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Abstract 

Stability Analysis in Coalitional Games for  
Cross-Border Power Interconnection Planning 

Andrey Churkin 
 

When you see a good move,  
look for a better one. 

- Emanuel Lasker 
World сhess сhampion 1894-1921 

 
Electrical interconnections of neighboring power systems bring a long list of 

benefits in terms of generation cost savings, CO2 emissions reduction, flexibility 
and stability improvements. The common practice in adding new transmission lines 
to an existing transmission network lies in formulating mathematical optimization 
models where the objective functions minimize the total cost of power systems or 
maximize the social welfare of electricity market participants. This approach is 
widely known as Transmission Expansion Planning (TEP). It can provide valuable 
insights into the optimal design of a system and complement engineering and 
heuristic plans developed by Power System Operators (PSO). However, common 
TEP tools become inadequate when applied to international projects of cross-
border power interconnections. System operators or governments of neighboring 
countries may have different views on the TEP problem as well as on their role in 
energy cooperation. Despite the fact that there exist multiple studies and initiatives 
to establish regional electricity cooperation, very few projects are currently being 
realized. Therefore, along with finding the optimal TEP solution, it becomes 
necessary to share the benefits of cooperation rationally and suggest an investment 
scheme that would satisfy all the participants. 

In this thesis, we examined cooperation in cross-border power 
interconnection projects and dedicated our effort to cover the research gap in costs 
and benefits allocation mechanisms. Cooperative Game Theory solution concepts 
were used as the basis for our analysis. The special emphasis was put on the 
stability of cooperation: we searched for the allocation solutions which have no 
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participants with incentives of breaking an agreement of regional cooperation. We 
went beyond state-of-the-art of Cooperative Game Theory applications in power 
systems and presented the manipulability analysis of allocation rules. We also 
proposed a novel bilevel TEP model that incorporates Cooperative Game Theory 
principles into the planning algorithm. The model enables the identification of 
expansion plans with the desired level of stability of cooperation. Through a series 
of case studies, we explained the mechanisms of cooperation, interpreted the results 
of the game-theoretic analysis, and illustrated the usefulness of the developed 
bilevel TEP approach. Specifically, the original contributions of the thesis are as 
follows: 

 
I. We demonstrated that cooperation in TEP based on Cooperative Game 

Theory solution concepts (such as the Shapley value, the Nucleolus, and 
equal sharing) is prone to manipulations. We analyzed the incentives of 
players’ strategic behavior depending on their positions in electricity trading 
and discussed the need for developing strategyproof mechanisms of 
cooperation. 

II. We suggested using the coalitional excess theory as the metric of cooperation 
stability to complement existing ex-post game-theoretic approaches. We 
then formulated an anticipative bilevel TEP model that incorporates 
Cooperative Game Theory principles. The proposed approach enables 
including game-theoretic constraints (such as the Core of the game, the 
convexity conditions, maximum surpluses among players, etc.) into the 
planning algorithm. In this manner, it becomes possible to identify expansion 
plans with a predefined level of stability of cooperation.  

III. Moreover, we performed the manipulability analysis of cooperation in TEP 
under the proposed bilevel planning model. We found that the anticipative 
bilevel game-theoretic approach could decrease players’ incentives to 
manipulate allocation rules and might be used for developing strategyproof 
mechanisms of cooperation. 

IV. Finally, we considered a real-world case study of potential power 
interconnections in Northeast Asia. We implemented the Cooperative Game 
Theory solution concepts and analyzed the stability of cooperation. We also 
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discussed the practical implementation issues, such as the arrangement of 
investment and payment schemes between countries. 
 
An additional contribution of the thesis is the advanced review of existing 

research, which we performed using the citation network analysis. We analyzed 
more than 3 000 related studies from 1996 to 2020, identified the main research 
communities, and formulated the challenges and limitations of Cooperative Game 
Theory applications. The citation network analysis justified the novelty of the ideas 
presented in this work. 
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Chapter 1 

 

Introduction 

Play the opening like a book, 
the middle game like a magician, 
and the endgame like a machine. 

- Rudolf Spielmann 
Austrian grandmaster 

 
Modern challenges make our world more interrelated than ever. Many 

problems require international cooperation in economics, politics, science, and 
technology. The volume of international trade is steadily growing worldwide (at 
the average annual pace exceeding 2.5%) along with the gross world product [1].1[2] 

[3]The energy sector develops even more rapidly, significantly contributing to 
international trade, which is justified by the growing demand for oil, natural gas, 
coal, and electricity [4]. Remarkable progress has been achieved in natural gas 
trade. Pipelines and liquefied natural gas (LNG) infrastructure development allows 
the United States, Russia, and the Middle East countries to export up to 32% of 
their gas production. At the same time, China and the European Union became 
gas net importers with up to 75% share of imports in their gas demand. 

However, international trade in electricity is lagging behind. Except for 
North America and the European Union, there are very few regions with significant 
cross-border power interconnections. Electricity exports and imports still make 
minor contributions to international trading and energy supply mix. We may 
identify a few main reasons for such a delay in electricity trading: 

 

                                                 
1 Of course, the exceptions should be mentioned. The gross world product experienced declines in 
2009, as the effect of the global financial crisis of 2008 [2], and in 2020, as the consequence of the 
COVID-19 pandemic [3]. 
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 Power systems are generally more complicated in operation that oil or gas 
supply chains. The main difference lies in the inability to store much electric 
power, which means that power supply must meet the demand at any time. 
This creates frequency stability issues (such as frequency deviations, loss of 
synchronism) that must be resolved quickly in order to avoid power outages. 
Therefore, cross-border electricity trading must meet the grid codes of 
interconnected power systems and guarantee a reliable uninterruptable 
supply. 

 Energy security policies of many countries set preferences for developing 
generation capacity within a country instead of buying power from 
neighbors. The timescale of power systems physics and operation poses an 
additional threat to the energy security of interconnected countries. In the 
case of a technical failure or political conflict, cross-border power flow can 
be unilaterally switched off in seconds by a single circuit breaker. 

 Transmitting power for long distances via AC lines causes significant power 
losses that make some cross-border interconnection projects impractical. 
However, current developments in high-voltage direct current (HVDC) 
transmission systems enable transmitting gigawatts of power for thousands 
of kilometers with moderate power losses [5]. This technology is believed to 
make many ambitious power interconnection projects realistic. 

 The privatization of electric power systems and the emergence of electricity 
markets in many countries led to a competitive environment with numerous 
market participants [6]. Even though considered socially effective, wholesale 
electricity markets do not possess sufficient political will to promote cross-
border interconnection projects. While some market participants (generating 
companies or consumers) may be interested in electricity trade, others may 
be not interested in cooperation, or even be against it. Therefore, 
competitive market mechanisms may hinder the development of cross-border 
power interconnections that could influence multiple parties of integrated 
electricity markets. Under such circumstances, there is a need for 
international coordinators that would persuade governments, PSOs, and 
stakeholders in project rationality. 
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 Finally, it is not always clear which power system (or country) benefits more 
due to international electricity trade. None of the participants would like to 
subsidize the others. Therefore, there is a need for rational allocation of 
cross-border power lines investment costs and benefits of energy cooperation. 
 
This thesis aims to facilitate cross-border power interconnection projects 

and cover the research gap in costs and benefits allocation mechanisms for 
international cooperation in electricity trade. 
 

1.1 Background and Motivation 

Building new power lines is essential for power system planning [6]. It allows 
supplying an increasing demand, enables more participants to enter into electricity 
markets, increases the access to renewable energy sources, and makes power system 
operation more efficient and reliable. The task of deciding on optimal transmission 
investments is widely known as Transmission Expansion Planning (TEP) [7], [8]. 
The mathematical formulation of TEP models usually seeks to minimize the overall 
operating cost of a power system or maximize the welfare of market participants, 
subject to physical and technical limits, environmental restrictions, and other 
constraints. 

It was shown by numerous projects and studies that optimal power lines 
planning leads to significant benefits for power systems [9]. Sometimes, the 
optimization of transmission planning goes along with generation investment. Such 
approaches bring even more benefits and are known as Generation and 
Transmission Expansion Planning (GTEP) [10], [11]. Other studies applied 
stochastic and multi-level programming in order to perform optimal transmission 
planning under market and regulatory uncertainties [12]–[17]. Great attention has 
been paid to TEP in the international context. Lumbreras et al. [14] performed a 
stochastic TEP for the European Continental South West region case study 
considering power interconnections of Portugal, Spain, and France. Otsuki et al. 
[18] evaluated opportunities for power interconnections in Northeast Asia. 
Significant cost savings and CO2 emissions reduction were revealed for the scenario 
of regional cooperation on power interconnections. Loureiro et al. [19] suggested a 
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cross-border electricity interconnection investments and trade mechanism where 
each PSO maximizes social welfare within its territory and applied it to the Iberian 
electricity market case study. Konstantelos et al. [20] and then Dedecca et al. [21] 
estimated the costs and benefits of the North Sea power interconnections. Figueroa-
Acevedo et al. [22] explored the benefits of increasing transmission capacity between 
the US Eastern and Western interconnections to access cost-effective renewables. 
The study demonstrated that the cost of a macrogrid HVDC transmission is 
outweighed by the generation-related savings. 

There exist even more ambitious projects of power interconnections that 
involve entire continents. The European Union launched the e-Highway2050 
project that aims to develop an optimal European transmission expansion plan 
from 2020 to 2050 [23]. The International Council on Large Electric Systems 
(CIGRE) recently published a report on global electricity network feasibility study 
that shows how the whole world may cooperate in TEP to increase the share 
renewable energy and reduce CO2 emissions [24]. Similar ideas are promoted by 
the Global Energy Interconnection Development and Cooperation Organization 
(GEIDCO) [25] and the Desertec project [26], [27]. The importance of international 
cooperation in energy is included in the United Nations sustainable development 
goals [28]. 

Considering the above-mentioned results, we can summarize that: 
 

 TEP is an important tool that provides valuable insights into the optimal 
design of power systems and complements trial and error and engineering 
plans developed by PSO. 

 The development of TEP algorithms remains an actual research direction. 
Modern TEP approaches focus on formulating complex models that include 
security constraints, stochastic parameters, decentralized decision making, 
and other features of power systems operation and control. 

 There exist initiatives and ongoing projects on cross-border TEP that 
involve several countries or regions. 
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However, there are still many barriers that hinder the development of cross-
border power interconnections. The issues of cross-border electricity trade are 
especially acute in the regions where countries have not established political and 
economic integration yet. There is, therefore, no regulatory framework nor 
intergovernmental coordinating entity to break the mutual mistrust and promote 
cost-effective interconnection projects. To facilitate the cooperation on 
interconnection projects, the two following interrelated questions must be 
addressed. What are the possible benefits of electricity trade for interconnected 
power systems? How the benefits and the investment cost should be shared among 
the participants? 

In this work, we propose a solution framework based on mathematical 
optimization and Cooperative Game Theory concepts for cross-border TEP 
analysis and cost-benefits allocation among countries. While using this framework, 
we put special emphasis on the coalitional stability of cooperation in TEP projects. 
The object of our research comprises power systems, electricity markets, 
transmission expansion modeling, and algorithm design. The subject is cost-benefit 
allocation principles and cooperation mechanisms for cross-border power 
interconnection projects. 

In the following sections, we describe the existing research and state-of-the-
art in power systems cost allocation issues and formulate our original contributions. 
 

1.2 The Role of the Cooperative Approach:  
Allocation Problems in Power Systems 

Being complex multi-agent systems with capital intensive equipment, power 
systems involve multiple allocation problems. One of the major ones is TEP cost 
allocation. Transmission network expansion influences multiple electricity market 
participants. Moreover, the physical nature of power flows, counterflows, and loop 
flows makes it hard to suggest a unified approach to transmission cost allocation.2[29], 

                                                 
2 The transit flows, loop flows, and counterflows are the well-known phenomena in transmission 
systems. The point is that the power purchased does no flow according to a contract. Instead, it 
follows the laws of physics and flows through available parallel paths, leading to unintended 
outcomes. Transit flow is the share of power that is transmitted through a third party’s network. 
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[30]Over the last decades, numerous studies put effort into developing cost allocation 
mechanisms. 

Gil et al. [31] elaborated on the problem of transmission cost allocation in 
large networks with interconnected regions or countries. A common approach 
requires an international operator to gather data about all the transmission 
elements as well as generation cost functions and demand forecasts. However, as 
discussed in [31], such a level of data sharing may be impractical for many regions. 
Therefore, a multiarea decoupled transmission allocation scheme was suggested 
where each region performs its internal cost allocation while an international 
operator carries out region-wise allocations. The equivalent bilateral exchange 
principle was used as a proxy for cost allocation. A thorough review of other 
network cost allocation methods is presented in [32]. 

Similar problems arise in setting transmission tariffs and inter-PSO 
compensations. Uneven utilization of existing and new transmission facilities by 
market participants, existence of transit flows and loop flows requires the 
development of reasonable mechanisms for international transmission tariffs and 
inter-PSO compensations [29]. Common compensation approaches include the 
Marginal Participation and the Average Participation methods, and the With and 
Without Transits method [30]. An additional question is the allocation of 
transmission capacity between energy trade and reserve services. Proper capacity 
allocation and PSO coordination in reserves sharing could lead to significant 
savings for interconnected power systems [33], [34]. Yang et al. [35] also suggested 
transmission capacity usage identification. The cost allocation methods were 
designed taking into account the conditions under which the capacity should be 
used (capacity used in normal conditions, reserves for contingencies, reserves for 
future use, and invalid capacity). 

Building cross-border power lines requires coordination of regulators and 
mechanisms for cost-benefit allocation. Gerbaulet and Weber [36] illustrated how a 
lack of coordination might lead to non-fair allocations. In such cases, a profit-

                                                 
Such flows cause an additional load of equipment and power losses. In some cases, a share of export 
power can flow back to the exporting power system. This effect is called a loop flow. An increase 
in generators’ output power at the importing system creates a counterflow that can decrease the 
amount of inflow power purchased. We refer to [29], [30] for the detailed discussion of unintended 
flows in transmission systems. 
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maximizing merchant investor may make suboptimal investment decisions and take 
the major part of the welfare gain. Konstantelos et al. [20] reported that 
conventional benefit allocation methods are less suitable for international grids 
creation. Based on the North Sea grid example, it was shown that highly 
asymmetric distribution of costs and benefits could lead to potential issues in 
achieving political consensus between participating countries. 

Several studies exploited complementarity modeling [37] in order to 
formulate interactions between market participants and different transmission 
planners. For the Iberian electricity market, Loureiro et al. [19] presented 
investments in cross-border power interconnections as a Nash bargaining between 
the regions. The resulting bilevel model embedded investment cost allocation. It 
was formulated as a mathematical program with equilibrium constraints (MPEC). 
Tohidi and Hesamzadeh [38] also examined multi-regional transmission planning 
from the noncooperative decision-making point of view. The multiple-leaders single-
follower game was formulated as a bilevel model where each independent 
transmission planner minimizes its own cost. The results showed that without 
proper compensation mechanisms, the noncooperative transmission planning leads 
to inefficient results compared to the cooperative solution. Conflicting outcomes in 
multilateral transmission planning were observed by Buijs and Belmans [39]. The 
interactions between zonal and supranational planners were formulated as a 
generalized Nash equilibrium in the form of Equilibrium Problem with Equilibrium 
Constraints (EPEC). As a possible solution, a Pareto-planner was proposed. Such 
a planner maximizes overall welfare while acknowledges that a solution should be 
acceptable for each zone. Kasina and Hobbs [40] examined the value of cooperation 
in interregional transmission planning. A bilevel EPEC model was composed to 
represent a game among multiple transmission planners, generators, and 
consumers. The hierarchical model represented the optimization of planning 
decisions by independent regional planners (the upper level) subject to generator 
investments and energy market equilibrium (the lower revel). This noncooperative 
solution was compared to cooperative centralized optimization. It was shown that 
equilibrium transmission plans may differ significantly from the optimal ones. A 
significant value of cooperation was reported, which results from investment in 
interregional lines. Moreover, it was found that cooperation among transmission 
planners leads to increased competition among generators from adjoining regions, 
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which in turn leads to more efficient generation investments. Huppmann and Egerer 
[41] composed a three-stage equilibrium model to represent interactions between a 
spot market, zonal and supranational planners. It was concluded that zonal 
planners may have incentives to over-invest or intentionally withhold power line 
upgrades in their jurisdiction to induce a shift of rents towards them. 

The above-mentioned works emphasize the need for efficient allocation and 
compensation mechanisms in international transmission planning. Searching for 
justified solutions, a number of researchers turned their attention to Cooperative 
Game Theory. One of the very first studies on cost-benefit allocation in 
transmission expansion projects was done back in 1974 by Gately [42], who 
formulated the energy cooperation among states in the Southern Electricity Region 
of India as a cooperative game with transferable utility. Each power system was 
modeled as an independent player who might accept the terms of cooperation or 
refuse the construction of interconnections. Gately analyzed possible scenarios of 
cooperation and implemented several Cooperative Game Theory solution concepts 
such as the Shapley value, the Core, and the Kernel. He also introduced an 
additional concept of “propensity to disrupt” to identify allocation solution areas 
with mutually acceptable shares of gains. 

The new wave of research on Cooperative Game Theory applications in TEP 
began in the nineteen-nineties and the two-thousands. Tsukamoto and Iyoda [43] 
suggested a Cooperative Game Theory based methodology for allocating 
transmission fixed costs. The MW-mile method was complemented with the 
Nucleolus solution concept to avoid conflicting outcomes. Javier Contreras 
dedicated his thesis and the subsequent papers to the coalition formation analysis 
in TEP [44], [45]. A decentralized coalition formation scheme based on power 
systems transmission expansion scenarios was considered. The resulting cost 
allocation was performed using the backward induction and the bilateral Shapley 
balue approach. In the following work, Contreras and Wu [46] developed a TEP 
algorithm using the Kernel solution concept. The decentralized, negotiation-
oriented coalition formation algorithm allowed identifying the Kernel-stable cost 
allocation solutions. Two years later, several studies on TEP algorithms applied 
Cooperative Game Theory solution concepts. Tan and Lie [47] considered 
transmission cost allocation among power consumers. The Shapley value was 
utilized as the allocation rule in a centralized manner. Zolezzi and Rudnick [48] 
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formulated decisions on building each line in TEP as separate cooperative games. 
The Shapley value, the Nucleolus, the marginal participation method, and the 
generalized load-distribution factors method were compared for transmission cost 
allocation among power consumers. The idea of transmission expansion plan 
segmentation was further developed in [49]. Independent cooperative games for 
each of the expansion segments were solved through the Kernel concept. Stamtsis 
and Erlich [50] formulated a cooperative game in pool markets where counterflows 
may cause transmission capacity savings. The authors argued that the Shapley 
value is a more preferable solution than the Nucleolus for transmission fixed-cost 
allocation. In [51], Ruiz and Contreras incorporated market participants’ influence 
on TEP decisions into the expansion and cost allocation algorithm. Each consumer 
and each producer were allocated weights that measure the influence of each firm 
on the expansion decision. In order to realize a transmission expansion, all the 
parties have to be satisfied enough with the allocation. Mathematically, the total 
weight of the firms that favor the expansion must be larger than a known positive 
parameter. The model was further developed in [52] by Contreras et al., who 
proposed an incentive-based mechanism for decentralized transmission asset 
investment. 

Additional benefits of cooperation may be reaped due to the economies of 
scale in transmission construction [53], [54]. A large-scale transmission expansion 
project can lead to a lower per MW cost than a series of smaller transmission 
constructions. This effect should also be reflected in cost allocation mechanisms. In 
this regard, in [50], Stamtsis and Erlich stated, “The allocation of embedded costs 
is a typical case where the cooperation between some agents produces economies 
of scale. Consequently, the resulting benefits have to be shared among the 
participating agents. The Cooperative Game Theory concepts, taking into account 
the economies of scale, suggest reasonable allocations that may be economically 
efficient.” 

Admitting the probabilistic nature of power systems and players’ behavior, 
Bhakar [55] suggested extending game approaches for network cost allocation. The 
probability of existence of players, the probability of coalitions existence, and the 
probability of players joining a coalition in a particular sequence were introduced 
into the model. The approach may be useful for cooperation stability analysis. 
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However, it requires reasonable assumptions on the probabilistic characteristic 
functions. 

As indicated by many studies, the application of the Shapley value becomes 
computationally prohibitive for realistic systems with multiple players. Therefore, 
some authors suggested using the Aumann–Shapley extension that allows finding 
an allocation solution through a set of linear optimization programs and reduces 
the computation effort [56], [57]. 

Nowadays, Cooperative Game Theory becomes a prominent tool for cross-
border power interconnection projects evaluation. Kristiansen et al. [58] proposed 
an international transmission mechanism based on a planning model that considers 
generation investments as a response to transmission developments and the Shapley 
value. The results for the North Sea Offshore Grid case study showed the benefits 
allocation among the countries and possible ways of arranging the side payments 
(for example, through Power Purchase Agreements). De Moura et al. [59] analyzed 
the perspectives of power systems integration processes between Brazil and its 
South American neighboring countries. The Shapley value was used for players’ 
bargaining power estimation and cost allocation. 

A brief review of the existing research shows that Cooperative Game Theory 
applications in transmission expansion cost allocation form a distinct 
interdisciplinary direction. Even though the first work appeared more than forty 
years ago, the topic is not depleted yet. Moreover, the research evolves over time. 
The game-theoretic models become more reasonable and complex, and the case 
studies – more realistic. There is ongoing work on finding new ways of implementing 
Cooperative Game Theory in power systems. 

However, several important aspects of cooperation in TEP have not been 
addressed yet. First, it is usually assumed that cooperation happens under perfect 
information, i.e., the information on power demands and cost functions is available 
to all players (as well as to regulatory or coordinating entities, if any). However, 
this assumption might not hold since self-interested participants may not respond 
truthfully. We, therefore, examine possible strategic behavior of players and the 
manipulability of allocation mechanisms. Second, Cooperative Game Theory 
solution concepts are commonly used in an ex-post manner. The optimization of 
planning decisions is separated from the allocation mechanisms. In this regard, we 
propose a novel TEP approach that incorporates Cooperative Game Theory 
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principles into the planning algorithm and enables identifying transmission plans 
with a predefined level of cooperation stability. We summarize the original 
contributions of the thesis below. 

 

1.3 Original Contributions 

In this thesis, we focus on cost allocation issues that arise in cross-border 
power interconnection projects when several independent PSOs cooperate in 
international transmission planning. We use Cooperative Game Theory solution 
concepts as the basis for our analysis. Special emphasis is placed on the stability 
of cooperation and applicability of the solution concepts to real-world case studies. 
We formulate a cooperative game among PSOs based on TEP model and analyze 
possible payoffs that would lead to stable cooperation where no one of the 
participants would have incentives to break the agreement on building cross-border 
power interconnections. The TEP mathematical optimization framework and 
Cooperative Game Theory concepts exploited are described in Chapter 3 and 
Chapter 4, respectively. Our approach is close to the mentioned works on 
transmission cost allocation [42]–[51], [58]. However, we went beyond and further 
investigated the stability of cooperation in cross-border power interconnection 
projects. In Chapter 5, we performed the manipulability analysis of cost allocation 
rules and discussed the need for developing strategyproof mechanisms of 
cooperation. Then, in Chapter 6, we introduced the novel bilevel TEP approach 
that incorporates Cooperative Game Theory principles into the planning algorithm 
and enables the identification of transmission plans with a predefined level of 
cooperation stability. To the best of our knowledge, such ideas have never been 
implemented in power systems research. 

Specifically, the original contributions of the thesis are as follows: 
 

I. We demonstrated that cooperation in TEP based on Cooperative Game 
Theory solution concepts (such as the Shapley value, the Nucleolus, and 
equal sharing) is prone to manipulations. We analyzed the incentives of 
players’ strategic behavior depending on their positions in electricity trading 
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and discussed the need for developing strategyproof mechanisms of 
cooperation. – Chapter 5 

II. We suggested using the coalitional excess theory as the metric of cooperation 
stability to complement existing ex-post game-theoretic approaches. We 
then formulated an anticipative bilevel TEP model that incorporates 
Cooperative Game Theory principles. The proposed approach enables 
including game-theoretic constraints (such as the Core of the game, the 
convexity conditions, maximum surpluses among players, etc.) into the 
planning algorithm. In this manner, it becomes possible to identify expansion 
plans with a predefined level of stability of cooperation. – Chapter 6 

III. Moreover, we performed the manipulability analysis of cooperation in TEP 
under the proposed bilevel planning model. We found that the anticipative 
bilevel game-theoretic approach could decrease players’ incentives to 
manipulate allocation rules and might be used for developing strategyproof 
mechanisms of cooperation. – Chapter 6 

IV. Finally, we considered a real-world case study of potential power 
interconnections in Northeast Asia. We implemented the Cooperative Game 
Theory solution concepts and analyzed the stability of cooperation. We also 
discussed the practical implementation issues, such as the arrangement of 
investment and payment schemes between countries. – Chapter 7 
 
An additional contribution of the thesis is the comprehensive review of 

Cooperative Game Theory applications in power systems. The citation network 
analysis performed in Chapter 2 allowed us to identify the main research 
communities, formulate the challenges and limitations of Cooperative Game 
Theory solution concepts, and justify the novelty of the ideas presented in this 
work. 
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Chapter 2 

 

Citation Network Analysis 

A thorough knowledge of the elements 
takes us more than half the road to 
mastership. 

- Aron Nimzowitsch 
Latvian-Danish grandmaster 

 
This chapter provides a comprehensive review of Cooperative Game Theory 

applications in power systems. While covering a broad range of applications (such 
as cost and benefit allocation, transmission pricing, projects ranking, allocation of 
power losses), we pay particular attention to power system expansion planning. To 
give a complete picture of the state-of-the-art, we perform a citation network 
analysis of more than 3 000 related studies from 1996 to 2020. Exploiting the graph 
layout and modularity algorithms, we identify the main research communities and 
highlight their contributions. We found that significant progress has been achieved 
in developing mechanisms of cooperation in power systems based on the 
Cooperative Game Theory solution concepts. However, several challenges and 
limitations of these concepts still have to be overcome, such as scalability, 
nonconvexity of cooperative games, coalitions formation assumption, ex-post game-
theoretic analysis, incompleteness and manipulability of information. 

The main purpose of the citation network analysis is to identify the most 
relevant studies in the field. We found three major research directions related to 
our work: multi-agent systems, expansion planning, and Cooperative Game Theory 
applications in power systems. The latter direction encompasses the research 
communities that extensively use Cooperative Game Theory for solving allocation 
problems in power systems. We examined the existing studies in these communities 
and justified the novelty of the contributions presented in this work. 
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This chapter is structured as follows. We first explain the methodology and 
tools used in the citation network analysis. Then, each of the identified research 
directions is discussed in detail. We focus on the Cooperative Game Theory 
applications in power systems and discuss the main opportunities, challenges, and 
limitations of existing concepts. Finally, we present the bibliometric analysis of the 
studies in the citation network. We show the evolution of publications, identify the 
most published authors, most influential journals, and most frequent keywords. 

 

2.1 Review Methodology and Tools 

The citation network analysis is a powerful literature review tool that allows 
visualizing existing studies and their relationship as a directed graph. The graph 
layout and modularity algorithms enable the identification of the community 
structure and the most relevant references. We perform the analysis for the existing 
research in TEP cost allocation methods and Cooperative Game Theory 
applications. 

Our network is built chronologically: we identify the relevant papers which 
have a significant citation history (we denote them as generation #0); then, we 
collect the references that cited the initial ones (generation #1) and the papers 
that cited those references (generation #2). The citation relationship among the 
references reflects the evolution of the topic and reveals the allied research 
directions. We have selected the following works as the pivot points of the citation 
network: 

 
 G0-1: (77 citations) Y. Tsukamoto and I. Iyoda, “Allocation of fixed 

transmission cost to wheeling transactions by cooperative game theory,” 
IEEE Trans. Power Syst., vol. 11, no. 2, 1996, [43]; 

 G0-2: (97 citations) J. Contreras and F. F. Wu, “Coalition formation in 
transmission expansion planning,” IEEE Trans. Power Syst., vol. 14, no. 
3, 1999, [45]; 

 G0-3: (132 citations) J. M. Zolezzi and H. Rudnick, “Transmission cost 
allocation by cooperative games and coalition formation,” IEEE Trans. 
Power Syst., vol. 17, no. 4, 2002, [48]. 
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These works extensively applied Cooperative Game Theory solution 
concepts to the TEP cost allocation issues.3 They form the first generation of 
references in our network and therefore are denoted “G0-...”. The first generation 
of citations “G1-...” contains 245 unique papers. And the second generation “G2-...” 
comprises 3690 articles. Thus, the entire citation network has 3938 nodes (papers) 
and 5332 edges (citations). We used the Scopus citation database and Gephi 
software [60] to collect and visualize the references. The review was actual for 
February 2020. 

To analyze the citation network, we exploited graph layout algorithms that 
allow spatial mapping of interconnected groups of nodes, namely “ForceAtlas2” [61] 
and “Yifan Hu Proportional” [62]. The community structure was retrieved by the 
modularity optimization algorithm [63]. Twenty distinct communities have been 
identified in the network. For convenience, we set the nodes’ sizes proportional to 
the number of citations. Therefore, it may be easily detected which studies 
eventually attracted more attention of the communities. The largest node of our 
network (G1-128) has 772 citations and represents the work by McArthur et al. 
[64] on multi-agent systems for power engineering applications. A detailed 
discussion of the network exploration tools is given below. 

We visualized the main stages of the citation network exploration in 
Figure 2.1. First, information on the three generations of references was collected 
from the Scopus database. Each reference has been assigned an ID number, which 
corresponds to a certain node in the network. Similarly, every citing was recorded 
as a link between two papers (nodes). Thus, tables of nodes and edges were created, 
which could be directly exported to Gephi software. The initial collection of 
references is shown in Figure 2.1 (a). It is practically impossible to analyze such a 
disordered network. We, therefore, applied graph layout algorithms to reach a 
decent visualization of the network’s structure. The first graph layout algorithm 
selected was ForceAtlas2 [61], which is a powerful tool of force-directed graph 
drawing. Force-directed graph layout algorithms provide intuitive results since they 
simulate a physical nature to spatialize a network. As the authors state in [61], 

                                                 
3 We do not include the initial work by Gately [42] in the citation network to keep focused on the 
topic. The reasoning is that the work has a too long and wide citation history. It has been cited by 
many game-theoretic and applied studies that are not relevant to TEP cost allocation problems. 
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“Nodes repulse each other like charged particles, while edges attract their nodes, 
like springs. These forces create a movement that converges to a balanced state.” 
Thus, the algorithm stretches out the network depending on the topology, initial 
positions of nodes, parameters as the attraction force, the repulsion force, gravity, 
etc. The resulting layout is displayed in Figure 2.1 (b). The visual densities of the 
graph denote structural densities, which represent communities and groups with 
stronger relations. However, the layout is yet too tight. Groups of nodes form 
bunches with significant overlapping. To further improve the network visualization, 
we exploited another force-directed algorithm developed by Yifan Hu [62]. The 
algorithm combines a multilevel approach based on the global energy model. The 
movement of nodes has an adaptive speed with ‘‘heating’’ and ‘‘cooling’’ phases. 
This creates a layout resembling an explosion snapshot, as shown in Figure 2.1 (c). 
Such a layout clearly reveals the network’s structure. But, it lacks community 
identification. To analyze the community structure of the network we launched the 
modularity optimization algorithm [63]. The algorithm iteratively regroups nodes 
until a high quality of partitioning is achieved. The identified communities can be 
highlighted using different color schemes, as shown in Figure 2.1 (d). Finally, the 
nodes’ sizes can be set proportional to the number of citations. 
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a)   b)  

c)   d)  
Figure 2.1: Citation network exploration: a) initial collection of the references 

from Scopus database; b) application of ForceAtlas2 layout algorithm;  
c) subsequent application of Yifan Hu Proportional layout algorithm;  

d) extraction of the community structure via the modularity algorithm. 
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The overview of the entire network is presented in Figure 2.2. The identified 
communities are highlighted in corresponding colors. It can be noticed that the 
structure of the network resembles clouds of papers in the communities. Each cloud 
has distinguished features that allow identifying its research direction. We 
identified the three main directions and, therefore, split the network into three 
sectors. The central cloud of the network is formed around the selected pivot papers 
G0-1, G0-2, and G0-3. These works are not distant from each other. The 
consequent communities form a highly interrelated sector with a focus on cost and 
benefit allocation issues in power systems and Cooperative Game Theory 
applications. The bottom (blue-green) cloud of papers contains the mentioned work 
G1-128 by McArthur et al. [64] and as well as many other studies on multi-agent 
approach to power systems. The papers of this sector have not many connections 
with the remaining network, which signifies that this research direction has not 
much in common with the Game Theory applications and cost allocation issues. 
Finally, the upper cloud of papers can be characterized as studies that involve 
transmission expansion algorithms. One of the most significant nodes of this sector, 
G1-149, represents the review of publications and TEP models by Latorre et al. 
[7]. This paper connects to numerous works in the sector and contributes to forming 
the distinct TEP communities of the network. 

To provide more details on the mentioned research directions and identify 
additional relevant papers, we describe each of the three sectors separately below. 
For convenience, we list the considered references (nodes) of the citation network 
in Table 2.1. An interactive version of the citation networks is available at 
http://materials.andreychurkin.ru/network2/. As discussed, the upper and the 
lower sectors reveal the aligned research directions. The central sector contains the 
most relevant works to the current thesis and, therefore, will be examined especially 
accurately. 
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Figure 2.2: Citation network overview. 
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2.2 Multi-agent Systems 

The bottom sector of the citation network (Figure 2.3) comprises the studies 
which use multi-agent approaches for power systems. Such approaches consider 
systems with multiple interacting intelligent agents who make independent 
decisions and follow a beneficial strategy. The goal of multi-agent systems studies 
is to develop the design of such systems and suggest operation and control 
algorithms. The multi-agent approaches have been successfully applied in a broad 
range of engineering problems such as modeling of cooperation and coordination, 
distributed optimization, distributed control, multi-agent learning. The 
formulations of multi-agent systems overlap with game-theoretic models in terms 
of interaction assumptions and areas of application. We, therefore, review the main 
ideas of this research direction. 

One of the most influential works here is the mentioned review of multi-
agent systems concepts, approaches, and technical challenges by McArthur et al., 
G1-128 [64]. The review resonated with the community and was cited by numerous 
studies that form the blue cloud around G1-128. Many works in the community 
implement multi-agent concepts for microgrids operation and distributed control 
systems. Bidram et al. [65] proposed a secondary voltage control of microgrids 
based on the distributed cooperative control of multi-agent systems (G2-1821). 
Similar works on distributed control techniques in microgrids are represented by 
nodes G2-1703 [66], G2-1845 [67], and G2-1971 [68]. Several studies in this 
community used Game Theory to model microgrid market operation (G2-1449 [69], 
G2-1644 [70]). 

The left green community is formed around the node G1-154 that is the 
study by Nagata and Sasaki [71] on a multi-agent approach to power system 
restoration. The surrounding nodes mainly represent the studies on distribution 
networks and microgrids control and protection management based on the multi-
agent systems approach. 

