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Abstract 
     The efficiency of the next-generation energy storage and conversion technologies, such 

as low-temperature fuel cells, regenerative fuel cells, and metal-air batteries, is highly 

influenced by the kinetics of the electrocatalytic oxygen reduction reaction (ORR). Its 

complexity and slow kinetics even on the most active commercial Pt-based catalysts was 

addressed by extensive research over the last few decades to find cost-effective 

alternatives. The carbon-supported transition metal oxides (TMO/C) attract significant 

interest as catalysts for the ORR in alkaline media. However, the further optimal catalyst 

search requires the knowledge of the ORR mechanism in order to be facilitated. 

     In this work, the ORR mechanism on TMO/C composite materials was targeted by the 

multiscale modeling approach comprising the experimental data, macroscale, and ab initio 

calculations. The first insights on the ORR mechanism were obtained within the 

rationalization of the pronounced difference of the ORR and hydroperoxide 

reduction/oxidation reactions (HPRR/HPOR) on Mn2O3 and MnOOH. The possibility of 

the outer-sphere regime for the first two electron transfer steps was shown. The observed 

limitations on each level of description led the study to the elucidation of the particular 

aspects of the multiscale modeling approach. As such, the next part was devoted to 

studying the connection between the macroscale simulations and experimental data they 

aim to reproduce. The required level of complexity of the ORR mechanism, which is 

capable to reproduce the experimental data (ORR, HPRR/HPOR on La1-xSrxCoO3-δ (0 < x 

< 1) /Vulcan XC-72, nitrogen-doped carbons) was estimated. Only the rather complicated 

model with the O2 spillover described the complete experimental dataset. It led to the 

conclusion that the uncertainty arising from experimental data and its propagation within 

the multiscale modeling approach are crucial to quantify in order to find the accessible 

level of detailing for the ORR mechanism based on the accuracy of simulation approaches 

and diversity of the experimental data. The last two chapters of the thesis addressed this 

issue by the construction of the quantitative framework for ORR mechanism selection and 

improvement of the macroscale models consistency with the elementary mechanisms 

addressed by ab initio calculations.  
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 Introduction 

     Progress has been always associated with growth in energy generation demand. The use 

of traditional fossil fuel-based technologies is unavoidably leading to environmental 

problems such as air pollution and greenhouse gas production (see Figure 1.1). According 

to the International Energy Agency’s Global Energy Review 2020 [1], the total CO2 

emissions in 2020 are expected to be 30.6 Gt. 

 
Figure 1.1 Global energy-related CO2 emissions [1]. 

 

     CO2 emission should be reduced to less than 20 Gt by 2030 in order to prevent major 

climate change [2]. The small 8% decrease observed in CO2 emissions in 2020 is due to 

the ~4-6% lowered energy demand compared with 2019 because of the COVID-19 

pandemic. The decreased energy demand is correlated with the decrease in the coal, oil, 

and natural gas consumption by 8, 5, and 2% respectively (Q1 2020 vs. Q1 2019). 

However, the long term trends for energy demand growth are unlikely to change. Transport 

applications account for huge 30% share of global CO2 emissions [3]. Therefore, special 

effort should be made to replace combustion engine-based technology with more 

environmentally friendly alternatives. Low-temperature fuel cell technology [4], typically 

operating on hydrogen fuel, can be used to address this problem. Fuel cells generate electric 

energy with high efficiency of 40-80% and lower or absent emission of hazardous 
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substance, such as SO2, NOx, CO, and CO2, compared with fossil fuel combustion engines. 

CO2 is generated in the full lifecycle of hydrogen production/consumption as hydrogen is 

mainly produced from the fossil fuels. However, the amount of CO2 produced during 

hydrogen generation is significantly lower than that for production/combustion lifecycle of 

gasoline, diesel, and natural gas fuels [5]. Nevertheless, further optimization of fuel cell 

efficiency is required to indirectly reduce the amount of generated CO2 per mile through 

the lowered consumption of hydrogen fuel. 

     One of the major bottlenecks for the commercial application of low-temperature fuel 

cells and other promising energy storage and conversion technologies (e.g. regenerative 

fuel cells and metal-air batteries) is the sluggish kinetics of the cathodic oxygen reduction 

reaction (ORR). Even the most active Pt group-based catalysts show sluggish kinetics 

despite their high cost. This issue was addressed by extensive research over the last few 

decades. Transition metal oxide (TMO) materials have attracted significant interest as a 

cost-efficient alternative for ORR electrocatalysis in alkaline media. Due to their low 

electronic conductivity, TMO catalysts are usually intermixed with the carbon material to 

provide good electric contact. The complexity of the ORR on TMO/C catalysts is further 

increased by the fact that the carbon is active for ORR electrocatalysis in alkaline media. 

Given the variety of the TMO materials and approaches to tune their catalytic activity, one 

needs to evaluate the factors which determine the activity. This requires knowledge about 

the ORR pathway on the catalyst surface. It is worth noting that the ORR mechanism in 

alkaline media is far from being well-understood even on single-crystal metal surfaces [6], 

and it can be even more complex on TMO/C. It has been suggested in several works that 

the rate-limiting step for the ORR in alkaline media is the first step of charge transfer to 

the O2 molecule [7], [8]. However, even the mechanism of the first electron transfer to O2 

(outer-sphere or inner-sphere) is still under debate. 

     The first insight into the ORR mechanism can be gained from high-quality experimental 

data (most often obtained using the rotating ring-disk electrode (RRDE) technique). It can 

give some ideas on the reaction steps and the involvement of hydrogen peroxide (HO2
- in 

alkali) as an intermediate species of the reaction. A great deal of experimental work has 
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been reported in this area, and numerous reaction mechanisms have been suggested. The 

major problem is that multiple mechanisms demonstrating a similar level of agreement can 

be proposed for a given set of experimental data. It is impossible to formulate solid 

conclusions on the reaction pathways using experimental data and basic chemical intuition 

alone for the multistep ORR reaction, as the only reaction intermediate reliably detected is 

the hydrogen peroxide. 

     A higher level of reliability for the reaction mechanism can be achieved in the 

framework of the mean-field microkinetic modeling (MF-MKM) approach. In this 

approach, the data is fit by the microkinetic model to determine a set of model parameters, 

such as rate constants of the key proposed reaction steps. However, the proposed reaction 

steps are usually not the elementary ones but comprise the combination of the elementary 

steps. Therefore, further specification is required to refine the microkinetic model.  

     For such detailed investigations, one can use molecular modeling methods. As relatively 

large ensembles should be modeled to mimic the reaction centers on an oxide surface, 

density functional theory methods (DFT) are most typically applied to address the 

adsorption of the intermediates and to calculate the reaction activation barriers. The most 

popular approach which can be used to obtain the geometries of surfaces covered with 

adsorbates is periodic DFT. This powerful methodology allows computing free energies of 

the catalytic surfaces, which are represented by relatively large supercells (100 – 500 

atoms). It is also possible to include the effects of pH and adsorbate coverage in this type 

of calculation. However, computing activation free energies for the elementary reactions 

involving the charge transfer is problematic in the framework of periodic DFT calculations. 

Therefore, the Gibbs free energy changes for the proposed elementary steps are usually 

calculated without the consideration of activation barriers. Unfortunately, such an approach 

can only provide rough qualitative conclusions on the nature of the limiting step [9], [10]. 

     On the other hand, calculations based on the cluster representation (10 – 100 atoms) can 

be used to assess the reaction activation barriers for electron transfer steps. Rate constants 

of the respective elementary reactions can be evaluated and compared, providing 

information on the preferential steps in the reaction pathways. Despite cluster 
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representation having its own shortcomings (e.g. artificial border effects), it enables a more 

detailed study of the electron transfer steps (i.e. by accessing their kinetics) compared to 

periodic DFT methods. Due to the system size limitations, the most advantageous approach 

should include computing activation barriers on oxide surfaces by cluster DFT, with the 

geometry evaluated in parallel computations by periodic DFT. This would ensure the 

beneficial combination of the two computational approaches described. 

 
Figure 1.2  Multiscale modeling approach for ORR pathway evaluation. 

 

     Given the limitations of the computational and experimental approaches, a more reliable 

understanding of the complex reaction mechanisms is only possible when ab initio 

computations and MF-MKM approach are combined in a self-consistent data treatment 
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procedure and applied to a set of reliable experimental data within the multiscale modeling 

approach ( 

Figure 1.2). The multiscale modeling approach is a powerful semi-quantitative tool for the 

elucidation of complex electrocatalytic reaction mechanisms, but it inherits the 

uncertainties of approximations from all the embedded methods. These assumptions set up 

the maximum level of detail this approach can provide for the reaction mechanism. The 

achievable detailing level should be determined quantitatively to understand what 

predictive capability the elucidated ORR mechanism has together with its estimated 

macroscale/microscale parameters. To do this requires the modification of a multiscale 

modeling approach by the quantification of uncertainties arising from all sources and 

uncertainty propagation between them.  

     This work is aimed at elucidating the ORR mechanism on TMO/C catalysts in alkaline 

media using the multiscale modeling approach. Additional efforts are dedicated to the study 

of the uncertainty propagation arising from experimental errors. Quantitative treatment of 

uncertainty propagation is crucial to determine the level of insights that can be 

experimentally verified, thus providing better coupling of the methods within the 

multiscale modeling approach. These results should facilitate further search for more active 

and cost-efficient ORR catalysts, which would enhance the performance of related energy 

storage and conversion devices. Therefore, the problem of huge CO2 emissions from the 

transport applications should be solved, as efficient low-temperature fuel cells would 

reduce the hydrogen consumption per mile and thus the overall CO2 generation. 
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 Literature review. Multiscale modeling approach for the oxygen 

reduction reaction 

2.1. Oxygen reduction reaction 

     The ORR is the crucial process in the low-temperature fuel cells, regenerative fuel cells, 

and metal-air batteries. Its sluggish kinetics even on the most active Pt-containing catalysts 

is the major source of efficiency losses and calls for the development of cost-effective and 

durable catalysts for ORR. This section reviews the principles and types of energy storage 

and conversion devices which depend on ORR, the progress in ORR mechanistic studies, 

and the current challenges in the latter. 

2.1.1. Fuel cells as energy storage and conversion devices 

      Fuel cells produce the electricity by coupled oxidation of the fuel at the anode (e.g. H2) 

and reduction of the oxidant at the cathode (e.g. O2). The anodic and cathodic half-reactions 

are separated by the electrolyte which has only ionic but not electronic conductivity. The 

electrons generated on the anode are forced to flow through the external circuit, thus 

generating the direct current. 

      Fuel cells have the following advantages in addition to the abovementioned ones: (i) 

Silent operation and potential mechanical durability due to the lack of the moving parts; 

(ii) Independent scaling of power (fuel cell size) and capacity (fuel-tank size); (iii) Quick 

recharge by the refueling. Therefore, fuel cells can operate in the wide power range for 

portable, automotive, and immobile grid applications. 

      The drawbacks of fuel cells addressed by the extensive research are (i) High cost, e.g. 

due to the use of expensive catalysts; (ii) Mediocre gravimetric and volumetric power 

densities in comparison with batteries and combustion engines; (iii) Low volumetric energy 

density of the hydrogen fuel and its storage complications, (iv) Difficulties in the direct use 

of alternative fuels (e.g. formic acid, methanol, gasoline), which necessitates their 

reforming prior use; (v) Susceptibility to the environmental poisons; (vi) Limited 

operational temperature compatibility; (vii) Durability issues during start-stop cycling [11]. 
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      Several types of fuel cells exist depending on the fuel and electrolyte types (see Table 

2.1). Fuel cells operating at high temperature, such as solid oxide fuel cell (SOFC), molten 

carbonate fuel cell (MCFC), and phosphoric acid fuel cells (PAFC), are utilized for the 

stationary applications. Transport, portable, and small-scale stationary applications require 

low operating temperature and can be fulfilled by proton-exchange membrane fuel cells 

(PEMFC), alkaline fuel cells (AFC), and emerging anion-exchange membrane fuel cells 

(AEMFC). 

 

Table 2.1  Properties of major fuel cell types 

 PEMFC AFC AEMFC PAFC MCFC SOFC 

Electrolyte Polymer 

membrane 

Liquid KOH 

(immobilized) 

Alkaline 

anion 

exchange 

membrane 

Liquid H3PO4 

(immobilized) 

Molten 

carbonate 

Ceramic 

Charge 

carrier 

H+ OH- OH- H+ CO3
- O2- 

Operating 

temperature 

<90 oC 60-250 oC <80 oC 180-210 oC 650 oC 600-1000 
oC 

Catalyst Pt Pt Pt, PGM-

free 

catalysts 

Pt Ni Perovskites, 

(ceramic) 

Fuel 

compatibility 

H2, CH3OH H2 H2, 

CH3OH, 

C2H6O 

H2 H2, CH4 H2, CH4, 

CO 

 

     The principal component of the single fuel cell in the fuel cell stack is a membrane 

electrode assembly (MEA). MEAs consists of electrolyte, anodic and cathodic active 

layers. Electrolyte, which can be either a cation/anion conducting membrane or 

flowing/immobilized electrolyte, separates the anodic and cathodic active layers. For low 

temperature fuel cells, they usually have a thickness of 10-100𝜇𝜇m and comprise the highly 

dispersive nanoparticles of active catalyst materials on the stable porous support. The latter 
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prevents the sintering of the catalyst nanoparticles, provides electronic connection and gas 

fuel transport to the triple-phase boundaries (TPB), which are the reaction sites in the low-

temperature fuel cells. The anode/electrode layer thickness is optimized to provide the 

compromise between the gas diffusion, catalyst utilization, and catalyst loading. 

     In low temperature fuel cells, the catalyst layer is usually supported by the thicker 100-

400𝜇𝜇m gas diffusion layers (GDL), which provide the mechanical strength, collect the 

current, allow the gas fuel transport to the catalytic layer, and also prevent the flooding by 

the liquid water removal from the fuel cells. For the PEMFC of “electrode Los-Alamos 

Type”, the microporous layer is inserted between the GDL and the electrode layer to reduce 

the contact resistance and improve the liquid water wicking. 

One can see the schemes of PEMFC and AEMFC with 5-layer MEA in Figure 2.1 

 
Figure 2.1  Schematic representation of AEMFC and PEMFC. [12] 

 

     Nowadays the PEMFC is the most widely used technology, due to the availability of 

high-quality proton exchange membranes, e. g. Nafion. However, acidic media and the 

sluggish oxygen reduction reaction (ORR) on the cathode require the expensive platinum 

group metal (PGM) catalysts which hampers their commercial applications. The lifetime 

(the time for 10% of power loss) of PEMFC stacks under the ideal operating conditions 
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(constant-load operation, 100% relative humidity, 75 oC) is ~40000h. However, in real-

world applications, the lifetime is reduced mainly due to membrane and catalytic layer 

degradation. The mechanisms for the latter are: (i) Pt nanoparticle growth; (ii) Pt 

dissolution at intermediate potentials; (iii) Corrosion of carbon-based support [13]. 

     The AFC enables the use of the cheaper PGM-free catalysts, which are stable in the 

alkaline environment. The KOH electrolyte (flowing or immobilized in the asbestos 

separator) is also cheaper than the proton exchange membranes. Additionally, the ORR has 

faster kinetics in alkaline than in acidic media. It is one of the oldest commercial fuel cell 

designs, with the first AFC developed by Francis Bacon in 1958 for the Apollo spacecraft 

mission. However, the practical applicability of AFC is limited by its extremely low 

tolerance to CO2. Even the atmospheric level of CO2 carbonizes the electrolyte and 

irreversibly forms solid precipitates. This process gradually decreases the electrolyte pH 

over time and blocks the porous electrodes. 

     The AEMFC is an emerging technology, significantly improved over the last decade 

[12], [14], [15]. AEMFCs aim to solve the CO2 low tolerance issue by using anion 

exchange membrane (AEM) as the electrolyte, thus removing the possibility of carbonate 

precipitation. Despite many challenges to overcome (e.g. the development of active and 

stable PGM-free catalyst, AEMs with robust mechanical properties and high anion 

conductivity, and water management issues [14]), the AEMFC is a promising cost-effective 

alternative to the PEMFC. 

     To sum up, one of the critical points for all major types of low-temperature fuel cells is 

the development of durable cost-effective catalysts for ORR. This also applies to the other 

storage and conversion devices, such as regenerative fuel cells [16], [17] and metal-air 

batteries [18]. 

2.1.2. ORR mechanism 

2.1.2.1.  ORR pathways in acidic media. 

     Two general ORR pathways exist in acidic solutions: 

1) Direct 4-electron pathway 
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     The oxygen is reduced to water without the formation of hydroperoxide as a reaction 

intermediate. This pathway is also known as “direct 4e- pathway”: 

 𝑂𝑂2 + 4𝐻𝐻+ + 4𝑒𝑒− → 2𝐻𝐻2𝑂𝑂,𝐸𝐸𝑜𝑜 = 1.229 𝑉𝑉 𝑣𝑣𝑣𝑣.  𝑆𝑆𝑆𝑆𝑆𝑆,𝑝𝑝𝑝𝑝 = 0 (2.1) 

2) Peroxide-mediated pathway 

     The hydroperoxide is formed as a reaction intermediate. This pathway is also known as 

“series 2e- + 2e- pathway”: 

 𝑂𝑂2 + 2𝐻𝐻+ + 2𝑒𝑒− → 𝐻𝐻2𝑂𝑂2,𝐸𝐸𝑜𝑜 = 0.67 𝑉𝑉 𝑣𝑣𝑣𝑣.  𝑆𝑆𝑆𝑆𝑆𝑆,𝑝𝑝𝑝𝑝 = 0 (2.2) 

     Depending on the catalyst, the hydroperoxide can either diffuse to the electrolyte bulk 

from the catalyst surface, and be reduced further to water: 

 𝐻𝐻2𝑂𝑂2 + 2𝐻𝐻+ + 2𝑒𝑒− → 2𝐻𝐻2𝑂𝑂,𝐸𝐸𝑜𝑜 = 1.77 𝑉𝑉 𝑣𝑣𝑣𝑣.  𝑆𝑆𝑆𝑆𝑆𝑆,𝑝𝑝𝑝𝑝 = 0 (2.3) 

or decomposed 

 2𝐻𝐻2𝑂𝑂2 → 2𝐻𝐻2𝑂𝑂 + 𝑂𝑂2 (2.4) 

2.1.2.1.1. Carbon materials 

     Undoped carbon materials have high overpotentials for O2 reduction to H2O2 [19] and 

low activity for heterocatalytic H2O2 decomposition in acidic media compared to Pt 

catalysts. Therefore, undoped carbon materials assumed not to participate in ORR catalysis 

in acidic media. However, doping by heteroatoms (e.g. N) and transition metals (e.g. Fe) 

makes them active for the ORR in acidic media, which proceeds through the apparent direct 

4e- pathway [20]. 

2.1.2.1.2. Platinum-based materials 

     In the early experimental works of Damjanovic et. al. [21], Sepa et. al. [22], [23], and 

Paucirova et. al. [24] the RRDE experimental setup was employed to elucidate the ORR 

mechanism in acidic media. It is argued that the ORR proceeds by the direct 4e- pathway 

on the pre-reduced oxide-free Pt without organic contaminants in the electrolyte. A 

significant amount of H2O2 is generated only in the region of H2 UPD. The analyzed Tafel 

slopes at low overpotentials (-120 mV/dec) and high overpotentials (-60 mV/dec) together 

with current transients suggest the first step is rate-limiting. The slope change is attributed 

to the switch between the Temkin and Langmuir conditions of adsorption for the low and 

high overpotentials, respectively. The study of ORR mechanism at potentials higher than 
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1.0 V vs RHE is complicated due to the side reactions of electrochemical Pt dissolution 

and surface phase oxides formation. Still, the oxygen evolution reaction (OER) can be 

studied on Pt electrodes since the formation of the anodic surface oxide film reduces the 

rate of Pt dissolution by several orders of magnitude. Other suggestions on the rate-

determining step (RDS) can also be used to explain the observed experimental results, such 

as the rupture of the O-O bond via dual-site mechanisms [25], [26], O2 adsorption step 

[27], O and OH desorption steps [28]. More recent works show that the H2O2 is produced 

on single Pt particle/carbon filament ultramicroelectrodes [29] and two-dimensional array 

of Pt nanoparticles on the glassy carbon (GC) electrode [30]–[32]. The combination of 

RRDE experimental data for Pt/VACNF in H2SO4 and HClO4, elementary step models 

based on previous experimental findings [33]–[35], and microkinetic modeling has shown 

that the formation of the H2O2 at low Pt site density is the intrinsic process for the ORR on 

Pt. This suggests the dual-path mechanism (i.e. with parallel direct 4e-
 and series 2e-+2e- 

pathways) is operable on Pt [36], [37] in acidic media. 

2.1.2.2.  ORR pathways in alkaline media. 

      The ORR pathways in alkaline media are similar to the ones in acidic electrolytes. The 

main differences are the water is consumed during the ORR and H2O2 is transformed to 

HO2
- by the following reaction: 

 𝐻𝐻2𝑂𝑂2 + 𝑂𝑂𝑂𝑂− → 𝐻𝐻𝑂𝑂2− + 𝐻𝐻2𝑂𝑂,𝑝𝑝𝐾𝐾𝐴𝐴 = 11.7 (2.5) 

1) Direct 4-electron pathway 

 𝑂𝑂2 + 2𝐻𝐻2𝑂𝑂 + 4𝑒𝑒− → 4𝑂𝑂𝐻𝐻−,𝐸𝐸𝑜𝑜 = 0.401 𝑉𝑉 𝑣𝑣𝑣𝑣.  𝑆𝑆𝑆𝑆𝑆𝑆,𝑝𝑝𝑝𝑝 = 14 (2.6) 

2) Peroxide-mediated pathway 

 𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 + 2𝑒𝑒− → 𝐻𝐻𝑂𝑂2− + 𝑂𝑂𝐻𝐻−,𝐸𝐸𝑜𝑜 = −0.065 𝑉𝑉 𝑣𝑣𝑣𝑣.  𝑆𝑆𝑆𝑆𝑆𝑆, 𝑝𝑝𝑝𝑝 = 14 (2.7) 

      The HO2
- can either desorb from the catalyst surface, or further be reduced to water: 

 𝐻𝐻𝑂𝑂2− + 𝐻𝐻2𝑂𝑂 + 2𝑒𝑒− → 3𝑂𝑂𝐻𝐻−,𝐸𝐸𝑜𝑜 = 0.867 𝑉𝑉 𝑣𝑣𝑣𝑣.  𝑆𝑆𝑆𝑆𝑆𝑆,𝑝𝑝𝑝𝑝 = 14 (2.8) 

or decomposed 

 2𝐻𝐻𝑂𝑂2− → 2𝑂𝑂𝐻𝐻− + 𝑂𝑂2 (2.9) 

      For the progress of development and comparison of most active ORR catalysts in 

alkaline media, one can refer to the comprehensive reviews of Ge et al. [7] and Cheng et 
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al. [38]. The studies of ORR materials classes described below are crucial for the 

elucidation of the ORR mechanism in alkaline media. 

2.1.2.2.1. Carbon materials 

     Undoped carbon materials are active for the ORR in alkaline media, thus contributing 

to the ORR electrocatalysis in the composite catalytic materials. The ORR principally 

proceeds through the first 2e- reduction in a series 2e-+2e- pathway, with O2 being reduced 

only to HO2
-. The superoxide O2

- is considered as a reaction intermediate. For example, it 

was detected experimentally on basal planes of stress annealed pyrolytic graphite by 

Morcos and Yeager [39] using the flow-type thin layer electrochemical cell. The 

mechanism with outer-sphere electron transfer is suggested in this case [39], [40]: 

 𝑂𝑂2 + 𝑒𝑒− → 𝑂𝑂2− (2.10) 

 2𝑂𝑂2− + 𝐻𝐻2𝑂𝑂 → 𝑂𝑂2 + 𝐻𝐻𝐻𝐻2− + 𝑂𝑂𝑂𝑂− (2.11) 

 𝑂𝑂2− + 𝐻𝐻2𝑂𝑂 + 𝑒𝑒− → 𝐻𝐻𝐻𝐻2− + 𝑂𝑂𝑂𝑂− (2.12) 

     The ORR currents on basal planes of stress annealed pyrolytic graphite are far lower 

than those on glassy carbons and ordinary pyrolytic graphites, thus suggesting that the ORR 

mainly proceeds with strong interaction of O2 and surface functional groups according to 

the mechanism provided in [39]: 

 ∗ +𝑂𝑂2 → 𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎 (2.13) 

 𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐻𝐻2𝑂𝑂 + 𝑒𝑒− → 𝐻𝐻𝐻𝐻2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂− (2.14) 

 2𝐻𝐻𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂− → 𝐻𝐻𝐻𝐻2− + 𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 +∗ (2.15) 

     Zhang et al. [41] showed experimental evidence for quinone surface groups to be 

possible active sites for ORR. Mechanistic differences exist for the various carbon 

materials of different allotropic forms, supported by the difference in the corresponding 

ORR Tafel slopes and their variation with pH [42]. The pretreatment of carbon catalysts 

also has a significant influence on their activity for the ORR [43], [44] and hence on the 

reaction mechanism. For example, mechanisms with O2
- surface migration to the active 

site [45] or two forms of adsorbed O2
- [40] were suggested for the ORR on GC electrodes. 

Various ORR mechanisms were suggested for different carbon materials [42], [44], [46]–
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[50]. It was shown that for the undoped carbon nanofiber and multiwalled carbon 

nanotubes, the ORR is likely proceeding trough the following mechanism [51], [52]: 

 ∗ +𝑂𝑂2 + 𝑒𝑒− → 𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎
−  (2.16) 

 𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎
− + 𝐻𝐻2𝑂𝑂 → 𝐻𝐻𝐻𝐻2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂− (2.17) 

 𝐻𝐻𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑒𝑒− → 𝐻𝐻𝐻𝐻2− +∗ (2.18) 

     The doping of carbon materials by heteroatoms (e.g. N, B, S, P, F) significantly 

improves their performance for ORR. For example, the ORR on N-doped carbon 

nanofibers and multiwalled nanotubes (CNTs) proceeds through the full 4e-
 reduction 

within the series 2e-+2e- pathway [51], [53]. N-doping [54] is believed to introduce the 

electronic states near the Fermi level [55]. Additionally, it adds new active sites (likely the 

carbon atoms near the pyridinic nitrogen and graphitic nitrogen [55]), and produce edge 

plane defects [51]–[53] which can also participate in ORR, enhancing the catalytic activity 

for ORR. Additionally, the Fe oxide particles contained in CNTs due to the synthesis 

procedure are exposed on the surface after the N-doping [52], [53]. They are highly active 

for HO2
- decomposition leading to the dual-site mechanism within the peroxide-mediated 

pathway [52]. 

2.1.2.2.2.  Platinum-based materials 

     Damjanovic et. al. [56] and Sepa et. al. [22], [23], [57] demonstrated that the ORR on 

polycrystalline Pt in alkaline media has the same Tafel slopes at low and high current 

densities as in acidic media. They are independent on electrode pretreatment, despite the 

ORR having enhanced kinetics on pre-reduced Pt. The observed fractional order of 1/2 

with respect to pH at low current densities, the first reaction order with respect to O2 on the 

whole potential range, and the linear increase of surface coverage with applied potential 

suggest that the first electron transfer step is RDS for the ORR on Pt, with the Temkin 

condition of adsorption at low overpotentials and Langmuir condition of adsorption at high 

overpotentials. The difference in reaction orders with respect to pH in alkaline (1/2) and 

acidic (3/2) media is attributed to the participation of H+ in RDS for acidic media, which 

is opposite to alkaline media. The analysis of the ring/disc currents ratio suggested that the 

ORR is likely to proceed through the series 2e-+2e- or dual path (i.e. series 2e-+2e- and 
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direct 4e- pathways in parallel) mechanism. The decoupled currents for 2e- and 4e- 

reduction have the same Tafel slopes, which suggests that the ORR mechanism has the 

same RDS and preceding steps for both pathways. The RRDE study of the ORR and HO2
- 

reduction on (100), (110), and (111) Pt single-crystal surfaces carried out by Markovic et 

al. [58] showed that Pt (111) surface is the most active one for the ORR. Despite the 

negligible amount of HO2
- being detected on the ring, its rapid reduction led to the 

suggestion of the peroxide-mediated pathway on low-index surfaces.  

     The general ORR mechanism inspired by the ORR study on PGM and carbons with the 

possible reaction intermediates in alkaline media is shown in Figure 2.2. The steps are not 

necessarily elementary. 

 
Figure 2.2  General ORR mechanism in alkaline media reproduced from Anastasijevic et 

al [59]. 

2.1.2.2.3. Transition metal oxides 

     Unlike in acidic media, some of the non-noble transition metal oxides are stable in 

alkaline media at the potentials where the ORR occurs. Many of them are highly active for 

the ORR demonstrating activity close to that of Pt-based commercial catalysts. However, 

their relatively low electrical conductivities necessitate the use of conductive supports, 

generally manifested through mixing with high-surface-area carbons. This significantly 

complicates the analysis and comparison of the intrinsic catalytic activities of different 

TMO catalysts, as the type and amount of the carbon support, catalyst synthesis and 
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electrode preparation routines, and possible cathodic degradation significantly influence 

the overall ORR activity [60], [61]. The most widely studied catalyst materials are based 

on spinels, perovskites, and other oxides (Mn-based). 

     Pure spinels are relatively inert for the ORR. However, they demonstrate an excellent 

catalytic activity for the ORR within the spinel/carbon composite materials. This activity 

is further enhanced by the N-doping of carbon component and the presence of strong 

coupling between the spinel and carbon components (i.e. if the spinel nanoparticles are 

directly grown on carbon instead of physical mixing) [7], [62], [63]. The additional 

synergistic effects from strong coupling and ORR activity of carbon (or N-doped carbon) 

components further complicate the ORR mechanistic studies on these materials. Regarding 

the spinel component, the most active materials are based on Co3O4 [64], Mn3O4 [62], and 

Fe3O4 [63]. They can be further optimized, e.g. Mn-substituted MnCoO4 spinel has higher 

catalytic activity than Co3O4 on the same carbon component [65], while MnxCu1-xMn2O4 

compounds with both Mn and Cu atoms demonstrate the highest catalytic activity [66]. 

These materials show ~4e- reduction of oxygen with <10% HO2
- yield and onset potential 

almost identical to the one for Pt/C, thereby being a promising alternative for the ORR in 

alkaline media. 

     Perovskites, with the general formula ABO3±δ, where A is a large alkali-earth or rare-

earth element and B is a transition metal, are an appealing model system because the 

physico-chemical and electronic properties of these materials can be easily tuned through 

substitution into the A and B sites, as well as through the formation of oxygen vacancies. 

For the initial optimization of site A, the La-based perovskites demonstrated the highest 

catalytic activity for the ORR within the LnMnO3 series (Ln = La, Pr, Nd, Sm, Gd, Y, Dy, 

Yb) [67]. As for the site B, Mn [68], [69], Co [70], [71], and Ni-based [53], [72] perovskites 

generally provide the highest catalytic activities for ORR. The reported results are highly 

dependent on the perovskite electrodes preparation method and the methodology of their 

studies, often being controversial. For example, within the LaBO3 (B = Ni, Co, Mn, Ni, Fe, 

Cr) bulk perovskites without the conductive additives, the LaCoO3 exhibits the highest 

catalytic activity for the ORR [71]. In contrast, the Co-based perovskites show the lower 



28 

  

catalytic activity for the ORR than the Mn-based ones [73]. Therefore, mechanistic studies 

of the ORR on perovskite materials require the self-consistent experimental dataset to 

evaluate and decouple the factors influencing the overall ORR activity.  

