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Abstract 

 

 Quantum integrable models are a special class of physical models. These models 

describe non trivial systems of interacting particles and at the same time they can be 

studied accuracy using mathematical tools. They offer us a unique training ground for a 

deep study of non-trivial physical phenomena explicitly. 

 A wide class of quantum integrable models is associated with higher rank algebras. 

Integrable models with symmetries of high rank appear in condensed matter physics, in 

particular in the gl(m|n)-invariant XXX Heisenberg spin chain, in multi-component 

Bose/Fermi gas [37], and in the study of models of cold atoms (the Hubbard model [33], 

the t-J model [34–36]). Also spin chains of higher rank are interesting in the context of 

computing correlation functions in N= 4 supersymmetric Yang-Mills theory [8, 9]. 

 The role of the scalar product of Bethe vectors is extremely important in the study of 

correlation functions of local operators of the underlying quantum models [4, 13, 61]. 

One can reduce the problem of calculation of the form factors and the correlation 

functions of local operators to the calculation of the scalar products of the Bethe vectors 

[15, 16]. 

 The study of integrable systems with high rank symmetry is still a challenging task. 

Until recently, such models have either not been studied at all, or have been studied under 

various simplifying hypotheses. The results presented in the thesis are the first in this 

direction.  
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Abstract

We study scalar products of Bethe vectors in the models solvable by the nested algebraic Bethe ansatz 
and described by gl(m|n) superalgebra. Using coproduct properties of the Bethe vectors we obtain a sum 
formula for their scalar products. This formula describes the scalar product in terms of a sum over partitions 
of Bethe parameters. We also obtain recursions for the Bethe vectors. This allows us to find recursions for 
the highest coefficient of the scalar product.
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1. Introduction

The problem of calculating correlation functions of quantum exactly solvable models is of 
great importance. The creation of the Quantum Inverse Scattering Method (QISM) in the early 
80s of the last century provided a powerful tool for investigating this problem [1–4]. The first 
works in which QISM was applied to the problem of correlation functions [5,6] were devoted 
to the models related to the different deformations of the affine algebra �gl(2). Already in those 
papers, the key role of Bethe vectors scalar products was established. In particular, a sum formula
for the scalar product of Bethe vectors was obtained in [5]. This formula gives the scalar product 
as a sum over partitions of Bethe parameters.
A generalization of QISM to the models with higher rank symmetry was given in papers 

[7–9] where the nested algebraic Bethe ansatz was developed. There a recursive procedure was 
developed to construct Bethe vectors corresponding to the gl(N) algebra from the known Bethe 
vectors of the gl(N − 1) algebra. The problem of the scalar products in SU(3)-invariant models 
were studied in [10], where an analog of the sum formula for the scalar product was obtained 
and the norm of the transfer matrix eigenstates was computed. Recently in a series of papers 
[11–16] the Bethe vectors scalar products in the models with gl(3) and gl(2|1) symmetries were 
intensively studied. There determinant representations for some important particular cases were 
obtained leading eventually to the determinant formulas for form factors of local operators in the 
corresponding physical models [17–20]. A generalization of some of those results to the models 
with trigonometric R-matrix was given in [21,22].
Concerning the scalar products in the models with higher rank (super) symmetries, only few 

results are known for today. First, it is worth mentioning the papers [23,24], in which the authors 
developed a new approach to the problem based on the quantized Knizhnik–Zamolodchikov 
equation. There the norms of the transfer matrix eigenstates in gl(N)-based models were calcu-
lated. Some partial results were also obtained when specializing to fundamental representations 
or to particular cases of Bethe vectors [25–28].
In this paper we study the Bethe vectors scalar products in the models described by gl(m|n)

superalgebras. Hence it encompasses the case of gl(m) algebras. In spite of we work within the 
framework of the traditional approach based on the nested algebraic Bethe ansatz, we essentially 
use recent results obtained in [29] via the method of projections for construction of Bethe vectors. 
This method was proposed in the paper [30]. It uses the relation between two different realiza-
tions of the quantized Hopf algebra Uq(�gl(N)) associated with the affine algebra �gl(N), one in 
terms of the universal monodromy matrix T (z) and RT T -commutation relations and second in 
terms of the total currents, which are defined by the Gauss decomposition of the monodromy 
matrix T (z) [31]. In [29] we generalized this approach to the case of the Yangians of gl(m|n)
superalgebras. Among the results of [29] that are used in the present paper, we note the formulas 
for the action of the monodromy matrix entries onto the Bethe vectors, and also the coproduct 
formula for the Bethe vectors.
The main result of this paper is the sum formula for the scalar product of Bethe vectors. In our 

previous publications (see e.g. [15,21]) we derived it using explicit formulas of the monodromy 
matrix elements multiple actions onto the Bethe vectors. This method is straightforward, but 
it becomes rather cumbersome already for gl(3) and gl(2|1) based models. Furthermore, the 
possibility of its application to the models with higher rank symmetries is under question. Instead, 
in the present paper we use a method based on the coproduct formula for the Bethe vectors. 
Actually, the structure of the scalar product is encoded in the coproduct formula. Therefore, this 
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method directly leads to the sum formula, in which the scalar product is given as a sum over 
partitions of Bethe parameters.
The sum formula contains an important object called the highest coefficient (HC) [5]. In the 

gl(2) based models and their q-deformation the HC coincides with a partition function of the 
six-vertex model with domain wall boundary condition. An explicit representation for it was 
found in [32]. In the models with gl(3) symmetry the HC also can be associated with a special 
partition function, however, its explicit form is much more sophisticated (see e.g. [11,13]). One 
can expect that in the case of higher rank algebras an analogous explicit formula for the HC 
becomes too complex. Therefore, in this paper we do not derive such formulas, but instead, we 
obtain recursions, which allow one to construct the HC starting with the ones in the models with 
lower rank symmetries. These recursions can be derived from recursions on the Bethe vectors 
that we also obtain in this paper.
As we have already mentioned, the Bethe vectors scalar products are of great importance in 

the problem of correlation functions of quantum integrable models. Certainly, the sum formula 
is not convenient for its direct applications, as it contains a big number of terms, which grows 
exponentially in the thermodynamic limit. However, it gives a key for studying particular cases 
of scalar products, in which the sum over partitions can be reduced to a single determinant. 
This type of formulas can be used for calculating form factors of various integrable models of 
physical interest, like, for instance, the Hubbard model [33], the t-J model [34–36] or multi-
component Bose/Fermi gas [37], not to mention spin chain models as they are nowadays tested 
in condensed matter experiments [38]. We also hope that our results will be of some interest 
in the context of super-Yang–Mills theories, when studied in the integrable systems framework. 
Indeed, in these theories, the general approach relies on a spin chain based on the psu(2, 2|4)
superalgebra. We believe that the present results will contribute to a better understanding of the 
theory.
The article is organized as follows. In section 2 we introduce the model under consideration. 

There we also specify our conventions and notation. In section 3 we describe Bethe vectors of 
gl(m|n)-based models. Section 4 contains the main results of the paper. Here we give a sum for-
mula for the scalar product of generic Bethe vectors and recursion relations for the Bethe vectors 
and the highest coefficient. The rest of the paper contains the proofs of the results announced in 
section 4. In section 5 we prove recursion formulas for the Bethe vectors. Section 6 contains a 
proof of the sum formula for the scalar product. In section 7 we study highest coefficient and find 
a recursion for it. Proofs of some auxiliary statements are gathered in appendices.

2. Description of the model

2.1. gl(m|n)-based models

The R-matrix of gl(m|n)-based models acts in the tensor product Cm|n ⊗Cm|n, where Cm|n
is the Z2-graded vector space with the grading [i] = 0 for 1 ≤ i ≤m, [i] = 1 for m < i ≤m + n. 
Here, we assume that m ≥ 1 and n ≥ 1, but we want to stress that our considerations are ap-
plicable to the case m = 0 or n = 0 as well, i.e. to the non-graded algebras. Matrices acting 
in this space are also graded. We define this grading on the basis of elementary units Eij as 
[Eij ] = [i] + [j ] ∈ Z2 (recall that (Eij )ab = δiaδjb). The tensor products of Cm|n spaces are 
graded as follows:

(1⊗Eij ) · (Ekl ⊗ 1)= (−1)([i]+[j ])([k]+[l]) Ekl ⊗Eij . (2.1)
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The R-matrix of gl(m|n)-invariant models has the form

R(u, v)= I+ g(u,v)P , g(u, v)=
c

u− v
. (2.2)

Here c is a constant, I and P respectively are the identity matrix and the graded permutation 
operator [39]:

I= 1⊗ 1=
n+m�

i,j=1
Eii ⊗Ejj , P =

n+m�

i,j=1
(−1)[j ]Eij ⊗Eji . (2.3)

The key object of QISM is a quantum monodromy matrix T (u). Its matrix elements Ti,j (u)
are graded in the same way as the matrices [Eij ]: [Ti,j (u)] = [i] + [j ]. The grading is a mor-
phism, i.e. [Ti,j (u) · Tk,l(v)] = [Ti,j (u)] + [Tk,l(v)]. Their commutation relations are given by 
the RT T -relation

R(u, v)
�
T (u)⊗ 1

��
1⊗ T (v)

�
=
�
1⊗ T (v)

��
T (u)⊗ 1

�
R(u, v). (2.4)

Equation (2.4) holds in the tensor product Cm|n ⊗Cm|n ⊗H, where H is a Hilbert space of the 
Hamiltonian under consideration. Here all the tensor products are graded.
The RT T -relation (2.4) yields a set of commutation relations for the monodromy matrix 

elements

[Ti,j (u), Tk,l(v)} = (−1)[i]([k]+[l])+[k][l]g(u, v)
�
Tk,j (v)Ti,l(u)− Tk,j (u)Ti,l(v)

�

= (−1)[l]([i]+[j ])+[i][j ]g(u,v)
�
Ti,l(u)Tk,j (v)− Ti,l(v)Tk,j (u)

�
,
(2.5)

where we introduced the graded commutator

[Ti,j (u), Tk,l(v)} = Ti,j (u)Tk,l(v)− (−1)([i]+[j ])([k]+[l])Tk,l(v)Ti,j (u). (2.6)

The graded transfer matrix is defined as the supertrace of the monodromy matrix

T (u)= strT (u)=
m+n�

j=1
(−1)[j ] Tj,j (u). (2.7)

One can easily check [39] that [T (u) , T (v)] = 0. Thus the transfer matrix can be used as a 
generating function of integrals of motion of an integrable system.

2.2. Notation

In this paper we use notation and conventions of the work [29]. Besides the function g(u, v)
we introduce two rational functions

f (u, v)= 1+ g(u,v)=
u− v + c
u− v

,

h(u,v)=
f (u, v)

g(u, v)
=
u− v + c
c

.

(2.8)

In order to make formulas uniform we also use ‘graded’ functions
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g[i](u, v)= (−1)[i]g(u,v)=
(−1)[i]c
u− v

,

f[i](u, v)= 1+ g[i](u, v)=
u− v + (−1)[i]c

u− v
,

h[i](u, v)=
f[i](u, v)

g[i](u, v)
=
(u− v)+ (−1)[i]c

(−1)[i]c
,

(2.9)

and

γi(u, v)=
f[i](u, v)

h(u,v)δi,m
, γ̂i(u, v)=

f[i+1](u, v)

h(v,u)δi,m
. (2.10)

Observe that we use the subscript i for the functions γ and γ̂ instead of the subscript [i]. 
This is because these functions actually take three values. For example, γi(u, v) = f (u, v) for 
i < m, γi(u, v) = g(u, v) for i =m, and γi(u, v) = f (v, u) for i > m. It is also easy to see that 
γ̂i(u, v) = (−1)δi,mγi(u, v).
Let us formulate now a convention on the notation. We denote sets of variables by bar, for ex-

ample, ū. When dealing with several of them, we may equip these sets or subsets with additional 
superscript: s̄i , t̄ ν , etc. Individual elements of the sets or subsets are denoted by Latin subscripts, 
for instance, uj is an element of ū, t ik is an element of t̄

i etc. As a rule, the number of elements 
in the sets is not shown explicitly in the equations, however we give these cardinalities in special 
comments to the formulas. We assume that the elements in every subset of variables are ordered 
in such a way that the sequence of their subscripts is strictly increasing: t̄ i = {t i1, t

i
2, . . . , t

i
ri
}. We 

call this ordering the natural order.
We use a shorthand notation for products of the rational functions (2.8)–(2.10). Namely, if 

some of these functions depends on a set of variables (or two sets of variables), this means that 
one should take the product over the corresponding set (or double product over two sets). For 
example,

g(ū, v)=



uj∈ū
g(uj , v),

f[i](t
i−1
k , t̄

i)=



t i ∈t̄ i
f[i](t

i−1
k , t

i
 ),

γ (s̄
i , t̄  )=




sij∈s̄i




t k∈t̄  
γ (s

i
j , t
 
k ).

(2.11)

By definition, any product over the empty set is equal to 1. A double product is equal to 1 if at 
least one of the sets is empty.
Below we will extend this convention to the products of monodromy matrix entries and their 

eigenvalues (see (3.3) and (3.4)).

3. Bethe vectors

Bethe vectors belong to the space H in which the monodromy matrix entries act. We do not 
specify this space, however, we assume that it contains a pseudovacuum vector |0�, such that

Ti,i (u)|0� = λi(u)|0�, i = 1, . . . ,m+ n,
Ti,j (u)|0� = 0, i > j ,

(3.1)
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where λi(u) are some scalar functions. In the framework of the generalized model [5] considered 
in this paper, they remain free functional parameters. Below it will be convenient to deal with 
ratios of these functions

αi(u)=
λi(u)

λi+1(u)
, i = 1, . . . ,m+ n− 1. (3.2)

We extend the convention on the shorthand notation (2.11) to the products of the functions 
introduced above, for example,

λk(ū)=



uj∈ū
λk(uj ), αi(t̄

i)=



t i ∈t̄ i
αi(t

i
 ). (3.3)

We use the same convention for the products of commuting operators

Ti,j (ū)=



uj∈ū
Ti,j (uj ), for [i] + [j ] = 0, mod 2. (3.4)

Finally, for the product of odd operators Ti,j with [i] + [j ] = 1 we introduce a special notation

Ti,j (ū)=
Ti,j (u1) . . . Ti,j (up)�
1≤k< ≤p h(u , uk)

, [i] + [j ] = 1, i < j,

Ti,j (ū)=
Ti,j (u1) . . . Ti,j (up)�
1≤k< ≤p h(uk,u )

, [i] + [j ] = 1, i > j.

(3.5)

Due to the commutation relations (2.5) the operator products (3.5) are symmetric over permuta-
tions of the parameters ū.

3.1. Coloring

In physical models, vectors of the space H describe states with quasiparticles of different 
types (colors). In gl(m|n)-based models quasiparticles may have N = m + n − 1 colors. Let 
{r1, . . . , rN } be a set of non-negative integers. We say that a state has coloring {r1, . . . , rN }, if 
it contains ri quasiparticles of the color i. A state with a fixed coloring can be obtained by 
successive application of the creation operators Ti,j with i < j to the vector |0�, which has zero 
coloring. Acting on this state, an operator Ti,j adds quasiparticles with the colors i, . . . , j−1, one 
particle of each color. In particular, the operator Ti,i+1 creates one quasiparticle of the color i, the 
operator T1,n+m creates N quasiparticles of N different colors. The diagonal operators Ti,i are 
neutral, the matrix elements Ti,j with i > j play the role of annihilation operators. Acting on the 
state of a fixed coloring, the annihilation operator Ti,j removes from this state the quasiparticles 
with the colors j, . . . , i − 1, one particle of each color. In particular, if j − 1 < k < i, and the 
annihilation operator Ti,j acts on a state in which there is no particles of the color k, then this 
action vanishes.
This definition can be formalized at the level of the Yangian through the Cartan generators of 

the Lie superalgebra gl(m|n). Indeed, the zero modes

Tij [0] = lim
u→∞

u

c

�
Tij (u)− δij

�

form a gl(m|n) superalgebra, with commutation relations
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[Tij [0] , Tkl[0]} = (−1)[i]([k]+[l])+[k][l]
�
δil Tkj [0]− δjk Til[0]

�
, i, j, k, l = 1, . . . ,m+n.

(3.6)

This superalgebra is a symmetry of the generalized model, since it commutes with the transfer 
matrix, [Tij [0] , T (z)] = 0, i, j = 1, . . . , m + n. In fact the monodromy matrix entries form a 
representation of this superalgebra:

[Tij [0] , Tkl(z)} = (−1)[i]([k]+[l])+[k][l]
�
δil Tkj (z)− δjk Til(z)

�
, i, j, k, l = 1, . . . ,m+n.

(3.7)

In particular, for the Cartan generators Tjj [0] we obtain

[Tjj [0] , Tkl(z)] = (−1)[j ]
�
δjl − δjk

�
Tkl(z) , j, k, l = 1, . . . ,m+ n. (3.8)

Then, the colors correspond to the eigenvalues under the Cartan generators1

hj =
j�

k=1
(−1)[k] Tkk[0] , j = 1, . . . ,m+ n− 1. (3.9)

Indeed, one can check that

[hj , Tkl(z)] = εj (k, l)Tkl(z) with






εj (k, l)=−1 if k ≤ j < l
εj (k, l)=+1 if l ≤ j < k
εj (k, l)= 0 otherwise

(3.10)

These eigenvalues just correspond to creation/annihilation operators as described above.
Bethe vectors are certain polynomials in the creation operators Ti,j applied to the vector |0�. 

Since Bethe vectors are eigenvectors under the Cartan generators Tkk[0], they are also eigenvec-
tors of the color generators hj , and hence contain only terms with the same coloring.

Remark In various models of physical interest the coloring of the Bethe vectors obeys certain 
constraints, for instance, r1 ≥ r2 ≥ · · · ≥ rN . In particular, this case occurs if the monodromy 
matrix of the model is given by the product of the R-matrices (2.2) in the fundamental represen-
tation. We do not restrict ourselves with this particular case and do not impose any restriction for 
the coloring of the Bethe vectors. Thus, in what follows ri are arbitrary non-negative integers.
In this paper we do not use an explicit form of the Bethe vectors, however, the reader can find 

it in [29]. A generic Bethe vector of gl(m|n)-based model depends on N = m + n − 1 sets of 
variables t̄1, ̄t2, . . . , ̄tN called Bethe parameters. We denote Bethe vectors by B(t̄), where

t̄ = {t11 , . . . , t1r1; t
2
1 , . . . , t

2
r2
; . . . ; tN1 , . . . , t

N
rN
}, (3.11)

and the cardinalities ri of the sets t̄ i coincide with the coloring. Thus, each Bethe parameter t ik
can be associated with a quasiparticle of the color i.
Bethe vectors are symmetric over permutations of the parameters t ik within the set t̄

i , however, 
they are not symmetric over permutations over parameters belonging to different sets t̄ i and t̄ j . 
For generic Bethe vectors the Bethe parameters t ik are generic complex numbers. If these pa-
rameters satisfy a special system of equations (Bethe equations), then the corresponding vector 

1 The last generator hm+n is central, see (3.10).
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becomes an eigenvector of the transfer matrix (2.7). In this case it is called on-shell Bethe vec-
tor. In this paper we consider generic Bethe vectors, however, some formulas (for instance, the 
sum formula for the scalar product (4.11), (4.15)) can be specified to the case of on-shell Bethe 
vectors as well.
Though we do not use the explicit form of the Bethe vectors, we should fix their normalization. 

We have already mentioned that a generic Bethe vector has the form of a polynomial in Ti,j with 
i < j applied to the pseudovacuum |0�. Among all the terms of this polynomial there is one 
monomial that contains the operators Ti,j with j − i = 1 only. Let us call this term the main term
and denote it by �B(t̄). Then

B(t̄)=�B(t̄)+ . . . . (3.12)

where ellipsis means all the terms containing at least one operator Ti,j with j − i > 1. We will 
fix the normalization of the Bethe vectors by fixing a numeric coefficient of the main term

�B(t̄)= T1,2(t̄1) . . .TN,N+1(t̄N )|0��N
i=1λi+1(t̄

i)
�N−1
i=1 f[i+1](t̄

i+1, t̄ i )
, (3.13)

where

Ti,i+1(t̄ i)=
Ti,i+1(t i1) . . . Ti,i+1(t

i
ri
)

��
1≤j<k≤ri h(t

i
k, t
i
j )
�δi,m . (3.14)

Recall that we use here the shorthand notation for the products of the functions λj+1 and f[j+1]. 
The normalization in (3.13) is different from the one used in [29] by the product 

�N
j=1 λj+1(t̄

j ). 
This additional normalization factor is convenient, because in this case the scalar products of the 
Bethe vectors depend on the ratios αi (3.2) only.
Since the operators Ti,i+1 and Tj,j+1 do not commute for i �= j , the main term can be written 

in several forms corresponding to different ordering of the monodromy matrix entries. The or-
dering in (3.13) naturally arises if we construct Bethe vectors via the embedding of gl(m − 1|n)
to gl(m|n).

3.2. Morphism of Bethe vectors

Yangians Y(gl(m|n)) and Y(gl(n|m)) are related by a morphism ϕ [40]

ϕ :
�
Y(gl(m|n)) → Y(gl(n|m)),
T
m|n
i,j (u) → (−1)[i][j ]+[j ]+1 T n|mN+2−j,N+2−i (u) , i, j = 1, . . . ,N + 1,

(3.15)

and we recall that N = m + n − 1. Here we also have equipped the operators Tij with addi-
tional superscripts showing the corresponding Yangians. This mapping also acts on the vacuum 
eigenvalues λi(u) (3.1) and their ratios αi(u) (3.2)

ϕ :
�
λi(u) → −λN+2−i (u), i = 1, . . . ,N + 1 ,
αi(u) → 1

αN+1−i (u)
, i = 1, . . . ,N .

(3.16)

Morphism ϕ induces a mapping of Bethe vectors Bm|n of Y(gl(m|n)) to Bethe vectors Bn|m
of Y (gl(n|m)). To describe this mapping we introduce special orderings of the sets of Bethe 
parameters. Namely, let
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−→
t = {t̄1, t̄2, . . . , t̄N } and ←−

t = {t̄N , . . . , t̄2, t̄1}. (3.17)

The ordering of the Bethe parameters within every set t̄ k is not essential. Then

ϕ
�
Bm|n(−→t)

�
=
(−1)rmBn|m(←−t)
�N
k=1 αN+1−k(t̄

k)
. (3.18)

Applying the mapping (3.18) to Bm|n and then replacing m ↔ n we obtain an alternative 
description of the Bethe vectors corresponding to the embedding of gl(m|n − 1) to gl(m|n). The 
use of ϕ (3.18) allows one to establish important properties of the Bethe vectors scalar products 
(see section 7.2).

3.3. Dual Bethe vectors

Dual Bethe vectors belong to the dual space H∗, and they are polynomials in Ti,j with i > j
applied from the right to the dual pseudovacuum vector �0|. This vector possesses properties 
similar to (3.1)

�0|Ti,i (u)= λi(u)�0|, i = 1, . . . ,m+ n,
�0|Ti,j (u)= 0 , i < j ,

(3.19)

where the functions λi(u) are the same as in (3.1).
We denote dual Bethe vectors by C(t̄), where the set of Bethe parameters t̄ consists of several 

sets t̄ i as in (3.11). Similarly to how it was done for Bethe vectors, we can introduce the coloring 
of the dual Bethe vectors. At the same time the role of creation and annihilation operators are 
reversed.
One can obtain dual Bethe vectors via a special antimorphism of the algebra (2.4) [40]

� : Ti,j (u)→ (−1)[i]([j ]+1)Tj,i (u). (3.20)

This antimorphism is nothing but a super (or equivalently, graded) transposition compatible with 
the notion of supertrace. It satisfies a property

�(A ·B)= (−1)[A][B]�(B) ·�(A), (3.21)

where A and B are arbitrary elements of the monodromy matrix. If we extend the action of this 
antimorphism to the pseudovacuum vectors by

�
�
|0�
�
= �0|, �

�
A|0�
�
= �0|�

�
A
�
,

�
�
�0|
�
= |0�, �

�
�0|A
�
=�
�
A
�
|0�,

(3.22)

then it turns out that [29]

�
�
B(t̄)
�
=C(t̄), �

�
C(t̄)
�
= (−1)rmB(t̄), (3.23)

where rm = #t̄m.

Remark It should not be surprising that �2
�
B(t̄)
�
�= B(t̄). The point is that the antimorphism 

� is idempotent of order 4 and its square is the parity operator (counting the number of odd 
monodromy matrix elements modulo 2).
Thus, dual Bethe vectors are polynomials in Ti,j with i > j acting from the right onto �0|. 

They also contain the main term �C(t̄), which now consists of the operators Ti,j with i − j = 1. 
The main term of the dual Bethe vector can be obtained from (3.13) via the mapping �:
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�C(t̄)=
(−1)rm(rm−1)/2�0|TN+1,N (t̄N ) . . .T2,1(t̄1)�N

i=1 λi+1(t̄
i)
�N−1
i=1 f[i+1](t̄

i+1, t̄ i )
, (3.24)

where

Ti+1,i (t̄ i)=
Ti+1,i (t i1) . . . Ti+1,i (t

i
ri
)

��
1≤j<k≤ri h(t

i
j , t
i
k)
�δi,m . (3.25)

Finally, using the morphism ϕ we obtain a relation between dual Bethe vectors corresponding 
to the Yangians Y(gl(m|n)) and Y(gl(n|m))

ϕ
�
Cm|n(−→t)

�
=

Cn|m(←−t)
�N
k=1 αN+1−k(t̄

k)
. (3.26)

4. Main results

In this section we present the main results of the paper. They are of three types: recursion 
formulas for Bethe vectors; sum formula for the Bethe vectors scalar product; recursion formulas 
for the scalar product highest coefficients. Recall that we formally consider the case m, n �= 0. 
However, in subsection 4.3 we specify our results to the particular case of gl(m)-based models, 
that is, n = 0. The case m = 0 can be obtained from the latter via replacement c→−c in the 
R-matrix (2.2).

4.1. Recursion for Bethe vectors

Here we give recursions for (dual) Bethe vectors. These recursions allow us to construct Bethe 
vectors, knowing the ones depending on a smaller number of parameters. The corresponding 
proofs are given in section 5.

Proposition 4.1. Bethe vectors of gl(m|n)-based models satisfy a recursion

B(
�
z, t̄1
�
;
�
t̄ k
�N
2 )=

N+1�

j=2

T1,j (z)

λ2(z)

�

part(t̄2,...,t̄ j−1)

B(
�
t̄1
�
;
�
t̄ kII
�j−1
2 ;
�
t̄ k
�N
j
)

×
�j−1
ν=2 αν(t̄

ν
I )g[ν](t̄

ν
I , t̄
ν−1
I )γν(t̄

ν
II , t̄
ν
I )

h(t̄1, z)δm,1
�j−1
ν=1 f[ν+1](t̄

ν+1, t̄ νI )
. (4.1)

Here for j > 2 the sets of Bethe parameters t̄2, . . . , ̄t j−1 are divided into disjoint subsets t̄ νI and 
t̄ νII (ν = 2, . . . , j − 1) such that the subset t̄ νI consists of one element only: #t̄ νI = 1. The sum is 
taken over all partitions of this type. We set by definition t̄1I ≡ z and t̄N+1 = ∅.

We used the following notation in Proposition 4.1

B(
�
z, t̄1
�
;
�
t̄ k
�N
2 )= B(

�
z, t̄1
�
; t̄2; . . . ; t̄N ),

B(
�
t̄1
�
;
�
t̄ kII
�j−1
2 ;
�
t̄ k
�N
j
)= B(t̄1; t̄2II ; . . . ; t̄

j−1
II ; t̄ j ; . . . ; t̄N ).

(4.2)

This and similar notation will be used throughout of the paper.
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Remark We stress that each of the subsets t̄2I , . . . , ̄t
N
I in (4.1) must consist of exactly one ele-

ment. However, this condition is not feasible, if the original Bethe vector B(t) contains an empty 
set t̄ k = ∅ for some k ∈ [2, . . . , N]. In this case, the sum over j in (4.1) breaks off at j = k. 
Indeed, the action of the operators T1,j (z) with j > k on a Bethe vector necessarily creates a 
quasiparticle of the color k. Since this quasiparticle is absent in the lhs of (4.1), we cannot have 
the operators T1,j (z) with j > k in the rhs. Similar consideration shows that if B(t) contains 
several empty sets t̄ k1, . . . , ̄tk , then the sum ends at j =min(k1, . . . , k ).

Remark One can notice that for m = 1 an additional factor h(t̄1, z)−1 appears in the recursion. 
The point is that with this recursion we add a quasiparticle of the color 1 to the original set of 
quasiparticles via the actions of the operators T1,j . For m = 1 all these operators are odd, which 
explains the appearance of the factor h(t̄1, z)−1. This difference can also be seen explicitly in the 
example of recursion for the main term (3.13)

�B(
�
z, t̄1
�
;
�
t̄ k
�N
2 )=

T1,2(z)�B(t̄)
h(t̄1, z)δm,1λ2(z)f[2](t̄2, z)

. (4.3)

Using the mappings (3.15) and (3.20) one can obtain one more recursion for the Bethe vectors 
and two recursions for the dual ones.

