur-

ing this time.

Keywords: Escherichia coli, CRISPR spacers, CRISPR arrays, palaeo DNA
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Introduction

Prokaryotic CRISPR (clustered regularly interspaced

short palindromic repeat)-Cas (CRISPR-associated pro-

teins) systems comprise noncoding CRISPR DNA arrays

containing variable spacers separated by identical or

almost identical repeats and cas genes (Makarova et al.

2015). Upon CRISPR array transcription and processing,

individual CRISPR RNAs containing a single spacer

and flanking repeat fragments are bound by Cas pro-

teins. Resulting ribonucleoprotein complexes recognize

nucleic acids with sequences matching CRISPR RNA

spacer and subsequently degrade them (Barrangou et al.

2007; Brouns et al. 2008; Marraffini & Sontheimer 2008).

New spacers are acquired into one end of CRISPR

arrays during a Cas protein-catalysed process referred

to as ‘CRISPR adaptation’ (van der Oost et al. 2009).

Bioinformatics analysis revealed that some CRISPR

spacers are derived from viral and plasmid sequences

(Bolotin et al. 2005; Mojica et al. 2005; Pourcel et al.

2005) and it is now commonly accepted that CRISPR-

Cas systems control the spread of mobile genetic ele-

ments such as plasmids and phages by providing

prokaryotes with immunity, which is both adaptive and

heritable. Mobile genetic elements can escape the

CRISPR-Cas defence by altering sequences recognized

by CRISPR RNAs through random mutations or recom-

bination, rendering CRISPR defence inefficient (Ander-

sson & Banfield 2008; Deveau et al. 2008; Paez-espino

et al. 2015) and necessitating acquisition of additional

spacers. In several cases, studies of temporal dynamics
Correspondence: Konstantin Severinov, Fax: +1 848 445 5735;
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of bacterial–bacteriophage populations in nature indeed

revealed a continuous evolutionary arms race between

phages and their hosts driven by cycles of new spacer

acquisition followed by accumulation of phage mutants

(Andersson & Banfield 2008; Sun et al. 2016). Similar

dynamics was observed during long-term laboratory

cultivation experiments with Streptococcus thermophilus

(Paez-Espino et al. 2013).

The type I-E CRISPR-Cas system of model bacterium

Escherichia coli is repressed at laboratory conditions

(Pougach et al. 2010; Pul et al. 2010). However, when

induced by means of genetic engineering, it efficiently

prevents transformation with plasmids and/or infection

by phages harbouring sequences matching spacers

(Brouns et al. 2008; Pougach et al. 2010) and is also cap-

able of highly efficient spacer acquisition (Datsenko

et al. 2012; Yosef et al. 2012). The spacer content of natu-

ral isolates of E. coli is highly variable with overall

diversity being higher at CRISPR arrays ends where

new spacers are acquired (Diez-Villasenor et al. 2010;

Touchon et al. 2011; Sheludchenko et al. 2015), suggest-

ing that the CRISPR-Cas system is active in natural

E. coli populations. However, compared to some other

bacteria, very few E. coli spacers match known bacterio-

phages and plasmids, a surprising result considering

the number of known E. coli mobile genetic elements

(Diez-Villasenor et al. 2010; Touchon et al. 2011).

Analysis of palaeo DNA offers an unprecedented

ability to analyse sequences from distant past and com-

pare them to modern sequences (Hofreiter et al. 2015).

CRISPR spacers are particularly attractive for such com-

parative analysis for their small size favours their

preservation despite the fragmentation and deteriora-

tion of ancient DNA (Dabney et al. 2013), while the

adaptive nature of CRISPR immunity implies significant

turnover of spacers over time. Here, we studied spacers

associated with type I-E E. coli CRISPR repeats from an

extinct pachyderm, a baby mammoth Lyuba that died

about 42 000 years ago (Fisher et al. 2009), and com-

pared them with annotated contemporary CRISPR spac-

ers available in public databases. To our surprise, we

found no evidence of E. coli CRISPR spacer turnover.

Multiple cases of palaeo CRISPR arrays preservation

over the course of 42 000 years have been revealed,

implying overall stability of the locus.

Materials and Methods

Sampling

An intact mammoth calf named Lyuba was found at

Yamal Peninsula (western Siberia, Russia) in 2007

(Fisher et al. 2009) and brought to St. Petersburg with-

out thawing. The carcass was processed in a sterilized

laboratory room at �20 °C. The abdominal wall was

opened from the left side. All internal organs were in a

good shape. The stomach and intestines appeared full.

Several grams of intestinal or stomach content were

recovered and stored in sterilized packages at �20 °C
until further analysis.

DNA extraction

All manipulations with ancient samples, including PCR

amplification, were performed in a separate building in

laboratory rooms where no prior molecular biology

research was conducted. All samples were sterile as

judged by the absence of colony formation after aliquots

of intestinal or stomach content suspensions used for

DNA purification were plated on LB agar plates. DNA

was extracted by the following procedure: approxi-

mately 0.5 g of material was combined with 600 lL of

preheated lysis buffer (10 mM Tris-HCl, pH 7.8, 50 mM

EDTA, 150 mM NaCl, 2.5% N-lauroyl sarcosine, 500 mM

b-mercaptoethanol, 400 lg/mL proteinase K and

2.5 mM N-phenacylthiazolium bromide (Poinar 1998)),

and samples were incubated at 65 °C for at least 4 h

with vigorous agitation and extracted with an equal

volume of phenol–chloroform (1:1) mixture, followed

by chloroform–octanol (24:1) mixture extraction. DNA

from aqueous phase was precipitated with isopropyl

alcohol (0.6 volume) and 0.1 volume of 3 M sodium

acetate. Precipitated DNA was dissolved in 50–100 lL
of milli-Q water. A mock control was performed by fol-

lowing the procedure described above with 0.5 ml of

distilled water instead of palaeo material. DNA from

Escherichia coli K12 cells was extracted in standard

molecular biology laboratory with genomic DNA purifi-

cation kit (Thermo Scientific) according to the manufac-

turer’s instruction. Genomic DNA prepared from E. coli

K12 was shared by sonication on Vibra-Cell VCX130

machine (Sonics) at 100% power for 5 min yielding

DNA fragments with a mean ~200 bp length to repro-

duce the state of degradation of ancient DNA extracted

from the mammoth sample.

PCR and sequencing

The method used for spacer amplification is similar to

those previously applied for other CRISPR-Cas systems

(Sun et al. 2016; Lopatina et al. 2016). To minimize

biases due to variations in individual repeat sequences,

primers used for amplification were designed based on

a repeat Logo determined with WebLogo 3.0 (Crooks

et al. 2004) from repeats in all known type I-E E. coli

CRISPR arrays. PCR amplification was performed using

a forward primer Rep1-3 (CGCTGGCGCGGGGAAC

WC) and reverse primers Rep 2-1 (GCGCCAGCGGG
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GATAAACCG) and Rep 2-2 (GCGCCAGCGGGG

ATAAACCN). The molar ratio of Rep2-1/Rep2-2 was

3/1; the overall concentration of reverse primers was

the same as that of the forward primer. 50 lL PCR

reactions contained 67 mM Tris-HCl, pH 8.3,

17 mM (NH4)2SO4, 0.001% Tween 20, 2.5 mM MgCl2,

10 ng of DNA template, 25 pmol of forward primer or

reverse primer mix, and 1.25 units of Encyclo Taq poly-

merase (Evrogen). For each DNA sample analysed, five

to ten individual PCR reactions were set up. After

amplification, individual reactions were pooled and

processed jointly.

Amplicons corresponding to E. coli K12 and ‘mam-

moth’ samples were used to obtain libraries with Tru-

Seq DNA sample preparation kit according to the

manufacturer’s instructions. Paired-end sequencing was

performed on Illumina MiSeq platform with MiSeq

reagent kit v.2 (Illumina), in 250-bp cycles. For palaeo

samples, 462, 332 and 402 thousands of pair reads were

obtained for first, second and third biological replica,

correspondingly. A total of 160 thousands reads were

obtained for the K12 sample.

Bioinformatics analysis

Raw sequencing data were analysed using SHORTREAD

and BIOSTRINGS packages (Morgan et al. 2009). Illumina-

sequencing reads were filtered for quality scores of ≥.
Reads that contained 32-bp sequences between two

CRISPR repeats were selected, and the intervening 32-

bp sequences were considered as spacers.

The spacer clustering procedure is presented in detail

in the Supporting Information section. Briefly, each

spacer was represented as a 32 9 4 = 128 dimensional

numerical vector in which information about each

nucleotide is stored in four corresponding dimensions.

The distance between two spacers or clusters was

defined as a sum over 128 dimensions of the absolute

values of the difference between their coordinates. Spac-

ers were clustered into a three-level branching structure

with each subsequent level having clusters of progres-

sively higher similarity between its members. At the

last level of segregation, clusters had radii approxi-

mately equal to 3, which reflects the maximum number

of substitutions between spacers. The code was written

in F# and is available upon request. To verify robust-

ness, clustering was performed repeatedly starting with

different randomly chosen initial spacer sequences. The

procedure converged to same cluster sets for major

(N > 10) clusters. Next, consensus sequences of each

cluster were compared to each other using standard

pairwise BLASTn algorithms with an e-value less than

10�9. When trivial matchings of each cluster to itself

were excluded, overlapping of 0.15% or less of the

clusters was detected, indicating that underclustering

was minimal. As an independent verification of the

clustering procedure, a data set of 30 000 spacers

acquired from pG8-C1T plasmid (Shmakov et al. 2014)

was clustered alone or together with one of the spacer

sets analysed in this work. The average number of plas-

mid-derived spacer clusters corresponded to known

number of plasmid protospacers (the ratio did not

exceed 1.2), while clustering of combined set of plas-

mid-derived and palaeo spacers was found to proceed

independently, as should be expected because no

palaeo spacers match the pG8-C1T plasmid sequences.

The spacer diversity saturation was calculated accord-

ing to Good’s formula: C = 1 � (n1/N), where n1 is the

number of sequences that occurred only once and N is

the sample size (Good 1953). Spacer clusters of three

biological replicates were merged based on pairwise

comparison with up to three mismatches tolerated

using SHORTREAD and BIOSTRINGS R packages (Morgan et al.

2009). Spacers from annotated CRISPR arrays of

Salmonella and E. coli downloaded from GenBank were

extracted and clustered in the same way. Pairwise com-

parison with up to three mismatches tolerated was also

used to find intersections between spacer clusters from

the mammoth sample and annotated arrays. Two

benchmark groups of ‘recent’ and ‘ancient’ spacers were

composed, correspondingly, from three leader-proximal

and three leader-distant spacers from each known

array. For each spacer, the frequency of its belonging to

one of these groups was determined. Then, the sums of

‘recent’ and ‘ancient’ frequency values were next

calculated.

To search for protospacers matching spacer

sequences, cluster consensus sequences were aligned to

nt (2016) databases using BLASTn algorithm adjusted

for short sequences. Hits with an e-value>0.001 or

matching CRISPR arrays were filtered out.

Reads containing two or three spacers were extracted

and grouped with up to three mismatches tolerated in

each spacer. Comparisons with fragments of E. coli

CRISPR arrays present in public databases were per-

formed using SHORTREAD and BIOSTRINGS packages

(Morgan et al. 2009) with up to three mismatches per

each spacer allowed.

To reconstruct CRISPR allele fragments, pairs of

neighbouring spacers were represented as a directed

graph, where vertices were spacers and edges connect-

ing vertices represented spacers present in one read.

Each edge had its own weight reflecting the frequency

of two spacers’ co-occurrence. To reconstruct most com-

mon arrays, we considered only edges with weights

above 30. After decomposition of resulting subgraphs

into connected components, the longest path for each

component was determined. Vertices in the longest path
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corresponded to spacer of a reconstructed array.

Described algorithms were implemented using SHORT-

READ and BIOSTRINGS packages (Morgan et al. 2009).

Scripts are available from the authors upon request.

Results and Discussion

To determine the overall diversity of spacers associated

with Escherichia coli type I-E CRISPR repeat in an

intestinal sample, a PCR-based method amplifying

short spacer-containing fragments of CRISPR arrays

with partially overlapping primers complementary to

CRISPR repeat was applied (Sun et al. 2016; Lopatina

et al. 2016) (Fig. 1a). The procedure should allow

amplification of the entire complement of spacers asso-

ciated with chosen CRISPR repeat and is particularly

well suited for analysis of palaeo DNA which is usu-

ally degraded to 50–400-bp fragments (Dabney et al.

2013). It should be noted that type I-E CRISPR repeat

sequences of E. coli and Salmonella are identical (Tou-

chon & Rocha 2010), so our procedure cannot distin-

guish spacers originating from these bacteria. To

evaluate the procedure, we applied it to a laboratory

E. coli strain K12, which contains two CRISPR arrays,

CRISPR1 and CRISPR2 according to the classification

of Sun et al. 2016; with twelve and six different spac-

ers, correspondingly (Fig. 1b) (Diez-Villasenor et al.

2010). The K12 genomic DNA was disrupted by

sonication to give a mean fragment size of ~200 bp to

mimic palaeo DNA. Amplified PCR fragments (Fig. 1c)

were purified and subjected to high-density Illumina

sequencing. Spacers (defined as 32-nt-long sequences

bracketed by CRISPR repeats) were extracted from

individual reads and mapped to K12 CRISPR arrays.

Reads corresponding to every K12 spacer were

obtained (Fig. 1b). The frequency of reads correspond-

ing to different spacers within each array and the

mean number of spacers amplified from CRISPR1 and

CRISPR2 arrays were not equal, indicating that our

procedure provides a representative qualitative but not

quantitative view of type I-E repeat-associated spacers.

Many of the longer reads contained more than one

spacer-repeat unit. When neighbouring spacers from

longer reads were analysed, their order matched the

order of neighbouring spacers in K12 CRISPR arrays.

Spacer content in samples from baby mammoth

Lyuba (Fisher et al. 2009) was next investigated. Ampli-

fication products were obtained in reactions containing

DNA purified from samples of mammoth intestinal

content but not in control reactions containing mock-

purified DNA or DNA purified from a sample of mam-

moth stomach content where no E. coli was expected

(Fig. 1d).

Three independent mammoth intestinal content DNA

purifications/amplifications were performed followed

by high-density Illumina sequencing. Tens of thousands

(a) (b)

(c) (d){
{
{
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(71 bp)

2 spacers
(132 bp)

3 spacers
(193 bp)
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M             –         St          IntM          –           +         

Fig. 1 Escherichia coli type I-E CRISPR-Cas system spacer retrieval from K12 strain and a palaeo DNA sample. (a) A Logo of the

E. coli type I-E CRISPR repeat is shown at the top. The arrows above and below the Logo indicate primers used in PCR amplifica-

tion. A scheme showing expected products of PCR amplification from an E. coli type I-E CRISPR array using repeat-specific primers

is presented below. Repeats are dark grey, and spacers are light grey. Expected amplification products are shown below as black

lines with their sizes indicated. (b) The procedure outlined in (a) was applied to E. coli K12 strain containing two CRISPR arrays

(CRISPR1 and CRISPR2, schematically shown at the bottom, with repeats indicated in grey, and spacers are in colour). Rightward

horizontal arrows indicate promoters in the leader of each array. Leader-proximal spacers are coloured with lighter shades of blue,

while leader-distant spacers are shown in progressively darker colours. The number of Illumina reads corresponding to each spacer

is shown on the histograms above. (c, d) Results of E. coli type I-E CRISPR spacer amplification from K12 strain (c) and mammoth

intestinal (‘Int’) and stomach (‘St’) content samples (d). Lanes marked as ‘-’ show results obtained with mock-purified DNA.
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of nonredundant spacer sequences were obtained in

each replicate (Table 1). Clustering of such a large num-

ber of unique sequences based on direct BLAST

sequence comparisons of every spacer is a computation-

ally intensive task. Therefore, a faster k-means hierarchi-

cal clustering-based procedure was utilized (for details

of algorithm, threshold values choice and verifications

tests, see Materials and Methods and Supporting Infor-

mation sections). The clustering procedure reduced

complexity of spacer sets from each biological replicate

to 1.2–1.4 thousands spacer clusters. Sequences that fell

into distinct clusters differed from each other in more

than three positions. The depth of sequencing allowed

us to reach 80–99% coverage of spacer diversity in each

replicate as estimated by the Good’s criterion (Good

1953) (Materials and Methods and Table 1).

Spacer clusters present in each biological replicate

were merged with up to three mismatches tolerated. In

this way, a final set of 1883 unique clusters of spacers

from the mammoth sample was created (Table 1). To

obtain contemporary E. coli spacer set for comparison,

the clustering procedure was applied to 1728 spacers

from E. coli type I-E CRISPR arrays present in public

databases, producing 1599 spacer clusters. Direct

BLAST comparison of the mammoth and contemporary

spacer cluster sets revealed 425 common clusters

(Fig. 2a).

The set of spacer clusters from public databases for

Salmonella is much larger than that of E. coli (it consists

of more than ~3.6 thousands clusters), but the two sets

do not overlap. There was a minimal 0.04% overlap

between the mammoth and the Salmonella sets,

Table 1 Statistics of palaeo-spacer sequencing and clustering

Replicate CRISPR spacers, total CRISPR spacers, nonredundant Clusters Good’s criterion Cluster combined set

I 824 536 47 429 1411 0.830986 1883

II 448 951 33 226 1220 0.999231

III 709 795 46 489 1175 0.875101

1458

Palaeo spacers 

1174
425

Contemporary spacers

Ancestral Contemporary
  array        array

Expected ratio
“recent” : “ancient” 
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80
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CRISPR1 

   
    

 

Contemporary     
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CRISPR2 
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Ti
m

e Ancestral array

Contemporary array
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Fig. 2 Comparison of ancient and present-day Escherichia coli type I-E CRISPR spacers. (a) Comparison of spacer cluster sets. Num-

bers within circles correspond to unique and overlapping spacer clusters. Blue circle represents clusters obtained from the mammoth

sample; red circle represents known E. coli type I-E spacer cluster set. (b) An ancestral CRISPR array is schematically shown at the

top. Repeats are light grey, and spacers are coloured. The leader (light grey rectangle with arrow) is shown on the left. With the pas-

sage of time, additional spacers (coloured with lighter shades of blue) are acquired at the leader-proximal end, while internal spacers

(dark-coloured) are lost. A resulting contemporary array is shown at the bottom. Expected ratios of recently acquired (spacer-proxi-

mal) and ancient (spacer-distal) spacers in the ancestral and contemporary arrays are shown at the right. (c) The overall frequency of

‘ancient’ and ‘recent’ E. coli type I-E CRISPR spacer clusters from known CRISPR arrays present in public databases (DB) and in the

mammoth sample is shown. Data for CRISPR1 and CRISPR2 arrays are shown separately.
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suggesting that most mammoth sample spacers corre-

spond to E. coli type I-E CRISPR arrays spacers.

Spacers are acquired at one end of the array proximal

to the leader region, and for every acquired spacer, an

additional copy of CRISPR repeat is generated (Barran-

gou et al. 2007; Datsenko et al. 2012; Erdmann & Garrett

2012; Lopez-Sanchez et al. 2012; Swarts et al. 2012).

Spacers located close to this end of the array should

have been acquired more recently, while distal spacers

should correspond to ancient acquisition events. As

CRISPR arrays cannot grow indefinitely, the acquisition

of new spacers shall be accompanied by the loss of

older internal spacers (Deveau et al. 2008; Horvath et al.

2008; Lopez-Sanchez et al. 2012). As a result, a turnover

in spacer composition is expected (Fig. 2b). Specifically,

recently acquired spacers present in contemporary

arrays should have been less frequent or even absent in

ancestral arrays (Fig. 2b). For every spacer cluster from

contemporary set and for overlapping spacer clusters

from the mammoth set, the frequency of spacer occur-

rence in three leader-proximal (‘recent’) and leader-dis-

tal (‘ancient’) positions of annotated E. coli CRISPR

arrays was calculated (see Materials and Methods). The

overall frequency of ‘recent’ and ‘ancient’ spacer

GU260857.1

CP0114616.1

KC765637.1

JF496169.1

AP009240.1

Fig. 3 Reconstruction of contemporary CRISPR arrays from reads containing two or three spacers from the mammoth sample. Map-

ping results of neighbouring spacer pairs and triplets on five selected CRISPR arrays from contemporary Escherichia coli are shown.

Repeats are grey, and spacers are coloured. The leader regions are marked by grey triangles on the left of each array. Leader-proxi-

mal spacers are coloured with lighter shades of blue, while leader-distant spacers are dark-coloured. Detected reads containing

neighbouring spacer pairs or triplets are shown by thin grey lines above each array.

Table 2 Hits of CRISPR spacer clusters originated from the mammoth sample

Cluster consensus sequence Hit

GCATCTCTTCCACTTAAATCTCCTTGTTACGA Enterobacteria phage NJ0

CGGGATAATTCAGCTTTCACATCACGGCAAGA Enterobacteria phage phiEco32

TGCCGGGTTCGACTGGACGCCATTTGCCATCT Enterobacteria phage epsilon15

GGTAAAAACACGGTCTGAACCGACATTCATGT* Enterobacteria phage P7

CATTTTTGCGTGGCGAGCTGCGCCGCGTTCTG* Escherichia phage JLK-2012

ACGATTGGGCAGCCAGAGTTGCCGCCGGGAAA Escherichia coli strain T23 plasmid pEQ1

CGGCCAGGCTGGATTTAAGCGGCACGGCCGCA Uncultured bacterium plasmid pMBUI4

GTCGCCTCAATAGCGCGTTTACCTTTGCTGTT Uncultured bacterium plasmid pMBUI4

GCCAGGGCAAGCGGCCCAAGGGCAAGGTCATA Plasmid pMCBF1

GGGATCTCATCGTCAAAATCGTGAGCCGGATC Escherichia coli strain BK28960 plasmid

CCAGCCGTTCAGTATTGCCGGTGTCAGCAAAA* Enterobacter cloacae strain 34983 plasmid p34983-328.905 kb

GCCGTCGTGCCGTGTTCACCTTTACGAACCTG* Klebsiella pneumoniae ATCC BAA-2146 plasmid pHg

TAAAATGAGAGCTTTTGTTCGCTTGAGCAATA Escherichia coli genome, fimbrial protein

CAAGAAGTACTGAACCGATATACTCGCCAACC Escherichia coli genome, intergenic between two hypothetical proteins

AGGACAGTAAAAATGACGGAATTGTTTATCAG Escherichia coli genome assembly FHI92, tail sheath protein

*Asterisk mark clusters found in both the mammoth and contemporary data sets.
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clusters was then determined by summing the values

obtained for individual clusters. The spacer content in

CRISPR1 and CRISPR2 arrays is unrelated (Diez-Villase-

nor et al. 2010; Touchon & Rocha 2010; Kupczok et al.

2015), suggesting that spacers in each array are

acquired independently and there is no recombination

between arrays. Therefore, ‘recent’ and ‘ancient’ spacers

from CRISPR1 and CRISPR2 arrays were treated sepa-

rately. In contemporary E. coli spacer set, ‘recent’ spac-

ers constituted ~70% of the total in both arrays (Fig. 2c).

Higher portion of ‘recent’ spacers arose due to higher

diversity of leader-proximal spacers compared to the

more homogeneous leader-distant spacers. Strikingly,

the overall proportion of spacer clusters matching either

‘age’ group remained the same in the mammoth set

(Fig. 2c). Thus, our analysis failed to reveal a significant

turnover of spacers associated with E. coli type I-E

CRISPR repeats in the course of 42 000 years that sepa-

rate E. coli from mammoth and the present-day E. coli.

We next analysed neighbouring spacer pairs in longer

high-density Illumina-sequencing reads from the mam-

moth sample with the hope of reconstructing CRISPR

arrays. A total of 902 unique neighbouring spacer pairs

were extracted from the mammoth sample and mapped

to annotated E. coli CRISPR arrays, yielding 257 neigh-

bouring spacer pairs from the mammoth sample that

matched annotated CRISPR arrays. Full or almost full-

length contemporary arrays could be reconstructed using

these spacer pairs. Selected examples of such reconstruc-

tions are shown in Fig. 3. The same analysis was per-

formed for triplets of spacers extracted from some of the

longer reads. Of a total of 305 cases, 130 triplets corre-

sponded to contemporary arrays, and in several cases,

they could be used to reconstruct arrays identical to

those reconstructed with spacer pairs (Fig. 3). Thus,

some E. coli CRISPR arrays or their fragments remained

unchanged for more than 40 thousand years.

Most (645) neighbouring spacer pairs from the mam-

moth sample had no matches to contemporary E. coli

arrays. They were used to reconstruct longer chains (see

Materials and Methods) yielding twelve 3- to 8-spacer-

long array fragments that must correspond to CRISPR

arrays/array fragments that are either extinct or that

have not been isolated yet in contemporary E. coli.

The collection of spacers from the ‘mammoth’ sample

considerably expands the variety of unique E. coli type

I-E CRISPR spacers. Only a small percentage of E. coli

type I-E CRISPR spacers from the database match

sequences of phages and other mobile genetic elements

(Diez-Villasenor et al. 2010; Touchon & Rocha 2010). In

addition to known phage-matching spacers, several

novel hits of palaeo spacers to mobile genetic elements

were found. However, the overall percentage of hits to

genomes of known phages, plasmids and likely

prophages for spacer clusters from the mammoth sam-

ple remained low (0.6%, Table 2).

Overall, our findings reveal that E. coli population

contains a vast variety of spacers that remain stable

over long periods of time. The order of spacers also

appears to be preserved at least in some arrays. Most

spacers have no matches to known mobile genetic ele-

ments, and their origin and sequences they target

remain to be established.
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n 

k-mean hierarchical clustering: detailed algorithm and parameter adjustment.  
Basic statements 

Spacers are defined by their 32-nucleotide sequences. A large number (up to 0.5x107 ) of spacers needs to be 
clustered into an initially unknown number of groups, so that spacers in each group are similar to each other and 
different from spacers from other groups. Also, identical spacers derived from the same protospacer but differing in 
their orientation (reverse complementary) (Erdmann & Garrett 2012; Lopez-Sanchez et al. 2012; Mick et al. 2013; 
Shmakov et al. 2014) and spacers produced by imprecise excision (Savitskaya et al. 2013), need to be combined 
and handled together.  

A spacer α with a given nucleotide sequence is denoted by the 32 × 4 = 128-dimensional numerical vector Sα, in 
which information about each nucleotide is stored in 4 corresponding dimensions in the following way: 
 
• base A is denoted as (1, 0, 0, 0). 

 
• base G is denoted as (0, 1, 0, 0). 

 
• base C is denoted as (0, 0, 1, 0). 

 
• base T is denoted as (0, 0, 0, 1). 

 For example, sequence [AGGC, . . ] corresponds to (1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, .  .). 
 

While a vector describing a single spacer S_ = (S1 , . . . , S128) contains only 0s and 1s, the position 
C_=(C1,…..,C128) of the center of a cluster, defined as the arithmetic mean of vectors S_α of constituent n spacers, 

 

1   n 
Cj  = ∑

  
Sj,α , j = 1, . . . , 128,  (1) 

α=1 
 
generally is characterized by real numbers 0 ≤ Cj  ≤ 1. 

The distance Dαβ between two spacers or clusters α and β is defined as a sum over 128 dimensions of the 
absolute value of the difference between their coordinates, 

 
128 

Dαβ =
 
∑

  
|Cj,α  − Cj,β|. (2) 

j=1 
 

This distance is twice the Hamming distance between spacers, since each replacement of a nucleotide removes 1 
from the position of the old base and adds 1 to position corresponding to a new base. The radius of a cluster is 
defined as the distance from its center to its most remote member. 

 
Sorting into tree-like hierarchy 

To reduce the amount of data and accelerate the search, we cluster the spacers into a 3-level branching structure 
with each subsequent level having clusters of progressively higher similarity between members. At the last level of 
segregation, clusters have radii approximately equal to 3, which reflect the maximum number substitutions 
corresponding to biologically similar spacers and sets the “resolution limit” of the process. Parameters defining 
branching were varied and after several experiments we converged to values listed below. The procedure of placing 
a new spacer into the system of clusters consists of the following steps: 

 
• The first spacer forms the root, the first-level branch, and the second-level branch of the first tree. 

 
• Each new spacer is first matched with the closest tree root. If no tree is found within a distance of 27, the new 

spacer forms the root, first-, and second-level branches of a new tree. 
 

• If a matching tree is found, the new spacer is then matched with the closest first-level branch coming out 
from the root. If no first-level branch is found within a distance of 9 from the spacer, the spacer forms new 
first-level and second-level branches. 48



	

 
• If the matching first-level branch is found, the spacer is then compared to the second-level branches 

emanating from the first-level branch.  It joins the closest second-level branch, and if no such branch 
exists within a distance of 3 from the spacer, it forms a new second-level branch. 

 
Thus, in such fully developed hierarchy, a spacer is defined by its membership in a tree, in a first-level 

branch, and in a second-level branch or “final” cluster. The hierarchical scheme allowed us to substantially 
speed up the search of the target cluster for each new spacer. 

This clustering procedure is repeated several times from the beginning, taking into account the results of 
the previous rounds of clustering. A new round starts with clustering of spacers, which belong to the 
largest final cluster of the largest branch of the largest tree. Next, spacers from the second largest cluster are 
re-clustered, etc. After the second iteration the cluster tree does not change significantly. Naturally, some of 
the clusters may have final radii smaller than the threshold value of 3, while others may contain spacers that 
are further than 3 substitutions away from the center of their cluster.  The latter happens when a spacer, 
initially within the distance of 3 from the center, becomes further separated as the center moves away due 
to subsequent addition of new members. We surmise that such “swelling” of clusters has little effect on the 
final result since if such swollen clusters were broken, most probably, they would have merged during the 
second stage of clustering. 

 
 

Shifting, flipping, and merging clusters 
The first procedure allows us to reduce the amount of data, which is now represented by sizes and 

coordinates of centers of a few thousand clusters with radii ≈3.  Next, we compute pairwise distances 
between all clusters, taking into account possible reversions (Erdmann & Garrett 2012; Lopez-Sanchez et 
al. 2012; Mick et al. 2013; Shmakov et al. 2014) and shifts of their sequences. When comparing one cluster 
to another, we first compute the distance between two sequences in their original form, then for one 
sequence shifted by ±1 and ±2 bases, and finally we “flip” one sequence, generating a reverse complement 
sequence and repeat the procedure, looking for the best match. Flips have no distance penalty, but a shift 
by a single base in either direction adds a 2 to the distance between clusters. In the end, we compute the 
adjacency matrix of the complete graph where nodes are clusters and edges are labeled by distances between 
nodes. For a given cutoff distance D, all edges with distances larger than D are removed, normally breaking 
the complete graph into several disconnected components. Each component is then declared to be a 
secondary cluster, characterized by its center and the number of constituent spacers. Naturally, the smaller 
threshold D yields more such secondary clusters; the plot of the number of secondary clusters N vs. D is 
shown in Fig. S1.  

It follows from Fig. S1 that for 5 ≤ D ≤ 10, the dependence of N on D is the weakest, which suggests 
that the natural inter-cluster separation falls into this range. For final clustering of our data, we chose D = 7 
which is in the middle of this range. 

 
 

Concluding remarks 
Overall, our clustering method offers two main advantages for large CRISPR spacer sets analysis: 

 
• It is significantly faster. 

 
• Compared to clustering based on pairwise BLAST scores, it naturally and simply shows the sequence 

composition of each cluster and reveals the variability of each nucleotide within the cluster. 
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Figure S1. A plot showing the dependence of the number of secondary clusters N vs. the cutoff distance 
between clusters D.  
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Introduction: 

In this chapter, the CRISPRome sequencing was performed to complement standard 

metagenomics approaches, such as 16S amplicon sequencing and metagenome sequencing, to 

study uncultured bacterial communities of surface snow around four Antarctic stations. Four 

sampling sites demonstrated different bacterial composition with Flavobacterium genus being 

one of the most abundant. CRISPR repeats of Flavobacterium, detected in metagenomics reads, 

were used to construct degenerate primers for CRISPRome amplification. The approach 

developed in Chapter I was adapted here to study a distinct type of CRISPR-Cas system, the 

subtype II-C. Analysis of similarities between three sampling sites allowed us to associate the 

diversity of spacers with geographical distance.  

 

Contribution:  

Using the output of automatic metagenome annotation software (MG-RAST), I compared the 

bacterial composition of different sampling sites (Figure 3b) and generated PCA plots with the 

STAMP program (Figure 4). My main contribution was in analysis of the CRISPRome data. I 

applied the spacer extraction and clustering pipelines developed in Chapter I to flavobacterial 

CRISPRome data. Intersection of spacer diversity between different sites and sequence databases 

was determined by BLASTN (Figure 5). Protospacers in flavobacterial genomes, viruses and 

plasmids was found with BLASTN (Figure 6). The first author and the corresponding author 

wrote the manuscript. 
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The diversity of bacteria present in surface snow around four Russian stations in Eastern

Antarctica was studied by high throughput sequencing of amplified 16S rRNA gene

fragments and shotgun metagenomic sequencing. Considerable class- and genus-level

variation between the samples was revealed indicating a presence of inter-site diversity

of bacteria in Antarctic snow. Flavobacterium was a major genus in one sampling site

and was also detected in other sites. The diversity of flavobacterial type II-C CRISPR

spacers in the samples was investigated by metagenome sequencing. Thousands

of unique spacers were revealed with less than 35% overlap between the sampling

sites, indicating an enormous natural variety of flavobacterial CRISPR spacers and, by

extension, high level of adaptive activity of the corresponding CRISPR-Cas system.

None of the spacers matched known spacers of flavobacterial isolates from the

Northern hemisphere. Moreover, the percentage of spacers with matches with Antarctic

metagenomic sequences obtained in this work was significantly higher than with

sequences from much larger publically available environmental metagenomic database.

The results indicate that despite the overall very high level of diversity, Antarctic

Flavobacteria comprise a separate pool that experiences pressures from mobile genetic

elements different from those present in other parts of the world. The results also establish

analysis of metagenomic CRISPR spacer content as a powerful tool to study bacterial

populations diversity.

Keywords: CRISPR, Antarctica, microbial diversity, genetics, metagenomics

INTRODUCTION

Snow covers about 35% of the Earth’s surface—permanently or for varying times during the year—
and is thus a major climatic and ecological system (Miteva, 2008). It directly affects climate,
moisture budget and sea level, and also serves as an interface between different ecosystems
(Pomeroy and Brun, 2001; Davis et al., 2005; Zhang, 2005; Hinkler et al., 2008). Snow ecosystems
are characterized by harsh conditions such as low temperatures, low atmospheric humidity, low
liquid water availability, and high levels of radiation (Cowan and Tow, 2004). The amount
of microorganisms on the surface snow varies from 102 cells per milliliter of melted snow
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on South Pole (Carpenter et al., 2000) to 102–105 in high
mountain and Arctic snow (Segawa et al., 2005; Amato et al.,
2007; Liu et al., 2009; Harding et al., 2011). Bacterial diversity
from Arctic and alpine snow has been intensively investigated
during the last few decades (Blank et al., 2002; Bachy et al., 2011;
Varin et al., 2012; Hell et al., 2013; Maccario et al., 2014). Bacteria
of several phylogenetic groups have been detected; most were of
Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria,
Firmicutes, Bacteroidetes, and Actinobacteria classes (Segawa
et al., 2005; Amato et al., 2007; Møller et al., 2013; Maccario
et al., 2014; Cameron et al., 2015). Recently, a metagenomic
study of Arctic spring snow suggested that snow bacteria can
be adapted to photochemical reactions and oxidative stress in
addition to cold stress (Maccario et al., 2014), and therefore may
form specific communities.

Microorganisms on the surface snow in Antarctica were
also analyzed (Carpenter et al., 2000; Brinkmeyer et al., 2003;
Christner et al., 2003; Fujii et al., 2010; Lopatina et al., 2013).
Representatives of Proteobacteria, Bacteroidetes, Cyanobacteria,
and Verrucomicrobia have been detected in different sampling
sites (Brinkmeyer et al., 2003; Lopatina et al., 2013). Antarctic
snowmicrobial communities have been found to bemetabolically
active based on the measurements of radioactive thymidine and
leucine incorporation (Carpenter et al., 2000; Lopatina et al.,
2013). Microbial activity on the surface snow of Dome C was
also suggested by the presence of exopolysaccharide-like debris
on the DAPI-stained filters and by scanning electron microscopy
(Michaud et al., 2014). Also, evidence of active microbial life
in the coastal snow of Antarctica was gained during analysis of
“red snow” bacterial composition, which was dominated by green
alga, producing pigment astaxanthin (Fujii et al., 2010).

Comparative metagenomic analysis of Antarctic show has not
been undertaken so far. Availability of such data, particularly
from multiple sampling sites, could reveal the presence of
particular snow-specific communities or, conversely, point to
introduction of snow microorganisms through eolian effects.
Here, we performed amplicon library and metagenomic analysis
of bacterial sequences from Antarctic snow collected around four
Russian stations in Eastern Antarctica. The results reveal very
considerable variation between the sites and show clear evidence
of deposition of marine bacteria in stations close to open water.
We also performed metagenomic analysis of CRISPR spacers
in a Flavobacterium common in Antarctic snow. The results
revealed, surprisingly, a staggering diversity of CRISPR spacers
that is distinct from the limited known diversity of flavobacterial
spacers from the Northern hemisphere, suggesting that diversity
of flavobacterial CRISPR spacers is generated and maintained
locally in response to specific genetic parasites.

METHODS

Study Sites
Samples were collected during the austral summer of 2009–2010
year from vicinity of four coastal Russian Antarctic stations—
Progress, Druzhnaja, Mirnii, and Leningradskaja as described
previously (Lopatina et al., 2013). All stations are located on
the coastal part of Eastern Antarctica (Figure 1). The distance

between stations ranges from ∼150 km between Progress and
Druzhnaja to ∼3000 km between Progress and Leningradskaja.
The stations vary in indicators of climatic conditions, such as
average temperature, humidity and wind speed as shown in
Table 1.

Total DNA Extraction, Amplification of 16S
rRNA Genes, and Sequencing
Samples of total DNA were prepared as described previously
(Lopatina et al., 2013). PCR of a bacterial 16S rRNA gene
fragment (V3-V4 region) was performed with two universal
primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R (5′-
GACTACHVGGGTATCTAATCC-3′) under general conditions
described by Herlemann et al. (2011). 2 ng of total DNA was
used as a template for each PCR reaction. To avoid biases
during PCR amplification 10 replicates of each PCR reactions
were performed for every sample and mixed prior to further
manipulations. Amplicons were visualized on 1% ethidium
bromide stained agarose gels and purified using Promega Gel
extraction kit according to the manufacturer’s instructions.
Negative controls (an aliquot of 10 l of Milli Q water subjected
to concentration and DNA purification for each sample) resulted
in no visible amplification products, confirming that our sample
collection and processing techniques were essentially free of
contamination. Pair-end sequencing was carried out on Illumina
MiSeq platform with MiSeq reagent kit v.2 (Illumina, USA) as
described previously (Caporaso et al., 2011).