     Many other Mn oxides are active for the ORR in alkaline media [74]. Their performance 

was shown to be connected with the experimentally observed [75] Mn(III)/Mn(IV) surface 

redox process, with the Mn(III) being the active site for the ORR [76]. Mao et. al [77] 

demonstrated the Nafion-modified Mn /Au electrodes to follow the sequence Mn5O8 < 

Mn3O4 < Mn2O3 < MnOOH for ORR activity. Cheng et. al [78] reported catalytic 

performance of MnO2 polymorphs to follow the sequence α-MnO2 > β-MnO2 > γ-MnO2. 

Ryabova et. al [79] showed an excellent activity of α-Mn2O3(byxbyite) for the ORR, being 

the highest within the series of studied Mn oxides: α-Mn2O3(byxbyite) > β-

MnO2(pyrolusite) > Mn3O4(spinel) > γ-MnOOH(manganite). The opposite trend was 

observed for HO2
- yields and the limiting currents for the 2e- reduction of HO2

- on these 

materials. The amount and consistency of these experimental findings make them a good 

model system to obtain further insights on the ORR mechanism with respect to the TMO 

component. 

     The ORR mechanism on transition metal oxides is different from the one on noble 

metals. The surface cations tend to fulfill their oxygen coordination by the H2O so that the 

hydrogen atoms are distributed across the surface. The protonation of the surface ligand is 

coupled with the reduction of the metal cation. The hydroxylated cation further interacts 

with O2, thus catalyzing the ORR. Different reaction mechanisms with one-electron steps 

that account for the different adsorption geometries of reaction intermediates were 

considered for the ORR on metal oxides in alkaline media. The question about the presence 

of the direct or peroxide-mediated pathway is still open for TMOs. The most widely 

adopted mechanism with the formation of HO2
-
 as a surface intermediate was suggested by 

Cushing and Goodenough [80]: 

 𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂2 + 𝑒𝑒− → 𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂− (2.19) 

 𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐻𝐻2𝑂𝑂 + 𝑒𝑒− → 𝐻𝐻𝐻𝐻2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂− (2.20) 

 𝐻𝐻𝐻𝐻2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑒𝑒− → 𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂− (2.21) 
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 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐻𝐻2𝑂𝑂 + 𝑒𝑒− → 𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂− (2.22) 

     The reaction mechanism with HO2
- disproportionation on the catalyst surface was also 

shown to be in good agreement with the experimental observations for perovskite oxides 

[68] and simple Mn oxides [79]. 

 𝐻𝐻𝐻𝐻2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 → 2𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐻𝐻2𝑂𝑂 (2.23) 

     Additionally, TMOs typically have low electronic conductivity and are mixed with 

carbon materials to provide good electric contact. The carbon materials are active for O2 

reduction to HO2
-. The HO2

- can be produced on the carbon component and then readsorbed 

on TMO to undergo further reduction: 

  𝐻𝐻𝐻𝐻2− + 𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 → 𝐻𝐻𝐻𝐻2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂− (2.24) 

     This can be one of the many possible explanations for complex synergistic effects 

observed in TMO/C composite materials [60], [61], [68], [73], [79].  

     Therefore, further insights for the ORR mechanism and the catalytic activity trends for 

the TMO/C components require self-consistent datasets (i.e. the same electrode 

composition, mass loadings, methodology of experimental measurements, etc.). The α-

Mn2O3 -…- γ-MnOOH series [79] can be used to study the ORR mechanism with respect 

to the TMO component due to the pronounced difference in the ORR and HO2
- reduction 

and availability of high-quality experimental data. The influence of the carbon type 

(including N-doping effects) can be probed on LaCoO3/C materials, which are stable above 

0.4 V vs. RHE [81], provide flexibility in further modification of their properties, and 

exhibit synergy for the ORR within the composite. 

2.1.3. Summary 

     The ORR is a complex surface-sensitive reaction. Its mechanism strongly depends on 

the catalyst. The ORR elementary-step mechanism is ambiguous and cannot be completely 

determined based on the electrochemical characterization even for excessively studied Pt 

catalysts. This mechanistic complexity requires precise experimental data combined with 

the insights from numerical macroscale and/or ab initio techniques in order to be elucidated 

on TMO/C composite materials, which are a matter of active research for AEMFC, metal-
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air batteries, and regenerative fuel cells. The α-Mn2O3 -…- γ-MnOOH and LaCoO3/C(N-

doped C) can be used as good model systems for the further elucidation of the ORR 

mechanism with respect to TMO and carbon components, respectively. The uncertainty in 

the ORR mechanism calls for uncertainty quantification on each level of description to 

understand whether the elementary step (or at least one-electron step) mechanism can be 

determined based on the available experimental data and accuracy of approximations 

together with employed numerical methods. 

2.2. Multiscale modeling approach 

     The process of reaction mechanism study can be started either in top-down or bottom-

up designs. The top-down design starts from the generalization of experimental 

observations, such as Tafel slopes, redox potentials, the effective number of transferred 

electrons at mass-transfer limiting regime, etc. together with the insights from materials 

characterization techniques [53], [82]–[84]. Then the initial hypothesis about the reaction 

mechanism is made based on the interplay of theory, prior chemical knowledge, and 

modeling/simulation of experiments. The latter is performed using macroscale 

phenomenological or elementary step models by extracting the model parameters to 

precisely fit the experiments (the so-called inverse problem) [20], [79], [85], [86]. Finally, 

the reaction mechanism is verified by ab initio molecular level simulations [87]–[91]. The 

bottom-up design follows the opposite route starting from molecular level insights, e.g. 

relevant surface structures, active sites, and free energy diagrams for the reaction under 

study. These insights are further validated by experimental results through the mean-field 

models or kinetic Monte Carlo simulations (KMC) [92]. However, the experiments for the 

complex heterogeneous reactions cannot be directly fitted by molecular-level models in 

their current stage of development [91], [93]–[96]. Mean-field models play an integral role 

in connecting molecular level insights and observable experimental findings by linking the 

macroscale model parameters (rate constants, etc.) with the other parameters estimated on 

the molecular level (such as activation energies, etc.). Nowadays, the most valuable 
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insights are obtained from the interplay of top-down and bottom-up designs within the 

multiscale modeling approach [97], [98]. 

2.2.1. Mean-field microkinetic modeling approach 

     Mean-field microkinetic models are deduced from the formal reaction rate equations 

(kinetic level of description) via the incorporation of basic surface chemistry. This enables 

their application for the elucidation of the heterogeneous catalytic reactions. The surface 

processes are reflected through the addition of the average surface coverages for adsorbed 

reaction intermediates and the corresponding active sites surface densities for the reaction 

under study. This is done under the assumption that all surface active sites are equal and 

local coverage effects are negligible. The adsorbate-adsorbate interactions are either 

neglected (Langmuir adsorption isotherm) or accounted on average (e.g. Frumkin, Temkin 

adsorption isotherms), influencing the surface coverages. 

2.2.1.1.  Mathematical description 

     The general mathematical formulation of MF-MKM can be expressed as follows. 

Consider the arbitrary net heterocatalytic reaction with N reactants and M products:  

 
�𝜈𝜈𝑗𝑗𝑋𝑋𝑗𝑗

𝑁𝑁

𝑗𝑗=1

⇄ � 𝜈𝜈𝑗𝑗𝑋𝑋𝑗𝑗

𝑁𝑁+𝑀𝑀

𝑗𝑗=𝑁𝑁+1

 (2.25) 

     Where 𝑋𝑋𝑗𝑗,𝜈𝜈𝑗𝑗|𝑗𝑗=1,𝑁𝑁 / 𝑋𝑋𝑗𝑗,𝜈𝜈𝑗𝑗|𝑗𝑗=𝑁𝑁+1,𝑁𝑁+𝑀𝑀 are reactant/product species and the corresponding 

stoichiometric numbers. Assuming that 

• The reaction proceeds through L elementary steps including the surface adsorption 

and reactions via the Langmuir-Hinshelwood or Eley-Rideal mechanisms [99]. The 

elementary step may be repeated several times giving the same amount of identical 

rows in 𝛼𝛼. 

• There are W reaction intermediates, including the adsorbed reactants/products and 

free active sites available for the adsorption. 

     One can define the stoichiometric matrix (all values are integers): 
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𝛼𝛼 = �

𝛼𝛼11 … 𝛼𝛼1𝑁𝑁 … 𝛼𝛼1(𝑁𝑁+𝑀𝑀) … 𝛼𝛼1(𝑁𝑁+𝑀𝑀+𝑊𝑊)
… … … … … … …
𝛼𝛼𝐿𝐿1 … 𝛼𝛼𝐿𝐿𝐿𝐿 … 𝛼𝛼𝐿𝐿(𝑁𝑁+𝑀𝑀) … 𝛼𝛼𝐿𝐿(𝑁𝑁+𝑀𝑀+𝑊𝑊)

� (2.26) 

     Each ith row of the matrix represents the stoichiometric coefficients in the corresponding 

elementary step. In most cases, only a few species participate in each elementary step 

giving 𝛼𝛼𝑖𝑖𝑖𝑖 = 0 for others. 𝛼𝛼𝑖𝑖𝑖𝑖 < 0 if 𝑋𝑋𝑗𝑗 is a reactant for step i, 𝛼𝛼𝑖𝑖𝑖𝑖 > 0 if 𝑋𝑋𝑗𝑗 is a product for 

the ith step. For the elementary step attributed to the ith row of the matrix: 

 
� 𝛼𝛼𝑖𝑖𝑖𝑖𝑋𝑋𝑗𝑗

𝑁𝑁+𝑀𝑀+𝑊𝑊

𝑗𝑗=1
𝛼𝛼𝑖𝑖𝑖𝑖<0

⇄ � 𝛼𝛼𝑖𝑖𝑖𝑖𝑋𝑋𝑗𝑗

𝑁𝑁+𝑀𝑀+𝑊𝑊

𝑗𝑗=1
𝛼𝛼𝑖𝑖𝑖𝑖>0

 (2.27) 

The reaction rate can be expressed as follows: 

 𝑟𝑟𝑖𝑖 = 𝑟𝑟+𝑖𝑖 − 𝑟𝑟−𝑖𝑖 = 𝑘𝑘𝑖𝑖 � 𝑋𝑋�𝑗𝑗
|𝛼𝛼𝑖𝑖𝑖𝑖|

𝑁𝑁+𝑀𝑀+𝑊𝑊

𝑗𝑗=1
𝛼𝛼𝑖𝑖𝑖𝑖<0

− 𝑘𝑘−𝑖𝑖 � 𝑋𝑋�𝑗𝑗
|𝛼𝛼𝑖𝑖𝑖𝑖|

𝑁𝑁+𝑀𝑀+𝑊𝑊

𝑗𝑗=1
𝛼𝛼𝑖𝑖𝑖𝑖>0

 (2.28) 

     Here 𝑋𝑋�𝑗𝑗 is either surface or bulk activity 𝑎𝑎𝑗𝑗/molar concentration 𝑐𝑐𝑗𝑗{mol cm-3} in 

solution, partial pressure 𝑝𝑝𝑗𝑗
𝑝𝑝0

 {1} in a gas phase, or coverage on the surface 𝛳𝛳𝑗𝑗{1}, 𝛳𝛳𝑗𝑗𝜖𝜖[0, 1]. 

It depends on the experimental conditions and the suggested reaction mechanism. 𝑟𝑟+𝑖𝑖 / 𝑟𝑟−𝑖𝑖 

{mol s-1 per active site}are forward/backward reaction rates. 𝑘𝑘𝑖𝑖/𝑘𝑘−𝑖𝑖 are forward/backward 

rate constants. Their units are specified by 𝛼𝛼𝑖𝑖𝑖𝑖 and 𝑋𝑋�𝑗𝑗 to give correct units of 𝑟𝑟+𝑖𝑖/𝑟𝑟−𝑖𝑖. 

     For the elementary step, 𝑘𝑘𝑖𝑖 and 𝑘𝑘−𝑖𝑖 have Arrhenius form and are connected through the 

equilibrium constant 𝐾𝐾𝑖𝑖: 

𝑘𝑘−𝑖𝑖 =  
𝑘𝑘𝑖𝑖
𝐾𝐾𝑖𝑖

 (2.29) 

     Defining the 𝑋𝑋0�  as the equilibrium surface activities/bulk activities/partial 

pressures/surface coverages: 

 𝑟𝑟𝑖𝑖�𝑋𝑋0�� = 0, 𝑖𝑖𝑖𝑖[1, 𝐿𝐿] (2.30) 

     One can express 𝐾𝐾𝑖𝑖 as follows: 
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𝐾𝐾𝑖𝑖 = � 𝑋𝑋0�𝑗𝑗

−|𝛼𝛼𝑖𝑖𝑖𝑖|
𝑁𝑁+𝑀𝑀+𝑊𝑊

𝑗𝑗=1
𝛼𝛼𝑖𝑖𝑖𝑖<0

� 𝑋𝑋0�𝑗𝑗
|𝛼𝛼𝑖𝑖𝑖𝑖|

𝑁𝑁+𝑀𝑀+𝑊𝑊

𝑗𝑗=1
𝛼𝛼𝑖𝑖𝑖𝑖>0

 (2.31) 

     The thermodynamic consistency implies that the unique non-trivial 𝑋𝑋0�  should exist to 

simultaneously provide the equilibrium for all elementary steps within the proposed 

reaction mechanism. 

     The stoichiometric matrix has the following properties: 

• In the absence of surface poisoning effects, the number of surface active sites is 

conserved, all reaction intermediates form products to satisfy the net reaction 

(stoichiometric consistency): 

 
� 𝛼𝛼𝑖𝑖𝑖𝑖

𝐿𝐿

𝑖𝑖=1
𝑗𝑗𝑗𝑗[𝑁𝑁+𝑀𝑀+1,𝑁𝑁+𝑀𝑀+𝑊𝑊]

= 0 (2.32) 

• For the inert species, irreversibly adsorbed on the active sites under the 

experimental conditions, that do not participate in the reaction but reduce the 

number of active sites available for adsorption: 

 𝛼𝛼𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖𝑖𝑖[1, 𝐿𝐿],𝑋𝑋𝑗𝑗 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (2.33) 

• The proposed reaction elementary steps should be consistent with the net reaction 

in terms of products and reactants: 

 
� 𝛼𝛼𝑖𝑖𝑖𝑖

𝐿𝐿

𝑖𝑖=1
𝑗𝑗𝑗𝑗[1,𝑁𝑁+𝑀𝑀]

= 𝜈𝜈𝑗𝑗 (2.34) 

     The system of mass-balance equations to be solved to calculate the transients 𝑋𝑋𝚥𝚥� (𝑡𝑡) can 

be formulated as follows: 

 
𝑑𝑑𝑋𝑋�𝑗𝑗
𝑑𝑑𝑑𝑑

= 𝐴𝐴𝑋𝑋�𝑗𝑗�𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖

𝐿𝐿

𝑖𝑖=1

+ 𝐵𝐵𝑋𝑋�𝑗𝑗(𝐹𝐹𝑗𝑗
𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜) (2.35) 

     Here, 𝐴𝐴𝑋𝑋�𝑗𝑗, 𝐵𝐵𝑋𝑋�𝑗𝑗 are coefficients whose dimensionality depends on the 𝑋𝑋𝚥𝚥�  and 

experimental design. 𝐹𝐹𝑗𝑗𝑖𝑖𝑖𝑖,  𝐹𝐹𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜 {mol s-1} are respectively input and output flows of the jth 
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species, reflecting the transport effects. Generally, the 𝑋𝑋𝚥𝚥� , 𝐹𝐹𝑗𝑗𝑖𝑖𝑖𝑖,  𝐹𝐹𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜 also depend on the 

space coordinates and corresponding partial derivatives (e.g. diffusion due to concentration 

gradients). The corresponding system of partial differential equations, which is to be added 

to the (2.35) (e.g. based on Navier-Stokes and Nernst-Plank equations), does not have an 

analytical solution in the general form [83], [100]. This makes it necessary either to use the 

advanced methods from computational fluid dynamics (CMD) [101] or to employ the 

special experimental setup, which enables simpler mathematical treatment. 

     The numerical/analytical solution for the system of ordinary differential equations 

(ODE) or partial differential equations (PDE) (2.35) provides the 𝑋𝑋𝚥𝚥� (𝑡𝑡), which is fitted to 

the available experimental data by the independent model parameters. One should select 

the model parameter as the independent one if it cannot be estimated based on the theory 

and available experimental data. Typically, some of 𝑘𝑘𝑖𝑖 and 𝑘𝑘−𝑖𝑖 are selected as the 

independent model parameters, while the active sites surface densities, kinematic 

viscosities, and diffusion coefficients in the solution are estimated.  

As the simplest case, if 𝑋𝑋𝚥𝚥� is a molar concentration in the ideal batch reactor, then 

 𝐴𝐴𝑋𝑋�𝑗𝑗 =
𝑆𝑆𝑅𝑅
𝑉𝑉𝑅𝑅

,𝐵𝐵𝑋𝑋�𝑗𝑗 =
1
𝑉𝑉𝑅𝑅

,𝐹𝐹𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐹𝐹𝑗𝑗𝑖𝑖𝑖𝑖 = 0 (2.36) 

     Where 𝑉𝑉𝑅𝑅 {cm3} is the volume of an ideal batch reactor, 𝑆𝑆𝑅𝑅 {mol} – the number of 

active sites in the reactor. The detailed mathematical description of easier to implement but 

more complex to describe adiabatic and isothermal plug-flow reactors (PFR) and 

continuous-flow stirred tank reactor (CSTR) can be found in the excellent review by P. 

Stoltze [102]. 

     The solution of (2.35) is a complicated procedure that should be simplified by the 

introduction of physically meaningful constraints to reduce the number of mass-balance 

equations for reaction species and independent model parameters. These may include the 

conservation of active sites, thermodynamic consistency through the known equilibrium 

constants, additional restrictions provided by the experimental design (e.g. energy balance 

in adiabatic PFR [102]), the combination of transition state theory (TST) with ab initio 

simulations, and appropriate approximations for the reaction mechanism. 
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2.2.1.2. Approximations 

• Steady-state approximation 

     If the experimental setup operates in a steady-state regime, where the net rate of 

formation of all reaction intermediates is zero, then their transient behavior can be 

eliminated. This simplifies the further simulations as the corresponding ODEs are reduced 

to the system of algebraic equations (the situation is more complicated for PDEs). 

 
𝑑𝑑𝑋𝑋�𝑗𝑗
𝑑𝑑𝑑𝑑

= 𝐴𝐴𝑋𝑋�𝑗𝑗�𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖

𝐿𝐿

𝑖𝑖=1

+ 𝐵𝐵𝑋𝑋�𝑗𝑗(𝐹𝐹𝑗𝑗
𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜) = 0,   𝑗𝑗𝑗𝑗[𝑁𝑁 + 𝑀𝑀 + 1,𝑁𝑁 + 𝑀𝑀 + 𝑊𝑊] (2.37) 

     This approximation does not imply that 𝑋𝑋�𝑗𝑗 is small. 

• Quasi-equilibrium approximation 

     If the reaction step is fast compared to the ones which determine the net reaction rate, 

then it is assumed to be in equilibrium. Therefore, the corresponding equilibrium equation 

can be used (2.29) to eliminate either forward or backward rate constant as a model 

parameter. Quasi-equilibrium approximation is often applied to all but one step, assuming 

that the latter one is governing the net reaction rate. This approximation is known as the 

RDS approximation. It provides great simplification and enables the analytical treatment 

of a model under study. However, the information on the change in RDS and transient 

behavior is lost. 

• Irreversible step approximation 

     If the reaction step is far from equilibrium, then the forward or backward rate is 

negligible and can be approximated to be zero. This is a rather rough approximation, that 

cannot be used to describe the reaction near the equilibrium. 

 𝑟𝑟+𝑖𝑖 ≪ 𝑟𝑟−𝑖𝑖 → 𝑟𝑟+𝑖𝑖 ≈ 0
𝑟𝑟+𝑖𝑖 ≫ 𝑟𝑟−𝑖𝑖 → 𝑟𝑟−𝑖𝑖 ≈ 0 (2.38) 

• MARI 

     The most-abundant reaction intermediate (MARI) approximation implies that the most 

stable reaction intermediate 𝐴𝐴∗ is dominating in the active site's balance, and the 

contributions of less-abundant reaction intermediates can be neglected: 
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 𝜃𝜃∗ + 𝜃𝜃𝐴𝐴∗ ≈ 1 (2.39) 

• Almost-empty surface approximation 

     This further approximation implies that surface coverage by all reaction intermediates 

is negligible compared to the free active sites. Hence, 

 𝜃𝜃∗ ≈ 1 (2.40) 

     This approximation cannot be used to provide insights about the effects of surface 

coverage on the reaction kinetics. 

2.2.1.3. Charge-transfer step description  

     Consider the elementary step that involves the electron transfer (ET) on the electrode-

electrolyte interface 

 𝑋𝑋𝑂𝑂 + 𝑛𝑛𝑒𝑒− ⇄ 𝑋𝑋𝑅𝑅 (2.41) 

     The simultaneous transfer of multiple electrons in one elementary step is a statistically 

unlikely event, so it is usually assumed that 𝑛𝑛 = 1 for the elementary ET step. The kinetics 

of the ET step can be also described by the rate equation considering the dependence of the 

activation energies in the Arrhenius-like formula for forward/backward rate constants on 

the potential difference across the interface. Assuming that the electric potential is constant 

in the solution bulk and changes only in the vicinity of an electrode, the Butler-Volmer 

formalism can be used to incorporate the dependence of activation energy on the applied 

potential: 

 𝑟𝑟𝐶𝐶𝐶𝐶 = 𝑘𝑘𝐶𝐶𝐶𝐶𝑋𝑋𝑂𝑂�exp 
−𝛼𝛼𝛼𝛼𝛼𝛼(𝐸𝐸 − 𝐸𝐸𝑒𝑒𝑒𝑒)

𝑅𝑅𝑅𝑅
− 𝑘𝑘−𝐶𝐶𝐶𝐶𝑋𝑋𝑂𝑂�𝑒𝑒𝑒𝑒𝑒𝑒

(1 − 𝛼𝛼)𝑛𝑛𝑛𝑛(𝐸𝐸 − 𝐸𝐸𝑒𝑒𝑒𝑒)
𝑅𝑅𝑅𝑅

 (2.42) 

     Here 𝑘𝑘𝐶𝐶𝐶𝐶/ 𝑘𝑘−𝐶𝐶𝐶𝐶 are forward/backward rate constants at standard conditions, 𝛼𝛼 ∈

[0,1],𝛼𝛼 ≈ 0.5 – cathodic transfer coefficient, 𝐹𝐹 – Faraday constants, 𝑇𝑇 – temperature, 𝑅𝑅 – 

universal gas constant, 𝐸𝐸 - applied potential vs. reference electrode, 𝐸𝐸𝑒𝑒𝑒𝑒- equilibrium 

potential. 𝐸𝐸𝑒𝑒𝑒𝑒 can be calculated for the reaction conditions from the Nernst equation for the 

(2.42) in equilibrium: 

 𝐸𝐸𝑒𝑒𝑒𝑒 = 𝐸𝐸0′ +
𝑅𝑅𝑅𝑅
𝑛𝑛𝑛𝑛

𝑙𝑙𝑙𝑙
𝑋𝑋𝑂𝑂�

𝑋𝑋𝑅𝑅�
 (2.43) 
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     𝐸𝐸0′  – is equilibrium potential at standard conditions. The same approximations 

described above can be applied for the chemical-electrochemical reaction mechanism. The 

key difference is that for the effective steps which include several elementary ET steps the 

dependence of the activation energy on the applied potential is determined by the position 

of RDS within the quasi-equilibrium approximation. Accurate derivation can be found 

elsewhere [103]. Briefly, if n-electron RDS repeated ν times with 𝛾⃗𝛾/𝛾⃖𝛾 electrons transferred 

before/after the RDS within the reaction steps in quasi-equilibrium, then the cathodic 𝛼⃗𝛼 

and anodic 𝛼⃖𝛼 transfer coefficients will be different and equal to: 

 𝛼⃗𝛼 =

⎣
⎢
⎢
⎢
⎡1
𝑛𝑛
�
𝛾⃗𝛾
ν

+ 𝑛𝑛 𝛼𝛼� ,𝑛𝑛 > 0

𝛾⃗𝛾
ν

,𝑛𝑛 = 0
 (2.44) 

 𝛼⃖𝛼 =

⎣
⎢
⎢
⎢
⎡1
𝑛𝑛
�−

𝛾⃖𝛾
ν

+ 𝑛𝑛 𝛼𝛼� ,𝑛𝑛 > 0

1 −
𝛾⃖𝛾
ν

, 𝑛𝑛 = 0
 (2.45) 

2.2.1.4. Simulation of a rotating ring-disk electrode 

     The rotating ring-disk electrode experiment provides known reproducible mass-transfer 

conditions. The corresponding solution of Navier-Stokes and convective-diffusion 

equations with the appropriate boundary conditions were derived by Levich [100] and 

provided the concentration gradients for the reacting species in the vicinity of the electrode 

surface. 

 �
𝜕𝜕𝑐𝑐𝑗𝑗
𝜕𝜕𝜕𝜕
�
𝑥𝑥=0

=
𝑐𝑐𝑗𝑗 − 𝑐𝑐𝑗𝑗∗

𝛿𝛿𝑗𝑗
  (2.46) 

     Here, 𝑐𝑐𝑗𝑗 and 𝑐𝑐𝑗𝑗∗ are molar concentrations of the jth species on the vicinity of electrode 

and in the solution bulk, respectively; 𝛿𝛿𝑗𝑗 is the diffusion layer thickness. The latter is 

estimated as follows: 

 𝛿𝛿𝑗𝑗 = 1.61𝐷𝐷𝑖𝑖
1/3𝜔𝜔1/2𝜈𝜈1/6 (2.47) 
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     𝐷𝐷𝑗𝑗  {cm2 s-1} – diffusion coefficient of the jth species in the solution, 𝜔𝜔 {rad s-1} – 

electrode rotation rate, and 𝜈𝜈{cm2 s-1} – kinematic viscosity. 

     So the great simplification of the mass balance equations (2.35) is provided. For the 

reaction species adsorbed on the surface, 𝐹𝐹𝑗𝑗𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜 = 0. Hence, the corresponding mass-

balance equation can be depicted as follows: 

 
𝑑𝑑𝛳𝛳�𝑗𝑗
𝑑𝑑𝑑𝑑

= �𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖

𝐿𝐿

𝑖𝑖=1

 (2.48) 

     For the surface concentrations, the mass-balance equation can be derived under the 

assumption of a linear concentration profile in the diffusion layer: 

 
𝑑𝑑𝑐𝑐𝑗𝑗
𝑑𝑑𝑑𝑑

=
2
𝛿𝛿𝑗𝑗
�𝛤𝛤𝑖𝑖𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖

𝐿𝐿

𝑖𝑖=1

+
2𝐷𝐷𝑗𝑗
𝛿𝛿𝑗𝑗2

�𝑐𝑐𝑗𝑗∗ − 𝑐𝑐𝑗𝑗� (2.49) 

     Here, 𝛤𝛤𝑖𝑖 {mol cm-2} is an active site surface density for the ith reaction step which occurs 

on the electrode surface. One can find the detailed derivation of (2.49) in the paper of 

M.T.M. Koper and J. H. Sluyters [104]. 

     The charge transfer steps make the right part of the ODEs system (2.48), (2.49) non-

autonomous since the applied potential on the electrode is typically dependent on time in 

RDE experimental design. For the linear sweep, the applied potential should be substituted 

by 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑣𝑣𝑣𝑣/𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑣𝑣𝑣𝑣 for anodic/cathodic scan. Here, 𝑣𝑣 {V/s} is the scan rate and 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 {V} is starting potential. One can exclude the time dependence of the right part of 

the ODEs system by an addition of the following ODE: 

 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑣𝑣, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝑣𝑣, 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (2.50) 

     The current, which is recorded vs. applied potential in the RDE experiment, can be 

calculated from the solution 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠� (𝑡𝑡),  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) of ODEs (2.48), (2.49), (2.50): 

 𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑( 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)) = 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑁𝑁𝑖𝑖𝑒𝑒𝐹𝐹𝛤𝛤𝑖𝑖𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖(𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠� (𝑡𝑡),  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡))
𝐿𝐿

𝑖𝑖=1

 (2.51) 
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     Here, 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 {cm2} – area of the disk electrode, 𝑁𝑁𝑖𝑖𝑒𝑒{1} – number of transferred electrons 

in charge-transfer steps on the vicinity of the electrode (zero for the chemical steps). 

     The ring currents can be easily computed from the known mass-transfer of the reaction 

intermediates from the disk electrode and analytically or experimentally determined 

collection efficiency. 

2.2.1.5. History and applications 

     MF-MKM was extensively used as a part of the microkinetic analysis. The term 

“microkinetic analysis” is equivalent to the multiscale modeling approach. It was evolved 

in the pioneering works of P. Stoltze and K. Norskov on the high-pressure ammonia 

synthesis reaction [105]–[108], followed by the water-gas shift reaction study [109], and 

other applications [110], [111]. The steady-state transients of partial pressures and surface 

coverages along the PFR were simulated numerically using the MF-MKM. The studied 

reaction mechanisms have numerous reaction steps, corresponding model parameters, and 

variables (Table 2.2). The main point of these works is that all model parameters were 

estimated from the experiments on single-crystals in UHV, underlying theory, and TST. 

These estimates were then extrapolated to the working conditions of commercial PFRs by 

the adjustment of temperature and pressures. It was done within the assumption that in the 

gas phase the change in the latter does not significantly change the reaction mechanism 

and rate constants on the single active site. Since a sufficient experimental dataset is 

generally unavailable for accurate determination of surface kinetic and thermodynamic 

parameters, rough estimations of model parameters are typically made. In most cases, the 

obtained set of model parameters should be further adjusted to reproduce available 

experimental data. For example, in the works of J. Dumesic group on reactions of n-Hexane 

on Pt and methanol on H-ZSM-5 zeolite [112] and ethane hydrogenolysis [113], the 

unknown model parameters were roughly estimated through TST, heats of formation of 

reaction intermediates in a gas phase, experiment fitting, and known surface bonding 

strengths. In the more recent works [114]–[117], additional experimental insights and/or 

DFT calculations for model parameters provided better agreement of the microkinetic 

model with experimental data.  
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Table 2.2  Details of MF-MKM simulations 

Reaction under 
study 

Experimental setup Catalyst Nreaction steps / 
 Nvariables / 

 Nmodel parameters/ 
Nestimated model parameters  

Approximations  Ref. 