Proposition 4.2. Bethe vectors of gl(m|n)-based models satisfy a recursion

B(
�
t̄ k
�N−1
1 ;

�
z, t̄N
�
)=

N�

j=1

Tj,N+1(z)

λN+1(z)

�

part(t̄ j ,...,t̄N−1)

B(
�
t̄ k
�j−1
1 ;
�
t̄ kII
�N−1
j
; t̄N )

×
�N−1
ν=j g[ν+1](t̄

ν+1
I , t̄ νI )γ̂ν(t̄

ν
I , t̄
ν
II )

h(t̄N , z)δm,N
�N
ν=j f[ν](t̄

ν
I , t̄
ν−1)
. (4.4)

Here for j < N the sets of Bethe parameters t̄ j , . . . , ̄tN−1 are divided into disjoint subsets t̄ νI and 
t̄ νII (ν = j, . . . , N − 1) such that the subset t̄ νI consists of one element: #t̄ νI = 1. The sum is taken 
over all partitions of this type. We set by definition t̄NI ≡ z and t̄0 = ∅.

Remark If the Bethe vector B(t) contains several empty sets t̄ k1, . . . , ̄tk , then the sum over j
in (4.4) begins with j =max(k1, . . . , k ) + 1.
Acting with antimorphism (3.20) onto equations (4.1) and (4.4) we immediately arrive at 

recursions for the dual Bethe vectors.

Corollary 4.1. Dual Bethe vectors of gl(m|n)-based models satisfy recursions

C(
�
z, s̄1
�
;
�
s̄k
�N
2 )=

N+1�

j=2

�

part(s̄2,...,s̄j−1)

C(
�
s̄1
�
;
�
s̄kII
�j−1
2 ;
�
s̄k
�N
j
)
Tj,1(z)

λ2(z)
(−1)r1δm,1

×
�j−1
ν=2 αν(s̄

ν
I )g[ν](s̄

ν
I , s̄
ν−1
I )γ̂ν(s̄

ν
II , s̄
ν
I )

h(s̄1, z)δm,1
�j−1
ν=1 f[ν+1](s̄

ν+1, s̄νI )
, (4.5)

and
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C(
�
s̄k
�N−1
1 ;

�
z, s̄N

�
)=

N�

j=1

�

part(s̄j ,...,s̄N−1)

C(
�
s̄k
�j−1
1 ;
�
s̄kII
�N−1
j
; s̄N )

TN+1,j (z)

λN+1(z)
(−1)rNδm,N

×
�N−1
ν=j g[ν](s̄

ν+1
I , s̄νI )γν(s̄

ν
I , s̄
ν
II )

h(s̄N , z)δm,N
�N
ν=j f[ν](s̄

ν
I , s̄
ν−1)
. (4.6)

Here the summation over the partitions occurs as in the formulas (4.1) and (4.4). The numbers 
r1 (resp. rN ) are the cardinalities of the sets s̄1 (resp. s̄N ). The subsets s̄νI consist of one element: 
#s̄νI = 1. If C(s̄) contains empty sets of the Bethe parameters, then the sums cut similarly to the 
case of the Bethe vectors B(t̄). By definition s̄1I ≡ z in (4.5), s̄NI ≡ z in (4.6), and s̄0 = s̄N+1 = ∅.

The proof of Corollary 4.1 is given in section 5.2.
Using recursion (4.1) one can express a Bethe vector with #t̄1 = r1 in terms of Bethe vectors 

with #t̄1 = r1− 1. Applying this recursion successively we eventually express the original Bethe 
vector in terms of a linear combination of terms that are products of the monodromy matrix 
elements T1,j acting onto Bethe vectors with #t̄1 = 0. The latter effectively corresponds to the 
Yangian Y(gl(m − 1|n)) (see [29]):

Bm|n(∅;{t̄ k}N2 )= B
m−1|n(t̄)

���
t̄ k→t̄ k+1

. (4.7)

Thus, continuing this process we formally can reduce Bethe vectors of Y(gl(m|n)) to the ones of 
Y(gl(1|n)).
Similarly, using recursion (4.4) and

Bm|n({t̄ k}N−11 ; ∅)= Bm|n−1(t̄), (4.8)

we eventually reduce Bethe vectors of Y(gl(m|n)) to the ones of Y(gl(m|1)). The combination 
of both recursions thus defines a unique procedure for constructing Bethe vectors with respect to 
the known Bethe vectors of Y(gl(1|1)): B1|1(t̄) = T1,2(t̄)|0�/λ2(t̄). Similarly, one can built dual 
Bethe vectors via (4.5), (4.6). These procedures, of course, are of little use for practical purposes, 
however, they can be used to prove various assertions by induction.

4.2. Sum formula for the scalar product

Let B(t̄) be a generic Bethe vector and C(s̄) be a generic dual Bethe vector such that #t̄ k =
#s̄k = rk , k = 1, . . . , N . Then their scalar product is defined by

S(s̄|t̄ )=C(s̄)B(t̄). (4.9)

Note that if #t̄ k �= #s̄k for some k ∈ {1, . . . , N}, then the scalar product vanishes. Indeed, in this 
case the numbers of creation and annihilation operators of the color k do not coincide.
Applying (3.22) to the scalar product and using 

�
B(t̄)
�
=
�
C(t̄)
�
= rm [29] we find that

S(s̄|t̄ )=C(t̄)B(s̄)= S(t̄ |s̄). (4.10)

Computing the scalar product one should use commutation relations (2.5) and move all oper-
ators Ti,j with i > j from the dual vector C(s̄) to the right through the operators Ti,j with i < j , 
which are in the vector B(t̄). In the process of commutation, new operators will appear, which 
should be moved to the right or left, depending on the relation between their subscripts. Once 
an operator Ti,j with i ≥ j reaches the vector |0�, it either annihilates it for i > j , or gives a 
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function λi for i = j . The argument of the function λi can a priori be any Bethe parameter tk 
or sk . Similarly, if an operator Ti,j with i ≤ j reaches the vector �0|, it either annihilates it for 
i < j , or gives a function λi for i = j , which depends on one of the Bethe parameters.
Due to the normalization of the Bethe vectors the functions λi then turn into the ratios αi . 

Thus, the scalar product eventually depends on the functions αi and some rational functions 
which appear in the process of commutating the monodromy matrix entries.
The following proposition specifies how the scalar product depends on the functions αi.

Proposition 4.3. Let B(t̄) be a generic Bethe vector and C(s̄) be a generic dual Bethe vector 
such that #t̄ k = #s̄k = rk , k = 1, . . . , N . Then their scalar product is given by

S(s̄|t̄ )=
�
W
m|n
part (s̄I, s̄II|t̄I, t̄II)

N


k=1
αk(s̄

k
I )αk(t̄

k
II ). (4.11)

Here all the sets of the Bethe parameters t̄ k and s̄k are divided into two subsets t̄ k ⇒ {t̄ kI , ̄tkII }
and s̄k⇒{s̄kI , ̄skII }, such that #t̄ kI = #s̄kI . The sum is taken over all possible partitions of this type. 
The rational coefficients Wm|npart depend on the partition. They are completely determined by the 
R-matrix of the model and do not depend on the ratios of the vacuum eigenvalues αk.

Proposition 4.3 states that after calculating the scalar product the Bethe parameters of the type 
k (tkj or s

k
j ) can be arguments of functions λk+1 or λk only. Due to the normalization of the Bethe 

vectors these functions respectively cancel in the first case or produce the functions αk in the 
second case. We prove Proposition 4.3 in section 6.1.
We would like to stress that the rational functions Wm|npart are model independent. Indeed, within 

the QISM framework the Hamiltonian of a quantum model is encoded in the supertrace of the 
monodromy matrix T (u). Thus, one can say that the quantum model is defined by T (u). Looking 
at presentation (4.11) one can notice that the model dependent part of the scalar product entirely 
lies in the αk functions, because only these functional parameters depend on the monodromy 
matrix. On the other hand, the coefficients Wm|npart are completely determined by the R-matrix, 
that is, they depend only on the underlying algebra. Thus, if two different quantum integrable 
models have the same R-matrix (2.2), then the scalar products of Bethe vectors in these models 
are given by (4.11) with the same coefficients Wm|npart .
The Highest Coefficient (HC) of the scalar product is defined as a rational coefficient corre-

sponding to the partition s̄I = s̄, t̄I = t̄ , and s̄II = t̄II = ∅. We denote the HC by Zm|n(s̄|t̄ ). Then, 
the HC is a particular case of the rational coefficient2 Wm|npart :

W
m|n
part (s̄,∅|t̄ ,∅)=Zm|n(s̄|t̄ ). (4.12)

Similarly one can define a conjugated HC Z
m|n
(s̄|t̄ ) as a coefficient corresponding to the partition 

s̄II = s̄, t̄II = t̄ , and s̄I = t̄I = ∅.

W
m|n
part (∅, s̄|∅, t̄)=Z

m|n
(s̄|t̄ ). (4.13)

Due to (4.10) one can easily show that

2 Note that we have changed the definition of the HC with respect to the one that we used in our previous publications. 
Now it involves a normalization factor 

�N−1
j=1 f[j+1](s̄

j+1, ̄sj )f[j+1](t̄j+1, ̄tj ).
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Z
m|n
(s̄|t̄ )=Zm|n(t̄ |s̄). (4.14)

The following proposition determines the general coefficient Wm|npart in terms of the HC.

Proposition 4.4. For a fixed partition t̄ k⇒{t̄ kI , ̄tkII } and s̄k⇒{s̄kI , ̄skII } in (4.11) the rational coef-
ficient Wm|npart has the following presentation in terms of the HC:

W
m|n
part (s̄I, s̄II|t̄I, t̄II)=Zm|n(s̄I|t̄I) Zm|n(t̄II|s̄II)

�N
k=1 γk(s̄

k
II , s̄
k
I )γk(t̄

k
I , t̄
k
II )�N−1

j=1 f[j+1](s̄
j+1
II , s̄

j
I )f[j+1](t̄

j+1
I , t̄

j
II )
.

(4.15)

The proof of Proposition 4.4 is given in section 6.2.
Explicit expressions for the HC are known for small m and n [15]. In particular,

Z1|1(s̄|t̄ )= g(s̄, t̄). (4.16)

Determinant representations for Z2|0 or Z0|2 were obtained in [32]. Relatively compact formulas 
for Zm|n at m + n = 3 were found in [11,14,15], however, representations for the HC in the 
general gl(m|n) case are very cumbersome. Instead, one can use relatively simple recursions 
established by the following propositions.

Proposition 4.5. The HC Zm|n(s̄|t̄ ) possesses the following recursion over the set s̄1:

Zm|n(s̄|t̄ )=
N+1�

p=2

�

part(s̄2,...,s̄p−1)
part(t̄1,...,t̄p−1)

g[2](t̄1I , s̄
1
I )γ1(t̄

1
I , t̄
1
II )f (t̄

1
II , s̄
1
I )

f[p](s̄p, s̄
p−1
I )h(s̄1, s̄1I )

δm,1

×
p−1


ν=2

g[ν](s̄νI , s̄
ν−1
I )g[ν+1](t̄νI , t̄

ν−1
I )γν(s̄

ν
II , s̄
ν
I )γν(t̄

ν
I , t̄
ν
II )

f[ν](s̄ν , s̄
ν−1
I )f[ν](t̄νI , t̄ ν−1)

×Zm|n(
�
s̄kII
�p−1
1 ,
�
s̄k
�N
p
|
�
t̄ kII
�p−1
1 ;

�
t̄ k
�N
p
). (4.17)

Here for every fixed p ∈ {2, . . . , m + n} the sums are taken over partitions t̄ k⇒{t̄ kI , ̄tkII } with 
k = 1, . . . , p − 1 and s̄k ⇒ {s̄kI , ̄skII } with k = 2, . . . , p − 1, such that #t̄ kI = #s̄kI = 1 for k =
2, . . . , p − 1. The subset s̄1I is a fixed Bethe parameter from the set s̄1. There is no sum over 
partitions of the set s̄1 in (4.17).

The proof of this proposition is given in section 7.1.

Corollary 4.2. The HC Zm|n(s̄|t̄) satisfies the following recursion over the set t̄N :

Zm|n(s̄|t̄ )=
N�

p=1

�

part(s̄p,...,s̄N )
part(t̄p,...,t̄N−1)

g(s̄NI , t̄
N
I )γ̂N (s̄

N
II , s̄

N
I )f (s̄

N
II , t̄

N
I )

f[p](t̄
p
I , t̄
p−1)h(t̄N , t̄NI )

δm,N

×
N−1


ν=p

g[ν+1](s̄
ν+1
I , s̄νI )g[ν+1](t̄

ν+1
I , t̄ νI )γ̂ν(s̄

ν
II , s̄
ν
I )γ̂ν(t̄

ν
I , t̄
ν
II )

f[ν+1](s̄ν+1, s̄νI )f[ν+1](t̄
ν+1
I , t̄ ν)

×Zm|n(
�
s̄k
�p−1
1 ,
�
s̄kII
�N
p
|
�
t̄ k
�p−1
1 ;

�
t̄ kII
�N
p
). (4.18)
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Here for every fixed p ∈ {1, . . . , m + n − 1} the sums are taken over partitions t̄ k ⇒ {t̄ kI , ̄tkII }
with k = p, . . . , N − 1 and s̄k ⇒ {s̄kI , ̄skII } with k = p, . . . , N , such that #t̄ kI = #s̄kI = 1 for k =
p, . . . , N − 1. The subset t̄NI is a fixed Bethe parameter from the set t̄N . There is no sum over 
partitions of the set t̄N in (4.18).

This recursion follows from (4.17) and a symmetry property of the HC (7.14) proved in sec-
tion 7.2.

Remark Similarly to the recursions for the Bethe vectors the sums over p in (4.17), (4.18) break 
off, if HC Zm|n(s̄|t̄ ) contains empty sets of the Bethe parameters. If the colors of the empty sets 
are {k1, . . . , k }, then the sum over p ends at p =min(k1, . . . , k ) in the recursion (4.17), while 
in the recursion (4.18) it begins at p =max(k1, . . . , k ) + 1. These restrictions follow from the 
corresponding restrictions in the recursions for the Bethe vectors.
Using Proposition 4.5 one can built the HC with #s̄1 = #t̄1 = r1 in terms of the HC with 

#s̄1 = #t̄1 = r1 − 1. In particular, Zm|n with #s̄1 = #t̄1 = 1 can be expressed in terms of Zm|n
with #s̄1 = #t̄1 = 0. It is obvious, however, that

Zm|n(∅, {s̄k}N2 |∅, {t̄
k}N2 )=Z

m−1|n({s̄k}N2 |{t̄
k}N2 ). (4.19)

due to (4.7). Thus, equation (4.17) allows one to perform recursion over m as well.
Similarly, Corollary 4.2 allows one to find the HC with #s̄N = #t̄N = rN in terms of the HC 

with #s̄N = #t̄N = rN − 1 and to perform recursion over n.
Thus, using recursions (4.17) and (4.18) one can eventually express Zm|n(s̄|t̄ ) in terms of 

known HC, say, for m + n = 2. However, the corresponding explicit expressions hardly can be 
used in practice, because they are too bulky. At the same time, these recursions appear be very 
useful for proofs of some important properties of HC.

4.3. Simplified expressions for models with gl(m) symmetry

As already mentioned, the results stated above are also valid for the case of gl(m) Lie algebras 
with m > 1, simply by setting n = 0. This implies N =m − 1. In that case, most of expressions 
simplify, due to the absence of grading. We present here the simplified results occurring for 
gl(m).

• Bethe vectors of gl(m)-based models satisfy the recursions

B(
�
z, t̄1
�
;
�
t̄ k
�m−1
2 )=

m�

j=2

T1,j (z)

λ2(z)

�

part(t̄2,...,t̄ j−1)

B(
�
t̄1
�
;
�
t̄ kII
�j−1
2 ;
�
t̄ k
�m−1
j
)

×
�j−1
ν=2 αν(t̄

ν
I )g(t̄

ν
I , t̄
ν−1
I )f (t̄νII , t̄

ν
I )�j−1

ν=1 f (t̄
ν+1, t̄ νI )

, (4.20)

where the conditions on sets of Bethe parameters are the same as in Proposition 4.1,

B(
�
t̄ k
�m−2
1 ;

�
z, t̄m−1

�
)=

m−1�

j=1

Tj,m(z)

λm(z)

�

part(t̄ j ,...,t̄m−2)

B(
�
t̄ k
�j−1
1 ;
�
t̄ kII
�m−2
j
; t̄m−1)

×
�m−2
ν=j g(t̄

ν+1
I , t̄ νI )f (t̄

ν
I , t̄
ν
II )

�m−1
ν=j f (t̄

ν
I , t̄
ν−1)

, (4.21)
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where the conditions on sets of Bethe parameters are the same as in Proposition 4.2. The 
starting point for these recursions is the gl(2) Bethe vector B(t̄) = T12(t̄)|0�/λ2(t̄).
• Dual Bethe vectors of gl(m)-based models satisfy the recursions

C(
�
z, s̄1
�
;
�
s̄k
�m−1
2 )=

m�

j=2

�

part(s̄2,...,s̄j−1)

C(
�
s̄1
�
;
�
s̄kII
�j−1
2 ;
�
s̄k
�m−1
j
)
Tj,1(z)

λ2(z)

×
�j−1
ν=2 αν(s̄

ν
I )g(s̄

ν
I , s̄
ν−1
I )f (s̄νII , s̄

ν
I )�j−1

ν=1 f (s̄
ν+1, s̄νI )

, (4.22)

and

C(
�
s̄k
�m−2
1 ;

�
z, s̄m−1

�
)=

m−1�

j=1

�

part(s̄j ,...,s̄m−2)

C(
�
s̄k
�j−1
1 ;
�
s̄kII
�m−2
j
; s̄m−1)

Tm,j (z)

λm(z)

×
�m−2
ν=j g(s̄

ν+1
I , s̄νI )f (s̄

ν
I , s̄
ν
II )

�m−1
ν=j f (s̄

ν
I , s̄
ν−1)

. (4.23)

The conditions on the sets of parameters and partitions are given in Corollary 4.1. The start-
ing point for these recursions is the gl(2) dual Bethe vector C(t̄) = �0|T21(t̄)/λ2(t̄).
• For a fixed partition t̄ k ⇒ {t̄ kI , ̄tkII } and s̄k ⇒ {s̄kI , ̄skII } in (4.11) the rational coefficient Wmpart
has the following presentation in terms of the HC:

Wmpart(s̄I, s̄II|t̄I, t̄II)=Zm(s̄I|t̄I) Zm(t̄II|s̄II)
�m−1
k=1 f (s̄

k
II , s̄
k
I )f (t̄

k
I , t̄
k
II )�m−2

j=1 f (s̄
j+1
II , s̄

j
I )f (t̄

j+1
I , t̄

j
II )
. (4.24)

In the gl(2) and gl(3) cases this expression reduces to the formulas respectively obtained in 
[5] and [10].

• The HC Zm(s̄|t̄ ) possesses the following recursions:

Zm(s̄|t̄ )=
m�

p=2

�

part(s̄2,...,s̄p−1)
part(t̄1,...,t̄p−1)

g(t̄1I , s̄
1
I )f (t̄

1
I , t̄
1
II )f (t̄

1
II , s̄
1
I )

f (s̄p, s̄
p−1
I )

×
p−1


ν=2

g(s̄νI , s̄
ν−1
I )g(t̄νI , t̄

ν−1
I )f (s̄νII , s̄

ν
I )f (t̄

ν
I , t̄
ν
II )

f (s̄ν , s̄ν−1I )f (t̄νI , t̄
ν−1)

×Zm(
�
s̄kII
�p−1
1 ,
�
s̄k
�m−1
p
|
�
t̄ kII
�p−1
1 ;

�
t̄ k
�m−1
p
), (4.25)

and

Zm(s̄|t̄ )=
m−1�

p=1

�

part(s̄p,...,s̄m−1)
part(t̄p,...,t̄m−2)

g(t̄m−1I , s̄m−1I )f (s̄m−1II , s̄m−1I )f (t̄m−1I , s̄m−1II )

f (t̄
p
I , t̄
p−1)

×
m−2


ν=p

g(s̄ν+1I , s̄νI )g(t̄
ν+1
I , t̄ νI )f (s̄

ν
II , s̄
ν
I )f (t̄

ν
I , t̄
ν
II )

f (s̄ν+1, s̄νI )f (t̄
ν+1
I , t̄ν)

×Zm(
�
s̄k
�p−1
1 ,
�
s̄kII
�m−1
p
|
�
t̄ k
�p−1
1 ;

�
t̄ kII
�m−1
p
). (4.26)
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The conditions on the sets of parameters and partitions are given in Proposition 4.5 and 
Corollary 4.2. Here, the starting point corresponds to the gl(2) case, in which Z2(s̄|t̄ ) is 
equal to the partition function of the six-vertex model with domain wall boundary conditions 
[5,32].

5. Proof of recursion for Bethe vectors

One can prove Proposition 4.1 via the formulas of the operators T1,j (z) action onto the Bethe 
vector. These formulas were derived in [29]

T1,j (z)B(t̄)= ηjB({z, t̄ k}j−11 ; {t̄
k}Nj )

+
N+1�

q=j+1

�

part(t̄ j ,...,t̄ q−1)

Hq,j (part)B({z, t̄k}j−11 ; {z, t̄
k
II }
q−1
j ; {t̄ k}Nq ). (5.1)

Here in the second line for every q we have a sum over partitions of the sets t̄ j , . . . , ̄tq−1. The 
coefficient ηj in (5.1) is

ηj = λj (z)f[j](t̄ j , z)h(t̄m, z)[j ]. (5.2)

The coefficient Hq,j depends on the partitions and has the form

Hq,j (part)= f[q](t̄q , z)h(t̄m, z)[j]h(t̄mII , z)[q]−[j ]λq(z)g[j ](z, t̄
q−1
I )

×
q−1


ν=j+1
g[ν](t̄

ν
I , t̄
ν−1
I )

q−1


ν=j
@ν, (5.3)

where

@ν =
αν(t̄

ν
I )γν(t̄

ν
II , t̄
ν
I )

f[ν+1](t̄ ν+1, t̄ νI )
. (5.4)

Note that in (5.1) the operators T1,j (z) act onto B(t̄), while in (4.1) these operators act onto 
B(
�
t̄1
�
; 
�
t̄ kII
�j−1
2 ; 
�
t̄ k
�N
j
). Therefore, we can directly use the action formula (5.1) for j = 2 only. 

For j > 2 we should replace in (5.2) and (5.3) the sets t̄2, . . . , ̄t j−1 with the subsets t̄2II , . . . , ̄t
j−1
II

before substituting (5.1) into recursion (4.1).
We look for the terms in the formulas (5.2) and (5.3) where we should do the replacement 

{t̄2, . . . , ̄t j−1} → {t̄2II , . . . , ̄t
j−1
II }. The sets {t̄2, . . . , ̄t j−1} appear only in the factors h(t̄m, z)[j ]

and h(t̄mII , z)
[q]−[j ], and provided that m ∈ {2, . . . , j − 1}. This implies that for m = 1 there is no 

replacement to do. For m > 1, we have [j ] = 1, because j > m, and [q] = [j ], because q > j . 
Then, the factor h(t̄mII , z)

[q]−[j ] drops out, and we should only replace h(t̄m, z)[j ] → h(t̄mII , z)[j ].
Thus, we arrive at the following action formula:

T1,j (z)B(
�
t̄1
�
;
�
t̄ kII
�j−1
2 ;
�
t̄ k
�N
j
)

= η̃jB(
�
z, t̄1
�
;
�
z, t̄ kII
�j−1
2 ;
�
t̄ k
�N
j
)

+
N+1�

q=j+1

�

part(t̄ j ,...,t̄ q−1)

H̃q,j (part)B(
�
z, t̄1
�
; {z, t̄ kII }

q−1
2 ; {t̄ k}Nq ), (5.5)
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where

η̃j = λj (z)f[j ](t̄ j , z)h(t̄mII , z)[j ]h(t̄mI , z)δm,1 , (5.6)

and

H̃q,j (part)= f[q](t̄q , z)h(t̄mII , z)[q]h(t̄mI , z)δm,1λq(z)g[j ](z, t̄
q−1
I )

×
q−1


ν=j+1
g[ν](t̄

ν
I , t̄
ν−1
I )

q−1


ν=j
@ν. (5.7)

Now everything is ready for substituting the action formula (5.5) into recursion (4.1). Let

X=
N+1�

j=2
T1,j (z)

�

part(t̄2,...,t̄j−1)

�j−1
ν=2 g[ν](t̄

ν
I , t̄
ν−1
I )@ν

λ2(z)h(t̄1, z)
δm,1f[2](t̄2, z)

B(
�
t̄1
�
;
�
t̄ kII
�j−1
2 ;
�
t̄ k
�N
j
). (5.8)

It is easy to see that X is nothing else but the r.h.s. of recursion (4.1). Thus, our goal is to show 
that X = B(

�
z, ̄t1
�
; 
�
t̄ k
�N
2 ). Substituting (5.5) into (5.8) we obtain

X=
N+1�

j=2

�

part(t̄2,...,t̄ j−1)

η̃j
�j−1
ν=2 g[ν](t̄

ν
I , t̄
ν−1
I )@ν

λ2(z)h(t̄1, z)
δm,1f[2](t̄2, z)

B(
�
z, t̄1
�
;
�
z, t̄ kII
�j−1
2 ;
�
t̄ k
�N
j
)

+
N+1�

j=2

N+1�

q=j+1

�

part(t̄2,...,t̄ q−1)

H̃q,j (part)
�j−1
ν=2 g[ν](t̄

ν
I , t̄
ν−1
I )@ν

λ2(z)h(t̄1, z)
δm,1f[2](t̄2, z)

×B(
�
z, t̄1
�
; {z, t̄kII }

q−1
2 ; {t̄ k}Nq ). (5.9)

It is convenient to divide X into three contributions

X=X(1) +X(2) +X(3). (5.10)

The first term X(1) corresponds to j = 2 in the first line of (5.9):

X(1) =
η̃2B(
�
z, t̄1
�
;
�
t̄ k
�N
2 )

λ2(z)h(t̄1, z)
δm,1f[2](t̄2, z)

. (5.11)

Substituting here η̃2 we see that

X(1) = B(
�
z, t̄1
�
;
�
t̄ k
�N
2 ). (5.12)

The contribution X(2) includes the terms with j > 2 from the first line of (5.9). The contribu-
tion X(3) comes from the second line of (5.9). Consider X(3) changing the order of summation 
and substituting there (5.7). We have

X(3) =
N+1�

q=3

q−1�

j=2

�

part(t̄2,...,t̄q−1)

λq(z)f[q](t̄q , z)h(t̄mII , z)
[q]h(t̄mI , z)

δm,1

λ2(z)h(t̄1, z)
δm,1f[2](t̄2, z)

×
g(z, t̄

q−1
I )

g(t̄
j
I , t̄
j−1
I )




q−1


ν=2
g[ν](t̄

ν
I , t̄
ν−1
I )@ν



 B(
�
z, t̄1
�
; {z, t̄ kII }

q−1
2 ; {t̄ k}Nq ). (5.13)

The sum over j can be easily computed
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q−1�

j=2

1

g(t̄
j
I , t̄
j−1
I )

= 1
c

q−1�

j=2
(t̄
j
I − t̄

j−1
I )= 1

c
(t̄
q−1
I − t̄1I )=−1/g(z, t̄

q−1
I ), (5.14)

and we recall that by definition t̄1I = z. Thus,

X(3) =−
N+1�

q=3

�

part(t̄2,...,t̄q−1)

λq(z)f[q](t̄q , z)h(t̄mII , z)
[q]

λ2(z)h(t̄
1
II , z)

δm,1f[2](t̄2, z)

q−1


ν=2
g[ν](t̄

ν
I , t̄
ν−1
I )@ν

×B(
�
z, t̄1
�
; {z, t̄kII }

q−1
2 ; {t̄ k}Nq ). (5.15)

On the other hand, the contribution X(2) is

X(2) =
N+1�

j=3

�

part(t̄2,...,t̄j−1)

λj (z)f[j ](t̄ j , z)h(t̄mII , z)
[j ]

λ2(z)h(t̄
1
II , z)

δm,1f[2](t̄2, z)

j−1


ν=2
g[ν](t̄

ν
I , t̄
ν−1
I )@ν

×B(
�
z, t̄1
�
; {z, t̄kII }

j−1
2 ; {t̄

k}Nj ). (5.16)

Comparing (5.16) and (5.15)we see that they cancel each other. Thus, X =B(
�
z, ̄t1
�
; 
�
t̄ k
�N
2 ). ✷

5.1. Proofs of Proposition 4.2

Let us derive now recursion (4.4) starting with (4.1) and using morphism (3.15). Since the 
mapping (3.15) relates two different Yangians Y(gl(m|n)) and Y(gl(n|m)), we use here addi-
tional superscripts for the functions g(u, v), f (u, v), γ (u, v), and γ̂ (u, v). For example, notation 
f
m|n
[ν] (u, v) means that the function f[ν](u, v) is defined with respect to Y(gl(m|n)):

f
m|n
[ν] (u, v)=

�
f (u, v), ν ≤m,
f (v, u), ν > m.