At the top of the sector, we see several stretched communities (highlighted 
red and greed) that link the sector with the remaining citation network. The nodes 
such as G1-156 [72] represent the works on multi-agent systems for energy 
management and distributed control. 
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Finally, there is a separate dark-blue community to the right that is formed 
around the work G1-130 by Ilic [73], who discussed the challenges of transition 
from hierarchical to open access power systems, particularly in design, monitoring 
and control. The connected papers also put effort into solving problems of power 
systems operation and control. Some of them rely on multi-agent system design 
principles. 

Through the above review, we see that the communities in the bottom sector 
form a distinct research direction that can be classified as multi-agent systems. The 
authors of the communities use the multi-agent approaches to address the issues of 
power systems design, operation and control. Even though not many studies in the 
sector used Cooperative Game Theory or considered cost allocation issues, it is still 
useful to analyze the methods of this aligned research direction. 

 

 
Figure 2.3: The bottom sector: multi-agent systems. 
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2.3 Expansion Planning 

Another important sector of the citation network (Figure 2.4) comprises the 
communities that address planning issues in power systems. One of the largest 
communities (highlighted in peach color) is formed over the nodes G1-149 [7], G1-
136 [8], G1-123 [74], and G1-150 [75]. The node G1-149 represents the mentioned 
review by Latorre et al. [7]. This work classified publications and TEP models and 
found a broad response within the network. Another review of TEP algorithms by 
Lee et al. [8] also tightly interrelates with the main papers of the community and 
is depicted as G1-136. De la Torre et al. [74] presented a MILP for long-term TEP 
in a competitive pool-based electricity market (node G1-123). To estimate the 
expansion effect on the generators, demands, and the power system as a whole, the 
authors proposed using a set of metrics based on changes in surpluses. In the related 
study G1-150, Fang and Hill [75] not only elaborated on TEP models for 
competitive electricity markets but also considered uncertainty in power-flow 
patterns. 

The related peach-colored nodes represent the studies on different features 
of TEP problems. Zhang et al. [76] proposed a multi-stage MILP algorithm that 
embeds N-1 security-constrained verification into the TEP framework (node G2-
2600). Linearization of power losses and generation cost functions was used to make 
the problem tractable. Sauma and Oren [77] presented a concept of proactive 
transmission planning (node G2-2738). In their framework, the competitive 
interaction among generation firms was taken into account. The decisions of 
generation capacity investments and production were affected by the transmission 
investments and the congestion management protocols. The interaction was 
formulated mathematically by means of equilibrium problems (EP). Node G2-2688 
is the work by Maghouli et al. [78], where the authors proposed a multi-objective 
TEP framework for deregulated power systems. Investment cost, reliability, and 
congestion cost were included in the objective function. The optimal solutions were 
found using a fuzzy decision making analysis. 

Summarizing the above references, we can state that the driving force for 
research in this community is power system restructuring and deregulation 
(sometimes called unbundling or liberalization). Most of the papers around node 
G1-149 [7] justify their results by the need for a new TEP framework in the 
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deregulated and competitive environment. The main tools exploited include MILP 
models, multi-stage programming, equilibrium models, and multi-objective 
optimization. 

A slightly different focus can be observed in the articles surrounding node 
G1-150 [75]. The authors in this community make efforts to solve TEP problems 
under uncertainties. The main tools applied are scenarios sampling methods and 
stochastic programming. Yu et al. [79] proposed a chance-constrained TEP 
formulation to consider uncertainties in wind turbines generation (G2-2841). The 
probabilistic DC power flow calculations were performed to include the effects of 
the uncertainties in transmission planning schemes. Several nodes represent the 
works on robust TEP algorithms. For example, in G2-2809, Jabr [80] presented a 
robust optimization approach for TEP under uncertainties of renewable generation 
and load. The budget of uncertainty was included in the model formulation and 
the Benders decomposition was used to solve the MILP problem iteratively. 

Several works in the center of the peach-colored community represent the 
contribution of R. Baldick’s research group. In G2-1204, Park and Baldick [81] 
considered transmission planning under uncertainties of wind availability and 
system load. A two-stage stochastic model was used to solve the total cost 
minimization problem through a sequence of stochastic optimization problems and 
approximations of random parameters. The model was further improved in [82] 
(node G2-1171), where the dependence of electric load and available wind power 
was simulated as the joint distribution using a Gaussian copula. The neighboring 
node G2-1017 is the study by Majidi-Qadikolai and Baldick [83], who proposed an 
extension to stochastic TEP to integrate N-1 contingency analysis. A three-level 
filtering algorithm was designed based on the important scenario identification 
index and similar scenario elimination technique to decrease the number of 
reliability constraints in stochastic TEP. 

The nearby turquoise blue community is formed around node G1-111. In 
this work, Khodaei et al. [84] proposed embedding transmission switching in TEP 
algorithms. Is was demonstrated that transmission switching could add flexibility 
to expansion plans and reduce the total planning cost. The TEP model was 
decomposed into a master problem and subproblems, where the master problem 
performs transmission and generation investments, and the subproblems apply 
transmission switching to relieve power flow violations and calculate the optimal 
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dispatch. Many of the related studies elaborate on transmission topology control 
and transmission switching effects on power systems reliability and power markets 
operation. 

The dark-green community to the right contains the studies that combined 
both generation and transmission expansion planning. Some of the works discussed 
expansion planning in a multi-regional context where two or more transmission 
planners make independent decisions. The proposed frameworks are based on 
multi-level optimization, MILP, and equilibrium models. Node G1-104 stands for 
the work by Pozo et al. [85], who proposed a three-level static MILP model for 
generation and transmission expansion planning. A pool-based market equilibrium 
was represented by the lower-level model. Then, the intermediate level introduced 
generation capacity expansion as the Nash equilibrium problem. Finally, the upper-
level contained a TEP formulation with anticipation of the decisions of the other 
levels. Many of the related works follow the same logic when formulating multi-
level TEP models. The nearby node G1-102 is another work by Pozo et al. [86] 
where the anticipative TEP algorithm was illustrated. It was also shown how the 
noncooperative nature of the model produces a range of equilibrium solutions. A 
transmission planner, therefore, should decide on considering the optimistic or 
pessimistic outcomes. In G1-105, Munoz et al. [87] analyzed the impact of wind 
power generation on long-term TEP. The model incorporated the variability of 
wind resources and its influence on system security and reserve market. The loss 
of load expectation constraint was used to guarantee a minimum system security 
level. 

Several works in the community, such as G1-107 and G1-93, considered 
multi-regional TEP problems. In G1-107, Khodaei et al. [88] proposed coordination 
of long-term and short-term expansion planning. The multi-area expansion 
planning problem was decomposed into a planning problem and annual reliability 
subproblems which verify the reliability conditions for transmission plans and 
impose additional constraints if needed. In G1-93, Tohidi and Hesamzadeh [38] 
formulated TEP with multiple cost-minimizing transmission planners. The 
noncooperative solutions were found using the worst-case Nash equilibrium 
concept. It was shown that without proper compensation mechanisms, the 
noncooperative transmission planning is inefficient compared to the cooperative 
solution. 
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The lavender-colored community at the top of the sector features studies on 
finding equilibrium solutions in electricity markets. The reference node G1-145 
represents the work by Contreras et al. [89], who suggested a numerical method 
for finding Nash-Cournot equilibrium in electricity markets. The equilibrium 
problem was transformed into an optimization problem. Then, a relaxation 
algorithm of the optimum response function was utilized to find the equilibrium in 
a finite number of iterations. In the nearby node G2-2359, Pozo and Contreras [90] 
enhanced the method and analyzed multiple Nash equilibria in pool-based markets. 
The stochastic EPEC model allowed addressing multi-period strategic bidding 
problems with a stochastic demand forecast. Most of the related studies follow the 
same path and develop Nash equilibrium based solutions for electricity markets. 

The last expansion planning community contains the pink-colored nodes in 
the center of the sector. These studies focus on TEP algorithms application and 
have much in common with the surrounding communities. As a distinct feature, 
we may highlight the works on dynamic multi-stage TEP problems. In G1-109, 
Aguado et al. [91] formulated a MILP model of dynamic TEP that explicitly 
considers a multi-year planning horizon. The authors introduced several efficiency 
metrics to analyze the TEP effect on generators and demands. The realistic Spanish 
power system case study was considered with a ten-year planning horizon. Since 
multi-stage TEP problems usually involve large-scale optimization models, multiple 
authors relied on metaheuristic algorithms in solving them. For example, in G1-96, 
Kamyab et al. [92] considered the N-1 reliability criterion in multi-stage TEP and 
used particle swarm optimization method to solve the large-scale nonlinear 
combinatorial problem. 

The references mentioned in this section show that the development and 
application of TEP algorithms is an important research direction that gains 
increasing attention in the last two decades. The existing methods mainly rely on 
mathematical programming. However, deregulation in power systems and the 
emergence of electricity markets pose new problems for expansion planning. 
Therefore, classical mathematical programming methods are being augmented with 
game-theoretic models. 
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Figure 2.4: The upper sector: expansion planning. 

 

2.4 Cooperative Game Theory Applications  
in Power Systems 

The central sector of the citation network (Figure 2.5) contains the three 
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in power systems. Below, we examine the notable contributions of the communities 
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The largest community (highlighted in pink) was formed around the works 
by Tsukamoto and Iyoda [43] (node G0-1) and by Zolezzi and Rudnick [48] (node 
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game formulation in power systems. Some of the works focus on transmission cost 
allocation issues, while others found different applications such as allocation of 

G1-149

G1-150

G1-123

G1-136

G2-2600

G2-2738

G2-2688

G2-2841

G2-2809

G1-111

G1-104

G1-102

G1-107
G1-105

G1-93

G1-145
G2-2359

G1-109

G1-96

G2-1204 G2-1017
G2-1171



27 

power losses. Interestingly enough, most of the papers in the community did not 
notice or cite the second pivot paper by Contreras and Wu [45] (node G0-2). The 
possible reasoning is that Contreras and Wu had a shift towards coalitional 
formation in their work. Less attention was paid to applications of existing 
Cooperative Game Theory solution concepts. Thus, the community better 
acknowledged the works G0-1 and G0-3. 

Node G1-32 to the right represents the review of cooperative games and cost 
allocation problems by Fiestras-Janeiro et al. [93]. The authors considered possible 
applications of transferable utility cooperative games in transportation, natural 
resources, and power industry. The review summarizes the main ideas of cost 
allocation solution concepts in power systems and refers to other papers in the 
community. Node G1-61 is the previously mentioned work by Stamtsis and Erlich 
[50] on Cooperative Game Theory applications in power system fixed-cost 
allocation. The authors illustrated how collective network usage leads to cost 
savings. The Shapley value and the Nucleolus solution concepts were used for cost 
allocation. Node G1-37 stands for the above-discussed study by Bhakar et al. [55], 
who introduced a probabilistic Cooperative Game Theory approach to network 
cost allocation. The probabilistic extension of the allocation solutions could be 
useful for the case studies where it is possible to evaluate the probabilities of 
coalitions formation. 

A different application of the Cooperative Game Theory solution concepts 
can be found in G2-143, where Dabbagh and Sheikh-El-Eslami [94] considered 
allocation of virtual power plant’s profit among its distributed energy resources. It 
this framework, distributed generators cooperated in the day-ahead and balancing 
markets to reach the desired risk-aversion level. The payoffs to the generators were 
calculated based on the Shapley value and the Nucleolus. 

In G1-35, Rao et al. [95] compared existing approaches for transmission 
usage cost allocation. The authors suggested a min-max fair power flow tracing 
approach and argued that it might be superior to the Cooperative Game Theory 
solution concepts, marginal participation method, “with and without transit”, and 
other methods. 

Several studies applied Cooperative Game Theory solution concepts to 
allocate power losses. For example, in G1-185, Sharma and Abhyankar [96] 
suggested power losses allocation in radial distribution systems according to the 
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Shapley value. A sequential Shapley value method was proposed to reduce the 
computational burden when allocating the losses among distributed generators and 
loads. 

At the top of the community, we see the mentioned works by Evans et al. 
[49] (node G1-66) and by Ruiz and Contreras [51] (node G1-51). In G1-66, a 
transmission expansion cost assignment model was proposed that considers 
independent cooperative games for each expansion segment. The Kernel solution 
concept was used to find individual cost allocations. The resulting solution summed 
up the individual allocations for each expansion segment. In G1-51, an allocation 
scheme was presented that considers market participants’ incentives to support an 
expansion plan. In the model, each prosumer and each producer were assigned 
voting weights that reflect the level of firms’ influence on transmission expansion 
decisions. Thus, it becomes necessary to suggest a vector of payments in such a 
way that the total sum of votes on an expansion plan would be higher than some 
positive parameter. Otherwise, market participants would not agree on network 
expansion. Node G1-86 represents the work by Csercsik [97], who analyzed the 
effects of cooperation, asymmetric information, and market regulations on the 
profit of generator companies. A transferable utility game framework was used for 
profit estimation. 

We should also mention our recent work [98] on cross-border power 
interconnection project analysis. This paper is represented by node G2-263. It 
introduces the main ideas of the thesis and shows how Cooperative Game Theory 
solution concepts can be implemented in real-world case studies. Therefore, the 
citation network analysis confirms that our research contributes to the Cooperative 
Game Theory applications in power systems and is a part of the significant 
community formed around G0-1 and G0-3. 

The second-largest community of the sector is presented by the blue colored 
nodes. These studies also focus on Cooperative Game Theory solution concepts 
applications to power systems allocation issues. Notably, many of the works in the 
community exploited the Aumann-Shapley value, which is an extension of the 
Shapley value solution concept to infinite games. The two central blue nodes G1-
234 and G1-200 represent the earlier mentioned studies on transmission network 
cost allocation by Junqueira et al. [56] and by Molina et al. [57]. In G1-234, the 
authors introduced an Aumann–Shapley approach for transmission cost allocation 
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and compared it with existing pricing mechanisms such as the Average 
Participation Factors (APF) method and the long Run Marginal Costs (LRMC) 
scheme. It was illustrated that the “infinitesimal agents” idea behind the Aumann–
Shapley approach allows avoiding the computational feasibility issues of the 
original Shapley value concept and eliminates the dependence on the size of the 
agents. The approach was tested on the Brazilian network case study, for which 
the transmission tariffs distribution was estimated. The authors of G1-200 agree 
with the disadvantages of the Shapley value’s combinatorial nature and suggest a 
similar method based on circuit theory and the Aumann-Shapley value. The 
proposed method considers active are reactive power flows and allows identifying 
transmission cost allocation among generators and consumers. 

In G2-3618, Molina et al. [99] used a similar Aumann-Shapley approach to 
power losses allocation. The model included both active and reactive losses and 
allowed allocating them among generators and loads. It was illustrated that because 
of the counter-flows, some participants may have negative allocations and should 
be therefore subsidized. Many of the related studies at the bottom of the blue 
community elaborate on transmission losses allocation methods. 

Srinivasan et al. [100] formulated strategic bidding and cooperation 
strategies for consumers in power markets (node G2-193). It was shown that 
because of the network’s physical constraints, consumers might be able to influence 
the market by cooperating with each other. The coevolutionary algorithm was used 
for market modeling under deterministic and stochastic conditions. The values of 
the coalitions were defined by Cooperative Game Theory concepts. 

Cooperation can take a multi-level form. This happens when groups of 
players cooperate, or there is a hierarchical structure (subordination) between 
them. Thus, there is a need to consider both the upper-level cooperation and the 
allocation of value within groups. To this end, node G2-3430 is a recent work by 
Petrosyan and Sedakov [101], who proposed an allocation procedure for two-level 
cooperation in network games. 

The left side of the blue community contains papers with a focus on 
Cooperative Game Theory applications in smart grids and microgrids. The large 
node G2-3541 is the review of game-theoretic methods for smart grids by Saad et 
al. [102]. The authors argue that emerging technologies in communications and 
control make it possible to apply Noncooperative and Cooperative Game Theory 
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techniques to address the challenges in smart grids. The neighboring node G1-11 
represents the work by Du et al. [103], who studied the potential advantages of 
cooperation among multiple microgrids with distributed energy resources. In this 
framework, cooperating microgrids could be dispatched in a centralized manner to 
reach a reduction in operating cost. The Nucleolus solution concept was used for 
cost allocation. To overcome the computational issues, authors suggested finding 
the Nucleolus via Benders decomposition. 

Another elegant application of the Aumann-Shapley concept can be found 
in G1-225, where Faria et al. [104] examined the allocation of firm energy rights 
among hydropower plants. It was shown that synergy benefits could happen in 
coordinated firm energy production compared to the separate operation of hydro 
plants. Such situations are usual for plants located in a cascade (in the same river 
basin). The authors compared several methods for firm energy rights allocation and 
argued that the Aumann-Shapley approach provides the most reasonable results. 
Several cases of river cascades in Brazil were analyzed to reveal the dependence of 
firm energy rights allocation on the reservoirs of upstream and downstream power 
plants. A somewhat similar idea was proposed by Kristiansen et al. [105] for power 
system flexibility analysis (node G1-82). It was discussed that flexibility providers 
such as fast-ramping gas turbines or demand-side management are needed to 
accommodate a significant amount of variable renewable energy sources. Thus, it 
is necessary to include the flexibility providers in GTEP models. The authors 
suggested evaluating all possible scenarios of expansion planning and ranking 
spatially distributed flexibility providers according to the Shapley value. The 
effects of renewables share levels on operating costs, CO2 emissions reduction, and 
marginal system value of the flexibility providers were illustrated based on the 
North Sea Offshore Grid case study. 

The neighboring nodes G1-188, G1-189 are the papers by Banez-Chicharro 
et al. [106], [107] on transmission expansion projects benefits estimation using the 
Aumann-Shapley approach. In G1-188, the authors formulated a cooperative game 
to allocate the benefits of an expansion plan to individual expansion projects. The 
Aumann-Shapley approach was compared to the existing project evaluation 
schemes such as “take out one at a time” and “put in one at a time”. It was shown 
that project importance ranking by the Aumann-Shapley value might lead to higher 
net benefits while satisfying consistency and fairness properties. In G1-189, the 
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authors exploited the similar Aumann-Shapley approach to address the issue of 
transmission expansion projects benefits allocation among the users of transmission 
networks. 

The distant blue nodes to the right represent a group of studies on demand-
side management. The reference node G1-89 is the work by Haring et al. [108], who 
compared centralized and decentralized contract designs for demand response 
programs. The authors formulated the decentralized contract proposal scheme as 
a heuristic process based on Q-learning. Consumer’s incentives to join the coalitions 
were expressed by means of Cooperative Game Theory. It was found that the level 
of demand response exploitation depends on information accuracy and coalition 
formation costs. 

We should also mention the citations of the second pivot paper G0-2 by 
Contreras and Wu [45]. As discussed above, few of the game-theoretic works in the 
pink community did refer to G0-2. Instead, the paper drew much more attention 
from the expansion planning communities at the top of the network. Many of the 
key works in TEP and GTEP, such as G1-104 [85], G1-111 [84], G1-123 [74], G1-
149 [7], and G1-150 [75], referred to the Contreras’ initial paper as one of the first 
studies on coalition formation and Cooperative Game Theory application in power 
systems. Nonetheless, no significant community was formed around G0-2. The 
surrounding green colored nodes split into different research directions. Several 
works elaborate on TEP and allocation issues. In G1-55, Hu et al. [109] applied 
Cooperative Game Theory for allocating generators start-up costs among power 
consumers. A multiperiod unit commitment problem was formulated to identify 
the optimal dispatch of generating units. Then, the estimated start-up and no-load 
costs were allocated by the Nucleolus and the Shapley value solution concepts. In 
this manner, the proposed framework allowed the unbundling of fixed and variable 
operating costs. In G1-38, Xie et al. [110] presented an emission-constrained 
generation scheduling model in which the trading of emission allowance was 
optimized. The resulting cost reduction was allocated among generators according 
to the Shapley value. A couple of neighboring nodes represent the contribution of 
N. Voropai’s research group to TEP modeling, coordination and allocation 
methods. In G1-138, Voropai and Ivanova [111] formulated a game-theoretic 
approach for the cooperation of power supply companies in expansion planning. 
The authors examined different criteria of cooperation and used the Shapley value 



32 

for benefits allocation. Other green nodes represent not relevant topics (such as 
radio resource allocation problems) and therefore are not considered in the review. 

Lastly, we briefly describe the minor communities of the central sector. The 
light brown group of nodes to the right comprises the studies on transmission 
management and pricing mechanisms. In G1-74, Marangon Lima and de Oliveira 
[112] discussed the long-term effect of transmission pricing on generation and 
transmission expansion planning. The adjoint node G2-550 is the review of the 
transmission management methods in deregulated power systems by Christie et al. 
[113]. Most of the related works focused on transmission pricing, wheeling of power, 
and congestion management. 

The issues of transmission tariffs and charges are also addressed by the 
works in the light red colored community. In G1-220, Olmos and Perez-Arriaga 
[114] proposed a transmission charges method based on average participation 
factors and argued that it might complement the existing LMP approach. Another 
discussion of tariff design methodologies in distribution networks was presented by 
Rodrıguez Ortega et al. [115] in node G1-122. There is still an ongoing interest in 
transmission network tariffs research. Modern studies suggest using more 
sophisticated approaches such as multi-level and equilibrium modeling. In the 
recent study G2-3566, Grimm et al. [116] analyzed subsidization schemes effect on 
locational choices of generation investment in electricity markets. Regionally 
differentiated network fees were introduced in the model as a component of 
payment by generators. It was found that the proposed scheme influences 
investment and decommissioning decisions and might lead to welfare gains. 

The orange community below features the studies on transmission loss 
allocation. In G1-124, Lima et al. [117] analyzed loss allocation to generators and 
demands using Cooperative Game Theory principles. Equivalent bilateral 
exchanges were considered as independent players of the game. The related studies 
further elaborate on loss allocation methods using multidisciplinary approaches. 
For example, Dev Choudhury and Goswami [118] suggested combining Cooperative 
Game Theory and artificial neural networks for solving transmission loss allocation 
problems (node G1-205). The authors considered bilateral contracts in electricity 
markets and argued that loss allocation by the Shapley value might be intractable 
for real power systems. Thus, an artificial neural network was trained on a large 
amount of generated sample cases and then tested on IEEE 14 and 30 bus systems. 
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In the minor black community to the left, we find it necessary to highlight 
the contribution by K. N. Hasan to Cooperative Game Theory applications in 
power systems. In G1-97, Hasan et al. [119] considered TEP for renewables 
integration in remote areas of the Australian grid. Such location-constrained 
projects require building long capital intensive interconnections. Under the existing 
transmission pricing mechanisms, the transmission fee for the newly built renewable 
generation could be unreasonably high. The authors discussed the issues in 
transmission pricing policies and suggested using the Shapley value for transmission 
cost allocation among market participants. In G1-179, Hasan et al. [120] presented 
a unique Cooperative Game Theory application to power system stability analysis. 
The authors formulated small uncertain disturbances as players of the cooperative 
game and used several allocation concepts to rank the most influential parameters. 
It was shown that the suggested game-theoretic probabilistic power system analysis 
tool might be superior to common sensitivity analysis methods. 

A small dark brown colored community at the top of the sector also features 
Cooperative Game Theory applications in electricity markets and TEP. Node G1-
116 is the earlier mentioned work by Contreras et al. [52], who suggested an 
incentive-based mechanism for transmission investment. A decentralized 
investment model was suggested considering each investor as an independent 
player. Then, the rewarding procedure iteratively evaluated possible welfare gains 
and allocated them among the investors using the Shapley value. The expansion 
plan was considered settled once all the investors decided on the rationality of their 
TEP projects (no more investors were willing to build more transmission assets). 
In the linked node G2-1066, Lo Prete and Hobbs [121] examined incentives for 
market participants to cooperate in microgrid forming. A Cooperative Game 
Theory framework was used to quantify cost and benefit allocation among the 
market participants. It was reported that market failure could lead to the 
misalignment between the social and private objectives and inefficient scale and 
types of microgrid installations. 

The far-left purple community has very few connections with the remaining 
citation network (only with G0-2 and G0-3 directly) and represents the studies on 
coalition formation. In G1-129, An et al. [122] proposed dynamic coalition 
formation algorithms and referred to the work by Contreras (node G0-2) as an 
example of coalition formation analysis in TEP. The neighboring purple nodes refer 
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to Zolezzi’s work G0-3 and feature overlapping issues in coalition formation. For 
example, in G1-219, Zhang et al. [123] used particle swarm optimization to identify 
overlapping coalitions formation in multiple project tasks (situations where a player 
can participate in several coalitions simultaneously). 

At this point, we have reviewed most of the existing relevant studies on 
Cooperative Game Theory applications in power systems. We found that the topic 
significantly evolved since the initial works G0-1 [43], G0-2 [45], and G0-3 [48]. The 
allocation concepts have been applied from a variety of angles, and the models 
complexified considerably. The identified applications can be classified into 
essential and specific approaches. The essential approaches involve the 
straightforward modeling of player interactions in power markets and in expansion 
planning projects. We include the following applications here: 

 
 Allocation of costs (usually operating) or benefits (cost savings or 

welfare gains) among the power market participants (generators and 
demands) [93], [97], [100]; 

 Allocation of transmission costs among the market participants 
(development of new transmission pricing mechanisms) [50], [56], [57], 
[95], [112]; 

 Solving the mentioned allocation issues as a part of TEP or GTEP 
[49], [51], [52], [106], [107], [111], [119]; 

 Development of transmission investment mechanisms (incentive 
schemes to encourage transmission investments in the competitive 
electricity market environment) [51], [52]; 

 Identification of beneficiaries in expansion projects [107] and ranking 
projects within an expansion plan [106]; 

 Multi-regional expansion planning (usually, cross-border power 
interconnection projects) [58], [59], [98]; 

 Cooperation among microgrids [102], [103], [121]; 
 Allocation of benefits within virtual power plants [94]. 
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Other approaches suggest unique ways of the cooperative game formulation. 
Sometimes, these formulations are not straightforward (for example, players of a 
game can hardly be called players in the usual sense). We mention the following 
specific applications: 

 
 Allocation of power losses (instead of the total cost, the allocation of 

losses among the agents, sometimes, among bilateral contracts) [96], 
[99], [117], [118]; 

 Using probabilistic game approaches for cost allocation (requires 
additional data on probabilities of coalitions) [55]; 

 Allocation of firm-energy rights or emission allowances [104]; 
 Ranking of flexible generation projects to accommodate renewable 

energy sources [105]; 
 Cost allocation in unit commitment (for example, mechanisms for 

start-up costs allocation) [109], [110]; 
 Power system stability analysis (contingency ranking based on 

Cooperative Game Theory principles) [120]. 
 
Our work falls into the directions of the multi-regional expansion planning 

and transmission cost allocation. In the following sections, we will summarize the 
citation network analysis and highlight the contributions of the thesis. 
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Figure 2.5: The central sector: Cooperative Game Theory applications  

in power systems. 
 

2.5 Opportunities, Challenges, and Limitations of 
Cooperative Game Theory Applications 

Additionally, the review of existing studies allowed us to identify the main 
challenges and limitations of Cooperative Game Theory applications in power 
systems, which we discuss in this section. First, we consider it important to discuss 
the applicability of the Cooperative Game Theory solution concepts. 

Applicability 

Cooperative Game Theory provides a rich theoretical background for the 
analysis of cooperation in power systems. Existing concepts enable identifying 
reasonable allocation solutions while satisfying some desired properties of 
cooperation. It is not surprising that many authors reported on the successful 
implementation of the solution concepts and suggested using them as the basis for 
cooperation mechanisms in power systems. 
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In most of the covered applications, Cooperative Game Theory provides 
intuitive results with explicit incentives for participants of cooperation and 
regulatory or coordinating entities. In [51], Ruiz and Contreras suggested using 
Cooperative Game Theory in transmission assets investment schemes and argued 
that such schemes would give market participants incentives to support an 
expansion plan. Faria et al. [104] examined the allocation of firm-energy rights 
among hydro plants in Brazil. The authors considered several allocation methods 
and recommended using the Aumann–Shapley since “it is robust in relation to small 
variations of a plant’s size and computationally efficient, besides originates from 
an intuitive methodology (Shapley value)”. Banez-Chicharro et al. [106] used the 
Aumann-Shapley value for estimating the benefits of transmission expansion 
projects. Having compared several methods, the authors concluded that “the 
proposed methodology provides regulatory authorities with the most relevant 
information for the identification of high-priority expansion projects”. 

Many authors mentioned that the identification of agents (players) and 
formulation of cooperative games is straightforward and clear. Moreover, the 
solution concepts adequately consider the key parameters of cooperation in power 
systems such as topology, electrical distance, usage of the network, etc. In [96], 
Sharma and Abhyankar used the Shapley value for power loss allocation in radial 
distribution systems. The authors mentioned that the proposed game-theoretic 
approach could be superior to existing methods since “it is easy to understand and 
implement”, “it considers the size and location of loads and distributed generations”, 
“it is based on individual network usages”, and “it recovers the total amount of 
losses”. Junqueira et al. [56] developed an open access transmission tariff scheme 
based on the Aumann-Shapley value. It was demonstrated that the proposed 
approach “presents desirable characteristics in terms of economic coherence and 
isonomy”. It was also found that the Aumann-Shapley approach captures the 
physics of power systems (the fact that power demands are mainly supplied by 
local generators, if any), while other methods require setting the economic slack 
bus and may provide unreasonable results. 

The discussed studies show that Cooperative Game Theory can be applied 
to power systems’ allocation problems. The solution concepts could be valuable in 
analyzing projects with multiple participants or used as the basis for mechanisms 
of cooperation. For instance, in [102], Saad et al. reviewed game-theoretic methods 
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for smart grids and concluded, “Clearly, cooperative games could become a 
foundation for introducing local energy exchange between microgrids in future 
smart grid systems. This local energy exchange could constitute one of the main 
steps towards the vision of an autonomous microgrid network.” We, therefore, 
expect more studies and applications of Cooperative Game Theory to appear in 
the near future. Now we proceed to the challenges and limitations. 

Scalability 

One of the most challenging limitations of Cooperative Game Theory is the 
scalability of the solution concepts. Most of the covered studies considered a 
moderate number of players in the cooperative game formulations, which is two - 
six participants of a project. It was reported that the implementation of the solution 
concepts for realistic systems with more players would be computationally 
infeasible. Indeed, the number of scenarios to consider (coalitions) grows 
exponentially with the number of players. The number of possible orderings in the 
Shapley value grows factorially. In [104], Faria et al. examined the Brazilian power 
system, which has around one hundred hydro plants. It is practically not possible 
to estimate the Shapley value for such a high number of players. The authors also 
mentioned the computational efficiency of the Core of the game, “the major 
difficulty in the calculation of the Core in realistic situations is the exponential 
increase of the Core constraints with the number of plants: a system with ten plants 
would have 1 000 constraints, and the modeling of 40 plants would require about 
one trillion constraints.” 

Under such circumstances, several studies exploited the Aumann-Shapley 
value, which provides an analytical solution to allocation problems where each 
agent could be divided into infinitesimal parts. This solution has a decreased 
computational burden and can be applied to cooperative games with dozens and 
hundreds of players. Additionally, many authors praised the isonomy of the 
Aumann-Shapley value. This property makes the allocation solution irrelevant to 
the size or capacity of the players since only infinitesimal shares of their capacities 
are considered. Studies as [45] and [96] proposed using the allocation rules in a 
sequential manner, which also allows decreasing the computational complexity. 

Certainly, there is a need for developing new cooperative game formulations 
that would enable accounting for more players. Such formulations might include 
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decomposition techniques and approximations of the allocation rules, coalitional 
structure, etc. Applications of machine learning techniques in the field could be 
rather promising, as demonstrated by Dev Choudhury and Goswami [118]. 

In addition, we feel it important to mention that cooperative games with a 
high number of players may provide hardly-interpretable results. It might be 
problematic to understand why and how certain players affect others. Moreover, 
such formulations imply that numerous participants, sometimes irrelevant to each 
other, agree on joining the grand coalition, which might not be the case in practice. 
In such cases, it would make sense to consider several separate cooperative games 
with a moderate number of players. 

Nonconvex cooperative games 

The discussed concepts, such as the Shapley value and the Nucleolus, are 
guaranteed to provide rational solutions only for the class of convex games. 
However, technical limitations of power systems (topology of interconnections, 
maximum capacity of lines and generators) could lead to nonconvex cooperative 
games. In such cases, marginal contribution by certain players to subcoalitions 
could be higher than to the grand coalition. As an extreme example of this 
violation, the Core of the game could become an empty set. Other examples include 
cooperative games with the Core that could be rather small in volume or be very 
distant from some players. Even the Shapley value could fall out of the Core, which 
signifies that contribution by some players is underestimated in the grand coalition. 
The decreased volume of the Core indicates issues with the stability of cooperation. 
The point is that there are not many rational allocation solutions to consider. 
Under certain changes in data provided by the players, the cooperation could 
become not incentive compatible for some of them. 

Even though some of the authors formally verified that their models lead to 
convex cooperative games, there is no proof that the entire class of proposed games 
in convex. That is, under specific changes in parameters, the mechanisms of 
cooperation would fail. For example, in [98], we considered a transmission 
expansion case with six players and the topology with twelve interconnections. It 
was found that the cooperative game over the optimal expansion plan is nonconvex. 
We then tuned the parameters of the system and were able to identify cooperative 
games with an empty Core. 
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Definitely, arranging cooperation over nonconvex games could be a practical 
issue since solution concepts might fail to provide rational results. In the light of 
this, there is a need for producing proofs of convexity for cooperative game 
formulations in power systems. Alternatively, it is necessary to identify the weak 
points of cooperation and parameters that may cause nonconvexity. The 
development of algorithms and mechanisms that avoid nonconvex cooperative 
games would be highly useful for practical applications. 

Coalition formation and other assumptions 

Cooperative Game Theory introduces several assumptions that might not 
hold in power systems. The main assumption is that the grand coalition will form. 
In reality, players, say generating companies, investors, or independent PSOs, 
might not be necessarily obliged to join the coalitions. In this case, they might 
refuse to join the grand coalition if it is not incentive compatible for them. 
Therefore, to correctly implement the Cooperative Game Theory solution concepts, 
there is a need to establish a coordinating entity and protocols of cooperation. 

Moreover, Cooperative Game Theory considers the coalitions of players as 
equally possible. In [43], Tsukamoto and Iyoda compared the coalitions with 
player’s cards in the negotiation process. They mention that “the subcoalition is 
never actually realized, but is presented as a basis of an assertion in the 
negotiation.” Such logic could be controversial for some applications. In practice, it 
might be necessary to add corrections to the coalition formation assumptions. For 
example, Bhakar et al. [55] suggested modeling the probability of the existence of 
players, the probability of the existence of coalitions, and the probability of players 
joining a particular coalition. 