Ammonia 
synthesis 

PFR, gas phase Topsoe KMIR (K-
doped Fe) 

7/3/9/9 
8/4/10/10 for O-
poisoning study 

Steady-state, 
 1 RDS, 

no adsorbate-adsorbate 
interactions, 

ƟN2≈0 

[105]–
[108] 

Water gas shift 
reaction 

PFR, gas phase Cu 
 

8/8/12/12 Steady-state, 3 RDS, 
no adsorbate-adsorbate 

interactions, 
 

[109] 

Ethylene 
oxidation 

PFR, gas phase Ag 17/20/35/35 Steady-state, no 
adsorbate-adsorbate 

interactions 

[111] 

Reactions of n-
Hexane  

PFR, gas phase Pt 17/19/35/32 Steady-state, no 
adsorbate-adsorbate 
interactions, CSTR 

approximation 

[112] 

Reactions of 
Methanol 

PFR, gas phase H-ZSM-5 Zeolite 27/22/55/52 Steady-state, no 
adsorbate-adsorbate 
interactions, CSTR 

approximation 

[112] 

Ethane 
Hydrogenolysis 

PFR, gas phase Pt, Pd, Ir, Co 8/10/12/7 Steady-state,  
no adsorbate-adsorbate 

interactions, CSTR 
approximation 

[113] 

Methane Partial 
Oxidation 

PFR, gas phase Si-supported 
MoO3 and V2O5 

12/15/24/24 Steady-state,  
no adsorbate-adsorbate 

interactions, CSTR 
approximation, 

steps 1-4 in quasi-
equilibrium 

[114] 

Water gas shift 
reaction 

Fixed bed reactor, 
gas phase 

Cu 8/10/17/17 Steady-state,  
no adsorbate-adsorbate 

interactions, CSTR, PFR 
approximations 

[115], 
[117] 

ORR/OER  RRDE Pt/VACNFacidic 
media, 

LCO/C alkaline 
media,  

Mn-oxides/C, 
Fe/N/C acidic 

media 

6/7/21/10 – 
10/8/30/10, 
8/8/26/10, 
3/3/13/9 

 

Steady-state 
approximation, no 

adsorbate-adsorbate 
interactions, linear 

concentration profile in 
diffusion layer, equally 
accessible active sites 
Almost empty surface 
approximation in the 

work [20] 

[20], 
[36], 
[73], 
[79], 
[118] 

ORR/OER – 
RRDE 

 

IrO2, RuO2, RhO2, 
PtO2 acidic media, 

Pt(111) acidic 
media, 

 

6/0/7/7 
12/10/37/37. 

 

Steady-state 
approximation, no 

adsorbate-adsorbate 
interactions, linear 

concentration profile in 
diffusion layer, equally 
accessible active sites, 

RDS in [119] 

[119], 
[120] 
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     The MF-MKM models are also used to elucidate the reaction mechanism of 

heterogeneous electrochemical reactions. One can subdivide the common frameworks with 

MF-MKM into the three types considering the ORR/OER as the example. 

     1. The analysis of Tafel slopes within the suggested reaction mechanism (Shinagawa et 

al., Mefford et al.). [121], [122] The corresponding microkinetic model is solved 

analytically using the RDS approximation for each reaction step. The values of rate 

constants are not important but should be consistent with the RDS approximations. Mass-

transfer effects are neglected. A comparison of calculated and experimental Tafel slopes 

provides insights on the nature of the RDS. The ambiguous match of the Tafel slope and 

RDS introduces the uncertainty in this qualitative approach. 

     2. Fitting of the experimental data (Bonnefont et al., Jaouen et al., Mefford et al.) [20], 

[37], [68], [79], [118], [122], [123]. RRDE experiment is typically used as a common setup 

to extract the reaction kinetics on the solid-liquid interface. The parameters, which describe 

mass-transport on the vicinity of the electrode (diffusion coefficients, kinematic viscosity, 

bulk concentrations, electrode rotation rate) are estimated from the experiments. Active 

sites surface densities are usually estimated from BET/BJH, SEM, TEM, XPS. The fitted 

model parameters (rate constants and transfer coefficients) should semi-quantitatively 

reproduce all experimental data under varying experimental conditions and have 

physically-reasonable values. The set of optimized model parameters is used to gain 

insights into the reaction mechanism. The influence of their variation near the optimal 

values on the reaction kinetics is used as a guide for the further catalyst search. The 

uncertainty of the optimal model parameters should be estimated because this is the inverse 

problem. 

     3. The experiment is simulated with the microkinetic model parameters, which are 

calculated on the molecular level (Norskov et. al) [119], [120]. The complex nature of the 

effects on the solid-liquid interface and insufficient experimental data requires advanced 

simulation techniques. Typically, DFT (periodic and local basis) with MD is used to 

compute the free energy diagrams (including the transition states) for the reaction. The rate 

constants are further calculated using TST. The significant solvent, electrostatic-field, and 



42 

  

surface coverage effects should be directly treated by such calculations in order to 

accurately estimate the rate constants under the working conditions. Because of the 

methodological and technical complications (especially for ET steps), rough 

approximations are typically used (BEP, linear scaling relations) to estimate the activation 

energies bringing the errors to the computed model parameters. 

2.2.2. Density functional theory 

     The study of the reaction mechanism on the molecular level requires the solution of the 

Schrodinger equation. The wavefunctions for the N-electron system are 3N dimensional. 

The electrode surface reactions require big molecular ensembles to correctly describe the 

catalyst surface, solvent effects, and reaction under study. Therefore, the dimensionality of 

the problem should be reduced in order to study the ORR on the molecular level. The ab 

initio methods are preferred as they do not depend on the experimental data comparing 

with semiempirical methods. Therefore, they can be applied to the study of unknown 

reaction mechanisms avoiding the errors from the inadequate parametrization from 

available experimental data [124]. 

     The state of the art ab initio method, extensively used in electrocatalysis, is the density 

DFT. It provides highly reduced computational efforts that enable the simulation of the 

surface reactions. DFT is the method of electronic structure calculations within the Born-

Oppenheimer approximation [125]. It numerically evaluates the electronic ground state for 

the chosen molecular system. DFT is based on the first principle of quantum mechanics, 

thereby called an ab initio technique in case of employed non-empirical functional. The 

computational cost is significantly decreased due to the use of 3-dimensional electronic 

density instead of 3N-dimensional wave functions. This transition is possible due to the 

Hohenberg and Kohn theorem [126], which shows that the ground state energy is the 

unique functional of the electronic density. The exact form of functional is unknown, so 

many approximate expressions are provided. They usually give an accuracy of 5-10% for 

the computed ground state energy, which is sufficient for the surface reaction simulations. 
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In practice, electronic density is calculated from one-electron wave functions using the 

Kohn-Sham equations [127] (2.52): 

 �
ℎ2

2𝑚𝑚
∇2 + 𝑉𝑉(𝑟𝑟) + 𝑉𝑉𝐻𝐻(𝑟𝑟) + 𝑉𝑉𝑋𝑋𝑋𝑋(𝑟𝑟)�𝜓𝜓𝑖𝑖(𝑟𝑟) = 𝜀𝜀𝑖𝑖𝜓𝜓𝑖𝑖(𝑟𝑟) (2.52) 

     The terms in brackets define, in order, kinetic energy, interaction energy between each 

electron and the collection of the atomic nuclei, Hartree potential (Coulomb repulsion 

between the electron and the total electron density), and the exchange and correlation 

contributions to the one-electron equation. Usually, the core electrons are implicitly treated 

via the pseudopotentials[128]–[130], as their explicit simulation will not considerably 

affect the computed physical/chemical quantities. The DFT-based approximate solution of 

the time-dependent Schrodinger equation can be also obtained using the ab initio molecular 

dynamics [131].  

     Various functionals were developed for 𝑉𝑉𝑋𝑋𝑋𝑋(𝑟𝑟). The simplest ones are based on the local 

density approximation (LDA). The exchange-correlation potential is treated as the 

exchange-correlation potential of the spatially uniform electron gas. The latter has the same 

density as the local electron density. The next level of the 𝑉𝑉𝑋𝑋𝑋𝑋 treatment is the generalized 

gradient approximation (GGA). It approximates nonuniformity of the electron density by 

including the dependence of the 𝑉𝑉𝑋𝑋𝑋𝑋 on the electron density gradient. The two most popular 

nonempirical GGA functionals are Perdew-Wang 91 (PW91) [132] and Perdew-Burke-

Ernzerhof (PBE) [133]. The latter showed good accuracy for the estimation of the binding 

energies. Its improved version is called Revised Perdew-Burke-Ernzerhof (RPBE). It 

provides even better accuracy for the computed binding energies [134], thus being 

preferable for the surface reaction studies. 

     The surfaces and even nanoparticles are very large from the atomistic point of view. 

There are two general approaches to their simulation. The first approach is to model the 

surface by the small cluster of atoms, using the localized basis set. However, affordable for 

calculations size of these clusters are much smaller than the size of the actual nanoparticles. 

The second one is based on surface modeling as a slab, using a supercell, periodic in three 
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dimensions with applied periodic boundary conditions. These systems are typically 

simulated using the plane wave (PW) basis sets. 

2.2.2.1. The aspects of DFT study of ORR mechanism 

     The periodic supercell approach is preferred to study the ORR as it gives better 

quantitative results in binding energies and can be used to simulate the reaction on the 

realistic liquid-solid interfaces. The ORR electron transfer steps require the direct 

simulation of the charged surfaces, which is hampered by the periodic charge imaging 

effects. Additionally, the applied potential (U) on the liquid-solid interface should be 

accounted for. In the first approximation, these problems were addressed by the 

computational hydrogen electrode model (CHE) [9]. CHE provides pH and U corrections 

from the equilibrium of half-reaction (2.53), which by definition has the potential of 0 V 

at 1atm H2 and 1M H+ solution. 

 1
2
𝐻𝐻2(𝑔𝑔) →⃖��� 𝐻𝐻+ + 𝑒𝑒− (2.53) 

     The free energy diagram for the ORR mechanism is calculated from the DFT binding 

energies of reaction intermediates (with zero-point energy and entropic corrections) and a 

sequence of chemical and electrochemical steps (H++e-, OH--e-)[135], which conserves the 

neutral charge of the periodic slab. The relevant surface coverage is estimated from the 

computed surface Pourbaix diagram [136] (see Figure 2.3). 

 
Figure 2.3  Computed surface Pourbaix diagram for Pt (111) [136]. 
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     The solvent layers can be explicitly added [137], [138] to study its effect on the ORR 

free energy diagram. It was shown to be significant. For example, the ORR reaction 

intermediates on Pt (111) namely the OHads, OOHads, Oads, Hads are stabilized ca. ~0.6, ~0.6, 

~0.1, ~0.1 eV respectively [139], [140]. The CHE cannot be used to compute the activation 

barriers for electrochemical steps. The empirically observed Brønsted–Evans–Polanyi 

(BEP) principle [141] is used instead. It suggests the linear correlation between the Gibbs 

free energy change and the activation barrier of the reaction step. This assumption also 

introduces the additional degree of uncertainty in the estimated activation energies. The 

RDS definition is then replaced by potential determining step (PDS) for the electron 

transfer step with the highest Gibbs free energy change. 

     Despite the various limitations incorporated into the thermodynamic DFT approach, it 

was successfully applied for the ORR study. The observed linear scaling relations between 

the free energies of adsorption of ORR intermediates [87], [142], together with electronic 

structure descriptors/free energy of adsorption correlations [72], [143], led to the 

development of the volcano plot [9], [72] (See Figure 2.4), which was used for the catalyst 

optimization. 
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Figure 2.4  ORR volcano plot [72]. 

 

     The detailed DFT study of the ORR kinetics and mechanisms with electron transfer 

steps requires the methods beyond the thermodynamic approach. This calls for the 

simulation of the reactions at the constant potential, but not at the constant charge. 

Additionally, the solvent effects should be accurately estimated. Extensive research has 

been targeted at these challenges. Models based on implicit solvent with countercharge 

placed in the conductor [144], [145] or in the localized planar region [146] near the 

electrode surface, homogeneous background charge [147], and supercell-size extrapolation 

[148], [149] were proposed to simulate charged surfaces, but each have their own 

limitations [148], [149]. Significant progress in both explicit and implicit continuum 

solvent models has been achieved. The following comprehensive review provides details 

[150]. However, the remaining challenges make solvent models difficult for the off-the-

shelf implementation to study the ORR kinetics. Therefore, the accurate DFT-level of study 

of the ORR kinetics is far from being achievable and is a matter of further research. 
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     The uncertainty in DFT-based predictions may arise from different sources such as the 

level of details in solvent simulations [151], the choice of the exchange-correlation 

functional [152], and core electron treatment [153]. It was shown that the irreducible 

uncertainty in the ORR reaction intermediates binding energies is ca. 0.2 eV [154]. One 

can see the uncertainties in bonding energies computed by various DFT software with 

different exchange-correlation functionals and pseudopotentials in Figure 2.5. 

 
Figure 2.5  Adsorption energies of OHads and OOHads as a function of adsorption energies 

of Oads on RuO2 and IrO2. Grey area covers a range of ±0.2eV [153] 

 

     Considering the thermodynamic approach, one can calculate the equilibrium constants 

for the reaction steps to eliminate either forward or backward rate constant. However, the 

uncertainty of 0.2 eV in relative bonding energies will cause an uncertainty of ~104 in the 

fixed rate constant value at room temperature estimated from Arrhenius-type dependence. 

The DFT-based kinetics study of electrochemical reactions is even more complicated. One 

can hardly expect that state of the art methods can provide lower uncertainties for the single 
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rate constants. Therefore, the thermodynamic DFT approach can be useful for comparative 

catalyst analysis for the ORR, but its results should be compared in a quantitative or a 

qualitative way with experimental data through the mesoscale simulations due to the high 

inherent uncertainties. Ideally, all sources of uncertainty should be quantified and used to 

refine the reaction mechanism, guide the further ab initio simulations/development of 

methods, and experimental studies. 

2.2.3.Uncertainty quantification 

2.2.3.1. Uncertainty sources classification 

     There are many sources and types of uncertainties unavoidably introduced within the 

multiscale modeling approach from both experimental and modeling sides. According to 

Oberkampf and Roy [155], one can distinguish the aleatory and epistemic types of 

uncertainties. The first one is the uncertainty introduced by the inherent randomness and 

thus is irreducible, making it necessary to quantify. The second one is attributed to a lack 

of knowledge. It represents the bias between our understanding and the actual physical 

nature of the process under study. In principle, it can be minimized. 

As the models are the central part of the multiscale modeling approach, one needs to 

classify the sources of uncertainties within them to elucidate the limitations they introduce. 

One of the classification patterns can be represented as follows [155], [156]: 

1. Model input uncertainty 

     This refers to the uncertainty of the data, which was used to build up the model. It can 

be further subdivided to the parameter and experimental uncertainties: 

o Parameter uncertainty 

     This is the uncertainty in the input model parameters, which are estimated from 

additional experiments/calculations and used to perform the simulations (e.g. rate 

constants, bulk concentrations, diffusion coefficients, kinematic viscosity in MF-MKM). 

This uncertainty and its influence on the output of the model are usually neglected. 

However, the lower bound for the uncertainty of some model parameters may be estimated 
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from the chemical accuracy of thermochemical quantities (~1 kcal/mol), which is the 

typical error in corresponding experiments. 

o Experimental uncertainty 

     This is the uncertainty of the experimental measurements, which the model aims to 

fit/reproduce (e.g. measured current and potentials values for voltammograms in RRDE 

experiment), or which are used to constrain the model (e.g. equilibrium potentials). Even 

in the absence of the systematic bias (e.g. originating from wrong experimental design), it 

always exists in experiments due to the combination of independent, random sources (e. g. 

variation in catalyst synthesis procedure, catalyst loadings in ORR RDE experiments, cHO2- 

in HPRR/HPOR experiments). In principle, it can be minimized by increasing the number 

of independent measurements and averaging according to the central limit theorem. Still, 

it is the time-consuming procedure in electrochemistry, so often triplicate measurements 

are carried out. Hence, this type of uncertainty is non-negligible and should be taken into 

account when drawing conclusions from the model. 

2. Model form uncertainty 

     This accounts for the uncertainty in assumptions and approximations used to construct 

the model. Usually, its minimization is of first priority in the multiscale modeling approach. 

One needs to use the model which describes the essential physics of the process in order to 

make use of the conclusions from it. But it should be first decoupled from the other sources 

of uncertainty in order to be elucidated. Model form uncertainty can be further divided into 

the structural and interpolation/extrapolation uncertainties.  

o Structural uncertainty 

     This is due to the lack of knowledge of the underlying physics. For example, the missing 

HO2
- desorption step in simulated ORR mechanism on perovskite composite materials may 

lead to the wrong ring currents provided by the model. Another example is that the 

microkinetic model with Langmuir adsorption isotherm for Pt in acidic media at low 

overpotentials would not be able to reproduce the experimental Tafel slopes [57]. 

o Interpolation and extrapolation uncertainty 
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     This refers to the lack of experiments in a required condition, so the results of the 

available experiments should be extrapolated/interpolated. This procedure also introduces 

uncertainty via the physical models required to accomplish it. One can consider the 

recalculation of rate constants using the Arrhenius-type equation in chemical kinetics as an 

example.  

     At some point, it may be also addressed to the parameter uncertainty. 

3. Numerical uncertainty 

     This is the uncertainty provided by the numerical simulation of the given physical 

problem. Typically, careful convergence tests make it negligible, compared to other 

sources of uncertainty. 

     Various methods are available for the solution of uncertainty quantification (UQ) 

problems, which are formulated and extensively studied for many practical applications, 

such as signal processing [157], structural reliability [158], oceanic oil-spill simulations 

[159], and kinetic modeling of combustion processes [156]. The models employed in the 

latter are similar to the microkinetic models but typically have a higher number of model 

parameters. Therefore, the UQ methods, commonly employed in this area, should be 

applicable to the MF-MKM. 

     UQ problems can be subdivided into the two types.  

2.2.3.2. Forward uncertainty propagation problem.  

     Given the uncertainties and values of model parameters, one needs to estimate the 

uncertainty they bring to the simulation of the experimental data. Its solution directs the 

research to refine the model parameters which most influence the accuracy of the model. 

After that, the model form uncertainty can be reduced via the analysis of its bias against 

the experimental data. This approach synergizes with the bottom-up multiscale modeling. 

The uncertainty propagates from the first-principles calculations to the mesoscale models 

trough the estimated model parameters. 

     The forward uncertainty propagation treatment for the ORR is of the scope of this work. 

However, one can find below a brief overview of the methods addressed to solve this 

problem.  
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1. Taylor series-based methods 

     The model prediction y is expressed as a Taylor expansion vs. the standardized 

stochastic model parameters x with prescribed uncertainty [156]. 

 𝑦𝑦 = 𝑦𝑦0 + 𝒈𝒈𝑇𝑇𝒙𝒙 + 𝒙𝒙𝑇𝑇𝑯𝑯𝑯𝑯 + ℎ. 𝑜𝑜. 𝑡𝑡 (2.54) 

     Here 𝒈𝒈 - is the gradient, 𝑯𝑯 – Hessian. The uncertainty of the y can be then recalculated 

from the uncertainties of x. However, this approach works fine only for the uncorrelated or 

perfectly correlated [160] model parameters.  

2. Polynomial chaos expansion 

     The polynomial chaos expansion (PCE) was developed by Wiener [161]. The 

polynomial chaos basis consists of the set of basis random variables ξ and basis 

polynomials ψ(ξ), which are orthogonal. In the case if ξ is a normal random variable with 

zero mean and unit variance, ψ(ξ) are Hermite polynomials. Various alternative bases exist 

[162]. The Taylor expansion is PCE with polynomial basis functions. According to the 

Cameron-Martin theorem [163], any random variable can be approximated with required 

precision by PCE with appropriate size P: 

 𝑦𝑦 = �𝑦𝑦𝑖𝑖𝜓𝜓𝑖𝑖(ξ)
𝑃𝑃

𝑖𝑖=0

 (2.55) 

3. High-dimensional model representation 

     It was introduced by Sobol [164] and found its application in chemical kinetics [165]. 

The model output is expressed as the set of the component functions and believed to better 

represent the model output than the Taylor series for an arbitrary function. 

 𝑦𝑦 = 𝑦𝑦0 + �𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=0

+ � � 𝑦𝑦𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗�
𝑛𝑛

𝑗𝑗=𝑖𝑖−1

𝑛𝑛−1

𝑖𝑖=1

+ ℎ. 𝑜𝑜. 𝑡𝑡. (2.56) 

     The detailed information on the practical application of this method can be found 

elsewhere [165]. 

4. Intrusive methods 

     The intrusive methods require the modification of the governing equations in order to 

enable the analytical treatment of uncertainty propagation. The common methods from this 
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class applied to chemical kinetics are stochastic spectral projection [166] and sensitivity-

analysis-based [167] methods, which provide the analytical calculations of coefficients in 

PCE and Taylor expansion respectively. 

5. Non-intrusive methods 

     These methods do not require the reconstruction of the governing equations. The 

representative non-intrusive methods are solution mapping [168], non-intrusive spectral 

projection [166], random-sample high-dimensional model representation [165], and 

Monte-Carlo integration [169]. 

2.2.3.3. Inverse uncertainty propagation problem 

     The model is fitted to the experimental data and its uncertainty by the model parameters 

within their uncertainty bounds. Ideally, this procedure should tighten the bounds for model 

parameters, given the sufficient experimental dataset. The model parameters which still 

have high uncertainty are to be selected for further study in the additional 

experiments/simulations. This uncertainty propagation problem collaborates with the top 

down multiscale modeling approach. The experimental uncertainty provides the initial 

structural and parameter uncertainty for the microkinetic model and directs the further ab 

initio studies. The problem is, that there will be never enough experimental data to fully 

invert the microkinetic models in electrochemistry for the complex multistep reactions. 

Therefore, the inverse problem may become ill-posed. Even small errors (i.e. uncertainty) 

in experimental data can cause many orders of magnitude uncertainty for the estimated 

model parameters. Only simplified but physically correct models can provide reasonably 

low bounds for the model parameters or their combinations. However, the state of the art 

ab initio methods also provide high uncertainty in estimated model parameters, which is 

discussed in the corresponding section. Therefore, the both uncertainty propagation 

problems should be combined in order to elucidate the ORR mechanism. 

     The inverse uncertainty propagation problems are studied using Bayesian methods 

[170]. Given the uncertain model parameters 𝒙𝒙 with assigned prior probability density 

function (PDF) 𝑝𝑝(𝒙𝒙) on accessible space 𝐾𝐾𝑛𝑛, experimental measurements 𝒚𝒚𝑜𝑜𝑜𝑜𝑜𝑜 with their 

uncertainty 𝝈𝝈𝑜𝑜𝑜𝑜𝑜𝑜, and the likelihood function 𝜋𝜋(𝒚𝒚𝑜𝑜𝑜𝑜𝑜𝑜,𝝈𝝈𝑜𝑜𝑜𝑜𝑜𝑜|𝒙𝒙), one needs to obtain posterior 
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PDF 𝑝𝑝∗(𝒙𝒙|𝒚𝒚𝑜𝑜𝑜𝑜𝑜𝑜,𝝈𝝈𝑜𝑜𝑜𝑜𝑜𝑜) for the model parameters. The likelihood represents the probability 

of the measured experimental data to be observed due to the given model parameters. The 

posterior PDF gives the probability of the set of model parameters to give the measured 

experimental data. It can be calculated using the well-known Bayes’ theorem: 

 𝑝𝑝∗(𝒙𝒙|𝒚𝒚𝑜𝑜𝑜𝑜𝑜𝑜,𝝈𝝈𝑜𝑜𝑜𝑜𝑜𝑜) =
𝑝𝑝(𝒙𝒙)𝜋𝜋(𝒚𝒚𝑜𝑜𝑜𝑜𝑜𝑜,𝝈𝝈𝑜𝑜𝑜𝑜𝑜𝑜|𝒙𝒙)

∫ 𝑝𝑝(𝒙𝒙)𝜋𝜋(𝒚𝒚𝑜𝑜𝑜𝑜𝑜𝑜,𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜|𝒙𝒙)𝑑𝑑𝒙𝒙𝐾𝐾𝑛𝑛

 (2.57) 

     The denominator is called evidence function. It ensures the normalization of the 

posterior PDF. Equation (2.57) is hard to evaluate. The following classes of methods are 

used to address this issue. 

1. Bayesian analysis 

     It requires the assumption in the form of prior and likelihood PDFs. [170] In some cases, 

e.g. if experimental measurements and model parameters are jointly normally distributed 

and independent, the posterior PDF can be analytically evaluated. Unfortunately, in the 

practical models, it is often hard to make such assumptions. Therefore, one needs to use 

the methods which do not directly incorporate them. 

2. Markov chain Monte Carlo methods 

      The Markov chain Monte Carlo (MCMC) methods are used to directly sample from 

posterior PDF. They generate the Markov chains, which have target distribution as their 

equilibrium distribution. The principles of MCMC sampling can be explained based on 

commonly used Metropolis algorithm [171]: 

a. Initialize the initial set of the model parameters 𝒙𝒙𝟎𝟎, chosen (e.g. by random) within 

the 𝐾𝐾𝑛𝑛 

b. Evaluate the 𝑝𝑝(𝒙𝒙𝟎𝟎)𝜋𝜋(𝒚𝒚𝑜𝑜𝑜𝑜𝑜𝑜,𝝈𝝈𝑜𝑜𝑜𝑜𝑜𝑜|𝒙𝒙𝟎𝟎) 

c. Propose the new model parameters 𝒙𝒙𝟏𝟏 from the symmetric distribution 𝑔𝑔(𝒙𝒙𝟏𝟏|𝒙𝒙𝟎𝟎) 

with the center in 𝒙𝒙𝟎𝟎 and evaluate 𝑝𝑝(𝒙𝒙𝟏𝟏)𝜋𝜋(𝒚𝒚𝑜𝑜𝑜𝑜𝑜𝑜,𝝈𝝈𝑜𝑜𝑜𝑜𝑜𝑜|𝒙𝒙𝟏𝟏) 

d. Accept the new model parameters with the probability of 

min (1, 𝑝𝑝(𝒙𝒙𝟏𝟏)𝜋𝜋�𝒚𝒚𝑜𝑜𝑜𝑜𝑜𝑜,𝝈𝝈𝑜𝑜𝑜𝑜𝑜𝑜|𝒙𝒙𝟏𝟏�
𝑝𝑝(𝒙𝒙𝟎𝟎)𝜋𝜋�𝒚𝒚𝑜𝑜𝑜𝑜𝑜𝑜,𝝈𝝈𝑜𝑜𝑜𝑜𝑜𝑜|𝒙𝒙𝟎𝟎�

). 

e.  Choose the accepted model parameters as the initial ones. 
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f. Repeat b.-e. until N sets of model parameters are generated. 

     The use of non-symmetric distribution for the selection of the next point of model 

parameters was later accounted for within the Metropolis-Hastings algorithm [172]. The 

MCMC methods require burn-in (i.e. discarding a certain number of first accepted samples 

to avoid outliers from the low probability region) to reach the equilibrium distribution, 

which is independent on the 𝒙𝒙𝟎𝟎 selection. Additionally, the 𝑔𝑔 should be selected to 

minimize both the rejection rate and correlation between the sets of accepted model 

parameters. The high dimensionality of model parameters space is also leading to the 

excessive computational costs to converge to the posterior PDF. These issues have been 

addressed by extensive studies over the last few decades [173]. Still, the MCMC methods 

are very computationally demanding. 

3. Data collaboration 

     These methods [174], [175] do not require the explicit PDF to solve (2.57). It is assumed 

that both 𝑝𝑝(𝒙𝒙) and 𝜋𝜋(𝒚𝒚𝑜𝑜𝑜𝑜𝑜𝑜,𝝈𝝈𝑜𝑜𝑜𝑜𝑜𝑜|𝒙𝒙) follow the interval distributions 𝐾𝐾𝑛𝑛 and 𝐷𝐷𝑛𝑛: {𝒚𝒚𝑜𝑜𝑜𝑜𝑜𝑜 −

𝝈𝝈𝑜𝑜𝑜𝑜𝑜𝑜 < 𝒚𝒚(𝒙𝒙) < 𝒚𝒚𝑜𝑜𝑜𝑜𝑜𝑜 + 𝝈𝝈𝑜𝑜𝑜𝑜𝑜𝑜} respectively. The bond intervals 𝐹𝐹𝑛𝑛 for model parameters 

are estimated as 𝐹𝐹𝑛𝑛 = 𝐾𝐾𝑛𝑛 ∩ 𝐷𝐷𝑛𝑛. 

     Due to the high dimensionality of the model parameter space, one needs to use the 

adaptive methods to reduce the computational cost for the estimation of 𝐷𝐷𝑛𝑛. One of the 

promising methods is the non-parametric tree-structured Parzen estimator (TPE) method 

[176]. It is successfully applied in machine learning as an active learning method for global 

optimization of model parameters in multiple object tracking [177], the acquisition of the 

potential energy surfaces by optimized machine learning models [178], and many other 

applications [179]. TPE is also advantageous for the excessive parameters space sampling 

because of its linear scaling both with the size of the dataset on preceding attempts during 

the optimization step and dimensionality of model parameters space [176], [180], [181]. 

2.2.4. Summary 

     In conclusion, the multiscale modeling approach is a powerful method to study the 

mechanism of complex heterogeneous electrochemical reactions. State of the art ab initio 



55 

  

numerical methods cannot be used to accurately describe the reaction kinetics due to the 

high inherent uncertainty of numerical methods and approximations. They still provide 

valuable insights from the comparative analysis of catalysts. Their combination with the 

macroscale simulations should provide better bounds on the proposed mechanism. At first 

approximation it can be achieved by semi-quantitative comparison. The more promising 

(and complicated) way to gain additional insights is to quantify all sources of uncertainty 

and its propagation within the multiscale modeling approach. The inverse uncertainty 

propagation problem solution is crucial to better couple the experiments with the ab initio 

simulation results through the macroscale models. The data collaboration methods are the 

most promising option for the initial assessment of the model parameters uncertainty since 

they do not make any assumptions on prior and likelihood PDFs. Their output may be 

further used as the input for the more computationally-demanding MCMC methods. One 

may then provide the accurate estimation of the posterior PDF and hence the uncertainty 

of the model parameters. 

2.3. Thesis outline 

     Chapter 3 is dedicated to the rationalization of the catalytic activity difference for the 

ORR between the most (Mn2O3) and the least active (MnOOH) oxides in alkaline media. 

The capability of the conventional ab initio thermodynamics approach to explain the 

experimentally observed difference is addressed. Combined with the complementary 

quantum chemical calculations of activation barriers and MF-MKM, the relevance of the 

outer-sphere ORR mechanism is elucidated. The obtained results call for the uncertainty 

quantification for all inherent sources in order to reliably determine whether the ORR 

proceeds by the inner or outer-sphere pathways. 

     Chapter 4 aims to elucidate the individual contributions of the carbon support and the 

perovskite oxide series La1-xSrxCoO3-δ (LSCO) in the ORR by MF-MKM to understand 

the required complexity of the overall ORR mechanistic pathway, which should be capable 

of explaining the synergistic effects in the carbon-supported perovskite composite systems. 
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     Chapter 5 shows the framework for the ORR mechanism selection using not only the 

precision of the experimental data fitting within the MF-MKM, but also the uncertainty 

quantification of the model parameters. CNTs are used as the model system since they 

require simpler ORR mechanisms to describe the ORR kinetics compared with TMO/C or 

Pt/C materials. 

     Chapter 6 aims to reduce the model form uncertainty for the ORR mechanism on CNTs 

by linking the microkinetic models, including the effective multi-electron transfer steps 

with the one-electron step mechanism within the RDS approximation. 

     Chapter 7 draws summaries and conclusions from Chapters 3-6. 
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 Multiscale Modeling for ORR Mechanism on Manganese Oxides 

      This chapter is based on the results reported in the publication [V. A. Nikitina, A. A. 

Kurilovich, A. Bonnefont, A. S. Ryabova, R. R. Nazmutdinov, E. R. Savinova, G. A. 