Sequencing of Metagenomic DNA Libraries
For metagenomic sequencing 100 ng of total DNA from each
sample was used to prepare libraries as described previously
(Caporaso et al., 2011). Pair-end sequencing was carried out on
Illumina MiSeq platform with MiSeq reagent kit v.2 (Illumina,
USA).

Analysis of 16S rRNA Gene and Metagemic
Libraries
Reads produced by sequencing of 16S rRNA amplicons were
subjected to basic trimming (Schloss et al., 2011). First, sequences
were demultiplexed, trimmed by quality with Phred score ≥

20 and no admission of ambiguous bases using CLC Genomics
7.0 workbench software (CLC Bio Aarhus, Denmark), and
sequences longer than 100 bp were taken for further processing.
Homopolymers longer than 8 nt were removed using NGS
QC toolkit with HomoPolymerTrimming.pl Perl script (Patel
and Jain, 2012) and chimeric sequences were removed using
Ribosomal Database Project (RDP) chimera check pipeline
(Edgar et al., 2011). Phylotyping and statistical analysis was
performed using the RDP classifier via taxonomic supervised
method with 80% confidence threshold cut off (Cole et al.,
2014), as this approach allows rapid and extensive community
comparison (Sul et al., 2011).

Raw reads from shotgun metagenomic sequencing were
trimmed by quality with Phred score ≥ 20 and no admission of
ambiguous bases. Adapters were trimmed using CLC Genomics
workbench software (CLC Bio Aarhus, Denmark); reads longer
than 50 bp were subjected to further analysis. Trimmed
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FIGURE 1 | Antarctic surface snow sampling sites. The locations of the four Russian research stations where the snow samples were taken are shown on the

map of Antarctica (from the archive of Russian Institute of Arctic and Antarctica http://wdc.aari.ru/datasets/d0040/antarc/png/). The color code indicates ice

concentration for January 2010 during the time of sampling. The distances from open water for Mirnii and Progress are 1–5 km, for Druzhnaja—150 km, for

Leningradskaja—400 km.

TABLE 1 | Geographical and climatic data for the four sampling sites.

Station Geographic coordinates Elevation, m Mean surface air T, ◦C Mean ground T, ◦C Mean precipitation, mm Mean surface

wind, m/s

Druzhnaja 69◦44′S 72◦42′E No data No data No data No data No data

Leningradskaja 69◦30′S 159◦23′E 291 −14.6 −15.4 58.4 8.4

Mirnii 66◦33′S 93◦01′E 39,9 −11.3 −11.7 43.8 11.3

Progress 69◦23′S 76◦23′E 14,6 −9.2 −7.4 12.5 5.9

sequences were applied to MG-RAST database (Meyer et al.,
2008). Reads were taxonomically and functionally annotated
by similarity searching against M5NR database and Subsystems
database, respectively, with default parameters (maximum
e-value cutoff of 10−5, minimum identity cutoff of 60% and
minimum alignment length cutoff of 15).

To specifically search for viral sequences in metagenomic
libraries, sequences were subjected to Metavir online tool
(Roux et al., 2014), where they were blasted against Viral
Refseq database (NCBI). Obtained affiliated sequences were
filtered from bacterial homologs using supplementary pipeline:
firstly, they were blasted against nucleotide (nt) database using
blastn standalone application and afterwards viral sequences
were extracted using Megan 5.10.1 software (Huson et al.,
2011).

Statistical Analysis
Several measurements of alpha diversity were used to estimate
the diversity of bacteria in the samples. Species richness
estimators Schao1 and Sace (Kemp and Aller, 2004b), and
community diversity indices Shannon (1948) and Simpson
(1949) were calculated using RDP analysis tools. Coverage of
16S rRNA libraries was calculated according to Good’s formula:
C= 1 – (N/individuals), where N is the number of sequences that
occurred only once (Kemp and Aller, 2004a).

Identification and Analysis of CRISPR
Arrays
To construct a set of CRISPR arrays for each metagenomic
dataset we used CRASS algorithm (Skennerton et al., 2013) with
default parameters: repeat lengths 23–47 bp, spacer lengths 26–50
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bp, and minimum three spacers in array as default parameters.
Spacer and repeat sequences were compared with nucleotide
(nt) database using BLAST+ tool installed on Galaxy platform
with default parameters for short input sequence (word size 7,
gapopen 5, gapextend 2, reward 2, penalty -3, e-value 0.01).
Repeat sequences from identified CRISPR arrays were classified
using CRISPRmap tool (Lange et al., 2013). The cas genes search
was performed using MG-RAST Subsystems annotation tool
(Meyer et al., 2008).

To amplify CRISPR arrays of Flavobacterium
psychrophilum from total DNA samples primers Flavo_F
(CAAAATTGTATTTTAGCTTATAATTACCAAC) and
Flavo_R (TACAATTTTGAAAGCAATTCACAAC) were
used. Amplification reactions were carried out with Taq DNA
polymerase under the following conditions: initial denaturation
for 5 min at 95◦C, followed by 28 cycles of 30 s at 95◦C, 30 s
at 55◦C, and 40 s at 72◦C, and a final extension at 72◦C for
additional 2 min. Amplicons were visualized on 1% ethidium
bromide stained agarose gels and DNA fragments of 200–1000
bp in length were purified from the gel and sequenced on
Illumina MiSeq platform as described above. Raw reads were
demultiplexed, trimmed by quality with Phred score ≥ 20 and
no admission of ambiguous bases using CLC Genomics 7.0
workbench software (CLC Bio Aarhus, Denmark).

Spacers from amplified CRISPR arrays were bioinformatically
extracted using DNAStringSet function of IRanges package in R.
To decrease the amount of spacers and to avoid overrepresented
diversity because of mistakes during sequencing, spacers were
clustered using a k-means algorithm (MacQueen, 1967). The
maximum number of substitutions corresponding to biologically
similar spacers within one cluster was equal to 5. Coverage and
diversity estimates Schao and Sace for total amount of spacers or
clusters in each sample were calculated with estimateD function
of vegan package in R. Centers of spacer clusters (sequences of
mean arithmetic value for each nucleotide position calculated
from all spacers within a cluster) were compared against
nucleotide collection (nt) and environmental collection (env_nt)
databases, as well as against custom-made database containing
sequences from Antarctic shotgun metagenomic libraries from
the present work, with BLASTn algorithm using default
parameters for short input sequences mentioned above and an
e-value cut off of 0.01. Sequences with <5 mismatches were
considered as positive hits. Metagenomic sequences containing
protospacers were blasted against nt and nr databases with default
parameters for BLASTn algorithm and an e-value cut off of
0.001 using BLAST+ tool installed on Galaxy platform. PAM
searches were performed with CRISPRTarget online tool (Biswas
et al., 2013). Eight nucleotides upstream and downstream of each
protospacer were extracted and used for PAM logo search with
Weblogo online tool (http://weblogo.berkeley.edu/logo.cgi).

Data Access
The data of 16S rRNA high throughput sequencing were
deposited to MG-RAST database under accession numbers
4616914.3 (Druzhnaja), 4616915.3 (Leningradskaja), 4616916.3
(Mirnii), and 4616917.3 (Progress). The data of shotgun
metagenomic sequencing were deposited to MG-RAST

database under accession numbers 4624083.3 (Druzhnaja),
4624084.3 (Leningradskaja), 4624085.3 (Mirnii), and 4624086.3
(Progress).

RESULTS

Metagenomic Analysis of 16S rRNA
Sequences from Antarctic Snow Samples
Earlier, we studied the bacterial diversity of surface snow from
two Russian Antarctic stations, Leningradskaja and Druzhnaja,
by analyzing individual 16S rRNA gene fragments cloned after
PCR amplification of DNA from melted snow samples collected
during the 54th (2009) and 55th (2010) Russian Antarctic
expeditions (Lopatina et al., 2013). For the present work, we used
high-throughput sequence analysis of 16S rRNA amplicons from
Leningradskaja and Druzhnaja 55th expedition samples analyzed
previously and also included samples collected at the Progress
andMirnii stations during the same time. Themicrobial diversity
at the two latter stations was not analyzed before, however, the
biological activity of snow collected at Mirnii was at least 10
times higher than in the Leningradskaja and Druzhnaja samples
(Lopatina et al., 2013). For Progress, bioactivity levels were
low (4.4 pmol/h∗l of [methyl 3H] thymidine incorporation
and 33.1 pmol/h∗l of [3H] L-leucine incorporation) and
comparable to those in Leningradskaja and Druzhnaja
samples.

DNA concentration was estimated by measuring absorbance
by NanoDrop yielding a concentration estimate of 1, 1, 2,
and 14 ng/µl for Druzhnaja, Leningradskaja, Progress and
Mirnii samples, correspondently. To access bacterial diversity
in snow samples, a fragment of bacterial 16S rRNA gene was
amplified from total DNA following by Illumina pair-end high
throughput sequencing (HTS). The overall sequencing statistics
are presented in Table S1. Results of phylogenetic analysis
of 16S rRNA sequences from Leningradskaja and Druzhnaja
samples generated by HTS and Sanger sequencing of cloned
libraries were first compared. Overall, comparisons of class-
level distribution revealed by both methods are in very good
agreement with each other (Figure 2B; Pearson coefficient of
correlation for Druzhnaja sample–0.99, for Leningradskaja–
0.95). Yet, for both stations, HTS analysis revealed increased
relative abundance (or even appearance) of several minor classes,
including Flavobacteriia, Alphaproteobacteria, Sphingobacteriia,
Cytophaga, and Actinobacteria.

16S rRNA gene sequences recovered by HTS from the four
stations fell into 34 classes based on RDP classification. 3.4, 3.9,
4.5, and 4.3% of 16S rRNA gene reads from, correspondingly,
Druzhnaja, Leningradskaja, Mirnii, and Progress samples could
not be affiliated to any known bacterial class by the RDP
classification tool. Overall, the most abundant classes were:
Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria,
Sphingobacteriia, Flavobacteriia, Cytophagia, Actinobacteria,
Chloroplast/Cyanobacteria, Bacilli. While Betaproteobacteria
were dominant in Leningradskaja, Druzhnaja, and Mirnii
samples, Flavobacteriia were the major class in the Progress
sample, constituting 40% of all sequences (Figure 2A). In fact,
the latter sample was clearly very different in composition from
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FIGURE 2 | Class-level bacterial diversity in Antarctic snow samples. (A) Relative abundance of class-level bacterial taxonomies based on PCR amplifications

and high-throughput sequencing of 16S rRNA gene fragments is shown at the top. “Other” group includes minor classes with <0.6% of total abundance, namely

Verrucomicrobiae, Clostridia, Gemmatimonadetes, Planctomycetia, Deltaproteobacteria, Spartobacteria, Epsilonproteobacteria, and 14 rare classes found only in one

location. (B) Similar data using clone library approach for same samples from Druzhnaja and Leningradskaja stations are shown. (C) A heatmap comparing class-level

bacterial diversity and abundance among the four samples based on high-throughput sequencing results. The colors show the extent of relatedness between the

samples as indicated in the legend.

the first three based on Pearson correlation analysis at class level
(Figure 2C).

Deeper taxonomic affiliation analysis at each site was
next performed. 28, 20, 14, and 35% of 16S rRNA gene
reads from, correspondingly, Druzhnaja, Progress, Mirnii, and
Leningradskaja could not be affiliated to any known genus by
the RDP tool. Results of the analysis of remaining reads are
shown in Figure 3A, where abundances of 20 most prevalent
genera are presented. The genus detected in the most abundance
in any given sample was Flavobacterium, which comprised
39% of the sequences in the Progress library, followed by
Hydrogenophaga (14%) and Ralstonia (7%). In the Druzhnaja
sample, 16S rRNA genes from Janthinobacterium were dominant
(27%), followed by Ralstonia (15%), and Pseudomonas (11%). In
the Leningradskaja sample, 16S rRNA genes from Caulobacter
(12%), Acinetobacter (10%), and Comamonas (9%) were most
abundant. These genera were also the most abundant during
clone library analysis (Lopatina et al., 2013) and in fact
the abundance of genera in Druzhnaja and Leningradskaja
stations, as revealed by cloning library and HTS approaches,
was highly correlated (Pearson correlation coefficient of 0.8
and 0.9, respectively, data not shown). In Mirnii—rRNA
gene sequences of Ralstonia (31%), Bacilariophyta (chloropast-
containing diatoms) (24%), and Rudaea (8%) were the most
dominant. There was no correlation of genera abundance or
presence between samples from the four different stations: the
Pearson correlation coefficient varied from 0.1 for Progress

and Leningradskaja to 0.4 between Mirnii and Druzhnaja
(Figure 3B).

Shotgun Metagenomic Analysis of
Antarctic Snow DNA Samples
DNA samples from the four stations were also subjected
to shotgun metagenomic sequencing. The summary of data
obtained from four snow samples is shown on Table S2.
Sequences that passed the QC criteria were applied to Best hit
classification algorithm of the MG-RAST software using M5NR
database for phylogenetic affiliation of sequences. The results are
summarized in Table 2. The percentage of archaeal sequences
in shotgun metagenomic libraries was consistently low in all
stations (<0.2% of all sequences) and these sequences were not
further analyzed; no archaeal sequences were obtained previously
in clone 16S rRNA libraries in Druzhnaja and Leningradskaja
samples (Lopatina et al., 2013). Viral samples were extracted
from metagenomic data through Metavirome tool and were also
rare. Eukaryota were well-represented in Mirnii library—15% of
all sequences. Samples from other stations contained much less
eukaryotic sequences (∼1% or less). More than half of eukaryal
sequences fromMirnii were from Bacilariophyta, suggesting that
“cyanobacterial” sequences present in the amplified 16S rRNA
gene samples from this station were actually of chloroplast
origin. The Mirnii and Progress stations are located within
1–5 km of open water, while Druzhnaja and Leningradskaja,
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FIGURE 3 | Genus-level bacterial diversity in Antarctic snow samples based on PCR amplicon library. (A) Frequencies of reads corresponding to 20 most

abundant genera present in all four samples are shown. For each genus, the height of color-coded bars reflects the percentage of corresponding reads in the entire

sample from each station. (B) A heatmap comparing genus-level bacterial diversity and abundance for 255 genera detected in Antarctic snow samples. The colors

show the extent of relatedness between the samples from each station as indicated in the legend.

are, respectively, about 150 and 400 km away (Figure 1).
The abundance of Chloroplasts/Cyanobacteria is thus probably
correlated with closeness to open water. Most of metagenomic
sequences from all samples corresponded to domain Bacteria.
Class- and genus-level phylogenetic complexity of bacterial
sequences from shotgun and 16S rRNA metagenomic data
matched well for all four stations (Pearson coefficient values
0.97–0.99 for class level and 0.68–0.86 for genera level).

Protein-coding sequence reads from snow metagenomes were
classified to metabolic functions based on Subsystems database
using MG-RAST software. The most abundant functional groups
were related to housekeeping functions, such as clustering-
based subsystems (functional coupling evidence but unknown
function; 14-16%), carbohydrate metabolism (9%), amino acid
biosynthesis (8%), and protein metabolism (6.5–8.5%). Stress
response related genes constituted 2.3–2.9% of all annotated
reads and within this group there was a high proportion of
oxidative stress genes (43–44%). Genes of photosynthesis and
respiration were clearly more abundant at Mirnii station, where
chroloplast/cyanobacterial sequences were common.

Recently, principal component analysis of the relative
abundance of annotated reads of functional subsystems from
Arctic surface snow metagenomes was presented and a
conclusion was made that snow samples grouped together
and were well-separated from other ecosystem metagenomes
(Maccario et al., 2014). We repeated this analysis including our
Antarctic snow metagenomes data. When Antarctic samples
were substituted for Arctic samples used in the previous analysis,
clear ecosystem clustering similar to the earlier reported result
was obtained (Figure 4A), seemingly indicating commonalities
of microbial communities of Antarctic snow. However, when

Arctic snow metagenomic samples were also included, Antarctic
samples became indistinguishable from soil and Antarctic
microbial mat metagenomes; the free ocean water samples
remained tightly clustered and separate, while the Arctic snow
samples became very dispersed (Figure 4B).

Analysis of CRISPR-Cas Sequences in
Antarctic Metagenomes
The CRISPR-Cas systems of adaptive prokaryotic immunity
are widespread in bacteria (Marraffini and Sontheimer, 2010;
Makarova et al., 2011) and are highly dynamic (Deveau et al.,
2008), allowing one, in principle, to monitor the structure
of bacterial populations in environment (Bhaya et al., 2011;
Sun et al., 2015). We searched for cas genes and CRISPR
arrays fragments in sequences from our shotgun metagenomic
libraries. The cas genes of all three CRISPR-Cas system types
were found. Specifically, fragments of cas1, cas2, cas3, csn1
(cas9) as well as cas4b and cmr1-6 genes were detected.
These reads constituted less than 0.03% of all sequences.
Fragments of CRISPR arrays were also identified in every library.
Some identified repeats matched previously described ones,
for example a 46-bp repeat from type II CRISPR-Cas system
from Flavobacterium psychrophilum (Touchon et al., 2011),
found in Progress and Druzhnaja, and a different type II 36-
bp repeat matching Flavobacterium columnare in Leningradskaja
and Progress samples. A type I-F CRISPR-Cas system repeats
from Yersinia pseudotuberculosis were found in Druzhnaja,
Leningradskaja, and Progress (Table S3). CRISPRmap, an
automated tool for classification of prokaryotic repeats based
on sequence and structure conservation, has been reported to
classify as many as 30–40% of repeat sequences from human
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TABLE 2 | Overall phylogenetic structure of snow microbial communities.

Station Prokaryota, % Eukaryota, % Viruses, % Archaea, % Unclassified, %

Druzhnaja 98.29 1.41 0.06 0.1 0.15

Leningradskaja 99.04 0.77 0.06 0.06 0.08

Mirnii 84.65 14.97 0.14 0.17 0.20

Progress 98.38 1.22 0.04 0.31 0.32

FIGURE 4 | Principal component analysis of 30 metagenomes from five different environments based on frequencies of COG categories. A scatter plot

of PCA-scores depicting variance of COG categories detected in different environmental metagenomes. In panel (A) COGs from Antarctic snow (cyan) are compared

to temperate soil samples (red), sea water (green), and Antarctic microbial mat (orange). In panel (B) Arctic snow samples (violet) are included in comparison.

microbiome samples (Lange et al., 2013). In contrast, in the
case of Antarctic samples out of a total of 40 distinct repeats
identified, only one could be matched with a known family (six
could be matched with a known structural motif), indicating
that the variety of existing adaptive immunity systems is greatly
underexplored.

When spacers extracted from identified Antarctic CRISPR
arrays were analyzed, no matches with spacers of previously
known CRISPR arrays was detected. Further, when the entire
collection of 570 unique spacers recovered from Antarctic snow
metagenomic libraries was analyzed against the NCBI nucleotide
collection (nt), only a single hit, for a spacer associated with
the F. columnare-like 36-bp repeat, was found. This spacer
matched exactly a fragment of 16S rDNA sequence of another
representative of the Flavobacterium genus, Flavobacterium sp.
136G (NCBI accession number KM021132.1), contrary to the
general observation that CRISPR spacers target DNA of mobile
genetic elements.

CRISPR interference in type II systems requires a functional
protospacer adjacent motif (PAM), located downstream of the
protospacer (Chylinski et al., 2014). The PAM sequence of
F. columnare type II CRISPR-Cas system is not known. Analysis
of 43 spacers from CRISPR array of a sequenced F. columnare
genome (NCBI accession number CP003222.2) revealed
four matches with flavobacterial phage FCL-2 protospacers.
Sequences adjacent to these protospacers contained a TAA
trinucleotide five nucleotides downstream of each protospacer.

Both the downstream location of the putative PAM, and its
separation from protospacers by a string of non-conserved
nucleotides is typical for type II CRISPR-Cas systems (Chylinski
et al., 2014). The putative PAM sequence was absent downstream
of the Flavobacterium sp. 136G 16S rDNA sequence matching
the spacer identified from metagenomic data. Thus, the
particular 16S rDNA targeting spacer may not be functional
(see, however, below). Three spacers—associated with the F.
psychrophilum 46-bp repeat—were found in both Progress and
Druzhnaja samples. The rest of the spacers were unique for
each station. Since flavobacterial rRNA was present in samples
from all spacers, we were interested in assessing diversity of F.
psychrophilum spacers in each site. To this end, PCR primers
matching 46-bp repeat were designed and used to amplify spacers
from each snow community DNA (Figure 5A). By design, the
procedure allows amplification of spacers associated with the
46-bp repeat, however the information about the order of the
spacers in CRISPR arrays is lost. Amplification products were
detected in samples from three stations—Progress, Druzhnaja,
and Leningradskaja. The amplified material was subjected
to Illumina sequencing. A total of ∼870,000 spacers with an
average length of 30 ± 2 nucleotides was obtained (in published
F. psychrophilum genomes spacers are 28–31 long). We next
clustered spacers in each sample (MacQueen, 1967), combining
spacers that differ from each other by <5 nucleotides in the same
cluster. After clustering, 2759 unique spacer clusters remained
in Leningradskaja, 2584—in Druzhnaja, and 3822—in Progress
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FIGURE 5 | Analysis of Flavobacterium physchrophilum CRISPR

spacers in Antarctic snow samples. (A) A strategy used to amplify spacers

associated with F. physchrophilum CRISPR repeats from environmental

samples, the length of amplified fragment corresponds to the number of

containing spacers. (B) A Venn diagram showing the number of shared and

unique clusters of spacers associated with F. physchrophilum CRISPR repeats

in three Antarctic snow samples. Known F. physchrophilum spacer clusters

from 10 publically available genomes are also shown (“database”).

station (Table 3, Supplementary Dataset S4). The calculated
coverage of the three cluster libraries ranged from 40% for
Druzhnaja to 61% for Progress samples (Table 3), so true variety
in samples was thus 1.5–2.5 times higher than the actual number
of clusters obtained. It therefore follows that the diversity of
CRISPR spacers associated with the F. psychrophilum 46-bp
repeat (and, by extension, of F. psychrophilum) in Antarctic
snow is extremely high. When spacers from each station were
compared to each other, only 58 clusters (0.7% of the total) were
common for all three stations (Figure 5B). The percentage of
clusters unique to each station varied from 66% for Druzhnaja
to 92% in Leningradskaja. The Druzhnaja spacer set was most
similar to Progress (about 30% of common spacers), with much
smaller (<7%) overlap with Leningradskaja set. The overlap of
Progress and Leningradskaja sets was just 3%. Ninety-five percent
of all spacers were located within 14, 29, and 21% of clusters
from Progress, Leningradskaja, and Druzhnaja, correspondently,
i.e., were highly overrepresented. Bacteria with such spacers
must be highly abundant in the samples. Alternatively,
overrepresented spacers may be shared between many
strains.

A small fraction (1–3%) of self-complementary spacers
derived from the same protospacer was observed. Such pair-
mated spacers have been reported before for Streptococcus
agalactiae, Sulfolobus solfataricus, and Escherichia coli (Erdmann
and Garrett, 2012; Lopez-Sanchez et al., 2012; Shmakov et al.,

2014). In most cases, when self-complementary spacers were
observed, one spacer in the pair belonged to an over-represented
group. A high number of such paired spacers were shared
between two or more stations (up to 92% self-complementary
spacers in the Druzhnaja station sample were also found in other
stations).

Many reads corresponded to amplified fragments that
contained two spacers and, therefore, harbored a copy of
an “internal” repeat, whose sequence, by design, could not
be affected by the primers used during amplification step
(Figure 5A). Analysis of such reads revealed different repeat
variants (Table S5). Similar cases of nearly identical repeats
sequences were described previously for other organisms, for
example, E. coli (Touchon and Rocha, 2010) or H. volcanii
(Maier et al., 2013). Themost abundant variant constituted 65.6%
of all “internal” repeat sequences and matched the published
F. psychrophilum repeat consensus used to design oligonucleotide
primers for amplification. The second variant had one mismatch
from consensus in the 6th position and constituted 34% of all
“internal” repeats. Two other repeat variants had, in addition
to the 6th position consensus mismatch, changes in the 13th
or the 21th positions and were minor (0.2 and 0.1% of all
“internal” repeats, correspondingly). The relative proportion of
repeat variants was the same in libraries from the three Antarctic
sites analyzed. In sequenced F. psychrophilum genomes a variant
repeat with one mismatch from consensus in the 18th position
constitutes 4% of all repeat sequences. This variant is absent from
Antarctic samples.

When cluster consensus sequences from each station were
compared to the NCBI nucleotide database using BLASTn
algorithm a very large number of matches with likely irrelevant
(i.e., eukaryotic) sequences was found. We therefore limited
comparisons to a custom database containing all known
sequences of Flavobacterium and their phages. None of Antarctic
spacers matched any of the 117 unique spacers associated with
46-bp repeat from fourteen sequenced F. psychrophilum strains
available in the Genbank (our clustering procedure combined
these 117 spacers into 97 clusters). Ten Antarctic spacer clusters
matched flavobacterial phages FCL-2, 6H, 11b, or 1/32, while 38
matched Flavobacterium chromosomes (Table S6). Interestingly,
one cluster consensus sequence (leningradskaja_747) had
multiple hits in various flavobacterial genomes (F. indicum,
F. psychrophilum, F. columnare, and F. branchiophilum).
Inspection of genomic sites that matched this spacer revealed
that they are composed of non-coding 125 bp-long imperfect
palindromic repeats that are spread throughout the F. indicum
(30 copies) and F. psychrophilum (5 copies) genomes and are
present in single copies in F. columnare and F. branchiophilum
(Figure 6A). Analysis of distribution and genetic neighborhoods
of these repeats in F. indicum and F. psychrophilum (data not
shown) genomes revealed that they are clustered in regions
containing multiple repeated genes of unknown function,
transposes genes, and restriction-modification system genes
(Figure 6B).

We also analyzed CRISPR cassettes from all F. psychrophilum
isolates available in the Genbank. Twelve spacers matching
flavobacterial phages 6H and 1/32 were identified among the 117
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TABLE 3 | Statistics of high-throughput sequencing of PCR amplified Antarctic Flavobacterium psychrophilum CRISPR spacers and spacer clustering

results.

Station # of reads # of spacers Clusters

# of clusters % of unique clusters Cchao1, % Cace, % Schao1 Sace

Druzhnaja 284,286 273,255 2584 65.6 48 40 6382 ± 386 5359 ± 42

Leningradskaja 321,550 313,241 2759 92.2 43 47 5824 ± 303 6477 ± 48

Progress 263,548 255,447 3822 79.6 60 61 6271 ± 170 6332 ± 46

FIGURE 6 | Analysis of sequences matching spacers associated with F. psychrophilum CRISPR repeat. (A) The alignment of sequences of cluster

consensus and 125 bp-long repeat. The aligned nucleotide positions are shown in red. Nucleotide positions in 125 bp-long repeat that participate in secondary

structure formation of the transcript are underlined with a black line. (B) At the top, the sequence of a non-coding 125 bp-long imperfect palindromic repeat and

matching F. psychrophilum spacer are shown. The distribution and genetic neighborhoods of 30 125 bp-long repeats in regions of Flavobacterium indicum genome is

shown below. The repeats are indicated by small purple arrows. Genes are shown as arrows. Unlabeled gray arrows correspond to unique open reading frames with

unknown function. Unique open reading frames with predicted functions are also shown in gray with annotations. Arrows marked with the same (non-gray) color

correspond to genes encoding homologous proteins (more than 80% identity) of unknown function. Genes coding for IS110 family transposes are shown in blue.

(C) A LOGO showing the results of alignment of 12 flavophage protospacers and their 8-bp flanking regions matching CRISPR spacers from F. psychrophilum

genomes deposited in the GenBank. (D) As in (C) but showing the results of alignment of 511 sequences from Antarctic metagenomic matching Antarctic F.

psychrophilum CRISPR spacers.

unique spacers present in F. psychrophilum strains sequenced
to date. When flanking sequences of these protospacers were
compared to each other, a likely PAM, NNATAT, downstream of
protospacers was detected (Figure 6C). Neither 10 protospacers
in the genomes of flavophages nor 38 protospacers in

flavobacterial genomes matching Antarctic spacers contain such
(or any other) adjacent conserved motive.

We next compared consensus sequences of Antarctic
spacer clusters with metagenomic reads obtained in this work
as well as with sequences from the metagenomic env_nt
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database. A total of 117 hits to env_nt database and 511
hits to Antarctic reads was obtained. When the origin of
511 Antarctic metagenomic reads that contained sequences
matching F. psychrophilum spacers was investigated, 62%
of reads could not be identified by either nt or nr database
searches. Of the remaining 38% of reads (corresponding to 194
cluster consensus sequences), 87 originated from flavobacterial
chromosomes, 21—from Flavobacterium phage 11b or plasmids,
49–from other phages (mostly Cellulophaga phage phi10:1),
and 37 originated from other eubacterial genomes. 12 and 18
additional hits to Flavobacterium chromosomes and flavophages,
correspondingly, were obtained when reads with no matches
to nt database were analyzed against the nr database. Among
matching sequences in the env_nt database, there were four
Flavobacterium chromosomes and 12 bacteriophages of various
hosts. When flanking sequences of protospacers identified
in Antarctic metagenomic sequences were compared to
each other, an area of strong conservation 3-6 nucleotides
downstream of the protospacer—NNAAAG - was detected
(Figure 6D). This sequence is different from the putative PAM
motif detected during searches with spacers from published
F. psychrophilum genomes (NNATAT, above, Figure 6C)
but the location of conserved positions is the same. No
conservation in flanking sequences was detected for protospacers
identified in metagenomic reads from the env_nt database.
Neither one of the putative PAM motives is associated with
protospacers from 125 bp-long imperfect palindromic repeats
(above).

DISCUSSION

In this work, we significantly extended the previous analysis
of surface snow microbiota around Russian research stations
in Eastern Antarctica by (i) increasing the number of stations
analyzed, (ii) using high-throughput sequencing to analyze
16S rRNA genes; (iii) performing metagenomic analysis of
snow microbiome, and (iv) analyzing the diversity of CRISPR
spacers of flavobacteria common in Antarctic snow. Analysis
presented in this work was more extensive than previous limited
analysis using cloned 16S rRNA genes fragments (∼50,000
sequences per each sample compared to ∼120 sequences
analyzed using clone library approach). Yet, for the two
stations where direct comparisons are possible, Druzhnaja and
Leningradskaja, a very good correlation between the class-
and genus-level composition of microbial sequences in the
samples was revealed, indicating that limited sampling of clone
libraries did not introduce significant biases in representation
of major classes and genera. Moreover, when rRNA gene
sequences were extracted from metagenomic reads and class-
level phylogenetic complexity was compared with amplified 16S
rRNA genes a good match was also observed (Pearson coefficient
values between 0.94 and 0.98), indicating that our conditions
of PCR amplification of 16S rRNA gene fragments did not
introduce significant biases. HTS analysis revealed increased
abundance (or even appearance) of several minor classes,
including Flavobacteriia, Alphaproteobacteria, Sphingobacteriia,
Cytophaga, and Actinobacteria in both stations These minor

classes appeared at the expense of Betaproteobacteria, which,
nevertheless still remained the major class in both samples. The
result is an expected consequence of much deeper coverage
obtained with HTS.

Principal component analysis of the relative abundance
of annotated reads of functional subsystems from Antarctic
surface snow metagenomes revealed some clustering, which,
however, was found to be very sensitive to the inclusion of
additional environmental samples in the analysis. As expected
and recently confirmed by experimental data (Hultman et al.,
2015), there is a much greater overlap in shared genes revealed
by metagenomic DNA analysis compared to transcriptomic and
proteomic analyses of samples from different ecosystems. Such
a large overlap may explain the observed instability of results
of principal component analysis of functional subsystems in
Antarctic metagenomic data. Additional studies will be needed to
confirm if there is a characteristic set of gene functions in snow
communities.

Spoligotyping, a procedure based on comparisons of spacer
sets in different strains of same bacterial species is commonly
used for epidemiological tracing of pathogens (Gori et al.,
2005). We reasoned that F. psychrophilum CRISPR arrays, if
present in all four sampled Antarctic sites, may allow us to
compare diversity of resident F. psychrophilum populations and
establish relationships between them. An efficient procedure was
elaborated to amplify spacer sets from environmental DNA and
k-mean clustering allowed us to parcel the very large number
of spacers generated after PCR amplification into a manageable
number of spacer clusters. Still, a very high number of spacer
clusters was observed in the samples, which is an unexpected
result, since a recent report indicated that the F. psychrophilum
CRISPR-Cas system is inactive and that the spacer content
of CRISPR arrays is identical in F. psychrophilum isolated in
geographically remote locations at different times (Castillo et al.,
2015). Spacer sets present in three different Antarctic sites, where
successful amplification using F. psychrophilum CRISPR repeat-
specific primers was achieved differed significantly from each
other, with only a very minor portion of spacers being common
to all three sites. The larger amount of common spacers between
Druzhnaja and Progress agrees with geographical proximity of
these stations. Curiously, this similarity, based on common
CRISPR spacers was not supported by phylogenetic analysis of
bacterial communities based on 16S rRNA genes, according to
which Druzhnaja was more similar to Leningradskaja station.

Despite the very large number of F. psychrophilum spacers
uncovered in our work, no matches with spacers present
in F. psychrophilum isolates from the Northern hemisphere
available in Genbank were observed. Moreover, comparisons
with environmental metagenomic data revealed that Antarctic
shotgun metagenome from our work, which is orders of
magnitude smaller than combined metagenomes stored in the
env_nt database contains several times more hits with Antarctic
F. psychrophilum spacers revealed during HTS analysis of
amplified CRISPR spacers. The result suggests that Antarctic
F. psychrophilum tend to acquire spacers locally. Recent evidence
of genetically different pools of viruses in Southern Ocean
and Northern hemisphere sampling sites (including Vancouver
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Island in British Columbia, Monterey Bay, California, and
Scripps Pier in San Diego, California) was recently obtained
(Brum et al., 2015). The presence of such separate pools in
flavophages could be responsible for observed variations in
spacer content (see, however, below). The CRISPR-Cas systems
of Antarctic F. psychrophilum and strains isolated in the Northern
hemisphere may even have evolved different PAM specificities
since putative PAMs revealed by comparisons of protospacers
matching spacers known for the two sites result in different
PAMs. Such a result is not without precedent since varying
preferences for PAM selection during spacer acquisition were
previously noted for type I-E CRISPR-Cas system variants from
different E. coli strain (Westra et al., 2012) and for type I-
B CRISPR-Cas system of Haloferax volcanii (Fischer et al.,
2012). The presence of different, non-overlapping sets of CRISPR
repeat polymorphisms in our Antarctic samples and in known
F. psychrophilum CRISPR arrays also supports existence of local
variations.

The original theoretical insights about the immune function of
CRISPR-Cas systems came after observation of matches between
spacer sequences and protospacers in bacteriophage and plasmid
sequences specific to a bacterial host (Makarova et al., 2006).
Later, self-targeting spacers were also identified and a regulatory
function of such spacers was proposed (for detailed review,
see Westra et al., 2014). Analysis of F. psychrophilum repeat
associated spacers suggests, that at least for the Antarctic spacer
set, targeting of bacteria related to the host is the most common
scenario. Such targeting could help prevent genetic exchange
between the species within the genus, although the biological
significance of such restriction is unclear.

Previous analysis has revealed the loss of synteny within
the Flavobacterium spp. genomes likely due to the presence of
numerous repeats (e.g., insertion sequences and the rhs elements
(McBride et al., 2009; Touchon et al., 2011). Our analysis revealed
an interesting case of a CRISPR spacer with multiple hits in
various flavobacterial genomes. The matching sequence was
part of a non-coding 125 bp-long imperfect palindromic repeat

that is spread throughout the F. indicum and F. psychrophilum
genomes and is also present in single copies in F. columnare
and F. branchiophilum. The location and the number of these
repeats differ in different isolates of F. psychrophilum, suggesting

that they are subject to horizontal transfer. The 125-bp repeat
is distinct from either IS or rhs elements, however, it may play
a similar role in promoting flavobacterial genome plasticity.
Targeting of this element by the CRISPR-Cas system may help
control the spread of such elements and is in line with an
emerging theme that CRISPR-Cas systems serves as one of the
mechanisms of endogenous gene regulation (Westra et al., 2014).

Our analysis of Antarctic spacers has an important caveat
in that we determine the identity of spacers associated with
a particular repeat and can not exclude that such a repeat
(and spacers) are not coming from arrays from other, non-
F. psychrophilum arrays. We consider this scenario unlikely since
at least in Progress station, where rRNA gene sequences from
F. psychrophilum are most abundant, the spacer variety is also
the largest. Besides, the largest number of spacers with matches
to metagenomic sequences match Flavobacterium chromosomes,
which also strengthens the link between spacers identified by our
approach and the Flavobacterium genus.
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Introduction: 

In this Chapter the diversity of spacers associated with six CRISPR-Cas system types (I-A, I-B, 

I-C, I-E, I-U, III-A/III-B) of Thermus communities from five geographically distant hot springs 

was described. In addition, five new Thermus phages were isolated and sequenced from the 

samples. In comparison to previous chapters, the CRISPRome data analyzed in Chapter III is 

more complex. Comparisons between six CRISPR-Cas types, five sampling sites, several time 

points, and different identified local viral populations were performed. 
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We investigated the diversity of CRISPR spacers of Thermus communities

from two locations in Italy, two in Chile and one location in Russia.

Among the five sampling sites, a total of more than 7200 unique spacers

belonging to different CRISPR-Cas systems types and subtypes were ident-

ified. Most of these spacers are not found in CRISPR arrays of sequenced

Thermus strains. Comparison of spacer sets revealed that samples within

the same area (separated by few to hundreds of metres) have similar

spacer sets, which appear to be largely stable at least over the course of

several years. While at further distances (hundreds of kilometres and

more) the similarity of spacer sets is decreased, there are still multiple

common spacers in Thermus communities from different continents. The

common spacers can be reconstructed in identical or similar CRISPR

arrays, excluding their independent appearance and suggesting an exten-

sive migration of thermophilic bacteria over long distances. Several new

Thermus phages were isolated in the sampling sites. Mapping of spacers

to bacteriophage sequences revealed examples of local acquisition of

spacers from some phages and distinct patterns of targeting of phage

genomes by different CRISPR-Cas systems.