(5.17)

At the same time the notation f n|m[ν] (u, v)means that the function f[ν](u, v) is defined with respect 
to Y(gl(n|m)):

f
n|m
[ν] (u, v)=

�
f (u, v), ν ≤ n,
f (v, u), ν > n.

(5.18)

The other rational functions should be understood similarly. It is easy to see that

g
m|n
[ν] (u, v)= g

n|m
[N+2−ν](v,u),

f
m|n
[ν] (u, v)= f

n|m
[N+2−ν](v, u),

γ m|nν (u, v)= γ̂
n|m
N+1−ν(v, u).

(5.19)

Let us act with ϕ onto (4.1). Due to (3.15)–(3.18) we have

ϕ

�
T
m|n
1,j (z)

λ2(z)

�
= (−1)[j ]

T
n|m
N+2−j,N+1(z)

λN(z)
, (5.20)

ϕ
�
Bm|n(

�
z, t̄1
�
;
�
t̄ k
�N
2 )
�
= (−1)rm+δm,1

Bn|m(
�
t̄ k
�2
N
;
�
z, t̄1
�
)

αN(z)
�N
k=1 αN+1−k(t̄

k)
, (5.21)
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and

ϕ



Bm|n(
�
t̄1
�
;
�
t̄ kII
�j−1
2 ;
�
t̄ k
�N
j
)

j−1


ν=2
αν(t̄

ν
I )



= (−1)rm+δm,1+[j ]
Bn|m(

�
t̄ k
�j
N
;
�
t̄ kII
�2
j−1; t̄

1)
�N
k=1 αN+1−k(t̄

k)

(5.22)

Thus, the action of the morphism ϕ onto (4.1) gives

Bn|m(
�
t̄ k
�2
N
;
�
z, t̄1
�
)=

N+1�

j=2

TN+2−j,N+1(z)

λN+1(z)

�

part(t̄2,...,t̄ j−1)

Bn|m(
�
t̄ k
�j
N
;
�
t̄ kII
�2
j−1; t̄

1)

×
�j−1
ν=2 g

m|n
[ν] (t̄

ν
I , t̄
ν−1
I )γ

m|n
ν (t̄νII , t̄

ν
I )

h(t̄1, z)δm,1
�j−1
ν=1 f

m|n
[ν+1](t̄

ν+1, t̄ νI )
. (5.23)

Using the relations (5.19) and the trivial identity δm,1 = δn,N we recast (5.23) as

Bn|m(
�
t̄ k
�2
N
;
�
z, t̄1
�
)=

N+1�

j=2

TN+2−j,N+1(z)

λN+1(z)

�

part(t̄2,...,t̄ j−1)

Bn|m(
�
t̄ k
�j
N
;
�
t̄ kII
�2
j−1; t̄

1)

×
�j−1
ν=2 g

n|m
[N+2−ν](t̄

ν−1
I , t̄νI )γ̂

n|m
N+1−ν(t̄

ν
I , t̄
ν
II )

h(t̄1, z)δn,N
�j−1
ν=1 f

n|m
[N+1−ν](t̄

ν
I , t̄
ν+1)

. (5.24)

Finally, relabeling the sets of the Bethe parameters t̄ k→ t̄N+1−k and changing ν→N + 1 − ν
we obtain

Bn|m(
�
t̄ k
�N−1
1 ; {z, t̄N })=

N�

j=1

Tj,N+1(z)

λN+1(z)

�

part(t̄ j ,...,t̄N−1)

Bn|m(
�
t̄ k
�j−1
1 ;
�
t̄ kII
�N−1
j
; t̄N )

×
�N−1
ν=j g

n|m
[ν+1](t̄

ν+1
I , t̄νI )γ̂

n|m
ν (t̄

ν
I , t̄
ν
II )

h(t̄N , z)δn,N
�N
ν=j f

n|m
[ν] (t̄

ν
I , t̄
ν−1)

. (5.25)

It remains to replace m ↔ n, and we arrive at (4.4). ✷

5.2. Proof of recursion for dual Bethe vectors

To obtain recursion for dual Bethe vectors it is enough to act with antimorphism (3.20) onto 
recursions (4.1) and (4.4). Consider in details the action of � onto (4.1).
Acting with � on the lhs of (4.1) we obtain a dual vector C(

�
z, ̄t1
�
; 
�
t̄ k
�N
2 ) due to (3.23). In 

the rhs we have

�(T1,jB)= (−1)[j ][B]C Tj,1. (5.26)

The parity of the Bethe vector can be determined via the coloring arguments. Recall that Bethe 
vectors are polynomials in the operators Ti,j acting on the vector |0�, and all the terms of these 
polynomials have the same coloring. Due to the general rule, a quasiparticle of the color m can be 
created by the operators Ti,j with i ≤m and j > m. Hence, all these operators are odd, because 
[i] = 0 for i ≤m and [j ] = 1 for j > m. On the other hand, the action of an even operator Ti,j
cannot create a quasiparticle of the color m due to similar arguments. Thus, if a Bethe vector 
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has a coloring {r1, . . . , rN }, then all the terms of the polynomial in Ti,j contain exactly rm odd 
operators, where rm = #t̄m. Thus, 

�
B(t̄)
�
= rm, mod 2.

In the case under consideration we should find the number r �m of the odd operators in the 

Bethe vector B(
�
t̄1
�
; 
�
t̄ kII
�j−1
2 ; 
�
t̄ k
�N
j
). Let rm = #t̄m in the original vector B(t̄). If m = 1, then 

r �m = rm. If 1 <m < j , then r �m = rm − 1. Finally, if m ≥ j , then r �m = rm. All these cases can be 
described by the formula r �m = rm − [j ] + δm,1. Thus, we obtain

C(
�
z, t̄1
�
;
�
t̄ k
�N
2 )=

N+1�

j=2

�

part(t̄2,...,t̄j−1)

C(
�
t̄1
�
;
�
t̄ kII
�j−1
2 ;
�
t̄ k
�N
j
)
Tj,1(z)

λ2(z)
(−1)[j]r �m

×
�j−1
ν=2 αν(t̄

ν
I )g[ν](t̄

ν
I , t̄
ν−1
I )γν(t̄

ν
II , t̄
ν
I )

h(t̄1, z)δm,1
�j−1
ν=1 f[ν+1](t̄

ν+1, t̄νI )
, (5.27)

where r �m = rm − [j ] + δm,1.
This expression can be slightly simplified. Recall that γ̂i (x, y) = (−1)δm,i γi(x, y). Thus, 

changing γν(t̄νII , ̄t
ν
I ) → γ̂ν(t̄ νII , ̄tνI ) in (5.27) we obtain

j−1


ν=2
γν(t̄

ν
II , t̄
ν
I )= (−1)([j ]−[2])r

�
m

j−1


ν=2
γ̂ν(t̄

ν
II , t̄
ν
I ). (5.28)

It remains to observe that [2] = δm,1. Thus, substituting (5.28) into (5.27) and replacing the sets 
t̄ k with s̄k we arrive at (4.5). Recursion (4.6) can be obtained exactly in the same way.

6. Proof of the sum formula for the scalar product

6.1. How the scalar product depends on the vacuum eigenvalues λi(z)

In this section, we investigate the functional dependence of the scalar product on the func-
tions αi . Proposition 4.3 states that the Bethe parameters from the sets s̄i and t̄ i can be the 
arguments of the functions αi only. In other words, the scalar product does not depend on αi(s k )
or αi(t  k ) with   �= i.
We prove this statement via induction over N = m + n − 1. For N = 1 it becomes obvious. 

Assume that it is valid for some N−1 and consider the scalar product of the vectors Cm|n(s̄) and 
Bm|n(t̄) with m +n − 1 =N . Observe that we added superscripts to the Bethe vectors in order to 
distinguish them from the vectors corresponding to gl(m − 1|n) algebra. We first prove that the 
scalar product does not depend on the functions αi(s k ) with   �= i for i = 2, . . . , N .
Successive application of the recursion (4.5) allows one to express a dual Bethe vector Cm|n(s̄)

in terms of dual Bethe vectors Cm−1|n(σ̄ ). Schematically this expression can be written in the 
following form

Cm|n(s̄)=
m+n�

j1,...,jr1=2

�

{σ̄ 2,...,σ̄ N }

�
(s̄)
j1,...,jr1

(σ̄ )Cm−1|n(
�
σ̄
�N
2 )
Tj1,1(s

1
1) . . . Tjr1 ,1

(s1r1)

λ2(s̄1)
. (6.1)

Here r1 = #s̄1 and σ̄ i ⊂ s̄i for i = 2, . . . , N . The sum is taken over multi-index {j1, . . . , jr1}. 
Every term of this sum contains also a sum over partitions of the sets s̄2, . . . , ̄sN into subsets 
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σ̄ 2, . . . , σ̄ N and their complementary subsets. The factors �(s̄)j1,...,jr1
(σ̄ ) are some numerical co-

efficients whose explicit form is not essential. It is important, however, to note that in (4.5) they 
depend on αi(sik) with i = 2, . . . , N and do not depend on the functions αi with other arguments.
Let us multiply (6.1) from the right by a Bethe vector Bm|n(t̄) and act with the operators 

Tjp,1(s
1
p) onto this vector. Due to the results of [29] the action of any operator Tij (z) onto the 

Bethe vector Bm|n(t̄) gives a linear combination of new Bethe vectors Bm|n(τ̄ ), such that τ̄ =
{τ̄ 1, . . . , τ̄ N } and τ̄ i ⊂ {t̄ i ∪ z}. In the case under consideration each of the operators Tjp,1(s1p)
annihilates a particle of color 1. Hence, the total action of Tj1,1(s

1
1) . . . Tjr1 ,1(s

1
r1
) annihilates all 

the particles of color 1 in the vector Bm|n(t̄). Thus, after this action the Bethe vector Bm|n(t̄)
turns into Bm−1|n(τ̄ ), where τ̄ = {τ̄ 2, . . . , τ̄N } and τ̄ i ⊂ {t̄ i ∪ s̄1}

Tj1,1(s
1
1 ) . . . Tjr1 ,1

(s1r1)

λ2(s̄1)
Bm|n(t̄)=

�

{τ̄ 2,...,τ̄N }

�(t̄)(τ̄ )Bm−1|n(
�
τ̄ k
�N
2 ). (6.2)

Here the coefficients �(t̄)(τ̄ ) of the linear combination depend on the original sets t̄ k and sub-
sets τ̄ k . They involve the functions αi whose arguments belong to the set {s̄1 ∪ t̄}. Therefore, the 
factors �(t̄)(τ̄ ) do not depend on αj(sik) with i, j = 2, . . . , N .
Thus, we obtain a recursion for the scalar product

Cm|n(s̄)Bm|n(t̄)=
�

{σ̄ 2,...,σ̄ N }
{τ̄ 2,...,τ̄N }

�
(s̄)
j1,...,jr1

(σ̄ )�(t̄)(τ̄ )Cm−1|n(
�
σ̄ k
�N
2 )B

m−1|n(
�
τ̄ k
�N
2 ), (6.3)

where σ̄ k ⊂ s̄k and τ̄ k ⊂ {s̄1 ∪ t̄ k}. The sum is taken over subsets σ̄ k and τ̄ k .
Due to the induction assumption, the scalar product Cm−1|n(

�
σ̄ k
�N
2 )B

m−1|n(
�
τ̄ k
�N
2 ) depends 

on the functions αi with arguments σ ik and τ
i
k . Since σ

i
k ∈ s̄i , we conclude that the Bethe pa-

rameters sik for i = 2, . . . , N can become the arguments of the functions αi only. The numerical 
coefficients �(s̄)j1,...,jr1

(σ̄ ) and �(t̄)(τ̄ ) do not break this type of dependence. Thus, we prove that 

in the scalar product Cm|n(s̄)Bm|n(t̄) the Bethe parameters sik with i = 2, . . . , N can become the 
arguments of the functions αi only.
Due to the symmetry (4.10), an analogous property holds for the Bethe parameters t̄ i with 

i = 2, . . . , N . Namely, these parameters can be the arguments of the functions αi only.
It remains to prove that the Bethe parameters from the sets s̄1 and t̄1 can be the arguments of 

the function α1. For this we use the second recursion for the dual Bethe vector (4.6) and repeat 
all the considerations above. Then we find that the Bethe parameters sik with i = 1, . . . , N − 1
can become the arguments of the functions αi only. Then, the use of (4.10) completes the proof 
of Proposition 4.3. ✷

6.2. Proof of the sum formula

Consider a composite model, in which the monodromy matrix T (u) is presented as a product 
of two partial monodromy matrices [6,20,29,41]:

T (u)= T (2)(u)T (1)(u). (6.4)

Within the framework of the composite model, it is assumed that the matrix elements of every 
T (l)(u) (l = 1, 2) act in some Hilbert space H(l), such that H =H(1) ⊗H(2). Each of T (l)(u)
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satisfies the RT T -relation (2.4) and has its own pseudovacuum vector |0�(l) and dual vector 
�0|(l), such that |0� = |0�(1) ⊗ |0�(2) and �0| = �0|(1) ⊗ �0|(2). Since the operators T (2)i,j (u) and 
T
(1)
k,l (v) act in different spaces, they supercommute with each other. We assume that

T
(l)
i,i (u)|0�

(l) = λ(l)i (u)|0�
(l),

�0|(l)T (l)i,i (u)= λ
(l)
i (u)�0|

(l),
i = 1, . . . ,m+ n, l = 1,2, (6.5)

where λ(l)i (u) are new free functional parameters. We also introduce

α
(l)
k (u)=

λ
(l)
k (u)

λ
(l)
k+1(u)

, l = 1,2, k = 1, . . . ,N. (6.6)

Obviously

λi(u)= λ(1)i (u)λ
(2)
i (u), αk(u)= α(1)k (u)α

(2)
k (u). (6.7)

The partial monodromy matrices T (l)(u) have the corresponding Bethe vectors B(l)(t̄) and 
dual Bethe vectors C(l)(s̄). A Bethe vector of the total monodromy matrix T (u) can be expressed 
in terms partial Bethe vectors B(l)(t̄) via coproduct formula3 [29,41]

B(t̄)=
��N

ν=1 α
(2)
ν (t̄

ν
i )γν(t̄

ν
ii , t̄
ν
i )�N−1

ν=1 f[ν+1](t̄
ν+1
ii , t̄

ν
i )
B(1)(t̄i)⊗B(2)(t̄ii). (6.8)

Here all the sets of the Bethe parameters t̄ ν are divided into two subsets t̄ ν ⇒ {t̄ νi , ̄t
ν
ii }, and the 

sum is taken over all possible partitions.
Similar formula exists for the dual Bethe vectors C(s̄) (see Appendix A)

C(s̄)=
��N

ν=1 α
(1)
ν (s̄

ν
ii)γν(s̄

ν
i , s̄
ν
ii)�N−1

ν=1 f[ν+1](s̄
ν+1
i , s̄νii)

C(2)(s̄ii)⊗C(1)(s̄i), (6.9)

where the sum is organized in the same way as in (6.8).
Then the scalar product of the total Bethe vectors C(s̄) and B(t̄) takes the form

S(s̄|t̄ )=
��N

ν=1 α
(1)
ν (s̄

ν
ii)α
(2)
ν (t̄

ν
i )γν(s̄

ν
i , s̄
ν
ii)γν(t̄

ν
ii , t̄
ν
i )�N−1

ν=1 f[ν+1](s̄
ν+1
i , s̄νii)f[ν+1](t̄

ν+1
ii , t̄

ν
i )
S(1)(s̄i|t̄i)S(2)(s̄ii|t̄ii), (6.10)

where

S(1)(s̄i|t̄i)=C(1)(s̄i)B(1)(t̄i), S(2)(s̄ii|t̄ii)=C(2)(s̄ii)B(2)(t̄ii). (6.11)

Note that in this formula #s̄νi = #t̄
ν
i , (and hence, #s̄

ν
ii = #t̄

ν
ii ), otherwise the scalar products S

(1)

and S(2) vanish. Let #s̄νi = #t̄
ν
i = k�ν , where k�ν = 0, 1, . . . , rν . Then #s̄

ν
ii = #t̄

ν
ii = rν − k�ν .

Now let us turn to equation (4.11). Our goal is to express the rational coefficients Wm|npart in 

terms of the HC. For this we use the fact that Wm|npart are model independent. Therefore, we can 
find them in some special model whose monodromy matrix satisfies the RTT -relation.

3 The terminology coproduct formula is used for historical reason, because (6.8) was derived for the first time in [29]
(see also [30] for the non-graded case) as a property of the Bethe vectors induced by the Yangian coproduct.
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Let us fix some partitions of the Bethe parameters in (4.11): s̄ν ⇒ {s̄νI , ̄sνII } and t̄ ν ⇒ {t̄ νI , ̄tνII }
such that #s̄νI = #t̄ νI = kν , where kν = 0, 1, . . . , rν . Hence, #s̄νII = #t̄ νII = rν − kν . Consider a con-
crete model, in which4

α(1)ν (z)= 0, if z ∈ s̄νII ;
α(2)ν (z)= 0, if z ∈ t̄ νI .

(6.12)

Due to (6.7) these conditions imply

αν(z)= 0, if z ∈ s̄νII ∪ t̄ νI . (6.13)

Then the scalar product is proportional to the coefficient Wm|npart (s̄I, ̄sII|t̄I, ̄tII), because all other 
terms in the sum over partitions (4.11) vanish due to the condition (6.13). Thus,

S(s̄|t̄ )=Wm|npart (s̄I, s̄II|t̄I, t̄II)
N


k=1
αk(s̄

k
I )αk(t̄

k
II ). (6.14)

On the other hand, (6.12) implies that a non-zero contribution in (6.10) occurs if and only if 
s̄νii ⊂ s̄νI and t̄

ν
i ⊂ t̄ νII . Hence, rν − k�ν ≤ kν and k�ν ≤ rν − kν . But this is possible if and only if 

k�ν + kν = rν . Thus, s̄νii = s̄νI and t̄
ν
i = t̄ νII . Then, for the complementary subsets we obtain s̄

ν
i = s̄νII

and t̄ νii = t̄ νI . Thus, we arrive at

S(s̄|t̄ )=
�N
ν=1 α

(1)
ν (s̄

ν
I )α
(2)
ν (t̄

ν
II )γν(s̄

ν
II , s̄
ν
I )γν(t̄

ν
I , t̄
ν
II )�N−1

ν=1 f[ν+1](s̄
ν+1
II , s̄

ν
I )f[ν+1](t̄

ν+1
I , t̄ νII )

S(1)(s̄II|t̄II)S(2)(s̄I|t̄I). (6.15)

It is easy to see that calculating the scalar product S(1)(s̄II|t̄II) we should take only the term 
corresponding to the conjugated HC. Indeed, all other terms are proportional to α(1)ν (z) with 
z ∈ s̄νII , therefore, they vanish. Hence

S(1)(s̄II|t̄II)=
N


ν=1
α(1)ν (t̄

ν
II ) ·Z

m|n
(s̄II|t̄II). (6.16)

Similarly, calculating the scalar product S(2)(s̄I|t̄I) we should take only the term corresponding 
to the HC:

S(2)(s̄I|t̄I)=
N


ν=1
α(2)ν (s̄

ν
I ) ·Zm|n(s̄I|t̄I). (6.17)

Substituting this into (6.15) and using (6.7), (6.14) we arrive at

W
m|n
part (s̄I, s̄II|t̄I, t̄II)=Zm|n(s̄I|t̄I) Z

m|n
(s̄II|t̄II)

�N
k=1 γk(s̄

k
II , s̄
k
I )γk(t̄

k
I , t̄
k
II )�N−1

j=1 f[j+1](s̄
j+1
II , s̄

j
I )f[j+1](t̄

j+1
I , t̄

j
II )
.

(6.18)

This expression obviously coincides with (4.15) due to (4.14).

4 This choice of the functions αk is always possible, for example, within the framework of inhomogeneous model with 
spins in higher dimensional representations, in which inhomogeneities coincide with some of the Bethe parameters.
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7. Highest coefficient

7.1. Proof of the recursion for the Highest Coefficient

It follows from Proposition 4.3 that the scalar product is a sum, in which every term is propor-
tional to a product of the functions αk . Let us call a term unwanted, if the corresponding product 
of the functions αk contains at least one αk(tkj ), where t

k
j ∈ t̄ . Respectively, a term is wanted, if 

all functions αk depend on the Bethe parameters skj from the set s̄.
Below we consider some equations modulus unwanted terms. In this case we use a symbol ∼=. 

Thus, an equation of the type lhs ∼= rhs means that the lhs is equal to the rhs modulus unwanted 
terms.
Using the notion of unwanted terms one can redefine the HC (4.12) as follows:

S(s̄|t̄ )∼=
N


k=1
αk(s̄

k) ·Zm|n(s̄|t̄). (7.1)

On the other hand, it follows from the explicit form of Bethe vectors [29] that

B(t̄)∼=�B(t̄)=
T1,2(t̄1) . . .TN,N+1(t̄N )|0��N

j=1 λj+1(t̄
j )
�N−1
j=1 f[j+1](t̄

j+1, t̄j )
, (7.2)

because all other terms in the Bethe vector contain factors αk(tkj ), and thus, they are unwanted. 

Hence, in order to find the HC it is enough to consider a reduced scalar product S̃(s̄|t̄ )

S(s̄|t̄ )∼= S̃(s̄|t̄ )=C(s̄)�B(t̄). (7.3)

In order to calculate the reduced scalar product (7.3) we can use the recursion (4.5) for the 
dual Bethe vector C(s̄). We write it in the form

C(s̄)=
N+1�

p=2

�

part(s̄2,...,s̄p−1)

C(
�
s̄kII
�p−1
1 ;

�
s̄k
�N
p
)
Tp,1(s̄

1
I )

λ2(s̄
1
I )
(−1)(r1−1)δm,1

×
�p−1
ν=2 αν(s̄

ν
I )g[ν](s̄

ν
I , s̄
ν−1
I )γ̂ν(s̄

ν
II , s̄
ν
I )

h(s̄1, s̄1I )
δm,1
�p−1
ν=1 f[ν+1](s̄

ν+1, s̄νI )
. (7.4)

Here the sum is taken over partitions of the sets s̄k⇒{s̄kI , ̄skII } for k = 2, . . . , p, such that #s̄kI = 1. 
The Bethe parameter s̄1I is fixed, and hence, the subset s̄

1
II also is fixed. There is no the sum over 

partitions of the set s̄1 in (7.4).
Thus, we obtain

S̃(s̄|t̄ )=
N+1�

p=2

�

part(s̄2,...,s̄p−1)

(−1)(r1−1)δm,1C(
�
s̄kII
�p−1
1 ,
�
s̄k
�N
p
) Tp,1(s̄

1
I )
�B(t̄)

×
�p−1
ν=2 αν(s̄

ν
I )g[ν](s̄

ν
I , s̄
ν−1
I )γ̂ν(s̄

ν
II , s̄
ν
I )

λ2(s̄
1
I )h(s̄

1, s̄1I )
δm,1
�p−1
ν=1 f[ν+1](s̄

ν+1, s̄νI )
. (7.5)

The action of Tp,1(s̄1I ) onto the vector �B(t̄) modulus unwanted terms is given by Proposition B.1. 
Thus, we obtain
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S̃(s̄|t̄ )∼= α1(s̄1I )
N+1�

p=2

�

part(s̄2,...,s̄p−1)
part(t̄1,...,t̄p−1)

(−1)(r1−1)δm,1 g[2](t̄
1
I , s̄
1
I )γ̂1(t̄

1
I , t̄
1
II )f[1](t̄

1
II , s̄
1
I )

f[p](s̄p, s̄
p−1
I )h(s̄1, s̄1I )

δm,1

×
p−1


ν=2

αν(s̄
ν
I )g[ν](s̄

ν
I , s̄
ν−1
I )g[ν+1](t̄ νI , t̄

ν−1
I )γ̂ν(s̄

ν
II , s̄
ν
I )γ̂ν(t̄

ν
I , t̄
ν
II )

f[ν](s̄ν , s̄
ν−1
I )f[ν](t̄ νI , t̄ ν−1)

×C(
�
s̄kII
�p−1
1 ,
�
s̄k
�N
p
)�B(
�
t̄ kII
�p−1
1 ;

�
t̄ k
�N
p
). (7.6)

Here t̄m+n = s̄m+n = ∅. Calculating the reduced scalar products in (7.6) modulus unwanted terms

C(
�
s̄kII
�p−1
1 ,
�
s̄k
�N
p
)�B(
�
t̄ kII
�p−1
1 ;

�
t̄ k
�N
p
)∼=

p−1


k=1
αk(s̄

k
II )

N


 =p
α (s̄

 )

×Zm|n(
�
s̄kII
�p−1
1 ,
�
s̄k
�N
p
|
�
t̄ kII
�p−1
1 ;

�
t̄ k
�N
p
), (7.7)

and substituting this into (7.6) we immediately arrive at the recursion (4.17).
We have also used

(−1)(r1−1)δm,1 γ̂1(t̄1I , t̄1II )= γ1(t̄1I , t̄1II ), γ̂ν(s̄
ν
II , s̄
ν
I )γ̂ν(t̄

ν
I , t̄
ν
II )= γν(s̄νII , s̄νI )γν(t̄νI , t̄ νII ).

7.2. Symmetry of the Highest Coefficient

Due to isomorphism (3.15) between Yangians Y(gl(m|n)) and Y(gl(n|m)) one can find a 
simple relation between the HC corresponding to these algebras. In this section we obtain this 
relation.
Consider the sum formula (4.11) for the scalar product of gl(m|n) Bethe vectors

Sm|n(−→s|−→t)=
�
W
m|n
part (

−→
sI,
−→
sII|
−→
tI,
−→
tII)

N


k=1
αk(s̄

k
I )αk(t̄

k
II ), (7.8)

where we have stressed the ordering (3.17) of the Bethe parameters. Let us act with the morphism 
ϕ (3.15) on the scalar product Sm|n(−→s|−→t). This can be done in two ways. First, using (3.18) and 
(3.26) we obtain

ϕ
�
Sm|n(−→s|−→t)

�
= ϕ
�
Cm|n(−→s)Bm|n(−→t)

�
= (−1)rmCn|m(←−s)Bn|m(←−t)
�N
k=1 αN+1−k(s̄

k)αN+1−k(t̄ k)

=
(−1)rmSn|m(←−s|←−t)

�N
k=1 αN+1−k(s̄

k)αN+1−k(t̄ k)
. (7.9)

The scalar product Sn|m(←−s|←−t) has the standard representation (4.11). Thus, we find

ϕ
�
Sm|n(−→s|−→t)

�
=
�

part

(−1)rmWn|mpart (
←−
sI,
←−
sII|
←−
tI,
←−
tII)

�N
k=1 αN+1−k(s̄

k)αN+1−k(t̄ k)

N


k=1
αk(s̄

N−k+1
I )αk(t̄

N−k+1
II ). (7.10)

On the other hand, acting with ϕ directly on the sum formula (7.8) we have

ϕ
�
Sm|n(−→s|−→t)

�
=
�

part

W
m|n
part (

−→
sI,
−→
sII|
−→
tI,
−→
tII)

N


k=1

�
αN+1−k(s̄

k
I )αN+1−k(t̄

k
II )
�−1
. (7.11)
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Comparing (7.10) and (7.11) we arrive at

(−1)rm
�

part

W
n|m
part (

←−
sI,
←−
sII|
←−
tI,
←−
tII)

N


k=1
αN+1−k(s̄

k
I )αN+1−k(t̄

k
II )

=
�

part

W
m|n
part (

−→
sI,
−→
sII|
−→
tI,
−→
tII)

N


k=1
αN+1−k(s̄

k
II )αN+1−k(t̄

k
I ) (7.12)

Since αi are free functional parameters, the coefficients of the same products of αi must be equal. 
Hence,

W
m|n
part (

−→
sI,
−→
sII|
−→
tI,
−→
tII)= (−1)rmWn|mpart (

←−
sII,
←−
sI|
←−
tII,
←−
tI), (7.13)

for arbitrary partitions of the sets s̄ and t̄ . In particular, setting s̄II = t̄II = ∅ we obtain

Zm|n(−→s|−→t)= (−1)rmZn|m(←−s|←−t)= (−1)rmZn|m(←−t |←−s). (7.14)

Using this property one can obtain recursion (4.18) for the highest coefficient. Indeed, one can 
easily see that applying (4.17) to the rhs of (7.14) we obtain (4.18) for the lhs of this equation.