Tsirlina. ORR on Simple Manganese Oxides: Molecular-Level Factors Determining 

Reaction Mechanisms and Electrocatalytic Activity. J. Electrochem. Soc., 2018 Jan 

1;165(15): J3199-208.]. The work is dedicated to the elucidation of the nature of the ORR 

elementary steps catalyzed by Mn oxides and the origin of the structure sensitivity. The 

Mn2O3 and MnOOH samples are used to refine the ORR mechanism with respect to the 

TMO component due to the pronounced difference in the ORR and HPRR and the 

availability of high-quality experimental data. The ORR RRDE experimental data with a 

number of complementary computational approaches were used to get the information on 

the surface composition and structure of the most (α-Mn2O3) and the least (γ-MnOOH) 

active Mn oxides, and to provide comparative analysis regarding adsorption and reactivity 

of O2 and intermediate dioxygen species on their surfaces. The α-Mn2O3 (111) crystal plane 

is considered, as it is observed by transmission electron microscopy with atomic resolution 

[79]. For γ-MnOOH, the most likely (110) plane is studied. The author’s main contribution 

is the periodic DFT calculations for the ORR on α-Mn2O3 (111) and γ-MnOOH (110). 

3.1. Materials and methods 

3.1.1.Chemicals 

     MnOOH (manganite, surface 55 m2·g-1 from Brunauer–Emmett–Teller analysis (BET)) 

was synthesized according to [182] and used as a precursor for the preparation of other Mn 

oxides. Three samples of Mn2O3 (bixbyite) were studied. The sample with the BET surface 

area of 25 m2·g-1 was obtained by the heat treatment of MnOOH in air at 240 °C. The 

sample with the BET surface area of 27 m2·g-1 was obtained by calcination of an 

amorphous product of comproportionation of Mn(CH3COO)2 and KMnO4 in air at 550 °C 

for 12 h, [183] its electrochemical and electrocatalytic properties were discussed in [79]. 

MnO2 (pyrolusite, 48 m2/g) was fabricated by the heat treatment of MnOOH at 600 °C. 

Mn3O4 (hausmannite, 13 m2·g-1) was obtained by the heat treatment of MnOOH in argon 
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atmosphere at 600 °C. According to the XRD data, all samples were pure phases and did 

not contain crystalline impurities. The synthesis and characterization of the samples of Mn 

oxides were performed by S.Y. Istomin. Carbon of the Sibunit family with the BET and 

BJH (Barrett-Joyner-Halenda method) surface areas equal to 65 and 52 m2·g-1, 

respectively, was kindly provided by Dr. P.A. Simonov. 

3.1.2.Electrochemical characterization 

     The electrochemical measurements were carried out by A. S. Ryabova. They were 

performed in 1 M NaOH electrolyte prepared from Acros Organics 50 wt. % aqueous 

solution in a three-electrode cell at 25 °C using Autolab potentiostat (PGSTAT302N) 

equipped with an analog scan generator. All parts of the electrochemical cell in contact 

with the alkaline electrolyte were from Teflon. The RRDE tip comprised a glassy carbon 

(GC) disc and a Pt ring. Sibunit carbon-oxide compositions with the 1:1 (wt.) ratio were 

deposited on the GC disc as described in [79] to achieve oxide loadings of 23, 30, and 91 

µg  per cm2 of the GC disc. Potentials were measured versus HgO/Hg (IJ Cambria 

Scientific) in the same solution and recalculated to the reversible hydrogen electrode 

(RHE) scale (+0.93 V vs. RHE at 25 °C). The area of the Pt counter electrode was ~ 6 cm2. 

The electrolyte resistance determined from the high frequency part of the electrochemical 

impedance spectra (measured in the 1 Hz to 100 kHz range) was equal to ca. 15 Ω. The 

experimental curves were not corrected for the uncompensated ohmic resistance, as such 

correction would not result in any noticeable changes of the current-potential curves. The 

potential at the ring was +1.23 V. Calibration of the RRDE was performed using ferro-

ferricyanide redox couple. Experimental collection factor of 0.25 was in good agreement 

with the theoretical value. 

3.2. Theoretical basis 

3.2.1.Periodic DFT calculations 

     Collinear spin-polarized periodic DFT calculations were performed using the VASP 

program package [184] with PAW [185] pseudopotentials and the RPBE-GGA functional 
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[134]. The 3d4s(ZVAL=7), 2s2p(ZVAL=6), and 1s(ZVAL=1) electrons were treated as 

valence ones for the Mn, O, and H, respectively. The asymmetric four Mn-layer supercells 

which mimic the MnOOH (110) (8 surface Mn atoms) and Mn2O3 (111) (16 surface Mn 

atoms) surfaces were constructed from the corresponding bulk structures. The cubic 𝐼𝐼𝐼𝐼3� 

α-Mn2O3 bulk structure was used as a stable one at experimental conditions [186]. An 

energy cutoff of 600 eV and 2x2x1 (Mn2O3) and 3x2x1 (MnOOH) k-point meshes were 

used in all the calculations. The dipole corrections were applied in the direction 

perpendicular to the surfaces. Only one surface layer together with the adsorbed 

intermediates were relaxed until the change in the total energy of the system was less than 

10-3 eV. The obtained lattice parameters for cubic α-Mn2O3 are: a=b=c=9.59205 Å, 

α=β=γ=90.0°. For γ-MnOOH: a=5.44060, b=5.50974, c=5.45707 Å; α= 90.0°, β=114.7°, 

γ=90.0°. These parameters are within 10% to the experimental values [187], [188]. The 

ferromagnetic ground state was obtained for α-Mn2O3, which coincides with the results 

reported by Franchini et. al. [189]. The ferromagnetic ground state for γ-MnOOH was 

calculated. The optimized bulk structures were then used to construct the surfaces with the 

ferromagnetic spin configuration. The more detailed calculations of the α-Mn2O3 ground 

state magnetic structure require the DFT+U formalism, which was not adopted in 

calculations due to the reasons discussed below. 

     Active surfaces of Mn2O3 (111) and MnOOH (110) oxides were constructed implying 

0.5 monolayer (ML) Oad and 0.5 ML HOad coverages. Under experimental conditions, these 

coverages correspond to somewhat different overpotentials. However, this potential shift 

is not sufficient to explain the pronounced difference in the oxides’ electrochemical 

activities towards oxygen reduction. The possible partial coverage of the surfaces with 

water molecules was addressed neither in the periodic DFT calculation nor in the MF-

MKM, as the primary effect is believed to be related largely to the differences of Mn oxides 

reactive centers configuration and not to the differences in the specifics of the oxide-water 

interaction (which is the inevitable assumption on the current stage due to the prohibitive 

size of the periodic slabs required to study these effects on MnOOH and Mn2O3 surfaces). 
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In all the calculations a 20 Å vacuum region was introduced to avoid the interaction 

between the slabs. 

     The DFT+U approach is not followed in periodic DFT calculations, which in some cases 

allows for a more accurate account of the oxides’ electronic structure and its effect on the 

geometry of adsorbates and the energetics of adsorption. However, the DFT+U approach 

is not universal, and has some shortcomings that may cause inaccuracy in computed 

energies and geometrical parameters (see discussion in [190], [191]). Indeed, for Mn2O3 

oxide PBE+U tends to overestimate the equilibrium volumes and also it favors a half-

metallic state, rather than an insulating character as derived from the hybrid functional 

approaches [189]. 

     The long-range van der Waals interactions were not taken into account within the 

framework of periodic DFT. Different approaches exist to incorporate them, though they 

have their own shortcomings [192], [193]. They require excessive testing for the studied 

system, which is beyond the scope of this work. However, one might expect that the 

introduction of the long-range interactions would stabilize the ORR intermediates on the 

electrode surface ca. 0.1-0.2eV [194]. The relative change in binding energies is lower than 

for the absolute values. Therefore, one can believe that it would not qualitatively alter the 

results presented in this chapter. 

     The thermodynamics of electrochemical reactions was addressed by means of a 

computational standard hydrogen electrode approach [9], [10] (3.1). 

 𝐺𝐺(𝑂𝑂𝑂𝑂−−𝑒𝑒−) = 𝐺𝐺𝐻𝐻2𝑂𝑂(𝑔𝑔) − 𝑒𝑒𝑒𝑒 −
1
2
𝐺𝐺𝐻𝐻2 (𝑔𝑔)  (3.1) 

     Zero-point energy (𝑍𝑍𝑍𝑍𝑍𝑍) and entropic corrections (𝑇𝑇𝑇𝑇) were introduced to the 

calculated ground state energy 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷. in order to obtain free energies of adsorption ∆𝐺𝐺 for 

the reactions involving ORR intermediates (3.2): 

 ∆𝐺𝐺 = ∆𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷 + ∆𝑍𝑍𝑍𝑍𝑍𝑍 − 𝑇𝑇∆𝑆𝑆 (3.2) 

     The contribution of pV term and configurational entropy was neglected. The 𝑍𝑍𝑍𝑍𝑍𝑍 was 

calculated from the vibrational normal modes 𝜈𝜈𝑖𝑖 computed within the harmonic oscillator 

approximation [195] (3.3): 
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 𝑍𝑍𝑍𝑍𝑍𝑍 =  �
ℎ𝜈𝜈𝑖𝑖
2

𝑖𝑖

 (3.3) 

     The 𝑇𝑇𝑇𝑇 was accounted for the vibrational entropy contribution only for the adsorbed 

reaction intermediates. For the solvent molecules total entropy values were taken from the 

standard thermodynamic tables. Then the 𝑇𝑇𝑇𝑇 for adsorbed molecules can be expressed as 

follows [196]: 

 𝑇𝑇𝑇𝑇 ≈ 𝑇𝑇𝑘𝑘𝑏𝑏��

ℎ𝜈𝜈𝑖𝑖
𝑇𝑇𝑘𝑘𝑏𝑏

exp �ℎ𝜈𝜈𝑖𝑖𝑇𝑇𝑘𝑘𝑏𝑏
�−1

− 𝑙𝑙𝑙𝑙 �1 − exp �
ℎ𝜈𝜈𝑖𝑖
𝑇𝑇𝑘𝑘𝑏𝑏

���
𝑖𝑖

 (3.4) 

     Here summation goes through all vibrational modes. kb - is the Boltzmann constant, T 

– temperature in K, h – Plank constant. The computed 𝑇𝑇𝑇𝑇 and 𝑍𝑍𝑍𝑍𝑍𝑍 corrections are shown 

in Table 3.1. 

Table 3.1  ZPE and TS corrections for the reaction intermediates at 298 K. 

Species TS, eV ZPE, eV ZPE - TS, eV 

H2O(g) at 0.035 bar 0.67 0.57 -0.10 

H2(g) at 1 bar 0.41 0.27 -0.14 

-OH 0.00 0.28 0.28 

-O 0.00 0.05 0.05 

-OOH 0.01 0.39 0.38 

-OO 0.01 0.10 0.09 

 

     The high-spin ground state of the oxygen molecule is poorly described by DFT [9]. 

Therefore, the correct value of chemical potential for the oxygen molecule 𝜇𝜇𝑂𝑂2(𝑔𝑔) (1 bar, 

298 K) was obtained from the free energy change of 4.92eV (pH=0, U = 0 V vs. SHE) for 

the reaction (3.5): 

 2𝐻𝐻2𝑂𝑂(𝑙𝑙) ←���⃗ 𝑂𝑂2(𝑔𝑔) + 4(𝐻𝐻+ + 𝑒𝑒−) (3.5)  

     The equilibrium of the liquid water H2O(l) with the gaseous water H2O(g) (0.035 bar, 298 

K) and CHE (2.53) were used to obtain the expression for 𝜇𝜇𝑂𝑂2(𝑔𝑔): 
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 𝜇𝜇𝑂𝑂2(𝑔𝑔) = 4.92𝑒𝑒𝑒𝑒 + 2𝜇𝜇𝐻𝐻2𝑂𝑂(𝑔𝑔) − 2𝜇𝜇𝐻𝐻2 (𝑔𝑔)  (3.6) 

     The following reaction pathway was considered to compute the free energy diagrams: 

 𝑂𝑂2 +∗←���⃗ 𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎 (3.7) 

 𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐻𝐻2𝑂𝑂 + 𝑒𝑒− ←���⃗ 𝐻𝐻𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂− (3.8) 

 𝐻𝐻𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑒𝑒− ←���⃗ 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂− (3.9) 

 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐻𝐻2𝑂𝑂 + 𝑒𝑒− ←���⃗ 𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂− (3.10) 

 𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑒𝑒− ←���⃗  ∗ +𝑂𝑂𝑂𝑂− (3.11) 

     The adsorption energies for the reaction intermediates are calculated vs. H2O(g) (0.035 

bar, 298 K) and H2(g) (1 bar, 298 K): 

 ∆𝐺𝐺𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐺𝐺𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐺𝐺∗ − 𝜇𝜇𝑂𝑂2 (𝑙𝑙) (3.12) 

 ∆𝐺𝐺𝐻𝐻𝐻𝐻2 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐺𝐺𝐻𝐻𝐻𝐻2 𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐺𝐺∗ − 𝜇𝜇𝑂𝑂2 (𝑔𝑔) − 𝜇𝜇(𝑂𝑂𝑂𝑂−−𝑒𝑒−)(𝑈𝑈) − 𝜇𝜇𝐻𝐻2𝑂𝑂(𝑔𝑔)  (3.13) 

 ∆𝐺𝐺𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐺𝐺𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐺𝐺∗ − 𝜇𝜇𝑂𝑂2 (𝑔𝑔) − 2𝜇𝜇(𝑂𝑂𝑂𝑂−−𝑒𝑒−)(𝑈𝑈) − 𝜇𝜇𝐻𝐻2𝑂𝑂(𝑔𝑔) (3.14) 

 ∆𝐺𝐺𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐺𝐺𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐺𝐺∗ − 𝜇𝜇𝑂𝑂2 (𝑔𝑔) − 3𝜇𝜇(𝑂𝑂𝑂𝑂−−𝑒𝑒−)(𝑈𝑈) − 2𝜇𝜇𝐻𝐻2𝑂𝑂(𝑔𝑔) (3.15) 

     The calculated adsorption energies for reaction intermediates are shown in Table 3.2 

 

Table 3.2  Adsorption energies of reaction intermediates on Mn2O3 and MnOOH vs. H2O(g) 

and H2(g). 

Reaction 

intermediate 

Adsorption energy on Mn2O3, eV Adsorption energy on MnOOH, eV 

1.0 V vs. 

RHE 

0.9 V vs. 

RHE 

0 V vs. 

RHE 

1.0 V vs. 

RHE 

0.9 V vs. 

RHE 

0 V vs. 

RHE 

-OO 0.07 0.07 0.07 -0.03 -0.03 -0.03 

-OOH 0.21 0.11 -0.79 0.34 0.24 -0.66 

-O -0.92 -1.12 -2.92 -0.92 -1.12 -2.92 

-OH -1.15 -1.45 -4.15 -0.90 -1.20 -3.90 

3.2.2. Cluster DFT calculations 

     All cluster calculations were performed by V. A. Nikitina. They were carried out at the 

DFT level using the B3LYP functional as implemented in the Gaussian 09 program suite 
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[197]. The O and H atoms of the adsorbates and oxide clusters were described by the 

standard 6-311++G(d,p) basis set. The effect of inner electrons of the Mn atoms was 

included in a relativistic Effective Core Potential LanL2, while a basis of DZ quality was 

employed to describe Mn valence electrons. The spin-polarized Kohn-Sham formalism 

was used to treat the open-shell systems. 

     The clusters were constructed using the geometry of Mn2O3 (111) and MnOOH (110) 

surfaces optimized using the periodic DFT. Each cluster contained 8 Mn atoms, with the 

two central Mn atoms mimicking the reaction center. The closest Mn atoms on the oxide 

surfaces were chosen as potential candidates for the reaction centers. The geometry of the 

active center and the positions of Mn and O atoms in the clusters were frozen during the 

optimization of adsorbates to keep the initial surface structure. A part of the O atoms was 

saturated by auxiliary hydrogen atoms to achieve electroneutrality at the model clusters. 

The ground state multiplicities for the Mn oxide clusters were determined to be 16 and 14 

for Mn2O3 and MnOOH clusters and 17 and 15 for the “cluster + O2ads” systems. The spin 

densities of the Mn atoms correspond to the anti-ferromagnetic state of the model clusters. 

3.2.3.Mean-field microkinetic modeling details 

     The MF-MKM was carried out by A. Bonnefont for both inner-sphere and outer-sphere 

mechanisms. The MF-MKM with the inner-sphere mechanism is described in [79]. The 

MF-MKM with first two outer-sphere ET steps (3.16), (3.17) was performed to verify the 

following outer-sphere mechanism addressed by quantum-chemical calculations: 

 𝑂𝑂2 + 𝑒𝑒− ←���⃗ 𝑂𝑂2−: 𝑘𝑘2′ (3.16) 

 𝑂𝑂2− + 𝑒𝑒− + 𝐻𝐻2𝑂𝑂 ←���⃗ 𝐻𝐻𝑂𝑂2− + 𝑂𝑂𝑂𝑂−: 𝑘𝑘3′   (3.17) 

 𝐻𝐻𝑂𝑂2− + 𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑒𝑒− ←���⃗  𝐻𝐻𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎
− + 𝑂𝑂𝑂𝑂−: 𝑘𝑘4′ (3.18) 

  𝐻𝐻𝑂𝑂2 𝑎𝑎𝑎𝑎𝑎𝑎
− + 𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 ←���⃗ 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂−: 𝑘𝑘5 (3.19) 

 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐻𝐻2𝑂𝑂 + 𝑒𝑒− ←���⃗ 𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑂𝑂𝑂𝑂−: 𝑘𝑘1,𝐸𝐸10 (3.20) 

     The OHads was added to the step (3.19) to account for stabilizing interactions between 

Oads and OHads on two neighboring Mn active sites, which facilitate the OH- detachment 

and decrease the activation barrier (i.e. adsorbate-mediated mechanism). The carbon 
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contribution was neglected due to the high catalytic activity of Mn2O3 and MnOOH for 

ORR. The model assumes Langmuir adsorption/desorption of HO2
- on the surface of Mn 

oxides and Butler-Volmer kinetics for the electron transfer steps. The model considers the 

escape of O2
- and HO2

- from the diffusion layer in order to simulate the RRDE current-

potential curves. One can see the additional details on the model parameters and equations 

in [198] 

3.3. Results and discussion 

     The experimental RRDE data was obtained by A. S. Ryabova (Figure 3.1). At all 

potentials and loadings, the hydroperoxide yield increases in the following order Mn2O3 < 

MnO2 < Mn3O4 < MnOOH. It coincides with the HPRR limiting currents on these 

materials. As it was previously reported by Ryabova et. al. [79], the HPRR limiting currents 

below the diffusion-limiting ones were observed on MnOOH and Mn3O4 at the broad 

potential range (Figure 3.2 (b-d)). They were explained by the chemical RDS for the 

hydroperoxide decomposition on those materials. 

 
Figure 3.1 RRDE experimental data for manganese oxides. (a) Percentage of HO2

- formed, 

(b) ring and (c) disk currents versus disk potential extracted from the positive scans of the 
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RRDE voltammograms of GC-supported thin films of Mn oxides + Sibunit carbon in O2-

saturated 1 M NaOH at 900 rpm and 10 mV·s-1. Catalyst loadings: 91 μg·cm-2
geo Oxide + 

91 μg·cm-2
geo Sibunit (A), 30 μg·cm-2

geo Oxide + 30 μg·cm-2
geo Sibunit (B). Disk currents 

are normalized to the geometric area of the electrode and corrected to the background 

currents measured in the N2 atmosphere. Ring currents are normalized to the geometric 

area of the disk electrode and to the collection factor. 

 
Figure 3.2 (a) Kinetic ORR currents at 0.9 V vs. RHE against the formal potential, Ef, of 

the surface Mn(IV)/Mn(III) redox couple. (b): Levich-Koutecky (LK) plots of the HPRR 

currents at 0.65 V vs. RHE. (c,d): RDE voltammograms in N2-purged 1 M NaOH + 0.84 

mM H2O2 (solid lines) and O2-saturated 1 M NaOH blue (MnOOH), orange (Mn2O3,SBET 

= 27m2 g−1), green (LaMnO3), red (MnO2). Currents are normalized to the BET surface 

area of corresponding oxides (triangles) at 900 rpm and 10 mV s−1. Catalyst loadings on 

the GC electrode are 91 μg cm−2 manganese oxide + 91 μg cm−2 Sibunit carbon. Color 

codes: (a), and to the electrode geometric area (b-d). Error bars represent standard 
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deviations from at least two independent repeated measurements. Data for Pt/C (black) is 

presented for comparison. Data is reproduced from [73], [79], [199] 

 

     All the materials except Mn2O3 demonstrated the catalyst loading-dependent HO2
- 

yield. The latter decreases at lower catalyst loadings, which correlates with the number of 

active sites available for hydroperoxide decomposition. The Mn2O3 showed the loading 

independent negligible HO2
- yield, even at the low-area samples (see supporting 

information in [198]). Therefore, the hypothesis of the “direct” 4e- ORR pathway (O-O 

bond breaking in the O2 reaction intermediate) on Mn2O3 should be checked in addition to 

the fast hydroperoxide decomposition. 

     Periodic DFT calculations were used for estimating adsorption energies of the reaction 

intermediates: O2 ads, HO2 ads, OHads, and Oads assumed within a “series” mechanism. These 

calculations allowed to assess surface restructuring of the two oxides, at least at a 

qualitative level. Given the large size of the Mn2O3 (111) cell (190 atoms in the asymmetric 

cell) and the difficulties associated with accurate ab initio calculations for large systems, 

only one surface layer was optimized, which induces some degree of inaccuracy in the 

obtained geometries of the surfaces. The results should thus be treated as an initial guess 

of the surface reconstruction trends. Figure 3.3 shows the geometries of the optimized first 

layers of the Mn oxide surfaces. They are associated with the experimentally obtained 

formal potentials [79] of the Mn(IV)=Oads/Mn(III)-OHads surface redox transition [200] on 

MnOOH and Mn2O3. It was observed both experimentally [75] and from the computed 

surface Pourbaix diagrams [201]. 
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Figure 3.3  Surface layers of Mn2O3 (a) and MnOOH (b) oxides (0.5 ML Oads, 0.5 ML 

OHads coverage), as obtained from periodic DFT calculations. 

 

     The active centers, which are assigned to the closest Mn atoms, are marked in the Figure 

3.3. Both surfaces show significant changes in the positions of Mn octahedra after the 

relaxation procedure. For MnOOH (110), the distance between Mn(1) and Mn(2) atoms 

(“active center”) is decreased from 3.76 to 3.49 Å, while other distances between the 

surface Mn atoms are increased by 0.2 – 0.4 Å. In the case of the Mn2O3 (111) surface, the 

distance between the closest Mn(1) and Mn(2) atoms decreases from 3.16 Å to 2.98 Å, 

while other distances on the surface increase by 0.2-0.3 Å. 

     The intermediates of the ORR (O2ads, HO2ads, OHads, Oads) were placed on the Mn(2) 

atoms of the active centers. The subsequent geometry relaxation provided the structures of 

the O-containing adsorbates at the MnOOH and Mn2O3 surfaces. Table 3.3 shows the 

geometries of the adsorbates and lists the corresponding bond lengths and angles in the 

structure.  
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Table 3.3  Adsorbate geometries on Mn2O3 (111) and MnOOH (110) surfaces, as obtained 

from periodic DFT calculations. Atoms denoted by plain text and connected by dashes 

indicate the bond or angle, for which the value is shown. 

System Parameter Value Structure 

MnOOH (110) –OO 

Mn-OO 1.96 Å 

 

MnO-O 1.27 Å 

Mn-O-O angle 120.4o 

Mn2O3 (111) –OO 

Mn-OO 2.05 Å 

 

MnO-O 1.27 Å 

Mn-O-O angle 124.9o 

MnOOH (110) –OOH 

Mn-OOH 1.80 Å 

 

MnO-OH 1.43 Å 

O-HOO 0.99 Å 

MnOOH-OMn 4.22 Å 

Mn-O-OH angle 117.5o 

MnO-O-H angle 100.1o 

Mn2O3 (111) –OOH 

Mn-OOH 1.83 Å 

 

MnO-OH 1.40 Å 

MnOO-H 0.99 Å 

MnOOH-OMn 2.02 Å 

Mn-O-OH angle 127.4o 

MnO-O-H angle 105.0o 

MnOOH (110) –OH 

Mn-OH 1.76 Å 

 

MnO-H 0.98 Å 

Mn-O-H angle 112.8o 
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Mn2O3 (111) –OH 

Mn-OH 1.79 Å 

 
MnO-H 0.98 Å 

Mn-O-H angle 113.5o 

MnOOH (110) –O Mn-O 1.60 Å 

 
Mn2O3 (111) –O Mn-O 1.60 Å 

 
 

     The molecular oxygen is relatively weakly adsorbed on the model surfaces (see Table 

3.2). The Mn-OO distance for adsorbed oxygen is in the range of 1.96 – 2.05 Å. The HO2ads 

intermediate adopts different configurations upon adsorption at Mn2O3 and MnOOH 

surfaces. In the case of Mn2O3 a stabilizing interaction between the OH group of the 

peroxide moiety and the Oads adsorbate of the neighboring Mn atom can be noticed, which 

is absent for the MnOOH surface due to larger Mn-Mn distances. The bond lengths 

between Mn atoms and Oads (1.60 Å) and HOads (1.76 – 1.79 Å) adsorbates are similar for 

the two surfaces. 

     In the framework of thermodynamic approaches, the free energy difference for the 

surfaces with various adsorbed intermediates is used to assess the kinetics of multistep 

processes without computing reaction activation energies [9], [10], [201], [202]. This 

simplification assumes a straightforward relationship between the activation energy and 

the reaction free energy, which is not obvious, especially for the inner-sphere steps. For 

the ORR, free energy diagrams are usually constructed for the reaction pathway involving 

successive interconversion of the adsorbed O2ads, HO2ads, OHads, and Oads intermediates. 

Despite the thermodynamic approach remains a convenient and valid method for 

comparing adsorption energies of the intermediates and for the initial screening of potential 

catalysts, sometimes it fails to describe the experimental trends and to give correct 

predictions on the nature of the reaction limiting step [120], [203], [204]. 
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     The simplified procedure was adopted to evaluate the interaction energies of the ORR 

intermediates with the Mn oxide surfaces, which did not involve an extensive search for 

the minimum energy surface at a given potential with the account for the fractional 

occupation of the surface by water molecules. Instead, the MnOOH (110) and Mn2O3 (111) 

surfaces were used at 0.5 ML OHads and 0.5 ML Oads coverages. The free energy diagrams 

were computed for the potentials, which correspond to these coverages based on the 

available experimental information (formal potentials of the two oxides). Under these 

conditions, the 0.5 Oads coverage corresponds to the potential of ca. 1.0 V for Mn2O3 and 

0.9 V for MnOOH [79]. The free energy diagrams for the two oxides, calculated for these 

potentials, are shown in Figure 3.4.  

 

Figure 3.4  Free energy diagrams for MnOOH (110) and Mn2O3 (111) at 0.9 and 1.0 V vs. 

RHE, respectively. 

 

     The free energy diagram suggests that for MnOOH the potential determining step (PDS) 

involves HO2ads formation from O2ads, while for Mn2O3 the PDS could be attributed to the 

OHads desorption step. While supporting the higher activity of Mn2O3, the thermodynamic 

approach fails to explain the most notable difference between the Mn2O3 and the MnOOH 

oxide: kinetic limitation of the bond-breaking in HO2ads for MnOOH but not for Mn2O3 

evidenced in [79]. The contribution of long-range van der Waals interactions should not 
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qualitatively alter the result due to the significant negative free energy change for the 

HO2ads bond-breaking step on both Mn2O3 and MnOOH. This calls for a more detailed 

computational investigation of the hydrogen peroxide decomposition reaction, which 

involves the bond breaking in the hydrogen peroxide intermediate and thus is likely to be 

associated with a high energy barrier at least at the MnOOH (110) surface.  

     The hypothesis of the outer-sphere ORR mechanism should be tested, as the low 

adsorption energies of O2 on both MnOOH (-0.03 eV) and Mn2O3 (0.07 eV) were obtained 

from the periodic DFT calculations. Additionally, in a number of publications the outer-

sphere ORR mechanism was discussed on Au and Pt in alkaline media [205]–[207]. The 

first two steps of the outer-sphere ORR mechanism are (3.16), (3.17). The formed HO2
- 

can then be adsorbed on Mn active site (3.18) and decomposed (3.19). 

     As the author’s main contribution to the work is the periodic DFT calculations, only the 

brief summary of results is shown for the quantum-chemical modeling of activation 

barriers for the elementary steps and microkinetic modeling. One can find a detailed 

description of the corresponding sections in the original paper [198]. 

     The feasibility of “direct” ORR pathway on Mn2O3 was accessed by the cluster 

calculations (in order to allow the treatment of the charged species) of the activation 

energies for O2 and O2
- (as it has sufficient lifetime in alkaline media [208]) dissociative 

adsorption on two neighboring Mn atoms. The optimized geometries of Mn active sites 

were taken from periodic DFT calculations. All cluster calculations were performed by V. 

Nikitina. It was shown that the direct 4e- pathway is not feasible due to the prohibitive 

activation energies ca. 2.5eV for both O2
 and O2

-
 dissociative adsorption on Mn2O3. 

     Then the origin of the catalytic activity difference between the MnOOH and Mn2O3 can 

be addressed by the faster bond breaking in the adsorbed HO2
- (3.19) on the Mn2O3. Figure 

3.5 (a, b) shows the corresponding barriers for the bond breaking in HO2
- adsorbed at 

Mn2O3 and MnOOH oxide surfaces, which were estimated as ca. 0.5 eV and 0.8 eV 

correspondingly. The geometries of transition states (lower panels of Figure 3.5) suggest 

that smaller distances between neighboring Mn atoms in Mn2O3 allow for the existence of 

stabilizing interactions between Oads and OHads, which facilitate the OH- detachment and 
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decrease the activation barrier. For MnOOH such kind of interactions is unlikely, as the 

distance between the adjacent Mn centers is too large.  

 
Figure 3.5  Energy curves for the bond breaking in HO2

- at the Mn2O3 (a) and MnOOH (b) 

clusters. 

 

     Therefore, one can conclude that adsorbate-adsorbate interactions may allow for a 

significant reduction of the bond breaking barrier height, which could determine the higher 

activity of Mn2O3 with respect to the reduction of hydrogen peroxide species explaining 

the experimentally observed kinetically limited HPRR for MnOOH but not for Mn2O3. 

Note however, that the exact barrier heights should be taken with caution given the vast 

number of approximations and simplifications in performed cluster calculations. 
     The estimations of activation barriers of first two ET steps (3.16), (3.17) within the 

outer-sphere scenario were carried out by R. R. Nazmutdinov. The spinless Anderson-

Newns model (narrow band formalism) [209], [210] was combined with DFT calculations 

to map the ET free energy along the solvent coordinate. The solvent reorganization energy 

was estimated to be λ=1.2 eV [209]. Three geometries of the O2 approach to the active 

center (see Figure 3.6) of the model cluster were considered. The closest approach distance 

zmin provides the minimal energy values of the O2 approach (Figure 3.7).  
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Figure 3.6  Selected orientations of O2 molecule near the surface of model Mn2O3 clusters. 

zmin denotes the minimal energy values for the approach of O2 to the cluster “surface”. 