This article is part of a discussion meeting issue ‘The ecology and

evolution of prokaryotic CRISPR-Cas adaptive immune systems’.

1. Introduction
Bacteriophages are the most abundant and ubiquitous biological entities on the

planet [1,2]. Viruses of bacteria have profound influence on population and

community structure and microbial evolution [3]. Being constantly under

viral predation, bacteria have developed a broad range of mechanisms against

phages such as CRISPR-Cas systems, restriction–modification systems, abortive

infection systems as well as dozens of others, which are yet poorly investigated

[4–6]. CRISPR-Cas systems comprise CRISPR DNA arrays with identical

repeats and variable spacers, and CRISPR-associated (cas) genes [7]. At one

end of the CRISPR array, a leader sequence containing a promoter from

which the array is transcribed is located [8]. New spacers can be acquired

from the genomes of viruses or plasmids. The spacer is acquired at the

leader-proximal end of the array and the acquisition of a spacer also leads to

& 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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the appearance of an additional copy of the CRISPR repeat.

Thus, spacers that are located distal to the leader have been

acquired earlier than leader-proximal spacers. The CRISPR

array is transcribed and the resulting precursor RNA is pro-

cessed into individual CRISPR RNAs (crRNAs) each

containing a spacer sequence and fragments of flanking

repeats [8,9]. Individual crRNAs are bound by Cas effector

proteins and can recognize nucleic acids complementary to

the crRNA spacer. Upon recognition, foreign nucleic acids

are destroyed. In DNA targeting CRISPR-Cas systems,

spacers in the CRISPR array are not recognized as, in addition

to complementarity with the crRNA spacer, the target must

also have a protospacer adjacent motif (PAM) recognized

by the effector. Since the part of the CRISPR repeat that is

located in the place of PAM is not recognized, discrimination

of self from non-self becomes possible. Currently, CRISPR-

Cas systems are divided into two classes, six types and

33 subtypes that differ in Cas effector components, details

of target recognition, target destruction and self versus

non-self discrimination [10].

Analysis of CRISPR spacers is a valuable source of infor-

mation about virus–host interactions, because short DNA

fragments of previously encountered viruses are ‘recorded’

in CRISPR arrays as spacers, and cells carrying protective

spacers are expected to gain an advantage and become

more numerous. Such analysis can be particularly powerful

when applied to metagenomic data. Besides extraction from

metagenomic data or CRISPR loci [11,12], CRISPR spacers

can be directly amplified and analysed either from individual

bacterial isolates or from whole communities [13–15].

Comparison of CRISPR arrays from isolated populations

of the same species revealed great diversity of spacer

sequences, which is increased towards the leader-proximal

end of arrays [12,16–18]. Analysis of changes of spacer content

over time provided examples of new spacers acquisition to

the leader-proximal ends of CRISPR arrays, deletion of

old spacers from leader-distal ends and recombination of

CRISPR arrays between different strains [14,19–21].

CRISPR spacers can be used to identify viral sequences in

metagenomes and monitor changes in viral populations

[11,22,23]. Examples of spacers that preferably target local

phages from the same sampling site were reported [19,24–26].

Theoretical models of coevolution of viruses and hosts

demonstrated the efficiency of CRISPR-Cas defence when

viral density is small [27]. Host and virus populations were

predicted to oscillate short term, with a few dominant strains

existing at every given time point [28]. The presence of mul-

tiple spacers against a viral genome in host strains makes it

more difficult for virus to escape by acquiring mutations in

the targeted sites. This may help to maintain spacer diversity

over longer time scales [29].

In this work, we investigated the diversity of CRISPR

spacers of uncultured communities of Thermus strains from

distant hot springs and compared them with each other

and with a Thermus CRISPR database. We also compared

Thermus bacteriophages and spacers obtained from the

same locations. Our analysis reveals, on the one hand, evi-

dence of CRISPR spacer acquisition by Thermus
communities from local phages and, on the other hand,

global distribution of many spacers and arrays suggesting

intercontinental migration of at least some Thermus strains

between their unique ecological niches.

2. Material and methods
(a) Sample collection
The samples were collected from hot gravel of Mount Vesuvius

(October 2014, October 2018) or hot springs at Mount Etna

(October 2012), the el Tatio region of northern Chile (October

2014), and the Termas del Flaco region of southern Chile

(December 2013 and March 2016) and Uzon caldera in Kam-

chatka, Russia (August 2018). During collection, samples of

gravel were taken 5–100 m from each other and water samples

were collected from separate hot springs located within a simi-

lar distance. In the case of Termas del Flaco, the same hot

springs were sampled in 2013 (two samples) and 2016 (three

samples). The samples were stored at 48C and brought to the

laboratory within one to two weeks after collection for analysis.

Preliminary experiments with laboratory Thermus thermophilus
strains HB8 and HB27 revealed no loss of viability during con-

ditions and times of storage used. Vesuvius 2018 samples were

analysed 2 days after collection.

(b) Enrichment cultures
Five millilitres of TB medium [0.8% (w/v) tryptone, 0.4% (w/v)

yeast extract, 0.3% (w/v) NaCl, 0.5 mM MgCl2 and 0.5 mM

CaCl2] were inoculated with a 100 ml aliquot of hot spring water

sample and incubated overnight at 708C with vigorous agitation.

Enrichment cultures were checked for the presence of Thermus
by PCR with oligonucleotide primers specific for Thermus 16S

rRNA gene (electronic supplementary material, table S1). Amplifi-

cations were carried out with Taq DNA polymerase under the

following conditions: initial denaturation for 5 min at 958C, fol-

lowed by 28 cycles of 30 s at 958C, 30 s at 558C and 40 s at

728C, and a final extension at 728C for an additional 2 min.

(c) Phage isolation
Thermus thermophilus strains HB8 ATCC 27634 and HB27 ATCC

BAA-163 were used in enrichment cultures to isolate bacterio-

phages from environmental samples. Five millilitres of TB

medium were inoculated with a 100 ml aliquot of overnight cul-

ture of one of the Thermus strains and growth proceeded until

OD600 reached approximately 0.4. An amount of 0.2–0.5 ml of

environmental sample was added and incubation was continued

overnight at 708C with vigorous agitation. To isolate individual

phage plaques, 1 ml of enrichment culture was centrifuged for

15 min, and 100 ml aliquots of supernatant were combined with

150 ml of freshly grown T. thermophilus HB8 or HB27 cultures

(OD600 approx. 0.4). Melted soft (0.75%) TB agar was added,

mixtures were poured over 2.5% TB agar plates and incubated

overnight at 658C. Individual plaques were picked with tooth-

picks and cleaned by several passages on the host Thermus
strain as described above.

(d) Phage DNA extraction and sequencing
Phage lysates were prepared and DNA was extracted as

described previously [30]. Five hundred nanograms of phage

DNA were used for library preparation and pair-end sequencing

was carried out on the Illumina MiSeq platform with MiSeq

reagent kit v. 2 (Illumina, USA) as described previously [31].

(e) Phage genome annotation
Phage genomes were automatically annotated using GeneMark

[32] and annotation was further manually checked by the

Artemis program [33] and verified by Blastp and HHpred pro-

grams. The BlastN tool was used to compare the genomes of

newly isolated phages with the database.
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( f ) Bacterial DNA extraction, amplification and
sequencing

DNA was extracted from 2 ml of spring water, mud samples

from gravel or enrichment cultures using Blood and Tissue kit

(Qiagen) according to the manufacturer’s protocol for Gram-

negative cells. Different sets of oligonucleotide primers were

used to amplify CRISPR spacers (electronic supplementary

material, table S1). Amplification was carried out with Taq

DNA polymerase under the following conditions: initial dena-

turation for 5 min at 958C, followed by 28 cycles of 30 s at

958C, 30 s at 50–608C and 40 s at 728C, and a final extension at

728C for an additional 2 min. Two nanograms of total DNA

were used as a template for each PCR reaction. To avoid biases

during PCR amplification, 10 replicates of each PCR reaction

were performed for every sample and mixed before further manip-

ulations. Amplicons were visualized on 1% ethidium bromide-

stained agarose gel and DNA fragments of 200–1000 bp in

length were purified from the gel and sequenced on the Illumina

MiSeq platform as described above.

(g) Spacer clustering and analysis
Raw reads were demultiplexed, trimmed by quality with Phred

score greater than or equal to 20 and no admission of ambiguous

bases using CLC Genomics 8.0 workbench software (CLC Bio

Aarhus, Denmark). Spacers were extracted using spget (https://

github.com/zzaheridor/spget). To decrease the number of

spacers and to avoid overrepresented diversity because of mis-

takes during PCR and sequencing, spacers were clustered using

UCLUST algorithm [34]. The maximum number of substitutions

allowed for spacers within one cluster corresponds to 85% identity

over the full length of the spacer; end gaps were allowed with

zero penalties. Chao index, a and b diversities were calculated

with vegan package for R [35]. Good’s criterion is defined as

12(n1/N), where N is a total number of spacers in the sample,

and n1 is a number of singleton spacers.

Centres of spacer clusters (the most highly represented

sequence within a cluster) were compared against the NCBI

nucleotide collection (nt) and a local database of Thermus
phages and plasmids with the BLASTn algorithm with par-

ameters for short input sequences (word size 8). Sequences

with more than 85% of identity over the entire spacer length

and without indels were considered as positive hits.

PAM identification was performed using the CRISPRTarget

online tool [36]. Eight nucleotides upstream and downstream

of each protospacer were extracted and used for PAM logo

search with the Weblogo online tool (http://weblogo.berkeley.

edu/logo.cgi). Repeats sequences from identified CRISPR

arrays were classified using the CRISPRmap tool [37].

(h) Data access
Phages sequences of phiFa, phiKo, phiLo, phiMa and

YS40-Isch were deposited in GenBank under accession

numbers MH673671, MH673672, MH673673, MH673674 and

MK257744, respectively. Sequences of CRISPR spacers from

natural Thermus communities are available in the electronic

supplementary material.

3. Results
(a) The diversity of CRISPR spacers in complete Thermus

genomes
Fully sequenced genomes of 26 Thermus strains isolated

around the world were available in GenBank at the time of

writing (electronic supplementary material, table S2). Ther-
mus genomes usually contain multiple CRISPR-Cas systems

of different types [38] located on the chromosome and/or

on megaplasmids present in some isolates. Most Thermus
cas operons have an adjacent CRISPR array with a specific

repeat sequence. Because of a clear connection between the

type of Thermus cas operon and repeat sequence of adjacent

CRISPR array [39], each array (and repeat) can be assigned

to a specific CRISPR type or subtype. The III-A and III-B sub-

type cas gene operons have adjacent CRISPR arrays with

identical repeat sequences. Moreover, it has been shown

that effectors of both subtypes III-A and III-B bind to

common crRNAs [40,41]. Therefore, the III-A and III-B sub-

types cannot be distinguished from each other and are

treated here as a single type, type IIIAB.

For further analysis, we considered six dominant Thermus
CRISPR-Cas systems: I-A, I-B, I-C, I-E, I-U and IIIAB. Consen-

sus repeat sequences for each system used in our analysis are

listed in table 1. We used the spget program to extract spacers

associated with each consensus repeat sequence from fully

sequenced Thermus genomes and analysed their diversity.

Spacers from different Thermus isolates were considered identi-

cal if they had fewer than two mismatches in their sequences.

In this way, a set of 1567 unique Thermus spacers was obtained.

Most spacers were found to be strain-specific. For very closely

related T. thermophilus strains isolated in Japan (labelled as 22,

23 and 24 in figure 1), 19 out of 269 spacers were identical

and located one after another in CRISPR arrays of the same

type. In T. scotoductus strains (labelled as 13–16, figure 1), the

oldest, leader-distal spacer in one of the I-E CRISPR arrays

was shared [42]. Finally, seven pairs of shared spacers must

have been independently acquired from the same locus as

they were found in CRISPR arrays belonging to CRISPR-Cas

systems of different types and/or were partially overlapping.

Similar instances of independent spacer acquisition were

reported earlier in other microbes [12].

In total, only 31 Thermus spacers (2.0%) were found in

more than one genome (see electronic supplementary

material, table S3). For comparison, in a well-studied I-E

CRISPR-Cas system of Escherichia coli, 90.9% of spacers

were shared between at least two isolates (data not shown).

These observations imply that the diversity of Thermus
CRISPR spacers in current databases is very undersampled.

BlastN analysis of 1567 unique spacers revealed, respectively,

52 (3.3%) and 80 (5.1%) spacers matching Thermus phages

and prophages, 14 (0.9%) matches to plasmids and 48

(3.1%) matches to Thermus chromosomes in locations other

than CRISPR arrays. Most spacers that matched DNA frag-

ments from Thermus phages were from I-E and I-B arrays

(21 and 20, respectively), suggesting that I-E and I-B systems

are most active against known Thermus phages.

(b) Amplification of CRISPR spacers from natural
Thermus communities

Given that spacer diversity in known Thermus genomes is

underestimated, we decided to investigate spacer diversity

in natural Thermus communities by amplifying spacers associ-

ated with specific repeats from samples collected from Mount

Vesuvius hot gravel, and hot springs at Mount Etna, the el

Tatio region in northern Chile, the Termas del Flaco region

in southern Chile and Uzon caldera in Kamchatka, Russian

Far East. At each collection site, the temperature was within
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65–708C and the pH was neutral, so we expected to find Ther-
mus there. Degenerate partially self-complementary primers

corresponding to each of the six Thermus CRISPR repeat con-

sensus sequences (electronic supplementary material, table

S1) were used for PCR amplification. The procedure (elec-

tronic supplementary material, figure S1A) was previously

used to characterize spacer diversity in various environmental

samples [31,43]. As the procedure was not previously applied

to Thermus CRISPR arrays, primer pairs for I-B, I-E and

IIIAB repeats were validated using DNA purified from

T. thermophilus HB8 strain which harbours the corresponding

CRISPR-Cas systems. With each primer pair, a characteristic

ladder of amplification products was observed (an example

of PCR fragments obtained with primers specific for the I-E

type repeat is shown in electronic supplementary material,

figure S1B, lane 3). We did not observe amplification products

when DNA prepared directly from environmental samples

was used as a template for PCR (as an example, see electronic

supplementary material, figure S1B, lanes 4 and 5), probably

because of the low concentration of Thermus cells. However,

Table 1. Types of CRISPR repeats present in Thermus sp. CRISPR arrays. Consensus sequences built using repeat sequences present in CRISPR arrays of fully
sequenced Thermus genomes listed in figure 1 are shown.

N type of CRISPR-Cas repeat sequence average length of spacer

1 III GTTGCAMRRGWKKSWKCCCCGYMAGGGGATKRHYDC 41

2 I-E GTAGTCCCCACRCRYGTGGGGATGGMCSD 32

3 I-C GTTGCACCGGCCCGAAAGGGCCGGTGAGGATTGAAAC 38

4 I-B GTTGCAAACCYCGTYAGCCTCGTAGAGGATTGAAAC 36

5 I-U GTTGCATCCAAGCTTCACAGCTTGGCTACGTTGCAGG 36

6 I-A GTTTCAAACCCTYATAGGTACGGTYMRAAG 36
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Figure 1. The diversity of CRISPR spacers in fully sequenced Thermus genomes. A total of 1567 spacers present in 26 fully sequenced Thermus sp. genomes are
shown on a circular diagram. Thermus isolates used for analysis are numbered outside the spacer diagram (a full list of isolates can be found in electronic sup-
plementary material, table S2). Spacers belonging to arrays of the same CRISPR-Cas systems types/subtype are indicated by identical colours. Spacers that differ from
each other by fewer than two nucleotides are connected by lines whose colours correspond to colours indicating CRISPR-Cas systems types/subtypes. Spacers shared
by arrays of different types/subtypes are connected by black lines. National flags indicate countries where each strain was isolated.
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robust amplification products were seen with DNA prepared

from enrichment cultures grown overnight at 708C in rich

medium (see Material and methods). The observed amplifica-

tion patterns were reproducibly distinct for enrichment

cultures seeded with material from different locations (as an

example, see electronic supplementary material, figure S1B,

lanes 6 and 7).

(c) The diversity of CRISPR spacers in Thermus
communities

For each site, amplified material corresponding to spacers from

different arrays was combined and subjected to Illumina

sequencing. Using a spacer extraction pipeline similar to the

one described earlier [31,43], a total of approximately 17.8

million spacers (defined as sequences of an expected length

located between two repeats sequences of the same type)

were extracted. Spacers with identity of more than 85% over

their entire length and belonging to the CRISPR arrays with

repeats of the same type were clustered, separately for each

sample. The most abundant sequence in a cluster was con-

sidered as the cluster centre. Overall, implementation of the

procedure described above resulted in 109 843 clusters. We

measured a-diversity (Shannon entropy) for each sample

and calculated the coverage of spacer diversity based on the

number of lowly abundant clusters (see electronic supplemen-

tary material, table S4). The lowest coverage was observed

for Vesuvius samples 3–6 (27–31%) and Uzon samples 3–5

(25–35%). Given undersequencing of spacers with low

abundance, further analysis was performed for clusters

that contained more than 10 spacers (14 872 clusters). For

simplicity, below we will refer to cluster centres as ‘spacers’.

When spacers from different sites were compared, 7246

unique spacers were identified. The collection of Thermus
spacers obtained from environmental samples exceeds the

number of spacers from sequenced isolates by more than

fourfold (7246 compared with 1567). Yet, only 1.2% of spacers

from natural Thermus communities are similar to database

spacers. This value becomes even smaller if minor, less abun-

dant spacers revealed by our analysis, are considered. The

result emphasizes the extent of diversity of CRISPR spacers

in Thermus and, presumably, reflects the high level of activity

of Thermus CRISPR-Cas systems in spacer acquisition.

As the overall number of unique spacers (7246) is con-

siderably less than the sum of spacers present in each site

(14 872), it follows that some spacers are present in more

than one sample. Spacers shared between samples collected

from the same locality/reservoir are shown in figure 2a.

The number of shared spacers ranges from 1.0% in Etna

(because of the low number of spacers in Etna 1 sample) to

66% between Vesuvius 1 and Vesuvius 2 samples. Samples

from Termas del Flaco, which were taken 27 months apart,

illustrate the temporal stability of spacer content in time,

with 37–49% of spacers shared between all samples. Even

more dramatically, 36–63% of spacers collected 4 years

apart at Vesuvius were also common. Interestingly, the fre-

quencies of occurrence of common spacers (as evidenced by

the size of the clusters that contain them) were comparable

in samples collected at the same site (0.55–0.98 Pearson’s

coefficient). It can be argued that the enrichment procedure

used to prepare cultures suitable for spacer amplification

could have introduced a bias in observed spacer content.

The stability of spacer sets in samples collected at the same

location but separated by extended periods of time makes

this possibility unlikely.

By identifying overlapping spacer pairs and triplets in longer

Illumina reads, we reconstructed fragments of Thermus arrays

containing 10–35 spacers (electronic supplementary material,

table S5). As an example, three shared I-A CRISPR array frag-

ments from Thermas del Flaco 1 and Thermas del Flaco 5

samples are shown in electronic supplementary material,

figure S2. One array remained unchanged over the course of

27 months, another lost three spacers from the leader-distal

end and the third was completely renewed except for one pair
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Figure 2. The diversity of CRISPR spacers in environmental Thermus samples. (a) The diversity of 14 872 spacers (spacer cluster centres) associated with Thermus
CRISPR repeats from enrichment cultures obtained from samples collected at indicated sites is shown in the circular diagram. Spacers from the same location that
differ from each other by fewer than two nucleotides are connected by matching colour lines. For del Flaco, samples #1 and #2 were collected in December 2013
and samples #3 – #5 in March 2016. For Vesuvius, samples #1 and #2 were collected in October 2014 and samples #3 – #6 in October 2018. (b) Spacers from the
same location are merged. The resulting diversity of unique 7877 spacers is shown in the circular diagram. Spacers from different locations that differ from each other
by fewer than two nucleotides are connected by matching colour lines. The colour labelling scheme is the same as in figure 1. Grey colour histograms on the outside
show cluster size in log10 scale.
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of spacers. Overall, these observations are consistent with

the existence of stable local Thermus communities sharing a con-

served set of CRISPR spacers but also showevidence of temporal

changes due to spacer acquisition and loss.

Analysis of spacers shared between remote sites is shown

in figure 2b. For simplicity, all spacers present at the same

location were combined to create this figure. Electronic sup-

plementary material, figure S3 shows the results when

individual samples from the same locations are treated

separately. As can be seen, many spacers are shared between

different locations. Four hundred and five spacers were shared

between two sites, 78 between three sites and four spacers

were shared between four sites. Our analysis revealed, rather

strikingly, little overlap between spacer sets present in distant

localities at the same continent compared with intercontinental

spacer sets. For example, there are less common spacers

between the El Tatio and Termas del Flaco sets than between

the El Tatio and Vesuvius spacers ( p , 1025, Fisher’s exact

test). The same result was obtained from hierarchical clustering

of samples by pairwise b-diversity (electronic supplementary

material, figure S4). The number of shared spacers also did

not correlate with geographical distance (electronic sup-

plementary material, figure S5). At present, we are unable to

explain this observation. It is possible that certain physico-

chemical properties of water that were not recorded during

sample collection are responsible. Careful control of ecological

parameters of habitat at the collection sites and extension

of analysis presented here to other Thermus communities

around the world may help resolve this issue.

It could be argued that some spacers were acquired inde-

pendently in different sites. Several identical partially

reconstructed arrays were found in different sites. As chances

of independent acquisition of identical spacers in the same

order are negligible, the results show that some CRISPR

arrays (and, presumably, strains that contain them) are

shared between distant locations. Shared arrays contained

sample-specific spacers, which were acquired at the leader-

proximal end of the array (see electronic supplementary

material, figure S6 for several examples). The result appears

to mirror the situation with another thermophile, an archaeon

Sulfolobus. In the full genome sequence of Sulfolobus solfatari-
cus 98/2 isolated in Italy, 107 out of 189 CRISPR spacers are

identical to spacers from S. solfataricus P2 isolated in the Yel-

lowstone National Park [44]. Similarly, we found that S.
acidocaldarius N8 from thermal fields in Japan and S. acidocal-
darius GG12-C01-09 from Yellowstone share 95% of CRISPR

spacers (data not shown).

(d) The provenance of Thermus spacers
We next examined sequences of spacers obtained in this

work. Most spacers (94.5%) had no matches to the Genbank

nucleotide collection, a situation that is typical for all

CRISPR-Cas systems [39]. The remaining spacers matched

Thermus phages (3.3%), small plasmids (0.4%) or non-

CRISPR chromosome/megaplasmid sequences of Thermus
(1.8%). Alignments of protospacers (sequences matching

spacers) and their flanking sequences revealed a putative

AAG protospacer-associated motif (PAM) on the 50-protospa-

cer flank for the I-E system, a GGTN PAM for the I-B system

and a TTC PAM for the I-C and I-U systems (electronic sup-

plementary material, figure S3). The AAG PAM has also been

reported for the E. coli I-E system [43].

More than 100 Thermus bacteriophages have been isolated

[45–49]. However, only eight complete genomes of Thermus
phages are available in the Genbank database: IN93, p23-

77, YS40, TMA, P23-45, P74-26, phiOH3 and phiOH16. Myo-

viruses YS40 and TMA, inoviruses phiOH3 and phiOH16,

and siphoviruses P23-45 and P74-26 have closely related

sequences, respectively. In the course of this work, we have

isolated, sequenced and annotated five additional Thermus
bacteriophages from samples that were used for amplification

of spacers. Three phages, phiFa, phiKo and YS40-Isch were

isolated from Mount Vesuvius samples, and two (phiLo

and phiMa) from el Tatio samples. PhiFa is a siphovirus

and most of its genes are homologous to long-tailed phages

P23–45 and P74–26 isolated earlier in Kamchatka [50].

PhiKo (11 129 bp, 26 ORFs) belongs to Tectiviridae phage

family. One PhiKo gene product is homologous to the lyso-

zyme of Thermus phage 2119, and three others are

homologous to proteins encoded by prophage region of

Thermus sp. 2.9 isolate. PhiLo (178 531 bp, 165 ORFs) and

phiMa (51843 bp, 66 ORFs) are myoviruses. Approximately

10% of phiLo proteins are homologous to proteins encoded

by other Thermus phages (including YS40, TMA, IN93, P74-

26), while 60% of phiMa proteins are most similar to proteins

encoded by prophage region of Thermus sp. 2.9. YS40-Isch is

highly similar to YS40 (87% DNA identity, 85% coverage by

BLASTn) and TMA (86% identity, 84% coverage) phages

earlier isolated in Japan [46,47].

When the five new Thermus phage genomes were taken

into account, the percentage of matches of unique spacers

with phage sequences increased from 3.3 to 6.3%, indicating

that the diversity of Thermus phages is greatly undersampled.

The results of spacer mapping to known Thermus phage gen-

omes are summarized in table 2. The overwhelming majority

of spacers that matched phiMa and phiKo genomes came

from spacer sets from the same localities ( p , 10215, Fisher’s

exact test). Only 17 spacers targeted YS40 isolated from

Japan, while 33 spacers from Vesuvius matched YS40_Isch,

a local phage. Spacers targeting IN93 were present in

spacer sets from every sample. On the basis of the abundance

of IN93 targeting spacers in different locations, it appears

that, unlike the apparently ‘local’ phages such as phiKo

and phiMa, the IN93-like phages are globally spread,

possibly because of their ability to lysogenize their hosts.

It is apparent that different phages are targeted with

widely different frequencies by spacers in our collection.

For example, IN93, a small phage with an approximately

20 kb genome, contains 189 protospacers (constituting 38%

of the total of phage sequences matching Thermus spacers),

while some much larger phages, namely YS40-Isch or

phiFa, are each targeted by about 30 spacers. It is also appar-

ent that different phages are preferentially targeted by

different CRISPR-Cas systems (table 3). Thus, most IN93

targeting spacers belong to the I-E subtype, while phiFa

and YS40-Isch are preferentially targeted by IIIAB systems.

Interestingly, the I-E system, which contains most unique

spacers, has a relatively small percentage of spacers that

match phage genomes (4%). This value is significantly

higher for spacers of I-C (11%), I-U (9%) and I-B (17%) types.

The locations of protospacers in phage genomes that had

most matches with Thermus spacers—IN93, phiKo and

phiFa—are shown in figure 3 and, for phiMa, a phage with

a large genome, in electronic supplementary material,

figure S2. While the IN93 phage is globally distributed, for
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phiKo and phiFa phages we performed separate mapping of

‘local’ spacers recovered at the isolation site and ‘foreign’

spacers observed elsewhere. As can be seen from figure 3b,c
and table 2, most spacers matching phiKo and phiFa are

local.

The I-E and I-B spacers mapped evenly throughout

phage genomes to both DNA strands (figure 3). By contrast,

most protospacers matching IIIAB spacers were located on

the transcribed strand of viral genes, an expected result

given that interference by type III systems is transcription-

coupled [51]. The observed location of type III protospacers

suggests that phages do exert pressure on Thermus commu-

nities, for in the absence of such pressure non-functional

type III spacers targeting the non-transcribed strand of

phage DNA could have been expected. The distribution of

type IIIAB protospacers along the genome was also highly

uneven in the PhiKo (figure 3b) and, most prominently, in

the PhiFa genomes (figure 3c). In the latter case, protospa-

cers were located in a narrow central region of the

genome, where, based on homology to Thermus P23-45

phage, the early genes are located. In the case of phiKo,

type IIIAB protospacers mapped to the part of the genome

where transcription of viral genes likely initiates. The

result may indicate that spacers acquired from other regions

of phage genomes do not provide bacteria that acquire them

protection from the virus and are thus not retained in the

population [52]. Alternatively, there may be specific aspects

of phage development strategy that limit the adaptation

machinery of the host to these regions. The availability of

new phages described in this work will allow us to address

these questions experimentally.
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repeat repeat repeat repeat

primer F

primer R

primer F primer F

primer R primer R

PCR
fragments

A.

B.

Natural Diversity of CRISPR Spacers of Thermus: Evidence of Local Adaptation and Global Spacer Exchange

Supplementary figure S1. Amplification of Thermus CRISPR spacers from enrichment cultures.

A. A strategy used to amplify spacers associated with Thermus CRISPR repeats from environmental samples.
B. An agarose gel showing the results of separation of products of PCR amplification with primers specific to Thermus I-E type CRISPR repeat using
the following DNA as amplification template.
lane 2 - negative control, no input DNA;
lane 3 - T. thermophilus HB8 genomic DNA;
lane 4 - Thermas del Flaco sample 1, no enrichment;
lane 5 - Thermas del Flaco sample 2, no enrichment;
lane 6 - Thermas del Flaco sample 1, enrichment culture;
lane 7 - Thermas del Flaco sample 2, enrichment culture.
lane 1 is a DNA molecular weight marker.
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1

2

3

Shared spacers

Spacers unique for Thermas del Flaco 1 (2013)

Spacers unique for Thermas del Flaco 5 (2016)

Supplementary Figure S2. Intersection of reconstructed I-A CRISPR arrays for 

Thermas del Flaco 1 and Thermas del Flaco5. Arrows show direction from leader sequence. 
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Supplementary figure S2. PAM motifs identified by matches to Thermus phages 
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Supplemetary table S1.

System type primer name primer sequence

% of primer 

in the 

primer mix 

(total 100%)

IIIAB system IIIAB_rep_F GGGCTCAATCCCTTGCAAC 50%

IIIAB_rep_R1 CCCGTAAGGGGATTGCGAC 45%

IIIAB_rep_R2 CCCCGTAAGGGGATKRHYDC 5%

I-E system I-E_rep_F CCACRYGYGTGGGGACTAC 50%

I-E_rep_R1 RCRYGTGGGGATGGMCCG 45%

I-E_rep_R2 RCRYGTGGGGATGGMCSD 5%

I-C system I-C_R GGGCCGGTGAGGATTGAAAC 50%

I-C_F CTTTCGGGCCGGTGCAAC 50%

I-B system I-B_rep_R AGCCTCGTAGAGGATTGAAAC 54%

I-B_rep_F GGCTAACGAGGTTTGCAAC 53%

I-B_rep_rest_F GCCTCGTAGAGGATTGAAAC 6%

I-B_rep_rest_R GCTRACGRGGTTTGCAAC 6%

I-B_uniq_F CTCGTAGAGGATTGGCCA 1%

I-A system I-A_rep_R CGTACCTATAAGGGTTTGAAAC 35%

I-A_rep_F CCTTATAGGTACGGTTCAAAG 35%

I-A_rep_F1 ACCTATGAGGGTTTGAAAC 15%

I-A_rep_R2 TCATAGGTACGGTCAGAAC 15%

I-U system I-U_R CAGCTTGGCTACGTTGCAGG 50%

I-U_F AGCTGTGAAGCTTGGATGCAAC 50%

Thermus 16S рРНАThermus_F3 GTCTCCTGGGGGCCGAAGCTAA 50%

Thermus_R1 ACCCCAGGCTTTCACCCGGGTT 50%
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Supplementary table S2. A full list of 26 Тhermus isolates analyzed in this work.

№ Strain number of spacers isolation cite

1 Thermus amyloliquefaciens  YIM 77409 53 China

2 Thermus antranikianii  DSM 12462 1 Iceland

3 Thermus aquaticus  YT-1 48 USA

4 Thermus aquaticus  Y51MC23 25 USA

5 Thermus arciformis  CGMCC 1_6992 17 China

6 Thermus brockianus  GE-1 101 Iceland

7 Thermus filiformis  ATCC 43280 55 New Zealand

8 Thermus igniterrae  ATCC 700962 78 Iceland

9 Thermus kawarayensis  JCM 12314 172 Japan

10 Thermus oshimai  DSM 12092 115 Portugal

11 Thermus oshimai JL-2 140 USA

12 Thermus parvatiensis  RL 12 India

13 Thermus scotoductus  DSM 8553 61 Iceland

14 Thermus scotoductus  KI2 36 Hawaii

15 Thermus scotoductus  SA-01 49 South Africa

16 Thermus scotoductus  K1 5 Azerbaijan

17 Thermus sp  2_9 25 Argentina

18 Thermus sp  CCB_US3_UF1 96 Malaysia

19 Thermus sp  JCM 17653 90 Japan

20 Thermus sp  NMX2_A1 7 USA

21 Thermus tengchongensis  YIM 77401 67 USA

22 Thermus thermophilus  ATCC 33923 71 Japan

23 Thermus thermophilus  HB27 74 Japan

24 Thermus thermophilus  HB8 124 Japan

25 Thermus thermophilus JL-18 75 USA

26 Thermus thermophilus  SG0_5JP17-16 54 USA
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Supplementary table S4. Clustering statistics

Alpha diversity

(Shannon)

Vesuvius 1 2014 1 730 954 2 610 0.73 5.47 3512 ± 91 1 212

Vesuvius 2 2014 1 777 462 3 235 0.75 4.84 4208 ± 91 1 468

Vesuvius 3 2018 573 464 7 991 0.29 5.54 26446 ± 805 680

Vesuvius 4 2018 657 890 10 078 0.28 5.70 35343 ± 991 823

Vesuvius 5 2018 546 902 10 675 0.31 6.73 49915 ± 1763 1 916

Vesuvius 6 2018 759 772 12 658 0.27 6.20 52197 ± 1470 1 381

Etna 1 2012 1 027 256 286 0.40 2.84 677 ± 88 18

Etna 2 2012 926 693 765 0.66 3.14 1201 ± 75 226

El Tatio 1 2014 471 175 1 201 0.81 4.21 1468 ± 46 588

El Tatio 2 2014 456 459 1 122 0.70 3.09 1573 ± 67 439

Del Flaco 1 2013 2 103 097 965 0.67 4.88 1745 ± 132 542

Del Flaco 2 2013 3 653 540 1 041 0.55 5.35 1814 ± 100 355

Del Flaco 3 2016 15 328 595 0.87 5.40 642 ± 14 271

Del Flaco 4 2016 11 000 448 0.85 4.97 484 ± 11 173

Del Flaco 5 2016 14 875 695 0.87 5.63 746 ± 14 289

Uzon 1 2018 520 819 5 923 0.40 6.52 23070 ± 1070 1 572

Uzon 2 2018 512 485 11 477 0.40 4.51 23682 ± 420 555

Uzon 3 2018 1 011 741 10 508 0.25 5.98 53793 ± 1905 1 363

Uzon 4 2018 774 875 18 506 0.27 4.98 54063 ± 954 607

Uzon 5 2018 293 179 9 064 0.35 5.05 21357 ± 471 394

Clusters (n 

> 10)

YearSample CRISPR spacers, 

total

Clusters Good’s 

criterion

Schao
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CHAPTER IV 

 

Virus-borne mini-CRISPR arrays promote 

interviral conflicts and virus speciation 
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Introduction: 

In this Chapter, the CRISPRome analysis was performed for an archaeal hyperthermophilic 

community – members of the order Sulfolobales from Beppu hot spring in Japan. Instead of 

comparison of geographically distant communities (like in Chapter III), Chapter IV focuses on 

short-term dynamics of spacer diversity. CRISPR spacers from the original environmental 

sample and 10-days and 20-days enrichment cultures were analyzed. We serendipitously 

discovered CRISPR mini-arrays in the genomes of SPV1 and SPV2 viruses, which became the 

main focus of the project.  