8. Conclusion

In the present paper we have considered the Bethe vectors scalar products in the integrable 
models solvable by the nested algebraic Bethe ansatz and possessing gl(m|n) supersymmetry. 
The main result of the paper is the sum formula given by equations (4.11) and (4.15). We obtained 
it using the coproduct formula for the Bethe vectors. This way certainly is more direct and simple 
than the methods used before for the derivation of the sum formulas.
The sum formula is obtained for the Bethe vectors with arbitrary coloring. However, as we 

have mentioned in section 3.1, in various models of physical interest the coloring of the Bethe 
vectors is restricted by the condition r1 ≥ r2 ≥ · · · ≥ rN . A peculiarity of these models is that 
only the ratio α1(u) is a non-trivial function of u, while all other α’s are identically constants: 
αk(u) = αk , k > 1 (actually, using a twist transformation, one can always make these constants 
equal to 1: αk(u) = 1, k > 1). Then equation (4.11) is simplified, and one can try to take the sum 
over most of partitions, what should lead to a significant simplification of the sum formula. This 
direction of possible development is very attractive, and we are planning to study this problem.
The sum formula involves the HC of the scalar product. We did not find a closed expression 

for the HC, however, we have found recursions for it. Perhaps, this way of describing the HC is 
preferable for the models with high rank of symmetry. Indeed, looking at the explicit formulas 
for the HC in the gl(3)-based models one hardly can expect to obtain a relatively simple closed 
formula for it in the general gl(m|n) case. On the other hand, the recursions obtained in this paper 
allow one to study analytical properties of the HC, in particular to find the residues in the poles 
of this rational function. Using these results it is possible to derive an analog of Gaudin formula 
for on-shell Bethe vectors in the gl(m|n) based models exactly in the same way as it was done in 
[5,10]. We will consider this question in our forthcoming publication.
As we have already mentioned in Introduction, the sum formula itself is not very convenient 

for use. One should remember, however, that the sum formula describes the scalar product of 
generic Bethe vectors, where we have no restriction for the Bethe parameters. At the same time, 
in most cases of physical interest one deals with Bethe vectors, in which most of the Bethe 
parameters satisfy Bethe equations. In particular, this situation occurs in calculating form factors. 
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Then one can hope to obtain a significant simplification of the sum formula, as it was shown for 
the models with gl(3) and gl(2|1) symmetries. We are planning to study this problem in our 
further publications.
In conclusion we would like to discuss one more possible direction of generalization of our 

results. In this paper we considered the so-called distinguished gradation, that is to say the special 
grading [i] = 0 for 1 ≤ i ≤m, [i] = 1 for m < i ≤m + n. However, this is not the only possible 
choice of grading. Other gradings induce different inequivalent presentations of the superalge-
bra, where the number of fermionic simple roots can vary from a presentation to another. These 
different presentations are labelled by the different Dynkin diagrams associated to the super-
algebra. Obviously, since the different presentations deal with the same superalgebra, they are 
isomorphic. However, the mapping between two presentations is based on a generalized Weyl 
transformation acting on their Dynkin diagrams, lifted at the level of the superalgebra. These 
generalized Weyl transformations, in particular, affect the bosonic/fermionic nature of the gener-
ators, and thus can change commutators to anti-commutators (and vice-versa). Then, the precise 
expression of the mapping is heavy to formulate for all the generators of the Yangian. This is 
also true for Bethe vectors and Bethe parameters, a precise correspondence can be quite intricate 
to formulate. However, from the Lie superalgebra theory one knows that such a correspondence 
must exist. These considerations have been developed in [45] for the construction of the mapping 
on the particular case of the gl(1|2) algebra. The general case of generic gl(m|n) superalgebra is 
presented in [46] for the form of the Bethe equations, but open spin chains (see also [47] where 
the periodic case is reviewed). In conclusion, if a qualitative generalization of the present results 
to the superalgebras with different gradings is rather straightforward, a precise correspondence 
remains open.
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Appendix A. Coproduct formula for the Bethe vectors

The presentation (6.8) for the Bethe vector of the composite model can be treated as a coprod-
uct formula for the Bethe vector. Indeed, equation (6.4) formally determines a coproduct � of 
the monodromy matrix entries

�(Ti,j (u))=
m+n�

k=1
(−1)([j ]+[k])([i]+[k])Tk,j (u)⊗ Ti,k(u). (A.1)

Then (6.8) is nothing but the action of � onto the Bethe vector [29].
The action of the coproduct onto the dual Bethe vectors can be obtained via antimorphism 

(3.20). It was proved in [42] (see also similar consideration in prop. 1.5.4 of [43]) that

� ◦� = (� ⊗�) ◦��, (A.2)

where

��(Ti,j (u))=
�
Ti,k(u)⊗ Tk,j (u). (A.3)
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Then

�(C(t̄)) =�(�(B(t̄)))= (� ⊗�) ◦��(B(t̄))

= (� ⊗�)
�
��N

ν=1 α
(1)
ν (t̄

ν
I )γν(t̄

ν
II , t̄
ν
I )�N−1

ν=1 f[ν+1](t̄
ν+1
II , t̄

ν
I )
B(2)(t̄I)⊗B(1)(t̄II)

�

=
��N

ν=1 α
(1)
ν (t̄

ν
I )γν(t̄

ν
II , t̄
ν
I )�N−1

ν=1 f[ν+1](t̄
ν+1
II , t̄

ν
I )
C(2)(t̄I)⊗C(1)(t̄II). (A.4)

Relabeling here the subsets t̄ νI ↔ t̄ νII we arrive at (6.9). ✷

Appendix B. Action formulas

In this section we derive the action of the operators Tp,1 on the main term (3.13). For this we 
first consider some multiple commutation relations in the RT T -algebra (2.4).

B.1. Multiple commutation relations

Multiple commutation relations of the monodromy matrix entries in superalgebras were studi-
ed in [44]. Here we consider several particular cases of commutation relations with the operators 
Ti,i+1(v̄) (3.14).
It follows from (2.5) that

Ti,i (u)Ti,i+1(v)= f[i](v,u)Ti,i+1(v)Ti,i (u)+ g[i](u, v)Ti,i+1(u)Ti,i (v),
Ti,i (u)Ti−1,i(v)= f[i](u, v)Ti−1,i (v)Ti,i (u)+ g[i](v,u)Ti−1,i (u)Ti,i (v).

(B.1)

We see that these commutation relations look exactly the same as in the case of algebra gl(n). 
The only difference is that the functions f and g acquire an additional subscript indicating par-
ity. Therefore, for commutation relations, we can apply the standard arguments of the algebraic 
Bethe ansatz [1,3,4]. In particular, let us consider commutation of the operator Ti,i(t i−1α ) with the 
product Ti,i+1(t̄ i ), where t i−1α is a fixed parameter of the set t̄ i−1. Let us call a term wanted, if 
it contains the operator Ti,i(t i−1α ) in the extreme right position. Then moving Ti,i(t

i−1
α ) through 

the product Ti,i+1(t̄ i ) we should keep the original argument of Ti,i leading to

Ti,i (t
i−1
α )Ti,i+1(t̄

i )∼= f[i](t̄ i , t i−1α )Ti,i+1(t̄ i )Ti,i (t i−1α ). (B.2)

Consider now commutation of the operator Ti+1,i(t i−1α ) with the product Ti,i+1(t̄ i ) using

Ti+1,i (u)Ti,i+1(v)− (−1)δi,mTi,i+1(v)Ti+1,i(u)
= g[i+1](u, v)

�
Ti+1,i+1(u)Ti,i (v)− Ti+1,i+1(v)Ti,i (u)

�
. (B.3)

Let, as before, a term be wanted, if it contains the operator Ti,i(t i−1α ) in the extreme right position. 
Moving Ti+1,i(t i−1α ) through the product Ti,i+1(t̄ i ) we can obtain the terms of the following 
type:

(i) Ti+1,i(t
i−1
α );

(ii) Ti+1,i+1(t
i
j )Ti,i (t

i−1
α ), j = 1, . . . , ri;

(iii) Ti+1,i+1(t i−1α )Ti,i (t
i
j ), j = 1, . . . , ri;

(iv) Ti+1,i+1(t ij1)Ti,i (t
i
j2
), j1, j2 = 1, . . . , ri .

(B.4)
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Among all these contributions only the terms (ii) are wanted. Thus, we have

Ti+1,i (t
i−1
α )Ti,i+1(t̄

i )∼=
ri�

j=1
�jTi,i+1(t̄ i \ t ij )Ti+1,i+1(t

i
j )Ti,i (t

i−1
α ), (B.5)

where �j are rational coefficients to be determined. Due to the symmetry of Ti,i+1(t̄ i ) over t̄ i
it is sufficient to find �1 only. Then a wanted term must contain Ti+1,i+1(t i1)Ti,i (t

i−1
α ) in the 

extreme right position. We have

Ti+1,i (t
i−1
α )Ti,i+1(t̄

i )

= Ti+1,i (t i−1α )
Ti,i+1(t

i
1)Ti,i+1(t̄

i \ t i1)
h(t̄ i , t i1)

δm,i

∼= g[i+1](t i−1α , ti1)
�
Ti+1,i+1(t

i−1
α )Ti,i (t

i
1)− Ti+1,i+1(t

i
1)Ti,i (t

i−1
α )
�Ti,i+1(t̄ i \ t i1)
h(t̄ i , t i1)

δm,i
. (B.6)

The term Ti+1,i+1(t i−1α )Ti,i (t
i
1) obviously gives unwanted contribution. The remaining operators 

Ti+1,i+1(t i1)Ti,i (t
i−1
α ) should move through the product Ti,i+1(t̄ i \ t i1) via (B.1) keeping their 

arguments. This leads to

Ti+1,i (t
i−1
α )Ti,i+1(t̄

i )∼= g[i+1](t i1, t
i−1
α )

ri


k=2
f[i](t

i
k, t
i−1
α )f[i+1](t

i
1, t
i
k)

×
Ti,i+1(t̄ i \ t i1)
h(t̄ i , t i1)

δm,i
Ti+1,i+1(t

i
1)Ti,i (t

i−1
α ). (B.7)

Thus, using (2.10) we arrive at

�1 = g[i+1](t i1, t
i−1
α )

ri


k=2
f[i](t

i
k, t
i−1
α )γ̂i(t

i
1, t
i
k). (B.8)

The final result can be written as a sum over partitions of the set t̄ i:

Ti+1,i (t
i−1
α )Ti,i+1(t̄

i )∼=
�
g[i+1](t̄

i
I , t
i−1
α )f[i](t̄

i
II, t
i−1
α )γ̂i(t̄

i
I , t̄
i
II)

×Ti,i+1(t̄ iII) Ti+1,i+1(t̄ iI )Ti,i (t i−1α ). (B.9)

Here the set t̄ i is divided into subsets t̄ iI and t̄
i
II such that #t̄

i
I = 1.

B.2. Action formulas

In this section we consider the action of the operators Tp,1(s) onto the main term of the 
Bethe vector (3.13). Here p > 1 and s is a generic complex number. The result of this action 
contains various terms, among which we will distinguish wanted and unwanted terms. Let a term 
be wanted, if it is proportional to λ1(s) and does not contain any αi(tk ). Otherwise a term is 
unwanted.

Proposition B.1. Let �B(t̄) be the main term of a Bethe vector (3.13). Then the wanted term of the 
action of Tp,1 onto �B(t̄) reads
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Tp,1(s)�B(t̄)∼= λ1(s)
�

part(t̄)

p−1


 =2

g[ +1](t̄ I , t̄
 −1
I )γ̂ (t̄

 
I , t̄
 
II )

f[ ](t̄ I , t̄  −1)

× g[2](t̄1I , s)γ̂1(t̄1I , t̄1II )f[1](t̄1II , s)�B(
�
t̄ kII
�p−1
1 ;

�
t̄ k
�N
p
). (B.10)

Here the sum is taken over partitions of the sets t̄ k with k = 1, . . . , p − 1 into subsets t̄ kI and t̄ kII
such that #t̄ kI = 1.

To prove Proposition B.1 we introduce for 1 ≤ i < k ≤m + n

�Bik({t̄ ν}k−1i )=
Ti,i+1(t̄ i ) . . .Tk−1,k(t̄ k−1)|0��k−1
j=i λj+1(t̄

j )
�k−2
j=i f[j+1](t̄

j+1, t̄ j )
, (B.11)

where Tj,j+1 is defined by (3.14). Obviously, �B1,n+m({t̄ ν}N1 ) = �B(t̄). We first prove several 
auxiliary lemmas.

Lemma B.1. Let j <  and j < i. Then

T ,j (s)�Bik({t̄ ν}k−1i )= 0. (B.12)

Proof. The proof is based on the arguments of the coloring. The operator T ,j annihilates the 
particles of the colors j, . . . ,   − 1. On the other hand, for i > j the state �Bik({t̄ ν}k−1i ) does not 
contain the particles of the color j . Hence, the action of T ,j onto �Bik({t̄ ν}k−1i ) vanishes. ✷

Lemma B.2. Let j < i. Then

Tj,j (s)�Bik({t̄ ν}k−1i )= λj (s)�Bik({t̄
ν}k−1i ). (B.13)

Proof. Obviously,

�Bik({t̄ ν}k−1i )=
Ti,i+1(t̄ i )

λi+1(t̄ i )f[i+1](t̄ i+1, t̄ i )
�Bi+1,k({t̄ ν}k−1i+1 ). (B.14)

When one commutes Tj,j with one of the operators in the product Ti,i+1(t̄ i ), then from (2.5), we 
obtain the operators Ti,j or Ti+1,j acting on �Bi+1,k(t̄). Due to Lemma B.1 this action vanishes, 
because i > j . Thus,

Tj,j (s)�Bik({t̄ ν}k−1i )=
Ti,i+1(t̄ i )

λi+1(t̄ i)f[i+1](t̄ i+1, t̄ i)
Tj,j (s)�Bi+1,k({t̄ ν}k−1i+1 ). (B.15)

Continuing this process we eventually move Tj,j to the vacuum vector, where it gives λj(s). ✷

In the following lemmas the actions are considered modulus unwanted terms. Let t i−1α be 
a fixed parameter of the set t̄ i−1. We say that a term is wanted, if a Bethe parameter t j for 
j = i, . . . , k − 1 becomes an argument of λj+1. Otherwise, a term is unwanted.

Lemma B.3. The wanted term of the action of Ti,i(t i−1α ) onto �Bik({t̄ ν}
k−1
i ) is given by

Ti,i (t
i−1
α )
�Bik({t̄ ν}k−1i )∼= λi(t

i−1
α )f[i](t̄

i , t i−1α )�Bik({t̄ ν}
k−1
i ). (B.16)
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Proof. We present �Bik({t̄ ν}k−1i ) in the form (B.14). Then, moving Ti,i (t i−1α ) through the product 
Ti,i+1(t̄ i ) we should use (B.2), otherwise we obtain unwanted terms. Therefore, at the first step 
we obtain

Ti,i (t
i−1
α )
�Bik({t̄ ν}k−1i )∼=

f[i](t̄ i , t i−1α )Ti,i+1(t̄ i )
λi+1(t̄ i )f[i+1](t̄ i+1, t̄ i )

Ti,i (t
i−1
α )
�Bi+1,k({t̄ ν}k−1i+1 ). (B.17)

Then application of Lemma B.2 completes the proof. ✷

Lemma B.4. The wanted term of the action of Ti+1,i(t i−1α ) onto �Bik({t̄ ν}k−1i ) is given by
Ti+1,i (t

i−1
α )
�Bik({t̄ ν}k−1i )

∼=
�
λi(t

i−1
α )g[i+1](t̄

i
I , t
i−1
α )f[i](t̄

i
II, t
i−1
α )γ̂i(t̄

i
I , t̄
i
II)
�Bik(t̄ iII; {t̄ ν}k−1i+1 ). (B.18)

Here the sum is taken over partitions t̄ i⇒{t̄ iI , ̄t iII} such that #t̄ iI = 1.

Proof. We again present �Bik({t̄ ν}k−1i ) in the form (B.14). Then, moving Ti+1,i (t i−1α ) through the 
product Ti,i+1(t̄ i ) we should use (B.9), otherwise we obtain unwanted terms. Thus, we obtain

Ti+1,i (t
i−1
α )
�Bi+1,k(t̄)∼=

�
g[i+1](t̄

i
I , t
i−1
α )f[i](t̄

i
II, t
i−1
α )γ̂i(t̄

i
I , t̄
i
II)

× Ti,i+1(t̄
i
II) Ti+1,i+1(t̄

i
I )Ti,i (t

i−1
α )

λi+1(t̄ i )f[i+1](t̄ i+1, t̄ i)
�Bi+1,k({t̄ ν}k−1i+1 ). (B.19)

Then application of Lemmas B.2 and B.3 completes the proof. ✷

Lemma B.5. Let i < p < k. Then

Tp,i(t
i−1
α )
�Bik({t̄ ν}k−1i )

∼= λi(t i−1α )
�

part(t̄)

�Bik({t̄ νII }
p−1
i ; {t̄ ν}k−1p )

× g[i+1](t̄ iI , t i−1α )γ̂i(t̄ iI , t̄ iII)f[i](t̄ iII, t i−1α )
p−1


ν=i+1

g[ν+1](t̄ νI , t̄
ν−1
I )γ̂ν(t̄

ν
I , t̄
ν
II )

f[ν](t̄νI , t̄ ν−1)
. (B.20)

Here the sum is taken over partitions of the sets t̄ ν ⇒ {t̄ νI , ̄tνII } for ν = i, . . . , p − 1, such that 
#t̄ νI = 1.

Proof. The proof uses induction over p − i. If p − i = 1, then the statement coincides with 
the one of Lemma B.4. Assume that (B.20) is valid for i replaced with i + 1. Then we use 
presentation (B.14)

Tp,i(t
i−1
α )
�Bik({t̄ ν}k−1i )=

Tp,i(t
i−1
α )Ti,i+1(t̄ i)

λi+1(t̄ i )f[i+1](t̄ i+1, t̄ i)
�Bi+1,k({t̄ ν}k−1i+1 ). (B.21)

Moving Tp,i(t i−1α ) through the product Ti,i+1(t̄ i) we can obtain the terms of the following type:

(i) Tp,i (t
i−1
α );

(ii) Tp,i+1(t
i
j )Ti,i (t

i−1
α );

(iii) Tp,i+1(t i−1α )Ti,i (t
i
j );

(iv) Tp,i+1(t ij1)Ti,i (t
i
j2
).

(B.22)
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The term (i) vanishes due to Lemma B.1. The terms (iii) and (iv) give unwanted terms due to 
Lemma B.2. Hence, only the term (ii) survives. Using the arguments similar to the ones that we 
used for obtaining equation (B.9) we arrive at

Tp,i(t
i−1
α )
�Bik({t̄ ν}k−1i )∼=

�
g[i+1](t̄

i
I , t
i−1
α )f[i](t̄

i
II, t
i−1
α )γ̂i(t̄

i
I , t̄
i
II)

×
Ti,i+1(t̄ iII) Tp,i+1(t̄ iI )Ti,i (t i−1α )
λi+1(t̄ i )f[i+1](t̄ i+1, t̄ i)

�Bi+1,k({t̄ ν}k−1i+1 ). (B.23)

Here the sum is taken over partitions t̄ i ⇒ {t̄ iI , ̄t iII} such that #t̄ iI = 1. Applying Lemma B.2 we 
find

Tp,i(t
i−1
α )
�Bik({t̄ ν}k−1i )∼=

�
λi(t

i−1
α )g[i+1](t̄

i
I , t
i−1
α )f[i](t̄

i
II, t
i−1
α )γ̂i(t̄

i
I , t̄
i
II)

×
Ti,i+1(t̄ iII) Tp,i+1(t̄ iI )
λi+1(t̄ i )f[i+1](t̄ i+1, t̄ i )

�Bi+1,k({t̄ ν}k−1i+1 ). (B.24)

The action of Tp,i+1(t̄ iI ) onto �Bi+1,k({t̄ ν}
k−1
i+1 ) is known due to the induction assumption. Substi-

tuting this known action into (B.23) we prove Lemma B.5. ✷

In fact, Lemma B.5 gives the proof of Proposition B.1. Indeed, it is enough to set i = 1 and 
k = m + n in (B.20). We also set by definition t0α = s and introduce an auxiliary empty set 
t̄m+n ≡ ∅. Then Lemma B.5 describes the action of Tp,1(s) onto the main term �B(t̄).
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1. Introduction

In 1972 M. Gaudin formulated a hypothesis about the norm of the Hamiltonian eigenfunction 
of the quantum nonlinear Schrö dinger equation [1] (see also [2]). According to this hypothesis, 
the square of the eigenfunction norm is proportional to a Jacobian closely related to the Bethe 
equations. In 1982 V. Korepin proved the Gaudin hypothesis for a wide class of quantum in-
tegrable models [3]. In that work the Quantum Inverse Scattering Method (QISM) [4–7] was 
used. An advantage of this method is that it allows one to consider quantum models of differ-
ent physical origin in a common framework. The work [3] dealt with the models described by 
gl(2)-invariant R-matrix and its q-deformation. Using the same approach N. Reshetikhin gen-
eralized this result to the models with gl(3)-invariant R-matrix [8]. Recently, the norms of the 
Hamiltonian eigenfunctions in the models with gl(3) trigonometric R-matrix were calculated 
in [9].
A new approach to the problem based on the quantized Knizhnik–Zamolodchikov equation 

was developed in a series of papers [10–12]. There the norms of the eigenstates in gl(N) based 
models were calculated. It was shown that these results are equivalent to the Gaudin hypothesis. 
Concerning models described by superalgebras it is worth mentioning the work [13], where an 
analog of the Gaudin formula was conjectured for Hubbard model. Recently, the Gaudin norm 
of the full psu(2, 2|4) spin chain was studied in [14].
In all the cases listed above the original hypothesis was confirmed. Schematically it can be 

formulated as follows. Let |φ� be a Hamiltonian eigenstate. For quantum integrable models it can 
be parameterized by a set of parameters |φ� = |φ(t1, . . . , tL)� satisfying a system of equations 
(Bethe equations)

Fi(t1, . . . , tL)= 1, i = 1, . . . ,L, (1.1)

where Fi are some functions depending on the model. Then the square of the norm of |φ� is 
proportional to the following Jacobian

�φ|φ� ∼ det
∂ logFi
∂tj

. (1.2)

In the present paper we prove the Gaudin hypothesis for integrable models with gl(m|n) sym-
metry described by the super-Yangian Y

�
gl(m|n)

�
. Our approach is very closed to the one of the 

work [3]. It is based on the nested algebraic Bethe ansatz [15–17] and the notion of a generalized 
model [3,18,19] (see also [6]). We begin with a sum formula for the scalar product of generic 
Bethe vectors obtained in [20]. Using this formula we find a recursion for the scalar product and 
then specify it to the case of the norm. In this way we prove that the norm and the Gaudin de-
terminant satisfy the same recursion. Taking into account the coincidence of the initial data, we 
thereby prove the Gaudin hypothesis for the models described by the super-Yangian Y

�
gl(m|n)

�
.

The paper is organized as follows. In section 2 we briefly recall basic notions of QISM spec-
ifying them to the models based on the super-Yangian Y

�
gl(m|n)

�
. In section 3 we describe the 

Bethe vectors of the models with gl(m|n)-invariant R-matrix and consider their scalar products. 
Section 4 is devoted to the properties of the Gaudin matrix. Here we formulate the main result 
of the paper. In section 5 we introduce the notion of a generalized model that serves as a main 
tool of our approach. In section 6 we find a recursion for the scalar product of Bethe vectors. 
We specify this recursion to the case of the norm in section 7 and show that it coincides with the 
recursion for the Gaudin determinant. In this way we prove the generalized Gaudin hypothesis 
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for the models with gl(m|n)-invariant R-matrix. Several auxiliary statements are gathered in ap-
pendices. In Appendix A we explain how to construct some representatives of the generalized 
model in the framework of evaluation representation. Appendix B contains recursions for the 
highest coefficients of the scalar products. Finally, in Appendix C we find residues in the poles 
of the highest coefficients.

2. Basic notions

In this section we briefly recall basic notions of quantum integrable graded models. A more 
detailed presentation can be found in [21].
The Z2-graded vector space Cm|n with the grading [i] = 0 for 1 ≤ i ≤ m, [i] = 1 for m <

i ≤m + n is a direct sum of spaces: Cm|n =Cm ⊕Cn. Vectors belonging to Cm are called even, 
vectors belonging to Cn are called odd. Matrices acting in Cm|n are graded as [Eij ] = [i] +[j ] ∈
Z2, where Eij are elementary units: (Eij )ab = δiaδjb .
The R-matrix of gl(m|n)-invariant models has the form

R(u, v)= I+ g(u,v)P , g(u, v)=
c

u− v
. (2.1)

Here c is a constant, I and P respectively are the identity matrix and the graded permutation 
operator [21]:

I= 1⊗ 1=
n+m�

i,j=1
Eii ⊗Ejj , P =

n+m�

i,j=1
(−1)[j ]Eij ⊗Eji . (2.2)

In (2.2) we deal with the matrices acting in the tensor product Cm|n⊗Cm|n. In its turn, the tensor 
product of Cm|n spaces is graded as follows:

(1⊗Eij ) · (Ekl ⊗ 1)= (−1)([i]+[j ])([k]+[l]) Ekl ⊗Eij . (2.3)

A basic relation of the QISM is an RT T -relation1

R(u, v)
�
T (u)⊗ 1

��
1⊗ T (v)

�
=
�
1⊗ T (v)

��
T (u)⊗ 1

�
R(u, v). (2.4)

Here T (u) is a monodromy matrix, whose matrix elements are quantum operators acting in a 
Hilbert space H. This Hilbert space coincides with the space of states of the Hamiltonian under 
consideration. The matrix elements Ti,j (u) are graded in the same way as the matrices [Eij ]: 
[Ti,j (u)] = [i] + [j ] ∈ Z2. Equation (2.4) holds in the tensor product Cm|n ⊗Cm|n ⊗H. All the 
tensor products are graded.
For the given R-matrix (2.1) the RT T -relation (2.4) implies a set of commutation relations 

for the monodromy matrix entries

[Ti,j (u), Tk,l(v)} = (−1)[i]([k]+[l])+[k][l]g(u, v)
�
Tk,j (v)Ti,l(u)− Tk,j (u)Ti,l(v)

�

= (−1)[l]([i]+[j ])+[i][j ]g(u,v)
�
Ti,l(u)Tk,j (v)− Ti,l(v)Tk,j (u)

�
,
(2.5)

where we introduced the graded commutator

1 Strictly speaking, in relation (2.4), we should use R(u, v) ⊗1H instead of R(u, v), where 1H is the unit acting onH. 
This makes all relations very heavy, and we write loosely R(u, v). This will be the case throughout the paper, but we 
make this distinction in Appendix A to clarify the construction of the evaluation map.
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[Ti,j (u), Tk,l(v)} = Ti,j (u)Tk,l(v)− (−1)([i]+[j ])([k]+[l])Tk,l(v)Ti,j (u). (2.6)

The Hamiltonian and other integrals of motion of a quantum integrable system can be obtained 
from a graded transfer matrix. It is defined as the supertrace of the monodromy matrix

T (u)= strT (u)=
m+n�

j=1
(−1)[j ] Tj,j (u). (2.7)

One can easily check [21] that [T (u) , T (v)] = 0. Eigenstates of the graded transfer matrix 
are eigenstates of the quantum Hamiltonian. As usual, they are defined up to a normalization 
factor. The main goal of this paper is to find normalization factors such that the norms of the 
corresponding eigenstates are equal to 1.

3. Bethe vectors and their scalar products

We do not specify a Hilbert space H where the monodromy matrix entries act, however, we 
assume that it contains a pseudovacuum vector |0�, such that

Ti,i (u)|0� = λi(u)|0�, i = 1, . . . ,m+ n,
Ti,j (u)|0� = 0, i > j ,

(3.1)

where λi(u) are some scalar functions. Below it will be convenient to deal with ratios of these 
functions

αi(u)=
λi(u)

λi+1(u)
, i = 1, . . . ,m+ n− 1. (3.2)

In the framework of the generalized model considered in this paper, they remain free functional 
parameters. We discuss some properties of the generalized model in section 5.
We also assume that the monodromy matrix entries act in a dual space H∗ with a dual pseu-

dovacuum �0| such that

�0|Ti,i (u)= λi(u)�0|, i = 1, . . . ,m+ n,
�0|Ti,j (u)= 0, i < j .