Choosing an appropriate single-valued solution concept is also a disputable 
task. Many authors mentioned that the definition of the fairness of a solution 
concept is controversial. Therefore, it is not clear whether the Shapley value is an 
adequate solution for certain problems or not. The Nucleolus is also open to 
criticism, as we discuss later in Section 4.2.3. Set solution concepts as the Core 
definitely make sense for the analysis of cooperation. However, the Core, if 
nonempty, provides a variety of solutions, which may not be useful in practical 
applications. 
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Some authors mentioned the transferable utility assumption as a crucial one. 
The point is that in practice, it may not be possible to fully represent the worth of 
cooperation in transferable units, say monetarily. The values such as fuel cost, 
generation cost, and transmission investment cost can be represented monetary 
and serve as a basis for transferable utility games. However, other attributes of 
cooperation cannot be easily measured. For example, the cost of CO2 emissions 
depends on current carbon pricing mechanisms, which could significantly differ 
from country to country [124]. Other incommensurable attributes include: number 
of jobs appearing due to the project; the overall impact on countries’ economies; 
environmental impacts of transmission lines; future opportunities related to the 
transmission project; shifts in political power, political or economic dependence, 
and mutual trust. Moreover, the outcome of cooperation could be multi-valued. 
For example, electricity trade could lead to cost reduction, CO2 emissions 
reduction, an increase in power losses, etc. Considering the above values and their 
possible combinations, it might not be always practically possible to apply the 
TUG formulation in cross-border TEP projects. 

In this regard, the future research trajectory could focus on the relaxation 
of the mentioned assumptions. It is also worth developing the mechanisms of 
cooperation that would enable cooperation in power systems while keeping the 
Cooperative Game Theory assumptions actual. Additionally, we want to mention 
that current Cooperative Game Theory applications consider static problems, 
where a single snapshot of a system and proposed cooperation (usually at the 
planning stage) is analyzed. However, it is worth addressing the dynamic nature of 
cooperation. In the first stage, players may cooperate in planning and building 
assets. Then, several stages of operation follow. During the operation, some players 
may change their initially declared strategy or refuse to cooperate. An example of 
multistage cooperation can be found in the European gas transmission system. In 
2012, the Nord Stream project was completed, which allowed natural gas export 
from Russia to Germany through offshore gas pipelines. Despite the economic 
benefits, the project affected multiple countries’ interests and raised questions of 
energy security [125], [126]. As a result, the expansion of the project (named 
Nord Stream 2) was halted due to international sanctions and imposed European 
gas import regulations. This case clearly indicates the need for accounting 
externalities and dynamic changes in international projects. 
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Ex-post game-theoretic analysis 

Existing works on Cooperative Game Theory applications in power systems 
exploit the solution concepts in an ex-post manner. The common approach is first 
to solve a model for all possible scenarios of cooperation (coalitions) and formulate 
the characteristic function. Then, the solution concepts are used to allocate the 
value of cooperation. This approach enables analyzing the optimal plan (calculated 
in a centralized manner), estimating the stability of cooperation and the bargaining 
power of players. 

However, some players may have additional expectations or requirements 
on their minimal share of benefits or levels of usefulness in the coalition. A 
coordinating entity may also want to reach a cooperation with a desired level of 
stability. Therefore, a more promising approach would be incorporating 
Cooperative Game Theory principles into planning and operation algorithms. Such 
an approach would enable identification of decisions in an anticipating manner to 
obtain a cooperative game with desired properties. The inclusion of Cooperative 
Game Theory principles into the existing planning and operating models can 
provide additional insights into the structure of cooperation, as we will demonstrate 
in Chapter 6. Moreover, it would allow a coordinating entity to produce a “menu” 
of possible decisions and modify the coalitions if needed. We consider the idea of 
the anticipating application of Cooperative Game Theory highly promising for 
establishing cooperation in TEP. 

Incomplete information and manipulability of allocation rules 

Another crucial assumption of Cooperative Game Theory is that cooperation 
happens under perfect information: parameters of the power system and each 
player are known to other players and the coordinating entity. In [49], Evans et al. 
used the Kernel for transmission expansion cost allocation and mentioned that “the 
coalition creation in the Kernel requires perfect information between the agents 
that will form the coalition”. In reality, it may be hard to collect accurate 
information from several independent participants. Moreover, players may have 
incentives to misreport their data and manipulate the allocation rule. Evans et al. 
continued, “If that information is not perfect (information asymmetry), the 
assignment will be biased. Information becomes a competitive advantage within an 
environment of cooperation.” In Chapter 5, we elaborate on this issue and 
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demonstrate how the Cooperative Game Theory solution concepts can be 
unilaterally manipulated by players. We then discuss the ways of preventing such 
manipulations and the need for strategyproof mechanisms of cooperation. 

We would like to highlight that many of the covered studies used rather 
simple models in simulating power systems and interactions among players. The 
reasoning lies in the nature of cooperative games modeling: the models have to be 
solved multiple times for all possible coalitions, which increases the computational 
burden. Therefore, a possible extension to existing studies could be the 
complexification of game-theoretic models (for example, detailed AC modeling of 
power systems, formulating stochastic optimization models), which may reveal 
additional insights. 

Summing up the section, we see that there exist several obstacles to 
Cooperative Game Theory application in power systems. Most of the challenges 
are related to game-theoretic assumptions that might not hold in practical cases. 
Nonetheless, significant progress has been achieved in developing algorithms and 
mechanisms based on Cooperative Game Theory solution concepts. We believe that 
future studies would overcome the mentioned obstacles and enable consistent 
application of Cooperative Game Theory in power systems. 

 

2.6 Bibliometrics and Summaries 

The citation network analysis revealed the structure of the existing research 
and allowed us to locate the most relevant works in the field. We found out that 
our thesis contributes to the major community (the pink-colored group of nodes 
around G0-1 [43] and G0-3 [48]) and is, therefore, a part of the ongoing research 
on Cooperative Game Theory applications in power systems.  

In this section, we provide more details on the identified research directions 
and highlight the relevance of our work. First, to ease the navigation through the 
presented analysis, we list the references used in the citation network in Table 2.1. 
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To analyze the evolution of the research, we collected data on the annual 
number of publications included in the citation network. A total of 3,938 works 
were considered in the period from 1996 till the first quarter of 2020. Figure 2.6 
shows the cumulative number of publications per year. The resulting curve 
resembles exponential growth. Thus, we may conclude, while acknowledging the 
limited selection of papers in the citation network, that the topic evolves and gains 
more attention from the power systems research community. We also plot the three 
identified research directions separately. At first glance, it seems that the sectors 
are almost balanced in the number of publications and the development pace. 

 

 
Figure 2.6: Analysis of the publications evolution: 

the cumulative number of published works. 
 

In Figure 2.7, we plot the annual changes in the number of published works. 
It is seen that between 2010 and 2018, Cooperative Game Theory applications in 
power systems were gaining less attention than expansion planning and multi-agent 
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systems. But, since 2015, there emerged a clear upward trend in the research on 
Cooperative Game Theory applications. As a result, in 2019 and the first quarter 
of 2020, Cooperative Game Theory applications covered in our citation network 
surpass the aligned research directions in the number of new publications. We see 
the following possible reasoning for the upward trend. While being useful for finding 
optimal (for example, least-cost) decisions, classical expansion planning approaches 
are not able to fully address the modern issues of deregulated power systems. There 
is a need for novel methods applicable to the multi-agent environment that include 
allocation mechanisms and can provide effective economic incentives to 
independent participants. Even in the presence of the planning and coordinating 
entities such as Regional Transmission Organizations (RTO) in the US [127] and 
the ENTSO-E in Europe [128], it is still necessary to develop rational cost and 
benefit allocation rules and inter-PSO compensation mechanisms. In [49], Evans 
et al. said, “A network expansion can generate multiple effects, such as load flow 
changes, relief of congested lines, etc., as well as a variation of the benefit of the 
connected agents, depending on existing expansion plans. Game theory, and 
Cooperative Game Theory in particular, arises as an appealing tool to deal with 
the matter, with advantages over other cost assignment methods, given it considers 
interaction by the agents and their rationality in decision making.” In [50], Stamtsis 
and Erlich mentioned, “In the modern deregulated electricity markets the issue of 
network fixed-cost allocation is of great significance. The reason for this is that the 
fixed-costs are the largest part of transmission charges. Therefore, it becomes 
obvious that there is a big demand for a fair and effective allocation of the costs 
among the market participants. Discrimination policies, by assigning unreasonably 
high use-of-network charges, could be applied in order to prevent some market 
participants accessing a part or even the whole network. Several methods have 
been proposed for a proper allocation of fixed-costs. Although these methods are 
well established from an engineering point of view, some of them may fail to send 
the right economical signals.” The authors then concluded that Cooperative Game 
Theory could be a good basis for reasonable and economically efficient allocations. 
In [51], Ruiz and Contreras also referred to the restructured market environment. 
They justified the need for using Cooperative Game Theory in the following way, 
“In this multi-player setting, the lack of appropriate incentives has resulted in 
investments in transmission not keeping pace with load growth and investments in 
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generation. As a result, the network is being frequently used at its maximum limits, 
leading to economic inefficiencies and reduced reliability. Hence, new, effective 
incentive schemes are needed for transmission network expansion. The incentives 
have to take into account both the prospective investors and the prospective users 
of the new assets.” To solve the above cooperation and cost allocation issues, more 
scientists turn attention to Cooperative Game Theory and other multidisciplinary 
approaches. We hereby conclude that our work contributes to the highly relevant 
and developing research direction.  

 

 
Figure 2.7: Analysis of the publications evolution: 
annual changes in the number of published works. 

 
At the end of the analysis, we discuss the most significant contributions by 

the authors and the most influential journals considered in the citation network. 
Figure 2.8 presents a list of the authors with the highest number of publications 
covered by the citation network. The chart is headed by R. Romero, who 
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significantly contributed to TEP algorithms, MIP and metaheuristic methods for 
power systems. Even though not mentioned directly in the analysis, Romero is a 
co-author of multiple papers in the expansion planning sector, especially around 
node G1-150 [75]. Next, we should mention the contribution by J. Contreras, who 
is the author of one of the earliest papers on Cooperative Game Theory applications 
in power systems, G0-2 [45]. In the subsequent studies, Contreras focused on 
expansion planning issues and made a significant contribution to TEP algorithms 
and power market analysis methods. He actively used MIP [74], multi-level 
optimization [85], [86], equilibrium models [89], [90], and Cooperative Game Theory 
solution concepts [51], [52], [117]. E. Sauma also elaborated on TEP and GTEP 
problems and has published a number of works in the expansion planning sector, 
mainly in the dark-green community around G1-104 [85], G1-102 [86], G1-105 [87]. 
Another influential author in the expansion planning research is M. J. Rider, who 
focused on TEP with security constraints and uncertain parameters. He is a co-
author of many works in the peach-colored community around nodes G1-149 [7] 
and G1-150 [75]. Other notable authors in the expansion planning research are M. 
R. Hesamzadeh, M. Rashidinejad, Z.-Y. Dong, M. Shahidehpour, J. Choi, B. F. 
Hobbs, D. Pozo, H. Cheng, A. J. Conejo, and R. Baldick. 

Stephen McArthur is the author of the influential work G1-128 [64]. He 
found numerous applications of the multi-agent systems in power engineering and 
published multiple papers in the bottom sector of the citation network. C. Rehtanz 
also used multi-agent systems approach for power system planning and control. He 
contributed to multiple works located around node G1-128 [64] and G1-154 [71]. 
Moreover, he is a co-author of several TEP papers related to G1-149 [7], in 
particular, studies on FACTS devices investment. D. Srinivasan wrote several 
highly cited papers on multi-agent system applications, mostly in microgrids G2-
1971 [68]. Srinivasan also contributed to analysis of cooperative behavior and 
bidding strategies in power markets G2-193 [100]. Other notable authors in the 
multi-agent systems research direction are P. H. Nguyen, A. Monti, T. Nagata, F. 
Ponci, W. L. Kling, and S. Lehnhoff. 

In the central sector of the network we should mention H. Rudnick, who 
has published one of the pioneer works G0-3 [48] on Cooperative Game Theory 
solutions to transmission cost allocation. In the next decades, Rudnick continued 
studying cooperation and coordination issues in power systems and contributed to 
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many works in expansion planning research and Game Theory applications. F. Li 
published multiple works on transmission pricing mechanisms. Most of these works 
are located in the light brown community near node G1-74 [112]. F. Wen is a co-
author of a number of papers on transmission fixed costs allocation methods and 
transmission tariffs. N. P. Padhy contributed to transmission cost allocation 
methods. Padhy is a co-author of several works related to G1-74 [112] and the 
mentioned paper on probabilistic game-theoretic approach G1-37 [55]. L. Olmos 
studied transmission expansion issues related to cost and benefit allocation, 
transmission pricing, and compensation mechanisms. He is the author of several 
papers in the central blue colored community. In the mentioned works G1-188 [106] 
and G1-189 [107], Olmos implemented an Aumann-Shapley approach for benefits 
allocation in transmission expansion projects. 

 

 
Figure 2.8: Analysis of publications evolution: most published authors. 
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We see that a number of authors have put effort into solving cost allocation 
issues in power systems. Several of them relied on Cooperative Game Theory 
solution concepts and followed a similar path as we do in this thesis. We can state 
that our work is closely related to the contributions by J. Contreras, H. Rudnick, 
L. Olmos, and other authors discussed in the citation network analysis. 

We also show the list of the most influential journals of the citation network 
in Figure 2.9. There is a significant shift in the number of publications towards the 
IEEE Transactions on Power Systems journal. The reasoning lies in the 
computational aspects of power system modeling. There is a need to use advanced 
computational techniques and analytical methods for power systems planning, 
operations and control. Many authors in the citation network work on developing 
new algorithms for power market mechanisms, stability control, TEP and GTEP, 
and therefore prefer to publish in the journal with engineering and mathematical 
audience. Other journals in the list not only focus on power systems modeling and 
algorithms development but also case study applications, energy economics and 
policies. We may conclude that our work contributes to a multidisciplinary research 
direction that is covered by the most influential scientific journals in the field of 
energy and power systems. 
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Figure 2.9: Analysis of publications evolution: most influential journals. 
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Figure 2.10: Keyword analysis. 
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Chapter 3 

 

Transmission Expansion Planning Formulation 

The stock market and the gridiron and 
the battlefield aren’t as tidy as the 
chessboard, but in all of them, a single, 
simple rule holds true: make good 
decisions and you’ll succeed; make bad 
ones and you’ll fail. 

- Garry Kasparov 
World сhess сhampion 1985-1993 

 
Making decisions on adding new transmission lines to an existing 

transmission network has a deep impact on the overall power system’s effectiveness 
and stability. Thus, TEP has been a subject of research since the middle of the last 
century. The common planning tasks include the minimization of operating and 
investment costs or the maximization of social welfare. One of the earliest studies 
on mathematical programming applications in power systems planning was done 
by Massé and Gibrat [130], who formulated a linear programming model for 
optimizing decisions of investment in power plants. Bessière [131] discussed 
methods of optimal electrical equipment investment in France. In the following 
years, Bessière and Massé demonstrated the practical value of linear and nonlinear 
programming in expansion planning and marginal cost pricing. The early models 
neglected Kirchhoff’s voltage law and used the transshipment formulation of load 
flows (also known as the transportation problem, or “pipes and bubbles” 
formulation). These models were later documented by Turvey and Anderson in 
their classic book on electricity economics [132] and the preceding reviews [133]. 
Since then, the optimization models substantially complexified to account features 
of modern power systems. However, the main TEP principle remains the same: 
supply the forecasted power demand as economically as possible, while satisfying 
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reliability constraints. In this section, we classify the main approaches used in 
existing TEP research. Then, we introduce the TEP and market integration model 
that will be used as a basis for cooperative games formulation in the subsequent 
sections. 

As discussed in the citation network analysis, expansion planning in power 
systems is a distinct developing research direction which comprises thousands of 
publications. To classify the TEP approaches, we identified the following 
comprehensive reviews and surveys published in the last two decades: [7], [8], [9], 
[134]. These works highlight the main achievements in TEP models and solution 
methods and point out the remaining issues and challenges. The classification is 
presented as a diagram in Figure 3.1. The red-orange color palette indicates the 
complexity of a model or method. 

 
Figure 3.1: Classification of TEP approaches. 
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First, we should mention the treatment of the planning horizon and decision 
dynamics in the models. A majority of TEP studies consider static planning 
formulation (a single snapshot of a power system in the future where investment 
decisions should be made). Such models allow evaluating the effectiveness of 
expansion projects while keeping computational complexity moderate. Dynamic 
models usually involve several time horizons (sequential static models) and enable 
revisiting expansion decisions and fitting them closer to reality. The downsides of 
this approach are the increased computational burden and loss of clarity due to 
the investment decisions stretched in time.  

Another important aspect of TEP models is the level of detail of power 
systems representation. The simplest models take into account only the energy 
conservation law and transmission constraints. Even though such models 
correspond to transportation problems, they are still useful in providing insights 
into the effectiveness of TEP decisions. The direct current (DC) power flow models 
incorporate a linearized version of Kirchhoff’s laws. These models omit reactive 
power flows, power losses, and changes in voltage magnitudes. However, they found 
an extensive application being a compromise between detailed modeling and 
computational issues. The alternating current (AC) models fully incorporate 
Kirchhoff’s laws and enable evaluation of voltage stability and power losses. 
However, the nonlinearity of this formulation poses significant problems that force 
researchers to use relaxation techniques and equivalent convex formulations [135]. 

The choice of the power system operation model, formulation of the 
objective function, and additional constraints predefine selection of the solution 
methods. Classical models imply linear programming (LP) and simplex-based 
methods. More complex models require applying nonlinear programming (NLP). 
Some models represent the discrete nature of investment decisions and include 
binary or integer variables. The inclusion of binary variables can also be a result 
of complementarity modeling of electricity markets [37]. Such models require much 
greater computational efforts and are usually treated using mixed-integer 
programming (MIP). Algorithms like “branch-and-bound” (B&B) are capable of 
solving linear MIP problems (MILP) with thousands of binary variables. However, 
large-scale nonlinear MIP problems (MINLP) are generally hard to solve. In such 
cases, there is a need for using decomposition techniques or metaheuristic 
algorithms. 
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Several major changes in TEP approaches have been caused by current 
trends in power systems operation, namely, power systems deregulation and large-
scale integration of renewable energy sources. Treatment of the deregulation and 
electricity market considerations can be split into centralized and decentralized 
decision making. The classical centralized approach implies that all expansion and 
operation decisions are taken unilaterally by a PSO or a central planner. The 
optimization model can be formulated in a straightforward way to find the least-
cost solution. However, modeling modern power systems with a competitive 
environment and multiple independent investors requires using more sophisticated 
decentralized models. The integration of renewables raises concerns over including 
uncertainties in TEP models. Thus, in recent years, classical deterministic TEP 
models are being complemented with stochastic optimization methods. 

Finally, TEP models have different reliability considerations. Classical 
studies performed optimal power flow (OPF) calculations to find the least-cost 
solution subject to transmission constraints. More advanced approaches involve 
contingency analysis and the “N-1” criterion, which means that a transmission plan 
must be resilient against any possible contingency. This approach is widely known 
as security constrained optimal power flow (SCOPF) [136]. Inclusion of more than 
one of the possible contingencies at the same time, the “N-k” criterion, leads to 
highly complex combinatorial optimization problems. 

The mentioned models can be additionally complexified by incorporating 
additional control variables such as FACTS devices and energy storage. However, 
our interest lies in Cooperative Game Theory applications in TEP cost allocation. 
Thus, we avoid using complex expansion models to provide clear insights into 
possible allocation solutions. We consider TEP as a static, deterministic, 
centralized, linear programming model. The exact mathematical formulation is 
given in the following sections. 
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3.1 Electricity Market Integration 

Constructing a line between power systems allows electricity trading among 
the interconnected power markets. In our setting, we consider a centralizer (pool-
based) trading over a newly built asset. Thus, PSOs determine market clearing 
prices and evaluate optimal power flows from systems with lower prices towards 
systems with higher prices, subject to transmission constraints. We must note here 
that such an intuitive interpretation of power trading holds only for simple linear 
OPF models. Counterintuitive results can appear in linearized DC and AC models. 
For example, in an efficient allocation, power can flow from nodes with higher 
prices to nodes with lower prices. Moreover, strengthening transmission lines or 
building additional lines does not necessarily increase transmission capacity. These 
counterintuitive cases have been studied by Wu et al. in [137] and Kirschen and 
Strbac in [6]. We neglect such effects and assume that power flows can be directed 
according to economic signals. 

To illustrate the benefits of cross-border power interconnections, we 
introduce a two-system case of electricity market integration adopted from [6]. In 
this case, two power systems with different linear supply functions consider building 
a transmission line with a maximum capacity of 400 MW, thus, integrating the 
electricity markets. The supply functions and demands of the systems are listed in 
Table 3.1. 

 
Table 3.1: The two-system case study data. 

Parameter System A System B 

Supply function ($/MWh) ߣ஺ = 10 + ஻ߣ ஺݌0.01 = 13 +  ஻݌0.02

Power demand (MW) 500 1 500 
 
System B has a higher supply cost function and power demand. Therefore, 

it should have a higher market clearing price than System A and would be a power 
importer. We visualize the supply functions and market clearing prices of the 
systems before and after the interconnection in Figure 3.2. It is supposed that 
demand functions (vertical solid lines) are perfectly inelastic in both power systems. 
The intersection of the supply and demand functions indicate the market clearing 



66 

prices. Indeed, without the interconnection, System B has an electricity price of 43 
$/MWh, whereas System A price is 15 $/MWh. For simplicity reasons, we suppose 
in this two-system example, that the power line can be built for free (with zero 
investment cost). We also do not consider power losses in our framework. The 
inclusion of losses makes power transfer less efficient and reduces the amount of 
energy exported. Such simplifications do not alter the economic principles of 
electricity market integration discussed in this section. Under such conditions, it 
would be optimal to transfer as much cheaper power from System A to System B 
as possible, until both systems start operating as a single market with equal clearing 
prices ߣ஺ =  ஻. However, because of the transmission constraints, only 400 MW ofߣ
power would be transferred. System A would increase its generation up to 900 MW, 
while System B would produce only 1100 MW. 

To estimate the effects of market integration, we introduce the following 
indicators. Red areas in Figure 3.2 represent the costs incurred by generating 
companies in the systems. Blue areas stand for generation surplus and are formed 
as the difference between the clearing prices and generation cost functions. The 
sum of both areas equals to the total payment made by consumers. It is worth 
mentioning that we do not include consumer surplus in our analysis. To do this, it 
would be necessary to set the maximum price that consumers would be willing to 
pay. Studies as [58] suggest using the value of loss load (VoLL) as a reference for 
measuring consumer surplus when considering inelastic demand. The sum of 
consumer and generation surpluses is often referred to as social (total, economic) 
welfare.4 We present the changes in power markets’ indicators before and after the 
interconnection in Table 3.2. 

 

                                                 
4 As we discuss later in Section 4.3.1, welfare formulation as a generation surplus can lead to the 
allocation of negative values. Therefore, more welfare components could be considered. In [58], 
Kristiansen et al. formulated net welfare as the sum of consumer and producer surpluses and 
congestion rents. It was demonstrated that such formulation always results in nonnegative welfare 
changes caused by interregional electricity trading. 
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Figure 3.2: Electricity market integration for the two-system case. 
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Table 3.2: Power markets analysis before and after the interconnection. 

 
Separate markets, 
no interconnection 

Markets interconnected 
via 400 MW line 

Market price ($/MWh) ߣ஺ = 15 
஻ߣ = 43 

஺′ߣ = 19 
஻′ߣ = 35 

Generation cost ($/h) 
஺ܥ = 6 250 

஻ܥ = 42 000 
Total = 48 250 

஺ܥ + ஺′ܥ = 13 050 
஻′ܥ = 26 400 

Total = 39 450 

Generation surplus ($/h) 
஺ܵ = 1 250 

ܵ஻ = 22 500 
Total = 23 750 

஺ܵ + ܵ′஺ + ܵ′′஺ = 4 050 
ܵ′஻ = 12 100 

Total = 16 150 

Consumers’ payment ($/h) 
஺ܲ = 7 500 

஻ܲ = 64 500 
Total = 72 000 

ܲ′஺ = 9 500 
ܲ′஻ = 52 500 

Total = 62 000 
 
The performed analysis shows that market participants are affected by the 

interconnection in different ways. Generating companies in System B have to 
produce less power. Both their cost and surplus decrease from Cb to Cb' and from 
Sb to Sb' respectively. However, consumers in System B appreciate the power 
export since they have a significant decline in payment. A reverse situation happens 
in System A, where generation cost increases by Ca', and surplus - by Sa'+Sa''. 
But, the consumers in System A have to pay more after the interconnection and, 
therefore, should be against the market integration unless there is reasonable 
compensation for them. It is worth mentioning that trading in pool-based electricity 
markets can be far more complicated than illustrated in our two-system case study. 
For example, the operation of real-world electricity markets implies repeating 
market clearing procedures. In this regard, studies as [138] suggest formulating 
multi-period market equilibrium problem. It might happen that the power flow 
between the systems will reverse its direction due to the seasonal changes. In such 
cases, the power systems can export and import electricity in turn, which will result 
in net benefits for consumers in both systems. For the sake of clarity, in this 
chapter, we consider a single-period model where System A acts as an exporter and 
System B as an importer. 
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Despite the discrepancies in market participants’ interests, the project can 
be estimated as beneficial because of the significant reduction in total generation 
cost. In the following sections, we give a mathematical formulation of TEP and 
discuss the applicability of Cooperative Game Theory solution concepts for 
different electricity market indicators. 

 

3.2 Mathematical Optimization Framework 

To provide clear insights into Cooperative Game Theory applications, we 
avoid using complex models and rely on the classical cost-based transmission 
planning that can be formulated by means of mathematical programming [139]. 
First, we define a set of nodes that represent power systems ࣨ = {1, … , ܰ}. Every 
system (or country/state) could be represented by one or several nodes. The set of 
candidate lines is denoted by ℒ = {1, … ,  Actual power flow through line ݈ is .{ܮ
depicted by ௟݂, and maximum line capacity by ܨ௟

௠௔௫. The transmission cost of a 
line depends on its selected capacity, ܨ௟, and net present costs of investment, ܫܥ௟. 
Inelastic power demand at each node is given by ܦ௡. The “ܿݏ” subscript indicates 
the scenario under consideration. It will be recalled in the next sections to 
distinguish values for different coalitions. In the long-term planning cases, we will 
also use time periods (representative hours and seasons).  

Before introducing the model, we briefly mention the main assumptions. We 
do not consider admittances of power lines, reactive power, voltage magnitudes and 
angles. By doing this, we formulate a linearized OPF model with fully controllable 
power flows. We omit the constant part of transmission investment and, therefore, 
do not introduce binary decision variables of lines’ construction decisions. 
Transmission capacity is treated as a continuous variable. The cost of transmission 
investment linearly depends on the capacity. Thus, economies of scale in 
transmission construction are not considered in our formulation. We also do not 
perform the contingency analysis. These assumptions allow us to keep the TEP 
model simple and focus on the game-theoretic aspects of cooperation. The resulting 
optimization problem is formulated as the following linear programming model: 
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Min
௣೙,ೞ೎,௙೗,ೞ೎,ி೗,ೞ೎

  ෍ (௡,௦௖݌)௡ܩܥ
௡∈ࣨ

+ ෍ ௟,௦௖ܨ ∙ ௟ܫܥ
௟∈ℒ

 

s.t.: 
(3.1) 

௡,௦௖݌ + ෍ ௡,௟ܤ
௟∈ℒ

∙ ௟݂,௦௖ = ,݊ ∀ ௡ܦ  (3.2) ܿݏ

0 ≤ ௡,௦௖݌ ≤ ௡ܲ
௠௔௫ ∀ ݊,  (3.3) ܿݏ

௟,௦௖ܨ− ≤ ௟݂,௦௖ ≤ ,݈ ∀ ௟,௦௖ܨ  (3.4) ܿݏ

௟,௦௖ܨ ≤ ௟ܨ
௠௔௫ ∀ ݈,  (3.5) ܿݏ

 
The total generation and investment costs are minimized in the objective 

function (3.1), where ܩܥ௡ represents generators’ cost functions (the integrals of the 
supply functions). Nodal power balance constraints are imposed by (3.2), where 
 ’௡,௟ is the incidence matrix that contains topology of interconnections. Generatorsܤ
outputs and power flows are limited by (3.3) and (3.4) respectively. Equation (3.5) 
restricts the power lines’ capacities. In this formulation, we neglected reactive 
power, lines’ admittances, voltage magnitudes and angles. Thus, our model is 
equivalent to a linear transportation problem [139] where power demand should be 
supplied at the lowest possible cost. In the two-system case study and the following 
cases, we consider that proposed interconnections will be realized using HVDC 
technology. Therefore, the assumptions of our TEP model (such as the omission of 
the Kirchhoff’s voltage law) will be reasonable for the analysis of cooperation.5 
Nevertheless, it is worth mentioning that the ideas behind our work may be applied 
to TEP models of any degree of complexity. 

Usually, generators’ cost functions are represented as cost bids, i.e., discrete 
constant values. In such cases, market clearing is based on a supply step-function 
[140], and TEP formulation (3.1)-(3.5), indeed, corresponds to a linear 
programming model. However, in the two-system case study, electricity markets 
are represented by continuous linear supply functions listed in Table 3.1. Therefore, 
generation costs in (3.1) are given by the integrals of the supply functions (red 
areas in Figure 3.2). TEP becomes a nonlinear optimization problem. In this case, 

                                                 
5 Note that detailed modeling of some HVDC interconnections has to respect voltage constraints 
and Kirchhoff’s laws. It can result in nonlinear nonconvex optimization problems [146]. 
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a linearly constrained quadratic programming model (LCQP). To give more details 
on the expansion planning principles, we visualize the solution of the nonlinear 
TEP formulation in Figure 3.3. The feasible region is restricted by the power 
balance equations (3.2) and, therefore, is represented by the linear space (colored 
triangular comprising linear combinations of ݌஺ and ݌஻). Point “1” notes the 
solution with no transmission capacity (separate markets operation): both 
generators must supply local demands, and the solution space is described by the 
single point. When power interconnection with a capacity of up to 400 MW is 
possible, the feasible region contains infinitely many solutions. However, only point 
“2” is the optimal one. To prove this, we plot a series of optimization levels as 
colored curves corresponding to different values of the objective function (3.1). In 
order to decrease the cost, the solution should be moved according to the negative 
of the gradient, as shown by the arrows. The solution at point “2” reaches the 
lowest possible objective function and, therefore, is optimal under current 
transmission constraints. Without constraints, it would be possible to reach an 
even lower cost at point “3” where feasible space is tangent to the optimization 
level. In this case, market clearing prices at both markets would be equal, and the 
objective function could not be further improved by building additional capacity. 
It is important to mention that we considered a zero investment cost in this 
example. Thus, the gradient of the objective function does not have a third term 
related to the line’s capacity. This, however, is not true in realistic case studies, 
where complete market integration may not be optimal in terms of cost 
minimization. 

The two-system example introduced in this section interprets the main ideas 
and assumptions of the market integration and TEP model. We assumed that 
transmission lines should be built up to the economically justified capacities to 
allow exporting power from nodes with lower electricity prices to nodes with higher 
prices, thus, reaching the maximum reduction in operating and investment costs. 
This straightforward model lies in the core of our work and will be used in the next 
sections for formulating cooperative games in TEP as well as developing more 
complex models. 
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Figure 3.3: Visualization of the LCQP model for the two-system case TEP. 
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3.3 Discussion of HVDC and AC Transmission Systems 

We have already mentioned in the previous sections that recent advances in 
HVDC technology make it a promising tool for long-distance transmission. Many 
of the covered studies on TEP and cross-border power interconnections, including 
our work, consider HVDC lines as the option for establishing economic and stable 
electricity trade among power systems. However, for the sake of completeness, in 
this section, we provide a discussion of HVDC and AC transmission technologies 
and justify the assumptions of our TEP model. 

Not to overload the discussion with the technologies’ background, for 
technical details, we refer to the HVDC systems overview by Bahrman and Johnson 
[5] and the ABB’s report [141]. An excellent review of HVDC studies was made by 
Alassi et al. in [142]. The issues of stability and control in HVDC and AC systems 
were thoroughly addressed in [143]–[145]. Most of the relevant studies acknowledge 
HVDC as a superior technology over AC systems for long-distance transmission. 
We, therefore, want to open our discussion by listing the main advantages of HVDC 
systems. We identified the following points relevant to the development of cross-
border power interconnections: 

 
 The cost of HVDC systems is lower than AC whenever a long-distance 

transmission is required. HVDC systems have fewer conductors since there 
is no need to support multiple phases. Furthermore, HVDC lines do not 
carry the reactive component of current and do not suffer from the skin 
effect. The economic break-even distance of HVDC lines compared to AC 
lines, depending on the technology, varies at about 500 km. Many projects 
of cross-border power interconnections suggest building lines for hundreds 
and thousands of kilometers. Thus, HVDC transmission becomes the only 
cost-effective option. 

 HVDC systems have a reduced level of power losses compared to AC lines, 
which allows transmitting more power for long-distance. In a hypothetical 
1200-km overhead line with 3 GW capacity, power losses at its full load 
would reach 5-7% in the case of AC lines (depending on the voltage level 
and the technology) and 3-6% in the case of HVDC lines [5]. Considering 
cable lines, the difference between AC and HVDC power losses would be 
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even greater. HVDC cable losses can be about half of the AC cable losses. 
Moreover, AC cables have capacity limits for long-distance transmission due 
to high reactive charging current. Although charging currents can be 
compensated by intermediate shunt compensation for underground cables, 
it is not practical to do so for submarine cables. HVDC cables do not have 
reactive power compensation problems and, therefore, remain the only viable 
option for long-distance submarine transmission. 

 The major advantage of HVDC technology is controllability and flexibility 
of power systems. Power flow through an HVDC line can be rapidly changed 
by the connected converter stations. There is no dependence on the phase 
angle or the properties of the line, which increases the controllability of the 
system. Thus, HVDC interconnections make it possible to transfer a required 
amount of power according to economic signals or security reasons.6 [146] On the 
contrary, power flows in AC lines obey Kirchhoff’s laws and cannot be easily 
controlled. The power flow controllability is important for cross-border 
electricity trading, where a predefined amount of energy should be 
transmitted. 

 HVDC allows power transmission between unsynchronized AC transmission 
systems. Electricity trade through an asynchronous interconnection leads to 
mutual benefits while providing a buffer between the interconnected 
systems. In this regard, HVDC transmissions can be considered more reliable 
than power systems synchronization via AC lines, which could propagate 
frequency deviations [147]. 
 
The above advantages of HVDC technology justify its increasingly 

significant role in TEP and long-distance transmission. There is a rise in the 
number of projects where HVDC lines are built to strengthen existing interregional 
interconnections (creating a backbone of power system) or develop cross-border 
power interconnections. It is worth mentioning the progress in the HVDC 
application achieved by China. Chinese State Grid Corporation operates a dozen 
ultrahigh-voltage DC lines and has an ambitious plan to build the world’s biggest 

                                                 
6 Note that some HVDC interconnections have to respect voltage constraints and Kirchhoff’s laws, 
which means that power flows are not fully controllable [146]. 
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supergrid [148]. A comprehensive overview of the HVDC market evolution can be 
found in [142]. It was estimated that by 2022, there would be more than 250 
projects of HVDC interconnections (both commissioned and announced) with a 
total transmission capacity of more than 400 GW. The largest number of projects 
is recorded in Asia (mainly in China) and Europe. 