 

Contribution:  

I performed all the bioinformatics analysis, prepared Figures and drafted the text of the 

manuscript. 
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2 
 

The incessant arms race between viruses and cells drives the evolution of both conflicting parties, 22 

structuring their populations across time and space
1-3

, spawning major evolutionary innovations
4-6

, 23 

and affecting the major biogeochemical cycles
7
. The CRISPR-Cas adaptive immunity systems are 24 

at the forefront of antivirus defense in bacteria and archaea
8
 and can specifically target viral 25 

genomes and other mobile elements that carry protospacers – sequences matching spacers stored in 26 

the CRISPR arrays. We performed deep sequencing of the CRISPRome — all spacers contained in 27 

a microbiome — of hyperthermophilic archaea recovered directly from environmental samples and 28 

from the laboratory enrichment cultures. The 25 million CRISPR spacers sequenced from a single 29 

sampling site dwarf the diversity of spacers from all available Sulfolobales isolates and display 30 

complex temporal dynamics. The majority of the spacers with identifiable protospacers target 31 

viruses from the same sampling site, indicative of local adaptation. Comparison of closely related 32 

virus strains shows that CRISPR targeting drives virus genome microevolution. We discover that 33 

some of the most abundant spacers in the CRISPRome come from mini-arrays carried by archaeal 34 

viruses themselves. These mini-arrays contain only 1-2 spacers, are preceded by leader sequences 35 

but are not associated with cas genes. Spacers from these mini-arrays target closely related viruses 36 

present in the same population. Targeting by virus-borne spacers might represent a distinct 37 

mechanism of superinfection exclusion and appears to promote archaeal virus speciation.  38 

 39 

Viruses and other mobile genetic elements (MGEs) have likely coevolved with their cellular hosts for 40 

billions of years, ever since the dawn of life, and established a range of complex interaction regimes
5,6

. At 41 

the interface of these interactions, various mechanisms of defense and counter-defense have emerged
9-13

. 42 

These vary from physical barriers, which abrogate the delivery of foreign genetic material into the host 43 

interior, to specific recognition and degradation of the invading nucleic acids inside the cell, to suicide of 44 

infected cells that can save the clonal population
14,15

. Concurrently, MGEs evolved elaborate ways to 45 

overcome the host defenses. The prime example of such systems in many bacteria and most archaea is the 46 

CRISPR-Cas adaptive immunity and the MGE-encoded anti-CRISPR proteins
11

. The defense systems 47 

evolve by widely different mechanisms which often involve recruitment of MGEs or their components. 48 

Once in existence, the defense and counter-defense systems can change their ‘owner’ according to the 49 

‘guns-for-hire’ concept
16

. Indeed, CRISPR-Cas systems are not exclusive to cellular organisms and have 50 

been captured and exploited by various MGEs, including bacteriophages, plasmids and transposons
17,18

. 51 

  52 

Hyperthermophilic archaea of the order Sulfolobales harbor some of the most complex among the studied 53 

CRISPR-Cas systems: most of the genomes contain several CRISPR arrays with different CRISPR 54 

repeats, several adaptation modules for acquisition of new spacers into CRISPR arrays and several type I 55 

and type III interference modules that degrade the DNA and/or RNA molecules of encountered MGEs
19

. 56 

Concurrently, members of the Sulfolobales harbor an extremely diverse virome
20

. As a countermeasure to 57 

sophisticated defense systems of the host, at least some viruses of Sulfolobales encode anti-CRISPR 58 

proteins
21,22

. CRISPR-Cas immunity of Sulfolobus has been extensively explored in vitro, providing 59 

insights into the mechanisms of adaptation, expression and interference
23-25

. In parallel, in vivo 60 

experiments have demonstrated that new spacers can be inserted into the CRISPR arrays upon infection 61 

with a single or multiple viruses
26,27

. Interference with the targeted MGE at the level of DNA and/or RNA 62 

has been described for different CRISPR interference modules
28,29

. 63 

 64 

The sequence of each CRISPR spacer and its position in the array, respectively, provide information 65 

about the encountered MGEs and the order of their interaction with the host. Analysis of the CRISPR 66 

spacer content in Sulfolobus populations demonstrated high spacer diversity
30,31

, reassortments of 67 

CRISPR arrays between strains in the course of 10 years
32

, as well as specificity of CRISPR spacers to 68 

local viruses
33,34

. To gain insights into the diversity and dynamics of CRISPRome — all spacers 69 

contained in a microbiome — we studied the natural population of Sulfolobales in the previously 70 
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3 
 

characterized environmental samples from a thermal field in Beppu, Japan
35

 (see Methods). To this end, 71 

we amplified by PCR
36

 the CRISPR spacers from the four principal CRISPR repeat sequences present in 72 

Sulfolobales
37

, followed by high-throughput sequencing (HTS) of the amplicons (see Methods). Notably, 73 

in Sulfolobus, the interference modules of types I and III can utilize crRNA from CRISPR arrays with 74 

different repeat sequences
38

, precluding unambiguous assignment of CRISPR arrays to interference 75 

modules. Thus, hereinafter, we refer to the four consensus CRISPR repeat sequences as A, B, C, and D 76 

(Figure 1). All four CRISPR repeat sequences are exclusive to the Sulfolobales, including the genera 77 

Sulfolobus, Acidianus and Metallosphaera (Supplementary table 1). The temporal dynamics of the 78 

CRISPRome was analyzed in two parallel series of enrichment cultures established from environmental 79 

samples J14 and J15 (Ref 
35

), in media that favor the growth of Sulfolobus and Acidianus species 80 

prevalent in terrestrial hot springs and grow well under laboratory conditions (Supplementary Figure 1).  81 

 82 

More than 25 million spacers were sequenced from all the samples (Supplementary table 2), which after 83 

clustering of sequences with 85% identity resulted in 40,705 unique spacer clusters (Supplementary Data 84 

1). The clustered spacer collection obtained here from a single sampling site dwarfs (6-fold increase) the 85 

size of the Sulfolobales spacer database from strains (n=6699 unique spacers) that have been previously 86 

isolated from geographically diverse locations (Figure 1B). The largest intersection (48 spacers) was 87 

found between the Beppu spacer set and spacers from sequenced Sulfolobales strains isolated in Japan 88 

(Figure 1A), indicative of the presence of a biogeographical pattern in the Sulfolobales virome, consistent 89 

with previous observations from other geographical locations
33,34

. The original environmental sample 90 

comprised 86% of the 40,705 spacer clusters, with 64% of spacers found exclusively in this sample. In 91 

contrast, the 10-days and 20-days enrichment samples, respectively, contained only ~20% and ~15% of 92 

the total collection of Beppu spacers (Supplementary Figure 2a). The massive loss of spacer diversity 93 

must result from extinction of certain Sulfolobales strains during cultivation under laboratory conditions. 94 

Indeed, we found that the initially less abundant spacers (with coverage < 30) were the most strongly 95 

affected by the cultivation procedure, with 85% disappearing in the enrichment cultures, whereas only 7% 96 

of initially dominant spacers, sequenced more than 500 times, were lost after 20 days (Supplementary 97 

Figure 2b). This result indicates that, as one would expect, the bottleneck primarily affects the strains with 98 

a small population size.  99 

 100 

To assess the provenance of the spacers, we matched the Beppu spacer set against the available 101 

Sulfolobales genomes, viruses and plasmids (Figure 1c). Using the threshold of >85% identity over the 102 

full length of the alignment, protospacers were identified for ~6% of spacers, a value that is close to the 103 

~7% mean observed in previous analyses of the global dataset of spacers from all available sequenced 104 

genomes
39

. Notably, protospacers associated with the C-type CRISPR array were overrepresented in 105 

plasmids (P-value < 10
-5

) and underrepresented in viruses (P-value < 10
-36

), suggesting specialization 106 

among the CRISPR types to combat different types of MGE. The CRISPRome of the Sulfolobales 107 

community from Beppu included spacers against 53 viral genomes isolated from all over the world, but 108 

the most frequently targeted ones were those sequenced from the same sampling site
35

, further indicating 109 

local adaptation of the Sulfolobales viruses. Notably, fusellovirus SSV1 isolated from the same Beppu 110 

site 35 years ago
40

 is the fourth most targeted virus, suggesting that SSV1 and its derivatives are persistent 111 

components of the Beppu virome (Figure 1d). Spacers associated with different CRISPR repeat types 112 

showed specificity to different viruses (Figure 1d, Supplementary Figure 3), possibly reflecting distinct 113 

host ranges of the corresponding viruses. For example, related viruses SBFV1 and SBFV3 are primarily 114 

targeted by spacers from types A and D, respectively. Rudivirus SBRV1 is targeted by as many as 841 115 

unique spacers belonging to different types, signifying that SBRV1-like viruses are or were associated 116 

with broadly diverse hosts. Such dense coverage of protospacers would allow reconstruction of 53% of 117 

the SBRV1 genome. Moreover, tiling the sequences of overlapping spacers allowed assembly of several 118 

additional viral contigs (see Supplementary text). Furthermore, mapping the spacers against the 119 
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Sulfolobales chromosomes proved to be an efficient approach to identify integrated MGEs (see 120 

Supplementary text).  121 

 122 

123 
  124 

 125 
Figure 1. Characteristics of the analyzed spacer collections. A. A circular diagram of spacers amplified from the 126 
Beppu hot spring and spacers from the Sulfolobales isolates clustered by the country of origin. Spacers belonging to 127 
arrays with the four principal repeat sequences found in Sulfolobales are indicated by identical colors; the color-128 
coded repeat sequences and the corresponding PAMs are shown in the bottom right corner of the figure (note that 129 
CRISPR repeat types A and D share the last 8 nucleotides). Spacers that differ from each other by less than 2 130 
nucleotides are connected by lines whose colors correspond to colors indicating CRISPR repeat type. Black lines 131 
connect spacers shared by arrays of different types. The outer grey histograms represent the abundance of CRISPR 132 
spacers in log10 scale. YNP, Yellowstone National Park, United States. B. Intersection of the Beppu spacer 133 
collection and spacers from sequenced Sulfolobales isolates available in public databases (DB). The numbers 134 
represent the actual number of spacers. C. The bar plot showing the numbers of protospacers found in Sulfolobales 135 
host genomes, plasmids and viruses. The stars indicate values that differ significantly (chi square test, P-value < 136 
0.001) from the expectation. Colors represent spacers associated with different CRISPR repeat types, as in Figure 1. 137 
D. The bar plot shows the numbers of protospacers found in the top 10 targeted Sulfolobales viruses. Names of 138 
viruses isolated in Beppu, Japan are highlighted with violet color. 139 

 140 

 141 

94



5 
 

To explore the temporal CRISPRome dynamics, we compared the distributions of frequencies of spacers 142 

across samples, including the original environmental sample and the enrichment cultures grown in 143 

Sulfolobus- and Acidianus-favoring media (Figure 2). Despite possible biases introduced by PCR 144 

amplification, CRISPR spacers sequenced from the same replicon generally get similar representation in 145 

HTS reads
36

. Therefore, the abundances of spacers show a multimodal distribution (Figure 2), likely 146 

reflecting the number of spacer-carrying Sulfolobales strains in the sample. Comparison of the temporal 147 

variation in the spacer abundances revealed significant differences between the J14 and J15 samples. 148 

Given that the strains from both samples were propagated under the same conditions, and initially 149 

displayed similar spacer composition (Supplementary Figure 4), differences in the growth dynamics for 150 

some of the strains are unlikely to result from the cultivation in the artificial setting as such, and instead 151 

might be caused by viruses present in enrichment cultures. Indeed, we have previously shown that 152 

samples J14 and J15 contain different, albeit overlapping, virus populations. Whereas J14 contains SBV1, 153 

SBFV1, SBFV3, SBRV1, and SPV2, J15 contains SBV1, SBFV1, SBFV2 and SPV1 (Supplementary 154 

Figure 1)
35

. Among these, SPV1 and SPV2 (family Portogloboviridae) are by far the most abundant in 155 

the respective samples, accounting for ~90% of all virome reads
35

. 156 

 157 

 158 

 159 
 160 
Figure 2. The violin plots show the density of the distribution of spacer abundances in the environmental sample 161 
and enrichment cultures established from samples J14 and J15. In the J14 sample, the enrichment culture established 162 
in the Acidianus-favoring medium is separated from those established in the Sulfolobus-favoring medium by a 163 
dashed line. Plots in each row represent spacers, associated with different CRISPR repeat types and color-coded as 164 
in Figure 1. Plots in each row are scaled to have the same area. Log10 scale for the abundance values was used.  165 
 166 

 167 

To understand the reasons underlying the dominance of SPV1 and SPV2 and their exclusivity to the 168 

corresponding samples, we focused on the comparison of spacers targeting the two viruses in J15 and J14, 169 
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respectively. Notably, the genomes of SPV1 and SPV2 are 92% identical to each other
35

 and mapping of 170 

the CRISPR spacers from our dataset showed that genomic location of sequence divergence between 171 

SPV1 and SPV2 specifically coincides with targeting by CRISPR spacers (P-value<0.01). Thus, CRISPR 172 

targeting is an important factor driving the genome evolution of portogloboviruses (Figure 3a).  173 

 174 

Six spacers associated with type A CRISPR repeat targeting SPV1 and SPV2 were the most abundant in 175 

the corresponding enrichment cultures. Unexpectedly, 3 of these spacers targeting SPV1 (100% identity) 176 

were sequenced from the J15 enrichment culture dominated by SPV1, and conversely, the 3 spacers 177 

targeting SPV2 (100% identity) were sequenced from the J14 enrichment dominated by SPV2. This result 178 

was inconsistent with an a priori expectation of negative correspondence between the frequency of 179 

spacers and the targeted viruses. Furthermore, as mentioned above, abundant CRISPR spacers in our data 180 

could be assembled into long CRISPR arrays (see Supplementary Text). However, despite being among 181 

the most abundant in our dataset, the 6 SPV1- and SPV2-targeting spacers could not be reconstructed into 182 

long arrays, but instead appeared to be located within mini-CRISPR arrays each carrying 1 or 2 spacers. 183 

We found that the mini-CRISPR arrays including type A CRISPR repeats flanking the SPV-targeting 184 

spacers are encoded in intergenic regions of both SPV1 and SPV2 genomes. Thus, the 6 most abundant 185 

CRISPRome spacers originated from mini-CRISPR arrays in SPV1 and SPV2 genomes, rather than from 186 

the Sulfolobales genomes. The relative positions of the mini-CRISPR arrays containing 2 spacers in the 187 

SPV1 and SPV2 genomes were the same, but the corresponding spacers were different, implying active 188 

spacer turnover. These mini-CRISPR arrays are preceded by the promoter-containing leader sequences 189 

similar to those found in genomic Sulfolobus CRISPR arrays (Supplementary Figure 5). Unlike in the 190 

case of certain bacteriophages and integrated mobile genetic elements, which carry complete CRISPR-191 

Cas systems
17,41

, the SPV-encoded mini-CRISPR arrays are not associated with recognizable cas genes. 192 

However, given the sequence similarity of the repeats and leader sequences to the corresponding elements 193 

of the host
25

, it is highly likely that new spacers can be inserted by the endogenous host-encoded 194 

adaptation modules. Consistent with this possibility, some of the genetic tools designed for Sulfolobus 195 

specifically rely on the recruitment of endogenous Cas proteins to function with artificially designed, 196 

plasmid-borne CRISPR spacers targeting a gene of interest
29,42

. 197 

 198 

Remarkably, two of the three spacers carried by SPV2 target SPV1, whereas only one of the three spacers 199 

carried by SPV1 targets SPV2, with another one targeting a pRN1-like plasmid integrated in the S. 200 

tokodaii genome (BA000023, nucleotide coordinates 328508 – 335407). Importantly, the loci orthologous 201 

to the regions targeted by spacers in the viruses carrying the spacers contain either point mutations or 202 

deletions, preventing self-targeting. Notably, the SPV1 and SPV2 spacers target regions close to the mini-203 

CRISPR arrays, although origins and consequences of this proximity remains unclear (Figure 3b). These 204 

findings prompted us to search for additional mini-CRISPR arrays in our CRISPRome dataset, resulting 205 

in 15 more candidates (Figure 4a). Three of the mini-CRISPR arrays were confirmed to be encoded 206 

within viral genomes by analysis of the previously sequenced viromes from J14 and J15 samples. All 207 

three were found in the virome contigs containing fragments of genes orthologous to those of SPV1 and 208 

SPV2 (Figure 3b). We conclude that these additional mini-CRISPR arrays are carried by minor strains of 209 

SPV-like viruses present in the population. Of the 26 spacers carried by the 15 candidate mini-CRISPR 210 

arrays, 18 were found to target different loci within the SPV1 or SPV2 genomes (Figure 4b).  211 

 212 
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 213 
 214 
Figure 3. Mini-CRISPR arrays in SPV1 SPV2 genomes. A. Comparison of the SPV1 and SPV2 genomes. Genes 215 
are represented with arrows following the direction of transcription. Deletions in one of the two genomes with 216 
respect to the other are indicated as gaps bordered with vertical lines. Grey histogram above the genome maps 217 
shows the identity calculated in 50bp window from the SPV1-SPV2 nucleotide alignment. Locations of protospacers 218 
are showed as colored bars at the top of the figure. The regions zoomed-in in panel B are boxed. B. Zoom-in on two 219 
regions of the SPV1 and SPV2 genomes carrying mini-CRISPR arrays (CRISPR region 1 and CRISPR region 2). 220 
Black bars represent CRISPR repeat. The predicted promoters in the leader sequences are indicated with broken 221 
arrows. Positions of hits of spacers from mini-CRISPR arrays carried by SPV-like viruses are shown with colored 222 
bars and arrows link the spacers and the corresponding protospacers. Identities between spacer and protospacers are 223 
indicated next to the protospacer bars. Three mini-CRISPR arrays found in the virome data are shown below the 224 
corresponding regions of alignment.  225 
 226 

 227 

The reciprocal CRISPR targeting by SPV1 and SPV2 strongly suggests that the virus-encoded mini-228 

CRISPR arrays are involved in interviral conflicts and represent a distinct mechanism of superinfection 229 

exclusion, whereby a cell infected by one virus becomes resistant to the other virus. This possibility is 230 

consistent with the observation that J14 and J15 cultures contain exclusively SPV2 and SPV1, 231 

respectively (Supplementary Figure 1). Furthermore, we hypothesize that avoidance of self-targeting 232 

promotes speciation in the portoglobovirus population. In a similar fashion, it has been recently suggested 233 

that CRISPR spacers acquired during inter-species mating of halophilic archaea also influence 234 

speciation
43

. Importantly, SPV1 is a non-lytic virus, which establishes a chronic infection and is released 235 

without killing its host
44

. Therefore, the association between a non-lytic, CRISPR-bearing virus and the 236 

host is beneficial to both parties and can thus be considered a form of symbiosis.  237 

 238 

To assess the generality of the potential CRISPR-mediated virus-virus interactions, we searched if any of 239 

the other available genomes of Sulfolobales viruses and plasmids carry CRISPR repeats of the four types. 240 

A mini-CRISPR array has been also identified in the genome of Acidianus two-tailed virus (family 241 

Bicaudaviridae). It consisted of a single spacer flanked by type B CRISPR repeats. In addition, stand-242 

alone CRISPR repeats similar to those of the corresponding host species, albeit without spacers, were 243 

identified in the genomes of 3 other viruses and 2 conjugative plasmids (Figure 4c). However, the stand-244 

alone repeats were not preceded by recognizable leader sequences. Whether such repeats are competent 245 

targets for spacer integration is thus unclear.  246 

 247 

97



8 
 

 248 
Figure 4. Mini-CRISPR arrays in viral genomes. A. Total abundance of SPV1 and SPV2 marching spacers from 249 
long and mini-arrays. B. mini-CRISPR arrays predicted from the CRISPRome data. Identity of spacers to SPV1 or 250 
SPV2 genomes is color-coded with the scale provided at the bottom of the figure. C. Mini-CRISPR arrays and 251 
standalone repeats in Sulfolobales viruses and plasmids. 252 
 253 

 254 

To assess the effects of virus-mediated versus host-mediated CRISPR immunity against SPV1 and SPV2, 255 

we compared the number and abundance of the targeting spacers originating from the long CRISPR 256 

arrays (i.e., host-borne) and mini-CRISPR arrays (Figure 4a). In the initial environmental sample J15 and 257 

in 10-days enrichments, spacers from the long arrays were the major contributors to the total immunity 258 

against SPV1 and SPV2 viruses. However, after 20 days, the abundance of spacers from mini-arrays 259 

increased dramatically, whereas the number of spacers from the long arrays was decreased, possibly due 260 

to the predation of the host by SPV1 and SPV2. Moreover, spacers from the host arrays targeted SPV1 261 

and SPV2 indiscriminately (judging from the identity between spacers and protospacers), whereas spacers 262 

from mini-arrays are specific against either SPV1 or SPV2.  263 

 264 

Collectively, our results demonstrate the utility of the CRISPRome for understanding virus-host 265 

interactions and reveal a potential strategy used by viruses to restrict competing MGE via CRISPR-266 

mediated superinfection exclusion. A recent, independent comparative genomic analysis of bacterial and 267 

archaeal viruses has demonstrated the presence of CRISPR mini-arrays and single-repeat units in many 268 

bacteriophage and prophage genomes as well as a few archaeal viruses including Acidianus two-tailed 269 

virus
45

. Some of the spacers in the identified mini-arrays targeted adjacent genes in closely related virus 270 

genomes but not the mini-array-carrying virus itself, in full agreement with the pattern identified in the 271 

present work. However, unlike the case of SPV1 and SPV2 described here, most of the phage mini-arrays 272 

lack the leader regions, suggesting that they might acquire spacers via recombination with host arrays 273 

rather than canonical adaptation. Interviral conflicts via virus-targeting mini-arrays and other similar 274 

strategies are likely to contribute to viral genome evolution and speciation, and further validate the ‘guns 275 

for hire’ concept under which components of various defense and counter-defense systems are commonly 276 

exchanged between viruses and their cellular hosts.   277 
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Methods 278 

Description of samples 279 

The enrichment cultures established from two environmental samples, J14 and J15, were dominated by 280 

members of the genus Sulfolobus (85% in J14 and 79% in J15), unclassified members of the family 281 

Sulfolobaceae (14% in J14 and 20% in J15), and genera Sulfurisphaera and Acidianus (1% in both 282 

samples)
35

. The viral component of the enrichments included populations of seven viruses belonging to 283 

four different families
35

. We were able to perform PCR amplification of the CRISPR spacers with the 284 

DNA extracted directly from the J15 sample, but not from the J14 sample, possibly, due to the 285 

insufficient biomass in the latter. The cultures propagated in the Sulfolobus-favoring medium displayed 286 

efficient growth of the biomass, whereas those propagated in the Acidianus-favoring medium grew poorly 287 

and were discontinued after 10 days of incubation. Thus, in total, we analyzed one environmental sample 288 

and five enrichments: two 10-days enrichments and two 20-days enrichments in Sulfolobus-favoring 289 

medium, and one 10-days enrichment in the Acidianus-favoring medium. 290 

 291 

CRISPRome amplification 292 

To amplify CRISPR arrays of Sulfolobales from total DNA samples, six pairs of primers (Supplementary 293 

table 3) were designed. Two pairs of primers, C1 and C2, were designed to cover the diversity of the type 294 

C CRISPR repeats. Amplification reactions were carried out with DreamTaq DNA polymerase (Thermo 295 

Fisher Scientific, UK) under the following conditions: initial denaturation for 5 min at 95°C, followed by 296 

40 cycles of 30 s at 95°C, 30s at 42-53°C (depending on the Tm of specific primers), and 60s at 72°C, 297 

and a final extension at 72°C for additional 2 min. For each DNA sample with each primer pair, five 298 

individual PCR reactions were set up. No amplification was obtained with the primer pair G1. After 299 

amplification, individual reactions were pooled and processed jointly. Amplicons were visualized on 1% 300 

ethidium bromide stained agarose gels and DNA fragments of 300–1000 bp in length were purified from 301 

the gel and sequenced on MiSeq (Illumina) with paired-end 250-bp read lengths (Genomics Platform, 302 

Institut Pasteur, France).  303 

 304 

Spacer extraction and clustering 305 

Spacer sequences were extracted using spget program (https://github.com/zzaheridor/spget). Spget 306 

identifies degenerate sequences of CRISPR repeats and PCR primers, and extracts all sequences between 307 

them. To account for possible sequencing mistakes and natural CRISPR repeat diversity, additional 2-5 308 

mismatches were allowed in repeat and primer sequences. Based on expected spacer lengths, extracted 309 

spacers shorter than 25 nt or longer than 60 nt were filtered out. An additional quality filter was applied – 310 

only spacers with all nucleotides sequenced with the Phred score value higher than 20 were used for 311 

further analysis. The described filtering resulted in the removal of ~25% of all spacers. 312 

 313 

The clustering was performed by UCLUST program 
46

, with 85% identity threshold and zero penalties for 314 

end gaps. UCLUST algorithm was also used with 85% identity threshold to find common spacers for 315 

different sets. The coverage of spacer diversity was estimated with Good’s criterion: C = 1 – (N/total 316 

number of clusters), where N is the number of sequences that occurred only once or twice. The alpha 317 

diversity (Shannon entropy) and Chao estimate of coverage were calculated using the R package “vegan” 318 

(https://cran.r-project.org/web/packages/vegan/index.html). The spacer sequences are available in 319 

Supplementary Data 1.  320 

 321 

Reconstruction of CRISPR arrays 322 

The procedure of CRISPR array reconstruction uses pairs of neighboring spacers obtained from NGS 323 

reads. All pairs for the sample are joined into a directed graph, where each node represents a spacer, 324 

edges connect the spacers that appeared together in a pair, and the number of found pairs in NGS reads is 325 

used as an edge weight. The PCR amplification procedure could possibly lead to the emergence of 326 

99
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chimeric pairs, when two independent spacers from different CRISPR arrays are falsely connected into a 327 

pair. For example, when an amplification product from one cycle (a primer-spacer-primer unit) is used as 328 

a long primer with 5’ overhang for the next cycle. Assuming that chimeric pairs are rare PCR artifacts, we 329 

filtered edges in our graph based on the weight. For each edge (pair of neighboring spacers), we calculate 330 

the sum weight of outgoing edges from the first spacer in the pair and the sum weight of incoming edges 331 

for the second spacer in the pair. If the weight of tested edge was lower than 5% of the calculated sums, 332 

the tested edge was removed (see Supplementary figure 6A). One example of reconstructed graph is 333 

shown in Supplementary Figure 7. Several arrays share the same terminal, leader-distant spacer, some of 334 

the arrays are branching towards the leader end. The script for reconstruction of the CRISPR array graphs 335 

is implemented in R language (https://www.R-project.org/)
47

. Because this approach is not suitable for 336 

identification of mini-CRISPR arrays, we used the eccentricity metrics (the length of the longest path, 337 

which is going through the selected node). The eccentricity number shows the length of the longest 338 

CRISPR array, which can be reconstructed using selected spacer (see Supplementary figure 6B).  339 

Protospacer analysis 340 

Protospacers were searched for with BLASTN
48

 (word size 8, e-value < 0.01) in local databases of 341 

Sulfolobales viruses, plasmids and cellular genomes. PAMs were identified by aligning flanking 342 

sequences of protospacers. For Figure 2A, chi-square test followed by Bonferroni correction was used to 343 

test the specificity of spacers associated with different CRISPR-Cas repeat types to different sources of 344 

protospacers (Sulfolobales host genomes, viruses or plasmids) based on total number of spacers for each 345 

CRISPR repeat type and total number of hits to a particular source. 346 

 347 

Loss of minor spacers during cultivation 348 

The error bars indicate the confidence interval for the proportion of lost spacers calculated as conf = 349 

z(0.975)*sqrt(lost*(1-lost)/N), where ‘lost’ is a fraction of lost spacers and N is the total number of 350 

spacers in each group. 351 

 352 

Assembly of viral contigs from spacers 353 

To reconstruct the viral contigs, we performed “all spacers against all spacers” BLASTN (word size 8, 354 

identity > 0.7). Then a graph of spacers was built, where spacers are connected if they were matched by 355 

BLAST search. The graph was decomposed, spacers from the largest subgraphs were aligned with 356 

MUSCLE
49

, and the alignment was manually corrected. 357 

 358 

Prediction of mini-CRISPR arrays in the CRISPRome data 359 

First, we calculated the frequency of sequencing reads with two spacers in each sample and estimate the 360 

probability (p) of spacer to be in the pair (~0.5, for J15 sample, 0 days enrichment). Assuming that all 361 

spacers are independent, we calculated the probability to observe no pairs for the spacer, which was 362 

sequenced N times: P-value = (1-p)
N
. For the spacer sequenced 100 times, P-value was < 0.01, so we 363 

defined a threshold N for the mini-CRISPR array candidates. Similar approach was used for mini-364 

CRISPR arrays with two spacers: the probability for a spacer to appear as first spacer in the pair is 0.5. If 365 

the spacer was sequenced in the pair 42 times, the estimated P-value to observe spacer only as a first 366 

spacer in the pair is P-value = 0.5
42

 < 0.01. 367 

 368 

Determination of the integration sites  369 

The precise boundaries of integration were defined based on the presence of direct repeats corresponding 370 

to attachment sites or target site duplications. The direct and inverted repeats were searched for using 371 

Unipro UGENE
50

. 372 

  373 
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SUPPLEMENTARY FIGURES 374 

 375 

 376 
Supplementary Figure 1. Description of samples. Schematic representation of analysed samples. When availiable, 377 
images of virus diversity in enrichments are shown. Viruses belonged to different families are highlighted with 378 
arrows (polyhedral – red, filamentous – blue, rudiviruses – green).  379 
 380 
 381 

 382 

  383 
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 384 

 385 
 386 
Supplementary Figure 2. Loss of spacers during cultivation. A. Number of spacers associated with four CRISPR 387 
repeat types are shown as a barplot for J15 sample B. Fraction of spacers lost in all enrichment cultures is shown for 388 
groups of spacers with different abundances. Errorbars show confidence intervals for the proportion. 389 

 390 

 391 

  392 
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 393 

 394 
 395 
Supplementary Figure 3. A. Maps of several Sulfolobales integrated and extrachromosomal elements targeted by 396 
the Beppu CRISPR spacers. Protospacers are shown as thin bars above and below the genes (represented by grey 397 
arrows) depending on the targeted strand. The color of spacer bars corresponds to types of the CRISPR repeats. 398 
Identified attachment sites (attL and attR) for the integrated elements are shown in pink. The visualization is created 399 
by R packacge Gviz

51
 B. Genome maps of several Sulfolobales viruses, targeted by Beppu CRISPR spacers. C. An 400 

example of viral contig reconstruction by overlapping spacer sequences. The color of spacers in alignment 401 
corresponds to CRISPR repeat type. Not conserved positions in the alignment are highlighted by pink color. 402 
Consensus nucleotide sequence and protein translation are shown below the alignment. 403 
 404 
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 405 

Supplementary Figure 4. Fraction of spacers shared between samples. 406 

  407 
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 408 
 409 
Supplementary Figure 5. Alignment of the loci including the leader sequences and CRISPR repeats associated 410 
with the Sulfolobus CRISPR arrays and virus-borne mini-CRISPR arrays. The bottom 3 sequences correspond to 411 
stand-alone CRISPR repeats. BRE and TATA elements found in the promoters of the leader sequences and the 412 
CRISPR repeats are boxed. 413 

 414 

  415 
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 416 

 417 
 418 
Supplementary Figure 6. Methods of reconstruction of long CRISPR arrays. A. Filtration of CRISPR array graph, 419 
by removing low abundant edges. B. Example of eccentricity calculation 420 

 421 

 422 
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 423 
Supplementary Figure 7. An example of reconstructed CRISPR array graph. Three spacers in leader-proximal or 424 
trailer-proximal ends are highlighted with red and green respectively. 425 

 426 

 427 

 428 

  429 
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 430 

Supplementary Figure 8. Spacers with linearly changed frequencies in 10 and 20 days enrichments of J14 sample. 431 
Dashed, dotted and solid lines represent three independent components of CRISPR arrays graph. 432 

 433 

  434 
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SUPPLEMENTARY TABLES 435 

 436 
Supplementary table 1. Distribution of CRISPR repeat types in Sulfolobales genomes. 437 
CRISPR repeat type Sulfolobales genomes 

A Metallosphaera , Acidianus, Sulfolobus 

B Acidianus, Sulfolobus 

C Metallosphaera 

D Metallosphaera, Acidianus, Sulfolobus 

 438 
Supplementary table 2. Diversity and coverage estimations for Beppu spacer sets. 439 

Sample CRISPR 

spacers, total 

Clusters Good’s criterion Schao alpha diversity 

(Shannon) 

J15 – 0 days 2 971 721 33 991 0.91 36 068 (+-97) 9.18 

J15 – 10 days 5 166 123 6 155 0.88 9 431 (+-439) 7.12 

J15 – 20 days 4 787 974 4 462 0.76 5 868 (+-115) 5.80 

J14 – 10 days 4 129 915 6 825 0.91 8 756 (+-251) 7.16 

J14 – 20 days 4 540 454 4 585 0.84 6 573 (+-229) 6.56 

J14 “Acidianus” – 10 days 3 234 790 4 020 0.87 4 332 (+-35) 5.96 

 440 
Supplementary table 3. Primers sequences for amplification of CRISPR arrays of Sulfolobales.  441 

Repeat Forward primer (5’-3’) Reverse primer (5’-3’) 

G1 TCGTCGGCAGCGTCAGATGTGTATAAGAG

ACAGCTTTTCTCTTATGAGACTAGTAC 

GTCTCGTGGGCTCGGAGATGTGTATAAGA

GACAGCTAGTCTCATAAGAGAAAAGTAAT 

A TCGTCGGCAGCGTCAGATGTGTATAAGAG

ACAGTAATCTACTATAGARTTGAAAG 

GTCTCGTGGGCTCGGAGATGTGTATAAGA

GACAGTTCAAYTCTATAGTAGATTADC 

B TCGTCGGCAGCGTCAGATGTGTATAAGAG

ACAGAAYAACGAMAAGAAACTAAAAC 

GTCTCGTGGGCTCGGAGATGTGTATAAGA

GACAGTTTAGTTTCTTKTCGTTRTTAC 

C1 TCGTCGGCAGCGTCAGATGTGTATAAGAG

ACAGAACCCTCAAAGGATCACTACAA 

GTCTCGTGGGCTCGGAGATGTGTATAAGA

GACAGGTGATCCTTTGAGGGTTTGAAAC 

C2 TCGTCGGCAGCGTCAGATGTGTATAAGAG

ACAGGWGATCCTTMGAGGGTTTGAAAC 

GTCTCGTGGGCTCGGAGATGTGTATAAGA

GACAGACCCTCKAAGGATCWCTACAAAC 

D TCGTCGGCAGCGTCAGATGTGTATAAGAG

ACAGTKAATCCYAAAAGGRATTGAAAG 

GTCTCGTGGGCTCGGAGATGTGTATAAGA

GACAGTTCAATYCCTTTTRGGATTMATC 

Adaptor sequences are underlined. 442 

 443 
Supplementary table 4. Identified integrated elements in Sulfolobales genomes. 444 

Acc. 

number Strain Start End 

Size, 

bp 

# 

spacers Element type 

CP000682.1 M. sedula DSM 5348 2096383  2112116 15734 58 cryptic (inactivated) 

BA000023.2 S. tokodaii str. 7 ~262600  ~274200 11500 20 cryptic (inactivated) 

BA000023.2 S. tokodaii str. 7 1310850  1355729 44880 93 conjugative 

CP001399.1 S. islandicus L.S.2.15 1858852  1900333 41482 23 conjugative (inactivated) 

CP001401.1 S. islandicus M.16.27 1437439  1481760 44322 20 conjugative  

CP001402.1 S. islandicus M.16.4 1474356  1512307 37952 25 conjugative 

CP001403.1 S. islandicus Y.G.57.14 1465198  1505472 40275 23 conjugative 

CP001731.1 S. islandicus L.D.8.5 1323689  1390124 66436 27 conjugative 

CP020362.1 S. acidocaldarius Y14 16-22 395173  437039 41867 20 conjugative (inactivated) 

CP020362.1 S. acidocaldarius Y14 16-22 1991521  2008456 16936 27 provirus (STIV-like) 

CP020363.1 S. acidocaldarius Y14 13-1 1943014  1959949 16936 27 provirus (STIV-like) 

  445 
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SUPPLEMENTARY TEXT 446 

Temporal CRISPR spacer dynamics in the enrichment cultures 447 

In the original environmental J15 sample, most spacers display similar abundances. However, after 10 448 

days of cultivation, the community has visibly stratified into well-defined groups, each characterized by a 449 

specific frequency of spacers and likely representing a discrete strain. After 20 days of cultivation, the 450 

gap between the groups of high-abundance (≤10,000 coverage) and low-abundance (≤10 coverage) 451 

spacers increased for CRISPR types A, B and C. The moderate abundance spacers (10-1000 coverage) 452 

have largely disappeared, especially, in the case of A-type and C-type repeats, suggesting that the 453 

population became dominated by a handful of strains. The situation was different for the spacers 454 

associated with the D-type CRISPR repeats: the 4 dominant groups of populations grew in abundance and 455 

spawned a small group of extremely abundant spacers (>10,000 coverage).  456 

 457 

A different pattern was observed with the J14 sample, where we could compare the enrichment cultures 458 

of 10 and 20 days. Whereas the population structures for the B-type repeats followed the same course as 459 

in the J15 samples, the populations bearing the D-type repeats segregated to the high-abundance and low-460 

abundance groups. By contrast, populations with the A-type repeats showed an increase in moderate 461 

abundance spacers (opposite to the situation in the J15 sample), whereas those with the C-type repeats 462 

evolved towards collapse, with the majority of the strains displaying very low abundance. 463 

 464 

 465 

Assembly of viral contigs and CRISPR arrays 466 

Although this approach was complicated by short (30-36 bp) spacer lengths and inherent absence of 467 

spacers from genomic regions devoid of the protospacer adjacent motifs (PAM), we were able to 468 

reconstruct contigs of up to 200 nucleotides (Supplementary Figure 3c). Following the in silico 469 

translation, matches to viral proteins were identified, as in the example shown in Figure 3E, where the 470 

reconstructed contig encodes the fusellovirus structural protein VP2 of fuselloviruses. The reconstruction 471 

of the viral contigs from the CRISPRome data is conceptually similar to the reconstruction of plant virus 472 

genomes from small interfering RNA sequences
52

.  473 

 474 

Approximately 50% of our HTS sequencing reads include not solitary spacers but small fragments of 475 

CRISPR arrays with 2 or, less frequently, 3 spacers. The assembly of these fragments through identical 476 

spacers, theoretically, should allow reconstruction of longer CRISPR arrays. In practice, however, the 477 

spacer diversity of natural Sulfolobales population can only be represented as a graph (Supplementary 478 

Figure 7), which, in some cases, cannot be resolved into separate CRISPR arrays, due to intrinsic 479 

variations, such as deletion of spacers in the trailer end of CRISPR arrays or acquisition of new spacers at 480 

the leader end. To overcome this problem, we introduce the eccentricity metrics. The eccentricity of a 481 

spacer is the length of the longest CRISPR array, which can be reconstructed with this spacer 482 

(Supplementary Figure 6B). The longest CRISPR arrays (the maximal eccentricity) were 131, 66, 139 and 483 

119 for spacers associated with the A-, B-, C- and D-type repeats, respectively. These length estimates 484 

agree with the average lengths of arrays in sequenced Sulfolobales isolates. The eccentricity > 3 was 485 

observed for 38% of all spacers associated with the A-type CRISPR repeats and 98% of spacers with 486 

abundances > 100. Each Sulfolobales genome usually contains more than one CRISPR array with the 487 

same CRISPR repeat sequences. We observed groups of spacers from 3 independent graph components 488 

with linearly correlated frequencies in two samples (Supplementary Figure 8), which is consistent with 489 

them being sequenced from the same genome. 490 

 491 

Detection of integrated MGE by spacer matching 492 

Archaeal viruses and plasmids are known to integrate into the genomes of their hosts. For many of these 493 

integrated MGE, closely related extrachromosomal relatives are not known, making their identification 494 
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cumbersome. Mapping the CRISPR spacers against the Sulfolobales chromosomes provides an efficient 495 

approach to identify integrated MGEs, both related to known plasmids and viruses as well as novel and 496 

even deteriorating ones. A threshold of 3 protospacers per kb of genomic DNA was found to be a reliable 497 

predictor for the presence of integrated MGEs. Using this approach, we predicted 11 MGEs integrated in 498 

9 Sulfolobales genomes and subsequently validated the precise integration sites for all but one element 499 

(Supplementary Figure 3A; Supplementary table 4). These integrated MGE included 2 STIV-like 500 

proviruses, 7 integrated pNOB-like conjugative plasmids and 2 cryptic integrated elements. Some of the 501 

elements were apparently inactivated by transposon insertions and are unlikely to be mobile. Collectively, 502 

these integrated MGEs are targeted by 336 distinct spacers from our collection.  503 

111



22 
 

REFERENCES 504 

 505 

1 De Sordi, L., Lourenco, M. & Debarbieux, L. The Battle Within: Interactions of Bacteriophages 506 
and Bacteria in the Gastrointestinal Tract. Cell Host Microbe 25, 210-218 (2019). 507 

2 Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine 508 
microbial realm. Nat Microbiol 3, 754-766 (2018). 509 

3 Fernandez, L., Rodriguez, A. & Garcia, P. Phage or foe: an insight into the impact of viral 510 
predation on microbial communities. ISME J 12, 1171-1179 (2018). 511 

4 Koonin, E. V. & Krupovic, M. The depths of virus exaptation. Curr Opin Virol 31, 1-8 (2018). 512 
5 Forterre, P. & Prangishvili, D. The great billion-year war between ribosome- and capsid-encoding 513 

organisms (cells and viruses) as the major source of evolutionary novelties. Ann N Y Acad Sci 514 
1178, 65-77 (2009). 515 