(3.3)

Here the functions λi(u) are the same as in (3.1).
In the framework of the algebraic Bethe ansatz, it is assumed that the space of states H

is generated by the action of the upper triangular elements of the monodromy matrix Ti,j(u)
with i < j onto the vector |0�. In physical models, vectors of the space H describe states with 
quasiparticles of different types (colors). In gl(m|n)-invariant models quasiparticles may have 
N =m + n − 1 colors. Let {r1, . . . , rN } be a set of non-negative integers. We say that a state has 
coloring {r1, . . . , rN }, if it contains ri quasiparticles of the color i, where i = 1, . . . , N . The ac-
tion of Ti,j (u) onto a state of a fixed coloring creates j− i quasiparticles of the colors i, . . . , j−1. 
More details on coloring can be found in [20].
A Bethe vector is a polynomial in the creation operators Ti,j with i < j applied to the vector 

|0�. All the terms of this polynomial have the same coloring. In this paper we do not use an 
explicit form of the Bethe vectors, however, the reader can find it in [22]. A generic Bethe vector 
of gl(m|n)-invariant model depends on N = m + n − 1 sets of variables t̄1, ̄t2, . . . , ̄tN called 
Bethe parameters. We denote Bethe vectors by B(t̄), where

t̄ = {t11 , . . . , t1r1; t
2
1 , . . . , t

2
r2
; . . . ; tN1 , . . . , t

N
rN
}, (3.4)
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and the cardinalities ri of the sets t̄ i = {t i1, . . . , t iri } coincide with the coloring. Thus, each Bethe 
parameter t ik can be associated with a quasiparticle of the color i. We also introduce the total 
number of the Bethe parameters

r= #t̄ =
N�

i=1
ri . (3.5)

Bethe vectors are symmetric over permutations of the parameters t ik within the set t̄
i , however, 

they are not symmetric over permutations over parameters belonging to different sets t̄ i and 
t̄ j . For generic Bethe vectors the Bethe parameters t ik are generic complex numbers. If these 
parameters satisfy a special system of equations (Bethe equations), then the corresponding vector 
becomes an eigenvector of the transfer matrix (2.7). In this case it is called on-shell Bethe vector. 
We give explicitly the system of Bethe equations (3.11) a bit later, after introduction a necessary 
notation.
Dual Bethe vectors belong to the dual space H∗. They can be obtained as a graded transposi-

tion of the Bethe vectors (see e.g. [20,22,23]). We denote dual Bethe vectors by C(t̄), where t̄ are 
the Bethe parameters (3.4). Dual Bethe vectors become on-shell, if the set t̄ satisfy the system 
(3.11).

3.1. Notation

In this paper we use notation and conventions of the work [20]. Besides the function g(u, v)
we use one more rational function

f (u, v)= 1+ g(u, v)= u− v + c
u− v

. (3.6)

In order to make formulas uniform we also introduce a ‘graded’ constant c[i] = (−1)[i]c. Re-
spectively, we use ‘graded’ rational functions g[i](u, v) and f[i](u, v):

g[i](u, v)=
c[i]
u− v

,

f[i](u, v)= 1+ g[i](u, v)=
u− v + c[i]
u− v

.

(3.7)

Finally, we define γi(u, v) as

γi(u, v)=
�
f[i](u, v), i �=m,
g[i](u, v), i =m. (3.8)

Observe that the function γi takes three values, namely, γi(u, v) = f (u, v) for i < m, γi(u, v) =
g(u, v) for i =m, and γi(u, v) = f (v, u) for i > m.
Let us formulate now a convention on the notation. We use a bar to denote sets of variables. 

The set of the Bethe parameters is denoted by t̄ (like in (3.4)) or s̄. The latter notation mostly is 
used for the Bethe parameters of dual Bethe vectors. From now on individual Bethe parameters 
are labeled with a Greek superscript and a Latin subscript, i.e. tµj , t

ν
k , and so on. The superscript 

refers to the color, while the subscript counts the number of the Bethe parameters of the fixed 
color. Thus, t̄ = {t̄1, . . . , ̄tN }, where t̄µ = {tµ1 , . . . , t

µ
rµ}. The integers rµ denote the cardinalities 

rµ = #t̄µ, and the total cardinality r is given by (3.5). Similar notation is used for the set s̄.
Below we consider partitions of the Bethe parameters into disjoint subsets. The subsets are 

denoted by Roman numbers, i.e. t̄µI , s̄
ν
II, and so on. A special notation t̄

µ
j (resp. s̄

µ
j ) is used for the 
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subset of t̄µ (resp. s̄µ) complementary to the parameter tµj (resp. s
µ
j ), i.e. t̄

µ
j = t̄µ \ {t

µ
j } (resp. 

s̄
µ
j = s̄µ \ {s

µ
j }).

We use a shorthand notation for products of the functions (3.2), (3.7), and (3.8). Namely, if 
some of these functions depend on a set of variables (or two sets of variables), this means that 
one should take the product over the corresponding set (or double product over two sets). For 
example,

αν(t̄
ν)=

�

tνj ∈t̄ ν
αν(t

ν
j ), f[µ](t

µ
k , t̄
µ
k )=

�

t
µ
� ∈t̄

µ

��=k

f[µ](t
µ
k , t
µ
� ),

γν(s̄
ν
I , s̄
ν
II)=

�

sνj ∈s̄
ν
I

�

sνk∈s̄
ν
II

γν(s
ν
j , s
ν
k ). (3.9)

By definition, any product over the empty set is equal to 1. A double product is equal to 1 if 
at least one of the sets is empty.
To illustrate the use of the shorthand notation (3.9) we give here a system of Bethe equations. 

Recall that if the Bethe parameters t̄ satisfy the system of Bethe equations, then the corresponding 
(dual) Bethe vector is on-shell. Being written in a standard notation this system has the following 
form:

αν(t
ν
j )= (−1)δν,m(rm−1)

�
rν�

k=1
k �=j

γν(t
ν
j , t
ν
k )

γν(t
ν
k , t
ν
j )

��rν+1
k=1 f[ν+1](t

ν+1
k , tνj )�rν−1

k=1 f[ν](t
ν
j , t
ν−1
k )

,
ν = 1, . . . ,N,
j = 1, . . . , rν.

(3.10)

The use of the shorthand notation allows one to rewrite this system as

αν(t
ν
j )= (−1)

δν,m(rm−1)
γν(t

ν
j , t̄
ν
j )f[ν+1](t̄

ν+1, tνj )

γν(t̄
ν
j , t
ν
j )f[ν](t

ν
j , t̄
ν−1)

,
ν = 1, . . . ,N,
j = 1, . . . , rν .

(3.11)

3.2. Initial normalization of Bethe vectors

Although we do not use explicit formulas for the Bethe vectors, we should fix their initial 
normalization. We use the same normalization as in [20].
It was already mentioned that a generic Bethe vector has the form of a polynomial in Ti,j

with i < j applied to the pseudovacuum |0�. Among all the terms of this polynomial there is one 
monomial that contains the operators Ti,j with j − i = 1 only. We call this monomial the main 
term and fix the normalization of the Bethe vectors by fixing a numeric coefficient of the main 
term

B(t̄)=
T1,2(t̄1) . . .TN,N+1(t̄N )|0��N

i=1 λi+1(t̄
i )
�N−1
i=1 f[i+1](t̄

i+1, t̄ i)
+ . . . , (3.12)

where ellipsis means all the terms containing at least one operator Ti,j with j − i > 1. We also 
introduced symmetric operator products in (3.12):

Ti,i+1(t̄ i)=
Ti,i+1(t i1) . . . Ti,i+1(t

i
ri
)

��
1≤j<k≤ri h(t

i
k, t
i
j )
�δi,m . (3.13)
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One can easily check that due to the commutation relations (2.5) the operator products Ti,i+1(t̄ i )
do are symmetric over t̄ i for all i = 1, . . . , m + n − 1.
Recall that we use here the shorthand notation for the products of the functions λj+1 and 

f[j+1]. The normalization in (3.12) is different from the one used in [22] by the product �N
j=1 λj+1(t̄

j ). This additional normalization factor is convenient, because in this case the scalar 
products of the Bethe vectors depend on the ratios αi (3.2) only.
Since the operators Ti,i+1 and Tj,j+1 do not commute for i �= j , the main term can be written 

in several forms corresponding to different ordering of the monodromy matrix entries. The order-
ing in (3.12) naturally arises if we construct Bethe vectors via the embedding of Y

�
gl(m − 1|n)

�

into Y
�
gl(m|n)

�
.

3.3. Scalar product of Bethe vectors

The scalar product of Bethe vectors is defined as

S(s̄|t̄ )=C(s̄)B(t̄). (3.14)

Here s̄ and t̄ are sets of generic complex numbers of the same cardinality #s̄ = #t̄ . One can show 
that the scalar product of Bethe vectors of different coloring vanishes [20], therefore, below we 
consider only the case #s̄ν = #t̄ ν = rν , ν = 1, . . . , N (recall that N =m + n − 1).
In [20] we found a sum formula for this scalar product

S(s̄|t̄ )=
��N

ν=1 αν(s̄
ν
I )αν(t̄

ν
II)γν(s̄

ν
II, s̄
ν
I )γν(t̄

ν
I , t̄
ν
II)�N−1

ν=1 f[ν+1](s̄
ν+1
II , s̄

ν
I )f[ν+1](t̄

ν+1
I , t̄ νII)

Zm|n(s̄I|t̄I) Zm|n(t̄II|s̄II). (3.15)

Here all the sets of the Bethe parameters t̄ ν and s̄ν are divided into two subsets t̄ ν⇒{t̄ νI , ̄tνII} and 
s̄ν⇒{s̄νI , ̄s

ν
II}, such that #t̄

ν
I = #s̄

ν
I . The sum is taken over all possible partitions of this type.

The function Zm|n(s̄|t̄ ) is the highest coefficient (HC). This is a rational function of the Bethe 
parameters. It can be constructed recursively starting with HC in gl(1|1) superalgebra (see also 
[25] for an explicit determinant representation of HC in gl(2|1) superalgebra)

Z1|1(s̄|t̄ )= g(s̄, t̄). (3.16)

The recursions for HC are given in Appendix B.
The most important property of HC is that this function has simple poles at sµj = t

µ
j , µ =

1, . . . , N , j = 1, . . . , rµ.

Proposition 3.1. The residues of HC in the poles at sµj = t
µ
j , µ = 1, . . . , N , j = 1, . . . , rµ are 

proportional to Zm|n(s̄ \ {sµj }|t̄ \ {t
µ
j }):

Zm|n(s̄|t̄ )
���
s
µ
j→t

µ
j

= g[µ+1](tµj , s
µ
j )
γµ(t̄

µ
j , t
µ
j )γµ(s

µ
j , s̄

µ
j ) Z

m|n(s̄ \ {sµj }|t̄ \ {t
µ
j })

f[µ+1](t̄µ+1, t
µ
j )f[µ](s

µ
j , s̄

µ−1)
+ reg,

(3.17)

where reg means regular terms.

We prove this proposition in Appendix C.
The square of the norm of the Bethe vector traditionally is defined as

S(t̄ |t̄ )=C(t̄)B(t̄), (3.18)
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that is, this is the scalar product at s̄ = t̄ . Equation (3.15) still holds in this case, however, separate 
terms of the sum over partitions may have singularities due to the poles of HC. Thus, in order to 
approach the case of the norm one should take a limit s̄→ t̄ in (3.15). The limit s̄→ t̄ means 
that sµj → t

µ
j for all µ = 1, . . . , N and j = 1, . . . , rµ.

Finally, to obtain the norm of on-shell Bethe vector, one should impose Bethe equations 
(3.11). According to the generalized Gaudin hypothesis, the square of the norm of on-shell Bethe 
vector in gl(m|n)-invariant models is proportional to a special Jacobian. We describe this Jaco-
bian in the next section.

4. Gaudin matrix

The Gaudin matrix G for gl(m|n)-invariant models is an N ×N block-matrix. The size of the 
block G(µ,ν) is rµ × rν . To describe the entries G(µ,ν)jk we introduce a function

�
(µ)
j = (−1)

δµ,m(rm−1)αµ(t
µ
j )
γµ(t̄

µ
j , t
µ
j )

γµ(t
µ
j , t̄
µ
j )

f[µ](t
µ
j , t̄
µ−1)

f[µ+1](t̄µ+1, t
µ
j )
. (4.1)

It is easy to see that Bethe equations (3.11) can be written in terms of �(µ)j as

�
(µ)
j = 1, µ= 1, . . . ,N, j = 1, . . . , rµ. (4.2)

The entries of the Gaudin matrix are defined as

G
(µ,ν)
jk =−c[µ+1]

∂ log�(µ)j
∂tνk

. (4.3)

We are now in position to state the main result of this paper:

Theorem 4.1. The square of the norm of the on-shell Bethe vectors reads

C(t̄)B(t̄)=
N�

ν=1

rν�

p,q=1
p �=q

γν(t
ν
p, t
ν
q )

�
N−1�

ν=1
f[ν+1](t̄

ν+1, t̄ ν)

�−1
detG, (4.4)

where the matrix G is given by (4.3).

We prove this formula in the rest of the paper.

4.1. Properties of the Gaudin matrix

First of all, let us give explicit expressions for the matrix elements of the Gaudin matrix (4.3). 
We have for the elements in the diagonal blocks G(µ,µ):

G
(µ,µ)
jk = δjk

�
X
µ
j −

rµ�

�=1
Kµ(tµj , t

µ
� )+ (−1)

δµ,m

rµ−1�

q=1
J[µ](tµj , t

µ−1
q )

+
rµ+1�

p=1
J[µ+1](tµ+1p , t

µ
j )
�
+Kµ(tµj , t

µ
k ). (4.5)
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Here

X
µ
j =−c[µ+1]

d

dz
logαµ(z)

���
z=tµj
, (4.6)

and

Kµ(x, y)=
2c2(1− δµ,m)
(x − y)2 − c2

, J[µ](x, y)=
c2

(x − y)(x − y + c[µ])
. (4.7)

The near-diagonal blocks are

G
(µ,µ−1)
jk = (−1)δµ,m+1J[µ](tµj , t

µ−1
k ), G

(µ,µ+1)
jk =−J[µ+1](tµ+1k , t

µ
j ). (4.8)

If |µ − ν| > 1, then G(µ,ν)jk = 0.
Consider now some properties of the Gaudin matrix determinant. Let

F(r)(X̄; t̄ )= detG. (4.9)

Here we have stressed that the function F(r)(X̄; ̄t) depends on two sets of variables. One of these 
sets consists of the Bethe parameters t̄ (3.4). Another set is

X̄ = {X11, . . . ,X1r1;X
2
1, . . . ,X

2
r2
; . . . ;XN1 , . . . ,X

N
rN
}. (4.10)

The superscript r shows the total number of Bethe parameters or, what is the same, the total 
number of parameters Xµj : r = #t̄ = #X̄.
In specific models the variables Xµj are functions of the Bethe parameters (see (4.6)). Here we 

consider a more general case, where the sets X̄ and t̄ are independent. In other words, we study 
detG with the matrix elements (4.5), (4.8), but we do not impose (4.6).

Korepin criteria The function F(r)(X̄; ̄t) obeys some characteristic properties. These properties 
listed below are quite analogous to the properties of the Gaudin determinant in the gl(2) case. 
Due to the parallel to the original paper [3] we call them Korepin criteria.

(i) The function F(r)(X̄; ̄t) is symmetric over the replacement of the pairs (Xµj , t
µ
j ) ↔

(X
µ
k , t
µ
k ).

(ii) It is a linear function of each Xµj .

(iii) F(1)(X11; t11 ) =X11 for #t̄ = r = 1.
(iv) The coefficient of Xµj is given by a function F

(r−1) with modified parameters Xνk

∂F(r)(X̄; t̄ )
∂X
µ
j

= F(r−1)({X̄mod \Xmod;µj }; {t̄ \ tµj }), (4.11)

where the original variables Xνk should be replaced by X
mod;ν
k :

X
mod;µ
k =Xµk −Kµ(t

µ
j , t
µ
k ),

X
mod;µ+1
k =Xµ+1k + (−1)δm,µ+1J[µ+1](tµ+1k , t

µ
j ),

X
mod;µ−1
k =Xµ−1k +J[µ](tµj , t

µ−1
k ),

X
mod;ν
k =Xνk , |ν −µ|> 1.

(4.12)

(v) F(r)(X̄; ̄t) = 0, if all Xνj = 0.
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The properties (i)–(iv) are quite obvious. In order to check the property (v) one should take 
the sum of all columns (or rows) of the matrix G

N�

ν=1

rν�

k=1
G
(µ,ν)
jk =Xµj . (4.13)

Hence, if all Xµj = 0, then this linear combination vanishes, and thus, detG = 0.

Proposition 4.1. The Korepin criteria fixes the function F(r)(X̄; ̄t) uniquely.

Proof. The proof is exactly the same as in the gl(2) case [3]. For completeness, we repeat it here.
Let functions F(r)1 (X̄; ̄t) and F

(r)
2 (X̄; ̄t) satisfy Korepin criteria. Then for r = #t̄ = 1 we have 

F(1)1 (X
1
1; t
1
1 ) = F

(1)
2 (X

1
1; t
1
1 ). Assume that F

(r−1)
1 (X̄; ̄t) = F(r−1)2 (X̄; ̄t). Then for #t̄ = r we have

∂

∂X
µ
j

�
F(r)1 (X̄; t̄)− F

(r)
2 (X̄; t̄ ))= 0, (4.14)

due to the property (iv) and the induction assumption, and

(F(r)1 (X̄; t̄ )− F
(r)
2 (X̄; t̄ ))

���
X̄=0
= 0, (4.15)

due to the property (v). Since the function F(r)1 (X̄; ̄t) − F
(r)
2 (X̄; ̄t) is linear over each X

µ
j , equa-

tions (4.14) and (4.15) yield F(r)1 (X̄; ̄t) − F
(r)
2 (X̄; ̄t) = 0 for #t̄ = r. ✷

Thus, in order to prove (4.4) it is enough to show that the properly normalized scalar product 
of on-shell Bethe vectors C(t̄)B(t̄) obeys Korepin criteria.

5. Generalized model

The notion of the generalized model was introduced in [3] for gl(2) based models (see also 
[6,8,18,19]). This model also can be considered in the case of the super-Yangian Y

�
gl(m|n)

�
. 

In fact, the generalized model is a class of models. Each representative of this class has a 
monodromy matrix satisfying the RTT -relation (2.4) with the R-matrix (2.1), and possesses 
pseudovacuum vectors with the properties (3.1), (3.3). A representative of the generalized model 
can be characterized by a set of the functional parameters αµ(u) (3.2). Different representatives 
are distinguished by different sets of the ratios αµ(u).
The sum formula (3.15) for the scalar product is valid for any representative of the general-

ized model. Then we can consider the scalar product as a function depending on two types of 
variables: the Bethe parameters s̄ and t̄ on the one hand, and the functional parameters αµ on the 
other hand. Indeed, even if some tµj (resp. s

µ
j ) is fixed, then the function αµ(t

µ
j ) (resp. αµ(s

µ
j )) 

changes freely when running through the class of the generalized model. In particular, using only 
inhomogeneous models with spins in higher dimensional representations one can easily construct 
representatives of the generalized model (see Appendix A), for which

αµ(u)=
L(µ)�

j=1
f[µ](u, ξ

(µ)
j ). (5.1)
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Here inhomogeneities ξ (µ)j are arbitrary complex numbers, and L(µ) are arbitrary positive in-
tegers. It is clear that even being restricted to this class of functions αµ we can approach any 
predefined value of αµ(u) at u fixed.
The meaning of Bethe equations (3.11) also changes in the generalized model. For a given 

representative this is a set of equations for the Bethe parameters. In the generalized model this 
is a set of constraints between two groups of independent variables tµj and αµ(t

µ
j ). Indeed, one 

can fix an arbitrary set of the Bethe parameters t̄ and then find a set of functions αµ such that 
the system (3.11) is fulfilled. For example, one can look for the functions αµ in the form (5.1). 
Then Bethe equations become a set of constraints for inhomogeneities ξ (µ)j . Since the number of 
inhomogeneities is not restricted, one can always provide solvability of the system (3.11).
We will see in section 6 that if tµj = s

µ
j for some µ and j , then the scalar product depends also 

on the derivatives α�µ(t
µ
j ) of the functional parameters αµ. They arise due to the presence of poles 

in the HC Zm|n(s̄I|t̄I) and Zm|n(t̄II|s̄II). The derivatives α�µ(t
µ
j ) also can be treated as independent 

functional parameters, because generically the values of a function and its derivative in a fixed 
point are not related to each other. In particular, the square of the norm of a Bethe vector depends 
on three type of variables: the Bethe parameters, the values of the functions αµ in the points 
t
µ
j , and the values of the derivatives α

�
µ in the same points. If the Bethe vector is on-shell, then 

we can express αµ(t
µ
j ) in terms of the Bethe parameters due to (3.11). However, the derivatives 

α�µ(t
µ
j ) still remain free. In particular, the variables X

µ
j (4.6) and the Bethe parameters t̄ can be 

considered as independent variables in the framework of the generalized model.
To illustrate an advantage of the generalized model we prove here an identity that will be used 

below.

Proposition 5.1. For arbitrary complex t̄ and s̄ such that #s̄ = #t̄ > 0

� �N
ν=1 γν(s̄

ν
II, s̄
ν
I )γν(t̄

ν
I , t̄
ν
II)�N−1

ν=1 f[ν+1](s̄
ν+1
II , s̄

ν
I )f[ν+1](t̄

ν+1
I , t̄ νII)

Zm|n(s̄I|t̄I) Zm|n(t̄II|s̄II)= 0. (5.2)

Proof. Observe that the lhs of (5.2) is a particular case of the scalar product formula (3.15) at 
αν(u) = 1 for ν = 1, . . . , N .
Recall that the sum formula (3.15) holds for an arbitrary representative of the generalized 

model. Among these representatives there exists a model such that T (u) = 1. Indeed, this mon-
odromy matrix obviously satisfies the RT T -relation (2.4). One can postulate that the matrix 
elements Ti,j (u) act in some Hilbert space H, for example, H=Cwith a pseudovacuum |0� = 1. 
The dual space H∗ then coincides with H, and �0| = 1. The conditions (3.1), (3.3) obviously are 
fulfilled, and αν(u) = 1 for ν = 1, . . . , N . Thus, the lhs of (5.2) is equal to the scalar product of 
Bethe vectors in the model with T (u) = 1. But the latter vanishes, because Ti,j = 0 for i �= j , 
and hence, B(t̄) = 0, C(s̄) = 0 for #t̄ = #s̄ > 0. ✷

6. Recursion for the scalar product

Let us turn back to the scalar product in the form (3.15). Suppose that sµj = t
µ
j for some j

and µ. The total scalar product is not singular, because the RT T -commutation relations are not 
singular. However, the highest coefficients in (3.15) might have poles. The poles occur if either 
s
µ
j ∈ s̄I and t

µ
j ∈ t̄I or s

µ
j ∈ s̄II and t

µ
j ∈ t̄II. Resolving these singularities at s

µ
j = t

µ
j we obtain 



A. Hutsalyuk et al. / Nuclear Physics B 926 (2018) 256–278 267

derivatives of the functions αµ(z). Our goal is to find, how the scalar product depends on these 
derivatives.
For this it is convenient to introduce

α̂ν(t
ν
j )= (−1)

δν,m(rm−1)αν(t
ν
j )
γν(t̄

ν
j , t
ν
j )f[ν](t

ν
j , t̄
ν−1)

γν(t
ν
j , t̄
ν
j )f[ν+1](t̄

ν+1, tνj )
,

α̂ν(s
ν
j )= (−1)δν,m(rm−1)αν(sνj )

γν(s̄
ν
j , s
ν
j )f[ν](s

ν
j , s̄
ν−1)

γν(s
ν
j , s̄
ν
j )f[ν+1](s̄

ν+1, sνj )
,

ν = 1, . . . ,N,
j = 1, . . . , rν,

(6.1)

where (here and below) t̄0 = s̄0 = t̄m+n = s̄m+n = ∅. This implies in particular that the products 
involving elements from these empty sets are equal to 1.
Then, replacing αν with α̂ν in the scalar product (3.15) we arrive at

S(s̄|t̄ )=
��N

ν=1 α̂ν(s̄
ν
I )α̂ν(t̄

ν
II)γν(s̄

ν
I , s̄
ν
II)γν(t̄

ν
II, t̄
ν
I )�N−1

ν=1 f[ν+1](s̄
ν+1
I , s̄νII)f[ν+1](t̄

ν+1
II , t̄

ν
I )
Zm|n(s̄I|t̄I) Zm|n(t̄II|s̄II). (6.2)

Note that the product of the sign factors (−1)δν,m(rm−1) gives 1, because #s̄mI + #t̄mII = rm.
Let sµj ∈ s̄I and t

µ
j ∈ t̄I. We denote the corresponding contribution to the scalar product by 

S(1)(s̄|t̄ ). If sµj → t
µ
j , then due to (3.17) the HC Zm|n(s̄I|t̄I) has a pole. Let s̄µI = {s

µ
j , ̄s

µ

I� }, t̄
µ
I =

{tµj , ̄t
µ

I� }, and s̄
ν
I = s̄νI� , t̄

ν
I = t̄ νI� for ν �= µ. Then using (3.17) we obtain

Zm|n(s̄I|t̄I)
���
s
µ
j→t

µ
j

= g[µ+1](tµj , s
µ
j )

γµ(t̄
µ

I� , t
µ
j )γµ(s

µ
j , s̄

µ

I� )

f[µ+1](t̄
µ+1
I , t

µ
j )f[µ](s

µ
j , s̄

µ−1
I )

Zm|n(s̄I� | t̄I�)+ reg,

(6.3)

where reg means regular part.
The product of the f -functions and γ -functions in (6.2) transforms as follows:

�N
ν=1 γν(s̄

ν
I , s̄
ν
II)γν(t̄

ν
II, t̄
ν
I )�N−1

ν=1 f[ν+1](s̄
ν+1
I , s̄νII)f[ν+1](t̄

ν+1
II , t̄

ν
I )
=

γµ(s
µ
j , s̄

µ
II )γµ(t̄

µ
II , t
µ
j )

f[µ](s
µ
j , s̄

µ−1
II )f[µ+1](t̄

µ+1
II , t

µ
j )

×
�N
ν=1 γν(s̄

ν
I� , s̄
ν
II)γν(t̄

ν
II, t̄
ν
I� )�N−1

ν=1 f[ν+1](s̄
ν+1
I� , s̄

ν
II)f[ν+1](t̄

ν+1
II , t̄

ν
I� )
. (6.4)

Combining (6.3) and (6.4) we obtain for the contribution S(1)(s̄|t̄ )

S(1)(s̄|t̄ )
���
s
µ
j→t

µ
j

= α̂µ(sµj )g[µ+1](t
µ
j , s

µ
j )

γµ(t̄
µ
j , t
µ
j )γµ(s

µ
j , s̄

µ
j )

f[µ](s
µ
j , s̄

µ−1)f[µ+1](t̄µ+1, t
µ
j )

×
��N

ν=1 α̂ν(s̄
ν
I�)α̂ν(t̄

ν
II)γν(s̄

ν
I� , s̄
ν
II)γν(t̄

ν
II, t̄
ν
I� )�N−1

ν=1 f[ν+1](s̄
ν+1
I� , s̄

ν
II)f[ν+1](t̄

ν+1
II , t̄

ν
I� )
Zm|n(s̄I� |t̄I�) Zm|n(t̄II|s̄II)+ reg, (6.5)

where now the sum is taken over partitions of the sets t̄ \ {tµj } and s̄ \ {s
µ
j } respectively into 

subsets {s̄I� , ̄sII} and {t̄I� , ̄tII}. Recall also that s̄µj = s̄µ \ {s
µ
j } and t̄

µ
j = t̄µ \ {t

µ
j }.

Similarly one can consider the case sµj ∈ s̄II and t
µ
j ∈ t̄II. Denoting the corresponding contri-

bution by S(2)(s̄|t̄ ) we find
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S(2)(s̄|t̄ )
���
s
µ
j→t

µ
j

= α̂µ(tµj )g[µ+1](s
µ
j , t
µ
j )

γµ(s̄
µ
j , s

µ
j )γµ(t

µ
j , t̄
µ
j )

f[µ](t
µ
j , t̄
µ−1)f[µ+1](s̄µ+1, s

µ
j )

×
��N

ν=1 α̂ν(s̄
ν
I )α̂ν(t̄

ν
II�)γν(s̄

ν
I , s̄
ν
II�)γν(t̄

ν
II� , t̄

ν
I )�N−1

ν=1 f[ν+1](s̄
ν+1
I , s̄νII�)f[ν+1](t̄

ν+1
II� , t̄

ν
I )
Zm|n(s̄I|t̄I) Zm|n(t̄II� |s̄II�)+ reg. (6.6)

Here the sum is taken over partitions of the sets t̄ \ {tµj } and s̄ \ {s
µ
j } respectively into subsets 

{s̄I, ̄sII� } and {t̄I, ̄tII� }.
Now we combine (6.5) and (6.6). Relabeling the subscripts of subsets I� → I, I I� → I I and 

substituting α̂(sµj ) and α̂(t
µ
j ) respectively in terms of α(s

µ
j ) and α(t

µ
j ) we arrive at

S(s̄|t̄ )
���
s
µ
j→t

µ
j

= g[µ+1](tµj , s
µ
j )
�
αµ(s

µ
j )− αµ(t

µ
j )
� (−1)δµ,m(rm−1)γµ(s̄µj , s

µ
j )γµ(t̄

µ
j , t
µ
j )

f[µ+1](s̄µ+1, s
µ
j )f[µ+1](t̄

µ+1, tµj )

×
��N

ν=1 α̂ν(s̄
ν
I )α̂ν(t̄

ν
II)γν(s̄

ν
I , s̄
ν
II)γν(t̄

ν
II, t̄
ν
I )�N−1

ν=1 f[ν+1](s̄
ν+1
I , s̄νII)f[ν+1](t̄

ν+1
II , t̄

ν
I )
Zm|n(s̄I|t̄I) Zm|n(t̄II|s̄II)+ S̃. (6.7)

Here S̃ denotes the terms that depend on the function αµ(t
µ
j ) but not on its derivative. The sum is 

taken over partitions of the sets t̄ \ {tµj } and s̄ \ {s
µ
j } respectively into subsets {s̄I, ̄sII} and {t̄I, ̄tII}.