“Planar” orientation corresponds to the O-O bond being parallel to the active center plane; 

“vertical (1)” – to the O-O bond normal to the cluster surface with the projection between 

the Mn(1) and Mn(2) atoms; “vertical (2)” – to the O-O bond normal to the cluster surface 

with the projection at the oxygen atom of OHads. 

 

     The zmin values for OH-terminated MnOOH and Mn2O3 are 5.4, 4.6, 5.0 Å, and 5.4, 4.4, 

5.5 Å for the planar, vertical(1), and vertical(2) geometries respectively. The influence of 

the surface OH vacancies and presence of O-terminated Mn active sites were also 

elucidated (see SI in [198] for more details). The “OH vacancies” were shown to decrease 

the zmin thus lowering the ET activation barrier. The presence of O-terminated Mn active 

sites showed the repulsion effect (increased zmin) only in vertical(2) geometry. The zmin is 

decreased in two other coordinations due to the shorter Mn-O distance being compared 

with Mn-OH distance. 

     The ET barriers were estimated for three O2 orientations at the corresponding zmin and 

hydroxylated Mn active sites. The “OH vacancies” are not considered as active sites are 

likely to be occupied by H2O or OH in alkaline media. The ET barriers on both oxides were 

estimated ca. 0.3 eV (λ/4 in accordance with Marcus theory at zero overvoltage). The 

consideration of the first ET step as the outer-sphere is allowed by a modest activation 

barrier.  
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Figure 3.7  O2 - cluster interaction energy curves for a set of three orientations of O2 

molecule in the vicinity of hydroxylated Mn2O3 (a) and MnOOH (b) surfaces. 

 

     The electronic transmission coefficients κ [210] were estimated for the three O2 

orientations at corresponding z=zmin on Mn2O3 and MnOOH clusters. For the Mn2O3 κ 

were found to be in the range of 10-1-10-2, while for the MnOOH (κ ≈ 10−2) for all O2 

orientations. The adiabatic limit (κ ≈ 1) is not reached for the hydroxylated surfaces 

implying the non-adiabatic regime (i.e. weak orbital coupling) with the ET rate to be 

dependent on the oxide nature. As the κ is ca. 2-15 times lower for MnOOH, than Mn2O3, 

one can expect faster first ET step at Mn2O3 due to the similar ET barriers on both oxides. 
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The low values of κ lead to the suggestion of competition between the non-adiabatic outer-

sphere and inner-sphere ET involving the adsorbed O2. Data on the O2 approach towards 

Mn oxide surfaces is currently unavailable in the literature. The barrier for O2 adsorption 

on Mn oxides can be qualitatively estimated to be the same as for Ag(100) surface, which 

is estimated to be ca. 0.5-0.8 eV [120], [205]. The additional barrier of 0.5-0.8 eV cannot 

be compensated by a ca. 102 increase in κ, which should take place when switching from 

an outer-sphere to an inner-sphere mechanism. A very weak O2 adsorption energy was 

computed without the account for the solvating media, but these results point to the absence 

of strong oxide/adsorbate interactions. So, there are no experimental or theoretical 

implications to consider oxygen species adsorption to be much stronger on Mn oxides than 

on gold or silver facets. Therefore, the outer-sphere first ET step can have a higher rate 

than the inner-sphere alternative. 

     The second ET step (3.17) can also follow either outer-sphere or inner-sphere scenario. 

Despite it is difficult to distinguish them, the second ET step is unlikely to be a candidate 

for RDS due to low barrier ca. 0.05eV [206] of proton-coupled ET to O2
-. The latter is 

stronger adsorbed than the O2 [211], [212]. 

     The results of MF-MKM, obtained by A. Bonnefont are depicted in Figure 3.8. 
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Figure 3.8  MF-MKM results of the ORR and HPRR/HPOR on manganese oxides. Panel 

(a): Yield of soluble ORR intermediates calculated as a sum of HO2
- and O2

-. Panel (b), 

simulated HO2
- (full lines) and O2

- (dashed lines) escape currents. Panel (c): ORR RRDE 

(full lines) and HPRR (dashed lines) current-potential curves simulated for the mechanism 

comprising steps (3.16), (3.17): k3’, (3.18), (3.19), (3.20) Purple curves (k2’=106 cm3·mol-

1·s-1, k3’=108 cm3·mol-1·s-1, k5 = 40 s-1, E°1=0.98 V), intend to reproduce the behavior of 

Mn2O3; black curves (k2’=106 cm3·mol-1·s-1, k3’=108 cm3·mol-1·s-1, k5 = 0.2 s-1, E°1=0.90 

V) and blue curves (k2’=105 cm3·mol-1·s-1, k3’=108 cm3·mol-1·s-1, k5 = 0.2 s-1, E°1=0.90 V)  

intend to reproduce the behavior of MnOOH. See Table S1 in [198] for other simulation 

parameters. 
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     It was shown that the experimental ORR and HPRR/HPOR data cannot be reproduced 

by MF-MKM with materials-independent fast transfer of the first and the second electron 

and at least one of these steps has to be “slow” in order to simulate the behavior of MnOOH. 

It was possible to reproduce the experimentally observed differences in the ORR and 

HPRR/HPOR kinetics by assuming ca. 10 fold smaller k2’ for MnOOH compared to 

Mn2O3. The observed tenfold difference in the k2’ values (required to reproduce 

experimental current-potential curves) could be explained by the difference in the 

electronic transmission coefficients assuming the non-adiabatic reaction rate control. 

3.4. Conclusions 

     A number of complementary quantum chemical approaches were applied in order to 

rationalize the experimentally observed differences between the most (Mn2O3) and the least 

active (MnOOH) oxides. The main focus was put on molecular-level factors, which 

determine the reaction mechanisms. It was shown that periodic DFT calculations within 

the conventional thermodynamic approach cannot account for the differences between 

Mn2O3 and MnOOH, in particular with regard to the slow bond breaking in the hydrogen 

peroxide intermediate corroborated by the experimentally observed kinetically limited 

HPRR and high hydrogen peroxide yield during the ORR on MnOOH. Instead, it provided 

the optimized surface geometry, which was used for the calculations of activation barriers 

for the likely elementary steps using the cluster models (as the periodic DFT cannot be 

used to directly simulate charged surfaces). The faster bond-breaking was demonstrated 

for the hydrogen peroxide intermediate adsorbed on the surface of Mn2O3 compared to that 

on MnOOH. It is explained by adsorbate-adsorbate interactions at the Mn2O3 surface, 

which decrease the activation barrier for bond-breaking in the HO2
-
ads intermediate. The 

cluster calculations also suggest that a direct 4e- ORR is unlikely for Mn2O3. According to 

MF-MKM, the experimental differences between Mn2O3 and MnOOH cannot be 

reproduced considering material-independent kinetics for the outer-sphere transfer of the 

first and the second electrons, which is corroborated by the 1 order of magnitude difference 
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in estimated electron transmission coefficients for Mn2O3 and MnOOH. The estimated 

activation barriers for the first outer-sphere ET step supports its possibility on the Mn 

oxides in alkaline media. 

     The computational results reported in this study involve a large number of 

approximations, which should be taken into account critically when comparing the 

calculated and experimental trends. First, the solvent-solute and the solvent-electrode 

interactions are not taken into account either in periodic DFT or in cluster calculations, as 

these would increase the system size to a hardly treatable value. The focus of the 

computational study is thus placed exclusively at the electrode/reactant interactions. The 

second major approximation is related to the application of the cluster approach to describe 

the orbital overlap effect on the ET rate for the two oxides, as this approach does not allow 

to reproduce the difference in the oxides’ electronic structures quantitatively. In this case, 

as well as in the case of the bond-breaking step, one can outline mainly geometrical factors, 

which affect the differences in the MnOOH and Mn2O3 activities. Another approximation 

consists in the simplification of the bond-breaking mechanism, which could involve much 

more complex rearrangements in the reaction layer with the participation of H2O and OH- 

species. Finally, the reaction steps in the formal kinetic modeling do not directly 

correspond to the elementary steps, which are addressed in the computational study. This 

does not allow to directly compare the values of the rate constants resulting from formal 

kinetic modeling and from quantum chemical calculations, but rather rely on the outlined 

general trends in the differences of oxides’ activity. Due to the vast number of 

approximations, the model form uncertainties arising from them should be quantified in 

order to determine, whether the current detailing enables the predictive analysis of reaction 

rates on oxides within the proposed reaction mechanism. 
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 Assessment of ORR Mechanism Complexity for Decoupling the Roles of 

Carbon and Metal Oxides on La1-xSrxCoO3-δ / C Composite Materials Within the 

MF-MKM Approach 

     The results presented in this chapter are based on the following publication. [T. J. 

Mefford, A. A. Kurilovich, J. Saunders, W. G. Hardin, A. M. Abakumov, R. P. Forslund, 

A. Bonnefont, S. Dai, K. P. Johnston, K. J. Stevenson. Decoupling the roles of carbon and 

metal oxides on the electrocatalytic reduction of oxygen on La1−xSrxCoO3−δ perovskite 

composite electrodes. Phys. Chem. Chem. Phys., 2019;21(6):3327-38.]. Given the 

unavoidable approximations at the microscopic level required to qualitatively explain the 

catalytic activity difference between the Mn2O3 and MnOOH, the first step to 

understanding the role of carbon (particularly with respect to N-doping) should be carried 

out on the macroscopic level by MF-MKM. It can be started using the models which were 

successfully applied to the LCO/Sibunit carbon[68]. One can further extend them to 

explain the self-consistent experimental dataset with the series of TMO materials 

(La1−xSrxCoO3−δ) supported by N-doped and non-doped carbon components. 

     The aim of this chapter is to elucidate the individual contributions of the carbon support 

and the perovskite oxide series La1-xSrxCoO3-δ (LSCO(1-x)x) in the ORR by MF-MKM in 

order to understand the required complexity of the overall ORR mechanistic pathway, 

which should be capable to explain the synergistic effects in the carbon-supported 

perovskite composite systems. The author’s main contribution was the MF-MKM for the 

ORR and HPRR/HPOR on LSCO/Carbon composite materials. 

4.1. Materials and methods 

4.1.1.Chemicals 

     All chemicals were used as received. Anhydrous ethanol and 5 wt% Nafion solution in 

lower alcohols were purchased from Sigma-Aldrich. Lanthanum (III) nitrate hexahydrate 

(99.999%), strontium (II) nitrate hexahydrate (99.9%), cobalt (II) nitrate hexahydrate 

(99.9%), tetrapropylammonium bromide (98%), tetramethylammonium hydroxide 

pentahydrate (99%), 2-propanol, and potassium hydroxide were obtained from Fisher 
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Scientific. Absolute ethanol (200 proof) was obtained from Aaper alcohol. Oxygen 

(99.999%) gas was obtained from Praxair. Vulcan carbon XC-72 (VC) was obtained from 

Cabot Corporation, and the nitrogen-doped carbon (NC) was prepared as reported 

elsewhere [213]. The LSCO series was synthesized by T. J. Mefford and W. G. Hardin 

according to the methods described previously [214]–[217]. 

4.1.2.Electrochemical characterization 

     The electrochemical characterization was performed by T. J. Mefford. All La1-

xSrxCoO3-δ (LSCO(1-x)x) nanopowders were loaded onto carbon through ball milling with 

a Wig-L-Bug ball mill. For rotating disk electrode (RDE) and for the rotating ring-disk 

electrode (RRDE) measurements the LSCO nanopowders were loaded at a mass loading 

of ~30 wt% onto either VC or NC. LSCO/carbon mixtures were dispersed in ethanol 

containing 0.05 wt% Na-substituted Nafion at a ratio of 1 mg mL-1 and sonicated for 45 

min. This solution was spuncast onto a glassy carbon rotating disk electrode (0.196 cm2, 

Pine Instruments) and for the rotating ring-disk electrode (Glassy Carbon Disk: 0.2472 

cm2
geom; Pt ring: 0.1859 cm2, Pine Instruments) at a total mass loading of 51.0 μg cm-2

geom 

(LSCO loading: 15.3 μg cm-2
geom). The electrodes were cleaned prior to spincasting by 

sonication in a 1:1 de-ionized water:ethanol solution. The electrodes were then polished 

using 50 nm alumina powder, sonicated in a fresh deionized water:ethanol solution, and 

dried under a scintillation vial in ambient air. 

     Electrochemical testing was performed on a CH Instruments CHI832a potentiostat or a 

Metrohm Autolab PGSTAT302N potentiostat, both equipped with high-speed rotators 

from Pine Instruments. Both RDE and RRDE ORR tests were performed at room 

temperature in O2 saturated 0.1M KOH (measured pH ≈ 12.6). The current interrupt and 

positive feedback methods were used to determine electrolyte resistance (50 Ω) and all data 

was iR compensated after testing. Each measurement was performed in a standard three-

electrode cell using a Hg/HgO (1M KOH) reference electrode, a Pt wire counter electrode, 

and a film of catalyst ink on the glassy carbon working electrode. All ORR testing was 

performed on a new electrode that had not undergone the previous testing. Cyclic 
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voltammetry was performed from +1.0 to +0.4 V at 5 mV s-1 at rotation rates of ω = 400, 

522, 712, 1024, and 1600 rpm. 

     For the peroxide studies, the same methodology was used with an electrolyte consisting 

of 1.2 mM H2O2 in Ar-saturated 0.1M KOH. Cyclic voltammetry was performed by 

scanning either +/- 500 mV from the measured open circuit potential at a scan rate of 5 mV 

s-1 and an electrode rotation rate of 1600 rpm. The measurements were carried out in 

triplicate using a freshly prepared electrode for each measurement. Electrodes subjected to 

scans in the anodic potential direction from OCV were not tested in the cathodic and vice 

versa. The data presented is an average of the triplicate measurements. All potentials are 

reported versus the reversible hydrogen electrode (RHE), which was measured as ERHE = 

EHg/HgO
 + 0.8456 V through the reduction of hydrogen in 1 atm H2 saturated 0.1M KOH. 

4.2. Theoretical basis 

     The suggested ORR mechanisms for perovskites consist of 5 reaction steps: 

1) Surface Co4+/Co3+ redox transition. 

Co4+--O2- + H2O + e-  Co3+--OH- + OH-              (1P)  

2) Oxygen adsorption/ desorption on/from the Co3+ active sites, combined with the 

first electron transfer step.  

Co3+--OH- + O2 + e-  Co4+--O-O2- + OH-    (2P) 

3) The reduction of the adsorbed oxygen into the HO2
- / oxidation of HO2

- to the 

oxygen. 

Co4+--O-O2- + H2O + e-  Co3+--O-OH- + OH-   (3P) 

4) Chemical decomposition of the adsorbed HO2
-. (reaction mechanism with 4PC 

step) 

Co3+--O-OH- + Co3+--OH-  2Co4+--O2- + H2O             (4PC) 

     Electrochemical reduction of HO2
- to OH- / oxidation of OH- to HO2

-. (reaction 

mechanism with 4PE step) 

Co3+--O-OH- + e-  Co4+--O2- + OH-             (4PE) 



82 

  

5) The adsorption/desorption of HO2
- on/from the Co3+ surface site. 

Co3+--OH- + HO2
-  Co3+--O-OH- + OH-      (5P) 

     The ORR and HPRR/HPOR reactions on VC and NC carbons were simulated using the 

following effective mechanism: 

6) Oxygen adsorption/ desorption on/from the carbon active sites 

C + O2  C—(O2)ads      (6C) 

7) The reduction of the adsorbed oxygen into the HO2
-/oxidation of HO2

- to the 

oxygen. 

C—(O2)ads + H2O + 2e-  C—(HO2
-)ads + OH-

   (7C) 

8) HO2
- adsorption/desorption on/from the carbon active site. 

C—(HO2
-)ads  C+ HO2

-
     (8C) 

9) Effective reaction step for the oxygen spillover between the N-doped active sites 

and Co3+ cations (also modeled on VC for consistency) 

C—(O2)ads + Co3+--OH + e-  C + Co4+--O-O + OH-
              (9) 

10) Effective reaction step for the HO2
- spillover between the N-doped active sites and 

Co3+ cations 

C—(HO2
-)ads + Co3+--OH  C + Co3+--O-OH + OH-

  (10) 

     The electrode surface is considered to be flat with the perfectly intermixed carbon and 

perovskite active sites which are equally accessible by the O2 and HO2
- species, so the O2 

and HO2
- concentration is considered the same in the vicinity of perovskite and carbon 

active sites. The diffusion profile was assumed to be linear for the O2 and HO2
- species in 

the solution. The diffusion in the bulk of the electrode was neglected because of the low 

experimental catalyst loading. Diffusivities of O2 and HO2
-, kinematic viscosity, and 

oxygen solubility were taken from the literature data. [39] LCO and VC surface active sites 

densities were obtained by renormalization of the estimates for LCO and Sibunit-152 

carbon from works by BET surface areas and loadings ratios for the materials synthesized 

in this and abovementioned works. [68], [73] 
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     The proposed reaction mechanisms are used to construct a system of ordinary 

differential equations, which describes the reaction kinetics together with the mass 

transport of O2 and HO2
- to the vicinity of the electrode. It is solved numerically in the 

steady-state approximation which can be directly linked with the experiments due to the 

slow scan rates in the performed experiments. The microkinetic model follows the 

assumption of Langmuir isotherms for the adsorption/desorption steps and Butler-Volmer 

electrochemical kinetics for all electron transfer steps. The rate constants for the reaction 

mechanisms were adjusted until the model qualitatively reproduced experimental findings 

for the ORR RDE and HPRR/HPOR 

     Forward and backward rate constants ratio of steps 1) (6C), (7C), (8C); 2) (2P), (3P), 

(5P); 3) (2P), (3P), (5P), (9); 4) (2P), (3P), (5P), (10) were simultaneously adjusted and 

fixed in order to reproduce pH-corrected equilibrium potential EHO2-/O2 =0.74 V vs. RHE 

at pH = 13. The same procedure was applied to adjust the rate constants ratio for the steps 

(4PE), (4PC) to reproduce the pH corrected equilibrium potential EHO2-/OH- = 1.74 vs. RHE 

at pH = 13. It was consistently obtained that the (4PE) and (4PC) steps are irreversible at 

the potential range at which the ORR and HPRR/HPOR experiments were carried out. 
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𝑟𝑟7𝐶𝐶,𝑁𝑁 = 𝑘𝑘7𝐶𝐶,𝑁𝑁𝜃𝜃𝑂𝑂2 𝐶𝐶,𝑁𝑁 exp �−

𝛼𝛼7𝐹𝐹𝐹𝐹
𝑅𝑅𝑅𝑅

� − 

−𝑘𝑘−7𝐶𝐶,𝑁𝑁𝜃𝜃𝐻𝐻𝐻𝐻2− 𝐶𝐶,𝑁𝑁exp �
(1 − 𝛼𝛼7)𝐹𝐹𝐹𝐹

𝑅𝑅𝑅𝑅
� 

(4.8) 

 𝑟𝑟8𝐶𝐶,𝑁𝑁 = 𝑘𝑘8𝐶𝐶,𝑁𝑁𝜃𝜃𝐻𝐻𝐻𝐻2− 𝐶𝐶,𝑁𝑁 − 𝑘𝑘−8𝐶𝐶,𝑁𝑁𝑐𝑐𝐻𝐻𝐻𝐻2− 𝐶𝐶,𝑁𝑁�1 − 𝜃𝜃𝑂𝑂2 𝐶𝐶,𝑁𝑁 − 𝜃𝜃𝐻𝐻𝐻𝐻2− 𝐶𝐶,𝑁𝑁� (4.9) 
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𝑟𝑟10𝑁𝑁 = 𝑘𝑘10𝜃𝜃𝐻𝐻𝐻𝐻2− 𝑁𝑁�1 − 𝜃𝜃𝑂𝑂 𝑃𝑃 − 𝜃𝜃𝑂𝑂2 𝑃𝑃 − 𝜃𝜃𝐻𝐻𝐻𝐻2 𝑃𝑃� − 

−𝑘𝑘−10𝜃𝜃𝐻𝐻𝐻𝐻2 𝑃𝑃�1 − 𝜃𝜃𝑂𝑂2 𝑁𝑁 − 𝜃𝜃𝐻𝐻𝐻𝐻2− 𝑁𝑁� 
(4.11) 

     The ORR current potential curves were simulated under the stationary conditions: 

 
𝑑𝑑𝜃𝜃𝑂𝑂2 𝑁𝑁

𝑑𝑑𝑑𝑑
= 0 = 𝑟𝑟6𝑁𝑁 − 𝑟𝑟7𝑁𝑁 −

Г𝑃𝑃
Г𝑁𝑁

𝑟𝑟9𝑁𝑁 (4.12) 

 
𝑑𝑑𝜃𝜃𝑂𝑂2 𝐶𝐶

𝑑𝑑𝑑𝑑
= 0 = 𝑟𝑟6𝐶𝐶 − 𝑟𝑟7𝐶𝐶 (4.13) 

 
𝑑𝑑𝜃𝜃𝐻𝐻𝐻𝐻2− 𝑁𝑁

𝑑𝑑𝑑𝑑
= 0 = 𝑟𝑟7𝑁𝑁 − 𝑟𝑟8𝑁𝑁 −

Г𝑃𝑃
Г𝑁𝑁

𝑟𝑟10𝑁𝑁 (4.14) 

 
𝑑𝑑𝜃𝜃𝐻𝐻𝐻𝐻2− 𝐶𝐶

𝑑𝑑𝑑𝑑
= 0 = 𝑟𝑟7𝐶𝐶 − 𝑟𝑟8𝐶𝐶 (4.15) 

When the pathway 

follows (4PC) 
                

𝑑𝑑𝜃𝜃𝑂𝑂 𝑃𝑃

𝑑𝑑𝑑𝑑
= 0 = 2𝑟𝑟4𝑃𝑃𝑃𝑃 − 𝑟𝑟1𝑃𝑃 (4.16) 

When the pathway 

follows (4PE) 
                

𝑑𝑑𝜃𝜃𝑂𝑂 𝑃𝑃

𝑑𝑑𝑑𝑑
= 0 = 𝑟𝑟4𝑃𝑃𝑃𝑃 − 𝑟𝑟1𝑃𝑃 (4.17) 

 
𝑑𝑑𝜃𝜃𝑂𝑂2 𝑃𝑃

𝑑𝑑𝑑𝑑
= 0 = 𝑟𝑟2𝑃𝑃 − 𝑟𝑟3𝑃𝑃 + 𝑟𝑟9𝑁𝑁 (4.18) 

 𝑑𝑑𝜃𝜃𝐻𝐻𝐻𝐻2 𝑃𝑃

𝑑𝑑𝑑𝑑
= 0 = 𝑟𝑟3𝑃𝑃 − 𝑟𝑟4𝑃𝑃 + 𝑟𝑟5𝑃𝑃 + 𝑟𝑟10𝑁𝑁 (4.19) 

     Given the linear concentration profile in the solution, one can write down the mass-

balance equations for O2 and HO2
-: 
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 𝐷𝐷𝑂𝑂2
𝑑𝑑𝑐𝑐𝑂𝑂2
𝑑𝑑𝑑𝑑

≈ 𝐷𝐷𝑂𝑂2
𝑐𝑐𝑂𝑂2
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑂𝑂2
𝛿𝛿𝑂𝑂2

= Г𝐶𝐶𝑟𝑟6𝐶𝐶 + Г𝑁𝑁𝑟𝑟6𝑁𝑁 + Г𝑃𝑃𝑟𝑟2𝑃𝑃 (4.20) 

 𝐷𝐷𝐻𝐻𝐻𝐻2−
𝑑𝑑𝑐𝑐𝐻𝐻𝐻𝐻2−
𝑑𝑑𝑑𝑑

≈ 𝐷𝐷𝐻𝐻𝐻𝐻2−
𝑐𝑐𝐻𝐻𝐻𝐻2−
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑐𝑐𝐻𝐻𝐻𝐻2−
𝛿𝛿𝐻𝐻𝐻𝐻2−

= −Г𝐶𝐶𝑟𝑟8𝐶𝐶 − Г𝑁𝑁𝑟𝑟8𝑁𝑁 + Г𝑃𝑃𝑟𝑟5𝑃𝑃 (4.21) 

     Here, 𝐷𝐷𝑂𝑂2, 𝐷𝐷𝐻𝐻𝐻𝐻2− are the O2 and HO2
- diffusion coefficients, 𝑐𝑐𝑂𝑂2

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑐𝑐𝐻𝐻𝐻𝐻2−
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are the O2 and 

HO2
- concentrations in the solution bulk, 𝑐𝑐𝑂𝑂2, 𝑐𝑐𝐻𝐻𝐻𝐻2− are O2 and HO2

- concentrations in the 

vicinity of the electrode surface, 𝛿𝛿𝑂𝑂2, 𝛿𝛿𝐻𝐻𝐻𝐻2− are the O2 and HO2
- diffusion layer thickness, 

𝜃𝜃𝑂𝑂2 𝐶𝐶, 𝜃𝜃𝐻𝐻𝐻𝐻2− 𝐶𝐶 are the O2 and HO2
- surface coverages on carbon active sites, 𝜃𝜃𝑂𝑂2 𝑁𝑁, 𝜃𝜃𝐻𝐻𝐻𝐻2− 𝑁𝑁 

are the O2 and HO2
- surface coverages on nitrogen-doped carbon active sites, and 𝜃𝜃𝑂𝑂2 𝑃𝑃, 

𝜃𝜃𝐻𝐻𝐻𝐻2 𝑃𝑃, 𝜃𝜃𝑂𝑂 𝑃𝑃 are the O2, HO2, and O surface coverages on perovskite.  The diffusion layer 

thicknesses are estimated from the analytical solution for the RDE experiment using the 

electrode rotation rate 𝜔𝜔 and kinematic viscosity 𝜈𝜈 [58], [83]: 

 𝛿𝛿𝑂𝑂2 = 1.61𝐷𝐷𝑂𝑂2
1/3𝜔𝜔−1/2𝜈𝜈1/6 (4.22) 

 𝛿𝛿𝐻𝐻𝐻𝐻2− = 1.61𝐷𝐷𝐻𝐻𝐻𝐻2−
1/3 𝜔𝜔−1/2𝜈𝜈1/6 (4.23) 

     Г𝐶𝐶, Г𝑁𝑁, Г𝑃𝑃 are C, N-doped, and perovskite surface active sites densities for the ORR and 

HPRR/HPOR, which were calculated from the estimations provided in the work using the 

renormalization by the catalyst loading and BET surface areas [68].  

     ORR and HPRR/HPOR currents were calculated as: 

 
𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻⁄
4𝑃𝑃𝑃𝑃 = −2𝐹𝐹Г𝐶𝐶𝑟𝑟7𝐶𝐶 − 2𝐹𝐹Г𝑁𝑁𝑟𝑟7𝑁𝑁 − 

−𝐹𝐹Г𝑃𝑃(𝑟𝑟1𝑃𝑃 + 𝑟𝑟2𝑃𝑃 + 𝑟𝑟3𝑃𝑃 + 𝑟𝑟9) 
(4.24) 

 
𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻⁄
4𝑃𝑃𝑃𝑃 = −2𝐹𝐹Г𝐶𝐶𝑟𝑟7𝐶𝐶 − 2𝐹𝐹Г𝑁𝑁𝑟𝑟7𝑁𝑁 − 

−𝐹𝐹Г𝑃𝑃(𝑟𝑟1𝑃𝑃 + 𝑟𝑟2𝑃𝑃 + 𝑟𝑟3𝑃𝑃 + 𝑟𝑟4𝑃𝑃𝑃𝑃 + 𝑟𝑟9) 
(4.25) 
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Table 4.1 Adjusted model parameters 

Parameter VC 

(4PC/4PE) 

NC 

(4PC/4PE) 

LCO/VC 

(4PC/4PE) 

LCO/NC 

(4PC/4PE) 

LSCO64/VC 

(4PC) 

LSCO64/NC 

(4PC) 

k1, s-1 -/- -/- 9.6 x10-1/5.6 

x10-1 

9.6 x10-1/5.6 

x10-1 

9.6 x10-1 9.6 x10-1 

k-1, s-1 -/- -/- 9.6 x10-1/5.6 

x10-1 

9.6 x10-1/5.6 

x10-1 

9.6 x10-1 9.6 x10-1 

k2, cm3 mol-1 

s-1 

-/- -/- 1.3 x1010/1.6 

x1011 

1.3 x1010/1.6 

x1011 

1.0 x1016 1 x1016 

k-2, s-1 -/- -/- 2.8 x10-9/3.5 

x10-8 

2.8 x10-9/3.5 

x10-8 

2.2 x10-3 2.3 x10-3 

k3, s-1 -/- -/- 1.3 x1010/2.9 

x1011 

1.3 x1010/2.9 

x1011 

1.2 x108 1.2 x108 

k-3, s-1 -/- -/- 1.4 x10-6/3.5 

x10-4 

1.4 x10-6/3.5 

x10-4 

1.4 x10-7 1.4 x10-7 

k4, s-1 -/- -/- 2.5 x101/1.4 

x1010 

2.5 x101/1.4 

x1010 

3.0 x101 3.0 x101 

k-4, s-1 -/- -/- 0/0 0/0 0 0 

k5, cm3 mol-1 

s-1 

-/- -/- 4 x108/4 x106 4 x108/4 x106 4 x108 4 x108 

k-5, s-1 -/- -/- 1 x103/1 x101 1 x103/1 x101 1 x103 1 x103 

k6C, cm3 mol-

1 s-1 

1.5 x108/1.5 

x108 

1.5 x108/1.5 

x108 

1.5 x108/1.5 

x108 

1.5 x108/1.5 

x108 

1.5 x108 1.5 x108 

k-6C, cm s-1 1.6 x103/1.6 

x103 

1.6 x103/1.6 

x103 

1.6 x103/1.6 

x103 

1.6 x103/1.6 

x103 

1.6 x103 1.6 x103 

k7C, s-1 5.5 x109/5.5 

x109 

5.5 x109/5.5 

x109 

5.5 x109/5.5 

x109 

5.5 x109/5.5 

x109 

5.5 x109 5.5 x109 

k-7C, s-1 1.6 x10-1/1.6 

x10-1 

1.6 x10-1/1.6 

x10-1 

1.6 x10-1/1.6 

x10-1 

1.6 x10-1/1.6 

x10-1 

1.6 x10-1 1.6 x10-1 

k8C, s-1 1.8 x103/1.8 

x103 

1.8 x103/1.8 

x103 

1.8 x103/1.8 

x103 

1.8 x103/1.8 

x103 

1.8 x103 1.8 x103 
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k-8C, cm3 mol 

s-1 

2.0 x103/2.0 

x103 

2.0 x103/2.0 

x103 

2.0 x103/2.0 

x103 

2.0 x103/2.0 

x103 

2.0 x103 2.0 x103 

k6NC, cm3 

mol-1 s-1 

-/- 1.5 x108/1.5 

x108 

-/- 1.5 x108/1.5 

x108 

- 1.5 x108 

k-6N, cm s-1 -/- 1.6 x103/1.6 

x103 

-/- 1.6 x103/1.6 

x103 

- 1.6 x103 

k7N, s-1 -/- 3.7 x108/3.7 

x108 

-/- 3.7 x108/3.7 

x108 

- 3.7 x108 

k-7N, s-1 -/- 6.9 x10-3/6.9 

x10-3 

-/- 6.9 x10-3/6.9 

x10-3 

- 6.9 x10-3 

k8N, s-1 -/- 4.2 x103/4.2 

x103 

-/- 4.2 x103/4.2 

x103 

- 4.2 x103 

k-8N, cm3 mol 

s-1 

-/- 4.6 x103/4.6 

x103 

-/- 4.6 x103/4.6 

x103 

- 4.6 x103 

k9, s-1 -/- -/- 8.8x1011/- 1.7 x1012/8.8 

x1011 

- 3.5 x1012 

k-9, s-1 -/- -/- 1.8x10-2/- 3.6 x10-2/2.3 

x101 

- 7.2 x10-2 

k10, s-1 -/- -/- -/- 1 x105/1 x104 - - 

k-10, s-1 -/- -/- -/- 2.8 x10-1/2.8 

x10-2 

- - 

E1
0 V vs. 