6 Koonin, E. V. & Dolja, V. V. A virocentric perspective on the evolution of life. Curr Opin Virol 3, 516 
546-57 (2013). 517 

7 Chow, C. E. & Suttle, C. A. Biogeography of Viruses in the Sea. Annu Rev Virol 2, 41-66 (2015). 518 
8 Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev 519 

Microbiol 13, 722-36 (2015). 520 
9 Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. 521 

Science 359 (2018). 522 
10 Maxwell, K. L. The Anti-CRISPR Story: A Battle for Survival. Mol Cell 68, 8-14 (2017). 523 
11 Borges, A. L., Davidson, A. R. & Bondy-Denomy, J. The Discovery, Mechanisms, and Evolutionary 524 

Impact of Anti-CRISPRs. Annu Rev Virol 4, 37-59 (2017). 525 
12 van Houte, S., Buckling, A. & Westra, E. R. Evolutionary Ecology of Prokaryotic Immune 526 

Mechanisms. Microbiol Mol Biol Rev 80, 745-63 (2016). 527 
13 Samson, J. E., Magadan, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating 528 

bacterial defences. Nat Rev Microbiol 11, 675-87 (2013). 529 
14 Koonin, E. V., Makarova, K. S. & Wolf, Y. I. Evolutionary Genomics of Defense Systems in Archaea 530 

and Bacteria. Annu Rev Microbiol 71, 233-261 (2017). 531 
15 Rostol, J. T. & Marraffini, L. (Ph)ighting Phages: How Bacteria Resist Their Parasites. Cell Host 532 

Microbe 25, 184-194 (2019). 533 
16 Koonin, E. V. & Krupovic, M. A movable defense. Scientist 29, 46-53 (2015). 534 
17 Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes its own 535 

CRISPR/Cas adaptive response to evade host innate immunity. Nature 494, 489-91 (2013). 536 
18 Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR-Cas systems by 537 

Tn7-like transposons. Proc Natl Acad Sci U S A 114, E7358-E7366 (2017). 538 
19 Garrett, R. A. et al. CRISPR-based immune systems of the Sulfolobales: complexity and diversity. 539 

Biochem Soc Trans 39, 51-7 (2011). 540 
20 Prangishvili, D. et al. The enigmatic archaeal virosphere. Nat Rev Microbiol 15, 724-739 (2017). 541 
21 He, F. et al. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. 542 

Nat Microbiol 3, 461-469 (2018). 543 
22 Guo, T., Han, W. & She, Q. Tolerance of Sulfolobus SMV1 virus to the immunity of I-A and III-B 544 

CRISPR-Cas systems in Sulfolobus islandicus. RNA Biol, 1-8 (2018). 545 
23 Athukoralage, J. S., Rouillon, C., Graham, S., Gruschow, S. & White, M. F. Ring nucleases 546 

deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Nature 562, 277-280 547 
(2018). 548 

24 Han, W. et al. A type III-B CRISPR-Cas effector complex mediating massive target DNA 549 
destruction. Nucleic Acids Res 45, 1983-1993 (2017). 550 

25 Rollie, C., Schneider, S., Brinkmann, A. S., Bolt, E. L. & White, M. F. Intrinsic sequence specificity 551 
of the Cas1 integrase directs new spacer acquisition. Elife 4 (2015). 552 

26 Leon-Sobrino, C., Kot, W. P. & Garrett, R. A. Transcriptome changes in STSV2-infected Sulfolobus 553 
islandicus REY15A undergoing continuous CRISPR spacer acquisition. Mol Microbiol 99, 719-28 554 
(2016). 555 

112



23 
 

27 Erdmann, S., Le Moine Bauer, S. & Garrett, R. A. Inter-viral conflicts that exploit host CRISPR 556 
immune systems of Sulfolobus. Mol Microbiol 91, 900-17 (2014). 557 

28 Peng, W., Feng, M., Feng, X., Liang, Y. X. & She, Q. An archaeal CRISPR type III-B system 558 
exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. 559 
Nucleic Acids Res 43, 406-17 (2015). 560 

29 Zebec, Z., Manica, A., Zhang, J., White, M. F. & Schleper, C. CRISPR-mediated targeted mRNA 561 
degradation in the archaeon Sulfolobus solfataricus. Nucleic Acids Res 42, 5280-8 (2014). 562 

30 Held, N. L., Herrera, A., Cadillo-Quiroz, H. & Whitaker, R. J. CRISPR associated diversity within a 563 
population of Sulfolobus islandicus. PLoS One 5 (2010). 564 

31 Munson-McGee, J. H. et al. A virus or more in (nearly) every cell: ubiquitous networks of virus-565 
host interactions in extreme environments. ISME J 12, 1706-1714 (2018). 566 

32 Held, N. L., Herrera, A. & Whitaker, R. J. Reassortment of CRISPR repeat-spacer loci in Sulfolobus 567 
islandicus. Environ Microbiol 15, 3065-76 (2013). 568 

33 Bautista, M. A., Black, J. A., Youngblut, N. D. & Whitaker, R. J. Differentiation and Structure in 569 
Sulfolobus islandicus Rod-Shaped Virus Populations. Viruses 9 (2017). 570 

34 Held, N. L. & Whitaker, R. J. Viral biogeography revealed by signatures in Sulfolobus islandicus 571 
genomes. Environ Microbiol 11, 457-66 (2009). 572 

35 Liu, Y. et al. New archaeal viruses discovered by metagenomic analysis of viral communities in 573 
enrichment cultures. Environ Microbiol doi: 10.1111/1462-2920.14479 (2019). 574 

36 Savitskaya, E. et al. Dynamics of Escherichia coli type I-E CRISPR spacers over 42 000 years. Mol 575 
Ecol 26, 2019-2026 (2017). 576 

37 Shah, S. A. & Garrett, R. A. CRISPR/Cas and Cmr modules, mobility and evolution of adaptive 577 
immune systems. Res Microbiol 162, 27-38 (2011). 578 

38 Lintner, N. G. et al. Structural and functional characterization of an archaeal clustered regularly 579 
interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense 580 
(CASCADE). J Biol Chem 286, 21643-56 (2011). 581 

39 Shmakov, S. A. et al. The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific 582 
Mobilomes. MBio 8 (2017). 583 

40 Martin, A. et al. SAV 1, a temperate u.v.-inducible DNA virus-like particle from the 584 
archaebacterium Sulfolobus acidocaldarius isolate B12. EMBO J 3, 2165-8 (1984). 585 

41 Krupovic, M. et al. Integrated mobile genetic elements in Thaumarchaeota. Environ Microbiol 586 
(2019). 587 

42 Li, Y. et al. Harnessing Type I and Type III CRISPR-Cas systems for genome editing. Nucleic Acids 588 
Res 44, e34 (2016). 589 

43 Turgeman-Grott, I. et al. Pervasive acquisition of CRISPR memory driven by inter-species mating 590 
of archaea can limit gene transfer and influence speciation. Nature microbiology 4, 177-186 591 
(2019). 592 

44 Liu, Y. et al. A novel type of polyhedral viruses infecting hyperthermophilic archaea. J Virol 91, 593 
e00589-17 (2017). 594 

45 Faure, G. et al. CRISPR in mobile genetic elements: counter-defense and beyond. Nat Rev 595 
Microbiol In press (2019). 596 

46 Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 597 
2460-1 (2010). 598 

47 Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, 599 
Complex Systems, 1695 (2006). 600 

48 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search 601 
tool. J Mol Biol 215, 403-10 (1990). 602 

49 Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. 603 
Nucleic Acids Res 32, 1792-7 (2004). 604 

50 Okonechnikov, K., Golosova, O. & Fursov, M. Unipro UGENE: a unified bioinformatics toolkit. 605 
Bioinformatics 28, 1166-7 (2012). 606 

51 Hahne, F. & Ivanek, R. Visualizing Genomic Data Using Gviz and Bioconductor. Methods Mol Biol 607 
1418, 335-51 (2016). 608 

113



24 
 

52 Pooggin, M. M. Small RNA-Omics for Plant Virus Identification, Virome Reconstruction, and 609 
Antiviral Defense Characterization. Front Microbiol 9, 2779 (2018). 610 

 611 
 612 

114



 

 

CHAPTER V 

 

Integrated Mobile Genetic Elements in 

Thaumarchaeota. 
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Introduction: 

Following the description of CRISPR mini-arrays in SPV1 and SPV2 viruses in Chapter IV, this 

Chapter introduces CRISPR arrays carried by mobile genetic elements integrated in the genomes 

of Thaumarchaeota. 

 

Contribution: I identified insertion sequences (transposons) in thaumarchaeal genomes (Figures 

1A, 1C, 7) and analyzed spacer diversity in thaumarchaeal genomes and thaumarchaeal 

integrated elements (section “iMGE-encoded CRISPR arrays”). 
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Summary

To explore the diversity of mobile genetic elements
(MGE) associated with archaea of the phylum Thau-
marchaeota, we exploited the property of most MGE
to integrate into the genomes of their hosts. Inte-
grated MGE (iMGE) were identified in 20 thaumarchaeal
genomes amounting to 2 Mbp of mobile thaumarch-
aeal DNA. These iMGE group into five major classes:
(i) proviruses, (ii) casposons, (iii) insertion sequence-
like transposons, (iv) integrative-conjugative elements
and (v) cryptic integrated elements. The majority of
the iMGE belong to the latter category and might rep-
resent novel families of viruses or plasmids. The iden-
tified proviruses are related to tailed viruses of the
order Caudovirales and to tailless icosahedral viruses
with the double jelly-roll capsid proteins. The thau-
marchaeal iMGE are all connected within a gene shar-
ing network, highlighting pervasive gene exchange
between MGE occupying the same ecological niche.
The thaumarchaeal mobilome carries multiple auxil-
iary metabolic genes, including multicopper oxidases
and ammonia monooxygenase subunit C (AmoC), and
stress response genes, such as those for universal
stress response proteins (UspA). Thus, iMGE might
make important contributions to the fitness and adapta-
tion of their hosts. We identified several iMGE carrying

type I-B CRISPR-Cas systems and spacers matching
other thaumarchaeal iMGE, suggesting antagonistic
interactions between coexisting MGE and symbiotic
relationships with the ir archaeal hosts.

Introduction

Similar to bacteria and eukaryotes, archaea are associ-
ated with diverse classes of mobile genetic elements
(MGE), collectively referred to as the mobilome. Based
on genomic features and the mode of interaction with the
host cells, the archaeal mobilome can be divided into five
large classes: (i) viruses (Pietilä et al., 2014; Snyder
et al., 2015; Prangishvili et al., 2017; Krupovic et al.,
2018; Munson-McGee et al., 2018), (ii) conjugative ele-
ments (Prangishvili et al., 1998; Greve et al., 2004),
(iii) small cryptic plasmids (Forterre et al., 2014; Wang
et al., 2015), (iv) transposable elements closely related
to bacterial insertion sequences (IS) (Filée et al., 2007)
and (v) the more recently discovered self-synthesizing
transposon-like elements called casposons which employ
a homologue of the CRISPR-associated Cas1 protein as
their integrase (casposase) (Krupovic et al., 2014; Krupovic
et al., 2017). All five classes of MGE are also represented
in bacteria, whereas eukaryotes lack conjugative elements
and casposons.

Viruses infecting archaea are notoriously diverse in
terms of their virion morphologies and gene contents
(Pietilä et al., 2014; Wang et al., 2015; Prangishvili et al.,
2017; Krupovic et al., 2018; Munson-McGee et al., 2018).
Comparative structural and genomic studies show that
the archaeal virosphere can be generally divided into
two large fractions, the archaea-specific viruses and the
cosmopolitan viruses (Iranzo et al., 2016b). The archaea-
specific viruses are, by definition, unique to archaea
and often display unexpected virion morphologies, such
as bottle-shaped, spindle-shaped or droplet-shaped
(Prangishvili et al., 2017). Most of these viruses are, thus
far, known to infect hyperthermophiles of the phylum Cre-
narchaeota. Archaea-specific viruses are currently classi-
fied into 13 families that are characterized by unique gene
contents that are distinct from those of viruses infecting
bacteria and eukaryotes, and only minimally shared
across different archaeal virus families. By contrast, the
cosmopolitan fraction of the archaeal virosphere consist
of viruses that display common architectural and genomic
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features with viruses of bacteria and eukaryotes, and for
many genes, homologues in bacterial viruses are readily
detectable (Iranzo et al., 2016b). These include tailed
dsDNA viruses representing all three major families of the
order Caudovirales (Myoviridae, Siphoviridae and Podo-
viridae), the dominant supergroup of bacterial viruses, as
well as icosahedral viruses with the double jelly-roll
(DJR) and single jelly-roll (SJR) major capsid proteins
(MCP) classified in the families Turriviridae and Sphaeroli-
poviridae, respectively (Pietilä et al., 2014; Prangishvili
et al., 2017).
Representatives of all five classes of archaeal (and

bacterial) MGE can integrate into the genomes of their
hosts and reside as integrated MGE (iMGE). In fact, a
substantial fraction of cellular genomes, across all three
domains of life, consists of diverse classes of iMGE
(Craig et al., 2015). Very often, iMGE are not merely
silent passengers within the cellular genomes but can
have pronounced effects on the functioning, adaptation
and evolution of their host cells. In bacteria, many adap-
tive traits, such as various transporters, antibiotic resis-
tance genes or toxins, are encoded by integrative-
conjugative elements (ICE), pathogenicity islands and
transposons which allow host bacteria to compete with
other organisms for resources and colonize new ecosys-
tems (Escudero et al., 2015; Johnson and Grossman,
2015; Guédon et al., 2017; Novick and Ram, 2017;
Partridge et al., 2018). Indeed, pathogenicity determinants
typically are carried by integrated or extrachromosomal
MGE. Thus, the perception of iMGE as ‘junk DNA’ or
‘genomic parasites’ is changing to the concept of iMGE
being major agents of molecular innovation and environ-
mental adaptation of cellular organisms (Omelchenko
et al., 2005; Frost and Koraimann, 2010; Frank and
Feschotte, 2017; Jangam et al., 2017; Koonin and Krupo-
vic, 2018). Typically, MGE integration leaves a molecular
scar in the cellular genome which manifests as direct
repeats (DR) flanking the iMGE (Grindley et al., 2006). In
the case of integration mediated by tyrosine recombi-
nases, the DR, known as left and right attachment sites (attL
and attR), result from recombination between homolo-
gous sites present on the cellular chromosome and the
MGE (Grindley et al., 2006). By contrast, the DR flanking
transposons, as in the case of the recently described
thaumarchaeal casposons (Krupovic et al., 2014; 2017),
are referred to as target site duplication (TSD) and are
generated by staggered cleavage of the target site, fol-
lowed by fill-in DNA repair (Mahillon and Chandler, 1998;
Béguin et al., 2016).
Considerable efforts have been undertaken to explore

the diversity and distribution of MGE in bacterial genomes.
By contrast, our understanding of the archaeal mobilome
remains limited. The vast majority of archaeal viruses and
plasmids have been characterized from hyperthermophiles

of the phylum Crenarchaeota and halophiles of the phylum
Euryarchaeota (Forterre et al., 2014; Pietilä et al., 2014;
Wang et al., 2015; Prangishvili et al., 2017; Munson-
McGee et al., 2018), whereas not a single virus or plasmid
has been characterized for members of the third major
phylum of cultivated archaea, the Thaumarchaeota. Thau-
marchaea are among the most widely distributed archaea
in the environment and are generally recognized to exert
the primary control over ammonia oxidation in terrestrial,
marine and geothermal habitats (Stahl and de la Torre,
2012). Due to their unusually high affinity for ammonia, this
group of archaea is believed to outcompete the bacterial
ammonia oxidizers in accessing ammonia and appear to
determine the oxidation state of nitrogen available to asso-
ciated microbial communities (Martens-Habbena et al.,
2009). Furthermore, as autotrophs, thaumarchaea also
play an important role in the fixation of inorganic carbon.
For instance, in oxygenated surface deep-sea sediments,
chemosynthesis largely depends on the oxidation of ammo-
nia, with 1 mol of CO2 fixed per 10 mol of NH4

+ oxidized
(Wuchter et al., 2006).

It has been demonstrated that virus-mediated turnover
of thaumarchaea in surface deep-sea sediments
accounts for up to one-third of the total microbial biomass
killed, resulting in the release of approximately 0.3–0.5
gigatons of carbon per year globally and that turnover of
thaumarchaea by viruses in the deep ocean is faster than
that of bacteria (Danovaro et al., 2016). These findings
illuminate the prominent role of thaumarchaeal viruses in
the Biosphere (Danovaro et al., 2017). Despite the impor-
tance of thaumarchaea and their viruses in the global
nitrogen and carbon cycling (Offre et al., 2013), only two
proviruses (Krupovic et al., 2011; Abby et al., 2018)
and three casposons (Krupovic et al., 2014; Krupovic
et al., 2016) have been identified in the thaumarchaeal
genomes. In addition, several putative thaumarchaeal
virus genomes, all members of the order Caudovirales,
have been sequenced in the course of single-cell geno-
mics and metagenomics studies (Chow et al., 2015;
Labonté et al., 2015; Ahlgren et al., 2019; López-Pérez
et al., 2018), although metagenomics analyses have fur-
ther hinted at an unexplored diversity of thaumarchaeal
viruses (Danovaro et al., 2016; Roux et al., 2016; Vik
et al., 2017). Furthermore, it is currently unclear whether
any of the many morphologically unique viruses discov-
ered in crenarchaea (Prangishvili et al., 2017) are associ-
ated with mesophilic archaea, such as thaumarchaea.

Here, we report the results of a search of the genomes
of thaumarchaea isolated from diverse environments for
iMGE. The identified iMGE are assigned to five classes,
namely, proviruses, casposons, IS-like transposons, puta-
tive integrative-conjugative elements and cryptic integrated
elements, and provide insights into the prevalence, diver-
sity and distribution of the thaumarchaeal mobilome.

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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Results

iMGE detection in thaumarchaeal genomes

The genomes of 21 species representative of the taxo-
nomic diversity and environmental distribution of the phy-
lum Thaumarchaeota were analysed for the presence of
iMGE (Supporting Information Table S1). The analysed
genomes belong to four thaumarchaeal orders, namely,
Cenarchaeales, Nitrosopumilales, Nitrososphaerales and
Candidatus Nitrosocaldales, as well as four proposed
unassigned genera, including Ca. Nitrosotalea, Ca. Nitro-
sotenuis, Ca. Nitrosopelagicus and Ca. Caldiarchaeum.
The latter genus includes a single representative, Ca.
Caldiarchaeum subterraneum, which in phylogenetic ana-
lyses forms a sister group to Thaumarchaeota and is
usually assigned to a distinct archaeal phylum, the
Aigarchaeota (Nunoura et al., 2011). However, in the
GenBank database it is affiliated to the phylum Thau-
marchaeota and was, thus, retained in our analysis.
The analysed organisms were isolated from a wide range
of environments, including a subsurface gold mine
(Nunoura et al., 2011), thermal springs (Spang et al.,
2012; Lebedeva et al., 2013; Abby et al., 2018; Daebeler
et al., 2018), wastewater treatment plant (Li et al., 2016),
marine waters (Santoro et al., 2015; Bayer et al., 2016;
Ahlgren et al., 2017) and sediments (Park et al., 2014)
and various soil samples (Kim et al., 2011; Lehtovirta-
Morley et al., 2011; Tourna et al., 2011; Zhalnina et al.,
2014; Lehtovirta-Morley et al., 2016; Herbold et al.,
2017). Although most of these organisms are meso-
philes, some are psychrophilic (Hallam et al., 2006), ther-
mophilic (Nunoura et al., 2011; Spang et al., 2012;
Lebedeva et al., 2013; Abby et al., 2018; Daebeler et al.,
2018) or acidophilic (Lehtovirta-Morley et al., 2011).

We employed three different strategies to search for the
iMGEs (see Materials and Methods for details). Specifi-
cally, the genomes were analysed for the presence of
(i) loci enriched in ORFans and uncharacterized genes;
(ii) genes encoding signature proteins typical of different
archaeal MGE groups; (iii) genes encoding integrases of
the tyrosine recombinase superfamily. For detailed analy-
sis and annotation, we considered only those loci that dis-
played typical features of site-specific integration and/or
contained signature MGE genes surrounded by additional
virus- or plasmid-related genes. In total, 74 iMGEs
were predicted with high confidence in 20 thaumarch-
aeal genomes (Supporting Information Table S2), with
the number of iMGE per genome ranging from 1 to
8 (median = 3). Only one of the analysed thaumarchaeal
species, Ca. Nitrosopelagicus brevis CN25 (Santoro
et al., 2015), lacked identifiable iMGEs. In addition to the
multigene iMGE, 20 of the 21 analysed thaumarchaeal
genomes were found to contain transposons closely
related to bacterial insertion sequences (IS) (Mahillon and

Chandler, 1998; Filée et al., 2007). The number of IS-like
transposons per genome varied from 0 in Cenarchaeum
symbiosum A to 83 in Ca. Nitrososphaera gargensis
Ga9_2 (Supporting Information Table S1). Thaumarchaea
isolated from soil samples generally have larger genomes
(p value = 0.093) and more iMGE per genome
(p value = 0.072) than those inhabiting aquatic environ-
ments (Fig. 1A), whereas freshwater and marine thau-
marchaea have similar numbers of iMGE. Consistently,
Ca. Nitrosopelagicus brevis CN25, which does not carry
identifiable iMGE, has the smallest genome (1.23 Mbp)
among the sequenced thaumarchaea. Thus, the number
of iMGE appears to scale close to linearly with the
host genome size although, given the limited dataset, the
two values show relatively weak positive correlation
(R = 0.469, p value = 0.031; Fig. 1B). The number of the-
more abundant IS-like transposons showed stronger cor-
relation with the genome size (R = 0.738, p value =
0.00013; Fig. 1C). No statistically significant differences
were observed in the number of iMGE or transposons
between mesophiles and thermophiles.

Targets and molecular features of MGE integration

The putative att/TSD sites could be determined for 68 of
the 74 elements (Supporting Information Table S2). Of
the six iMGE for which att/TSD could not be confidently
predicted, five are proviruses and one is a cryptic inte-
grated element. These might be either inactivated iMGE
or their recombination sites could be too short for unam-
biguous identification without additional sequence infor-
mation from closely related strains. The DR flanking the
thaumarchaeal elements were considerably shorter than
those characteristic of iMGEs from other archaea. The
majority of thaumarchaeal att sites were shorter than
26 bp (as short as 8 bp, median length of 17 bp); only
seven iMGEs had att sites longer than 25 bp (Fig. 2A).
By contrast, the att sites characterized for MGEs inte-
grated in crenarchaeal genomes ranged from 29 to 69 bp
(median length of 45 bp) (She et al., 2002). Similarly to
the case of bacteria, archaeal MGEs often integrate into
tRNA genes (Williams, 2002; She et al., 2004; Krupovic
et al., 2010b; Béguin et al., 2016; Cossu et al., 2017;
Wang et al., 2018a). However, other integration targets,
including protein-coding genes and intergenic regions,
have also been reported (Krupovic et al., 2010a; 2014;
Shah et al., 2012;Anderson et al., 2017). Among the
68 thaumarchaeal iMGEs for which precise integration
sites could be defined, 39 used tRNA genes as integra-
tion targets, 15 were found in the intergenic regions and
14 integrated into the 30-distal regions of protein-coding
genes (Supporting Information Table S2). There was no
apparent relationship between the type of integration tar-
get used and the host organism or the type of iMGE.
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Several thaumarchaea hosted iMGEs which occupied all
three types of target sites within the same genome
(Supporting Information Table S2).

Integration into tRNA genes. Thirty-nine iMGE integra-
tions (57%) were identified in genes encoding tRNAs

with 22 anticodons corresponding to 14 amino acids
(Supporting Information Table S2). Notably, insertions
occurred within both intron-less (n = 29) and intron-
containing (n = 10) tRNA genes (Fig. 2B). Ca. Nitrosotalea
okcheonensis CS contained four different elements inte-
grated in distinct tRNA genes, whereas in Ca. Nitrosotenuis

Fig. 1. Characteristics of thaumarchaeal iMGE.
A. Correspondence between the cumulative size of the iMGEs in the genome and the total genome size. Grey and black circles represent iMGEs
present in the genomes of thaumarchaea isolated from aquatic and soil samples, respectively, with the diameter of the circles corresponding to
the number of iMGEs per genome.
B. Box plot shows the frequency of iMGE in genomes of thaumarchaea isolated from soil and aquatic (marine and freshwater) environments.
C. Correspondence between the number of IS-like transposons in the genome and the total genome size. Grey and black circles denote the IS
identified in the genomes of thaumarchaea isolated from aquatic and soil samples, respectively.
D. Box plot show size distribution in the four iMGE classes. Each box represents the middle 50th percentile of the data set and is derived using
the lower and upper quartile values. The median value is displayed by a horizontal line inside the box. Whiskers represent the maximum and min-
imum values.
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sp. AQ6f, four tRNA genes accommodated five different
elements.

In bacteria and archaea, MGEs targeting tRNA genes
typically recombine with the 30-distal region of the gene
(Williams, 2002; She et al., 2004), whereas recombina-
tion with the 50-distal region is considerably less frequent
(Zhao and Williams, 2002; Krupovic and Bamford, 2008b;
Krupovic et al., 2010b; Gaudin et al., 2014; Cossu et al.,
2017). All but one thaumarchaeal tRNA-targeting iMGEs
were found to be integrated into 30-distal regions of

the tRNA genes. However, in the genome of Ca. C. sub-
terraneum, CalSub-E1 apparently recombined with the
50-distal region of the tRNA-Ser gene (Fig. 2B).

Ns. evergladensis SR1 genome carries a curious chi-
meric iMGE that appears to result from integration of a
smaller element, NitEve-E7, into the genome of a larger
one, NitEve-E6. The latter is inserted into a tRNA gene,
whereas the integration site of the former element, in the
absence of sequences from closely related species,
could be defined only approximately. Such piggybacking

Fig. 2. Properties of site-specific MGE integration in thaumarchaea.
A. Frequency of iMGE integration in different target sites.
B. Integrations in tRNA genes. iMGE are indicated by blue rectangles; tRNA genes are shown as red arrows; attachment (att) sites are
highlighted in orange.
C. Integrations in protein-coding genes. The protein coding genes are shown with green arrows, whereas the iMGE is shown as a blue rectangle.
The figure compares an empty site in the genome of Nitrososphaera viennensis EN76 and an iMGE-occupied site in the genome of Nitroso-
sphaera evergladensis SR1. The box shows a zoom-in on the corresponding integration sites in the two species. The original stop codon is
underlined, whereas the one introduced by the iMGE is indicated with a broken line. Attachment sites are boxed.
D. Tandem integration of two casposons into a protein-coding gene. Terminal inverted repeats (TIR) are shown with light blue triangles, whereas
target site duplications (TSD) are shown as orange rectangles.
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might be particularly beneficial for MGEs that do not
encode specialized devices for intercellular transfer
(e.g. conjugative pili). Integration into other MGEs might
ensure wider horizontal spread of such elements. This
strategy of dissemination is indeed widely employed by
various insertion sequences which commonly integrate
into larger MGE and has also been observed for caspo-
sons in Methanosarcina (Krupovic et al., 2016). Notably,
seven thaumarchaeal iMGE from four different species
carry transposon insertions.

Integration into protein-coding genes. Fourteen iMGEs
used protein-coding genes for integration. The genes that are
exploited by the MGE as integration targets encode
a Zn-finger protein conserved in different species of Nitro-
sosphaera (AIF83914), AsnC family transcriptional regula-
tor (AFU58629), dihydroxy-acid dehydratase (ABX12782),
diphthamide biosynthesis protein (CUR52689), phosphori-
bosylamine-glycine ligase (CUR51614), glucosamine-
1-phosphate N-acetyltransferase (WP_075054010),
elongation factor 2 (WP_014964994, WP_014963048,
WP_048116371, CUR52052) and several conserved
hypothetical proteins (WP_014962442, AJM91735,
AJM92436). Notably, the orthologous genes for hypotheti-
cal proteins in Ca. Nitrosopumilus piranensis D3C
(AJM91735) and Ca. Np. koreensis AR1 (WP_014962442)
are targeted by two unrelated iMGEs, whereas inNp. mariti-
mus SCM1 and Ca. Np. adriaticus NF5, the corresponding
genes are free of MGE integrations.
Due to the fact that att/TSD sites of thaumarchaeal ele-

ments are generally short (Fig. 2A), their unambiguous
identification was challenging, particularly when integra-
tion occurred within unorthodox targets such as protein-
coding genes. In all cases, the putative integration sites
were meticulously verified by comparison of the corre-
sponding genomic loci from closely related organisms
with and without MGE insertions. An example of such
analysis is shown in Fig. 2C. In the Ns. evergladensis
SR1 genome, NitEve-E2 is inserted into the 30-distal
region of a gene encoding a Zn-finger protein (AIF83914).
Although, the predicted att site is only 13 bp-long, compari-
son with the corresponding region in Ns. viennensis EN76
provided unequivocal support for the prediction site. Inter-
estingly, NitEve-E2 insertion replaced a eight nucleotide
sequence of the target gene including the stop codon
(TAG) with a non-homologous MGE-derived sequence
which contains an alternative stop codon (TAA), reconsti-
tuting the open reading frame (Fig. 2C).
A gene encoding elongation factor 2 (EF-2), a GTPase

involved in the translocation step of the ribosome during
protein synthesis, seems to serve as the most common
target for integration of thaumarchaeal casposons
(Krupovic et al., 2014). The integration of the casposons
NitAR1-C1 and NitAR2-C1 in the genomes of Ca.

Np. koreensis AR1 and Ca. Np. sediminis AR2, respec-
tively, has been described previously (Krupovic et al.,
2014). In the present study, we identified two new caspo-
sons, NitNF5-C1 and NitNF5-C2 (see below for descrip-
tion), which use the same cellular gene for integration, in
the genome of Ca. Np. adriaticus NF5. The two elements
are inserted in tandem into the same ef-2 gene (Fig. 2D).
Such tandem integrations have been previously described
in the case of family 2 casposons in Methanosarcina
sp. (Krupovic et al., 2016), but have not been observed
for thaumarchaeal family 1 casposons. Notably, archaeal
and bacterial MGEs that use tyrosine recombinases for
integration are also known to form arrays of integrated
elements by re-using the same integration site (Krupovic
and Bamford, 2008b; Krupovic et al., 2010b; Das et al.,
2013). Ca. Nt. devanaterra contains two family 1 caspo-
sons as well. One of these is also integrated in the ef-2
gene, whereas the other one is inserted into the 30-distal
region of a gene encoding phosphoribosylamine-glycine
ligase. Finally, the NitEve-C1 casposon identified in the
Ns. evergladensis SR1 genome does not target any
protein-coding genes but is inserted into an intergenic
region. These new observations indicate that ef-2 is not
the universal target for thaumarchaeal casposons, even
within the genus Nitrosopumilus.

Five major classes of thaumarchaeal MGE

Based on the gene content analysis, the thaumarchaeal
iMGE could be broadly grouped into five major classes:
(i) proviruses, (ii) casposons, (iii) putative integrative-
conjugative elements (ICE), (iv) cryptic integrated elements
(CIE) and (v) IS-like transposons. The first four classes
include complex, multigene mobile elements, whereas IS-
like transposons typically consist of 1 or 2 genes, one of
which encodes a transposase. Hereafter, we reserve the
term iMGE for the complex elements. The majority (n = 48)
of the identified iMGE belong to the CIE category and
might represent novel families of viruses or plasmids.
The identified iMGE greatly vary in size, spanning nearly
three orders of magnitude from 2.6 to 140 kb (median
size of 16.8 kb; Fig. 1D). Collectively, the 74 iMGE
amount to 1 938 724 bp of mobile thaumarchaeal DNA.
Proviruses and casposons are rather uniform in size, all
smaller than 20 kb, whereas ICE and CIE are more vari-
able and reach 140 and 98 kb, respectively (Fig. 1D).
Below we characterize all five classes of thaumarchaeal
MGE in more detail.

Proviruses. Two groups of putative proviruses were iden-
tified in thaumarchaeal genomes: proviruses related to
tailed bacterial and archaeal viruses of the order Caudo-
virales, and those related to viruses encoding the double
jelly-roll (DJR) major capsid proteins (MCP). Searches
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initiated with the sequences of the large terminase subu-
nit (TerL), a signature protein of the Caudovirales,
yielded five hits in thaumarchaeal genomes. Two of these
hits were to the previously reported putative proviruses
Nvie-Pro1 and NCAV2-Pro1 in the genomes of Ns. vien-
nensis EN76 (Krupovic et al., 2011) and Ca. Nitrosocal-
dus cavascurensis SCU2 (Abby et al., 2018), respectively.
The three new hits were in the genomes of Ca. C. subter-
raneum, Ca. Np. koreensis AR1 and Ca. Nitrosocaldus
islandicus 3F. The latter element was identical to
NCAV2-Pro1 from Ca. Nc. cavascurensis SCU2. In Nvie-
Pro1 and NCAV2-Pro1, potential recombination sites and,
consequently, the exact boarders of the elements could
not be detected (Krupovic et al., 2011; Abby et al., 2018).
Similarly, the boarders of CalSub-Pro in the genome of
Ca. C. subterraneum could be determined only approxi-
mately. However, analysis of the gene content in the vicin-
ity of terL in Nvie-Pro1, NCAV2-Pro1 and CalSub-Pro
identify genes for all components necessary for the mor-
phogenesis of full-fledged tailed virions. In CalSub-Pro, we
identified gene homologues of the HK97-like MCP, the
portal protein as well as the major and minor tail proteins,
including the baseplate, head to tail connector, tail tape
measure and tail fibre proteins (Fig. 3A). CalSub-Pro also
contains a gene for the putative capsid maturation prote-
ase. Whereas Nvie-Pro1 encodes a chymotrypsin-like pro-
tease fused to the MCP (Krupovic et al., 2011), CalSub-
Pro carries a gene for the typical S78-family caudoviral
prohead protease (Pfam id: PF04586) located immediately
upstream of the MCP gene, a typical gene order in Caudo-
virales. NCAV2-Pro1 (and NitIsl-Pro1) also encode a typi-
cal caudoviral prohead protease; however, unlike in
CalSub-Pro but similar to Nvie-Pro1, the protease domain
is fused to the MCP (Fig. 3A), highlighting the fluidity of
the morphogenetic module in thaumarchaeal head-tail pro-
viruses. Interestingly, neither of the proviruses contains
identifiable genes for genome replication proteins. Given
the lack of identifiable att sites and genome replication
apparatus, on the one hand, and the presence of an
apparently functional virion morphogenesis module on the
other hand, there is a distinct possibility that the corre-
sponding loci represent domesticated Caudovirales-
derived elements, akin to the gene transfer agents (GTA)
operating in some bacteria and euryarchaea (Lang et al.,
2012; Lang et al., 2017; Koonin and Krupovic, 2018).
Alternatively, these loci could be remnants of inactivated
proviruses although conservation of the morphogenetic
modules argues against this possibility. Notably, despite
the shared gene contents, the three head-tail virus-derived
elements described above are highly divergent and
appear to be derived from distinct members of the
Caudovirales.

Analysis of the Ca. Np. koreensis AR1 genome
showed that the TerL homologue is indeed encoded

within a putative iMGE, NitKor-E1. However, the only
other identifiable Caudovirales-like gene in this elements
was that for the small terminase subunit (TerS), located
immediately upstream of the TerL-encoding gene, a typi-
cal location for this gene. All other genes in this element,
although typical of MGE, could not be attributed to Cau-
dovirales or any other group of viruses and included a
VapBC toxin-antitoxin system, PD-(D/E)XK family restric-
tion endonuclease and tyrosine integrase (Fig. 3A). The
terminase complex is highly specific to viruses of the
orders Caudovirales and Herpesvirales, and so far has
not been identified in nonviral MGE. Thus, its function in
NitKor-E1 remains enigmatic but likely is a relic from a
past integration of a head-tailed virus. However, in the
absence of other viral signature genes and experimental
evidence of virion formation, we classify NitKor-E1 as a
CIE rather than a provirus.

Viruses with the DJR MCPs infect hosts in all three
domains of life (Krupovic and Bamford, 2008a; Krupovic
and Koonin, 2015). In addition to the DJR MCP, these
viruses share a specific genome packaging ATPase of
the FtsK-HerA superfamily (Iyer et al., 2004) which is
unrelated to TerL proteins of Caudovirales and Herpes-
virales. The genes for the capsid protein and the packag-
ing ATPases are typically encoded close to each other
and appear to be inherited as a single module. In
archaea, this supergroup of viruses is represented by
Sulfolobus turreted icosahedral viruses, STIV and STIV2,
two members of the family Turriviridae (Rice et al., 2004;
Happonen et al., 2010). However, several other inte-
grated and extrachromosomal MGE encoding both signa-
ture proteins have been described in euryarchaea and
crenarchaea (Krupovic and Bamford, 2008b; Bernick
et al., 2012; Gaudin et al., 2014; Rensen et al., 2015).
The viral nature of these MGE has not been confirmed.
However, a provirus closely related to STIV and STIV2 is
integrated in the genome of certain S. acidocaldarius
strains (Anderson et al., 2017; Mao and Grogan, 2017),
suggesting that the euryarchaeal iMGE also represent
functional viruses. Recently, homologues of DJR MCP
have been reported also in thaumarchaea, but the exact
boundaries of the putative proviruses have not been
defined (Yutin et al., 2018). Searches seeded with the
sequence of the STIV MCP yielded hits to three proteins
in thaumarchaea: two identical proteins are encoded in
the genome of Ca. Ns. gargensis Ga9_2 and the third
one in the genome of Ca. Ns. evergladensis SR1.