Nevertheless, HVDC transmission systems suffer from a series of drawbacks: 
 

 HVDC transmission requires conversion equipment at converter stations. 
This equipment is relatively expensive (especially in projects with small 
transmission distances). Moreover, it causes additional power losses and 
reduces the overall reliability of a transmission system. The complexity and 
high cost of converter stations are considered as the obstacles to HVDC 
technology application. 

 HVDC systems are less standardized and harder to operate than AC 
systems. It is especially hard to operate complex multi-terminal systems, 
where coordination of several converter stations is required. Localization and 
clearing of HVDC faults are also problematic. There is ongoing research on 
HVDC systems coordination and protection. 

 There exist stability issues of AC power systems connected to HVDC grids 
[143]. HVDC interconnection affects reactive power and voltage control in 
several nodes of an AC grid. The problems become especially acute in weak 
AC systems connected to powerful HVDC lines [145]. Moreover, some 
converter stations consume reactive power and, therefore, require reactive 
power support from an AC grid. This reactive power dependence makes the 
overall system more vulnerable to voltage drops and power outages. 
 
Comparing the mentioned features of HVDC transmission, we may conclude 

that HVDC technology has great potential for cross-border power interconnection 
projects. The cost-effectiveness and controllability outweigh the issues of grids 
operation and control. Moreover, the technology evolves: new converters and DC 
breakers appear; novel coordination and protection mechanisms are being 
implemented. Considering current trends [142], we believe that it is reasonable to 
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assume that future projects of cross-border power interconnections would be 
realized based on HVDC transmission. 

This assumption allows us to legitimately apply the TEP model (3.1)-(3.5). 
In all case studies of this work, we consider the asynchronous interconnection of 
AC power systems via HVDC lines. Such interconnections enable control of power 
flows according to economic signals. We, therefore, omit the Kirchhoff’s voltage 
law and use the linear TEP model to estimate the possible benefits of cross-border 
electricity trade and analyze the stability of cooperation. 

 

3.4 Summary and Conclusions 

TEP is an essential tool that enables economic planning and operation of 
power systems. The common practice in adding new transmission lines to an 
existing transmission network lies in formulating mathematical optimization 
models where the objective functions minimize the total cost of power systems or 
maximize the social welfare of electricity market participants. In this section, we 
classified existing approaches to TEP and reviewed the state-of-the-art. Significant 
progress has been achieved in developing expansion planning algorithms. Modern 
TEP approaches enable formulating complex models that include security 
constraints, stochastic parameters, decentralized decision making, and other 
features of power systems operation and control. 

However, in this work, we focus on the game-theoretic framework for cost 
allocation in TEP and stability analysis of cooperation on cross-border power 
interconnection projects. Thus, we avoid using complex expansion planning models 
to provide clear insights into possible allocation solutions. We formulated TEP as 
a static, deterministic, centralized, linear programming model. We discussed the 
assumptions of expansion planning and demonstrated its relation to electricity 
market integration. The TEP model described in this section will be used 
throughout the work as the basis for cooperative games formulation and subsequent 
game-theoretic analysis.  
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Chapter 4 

 

Mathematical Background of Cooperative 

Game Theory 

In my games I have sometimes found a 
combination intuitively simply feeling 
that it must be there. Yet I was not able 
to translate my thought processes into 
normal human language. 

- Mikhail Tal 
World сhess сhampion 1960-1961 

 
Game Theory provides a rich background for mathematical modeling of 

strategic interaction among rational decision-makers. Depending on the interaction 
assumptions, it is important to distinguish noncooperative and cooperative game 
formulations. The main assumption in the noncooperative games is that each player 
acts independently. That is, every player optimizes its own objective function 
without seeking to increase other players’ benefits. Mutual agreements or 
recommendations are not binding for players. The noncooperative formulation 
represents a competition among players, which is usually analyzed using 
equilibrium-based solution concepts. In power systems research, noncooperative 
games are widely used for the estimation of possible electricity market equilibria 
[37], [89], [90], [149] and modeling outcomes of competitive investment decisions 
[40], [41], [77], [85], [86], [150].7 In this thesis, we use an opposite approach and 
formulate cooperative games (also called coalitional games) to model situations 

                                                 
7 In fact, noncooperative game formulations, especially equilibrium models, are much more common 
in power systems research than cooperative approaches. The discussion of equilibrium models is 
given in Section 5.4. However, the main assumption of our work is that players will cooperate and 
form the coalition with transferable (exchangeable) utility. Therefore, we rely on the Cooperative 
Game Theory paradigm. 
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where players conclude binding agreements to reach mutual benefits. In such 
games, the key questions to address are: what coalitions will form, and what should 
be the payoffs to the participants? 

We focus on cooperative games with transferable utilities, where benefits 
generated by cooperation may be easily distributed and shared among the players. 
The origins of such games come from the famous book “Theory of Games and 
Economic Behavior” by Neumann and Morgenstern [151]. However, even earlier 
studies existed. For example, the concept of the Core was first proposed by 
Edgeworth [152] in 1881 and later reinvented and defined in game-theoretic terms 
by Gillies [153]. Transferable utility games (TUG) have been formulated for 
allocation issues in power systems in [42], [43], [45], [48] and other studies covered 
in the citation network analysis. The Cooperative Game Theory principles 
discussed in this section are universal and are being successfully applied in 
numerous areas. In [93], Fiestras-Janeiro et al. reviewed Cooperative Game Theory 
applications in transportation, natural resources, and power industry. A relevant 
work was done by Lozano et al. [154], who analyzed horizontal cooperation 
(between two or more actual or potential competitors) for shipping companies using 
Cooperative Game Theory solution concepts. The authors found that significant 
cost savings give players incentives to form large coalitions and supposed that these 
results may be extended to a broader class of transportation problems. Cooperative 
Game theory was found especially appropriate for solving water resource 
management problems. For example, in [155], Young et al. examined different 
methods, including the Core, the Shapley value, and the Nucleolus, for allocating 
the cost of water supply projects. The authors mentioned high dependence on 
detailed cost information as one of the main drawbacks of the game-theoretic 
methods. Multiple other studies applied Cooperative Game Theory to address 
water resources issues such as urban water supply and sanitation, irrigation, 
hydropower generation, reservoir operation, water pollution control, 
international/transboundary water conflicts, etc. An exhaustive review of 
Cooperative Game Theory developments in water resources was done by Dinar and 
Hogarth [156]. 
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In this chapter, we present the mathematical formulation for cooperative 
games with transferable utility, introduce the main properties and solution 
concepts, which will be later combined with the TEP model to analyze projects of 
cross-border energy cooperation. While describing cooperative games, we rely on 
the mentioned papers on Cooperative Game Theory applications and the book by 
Maschler et al. [157], which provides a comprehensive introduction to Game 
Theory. 

 

4.1 Definition and Properties of Cooperative Games 

In our setting, several power systems agree on building lines for electricity 
market integration to reach mutual benefits in the form of cost savings. The savings 
can be expressed in monetary units and then allocated among the participants. 
When cooperating, players can join different coalitions. Before introducing 
cooperative games, it is important to state what parameter we choose to describe 
the coalitions. There exist two approaches. If a value ݒ(ܵ) associated with a 
coalition ܵ represents some profit or gain that players obtain together, then a 
cooperative game is called a profit (or value) game. In profit games, players achieve 
mutual benefits and allocate collective payoff. Conversely, If a value ݒ(ܵ) 
associated with a coalition ܵ represents a cost that players should pay together, 
then a cooperative game is called a cost game.8 In cost games, players achieve 
synergy in cost reduction and allocate the total cost that their coalition must pay. 
In this work, we are interested in cost games, which is consistent with our TEP 
model. Thus, in the following definitions, we imply that the value of coalitions is 
formulated in terms of costs.9 

Having stated the value of coalitions, we formulate the strategic interaction 
over an interconnection project as the following TUG. 

 

                                                 
8 For the sake of consistency, values of coalitions in cost games can be noted as ܿ(ܵ) instead of 
 to denote the costs of (ܵ)ݒ However, in this work, we keep the common notation and use .(ܵ)ݒ
coalitions. 
9 Note that value games can be translated to cost games and vice versa. Thus, all the concepts 
presented in this chapter can be applied to value games by considering the values as negative costs. 
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Definition 4.1 A cooperative game with transferable utility specifies a cost for 
every possible coalition by setting a pair (ܰ;  :such that (ݒ

 ܰ = {1, 2, … , ݊}  is a finite set of players (agents who are potential users of 
the project). A subset of ܰ  is called a coalition. The largest possible coalition 
containing all players is called the grand coalition. The collection of all the 
coalitions is denoted by 2ே. A partition of the set of players, ܰ, is called a 
coalitional structure, ܤ. It is a collection of disjoint and nonempty sets whose 
union is ܰ. 

 ݒ ∶ 2ே  →  ℝ is a function associating every coalition ܵ with a real number 
(∅)ݒ satisfying ,(ܵ)ݒ = 0. This function is called the characteristic (also 
coalitional or utility) function of the game. 
 
The objective of the cooperative game formulation is to suggest a reasonable 

solution for allocating the cost of the grand coalition, ݒ(ܰ), among the agents in 
ܰ. Now, we introduce several important properties of cooperative games that will 
be useful for analyzing the merits and applicability of the solution concepts. 

 
Definition 4.2 A cooperative game (ܰ;  is called superadditive if for any pair of (ݒ
disjoint coalitions ܵ and ܶ holds: 

ܵ)ݒ ∪ ܶ) ≤ (ܵ)ݒ +  (4.1) (ܶ)ݒ

 
Superadditivity implies that every two disjoint coalitions (ܵ ∩ ܶ = ∅) that 

choose to merge can obtain the same or lower cost they could get if working 
separately. We visualize this property of cooperative games in Figure 4.1. Coalitions 
ܵ and ܶ are represented by the two disjoint ellipses, which signifies that they do 
not have any players or coalitions in common. The grand coalition is depicted by 
the large ellipse ܰ. Equation (4.1) states that there is some synergy of cooperation 
among ܵ and ܶ. Thus, the union ܵ ∪ ܶ can get an equal or lower cost than the two 
separate coalitions. Superadditivity is a useful property that reveals a “positive 
pressure” to form the grand coalition ܰ and serves as a justification for solution 
concepts implementation. 
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Figure 4.1: Example of disjoint coalitions in a superadditive cooperative game. 

 

However, the superadditivity condition is not strong enough since it 
considers only disjoint coalitions. The following definition introduces the class of 
convex games where similar restrictions hold for every pair of coalitions. 

 
Definition 4.3 A cooperative game (ܰ;  is called convex if for every pair of (ݒ
coalitions ܵ and ܶ holds: 

ܵ)ݒ ∪ ܶ) + ܵ)ݒ ∩ ܶ) ≤ (ܵ)ݒ +  (4.2) (ܶ)ݒ

 
The above definition states that two coalitions that have some players in 

common should obtain together less or equal cost than the two separate coalitions 
minus the cost of their intersection. We present an example of intersecting 
coalitions in Figure 4.2. It follows that every convex game is superadditive. Thus, 
the set of convex games is a subset of the superadditive games. We are interested 
in the convexity property since it characterizes games where players have clear 
incentives for forming large coalitions. It is worth mentioning that in cost games, 
the property of superadditivity is sometimes referred to as subadditivity, and 
convex games are called concave. However, we find it more common to use terms 
superadditive and convex for describing the synergy properties of cooperation. The 
same terms are also used by Maschler et al. in [157]. 
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Figure 4.2: Example of intersecting coalitions in a convex cooperative game. 

 

Equation (4.2) may not always be convenient for verifying game convexity 
based on intersecting coalitions. Therefore, we present the following equivalent 
formulation, which depends on players’ marginal contributions. 

 
Definition 4.4 In a convex game, the following equivalent formulation of 
convexity holds for every ܵ ⊆ ܶ ⊆ ܰ and every player ݅ ∈ ܰ\ܶ: 

ܵ)ݒ ∪ {݅}) − (ܵ)ݒ ≥ ܶ)ݒ ∪ {݅}) −  (4.3) (ܶ)ݒ

 
The equivalent formulation considers cases where coalition ܵ is a subset of 

ܶ, as shown in Figure 4.3. Equation (4.3) states that the game is convex if and only 
if the marginal contribution of any fixed player ݅ to coalition ܵ increases as more 
players join the coalition. In our cost game formulation, the contributions are the 
differences in costs before and after cooperation. Convex cooperative games have a 
“snowballing” effect where large coalitions become more beneficial for players. 

S T
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Figure 4.3: Example of coalition subsets in a convex cooperative game. 
 
Having defined cooperative games and their properties, we are ready to pose 

the main question studied in Cooperative Game Theory: what coalitions will form 
in a cooperative game, and how to divide the cost of a coalition among its members? 
Numerous solution concepts have been developed to allocate coalition cost among 
the players in the most reasonable way. In the next sections, we describe the main 
solution concepts that will be further used in the thesis for cross-border TEP cost 
allocation. 

 

4.2 Solution Concepts 

The main assumption in Cooperative Game Theory solution concepts is that 
the grand coalition ܰ will be formed. The task is then to suggest an imputation 
vector ݔ to allocate the cost of the grand coalition, ݒ(ܰ), to its participants. Before 
introducing the solution concepts, it is worth discussing their features and desired 
properties. 

First, it is necessary to distinguish single-valued (point) and set solution 
concepts. 

 
Definition 4.5 A solution concept is called a point solution of a cooperative game 
(ܰ; ;ܰ)ݔ ,if the set of possible imputations (ݒ  .contains only one element ,(ݒ

 

N
S
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Single-valued solution concepts provide unique answers to cost allocation 
problems, and, therefore, are of particular interest for practical applications. On 
the contrary, set solution concepts define a set of possible allocation solutions, 
which is useful for further analysis of cooperation. We should also notice that there 
exist games with an empty vector of possible imputations, ݔ(ܰ; (ݒ = ∅. It is 
obvious, that is such cases, players will not agree on forming the grand coalition. 

Next, we define the desired properties of solution concepts. These properties 
impose the following restrictions on the imputation vector ݔ. 

 
Definition 4.6 A vector ݔ ∈ ℝே is called efficient for a cooperative game (ܰ;  :if (ݒ

෍ ௜ݔ
௜∈ே

=  (4.4) (ܰ)ݒ

 
In words, the imputation vector exactly splits the total cost among the 

players. Players cannot divide more or less cost than they obtain in the grand 
coalition. 

 
Definition 4.7 A vector ݔ ∈ ℝே is called individually rational if for every  
player ݅ ∈ ܰ: 

௜ݔ ≤  (4.5) (݅)ݒ

 
This condition means that no player obtains a higher cost than what he 

could get on his own. In our analysis, we are interested in the set of possible 
allocation solutions satisfying equations (4.4) and (4.5), which is the set of 
imputations. 

 
Definition 4.8 Let (ܰ;  be a coalitional ܤ be a cooperative game, and let (ݒ
structure, that is a partitioning of the set of players ܰ. Then, the set of all possible 
imputation vectors ݔ ∈ ℝே that are efficient and individually rational for the 
coalitional structure ܤ is called the set of imputations ܺ(ܰ;  .(ݒ

 
Efficiency and individual rationality are essential properties that allow 

estimating the possibility of cooperation in a particular game. However, they do 
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not fully represent the rationality constraints imposed by the coalitional structure 
of a game. Therefore, we need to define the coalitional rationality. 

 
Definition 4.9 An imputation ݔ ∈ ܺ(ܰ;  is called coalitionally rational if for (ݒ
every coalition ܵ ⊆ ܰ: 

෍ ௜ݔ
௜∈ௌ

≤  (4.6) (ܵ)ݒ

 
This definition states that every coalition has to be awarded less or equal 

cost than it had on its own before cooperation. It is an essential property exploited 
in numerous solution concepts. 

 

4.2.1 The Core 

Having described the rationality properties of allocation solutions, we are 
now ready to define one of the main solution concepts in Cooperative Game Theory, 
the Core of the game. 

 
Definition 4.10 The Core of a cooperative game ܥ(ܰ;  is the collection of all (ݒ
coalitionally rational imputations. 

 
Thus, the allocation solutions within the Core must satisfy conditions (4.4), 

(4.5), and (4.6). The Core is the intersection of a finite number of half-spaces, 
which means that it is a convex compact set. 

The Core is often referred to as a concept for evaluating the stability of 
cooperation since every solution within it should satisfy all the players. A logical 
question arises: in which cases the Core is not an empty set? The necessary and 
sufficient conditions for the nonemptiness of the Core of a cooperative game were 
proved in the Bondareva–Shapley theorem [158], which is based on the balanced 
collections of coalitions. However, this theorem is not useful for verifying the 
nonemptiness of the Core in practical cases. Therefore, we omit its formulation and 
proof in our work. Instead, we introduce the following theorems that are of 
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particular interest in our analysis of cooperation on cross-border interconnection 
projects. 

 
Theorem 4.1 The Core of a market game is nonempty [159]. 

 
There exist several thoroughly studied classes of cooperative games, among 

which market games hold a valuable place. Such games naturally arise from an 
exchange economy where a set of producers trades commodities. The producers 
have different production functions and try to maximize their benefits. According 
to the theorem, if the production functions are continuous and concave, the 
resulting market game is guaranteed to have a nonempty Core. We will later refer 
to the class of market games while analyzing cooperative games in TEP. 

 
Theorem 4.2 The Core of a convex game is nonempty (the proof can be found in 
[157]). 
 

As discussed earlier, in convex games players have clear incentives for 
forming large coalitions. Additionally, the class of convex games has a remarkable 
feature that interrelates the Core of a game with players’ marginal contributions. 
To explain this relation, one would suggest an imputation rule where players 
receive marginal contributions that they provide to a coalition when joining it in 
ordering ߨ. There exist multiple possible orderings leading to different imputations 
 .గ. To describe the set of such imputations, we introduce the following definitionݓ

 
Definition 4.11 The convex hull of the imputations {ݓగ:  ݂݋ ݊݋݅ݐܽݐݑ݉ݎ݁݌ ݏ݅ ߨ ܰ} 
is called the Weber set of the cooperative game (ܰ;  .(ݒ

 
The Weber set is a polytope over the maximum contributions of players to 

possible coalitions. The remarkable property of convex games is that the Core 
always contains the Weber set. Thus, convexity is indeed the desired property of 
cooperative games that guarantees the formation of the grand coalition and the 
nonemptiness of the Core. 
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The mentioned theorems provide us a tool for cooperative games analysis. 
If we are able to prove that our case study can be formulated as a market or convex 
cooperative game, then we are assured that it is possible to reach stable cooperation 
where the grand coalition ܰ will be formed, and all the players will be satisfied 
with the imputation vector ݔ. 

 

4.2.2 The Shapley Value 

In this section, we introduce the Shapley value, which is one of the two most 
important single-valued solution concepts for cooperative games. It assigns a unique 
imputation vector ݔ with several desired solution properties based on players’ 
marginal contributions to possible coalitions. We have already discussed the 
efficiency and the rationality properties of allocation solutions in Section 4.2. Before 
defining the Shapley value formula, it is useful to describe the following desired 
properties. 

 
Definition 4.12 Players ݅ and ݆ are symmetric players in a cooperative game 
(ܰ; ܵ if for every coalition (ݒ ⊆ ܰ\{݅, ݆}: 

ܵ)ݒ ∪ {݅}) = ܵ)ݒ ∪ {݆}) (4.7) 

 
Definition 4.13 A solution concept satisfies the symmetry property if for every 
cooperative game (ܰ;  :and every pair of symmetric players ݅ and ݆ in the game (ݒ

;ܰ)௜ݔ (ݒ − (݅)ݒ = ;ܰ)௝ݔ (ݒ −  (4.8) (݆)ݒ

 
Symmetry is an essential property that implies equal treatment for players 

who give the same marginal contribution to every coalition. This property requires 
a solution concept to be independent of the names and order of the players. 

 

Definition 4.14 A player ݅ is called a null player in a game (ܰ;  if for every ,(ݒ
coalition ܵ ⊆ ܰ, it holds: 

(ܵ)ݒ = ܵ)ݒ ∪ {݆}) (4.9) 
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Definition 4.15 A solution concept satisfies the null player property if for every 
coalitional game (ܰ;  :and every null player ݅ in the game (ݒ

;ܰ)௜ݔ (ݒ =  (4.10) (݅)ݒ

 
A null player contributes nothing to any coalition he could join. Thus, the 

desired property of solution concepts is to allocate no benefits (cost savings) to 
such players. 

Finally, we mention the additivity property that concerns several games 
with the same set of players. For example, a set of players ܰ may participate in 
the two cooperative games (ܰ; ;ܰ) and (ݒ ߱). The additivity property states that 
each player must receive a sum of imputations from the independent games played 
simultaneously. 

 
Definition 4.16 A solution concept satisfies the additivity property if for every 
pair of cooperative games (ܰ; ;ܰ) and (ݒ ߱): 

;ܰ)௜ݔ ݒ + ߱) = ;ܰ)௜ݔ (ݒ + ;ܰ)௜ݔ ߱) (4.11) 

 
Now we are ready to define the Shapley value, which is the unique solution 

concept satisfying the efficiency, symmetry, null player, and additivity properties. 
The explicit Shapley value formula is given by the following equation. 

 
Definition 4.17 The Shapley value is the solution concept ܵℎ defined as follows: 

ܵℎ௜(ܰ; (ݒ = ෍
|ܵ|! (|ܰ| − |ܵ| − 1)!

|ܰ|!
൫ݒ(ܵ ∪ {݅}) − ൯(ܵ)ݒ

ௌ⊆ே\{௜}

 (4.12) 

 
The above equation is a linear function of the worths of the various 

coalitions, where |ܰ| is the total number of players in a game, and |ܵ| is the number 
of players in coalition ܵ, which is a subset of ܰ. The number of different ways that 
the players in ܵ can be ordered is |ܵ|!, and the number of different ways that the 
remaining players in ܰ\(ܵ ∪ {݅}) can be ordered is (|ܰ| − |ܵ| − 1)!. It follows that 
the number of permutations in the ordering of joining the coalition ܵ is 



89 

|ܵ|! (|ܰ| − |ܵ| − 1)!, and the number of all possible orderings in joining all possible 
coalitions in |ܰ|!. Thus, the imputation ݔ௜ to player ݅ is a weighted sum of its 
marginal contributions ݒ(ܵ ∪ {݅}) −   .to coalitions he could join (ܵ)ݒ

The Shapley value is widely recognized as an effective concept for its 
axiomatic properties and the ability to capture players’ marginal contributions. It 
is frequently used in economic studies not only for cost allocation but also for 
estimating the bargaining power of players. For example, the Shapley value is used 
in the Shapley–Shubik power index [160] to measure the power of members in a 
decision-making process. Unfortunately, there is no guarantee that the Shapley 
value would be within the Core of a game and, therefore, be a rational solution. 
Only convex cooperative games have this property, as stated by the following 
theorem. 

 
Theorem 4.3 If (ܰ;  is a convex game, then the Shapley value is in the Core of (ݒ
the game (the proof can be found in [157]). 

 
Once again, we see the merits of convex cooperative games. Not only they 

have the nonempty Core, but also it is guaranteed that the Shapley value is a part 
of it. As we will show in the following sections, many practical cases of cooperation 
cannot be formulated as convex cooperative games. Therefore, the Shapley value 
should be used with caution not to violate the rationality constraints. 

 

4.2.3 Coalitional Excess Theory: the Nucleolus and the Kernel 

Several important solution concepts are based on the coalitional excess 
theory, which involves the following additional metric. 

 

Definition 4.18 For every imputation ݔ ∈ ℝே and every coalition ܵ ⊆ ܰ, the 
excess of the coalition is defined as: 

݁(ܵ; (ݔ ≔ (ܵ)ݒ − ෍ ௜ݔ
௜∈ௌ

 (4.13) 
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For cost games10, the excess is a measure of how satisfied a coalition is with 
the imputation ݔ(ܰ;  ܵ The larger the excess of ܵ, the more satisfied coalition .(ݒ
is. The Nucleolus, a solution concept first introduced by Schmeidler [161], suggests 
searching for an allocation that maximizes the excess of the most dissatisfied 
coalitions. To formally define the Nucleolus, we need to compose a vector, ߠ, that 
computes the excesses of all the coalitions at ݔ and arranges them in increasing 
order: (ݔ)ߠ = (݁( ଵܵ; ,(ݔ ݁(ܵଶ; ,(ݔ … , ݁(ܵଶ೙; )݁ where ,((ݔ ଵܵ; (ݔ ≤ ݁(ܵଶ; (ݔ ≤ ⋯ ≤
݁(ܵଶ೙;  This vector is needed to perform a lexicographical comparison with other .(ݔ
possible vectors of excesses. We say that vector ܽ = (ܽଵ, ܽଶ, … , ܽ௠) is 
lexicographically greater than another vector ܾ = (ܾଵ, ܾଶ, … , ܾ௠) if either ܽ = ܾ or 
there exists ℎ ∈ {1, … , ݉} such that ܽ௛ ≥ ܾ௛ and ܽ௜ = ܾ௜  ∀݅ < ℎ. We annotate this 
lexicographical comparison as ܽ ≿ ܾ. Now we are ready to define the Nucleolus, 
the imputation ݔ which lexicographically maximizes11 the excess vector, ߠ, for all 
possible imputations ̅ݔ. 

 

Definition 4.19 Let (ܰ; ܭ be a cooperative game and let (ݒ ∈ ℝே be a set of 
possible imputations. The Nucleolus of the game (ܰ;  is the solution ܭ relative to (ݒ
concept ࣨ defined as follows: 

ࣨ(ܰ; ;ݒ (ܭ = ݔ} ∈ ܭ ∶ (ݔ)ߠ  ≿ ,(ݔ̅)ߠ ݔ̅∀ ∈  (4.14) {ܭ

 
To find the Nucleolus of a cooperative game, it is necessary to solve a series 

of linear programming models. We refer to the paper by Guajardo and Jörnsten 
[162], who presented an algorithm for computing the Nucleolus and discussed 
common mistakes that appear in its applications. The first linear program in the 
sequence maximizes the excess of the most dissatisfied coalition and can be 
formulated as follows. 

                                                 
10 Note that for value games, the formulation of excess (3.13) shows how dissatisfied the members 
of ܵ are with the vector ݔ. If the excess is positive, the members of ܵ are not satisfied with ݔ, 
because they could form ܵ together, obtain ݒ(ܵ), and then divide that sum in such a way that each 
member of ܵ receives more than he receives under ݔ. In our work, we formulate cost games, for 
which excess of a coalition means the opposite. 
11 For value games, the Nucleolus lexicographically minimizes the excess vector arranged in 
decreasing order. 
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 max
௫

 (4.15)  ߝ

s.t. ߝ + ෍ ௝ݔ
௝∈ௌ

≤ ܵ∀ (ܵ)ݒ ⊂ ܰ, ܵ ≠ ∅    (4.16) 

 ෍ ௝ݔ
௝∈ே

=  (4.17)  (ܰ)ݒ

ߝ  ∈ ℝ, ௝ݔ ∈ ℝ, ∀݆ ∈ ܰ (4.18) 

 
The objective function (4.15) maximizes the value ߝ, which is constrained 

by the excesses of all possible coalitions in (4.16). Thus, (4.15) and (4.16) together 
provide that ߝ is exactly equal to the minimum excess. Constraint (4.17) refers to 
the efficiency property (4.4). Constraint (4.18) states the nature of the variables. 
The solution to (4.15)-(4.18) may not necessarily be unique. It may occur that 
more than one allocations ݔ lead to the optimal objective value. Moreover, 
formulation (4.15)-(4.18) provides an allocation that maximizes the lowest excess, 
but not necessarily the second or the subsequent lower excesses. To find the unique 
solution, the Nucleolus, it is necessary to solve a series of ݇ linear programs 
formulated as follows. 

 

 max
௫

 ௞  (4.19)ߝ

s.t. ߝ௞ + ෍ ௝ݔ
௝∈ௌ

≤ ܵ∀ (ܵ)ݒ ⊂ ܰ: ܵ ∉ ℱ௞ (4.20) 

௜ߝ  + ෍ ௝ݔ
௝∈ௌ

= ܵ ∀ (ܵ)ݒ ∈ ௜ܨ           ݅ ∈ {1, … , ݇ − 1} (4.21) 

 ෍ ௝ݔ
௝∈ே

=  (4.22)  (ܰ)ݒ

௞ߝ  ∈ ℝ, ௝ݔ ∈ ℝ, ∀݆ ∈ ܰ (4.23) 

 
Similarly to (4.15) and (4.16), the objective function (4.19) and constraints 

(4.20) provide that the minimum excess of the ݇th program is maximized. 
Constraints (4.21) consider the results obtained in the previous linear programs 
and state that the excess of coalitions in the set ܨ௜ must be equal to the optimal 
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objective value ߝ௜ of ݅th program. The set ℱ௞ then is the union of all the coalitions 
for which the excess has already been fixed in previous linear programs of the 
sequence. Constraints (4.22) and (4.23) state conditions for the efficiency and 
nature of the variables, respectively. The model (4.19)-(4.23) should be solved ݇ 
times unless the unique allocation solution is obtained. The definition of ܨ௜ sets 
between the iterations can be done by means of dual linear programming, as it was 
shown in [162]. The imputation vector at the last interaction is the unique single-
valued solution ࣨ (ܰ;  the Nucleolus of a cooperative game. The above procedure ,(ݒ
shows that the Nucleolus lexicographically maximizes the excess vector for all 
possible imputations. 

The Nucleolus solution concept is widely used for solving allocation issues, 
particularly bankruptcy problems. The merit of this concept lies in the following 
properties. 

 
Theorem 4.4 If the Core of a cooperative game (ܰ;  for the coalitional structure (ݒ
 is in the Core (the proof can be found in ܤ is nonempty, then the Nucleolus for ܤ
[157]). 

 
This remarkable property of the Nucleolus makes it a universal tool for 

solving allocation issues: whenever it is possible to prove that the Core of a game 
is not empty, the Nucleolus can be used to find a solution within the Core. 
Moreover, the Nucleolus satisfies the efficiency, symmetry, and null player 
properties. 

 
Theorem 4.5 Let (ܰ;  and ,ܤ be a cooperative game with coalitional structure (ݒ
let ݅ and ݆ be symmetric players who are the members of the same coalition in ܤ. 
Then the Nucleolus satisfies the symmetry property (the proof can be found in 
[157]): 

௜ࣨ(ܰ; ;ݒ (ܤ − (݅)ݒ = ௝ࣨ(ܰ; ;ݒ (ܤ −  (4.24) (݆)ݒ

 
Theorem 4.6 Let ݅ ∈ ܰ be a null player in a cooperative game (ܰ;  Then the .(ݒ
Nucleolus satisfies the null player property (the proof can be found in [157]): 

௜ࣨ(ܰ; (ݒ =  (4.25) (݅)ݒ
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It may seem that the Nucleolus is the absolute best choice of the solution 

concept since it not only satisfies almost all of the desired properties that the 
Shapley value does (efficiency, symmetry, null player) but also reduces the 
dissatisfaction of the most dissatisfied coalitions and guarantees the stability of 
cooperation. However, the implementation of the Nucleolus is still open to criticism. 
The idea of allocating more savings to the most dissatisfied coalition is 
questionable. The point is that more dissatisfied coalitions may have fewer players 
than the less dissatisfied ones. Thus, it may be not fair to create an allocation 
mechanism that cares most about a few of the players. In this regard, the Nucleolus 
is classified as an egalitarian concept, while the Shapley value considers the 
contribution of players and is, therefore, a utilitarian concept. 

Lastly, we define the Kernel, the solution concept first introduced by Davis 
and Maschler [163]. The Kernel is based on a similar excess metric that is called 
the maximum surplus of player ݅ over player ݆. 

 
Definition 4.20 For any cooperative game (ܰ;  and any distinct pair of players (ݒ
݅, ݆ ∈ ܰ, ݅ ≠ ݆ the maximum surplus of player ݅ over player ݆ with respect to the 
imputation ݔ(ܰ;  :is defined by (ݒ

(ݔ)௜௝ݏ ≔ min
ௌ∈࣡೔ೕ

݁(ܵ; where ࣡௜௝  (ݔ ≔ {ܵ | ݅ ∈ ܵ, ݆ ∉ ܵ} (4.26) 

 
It is again important to note that we consider cost games. Thus, the 

maximum surplus ݏ௜௝(ݔ) describes the minimal cost that player ݅ can get without 
cooperating with player ݆. In other words, this is the maximum amount player ݅ 
can gain (or the minimum amount he may lose) if withdrawing from the grand 
coalition without the consent of player ݆ and joining a coalition that does not 
include ݆. 

Because of its nature, the maximum surplus of player ݅ over player ݆ is often 
called a bilateral threat. Thus, if ݏ௜௝(ݔ) is lower than ݏ௝௜(ݔ), we can say that player 
݅ outweighs player ݆. The idea of the Kernel is to equalize all bilateral threats and 
reach a multi-bilateral bargaining equilibrium. 
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Definition 4.21 The set of imputations ܺ(ܰ;  that balances the maximum (ݒ
surpluses for each distinct pair of players is called the Kernel of the game (ܰ;  (ݒ
and is defined by: 

ࣥ(ܰ; (ݒ ≔ ݔ} ∈ ܺ(ܰ; (ݔ)௜௝ݏ | (ݒ = ,݅ ∀  (ݔ)௝௜ݏ ݆ ∈ ܰ, ݅ ≠ ݆}  (4.27) 

 
As follows from the definition, the Kernel is a set solution concept. Not only 

the Kernel interprets a bargaining process among players, it also has some valuable 
properties. It is important to mention that the Kernel always contains the 
Nucleolus. Moreover, it was proven by Maschler et al. [164] that for the class of 
convex games, the Kernel and the Nucleolus coincide. 

Unfortunately, there is no straightforward way of computing the Kernel. In 
[165], Meinhardt suggested an algorithm for computing the Kernel through a series 
of linear programs based on the bisection property of the Kernel elements. In this 
work, we rely on the complementarity modeling and find an element of the Kernel 
as a solution to the equilibrium problem. We simultaneously solve several 
interrelated optimization problems, each of which defines the surplus among a pair 
of players. 

 

 max
௫

 ௜௝  (4.28)ݏ

s.t. ݏ௜௝ ≤ (ܵ)ݒ − ෍ ௞ݔ
௞∈ௌ

 ∀ܵ ⊂ ܰ:  ݅ ∈ ܵ, ݆ ∉ ܵ (4.29) 

 ෍ ௞ݔ
௞∈ௌ

≤ ݇∀ (ܵ)ݒ ∈ ܵ (4.30) 

 ෍ ௞ݔ
௞∈ே

= ݇∀ (ܰ)ݒ ∈ ܰ (4.31) 

 
The above model seeks for the maximum bilateral surplus (4.28) restricted 

by the excesses of coalitions to which player ݅ belongs, and player ݆ does not (4.29). 
Conditions (4.30) and (4.31) refer to the coalitional rationality and efficiency 
properties (4.5), (4.4), and, therefore, define the Core of the game. Observe that 
(4.28)-(4.31) is an LP model. To find an element of the Kernel solution, we jointly 
solve model (4.28)-(4.31) for all maximum surpluses via necessary and sufficient 
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optimality conditions, Karush–Kuhn–Tucker (KKT) conditions, and setting the 
bilateral equality of the surpluses: 

 

௜௝ݏ = ௝௜ݏ        ∀ ݅, ݆ ∈ ܰ,   ݅ ≠ ݆ (4.32) 

 
This formulation allows us to find a single element of the Kernel, which is 

the Nucleolus. However, in this work, we will use the Kernel solution concept not 
only for computing cost allocation but also for developing novel TEP algorithms 
that embed the coalitional excess theory for suggesting transmission plans with 
enhanced cooperation stability. 