RHE 

-/- -/- 0.933 0.933 1.053 1.053 

α1 -/- -/- 0.5/0.5 0.5/0.5 0.5 0.5 

α2 -/- -/- 0.5/0.5 0.5/0.5 0.8 0.8 

α3 -/- -/- 0.5/0.5 0.5/0.5 0.5 0.5 

α4 -/- -/- -/0.5 -/0.5 - - 

α7C 0.8/0.8 0.8/0.8 0.8/0.8 0.8/0.8 0.8 0.8 

α7NC -/- 0.5 -/- 0.5 - 0.5 

α9 -/- -/- -/- 0.8/0.8 - 0.8 
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ГС 1.9 x10-8/1.9 

x10-8 

1.9 x10-8/1.9 

x10-8 

1.9 x10-8/1.9 

x10-8 

1.9 x10-8/1.9 

x10-8 

1.9 x10-8 1.9 x10-8 

ГNC -/- 3.9 x10-10/3.9 

x10-10 

-/- 3.9 x10-10/3.9 

x10-10 

- 3.9 x10-10 

ГLSCO -/- -/- 6.1 x10-10/6.1 

x10-10 

6.1 x10-10/6.1 

x10-10 

6.1 x10-10 6.1 x10-10 

v, cm2 s-1 1.0 x10-2 1.0 x10-2 1.0 x10-2 1.0 x10-2 1.0 x10-2 1.0 x10-2 

cO2* 1.2 x10-6 1.2 x10-6 1.2 x10-6 1.2 x10-6 1.2 x10-6 1.2 x10-6 

cHO2-* 1.2 x10-6 1.2 x10-6 1.2 x10-6 1.2 x10-6 1.2 x10-6 1.2 x10-6 

DO2 1.9 x10-5 1.9 x10-5 1.9 x10-5 1.9 x10-5 1.9 x10-5 1.9 x10-5 

DHO2- 0.8 x10-5 0.8 x10-5 0.8 x10-5 0.8 x10-5 0.8 x10-5 0.8 x10-5 

4.3. Results and discussion 

     The physical properties of a series of Sr substituted lanthanum cobalt oxides, La1-

xSrxCoO3-δ, where, for instance, LSCO28 refers to La0.2Sr0.8CoO3-δ, have been described 

by J. T. Mefford et. al. [214] The surface properties of the series were elucidated by 

collaborators using the O1s X-ray photoelectron spectroscopy (XPS) and HAADF and 

ABF-STEM imaging with atomic resolution EDX [218]. 

     In order to decouple the activities of the LSCO members from the contributions of the 

carbon to the ORR, the perovskite catalysts were supported at 30 wt% on two different 

carbons, Vulcan carbon XC-72 (VC) and a 2 at. % nitrogen-doped mesoporous carbon 

(NC). Following results are crucial for ORR mechanism suggestion and modeling: 

     BET surface areas were relatively consistent across the entire series, ranging from 3.1 

to 4.5 m2 g-1. [214] Chemical titration measurements of the oxygen stoichiometry across 

the series show a trend of increasing oxygen deficiency and increasing the cobalt oxidation 

state with increasing Sr2+ substitution for La3+. In addition, it was shown through XPS that 

surface hydroxylation increases substantially with Sr substitution, partially as a function of 

cobalt oxidation state, and from the presence of surface oxygen vacancies which act as 



89 

  

dissociation sites for water. One can see the complete dataset of RDE characterization, 

which is used in MF-MKM on Figure 4.1, Figure 4.2, Figure 4.3. 

 
Figure 4.1  RDE analysis of 30 wt% LSCO perovskite composite electrocatalysts supported 

on (a) Vulcan carbon and (b) nitrogen-doped mesoporous carbon at a scan rate of 5 mV s-

1 in the negative potential direction in O2 saturated 0.1M KOH. Total electrode mass 

loadings were 51 μg cm-2
geom. All polarization curves have been iR corrected. 
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Figure 4.2  RDE analysis of (a) Vulcan carbon and (b) nitrogen-doped mesoporous carbon 

at a scan rate of 5 mV s-1 in the negative potential direction in O2 saturated 0.1M KOH. 

Electrode mass loadings were 35.7 μg cm-2
geom. All polarization curves have been iR 

corrected. 

 

 
Figure 4.3  RDE analysis of the HPOR/HPRR on LSCO perovskite composite 

electrocatalysts supported on (a) Vulcan carbon and on (b) Nitrogen-doped mesoporous 

carbon at a scan rate of 5 mV s-1 and rotation rate of 1600 rpm in 0.1 M KOH with an 

addition of 1.2 mM H2O2. Electrode mass loadings were 35.7 μg cm-2
geom for carbon and 

15.7 μg cm-2
geom for oxide. All polarization curves have been iR-corrected. 
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     To gain further insight into the ORR reaction mechanism the reactivity of the hydrogen 

peroxide reduction (HPRR) and oxidation (HPOR) reactions is investigated on the 

LSCO/carbon composites through rotating-disk electrochemistry, as shown in Figure 4.3. 

The represented results are the average of triplicate measurements of capacitance averaged 

forward and backward scans. The obtained voltammograms generally consist of three 

electrochemical reactions: (1) HO2
- reduction to OH- (HPRR, E1

0 = 1.74 V vs. RHE @ pH 

= 13); (2) O2 reduction to HO2
- / HO2

- oxidation to O2 (HPOR, E2
0 = 0.74 V vs. RHE @ 

pH = 13); (3) Full 4e- O2 reduction to OH- (ORR, E3
0 = 1.23 V vs. RHE @ pH = 13). The 

ORR (reaction (3)) may occur at potentials higher than 0.77 V vs. RHE due to O2 

production by the reverse of reaction (2). Both the VC and NC show negligible activity 

towards the HPRR, supporting the 2e-
 reduction of O2 to HO2

- on carbons. At the more 

positive potentials where HPOR may occur, the currents on pure carbons are still much 

lower than those of the LSCO/carbon composite electrodes. This behavior may be observed 

only if the reaction (2) is sluggish and has a slow rate even at the overpotentials higher than 

0.8 V. The mixed current potential (open circuit potential) is shifted towards lower 

overpotential by ~50 mV for LSCO/NC versus LSCO/VC. The currents on the LSCO/NC 

composites also tend to increase compared to those of LSCO/VC. This effect can be 

explained by the nonequivalent enhancement of the HPOR and HPRR by the NC support 

leading to the simultaneous increase in currents and shift of the onset potential. While both 

VC and NC are inactive for the HPRR/HPOR, this demonstrates the effect of reaction 

coupling between the perovskites and the carbon support. In order to better understand this 

behavior, one needs to deconvolute the contributions of reactions (1) and (2) through the 

aid of a microkinetic model described below. The simulation of the ORR mechanism 

requires the experimental data for the materials which are stable within the experimental 

setup. Otherwise, the degradation processes should be directly taken into consideration by 

the model. For these reasons, the data for the LCO and LSCO64 perovskite materials are 

used in simulations. LCO is shown to be stable at the potentials above 0.4 V vs RHE, where 

the ORR and HPRR/HPOR are studied [60], [81]. Despite LSCO64 has lower bulk stability 

than LCO [219], which is correlated with the more negative free energy change for the 
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lattice oxygen vacancy formation [214], rather low O vacancy concentration in LSCO64 

[214], [220] and the use of fresh electrodes at each ORR and HPRR/HPOR RDE 

experiments suggest that the catalytic degradation process (if present) is slow during the 

experiments and does not notably change the results. 

     The synergistic mechanistic pathways are considered involving the spillover of oxygen-

containing intermediates (either O2
- or HO2

-) from the carbon to the oxide in agreement 

with a number of recent studies on cobalt-based perovskites. [68], [71], [73], [82], [216], 

[221]–[225]. The reactions are simulated using a MF-MKM and compared to the 

experimentally observed catalytic activity trends towards the ORR and HPRR/HPOR for 

LSCO perovskites and carbons in order to ascertain the dominant pathway [68], [73]. 

 

Figure 4.4  Proposed mechanism of oxygen reduction on LSCO/Carbon composite 

electrodes. On the LSCO perovskite catalysts (where P refers to a reaction on the perovskite 

surface) the steps are: (1P) Co3+/4+ surface redox step associated with -O and -OH 

adsorbates; (2P) oxygen adsorption on the Co3+ active sites combined with the first electron 

transfer step; (3P) reduction of the adsorbed oxygen to the HO2
-; (4PE) electrochemical 

reduction of the adsorbed HO2
- to OH- or (4PC) HO2

- chemical decomposition; (5P) 

alternative pathway considering adsorption of HO2
- on the perovskite surface rather than 

O2. On the carbon (where C refers to a reaction on the carbon surface) the hypothesized 

steps are: (6C) O2 adsorption; (7C) effective step of O2 reduction to HO2
-, note that 6C and 
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7C yield the overall 2 e- reduction of O2 to HO2
- ;(8C) HO2

- desorption step. Oxygen-

containing species transfer steps (OCST) consist of (9) O2 spillover between the nitrogen-

doped carbon active sites and perovskite active sites; (10) HO2
- spillover between the 

nitrogen-doped carbon active sites and perovskite active sites. OCST also includes the 

pathway for the HO2
- reduction/oxidation on the carbon with (5C) and (8C) steps for both 

C and N-doped C active sites. Steps (9) and (10); (4PC) and (4PE) were not simulated in 

parallel, only one of them was introduced to the model simultaneously to check its 

applicability using the experimental data. 

 

     Two reaction mechanisms for the ORR and HPRR/HPOR on the oxides provided the 

best explanation for the observed experimental findings. The first one, shown in Figure 4.4 

adapts the reaction steps proposed by Cushing, Goodenough with (1P), (2P), (3P), (4PE), 

(5P) steps, where P refers to the reaction occurring on the perovskite surface and PE refers 

to the electrochemical version of step (4) [72], [226], [227]. The second reaction 

mechanism, proposed by Strasbourg’s group consists of the same reaction steps but 

includes an alternative irreversible step of HO2
- chemical decomposition (4PC) instead of 

(4PE) step [68], [73]. It was previously successfully applied to simulate the catalytic 

activity trends for various oxides in the alkaline media towards the ORR and HPRR/HPOR 

as well as the kinetic control of the HPRR at high overpotentials for the several studied 

manganese oxides [79]. All the proposed reaction mechanisms were modeled in order to 

ascertain which mechanism best described the observed trends in the LSCO/VC and NC 

catalytic activity. The ORR on carbons was simulated by the mechanistic 2e- reduction of 

O2 to HO2
-, which comprises of steps (6C), (7C), and (8C) in Figure 4.4, where C refers to 

a step on the carbon surface. It was successfully used previously to describe the ORR RDE 

on carbon without overcomplicating the model [68], [73], [79]. 

     According to the XPS data on nitrogen content in the NC, the ORR and HPRR/HPOR 

on NC were modeled through the addition of 2% more active sites, which follow the same 

reaction mechanism but with faster ORR kinetics [216]. For the NC, the same total active 

sites surface density was used as for VC because of the following considerations: (i) 
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Catalytic activity of carbons does not linearly scale with the BET or BJH surface areas and 

(ii) Correct relative rate constants values should be obtained for both NC and VC in order 

to reproduce the experiment [61]. Hence, the reaction pathway is conserved for both 

carbons with the renormalization of the reaction rate by the active sites surface density and 

their contribution to the ORR for the composite materials may be correctly accounted 

without accurate estimation of their absolute rate constant values. 

 

Figure 4.5  Experimental (a, c) and simulated (b, d) ORR RDE voltammograms for Vulcan 

carbon (a, b) and nitrogen doped mesoporous carbon (c, d) in O2 saturated 0.1 M KOH 

solution and total electrode mass loadings 35.7 ug cm-2 geom. 

 

     As the influence of the carbon type on the overall ORR activity is stronger than that of 

Sr doping ratio on LSCO, the attempt to simulate it is provided first by modeling LCO/VC 

and LCO/NC using the two abovementioned reaction mechanisms for oxides. Three 

options of carbon type influence on the overall catalytic activity towards the ORR were 
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considered: 1) Faster ORR kinetics on NC leads to the higher rate of HO2
- generation, 

which is further adsorbed and reduced on perovskite, increasing the overall catalytic 

activity. 2) O2 spillover between the nitrogen-doped carbon active sites and perovskite 

active sites in step (9). 3) HO2
- spillover between the nitrogen-doped carbon active sites 

and perovskite active sites in step (10). The assumptions 2) and 3) were considered as the 

spillover of oxygen-containing species was observed experimentally between the carbon 

and Pt at Pt/C porous electrodes [228]. Hence, an attempt to use the spillover effects could 

be applied to explain the synergy between the metal oxides and carbon.  

     Effective steps (9) and (10) in Figure 4.4 serve as an initial attempt to introduce O2 and 

HO2
- spillover effects to the model. The further refinement of the modeling approach to 

simulate the spillover effects requires additional experimental data to better understand the 

oxide/carbon interface. 

     The consecutive way in which the model parameters are adjusted are as follows: 1) The 

VC and NC rate constants were adjusted to reproduce the experimental ORR and 

HPRR/HPOR results on the respective bare carbons; 2) Using the adjusted VC rate 

constants, the LCO rate constants were adjusted to reproduce experimental data for the 

ORR and HPRR/HPOR at LCO/VC within the reaction mechanisms with (4PC) and (4PE) 

steps; 3) Using the previously adjusted parameters for LCO and NC, the abovementioned 

hypotheses for carbon type influence were tested; and 4) The most successful reaction 

mechanism and hypothesis for the carbon type influence were applied to describe the 

catalytic activity trends with the Sr doping ratio in LSCO. For these reasons, the modeling 

parameters are provided for the most active composition, LSCO64. 
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Figure 4.6  ORR RDE voltammograms (a-c) in O2 saturated 0.1M KOH. HPRR/HPOR 

RDE voltammograms (d-f) in Ar-purged 0.1 M KOH solution with 1.2 mM HO2
-. 30 wt% 

LCO/VC composite catalyst was used with total electrode mass loading equal to 51 ug cm-

2
geom. (a, d) – experimental results. (b, e) – modeling results with the (4PC) reaction 

mechanism. (c, f) – modeling results with the 4PC reaction mechanism. 

 

     The simulated ORR RDE voltammograms for the carbons, shown in Figure 4.5, 

qualitatively reproduce experimental results. For the NC, the positive shift of ORR onset 

potential comparing to that of VC was reproduced. The more detailed simulation of the 

well-observed minimum of ORR currents at 0.55 V vs. RHE for NC, as well as the 

voltammograms shape at average potentials, require the improvement of the model, with 

possible addition of a direct 4e- oxygen reduction pathway occuring on the carbon (rather 

than the 2e- O2 to HO2
-) with competition of different active sites at NC at low 

overpotentials and carbon surface poisoning at high overpotentials [39]. In order to do that, 
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additional experimental studies are required to make the model improvement physically 

relevant. The negligible simulated HPOR/HPRR currents on the VC and NC are consistent 

with the low values observed in experiments. 

     The results of the LCO/VC simulation are shown in Figure 4.6. Both models, using 

either the (4PE) or the (4PC) step for HO2
- decomposition, semi-quantitatively reproduce 

ORR RDE voltammograms. Within the model considering the (4PC) step the ORR 

proceeds on the LCO/VC composite material through steps (6C), (7C), (8C), (5P), (4PC), 

2 x (1P). The LCO by itself has a slow (2P) step which prohibits the series 2e- + 2e- pathway 

on the oxide. The model qualitatively reproduces the zero current potential as well as the 

incipient current regions for HPRR/HPOR RDE voltammograms. The reaction mechanism 

following the (4PC) step shows better results for the reproduction of the HPRR kinetically 

limiting currents at high overpotentials due to the higher degree of freedom for the 

simultaneous adjustment of ORR and HPRR kinetically-limiting currents with the two 

chemical steps (4PC) and (5P). Both models have limitations on the maximum positive 

potential that can be applied because the surface active sites are passivated at the positive 

potentials by the reverse reaction (-1P). One can potentially overcome this limitation via 

the introduction of interactions between the adsorbed reaction intermediates via Frumkin 

isotherms, consideration of the outersphere reaction regime at positive potentials, or 

inclusion of multiple LCO active sites with different distributions of their formal surface 

redox potential. All of these require additional experimental data beyond the scope of this 

study. 
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Figure 4.7  ORR RDE voltammograms (a-d) in O2 saturated 0.1M KOH. HPRR/HPOR 

RDE voltammograms (e-h) in Ar-purged 0.1 KOH solution with 1.2mM HO2
-. 30 wt% 

LCO/NC composite catalyst was used with total electrode mass loading equal to 51 ug cm-

2
geom. (a, e) experimental results. (b, f), (c, g), (d, h) modeling results for (4PE) reaction 

mechanism without/with O2/with HO2
- spillover respectively. 

 

     Similar results on LCO/NC (Figure 4.7) shows that neither increased ORR activity of 

NC towards the 2e- oxygen reduction, nor HO2
- and O2 spillover steps can explain 

simultaneous increase in HPOR currents, ORR currents, and change of the ORR currents 

slope at the LCO/NC within the model assumptions and (4PE) step for HO2
- reduction. The 

rate constants for spillover steps were adjusted to reproduce the shift in the ORR onset 

potential. Additionally, an artificial minimum of ORR currents was observed with the O2 

and HO2
- spillover due to the competitive O2 reduction at the VC and NC active sites. Thus 
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the 4PE pathway can be excluded in the mechanism of the ORR on the LSCO/carbon 

composites. 
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Figure 4.8  ORR RDE voltammograms (a-d) in O2 saturated 0.1 M KOH. HPRR/HPOR 

RDE voltammograms (e-h) in N2-purged 0.1 KOH solution with 1.2mM HO2
-. 30 wt% 

LCO/NC composite catalyst was used with total electrode mass loading equal to 51 ug cm-

2
geom. (a, e) – experimental results. (b, f), (c, g), (d, h) – modeling results for (4PC) reaction 

mechanism without/with O2/with HO2
- spillover respectively. 

 

     For the nitrogen-doped carbon (NC) the best result of simultaneous qualitative 

reproduction of experimental results was obtained for the reaction mechanism with the 

(4PC) step for HO2
- decomposition and (9) O2 spillover step, as shown in Figure 4.8. This 

option was able to reproduce: (i) The negative shift of the HPRR/HPOR mixed current 

potential, (ii) The initial HPOR region, (iii) The positive onset potential shift for the ORR, 
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(iv) slope change of the ORR RDE voltammograms. However, the increased HPRR 

currents at high overpotentials are not well reproduced. Both VC and NC carbons show no 

activity towards the HPRR, and the HPRR limiting currents are described by the rate of 

(4PC) reaction. The HPOR current was increased because the backward O2 spillover step 

(-9) overcame the reaction limiting step of HO2
- adsorption on carbon (-8C) and slow 

oxygen desorption from the LCO (-2P). The O2 spillover is considered as a charge transfer 

event and differs from step (2P) in that the NC is considered to be the active site for charge 

transfer (leading to differing rate constants k9/k-9). 
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Figure 4.9  HPRR/HPOR RDE voltammograms (a-c) in Ar-purged 0.1M KOH with 1.2 

mM HO2
-. 30 wt% LCO/VC composite catalyst was used with total electrode mass loading 

equal to 51 ug cm-2
geom. (a) experimental results. (b, c) modeling results for (4PC) reaction 

mechanism without/with O2
- spillover, respectively. 

 

     Note that the O2 spillover step (9) was also considered for LCO/VC (Figure 4.9) but 

was not able to reproduce the HPRR/HPOR experimental results suggesting that the 

incorporation of nitrogen alters the mechanism of the composite electrodes. The slope 

change refers to the shift from the reaction regime at lower overpotentials where N-doped 

active sites participate in the reaction together with O2 spillover, and the reaction regime 

with HO2
- generation (6C), (7C) on the carbon, its desorption (8C) and re-adsorption (5P) 

on perovskite at larger overpotentials, where the N-doped active sites contribution is lower 

due to the competitive 2e- oxygen reduction on carbon and N-doped active sites. The other 
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options such as higher NC activity (Figure 4.8 (2b), (2f)) and HO2
- spillover (Figure 4.8, 

(2d), (2h)) are not able to simultaneously reproduce ORR and HPRR/HPOR RDE 

voltammograms. This suggests a differing mechanism in the oxygen-containing species 

transfer step (9) or (10) when nitrogen is introduced into the carbon structure and may 

indicate the buildup of a superoxide like O2
- on nitrogen-doped carbon. 
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Figure 4.10  ORR RDE voltammograms (a-d) in O2 saturated 0.1 M KOH. HPRR/HPOR 

RDE voltammograms (e-h) in N2-purged 0.1 KOH solution with 1.2mM HO2
-. 30 wt% 

LCO/NC composite catalyst was used with total electrode mass loading equal to 51 ug cm-

2
geom. (a, e), (c, g) – experimental results for LSCO/VC and LSCO64/NC respectively. (b, 

f), (d, h) – modeling results using the reaction mechanism with (4PC) step for LSCO/VC 

and LSCO64/NC respectively. 
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     Finally, an attempt to model the higher catalytic activity of LSCO64 was made as shown 

in Figure 4.10. The higher surface hydroxylation at higher Sr content was qualitatively 

modeled by positively shifting the surface Co3+/Co4+ formal redox potential by 120 mV 

relative to LCO. If one wants to fix this parameter as it was done for LCO, the same 

experimental procedure should be applied [82]. The transfer coefficient for the (2P) step 

was changed from the 0.5 to 0.8 to reproduce the ORR RDE voltammograms slopes. The 

forward and backward rate constants should be unavoidably simultaneously adjusted for 

(2P) (increased 2 times), (3P) (decreased 10 times), and (9) (increased 2 times) reaction 

steps. For the LSCO64 the ORR kinetically limiting currents at high overpotentials are 

different for VC and NC support, which is opposite to what was observed at LCO. From 

the modeling point of view, it could be explained by (i) the faster (4PC) step, or different 

influence of the carbon type on the oxide utilization via the improvement of the electrical 

contact. In order to check it, an oxide utilization enhancement should be experimentally 

estimated [82]. Moreover, because the LSCO64 has lower bulk stability than LCO, one 

cannot exclude an option that the surface structure, as well as the surface active sites and 

their density, are different from the ones for LCO [214]. Regardless, the modeling suggests 

that the origin in the higher catalytic activity originates from a fast peroxide decomposition 

(4PC) step. 

     On LCO/VC, NC and LSCO64/VC, NC the rate-limiting step was identified as 

the decomposition of the hydroperoxide adsorbate (4PC). This step requires both 

OH- and HO2
- adsorbates and results in a Co4+ species. Considering the XPS 

hydroxylation information and the oxidation state data derived through iodometric 

titrations, the high reactivity of LSCO46 and LSCO64 can be explained as an 

optimal balance in both intermediate oxidation state (which reflects the energy of 

the electronic states of the catalyst) and relative hydroxylation. In contrast, SCO, 

which has a similar oxidation state but higher surface hydroxylation results in low 

HPOR/HPRR/ORR activity. Similarly, LCO has a lower oxidation state and lower 

surface hydroxylation resulting in low activity. The change in Tafel slope at high 

potentials for NC (in comparison to VC) can be explained by a higher mass transfer 
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of reactants through the O2 spillover step (9) leading to high coverage of 

intermediates at lower overpotential. 

4.4. Conclusions 

     The role of carbon as a co-catalyst was investigated through supporting the LSCO 

catalysts on either Vulcan carbon with no nitrogen or on a 2 at. % N-doped carbon. It was 

found that the interactions between LSCO and carbon in composite systems played a 

crucial role in describing the activity of the series. The proposed microkinetic model 

qualitatively reproduced experimental data for ORR RDE on VC and NC, the ORR and 

HPRR/HPOR data for LCO/VC, NC, and LSCO64/VC, NC. Within the assumptions of the 

developed model, two reaction mechanisms with chemical and electrochemical 

hydroperoxide decomposition steps were considered. Three hypotheses for the catalytic 

activity enhancement due to nitrogen incorporation in the carbon were elucidated. It was 

shown that the reaction mechanism with a chemical step for HO2
- decomposition on the 

perovskite surface, HO2
- mass transfer between VC and the perovskite, and O2 spillover 

between the NC and perovskite active sites provided the best qualitative reproduction for 

the ORR and HPRR/HPOR RDE experiments. Despite the simplified model for the ORR 

and HPOR/HPRR on carbon and neglection of adsorbates interactions, the results of this 

work show that use of a nitrogen-doped carbon support leads to a 5-fold catalytic activity 

enhancement for the ORR on LSCO/carbon composites through enhancement of the O2 

spillover pathway. This work serves as the first step to the elucidation of carbon support 

influence in composite oxide/carbon electrodes and a better description of catalytic activity 

trends with Sr doping ratio in LSCO. From this study, it is clear that the rational design of 

perovskite electrocatalysts requires a complete understanding of the composite systems 

used in the studies and that the role of carbon in the reduction of oxygen on metal oxides 

cannot be overlooked. The undoubtedly high complexity of the suggested ORR 

mechanism, requires the quantification of inverse uncertainty propagation in order to 

access its capability for quantitative but not qualitative insights on the estimated model 

parameters. It should also target the further molecular level study to the model parameters, 
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which are weakly constrained from the available experimental data. Given the complexity 

of the suggested mechanism, the simpler model system is required to approbate the inverse 

uncertainty characterization techniques and to develop the approach to determine the 

accessible detailing level of the ORR mechanism detailing based on the completeness of 

the available experimental data and its accuracy.  
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  Uncertainty Quantification for Quantitative ORR Mechanism Selection 

     The results reported in this chapter are based on the following publication [A. A. 

Kurilovich, C. T. Alexander, E. M. Pazhetnov, and K. J. Stevenson, “Active learning-based 

framework for optimal reaction mechanism selection from microkinetic modeling: a case 

study of electrocatalytic oxygen reduction reaction on carbon nanotubes,” Phys. Chem. 

Chem. Phys., vol. 22, no. 8, pp. 4581–4591, 2020]. As it is shown in the previous chapter, 

the catalytic activity trends within the LSCO/VC, NC series require high minimal 

complexity of the microkinetic models in order to be reproduced. Together with the limited 

amount of the RRDE experimental data, it raises the question about the predictive 

capability of the suggested model and the corresponding reaction mechanism. Namely, if 

the available experimental data and suggested reaction mechanism provide the unique and 

correct explanation of observed catalytic activity trends by the unique set of model 

parameters. Hence, their uncertainties arising from experimental errors should be 

quantified and used as a criterion to elucidate the detailing level of the ORR mechanism 

(i.e. choose the reaction mechanism with the optimal complexity), which can be verified 

from the experiments. 

     Therefore, the aim of this chapter is to develop the framework for the macroscale model 

selection using not only the precision of the experimental data fitting but also the 

uncertainty of the reaction mechanism parameters (rate constants, charge transfer 

coefficients, etc.) It should narrow the gap between the experiments and macroscale 

simulations in the multiscale modeling approach. In order to aim this specific part, the ab 

initio calculations are intentionally avoided to bound the model parameters. Therefore, it 

should be possible to elucidate the connection between the available experimental data and 

the details on the reaction mechanism it can reliably provide. This should make further 

validation of the proposed reaction mechanism by the molecular level insights more 

conclusive. 

     The ORR on multiwalled carbon nanotubes (CNTs) is used as model system. CNTs are 

good model catalysts since they catalyze the ORR through the 2e- mechanism with O2 being 

reduced to HO2
- in alkaline media [41], [51], [53], which decreases the number of possible 
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elementary steps compared to the Pt or TMO/C systems. As such, a rather simple model 

can be proposed and examined on the influence of experimental dataset completeness on 

achievable detailing of the reaction mechanism. In this work, the framework of the optimal 

model selection is demonstrated based on the RDE experimental data fitting using the 

mean-field MF-MKM. 

5.1. Materials and Methods 

5.1.1.Chemicals 

     All chemicals were used as received. 5 wt% Nafion solution in lower alcohols and m-

xylene (>99%) were purchased from Sigma-Aldrich while ferrocene (99%) was obtained 

from Alfa Aesar. Oxygen (research-grade, 99.999% purity), argon (research-grade 

99.999% purity) and hydrogen (research-grade, 99.999% purity) were obtained from 

Praxair. Millipore deionized water (18 MΩ cm) was used. 

5.1.2.Carbon Nanotube Synthesis 

     CNTs were prepared by C. T. Alexander using a floating catalyst chemical vapor 

deposition (CVD) method as described previously [53]. Briefly, a 2 mL flask and 1 mL 

glass syringe were rinsed four times with m-xylene to remove trace ferrocene from 

previous runs. After the flask was dried using a Kim wipe, 156.4 mg of ferrocene was 

added to the flask which was then capped with a rubber septum and flushed with argon for 

five minutes using a pair of syringe needles to flush out oxygen and moisture from the flask 

with one needle and relieve pressure with the other needle. Then, m-xylene was injected 

into the flask to make the solution 104.28 mg ferrocene/mL of m-xylene (or 9.6 wt% 

ferrocene). The solution was then sonicated to speed the ferrocene dissolution rate until 

there were no visible solids left in the deep orange solution. Then, 1 mL of the solution 

(with an extra 0.1 mL added to account for the plastic tubing volume for a total of 1.1 mL) 

was injected into the first stage of a two-stage furnace at a rate of 1.2 mL hr-1 in a quartz 

tube with argon flowing at 750 cm3 min-1. The first stage was held at 200oC while the 

second stage was held at 760oC for ten minutes prior to and during injection to eliminate 
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thermal gradients. The synthesis was run for 60 minutes after which the argon flow rate 

was reduced to 200 cm3 min-1, the furnace was turned off and allowed to cool for three 

hours until the quartz tube was cool enough (~150oC) to handle and collect the CNTs. 

5.1.3.Surface Area Characterization 

     The CNT’s surface area was measured by C. T. Alexander using a Quantachrome 

Instruments NOVA 2000 high-speed surface area BET analyzer at 77 K. The samples were 

degassed at 200oC under vacuum for eight hours prior to measurement and the P/Po range 

for data analysis was from 0.05 to 0.30. 

5.1.4.Material Characterization 

     Chemical analysis of sample surfaces was carried out by E. M. Pazhetnov with X-ray 

photoelectron spectroscopy (XPS) technique. measurements were performed using the PHI 

500 VersaProbe II spectrometer with a spherical mirror analyzer. Al Kα monochromatic x-

ray source with 1486.6eV X-ray energy was utilized. Emitted photoelectrons were 

collected at the normal incidence. Survey spectra were recorded with 1.0 eV step size while 

high-resolution spectra were recorded with 0.1 eV step size. Electron neutralizer was not 

applied due to the good electronic conductivity of material under study. Following the 

commonly used procedure for X-ray spectroscopy data analysis, high-resolution XPS 

spectra were processed in two steps. Firstly, photoelectron backgrounds were subtracted 

from the high-resolution spectra using Shirley function approximation. The resulting 

spectra were used for element content quantification. Secondly, the peak fitting procedures 

with mixed Gauss-Lorentz (Voigt) profile components were applied to O1s high-resolution 

spectra in order to quantify the oxygen functional groups. All the high-resolution spectra 

were calibrated to the C1s binding energy 284.6eV. Obtained results were then compared 

with the ones for previously studied CNTs [53]. 