Then performing the limit sµj → t
µ
j in (6.7) we obtain

S(s̄|t̄ )
���
s
µ
j =t

µ
j

= (−1)δµ,m(rm−1)
X
µ
j αµ(t

µ
j )γµ(s̄

µ
j , t
µ
j )γµ(t̄

µ
j , t
µ
j )

f[µ+1](s̄µ+1, t
µ
j )f[µ+1](t̄

µ+1, tµj )

×
��N

ν=1 α̂ν(s̄
ν
I )α̂ν(t̄

ν
II)γν(s̄

ν
I , s̄
ν
II)γν(t̄

ν
II, t̄
ν
I )�N−1

ν=1 f[ν+1](s̄
ν+1
I , s̄νII)f[ν+1](t̄

ν+1
II , t̄

ν
I )
Zm|n(s̄I|t̄I) Zm|n(t̄II|s̄II)+ S̃, (6.8)

where Xµj is defined by (4.6) and S̃ does not depend on X
µ
j .

One might have the impression that the sum over partitions in the second line of (6.8) gives the 
scalar product S(s̄ \{sµj } | t̄ \{t

µ
j }). This is not exactly so, because the functions α̂µ and α̂µ±1 still 

depend on tµj (see (6.1)). However, we can get rid of this dependence if we introduce modified 

functional parameters α(mod)ν . Namely, for µ fixed we set α(mod)ν (z) = αν(z), if |ν −µ| > 1, and

α(mod)µ (z)= (−1)δµ,mαµ(z)
γµ(t

µ
j , z)

γµ(z, t
µ
j )
,

α
(mod)
µ+1 (z)= αµ+1(z)f[µ+1](z, t

µ
j ),

α
(mod)
µ−1 (z)=

αµ−1(z)

f[µ](t
µ
j , z)

.

(6.9)

Then, substituting α̂ν in (6.8) in terms of α
(mod)
ν we obtain

S(s̄|t̄ )
���
s
µ
j =t

µ
j

= (−1)δµ,m(rm−1)
X
µ
j αµ(t

µ
j )γµ(s̄

µ
j , t
µ
j )γµ(t̄

µ
j , t
µ
j )

f[µ+1](s̄µ+1, t
µ
j )f[µ+1](t̄

µ+1, tµj )

×
��N

ν=1 α
(mod)
ν (s̄νI )α

(mod)
ν (t̄ νII)γν(s̄

ν
II, s̄
ν
I )γν(t̄

ν
I , t̄
ν
II)�N−1

j=1 f[j+1](s̄
j+1
II , s̄

j
I )f[j+1](t̄

j+1
I , t̄

j
II)

Zm|n(s̄I|t̄I) Zm|n(t̄II|s̄II)+ S̃ .

(6.10)
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The sum over partitions in (6.10) gives the scalar product C(s̄ \ {sµj })B(t̄ \ {t
µ
j }) in a new rep-

resentative of the generalized model, in which the α-functions are modified according to (6.9). 
Thus, we arrive at

S(s̄|t̄ )
���
s
µ
j =t

µ
j

= (−1)δµ,m(rm−1)
X
µ
j αµ(t

µ
j )γµ(s̄

µ
j , t
µ
j )γµ(t̄

µ
j , t
µ
j )

f[µ+1](s̄µ+1, t
µ
j )f[µ+1](t̄

µ+1, tµj )
S(mod)(s̄ \ {sµj } | t̄ \ {t

µ
j })

+ S̃, (6.11)

where the modification of the scalar product means that now we should use the modified 
α-functions (6.9).
Thus, we conclude that if sµj = t

µ
j , then the scalar product linearly depends on the loga-

rithmic derivative Xµj . The coefficient of X
µ
j is proportional to the modified scalar product 

C(s̄ \ {sµj })B(t̄ \ {t
µ
j }) in a new representative of the generalized model.

7. Norm of on-shell Bethe vector

It was already discussed that for t̄ = s̄ the scalar product depends on the Bethe parameters 
tνj , the functional parameters αν(t

ν
j ), and the logarithmic derivatives X

ν
j (4.6). In the case of 

the norm of on-shell Bethe vectors the functions αν are related to the parameters t̄ via Bethe 
equations (3.11). Therefore, the norm of an on-shell Bethe vector is a function of the Bethe 
parameters tνj and the parameters X

ν
j .

Let

N(r)(X̄; t̄)=
�
N�

ν=1

rν�

p,q=1
p �=q

γν(t
ν
p, t
ν
q )

�−1 N−1�

ν=1
f[ν+1](t̄

ν+1, t̄ ν) lim
s̄→t̄
C(s̄)B(t̄), (7.1)

where B(t̄) is on-shell.

Lemma 7.1. The function N(r)(X̄; ̄t) fulfills the Korepin criteria.

Proof. Properties (i)–(ii) are quite obvious. Property (iii) follows from a direct calculation. If 
only one Bethe parameter of the color 1 is involved, then the Bethe vector and the dual Bethe 
vector have respectively the following form (see [22])

B(t11 )=
T1,2(t

1
1 )

λ2(t
1
1 )
|0� ; C(t11 )= �0|

T2,1(t
1
1 )

λ2(t
1
1 )
. (7.2)

Using commutation relations (2.5) we immediately obtain

C(s)B(t) =
�0|T2,1(s)T1,2(t)|0�
λ2(s)λ2(t)

= (−1)[2]g(s, t)
�
α1(t)− α1(s)

�
. (7.3)

Setting here s = t = t11 we find

C(t11 )B(t
1
1 )= α1(t11 )X11, (7.4)

and finally, using the Bethe equation α1(t11 ) = 1 we arrive at property (iii).
The recursion (4.11) and the modification (4.12) follow from the considerations of the previ-

ous section. Indeed, taking the limit s̄→ t̄ in (6.11) we find
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∂

∂X
µ
j

lim
s̄→t̄
S(s̄|t̄ )= (−1)δµ,m(rm−1)αµ(tµj )

�
γµ(t̄

µ
j , t
µ
j )

f[µ+1](t̄µ+1, t
µ
j )

�2
lim
s̄→t̄
S(mod)(s̄ \{sµj } | t̄ \{t

µ
j }).

(7.5)

Substituting here αµ(t
µ
j ) from the Bethe equations (3.11) we have

∂

∂X
µ
j

lim
s̄→t̄
S(s̄|t̄ )=

γµ(t̄
µ
j , t
µ
j )γµ(t

µ
j , t̄
µ
j )

f[µ+1](t̄µ+1, t
µ
j )f[µ](t

µ
j , t̄
µ−1)

lim
s̄→t̄
S(mod)(s̄ \ {sµj } | t̄ \ {t

µ
j }). (7.6)

Thus, the coefficient of ∂S/∂Xµj is proportional to the norm of the Bethe vector of a new repre-
sentative of the generalized model. In this representative the functional parameters αν should be 
modified according to (6.9). Obviously, this modification implies the modification (4.12) of the 
parameters Xµk .
Remarkably, the new vector is still on-shell. Indeed, it is easy to see that the functional pa-

rameters α(mod)ν can be expressed in terms of the Bethe parameters t̄ \ {tµj } via Bethe equations. 
In particular,

α(mod)µ (t
µ
k )= (−1)

δµ,m(rm−2)
γµ(t

µ
k , t̄
µ
k,j )f[µ+1](t̄

µ+1, tµk )

γµ(t̄
µ
k,j , t

µ
k )f[µ](t

µ
k , t̄
µ−1)

, (7.7)

where we introduced t̄µk,j = t̄µ \ {t
µ
j , t
µ
k }. Observe that if µ = m, then #t̄µj = #s̄

µ
j = rm − 1, 

therefore the sign factor in (7.7) changes. We also have

α
(mod)
µ+1 (t

µ+1
k )= (−1)δµ+1,m(rm−1)

γµ+1(t
µ+1
k , t̄

µ+1
k )f[µ+2](t̄µ+2, t

µ+1
k )

γµ+1(t̄
µ+1
k , t

µ+1
k )f[µ+1](t

µ+1
k , t̄

µ
j )
,

α
(mod)
µ−1 (t

µ−1
k )= (−1)δµ−1,m(rm−1)

γµ−1(t
µ−1
k , t̄

µ−1
k )f[µ](t̄

µ
j , t
µ−1
k )

γµ−1(t̄
µ−1
k , t

µ−1
k )f[µ−1](t

µ−1
k , t̄µ−2)

.

(7.8)

The other Bethe equations for α(mod)ν with |ν − µ| > 1 do not change. Thus, we arrive at the 
property (iv) for the function N(r)(X̄; ̄t).
Finally, property (v) can be deduced as follows. Since all the poles of the HC in (3.15) are 

simple, it is enough to develop functions αν(sνj ) up to the first order over the difference s
ν
j − tνj

for taking the limit s̄→ t̄ :

αν(s
ν
j )= αν(t

ν
j )+ (s

ν
j − t

ν
j )
dαν(z)

dz

���
z=tνj
+O
�
(sνj − t

ν
j )
2
�
. (7.9)

If all Xνj = 0, then the derivatives of αν vanish, and we can substitute αν(s
ν
j ) = αν(t

ν
j ) into (3.15)

in the limit s̄→ t̄ . This leads us to

lim
s̄→t̄
S(s̄|t̄ )=

N�

ν=1
αν(t̄

ν) lim
s̄→t̄

� �N
ν=1 γν(s̄

ν
II, s̄
ν
I )γν(t̄

ν
I , t̄
ν
II)�N−1

ν=1 f[ν+1](s̄
ν+1
II , s̄

ν
I )f[ν+1](t̄

ν+1
I , t̄νII)

×Zm|n(s̄I|t̄I) Zm|n(t̄II|s̄II). (7.10)

However, due to (5.2) the sum over partitions in (7.10) vanishes for arbitrary complex s̄ and t̄ . In 
this way we arrive at the property (v). ✷
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Due to Proposition 4.1 we conclude that

N(r)(X̄; t̄)= detG, (7.11)

leading to (4.4).

8. Conclusion

We considered a generalized quantum integrable model with gl(m|n)-invariant R-matrix. We 
showed that the square of the norm of on-shell Bethe vectors of this model is proportional to a 
Jacobian of the system of Bethe equations. This result completely matches the original Gaudin 
hypothesis on the norm of the Hamiltonian eigenvector. One can expect that this hypothesis 
can be further generalized. In particular, it is quite natural to have a similar formula for the 
models based on Uq(�gl(m)) and Uq(�gl(m|n)) algebras. This will be the subject of our further 
publications.
The problem of the norm of on-shell Bethe vectors is very important for the calculation of 

form factors and correlation functions in the models of physical interest. Further development in 
this direction requires more detailed analysis of the Bethe vectors scalar products. Formally, the 
sum formula gives an explicit result for the scalar product of generic Bethe vectors, however, this 
representation is not convenient for applications in many cases. At the same time, one can hope 
to find more compact representations for particular cases of the scalar product, as it was done in 
the models with gl(2|1)-symmetry [26]. At present, work in this direction is underway.
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Appendix A. Y(gl(m|n)) representations induced from gl(m|n) ones

A wide class of representations for the Yangian Y
�
gl(m|n)

�
can be constructed from represen-

tations of gl(m|n). The construction relies on the notion of evaluation morphism and evaluation 
representations [27,28]. Before detailing it, we make a short summary on irreducible representa-
tions of gl(m|n).

A.1. Highest weight representations of the Lie superalgebra gl(m|n)

For simplicity, we present highest weight representations for the Lie superalgebra gl(m|n)
with m �= n, but most of the discussion applies also to the case m = n. Highest weight repre-
sentations were studied in [29,30], see also [31] for a review on superalgebras. We introduce the 
gl(m|n) generators eij obeying

[eij , ekl} = δkj eil − (−1)([i]+[j ])([k]+[l]) δil ekj . (A.1)

Highest weight representations of the Lie superalgebra gl(m|n) are characterized by a weight 
λ= (λ1, ..., λm+n) ∈Cm+n and a highest weight vector |0� such that

eii |0� = λi |0� and eij |0� = 0, i < j, (A.2)



272 A. Hutsalyuk et al. / Nuclear Physics B 926 (2018) 256–278

where eij are the representatives of the gl(m|n) generators. The highest weight vector |0� will 
produce the pseudovacuum (3.1) through the evaluation morphism, see section A.2 below. In 
other words, if πλ denotes the mapping from the superalgebra to a representation space Vλ, 
then eij = πλ(eij ) is a matrix (or an operator for infinite dimensional representations) acting on 
vectors in Vλ. The associated Kac module is obtained through the (multiple) applications of the 
representatives eij , i > j , on |0�.
Among highest weight representations, the finite dimensional ones are characterized2 by in-

tegrable dominant weights, such that

λi − λi+1 ∈ Z+ , i �=m, 1≤ i ≤m+ n− 1 and λm ∈R.

Obviously any weight λ is a linear combination of the fundamental (dominant) weights3

λ(i) = (1, ...,1� 
	 �
i

,0, ...,0� 
	 �
m+n−i

) , i = 1, ...,m+ n.

For integrable dominant weights, the linear combination has non-negative integer coefficients, 
up to two real numbers. The first corresponds to the fermionic root, i.e. to λm. The second is 
associated to the eigenvalue of the gl(1) part that distinguishes gl(m|n) from its simple part 
sl(m|n). It can be related to the weight λ(m+n).
The representations associated to fundamental weights are called fundamental representa-

tions. There are m + n − 1 of them, and the first one, λ(1) corresponds to what is usually called 
the fundamental representation. It is (m + n)-dimensional, and in that case πλ(1) (eij ) = Eij . Its 
contragredient representation (which is also (m + n)-dimensional) corresponds to λ(m+n−1).

A.2. Evaluation map

The evaluation morphism ev(ξ), for ξ ∈ C, is an algebra morphism from Y
�
gl(m|n)

�
to 

U(gl(m|n)), the enveloping algebra of gl(m|n). It is defined by

ev(ξ) : T (u) → I+
c

u− ξ
E with E=

m+n�

i,j=1
(−1)[i]Eij ⊗ eji , (A.3)

with I = 1 ⊗ 1, where we introduced 1 the unit of U(gl(m|n)) and we used the same notation as 
in section 2. In component, the evaluation map reads

ev(ξ)
�
Tij (u)

�
= δij 1+

c[i]
u− ξ

eji .

Indeed, since the Lie superalgebra relations (A.1) are equivalent to

[E1 , E2] = P(E1 −E2) ,

it is easy to show that I + c
u−ξ E obeys the Yangian RT T -relations (2.4). Remark that the gener-

ators of gl(m|n) are related to the zero modes described in [20]: eij = (−1)[j ] Tji[0].

2 For superalgebras, the irreducible part of the representation can be a coset of the Kac module, due to the existence of 
atypical representations.
3 The last weight λ(m+n) provides a trivial representation for sl(m|n) and is related to the gl(1) algebra which is central 
in gl(m|n).
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Then, using the evaluation morphism one can construct, from any gl(m|n) representation πλ, 
a representation for the Yangian Y

�
gl(m|n)

�
. The evaluation representation evλ(ξ) = πλ oev(ξ)

is defined as:

evλ(ξ)
�
Tij (u)

�
= δij1λ +

c[i]
u− ξ

eji ,

where eij = πλ(eij ) is the matrix representation of eij in the vector space Vλ and 1λ is the 
identity matrix in this space. The weights of the Yangian representation evλ(ξ) read

Tii (u)|0� = λi(u)|0� with λi(u)= 1+
c[i]
u− ξ

λi,

and we have

Tij (u)|0� =
c[i]
u− ξ

eji |0� = 0, j < i

according to the relations (A.2). Then it is clear that the highest weight vector of gl(m|n) becomes 
the pseudovacuum vector (3.1).
Let us emphasize the difference between λi , that are the weights for the Lie superalgebra 

gl(m|n), and λi(u), that are the weights for the Yangian Y
�
gl(m|n)

�
.

A.3. Representations associated to f[i](u, v)

For any j = 1, 2, ..., m + n and any complex ξ , we introduce the evaluation representation 
Evj (ξ) associated to the weight λ(j) . It corresponds to the Yangian weights

λµ(u)=
�
f[µ](u, ξ) if µ≤ j,
1 if µ> j.

We consider the following representation: ⊗Nj=1⊗
L(j)

k=1Evj (ξ
(j)

k ). Since we have a tensor product 
of highest weight representations, the weights for this tensor product are given by the product of 
the individual weights for each representations, that is

λµ(u)=
N�

j=µ

L(j)�

k=1
f[µ](u, ξ

(j)

k ) , µ= 1,2, ...,m+ n.

This leads to (5.1).

Appendix B. Recursion for the highest coefficient

One can build the HC Zm|n starting from the known results at m +n = 2 via recursions derived 
in [20]. For m = 2, n = 0 we deal with the HC of gl(2) based models, that is equal to the partition 
function of the six-vertex model with domain wall boundary condition [3,24]. The case m = 0, 
n = 2 becomes equivalent to the previous one after the replacement the constant c→−c in the 
R-matrix (2.1). Finally, for m = n = 1 the HC has the form [25]

Z1|1(s̄|t̄ )= g(s̄, t̄). (B.1)

In recursive construction of the HC, two cases should be distinguished: (1) n > 0 and m > 0; 
(2) n = 0 or m = 0. We first consider the case n > 0 and m > 0. Then, the recursive procedure is 
based on the following reductions [20]:
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Zm|n(∅, s̄2, . . . , s̄N |∅, t̄2, . . . , t̄N )= Zm−1|n(s̄2, . . . , s̄N |t̄2, . . . , t̄N ),
Zm|n(s̄1, . . . , s̄N−1,∅|t̄1, . . . , t̄N−1,∅)=Zm|n−1(s̄1, . . . , s̄N−1|t̄1, . . . , t̄N−1),

(B.2)

and we recall that N = m + n − 1. Thus, in particular, knowing Zm−1|n for some m and n we 
automatically know Zm|n with #s̄1 = #t̄1 = 0. Then, to obtain Zm|n with #s̄1 = #t̄1 > 0 we can 
use a recursion [20]

Zm|n(s̄|t̄ )=
N+1�

ρ=2

�

part(s̄2,...,s̄ρ−1)
part(t̄1,...,t̄ρ−1)

Zm|n({s̄σII }
ρ−1
1 , {s̄σ }Nρ |{t̄ σII }

ρ−1
1 , {t̄ σ }Nρ )

�
g(s̄1II, s̄

1
I )

f (s̄1II, s̄
1
I )

�δm,1

×
g[2](t̄1I , s̄

1
I )γ1(t̄

1
I , t̄
1
II)f (t̄

1
II, s̄
1
I )

f[ρ](s̄ρ, s̄
ρ−1
I )

ρ−1�

ν=2

g[ν+1](t̄νI , t̄
ν−1
I )g[ν](s̄νI , s̄

ν−1
I )γν(t̄

ν
I , t̄
ν
II)γν(s̄

ν
II, s̄
ν
I )

f[ν](s̄ν, s̄
ν−1
I )f[ν](t̄νI , t̄

ν−1)
.

(B.3)

Here

Zm|n({s̄σII }
ρ−1
1 , {s̄σ }Nρ |{t̄ σII }

ρ−1
1 , {t̄ σ }Nρ )

=Zm|n(s̄1II, . . . , s̄
ρ−1
II , s̄

ρ, . . . , s̄N |t̄1II, . . . , t̄
ρ−1
II , t̄

ρ, . . . , t̄N ). (B.4)

For every fixed ρ ∈ {2, . . . , N + 1} in (B.3) the sums are taken over partitions t̄ σ ⇒{t̄ σI , ̄tσII } with 
σ = 1, . . . , ρ − 1 and s̄σ ⇒{s̄σI , ̄sσII } with σ = 2, . . . , ρ − 1, such that #t̄ σI = #s̄σI = 1. The subset 
s̄1I is a fixed Bethe parameter from the set s̄1. There is no sum over partitions of the set s̄1 in 
(B.3).
Similarly, knowing Zm|n−1 for some m and n we automatically know Zm|n with #s̄N =

#t̄N = 0. Then, to obtain Zm|n with #s̄N = #t̄N > 0 we can use the second recursion

Zm|n(s̄|t̄ )=
N�

ρ=1

�

part(s̄ρ ,...,s̄N )
part(t̄ρ ,...,t̄N−1)

Zm|n(
�
s̄σ
�ρ−1
1 ,
�
s̄σII
�N
ρ
|
�
t̄ σ
�ρ−1
1 ;
�
t̄ σII
�N
ρ
)

�
g(t̄NII , t̄

N
I )

f (t̄NII , t̄
N
I )

�δm,N

×
g(s̄NI , t̄

N
I )γN (s̄

N
II , s̄

N
I )f (s̄

N
II , t̄

N
I )

f[ρ](t̄
ρ
I , t̄
ρ−1)

N−1�

ν=ρ

g[ν](s̄
ν+1
I , s̄νI )g[ν](t̄

ν+1
I , t̄ νI )γν(s̄

ν
II, s̄
ν
I )γν(t̄

ν
I , t̄
ν
II)

f[ν+1](s̄ν+1, s̄νI )f[ν+1](t̄
ν+1
I , t̄ ν)

.

(B.5)

Here

Zm|n(
�
s̄σ
�ρ−1
1 ,
�
s̄σII
�N
ρ
|
�
t̄ σ
�ρ−1
1 ;
�
t̄ σII
�N
ρ
)

=Zm|n(s̄1, . . . , s̄ρ−1, s̄ρII, . . . , s̄
N
II |t̄1, . . . , t̄ρ−1, t̄

ρ
II , . . . , t̄

N
II ). (B.6)

For every fixed ρ ∈ {1, . . . , N} in (B.5) the sums are taken over partitions t̄ σ ⇒ {t̄ σI , ̄tσII } with 
σ = ρ, . . . , N − 1 and s̄σ ⇒ {s̄σI , ̄sσII } with σ = ρ, . . . , N , such that #t̄ σI = #s̄σI = 1. The subset 
t̄NI is a fixed Bethe parameter from the set t̄N . There is no sum over partitions of the set t̄N in 
(B.5).
Now, let us describe the situation in the case n = 0. The formulas (B.3), (B.5) remain valid 

in this case, however, they are slightly simplified. First of all, δm,1 = δm,N = 0 in this case. 
This leads to the disappearance of the factors in the first lines of (B.3), (B.5). Second, all the 
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γ -functions should be replaced by the f -functions. Finally, all the subscripts of the g-functions 
and f -functions disappear: g[ν](x, y) → g(x, y), f[ν](x, y) → f (x, y).
However, the main peculiarity of this case is that the reductions (B.2) take the form

Zm|0(∅, s̄2, . . . , s̄m−1|∅, t̄2, . . . , t̄m−1)= Zm−1|0(s̄2, . . . , s̄m−1|t̄2, . . . , t̄m−1),
Zm|0(s̄1, . . . , s̄m−2,∅|t̄1, . . . , t̄m−2,∅)= Zm−1|0(s̄1, . . . , s̄m−2|t̄1, . . . , t̄m−2).

(B.7)

Thus, if either s̄1 = t̄1 = ∅ or s̄m−1 = t̄m−1 = ∅, then in both cases Zm|0 reduces to Zm−1|0.
Finally, the case of gl(0|n) algebras reduces to the case considered above after the replacement 

the constant c→−c in the R-matrix (2.1). Therefore, we do not consider this case below.

Appendix C. Residues in the poles of the highest coefficient

We give a detailed proof of Proposition 3.1 for the case m > 0 and n > 0. The case m = 0 or 
n = 0 can be considered exactly in the same manner.
The proof is based on the reductions (B.2), recursions (B.3), (B.5), and explicit representation 

(B.1) for Z1|1(s̄|t̄ ). First, one can easily see that due to (B.1)

Z1|1(s̄|t̄ )
���
sj→tj

= g(sj , tj )g(s̄j , sj )g(tj , t̄j )Z1|1(s̄j |t̄j )+ reg. (C.1)

This expression obviously coincides with (3.17) for m = n = 1. Equation (C.1) serves as the 
basis of induction.4

Assume that (3.17) is valid for all m� and n�, such that m� + n� is fixed. Then due to (B.2) the 
residue formula (3.17) holds for Zm|n with m = m� + 1, n� = n at r1 = 0 (that is, s̄1 = t̄1 = ∅) 
and for Zm|n with m = m�, n = n� + 1 at rN = 0 (that is, s̄N = t̄N = ∅). Then using recursions 
(B.3) and (B.5) we should prove that (3.17) remains true for r1 > 0 and rN > 0. It so happens 
that recursion (B.3) allows one to prove (3.17) for s̄µ and t̄µ with µ = 2, . . . , N . At the same 
time recursion (B.5) provides the proof for s̄µ and t̄µ with µ = 1, . . . , N − 1. Combining both 
recursions we prove the residue formula (3.17) for all s̄µ and t̄µ.
Let us show how this method works. Consider, for example, the recursion (B.3). It is conve-

nient to write it in the following form:

Zm|n(s̄|t̄ )=
N+1�

ρ=2
Zm|nρ (s̄|t̄ ), (C.2)

where

Zm|nρ (s̄|t̄ )=
�

part(s̄2,...,s̄ρ−1)
part(t̄1,...,t̄ρ−1)

Zm|n({s̄σII }
ρ−1
1 , {s̄σ }Nρ |{t̄ σII }

ρ−1
1 , {t̄ σ }Nρ )

�
g(s̄1II, s̄

1
I )

f (s̄1II, s̄
1
I )

�δm,1

×
g[2](t̄1I , s̄

1
I )γ1(t̄

1
I , t̄
1
II)f (t̄

1
II, s̄
1
I )

f[ρ](s̄ρ, s̄
ρ−1
I )

ρ−1�

ν=2

g[ν+1](t̄ νI , t̄
ν−1
I )g[ν](s̄νI , s̄

ν−1
I )γν(t̄

ν
I , t̄
ν
II)γν(s̄

ν
II, s̄
ν
I )

f[ν](s̄ν , s̄
ν−1
I )f[ν](t̄ νI , t̄

ν−1)
.