The two identical MCP homologues in Ca. Ns. gargen-
sis Ga9_2 genome are encoded within two nearly identical
proviruses, NitGar-E1 and NitGar-E2, tandemly integrated
into the same target site within an intergenic region. The
most notable difference between the two elements is the
presence of an ISH3 family insertion sequence in NitGar-
E1 (Fig. 3B). NitEve-E7 of Ca. Ns. evergladensis SR1 is
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Fig. 3. Comparison of thaumarchaeal proviruses.
A. Genome maps of proviruses related to tailed bacterial and archaeal viruses of the order Caudovirales. Functionally equivalent genes are
shown using the same colours.
Abbreviations: TerS and TerL, small and large subunits of the terminase, respectively; Pro, prohead maturation protease; S-Pro, serine protease;
MCP, major capsid protein; MTP, major tail protein; TMP, tape measure protein; Exo, exonuclease; REase, restriction endonuclease; wHTH,
winged helix-turn-helix.
B. Genome maps of archaeal viruses and proviruses encoding the DJR MCPs. Functionally equivalent genes are shown using the same colours.
Abbreviations: ATPase, A32-like genome packaging ATPase; ZBD, zinc-binding domain-containing protein; HxlR, HxlR family DNA-binding tran-
scriptional regulator; PKD, PKD (Polycystic Kidney Disease) domain-containing protein; ISH3, ISH3 family insertion sequence. For more detailed
annotation see Supporting Information data file 1.
C. Maximum likelihood phylogeny of concatenated A32-like ATPase and DJR-MCP proteins. The tree was constructed using the automatic opti-
mal model selection (RtREV +G6 + I + F) and is rooted with bacterial tectiviruses. The scale bar represents the number of substitution per site.
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only distantly related to the proviruses of Ns. gargensis
Ga9_2. As aforementioned, NitEve-E7 is integrated into
NitEve-E6, an integrative-conjugative element (see below),
suggesting that NitEve-E7 piggybacks NitEve-E6 to be
transferred between cells via conjugation. Genomic con-
text analysis shows that the MCP genes are encoded in
the vicinity of a predicted genome packaging ATPases, as
is the case for other archaeal viruses and proviruses of
this supergroup (Fig. 3B). Besides the MCP and ATPase,
the proviruses also share divergent integrases of the tyro-
sine recombinase superfamily. To better understand the
evolutionary relationships among archaeal DJR MCP-
encoding proviruses, we constructed a maximum likeli-
hood phylogeny of concatenated ATPase and MCP pro-
teins, two signature proteins shared by all elements, from
representative (pro)viruses associated with crenarchaea,
euryarchaea and thaumarchaea. Note that although all
proviruses also encode integrases, these do not appear to
be orthologous and seem to have been independently
acquired or replaced in different virus lineages. The phylo-
genetic tree rooted with bacterial tectiviruses revealed
three clades corresponding to 3 different archaeal phyla,
Crenarchaeota, Euryarchaeota and Thaumarchaeota,
respectively (Fig. 3C). This result suggests deep associa-
tion and co-evolution of DJR MCP-encoding viruses with
their archaeal hosts or distinct origins of these viruses in
different archaeal phyla. Many more representatives of this

virus supergroup from different archaeal phyla will be
needed to distinguish between the two possibilities.

Casposons. Previously, we described 3 distinct thau-
marchaeal casposons which were classified into family
1 (Krupovic et al., 2014). Differently from casposons from
families 2, 3 and 4, family 1 casposons encode family B
DNA polymerases (PolB) that shows the closest
sequence similarity to protein-primed PolBs (pPolB) of
archaeal viruses (Krupovic et al., 2014). Here, we identi-
fied five distinct family 1 casposons in the genomes of
Ca. Ns. evergladensis SR1, Ca. Np. adriaticus NF5 and
Ca. Nt. devanaterra. The latter two species each contain
two casposons. Whereas the two casposons in Ca.
Np. adriaticus NF5 are tandemly integrated into the same
target site (Fig. 2D), those in Ca. Nt. devanaterra are
inserted into different protein-coding genes. Notably, the
five casposons are not closely related to each other or to
those described previously (Fig. 4A).

Besides the genes for Cas1 and pPolB, family 1 caspo-
sons share 3 or 4 uncharacterized genes encoded imme-
diately upstream of the pPolB gene. In addition, each
casposon carries element-specific genes (Fig. 4A). The
new casposons encode several nucleases that have not
been previously observed in family 1, including OLD fam-
ily nucleases (in NitDev-C1 and NitNF5-C1), NERD
domain-containing nuclease related to Holliday junction

Fig. 4. Comparison of thaumarchaeal casposons.
A. Family 1 casposons.
B. Comparison of the family 2 casposons from Ca. Nitrosotalea okcheonensis CS (NitNCS1-C1) and Aciduliprofundum boonei (AciBoo-C1).
Homologous genes are shown using the same colours.
Abbreviations: TIR, terminal inverted repeats; (p)PolB, (protein-primed) family B DNA polymerase; OLD, OLD (overcome lysogenization defect)
family nuclease; HTH, helix-turn-helix; HNH, HNH family nuclease; MTase, methyltransferase. For detailed annotation see Supporting Information
data file 1.
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resolvases (NitNF5-C1) and HNH nuclease (NitNF5-C1).
Most notably, NitNF5-C2 encodes two homologues of the
Cas4 nuclease, which is involved in the adaptation pro-
cess in many CRISPR-Cas systems (Hudaiberdiev et al.,
2017; Kieper et al., 2018; Lee et al., 2018; Shiimori et al.,
2018), and might participate in casposon integration,
which is mechanistically closely similar to CRISPR
spacer integration (Béguin et al., 2016; Krupovic et al.,
2017). Both Cas4 copies display closest sequence simi-
larity to Cas4 homologues from different Clostridia. Fur-
thermore, NitEve-C1 encodes a HEPN nuclease, a
member of an expansive nuclease family that is typically
associated with various microbial defence systems, includ-
ing toxin-antitoxin, abortive infection, restriction-modification
as well as type III and type VI CRISPR-Cas systems
(Anantharaman et al., 2013; Shmakov et al., 2015).
Finally, we identified a new casposon, NitNCS1-C1, in

Ca. Nitrosotalea okcheonensis CS, which does not belong
to family 1. It shares highest sequence similarity to the
family 2 casposon AciBoo-C1 from Aciduliprofundum boo-
nei (phylum Euryarchaeota), the only experimentally stud-
ied casposon thus far (Hickman and Dyda, 2015; Béguin
et al., 2016). NitNCS1-C1 encodes a conserved set of pro-
teins typical of family 2 casposons, including a distinct
PolB, Cas1, HNH nuclease and 2 helix-turn-helix proteins
(Fig. 4B). Notably, it also encodes a protein containing a
WYL domain that is often found in regulators of the
CRISPR-Cas systems (Makarova et al., 2014b; Yan et al.,
2018). The PolB gene of NitNCS1-C1 appears to be frag-
mented, and it remains unclear whether the two fragments
constitute a functional protein or the element is inactivated.
Similar to AciBoo-C1 but unlike all other thaumarchaeal
casposons, NitNCS1-C1 is inserted into a tRNA-Pro gene.
Accordingly, NitNCS1-C1 is the first family 2 casposon in
Thaumarchaeota.

Integrative-conjugative elements. The third type of identi-
fied thaumarchaeal iMGE are potential ICEs. ICEs are the
largest among the four iMGE categories (median size of
64 kb; Fig. 5A). Two ICEs, NCAV2-E1 and NCAV2-E2,
have been recently described in the genome of Ca.
Nc. cavascurensis SCU2 (Abby et al., 2018). Here, we
identified eight additional ICEs (Supporting Information
Table S2). Similar to NCAV2-Pro1, orthologs of
NCAV2-E1 and NCAV2-E2 are present in the genome of
a closely related (ANI = 99.9%) species Ca. Nc. islandicus
3F (Daebeler et al., 2018). Notably, however, Ca.
Nc. islandicus 3F harbours an additional ICE, NitIsl-E3,
compared to Ca. Nc. cavascurensis SCU2, which instead
has an empty site (Fig. 5A), confirming the recent mobility
of NitIsl-E3. Figure 5B shows the regions of thaumarch-
aeal ICEs containing genes encoding components of the
predicted conjugation/secretion systems. Similar to conju-
gative plasmids of Sulfolobus (Prangishvili et al., 1998;

Greve et al., 2004), most of the thaumarchaeal ICEs carry
a pair of signature genes for the homologues of VirB4/
TrbE and VirD4/TraG ATPases which energize type IV
secretion systems (Wallden et al., 2010). Other conserved
components include homologues of the integral mem-
brane proteins VirB6, VirB3 and TadC; FlaI and PilT
ATPases; prepilin peptidase and pilins (Fig. 5B). Further-
more, all identified thaumarchaeal ICEs encode homo-
logues of transcription factor IIB (TFIIB) which, in most
elements, are located immediately upstream of the genes
for the ParB-like partitioning protein, likely, in the same
operon. Notably, TFIIB homologues have been previously
detected in the vicinity of genes encoding type IV secre-
tion systems in other archaea (Makarova et al., 2016).
However, coupling with ParB appears to be specific to
thaumarchaeal ICEs. Overall, the conserved genes were
not syntenic (except in the orthologous ICEs; Fig. 5B),
suggesting extensive recombination within the putative
conjugation module. We did not detect candidates for
relaxases which generate a single-stranded copy of ICE
DNA prior to transfer in bacteria (Johnson and Grossman,
2015). However, typical relaxases are also absent in the
bona fide conjugative plasmids of Sulfolobus, consistent
with the suggestion that the archaeal conjugation machin-
ery is distinct from that of bacteria and might transfer
dsDNA as the substrate (Greve et al., 2004).

The predicted DNA replication modules of the thau-
marchaeal ICEs also show considerable differences. Only
NitEve-E6, the largest identified ICE, encodes its own DNA
polymerase (PolB) that is more closely related to the PolBs
from family 2 casposons (Krupovic et al., 2014) (hit to
NitNCS1-C1 casposon, E = 3e-38, 41% identity), rather
than to cellular replicative polymerases which were not
recovered even after several PSI-BLAST iterations. NitGar-
E3 and NitVie-E3 encode homologues of the Cdc6/Orc1
replication initiator, whereas NitVie-E3 and NitNCS1-E3
encode UvrD-like superfamily 1 helicases. NCAV2-E2 (and
orthologous NitIsl-E2) carry genes for type IA topoisome-
rases which could also participate in their replication.
NCAV2-E1 (and orthologous NitIsl-E1) and NitIsl-E3
encode MGE-specific replication proteins containing an N-
terminal archaeo-eukaryotic primase (AEP) domain (also
referred to as the primpol domain) and a C-terminal super-
family 3 helicase (S3H) domain, an organization commonly
found in replication proteins of various MGE and viruses
(Iyer et al., 2005; Lipps, 2011; Kazlauskas et al., 2018).
The diversity of genome replication modules associated
with thaumarchaeal ICEs suggests distinct origins and evo-
lutionary histories of these elements.

Cryptic integrated elements. The CIE vary in size from
2.6 kb to 98 kb but the majority are smaller than 20 kb
(median = 17 kb; Fig. 1D). There are no discernible sig-
nature genes that would be specific to thaumarchaeal
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CIE. By definition, the most conserved protein, although
belonging to different arCOGs, is the integrase. Interest-
ingly, NitEve-E3 encodes an SSV1-like integrase which
is split into two fragments upon integration of the MGE
although no other homologues of viral genes were identi-
fied in this element. Similar to ICE, CIE encode diverse
genome replication proteins, including those specific to
MGEs (Fig. 6). ThaMY3-E2, the largest of the identified
CIE (98.3 kb), encodes homologues of PolB and
archaeal replicative helicase MCM, whereas NitGar-E6
and NitEve-E3 encode MCM but not PolB. The MCM
helicases have been previously found to be frequently
recruited from the host as the main replication proteins of
various crenarchaeal and euryarchaeal MGEs, including
viruses and plasmids (Krupovic et al., 2010b; Kazlauskas
et al., 2016). By contrast, NitDev-E3 and NitAR2-E2
encode a superfamily 2 helicase and a homologue of the

Cch helicase (AAA+ ATPase superfamily) from a Staphy-
lococcus aureus mobile genomic island (Mir-Sanchis
et al., 2016), respectively. NitAQ6f-E1 encodes a homo-
logue of the Cdc6/Orc1 replication initiator, a distant homo-
logue of the MCM helicases. Presumably, both the MCM
helicases and Orc1 recruit the cellular replisome for
the MGE replication. Some CIE, such as CalSub-E1,
NitKor_MY1-E1 and NitAQ6f-E4, encode primpols. In the
corresponding NitKor_MY1-E1 and NitAQ6f-E4 proteins,
the primpol domain is fused to the S3H domain. By con-
trast, in CalSub-E1, the primpol domain, the α-helical
PriCT-1 linker domain and the S3H domain are encoded
by separate genes (Fig. 6). We also identified one thau-
marchaeal CIE, NitAQ6f-E2, encoding a rolling-circle repli-
cation initiation endonuclease homologous to those of
haloarchaeal sphaerolipovirus SNJ1 and several euryarch-
aeal plasmids (Wang et al., 2018b), suggesting that

Fig. 5. Comparison of thaumarchaeal integrative-conjugative elements.
A. Comparison of the genomes of two closely related Nitrosocaldus strains, Ca. Nc. cavascurensis SCU2 and Ca. Nc. islandicus 3F. Shared
ICEs and proviruses are indicated with transparent yellow and blue boxes, whereas the ICE element unique to Ca. Nc. islandicus 3F is shown
highlighted with a green box.
B. Thaumarchaeal integrative-conjugative elements. Only regions including the genes encoding the predicted components of the conjugation
apparatus are depicted (highlighted in red). Genes for the ParB-like segregation protein and TFIIB transcription initiation factor are shown in blue
and green, respectively. PPep, prepilin peptidase. For detailed annotation see Supporting Information data file 1.
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NitAQ6f-E2 replicates by the rolling-circle mechanism.
Finally, NitGar-E5 carries an operon consisting of a PolB
gene, two copies of a gene encoding a small uncharacter-
ized protein (arCOG08101), and an inactivated RadA
homologue (Fig. 6). Similar operons have been previously
identified in archaeal genomes and proposed to be involved
in DNA repair or regulation of replication (Makarova et al.,
2014a).
For many CIEs, we could not identify obvious candi-

dates for replication proteins. For instance, the smallest
identified CIE, NitUzo-E2 (2.6 kb), encodes only four pre-
dicted proteins, including an integrase, a winged helix-
turn-helix (wHTH) protein and two hypothetical proteins
(Fig. 6). The replication of this element might be initiated
by the wHTH protein, as in the case of Reps from the
IncP-1 family plasmids (Konieczny et al., 2014). How-
ever, given that wHTH proteins also are likely to be
involved in transcription regulation, functional assignment
without experimental verification appears premature.
Overall, the replication modules of CIEs closely resemble
those of ICEs, suggesting frequent transitions between
the two types of iMGE. As a case in point, NitVie-E4
encodes a VirB6 homologue but no other recognizable
proteins involved in conjugation, suggesting that this ele-
ment evolved from an ICE ancestor via the loss of the
conjugation apparatus which is consistent with the twice-
smaller size of this element (20.2 kb) compared to that
of ICE.

Insertion sequences. Although, previous comprehensive
analysis of the IS diversity in archaea did not include rep-
resentatives from the Thaumarchaeota (Filée et al., 2007),
similar to many other archaea and bacteria, thaumarch-
aeal genomes are extensively parasitized by IS-like trans-
posons. We identified 244 IS belonging to 13 families
across 20 thaumarchaeal genomes (Fig. 7, Supporting
Information Table S1). The majority of thaumarchaeal IS
encode transposases of the DDE superfamily (11 IS fami-
lies), whereas transposases of the HUH and serine recom-
binase superfamilies are characteristic of the IS200/IS605
and IS607 families, respectively. Notably, IS150 family ele-
ments have not been previously described in archaea
(Filée et al., 2007). There is considerable variation in both
the copy number and diversity of IS elements among thau-
marchaeal species (Fig. 7). Whereas most thaumarchaea
carry only a few IS per genome, six species contain ten or
more copies of different transposons (Fig. 1C, Supporting
Information Table S1). The highest number of IS elements
is found in Ca. Ns. gargensis Ga9_2 which carries 83 IS
from 11 different families, with IS200/IS605 being the dom-
inant one (Fig. 7). There are signs of transposon prolifera-
tion and expansion for certain IS families. For instance,
IS5 elements in Ca. Nitrocosmicus oleophilus MY3 are
found in 43 copies per chromosome, the largest for any
thaumarchaeal IS family, whereas in all other species,
they are present in low copy numbers or are lacking alto-
gether. Some of the IS families are restricted to a single

Fig. 6. Genome maps of selected thaumarchaeal cryptic integrated elements.
Integrase genes are highlighted in orange, gene encoding diverse replication-associated proteins are shown in red and components of the
restriction-modification systems are in blue.
Abbreviations: UspA, UspA family nucleotide-binding protein; dctA, C4-dicarboxylic acids transport protein (Na+/H+ dicarboxylate symporter);
dctB, C4-dicarboxylate transport sensor protein; SufI, multicopper oxidase; SLP, S-layer protein with immunoglobulin domain; PetE, Plastocya-
nin/azurin/halocyanin family protein; MMT1, Co/Zn/Cd cation transporter; HsdM/S/R, type I restriction-modification system methyltransferase/
specificity/restriction subunits; MTase, methyltransferase; Mod: Adenine-specific DNA methyltransferase; REase, restriction endonuclease; M48,
M48 family peptidase; CheY, chemotaxis protein receiver domain; EmrE, membrane transporter of cations and cationic drugs; RHH, ribbon-
helix–helix domain-containing protein; (w)HTH, (winged) helix-turn-helix; RCRE, rolling circle replication initiation endonuclease; AEP, archaeo-
eukaryotic primase; S3H, superfamily 3 helicase; MCM, minichromosome maintenance helicase.
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thaumarchaeal species (IS1, IS4, IS630, ISH3; Fig. 7),
suggesting a recent horizontal acquisition, but the sources
of these transfers remain to be investigated.

iMGE-encoded CRISPR arrays

Four iMGE, namely, 2 ICE (NCAV2-E1 and NitIsl-E1) and
2 CIE (NitVie-E4 and NitEve-E4), were found to carry
CRISPR arrays (Fig. 8A). In the two CIEs, the CRISPR
arrays are adjacent to complete suites of Type-IB cas
genes, including apparently functional adaptation and effec-
tor modules. By contrast, in the ICEs, the CRISPR arrays
are not accompanied by cas genes. As aforementioned,
NCAV2-E1 and NitIsl-E1 are closely related (Fig. 5A), and
the major differences between the two ICEs involve the
corresponding CRISPR arrays (Fig. 8A). Despite identical
repeat sequences, the number of CRISPR spacers is differ-
ent between the two elements (96 in NCAV2-E1 versus
69 in NitIsl-E1). Furthermore, only 43 spacers are shared
between NCAV2-E1 and NitIsl-E1, whereas the rest of the
spacers were apparently divergently acquired following the
diversification of the two Nitrosocaldus strains, suggesting
active exposure to distinct MGEs. For such in trans inser-
tion of spacers by the host adaptation machinery to occur,
the repeats in the iMGE should be (nearly) identical to
those in the host CRISPR array. This is indeed the case,
as the repeat sequences of NCAV2-E1/NitIsl-E1 are identi-
cal to those of the endogenous CRISPR array #3 of Ca.
Nc. cavascurensis SCU2 which is accompanied by an
apparently functional Type I-B cas genes, including the

adaptation module (Abby et al., 2018). Notably, the repeat
sequence of NitVie-E4 is closely related to that of
NCAV2-E1/NitIsl-E1 (Fig. 8B), despite the lack of shared
spacers and presence of the cas genes in NitVie-E4.
Although the repeat sequence of NitEve-E4 is more diver-
gent, its comparison with the repeat sequences from the
other iMGEs (Fig. 8B) indicates that they all might be
related.

To gain insight into the provenance of the iMGE-
encoded CRISPR-Cas systems, we assessed the posi-
tions of the corresponding Cas1 proteins, the signature
proteins of the CRISPR-Cas systems, in the global Cas1
phylogeny (Makarova et al., 2018). The Cas1 from
NitVie-E4 was nested among bacterial Cas1 homologues
from Type I-B systems, whereas Cas1 from NitEve-E4
forms a clade with homologues from Ns. viennensis EN7
and Nitrosopumilus sp. LS, which was nested among
Cas1 associated with Type-III CIRSPR-Cas systems
(Makarova et al., 2018). This phylogenetic position sug-
gests that the Type I-B CRISPR-Cas systems carried by
the two thaumarchaeal iMGE have been independently
acquired from distinct sources. Furthermore, the similarity
between the repeat sequences of the iMGE-carried
stand-alone CRISPR arrays and the host array accompa-
nied by cas genes suggests that the former evolved from
the latter through the loss of the cas genes.

To investigate potential interplay between thaumarchaeal
iMGE and CRISPR-Cas systems, we first examined if any
of the cellular CRISPR spacers target the identified iMGE.
Two spacers in the genome of Ns. viennensis EN7

Fig. 7. Diversity and distribution of thaumarchaeal insertion sequences.
On the left is the schematic cladogram representing the relationships among thaumarchaeal species. The source of isolation is indicated on the
right of the figure. The abundance of identified IS elements in each species is shown as a heatmap, with the exact numbers indicated within the
corresponding cells.
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produced significant matches (95% and 94% identity,
respectively) to the provirus NitEve-E7 (Fig. 8C). Notably,
both spacers targeted different regions of the gene for the
DJR MCP. Next, we analysed if the CRISPR spacers
encoded by the four iMGEs target other iMGEs. Three
spacers from the NitVie-E4 were found to match (95%
[E = 2.5e-12], 79% [E = 1.1e-05] and 74% [E = 1.35e-04]
identity, respectively) the NitEve-E7 provirus, with one of
the spacers (NitVie-E4_4) targeting the DJR MCP gene
(Fig. 8D) at a different region than the two spacers from the
bona fide chromosomal Ns. viennensis EN7 CRISPR array.
The similarities between the NitVie-E4_23 and NitVie-E4_9
spacers and their targets are at the boarder of significance.
Thus, as a control, BLASTN search (word size 8, identity
over full length of spacer > 70% and E-value <0.001) of
spacer matches was performed against the Escherichia coli
genome, which is of a similar size and GC content as our
thaumarchaeal iMGE database. No spacer hits with the
same thresholds were found in the control search. Further-
more, given that all five spacers (two from the host CRISPR
array and three from NitVie-E4) with identifiable protospa-
cers target the same provirus, it appears likely that these
two matches are true positives. Finally, Ns. viennensis and
Ns. evergladensis are both soil-dwellers (Tourna et al.,
2011; Zhalnina et al., 2014). These observations suggest
that the mobile CRISPR loci mediate conflicts between dif-
ferent iMGE competing in the same environment. Obvi-
ously, experimental validation is needed to corroborate this
conjecture and assess its generality.

Functional potential of thaumarchaeal iMGE

To study the distribution and diversity of functions
encoded by different classes of thaumarchaeal iMGE, the

2105 iMGE-encoded proteins were classified into func-
tional arCOG categories (Makarova et al., 2015)
(Supporting Information data file 1) and further segre-
gated into five broader group (Fig. 9A). These include

i. ‘Metabolism and transport’ (arCOG categories C,
E, F, G, H, I, P and Q);

ii. ‘Cellular processes and signaling’ (arCOG catego-
ries D, M, N, O and T);

iii. ‘Information storage and processing’ (arCOG cate-
gories J, K and L);

iv. ‘Unknowns’ (arCOG categories R and S, and hypo-
thetical proteins which could not be ascribed to arCOGs);

v. ‘Mobilome’ (arCOG categories X, U and V; note that
categories ‘U’: ‘Intracellular trafficking, secretion and
vesicular transport’ and ‘V’: ‘Defence mechanisms’ con-
taining the conjugation apparatus and various restriction-
modification systems, respectively, are herein included
into the ‘Mobilome’ group).

All 21 functional categories recognized in the arCOG
database (Makarova et al., 2015) were represented
among the iMGE proteins. As is typical of archaeal
MGE (Makarova et al., 2014c), the majority (63%–82%)
of proteins from all four iMGE classes lack functional
annotation and fall into the ‘Unknowns’ group, with the
highest number of such proteins found in proviruses
(Fig. 9A). By contrast, the proteins typical of MGE, such
as structural virion proteins, integrases, genome pack-
aging ATPases, transposases and other proteins from
the ‘Mobilome’ category, represented a core of less
than 20% (less than 10% for proviruses and ICE) of the
total protein content in each iMGE class. Notably, provi-
ruses and casposons were relatively depleted in pro-
teins of the groups ‘Information storage and processing’
and ‘Cellular processes and signaling’, whereas ICE

Fig. 8. CRISPR arrays carried by thaumarchaeal iMGE.
A. Loci of iMGE-carried stand-alone CRISPR arrays and CRISPR-Cas systems. CRISPR arrays are shown as blue rectangles with the number
of spacers indicated. cas genes are shown in green and indicated with the corresponding numbers. LS, large subunit; HJR, Holliday junction
resolvase; wHTH, winged helix-turn-helix.
B. Alignment of the CRISPR repeat sequences from NitIsl-E1/NCAV2-E1, NitVie-E4 and NitEve-E4 iMGE.
C. Matches between the chromosomal CRISPR spacers (blue) and iMGE (red).
D. Matches between the iMGE-carried CRISPR spacers (blue) and iMGE (red).
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and CIE carry greater numbers of the so-called auxil-
iary metabolic genes (AMG) involved in metabolism
and transport compared to proviruses and casposons
(Fig. 9A, inset). For instance, many elements encode
multicopper oxidases, which have been suggested to
assist in the process of ammonia oxidation by produc-
ing NO (Schleper and Nicol, 2010; Kozlowski et al.,
2016). In addition, one element, NitEve-E6, encodes an
ammonia monooxygenase subunit C (AmoC; hit to
PFAM profile PF04896.12, HHpred probability = 100%)
and two iMGE encode nitrogen regulatory protein PII
(HHpred probabilities > 99%), and might actively participate

in nitrogen cycling in soil environments, as has been
recently proposed for putative AmoC-encoding marine
thaumarchaeal viruses assembled from metagenomic
data (Ahlgren et al., 2019). In addition, iMGE were found
to encode various dehydrogenases, stress response
proteins, different membrane transporters of cations and
drugs, chemotaxis protein receiver domains and many
more (Supporting Information data file 1). The discovery
of this diverse protein repertoire suggests that conjuga-
tive and cryptic elements play important roles in host
adaptation and affect the fitness and survival of their
hosts.

Fig. 9. Comparative genomics of thaumarchaeal iMGE.
A. Classification of genes from the four classes of iMGE into arCOG functional categories. Note that arCOG categories U (Intracellular trafficking,
secretion and vesicular transport) and V (Defence mechanisms) are herein included into the ‘Mobilome’ category.
B. Network of thaumarchaeal iMGE based on the shared arCOGs. The nodes correspond to iMGE, whereas the connecting edges represent
shared arCOGs. The four iMGE classes are colour-coded and the key is provided in panel A.
C. Classical multidimensional scaling analysis of iMGE. The four iMGE classes are colour-coded and the key is provided in panel A.
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All thaumarchaeal iMGE are connected in a gene
sharing network

Comparison of the gene (arCOG) content across the four
classes of iMGE shows that all elements are connected
to each other within a gene sharing network (Fig. 9B),
indicating that some iMGE carry genes with broad distri-
bution across different iMGE classes. Nevertheless, the
two subgroups of proviruses (Caudovirales and DJR
MCP-encoding proviruses, respectively) and casposons
formed discernible clusters within this network, suggest-
ing that, in the case of iMGE with relatively small
genomes, a small set of core genes is sufficient to hold
the (sub)classes together. By contrast, CIE and ICE were
largely intermixed. Embedding the iMGE distance matrix
into a 2-D space using Classical Multidimensional Scal-
ing (CMDS) analysis (Borg and Groenen, 2005), revealed
four clusters of elements (Fig. 9C). However, these

clusters were not homogeneous with respect to the four
iMGE classes. For instance, CIEs were distributed across
all four clusters, whereas ICEs were present in three
clusters. Notably, NitNF5-C1, the largest of the identified
casposons (Fig. 4A), did not cluster with other casposons
but was an outlier (Fig. 9C). This is not surprising, given
that this casposon, besides the casposon-specific pro-
teins, encodes several other proteins, including XerC-like
tyrosine recombinase, that are shared with many
other iMGE.

Analysis of the iMGE gene content revealed several
protein families broadly distributed in iMGE (Table 1)
which provide connectivity within the network. These
include not only the XerC/XerD and Cas1 family inte-
grases which, primarily, the former family, are essential
for mobility and, thus, carried by the vast majority of
iMGE, but also different families of transcription regula-
tors, components of restriction modification and conjuga-
tion systems and several protein families potentially
contributing to the host fitness and adaptation. For
instance, 16 iMGE encode universal stress response pro-
teins of the UspA family (Table 1). The proteins of the
UspA family have been shown to play regulatory and pro-
tective roles to enable microbial adaptation and survival
under various environmental stresses, such as nutrient
starvation, drought, extreme temperatures, high salinity,
the presence of antibiotics and heavy metals and other
forms of stress (Vollmer and Bark, 2018). The connectiv-
ity of the iMGE network and the extent of gene sharing
suggest that the thaumarchaeal mobilome has been
shaped by three major processes, namely, (1) horizontal
gene exchange, (2) independent acquisition of homolo-
gous genes from the host and (3) evolutionary transitions
between different iMGE classes, in particular, between
the CIE and ICE.

Discussion

Based on functional considerations and mode of propa-
gation, thaumarchaeal iMGE can be categorized into five
classes, namely, proviruses, casposons, ICE, CIE and
the short IS-like transposons. Whereas IS-like transpo-
sons generally consist of 1 or 2 genes, those of the other
four classes encompass multiple genes and display great
diversity in terms of genomic complexity and functional
content. All five classes of iMGE found in thaumarchaea
are also present in other archaea (e.g. phylum Euryarch-
aeota) and bacteria although some of the classes have
not been thus far identified in certain archaeal and bacte-
rial lineages. For instance, casposons and viruses of the
order Caudovirales have not been detected in members
of the phylum Crenarchaeota. This might be due to insuf-
ficient sampling or to genuine lack of these elements in
this archaeal phylum. By contrast, bacteria are known to

Table 1. Top 20 most common arCOGs from the thaumarchaeal
iMGE.

Count arCOG Category Annotation

33 arCOG01245 X XerD/XerC family integrase
17 arCOG01242 X XerD/XerC family integrase
16 arCOG02053 T UspA family nucleotide-

binding protein
13 arCOG00606 R CBS domain
12 arCOG08677 S Zn-ribbon domain containing

protein
11 arCOG02626 V Type I restriction-modification

system, S subunit
10 arCOG01452 V CRISPR-associated protein

Cas1
9 arCOG08805 V CopG/RHH family DNA

binding protein
9 arCOG03914 Q Multicopper oxidase
9 arCOG00602 R CBS domain containing

protein
9 arCOG00608 K Predicted transcriptional

regulator with C-terminal
CBS domains

9 arCOG02632 V Type I restriction-modification
system, methyltransferase
subunit

8 arCOG01471 R Hemerythrin HHE cation
binding domain containing
protein

8 arCOG01981 K Transcription initiation factor
TFIIB

7 arCOG15271 X Casposon associated
protein-primed PolB family
polymerase

7 arCOG04559 P Membrane transporter of
cations and cationic drugs

7 arCOG02868 O Protein-disulfide isomerase
7 arCOG07844 S VirB6/TrbL; membrane

protein associated with
conjugation system

6 arCOG14992 S Uncharacterized protein
conserved in casposons

6 arCOG00878 V Type I restriction-modification
system, restriction subunit
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contain additional classes of iMGE that have not been
detected in archaea, including thaumarchaea. These
include composite DNA transposons which, in addition to
the transposase genes, carry diverse passenger genes,
such as those for antibiotic resistance (Nicolas et al.,
2015); various pathogenicity islands and phage-inducible
chromosomal islands that are induced upon phage infec-
tion and hijack the virus particle for intercellular transmis-
sion (Novick and Ram, 2016; 2017); mobile integrons,
complex genetic platforms that allow bacteria to evolve
rapidly through the acquisition, excision and shuffling of
genes found in mobile elements known as cassettes
(Escudero et al., 2015); or pipolins, a recently character-
ized group of bacterial iMGE encoding primer-independent
DNA polymerases (Redrejo-Rodríguez et al., 2017). How-
ever, given our limited understanding on the archaeal
mobilome and especially the diversity of iMGE, it cannot
be ruled out that counterparts to some of these bacterial
iMGE classes in thaumarchaea are awaiting discovery.
The CIE class is particularly enigmatic and might include
functionally distinct classes of iMGE.

In addition to proviruses related to tailed viruses of
the order Caudovirales, which have been previously
observed in thaumarchaeal genomes and also detected
by several metagenomics studies (Chow et al., 2015;
Labonté et al., 2015; Ahlgren et al., 2019; López-Pérez
et al., 2018), we identified proviruses encoding the DJR
MCP, one of the most widely distributed and diverse
groups of dsDNA viruses in all three domains of life
(Krupovic and Bamford, 2008a; Krupovic and Koonin,
2015; Yutin et al., 2018). Although the number of identi-
fied archaeal viruses with the DJR MCP is small, phylo-
genetic analysis suggests a coevolution of this virus
group with the major archaeal lineages, including Thau-
marchaeota. If validated by broader studies, this conclu-
sion would parallel the apparently ancient evolutionary
association of the Caudovirales with thaumarchaea
(Krupovic et al., 2011). Thus, at least these two groups of
viruses can be confidently traced to the last common
ancestor of the archaea and, in all likelihood, to the last
universal cellular ancestor. We did not identify any iMGE
related to the archaea-specific virus groups associated
with other archaeal phyla, and whether any of these
extend to Thaumarchaeota, remain to be determined.
Potentially, some or even many of the CIE, which com-
prise the majority of the identified thaumarchaeal iMGE
(65%), represent novel families of archaeal viruses and
plasmids. Systematic experimental induction of the repli-
cation of CIE and ICE could be a rewarding exercise, not
only from a fundamental standpoint, but also to develop
replicons that might serve as much-needed genetic tools
in thaumarchaea. Identification of iMGE in thaumarchaea
from diverse environments provides a broad choice of
potential replicons that potentially could be tailored for

different model organisms. Given their circular topology,
CIE and ICE elements with smaller genome sizes (3–12
kbp) appear to be best suited for the development of
shuttle vectors for facile genetic manipulation in Escheri-
chia coli.

Gene content analysis revealed an extensive pan-
genome of thaumarchaeal iMGE. The MGE-specific
genes, such as those encoding capsid proteins, viral
genome packaging ATPases, conjugation proteins, inte-
grases and so forth, constitute but a small fraction of their
gene complements (10%–20% of genes). The vast major-
ity of the iMGE genes encode proteins of unknown func-
tion. Nevertheless, a substantial fraction of genes
represents auxiliary metabolic genes and stress response
genes which are likely to play important roles in the adap-
tion of their hosts to new environments, coping with stress-
ful conditions and boosting their metabolic potential. For
instance, multicopper oxidases, AmoC and nitrogen regu-
latory protein PII encoded by iMGE might modulate nitro-
gen metabolism, whereas UspA family proteins could
boost the adaptation and survival of the host cells under
various environmental stress conditions. The identification
of functionally diverse metabolic and signalling genes in
the thaumarcaheal iMGE parallels observations on the
gene repertoires of some of the tailed bacterial viruses
(Anantharaman et al., 2014; Hurwitz and U’Ren, 2016;
Roux et al., 2016; Roitman et al., 2018), in particular, cya-
nophages that carry photosystem genes and substantially
contribute to the host metabolism (Sharon et al., 2009;
Thompson et al., 2011; Fridman et al., 2017). Taken
together, these observations indicate that, at least, in the
case of iMGEs with larger genomes, these elements
should be considered more as symbionts of their hosts
than simple genomic parasites or ‘junk DNA’.

Although metabolism-related genes appear to be more
prevalent in CIE and ICE, all four classes of iMGE share
a substantial fraction of genes. Accordingly, the evolu-
tionary relationships between these iMGE are most ade-
quately represented as a gene-sharing network similar to
those that have been previously constructed for double-
stranded DNA viruses (Jachiet et al., 2014; Iranzo et al.,
2016a,b; Bolduc et al., 2017). The extensive gene shar-
ing can be explained by three nonmutually exclusive
scenarios, including (1) horizontal gene exchange, (2)
independent acquisition of homologous genes from vari-
ous sources and (3) evolutionary transitions between
different iMGE classes. Gene content similarity sug-
gests that such transitions indeed occurred on multiple
occasions between CIE and ICE, and involved the los-
s/acquisition of the genes encoding the conjugative
apparatus.

The vast majority of known CRSIPR-Cas systems are
encoded by cellular organisms and deployed to counter
the replication of MGE, but some MGE also carry
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functional CRISPR-Cas systems. For instance, CRISPR-
Cas systems and stand-alone CRISPR arrays have been
identified in a number of prophages (Hargreaves et al.,
2014; Chénard et al., 2016; Zheng et al., 2016; Garneau
et al., 2018) and in the case of a Vibrio-infecting bacterio-
phage have been shown to target for destruction a patho-
genicity island integrated in the host genome (Seed et al.,
2013). By contrast, a subgroup of Tn7-like transposons
has been hypothesized to employ the encoded CRISPR-
Cas system for CRISPR-guided transposition (Peters
et al., 2017). We identified four iMGE carrying CRISPR
arrays, which in two cases were accompanied by com-
plete suites of cas genes. The majority of spacers did not
match any known viruses, mostly likely, due to the current
lack of data on the thaumarchaeal mobilome. Interestingly,
however, several spacers carried by a CIE matched one
of the proviruses, apparently, indicative of an antagonistic
interaction between iMGE residing in the same habitat.
Consequently, the CRISPR-carrying CIE and the host cell
appear to coexist in a symbiotic relationship, whereby the
CIE provides a protection against a presumably more
harmful provirus. Identification of the CRISPR loci in MGE
described here and elsewhere are consistent with the
‘guns-for-hire’ concept whereby MGE capture and repur-
pose various host defence systems (Koonin and Krupovic,
2015). Collectively, our results provide insights into the
diversity and evolution of the thaumarchaeal mobilome
and illuminate its potential impact on the functioning and
adaptation of the host cells.

Experimental procedures

Identification of iMGE

Complete or near-complete thaumarchaeal genomes
were downloaded from the NCBI database. We employed
three different strategies to search for the iMGEs. (i) The
genomes were analysed for the presence of gene clus-
ters, previously denoted as ‘dark matter’ islands, enriched
in ORFans and uncharacterized genes with a very narrow
phyletic distribution (Makarova et al., 2014c). (ii) The sec-
ond approach was based on identification of genes
encoding signature proteins typical of different archaeal
MGE groups. These included major capsid and genome
packaging proteins representing different families of
archaeal viruses, protein-primed family B DNA polymer-
ases, rolling-circle replication initiation endonucleases
and SSV-type DnaA-like AAA+ ATPase. Whenever a
homologue of the signature MGE gene was identified in
the cellular genome, the search was repeated with the
identified thaumarchaeal homologue and its genomic
context was analysed for the presence of additional
MGE-derived genes using blastp. (iii) The third strategy
involved systematic genome context analysis of genes

encoding for integrases of the tyrosine recombinase
superfamily. The searches were performed against the
dataset of thaumarchaeal genomes using tblastn and
integrase sequences from each newly identified thau-
marchaeal iMGE as queries. The three approaches pro-
duced overlapping, yet complimentary results. In the
next step, the potential iMGEs were analysed for the
presence of signatures of site-specific recombination.