The remaining part of this chapter shows how the discussed solution 
concepts can be implemented in TEP cost allocation case studies. 
 

4.3 Transmission Cost Allocation Examples 

To further investigate the applicability of the Cooperative Game Theory 
solution concepts, we present the results of TEP cost allocation for the two 
illustrative case studies. 

 

4.3.1 The Two-System Case Study 

First, we analyze the simplest possible case where two power systems 
(players) cooperate on building a cross-border line. We have already introduced 
this case in Chapter 3. The effects of the electricity market integration are 
presented in Figure 3.2, and the expansion planning model is defined by equations 
(3.1)-(3.5). The changes in consumers’ payments, generation costs and surpluses 
are listed in Table 3.2. Based on these metrics, it is possible to formulate 
cooperative games and find the allocation solutions. However, the space of 
imputations for two-player games has very few dimensions. There is no need to 
compute the Shapley value, the Nucleolus, and the Kernel since all of these 
solutions will coincide with the single imputation, which is called the standard 
solution of the game. 
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Theorem 4.7 Let (ܰ;  be a two-player cooperative game. Then the standard (ݒ
solution of this game is defined by: 

൫ݔ௜ , ௝൯ݔ = ቆ
,݅)ݒ ݆) + (݅)ݒ − (݆)ݒ

2
,
,݅)ݒ ݆) − (݅)ݒ + (݆)ݒ

2
ቇ (4.33) 

 
The standard solution of a two-player game divides the gain (or cost savings) 

of cooperation into halves among the players. In [44], [45], Contreras called this 
approach bilateral Shapley value and used it for transmission cost allocation among 
coalitions in a sequential manner. Based on the results presented in Table 3.2, we 
computed several allocation solutions using different values in the characteristic 
function of the game: consumers’ payment, generation cost, and generation surplus. 
The changes in these parameters caused by the market integration and the 
allocation solutions are given in Table 4.1. 

 
Table 4.1: Allocation solutions for the two-system case. 

Parameter System A System B 

Consumers’ payment before 
interconnection ($/h) ஺ܲ = 7 500 ஻ܲ = 64 500 

Consumers’ payment after 
interconnection ($/h) ܲ′஺ = 9 500 ܲ′஻ = 52 500 

The allocation solution ($/h) ஺ܲ
௫ = 2 500 ஻ܲ

௫ = 59 500 

Generation cost before 
interconnection ($/h) ܥ஺ = ஻ܥ 250 6 = 42 000 

Generation cost after 
interconnection ($/h) ܥ஺ + ஺′ܥ = ஻′ܥ 050 13 = 26 400 

The allocation solution ($/h) ܥ஺
௫ = ஻ܥ 850 1

௫ = 37 600 

Generation surplus before 
interconnection ($/h) ஺ܵ = 1 250 ܵ஻ = 22 500 

Generation surplus after 
interconnection ($/h) ஺ܵ + ܵ′஺ + ܵ′′஺ = 4 050 ܵ′஻ = 12 100 

The allocation solution ($/h) ஺ܵ
௫ = −2 550 ܵ஻

௫ = 18 700 
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The obtained solutions make it possible to suggest the shares of investment 
in the power line and estimate the amount of payment from power importer 
(System B) to power exporter (System A). It is seen that for each of the parameters, 
the difference caused by the interconnection was equally split among the systems, 
which in this case have equal bargaining power. The question arises, which criterion 
of cooperation is more appropriate than the others? We believe that for consistency 
with the TEP approach, allocation based on the costs is the preferable one. 
Moreover, we want to avoid situations where some players may be allocated 
negative values, as it happens for the generation surplus allocation in the two-
system case study. Thus, in the subsequent cases, we use generation cost for 
formulating characteristic function of cooperative games. 

The main benefits of electricity trading come from cost savings and possible 
CO2 emissions reduction. Therefore, it makes sense to formulate cooperative cost 
games, where a synergy of cooperation comes in cost savings. Many of the preceding 
works focused on TEP cost allocation issues and formulated optimization models 
for investment and operating costs minimization. The corresponding cooperation 
was usually formulated as cost games. However, it is worth mentioning that the 
value of cooperation in terms of profit can be more appealing for investors. As the 
power sector moves more towards market‐based philosophy, the cost-orientation is 
likely to become outmoded. Several studies considered value games based on the 
social welfare and surpluses of players. For example, in [106], Banez-Chicharro et 
al. aimed to estimate the impact of transmission expansion projects on the social 
welfare using the Aumann-Shapley approach. In [119], Hasan et al. considered the 
cost allocation of renewable power integration projects based on the net market 
benefit. The formulation of benefits included producer surplus, consumer surplus, 
merchandizing surplus, carbon emission tax, and additional payments. Kristiansen 
et al. [58] considered the allocation of both benefits and costs that result from the 
development of international transmission interconnections. The authors stated 
that “trading of electricity between regions as a result of new transmission capacity 
in congested lines always results in nonnegative changes of welfare and net welfare 
in aggregate terms.” The welfare was formulated as the sum of consumer and 
producer surpluses and congestion rents. In this work, we keep the classic cost-
based formulation of cooperative games in TEP. 
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Cooperation on TEP projects becomes far more complicated once there are 
three or more independent power systems (players). We address such cooperative 
games in the following case study. 

4.3.2 The Three-System Case Study 

To visualize the set of imputations, the Core of the game, and differences in 
the solution concepts, we introduce the case study where three independent power 
systems negotiate on building cross-border power lines. We use the same electricity 
market integration assumptions and TEP model (3.1)-(3.5) as in the two-system 
case to estimate the effect of the power interconnections. The data on power 
systems’ supply functions and demands is given in Table 4.2. The scheme of power 
interconnections is depicted in Figure 4.4. It is assumed that the three possible 
power lines with the maximum capacity of 100 MW each and investment cost 10 
$/MWh are a subject of the transmission expansion discussion. 

 
Figure 4.4: Model of the three-system case power interconnections. 

 
Table 4.2: The three-system case study data. 

Parameter System A System B System C 

Supply function 
($/MWh) 

஺ߣ = 10 + ஻ߣ ஺݌0.01 = 13 + ஼ߣ ஻݌0.03 = 12 +  ஼݌0.025

Power demand 
(MW) 

500 1 500 1 000 

 
The cost of the separate operation for Systems A, B, and C is 6 250, 53 250, 

and 24 500 $/h, respectively. The TEP model (3.1)-(3.5) was solved several times 
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for all possible scenarios of cooperation (coalitions of players). Parameters of the 
optimal solutions are listed in Table 4.3. The grand coalition, {A,B,C}, leads to 
the highest possible cost savings of 4 800 $/h. Systems A and B act as power 
exporter and importer, respectively, while C acts as a transfer system. 

 
Table 4.3: Scenarios of cooperation for the three-system case. 

Parameter 
Scenarios / coalitions of players 

{A},{B}, or {C} {A,B} {A,B,C} {A,C} {B,C} 

 ஺ (MW) 500 600 700 600 500݌

 ஻ (MW) 1 500 1 400 1 300 1 500 1 400݌

 ஼ (MW) 1 000 1 000 1 000 900 1 100݌

 — — ஺஻ (MW) — 100 100ܨ

 — ஺஼ (MW) — — 100 100ܨ

 ஼஻ (MW) — — 100 — 100ܨ

 ஺ ($/MWh) 15 16 17 16 15ߣ

 ஻ ($/MWh) 58 55 52 58 55ߣ

 ஼ ($/MWh) 37 37 37 34.5 39.5ߣ

Generation cost 
($/h) 

84 000 79 900 76 200 81 975 82 175 

Investment cost 
($/h) 

— 1 000 3 000 1 000 1 000 

Total cost 
($/h) 

84 000 80 900 79 200 82 975 83 175 

 
But how stable is this cooperation? And how should the systems allocate 

the cost savings and share the investment in the cross-border power lines? To 
address these questions, we formulated the cooperative game with the cost-based 
characteristic function of coalitions and implemented the discussed solution 
concepts. Table 4.4 shows the obtained solutions indicating the allocation of both 
costs and savings among the systems. Note that for three-player games, the Kernel 
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contains only a single element that coincides with the Nucleolus. We also computed 
the equal sharing solution, which is a straightforward approach of splitting the 
savings equally among the participants. 

 
Table 4.4: Allocation solutions for the three-system case. 

Solution concept 
Allocation of costs (savings) ($/h) 

System A System B System C 

The Shapley value 4 237.5 
(2 012.5) 

51 337.5 
(1 912.5) 

23 625 
(875) 

The Nucleolus and 
the Kernel 

4 187.5 
(2 062.5) 

51 362.5 
(1 887.5) 

23 650 
(850) 

Equal sharing 4 650 
(1 600) 

51 650 
(1 600) 

22 900 
(1 600) 

 
The obtained allocations reveal the usefulness and the bargaining power of 

the players. For example, both the Nucleolus and the Shapley value agree that 
System C is the less important player. It is therefore allocated fewer savings than 
Systems A and B. Indeed, System C has a medium market price and is neither a 
power exporter nor importer. Thus, without System C, other players are still able 
to yield significant cost savings.  

To analyze the stability of cooperation, we impose the coalitional rationality 
conditions (4.6) and examine the Core of the game. We visualize the set of 
imputations, the Core, and the obtained allocation solutions using the barycentric 
coordinate system, as shown in Figure 4.5. The vertices A, B, and C represent the 
solution points where the corresponding systems get the maximum cost savings, 
i.e., the minimum possible cost. For example, System A is allocated 100% of the 
total savings at point A. Its cost decreases from 6 250 to 1 450 $/h. The farther 
solution moves from the A point, the fewer savings are allocated to the system. In 
the extreme case, solutions that lie on the line BC imply that System A is allocated 
zero savings – its cost does not change after the interconnection. The equal sharing 
point lies right at the center of mass of the ABC triangle. The set of coalitionally 
rational imputations is depicted by the grey polytope, the Core of the game. We 
see that all of the considered solutions meet the rationality conditions and, 
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therefore, are feasible for the current case study. We should also mention that not 
only System C is allocated fewer savings by the Nucleolus and the Shapley value, 
but also it is far more distant from the Core’s borders than other players. This fact 
signifies that System C has less space for bargaining in negotiations on the project. 

To provide more insights about the allocation solutions, we implemented an 
additional concept that measures players’ propensity to disrupt. The concept was 
introduced by Gately [42], who considered player’s incentives of breaking an 
agreement and suggested limiting the ratio of how much other players would lose 
if player ݅ refuses to cooperate to how much player ݅ would lose himself. 

 
Definition 4.22 Let (ܰ; ;ܰ)ݔ be a cooperative game, and let (ݒ  be the (ݒ
imputation. Then, the propensity of player ݅ to disrupt the cooperation is defined 
by: 
 

݀௜(ܰ; ;ݒ (ݔ =
߭(ܰ\{݅}) − ∑ ௝௝ஷ௜ݔ

௜ݔ−({݅})߭
    ∀݅, ݆ ∈ ܰ (4.34) 

 
The interpretation of this concept is highly intuitive. If a player does not 

receive any share of savings, its propensity to disrupt is infinite. Contrariwise, a 
player who gets most of the savings could have zero or even negative propensity to 
disrupt the agreement. It is worth mentioning that the initial formulation by Gately 
included gains of cooperation. We modified the formulation to suit our cost game 
and considered the difference between the cost of coalitions and cost imputations 
of players. In an extreme case, if one player gets most of the savings, other players 
would receive more savings in a subcoalition rather than in the grand coalition. 
Thus, the numerator of (4.34) would be a negative value. The player with most of 
the savings would have a negative propensity to disrupt. Note that in our setting, 
we consider superadditive games and impose the coalitional rationality conditions 
(4.6) on the imputation. Therefore, such extreme cases become infeasible. 

It is required to define a limit on the maximum propensity for the players 
to implement the concept. In our case, we consider the imputations limited by the 
propensities equal to one and two. The corresponding regions are shown by the 
dashed purple triangles in Figure 4.5. The decrease in the limit makes the regions 
shrink towards the solution where all the players have equal propensities to disrupt, 
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the Gately point of the cooperative game. In our case study, the solutions by the 
Shapley value and the Nucleolus are within the region where players’ propensity 
to disrupt is less than one. We, therefore, might conclude that both of these 
solutions are reasonable for allocating the savings and sharing the investment cost 
of the TEP project. 

Figure 4.5: The set of imputations and the Core of the cooperative game for the 
three-system case. The values represent the corresponding costs for (A, B, C) in 
$/h. The allocation solutions are denoted as follows: S - the Shapley value, N - the 
Nucleolus (coincides with the Kernel), E - equal sharing point, PtD - regions 
constrained by players’ propensity to disrupt. 

A B

C

(1 450,  53 250,  24 500) (6 250,  48 450,  24 500)

(6 250,  53 250,  19 700)

E

S
N

The Core

PtD ≤2

PtD  1≤
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We should also discuss the properties of the formulated cooperative game. 
First, it is important to notice that we solved the cost minimization problem (3.1)-
(3.5) for every coalition. Thus, it is guaranteed that the characteristic function 
cannot increase when more players join a coalition. It follows that our game satisfies 
condition (4.1) and is superadditive. To verify the convexity property of the game, 
we can check condition (4.3) for all possible contributions of players to the 
coalitions. The three-player cooperative game has not many contributions to 
consider. We list them in Table 4.5. 

 
Table 4.5: Cooperative game convexity verification for the three-system case. 

Marginal contributions of players to coalitions ($/h) 

Player: Coalition: Contribution: 

A {A,B} -3 100 

A {A,C} -1 025 

A {A,B,C} -3 975 

B {A,B} -3 100 

B {B,C} -825 

B {A,B,C} -3 775 

C {A,C} -1 025 

C {B,C} -825 

C {A,B,C} -1 700 
 

For cost games, the marginal contributions of players to the coalitions result 
in a cost reduction. For consistency, we display the contributions as negative 
values. It is seen that the players bring higher cost reduction when joining larger 
coalitions. Thus, the cooperative game satisfies condition (4.3) and is convex. As 
discussed in this chapter, convexity is one of the most desired properties of 
cooperative games. It guarantees the nonemptiness of the Core and the rationality 
of the allocation solutions. Additionally, one may verify using Figure 4.5 that the 
Shapley value of a convex game is the center of gravity of the Core. However, the 
convexity of cooperative games in TEP projects depends on the parameters of the 
systems and topology of the interconnections. As we will show later, some 
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transmission expansion plans may cause the nonconvexity or even situations where 
the Shapley value falls out of the Core. 

Finally, we estimate the maximum surpluses among players defined by 
(4.26) for the obtained allocation solutions (imputations). The values showed in 
Table 4.6 represent the bilateral threats for every distinct pair of players. For cost 
games, a threat of leaving the grand coalition and joining a subcoalition implies an 
increase in cost for the threatening player. Thus, the threats are displayed as 
positive values that reveal the interdependence of players. 

 
Table 4.6: Analysis of the bilateral threats for the three-system case. 

 the maximum surplus of player ݅ over player ݆ with respect to the - (ݔ)௜௝ݏ
imputation ݔ(ܰ;  in $/h ,(ݒ

The imputation defined by: ݅/݆ A B C 

the Shapley value 
(4 237.5; 51 337.5; 23 625) 

A — 1 862.5 825 

B 1 912.5 — 825 

C 875 875 — 
the Nucleolus and the Kernel 
(4 187.5; 51 362.5; 23 650) 

A — 1 887.5 850 

B 1 887.5 — 850 

C 850 850 — 
the equal sharing 
(4 650; 51 650; 22 900) 

A — 1 600 100 

B 1 600 — 100 

C 1 600 1 600 — 
 

The bilateral threats analysis shows that Systems A and B highly depend 
on cooperation with each other. A threat of leaving the coalition results in 
significant losses for both systems. The consequences of threatening System C are 
much lower, which again confirms that this system has less influence on the project 
and less bargaining power. It may also be verified that the Nucleolus is the only 
solution that equalizes all bilateral threats among the players.  

At this stage, we have considered the implementation of the main 
Cooperative Game Theory solution concepts for TEP cost allocation. In the next 
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chapters, we will focus on the stability of cooperation and present a way of 
incorporating the Cooperative Game Theory principles into planning algorithms. 

 

4.4 Summary and Conclusions 

Cooperative Game theory provides a rich theoretical background for the 
analysis of projects where participants can make collective actions to obtain mutual 
benefits. In this chapter, we defined cooperative games and examined their 
properties. Then we introduced several important solution concepts and discussed 
their features. We also covered the coalitional excess theory and paid especial 
attention to the maximum surplus among players. The maximum surplus (also 
called bilateral threat) is an important parameter that allows us to identify the 
usefulness and interdependence of players. We will use it in Chapter 6 as the metric 
of cooperation stability to develop a proactive game-theoretic TEP approach. 

An essential question to be asked at the end of the chapter is: what is the 
best solution concept to choose for cost allocation? Yet, there is no simple answer. 
The solution concepts such as the Shapley value and the Nucleolus are different 
types of the axiomatic approach: the concepts satisfy several axiomatic properties. 
This means that one has to judge to what extent certain properties reflect the 
original goals and choose the solution concept accordingly. As discussed in 
Section 4.2.3, the Nucleolus could be given a slight preference since it is guaranteed 
to be a part of the Core when the latter is not empty. However, the Shapley value 
is widely recognized as a useful concept for its ability to capture players’ marginal 
contributions. The selection of the solution concept can be considered from the 
experimental economics point of view. Several studies performed empirical tests of 
the allocation mechanisms to analyze their acceptability and stability. For example, 
in [166], Michener et al. compared the predictive efficiency of Cooperative Game 
Theory solution concepts for side-payment games with nonempty Core. The 
Euclidean distance between an observed payoff distribution and all distributions 
predicted by a theory was used as the comparison metric. It was reported that the 
Core solution is significantly less accurate than the Shapley value and the 
Nucleolus. Furthermore, the authors mentioned, “The bright side of this finding is 
that one of the competing solution concepts - the Shapley value - consistently shows 
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a comparatively high level of predictive accuracy. Across the many games studied, 
the Shapley value performs at least as well as, and frequently better than, all the 
other solutions tested. The performance of the Shapley value has been noted in 
earlier research reports, and the present analyses underscore its superiority relative 
to the Core.” In [167], Williams presented a large empirical test of Cooperative 
Game Theory solution concepts based on the observations of markets occurring in 
multi-purpose river developments. It was reported that the empirical results 
support the theory of the Core (in contrast to the previous results of Michener). 
Williams made the following ranking of the concepts, “the Cooperative Game 
solution concepts can be ranked in descending order of accuracy as the equal 
propensity to disrupt method, the just payoff vector, the Shapley value, and the 
Nucleolus. The equal propensity to disrupt method generally performs best. 
However, the just payoff vector performs nearly as well in all cases. The Shapley 
value performs well in predicting the actual cost allocations; however, it lies outside 
of the Core in several instances. The Nucleolus performs worst among the 
cooperative game solution concepts.” Similar tests were performed by Dinar and 
Howitt [168], who analyzed acceptability and stability of allocation mechanisms in 
environmental control. The Shapley value was confirmed to be a more acceptable 
solution concept than the Nucleolus. The above results show that Cooperative 
Game Theory solution concepts do not describe the actual behavior of players 
accurately. However, they can be applied as the normative ground for cooperation. 

Using the two-system and three-system cases, we demonstrated the 
application of the discussed solution concepts to cost allocation in TEP. We 
considered several parameters of cooperation and, for consistency with the TEP 
approach, decided to formulate cooperative games in terms of costs. The two-
system case study led to a trivial allocation solution, which is called the standard 
solution of a cooperative game. However, for the three-system case, we 
implemented several solution concepts and observed differences in the players’ 
bargaining power. The inequality of players’ positions (caused by their cost 
functions and the topology of interconnections) could undermine the stability of 
cooperation and hinder the development of cross-border TEP projects. We will 
revisit the three-system case study in Chapter 5 to further discuss the coalitional 
stability issues. 
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The Cooperative Game Theory solution concepts presented in this chapter 
constitute our main tool for modeling and analyzing cooperation on cross-border 
power interconnection projects. In the following chapters, we will address the issues 
of Cooperative Game Theory application related to incomplete information, 
manipulability of allocation rules, and ex-post game-theoretic analysis. Finally, we 
will examine a real-world case study of potential power interconnections in 
Northeast Asia.  
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Chapter 5 

 

Strategic Behavior and Manipulability of 

Allocation Mechanisms 

One bad move nullifies forty good ones. 

- I. A. Horowitz 
American grandmaster 

 
The discussed solution concepts enable allocating the cost of a TEP project 

among power systems while satisfying desired properties, such as efficiency, 
individual and coalitional rationality. However, the allocation mechanisms based 
on Cooperative Game Theory has several rough assumptions, which limit their 
potential applicability in real-world projects. First, it is assumed that cooperation 
happens under perfect information, i.e., the information on power demands and 
cost functions is available to all players (as well as to regulatory or coordinating 
entities, if any). Moreover, it is supposed that players reveal their true values of 
power demand and cost functions. Unfortunately, the information may be only 
partially accessible, and self-interested participants may not respond truthfully. 
The strategic behavior of such players would lead to manipulations of the allocation 
mechanism, which eventually degrade the overall efficiency of cooperation. 

Second, Cooperative Game Theory solution concepts are commonly used in 
an ex-post manner. The optimization of planning decisions is separated from the 
allocation mechanisms, which require only a characteristic function as an input. 
Such an approach allocates the value of cooperation over the optimal expansion 
plan. However, it is unable to identify suboptimal plans where additional 
requirements of players are satisfied, and a desirable level of stability is guaranteed. 

In this chapter, we discuss the manipulability issues of allocation 
mechanisms and their influence on cross-border expansion planning. Then, in 
Chapter 6, we will introduce a bilevel TEP model that incorporates Cooperative 
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Game Theory principles and allows identifying suboptimal solutions with a 
predefined level of cooperation stability. We will also discuss how the proposed 
model can be used for developing strategyproof allocation mechanisms where 
players would have incentives to reveal their private information truthfully. 

 

5.1 Background of Algorithmic Game Theory and 
Algorithmic Mechanism Design 

The idea that an allocation mechanism could be manipulated by players 
because of their personal interest has been formulated in the last century and 
thoroughly studied in Game Theory and economics. The concept of 
strategyproofness was introduced to describe games where a dominant (optimal) 
strategy for every player is to reveal his private information [169]. Several decision 
rules were proved to be strategyproof. For example, the majority voting system 
implies that players submit their votes truthfully to select the desired decision 
among alternatives. There exists no strategy to manipulate the decision rule by 
misreporting the players’ preferences. The system is, therefore, strategyproof. 
Other examples of strategyproof mechanisms include the second-price auction 
(Vickrey auction) and the Vickrey-Clarke-Groves (VCG) mechanism [169]. 
Unfortunately, it was discovered that most of the allocation rules are not 
strategyproof: revealing private information is not a dominant strategy for every 
player in a cooperative game. The notable contribution was made by Thomson 
[170]–[172], who investigated how unilateral misrepresentation of information 
affects the allocation of value under different mechanisms. It was demonstrated 
that if more than one player attempt to manipulate, the resulting cooperative game 
transforms into a manipulation game, which outcomes can be analyzed by 
calculating the equilibrium allocation solutions. Unfortunately, such manipulations 
not only affect the allocation of value among players but also degrade the overall 
efficiency of cooperation. This effect of players’ selfish behavior is often referred to 
as the price of anarchy or performance degradation. 

To better understand the interactions among players in a strategic 
environment and develop strategyproof mechanisms, the new fields of study 
emerged at the intersection of Game Theory, economics, and computer science: 
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Algorithmic Game Theory and Algorithmic Mechanism Design. While the former 
area focuses on implementing existing algorithms and analyzing game properties 
(equilibria solutions, the price of anarchy, best-response dynamics), the latter 
designs games with desired game-theoretic and algorithmic properties. It is worth 
mentioning the contribution by Nisan [173], [169], who studied algorithms for self-
interested participants and introduced the term Algorithmic Mechanism Design. 
The essence of the designed mechanisms is to ensure that a reasonable social choice 
would be achieved if all participants (called agents) act rationally in a game-
theoretic sense. Algorithmic Mechanism Design has been implemented in various 
studies, which include auctions, markets, routing games, resource allocation, 
network formation games, and scheduling problems. In [174], Grosu and 
Chronopoulos presented an Algorithmic Mechanism Design for load balancing in 
distributed systems. A computational grid with selfish agents (computers) was 
considered, where each agent was supposed to misreport information on its 
processing rate to get additional payment. The authors proved that the optimal 
allocation algorithm can be used with the truthful payment scheme and analyzed 
performance degradation and fairness index under the proposed mechanism. 

However, to the best of the author’s knowledge, no work has been done to 
implement manipulability analysis and Algorithmic Mechanism Design in power 
systems research and transmission expansion planning. To complement the 
developed approach of cross-border expansion planning and cost allocation, we 
illustrate the nature of possible manipulations and discuss ways of preventing them. 
 

5.2 The Two-System Case Study - Manipulability Analysis 

To give a clear insight into the manipulation incentives of players in TEP 
projects, we start our analysis with the two-system case study first introduced in 
Chapter 3. The detailed information on power systems’ data and the integration 
of the electricity markets is given in Tables 3.1, 3.2 and Figure 3.2. The possible 
allocation solutions are presented in Table 4.1. As discussed earlier, two-player 
games have not many allocation solutions to choose from. Both the Shapley value 
and the Nucleolus coincide at the single imputation, which is called the standard 
solution of the game. This solution splits the worth of cooperation in halves among 
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the players, as defined in (4.33). In this section, we suppose that the two power 
systems will use the standard solution of the game as a cost allocation rule for the 
TEP project. 

The question therefore is, what happens if one of the systems (or both of 
them) behave strategically and declare its supply cost function untruthfully? We 
visualize such manipulations in Figure 5.1, where purple dashed lines depict the 
declared functions that deviate from the true functions represented by the solid 
black lines. With no manipulations, the systems achieve a cost reduction from 
Ca+Cb to Ca+Ca'+Cb' (which is equivalent to Cb''-Ca') and share it equally 
using the allocation rule. This procedure allows estimating the payment from 
System B to System A that compensates for the increase in generation cost and 
provides the share of the total savings. 

However, being a power exporter, System A may declare a higher cost 
function when agreeing to participate in the project and follow the allocation rule. 
In this case, the true benefits of System A would contain the two components. 
First, it would be allocated a share of the total savings estimated according to the 
revealed information. We call this component the revealed savings since all the 
participants are aware of this value. When increasing the declared cost function, 
System A decreases the total revealed savings and makes the project seem less 
efficient. Fewer savings become shared among the players. But, System A has the 
second component, which we call internal or unrevealed savings. This is the 
difference between the declared and true costs of the exported power. We illustrate 
the unrevealed savings as purple area, Da, in Figure 5.1. Thus, while physically 
exporting the same amount of power, System A may shift the distribution of 
savings because of the significant increase in the unrevealed component. As a power 
importer, System B has the opposite incentives to manipulate the allocation rule. 
It may declare a lower cost function and pay less for the imported power because 
of the unrevealed savings, Db. 

Based on the TEP model (3.1)-(3.5) and the standard allocation solution 
(4.33), we carried out a series of simulations for the two-system case assuming that 
one or both of the players behave strategically by misreporting the information on 
their cost functions. For simplicity, we consider deviations in the constant parts of 
the functions presented in Table 2.1 in the range of ±10 $/MWh. The influence of 
the manipulations on the allocation of savings is visualized in Figure 5.2. 
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Figure 5.1: Supply function manipulations in the two-system case. 
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a)  

b)  

c)  
Figure 5.2: The effect of the cost function manipulations on savings allocation in 
the two-system case: a) unilateral manipulation by System A; b) unilateral 
manipulation by System B; c) simultaneous manipulations by both systems in their 
beneficial directions. 
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For each of the manipulations, we tracked the actual savings of players as 
well as their revealed and unrevealed components. Figures 5.2 (a) and (b) show 
that an increase in the unrevealed component (dashed lines) outweighs the decline 
in the revealed savings allocation. Thus, for each of the systems, there exist a 
beneficial direction of manipulation that leads to an increase in the system’s actual 
savings. We denote these directions by the colored arrows at the points of no 
deviation. It is worth mentioning that in case only one of the systems manipulating, 
the actual total savings do not change in the considered range of deviations. This 
signifies that the same amount of power is being traded through the 
interconnection. The expansion plan remains optimal, while the allocation of actual 
savings changes due to the manipulations. However, simultaneous cost function 
manipulations by both systems could lead to suboptimal expansion plans with 
reduced transmission capacity and actual savings, as shown in Figure 5.2 (c). It is 
also seen that if manipulating in the same range, both systems remain in equal 
positions. Their actual savings do not change, while more savings become 
unrevealed. 

The presented manipulability analysis for the two-system case shows that 
even in bilateral cooperation on power interconnection projects, participants have 
incentives to manipulate the allocation rule. The identified beneficial directions of 
manipulation have a clear economic interpretation: exporters try to increase the 
contract price, whereas importers pretend to have lower costs. Unfortunately, such 
manipulations can lead to an inconsistent distribution of savings and efficiency 
degradation of cooperation on cross-border expansion planning. 
 

5.3 The Three-System Case Study - Manipulability Analysis 

We repeat the manipulability analysis for the three-system case to examine 
incentives to manipulate cost functions in projects with more than two players 
involved in a transmission expansion plan. The case was introduced and thoroughly 
analyzed in Section 4.3.2. It was estimated that Systems A and B (the power 
exporter and importer) are the most useful participants of cooperation, who are 
allocated the greater share of the total savings. We also analyzed the maximum 
surpluses among the players and found that these two systems have the prevailing 
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position in cooperation with higher bargaining power. System C, however, turns 
out to be a transfer participant, who is supposed to transmit cheaper power from 
System A through lines 2 and 3 to System B. It is, therefore, a less useful 
participant with a low share of the total savings and low bargaining power. 

We now perform the simulations of possible deviations in the declared cost 
functions and estimate the beneficial manipulation directions for each of the 
systems. We again consider deviations in the constant parts of the functions 
(presented in Table 4.2) in the range of ±10 $/MWh. The Shapley value is 
considered as the allocation rule that players agreed to use in the project. The 
effect of the manipulations is illustrated in Figure 5.3. 

It is seen that System A and B have incentives to manipulate their cost 
functions due to the significant increase in the unrevealed component of savings 
depicted by the dashed lines in Figure 5.3 (a), (b). We denote the beneficial 
directions of the manipulation by the colored arrows: System A pretends to have 
a higher cost function, while System B declares a lower cost. Regarding System C, 
it has no room for cost function manipulation at all, as shown in Figure 5.3 (c). 
Because of its interim position in the electricity trading, System C neither exports 
nor imports power in the grand coalition. It, therefore, has no unrevealed 
component of savings and cannot successfully manipulate the allocation rule. Any 
cost deviation by System C would cause a decline in its efficiency for the project 
and a subsequent decline in the allocation of the total revealed savings. Moreover, 
a significant deviation may lead to a situation where System C would import power 
at a higher price, harming its own interest (the decline in the blue curves at the 
right part of the figure). We can state that the reasonable strategy for players in 
such interim positions is not to manipulate the allocation rule and report their 
information truthfully. 
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a)  

b)  

c)  
Figure 5.3: The effect of the cost function manipulations on savings allocation in 
the three-system case: a) unilateral manipulation by System A; b) unilateral 
manipulation by System B; c) unilateral manipulation by System C. 
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We also modeled simultaneous manipulation by all the participants. It was 
supposed that every player tries to manipulate cost function in its own beneficial 
direction. System C was declaring true information not to bear additional losses. 
We found that Systems A and B can successfully manipulate the allocation rule 
and increase their shares of savings, whereas System C gradually loses its influence 
in the project. However, beyond a certain range of deviations, the actual total 
savings of cooperation start declining, which signifies that the transmission plan 
becomes suboptimal with less power traded among the systems. 

The presented examples of manipulations show that depending on the 
topology of power interconnections and position in electricity trading, there always 
would be some players with incentives to manipulate the allocation rule. Major 
power exporters and importers have the upper hand in such manipulations because 
of the wider range of possible deviations. It is worth mentioning that all of the 
discussed solution concepts (the Shapley value, the Nucleolus, and equal sharing) 
fail to prevent the strategic behavior of players and stimulate them to report 
information truthfully. This makes the implementation of the Cooperative Game 
Theory concepts in projects of cross-border TEP controversial. 
 

5.4 Equilibrium Analysis of Manipulation Games 

As demonstrated in the previous sections, one or several players can have 
beneficial strategies to manipulate the allocation rule. In such cases, the players 
compete over the shares of savings while cooperating under the allocation 
mechanism. The resulting game transforms into a manipulation game, which can 
be studied using the equilibrium analysis [170]–[172]. In this section, we discuss the 
fundamentals of equilibrium models and their applications in power systems. We 
then perform the equilibrium analysis of manipulations for the two-system case 
study and formulate directions for further research. 

Many economic and engineering problems involve individual participants, 
such as companies, investors, regulators, etc. Different optimization models have 
been proposed to capture the individual interests and behavior of the parties. When 
the outcome of a participant depends on other participants’ decisions, the problem 
can be described using game-theoretic equilibrium concepts. One of the main 
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concepts is Nash equilibrium [175], which provides solutions to the simultaneous 
optimization of several interrelated problems. Nash Equilibrium has been used in 
numerous applications to capture the strategic behavior of individual players in a 
competitive environment. Many economic studies exploited Nash equilibrium to 
analyze interactions between market participants and market regulators. 
Depending on the competition assumptions, the market Nash equilibrium can be 
classified into Cournot equilibrium (participants use output quantities as strategic 
variables), Bertrand equilibrium (participants use prices as strategic variables), and 
supply function equilibrium (participants submit bids in both price and quantity). 

Equilibrium models also became popular in power systems research. 
Multiple equilibrium-based approaches have been proposed to analyze electricity 
markets [176]. One of the pioneering works on supply function equilibrium models 
for electricity markets was done by Green and Newbery [177], who analyzed 
competition in the British electricity spot market. The subsequent works 
substantially improved the equilibrium models. For example, in [178], Berry et al. 
examined the effects of network structure on the market power. Baldick et al. [179] 
considered linear supply function equilibrium in electricity markets. Barroso et al. 
[180] studied strategic bidding in short-term electricity markets and suggested 
finding the Nash equilibrium through a binary expansion approach. Equilibrium 
models were used to analyze the multi-stage and hierarchical decision making in 
power systems [181]. Such models extensively relied on MPEC and EPEC 
formulations. The multi-stage market equilibrium can be classified into Stackelberg 
equilibrium, multiple-leader-multiple-follower equilibrium, and generalized 
hierarchical equilibrium. It should be noted that equilibrium models of electricity 
markets are generally hard to solve for realistic large power systems. In this regard, 
new algorithms are being developed to effectively find Nash equilibria in electricity 
markets. For example, in the recent study [182], Fanzeres et al. proposed a column-
and-constraint generation algorithm for finding market Nash equilibria in large-
scale systems. 