(C.3)

4 For completeness of the proof one should also check (3.17) for m = 2 and n = 0. This was done in [3].
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We first consider the case r1 = #s̄1 = #t̄1 = 1. Then #s̄1II = #t̄1II = 0, hence, we actually have 
Zm−1|n in the rhs of (C.3). According to the induction assumption the residue formula (3.17) is 
valid for these HC.
Let sµj = t

µ
j for µ > 1 in the lhs of (C.2). In the rhs of this equation one should consider 

separately the terms with different ρ. Namely, one should distinguish between four cases: ρ <µ; 
ρ >µ + 1; ρ = µ + 1; ρ = µ.
Let ρ < µ. The pole at sµj = t

µ
j in the rhs of (C.3) occurs in the HC only. Then due to the 

induction assumption the residue of the HC in the rhs of (C.3) gives the factor

Aµ =
g[µ+1](t

µ
j , s

µ
j )γµ(t̄

µ
j , t
µ
j )γµ(s

µ
j , s̄

µ
j )

f[µ+1](t̄µ+1, t
µ
j )f[µ](s

µ
j , s̄

µ−1)
. (C.4)

This coefficient does not depend on the partitions. The remaining sum over partitions obviously 
reduces to Zm|nρ (s̄ \ {sµj }|t̄ \ {t

µ
j }). Thus, for ρ <µ we arrive at

Zm|nρ (s̄|t̄ )
���
s
µ
j =t

µ
j

=AµZm|nρ (s̄ \ {s
µ
j }|t̄ \ {t

µ
j })+ reg. (C.5)

Consider now the terms with ρ > µ + 1. The pole in the rhs of (C.3) occurs in the HC pro-
vided sµj ∈ s̄

µ
II and t

µ
j ∈ t̄

µ
II . Let s̄

µ
II = {s

µ
j , ̄s

µ

II� } and t̄
µ
II = {t

µ
j , ̄t
µ

II� }. Then the residue of the highest 
coefficient gives the factor

g[µ+1](t
µ
j , s

µ
j )γµ(t̄

µ

II� , t
µ
j )γµ(s

µ
j , s̄

µ

II�)

f[µ+1](t̄
µ+1
II , t

µ
j )f[µ](s

µ
j , s̄

µ−1
II )

. (C.6)

The second line of (C.3) gives additional factors depending on sµj and t
µ
j :

γµ(t̄
µ
I , t
µ
j )γµ(s

µ
j , s̄

µ
I )

f[µ+1](t̄
µ+1
I , t

µ
j )f[µ](s

µ
j , s̄

µ−1
I )

. (C.7)

Together with (C.6) they give Aµ (C.4). The rest of (C.3) does not depend on sµj and t
µ
j , hence, 

we again obtain (C.5), but now for ρ >µ + 1.
The third case is ρ = µ + 1. Again, the pole occurs in the HC, and we set s̄µII = {s

µ
j , ̄s

µ

II� }, 
t̄
µ
II = {t

µ
j , ̄t
µ

II� }. Now the factor coming from the HC is

g[µ+1](t
µ
j , s

µ
j )γµ(t̄

µ

II� , t
µ
j )γµ(s

µ
j , s̄

µ

II�)

f[µ+1](t̄µ+1, t
µ
j )f[µ](s

µ
j , s̄

µ−1
II )

. (C.8)

We also have from the second line of (C.3)

γµ(t̄
µ
I , t
µ
j )γµ(s

µ
j , s̄

µ
I )

f[µ](s
µ
j , s̄

µ−1
I )

, (C.9)

and altogether we again obtain (C.4). Thus, equation (C.5) holds for ρ = µ + 1.
Finally, let ρ = µ. Then we have form the HC

g[µ+1](t
µ
j , s

µ
j )γµ(t̄

µ
j , t
µ
j )γµ(s

µ
j , s̄

µ
j )

f[µ+1](t̄µ+1, t
µ
j )f[µ](s

µ
j , s̄

µ−1
II )

. (C.10)
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The additional factor f[µ](s
µ
j , ̄s

µ−1
I ) comes from the second line of (C.3), and we again obtain 

the Aµ coefficient (C.4). The remaining sum over partitions still gives Zm|nρ (s̄ \ {sµj }|t̄ \ {t
µ
j }).

Thus, equation (C.5) is proved for all ρ. Due to (C.2) this immediately yields the residue 
formula (3.17) for Zm|n.
As soon as (3.17) is proved for r1 = 1 we can use it as a new basis of induction. We assume that 

(3.17) is valid for some r1 > 0 and then prove that it remains true for r1 + 1. All considerations 
are exactly the same as in the case r1 = 1, therefore we omit them.
In this way we prove the residue formula for all s̄µ and t̄µ except s̄1 and t̄1. To prove (3.17) for 

the residue at s1j = t1j we should use the second recursion (B.5) and perform similar calculations.
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Abstract. We consider quantum integrable models solvable by the nested 
algebraic Bethe ansatz and possessing gl(N)-invariant R-matrix. We study two 
types of Bethe vectors. The first type corresponds to the original monodromy 
matrix. The second type is associated to a monodromy matrix closely related 
to the inverse of the monodromy matrix. We show that these two types of 
Bethe vectors are identical up to normalization and reshuffling of the Bethe 
parameters. To prove this correspondence we use the current approach. This 
identity gives new combinatorial relations for the scalar products of the Bethe 
vectors. The q-deformed case, as well as the superalgebra case, are also evoked 
in the conclusion.
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1. Introduction

The algebraic Bethe ansatz developed by the Leningrad school [1–3] is a powerful 
method to investigate quantum integrable systems. One can use this approach to find 
the spectra of quantum Hamiltonians. Besides, this method can be used for calculat-
ing correlation functions of quantum integrable models [4–7]. In the framework of the 
algebraic Bethe ansatz this problem reduces to calculating scalar products of Bethe 
vectors.

The notion of the Bethe vector is one of the most important notions of the algebraic 
Bethe ansatz. These vectors belong to the physical space of states of the quantum 
model under consideration. They depend on a set of complex numbers called Bethe 
parameters. Under certain constraints imposed on the Bethe parameters, the Bethe 
vector becomes an eigenvector of the quantum Hamiltonian. In this case it is commonly 
called an on-shell Bethe vector. Otherwise, if the Bethe parameters are generic complex 
numbers, the corresponding vector sometimes is called an off-shell Bethe vector.

In the gl(2) based model, the form of the Bethe vectors is quite simple [1–4]. 
However, in the quantum integrable models with higher rank symmetry algebra, the 
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construction of Bethe vectors becomes very intricate. There are several ways to specify 
these vectors. A recursive procedure for constructing the off-shell Bethe vectors was 
given in the papers [8–10]. An explicit formula for these vectors (trace formula) con-
taining tensor products of the monodromy matrices and R-matrices was proposed in 
[11–13]. Another approach to this problem, based on projections in the current alge-
bra was formulated in [14–17]. Explicit formulas for the Bethe vectors in terms of the 
monodromy matrix entries acting on a reference state were obtained in [18, 19].

In this paper we find a new symmetry of the Bethe vectors in the models with 
gl(N)-invariant R-matrix. It is quite natural to expect that the symmetries of the 
monodromy matrix should generate corresponding symmetries of the Bethe vectors [10, 
11, 18, 19]. In the present paper we consider a mapping of the monodromy matrix T to 
a new matrix �T  closely related to the inverse monodromy matrix. We study the proper-
ties of the Bethe vectors associated to both matrices. We show how these two types of 
Bethe vectors are related to each other. As a direct application of this correspondence, 
we find new symmetries of the Bethe vector scalar products.

The paper is organized as follows. We recall basic notions of the algebraic Bethe 
ansatz in section 2. There we also give a notation used in the paper. Section 3 is devoted 
to the description of the properties of the Bethe vectors. The main results of our paper 
are given in section 4, where we use an identification of the Bethe vectors with certain 
combination of the generators of the Yangian double [19] to prove the claimed sym-
metry of the Bethe vectors. In section 5 we study symmetry properties of the scalar 
products of the Bethe vectors. Several appendices gather technical details of the proofs.

2. RTT-algebra and notation

We consider quantum integrable models solvable by the algebraic Bethe ansatz and 
possessing gl(N)-invariant R-matrix

R(u, v) = I⊗ I+ g(u, v)P, g(u, v) = c

u− v
. (2.1)

Here I =
�N
i=1 Eii is the identity operator acting in the space CN , Eij are N ×N matri-

ces with the only nonzero entry equal to 1 at the intersection of the ith row and j th 

column, P =
�N
i,j=1 Eij ⊗E ji is the permutation operator acting in CN ⊗CN, c is a 

constant, and u, v are arbitrary complex parameters called spectral parameters.
The key object of the algebraic Bethe ansatz is a monodromy matrix T (u) with 

operator-valued entries Tij  (u) acting in a Hilbert space H (physical space of a quantum 
model). It satisfies an RTT-algebra:

R(u, v) (T (u)⊗ I) (I⊗ T (v)) = (I⊗ T (v)) (T (u)⊗ I)R(u, v). (2.2)
Equation (2.2) yields the commutation relations of the monodromy matrix entries

[Tij(u),Tkl(v)] = g(u, v) (Til(u)Tkj(v)− Til(v)Tkj(u)) . (2.3)
Using (2.2) it is easy to prove that
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[T (u), T (v)] = 0,

where T (u) =
�
i Tii(u) is the transfer matrix. Thus, the transfer matrix is a generating 

function for the integrals of motion of the model under consideration.
We assume the following dependence of the monodromy matrix elements Tij  (u) on 

the parameter u

Tij(u) = δij1+
�

� 0

Tij [�]u
−�−1,

 (2.4)

where 1 and Tij [�] are respectively the unity and nontrivial operators acting in the 
Hilbert space H.

Remark. In fact, for our purpose, the condition (2.4) is optional. We impose this 
requirement on the asymptotics of T (u) only in order to facilitate the presentation. 
In quantum models of physical interest, the monodromy matrix may have a different 
asymptotic expansion, however, it can easily be reduced to the expansion (2.4).

We also assume that the space H has a pseudovacuum vector |0� (reference state) 
such that

Tii(u)|0� = λi(u)|0�,
Tij(u)|0� = 0, i > j, (2.5)

where λi(u) are some functions depending on the concrete quantum integrable model. 
The action of Tij  (u) with i  <  j  onto the pseudovacuum is nontrivial. In the models of 
physical interest, multiple action of these operators onto |0� generates a basis in the 
space H.

Since the monodromy matrix is defined up to a common normalization scalar factor, 
it is convenient to deal with the ratios:

αi(u) =
λi(u)

λi+1(u)
, i = 1, . . . ,N − 1. (2.6)

We treat the functions αi(u) as free functional parameters (generalized model) up to the 
restriction which follows from (2.4).

Besides the original monodromy matrix T (u) we also can consider its inverse 
matrix. For this, we first introduce the quantum determinant of the monodromy matrix 

qdet
�
T (u)

�
 [20–23] by

qdet
�
T (u)

�
=
�

p

sgn(p) T1,p(1)(u) T2,p(2)(u− c) . . . TN ,p(N)(u− (N − 1)c).

Here the sum is taken over all permutations p  of the set {1, 2, . . . N}, p(i) being the ith 
element of the permutation p  of the set {1, 2, . . . N}. The quantum determinant belongs 
to the center of the RTT-algebra

�
qdet
�
T (u)

�
, Tij(v)

�
= 0.

It is also easy to see that due to (2.5)
qdet
�
T (u)

�
|0� = λ1(u)λ2(u− c) . . . λN(u− (N − 1)c)|0�.
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Similarly to the quantum determinant, we can introduce quantum minors of the 
size m×m (1 m < N )

ta1,a2,...,amb1,b2,...,bm
(u) =

�

p

sgn( p) Ta1,bp(1)(u) Ta2,bp(2)(u− c) . . . Tam,bp(m)(u− (m− 1)c).

 

(2.7)

Here the sum is taken over permutations of the set {1, 2, . . . m}, p(i) being the ith ele-
ment of the permutation p  of the set {1, 2, . . . m}.

Now we can introduce the inverse monodromy matrix T̃ (u)

T̃ (u)T (u) = I, (2.8)

where the entries T̃ij(u) are given by quantum minors divided by the quantum 
determinant

T̃ij(u) = (−1)i+jt1...̂...N1...̂ı...N (u− c) qdet(T (u))
−1. (2.9)

Here ı̂ and ̂ mean that the corresponding indices are omitted.
It is known [23] that the inverse monodromy matrix satisfies the RTT-relation with 

opposite sign of the constant c, that is

[T̃ij(u), T̃kl(v)] = g(v,u)
�
T̃il(u)T̃kj(v)− T̃il(v)T̃kj(u)

�
.

Then, defining �Tij(u) by

�Tij(u) = T̃N+1−j,N+1−i(u), (2.10)

we find that the elements �Tij(u) satisfy commutation relations

[�Tij(u), �Tkl(v)] = g(u, v)
�
�Til(u)�Tkj(v)− �Til(v)�Tkj(u)

�
.

Since these commutation relations coincide with (2.3), we conclude that �T (u) satisfies 

the RTT-algebra (2.2) with the same R-matrix (2.1).
Thus, a mapping

Tij(u)→ �Tij(u) (2.11)
is an automorphism of the RTT-algebra. The aim of this paper is to investigate the 
symmetries of the off-shell Bethe vectors (see section 3) related to this automorphism.

Note that this symmetry is specific to higher rank algebras (and the existence of 

several simple roots). Indeed, in the gl(2) case, one gets T (u) = �T (u), and the symmetry 
becomes trivial, while it becomes informative as soon as the rank is higher than 1 (see 
e.g. section 5).

2.1. Notation

In this section we describe the notation that we use below. First, we introduce a special 
notation for the combination 1 + g(u, v)

f(u, v) = 1 + g(u, v) =
u− v + c
u− v

. (2.12)
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Second, we formulate a convention on the notation of sets of variables. We denote 
them by bar: t̄i, x̄s, and so on. Here the superscripts refer to different sets. Individual 

elements of the sets are denoted by subscripts: tij, x
s
k, and so on. Thus, for example, 

t̄ = {t̄1, t̄2} means that the set t̄  is the union of two sets t̄1 and t̄2. At the same time, 
each of these two sets consists of the elements t̄s = {ts1, ts2, . . . , tsas}, where s = 1, 2.

Notation t̄i + � means that a constant � is added to all the elements of the set t̄i. 
Subsets of variables are denoted by roman indices: t̄sI , x̄

s
II, and so on. In particular, we 

consider partitions of sets into subsets. Then the notation {t̄sI , t̄sII} � t̄s means that the 
set t̄s is divided into two disjoint subsets t̄sI  and t̄sII. The order of the elements in each 
subset is not essential.

To make the formulas more compact we use a shorthand notation for the products 
of functions depending on one or two variables. Namely, if the f -function (2.12) depends 
on a set of variables (or two sets of variables), this means that one should take the 
product over the corresponding set (or the double product over both sets). For example,

f(u, t̄i) =
�

tij∈t̄i
f(u, tij), f(t̄s, x̄ p) =

�

tsj∈t̄s

�

x pk ∈x̄ p
f(tsj ,x

p
k ). 

(2.13)

We use the same prescription for the products of commuting operators, their vacuum 
eigenvalues λi (2.5), and the ratios of these eigenvalues αi (2.6)

λi(t̄
i) =

�

tij∈t̄i
λi(t

i
j), αi(t̄

i) =
�

tij∈t̄i
αi(t

i
j), Tij(t̄

s
I ) =

�

tsk∈t̄sI

Tij(t
s
k).

 
(2.14)

We will extend this convention for new functions that will appear later. Finally, by 
definition, any product over the empty set is equal to 1. A double product is equal to 
1 if at least one of the sets is empty.

3. Bethe vectors

One of the main tasks of the algebraic Bethe ansatz is to find the eigenvectors of the 
transfer matrix, that usually are called on-shell Bethe vectors. To do this, one should 
first construct off-shell Bethe vectors (or equivalently, Bethe vectors), that belong 
to the Hilbert space H. The latter are special polynomials in Tij  (u) with i  <  j  act-
ing on |0�. In the simplest gl(2) case the Bethe vectors have the form T12(ū)|0�, where 
ū = {u1, . . . , un}, n = 0, 1, . . .. However, in the general gl(N) case, the form of the Bethe 
vectors is much more involved (see e.g. [19]).

In the gl(N) based models, an off-shell Bethe vector B(t̄) depends on N  −  1 sets of 
complex numbers t̄ = {t̄1, t̄2, . . . , t̄N−1} called Bethe parameters. The Bethe vector B(t̄) 
is symmetric over permutations of the Bethe parameters within each subset t̄i. However, 
it is not symmetric with respect to rearrangements of subsets, and also for replacements 

tij ↔ tkl . If the Bethe parameters satisfy a special system of equations (Bethe equations), 
then the Bethe vector becomes an eigenstate of the transfer matrix. However, generi-
cally no constraint on the Bethe parameters tik are imposed.
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Given a monodromy matrix T (u), the different procedures9 to construct off-shell 
Bethe vectors provide, up to a global normalization factor, the same vectors, although 
several different explicit forms may exist due to the commutation relations (2.3). Then, 
it remains to fix unambiguously this normalization factor. In this paper we use the 
same normalization as in [24]. Namely, we have already mentioned that a generic Bethe 
vector has the form of a polynomial in Tij with i  <  j  applied to the pseudovacuum |0�. 
Among all the terms of this polynomial, there is one monomial that contains the opera-

tors Tij with j   −  i  =  1 only. We call this term the main term and denote it by �B(t̄). We 
fix the normalization of the Bethe vectors by fixing the numeric coefficient of the main 
term

�B(t̄) = TN−1,N(t̄
N−1)TN−2,N−1(t̄

N−2) · · · T23(t̄2)T12(t̄1)|0��N−1
i=1 λi+1(t̄

i)
�N−2
i=1 f(t̄

i+1, t̄i)
. (3.1)

Recall that we use here the shorthand notation (2.13) and (2.14) for the products of the 
operators Ti,i+1, the vacuum eigenvalues λi+1, and the f -functions.

3.1. Bethe vectors of the matrix �T (u)

We have seen in the previous section that the matrix �T (u) satisfies the RTT-relation 

(2.2). Using the definition of �Tij (see (2.9), (2.10) and (2.7)) one can find the action of 

the operators �Tij onto the pseudovacuum. A straightforward calculation shows that

�Tij(u)|0� = 0, i > j,

�Tii(u)|0� = λ̂i(u)|0�,
 (3.2)

where

λ̂i(u) =
1

λN−i+1(u− (N − i)c)

N−i�

�=1

λ�(u− �c)
λ�(u− (�− 1)c)

. (3.3)

It follows from (3.3) that the ratios of the vacuum eigenvalues have the following form

α̂i(u) =
λ̂i(u)

λ̂i+1(u)
= αN−i(u− (N − i)c). (3.4)

Finally, the operators �Tij with i  <  j  act on |0� as creation operators.
Thus, we can construct off-shell Bethe vectors B̂(t̄) associated to the monodromy 

matrix �T (u). These vectors are uniquely defined provided their normalization is fixed. 

We do this as in (3.1). Namely, the main term �̂B(t̄) of the off-shell Bethe vector B̂(t̄) 
reads

�̂B(t̄) =
�TN−1,N(t̄N−1)�TN−2,N−1(t̄N−2) · · · �T23(t̄2)�T12(t̄1)|0��N−1

i=1 λ̂i+1(t̄
i)
�N−2
i=1 f(t̄

i+1, t̄i)
. (3.5)

9 The known procedures are the nested algebraic Bethe ansatz [8–10], the trace formula [11–13], or the projection 
of currents [14–17].
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Here we have extended the shorthand notation (2.13) and (2.14) to the products of the 

operators �Ti,i+1 and the vacuum eigenvalues λ̂i+1.

The main result of this paper is a correspondence between B(t̄) and B̂(t̄).

4. Correspondence between two types of Bethe vectors

In order to formulate the main result of this paper we introduce a mapping of the sets 
of Bethe parameters:

µ(t̄) ≡ µ({t̄1, t̄2, . . . , t̄N−1}) = {t̄N−1 − c, t̄N−2 − 2c, . . . , t̄1 − (N − 1)c}. (4.1)
Thus, this mapping reorders the sets t̄i and shifts every set t̄i by (i−N)c.

Theorem 4.1. The off-shell Bethe vectors B and B̂ of integrable models with gl(N)-in-
variant R-matrix are related by

B̂(t̄) = (−1)#t̄
�
N−2�

s=1

f(t̄s+1, t̄s)

	−1
B
�
µ(t̄)
�
. (4.2)

Here #t̄  is the total cardinality of all the sets t̄i, and according to (4.1)
B
�
µ(t̄)
�
= B
�
t̄N−1 − c, t̄N−2 − 2c, . . . , t̄1 − (N − 1)c

�
. (4.3)

We prove this theorem using identification of the off-shell Bethe vectors with cer-
tain combinations of the generating series of the Yangian double generators (see [19]). 
The main tool of this approach relies on the Gauss coordinates of the monodromy 
matrix rather than considering its matrix elements Tij  (u).

4.1. Gauss decomposition of the monodromy matrix

The idea of using the Gauss decomposition of the monodromy matrix satisfying the 
RTT-relation (2.2) goes back to the paper [25] where this decomposition was used to 
prove the isomorphism between R-matrix and current realization of the quantum affine 
algebras. Then the Gauss decomposition of the monodromy was used in the series of 
papers [14–17] to find closed and explicit formulas for the off-shell Bethe vectors. The 
Bethe vectors were expressed in terms of the Gauss coordinates using a projection 
method developed in those papers. In this section we find the relation between the 

Gauss coordinates of the original T (u) and the ‘transpose-inverse’ monodromy �T (u). It 
will imply the statement of theorem 4.1.

As it was shown in the paper [19], in order to obtain the off-shell Bethe vectors in 

the form where the main term �B(t̄) is given by (3.1), one has to use the following Gauss 
decomposition of the monodromy matrix T (u) (for i  <  j ):

Tij(u) = Fji(u)kj(u) +
�

j<� N

F�i(u)k�(u)Ej�(u), (4.4)
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Tii(u) = ki(u) +
�

i<� N

F�i(u)k�(u)Ei�(u), (4.5)

Tji(u) = kj(u)Eij(u) +
�

j<� N

F�j(u)k�(u)Ei�(u). (4.6)

These formulas are the result of product of three matrices

T (u) = F(u) ·D(u) ·E(u). (4.7)
In the above formula, F(u) is an upper-triangular matrix with unities 1 on the diagonal, 
D(u) = diag(k1(u), k2(u), . . . , kN(u)) is a diagonal matrix, and E(u) is a lower-triangu-
lar matrix again with unities on the diagonal (see appendix B for an example of these 
matrices in the case N  =  3).

It is clear from the reference state definition (2.5) that the Gauss coordinates Eij(u) 
annihilate this state: Eij(u)|0� = 0. The definition also implies that it is a common 
eigenstate of the matrix D(u) diagonal elements: ki(u)|0� = λi(u)|0� and that the Gauss 
coordinates Fji(u) create non-trivial vectors in the space of states of the quantum inte-
grable models.

In order to describe the ‘transpose-inverse’ monodromy matrix �T (u) in terms of the 
Gauss coordinates Fji(u), Eij(u), ki (u) we have to invert the matrices F(u), D(u) and 
E(u). The Gauss coordinates of the inverse matrices

F(u)−1 = I+
�
i<jEij F̃ji(u),

D(u)−1 = diag(k1(u)
−1, k2(u)

−1, . . . , kN(u)
−1),

E(u)−1 = I+
�
i<jEji Ẽij(u),

 (4.8)

are given by the following.

Lemma 4.1. The Gauss coordinates F̃ji(u) and Ẽij(u), 1 i < j N  are

F̃ji(u) =

j−i−1�

�=0

(−)�+1
�

j>i�>···>i1>i
Fi1,i(u)Fi2,i1(u) · · · Fi�,i�−1(u)Fj,i�(u), (4.9)

Ẽij(u) =

j−i−1�

�=0

(−)�+1
�

j>i�>···>i1>i
Ei�,j(u)Ei�−1,i�(u) · · ·Ei1,i2(u)Ei,i1(u). (4.10)

Proof of this Lemma follows from a direct verification. □ 

According to the assumed dependence (2.4) of the monodromy matrix T (u) on the 
spectral parameter u we may conclude from the formulas (4.4)–(4.6) that the Gauss 
coordinates Fji(u), Eij(u), ki(u) have the following dependence on the parameter u

Fji(u) =
�

n 0

Fji[n]u
−n−1, Eij(u) =

�

n 0

Eij [n]u
−n−1, ki(u) = 1 +

�

n 0

ki[n]u
−n−1.

 (4.11)

The zero mode operators Fji[0], Eij [0] and ki  [0] play an important role. In particular, 
according to the RTT commutation relations (2.2) the Gauss coordinates with bigger 
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difference of the indices j   −  i may be expressed as commutators of zero-mode operators 
and Gauss coordinates with smaller difference j   −  i. In what follows we will need following

Lemma 4.2. The Gauss coordinates Fji(u), Eij(u) and F̃ji(u), Ẽij(u) can be written as 
multiple commutators (j   >  i)

Fji(u) = c
i+1−j

��
· · ·
��
Fj,j−1(u), Fj−1,j−2[0]

�
, Fj−2,j−3[0]

�
, · · · , Fi+2,i+1[0]

�
, Fi+1,i[0]

�
,

F̃ji(u) = −ci+1−j
�
Fj,j−1[0],

�
Fj−1,j−2[0], · · · ,

�
Fi+3,i+2[0],

�
Fi+2,i+1[0], Fi+1,i(u)

��
· · ·
��
,

 (4.12)

and

Eij(u) = c
i+1−j

�
Ei,i+1[0],

�
Ei+1,i+2[0], · · · ,

�
Ej−3,j−2[0],

�
Ej−2,j−1[0], Ej−1,j(u)

��
· · ·
��
,

Ẽij(u) = −ci+1−j
��
· · ·
��
Ei,i+1(u), Ei+1,i+2[0]

�
, Ei+2,i+3[0]

�
, · · · , Ej−2,j−1[0]

�
, Ej−1,j [0]

�
.

 
(4.13)

Proof is based on the RTT-relation for the monodromy matrix T (u) and its inverse 

T̃ (u). Details are given in appendix A. □ 

After applying the transposition with respect to the anti-diagonal to the inverse 

monodromy matrix T̃ (u), we obtain for the matrix �T (u) a Gauss decomposition (for 
i  <  j )
�Tij(u) = kN+1−j(u)−1F̃N+1−i,N+1−j(u) +

�

1 �<N+1−j

Ẽ�,N+1−j(u)k�(u)
−1F̃N+1−i,�(u),

 

(4.14)

�Tii(u) = kN+1−i(u)−1 +
�

1 �<N+1−i

Ẽ�,N+1−i(u)k�(u)
−1F̃N+1−i,�(u), (4.15)

�Tji(u) = ẼN+1−j,N+1−i(u)kN+1−j(u)−1 +
�

1 �<N+1−j

Ẽ�,N+1−i(u)k�(u)
−1F̃N+1−j,�(u), (4.16)

similar to the Gauss decomposition (4.4)–(4.6) of the original monodromy matrix T (u). 
The only crucial difference is the ordering of the ‘new’ Gauss coordinates in the form-
ulas (4.14)–(4.16).

We call a product of the Gauss coordinates normal ordered if all the coordinates 
Fji(u) are on the left of the product of all other Gauss coordinates and all Ekl(u) are on 
the right. This ordering is adapted to the action of the Gauss coordinates onto reference 
state described above.

By construction, the expressions (4.4)–(4.6) of the monodromy matrix elements Tij (u) 
in terms of the Gauss coordinates Fji(u), Eij(u), i  <  j  and ki (u), i, j = 1, . . . ,N  are writ-
ten in the normal ordered form. However, the formulas (4.14)–(4.16) for the inverse mono-
dromy matrix are not normal ordered. The normal ordering is given by the following.

Theorem 4.2. The normal ordered Gauss decomposition of the monodromy �T (u) has 
literally the same form as in (4.4)–(4.6) with the Gauss coordinates Fji(u), Eij(u), kj  (u) 
replaced by F̂ji(u), Êij(u), k̂j(u) where (for i  <  j )

F̂ji(u) = F̃N+1−i,N+1−j(u− (N − j + 1)c), (4.17)
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k̂j(u) =
1

kN+1−j(u− (N − j)c)

N−j�

�=1

k�(u− �c)
k�(u− (�− 1)c)

, (4.18)

Êij(u) = ẼN+1−j,N+1−i(u− (N − j + 1)c). (4.19)

Proof is based on the presentation of the Gauss coordinates as multiple commutators. 
The shifts of the indices in (4.17) and (4.19) can be seen from the formulas (4.14) and 

(4.16), while the shifts of the spectral parameters and transformation of the diagonal 

generating series kj(u)→ k̂j(u) follow from the commutation relations between Gauss 
coordinates. They are gathered in appendix B. Note that formulas (4.18) are in accor-
dance with the action of the diagonal matrix elements (3.2) onto the reference state |0�.
 □ 

4.2. Bethe vectors and currents

This section is devoted to the proof of theorem 4.1. We heavily use the results of the 
paper [19] where the off-shell Bethe vectors were explicitly constructed from the cur-
rent generators of the super-Yangian double DY (gl(m|n)). In what follows we will use 
some results of this paper in the case m  =  N, n  =  0.

The Yangian double associated with the algebra gl(N) is a Hopf algebra of a pair of 
generating N ×N matrices T±(u) satisfying the commutation relations

R(u, v) (T κ(u)⊗ I) (I⊗ T ν(v)) = (I⊗ T ν(v)) (T κ(u)⊗ I)R(u, v), (4.20)

where κ, ν = ±. Being rewritten in terms of the Gauss coordinates E±ij(u), F
±
ji(u) and 

k±i (u) (4.4)–(4.6) and generating series (currents) [25]
Fi(u) = F

+
i+1,i(u)− F−i+1,i(u), Ei(u) = E+i,i+1(u)− E−i,i+1(u), (4.21)

the commutation relations (4.20) can be presented in the form (so called ‘new’ realiza-
tion of the Yangian double)

k±i (u)Fi(v)k
±
i (u)

−1 = f(v,u) Fi(v),

k±i+1(u)Fi(v)k
±
i+1(u)

−1 = f(u, v) Fi(v),
 (4.22)

k±i (u)
−1Ei(v)k

±
i (u) = f(v, u) Ei(v),

k±i+1(u)
−1Ei(v)k

±
i+1(u) = f(u, v) Ei(v),

 (4.23)

f(u, v) Fi(u)Fi(v) = f(v,u) Fi(v)Fi(u), (4.24)

f(v,u) Ei(u)Ei(v) = f(u, v) Ei(v)Ei(u), (4.25)
(u− v − c) Fi(u)Fi+1(v) = (u− v) Fi+1(v)Fi(u), (4.26)
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(u− v) Ei(u)Ei+1(v) = (u− v − c) Ei+1(v)Ei(u), (4.27)

[Ei(u),Fj(v)] = c δi,j δ(u, v)
�
k+i (u) · k+i+1(u)−1 − k−i (v) · k−i+1(v)−1

�
, (4.28)

and the Serre relations for the currents Ei(u) and Fi(u). In (4.28) the symbol δ(u, v) 
means the additive δ-function given by the formal series

δ(u, v) =
1

u

�

�∈Z

v�

u�
. (4.29)

The Borel subalgebra in the Yangian double generated by matrix T+ (u) is isomor-
phic to the standard gl(N) Yangian [23]. Then, we can identify the monodromy matrix 
T (u) discussed in the previous sections with the generating matrix T+ (u). We also 
identify the Gauss coordinates of these monodromy matrices

F+ji(u) = Fji(u) =
�

n 0

Fji[n]u
−n−1,

E+ij(u) = Eij(u) =
�

n 0

Eij[n]u
−n−1,

k+i (u) = ki(u) = 1+
�

n 0

ki[n]u
−n−1.