Identification of insertion sequences

IS elements were predicted and classified into families
using the ISsaga platform (Varani et al., 2011). The ‘prob-
able false-positive’ predicted by ISsaga were excluded
from the final results. Exact coordinates for all identified
IS elements are provided in Supporting Information
Table S3.

Determination of the integration sites

The precise boundaries of integration were defined based
on the presence of direct repeats corresponding to attach-
ment sites or target site duplications. The direct and
inverted repeats were searched for using Unipro UGENE
(Okonechnikov et al., 2012). Whenever possible, addi-
tional validation of the MGE integration sites was obtained
by comparing sequences of genomes containing the puta-
tive iMGEs with those of closely related genomes that do
not contain such insertions using blastn algorithm.

Annotation of the iMGE genes

For each analysed gene, the functional annotations were
assigned using the PSI-BLAST program with position
specific scoring matrixes derived from arCOG alignments
(Altschul et al., 1997). To detect remote homology, addi-
tional searches were performed using PSI-BLAST
(Altschul et al., 1997) against the nonredundant protein
database at NCBI and HHpred against the PDB, CDD,
SCOPe and Pfam databases available through the MPI
Bioinformatics Toolkit (Zimmermann et al., 2018).

Network analysis

The number of distinct arCOGs shared between a pair of
elements (Sij) was counted in annotated iMGEs. In the
network representation the thickness of the line, connect-
ing two iMGE is proportional to Sij. The distance between
two elements with the respective numbers of genes Xi

and Xj is calculated as -ln(Sij/sqrt(XiXj)). The iMGE dis-
tance matrix was embedded into a 2-D space using the
classical multidimensional scaling (cmdscale function
in R).
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Phylogenetic analysis

For phylogenetic analysis, MCP and ATPase sequences
from each (pro)virus were concatenated and aligned
using MUSCLE (Edgar, 2004). Poorly aligned (low infor-
mation content) positions were removed using the Gap-
pyout function of Trimal (Capella-Gutierrez et al., 2009).
The final alignment contained 462 positions. The maxi-
mum likelihood phylogenetic tree was constructed using
the PhyML program (Guindon et al., 2010) with the auto-
matic selection of the best-fit substitution model for a
given alignment. The best model identified by PhyML
was RtREV +G6 + I + F. The tree was rooted with
sequences of bacterial tectiviruses. The branch support
was assessed using aBayes implemented in PhyML.

Genome comparisons

The genomes of iMGE were compared and visualized
using EasyFig v2.1 with tblastx algorithm (Sullivan et al.,
2011). The complete genomes of closely related Nitroso-
caldus strains, Ca. Nc. cavascurensis SCU2 and Ca.
Nc. islandicus 3F were compared using progressive-
Mauve with default parameters (Darling et al., 2010).
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Introduction: 

Analysis of spacers from the CRISPRome data in Chapters I-IV revealed some sequence features 

discussed in the Annex. One of the possible mechanisms underlying the spacer-specific features 

is described in Chapter VI. 

 

Contribution:  

I obtained preliminary results of PAM avoidance in spacer sequences during primed adaptation 

experiments with different plasmids (the data was later reanalyzed by the second author), in 

spacers from sequenced genomes (Figure 4C) and lack of PAM avoidance in the mammoth 

CRISPRome data.  
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Avoidance of Trinucleotide Corresponding to Consensus
Protospacer Adjacent Motif Controls the Efficiency of
Prespacer Selection during Primed Adaptation
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ABSTRACT CRISPR DNA arrays of unique spacers separated by identical repeats en-
sure prokaryotic immunity through specific targeting of foreign nucleic acids com-
plementary to spacers. New spacers are acquired into a CRISPR array in a process of
CRISPR adaptation. Selection of foreign DNA fragments to be integrated into CRISPR
arrays relies on PAM (protospacer adjacent motif) recognition, as only those spacers
will be functional against invaders. However, acquisition of different PAM-associated
spacers proceeds with markedly different efficiency from the same DNA. Here, we
used a combination of bioinformatics and experimental approaches to understand
factors affecting the efficiency of acquisition of spacers by the Escherichia coli type
I-E CRISPR-Cas system, for which two modes of CRISPR adaptation have been de-
scribed: naive and primed. We found that during primed adaptation, efficiency of
spacer acquisition is strongly negatively affected by the presence of an AAG trinucle-
otide—a consensus PAM—within the sequence being selected. No such trend is ob-
served during naive adaptation. The results are consistent with a unidirectional spacer
selection process during primed adaptation and provide a specific signature for identifi-
cation of spacers acquired through primed adaptation in natural populations.

IMPORTANCE Adaptive immunity of prokaryotes depends on acquisition of foreign
DNA fragments into CRISPR arrays as spacers followed by destruction of foreign DNA
by CRISPR interference machinery. Different fragments are acquired into CRISPR ar-
rays with widely different efficiencies, but the factors responsible are not known. We
analyzed the frequency of spacers acquired during primed adaptation in an E. coli
CRISPR array and found that AAG motif was depleted from highly acquired spacers.
AAG is also a consensus protospacer adjacent motif (PAM) that must be present up-
stream from the target of the CRISPR spacer for its efficient destruction by the inter-
ference machinery. These results are important because they provide new informa-
tion on the mechanism of primed spacer acquisition. They add to other previous
evidence in the field that pointed out to a “directionality” in the capture of new
spacers. Our data strongly suggest that the recognition of an AAG PAM by the inter-
ference machinery components prior to spacer capture occludes downstream AAG
sequences, thus preventing their recognition by the adaptation machinery.

KEYWORDS CRISPR spacers, CRISPR-Cas, naïve adaptation, primed adaptation

Prokaryotic CRISPR-Cas systems consisting of CRISPR arrays containing identical
repeats separated by unique spacers and associated cas genes protect cells from

invading nucleic acids (1–3). CRISPR-Cas systems function by first acquiring fragments
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of invading nucleic acids, prespacers, and integrating them into CRISPR arrays as
spacers, thus forming hereditable immunological memory (4). DNA of genetic invaders
containing “memorized” fragments is recognized by Cas protein complexes and spacer-
containing CRISPR RNAs (crRNAs) and targeted for destruction in a process called
CRISPR interference (5). The recognition is achieved through complementary interac-
tion between crRNA spacer and the target sequence, named the protospacer, and is
also dependent on a specific short protospacer adjacent motif (PAM) (6–10).

CRISPR-Cas systems developed diverse mechanisms to avoid autoimmunity that
should arise from targeting spacers in CRISPR array. Most of these mechanisms are
based on a requirement for PAM, which is not complementary to crRNA but is
specifically recognized by Cas proteins from the interfering complex (11, 12). The PAM
is absent from the CRISPR repeat sequence adjoining the spacer. The separation of
CRISPR defense into spacer acquisition and target interference stages and the require-
ment for PAM means that new spacers need to arise from sequences (prespacers)
associated with PAM. Otherwise, they will not be able to perform their protective
function.

For a well-studied type I-E CRISPR-Cas system from Escherichia coli, two modes of
spacer adaptation have been described (13–15). The naive adaptation requires the Cas1
and Cas2 proteins and a CRISPR array (15). About 40% of spacers acquired during the
naive adaptation arise from prespacers associated with the consensus AAG PAM; the
majority of other acquired spacers are not expected to be functional in interference
(15). In addition to Cas1 and Cas2, primed adaptation requires all the components of
the interference stage: in E. coli they are the complex Cascade, the Cas3 nuclease-
helicase, and a crRNA, which recognizes foreign DNA (13). Primed adaptation is much
more efficient than naive adaptation, and almost 100% of prespacers chosen contain a
consensus AAG PAM (16). The requirement for specific crRNA indicates that primed
adaptation is triggered by the recognition of the target by the Cascade-crRNA effector
complex. The site of recognition is referred to as a “priming protospacer.” Upon target
recognition by the effector complex, localized melting of the protospacer occurs.
Melting initiates close to the PAM, in the so called “seed” region of the protospacer, and
then extends further downstream (17). One protospacer strand, referred to as the
“target strand,” forms a heteroduplex with crRNA spacer sequence. The other, nontar-
get, strand is displaced, forming an R-loop. A specific feature of primed adaptation is a
very strong strand bias in the orientation of selected prespacers (13, 14, 16). Upstream
of the priming site, more than 90% of prespacers are oriented the same way as the
priming protospacer: i.e., they map on the nontarget strand. The orientation of down-
stream prespacers is an opposite one: i.e., they map to the target strand. The efficiency
of prespacer acquisition decreases with increasing distance from the priming site (18).
No such biases are apparent during naive adaptation, and acquired spacers map to
both strands of foreign DNA. It was shown that naive adaptation is affected by RecBCD
activity, and acquired spacers tend to originate from regions with double-stranded
breaks or replication fork stalling (19, 20).

While the presence of an AAG PAM at a prespacer side is strictly required for its
selection by the adaptation machinery during primed adaptation and makes a strong
contribution during naive adaptation, it alone does not determine the efficiency of
prespacer usage (21, 22). Thus, in an E. coli culture undergoing primed adaptation of
spacers from a plasmid, it is commonly observed that certain prespacers with an AAG
PAM are acquired by many cells, while others are acquired rarely or not at all (22). The
former are referred to as “hot” prespacers, while the latter are “cold.” The pattern of hot
and cold prespacers and their relative efficiencies are highly reproducible. The reasons
behind the observed differential use of prespacers during adaptation are not known. In
this work, we performed bioinformatics and experimental analysis that led us to
conclude that a presence of an AAG trinucleotide within the prespacer has a strong
negative effect on the frequency of its use during primed adaptation.
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RESULTS
Spacers efficiently acquired during primed adaptation have distinct nucleotide

composition. To reveal possible causes of unequal acquisition efficiency of prespacers
during primed adaptation, previously reported data sets of spacers acquired by E. coli
KD263 cells transformed with plasmids pRSF_G8mut and pUC_G8mut (23, 24) were
analyzed (see Table S1 in the supplemental material). In addition, new data sets of
spacers acquired by KD263 cells in the presence of pG8mut_Km plasmid (Materials and
Methods) were used. In each case, adaptation was initiated from a plasmid-borne
G8mut priming protospacer partially matching the spacer segment of KD263 crRNA.
The backbones of pRSF_G8mut, pUC_G8mut, and pG8mut-Km are sufficiently different
so that most spacers of each data set do not overlap. For each sample, data sets
corresponding to two biological replicates were analyzed. As expected for primed
adaptation, most spacers in each culture were acquired from plasmid (99.7%) rather
than the bacterial genome, and 86.35% of plasmid-derived spacers mapped to the DNA
strand that was not targeted by G8 crRNA (Fig. 1A; Table S1). A total of 98.4% of plasmid
spacers originated from prespacers preceded by an AAG PAM. The distribution of
frequencies of spacers was highly reproducible for each plasmid, with a Pearson
correlation of 0.84 or higher. While it has been observed that regions proximal to a
priming protospacer preferentially donate new spacers during primed adaptation (18,
25–27), there was no gradient in prespacer usage with any of the plasmids (Fig. 1A),
likely due to their small size.

For each plasmid, sequences of unique spacers derived from the nontarget strand
and associated with AAG PAM were sorted according to spacer frequency in the data

FIG 1 Prespacers actively used during primed adaptation are depleted in the AAG trinucleotide. (A) At the top, a graphical representation of spacers acquired
in the course of primed adaptation from plasmids pRSF_G8mut, pUC_G8mut, and pG8mut_Km is presented. The position of the priming protospacer G8 (PS)
in each plasmid is indicated by a blue rectangle. Arrows indicate the orientation of the priming protospacer (same in pRSF_G8mut and pG8mut_Km and
opposite in pUC_G8mut). Spacers acquired from each plasmid are shown by black lines, with line heights indicating relative frequency of reads corresponding
to different spacers. Lines projecting inside and outside the plasmid circles represent spacers mapping on opposite strands of plasmid DNA. Spacers originating
from hot spot 1 (HS1) and HS1a prespacers (see the text for details) are highlighted in red. “CS1” shows the position of the cold prespacer (see the text for
details). Below, Pearson correlation coefficients for mapping of spacers acquired from each plasmid in two independent experiments are given. At the bottom,
spacers acquired from each plasmid were ranked according to their occurrence in Illumina reads. Each dot represents one spacer (corresponding to lines
protruding from plasmid maps at the top). Dots colored black and gray represent results from two independent experiments. Spacers in the lower half of the
distribution were considered cold. The top 25% of most common spacers were considered hot. The mean total percentage of cold and hot spacers from two
experiments for each plasmid is given. (B) Violin plots showing odds ratio of trinucleotides in hot versus cold prespacers and their flanking sequences. The P
value for AAG depletion in hot prespacers is shown.
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set. The resulting frequency distributions for each plasmid are shown in Fig. 1A. As can
be seen, the distributions are highly unequal, with some spacers being used much
more frequently than others. We consider the 25% of most frequently used spacers as
“hot.” Conversely, 50% of spacers at the opposite end of the distribution are considered
“cold.” Together, sequences from the hot spacer group account for �70% of all
plasmid-borne spacers, while cold spacer group sequences account for �10% of
spacers. For subsequent analysis, unique hot and cold group spacers from each data set
were combined and treated together.

No difference in nucleotide composition of “cold” and “hot” spacers was revealed.
Dinucleotide frequency analysis was likewise uninformative (data not shown). Strik-
ingly, analysis of trinucleotide frequencies showed that the AAG triplet was strongly
underrepresented in the hot group (Fig. 1B) (P � 7.4 � 10�8).

We also considered whether sequences flanking plasmid prespacers have an effect
on prespacer acquisition frequency during primed adaptation. Spacer-sized 33-bp
regions upstream of AAG PAMs or downstream of “hot” and “cold” prespacers were also
analyzed, but no strong bias was detected in either base composition or di/trinucle-
otide frequencies (see Fig. 1B for trinucleotide frequency).

The presence of the AAG trinucleotide within a prespacer controls the effi-
ciency of its use as a donor of spacers during primed adaptation. To experimentally
measure the contribution of nucleotide sequence to spacer acquisition efficiency, we
studied the effects of sequence alterations in HS1 (hot spot 1), one of the most
commonly used hot prespacers from the pG8mut-Km plasmid (Fig. 1A). The acquisition
of this prespacer was analyzed previously, and it was shown that its usage depends on
the AAG PAM (22). Six pG8mut-Km plasmid libraries containing randomized trinucle-
otides at HS1 positions 2 to 4, 5 to 7, 14 to 16, 20 to 22, 28 to 30, and 31 to 33 were
prepared. Each library was transformed in uninduced KD263 cells, and pooled trans-
formants were subjected to PCR with a pair of primers annealing upstream and
downstream of plasmid region spanning the HS1 prespacer (Fig. 2A). Analysis of
Illumina reads from obtained amplicons revealed that for each library, all 64 expected
variants were present.

For each library, several thousand transformants were pooled and grown in the
presence of inducers of cas gene expression in the absence of antibiotic. These
conditions stimulate primed adaptation from the plasmid without selecting against
cells that acquired interference-proficient spacers targeting the plasmid. Amplified DNA
fragments corresponding to the expanded CRISPR array in cultures harboring each
plasmid library were subjected to Illumina sequencing, and acquired spacers were
analyzed. The overall pattern of plasmid-derived new spacers was the same in each
library and matched the one observed for unmodified pG8mut-Km (Fig. 2B). The only
exception were spacers corresponding to HS1, whose cumulative efficiency of adapta-
tion decreased in the libraries compared to unmodified pG8mut-Km. Sequences of
acquired spacers matching HS1 and its variants were extracted, and odds ratios
between frequency of spacer variants and prespacer variants in corresponding libraries
were determined. As can be seen from results presented in Fig. 2C, HS1 spacer variants
with the AAG trinucleotide in the seed region (positions 2 to 4 and 5 to 7) were strongly
underrepresented. The effect was much weaker at positions 14 to 16, 20 to 22, 28 to 30,
and 31 to 33. We conclude that the library approach supports the bioinformatics
analysis that shows that the presence of internal AAG inhibits prespacer usage during
primed adaptation. The results also show that the effect is position specific and is most
evident when the AAG trinucleotide is located in the seed of the future spacer.

Given the observed position specificity of library data, we reanalyzed hot spacers
from the combined plasmid set (Fig. 1B) using a 6-base sliding window and concen-
trating on comparison of the 10% “hottest” and “coldest” spacers. The results, pre-
sented in Fig. 2D, confirmed the avoidance of AAG in the seed region of these spacers.
The remaining positions exhibited a bias of marginal statistical significance, while no
bias was observed in spacer-sized flanking sequences upstream or downstream of hot
prespacers. The positional bias in AAG occurrence was also revealed using an inde-
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pendent approach, by analyzing the entire spacer set and correlating AAG counts in
different prespacer regions and the corresponding spacer frequencies (see Fig. S1 in the
supplemental material).

To directly demonstrate that the presence of AAG trinucleotide affects prespacer
acquisition, individual plasmids containing AAG at HS1 positions 2 to 4, 14 to 16, and
28 to 30 were constructed and used in a primed adaptation experiment. Analysis of

FIG 2 Experimental demonstration of position-specific AAG avoidance in hot prespacers during primed adaptation. (A) A workflow of the library-based
approach to determine the effect of prespacer sequence on acquisition efficiency is presented. Engineered E. coli KD263 cells with inducible expression of cas
genes and a CRISPR array with a single G8 spacer are transformed with a library of plasmids containing the G8 priming protospacer (blue) and randomized
trinucleotides in the HS1 prespacer (shown by different hues of red); white rectangles represent promoter regions of cas genes and the CRISPR array.
Transformants grown on selective medium are pooled and placed in a medium without antibiotic required for plasmid maintenance. The cultures are induced
and grown for 6 h to allow primed adaptation to occur. In the pooled culture before induction, the HS1-containing region is amplified and subjected to Illumina
sequencing. In the induced culture, the CRISPR array is amplified, and amplicon corresponding to expanded array is subjected to Illumina sequencing. (B) At
the top, the sequence of the HS1 prespacer and its PAM is shown. Trinucleotides subjected to randomization in six different libraries are indicated by colors.
Below, the frequency of spacers acquired by cells carrying each library is compared to the frequency of spacer acquisition in the initial plasmid (WT). Each dot
represents a spacer, and the color of the dot corresponds to the color of the randomized trinucleotide. Dots corresponding to HS spacer and its variants are
indicated. (C) Violin plots showing odds ratio of trinucleotides in HS1-derived spacers compared to prespacers in each library. (D) The left, middle, and right
plots correspond, respectively, to 33 bp of upstream prespacer flank, the prespacer sequence, and the downstream prespacer flank. Coordinates on the x axis
correspond to the center of the 6-bp sliding window, where �1 corresponds to G in AAG PAM. The difference between mean AAG counts in hot and cold
prespacer categories is shown in the y axis. The error bars correspond to 95% confidence intervals. (E) Acquisition of HS1 and CS1 spacer variants from individual
plasmids carrying trinucleotide substitutions. The bars show the percentage of HS1 and its variants and CS1 and its variant to overall plasmid-derived spacers
acquired by cells carrying wild-type pG8mut_Km (WT) or derivatives carrying AAG trinucleotides at specified positions of HS1 or carrying an AAC trinucleotide
instead of AAG at positions 2 to 4 of the CS1 prespacer. Mean values obtained from two independent experiments and standard deviations are given.
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spacers acquired by cells carrying these plasmids revealed that compared to pG8mut-
Km, the presence of AAG at positions 2 to 4 decreased the number of HS1-derived
spacers more than 10 times (Fig. 2E). Introduction of AAG at positions 14 to 16 and 28
to 30 had a milder, 2- to 3-fold effect. When an AAG trinucleotide was introduced 5
nucleotides upstream of HS1 PAM, no effect on HS1 spacer acquisition efficiency was
detected.

We also determined whether removal of an AAG trinucleotide increases the usage
of a cold prespacer. The pG8mut-Km prespacer CS1 (cold spot 1) contains an AAG at
positions 2 to 4. When substituted for AAC, the use of this prespacer increased
�16-fold, placing it in a hot spacer group.

The presence of AAG trinucleotide has no effect on prespacer usage during
naive adaptation. We were interested in comparing prespacer choice preferences
during primed and naive adaptation. The “naive” spacer set was obtained by trans-
forming the pG8mut-Km plasmid in E. coli BL21(DE3) cells carrying a compatible
plasmid coexpressing the Cas1 and Cas2 proteins. BL21(DE3) lacks its own cas operon,
and in the presence of pCas1 � 2 is only capable of naive adaptation (15). Mapping of
spacers acquired in the BL21(DE3) CRISPR array from pG8mut-Km is shown in Fig. 3A
(left-hand side). As expected, there was no strand bias and many spacers originated
from prespacers without AAG PAM (see Table S2 in the supplemental material). The
pattern of spacers acquired during naive adaptation (Fig. 3A, left-hand side) is highly
reproducible (Pearson coefficient of 0.89) and distinct from the pattern of spacers
acquired from pG8mut-Km during primed adaptation (shown on the right-hand side of
Fig. 3A). To compare prespacer preferences during two modes of adaptation, we

FIG 3 Comparison of prespacers acquired during naive and primed adaptation. (A) At the top, a graphical representation of spacers acquired
in the course of naive (left) and primed (right) adaptation from the pG8mut_Km plasmid is presented. See the legend to Fig. 1A for details. For
naive adaptation, spacers mapping to prespacers with the AAG PAM are shown by black lines. Spacers mapping to prespacers with non-AAG PAMs
are marked in orange. (B) Spacers acquired during naive adaptation (A) that mapped to prespacers with the AAG PAM and the “inner” strand of
plasmid DNA were ranked according to their occurrence in Illumina reads. Each dot represents one spacer (which corresponds to lines protruding
from the plasmid map in panel A, left). Dots colored black and gray represent results from two independent experiments. Spacers in the lower
half of the distribution were considered cold. The top 25% of most common spacers were considered hot. (C) Spacers acquired from pG8mut_Km
in the course of primed adaptation were ranked as in Fig. 1A: each spacer is represented by a green dot. The frequency of corresponding spacers
acquired in the course of naive adaptation is represented by dark violet dots. (D) Violin plots showing odds ratio of trinucleotides in hot versus
cold prespacers and their flanking sequences from the naive adaptation experiment.
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concentrated on prespacers with an AAG PAM mapping to the “inner” strand of
pG8mut-Km, as shown in Fig. 3A. The efficiency of usage of such prespacers during
naive adaption (ranked according to increasing occurrence of spacers as in Fig. 1B) is
shown in Fig. 3B for two independent experiments. On Fig. 3C, frequencies of spacers
from the naive set are plotted alongside the ranked set of spacers acquired during
primed adaptation. Visual inspection of data and statistical analysis show that there is
no correlation between the two sets (Pearson correlation of 0.19; P value of 0.14). In
other words, a spacer that scores as cold (or hot) during primed adaptation can be
either cold or hot or have intermediate frequency during naive adaptation.

Since the sets of hot and cold spacers in naive and primed adaptation are distinct,
we wondered if any specific sequence signatures can be revealed in spacers that were
acquired during naive adaptation with different efficiencies. For this analysis, unique
spacers acquired from pG8mut-Km and the pCas1 � 2 plasmid coexpressing cas1 and
cas2 were combined into a single set and analyzed jointly. However, no specific signal
for single nucleotides, dinucleotides, and trinucleotides was observed. Consistent with
results shown in Fig. 3C, the frequency of spacers acquired from prespacers associated
with AAG PAM during naive adaptation was not affected by the presence of the internal
AAG trinucleotide (Fig. 3D). Similar to observations with primed adaptation, upstream
and downstream flanking sequences contained no specific features.

DISCUSSION

Spacer diversity in CRISPR arrays from native bacterial strains is very high (28).
Spacer selection is nonrandom, and strong and reproducible biases in acquired spacer
repertoires were described for both naive and primed adaptation in laboratory exper-
iments (16, 21, 29–32). While such biases can be produced by selection for spacers most
efficient during CRISPR interference, preferences of the adaptation machinery must also
play a role. Understanding the determinants of efficient spacer acquisition in the
absence of selection may be useful for designing experiments in which adapted spacers
are used to record cellular events in the absence of subsequent interference (29, 30). In
this work, we compared the efficiency of prespacer selection by the E. coli type I-E
CRISPR-Cas system during primed and naive adaptation in the absence of selection.
Earlier analysis of efficiently acquired spacers during naive adaptation in this system
revealed that actively used prespacers may contain motifs in their 3= ends. However,
these motifs appear to be mutually exclusive (AA at positions 32 and 33 according to
Yosef et al. [21], compared to G at position 32 in the study by Shipman et al. [30]). In
the case of primed adaptation by I-C and I-B CRISPR-Cas systems, it has been shown
that nucleotide substitutions in the prespacer affect the efficiency of its use (31, 32).
Overall, these earlier works show that prespacer sequence clearly contributes to its
selection efficiency during adaptation. Our analysis failed to reveal determinants of
prespacer naive adaptation efficiency. However, we observed very strong avoidance of
AAG trinucleotide in spacers efficiently acquired during primed adaptation. The AAG
trinucleotide is also the dominant (99.8%) PAM of prespacers that are acquired during
primed adaptation. The complementary CTT trinucleotide is not avoided, which is
consistent with a general view of primed adaptation that involves the recognition of
the priming protospacer by the Cascade effector, followed by the recruitment of the
Cas3 nuclease-helicase and its processive movement along the DNA away from the
priming site in the 3= to 5= direction. Such directionality should allow discrimination
between 5=-AAG-3= and 5=-CTT-3= sequences and will account for observed overall
declining gradients of prespacer usage as the distance from the priming site increases.

A possible mechanistic basis of AAG avoidance in hot spacers is the competition
between overlapping prespacers during spacer selection. We observed that for partially
overlapping prespacers with AAG PAM, a prespacer located further away from the
priming site has no effect on the use of prespacer located closer, while the reverse is
not true (Fig. 4A). Such directionality is consistent with a view that the primed
adaptation machinery slides in a 3= direction from the priming site along the fully
double-stranded DNA, occasionally recognizes an AAG trinucleotide, and then extracts
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a spacer-sized fragment located immediately upstream—i.e., opposite to the direction
of lateral movement along the DNA (Fig. 4B). According to this model, one would
expect that any internal AAG will have the same negative effect irrespective of its
position within the prespacer. The unequal effects of AAG trinucleotides placed in the
beginning, middle, and end regions of prespacers on adaptation efficiency revealed in
our experiments, with much stronger inhibition produced by AAG located in PAM-
proximal seed region, require a more sophisticated model and further experiments to
explain.

Our results do not allow to distinguish whether interdependency of overlapping
prespacer use is due to prespacer interaction with the adaptation machinery sensu
stricto (i.e., the Cas1-Cas2 complex) or is determined at an earlier stage by Cas3, which
may generate substrates for Cas1-Cas2 as it moves away from the priming site (22, 33).
Data suggesting that Cas3 may specifically cleave at AAG PAMs have been presented.
Also evidence for preferences for AAG PAMs by the Cas1-Cas2 complex both from
structural data (34, 35) and analysis of spacers acquired during naive adaptation (15) is
available. It is thus possible that Cas3 and Cas1-Cas2 cooperate with each other during
primed adaptation, increasing the likelihood of selection of prespacers with AAG PAM,
which should have the highest protective effect. The presence of Cas2-Cas3 fusions in

FIG 4 Interdependency of prespacer use during primed adaptation and a possible mechanism. (A) The scheme shows the relative percentages of spacers
derived from HS1 and HS1a prespacers in experiments shown in Fig. 3E for cells transformed with plasmids carrying AAG trinucleotides at the indicated
positions of HS1. Gray rectangles indicate AAG PAMs; numbers nearby depict the percentage of corresponding spacers (from averaging of two experimental
replicas). The insertion of AAG into HS1 decreases its usage efficiency and gives rise to a new prespacer (Fig. 3E). The frequency of HS1a is unaffected by the
introduction of the AAG PAM inside HS1 even if the new prespacer overlaps HS1a. The appearance of a new prespacer due to the introduction of a new AAG
upstream of HS1 (�AAG �10 to �8) likewise has no effect on acquisition of HS1 spacers. (B) A model describing a mechanism that may account for observed
interdependency of prespacer use is presented. Cas3 moves from the priming protospacer (PS) in a 3= to 5= direction. Upon encountering AAG trinucleotide,
Cas1 and Cas2 use a ruler-like mechanism to extract a spacer in the backward direction. As a result, the efficiency of use of the overlapping prespacer located
further downstream is decreased. (C) Violin plots showing the odds ratio of trinucleotides in spacers versus genome-wide frequency in fully sequenced E. coli
and S. Typhimurium genomes.
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type I-F systems supports the idea of such synergy (36). For example, the observed
negative effects of internal AAG sequences may be the consequence of Cas3 cleavage
at these sites and hindering Cas1-Cas2 access to downstream DNA to begin spacer
capture.

The absence or presence of internal AAG cannot be the only determinant of
prespacer usage. The sampling frequencies of spacers in our set, which correspond to
the same AAG counts in prespacers, differ by about 3 orders of magnitude (see Fig. S2
in the supplemental material). The coefficient of determination from the data presented
in Fig. S2 shows that only �25% of variability of spacer frequencies acquired during
primed adaptation can be explained by the presence of internal AAGs. The rest of the
variation must be determined by additional sequence or context-specific effects whose
nature is currently unknown.

We used the avoidance of internal PAM signal to assess whether priming may have
contributed to acquisition of spacers in natural isolates of E. coli and Salmonella enterica
serovar Typhimurium. These two microorganisms contain a virtually identical type I-E
CRISPR-Cas system with the same PAM and repeats, but share few common spacers. As
can be seen from Fig. 4C, compared to overall genomic frequency, AAG is underrep-
resented in spacers from CRISPR arrays of fully sequenced E. coli and S. Typhimurium
isolates, suggesting that priming occurs in natural settings in these bacteria.

MATERIALS AND METHODS
Strains and plasmids. The E. coli DH5� strain was used for cloning. The E. coli strain KD263 (K-12 F�

lacUV5-cas3 araBp8-cse1 CRISPR I repeat-spacer G8-repeat CRISPR II deleted) (37) and BL21(DE3) were
used in primed and naive adaptation experiments, correspondingly.

In order to create the pG8mut_Km plasmid, a fragment of the pRSF1b plasmid (Novagen) containing
a kanamycin resistance gene was amplified with primers kan-fragment forward and kan-fragment rev
(see Table S3 in the supplemental material). The amplicon was purified, treated with the EcoRI and
BamHI, and cloned into the pG8mut plasmid (23).

Library and individual mutant construction. Plasmid libraries with randomized trinucleotide in
HS1 prespacer were obtained by a two-step PCR-based mutagenesis using iProof high-fidelity DNA
polymerase (Bio-Rad). In the first step, pG8mut_Km was amplified with forward primer HSRun_for
containing three randomized nucleotides inside the HS1 region and reverse primer HSRun_rev comple-
mentary to the constant region of HSRun_for. (The list of primers used in this work is presented in
Table S3.) Twenty cycles of amplification were performed to generate linearized pG8mut_Km with
randomized trinucleotides and short inverted repeats containing sequences of primer complementarity.
Completed PCRs were treated with DpnI to eliminate the pG8mut_Km template, and reaction products
were purified by the GeneJet PCR purification kit. At the second step, the products of the first
amplification reactions were further amplified with primers HSRun_rev and HSRun_add, which contained
regions complementary to inverted repeats introduced during the first stage. Five amplification cycles
were performed. The products of amplification were purified as described above. Finally, a Gibson
assembly cloning kit (New England Biolabs) was next used to generate circular plasmids through
recombination between the inverted repeats following the manufacturer’s recommendation. Using the
procedure outlined above, six different libraries with randomized nucleotides at positions 2 to 4, 5 to 7,
13 to 15, 19 to 21, 28 to 30, and 31 to 33 of HS1 were generated. The results of Gibson assembly were
transformed into DH5� cells by electroporation. At least 2,000 kanamycin-resistant colonies for each
library were scraped off the plates and used for plasmid purification by GeneJet plasmid miniprep kit
(Thermo Scientific).

Individual AAG trinucleotides were introduced in pG8mut_Km by a standard PCR-based site-specific
mutagenesis protocol with primer pairs listed in Table S3.

CRISPR adaptation and plasmid prespacer and acquired spacer amplification. For primed
adaptation, pG8mut_Km, its derivatives containing individual mutations, or plasmid libraries were
electroporated into KD263. For library experiments, at least 2,000 kanamycin-resistant colonies were
scrapped off plates for each library and pooled. The resulting cell suspension was diluted with LB to an
optical density at 600 nm (OD600) of 0.1 and allowed to grow at 37°C in the absence of antibiotic. In
experiments with individual plasmids, a single colony was used to inoculate 5 ml LB supplemented with
50 �g/ml kanamycin. After overnight growth at 37°C, an aliquot of culture was diluted 100� with LB
without antibiotic, and growth was continued. When cultures reached OD600, they were induced by
1 mM arabinose and 1 mM IPTG (isopropyl-�-D-thiogalactopyranoside) at an OD of 0.4. The growth was
continued for 6 h.

For naive adaptation, BL21(DE3) cells were electroporated with plasmids pCas1 � 2 (15) and
pG8mut_Km. Individual colonies were grown overnight in liquid LB containing 50 �g/ml kanamycin and
50 �g/ml streptomycin. After overnight growth at 37°C, an aliquot of culture was diluted 100� with LB
containing 50 �g/ml streptomycin and 0.1 mM IPTG. The growth was continued for 6 h.

Aliquots of cultures were withdrawn immediately before or 6 h postinduction, and total DNA was
purified by a Thermo Scientific genomic DNA purification kit. To assess the diversity of HS1 prespacer
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libraries, the corresponding plasmid region was amplified from 0-h total DNA samples using primers
HS1long_for and HS1long_rev. To monitor CRISPR adaptation, CRISPR arrays were amplified from 6-h
samples with primers Ec_LDR_F and M13_G8 for DNA from KD263 cultures and moj3-moj4 for BL21(DE3)
cultures. Amplicons containing plasmid prespacers and extended CRISPR arrays were gel purified and
used to create Illumina sequencing libraries with an NEBNext Ultra II DNA library preparation kit with U5
barcoding. High-throughput sequencing of amplicons was conducted on MiniSeq or HiSeq Illumina
machines using the 2 � 150 paired-end mode.

Bioinformatics analysis. R script and Bioconductor packages ShortRead (38) and BioStrings (39)
were utilized for Illumina reads preprocessing, prespacer and spacer extraction, mapping, and statistical
analysis. R package ggplot2 (40) was used for plotting. The following parameters were used: FREDscore
for read quality of �20, up to 2 mismatches for identification of CRISPR repeats or prespacer flanking
regions, and 0 mismatches for mapping. Only uniquely mapped 33-bp-long spacers were taken for
further analysis. Circular visualization of plasmid mapping results was done with EasyVisio tool developed
by Ekaterina Rubtsova. Odds ratios for each mono-, di-, and trinucleotide were calculated based on
Fisher’s test. The odds ratios were calculated for prespacer libraries and acquired spacers or for hot and
cold prespacers and/or their flanking sequences.

Spacers acquired during primed adaptation were mapped to the nontarget strand, and log values of
their observed sampling frequencies (just sampling frequencies below) were used in the analysis. To
decrease noise, the sampling frequencies of reads from different experiment replicas corresponding to
same plasmids, which were mapped to same plasmid positions, were averaged. Sampling frequencies
corresponding to different plasmids were then normalized to the same mean.

A window of 6 bp in length was slid across 33-bp prespacer sequences and the upstream and
downstream prespacer flanking regions of the same length. For each window position, AAGs in the frame
were counted, and their means for hot and cold categories (�h and �c, respectively) were subtracted. To
estimate confidence bounds, it was assumed that the number of counts follows a Poisson distribution,
so the standard deviation for the subtracted means was estimated to be ��h��c.

To additionally assess significance of the AAG position within the prespacer, prespacers were divided
into 3 nonoverlapping 11-bp-long regions (upstream, middle, and downstream). For each of these
regions, Pearson’s correlation coefficient (R) between the number of AAG counts and the corresponding
spacer frequencies was calculated. Confidence bounds and P values for the obtained correlation
coefficients were estimated through Fisher’s z transformation.

To assess what fraction of variability in the spacer frequencies can be explained by AAG presence/
absence, R between the number of AAG counts in the entire spacer and the corresponding spacer
frequencies was calculated, from which the corresponding coefficient of determination (R2) was ob-
tained.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.02169-18.
FIG S1, TIF file, 14.5 MB.
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CONCLUSIONS AND FUTURE PERSPECTIVES 

 

In this work, we analyzed natural diversity of CRISPR spacers in environmental prokaryotic 

communities and in publicly available sequenced genomes. The comparison of obtained 

environmental spacer sets with each other and with spacers from databases as well as with 

sequences of viruses allowed us to reach several conclusions: 

 Exploration of natural CRISPR spacer diversity — the CRISPRome — greatly surpasses the 

diversity from genomes of cultivated strains and proves to be a valid approach for studying 

virus-host interactions. 

 Several contemporary E. coli CRISPR arrays remain unchanged over 40 thousand years, 

consistent with the inactivity of the adaptation module of type I-E CRISPR-Cas systems in 

this organism.  

 Thermus, Sulfolobus and Flavobacteria communities adapt to local viruses, with different 

CRISPR-Cas systems targeting different viruses. 

 Flavobacterial and Sulfolobales, but not Thermus, spacer sets display a biogeographical 

pattern.  

 Sulfolobus viruses SPV1 and SPV2 carry mini-CRISPR arrays with 1-2 spacers against each 

other. Due to high abundance, spacers from mini-arrays are major contributors to the total 

population immunity. CRISPR spacer targeting promotes genome microevolution of viral 

genomes, whereas avoidance of self-targeting by mini-CRISPR arrays likely promotes virus 

speciation. 

 Similar to the CRISPR-mediated interplay between SPV1 and SPV2, several mobile genetic 

elements integrated in the genomes of thaumarchaea include long CRISPR arrays with 

spacers against other thaumarchaeal mobile elements. 

 

Similarities and differences between the studied systems will be discussed below. 