We see that significant progress has been achieved in developing equilibrium 
models for power system analysis. Similar models can be formulated to analyze the 
manipulability of allocation mechanisms. For example, each player could have a 
declared cost function as a strategic variable. Then, the players try to minimize 
their true costs (or maximize their surpluses) subject to the expansion plan and 
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the allocation mechanism. Such a formulation assumes that each player responds 
rationally to the information revealed by other players as if they are telling the 
truth. Moreover, it is assumed that every player predicts the expansion plan and 
realizes that power lines will not be built without sufficient benefits revealed. We 
consider the development of equilibrium models for manipulation games the 
challenging task that requires additional research and goes beyond the current 
thesis. Therefore, in this section, we focus on the two-system case study and 
perform the equilibrium analysis of players’ cost function deviations. This allows 
us to shed light on possible manipulation strategies in TEP. 

Namely, we consider 16 cost deviations by System A and 16 deviations by 
System B, which results in 289 strategies. The players deviate in their beneficial 
directions: System A can increase its declared cost, System B can declare a lower 
cost function. The standard solution for two-player games is selected as the 
allocation rule. We visualize the payoff matrix of the manipulation game in 
Figure 5.4. The values of payoffs correspond to the cost savings. Thus, higher 
positive payoffs denote beneficial strategies for players. The grayscale colormap 
indicates the true total cost of the systems. It is seen that with moderate cost 
deviations, the transmission plan remains optimal, with a total cost of 39,450 $/h. 
The high level of manipulations can increase the cost, which means that the power 
line is built with less capacity or not built at all. We found four equilibria among 
the manipulation strategies that we depict as black boxes. At these solutions, 
neither of the players would like to deviate and select another strategy. 
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Figure 5.4: Equilibrium analysis of manipulations in the two-system case study. 
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Interestingly, the equilibria are located near the strategies that cause a slight 
decrease in the overall efficiency of the project. We repeated the simulation for 
6 400 strategies in the same range of cost deviations and found that, indeed, the 
equilibria are right on the brink of the optimal transmission investment. These 
strategies correspond to cooperative games with almost zero savings revealed. 
Further cost deviations will result in suboptimal planning solutions with less 
transmission capacity.12 The equilibrium analysis shows that, under the current 
manipulation game formulation and TEP assumptions, players would not have 
incentives to harm the overall efficiency of the transmission project while 
manipulating their cost functions. The resulting expansion plan would remain 
optimal or near-optimal. However, the main problem of such manipulations lies in 
the fact that very few savings of cooperation will be revealed. Transmission projects 
with low profitability can be considered economically or politically unacceptable. 

The presented equilibrium analysis is by no means complete. More questions 
need to be addressed. What are the equilibria in manipulation games with three 
systems, n systems? How different Cooperative Game Theory solution concepts 
affect players’ strategies? What metrics should be used to describe and compare 
manipulations equilibria in different games? What feedback should the equilibria 
give to the design of TEP models and allocation mechanisms? We consider these 
questions worth studying to estimate the applicability of Cooperative Game Theory 
in TEP projects and develop strategyproof mechanisms of cooperation. 

 

5.5 Summary and Conclusions 

In this chapter, we highlighted the issues related to players’ strategic 
behavior and manipulability of allocation rules. The need for giving players 
incentives to report their information truthfully led to the development of 
strategyproof mechanisms, which are the research subject of Algorithmic 
Mechanism Design. The lack of strategyproofness could lead to manipulations by 
players and nullify the useful properties of a cooperation mechanism. Through a 
series of simulations, we have demonstrated that cooperation in TEP based on 

                                                 
12 Note that the line comes for free in our case study. Without this assumption, players would have 
fewer beneficial strategies since the revealed saving must cover the line's investment cost. 
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Cooperative Game Theory solution concepts is prone to manipulations. We have 
also analyzed the incentives of players depending on their positions in electricity 
trading. The key insight is that power exporters might declare higher cost functions 
than the real ones, while power importers might do the opposite. Unfortunately, 
such cost deviations can lead to an inconsistent distribution of savings and 
efficiency degradation in cooperation on cross-border expansion planning. The 
equilibrium analysis performed showed that players would not have incentives to 
harm the overall efficiency of the transmission project while manipulating their 
cost functions. However, the main problem of such manipulations lies in the fact 
that very few savings of cooperation will be revealed. More advanced equilibrium 
models are needed to estimate the applicability of Cooperative Game Theory in 
TEP projects and develop strategyproof mechanisms of cooperation.  

In the following chapter, we will introduce the TEP model that incorporates 
Cooperative Game Theory principles into the planning algorithm. It enables 
making planning decisions in an anticipating manner to reach the predefined 
properties of cooperation over an expansion plan. We then discuss how this 
approach can be used to prevent manipulations in cross-border TEP projects. 



123 

Chapter 6 

 

Incorporating Cooperative Game Theory 

Principles into the Transmission Expansion 

Planning Algorithm 

When you see a good move,  
look for a better one. 

- Emanuel Lasker 
World сhess сhampion 1894-1921 

 
As identified by the citation network analysis in Chapter 2, one of the major 

drawbacks of Cooperative Game Theory applications in power systems research is 
that the solution concepts are usually implemented in an ex-post analysis. In 
expansion planning, first, the optimal transmission plan is identified using 
mathematical programming. Then, a cooperative game is formulated with a 
characteristic function representing expansion plans of possible coalitions. 
Depending on the coalitional structure and the characteristic function of the game, 
the allocation solutions are derived using the discussed concepts. In this manner, 
it is possible to suggest a mechanism for allocating costs and savings of the optimal 
expansion plan among the participants. As demonstrated in Section 4.3.2, it is also 
possible to estimate the stability of cooperation and bargaining power of players. 
However, some participants may have additional expectations or requirements on 
their minimal share of benefits or levels of usefulness in the coalition. A group of 
players (and regulatory or coordinating entities, if any) may also want to reach a 
cooperation with a desired level of stability. For some regions, energy cooperation 
projects with a severe imbalance in parties’ positions may be considered unreliable 
or politically unacceptable. Finally, some power interconnection projects could lead 
to nonconvex cooperative games with small or even empty Core, with no rational 
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allocation solutions. In such cases, the approach of finding the optimal expansion 
plan may not lead to the formation of the grand coalition and the establishment of 
regional energy cooperation. 

To guarantee a predefined level of stability in cooperation, we suggest 
incorporating Cooperative Game Theory principles into the TEP algorithm. Such 
an approach can identify optimal planning decisions in an anticipating manner, 
subject to desired properties of a resulting cooperative game. The key point is to 
include Cooperative Game Theory principles into the TEP itself, rather than 
thinking of it as an ex-post analysis step. In the following sections, we describe the 
mathematical formulation of the model and provide an example of a TEP project 
where the proposed approach might be necessary to use. We then discuss how the 
inclusion of Cooperative Game Theory principles into TEP algorithms could be 
used for preventing manipulations and developing strategyproof mechanisms of 
cooperation. 

 

6.1 Bilevel TEP Approach: Model Formulation 

Before introducing the bilevel TEP formulation, it is important to state the 
economic structure of the problem that we are solving. Our main goal is to capture 
the effect of transmission planning decisions on the stability of cooperation over 
the project. This task can be broken into the following two stages. First, the TEP 
model is used to identify the optimal expansion plans for the grand coalition and 
all the subcoalitions. A cooperative game is formulated based on the optimized 
costs of coalitions. Second, a metric of coalitional stability is selected to evaluate 
the cooperative game. Then, a coordinating variable is introduced to modify the 
expansion decisions at the first stage, subject to the coalitional stability constraints 
at the second stage. In this study, we select maximum line capacity as the 
coordinating variable. Thus, we perform a topology control of interconnections to 
achieve a desired level of coalitional stability. More detailed explanations will be 
given in the following sections. We now proceed to the model formulation. 

To incorporate Cooperative Game Theory principles into the TEP 
algorithm, we rely on complementarity modeling [37] and formulate our 
optimization model as a bilevel problem. Specifically, we consider the optimization 
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of planning decisions constrained by the maximum surpluses among the players. 
Since the estimation of surpluses is itself a collection of optimization problems 
(4.28)-(4.31), the resulting problem can be characterized as a mathematical 
program with equilibrium constraints (MPEC). We first reformulate the TEP 
model (3.1)-(3.5) using the corresponding Karush-Kuhn-Tucker (KKT) conditions, 
as shown below. Note that for convex problems, KKT conditions are both necessary 
and sufficient optimality conditions.13 [183]–[185] [186]–[188] 
 
(௡,௦௖݌)௡ܩܥ݀

௡,௦௖݌݀
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primal feasibility constraints: (3.2)-(3.5)   

                                                 
13 This is the reason why we keep the TEP model (3.1)-(3.5) linear. KKT conditions can be applied 
only to models with continuously differentiable convex functions. In the case of nonconvexities such 
as binary variables representing investment decisions, the bilevel model reformulation based on 
KKT conditions does not guarantee that the global optimum will be found. Similar issues appear 
in electricity market pricing with unit commitment and economic dispatch, where integer decision 
variables make the problem nonconvex. Multiple studies relied on the convex hull formulation to 
overcome the issues of pricing under nonconvexity [183]–[185]. Solving bilevel optimization programs 
with nonconvex lower levels is also a challenging task that requires using constraint smoothing 
algorithms and heuristics [186]–[188]. 
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Constraints (6.1)-(6.3) are the stationarity conditions that state that the 
gradients of the Lagrangian of the initial problem (3.1)-(3.5) should be zero at the 
optimal solution. Inequalities (6.4)-(6.6) are the dual feasibility conditions, where 

dual variables ߤ௡,௦௖
௣ଵ  and ߤ௡,௦௖

௣ଶ  correspond to the generation output constraints (3.3), 

௟,௦௖ߤ
௙ଵ  and ߤ௟,௦௖

௙ଶ  correspond to the power flow limits (3.4), and ߤ௟,௦௖
ி  relates to the 

maximum line capacity conditions (3.5). The dual variable ߣ௡,௦௖ is associated with 
the nodal power balance constraints (3.2). Equalities (6.7)-(6.11) state the 
complementary slackness conditions. Unfortunately, these conditions make the 
optimization problem nonlinear and nonconvex. We use the Fortuny-Amat and 
McCarl linearization [189] (also known as the Big-M approach) to transform the 
problem into a MIP. The primal feasibility conditions are added at the end of the 
formulation as constraints (3.2)-(3.5) from the initial problem. All of the mentioned 
conditions are stated for every possible scenario of cooperation (coalition of 
players). In this manner, we add all of the expansion problems simultaneously to 
the optimization model, which allows us to explicitly derive a characteristic 
function of a resulting cooperative game. We should highlight that a modification 
has been added to the KKT conditions in constraints (6.11) and (6.12) by 
introducing an interim capacity variable ܨ௟

௠௔௫ᇱ. This variable serves as a 
coordinator among TEP decisions in different scenarios of cooperation. Namely, it 
forbids changing lines capacity limits in one of the scenarios while not applying the 
same limits to other scenarios.14  

                                                 
14 This assumption may seem overly restrictive. We have the following explanations of why the 
same line investment limits must apply to all coalitions. First, in some cases of TEP coordination, 
it would make sense to restrict line capacity limits for subcoalitions (groups of players should not 
build more capacity than in the grand coalition). This would make cooperation in the grand 
coalition more appealing. Second, we want to avoid unreasonable bilevel planning solutions, where 
suboptimal investments would be suggested to reduce the bargaining power of some players. 
Suppose a game where players A and B have much more bargaining power than other players. 
Suppose this happens due to the fact that they can form a very beneficial coalition {A,B} by 
building a line A-B and obtaining significant cost savings. Suppose we want to find a suboptimal 
expansion plan via bilevel game-theoretic modeling where all the players would have equal 
bargaining power. Without the coordinating constraints, it might happen that the new plan would 
suggest overinvestment in line A-B since this makes the coalition {A,B} less profitable. We avoid 
such solutions by using the coordinating capacity variable ܨ௟

௠௔௫ᇱ. This assumption can be 
reconsidered in future research. 
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By formulating the TEP KKT conditions and modifying them, we achieved 
the desired hierarchy in the upper-level of the model: only capacity investment 
decisions can be changed externally. This relationship could be explained in the 
following way. It could happen that game-theoretic restrictions at the lower-level 
force the characteristic function of a cooperative game to change, which means that 
expansion planning decisions of several or all the coalitions should change 
accordingly. In such cases, our formulation allows changing the characteristic 
function solely by tuning the limits of the capacity investment decisions. The 
subsequent expansion planning stays optimal for every scenario of cooperation, 
subject to the interim capacity limits. Without the KKT optimality conditions, it 
is possible to mistakenly obtain meaningless TEP solutions with meaningless power 
flows (in some cases, even directed from nodes with higher electricity prices to 
nodes with lower prices). 

Having defined the equivalent KKT conditions for the TEP problem at the 
upper-level of the model, we now introduce the lower-level restrictions based on 
the Cooperative Game Theory principles. Our goal is to identify expansion plans 
where a certain level of stability and equality among players would be guaranteed. 
For this reason, we exploit the coalitional excess theory and use the maximum 
individual player surplus among players’ surpluses (bilateral threats) as the metric 
of imbalance of players’ positions in cooperation. As discussed in Section 4.2.3, the 
computation of each surplus among a pair of players can be done using the linear 
optimization problem (4.28)-(4.31). However, in the lower-level, we need to define 
all the surpluses among players, which requires solving a series of interrelated 
optimization problems. We again rely on complementarity modeling [37] and 
formulate an equilibrium problem by jointly considering the following KKT 
conditions for problem (4.28)-(4.31). 

 

−1 + ෍ ௜,௝ߤ
௦

௜∈ௌ⊂ே,௝∉ௌ

= 0 ∀݅, ݆   ݅ ≠ ݆ (6.13) 

௜,௝ߤ
௦ ≥ 0 ∀݅, ݆   ݅ ≠ ݆ (6.14) 

௜,௝ߤ
௦ ൭ݏ௜௝ − (ܵ)ݒ + ෍ ௞ݔ

௞∈ௌ

൱ = 0 ∀݅, ݆   ݅ ≠ ݆ (6.15) 

primal feasibility constraints: (4.29)-(4.31)   
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Constraint (6.13) is the stationarity condition with the dual variables ߤ௜,௝
௦  

corresponding to the inequality constraints (4.29) of the initial surplus 
maximization problem. Constraints (6.14) and (6.15) state the dual feasibility and 
complementary slackness conditions. We again use the Fortuny-Amat and McCarl 
linearization [189] to transform the slackness conditions into linear constraints. The 
primal feasibility constraints (4.29)-(4.31) are added at the end of the formulation. 
They contain the coalitional rationality and efficiency conditions and, therefore, 
define the Core of a cooperative game. The characteristic function, ݒ(ܵ), represents 
the costs of the coalitions, which we estimate for each scenario of cooperation using 
subscript “ܿݏ”. The above formulation represents the necessary and sufficient 
optimality conditions for the surplus optimization problem (4.28)-(4.31). It, 
therefore, provides the maximum surpluses among players subject to the 
characteristic function and imputation ݔ(ܰ;  .(ݒ

At this stage, the bilevel TEP model is almost complete. In the upper-level, 
we simultaneously solve TEP problems for all possible scenarios of cooperation. 
Then, the coalitional structure and the characteristic function, ݒ, are derived to 
form a cooperative game. In the lower-level, we impose conditions on the 
cooperative game, stating that the allocation solution must be within the Core of 
the game. We also compute the maximum surpluses among players to evaluate the 
stability of cooperation, subject to the characteristic function and the imputation. 
However, we have not imposed restrictions on the maximum surpluses yet. 
Depending on a case study and preferences of a coordinating entity, maximum 
surpluses for all pairs of players may be limited from below (setting the lower 
bound), from above (setting the upper bound), or equalized. We provide the 
formulations of such restrictions below. 

 

௜௝ݏ ≥ ,݅∀ ݏ ݆   ݅ ≠ ݆ (6.16) 

௜௝ݏ ≤ ,݅∀ ݏ ݆   ݅ ≠ ݆ (6.17) 

௜௝ݏ = ,݅∀ ݏ ݆   ݅ ≠ ݆ (6.18) 
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Now we are ready to summarize the section and provide the complete 
formulation of the bilevel TEP model with incorporated Cooperative Game Theory 
principles. 

 

Min
௣೙,ೞ೎,௙೗,ೞ೎,ி೗,ೞ೎,ி೗
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the upper-level (TEP optimality conditions): (6.1)-(6.12)  

(ܿݏ)ݒ = ෍ (௡,௦௖݌)௡ܩܥ
௡∈ࣨ

∙ ௦௖ߨ
௡ + ෍ ௟,௦௖ܨ ∙ ௟ܫܥ ∙ ௦௖ߨ

௟

௟∈ℒ

ܿݏ∀  ∈  (6.20) ܤ

where ߨ௦௖
௡ = ൜1,      ݂݅ ݊ ∈ ܿݏ

௦௖ߨ , ݁ݏ݅ݓݎℎ݁ݐ݋   ,0
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   ݁ݏ݅ݓݎℎ݁ݐ݋   ,0

the lower-level (optimality conditions of the maximum surpluses  
among players): (6.13)-(6.15) 

 

restrictions of the maximum surpluses: (6.16) or (6.17) or (6.18)  

 
The objective function (6.19) minimizes the investment and operating costs 

for every possible scenario of cooperation (coalition).15 The characteristic function 
of a cooperative game is obtained in (6.20) by collecting the optimized costs of the 
coalitions. For each scenario in the coalitional structure ܤ, we count only the cost 
of generators and lines that can be operated by the players in the coalition. The 
cost of the remaining players is not included in the value of the coalition. Finally, 
the lower-level EP and restrictions of the maximum surpluses are added to the 
formulation. The resulting model is a MILP problem that can be solved within off-
the-shelf solvers such as Gurobi of CPLEX. The model is able to identify expansion 
planning decisions in an anticipating manner, depending on the maximum surpluses 

                                                 
15 Note that the current formulation is similar to a multiobjective optimization problem where each 
coalition has equal weight (importance). By adjusting the weights, it becomes possible to prioritize 
the cost reduction in the grand coalition or coalitions with higher numbers of players. Further 
research is needed to estimate the effects of coalitions prioritization on the performance of the 
bilevel TEP approach. 
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of players in the cooperative game.16 We illustrate the framework of the bilevel 
TEP approach in Figure 6.1. 

 

 

Figure 6.1: The bilevel TEP framework. 
 

  

                                                 
16 We use the term anticipative in a similar way Sauma did in [77], [86]. Sauma suggested 
transmission planning that anticipates its effect on generation investment decisions and market 
clearing outcome. We propose transmission planning that anticipates the cooperative game over the 
expansion plan and evaluates its coalitional stability. Thus, an undesired outcome of cooperation 
can be discovered in advance and avoided by changing transmission investment decisions. 
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We believe that identification of suboptimal (in terms of cost savings) 
expansion planning solutions could be extremely useful in the projects of cross-
border energy cooperation, where a certain level of cooperation stability should be 
guaranteed. In the next section, we introduce a four-system case study and 
illustrate the potential of the developed bilevel TEP approach. 
 

6.2 Bilevel TEP Approach: Simulations and Discussion 

In this section, we present and discuss the results of the bilevel TEP 
approach. First, we design a case study with interconnections between four power 
systems. The case is prepared in a way that the cooperative game is highly 
nonconvex, and players’ positions in cooperation differ significantly. Using this 
case, we illustrate that optimal expansion plans can lead to coalitional stability 
issues. We then implement the developed bilevel approach and find a suboptimal 
transmission expansion plan with the enhanced stability of cooperation. By varying 
game-theoretic constraints, we identify a range of possible suboptimal solutions. 
The impact of the constraints on the coalitional stability and efficiency of expansion 
plans is analyzed. Finally, we discuss possible applications of anticipative planning 
with game-theoretic constraints. 

 

6.2.1 The Four-System Case Study - Anticipative Planning with 
Game-Theoretic Constraints 

To shed more light on the features of the bilevel TEP approach, we 
introduce the four-system case study. The topology of the possible interconnections 
(Figure 6.2) and parameters of the systems (Table 6.1) lead to a highly nonconvex 
cooperative game where certain players could be underestimated in the grand 
coalition. It is assumed that the five power lines with the maximum capacity of 
100 MW each and investment cost 10 $/MWh are a subject of the transmission 
expansion discussion. Unlike the previous cases, we impose additional constraints 
on the generators and limit their outputs to the installed capacities of the systems. 
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Figure 6.2: Model of the four-system case power interconnections. 

 
Table 6.1: The four-system case study data. 

Parameter System A System B System C System D 

Supply 
function 
($/MWh) 

12 + ஺ 13݌0.025 + ஻ 11݌0.03 + ஼ 10݌0.02 +  ஽݌0.01

Power 
demand 
(MW) 

2 300 2 500 1 000 1 000 

Installed 
capacity 
(MW) 

2 400 2 600 1 110 1 110 

 
The single-level TEP model, (3.1)-(3.5), identifies the least-cost expansion 

plan depicted in Figure 6.3 (a). The optimal solution implies maximizing the export 
of the cheaper power from Systems C and D towards System B, which has the 
highest electricity price in the region. This expansion plan leads the cost savings of 
10 475.3 $/h (around 4.1% total cost decrease from 255 975 to 245 499.7 $/h). To 
formulate a cooperative game over the interconnections, 24-1=15 scenarios of 
cooperation (coalitions) must be considered. The resulting game has a nonempty 
Core, which means that cooperation on the optimal expansion plan is theoretically 
possible. We show the allocations by different solution concepts and the initial 
costs of the systems in Table 6.2. 
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a)   b)  

Figure 6.3: TEP solutions for the four-system case: a) the least-cost expansion 
plan; b) a suboptimal plan with equal maximum surpluses among players. 

 
 

Table 6.2: Allocation solutions for the four-system case  
optimal transmission expansion plan. 

Solution concept 
Allocation of costs (savings) ($/h) 

System A System B System C System D 

The Shapley value 92 346.1 
(1 378.9) 

123 062.7 
(3 187.3) 

18 448.8 
(2 551.2) 

11 642 
(3 358) 

The Nucleolus 93 362.3 
(362.7) 

123 802 
(2 448) 

17 772.8 
(3 227.2) 

10 562.5 
(4 437.5) 

Equal sharing 91 106.2 
(2 618.8) 

123 631.2 
(2 618.8) 

18 381.2 
(2 618.8) 

12 381.2 
(2 618.8) 

No cooperation 93 725 
(0) 

126 250 
(0) 

21 000 
(0) 

15 000 
(0) 

 
However, the cooperative game on the optimal expansion plan turns out to 

be nonconvex, which can be verified by the multiple violations of the convexity 
condition (4.3). For example, the marginal contribution by System A to coalition 
{A,C,D} reaches -6 150 $/h (the negative value indicates cost decrease). Its 
contributions to coalitions {A,C} and {A,D} are -2 625 and -3 775 $/h respectively. 

A

DA

B

DB

L4 L5

L1

C

DC

PC

L2 L3

C

PD

PA PB

D

DD

 54.5
 MW

 10
 MW

 10
 MW

 100
 MW

 100
 MW

A

DA

B

DB

L4 L5

L1

C

DC

PC

L2 L3

C

PD

PA PB

D

DD

 100
 MW

 33.8
 MW

 40.5
 MW

 76.2
 MW

 69.5
 MW



134 

But, in the grand coalition, {A,B,C,D}, System A is not such an important player 
and brings only -725.3 $/h of cost reduction. Thus, we face a situation where 
marginal contributions do not grow once more players join the coalitions. This is 
an undesirable condition which may leave some players underestimated. System A 
is a perfect example of such a player. It is a valuable participant of many coalitions: 
it may export power when cooperating with System B or obtain significant cost 
savings while importing power from Systems C and D. Unfortunately, in the grand 
coalition, there is no room for much electricity trading with System A. 

Considering the contributions to all possible coalitions, the Shapley value 
acknowledges the importance of System A and allocates it around 13% of the total 
savings. But, the cooperative game is such a highly nonconvex that the Shapley 
value falls out of the Core. It may not be, therefore, considered as a reasonable 
solution due to the violation of the coalitional rationality condition (4.6). On the 
bright side, the solution by the Nucleolus is guaranteed to be within the Core. It 
satisfies the rationality conditions and allocates System A barely 3.5% of the grand 
coalition’s savings. Even though the nonemptiness of the Core signifies that 
cooperation over the optimal expansion plan is theoretically possible, it is clear 
that there exists a severe imbalance in players’ positions in the cooperation. 
Moreover, as we will show soon, the Core of this game is rather small in volume 
compared to the set of imputations, which is another indicator of possible stability 
issues in cooperation on the project. 

We formally describe the imbalance using the coalitional excess theory and 
analyzing maximum surpluses among the players. Taking the Nucleolus as the 
imputation ݔ(ܰ;  that is a part of the Kernel and the Core, we can evaluate the (ݒ
maximum surpluses for any distinct pair of players, ݏ௜௝(ݔ), as defined in (4.28)-
(4.31). It occurs that the lowest of the surpluses, 362.7 $/h, are the ones related to 
System A: ݏ஻஺, ݏ஼஺, and ݏ஽஺. As discussed in the previous sections, the surpluses in 
cost games can be interpreted as bilateral threats with positive values – the 
subsequent cost increase of a player who executes the threat. Thus, the low values 
of surpluses against System A indicate that other systems would not lose much if 
not cooperating with the system. The threats against other players are less 
reasonable. For example, the maximum surplus of System B over System C, ݏ஻஼, 
equals 964.8 $/h, over System D, ݏ஻஽, is 1 025.1 $/h. 
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To change the situation, we use the bilevel TEP model formulation (6.19)-
(6.20) and impose an additional constraint of equality for all the surpluses among 
the players (6.18). The resulting suboptimal solution is depicted in Figure 6.3 (b). 
According to the new plan, less capacity is allowed to be exported to System B via 
lines 3 and 5. Instead, the cheaper power is transmitted to System A, which in turn 
transfers a share of it to System B. The cost savings decreased to 9 929.8 $/h 
compared to the optimal solution (3.9% cost decrease from 255 975 to 246 045.2 
$/h). But, at the price of the tolerable increase in the total cost, we obtained much 
more balanced cooperation. We show the allocation solutions for the suboptimal 
transmission plan in Table 6.3. Now, the Shapley value and the Nucleolus allocate 
System A 20.7% and 13.7% of the total savings, respectively. The cooperative game 
still violates condition (4.3) and, therefore, is nonconvex. However, the Shapley 
value becomes an element of the Core, which increased in volume significantly. 
Regarding the bilateral threats, we see that all of the surpluses are equal to 1 359.85 
$/h (for the Nucleolus imputation). Under the new expansion plan, there are no 
players who outweigh the others. A multi-bilateral equilibrium has been reached. 

 
Table 6.3: Allocation solutions for the four-system case suboptimal transmission 

expansion plan with the enhanced stability of cooperation. 

Solution concept 
Allocation of costs (savings) ($/h) 

System A System B System C System D 

The Shapley value 91 673.9 
(2 051.1) 

123 684.1 
(2 565.9) 

18 679.7 
(2 320.3) 

12 007.6 
(2 992.4) 

The Nucleolus 92 365.1 
(1 359.9) 

124 080.1 
(2 169.9) 

18 375 
(2 625) 

11 225 
(3 775) 

Equal sharing 91 242.6 
(2 482.4) 

123 767.6 
(2 482.4) 

18 517.6 
(2 482.4) 

12 517.6 
(2 482.4) 

No cooperation 93 725 
(0) 

126 250 
(0) 

21 000 
(0) 

15 000 
(0) 
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6.2.2 Exploration of Suboptimal Transmission Expansion Plans 

The presented suboptimal solution is not the unique one of interest. There 
exist multiple suboptimal expansion plans with multi-bilateral equilibrium. 
Moreover, there may be no need to reach equilibrium. For some problems, it may 
be enough to limit the maximum surpluses among players, therefore, setting a 
desirable range of bilateral threats. We visualize the possible outcomes of the bilevel 
TEP by gradually tuning lower and upper bound constraints of the maximum 
surpluses among the players in (6.16) and (6.17). The influence of these constraints 
on the expansion decisions, savings allocation, maximum surpluses, and changes in 
the total cost are illustrated in Figures 6.4 and 6.6. We also present several 
snapshots of the set of imputations and the Core of the game in Figures 6.5 and 
6.7 to show the evolution of cooperation on possible planning decisions.  
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Figure 6.4: Dependence of the four-system case expansion plan and the cooperative 
game on the lower bound of the maximum surpluses among players. 
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a) b)  

c) d)  
Figure 6.5: The set of imputations and the Core of the cooperative games for the 
four-system case with different lower bounds imposed on the maximum surpluses 
among players ݏ௜௝(ݔ): a) 200 $/h; b) 600 $/h; c) 1000 $/h; d) 1360 $/h. The 
allocation solutions are denoted as follows: S - the Shapley value, N - the Nucleolus, 
E - equal sharing point. 
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We first discuss the changes caused by the lower bound constraints (Figures 
6.4 and 6.5). The general interpretation of such constraints is that we limit the 
differences in players’ surpluses from below. Thus, we seek for solutions where 
everyone has unreasonable threats (with high surplus) against the others. For the 
sake of clarity, we break the range into four regions, as shown in Figure 6.4, and 
give the detailed explanations below: 

 
I. Imposing a lower bound constraint in the range 0 - 362.7 $/h makes 

no changes to the optimal transmission plan resulting from the bilevel 
TEP model (6.19)-(6.20). We observe a static picture of the 
unbalanced cooperative game that is a result of the expansion plan 
presented in Figure 6.3 (a). The Core of this cooperative game is 
small compared to the set of imputations, as shown in Figure 6.5 (a). 
Moreover, the Shapley value (point S) is out of the Core. 

II. While increasing the lower bound of ݏ௜௝(ݔ) and reaching the threshold 
of 362.7 $/h (the lowest surpluses in the game), we start modifying 
the expansion plan to increase the surpluses related to System A. 
One may notice that there is less power allowed to be transferred 
through line 5 to System B. Instead, System A is becoming more 
involved in the cooperation by importing more power through line 4 
and exporting more via line 1. Its importance starts gradually 
growing, as shown by the changes in the savings allocation. In Figure 
6.5 (b), we see the set of imputations and the Core for the expansion 
plan with a lower bound of ݏ௜௝(ݔ) equal 600 $/h, which is within the 
considered range. The Shapley value is still out of the Core. However, 
the Core grew in volume and stretched towards the vertex A. We 
should also mention that the modified set of imputations shrank 
compared to the initial one (the grey dashed tetrahedron). This 
indicates that there are fewer savings to share among the players 
under the suboptimal expansion plan. 

III. The further increase in the lower bound leads to the solutions where 
all pairs of players except Systems B and C are equalized in bilateral 
threats. Figure 6.5 (c) shows that the Core increased even more in 
volume, and the Shapley value became a part of it. Of course, this 
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improvement came at the price of savings decrease and shrinking of 
the set of imputations. 

IV. Finally, when reaching the limit of 1 359.85 $/h, all the surpluses 
among the players become equal. There is no point in further 
increasing the lower bound and searching for less optimal solutions. 
We can state that the expansion plan presented in Figure 6.3 (b) is 
the least-cost solution among all suboptimal plans with multi-
bilateral equilibrium. Figure 6.5 (d) shows that the Core expanded 
significantly. It now contains not only the Shapley value but also the 
equal sharing point. However, the modified cooperative game remains 
nonconvex. 

 
It is also worth highlighting that the modified expansion plan depicted in 

Figure 6.3 (b) does not lead to a trivial cooperative game, with all the players being 
symmetric to each other. To verify this, one may check that the Core is not 
symmetric, and the Shapley value does not allocate the savings equally among the 
players. Thus, the proposed bilevel TEP approach does not aim to set equal 
conditions for all the participants. Instead, it seeks for solutions with no significant 
imbalance in players’ bilateral surpluses, effectively expanding the bargaining space 
and making the cooperation more stable. 
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Figure 6.6: Dependence of the four-system case expansion plan and the cooperative 
game on the upper bound of the maximum surpluses among players. 
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a) b)  

c) d)  
Figure 6.7: The set of imputations and the Core of the cooperative games for the 
four-system case with different upper bounds imposed on the maximum surpluses 
among players ݏ௜௝(ݔ): a) 200 $/h; b) 600 $/h; c) 900 $/h; d) 1026 $/h. The 
allocation solutions are denoted as follows: S - the Shapley value, N - the Nucleolus, 
E - equal sharing point. 
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By varying the lower bound of the maximum surpluses among the players, 
we demonstrated how the optimal solution could be modified to reach the least-
cost alternative with a multi-bilateral equilibrium. However, we did not cover the 
entire range of possible suboptimal solutions. Another approach of identifying 
suboptimal plans lies in varying the upper bound of surpluses. By limiting the 
bilateral threats from above, it is possible to model a range of interim expansion 
decisions from the case of no cooperation to the optimal expansion plan. We 
illustrate the changes in the expansion decisions and the subsequent cooperative 
games in Figures 6.6 and 6.7. The evolution of the planning decisions is more 
complicated than in the case of tuning the lower bound of ݏ௜௝(ݔ). We identify the 
five distinct regions and provide the explanations below: 

 
I. The first region of the solutions starts with the case of no cooperation: 

no lines are allowed to be built to nullify players’ surpluses. With the 
increase in the upper bound, more capacity is added to interconnect 
the systems. The least effective expansion decision, power export 
from System A to B via line 1, is made to keep the players in a multi-
bilateral equilibrium while minimizing the total cost. As shown in 
Figure 6.7 (a), the Shapley value belongs to the Core. However, the 
set of imputations contracted dramatically due to the drop in the 
cost savings. It is also worth mentioning that even such an extremely 
suboptimal expansion plan does not lead to a convex game. There 
still exist multiple violations of the convexity condition (4.3), 
meaning that players bring more contribution to subcoalitions than 
to the grand coalition. 

II. With a further increase in the upper bound of players’ surpluses, it 
becomes not optimal to keep the expansion plan from the previous 
region. Instead, it is possible to utilize more efficient interconnections: 
lines 2, 3, and 4. Bilateral threats among the players are kept equal, 
and the Shapley value is still a part of the Core. By looking at the 
shape of the Core in Figure 6.7 (b), we may notice that the structure 
of the cooperative game changed cardinally. The Core shifted towards 
the A vertex, making System A one of the most valuable players in 
the cooperation, with the total savings of 33% allocated by both the 



144 

Shapley value and the Nucleolus. Even though we saw that System 
A is the less valuable player in the cooperation on the optimal 
expansion plan, its position may change significantly if additional 
constraints are imposed on the planning decisions. As follows from 
Figure 6.6, there are multiple shifts in the planning paradigm that 
provide a “menu” of possible suboptimal solutions subject to the 
limits on players’ surpluses. 