5.1.5.Electrochemical Characterization 

     Electrochemical testing was performed by C. T. Alexander on a Metrohm Autolab 

PGSTAT 302N with high-speed rotators and rotating disk electrodes (RDEs) from Pine 
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Instruments. The RDEs consisted of a 5 mm diameter glassy carbon electrode (GCE) 

surrounded by a PEEK sheath. The GCE was prepared by first sonicating it in a 50:50 (by 

volume) water: ethanol solution for thirty seconds, followed by polishing in an alternating 

figure-eight pattern on a wet polishing pad with 50 nm alumina and DI water. The electrode 

was then rinsed with DI water from a squirt bottle and sonicated in a fresh 50:50 water: 

ethanol (by volume) solution for thirty seconds. The electrode was then allowed to dry for 

one hour prior to depositing the CNTs via an ink under a covering open to ambient to 

prevent dust from falling on the electrode but allow the solvent to evaporate. The CNT ink 

was prepared by first ball milling the CNTs for three minutes using a Wig-L-Bug ball mill 

and then adding it to a 0.05 wt% Na-substituted Nafion in ethanol solution to make the 

solution 1 mg mL-1. The solution was made by mixing 0.180 mL of 5 wt.% Nafion in 

ethanol, 0.360 mL of 0.1 M NaOH and 19.258 mL of ethanol. The CNT ink was then 

sonicated for two hours and then 10 µL was pipetted onto the polished GCEs in 3.5, 3.5 

and 3 µL increments which were covered and spun at ~185 r.p.m. to dry before adding the 

next increment. At first, the CNTs appeared to not wet the ink well and would splatter on 

the inside walls during sonication, but after one to two hours the CNTs appeared to better 

wet the ink solution. Just before placing the electrodes in the electrolyte, a drop of 

electrolyte was added to cover the electrode surface, 7 µL of isopropanol was pipetted into 

the droplet and pulsed several times to remove air bubbles trapped in the film. The electrode 

surface was then rinsed with 1 mL of electrolyte to remove residual isopropanol. 

     Electrochemical tests were performed in fresh 0.1 M KOH (pH = 13.24) from 400 to 

1600 r.p.m. using a 1 M KOH Hg/HgO reference electrode and Au wire counter electrode 

enclosed behind a glass frit. The electrolyte resistance was measured to be 46 Ω using the 

positive feedback method and all curves were iR-corrected accordingly. O2 or Ar was 

bubbled into the electrolyte for at least 35 minutes prior to ORR or HPOR/HPRR testing 

respectively. During HPOR/HPRR measurements, Ar bubbling was stopped and was 

instead flowed over the electrolyte surface to prevent bubbles from disturbing the 

measurement. ORR cyclic voltammograms (CVs) were scanned at 5 mV s-1 from 0.9455 

V to 0.3955 V vs RHE. RHE was measured following the same procedure as described 
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previously [53]. Linear potential sweep measurements were made for the HPOR and HPRR 

starting from the open circuit potential after adding the appropriate amount of hydrogen 

peroxide and were swept at 5 mV s-1 to 0.3 V and -0.4 V vs Hg/HgO, respectively. All 

measurements were made in triplicate and a new solution was used for each HPRR/HPOR 

measurement at a different rotation rate. 

5.2. Theoretical Basis 

5.2.1.Experimental error calculation 

     Given an experiment type (ORR or HPRR/HPOR) and RDE rotation rate, the data 

points from triplicate RDE CVs were allocated to the 200 equal potential intervals (“bins”). 

For each bin the mean geometric current density 𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠,𝜔𝜔, 𝑏𝑏) was calculated according 

to (5.1). 

 𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠,𝜔𝜔, 𝑏𝑏 ) =
1

𝑁𝑁(𝑏𝑏)
� 𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠,𝜔𝜔, 𝑏𝑏, 𝑖𝑖)
𝑁𝑁(𝑏𝑏)

𝑖𝑖=1

 (5.1) 

     Here, s is the experiment type (ORR or HPRR/HPOR), ω is the RDE rotation rate, b is 

the bin, i is the data point number in a particular bin, N(b) is the total number of data points 

in the bin, and 𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠,𝜔𝜔, 𝑏𝑏, 𝑖𝑖) is the geometric current density. The experimental dataset 

for further modeling was formed as a set of potentials equal to half sum of left and right 

bin boundaries and corresponding mean geometric current densities for each ω and s. For 

each bin, the unbiased variance 𝑆𝑆(𝑠𝑠,𝜔𝜔, 𝑏𝑏) was calculated using equation (5.2): 

 𝑆𝑆(𝑠𝑠,𝜔𝜔, 𝑏𝑏) =
1

𝑁𝑁(𝑏𝑏) − 1
��𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠,𝜔𝜔, 𝑏𝑏 ) − 𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠,𝜔𝜔, 𝑏𝑏, 𝑖𝑖)�

2
𝑁𝑁(𝑏𝑏)

𝑖𝑖=1

 (5.2) 

     Then the mean squared error (MSE) for a given ω and s was calculated by averaging 

out the unbiased variances in all bins (5.3). 
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 𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠,𝜔𝜔) =
1

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
� 𝑆𝑆
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏=1

(𝑠𝑠,𝜔𝜔, 𝑏𝑏) (5.3) 

     It was further averaged out by ω to calculate MSE for one experiment type, e.g. ORR 

RDE (5.4). 

 𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠) =
1
𝑁𝑁𝜔𝜔

�𝑀𝑀𝑀𝑀𝑀𝑀
𝜔𝜔

(𝑠𝑠,𝜔𝜔) (5.4) 

     The overall MSE experimental error is obtained by summing up the MSEs for each type 

of experiment (5.5). 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠)
𝑠𝑠

 (5.5) 

5.2.2.Modeling details 

     Three considered ORR reaction mechanisms on CNTs were formalized using the MF-

MKM [68], [73], [79]. All adsorption/desorption steps were assumed to follow the 

Langmuir isotherm. Mass transfer of the O2 and HO2
- in the electrolyte is considered using 

the approximate analytical solution for RDE obtained by Levich [100]. The constructed 

system of ordinary differential equations was solved numerically in a steady-state 

approximation mimicking the low scan rates in performed RDE experiments. Flat electrode 

surface with uniformly distributed carbon active sites, which are equally accessible for O2 

and HO2
- species was considered in simulations. The concentration profile on the vicinity 

of the electrode surface was assumed to be linear for O2 and HO2
- species. The diffusion in 

the bulk of the electrode was neglected because of the low catalyst loadings. All rate 

constant values are reported for the 0.1 M KOH solution. The rate constants for effective 

2e- charge transfer steps are given at E0 = 0.7404 V vs. RHE. Prior to each numerical 

solution, the backward rate constant value for the charge transfer step was numerically 

calculated to reproduce the standard potential of O2/HO2
- redox pair in alkaline media. The 

applied potential was stepped down by decrements of 0.5 mV starting from 1.0 V vs RHE 
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for the ORR and 1.2 V. vs RHE for the HPRR/HPOR. For each potential value, the 

corresponding system of nonlinear algebraic equations is solved numerically by the fsolve 

function from Python scipy.optimize library, which is the wrapper around MINPACK 

hybrd and hybrj algorithms [229]. The variables were standardized. The relative tolerance 

parameter xtol was set to 10-6. 

     In this work, ‘model parameters’ refer to independent pre-exponential rate constants 

and charge transfer coefficients which define the CV shape but remain constant during the 

solution of the corresponding system of non-linear equations. The adopted data 

collaboration approach for the uncertainty quantification of the model parameters space 

was performed using the off-the-shelf implementation of the Tree-Structured Parzen 

estimator algorithm (TPE) [176] in the Python hyperopt library [230]. 

TPE requires warming up, which is done by parameters random sampling from specified 

prior distributions, which mimics our knowledge on possible model parameters values. The 

TPE global optimization outcome is highly dependent on this step. Multiple starts are 

performed with the results merged together in order to archive a more accurate sampling 

of the parameter space. In each start (i) 200 points were sampled from loguniform and 

uniform prior distributions for rate constants and charge transfer coefficients respectively, 

(ii) 800 points were evaluated by TPE global optimization procedure. The uniformness of 

the sampling is provided by randomness and independence of the warm-up step in each 

start, while low errors are achieved by the global optimization stage. 100 starts were 

performed with the wide intervals of model parameters prior distributions and 100 starts 

were made for the reduced intervals of the parameters, where low values of the objective 

function were observed. The objective function for the single experiment type is calculated 

as MSE between the averaged experimental CVs and linearly interpolated simulated CVs 

(5.6). 

 𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠) =
1
𝑁𝑁𝜔𝜔

�
1

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝜔𝜔

� �𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠,𝜔𝜔, 𝑏𝑏 ) − 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑠𝑠,𝜔𝜔,𝑉𝑉(𝑏𝑏)��
2

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏=1

 (5.6) 

     Here, 𝑉𝑉(𝑏𝑏) is the corresponding experimental potential. For the simultaneous fitting of 

the complete experimental dataset, the MSEs of single experiment types were summed up. 
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In the case the numerical model does not converge, the MSE was explicitly set to be very 

high, so the regions with high stiffness in the parameters space are avoided on the global 

optimization stage in TPE. 

5.2.3.Model equations 

     The effective diffusion layer thickness 𝛿𝛿𝑂𝑂2,𝐻𝐻𝐻𝐻2−  {cm} for O2 and HO2
- is evaluated from 

the approximate analytical solution for RDE reported by Levich [100]. 

 𝛿𝛿𝑂𝑂2,𝐻𝐻𝐻𝐻2−  = 1.61𝐷𝐷𝑂𝑂2,𝐻𝐻𝐻𝐻2− 

1
3� 𝜈𝜈1 6� 𝜔𝜔−1 2�  (5.7) 

     Here, 𝐷𝐷𝑂𝑂2,𝐻𝐻𝐻𝐻2−  {cm2 s-1} are diffusivities of O2 and HO2
- respectively, 𝜈𝜈 {cm2 s-1} – 

kinematic viscosity, 𝜔𝜔 {rad s-1} – RDE rotation rate. The values for 𝐷𝐷𝑂𝑂2,𝐻𝐻𝐻𝐻2−  and 𝜈𝜈 were 

taken from literature data [58]. 

• Model (a) 

     Three steps are considered within this model. 

1) Oxygen adsorption/desorption step on/from the surface: 

 𝑟𝑟1𝑎𝑎 : ∗ +𝑂𝑂2  → 𝑂𝑂2𝑎𝑎𝑎𝑎𝑎𝑎 (5.8) 

2) Effective 2e- reduction/oxidation step of/to O2 to/from HO2
-. Reaction product remains 

adsorbed on the surface: 

 𝑟𝑟2𝑎𝑎: 𝑂𝑂2𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐻𝐻2𝑂𝑂 + 2𝑒𝑒− → 𝐻𝐻𝐻𝐻2𝑎𝑎𝑎𝑎𝑎𝑎
− + 𝑂𝑂𝐻𝐻− (5.9) 

3) HO2
- desorption/adsorption step from/on the surface: 

 𝑟𝑟3𝑎𝑎: 𝐻𝐻𝐻𝐻2𝑎𝑎𝑎𝑎𝑎𝑎
− →  ∗ +𝐻𝐻𝐻𝐻2− (5.10) 

The rates of steps can be formally expressed as follows: 

 𝑟𝑟1𝑎𝑎 = 𝑘𝑘1𝑎𝑎𝑐𝑐𝑂𝑂2�1 − 𝛳𝛳𝑂𝑂2 − 𝛳𝛳𝐻𝐻𝐻𝐻2−� − 𝑘𝑘−1𝑎𝑎𝛳𝛳𝑂𝑂2 (5.11) 

 
𝑟𝑟2𝑎𝑎 = 𝑘𝑘2𝑎𝑎𝛳𝛳𝑂𝑂2𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝛼𝛼2𝑎𝑎𝐹𝐹(𝐸𝐸 − 𝐸𝐸𝑜𝑜)
𝑅𝑅𝑅𝑅

�

− 𝑘𝑘−2𝑎𝑎𝛳𝛳𝐻𝐻𝐻𝐻2−𝑒𝑒𝑒𝑒𝑒𝑒 �
(1 − 𝛼𝛼2𝑎𝑎)𝐹𝐹(𝐸𝐸 − 𝐸𝐸𝑜𝑜)

𝑅𝑅𝑅𝑅
� 

(5.12) 

 𝑟𝑟3𝑎𝑎 = 𝑘𝑘3𝑎𝑎𝛳𝛳𝐻𝐻𝐻𝐻2− − 𝑘𝑘−3𝑎𝑎𝑐𝑐𝐻𝐻𝐻𝐻2−�1 − 𝛳𝛳𝑂𝑂2 − 𝛳𝛳𝐻𝐻𝐻𝐻2−� (5.13) 
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     Here k1a/k-1a {cm3 mol-1 s-1/ s-1} are forward/backward rate constants for reaction step 

(5.8), k2a/k-2a {s-1/ s-1} are forward/backward rate constants for reaction step (5.9), α2a {1}- 

charge transfer coefficient in (5.9), k3a/k-3a { s-1/ cm3 mol-1 s-1} are forward/backward rate 

constants for reaction step (5.10), 𝛳𝛳𝑂𝑂2/𝛳𝛳𝐻𝐻𝐻𝐻2− {1/1} are surface coverages by O2 and HO2
- 

species respectively, Eo – potential at which rate constants for electrochemical step were 

specified (0.7404 V vs. RHE in this work), R – universal gas constant {J K-1 mol-1}, F – 

Faraday constant {C mol-1}, and T – temperature {K} (298 K in this work). 

     The model, which was solved numerically: 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑑𝑑𝜃𝜃𝑂𝑂2
𝑑𝑑𝑑𝑑 = 0 = 𝑟𝑟1a − 𝑟𝑟2a

𝑑𝑑𝜃𝜃𝐻𝐻𝑂𝑂2−
𝑑𝑑𝑑𝑑 = 0 = 𝑟𝑟2a − 𝑟𝑟3a

𝐷𝐷𝑂𝑂2 �
𝑑𝑑𝑐𝑐𝑂𝑂2
𝑑𝑑𝑑𝑑

�
𝑥𝑥=0

≈ 𝐷𝐷𝑂𝑂2
𝑐𝑐𝑂𝑂2
∗ − 𝑐𝑐𝑂𝑂2
𝛿𝛿𝑂𝑂2  

= 𝛤𝛤𝐶𝐶𝑟𝑟1𝑎𝑎

𝐷𝐷𝐻𝐻𝐻𝐻2− �
𝑑𝑑𝑐𝑐𝐻𝐻𝐻𝐻2−
𝑑𝑑𝑑𝑑

�
𝑥𝑥=0

≈ 𝐷𝐷𝐻𝐻𝐻𝐻2−
𝑐𝑐𝐻𝐻𝐻𝐻2−
∗ − 𝑐𝑐𝐻𝐻𝐻𝐻2−
𝛿𝛿𝐻𝐻𝐻𝐻2−  

= −𝛤𝛤𝐶𝐶𝑟𝑟3𝑎𝑎

 (5.14) 

     Here 𝑐𝑐𝑂𝑂2/𝐻𝐻𝐻𝐻2− {mol cm-3} are concentrations of O2 and HO2
- species in the vicinity of 

the electrode surface, 𝑐𝑐𝑂𝑂2/𝐻𝐻𝐻𝐻2−
∗  {mol cm-3} are concentrations of O2 and HO2

- in the bulk of 

electrolyte, given by oxygen solubility in 0.1 M KOH [231] and experimental conditions 

for the HPRR/HPOR. 𝛤𝛤𝐶𝐶 is CNT active site surface density {mol cm-2}. It was recalculated 

from the value used in our previous simulations [218] for Vulcan Carbon XC-72 (VC) 

using the ratios of BET surface areas and mass loadings for VC and CNTs. 

Finally, the geometric current density 𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐸𝐸) is evaluated from: 

 𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐸𝐸) = −2𝐹𝐹𝛤𝛤𝐶𝐶𝑟𝑟2a(𝐸𝐸) (5.15) 

• Model (b) 

     This model is obtained by simplification of the Model (a) by merging steps (5.9) and 

(5.10). No adsorbed HO2
- considered (fast HO2

- adsorption/desorption step). 

 𝑟𝑟1𝑏𝑏 : ∗ +𝑂𝑂2  → 𝑂𝑂2𝑎𝑎𝑎𝑎𝑎𝑎 (5.16) 

 𝑟𝑟2𝑏𝑏: 𝑂𝑂2𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐻𝐻2𝑂𝑂 + 2𝑒𝑒− → ∗ +𝐻𝐻𝐻𝐻2− + 𝑂𝑂𝐻𝐻− (5.17) 
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     Then, the rates will be: 

 𝑟𝑟1𝑏𝑏 = 𝑘𝑘1𝑏𝑏𝑐𝑐𝑂𝑂2�1 − 𝛳𝛳𝑂𝑂2� − 𝑘𝑘−1𝑏𝑏𝛳𝛳𝑂𝑂2 (5.18) 

 
𝑟𝑟2𝑏𝑏 = 𝑘𝑘2𝑏𝑏𝛳𝛳𝑂𝑂2𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝛼𝛼2𝑏𝑏𝐹𝐹(𝐸𝐸 − 𝐸𝐸𝑜𝑜)
𝑅𝑅𝑅𝑅

�

− 𝑘𝑘−2𝑏𝑏𝑐𝑐𝐻𝐻𝐻𝐻2−�1 − 𝛳𝛳𝑂𝑂2�𝑒𝑒𝑒𝑒𝑒𝑒 �
(1 − 𝛼𝛼2𝑏𝑏)𝐹𝐹(𝐸𝐸 − 𝐸𝐸𝑜𝑜)

𝑅𝑅𝑅𝑅
� 

(5.19) 

     Here k1b/k-1b {cm3 mol-1 s-1/ s-1} are forward/backward rate constants for reaction step 

(5.16), k2b/k-2b {s-1/ cm3 mol-1 s-1} are forward/backward rate constants for reaction step 

(5.17), and α2b {1}- charge transfer coefficient in (5.17). 

Numerical model: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑑𝑑𝜃𝜃𝑂𝑂2
𝑑𝑑𝑑𝑑

= 0 = 𝑟𝑟1b − 𝑟𝑟2b

𝐷𝐷𝑂𝑂2 �
𝑑𝑑𝑐𝑐𝑂𝑂2
𝑑𝑑𝑑𝑑

�
𝑥𝑥=0

≈ 𝐷𝐷𝑂𝑂2
𝑐𝑐𝑂𝑂2
∗ − 𝑐𝑐𝑂𝑂2
𝛿𝛿𝑂𝑂2  

= 𝛤𝛤𝐶𝐶𝑟𝑟1𝑏𝑏

𝐷𝐷𝐻𝐻𝐻𝐻2− �
𝑑𝑑𝑐𝑐𝐻𝐻𝐻𝐻2−
𝑑𝑑𝑑𝑑

�
𝑥𝑥=0

≈ 𝐷𝐷𝐻𝐻𝐻𝐻2−
𝑐𝑐𝐻𝐻𝐻𝐻2−
∗ − 𝑐𝑐𝐻𝐻𝐻𝐻2−
𝛿𝛿𝐻𝐻𝐻𝐻2−  

= −𝛤𝛤𝐶𝐶𝑟𝑟2𝑏𝑏

 (5.20) 

     Geometric current density: 

 𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐸𝐸) = −2𝐹𝐹𝛤𝛤𝐶𝐶𝑟𝑟2b(𝐸𝐸) (5.21) 

• Model (c) 

     No surface coverages are considered within the simplest single step model: 

 𝑟𝑟1𝑐𝑐: 𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 + 2𝑒𝑒− →  𝐻𝐻𝐻𝐻2− + 𝑂𝑂𝐻𝐻− (5.22) 

     Reaction rate: 

 
𝑟𝑟1𝑐𝑐 = 𝑘𝑘1𝑐𝑐𝑐𝑐𝑂𝑂2𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝛼𝛼1𝑐𝑐𝐹𝐹(𝐸𝐸 − 𝐸𝐸𝑜𝑜)
𝑅𝑅𝑅𝑅

�

− 𝑘𝑘−1𝑐𝑐𝑐𝑐𝐻𝐻𝐻𝐻2−𝑒𝑒𝑒𝑒𝑒𝑒 �
(1 − 𝛼𝛼1𝑐𝑐)𝐹𝐹(𝐸𝐸 − 𝐸𝐸𝑜𝑜)

𝑅𝑅𝑅𝑅
� 

(5.23) 

     Here k1c/k-1c {cm3 mol-1 s-1/ cm3 mol-1 s-1} are forward/backward rate constants for 

reaction step (5.22), and α1c {1}- charge transfer coefficient in (5.22). 

     Numerical model: 
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⎩
⎪
⎨

⎪
⎧ 𝐷𝐷𝑂𝑂2 �

𝑑𝑑𝑐𝑐𝑂𝑂2
𝑑𝑑𝑑𝑑

�
𝑥𝑥=0

≈ 𝐷𝐷𝑂𝑂2
𝑐𝑐𝑂𝑂2
∗ − 𝑐𝑐𝑂𝑂2
𝛿𝛿𝑂𝑂2  

= 𝛤𝛤𝐶𝐶𝑟𝑟1𝑐𝑐

𝐷𝐷𝐻𝐻𝐻𝐻2− �
𝑑𝑑𝑐𝑐𝐻𝐻𝐻𝐻2−
𝑑𝑑𝑑𝑑

�
𝑥𝑥=0

≈ 𝐷𝐷𝐻𝐻𝐻𝐻2−
𝑐𝑐𝐻𝐻𝐻𝐻2−
∗ − 𝑐𝑐𝐻𝐻𝐻𝐻2−
𝛿𝛿𝐻𝐻𝐻𝐻2−  

= −𝛤𝛤𝐶𝐶𝑟𝑟1𝑐𝑐
 (5.24) 

     Geometric current density: 

 𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐸𝐸) = −2𝐹𝐹𝛤𝛤𝐶𝐶𝑟𝑟1c(𝐸𝐸) (5.25) 

Table 5.1  Estimated uncertainties of independent model parameters. 

Model parameter Overall parameter 

sampling interval 

ORR fitting. Minimal 

interval, which contains all 

parameters giving the 

accuracy of fitting lower 

than experimental error. 

ORR and HPRR/HPOR 

fitting. Minimal interval, 

which contains all parameters 

giving the accuracy of fitting 

lower than experimental 

error. 

Model (a) 

k1a, s-1 cm3 mol-1 3.4x10-4...3.4x1010 2.8x106…1.3x107 2.8x106…7.2x107 

k-1a, s-1 3.4x10-4...3.4x1010 3.4x100…1.9x108 2.2x100...5.6x107 

k2a, s-1 3.4x10-4...3.4x1010 4.8x10-2…2.1x106 2.3x10-2…7.2x106 

k3a, s-1 3.4x10-4...3.4x1010 4.4x100…5.3x108 5.5x100…1.7x109 

k-3a, s-1 3.4x10-4...3.4x1010 9.6x100…3.4x1010 1.2x101…7.7x109 

α2a, 1 0.40…0.95 0.40…0.92 0.43…0.90 

Model (b) 

k1b, s-1 cm3 mol-1 3.4x10-4...3.4x1010 2.8x106…3.9x106 2.8x106…3.5x106 

k-1b, s-1 3.4x10-4...3.4x1010 8.8x100…5.5x102 9.7x100…1.7x102 

k2b, s-1 3.4x10-4...3.4x1010 3.1x10-2…5.9x106 3.6x10-2…1.5x101 

α2b, 1 0.40…0.95 0.42…0.91 0.64…0.90 
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5.3. Results and Discussion 

     The surface area of the CNTs was measured to be 50.58 m2 g-1 using BET N2 adsorption. 

XPS analysis performed by E. M. Pazhetnov shows no signal from Fe on the surface of 

CNTs (Figure 5.1). 

 
Figure 5.1  XPS survey spectra measured for two multiwalled carbon nanotube materials: 

CNT 1 sample – studied in [53] and CNT 2 sample – studied in this work. Spectra were 

shifted in Y-axis for the sake of comparison. 

 

     The C and O content is equal to 98.0 and 2.0 at% respectively. The high-resolution 

spectrum of O1s peak (Figure 5.2) was fitted by two Voigt components located at 531.2eV 

and 532.7eV respectively[232]. They can be attributed to carbonyl (C=O) and alcohol/ether 

(C-OH/C-O-C) groups with quantified content equal to 1.2 and 0.8 at%. The difference 

between CNTs under study and the ones discussed in the previous work [53] can be 

elucidated as follows: Despite the negligible but observable Fe content (<0.05 at%), 

(Figure 5.2) and similar O content (1.7 at%), the O1s peak in the previously studied CNTs 

can be fitted only by one Voigt component attributed to alcohol/ether functional groups 

(Figure 5.2). As the content of highly hydrophilic alcohol groups is ca. 0.9 at. % lower for 

the currently studied CNTs then they should have higher hydrophobicity and hence the 
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lower electrochemical performance for ORR, which agrees with our ORR RDE 

experimental results. 

 
Figure 5.2 O1s high-resolution spectra measured for two multiwalled carbon nanotube 

materials: CNT 1 sample – studied in[53] and CNT 2 sample – studied in this work. Best 

peak fitting results. Spectra were shifted in Y-axis for the sake of comparison. 

 

     The experimental ORR RDE CVs (Figure 5.3 (a)) measured by C. T. Alexander 

reproducibly show that the geometric current densities at low potentials are more than 30% 

lower than the mass-transfer limited ones for the 2e- ORR from Levich equation [100]. 

HPOR/HPRR current densities are negligible for both HO2
- concentrations (Figure 5.3 (b, 

c)). It leads us to the following considerations: (i) HO2
- does not undergo further 2e- 

reduction with the ORR proceeding by 2e- pathway; (ii) the HPOR current is limited by 

backward step in the ORR mechanism on CNTs. (i) is in agreement with our previous 

rotating ring-disk electrode (RRDE) study of CNTs, which showed ~100% HO2
- yield 

during the ORR [53]. (ii) coincides with negligible HPRR currents and low HPOR currents 

on both Vulcan Carbon XC-72 and mesoporous nitrogen-doped carbon with 4.8 and 21.3 

times higher BET surface areas than for CNTs [218]. The loadings were similar comprising 

35.7 ug cm-2 instead of 51 ug cm-2 in this work. 
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Figure 5.3 Experimental RDE CVs for CNTs with a mass loading of 51 μg cm-2 in 0.1 M 

KOH. (a) the ORR in O2-saturated solution; HPRR/HPOR in Ar-purged solution with 𝑐𝑐𝐻𝐻𝐻𝐻2− 

equal to (b) 1.2 mM and (c) 0.6 mM. Semi-transparent lines: independent experimental 

measurements, dots: averaged CVs. 

 

     Before the numerical simulations, the prior distributions for the model parameters 

search by TPE should be defined. In the bottom-up multiscale approach, they are usually 

estimated from the DFT insights on the molecular level and TST [233]. The calculated 

adsorption and activation energies typically have uncertainties in the order of 0.2 eV [90]. 

Considering the exponential dependence of rate constants on activation energy in TST, it 

will lead to more than 3 orders of magnitude uncertainties in the determination of the 

reaction rate constants at room temperature. The error propagation is enabled by the choice 

of the prior intervals for model parameters. 

     In the top-down approach, model parameters’ intervals are selected to be wide 

enough to explore possible reaction regimes and they represent the absence of our 

prior knowledge of the reaction mechanism. Based on the obtained results, the 
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systems for simulation on a molecular level may be suggested and studied. The error 

propagation is provided by experimental errors’ influence on the selection of 

reaction mechanism which will be further studied on a molecular level. 

     The estimation of the active sites surface density relies on the knowledge about the 

nature of active sites on carbon for the ORR and HPRR/HPOR, which is a matter of active 

research. As the one effective type of active site is considered in the models, the absolute 

values of rate constants are not so important as their ratios. So the uncertainty of the model 

parameters is quantified as a ratio of their minimum and maximum values giving the 

accurate fits. It is equivalent to the double uncertainty factor metrics discussed in [156]. 

     Following the top-down approach, one should start the elucidation of the ORR on CNTs 

considering the model (a), which consists of steps: 

 ∗ +𝑂𝑂2
𝑘𝑘1𝑎𝑎
⇄
𝑘𝑘−1𝑎𝑎

𝑂𝑂2𝑎𝑎𝑎𝑎𝑎𝑎 (5.26) 

 𝑂𝑂2𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐻𝐻2𝑂𝑂 + 2𝑒𝑒−
𝑘𝑘2𝑎𝑎 ,𝛼𝛼2𝑎𝑎

⇄
𝑘𝑘−2𝑎𝑎, 1 − 𝛼𝛼2𝑎𝑎

𝐻𝐻𝐻𝐻2𝑎𝑎𝑎𝑎𝑎𝑎
− + 𝑂𝑂𝐻𝐻− (5.27) 

 𝐻𝐻𝐻𝐻2𝑎𝑎𝑎𝑎𝑎𝑎
−

𝑘𝑘3𝑎𝑎
⇄
𝑘𝑘−3𝑎𝑎

 ∗ +𝐻𝐻𝐻𝐻2− (5.28) 

 

     Here k1a/-1a {cm3 mol-1 s-1/ s-1} are forward/backward rate constants for O2 adsorption 

step (5.26) on the electrode surface, k2a/-2a { s-1/ s-1} are forward/backward rate constants 

for O2 reduction to HO2
- (5.27), 𝛼𝛼2𝑎𝑎 {1} is cathodic charge transfer coefficient in (5.27), 

and k3a/-3a { s-1/ cm3 mol-1 s-1} are forward/backward rate constants for HO2
- desorption 

step (5.28) from the electrode surface. 

     Note that (5.27) is not elementary, but an effective reaction step being composed of 

several elementary ones. Model (a) was chosen as it was successfully used to demonstrate 

synergistic effects between carbons and TMO catalysts [68], [79], [218]. The further 
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elucidation of the nature of the rate-determining step within the effective step (5.27) may 

be carried out using the formalism derived within the quasi-equilibrium approximation, 

which is described in [103]. However, additional model parameters should be introduced 

which makes the model more complicated. 

 

Figure 5.4 Square root of modeling errors in the optimization process for both ORR and 

HPRR/HPOR data. The detailed description of the models (a), (b), and (c) can be found in 

Scheme 1 and section 5.2.3. MSE is calculated according to (5.6). Experimental error is 

evaluated from (5.5). Each point in the histogram corresponds to the fitting error given by 

one particular set of model parameters. One unit of the y-axis corresponds to 3.1ˣ10-2 mA 

cm-2
geom (per electrode geometric surface area). 

 

     The simulation shows (Figure 5.4) that the model (a) has sufficient accuracy to describe 

the full experimental data. The accuracy is provided by fitting errors lower than 

experimental ones on the available experimental dataset. 
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Figure 5.5  Example of modeling results for the model (a) with 3 reaction steps. All figures 

include the simulated RDE CVs for 10 random sets of model parameters with objective 

function lower than the experimental error (semi-transparent lines) and averaged 

experimental data (dots). Model parameters were adjusted by fitting of ORR RDE (a-c) 

and both ORR and HPRR/HPOR RDE (d-f) data. Simulated RDE CVs for O2-saturated 

solution (a, d), Ar-saturated solution with added 1.2 mM (b, e) and 0.6 mM (c, f) of 

hydroperoxide are shown. 
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Figure 5.6  The intervals of the model (a) parameters. Blue line – overall optimization 

interval, green and red lines – minimal intervals within which all the values of parameters 

giving the fitting errors lower than four and one experimental errors calculated from (5.5) 

are contained. The experimental data of ORR RDE (I), ORR and HPRR/HPOR RDE (II) 

were fitted. 