 

1. Natural CRISPR spacer diversity greatly surpasses the diversity from fully sequenced 

genomes  

We used metagenome sequencing to assess the natural diversity of CRISPR spacers, the 

CRISPRome, in diverse uncultivated prokaryotic communities including sterile mammoth 

intestine (Chapter I), fish pathogen community from surface snow in Antarctic (Chapter II), or 

Sulfolobales population from a thermal field in Beppu, Japan (Chapter IV). Due to constant 

encounter between viruses and cells, CRISPR loci are among the fastest evolving regions in 
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microbial genomes. Thus, environmental populations of bacteria and archaea, where each 

species encounters multiple mobile genetic elements, is expected to encompass considerable 

spacer diversity. Indeed, the diversity of spacers in the CRISPRome collections from each 

sampling site greatly exceeded the diversity of spacers in cultivated, fully sequenced strains 

isolated from different geographical locations. The amount of obtained data allowed us to use 

CRISPRome for identification of PAM sequences and novel variants of CRISPR repeats 

(Chapters II, III, IV), to detect integrated elements in the host genomes (Chapter IV), reconstruct 

contigs of new viruses (Chapter IV) and detect A/T (G/C) biases in nucleotide composition of 

spacer sequences (Annex).  

The diversity of CRISPR spacers in a CRISPR array is known to increase towards the leader-

proximal end of the array, where newly acquired spacers are located. Theoretical modelling of 

host populations cocultivated with several viruses predicts that only the newest 5 spacers grant 

immunity to contemporary, circulating viruses, whereas the rest of spacers are “outdated”, as 

viruses matching old spacers have either disappeared from the culture or have escaped CRISPR 

targeting by mutations in the protospacer regions. Concurrently, spacers at the leader distal end 

of the array have to be removed to minimize the potential burden associated with replication of 

constantly increasing CRISPR arrays. Thus, to maintain the immune function, CRISPR arrays 

should be constantly renewed with addition of new spacers and purging of old spacers. Another 

model demonstrated that viruses targeted by multiple spacers present in multiple strains are less 

likely to evade the CRISPR immunity, which can explain why CRISPR spacer diversity is 

preserved in the population for a long period of time. 

Spacer diversity in the community can be represented as (i) a collection of CRISPR arrays; (ii) a 

set of alleles, combining several CRISPR arrays; or (iii) a set of spacers. To analyze the 

evolution of spacer diversity in the studied populations, we attempted reconstruction of spacer 

arrays, which provide a temporal dimension to the analysis. Instead of linear CRISPR arrays, the 

reconstructions resulted in complex assemblies, best represent in the framework of networks 

connected through spacers from ancestrally shared CRISPR arrays. The recent acquisition of 

spacers by distinct individuals can be seen in the networks as branching towards the leader end. 

At the same time, independent deletions of old spacers occurred at the leader distal end of arrays 

(Chapter III, Supplementary Figures 2 and 6; Chapter IV, Supplementary Figure 7). Thus, the 

network representation revealed both facets of CRISPR arrays, the active turnover of terminal 

spacers (acquisition and deletion) as well as stable spacer diversity in Thermus and Sulfolobus 

populations. More careful analysis of the network structure could be applied to identify spacers 
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under selection pressure, possible determinants of CRISPR array recombination or requirements 

for deletion of old spacers. 

 

2. Several contemporary E. coli CRISPR arrays of I-E type remain unchanged over 40 

thousand years  

A long-term dynamics of E. coli I-E CRISPR spacers was studied by comparing spacer diversity 

in contemporary E. coli isolates with spacers amplified from mammoth intestinal content 

(Chapter I). A final set of 1883 unique spacer sequences from the mammoth intersected with the 

contemporary E. coli spacer set, which at the time consisted of 1599 unique sequences. This 

comparison revealed 425 common spacers. Moreover, fragments of contemporary CRISPR 

arrays were found in the mammoth sequencing data as pairs and triplets of neighboring spacers, 

allowing reconstruction of long CRISPR arrays from the paleo-samples. The lack of spacer 

turnover and stability of the spacer content was found for the 425 spacers shared between ancient 

and present-day CRISPR arrays. Accordingly, these spacers could be reconstructed in the form 

of linear CRISPR arrays, rather than networks described above. The majority of ancient spacers, 

however, was not found in the database of contemporary E. coli CRISPR spacers. Both limited 

diversity of E. coli strains in the CRISPR database and extinction of mammoth-associated E. coli 

strains could explain this result. Additional experiments, such as analysis of natural CRISPR 

spacer diversity associated with various animals (e.g., elephants) could shed light on the long-

term CRISPR dynamics in E. coli. Our results suggest that the adaptation module of type I-E 

CRISPR-Cas system in E. coli has been inactive for at least 40 thousand years. The preservation 

of the inactive, but potentially dangerous immune system in E. coli genome suggests that it plays 

an alternative role(s) in the cell, such as response to stress induced by DNA damage (165).  

 

3. Biogeographical patterns in the CRISPRome data 

Flavobacterium and Sulfolobus CRISPRome data (Chapters II and IV) displayed 

biogeographical pattern, with spacer sets from geographically proximal sampling sites being 

more similar to each other compared to those from more remote locations. Spacer sets from three 

Antarctic sites differed significantly from each other, with only a very minor portion of spacers 

being common to all three sites. The larger amount of common spacers between Druzhnaja and 

Progress stations is consistent with their geographical proximity (Chapter II, Figure 5B). A 

similar overlap was observed for Sulfolobales spacer sets from Beppu thermal field and spacers 

from Japanese Sulfolobales isolates (Chapter IV, Figure 1A), which indicates that Beppu 

Sulfolobales population and Japanese isolates were infected with similar viruses. These results 
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are in line with the previous observations made using the comparison of CRISPR arrays from 

completely sequenced genomes of microbes isolated from geographically remote locations (138, 

146, 178). 

Surprisingly, however, in contrast to Flavobacterium and Sulfolobales natural communities, 

Thermus CRISPRome from enrichment cultures established from samples collected from sites 

separated by thousands of kilometers (Italy, Chile and Russia), showed no dependence on 

geographical distance (Chapter III, Figure 2B). At present, we are unable to explain this 

observation. It is possible that overnight cultivation conditions selected limited number of similar 

Thermus strains in different samples. Careful control of ecological parameters of habitat at the 

collection sites and extension of analysis presented here to other Thermus communities around 

the world may help to resolve this conundrum. 

 

4. Thermus, Sulfolobus and Flavobacteria communities adapt to local viruses, with different 

CRISPR-Cas systems targeting different viruses 

CRISPRome spacers of Thermus, Sulfolobus and Flavobacteria natural communities preferably 

target viruses, isolated/sequenced from the same source (Thermus: Chapter III, Table 2; 

Flavobacteria: Chapter II, Figure 5B; Sulfolobus: Chapter IV, Figure 1D). This result is 

consistent with local spacer targeting reported for many other environments and seems to be a 

general phenomenon (143, 148, 178, 179). Notably, SSV1 virus isolated in Beppu, Japan more 

than 30 years ago (180), is one of the most targeted viruses by present-day CRISPRome spacers 

from Japan (Chapter IV), emphasizing the longevity of the CRISPR-Cas “immunological 

memory”. Despite isolation or virome sequencing of new viruses from the same source, the 

origin of the vast majority of spacers remains unclear. Given that number of spacers against the 

virus should negatively correlate with abundance of the virus in the population, the majority of 

spacers should target the “rare” viruses, i.e., minor components of the corresponding viromes. 

Indeed, CRISPR spacers derived from a metagenome of hypersaline environment mostly target 

low-abundance viruses in the virome (143). The most targeted virus in the Sulfolobales 

population from Beppu – SBRV1 – contributes less than 1% of all virome reads (Chapter IV). 

For the largest available dataset (Sulfolobales CRISPRome, 40705 unique spacers), we could 

reconstruct contigs of low-abundance virus genomes by tiling spacer sequences (Chapter IV, 

Supplementary Figure 3C). The reconstruction of the viral contigs from the CRISPRome data is 

conceptually similar to the reconstruction of plant virus genomes from small interfering RNA 

sequences (181). It is conceivable that complete viral genomes could be assembled using this 

approach, provided sufficient depth of CRISPRome sequencing and abundant CRISPR targeting.  
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Spacers associated with particular CRISPR-Cas systems specifically targeted distinct viruses 

(Chapters III and IV), which can be explained by a narrow host range or anti-CRISPR proteins, 

encoded by the virus. Moreover, different regions of the virus genomes are targeted with 

different frequencies. For example, almost all protospacers found in the genome of Thermus 

phage phiFa were located in the early genes. The infection of E. coli with phage T5 resulted in 

similar pattern of acquired spacers: all spacers were concentrated in the narrow genomic region 

of pre-early genes, which is injected in the cell before the rest of the genome (182). Thus, uneven 

distribution of spacers could reflect specific aspects of phage lifestyle. Another interesting 

example of uneven distribution of spacer hits along the genome is found in archaeal virus 

SBFV3 where the majority of protospacers are localized in the genomic termini, which are 

known to be the most variable in the SBFV3 genome. Spacer targeting of auxiliary genes located 

in the SBFV3 termini, including one anti-CRISPR protein coding gene, might increase the 

efficiency of antivirus response. Alternatively, in the case of filamentous viruses with linear 

genomes, such as SBFV3, either of the two termini is the first to penetrate into the cell interior 

and, thus, might be detected by the CRISPR-Cas system sooner than the central genomic region.  

 

5. CRISPR-mediated interviral conflicts 

Although the primary role of CRISPR-Cas systems is to defend bacteria and archaea against 

invading mobile genetic elements, the system has been hijacked by MGE on multiple 

independent occasions for various purposes. For instance, Vibrio phage ICP1 contains the 

complete CRISPR-Cas system to counter the PLE – a mobile genetic element, induced upon 

virus infection (183). Multiple CRISPR arrays were found in prophages of Clostridium difficile, 

with spacers matching sequences of other prophages (184). Tn7-like transposons encode 

minimalistic CRISPR-Cas systems with small CRISPR arrays. Spacers from transposon-encoded 

arrays match sequences of plasmids and phages, possibly facilitating the CRISPR-mediated 

transposition into the corresponding mobile elements and subsequent horizontal transmission 

between the hosts (185). Together these results support the “guns for hire” concept (186), 

whereby the CRISPR-Cas machinery of the host is adapted by mobile genetic elements for 

internal conflicts.  

Analysis of mobile genetic elements integrated in the genomes of archaea from the phylum 

Thaumarchaeota has revealed several elements carrying long CRISPR arrays which, in some of 

the elements were associated with the cas genes (Chapter V). Interestingly, two orthologous 

elements found in the genomes of Ca. Nitrosocaldus isolates differed in the leader-proximal 

regions of the corresponding CRISPR arrays, suggesting active adaptation in the “mobile” 
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CRISPR arrays. Furthermore, we also obtained evidence for CRISPR-mediated conflicts 

between an integrative conjugative element and a provirus carried by soil thaumarchaea. 

Notably, the provirus was targeted by spacers from both the mobile element and a chromosomal 

CRISPR array. It is conceivable that such CRISPR-carrying mobile elements provide advantage 

to their host cells and the interaction between them might be considered a form of symbiosis. 

A perhaps more unexpected was the discovery of mini-CRISPR arrays in two portogloboviruses, 

SPV1 and SPV2, with spacers targeting each other. In comparison to other examples described 

above, SPV1 and SPV2 implemented the most minimalistic solution – the mini-arrays includes 

only 1-2 spacers and with the leader sequence occupy only ~150 bp of intergenic space. 

Remarkably, SPV1 and SPV2 genomes are 92% identical to each other and yet instead of 

cooperating they appear to compete with each other. Indeed, virome sequencing suggests that 

SPV1 and SPV2 restrict each other through a distinct CRISPR-mediated superinfection 

exclusion mechanism. This strategy might ensure that the virus which is the first to infect the cell 

secures the resources for propagation and its components (e.g., structural proteins) are not 

highjacked by the superinfecting virus. The identical genomic position of one of the mini-arrays 

in SPV1 and SPV2 genomes implies that the two viruses have diverged after the acquisition of 

the first mini-array.  

Another interesting consequence of CRISPR targeting between closely related viruses is that this 

process is likely to drive virus speciation. Indeed, changes in the SPV1 and SPV2 genomes are 

significantly correlated with the CRISPR targeting. It would be interesting to sequence other 

variants of SPV viruses detected in the virome and CRISPRome data to gain further insight into 

CRISPR-driven virus speciation. Notably, it has been recently suggested that CRISPR spacers 

acquired during inter-species mating of halophilic archaea also influence speciation (187). 

Several additional mini-array candidates were found in the CRISPRome data, suggesting diverse 

population of SPVs present in different samples. Although most spacers from mini-arrays target 

SPV viruses, several spacers matched other mobile genetic elements, including unrelated viruses 

and cryptic integrated plasmids. This finding demonstrates that interactions mediated by mini-

CRISPR arrays are not limited to inter-SPV conflicts. Unlike for spacers from long CRISPR 

arrays, for majority of spacers from the mini-arrays protospacers can be found, suggesting a fast 

spacer turnover in mini-arrays. Notably, SPV1 was shown to be a non-lytic virus, which stably 

propagates within the host cell without killing it or visibly affecting its growth under laboratory 

conditions (188). Thus, similar to thaumarchaeal CRISPR-carrying mobile elements, the 

symbiotic association between the SPVs and host cells might be beneficial to both parties.  
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Many aspects of the proposed CRISPR-mediated superinfection exclusion mechanism remain 

unclear and will require additional experiments. How did SPVs acquire mini-arrays? Mini-arrays 

could originate from a leader-repeat unit, which was acquired from the host through illegitimate 

recombination and subsequently expanded with new spacers by the host adaptation machinery. 

Based on different locations of mini-arrays and different leader sequences we can assume three 

independent events of mini-array acquisitions from two different host CRISPR arrays. Why do 

CRISPR arrays of SPVs remain miniature (1-2 spacers) instead of expanding and cataloging 

spacers like cellular CRISPR arrays do? It is possible that the length of SPV genome is limited 

by the volume of the icosahedral capsid, so that mini-arrays of SPVs cannot reach the size of the 

host CRISPR arrays. Moreover, the acquisition of new spacers in mini-arrays seems to be a rare 

event, as no spacers where added to SPVs during 20 days cultivation. How do SPVs evade 

CRISPR-Cas immunity of the host? According to the analysis of spacers from long CRISPR 

arrays at least some of the SPV1, SPV2 hosts have spacers matching SPV1 and SPV2 genomes. 

While an anti-CRISPR protein was reported for Sulfolobales viruses (154, 162), the proposed 

superinfection exclusion mechanism of SPV1 and SPV2 relies on non-inhibited CRISPR-Cas 

machinery of the host and could not be combined with interference-blocking anti-CRISPR 

proteins in SPVs. One possibility might be that SPVs block efficient expression and processing 

of the host-encoded CRISPR arrays, with mini-arrays being more efficiently produced. How do 

SPVs distinguish between self and non-self DNA during spacer acquisition? Viruses which 

acquired spacer from self DNA, without CRISPR-blocking mechanism will not be able to 

replicate and will be eliminated from the population. Answering these and other questions is a 

promising line of future research which should shed light on the molecular mechanisms of inter-

viral conflicts and reveal additional facet of CRISPR-Cas systems. 
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ANNEX 

 

1. Spacer diversity in Thermus and Sulfolobales genomes 

Degenerate primer sequences allowed us to amplify spacers associated with wide range of 

CRISPR repeats. Some sequencing reads contain more than one spacer. In such cases, the 

original sequence of the CRISPR repeat is interspersed between the two spacers and can be 

analyzed. In both, Sulfolobus and Thermus datasets, new variants of CRISPR repeats, which 

were not present in any of the sequenced genomes, were found (Tables 1 and 2, respectively), 

suggesting large unexplored diversity of Thermus and Sulfolobus populations. Variations in 

CRISPR repeats mostly appeared outside 5’ 8 nt tag and stem-forming regions, preserving 

predicted secondary structure. 

Table 1. New variants of Thermus CRISPR repeats. 

CRISPR repeat sequence type percentage from all CRISPR 

repeats of this type 

GTTTCAAACCCTCATAGGTACGGTTCAAAG I-A 84% 

GTTGCACCGGCCCGAAAGGGCCGGGGAGGATTGAAAC I-C 1% 

GTTGCATCCAAGCTTCATGGCTTGGCTACGTTGCAGG I-U 28% 

GTCGCATCCAAGCTTCACAGCTTGGCTACGTTGCAGG I-U 5% 

GTTGCAAAAGTTGCTTCCCCGTCAGGGGATTGCGAC III 34% 

GTTGCAAAAGTGGCTTCCCCGTCAGGGGATTGCGAC III 24% 

 

Table 2. New variants of Sulfolobales CRISPR repeats. 

CRISPR repeat sequence type percentage from all CRISPR 

repeats of this type 
GTTAATCTTCTATAGAATTGAAAG A 7% 

GTAAAAACATAAAGAAACTAAAAC B 60% 

GATTAATCCTAGAAGGAATTGAAAG D 10% 

GATGTATCCCAAAAGGAATTGAAAG D 2% 

 

Variations in CRISPR repeat sequences are shown with red color. Stem-forming nucleotides are shown with grey 

background. CRISPR repeat type, number of occurrences in HTS reads and frequency of new repeat sequences 

among CRISPR repeats of the same type are specified. 

 

An alternative approach to access spacer diversity in natural prokaryotic community is analysis 

of spacers in fully sequenced isolates or amplification and sequencing of leader-proximal and 

leader-distant ends of array with specific primers (138, 146, 189). We analyzed the diversity of 

CRISPR spacers in sequenced isolates of Thermus and Sulfolobus (Chapter III, Figure 1 and 
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Figure 11, respectively). Both organisms, despite belonging to different domains of life, typically 

carry more than one CRISPR array in the genome. Sulfolobales CRISPR arrays are considerably 

longer than CRISPR arrays of Thermus (60 vs 14 spacers, respectively). The majority of 

Thermus spacers was strain-specific, with only 34 spacers (2.0%) being found in more than one 

genome. Even for very closely related T. thermophilus strains isolated in Japan (labeled as 22, 

23, and 24 in Chapter III, Figure 1) only 6.7% (18 out of 269) spacers were shared. In contrast, 

for Sulfolobales CRISPR spacers a substantial fraction (26%) were shared between two or more 

strains of the same species, but only two spacers were common for different species or genera 

(Figure 10). S. acidocaldarius have the most conserved set of spacers: up to 98% of spacers are 

identical between two members of this species isolated from distant places (Japan, USA and 

Mexico). On the contrary, spacer sets of S. islandicus strains isolated from the same hot spring in 

Kamchatka intersected only by 34%. These patterns can be correlated with the richness of the 

corresponding mobilomes and overall genome conservation in S. acidocaldarius and S. 

islandicus. No viruses (except for one provirus) or plasmids have been described for S. 

acidocaladarius, while a great diversity of viruses and plasmids are associated with S. islandicus 

(190).  

 

Figure 11. A circular diagram of 9044 spacers from 37 fully sequenced genomes of Sulfolobales. Isolates used 

for analysis are numbered outside of spacer diagram. Spacers belonging to arrays of same CRISPR-Cas system 
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types are indicated by identical colors. Spacers that differ from each other by less than 2 nucleotides are connected 

by lines whose colors correspond to colors indicating CRISPR-Cas type. Black lines connect spacers shared by 

arrays of different types. 

 

The difference between Thermus and Sulfolobales can be explained by a less sampled 

biogeography of Thermus isolates (Thermus biogeography: Chapter III, Figure 1; Sulfolobales 

biogeography: Chapter IV, Figure 1A), and faster spacer turnover in relatively short CRISPR 

arrays of Thermus.  

 

2. Dinucleotide composition in Sulfolobales CRISPR spacers 

It has been recently suggested that %GC content and oligonucleotide composition of spacers 

have a strong correlation with the composition of the source genome (191). However, the 

CRISPR interference mechanism implies a specific context of protospacer to distinguish between 

self and non-self DNA: 1) PAM sequence upstream of the protospacer is required for type I and 

type II interference; 2) a sequence similar to CRISPR repeat blocks DNA interference in type III 

systems. To investigate possible biases in specific sequences between spacers and source 

genomes connected with CRISPR interference mechanism, we analyzed dinucleotide 

compositions in S. islandicus, S. acidocaldarius, M. hakonensis and A. manzaensis genomes 

(Figure 12). Each selected genome has a dominant CRISPR repeat type - A, B, C, or D, 

correspondingly. The %GC content of selected genomes varies from 44% in Metallosphaera to 

30% in Acidianus. Dinucleotide compositions of spacers correlate with the source genomes for 

all types of CRISPR repeats (see Figure 12). Significant differences, however, were found for 

frequencies of complementary dinucleotides in spacers for type A and type D repeats: GA, AG, 

and AA dinucleotides were underrepresented in comparison to their complementary sequences 

TC, CT, and TT. Underrepresented dinucleotides GA, AG, and AA constitute the end of A and D 

CRISPR repeat sequences “GAAAG”, which inhibit interference by type III complexes. Another 

explanation for the asymmetry in dinucleotide frequencies is purine over pyrimidine biases (G>C 

and A>T) found in coding vs. noncoding strands (192). During DNA interference by type III 

complexes, crRNA recognizes protospacer sequences in mRNA, so protective spacers must 

originate from the noncoding strand with C>G and T>A excesses. 
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Figure 12. Dinucleotide frequencies in CRISPR spacers and corresponding host genomes. A comparison of 

dinucleotide frequencies for 4 selected genomes from Sulfolobales order and dinucleotide frequencies of CRISPR 

spacers from these genomes. Colors represent different types of CRISPR repeat (A, B, C, or D), the color labeling 

scheme is the same as in Figure 11. The diagonal is shown by dashed line. Error bars show confidence intervals for 

the proportion. 

 

3. Short-term dynamics of CRISPR spacers: predation of Sulfolobales strains during 

cocultivation with viruses? 

Sulfolobales and their viruses are known to coexist in enrichment cultures during 30-40 days-

long cultivation. Presence of newly acquired spacers in CRISPR arrays of S. islandicus was 

observed ~10-30 days after infection (118). The temporal dynamics of spacer content was 

studied in two parallel series of enrichment cultures. The original environmental sample was the 

most diverse, whereas 10- and 20-days enrichment samples retained ~20% and ~15% of the 

diversity of the initial sample (Chapter IV, Supplementary Figure 2B). The substantial loss of 

spacers during the first 10 days of cultivation is likely to be caused by suboptimal cultivation 

conditions for some of the strains. Strains which survived after 10 days were considered as 
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cultivable. Thus, the difference in strain abundance between 10 days and 20 days can caused by 

competition between strains for limited resources, virus predation or some other factors. 

We analyzed the dynamics of spacer groups, which are associated with different viruses present 

in the same culture (spacers that match virus genomes with >85% identity). Three scenarios were 

envisioned. (i) The significant increase in total abundance of spacers against a certain virus, 

which could be interpreted as an advantage of strains carrying protective spacers against this 

virus. (ii) A significant decrease in the total abundance of spacers against a certain virus, which 

would correspond to inefficient CRISPR-Cas protection and subsequent virus predation of the 

host. (iii) Finally, if no significant difference is found, the dynamics of strain abundance in the 

enrichment cultures is not connected with the CRISPR-Cas immunity, but depends on other 

factors. To estimate the significance of change in the total abundance for a group of spacers we 

randomly sampled 1 000 000 groups of spacers of the same size and calculated the distribution 

of log2ratio between 10 and 20 days samples (Figure 13).  

The results for SPV1 and SPV2 viruses were biased by super-abundant spacers from mini-arrays 

(see Chapter IV); thus, we focused on three other viruses, targeted by the large number of 

spacers (Chapter IV, Figure 1D): SBRV1, SBV1, and SBFV3. The significant result was 

obtained for SBFV3 targeting spacers (Figure 13), which were decreased in abundance between 

10 and 20 days as dramatically as 1% of the most decreased groups of spacers in sample J14. In 

sample J15, where SBFV3 was not present, SBFV3 targeting spacers showed the same behavior 

as random group of spacers. We concluded that this decrease is caused by SBFV3 predation of 

its host. 

 

Figure 13. Log2ratio of spacer abundances between 10 and 20 days of cultivation. Left panel – J14 sample, 

right panel – J15 sample. Orange line shows log2ratio for spacers targeting SBFV3 virus. 
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4. PCR amplification of CRISPR spacers 

A method for PCR amplification of CRISPR spacers with degenerate primers complementary to 

the CRISPR repeat sequence was optimized and validated using E. coli strain K12 as an 

experimental model (Chapter I, Figure 1B). The genome of E. coli strain K12 contains two 

CRISPR arrays with 12 and 6 spacers. The product of PCR amplification was sequenced and all 

18 spacers were found in the sequencing data, validating the approach. However, the frequency 

of HTS reads varied for spacers from the same CRISPR array. Namely, the leader-proximal 

spacer of the first CRISPR array was ~10 times less abundant in HTS reads than the rest of the 

spacers of the same array. We observed a similar (~5 fold) difference between the most abundant 

and the least abundant spacer in the reconstructed CRISPR array of Sulfolbus (Chapter IV, 

Supplemntary Figure 8).  

Abundance of spacer sequences in HTS reads can be described as a function of two parameters: 

(i) frequency of the host strain in population and (ii) PCR efficiency. As PCR efficiency depends 

on sequence of spacer and surrounding CRISPR repeats, the latter being almost constant for each 

spacer of the same CRISPR array, the abundance of spacers in enrichment cultures should 

change proportionally to the frequency of the host strain. This hypothesis is supported by the 

presence of groups of spacers with linearly correlated frequencies in two independent enrichment 

cultures (Chapter IV, Supplementary figure 8). We were unable to identify sequence features of 

spacers and surrounding repeats that determine the PCR efficiency. Presence of different motifs, 

G/C content, predicted secondary structure of ssDNA or mutations in CRISPR repeat sequences 

did not correlate with the abundance of spacers in HTS reads. More careful modelling of PCR 

amplification procedure might help to resolve this problem.  

 

5. Cross-type CRISPR spacers 

When spacer sequences associated with different CRISPR repeat types were compared to each 

other with 85% identity threshold, examples of spacers shared between two CRISPR repeats 

were found (see Figure 14), suggesting convergent and independent sampling of the same viral 

locus by different CRISPR-Cas systems. Approximately 5% of the analyzed Sulfolobales spacers 

associated with one type of CRISPR repeat match spacers from another CRISPR repeat. For the 

Thermus dataset, this value varied from 0% for the Etna spacer set to 6% for the Vesuvius 

spacers (see Figure 14A). The same phenomenon was observed for database spacers of Thermus 

(Chapter I, Figure 1) and S. islandicus strains isolated from Kamchatka (numbers 16-23 in 

Figure 1). For S. islandicus strains, 14 out of 552 (2.5%) spacers intersect between A and D 
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CRISPR repeats. Thus, given that all CRISPR repeat types are associated with different 

adaptation modules, intersecting spacers must have been independently acquired from the same 

locus of the same virus by two adaptation modules. Shared spacers are not equally distributed 

between CRISPR repeat types (Figure 14B), which can imply specificity of different CRISPR 

adaptation modules to different viruses. The specificity of different adaptation modules to 

different viruses can be a consequence of a narrow host range of a virus or virus-encoded anti-

CRISPR proteins.  

 

 

Figure 14. Intersection between spacer sets of different CRISPR repeats. A. For the Thermus dataset, spacers 

associated with different CRISPR repeat types that differ from each other by less than 2 nucleotides are connected 

by black lines. B. For Sulfolobales dataset, the fraction of spacers from the CRISPR repeat type in a row matching 

with CRISPR repeat type in the column is indicated. 
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RÉSUMÉ 

Introduction 

Le système CRISPR-Cas est un système immunitaire procaryote de type interférence ARN dirigé 

contre des éléments génétiques mobiles, tels que les virus et les plasmides1. Le système consiste 

en un ou plusieurs loci CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats ; 

courtes répétitions palindromiques groupées et régulièrement espacées) associés à des protéines 

Cas (CRISPR-associated proteins) dont ils sont séparés par une séquence dite leader. Toutes les 

protéines Cas peuvent être fonctionnellement attribuées à des modules d'adaptation, d'expression 

et d'interférence2. Les protéines Cas du module d'adaptation incorporent des fragments de l'ADN 

viral dans le locus CRISPR en tant que spacers (ou espaceurs) entre les répétitions. La 

transcription et la maturation du locus CRISPR donnent lieu à la production d'ARN de 

protection, l’ARN CRISPR (crRNA). Les protéines du module d'interférence, dirigées par les 

crRNA, reconnaissent et clivent des régions apparentées dans l'ADN ou l'ARN d'un élément 

génétique mobile. Sur la base de la composition des modules d'interférence et d'adaptation, les 

systèmes CRISPR-Cas sont classés en 2 classes, 6 types et environ 30 sous-types3. Les systèmes 

CRISPR-Cas sont présents dans 90% des archées, mais seulement dans 50% des bactéries4. Les 

organismes thermophiles sont particulièrement enrichis en systèmes CRISPR-Cas (et autres 

systèmes de défense) par rapport aux procaryotes mésophiles et psychrophiles5. Selon les 

simulations théoriques, les hôtes possédant un système CRISPR sont plus avantagés dans des 

conditions de faible diversité virale, comme c’est le cas dans les environnements géothermiques 

chauds par exemple6. 

L’analyse des spacers CRISPR est une précieuse source d’informations sur les interactions 

virus-hôte, puisqu’ils correspondent à de courts fragments d’ADN de virus précédemment 

rencontrés et « enregistrés » dans les loci CRISPR. De plus, les cellules portant des spacers 

protecteurs devraient acquérir un avantage et devenir plus nombreuses. Une telle analyse peut 

être particulièrement enrichissante lorsqu'elle est appliquée à des données métagénomiques. 

Outre l'extraction à partir de données métagénomiques ou de loci CRISPR7,8, les spacers 

CRISPR peuvent être directement amplifiés et analysés à partir d'isolats bactériens individuels 

ou de communautés entières9-11. Ainsi, la comparaison des loci CRISPR de populations isolées 

de la même espèce a par exemple révélé une grande diversité de séquences spacers, bien 

supérieure à celle observée dans la séquence leader du locus CRISPR8,12-14. L'analyse de 

l’évolution du contenu en séquences spacer a également fourni des exemples d’acquisition de 

nouveaux spacers, de suppression d'anciens, et de recombinaison de loci CRISPR entre 

différentes souches10,15-17. Les spacers CRISPR peuvent aussi être utilisés pour identifier les 
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séquences virales dans des métagénomes et détecter les modifications dans les populations 

virales7,18,19. Des exemples de spacers ciblant de préférence des phages locaux du même site 

d'échantillonnage ont été rapportés10,16,20,21. La présence de multiples spacers contre un même 

génome viral dans les souches hôtes rend plus difficile la parade du virus par acquisition de 

mutations dans un des sites concernés, favorisant une grande diversité des spacers sur des 

échelles de temps plus longues22. 

 

Buts de la recherche 

En utilisant une amplification PCR avec des amorces complémentaires des répétitions CRISPR 

suivie d'un séquençage de nouvelle génération (NGS), la diversité des spacers CRISPR dans 

différentes populations naturelles de procaryotes (le CRISPRome) a été analysée : 

● Les spacers CRISPR du système I-E d'E. coli provenant de l'intestin d’un mammouth (chapitre 

I). 

● Les spacers CRISPR du système II-C de Flavobacterium provenant de neige de surface autour 

de trois stations en Antarctique (chapitre II). 

● Les spacers CRISPR des systèmes I-A, I-B, I-C, I-E, I-U et III-A/B de Thermus provenant de 

cinq sources thermales géographiquement distantes (Chapitre III). 

● Les spacers CRISPR de Sulfolobus provenant des sources chaudes de Beppu au Japon 

(chapitre IV). 

 

Les résultats de l'analyse du CRISPRome permettent de répondre à plusieurs questions : 

● Dans quelle mesure la diversité des spacers CRISPR est-elle représentée dans les bases de 

données actuelles ? (Chapitres I, II, III, IV, V) 

● Quelle est la dynamique à court et à long terme de la diversité des séquences spacers ? 

(Chapitres I, IV) 

● Les populations procaryotes géographiquement proches/lointaines ont-elles une diversité de 

spacers similaires/différentes ? (Chapitres II, III, IV) 

● Les populations procaryotes ont-elles une immunité CRISPR contre les virus locaux ? 

(Chapitres II, III, IV, V) 

 

Résultats 

La comparaison des spacers environnementaux les uns avec les autres et avec des spacers de 

bases de données ainsi que des séquences de virus nous a permis de tirer plusieurs conclusions : 
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• L’amplification par PCR des spacers, suivie du séquençage NGS, nous a permis d’obtenir une 

diversité de spacers issus de communautés procaryotes non-cultivées, provenant de l’intestin 

stérile d’un mammouth (Chapitre I), d’un pathogène de poissons provenant de neige de surface 

en Antarctique (Chapitre II), et de Sulfolobales des sources chaudes de Beppu au Japon 

(Chapitre IV). La diversité naturelle des spacers CRISPR (le CRISPRome) dépasse de beaucoup 

la diversité des génomes des souches cultivées, et son exploration s’avère être une approche 

valable pour l’étude des interactions virus-hôte. Par exemple, l’alignement des séquences spacer 

contre les chromosomes de l'hôte s'est révélée une approche efficace pour identifier les éléments 

génétiques mobiles intégrés (chapitre IV). Le jeu de données CRISPRome de Sulfolobus a été 

utilisé pour assembler plusieurs nouveaux contigs viraux en combinant les séquences spacer se 

chevauchant. 

 

• Une dynamique à long terme des spacers CRISPR I-E de E. coli a été étudiée en comparant la 

diversité des spacers dans les génomes publiés d'E. coli avec des spacers amplifiés à partir du 

contenu intestinal de mammouth. Cette amplification a été réalisée avec des amorces 

complémentaires de la séquence répétée CRISPR I-E et a généré un total de 1883 séquences 

spacer uniques qui a ensuite été comparé à un ensemble de spacers E. coli actuels constitué de 

1599 séquences uniques. Cette comparaison a révélé 425 spacers communs. Des loci 

contemporains complets ou presque complets ont pu être reconstruits en utilisant des paires de 

spacers voisins. Dans l'ensemble, plusieurs loci CRISPR d'E. coli contemporains sont restés 

inchangés au cours des 40 000 dernières années, confirmant l'inactivité du module d'adaptation 

des systèmes CRISPR-Cas de type I-E dans cet organisme. 

 

• Les spacers du CRISPRome des communautés naturelles de Thermus, Sulfolobus et 

Flavobacteries ciblent de préférence des virus isolés de la même source, avec différents systèmes 

CRISPR-Cas ciblant différents virus (Thermus : Chapitre III, Tableau 2 ; Flavobacteria : 

Chapitre II, Figure 5B ; Sulfolobus : Chapitre IV, Figure 1D). Ce résultat est en accord avec le 

ciblage local de spacers déjà rapporté pour de nombreux autres environnements, et semble être 

un phénomène général. La spécificité de différents modules d'adaptation à différents virus peut 

être une conséquence d'une plage d'hôtes étroite pour un virus ou de protéines anti-CRISPR 

codées par un virus. 

 

• Les données CRISPRome de Flavobacterium et Sulfolobus (Chapitres II et IV) montrent un 

schéma phylogéographique, avec les ensembles de spacers provenant de sites d'échantillonnage 

géographiquement proches plus similaires que ceux provenant d'emplacements plus éloignés. 
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Ainsi, les ensembles de spacers de trois sites en Antarctique différent considérablement les uns 

des autres, avec seulement une infime fraction des éléments spacers commune aux trois sites. La 

grande proportion de spacers communs entre les sites Druzhnaja et Progress est cohérente avec 

la proximité géographique de ces stations (Chapitre II, Figure 5B). Aucun recoupement n'a été 

détecté avec des spacers issus de génomes séquencés de flavobactéries, et seuls quelques phages 

de flavobactéries connus sont ciblés par des spacers provenant de l’Antarctique, suggérant 

l'existence de communautés virales distinctes dans l'Antarctique. De même, des spacers ont été 

trouvés en commun entre les CRISPRomes Sulfolobales des sources chaudes de Beppu et ceux 

des isolats de Sulfolobales issus du Japon (chapitre IV, figure 1A). Cela indique que la 

population de Sulfolobales de Beppu et celle représentée dans les isolats japonais a été infectée 

par des virus similaires. 

Contrairement aux communautés naturelles de Flavobactéries et de Sulfolobales, le CRISPRome 

issu de celle de Thermus provenant de cultures d'enrichissement n'a montré aucune corrélation 

vis-à-vis de la distance géographique entre les sites d'échantillonnage (chapitre III, figure 2B). 

Cette observation demeure sans explication pour le moment. Il est possible que certaines 

propriétés physicochimiques de l'eau non-enregistrées lors de la collecte des échantillons en 

soient responsables. Un contrôle minutieux des paramètres écologiques de l'habitat sur les sites 

de collecte et l'extension de l'analyse présentée ici à d'autres communautés Thermus du monde 

entier pourraient aider à résoudre ce problème. 

 

• Les virus de Sulfolobus SPV1 et SPV2 portent des mini-loci CRISPR avec 1 à 2 spacers 

uniquement. Ces mini-loci sont précédés par des séquences leader, similaires à celle précédant 

les loci CRISPR présents dans les génomes Sulfolobus, mais ne sont pas associés aux gènes cas. 

Les positions relatives des mini-loci CRISPR contenant 2 spacers dans les génomes SPV1 et 

SPV2 sont identiques, mais les spacers correspondants sont différents, ce qui suggère un 

renouvellement actif des spacers. Les spacers des mini-loci ciblent des virus étroitement 

apparentés présents au sein de la même population. Le ciblage par des spacers transmis par le 

mini-loci viral représente un mécanisme distinct d’exclusion de surinfection par ces virus 

apparentés et semble favoriser la spéciation des virus d’archées. Dans l'échantillon 

environnemental initial et dans les enrichissements sur 10 jours, les spacers des longs loci 

CRISPR de l'hôte étaient les principaux contributeurs à l'immunité totale contre les virus SPV1 

et SPV2. Cependant, après 20 jours, l'abondance de spacers des mini-loci a augmenté de façon 

substantielle, tandis que le nombre de spacers des longs locus a diminué, probablement en raison 

de la prédation de l'hôte par SPV1 et SPV2. De plus, les spacers des loci de l’hôte ciblent 

indistinctement SPV1 et SPV2 (à en juger par l'identité entre les spacers et les proto-spacers), 
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alors que les spacers des mini-loci sont spécifiques à SPV1 ou à SPV2. Le ciblage des spacers 

CRISPR favorise la microévolution des génomes viraux, alors que l’évitement de l’auto-ciblage 

par les mini-loci CRISPR favorise probablement la spéciation du virus. 
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