III. In this region, the surpluses among the players start diverging. The 
first deviation is observed in the surpluses related to System A: ݏ஻஺, 
 ஽஺. The expansion decisions start approaching the optimalݏ ஼஺, andݏ
expansion plan. Therefore, the position of System A deteriorates. 

IV. Another shift in the planning decisions leads to cooperative games 
that resemble the cooperation on the optimal expansion plan. 
Figure 6.7 (c) shows that the Core is located far from the A vertex, 
and the Shapley almost falls out of it. The difference in surpluses 
among the players diverged even further. 

V. With the upper bound higher than 1 025.1 $/h, we impose no 
additional restrictions on the TEP model. Thus, we observe the 
optimal expansion plan with a significant imbalance in players’ 
positions. The shape of the Core depicted in Figure 6.7 (d) is identical 
to the one in Figure 6.5 (a). 

 

6.2.3 Potential Applications 

By showing the range of possible expansion decisions depending on the lower 
and upper bounds of players’ surpluses, we demonstrated how many of the 
reasonable suboptimal transmission plans might be revealed and justified. The 
question arises, what is the possible implementation and justification of the bilevel 
TEP approach for real-world projects? After a series of discussions, we came with 
the three following explanations of why the developed approach should be useful 
in reality: 
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 First, the restriction of player’s surpluses in energy cooperation 
reflects the sanctions approach, where an international entity may be 
willing to diversify its energy supply by limiting export from certain 
counterparts. This issue is especially acute in natural gas supply. For 
example, the works [126], [190]–[193] highlighted the bargaining 
power imbalance in the Eurasian natural gas supply chain. The 
proposed bilevel TEP approach can be used to wisely select sanctions 
while minimizing the overall cost of a project. 

 Second, the bilevel planning approach can be used by the World Bank 
and other funding institutions and agencies in the assessment of 
projects and negotiations. A preference could be given to projects 
with an acceptable level of coalitional stability. In other projects, a 
compromise between stability and economic efficiency could be found. 
A project that requires giving up many benefits to be coalitionally 
stable would be refused. 

 Third, the revealed suboptimal transmission plans may reflect 
decentralized solutions of a bargaining process over the expansion 
project. The idea of imposing limits on bilateral threats captures the 
psychological behavior of players, who may not be willing to 
participate if being not valuable enough in the coalition. Therefore, 
a different expansion plan may be agreed upon to take into account 
the expectations of all participants. 

 
The above justification for the suboptimal planning solutions is meaningful 

under the assumption that the players are somehow obliged to form the grand 
coalition. Then, it becomes possible to suggest a compromise between the economic 
efficiency of a transmission plan and the stability of cooperation. A suboptimal 
plan with a multi-bilateral equilibrium, such as the one depicted in Figure 6.3 (b), 
may be considered. However, if acting rationally without additional obligations, 
the players may not necessarily form the grand coalition. A suboptimal expansion 
plan may not be incentive-compatible for certain players. In the mentioned 
example, the obtained allocation solutions for the cooperation on the suboptimal 
plan (the Shapley value, the Nucleolus, and the equal sharing point) belong to the 
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modified Core, as shown in Figure 6.5 (d). But, all of these solutions fall out of the 
initial Core related to the optimal transmission plan, violating the coalitional 
rationality constraint (4.6) for systems B, C, and D. Thus, instead of approving 
the suboptimal transmission plan, these systems would form the subcoalition 
{B,C,D} where they can achieve higher cost savings. 

To avoid such outcomes, additional constraints should be imposed on the 
bilevel TEP model to force the allocation solution for a modified expansion plan 
stay within the Core of the initial game over the optimal plan. We introduce this 
rationality-preserving constraint for systems B, C, and D by stating that the 
systems must be allocated no more cost in the grand coalition than they can obtain 
on their own without external restrictions and obligations: ݔ஻ + ஼ݔ + ஽ݔ ≤
,ܤ})ᇱݒ ,ܥ  In numbers, coalition {B,C,D} should be allocated no more than .({ܦ
152 500 $/h of cost, which is equivalent to allocating no less than 9 750 $/h of 
savings. Under the new constraints, the Core cannot expand as vastly as it was 
shown in Figure 6.5. The lower bound of the maximum surpluses can be increased 
only up to 606.8 $/h. At this point, we obtain a suboptimal expansion plan with 
the allocation solution (in this case, the Nucleolus) lying at the border of the initial 
Core. We visualize the impact of the rationality-preserving constraint by combining 
the sets of imputations for the initial and modified cooperative games in Figure 6.8. 
It is seen that the Core of the modified cooperative game (highlighted blue) 
expanded towards the A vertex. But, its expansion was limited by the new 
Nucleolus solution (point N2), which must stay within the initial Core (highlighted 
grey). Such an expansion plan may improve the stability of the cooperation by 
enlarging the Core of the game while satisfying the initial rationality constraints. 
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a)  

b)  
Figure 6.8: The combined sets of imputations and the Cores for the four-system 
case cooperative game on the initial optimal expansion plan (grey) and the modified 
cooperative game on the suboptimal plan with the lower bound of maximum 
surpluses 606.8 $/h (blue): a) the four-player set of imputations in the barycentric 
coordinates; b) projection onto the A-D-C set. Index “1” of the allocation solutions 
relates to the optimal plan, index “2” - to the suboptimal one. 
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This section illustrated the idea of embedding the Cooperative Game Theory 
principles into TEP algorithms, which is the novel contribution by the thesis. 
Adjustment of the investment decisions in an anticipating manner depending on 
the players’ positions in cooperation has never been suggested nor implemented in 
power systems research. The proposed bilevel modeling approach paves the way 
for new implementations of the mechanism design and algorithmic game theory in 
power systems and other fields. While highlighting the usefulness of the examined 
bilevel TEP model and the identified suboptimal solutions, we acknowledge that 
further research is needed on the allocation mechanisms. It is necessary to reach 
the incentive-compatible solutions by taking into account both the cooperative and 
noncooperative nature of negotiations over cross-border transmission expansion 
projects. In this regard, we consider the recently formulated class of biform games 
[194] as a promising tool for addressing cooperating and competition issues in 
planning and operation tasks.17 Finally, more effort is needed to develop electricity 
trading mechanisms consistent with the Cooperative Game Theory framework. The 
coordinated multilateral trading [195] or other emerging operating paradigms could 
be implemented to allocate savings and ensure the stability of cooperation while 
preserving efficient competition among market participants. 
 

6.3 Discussion of Strategyproof TEP Mechanisms 

In this section, we discuss how the proposed bilevel TEP model can be useful 
for developing strategyproof mechanisms of cooperation. We again perform the 
manipulability analysis for the three-system case study. In Section 5.3, we 
demonstrated that Systems A and B could successfully manipulate the allocation 
rule in a wide range of cost deviations. In this section, we impose additional game-
theoretic constraints on the lower-level of the TEP model. Namely, we restrict the 
maximum surpluses among the players depending on the total savings of 
cooperation.  

                                                 
17 In [194], Brandenburger and Stuart proposed a hybrid noncooperative-cooperative game model, 
which they called a biform game. The idea behind biform games is to describe possible business 
strategies in a competitive environment that precede cooperation among players. For example, a 
supplier can decide on which of cooperating companies to supply with a branded product. Such 
games can be analyzed using equilibrium analysis and bilevel programming. 
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The total savings, ܶܵ, are estimated as the difference between the sum of 
players’ individual costs and the cost of the grand coalition, ݒ(ܰ), as stated by the 
following equation. 

 

ܶܵ = ෍ (݇)ݒ
௞∈ே

−  (6.21)  (ܰ)ݒ

 
In the optimal expansion plan (described in Section 4.3.2), the total savings 

of cooperation amounted to 4 800 $/h. We use conditions (6.16) and (6.17) to 
impose reasonable upper and lower bounds on the maximum surpluses among the 
players. We state that there must be no surpluses lower than 30% of the total 
savings, ݏ = 0.3 ∙ ܶܵ, and no surpluses higher than 40% of the savings, ݏ = 0.4 ∙ ܶܵ. 
Under such conditions, the bilevel TEP model provides a suboptimal expansion 
plan with total savings of 3 232.3 $/h. The capacity of line 1 (between Systems A 
and B) was reduced to 40.16 MW, which made surpluses among the players more 
balanced. We visualize the changes in the set of imputations and the Core of the 
game in Figure 6.9. Because of the reduced savings, the set of imputations shrank 
from ABC to A'B'C'. The Core of the game and the allocation solutions became 
more centralized - the players are now in similar conditions. The grey dashed lined 
depict the initial Core of the game, which was far more distant from System C. We 
see that the suboptimal expansion plan suggests a compromise between the 
stability and the economic efficiency of cooperation. 
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Figure 6.9: The set of imputations and the Core of the modified cooperative game 
for the three-system case. The values represent the corresponding costs for (A, B, 
C) in $/h. The allocation solutions are denoted as follows: S - the Shapley value, 
N - the Nucleolus, E - equal sharing point. 

 
Now we simulate the unilateral cost function manipulations by the players 

under the described bilevel TEP model. The effect of the manipulations on actual 
savings allocation is illustrated in Figure 6.10. 
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a)  

b)  

c)  
Figure 6.10: Cost function manipulations in the three-system case under the bilevel 
TEP approach: a) unilateral manipulation by System A; b) unilateral manipulation 
by System B; c) unilateral manipulation by System C. 
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We cannot state that the proposed bilevel approach completely prevents 
manipulations in TEP. Systems A and B still have beneficial directions of cost 
function deviation that we denote by the arrows. However, we see that players 
have a reduced range of possible deviations and fewer incentives to manipulate the 
allocation rule. This happens due to the fact that the bilevel TEP approach 
modifies the capacity of lines depending on the cost functions declared by the 
players. Thus, the planning model proactively reacts to the changes in the revealed 
share of savings. When deviating a lot, players activate the game-theoretic 
constraints and make the transmission plan even less efficient. 

The inclusion of Cooperative Game Theory concepts into TEP algorithms 
paves the way for new mechanism designs of energy cooperation. We believe that 
there is room for further research on more complex and effective designs. For 
example, coordinating entity can set a function of coalitions imbalance level 
depending on the total savings. Such a function would allow significant differences 
in players’ bargaining power only when an interconnection project becomes efficient 
enough. Otherwise, a less profitable but equal cooperation will be formed. It is also 
worth implementing iterative mechanisms and auctions suggested by the 
Algorithmic Mechanism Design studies such as [174], [196]. 

The ideas presented in this chapter can be extended beyond the transmission 
planning problems. Operation of power markets and international grids could also 
be restricted by the game-theoretic principles in order to keep the players more 
balanced or give them incentives to reveal true cost functions. 

 

6.4 Summary and Conclusions 

In this chapter, we demonstrated that finding the optimal (least-cost) 
expansion plan might not be enough to guarantee the stability of cooperation. Some 
projects of power interconnections could lead to nonconvex cooperative games. The 
Core of such games can be small in volume or even be an empty set, which means 
that some players get underestimated in the grand coalition and might refuse 
cooperation. To avoid such issues, it becomes necessary to consider suboptimal 
expansion plans with a predefined level of cooperation stability. 
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The question arises, how to measure the level of stability in cooperation? In 
this work, we decided to rely on the coalitional excess theory and use the maximum 
surpluses among players as the metric of stability. The maximum surpluses (also 
called bilateral threats) allowed us to identify the usefulness and interdependence 
of players. To include this metric into the planning model, we formulated the bilevel 
TEP approach, where the upper-level contains TEP problems for different 
coalitions of players, and the lower-level states the resulting cooperative game. We 
found that imposing upper and lower bounds on the surpluses of players can 
significantly improve the stability of cooperation. However, this improvement 
comes at the price of efficiency degradation. By varying the game-theoretic 
constraints, it becomes possible to suggest a variety of suboptimal expansion plans 
and find a compromise between the economic efficiency and the stability of 
cooperation. We believe that the proposed bilevel approach could be used in 
numerous applications to justify the effects of sanctions or simulate decentralized 
planning in a bargaining process. 

Finally, we discussed the usefulness of the bilevel approach for developing 
strategyproof mechanisms of cooperation. We performed the manipulability 
analysis of cooperation in TEP with restrictions of maximum surpluses among the 
players. The results showed that the anticipative nature of the bilevel approach 
could decrease players’ incentives to manipulate the allocation rule. The main 
advantage of the approach lies in the ability to not only change the shares of 
savings but also modify transmission capacities of interconnections. 

However, we want to highlight that the proposed bilevel TEP approach is 
by no means complete. Further research is needed for analyzing different metrics 
of stability and effectively formulating the planning model with game-theoretic 
constraints. As we will discuss in the next chapter, the current formulation of the 
bilevel approach experience scalability issues when applied to realistic case studies. 
Including a high number of variables and constraints into the model leads to a 
large-scale MILP. Such a model becomes computationally hard to solve. Moreover, 
we did not succeed in completely preventing cost function manipulations by 
players. It is necessary to apply recent advances from Algorithmic Mechanism 
Design to develop strategyproof mechanisms. Thus, the presented bilevel approach 
is just an attempt to address the issues of cooperation stability in TEP. 
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Chapter 7 

 

Northeast Asia Cross-Border Power 

Interconnections 

The hardest game to win  
is a won game. 

- Emanuel Lasker 
World сhess сhampion 1894-1921 

 
At the end of the thesis, we address the questions that our research initially 

started with. We aimed to promote international cooperation in electricity trade 
and developed the mathematical framework for TEP and cost-benefit allocation in 
cross-border power interconnection projects. We illustrated that the proposed 
approach enables identification of the optimal investment decisions while allocating 
the savings of the cooperation according to Cooperative Game Theory solution 
concepts. We also introduced the bilevel TEP model that guarantees that a desired 
level of stability will be reached in cooperation over an interconnection project. 
However, it is not yet clear how the discussed solution concepts should be 
implemented in real-world projects? What allocation mechanisms need to be 
developed to guarantee stable cooperation? 

To get the complete picture of cooperation on cross-border power 
interconnection projects, in this chapter, we introduce a real-world case study of 
potential power interconnections in Northeast Asia. The case is of particular 
interest since it involves six players (countries) cooperating and has a rather 
complex topology of the interconnections, which allows us to open the discussion 
of possible cooperation and compensation mechanisms. 
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7.1 Case Study Description 

Potential cross-border power interconnections in Northeast Asia have been 
the subject of political and academic discussions since the beginning of the last 
decade. Various interconnection initiatives comprised power systems of China, 
Russia, the Republic of Korea (ROK), the Democratic People’s Republic of Korea 
(DPRK), Japan and Mongolia. Over time, such initiatives expanded and merged. 
Nowadays, the projects of cross-border power interconnections in Northeast Asia 
got the name “Asian Super Grid”, which is actively used in the media to highlight 
the scale of cooperation. We refer to studies [197]–[199] that describe a general 
concept of the Asian Super Grid and provide a historical background of the cross-
border interconnection initiatives. It is worth mentioning that the significant 
differences in the economics and the power systems of the involved countries make 
cross-border interconnections challenging in the region. While electricity prices and 
generation mixes vary widely over the power systems, very few power 
interconnections have been built in Northeast Asia. The opportunity for 
international electricity trade in the region was examined in [18], [98], [199], [200]. 
The results of existing studies show possible annual benefits that all the countries 
can obtain if being interconnected. These benefits are usually quantified in billions 
of US dollars of cost savings per year, gigawatts of generation capacity decrease, 
and megatonnes of annual CO2 emissions reduction. However, the issue of costs 
and savings allocation was not addressed in the studies. In this chapter, we quantify 
the potential cost savings of cooperation on the cross-border power 
interconnections, based on publicly available data. Then, we apply the developed 
game-theoretic framework to allocate savings among the participating countries. 
We also analyze the cost allocation of the capital intensive HVDC interconnections 
and discuss the ways of arranging payments for power exports. 

We consider the target year 2035 as the period where different 
interconnection scenarios could take place. The rationale for such long-term 
planning lies in the economic and political efforts needed to persuade countries for 
regional power cooperation. Therefore, we model the Northeast Asian power 
systems of the future and estimate the benefits of potential interconnections. We 
identified nine power systems in our model: Russia and China are represented by 
several nodes, while other countries are given only by a single node per power 
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system. The case study was composed in May 2018 on the basis of International 
Energy Agency World Energy Outlook [201] and local technical reports and 
documents, such as Chinese electric power yearbook [202], reports of the Institutes 
of Energy Economics (Japan) [203], long-term energy supply and demand outlook 
(Japan) [204], and the basic plan for long-term electricity supply and demand (the 
ROK) [205]. The proposed scheme of cross-border interconnections is presented in 
Figure 7.1. It is based on the schemes used in the studies [18], [200] and engineering 
judgment of the author. Only the interconnection between North and Northeast 
Chinese power systems (line 6-7) is considered operating. Other interconnections 
(dashed lines) are not built yet. Their construction is under consideration in our 
model. We consider that the proposed interconnections will be realized using 
HVDC technology. Therefore, the assumptions of our TEP model (such as the 
omission of the Kirchhoff’s voltage law) will be reasonable for the analysis of the 
project. 

 

 
Figure 7.1: Scheme of potential cross-border power interconnections in  

Northeast Asia. 
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The forecast of the seasonal changes in power demand is presented in 
Figure 7.2. We observe a vast difference in power consumption among the 
countries. One may suppose that China, Japan, and the ROK are the main 
participants of cooperation that would influence regimes and prices of the future 
interconnected systems. We rely on generation expansion plans made at the 
national level of each country, given in Table 7.1, and do not perform generation 
capacity expansion. Cost assumptions for different types of generators are listed in 
Table 7.2. We consider the levelized cost of electricity as the indicator for our long-
term planning task. The rationale for this assumption is that, even though power 
market operations are usually performed on the basis of marginal costs, long-term 
planning decisions require considering investment decisions, cost recovery, the 
strategic value of water and renewables. 

 
Figure 7.2: Seasonal demand curves forecast.  
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Table 7.1: Generation mix forecast. 

 Installed capacity by generation type (GW) 

 Nuclear Coal Gas Oil Hydro Wind PV 

The Far East — 4.18 5.01 — 5.87 0.004 0.003 

Siberia 2.50 31.73 3.64 — 28.61 0.30 0.10 

Sakhalin — 0.36 0.89 0.03 — 0.12 — 

Japan 32.00 41.00 92.00 5.00 55.00 13.00 78.00 

ROK 38.33 43.29 33.77 1.09 4.70 8.06 16.57 

Northeast China 14.80 103.60 7.40 — 33.30 29.60 11.10 

North China 48.00 336.00 24.00 — 108.00 96.00 36.00 

Mongolia — 3.38 — — 0.72 0.45 0.20 

DPRK — 1.14 5.86 1.57 7.71 0.57 0.71 

 
 

Table 7.2: The levelized cost of electricity assumptions. 

 Levelized cost of electricity by generation type ($/MWh) 

 Nuclear Coal Gas Oil Hydro Wind PV 

The Far East — 50,00 60,00 — 32,00 71,40 89,00 

Siberia 27,00 50,00 60,00 — 32,00 71,40 89,00 

Sakhalin — 50,00 70,00 150,00 — 75,00 — 

Japan 79,34 116,31 140,65 261,46 99,18 90,16 108,19 

ROK 51,37 83,83 126,00 220,00 103,00 111,64 101,86 

Northeast China 65,77 64,21 117,45 — 54,81 62,64 86,13 

North China 65,77 64,21 117,45 — 54,81 62,64 86,13 

Mongolia — 75,00 — — 60,00 95,00 100,00 

DPRK — 60,00 120,00 250,00 100,00 120,00 130,00 
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We assume that demand curves in each country are perfectly inelastic. The 
power supply functions can be represented by an arrangement of generators’ costs 
in ascending order. We extend the diversity of the generation bids by splitting the 
cost of each technology into twenty blocks with values ranging from -5% to 5% of 
the costs in Table 7.2. By doing this, we keep the supply functions constant, which 
allows us to formulate a linear TEP problem and avoid some numerical issues in 
the future. The resulting generation supply curves for all the systems in the region 
are illustrated in Figure 7.3. 
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Figure 7.3: Northeast Asia generation supply functions forecast. 
 

It is seen that generation costs and capacities vary significantly in the 
considered countries. This creates an opportunity for electricity trading, which 
could replace expensive generation with more affordable or clean energy sources. 
To assess the effectiveness of building the cross-border power lines, we use the 
annualized cost of transmission investment expressed in per unit of capacity. A 
similar approach was used by Otsuki et al. in [18]. A 25-year investment return 
period is considered with a 10% interest rate. Annualized net present costs of 
transmission lines are presented in Table 7.3. We impose technical limits on cross-
border power lines capacity: no more than 5 GW per corridor between countries. 
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This limit is set due to energy security issues and technological and political aspects 
that would exist in the considered period. 

 
Table 7.3: Annualized transmission cost assumptions. 

Line Length (km) 
Annualized cost 
($/MW/year) 

2-1 Siberia – The Far East 2 100 84 000 

2-8 Siberia – Mongolia 500 20 000 

2-6 Siberia – North China 1 700 68 000 

1-3 The Far East - Sakhalin 1 000 45 000 

1-6 The Far East – North China 1 000 40 000 

1-9 The Far East – DPRK 1 500 60 000 

3-4 Sakhalin – Japan 1 500 256 000 

8-7 Mongolia – North China 1 100 44 000 

6-7 Northeast China – North China 600 — 

6-9 Northeast China – DPRK 400 16 000 

9-5 DPRK – ROK 200 8 000 

5-4 ROK – Japan 1 200 88 000 

 

7.2 Results and Discussion 

Before introducing the results, it is important to summarize the main 
assumptions and limitations of our modeling approach. A share of the assumptions 
comes from the linear TEP model (3.1)-(3.5) formulated in Section 3.2. Namely, 
we: do not consider admittances of power lines, reactive power, voltage magnitudes 
and angles; omit the constant part of transmission investment and, therefore, do 
not introduce binary decision variables of lines’ construction decisions; do not 
consider economies of scale and treat transmission capacity as a continuous variable 
with a linear cost; do not perform the contingency analysis. These assumptions 
allow us to formulate the TEP problem as an LP model. Other limitations are 
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related to the case study description. For example, we do not consider generation 
capacity expansion. This limits the “anticipative” nature of the model, which is 
unable to capture the effect of power imports and exports on the optimal generation 
investment. We considered the limited number of representative loads (only four 
seasonal regimes per year). The inclusion of the full load duration curve could lead 
to different solutions (the detailed representation of load curves could also capture 
the time shifts in energy consumption between nodes). Generation cost bids are 
considered constant. Finally, we suppose that the resulting cooperative game is 
formulated in costs. The mentioned assumptions and limitations point out future 
research directions. 

We now present the analysis of the Northeast Asia case study using the 
developed game-theoretic framework. We first consider the optimal expansion plan 
and cost allocation solutions. Then we open a discussion of the practical 
implementation of the results and address the stability issues of the cooperation on 
the project. 

7.2.1 Optimal Expansion Plan 

The TEP problem was formulated as a linear programming model (3.1)-
(3.5). It was solved using the Gurobi Optimizer v9.0.0 under JuMP v0.20.1 in Julia 
v1.1.1 programming language. The model contained 5 102 continuous variables, 
which, after the presolve stage [206], were reduced to 1 904 variables. To illustrate 
the effects of the cross-border power interconnections, we compare the two 
scenarios of cooperation: no cooperation (no cross-border power lines can be built) 
and complete cooperation (the grand coalition where all power lines can be 
constructed). The optimal transmission capacities and power flow directions for 
these scenarios are illustrated in Figure 7.4. The two-headed arrows depict 
reversible power flows that change their direction depending on seasons. The 
detailed information on power flows, market prices, generation and investment 
costs is given in Tables 7.4, 7.5, and 7.6. When no interconnections are allowed, 
there exist only two power flows between the systems: from Northeast China 
towards North China, and from the Far East towards Sakhalin. Line 1-3 is newly 
constructed (does not exist until 2035) with optimal capacity 596 MW and an 
annualized investment of 26.79 million US dollars per year.   
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a)  

b)  

Figure 7.4: Optimal transmission capacities and power flow directions in case of 
no cross-border interconnections (a) and complete cooperation (b). 

 

596 MW

5000 MW

Russia

Mongolia

China

Japan

ROK
DPRK

8

7

2

1
3

45

9

6

5000 MW

4131 MW

4802 MW

5000 MW

1987 MW

5000 MW

5000 MW
2624 MW

5000 MW

5000 MW
5000 MW

Russia

Mongolia

China

Japan

ROK
DPRK

8

7

2

1
3

45

9

6



163 

Table 7.4: Comparison of the scenarios: generation and investment costs. 

 
 

Table 7.5: Comparison of the scenarios: power flows. 

 
Line 

Seasons 
 Winter Spring Summer Autumn 

Power flows in 
the case of no 
cooperation 
(MW) 

2-1 — — — — 
2-8 — — — — 
2-6 — — — — 
1-3 596 596 486 596 
1-6 — — — — 
1-9 — — — — 
3-4 — — — — 
8-7 — — — — 
6-7 4 760 5 000 5 000 4 400 
6-9 — — — — 
9-5 — — — — 

 
Line 

Seasons 
 Winter Spring Summer Autumn 
Power flows in 
the case of 
complete 
cooperation 
(MW) 

2-1 4 131 4 131 4 131 4 131 
2-8 1 414 5 000 5 000 5 000 
2-6 — — — — 
1-3 4 680 4 802 4 802 4 802 
1-6 -1 987 -1 078 1 987 -1 423 
1-9 5 000 5 000 5 000 5 000 
3-4 5 000 5 000 5 000 5 000 
8-7 -1 466 2 624 2 624 2 336 
6-7 -2 227 5 000 5 000 467 
6-9 5 000 5 000 5 000 5 000 
9-5 5 000 5 000 5 000 5 000 

  

 No cooperation Complete cooperation  

Total generation cost 
(million $/year) 

756 949.72 746 846.86 

Annualized investment cost 
(million $/year) 

26.79 2 998.05 
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Table 7.6: Comparison of the scenarios: electricity market prices. 

 
Node 

Seasons 
 Winter Spring Summer Autumn 

Market prices in 
the case of no 
cooperation 
($/MWh) 

1 59.7 58.5 49.5 58.8 
2 52.3 51.5 49.8 51.5 
3 67.6 58.5 49.5 66.9 
4 142.1 137.1 146.6 141.4 
5 125.4 121.6 126.6 115.5 
6 66.8 66.5 66.5 66.5 
7 66.8 67.1 67.4 66.5 
8 78.0 76.5 75.0 77.3 
9 124.2 123.0 121.8 122.4 

 
Node 

Seasons 
 Winter Spring Summer Autumn 
Market prices in 
the case of 
complete 
cooperation 
($/MWh) 

1 78.8 66.8 62.4 66.5 
2 66.8 60.9 51.0 60.0 
3 78.8 72.8 70.4 73.1 
4 140.7 135.7 144.2 139.9 
5 125.4 121.6 126.6 115.5 
6 66.8 66.8 66.5 66.5 
7 66.8 67.1 67.4 66.5 
8 66.8 61.5 51.0 66.5 
9 114.6 104.5 104.0 104.5 

 
In the scenario of complete energy cooperation, it is optimal to build all 

candidate power lines except line 2-6. This line turns out to be too long and 
expensive. Besides, there is no need for an additional interconnection between 
Russia and China. The general direction of the power flows is from Russia, 
Mongolia, and China towards the Korean peninsula and Japan. As expected, the 
cheaper energy flows towards the markets with higher prices, which leads to 
changes in market prices. Importers such as Japan experience a decrease in prices, 
while exporters as Russia have an increase in the price of electricity and generation 
cost. Nevertheless, with an annual investment cost of 2.99 billion US dollars, it is 
possible to get the total cost savings of 7.1 billion US dollars per year. 
Unfortunately, enumerating the total savings is not enough to persuade the 
countries to participate in the project. It is necessary to share the savings of 
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cooperation, develop mechanisms for investment cost allocation, and estimate 
payments between the countries. 

 

7.2.2 Cost and Savings Allocation 

To address the cost allocation issues and evaluate the stability of 
cooperation, we use the Cooperative Game Theory solution concepts introduced in 
Chapter 4. These concepts require accounting for all possible scenarios of 
cooperation (coalitions of players). In the case of 6 players (countries), there are 
26-1=63 scenarios to consider. For each scenario, we run the TEP model (3.1)-(3.5) 
to find the optimal planning decisions. For the sake of clarity, we present the costs 
for all of the possible coalitions in Figure 7.5. We see that coalition #6, the grand 
coalition, is indeed the least-cost scenario for the region. The optimized values from 
the objective function (3.1) for players participating in a coalition were used to 
compose the characteristic function of the cooperative game according to the 
following principle. If two neighboring countries join a coalition, a cross-border 
power line could be built, and some cost savings may be achieved. Otherwise, there 
is no way to build any lines when neighboring countries do not join the same 
coalition. It is worth mentioning that other approaches to coalition formation are 
possible. For example, Kristiansen et al. [58] considered combinations of 
interconnections to form the coalitional structure of a cooperative game, not 
combinations of players. 

 
 



166 

1 2 3 4 5 6 7 8 9 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

Russia ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

China ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Japan ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

ROK ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Mongolia ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

DPRK ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
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Figure 7.5: Generation costs and annualized investment costs of possible coalitions: 
(top) total costs; (mid) annualized investment costs; (bottom) the coalitional 
structure. 

 
Even though the grand coalition turns out to be the most effective one, there 

is a need to persuade countries to join it. The point is that some countries may not 
be satisfied with an allocation solution and, therefore, would not join the grand 
coalition. For example, Russia and Japan may form their own subcoalition (#18 
in Figure 7.5). In such a case, the power export “Siberia – The Far East – Sakhalin 
– Japan” of 5 GW would allow getting cost reduction up to 2.06 billion US dollars 
per year that can be split in half among the two countries. In order to prevent such 
situations, each country should be allocated more savings than it can get in any 
possible subcoalition. This condition states the Core of the game. In Table 7.7 we 
present the allocation solutions by the Shapley value and the Nucleolus. We also 
verify whether these solutions belong to the Core by checking conditions (4.5) and 
(4.6) for each of the 63 coalitions. 
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Table 7.7: Costs and savings allocation among the countries. 

 Russia China Japan ROK Mongolia DPRK 

Generation and 
investment costs of 
the countries in case 
of no cooperation 
(billion $/year) 

22.48 378.51 256.26 86.69 1.90 12.14 

Cost allocation by 
the Shapley value 
(billion $/year) 

20.23 377.37 255.19 85.28 1.73 10.05 

Savings allocation 
by the Shapley 
value  
(billion $/year) 

2.25 1.14 1.07 0.41 0.17 2.09 

Allocation belongs 
to the Core? 

Yes 

Cost allocation by 
the Nucleolus 
(billion $/year) 

20.24 377.39 255.21 85.08 1.17 10.15 

Savings allocation 
by the Nucleolus 
(billion $/year) 

2.24 1.12 1.05 0.61 0.13 1.98 

Allocation belongs 
to the Core? 

Yes (Theorem 4.4) 

 

As mentioned earlier, the optimized values from the objective function (2.1) 
was used to compose the characteristic function of the cooperative game. Thus, the 
obtained allocation solutions show how much of the total generation cost and total 
investment cost should be allocated to a country. The difference between the costs 
in the scenario of no cooperation and the allocated values shows the savings that 
a country should get if joining the grand coalition. Since there is no distinction 
between the generation and investment costs in the characteristic function, we refer 
to these solutions as allocation of the total cost and total savings. The allocation 
of the total savings by the Shapley value and the Nucleolus is visualized using the 
pie charts in Figure 7.6. 
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a)  b)  

Figure 7.6: The allocation of the total saving (7.1 billion US dollars per year) 
among the countries by the Shapley value (a) and by the Nucleolus (b). 

 
According to the results of the total cost allocation, it is possible to assure 

that each country may be compensated enough to stay in the grand coalition. The 
Core of the game is nonempty, which means that the development of cross-border 
power interconnections in Asia should be economically feasible and stable, at least 
theoretically. However, one can observe that the shares of savings that countries 
can claim differ significantly. This happens due to the difference in countries’ 
bargaining power, which, in its turn, is explained by the topology of the cross-
border interconnections and generation supply functions. For instance, the DPRK 
possesses a significant bargaining power while not being a major power exporter or 
importer. However, the DPRK is in a crucial location for the power interconnection 
in the region: it is on the way of power export towards the ROK and Japan. If the 
DPRK vetoes this power export direction, a significant share of savings would be 
lost. This “topological advantage” of the DPRK is identified by both the Shapley 
value and the Nucleolus. To change the situation, other plans of cross-border 
interconnections may be considered. For example, China may propose constructing 
an undersea cable directly linking mainland China and the ROK. Such an 
interconnection would lower the bargaining power of the DPRK and reallocate the 
cost savings among the countries. 

It is seen that not only the shares of savings differ significantly, but also 
solutions by the Shapley value and the Nucleolus do not coincide. As discussed in 
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Chapter 4, the Shapley value allocates a value of cooperation by summing the 
marginal contributions of each player to possible coalitions, while satisfying the 
desired solution properties. The Nucleolus maximizes the excess of the most 
dissatisfied coalitions and provides an allocation that is guaranteed to be a part of 
the Core. For this reason, the Nucleolus is often referred to as a stable solution 
concept. In this case study, both the Shapley value and the Nucleolus belong to 
the Core. We decide to use the allocation by the Shapley in our further analysis. 

However, there is no guarantee that the Shapley value would remain in the 
Core under certain data permutations. As stated by Theorem 4.3, the Shapley 
value is guaranteed to belong to the Core only for the class of convex cooperative 
games. In such games, the marginal contribution of any fixed player ݅ to coalition 
ܵ increases as more players join the coalition. Unfortunately, the Northeast Asia 
cross-border interconnections case turns out to be a nonconvex game when 
formulated in terms of costs. To prove this, we introduce a counterexample. We 
computed the marginal contributions of Russia and the ROK to possible coalitions 
they may join. The values are presented as a bar diagram in Figure 7.7. 
 

Russia ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

China ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Japan ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

ROK ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Mongolia ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

DPRK ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
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Figure 7.7: Marginal contributions (MC) of Russia and the ROK to the coalitions 
they may join. Positive values reflect increase in the total cost savings. 
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A marginal cost reduction of 4.37 billion US dollars per year could be 
achieved when Russia joins the grand coalition. However, an even greater cost 
reduction of 4.48 billion US dollars per year occurs when Russia joins the 
subcoalition Russia-Japan-ROK-Mongolia-DPRK (excluding China). Similarly, the 
marginal cost reduction of joining the coalition Russia-Japan-DPRK (3.99 billion 
US dollars per year) is higher than joining the coalition Russia-China-Japan-DPRK 
(3.48 billion US dollars per year). We also present marginal contribution by the 
ROK. It is seen that the ROK contribution is higher when cooperating directly 
with Japan compared to larger coalitions such as Russia-China-Japan-ROK. Here 
are just a few counterexamples of decreasing marginal contribution to the coalitions 
with a larger number of players. Thus, the convexity condition (4.3) does not hold. 
The cooperative game is nonconvex. In such cases, it should be preferred to choose 
the Nucleolus as a solution concept that is guaranteed to provide an allocation 
within the Core of the game. Interestingly, the cooperative game in TEP is not a 
market game, even though we simulated trading in electricity markets. The 
reasoning lies in topological constraints and technical limits imposed on the market. 