 

     However, the range of the model (a) parameters, which gives accurate fit (Figure 5.5), 

is large for both fitting the ORR (Figure 5.6 (I)) and full HPRR/HPOR plus ORR (Figure 

5.6 3(II)) data. It has more than seven orders of magnitude width for all rate constants 

except forward rate constant of O2 adsorption, which varies less than 2 orders of magnitude. 

Such a high uncertainty in model parameters means that the model (a) is overcomplicated 
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being applied to available experimental data. One can solve this issue either by collecting 

more accurate and diverse experimental measurements (variation of pH, O2 partial 

pressure, temperature, etc.) or by reducing the number of independent model parameters.  

 

Figure 5.7  Pair distributions of independent model (a) parameters. The figures on the left 

lower and right upper parts correspond to the fitting of the ORR only and all ORR plus 

HPRR/HPOR RDE CVs respectively. Dots represent sets of the model parameters, for 

which objective function was evaluated to be: lower than experimental error (red); between 

one and four experimental errors (green); higher than four experimental errors (blue). 

     The latter option can be implemented by identification of the lower number of 

descriptors (i.e. independent combinations of model parameters) within the same model. 
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The simple descriptors as the ratio of forward/backward rate constants for model (a) steps 

does not uniquely describe modeling results (Figure 5.6). 

     The exploration of the model parameters space with pairwise plots (Figure 5.7) reveals 

linear dependence for k-1a and k2a with the slope of 1.01 in log-log space and independency 

of k1a from other model parameters. The estimated log(k-1a/k2a) varies in the range of [0.89, 

2.83] for the accurate fitting of the complete dataset. Further elucidating other possible 

model descriptors cannot be provided by pairwise plots (Figure 5.7) and requires 

complicated dimensionality reduction techniques to be carried out. Hence one can claim 

that: (i) one cannot uniquely determine all rate constants from model (a) applied for our 

experimental dataset; (ii) simultaneous fitting of the ORR and HPRR/HPOR does not 

reduce the uncertainty in estimated model parameters; (iii) only two descriptors in 6-

dimensional model parameter space were found, namely k1a and k-1a/k2a. So, model (a) is 

overcomplicated for the description of available experimental data and should be 

simplified. The step (5.26) should be upheld in the new model due to (iii).  

     The model (a) is simplified applying quasi-equilibrium and HO2
-
ads almost empty 

surface approximations to step (5.28) and merging steps (5.27), (5.28) into an effective 

one. It was done on the assumption that HO2
- adsorption/desorption is fast under the 

experimental conditions and cannot be accessed on the complete ORR and HPOR/HPRR 

dataset. New model (b) proceeds through steps (5.29), (5.30):  

 ∗ +𝑂𝑂2
𝑘𝑘1𝑏𝑏
⇄
𝑘𝑘−1𝑏𝑏

𝑂𝑂2𝑎𝑎𝑎𝑎𝑎𝑎 (5.29) 

 𝑂𝑂2𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐻𝐻2𝑂𝑂 + 2𝑒𝑒−
𝑘𝑘2𝑏𝑏 ,𝛼𝛼2𝑏𝑏
⇄

𝑘𝑘−2𝑏𝑏 , 1 − 𝛼𝛼2𝑏𝑏
𝐻𝐻𝐻𝐻2− + 𝑂𝑂𝐻𝐻− (5.30) 

     Here k1b/-1b {cm3 mol-1 s-1/ s-1} are forward/backward rate constants for O2 adsorption 

step (5.29) on the electrode surface identical to (5.26), k2b/-2b { s-1/ cm3 mol-1 s-1} are 

forward/backward rate constants for O2 reduction to HO2
- combined with its desorption 

from the surface (5.30), 𝛼𝛼2𝑏𝑏 {1} is a cathodic charge transfer coefficient in (5.30). The rate 
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constants for the effective step (5.30) can still be potentially linked with molecular-level 

insights adopting the formalism from [103]. 

     Model (b) provides sufficient accuracy to describe available experimental data (Figure 

5.4). The examples of accurate fits are shown on (Figure 5.9). 

 

Figure 5.8  The intervals of model (b) parameters. Blue line – overall optimization interval, 

green and red lines – minimal intervals within which all the values of parameters giving 

the fitting errors lower than four and one experimental errors calculated from (5.5) are 

contained. The experimental data of ORR RDE (I), ORR and HPRR/HPOR RDE (II) were 

fitted. 
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Figure 5.9  Example of modeling results for the model (b) with 2 steps. All figures include 

the simulated RDE CVs for 10 random sets of model parameters with objective function 

lower than the experimental error (semi-transparent lines) and averaged experimental data 

(dots). Model parameters were adjusted by fitting of ORR RDE (a-c) and both ORR and 

HPRR/HPOR RDE (d-f) data. Simulated RDE CVs for O2-saturated solution (a, d), Ar-

saturated solution with added 1.2 mM (b, e) and 0.6 mM (c, f) of hydroperoxide are shown. 
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     For the model (b), the uncertainty of model parameters giving the accurate fit shows a 

strong dependence on the amount of experimental data (Figure 5.8). This result is the 

opposite of what was observed for the model (a). The uncertainty of the model parameters 

is quantified as the ratio of their maximum and minimum values giving the fits within the 

experimental error. The k1b is accurately determined for both ORR and full ORR plus 

HPRR/HPOR data with uncertainties of 4.6 and 1.3 respectively. The k-1b uncertainty is 

reduced from 62.5 to 17 by introducing the HPRR/HPOR data. It is still low corresponding 

to the 0.1 and 0.07 eV errors in activation barriers from TST at room temperature, which 

is well below 0.2 eV errors achievable in first-principles calculations [90]. k2b cannot be 

estimated even with the full experimental dataset, despite its uncertainty decreased from 

~4.4x105 to 4.3x102
 switching from ORR to ORR plus HPRR/HPOR data. The 

simultaneous decrease in model parameters uncertainties can be explained as follows. One 

can see from the examples of accurate fits, that the model parameters obtained from only 

ORR fitting give non-negligible HPOR currents (Figure 5.9 (b), (c)) which is controversial 

to the experimental results. Obviously, the simultaneous fitting of ORR plus HPRR/HPOR 

experiments provides accurate fits for the complete dataset (Figure 5.9 (e), (f)). The k-2b, 

which is governing the electrooxidation of hydroperoxide is calculated from model 

parameters to reproduce standard potential (2.7). So the values of model parameters are 

restricted to give k-2b values, which provide negligible HPOR currents. The symmetry 

coefficient α2b can be estimated only for the full experimental dataset varying from 0.64 to 

0.9. 
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Figure 5.10  Pair distributions of independent model (b) parameters. The figures on the left 

lower and right upper parts correspond to the fitting of ORR only and all ORR plus 

HPRR/HPOR RDE CVs respectively. Dots represent sets of the model parameters, for 

which objective function was evaluated to be: lower than experimental error (red); between 

one and four experimental errors (green); higher than four experimental errors (blue). 

Experimental error is calculated using (5.5). 

 

     The elucidation of model parameters dependencies and model descriptors by pairwise 

plots (Figure 5.10) gives the following insights. Firstly, k1b is independent of all other 

model parameters. Secondly, the log(k-1b) reveals the linear dependence on α2b for both 

fitted datasets. As for the complete experimental dataset, the uncertainties of model 

parameters k-1b and α2b are low, there is no need to introduce their combination as the model 

descriptor. Thirdly, one cannot elucidate the dependence of k2b from other model 

parameters on the complete experimental dataset. 



129 

  

 

Figure 5.11  Pair distributions of model (b) parameters combination. Fitting was performed 

for ORR RDE (a) and both ORR plus HPR RDE (b) data. Dots represent sets of the model 

parameters, for which objective function was evaluated to be: lower than experimental 

error (red); between 1 and 4 experimental errors (green); higher than 4 experimental errors 

(blue). 

 

     However, one can also explore the dependence of k2b and k-2b. The latter one is not the 

independent model parameter as it was calculated from fitted model parameters to adjust 

standard potential (2.7). However, its combination with k2b may be studied as a model 

descriptor. One can see from the pairwise plots (Figure 5.11) that k2b/k-2b has much lower 

uncertainties than k2b equal to 40.3 and 12.8 for ORR and ORR plus HPRR/HPOR dataset, 

respectively. The uncertainties of k-2b by itself are 6.4x107
 and 5.2x103 respectively. 

Therefore, model (b) being applied for available experimental data provides uncertainties 

lower than achievable by ab initio methods [90] for the fitted model parameters with k2b/k-

2b being used as model descriptor instead of fitted k2b. 

     The further simplification of model (b) considering the quasi-equilibrium and O2ads 

almost-empty surface approximations for (5.29) is leading to model (c): 

 𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 + 2𝑒𝑒−
𝑘𝑘2𝑐𝑐 ,𝛼𝛼2𝑐𝑐
⇄

𝑘𝑘−2𝑐𝑐 , 1 − 𝛼𝛼2𝑐𝑐
𝐻𝐻𝐻𝐻2− + 𝑂𝑂𝐻𝐻− (5.31) 

     Here k1c/-1c { s-1/ cm3 mol-1 s-1} are forward/backward rate constants for O2 reduction to 

HO2
-, 𝛼𝛼1𝑐𝑐 {1} is cathodic charge transfer coefficient in (5.31). 
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Figure 5.12  Example of modeling results for the model (c) with a single step. All figures 

include the simulated RDE CVs for 10 random sets of model parameters with objective 

function lower than the experimental error (semi-transparent lines) and averaged 

experimental data (dots). Model parameters were adjusted by fitting of ORR RDE (a-c) 

and both ORR and HPRR/HPOR RDE (d-f) data. Simulated RDE CVs for O2-saturated 

solution (a, d), Ar-saturated solution with added 1.2 mM (b, e) and 0.6 mM (c, f) of 

hydroperoxide are shown. 
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     O2 adsorption/desorption step is fast with the ORR and HPRR/HPOR undergoing at low 

surface coverages. This model does not provide an accurate fit for the available 

experimental data with MSEs for fitting being at least 25 times higher than the 

experimental MSEs (Figure 5.4). It is illustrated by the visualization of the most accurate 

fits within model (c). (Figure 5.12). Therefore, model (c) is too simple to describe the 

available experimental data for CNTs. The model (b) is the optimal one as it provides both 

accurate fits and low uncertainties of the model parameters. The elementary step detailing 

of the ORR on CNTs cannot be achieved on the experimental data consisting of ORR and 

HPRR/HPOR RDEs in 0.1 M KOH. More detailed experiments such as ORR dependence 

on pH, T, and other data are needed which is the subject of a future study.  

     Based on the ORR on CNTs, the optimal model search methodology can be summarized 

as follows (Figure 5.13):  

 

Figure 5.13  The framework of the optimal model selection for the ORR on CNTs. 

 

1) Consider the initial model from literature (model (a) in this work). 

2) Specify prior distributions for model parameters. In the bottom-up approach, they 

can be estimated from ab initio molecular-level insights. In the top-down approach, 

prior distributions should be set broad enough to explore possible reaction 

pathways within the same model. 

3) If the model does not provide an accurate fit of all available experimental data, 

introduce a more advanced model (as for model (c) in this work). 
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4) If the model provides accurate fits for all experimental data, but the uncertainty of 

the model parameters and possible model descriptors is higher than the selected 

threshold value (for example, 20 in this work), consider model to be 

overcomplicated for available data and introduce simplified one (as for the model 

(a) in this work). 

5) Iterate between steps 1 and 4, until the optimal model is found, for which 

uncertainty of model parameters or model descriptors is lower than threshold value, 

model provides accurate fit, more advanced model is overcomplicated, and 

simplified model is inaccurate.  

5.4. Conclusions 

     In this work, the quantitative framework of optimal model selection was demonstrated. 

It accounts for both accuracy of experimental results fitting by the suggested mean-field 

microkinetic model and the uncertainty in estimated model parameters with the latter one 

originating from the experimental errors. The utilized TPE algorithm for adaptive sampling 

of model parameters within the data collaboration approach enables error propagation 

though the estimated uncertainties and initial prior distributions for model parameters. The 

author believes that the quantitative treatment of experimental errors is of high importance 

for the successful application of a multiscale modeling approach to the study of complex 

heterogeneous reactions mechanisms. Despite that Pt-based and transition metal oxide 

catalyst systems require more complicated models with higher dimensionality of model 

parameters space, there is a big room for improvement by using adaptive sampling as part 

of the introduced framework, which should provide a more efficient way of uncertainties 

estimation even within the more advanced models. 

     When applied to the experimental dataset with the ORR and HPRR/HPOR (varied cHO2-

) RDE CVs on CNTs at different rotation rates, this approach demonstrates that the 

elementary step ORR mechanisms cannot be accessed based on the available experimental 

data. Even commonly used effective three-step mechanism provides large uncertainties in 

model parameters and should be simplified. The separate estimation of model parameters 
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with low uncertainties is possible only within the effective 2-step model with O2 

adsorption/desorption and effective 2e-
  O2/HO2

- reduction/oxidation steps combined with 

HO2
-
 adsorption/desorption on the full available experimental data. The developed 

framework guides our research towards the collection of a more diverse experimental base. 

As the approximate treatment was used for the effective 2e- step in order to reduce the 

number of model parameters, one can potentially access the higher detailing of the ORR 

mechanism by linking the simulated model with the elementary step mechanism within the 

reasonable approximations (e.g. RDS approximation). It should reduce the model form 

uncertainty by the cost of an acceptable number of additional model parameters. Moreover, 

it should improve the connection between the MF-MKM and ab initio simulations. I feel 

optimistic about accessing the elementary step mechanisms for CNTs based on the 

extended dataset with varied pH and PO2 and higher precision of experimental 

measurements, which is a matter for further research. Together with the quantitative model 

selection approach, it should enable the quantitative selection of the ORR mechanism on 

more advanced transition metal oxide carbon composites currently being studied around 

the world. 
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 Model Form Uncertainty Reduction Based on RDS Approximation for 

the Effective Multi-Electron Steps 

     The work presented in this chapter aims to reduce the model form uncertainty for the 

ORR mechanism on CNTs addressed in previous chapter, by linking the microkinetic 

models including the effective multi-electron transfer steps with the one-electron step 

mechanism within the RDS approximation. The quantitative framework reported in the 

previous chapter was used for the reaction mechanism selection based on the accuracy of 

fitting with mean-field microkinetic models and parameter uncertainty quantification to 

determine how likely certain reaction steps occur if some aspects of the system are not 

exactly known.  

6.1. Materials and methods 

6.1.1. Experimental data. 

     The data reported in Chapter 5 is used for the simulations. The CNTs sample is 

synthesized by C. T. Alexander. Briefly, the experimental dataset consists of RDE 

voltammograms at 5 mV s-1 scan rate for the ORR and the hydroperoxide 

oxidation/reduction reaction (HPRR/HPOR) in O2-saturated and Ar-purged + 0.6; 1.2 mM 

HO2
- 0.1 M KOH respectively. CNTs mass loading was equal to 51 𝜇𝜇g cm-2 in all 

experiments, SBET = 50.58 m2 g-1. Working electrode potential was recalculated vs. 

reversible hydrogen electrode (RHE) and iR-corrected with R=46 𝛺𝛺. The rotation rate was 

varied from 400 to 1600 rpm. Triplicate measurements were used to estimate the 

experimental uncertainty. The averaged voltammograms normalized by the geometric 

surface area of the electrode (0.196 cm2) were fitted in simulations 



135 

  

6.1.2. Modeling details. 

 
Figure 6.1  Effective model steps, ORR one-electron mechanism, RDS positions within the 

2e- O2/HO2
- reduction step, and the values of the parameters, used to simulate the specified 

RDS within the model according to (6.1), (6.2). 

 

     The full experimental dataset was fitted simultaneously. The one-electron step ORR 

mechanism was adopted (see Figure 6.1). It was successfully used to simulate the ORR on 

carbon nanofibers [51]. Additionally, it explained Tafel slopes ~ -60mV/dec for the ORR 

on CNTs at low overpotentials within the simplistic RDS approximation for the whole 

mechanism [121]. Two microkinetic models were simulated: 2-step model consisting of 

effective steps 1) and 2*); 3-step model with the steps 1), 2), 3). (see Figure 6.1) Kinetic 

currents were extracted using the Koutecky-Levich equation. 

     The cathodic and anodic Tafel slopes are dependent on the position of RDS within the 

effective 2e- step. So the cathodic and anodic transfer coefficients were calculated in the 

model from RDS approximation of step 2) or 2*) as follows [103]: 

 𝛼⃗𝛼 = �

𝛾⃗𝛾
ν + 𝛼𝛼, RDS −   𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝛾⃗𝛾
ν , 𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (6.1) 

 1 − 𝛼⃖𝛼 = �
1 + 𝛾⃖𝛾

ν −  𝛼𝛼, RDS −   𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝛾⃖𝛾
ν , 𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (6.2) 

     Here, 𝛾⃗𝛾/ 𝛾⃖𝛾 is the number of one-electron steps before/after the RDS, ν – number of RDS 

repetitions, and 𝛼𝛼 - cathodic symmetry factor of electron-transfer RDS. All other 
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parameters and procedures are the same as in previous work [234]. The experimental data 

uncertainty MSEexp was calculated as the MSE for triplicate measurements. The fitting 

error MSEfit was evaluated as MSE between the simulated and averaged experimental 

voltammograms. The inverse uncertainty propagation was quantified using the data 

collaboration approach [174], [235]. The Tree-Structured Parzen estimator [176] algorithm 

was used to estimate the lower bounds of model parameters uncertainties, which give the 

fitting errors within the threshold expressed in MSEexp units. 50 runs were performed for 

the initial model parameters space and 10 for the reduced space, where the model 

uncertainty was < 8 MSEexp. 

6.2. Results and Discussion 

     One can see the estimated uncertainty of model parameters in Figure 6.2. The 𝑘𝑘𝑋𝑋, 𝑘𝑘−𝑋𝑋, 

and 𝛼𝛼𝑋𝑋 are respectively forward, backward reaction rate constants, and symmetry 

coefficient in step X from the model (X = 1), 2), 2*), 3) ). Even the relatively low increase 

of threshold value MSEexp raises the uncertainty in model parameters by several orders of 

magnitude. It confirms the ill-posed nature of this problem even for the simplified models. 

Therefore, uncertainty propagation treatment is crucial to make use of MF-MKM as the 

source of constraints for model parameters. Based on the full available experimental dataset 

only the 3-step reaction with (I) RDS was able to fit the experimental data with MSEfit < 

MSEexp. The high uncertainty in k-1 may require the search of the model descriptors (i.e. 

combination of the model parameters which govern the voltammogram shape and has low 

uncertainty). 
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Figure 6.2.  The lower bounds of the model parameters intervals in the 2-step and 3-step 

microkinetic models. Intervals with the specified colors contain all sets of the model 

parameters, which give MSEfit lower than the corresponding threshold value. 

 

     The 2-step model with (I) RDS only reached the 1.4 MSEexp threshold, so it can be 

formally rejected using the criteria MSEfit < MSEexp. Models with (III) RDS should be 

rejected due to the high MSEfit (> 4 MSEexp). Models with (II) RDS also inaccurately 

describe available data, although this approximation showed the observed Tafel slope of -

60 mV/dec and ∞ at low and high overpotentials, respectively[121]. In order to understand 

this effect, one needs to analyze the fitting results of ORR voltammograms and extracted 

kinetic currents in the log scale. 
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Figure 6.3.  Modeling results for the 2-step microkinetic model for 3 possible RDS (I-III) 

positions within step 2*). RDE CVs and extracted kinetic currents in log-scale are 

presented on figures (d-f) and (a-c) respectively. Numerical simulations and averaged 

experimental data are depicted as semi-transparent lines and dots. Modeling results are 

shown for 100 sets of model parameters giving the MSEfit lower than the smallest available 

threshold value (see Figure 6.2). 

 

     Indeed, the MSEfit is mostly sensitive to the potentials with moderate-high cathodic 

currents at potentials < 0.65 V vs. RHE. They are attributed to the transition region -60 - 

∞ mV/dec and region with ∞ slope for log-kinetic currents (see Figure 6.3, Figure 6.4). 

The MSEfit is not so sensitive to the slopes at low overpotentials. This leads to their 

deviations within the most accurate model fits with (II) RDS (Figure 6.3, Figure 6.4 (a)). 

The fitting procedure may be further improved by the use of better objective function than 

MSEfit and corresponding thresholds MSEexp. It should account for the importance of log-

kinetic current slopes at low overpotentials for the deduction of the ORR mechanism. One 

could suggest the fitting in log-scale using the MSE as the objective function. This causes 

the undesirable omitting of the HPOR/HPRR data as their negligible currents at CNTs do 

not enable this kind of treatment. Alternatively, it could be used as the additional 
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constraints for the ORR mechanism parameters by the use of appropriate objective function 

with experimental uncertainty treatment, which is the matter of further research. 

 

 
Figure 6.4.  Modeling results for the 3-step microkinetic model for 3 possible RDS (I-III) 

positions within step 2). RDE CVs and extracted kinetic currents in log-scale are presented 

on figures (d-f) and (a-c) respectively. Numerical simulations and averaged experimental 

data are depicted as semi-transparent lines and dots. Modeling results are shown for 100 

sets of model parameters giving the MSEfit lower than the smallest available threshold 

value (see Figure 6.2). 

 
     Both models with (II) RDS correctly reproduce the -60 mV/dec slope at low 

overpotentials (Figure 6.3, Figure 6.4 (b)). However, the transition region is poorly 

reproduced. Most probably, the direct modeling of the full one-electron mechanism will 

solve this issue by the cost of 6 additional model parameters, which is accessible by the 

current methods of inverse uncertainty propagation quantification within the kinetic 

models [156]. Higher dimensionality of model parameters space should bring significant 

uncertainty in the estimated model parameters due to the ill-posed nature of this problem. 

Therefore, only the existence possibility of this ORR mechanism on CNTs can be shown. 

The model with estimated model parameters will not be able to demonstrate predictive 

capability.  
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6.3. Conclusions 

     The model form uncertainty was decreased within the quantitative framework for 

reaction mechanism study as the models were linked with the one-electron ORR 

mechanism by RDS approximation. The importance of objective function was 

demonstrated for the experimental data fitting by the models. Despite the MSE of extracted 

kinetic currents in log scale may provide a better description of mechanistic features, it 

reduces the dataset size due to the low observed HPOR/HPRR currents. The predictive 

capability of the ORR mechanism with estimated model parameters can be enabled in two 

ways: i) Collection of the more detailed experimental dataset (e.g., accounting for T, pH, 

pO2 variations). It is a matter of research to determine whether it is enough to precisely 

calculate the model parameters. However, their uncertainties should be gradually decreased 

making the results more reliable. The procedure of the optimal model selection is the same 

as described in a previous chapter. ii) Use of the estimated model parameters and their 

uncertainties within the multiscale modeling approach. They are additionally estimated 

from ab initio simulations. The latter ones should target the steps with the largest estimated 

uncertainty in model parameters. Therefore, the MF-MKM fitting provides additional 

constraints for the further mechanism study. The simultaneous treatment of model 

parameters uncertainties from two independent sources should help to elucidate the 

reaction mechanism thus decreasing the model form uncertainty. 
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  Conclusions and Future Directions 

     The aim of the present thesis was to elucidate the ORR mechanism on the TMO/C 

catalysts in alkaline media for narrowing the process of their cost-effective search. This 

problem was accessed within the multiscale modeling approach. 

     The first attempt was dedicated to gaining mechanistic insights on the ORR from the 

rationalization of the experimentally observed differences on the most (Mn2O3) and the 

least (MnOOH) active manganese oxides. It was shown that the ab initio thermodynamics 

approach based on periodic DFT calculations is not sufficient to explain the pronounced 

difference in observed HPRR currents and hydroperoxide yields. Instead, it provided the 

optimized surface active sites geometries, which were used to obtain the insights on the 

activation barriers of likely elementary steps within the cluster DFT calculations. The 

computed activation barriers ca. 2.5eV for O2 and O2
- dissociative adsorption show that the 

ORR is unlikely to proceed by the “direct” 4e- pathway on Mn2O3. The higher HPRR 

currents and the negligible HO2
- yield on Mn2O3 are explained by the ca. 0.3eV lower 

activation barrier for bond breaking in HO2
-
ads intermediate due to adsorbate-adsorbate 

interactions at the Mn2O3 surface. The estimated activation barriers for the first two ET 

steps in the outer-sphere regime, together with their modeling within the MF-MKM, do not 

contradict the available experimental data. The employed complementary computational 

methods with the experimental data cannot be used for quantitative discrimination of the 

possible ORR pathways, but rather suggest or question the existence of the alternative ones. 

Therefore, further improvement can be achieved only if the uncertainties arising from the 

accuracy of methods, corresponding approximations, and experimental data errors are 

quantified. It is necessary for the development of quantitative criteria for the 

rejection/acceptance of the ORR mechanisms and understanding, whether it is possible to 

distinguish them based on the state-of-the-art experimental/computational methods. 

     The experimental and MF-MKM components of the multiscale modeling approach for 

the ORR were further addressed within the dual aim to elucidate the role of carbon as a co-

catalyst supporting the LSCO materials, as well as to determine what minimal complexity 

of the microkinetic model (arising from the suggested ORR mechanism) is required to 
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describe all synergistic effects for the ORR and HPRR/HPOR on TMO/C. The RDE 

experimental data of the ORR and HPRR/HPOR on LSCO catalysts supported on either 

Vulcan carbon or 2 at. % N-doped carbon was used. The microkinetic model which is 

capable to qualitatively reproduce all the experimental data is unavoidably complicated. It 

was shown that only the reaction mechanism with 4-step ORR adopting a chemical step 

for HO2
- decomposition on the perovskite surface, 3-step ORR on VC/NC, HO2

- mass 

transfer between VC/NC and the perovskite, and O2 spillover between the NC and 

perovskite active sites, provided the qualitative reproduction for the ORR and 

HPRR/HPOR RDE experiments. Despite the simplified model for the ORR and 

HPOR/HPRR on carbon and neglection of the adsorbate-adsorbate interactions, the 

modeling results show that the use of nitrogen-doped carbon support is leading to a 5-fold 

catalytic activity enhancement for the ORR on LSCO/carbon composites through 

enhancement of the O2 spillover pathway. Indeed, these results rather provide the ad hoc 

mechanism, which should be further verified by the ab initio simulations. However, it is 

also valuable for understanding the unavoidable level of complexity, which is to be detailed 

in order to make predictive conclusions for the further catalyst search. Additionally, given 

the limited amount of the experimental data, further work is devoted to the elucidation of 

the constraints it can impose on the reaction mechanism and the corresponding model 

parameters. This goal can be achieved only when the experimental uncertainties and their 

propagation to the model parameters within MF-MKM are quantified. The experimentally 

accessible insights on the ORR mechanism can be then understood. 

     The simpler experimental system of ORR, HPOR/HPRR on CNTs was used to address 

this issue by developing the quantitative framework of optimal model selection from the 

available experimental data. It accounts for both accuracy of the experimental results fitting 

by the suggested mean-field microkinetic model and the uncertainty in estimated model 

parameters, with the latter one originating from the experimental errors. This approach 

demonstrates that the elementary step ORR mechanisms cannot be accessed based on the 

available experimental data (ORR and HPRR/HPOR (varied cHO2-) RDE CVs on CNTs at 

different rotation rates) on the simple experimental system. Even the commonly used 
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effective three-step mechanism provides large uncertainties in model parameters and 

should be simplified. The separate estimation of the model parameters with low 

uncertainties is possible only within the effective 2-step model with O2 

adsorption/desorption and effective 2e-
  O2/HO2

- reduction/oxidation steps combined with 

HO2
-
 adsorption/desorption on the full available experimental data. This framework can be 

utilized for two promising applications: (i) Guidance of the further experimental work 

based on the ORR mechanism detailing, which the collected experimental dataset provides. 

(ii) Enabling the quantitative treatment of uncertainty propagation within the multiscale 

modeling approach. The MF-MKM parameters are constrained by the experimental data. 

Their values and uncertainties are additionally estimated from ab initio simulations. The 

simultaneous treatment of the model parameters uncertainties from two independent 

sources helps to further elucidate the ORR mechanism, thus improving its predictive 

capability. The uncertainties of the parameters within MF-MKM are to be estimated from 

the intersection of the constraints on the model parameters obtained from both experiments 

and ab initio calculations and used as the quantitative criteria for the mechanism 

discrimination. 

     Finally, the uncertainty propagation from ab initio calculations was enabled by a more 

accurate description of effective multi-electron transfer steps within MF-MKM using the 

RDS approximation. It reduces the model form uncertainty by the cost of an acceptable 

number of additional model parameters. Therefore, the hierarchy of the considered MF-

MKM models can be directly linked with the likely elementary-step models which are 

addressed by ab initio simulations. The microscale parameters (e.g. Gibbs free energy 

change for reaction steps) can be used to reduce the number of independent model 

parameters (e.g. through the equilibrium constants and their uncertainties). The importance 

of the objective function choice for the model discrimination was also demonstrated. 

     The obtained mechanistic insights for the ORR on the TMO/C composite materials are 

in a good agreement with the reported literature data. Indeed, the probed inner-sphere 

mechanisms for the ORR on Mn2O3, MnOOH, and LSCO are excessively applied to 

explain the origins of the catalytic activity trends for the TMO materials [68], [72], [73], 
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[199], [226], [227]. The alternative outer-sphere ORR mechanism on Mn2O3 and MnOOH 

is supported by the computational studies of the ORR on Pt and Au in alkaline media [205], 

[206]. The concept of oxygen spillover is well known in literature for the composite 

catalytic materials [228], [236]. It worth noting that it calls for additional verification for 

LSCO/NC. The effective ORR mechanisms on CNTs, used to study the inverse uncertainty 

propagation, can be linked with the previously reported one-electron mechanisms [39], 

[51], [52] within the quasi-equilibrium and almost-empty surface approximations.  

     Summing up, a conclusive opinion about the ORR elementary-step mechanism on 

TMO/C catalysts still remains a matter of further research. It should be achieved by the 

iterative improvement of all components of the multiscale modeling approach. The 

extended experimental dataset together with the development of the more accurate physical 

description and numerical methods on both molecular and macroscale levels at some point 

should provide low uncertainty within the elementary step models. It worth noting that this 

work serves as the first step towards better coupling of the experiment and macroscale 

modeling through the quantitative inverse uncertainty propagation treatment. The 

additional efforts should be made to determine the ORR elementary-step mechanism on 

TMO/C. They include: (i) The accurate treatment of the solvent effects and charged 

surfaces by periodic DFT calculations (ii) The use of advanced methods for inverse 

uncertainty propagation quantification, which can deal with the increased dimensionality 

of the model parameters space for the elementary step models (iii) Collection of the more 

diverse experimental dataset, including the pH, pO2, T, and catalyst loading variations (iv) 

The use of the KMC simulations for the local coverage effects, which can be enabled by 

increased accuracy of ab initio calculations and the growth of computational resources. 
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