Unfortunately, for nonconvex games, even the Core could be an empty set 
(Theorem 4.2), which signifies that the formation of the grand coalition is not 
incentive-compatible for some players. We consider it is important to report, while 
not including all the details in the thesis, that after a series of experiments with a 
six-system case data, we found that there exist interconnection schemes that lead 
to cooperative games with an empty Core. Such cases are similar to the cooperative 
game of the four-system case considered in Section 6.2.1: one or several players 
become underestimated in the grand coalition and, therefore, do not have incentives 
to join it. The conclusion is that Cooperative Game Theory solution concepts can 
be applied to this particular case study of cross-border power interconnections in 
Northeast Asia. However, due to the nonconvexity, there could be other cases 
where it would not be possible to suggest an incentive-compatible allocation 
solution and persuade players to join the grand coalition. We believe that the 
bilevel TEP approach presented in Section 6.1 might be especially useful to 
promote regional cooperation in such cases. 
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7.2.3 Practical Implementation Issues 

The presented allocations indicate the ways of sharing the total cost and 
savings of the project among the countries. As mentioned, we choose the Shapley 
value as the allocation rule for this case study. We verified that the Shapley value 
belongs to the Core of the game, and, therefore, concluded that cooperation on the 
project should be feasible. However, to implement the Cooperative Game Theory 
solution concepts in practice, two more questions are needed to be addressed. First, 
it is necessary to suggest a mechanism of investment in cross-border power lines to 
make the countries understand what amount of money they are going to invest, 
and in which power lines. 

Common transmission pricing mechanisms such as the MW-mile method 
can be implemented to address this question. However, we want to be consistent 
with our game-theoretic framework and suppose that the obtained allocation by 
the Shapley value is used for the investment cost allocation. That is, we share the 
investment cost of the interconnections among the countries in the same ratios as 
the total savings of cooperation. In this way, we identify how much each country 
should invest in the project. But, it is still not clear how to allocate investment of 
every single line. It is challenging to evaluate the contribution made by each line 
to the overall cost reduction. Moreover, in order to allocate the investment cost of 
a line, it is necessary to estimate how different coalitions of countries influence 
TEP decisions. There are scenarios of cooperation where the capacity of some lines 
decreases once more players join the coalition. For example, line 2-6 “Siberia - 
North China” is built up to the maximum 5 GW capacity in scenario of Russian-
Chinese cooperation. In other coalitions, when there exists power export through 
Mongolia, line 2-6 is not built at all. Clearly, the cooperative game formulated in 
terms of the capacity of the interconnections is also nonconvex. Thus, Cooperative 
Game Theory solution concepts may provide results that are hardly interpretable 
in practice (such as, some players should compensate their neighbors for not 
building certain power lines). 

To further analyze the applicability of the investment cost allocation by the 
Shapley value, we empirically distribute the individual costs of the power lines 
based on the two following principles: a power line should be close to the territory 
of a country that takes a share of the line’s investment; a country should benefit 
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from the power export through a line that it is investing in. The resulting 
investment scheme is presented in Figure 7.8, where diameters of the pie charts are 
set proportional to the annualized investment costs of the lines. We want to 
highlight that the presented scheme is by no means not the only possible solution. 
Other rules of individual investment costs allocation may be suggested. However, 
even the presented allocation scheme shed some light on the features of cooperation. 
First of all, it is seen that investment cost shares do not correspond to the territories 
of the countries. This means that some participants have to invest abroad according 
to the chosen solution concept. For instance, Russian share of investment does not 
cover all the lines within its territory. Therefore, Russia may invest only in lines 1-
3 and 3-4 that are used for Russian-Japanese power export. Investment in other 
lines connected to Russia such as 2-1, 1-6, 1-9 should be covered by China and the 
DPRK. This can be interpreted in the following way: China and the DPRK turn 
out to be so interested in creating the grand coalition that they should invest in 
the lines for power export from Russia. Japan has the most expensive 
interconnections because of the high undersea power cables cost. The investment 
cost allocation implies that Japan should cover only a share of the undersea cables 
cost and, therefore, should not invest abroad. 
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Figure 7.8: Power lines investment allocation scheme,  
in millions of US dollars per year. 

 
The second important aspect of cross-border power interconnection projects 

is the arrangement of money transfers between the countries. The money transfers 
must be organized in a way that each participant’s generation and investment cost 
will be exactly as allocated by the Shapley value (Table 7.7). As an example, we 
show the calculation of the payment to Russia. Before joining the project of cross-
border power interconnections, the generation cost of the three Russian power 
systems reached 22.48 billion US dollars per year. In the grand coalition, Russia 
mainly acts as a power exporter, transferring about 75 TWh per year to its 
neighbors. The generation and investment cost of Russia grows up to 30.08 billion 
US dollars per year in this scenario. According to the Shapley value allocation, the 
total cost allocated to Russia should equal 20.23 billion US dollars per year. Thus, 
it is necessary to arrange money transfers towards Russia to compensate 30.08-
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20.23=9.85 billion US dollars per year. Japan, on the contrary, is a power importer. 
Its payment to the exporters can be estimated through a similar calculation. We 
illustrate the possible money flows among the countries in Figure 7.9. 

As in the previous case of investment cost allocation, there is no unique 
solution for setting money transfers among the countries. The Northeast Asia case 
study topology allows numerous combinations of the money flows that lead to the 
desired cost allocation. Ideally, if a money flow can be settled between countries in 
advance, it would make possible to sign long-term bilateral contracts with respect 
to the cost allocation solution. 

In order to suggest a meaningful solution, we compose an optimization 
problem that minimizes the sum of all bilateral money transfers. It is supposed 
that bilateral contracts should be signed between neighboring countries that 
physically transfer power. Bilateral contract prices are obtained as a solution of 
the problem. We visualize the bilateral contracts and the related prices in Figure 
7.9. The average nodal prices of exporters and importers are listed at the top and 
bottom of each contract. We found that imposing contract prices constraints (the 
value should not exceed the price at an importer’s node and should not be lower 
than the price at exporter’s node) makes the problem infeasible. For example, in 
the presented solution, the contract prices for power exports “Russia-Mongolia” and 
“Mongolia-China” contradict the nodal pricing theory [6]. Namely, exporters sell 
energy at prices lower than their marginal costs. This example indicates that 
bilateral contracts may not assure the cost allocation suggested by the Shapley 
value. 

Cost allocation solutions based on Cooperative Game Theory can lead to 
economically counter-intuitive results when applied to bilateral payments. This 
effect depends on the topology of interconnections. In the case study, a share of 
power from Russia to Japan went through Mongolia, China, the DPRK, and the 
ROK. We found that it would be impossible to arrange bilateral contracts and 
payments that do not contradict nodal pricing. Thus, there is a need for developing 
new mechanisms for international power trading that would enable using 
Cooperative Game Theory solution concepts. A possible solution could be the 
establishment of an international coordinator in charge of collecting and 
distributing money among the participants. 

 



175 

10,810,58

2,18

3,97

1,41

9,85

2,13

0,47

3,45
4,74

0,72

4,22

5,49

59,6

61,3

58,9
$/MWh 

61,3

66,9

52,9
$/MWh 

66,6

106,8

96,4
$/MWh

106,8

122,3

122
$/MWh 

122,3

140,1

138
$/MWh

68,5

106,8

78,7
$/MWh 

73,7

140,1

108
$/MWh

6,07

Russia

Mongolia

China

JapanROK

DPRK

 

Figure 7.9: Scheme of the money flows among the countries according to the 
Shapley value allocation (in billions of US dollars per year) and bilateral contracts 
prices (in US dollars per MWh). 

 
We want to note that selecting the Nucleolus instead of the Shapley value 

as the allocation rule does not solve the mentioned problem. It would still be 
impossible to suggest money transfers that do not violate the nodal pricing theory. 
To overcome this issue and make bilateral power purchase contracts feasible, one 
could implement the bilevel TEP model (presented in Section 6.1) and suggest a 
suboptimal expansion plan. 
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7.2.4 Sensitivity Analysis 

Having analyzed possible cost allocation solutions and the ways of 
implementing them, we now focus on the stability issues of the project. First, we 
perform a sensitivity analysis to verify that the proposed expansion plan remains 
effective under moderate changes in the data. As discussed in Section 7.2.1, under 
the optimal expansion plan, it would be possible to obtain the total cost savings of 
7.1 billion US dollars per year. This amount corresponds to the point of zero 
changes in the data forecast. We varied the power demand of the systems from  
-20% up to +5% and estimated the changes in the total savings of cooperation, as 
shown in Figure 7.10. The deviations of the total savings and investment costs are 
not significant around the point of our forecast. An increase in demand leads to a 
rather sharp growth of the cost savings, whereas investment cost does not change 
significantly. The deviations higher than +5% lead to infeasible solutions since the 
power balance cannot be met for some nodes. When the demand forecast is 
decreased until the level of -5%, the total savings also do not change much. 
However, further decrease leads to a decline in the savings and makes the project 
less effective.  

 

 
Figure 7.10: Sensitivity analysis for power demand forecast. 
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We also performed a sensitivity analysis for the availability of renewable 
energy resources, as presented in Figure 7.11. When the share of renewable energy 
increases, the benefits of the interconnections are slightly reduced. The reasoning 
is that renewables integration decreases generation costs and the price differences 
between power exporters and importers, making the interconnections less 
profitable. However, the slope of this curve is rather low. We can, therefore, state 
that our TEP solution is not highly sensitive to moderate changes in the renewable 
generation forecast. 

 

 
Figure 7.11: Sensitivity analysis for renewable generation forecast. 

 
Finally, we analyzed the sensitivity to transmission capital costs. Our initial 

transmission cost assumptions (given in Table 7.3) were varied for every line in the 
range of -20% to +20%. The analysis is shown in Figure 7.12. The dependence of 
the total cost savings on the transmission capital costs is rather obvious: higher 
investment costs decrease the savings of cooperation (Figure 7.12 (a)). The 
resulting curves resemble a linear dependence with an average correlation factor of 
-1.15, which means that a 1% increase in transmission capital costs leads to a 1.15% 
decrease in the total cost savings.  
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To give more details on the project’s possible outcomes, we visualized the 
dependence of optimal transmission capacities on the capital costs in 
Figure 7.12 (b). Several lines close to the ROK and Japan, namely lines 1-9, 3-4, 
6-9, 9-5, 5-4, are not sensitive to moderate changes in transmission capital costs. 
Those lines are always built up to the maximum capacity of 5 GW, which tells us 
that the interconnections are highly effective and bring significant cost reduction 
to the systems. Other lines, such as 2-8 and 8-7, turned out to be sensitive to the 
cost assumptions. These lines correspond to the Russia-Mongolia-China power 
export corridor. The conclusion could be drawn that this power export route is less 
effective than other interconnections. Lines 2-8 and 8-7 could be built with less 
capacity or even be abandoned in the project due to changes in the transmission 
capital costs. 

Accurate estimation of transmission capital costs is an acute issue for many 
expansion projects. For example, in 2008, the Public Utility Commission of Texas 
started the Competitive Renewable Energy Zone (CREZ) program, which aimed 
to connect distant regions with cheap wind energy to the main grid and 
accommodate more than 18 GW of wind power. The program was essentially 
completed in 2013. However, the transmission cost grew from the estimated 4.9 to 
6.8 billion dollars [207]. Such an increase made power from new wind plants more 
expensive than from conventional power plants. Even though some studies praise 
the cost and CO2 reduction achieved by CREZ [208], there exist disputes over the 
program’s rationality [209], [210]. Some critics state that the government rushed 
to promote wind power, which was not yet competitive. As a result, Texas 
consumers should pay for electricity more. 

Summarizing the sensitivity analysis, we could say that higher power 
demand of the systems, lower shares of renewable generation, and lower 
transmission capital costs are favorable factors for the Asian Super Grid project 
that increase the effectiveness of the proposed interconnections. The possible risks 
of the project include the decrease in power demands, higher renewables 
integration, and underestimation of the actual transmission construction costs. 
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a)  

b)  
Figure 7.12: Sensitivity analysis for transmission capital costs:  
dependence of the annualized savings and investment cost (a);  

dependence of the transmission capacities (b). 
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7.2.5 Stability of Cooperation 

As discussed earlier, we formally verified that the Shapley value belongs to 
the Core by checking conditions (4.5) and (4.6). The allocation solution is, 
therefore, incentive-compatible for the players and might be considered rational. 
However, we believe that the analysis of the stability of cooperation cannot be 
complete without examining the size and shape of the Core. As discussed in 
Sections 4.3.2 and 6.2, these parameters can indicate the “reserve” of an allocation 
solution and give insights into players’ positions in the cooperation. 

The Core of the Northeast Asia cooperative game is a six-dimensional 
polyhedron defined by a finite number of half-spaces according to (4.6). 
Unfortunately, it is impossible to depict the entire Core using the barycentric 
coordinates, since we are limited by three-dimensional figures that can represent a 
cooperative game of no more than four players. Therefore, we decided to visualize 
projections of the Core onto subspaces containing cooperative games between four 
out of the six players. To do this, we need to fix the imputations of the remaining 
two players at the Shapley value or the Nucleolus (or any other rational 
imputation). The obtained projections are presented in Figure 7.13. We interpret 
the results below. 
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a)  b)  

c)  d)  
Figure 7.13: Projections of the set of imputations and the Core of the cooperative 
game for the Northeast Asia case: a) and b) are the projections onto the Russia-
China-Japan-DPRK cooperative game; c) and d) – projections onto the Russia-
Japan-ROK-DPRK cooperative game. The values represent the costs allocated to 
the countries in billions of US dollars per year. The allocation solutions are denoted 
as follows: S - the Shapley value, N - the Nucleolus. 
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In Figures 7.13 (a) and (b), we see the projections of the cooperative game 
onto the four-player game between Russia, China, Japan, and the DPRK. The 
vertices of the tetrahedron correspond to the points where one of the countries gets 
all the savings of cooperation (except the fixed shares of Mongolia and the ROK). 
One may notice that points of the Shapley value and the Nucleolus do not differ 
significantly for this projection. Indeed, the allocation of savings does not change 
much for these countries, as shown in Table 7.7 and Figure 7.6. Only the shape of 
the Core modifies slightly due to the differences in fixed allocations to the not 
displayed players. The Russia-China-Japan-DPRK projection of the cooperative 
game does not reveal any stability issues of cooperation. Both the Shapley value 
and the Nucleolus are located close to the center of the Core, which is large enough 
in volume. To interpret the parallelepiped-like shape of the Core, we might consider 
the Russia-Japan-DPRK projection: it is seen that the DPRK cannot get the 
utmost share of savings because there is a possibility of power export from Russia 
to Japan. Without this interconnection (line 3-4), the DPRK would become the 
main player of the game with dominating bargaining power. 

However, not all of the projections confirm the stability of cooperation. We 
noticed that one of the main differences between the Shapley value and the 
Nucleolus lies in the shares allocated to the ROK. As shown in Figure 7.6, the 
ROK share of savings varies between 5.8 % (at the Shapley value) and 8.6 % (at 
the Nucleolus). We, therefore, focused on the part of the system related to the 
ROK and examined the projection onto the Russia-Japan-ROK-DPRK cooperative 
game. As follows from Figures 7.13 (c) and (d), the Russia-Japan-ROK-DPRK 
projection of the Core has a completely different shape. The Core is rather distant 
from the ROK, which corresponds to its low bargaining power. We can clearly see 
the difference between the Shapley value and the Nucleolus. The Shapley value 
considered the marginal contributions by the ROK and suggested a solution that 
is close enough to the borders of the Core. The Nucleolus was responsive to the 
excesses of the coalitions and suggested the solution that is more centralized in the 
Core and, therefore, stable. It turned out that under the Shapley value, the ROK 
was a member of the most dissatisfied coalitions (with the lowest excesses). The 
Nucleolus maximized those excesses and significantly changed the allocation of 
savings to the ROK. 
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We admit that the above discussion of the Core’s projections and stability 
of cooperation is somewhat informal. Our goal was to demonstrate that while 
players with significant bargaining power might have a large space of rational 
imputations, other players might experience stability issues and get allocation 
solutions close to the coalitional rationality constraints. To formally describe the 
imbalance in players’ positions, we used the coalitional excess theory introduced in 
Section 4.2.3 and calculated the maximum surpluses for each distinct pair of 
players. The obtained thirty values for the six-player game can be presented in 
matrix form, similarly as we did for the three-system case in Section 4.3.2. However, 
to provide intuitive information, we developed a bilateral values diagram presented 
in Figure 7.14. 

The length of each arrow in the diagram corresponds to a maximum surplus 
of one player over another. The thickness of the lines between a pair of players is 
set proportional to the sum of their surpluses. We can, therefore, clearly see what 
players are more interrelated with each other. As discussed in Section 4.3.2, for 
cost games, a positive value of surplus corresponds to an increase in cost (reduction 
of cost savings) for a player who threatens to leave the grand coalition. Thus, if a 
maximum surplus of player ݅ over player ݆, ݏ௜௝, is higher than surplus ݏ௝௜, player ݅ 
benefits more from player ݆ not leaving the grand coalition. The imputation given 
by the Shapley value results in surpluses not being pairwise equal, as shown in 
Figure 7.14 (a). For example, we might say that Mongolia is interested in other 
countries more than any other country is interested in Mongolia joining the grand 
coalition. On the contrary, the ROK turns out to be less incentivized in cooperation 
with other countries, while others are pleased to cooperate with the ROK. The 
imputation by the Nucleolus is proved to be a part of the Kernel. It, therefore, 
equalizes maximum surpluses in pairs of players. In Figure 7.14 (b), we see that a 
multi-bilateral equilibrium has been reached under the Nucleolus. 
  



184 

a)  

b)  
Figure 7.14: Diagram of players’ maximum surpluses (in billion dollars per year):  

a) for the Shapley value; b) for the Nucleolus. 
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Having analyzed the Core of the game and the maximum surpluses of 
players, we might state that the Nucleolus provides a solution with a higher 
stability of cooperation. Nonetheless, the Nucleolus cannot change the severe 
imbalance in players’ positions. The ROK and Mongolia remain the countries with 
the least bargaining powers. To change the situation, we could implement the 
bilevel TEP approach introduced in Section 6.1 and identify suboptimal expansion 
plans with a compromise between the economic efficiency and the stability of 
cooperation. 

 

7.2.6 Scalability of the Bilevel TEP Approach 

Unfortunately, we have found that the bilevel approach experiences 
scalability problems. As mentioned at the beginning of this section, a single scenario 
of the Asian Super Grid model contains about 1 900 continuous variables. The 
bilevel model formulation (6.19)-(6.20) considers KKT conditions for all the 63 
coalitions as well as the optimality conditions of the maximum surpluses. The lower 
level of the model represents an equilibrium problem where maximized surpluses 
of players depend on the expansion decisions in each coalition. The resulting 
formulation contains 61 814 continuous and 41 238 binary variables for this 
particular case study. Such a large-scale MILP model becomes hard to solve 
directly by off-the- shelf MIP solvers such as Gurobi or CPLEX. The core algorithm 
of such solvers is the branch-and-bound (B&B), also called branch-and-cut (B&C), 
when it is combined with cut generation [206]. Although MILP problems are 
combinatorial problems, the B&B and B&C are efficient algorithms that can obtain 
optimal solutions without exploring all possible combinations. However, two 
problem instances of the same size could have drastically different times of 
resolution. This happens since B&B algorithms rely on several heuristics (e.g., 
choosing which variables and nodes to branch, finding feasible upper bounds). But 
most importantly, the problem structure and the problem parameters are 
responsible for inducing branch pruning, i.e., reducing the size of solution space to 
explore [211]. 

In our game-theoretic formulation, each planning decision in one of the 63 
coalitions affects the decisions in the remaining coalitions via the characteristic 
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function and the game-theoretic constraints, which leads to combinatorial 
optimization. It is, therefore, hard to provide a suboptimal solution with equal 
maximum surpluses among players or calculate a “menu” of suboptimal expansion 
plans as we did for the four-system case study in Section 6.2.2. This is the reason 
why we did not manage to solve the developed bilevel TEP approach for the 
Northeast Asia case study as the execution time of our code has started to grow to 
unacceptable levels approaching several days. Hence the results presented in this 
chapter are based on the ex-post game-theoretic analysis of the project rather than 
bilevel optimization. It does not mean that the problem of the anticipating bilevel 
TEP planning is unsolvable – but it means that there is a need to reformulate and 
decompose the model with incorporated Cooperative Game Theory principles. This 
is the subject of further research.  

We found that several studies ran into similar scalability issues while 
implementing Cooperative Game Theory solution concepts in power systems. 
Freire et al. [212] and later Du et al. [103] used Benders decomposition to calculate 
the Nucleolus for cooperative games with a large number of players. In [212], the 
authors suggested an approach for sharing quotas of a renewable energy sources 
pool among different companies. Pools with up to fifty companies have been 
studied, which led to cooperative games with up to 1.1⋅1015 coalitions. An 
optimization model similar to (4.19)-(4.23) failed to compute the Nucleolus for such 
games. However, the proposed decomposition procedure was able to find it through 
a series of Benders cuts. In [103], the authors considered the coordination of 
multiple microgrids to minimize total operation cost. They followed the same 
decomposition logic and effectively allocated the cost in a cooperative game among 
thirty microgrids. We consider these works as reference points for further research 
on cooperative games decomposition. Alternating direction method of multipliers 
[213] and other decomposition methods might also be applied to decompose the 
problem by coalitions and find a suboptimal expansion plan. 

Regarding the possible outcomes of the bilevel TEP for the Northeast Asia 
case, we anticipate that suboptimal expansion plans would come at a price of 
dramatic efficiency reduction. The least effective players as Mongolia do not have 
much room for increasing their imports or exports. Therefore, the maximum 
surpluses equality constraints would decrease the contribution of other players and 
reduce the volume of electricity trade. 
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7.2.7 Manipulability Analysis 

As discussed in Chapter 5, one of the major drawbacks of the Cooperative 
Game Theory solution concepts is their dependence on the accuracy of information. 
In this case, we assumed that cooperation happens under perfect information about 
the involved power systems. However, it would not be easy in reality to aggregate 
information about each generator cost function in every country. To achieve such 
information transparency, it would be necessary to establish a centralized 
coordinating entity similar to the ENTSO-E in Europe [128].  

Moreover, as we demonstrated for the two-system and three-system cases, 
the allocation mechanisms are not free of manipulations. Once players know the 
allocation rule, they may misreport information to get more benefits. For example, 
a power exporter might submit a higher generation cost function than the real one. 
By doing so, he would not only get a share of the total savings but also hide some 
benefits from other participants since no one else knows that the submitted cost 
function is not true. Energy importers may also act accordingly, pretending that 
their cost functions are lower than the true ones. Such manipulations can be 
harmful for the overall cooperation, especially at the planning stage. 

Similarly to the manipulability analysis presented in Chapter 5, we 
performed a series of simulations for the Northeast Asia case. The Shapley value 
was selected as the allocation rule. By changing the declared cost functions of the 
participating counties, we identified the beneficial directions of manipulations. We 
found that every country can increase its share of the actual saving by manipulating 
the allocation rule, as shown in Figure 7.15. The results are consistent with our 
predictions of players’ strategic behavior. We see that power exporters (Russia) 
deviate by declaring a higher cost function, while power importers (Japan) decrease 
its revealed cost. 

Unfortunately, none of the manipulation strategies keeps the totals savings 
at the optimum level. As soon as one of the countries misreports its information, 
the total savings of cooperation can be reduced. To illustrate such outcomes, in 
Figure 7.16, we present a hypothetical situation where Japan claims to have a cost 
not higher than the South Korean one. Under the new information, there would be 
no point in building the ROK-Japan cable interconnection (line 5-4). The ROK 
would change its role from a transferring country to a power importer. The total 



188 

savings of the cooperation would decrease by 0.418 billion US dollars per year 
compared to the optimal interconnection scheme. However, Japan would increase 
its actual savings from 1.07 to 1.55 billion US dollars per year. Such strategic 
behavior has the following reasoning. It should be more profitable for Japan to 
refuse the plan of building two power lines (ROK-Japan, Sakhalin-Japan – 10 GW 
in total) in favor of building only the line to Russia. This would allow importing 
less electricity but at a much lower price. 
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Figure 7.15: The effects of the unilateral cost function manipulations on the 

actual savings allocation in the Northeast Asia case. 
 

We also modeled the simultaneous manipulations where all the countries 
deviate in their beneficial directions. We observed the same principle as in 
Section 5.3: only the major power exporter and importer can successfully 
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manipulate the allocation rule. Other players in the interim positions fail to increase 
their shares of the actual total cost savings. Unfortunately, the resulting 
manipulation game might lead to highly suboptimal equilibrium solutions of TEP 
or even cooperation without forming the grand coalition. We hereby again 
emphasize the need for developing new strategyproof mechanisms of cooperation 
on cross-border power interconnection projects. 

 

 
Figure 7.16: The suboptimal scheme of cross-border electrical interconnections in 
Northeast Asia driven by Japanese strategic behavior. “Ex” and “Im” label power 

exporters and importers. 
 

7.3 Summary and Conclusions 

Existing studies of cross-border power interconnections demonstrate the 
potential benefits of cooperation, which can be estimated in generation cost savings, 
changes in electricity prices, a decrease in consumer’s payment, and CO2 emissions 
reduction. However, the analysis of a power interconnection project cannot be 
complete without costs and benefits allocation among countries. It is necessary to 
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estimate what contribution could be made by each country and how it should be 
rewarded if joining the coalition. 

In this chapter, we showed how the Cooperative Game Theory solution 
concepts can be implemented in a realistic case of cross-border power 
interconnection in Northeast Asia. On the basis of the total cost and savings 
allocation, it becomes possible to suggest a scheme of investment in the power lines 
and set payments among the countries. We calculated the allocation of the total 
cost and savings using the Shapley value and the Nucleolus. Then, we opened a 
discussion on the applicability of the investment and payment schemes among the 
countries.  

We also thoroughly studied the stability of cooperation on the project. 
Having performed the sensitivity analysis and analyzed the Core of the game, we 
concluded that the formation of the grand coalition should be incentive-compatible 
for the countries. Cross-border power interconnections in Northeast Asia bring 
enough cost savings to persuade the countries to join the project and build stable 
cooperation. However, there exists a severe imbalance in the players’ positions in 
cooperation. Players as Mongolia and the ROK could become less interested in the 
project than other countries. To avoid such situations, it might not be enough to 
change the allocation rule. In this regard, the proposed bilevel TEP approach might 
be useful in identifying suboptimal expansion plans with a higher stability of 
cooperation. Unfortunately, as reported in Section 7.2.6, we were not able to 
implement the bilevel TEP model in this case study due to scalability issues. Thus, 
our analysis of cooperation stability is based on the ex-post game-theoretic 
approach. 

The manipulability analysis again revealed that cooperation mechanisms 
based on the Cooperative Game Theory solution concepts are not strategyproof. 
The allocation of the savings highly depends on data accuracy and can be easily 
manipulated by the countries. There is a need for developing new strategyproof 
mechanisms of cross-border TEP and establishing international coordinating 
entities to facilitate projects like the Asian Super Grid. 
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Chapter 8 

 

Conclusions and Future Work 

Winning is not a secret that belongs to a 
very few, winning is something that we 
can learn by studying ourselves, studying 
the environment and making ourselves 
ready for any challenge that is in front 
of us. 

- Garry Kasparov 
World сhess сhampion 1985-1993 

 
The presented work is interdisciplinary research that combines electrical 

engineering, mathematical optimization, Game Theory, and economics. 
Throughout the manuscript, we addressed multiple features of cooperation on 
cross-border power interconnection projects. We proposed a novel bilevel TEP 
model that can be a useful planning tool for establishing stable cooperation among 
independent players. In this chapter, we summarize the main findings and 
contributions of the work, draw the conclusions, and formulate the future research 
directions. 

 

8.1 Thesis Summary 

This thesis has emphasized the importance of international cooperation in 
TEP and electricity trade. Despite the fact that there exist numerous studies and 
initiatives to establish regional electricity cooperation, very few projects are 
currently being realized. We identified the major issues and obstacles to 
cooperation on such projects and dedicated our effort to cover the research gap on 
costs and benefits allocation mechanisms. Cooperative Game Theory was chosen 
as the main tool of our analysis. 
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Research on allocation issues in power systems, including a game-theoretic 
analysis, has a significant background. We identified the main studies on 
transmission expansion cost allocation and performed a citation analysis to get a 
solid grasp on the topic. More than 3 000 papers have been analyzed, which allowed 
us to classify the main research directions and achievements. We found that there 
is ongoing research on Cooperative Game Theory applications in power systems. 
The topic is attracting increasing attention over recent years. The citation network 
analysis also allowed us to justify the novelty of our work. In the beginning, we 
followed the way of existing studies in solving TEP models (Chapter 3), formulating 
cooperative games over expansion plans, and using well-known solution concepts 
(Chapter 4). But, in Chapter 5, we went beyond and presented the manipulability 
analysis of allocation rules. In Chapter 6, we proposed the novel bilevel TEP 
approach that incorporates Cooperative Game Theory principles. Such ideas have 
never been formulated nor implemented in power systems research. Finally, in 
Chapter 7, we presented a real-world case study of cross-border power 
interconnections in Northeast Asia. We illustrated how the cost allocation solutions 
may be obtained using Cooperative Game Theory concepts and discussed the 
practical implementation issues. We then performed the manipulability analysis 
and examined the stability of cooperation. 

Summing up, our work presents a comprehensive analysis of Cooperative 
Game Theory applications for cost allocation in cross-border power interconnection 
projects. Through a series of case studies, we explained the mechanisms of 
cooperation, interpreted the results of the game-theoretic analysis, and illustrated 
the usefulness of the developed bilevel TEP approach. We believe that our 
contributions not only shed light on cooperation issues in expansion planning but 
would also encourage academia and industry to integrate Cooperative Game 
Theory into existing mechanisms of cooperation in power systems, and beyond. 

 

8.2 Conclusions 

We drew several conclusions on Cooperative Game Theory applications for 
TEP cost allocation throughout the manuscript. Most of them concerned the 
stability of cooperation, applicability issues, and the interpretation of the game-
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theoretic analysis. In this section, we present the general conclusions to summarize 
the main messages of our research: 

 
 Cooperative Game Theory provides a rich theoretical background for 

the analysis of cooperation in cross-border power interconnection 
projects. The presented solution concepts can be integrated into 
cooperation mechanisms to identify reasonable allocation solutions 
while satisfying some desired properties of cooperation. The game-
theoretic analysis can also be used to estimate the bargaining power 
of players (countries) and suggest alternative expansion decisions if 
needed. 

 Cooperative games on TEP are superadditive since the total cost of 
interconnected systems is minimized for every scenario of cooperation 
(coalition). However, capacity limits and topology of interconnections 
often lead to nonconvex cooperative games. The Core of such games 
can be an empty set, which means that there exist no incentive-
compatible allocations. Due to the nonconvexity, there could be TEP 
projects where it would not be possible to persuade some players to 
join the grand coalition. 

 The straightforward implementation of the Cooperative Game 
Theory solution concepts cannot create strategyproof mechanisms. 
One or several players might have incentives to misreport their data 
and manipulate the allocation rule. Such a strategic behavior could 
lead to a manipulation game, which outcome could be a suboptimal 
expansion plan with fewer savings or even a failure to form the grand 
coalition. To overcome this issue, there is a need for development of 
more advanced mechanisms of cooperation. The recent achievements 
from the Algorithmic Mechanism Design could be adapted for TEP 
tasks. 

 Cooperative Game Theory is usually implemented in an ex-post 
manner to analyze the outcome of cooperation. However, a more 
promising approach is incorporating the Cooperative Game Theory 
solution concepts into TEP algorithms, for example, by means of 
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bilevel modeling. Such models can identify optimal planning decisions 
in an anticipating manner, subject to desired properties of the 
resulting cooperative game. We thoroughly examine this approach in 
Chapter 6. 

 The considered solution concepts, such as the Shapley value, are 
applicable for cooperative games with a moderate number of players 
(in this work, we considered games with no more than six players). 
However, with a larger number of players, there appear numerical 
issues due to an increased amount of possible coalitions (scenarios of 
cooperation). Therefore, other solution concepts, such as the 
Aumann–Shapley value, are of great interest. 

 The proposed bilevel TEP model also experience scalability issues. 
The equivalent MILP formulation of the model has a sharp increase 
in the binary variables when more players are considered in a project. 
To overcome this issue, there is a need to use recent advances in 
decomposition techniques and equilibrium problem algorithms. 

 

8.3 Future Research Trajectory 

We see the following challenges that may be further investigated. TEP of 
cross-border power interconnections could be studied along with demand response 
programs and other policy implications that could cause cross-subsidies between 
systems. Such policies can be treated as externalities or be included in the 
cooperative game, for example, as additional decision variables. It might also be 
useful to consider a more detailed representation of power systems and include 
uncertainties in TEP models (gas prices, renewable generation). Moreover, analysis 
of cooperation on integrated planning of energy systems (for example, gas and 
electricity) might provide more information on the bargaining power of 
participating countries. 

In a middle-term research trajectory, we aim to overcome the computational 
issues that arise when cooperative games are formulated as multilevel optimization 
models with thousands of binary variables. Mathematically, these issues are similar 
to the problems that arise in complementarity modeling of equilibrium problems, 
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where several interacting optimization problems are solved simultaneously. 
However, our preliminary results showed that the developed bilevel TEP approach 
could be far more computationally harder than common complementarity models. 
The point is that complementarity models are used to represent interacting 
decision-makers or different optimization stages. Usually, each of the interrelated 
optimization problems involves the same model and data input. However, our 
bilevel approach includes all possible scenarios of cooperation (coalitions) and, thus, 
requires the simultaneous optimization of multiple problems over multiple models. 
Since the number of models grows exponentially with the number of players, it 
requires much more computational effort to implement the bilevel TEP modeling 
for real-world case studies. Moreover, the resulting structure of the problem can 
make an algorithm iterating between the optimization models without finding new 
feasible solutions. Existing branch-and-bound algorithms fail to find a solution with 
adequately small gaps for large-scale MIP with additional lower-level Cooperative 
Game Theory constraints. There is a need for effectively formulating and solving 
such problems. 

Once we overcome the scalability issues, we will apply the bilevel TEP 
approach to the real-world case studies of cross-border power interconnections. We 
intend to show how countries in different regions may cooperate in a way that none 
of them would be underestimated, while time keeping the total savings as high as 
possible. Then, the developed approach could be extended to much broader fields, 
such as transportation and communication systems. It could contribute to many 
applications in Operations Research and Applied Mathematics. 

The major challenge, yet, is the development of strategyproof mechanisms 
of cooperation. To this end, we hope that recent advances in Algorithmic 
Mechanism Design could be adopted to establish mechanisms and protocols that 
prevent the selfish behavior of participants. The equilibrium analysis of 
manipulation games performed in Section 5.4 could be extended to cases with 
multiple players and different allocation mechanisms. It would also be useful to 
develop an index of manipulability to evaluate the effectiveness of planning 
approaches in preventing manipulations. 
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