 (4.30)

The currents Fi(u), k+j (u) and Ei(u), k−j (u) form the so-called dual Drinfeld Borel 
subalgebras with their own Drinfeld coproduct properties. According to the general 

theory of projections developed in [26] one can define the projections P±f  and P±e  onto 
intersections of these current Borel subalgebras with the standard Borel subalgebras 

formed by the Gauss coordinates F+ji(u), E
+
ij(u), k

+
j (u) and F−ji(u), E

−
ij(u), k

−
j (u).

Due to the results of the papers [14, 19] the off-shell Bethe vectors can be identified 
with the normalized projection of the product of the currents. In order to formulate 
this result we need to introduce some notation. For any scalar function x(u, v) of two 
variables and any set ū = {u1, . . . , ua} we define the product

∆x(ū) =
�

i<j

x(uj, ui). (4.31)

Let Fi(ū), i = 1, . . . ,N − 1 be the ordered product of the currents

Fi(ū) = Fi(ua) · Fi(ua−1) · · ·Fi(u2) · Fi(u1). (4.32)
Note that this product is not symmetric with respect to permutation of the parameters 
ui, as it follows from the commutation relation (4.24).

One of the main result of the papers [14, 19] is the identification of the off-shell 
Bethe vectors with the projections of the product of the currents:

B(t̄) =
�N−1
�=1 ∆f(t̄

�)
�N−2
�=1 f(t̄

�+1, t̄�)
P+f
�
FN−1(t̄N−1)FN−2(t̄N−2) · · · F2(t̄2)F1(t̄1)

�
|0�. (4.33)
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Observe that the product ∆f (t̄
�)F�(t̄�) is symmetric with respect to permutations within 

the set t̄�, due to the commutation relations (4.24). As a result, the Bethe vector given 
by equation (4.33) is symmetric with respect to the permutations of the Bethe param-
eters of the same type.

Mathematically rigorous definitions of the projections onto different type Borel 
subalgebras intersections can be found in the paper [26]. They use the different Hopf 
structures associated with different type of Borel subalgebras in the Yangian double. 
However, one may understand the projection entering the equation (4.33) in a more 
simple way. In order to calculate this projection one has to replace each current by the 
difference of the Gauss coordinates (4.21) and then use the commutation relations in 
the Yangian double (4.20) between ‘positive’ and ‘negative’ Gauss coordinates sending 
all ‘negative’ coordinates to the left and all ‘positive’ coordinates to the right. After 
such ordering the action of the projection amounts to remove all the terms containing 
at least one ‘negative’ Gauss coordinate on the left. Of course, practical implementa-
tion of this program is rather heavy. Fortunately, there exist effective methods to per-
form this procedure [14, 19].

In this paper we are not going to describe the methods which allow to calculate the 
projection in (4.33) and re-express the result of this calculation in terms of the original 
monodromy matrix element. We refer the interested reader to the paper [19]. In order 
to prove the statement of theorem 4.1 we will need only the closed expression (4.33).

The main trick in the calculation of the projection in (4.33) is the appearance of 
the so called composed currents Fji (u), i  <  j  in the commutation relations of the cur-
rents Fj ,s+1 (u) and Fsi (u) for s = i+ 1, . . . , j − 1. Then the rewriting of the projection 
in (4.33) in terms of the monodromy matrix elements relies on the fact that projections 

of the composed currents P+f (Fji(u)) coincide with the Gauss coordinates Fji(u) (see 
appendix A of the paper [19])

P+f (Fji(u)) = c
j−i−1F+ji(u) = c

j−i−1Fji(u). (4.34)

In order to prove the statement (4.2) let us consider the rhs of this equality using 
the expression (4.33). We have

(−1)#t̄
�N−2
�=1 f(t̄

�+1, t̄�)
B
�
µ(t̄)
�

=
(−1)#t̄

�N−1
�=1 ∆f(t̄

N−� − �c)
�N−2
�=1 f(t̄

�+1, t̄�) f(t̄N−�−1 − (�+ 1)c, t̄N−� − �c)
× P+f

�
FN−1(t̄1 − (N − 1)c)FN−2(t̄2 − (N − 2)c) · · · F1(t̄N−1 − c)

�
|0�

=
N−1�

�=1

∆f (t̄
�)P+f

�
F̂1(t̄1)F̂2(t̄2) · · · F̂N−2(t̄N−2)F̂N−1(t̄N−1)

�
|0�

=

�N−1
�=1 ∆f(t̄

�)
�N−2
�=1 f(t̄

�+1, t̄�)
P+f

�
F̂N−1(t̄N−1)F̂N−2(t̄N−2) · · · F̂2(t̄2)F̂1(t̄1)

�
|0�.

 

(4.35)

Here we have introduced the ordered product F̂i(t̄i) of the shifted currents given by the 
product (4.32) with the currents Fi (u) replaced by the shifted currents F̂i(u)
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F̂i(u) = −FN−i(u− (N − i)c). (4.36)
In (4.35), we also used the identity f(v,u) f(u− c, v) = 1 and the fact that the function 
f(u, v) is translation invariant which implies ∆f(ū− �) = ∆f(ū). We also used the com-

mutation relations between currents F̂i(u) and F̂i+1(v) which follow from (4.26). The 
fact that one can use these commutation relations under the action of the projection 
was proved in paper [14].

The assertion (4.2) of theorem 4.1 now follows from two lemmas.

Lemma 4.3. The mapping

Fi(u)→ F̂i(u) = −FN−i(u− (N − i)c), i = 1, . . . ,N − 1,
Ei(u)→ Êi(u) = −EN−i(u− (N − i)c), i = 1, . . . ,N − 1,

k±j (u)→ k̂±j (u) =
1

k±N+1−j(u− (N − j)c)

N−j�

�=1

k±� (u− �c)
k±� (u− (�− 1)c)

, j = 1, . . . ,N

 

(4.37)

is an automorphism of the Yangian double given by the commutation relations (4.22)–
(4.28).

Proof is based on a direct verification. It is clear that the automorphism (4.37) is in-
duced by the corresponding automorphism (2.11) of the RTT-algebra. □ 

Lemma 4.4. The projections of the composed currents P+f (F̂ji(u)), i  <  j  which appear 

in the commutation relations of the currents F̂j,s+1(u) and F̂si(u) for s = i+ 1, . . . , j − 1 
coincide with the shifted Gauss coordinates of the ‘transpose-inverse’ monodromy matrix 
�T (u)

P+f (F̂ji(u)) = c
j−i−1F̃+N+1−i,N+1−j(u− (N + 1 − j)c)

= c j−i−1F̃N+1−i,N+1−j(u− (N + 1− j)c)
 (4.38)

given by the multiple commutators (4.12).

Proof is given in appendix A. □ 

Proof of theorem 4.1. As we can see from the equation (4.35) the Bethe vector B̂(t̄) 
for the generalized quantum integrable models built from the ‘transpose-inverse’ mono-
dromy matrix is given by the same formula as in (4.33) with currents Fi (u) replaced by 

the currents F̂i(u). They satisfy the same commutation relations (4.22)–(4.28) with the 

currents Êi(u) and k̂±j (u) due to lemma 4.3. Now using the statement of lemma 4.4 we 

can apply all the techniques developed in the papers [14, 19] and prove that B̂(t̄) is the 

off-shell Bethe vector constructed from the monodromy matrix elements �Tij(u) (2.10). 
Then, this proves the statement of theorem 4.1. □ 
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5. Symmetry of the highest coefficients

As a direct application of equation (4.2), we study symmetry properties of the scalar 
products. For this, we should introduce dual Bethe vectors.

5.1. Dual Bethe vectors

Dual Bethe vectors belong to the dual space H∗ and can be obtained by the succes-
sive action of Tji with i  <  j  from the right onto a dual pseudovacuum �0| ∈ H∗. They 
also depend on N  −  1 sets of complex numbers {x̄1, x̄2, . . . , x̄N−1}. Dual Bethe vectors 
become dual eigenstates of the transfer matrix, if these parameters enjoy the system of 
Bethe equations. For more details about these vectors, we refer the reader to the works 
[19, 24].

For the moment, it is important for us that the dual Bethe vectors can be obtained 

by a transposition of ordinary Bethe vectors. Namely, a mapping ψ
�
Tij(u)

�
= Tji(u) 

defines an anti-automorphism of the RTT-algebra [23]:
ψ(AB) = ψ(B)ψ(A). (5.1)

Here A and B are arbitrary products of the monodromy matrix entries Tij . Extending 

this mapping to the Bethe vectors by ψ
�
|0�
�
= �0|, one can prove that [18, 19]

C(x̄) = ψ
�
B(x̄)
�
, (5.2)

where C(x̄) is the dual Bethe vector. Using this formula one can prove that the dual 

Bethe vectors also satisfy a property similar to (4.2). Namely, let C(x̄) and Ĉ(x̄) be dual 

Bethe vectors respectively associated to the monodromy matrices T (u) and �T (u). Then

Ĉ(x̄) = (−1)#x̄
�
N−2�

s=1

f(x̄s+1, x̄s)

	−1
C
�
µ(x̄)
�
. (5.3)

Here the notation is the same as in (4.2).

5.2. Symmetries of the scalar products

The scalar products of the Bethe vectors are defined as

S(x̄|t̄) = C(x̄)B(t̄). (5.4)
The sets x̄ and t̄  are generic complex numbers such that #x̄i = #t̄i for i = 1, . . . ,N − 1. 
If the latter condition does not hold, then the scalar product vanishes.

The scalar product of generic Bethe vectors can be described by a sum formula [24]

C(x̄)B(t̄) =
�
Wpart(x̄I, x̄II|t̄I, t̄II)

N−1�

k=1

αk(x̄
k
I )αk(t̄

k
II). (5.5)

Here all the sets of Bethe parameters t̄k and x̄k are divided into two subsets {t̄kI , t̄kII} � t̄k 
and {x̄kI , x̄kII} � x̄k, such that #t̄kI = #x̄

k
I . The sum is taken over all possible partitions 

of this type. The coefficients Wpart are rational functions completely determined by the 
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R-matrix. They do not depend on the ratios of the vacuum eigenvalues αk. Using the 
results of section 4 we can easily find symmetry properties of these coefficients.

Proposition 5.1. For arbitrary partitions {t̄kI , t̄kII} � t̄k and {x̄kI , x̄kII} � x̄k, such that 
#t̄kI = #x̄

k
I , the corresponding coefficient Wpart satisfies the following property:

Wpart(x̄I, x̄II|t̄I, t̄II)
N−2�

k=1

f(x̄k+1, x̄k) f(t̄k+1, t̄k) =Wpart
�
µ(x̄I),µ(x̄II)|µ(t̄I),µ(t̄II)

�
,

 (5.6)
where µ(x̄) is defined in (4.1).

Proof. We compute the scalar product in two different ways. First, performing in 
(5.5) the replacements x̄k → x̄N−k − kc and t̄k → t̄N−k − kc, we arrive at

C
�
µ(x̄)
�
B
�
µ(t̄)
�
=
�
Wpart

�
µ(x̄I),µ(x̄II)|µ(t̄I),µ(t̄II)

�

×
N−1�

k=1

αk(x̄
N−k
I − kc)αk(t̄N−kII − kc).

 (5.7)
Due to (3.4) we obtain

C
�
µ(x̄)
�
B
�
µ(t̄)
�
=
�
Wpart

�
µ(x̄I),µ(x̄II)|µ(t̄I),µ(t̄II)

�N−1�

k=1

α̂k(x̄
k
I )α̂k(t̄

k
II). (5.8)

Finally, using (4.2) and (5.3) we transform the lhs as follows:

Ĉ(x̄)B̂(t̄)
N−2�

k=1

f(x̄k+1, x̄k) f(t̄k+1, t̄k) =
�
Wpart

�
µ(x̄I),µ(x̄II)|µ(t̄I),µ(t̄II)

�N−1�

k=1

α̂k(x̄
k
I )α̂k(t̄

k
II).

 (5.9)

On the other hand, the scalar product of the Bethe vectors Ĉ(x̄) and B̂(t̄) is given by 
the sum formula

Ĉ(x̄)B̂(t̄) =
�
Wpart(x̄I, x̄II|t̄I, t̄II)

N−1�

k=1

α̂k(x̄
k
I )α̂k(t̄

k
II). (5.10)

Since the functions α̂i(u) are free functional parameters, the equations (5.9) and (5.10) 
can give the same result if and only if the coefficients of every product of α̂i coincide. 
Thus, we arrive at (5.6). □ 

In particular, we can consider a partition such that x̄I = x̄ and t̄I = t̄ . Then respec-
tively x̄II = t̄II = ∅. The corresponding coefficient Wpart is called the highest coefficient. 
We denote it by Z(x̄|t̄):

Z(x̄|t̄) =Wpart(x̄, ∅|t̄, ∅). (5.11)
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Then it follows immediately from (5.6) that

Z
�
µ(x̄)|µ(t̄)

�
= Z(x̄|t̄)

N−2�

k=1

f(x̄k+1, x̄k) f(t̄k+1, t̄k). (5.12)

Conclusion

In this paper we have found a new symmetry of Bethe vectors. As we have mentioned, 
an off-shell Bethe vector is a polynomial in the monodromy matrix entries Tij applied to 
the pseudovacuum. The new symmetry gives a description of the Bethe vector in terms 

of the entries of the monodromy matrix �Tij (2.10). As we have already mentioned, this 

symmetry is specific to the algebras with the rank higher than 1. It cannot be seen on 
the Bethe vectors corresponding to the gl(2) case, as it becomes trivial.

In paper [27], we have used already the symmetry of the Bethe vectors in the mod-
els with gl(3)-invariant R-matrix. In that paper the equivalence of the two representa-
tions was proved by the use of a recursion for the Bethe vectors. Generalization of this 
method to the case of higher rank algebras is possible, but is technically very complex. 
Therefore, our proof is based on the Gauss decomposition of the monodromy matrix 
and the underlying current algebra. This approach was found to be very powerful in the 
study of the Bethe vectors for the models with high rank of symmetry [19].

As a direct application of the new symmetry, we proved the identity for the highest 
coefficients of the scalar product (5.12). However, this is not the only possible applica-
tion. The new representation allows one to study the properties of combined operators 
that arise from the original monodromy matrix Tij and from the monodromy matrix 
�Tij. Recently this type of operators was considered in [28]. There, in particular, it was 

conjectured that in gl(3)-invariant spin chains the operator

Bg(u) = T23(u)�T13(u)− T13(u)�T12(u) (5.13)
can be used for generating on-shell Bethe vectors. Our result allows us to obtain explicit 
formulas for the action of Bg(u) onto the Bethe vectors using known action formulas of 
the operators Tij (u) [18]. This allowed us to prove the conjecture of [28] and show that 
it is valid only for special (symmetric) representations of the Yangian [27].

Concluding, we would like to mention that symmetries of the RTT-algebra, analo-
gous to those considered in this paper, also exist for the RTT-relations associated to the 

Uq(�gln) algebras and gl(m|n) superalgebras. As in the case discussed above, these sym-

metries generate new representations for the Bethe vectors associated with the inverse 
monodromy matrix. In turn, these representations imply symmetries of scalar products, 
in particular, symmetries of the highest coefficients. For the sake of completeness, we 

present the latter in the case of Uq(�gln) and gl(m|n) algebras.
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For q-deformed algebra case Uq(�gln), the highest coefficient Zq(x̄|t̄) was introduced 

in [29]. Its symmetric property formally coincides with (5.12):

Zq
�
µ(x̄)|µ(t̄)

�
= Zq(x̄|t̄)

n−2�

k=1

f q(x̄k+1, x̄k) f q(t̄k+1, t̄k), (5.14)

where

µ(t̄) = {q−2 t̄n−1, q−4 t̄n−2, . . . , q−2(n−1) t̄1} (5.15)
and

f q(x, t) =
qx− q−1t
x− t

. (5.16)

Relation (5.14) for the models described by Uq(�gl3) algebra was proven in [30] via 

explicit representations for the highest coefficient.
For the superalgebra case gl(m|n) (with m,n > 0 and the grading [i ]  =  0 for i m 

and [i ]  =  1 for i  >  m), the highest coefficient Zn|m(x̄|t̄) was introduced in [24]. The rela-
tions between highest coefficients have slightly more complex form:

Zn|m
�
µ(x̄)|µ(t̄)

�
= (−1)#t̄m Zm|n(x̄|t̄)

��
c→−c

m−1�

k=1

f(x̄k, x̄k+1) f(t̄k, t̄k+1)

n+m−2�

k=m

f(x̄k+1, x̄k) f(t̄k+1, t̄k),
 

(5.17)

with

µ(t̄) = {t̄m+n−1 + (n− 1)c, t̄n+m−2 + (n− 2)c, . . . , t̄m+1 + c, t̄m, t̄m−1 + c, . . . , t̄1 + (m− 1)c}.
 (5.18)

Note that equation (5.17) maps the highest coefficient of the scalar product in the 
gl(m|n) superalgebra to that of the scalar product in the gl(n|m) superalgebra. The 
map c→ −c is specific to the superalgebra case (see [24] for more details).

Let us stress once more that equations (5.14) and (5.17) are direct consequences of 
the symmetries of the Bethe vectors. The latter can be proved exactly by the same 
method used in this paper.
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Appendix A. Proof of lemmas 4.2 and 4.4

We prove the statement of lemma 4.2 using the commutation relations between Gauss 
coordinates. In order to obtain these commutation relations from the RTT-relation 
(2.3) we use the approach of paper [25]. We also use the fact that we consider the 
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generalized model, and hence, eigenvalues of the diagonal monodromy matrix elements 
are arbitrary functional parameters. This means that after substitution of the Gauss 
decomposition formulas into commutation relations (2.3), we obtain equations for all 
possible products of the currents ki(u)kj(v) after normal ordering of the Gauss coordi-
nates according to the rules described before theorem 4.2. In particular, we obtain

ki(u)Fi+1,i(v)ki(u)
−1 = f(v,u)Fi+1,i(v) + g(u, v)Fi+1,i(u), (A.1)

ki(u)
−1Ei,i+1(v)ki(u) = f(v, u)Ei,i+1(v) + g(u, v)Ei,i+1(u), (A.2)

[Ei,i+1(v), Fj+1,j(u)] = δi,j g(v,u)
�
ki(u)ki+1(u)

−1 − ki(v)ki+1(v)−1
�
, (A.3)

Fj,j−1(v)Fj−1,i(u) = f(v,u)Fj−1,i(u)Fj,j−1(v)

+ g(u, v)
�
Fji(v)− Fji(u) + Fj−1,i(u)Fj,j−1(u)

�
,

 (A.4)

Ei,j−1(u)Ej−1,j(v) = f(v, u)Ej−1,j(v)Ei,j−1(u)

+ g(u, v)
�
Eij(v)− Eij(u) + Ej−1,j(u)Ei,j−1(u)

�
.

 (A.5)

These equalities can be used to prove (4.12) and (4.13). Since both proofs are iden-
tical we consider only (4.12). Using the dependence of the Gauss coordinates on the 
spectral parameter (4.30) we can send u→∞ or v →∞ and consider the coefficients 
of the leading terms in (A.4) at u−1 or v−1 respectively. We obtain

Fji(v) = c
−1[Fj,j−1(v), Fj−1,i[0]] (A.6)

and

Fji(u)− Fj−1,i(u)Fj,j−1(u) = c−1[Fj,j−1[0], Fj−1,i(u)]. (A.7)
Now the first equation in (4.12) follows from a trivial induction of the relation (A.6). By 
the induction over j , one can prove from (A.7) that following relation is valid

cs−j
�
Fj,j−1[0],

�
Fj−1,j−2[0], · · · ,

�
Fs+2,s+1[0],

�
Fs+1,s[0], Fsi(u)

��
· · ·
��

=

s−j�

�=0

(−)�
�

j>i�>···>i1 s
Fi1,i(u)Fi2,i1(u) · · · Fi�,i�−1(u)Fj,i�(u),

 
(A.8)

for any s satisfying i  <  s  <  j . The second equality in (4.12) is a particular case of (A.8) 
at s  =  i  +  1. This ends the proof of lemma 4.2. □ 

In order to prove the statement of lemma 4.4 we use the results of the appendix A 

of paper [19]. We consider the shifted currents F̂i(u) (4.36) and the corresponding com-

posed currents F̂ji(u) defined in this appendix by the formulas (A.3) and (A.7). These 
composed currents satisfy a relation identical to (A.17) in the same appendix of [19], 
which implies

P+f

�
F̂ji(u)

�
=
�
P+f

�
F̂j,i+1(u)

�
, F̂i[0]

�
. (A.9)
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The commutativity between the projections and commutation relations with zero 
modes was proved in appendix B of [19]. Now the chain of equations (i� = N + 1− j 
and j � = N + 1 − i)

P+f

�
F̂ji(u)

�
=
��
· · ·
��
P+f

�
F̂j−1(u)

�
, F̂j−2[0]

�
, F̂j−3[0]

�
, · · · , F̂i+1[0]

�
, F̂i[0]

�

= −
�
FN−i[0],

�
FN−i−1[0], · · · ,

�
FN+2−j [0],P

+
f

�
FN+1−j(u− (N + 1 − j)c)

��
· · ·
��

= −
�
Fj�,j�−1[0],

�
Fj�−1,j�−2[0], · · · ,

�
Fi�+2,i�+1[0], Fi�+1,i�(u− i�c)

�
· · ·
��

= c j
�−i�−1F̃j�i�(u− i�c) = c j−i−1F̃N+1−i,N+1−j(u− (N + 1− j)c)

 

(A.10)
proves relation (4.38). This ends the proof of lemma 4.4. □ 

Appendix B. Gauss coordinates and proof of theorem 4.2

Before starting the proof of theorem 4.2 we provide explicit formulas for the Gauss 
decomposition used in this paper in the simplest nontrivial case N  =  3. The monodromy 
matrix reads

T (u) =




k1 +F21k2E12 +F31k3E13 F21k2 +F31k3E23 F31k3
k2E12 +F32k3E13 k2 + F32k3E23 F32k3

k3E13 k3E23 k3





=




1 F21 F31
0 1 F32
0 0 1








k1 0 0

0 k2 0

0 0 k3








1 0 0

E12 1 0

E13 E23 1



 .

 

(B.1)

For brevity, we omitted in (B.1) the dependence on the spectral parameter u for all 
Gauss coordinates Eij(u), Fji(u), and ki (u).

The Gauss decomposition (B.1) allows one to find easily the inverse monodromy 
matrix

T̃ (u) = T (u)−1 =




1 0 0

Ẽ12 1 0

Ẽ13 Ẽ23 1








k−11 0 0

0 k−12 0

0 0 k−13








1 F̃21 F̃31

0 1 F̃32
0 0 1





=




k−11 k−11 F̃21 k−11 F̃31
Ẽ12k

−1
1 k−12 + Ẽ12k

−1
1 F̃21 k−12 F̃32 + Ẽ12k

−1
1 F̃31

Ẽ13k
−1
1 Ẽ23k

−1
2 + Ẽ13k

−1
1 F̃21 k

−1
3 + Ẽ23k

−1
2 F̃32 + Ẽ13k

−1
1 F̃31





 

(B.2)

where

F̃12(u) = −F12(u), F̃23(u) = −F23(u), F̃31(u) = −F31(u) + F21(u)F32(u),
Ẽ12(u) = −E12(u), Ẽ23(u) = −E23(u), Ẽ13(u) = −E13(u) + E23(u)E12(u).

 
(B.3)

Now the monodromy matrix �T (u) given by the relation (2.10) has the following 
structure:
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�T (u) =




k−13 + Ẽ23k

−1
2 F̃32 + Ẽ13k

−1
1 F̃31 k

−1
2 F̃32 + Ẽ12k

−1
1 F̃31 k

−1
1 F̃31

Ẽ23k
−1
2 + Ẽ13k

−1
1 F̃21 k−12 + Ẽ12k

−1
1 F̃21 k−11 F̃21

Ẽ13k
−1
1 Ẽ12k

−1
1 k−11



 .

 (B.4)
It is similar to the structure of the original monodromy matrix T (u) (B.1).

We prove theorem 4.2 by induction starting from the lower-right corner of the 

monodromy matrix �T (u). Due to the formulas (4.14)–(4.16) the matrix elements from 
the lower-right corner �TNN (u), �TN−1,N(u) and �TN ,N−1(u) have following form:

�TNN (u) = k1(u)−1, �TN−1,N(u) = k1(u)−1F̃21(u), �TN ,N−1(u) = Ẽ12(u)k1(u)−1.
 

(B.5)

In order to normal order these matrix elements we can use the commutation relations 
(A.1) and (A.2) specialised to i  =  1 and v = u− c. This yields

�TN−1,N(u) = k1(u)−1F21(u) = F21(u− c)k1(u)−1, (B.6)

�TN ,N−1(u) = E12(u)k1(u)−1 = k1(u)−1E12(u− c), (B.7)
and proves formulas (4.17) and (4.19) in the particular case i  =  N  −  1 and j   =  N. Now 
using (A.3) at i  =  1 and (B.6), (B.7) we can normal order the monodromy matrix 
element

�TN−1,N−1(v) = k2(v)−1 + Ẽ12(v)k1(v)−1F̃21(v)

to obtain

E12(v)k1(v)
−1F21(v) = E12(v)F21(v − c)k1(v)−1

= F21(v − c)k1(v)−1E12(v − c) +
k1(v − c)

k2(v − c)k1(v)
− k2(v)−1.

As a result, the element �TN−1,N−1(v) in the normal ordered form is equal to

�TN−1,N−1(v) =
k1(v − c)

k2(v − c)k1(v)
+ F̃21(v − c)k1(v)−1Ẽ12(v − c), (B.8)

thus proving (4.18) for j   =  N  −  1.
Formulas (B.6), (B.7), and (B.8) are the base of the induction. Let us assume 

that the statement of theorem 4.2 is valid for � i < j N  in (4.17), (4.19) and for 
� j N in (4.18). By exploring the commutation relations between the Gauss coor-
dinates and lemma 4.2 we will prove that these formulas are valid for �→ �− 1.

Let us consider the commutation relation (2.3) for the monodromy matrix elements 
�Tij(u) at the values of indices (i, j, k, l)→ (�− 1, j, j, j) and send u→∞. Then the 

coefficient of u−1 gives (for j = �, . . . ,N)
�T�−1,j(u) = c−1

�
�Tjj(u), �T�−1,j[0]

�
. (B.9)

The zero mode of the monodromy matrix element �T�−1,j [0] can be obtained from the 

relation (4.14) and is equal to
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�T�−1,j [0] = F̃��+1,j�[0], (B.10)
where here and below the prime on the index j  mean j � = N + 1 − j for any index j .

According to the induction assumption, the monodromy matrix elements �Tjj 
(j = �, . . . ,N) have the normal ordered form

�Tjj(u) = k̂j(u) +
�

j<s N

F̂sj(u)k̂s(u)Êjs(u), (B.11)

where the Gauss coordinates F̂sj(u), k̂s(u), and Êjs(u) respectively are given by equa-
tions (4.17)–(4.19). One can prove from the commutation relations between the Gauss 

coordinates that the zero mode �T�−1,j[0] (B.10) commutes with k̂i(u) and F̂si(u) ∀i, 
except for k̂j(u) and F̂sj(u) = F̃j�s�(u− s�c). These commutation relations are

c−1
�
k̂j(u), F̃��+1,j�[0]

�
= F̂j,�−1(u)k̂j(u) (B.12)

and

c−1
�
F̂sj(u), F̃��+1,j�[0]

�
= F̃��+1,s�(u− s�c) = F̂s,�−1(u). (B.13)

To obtain (B.12) we used the second relation in (4.12), the commutation relation

[ki(v)
−1, Fi+1,i[0]] = c ki(v)

−1Fi+1,i(v) = cFi+1,i(v − c)ki(v)−1,

which follows from (A.1), and the commutativity [ki(v), Fj+1,j(u)] = 0 for j   >  i. Equalities 
(B.12) and (B.13) imply that the rhs of (B.9) is (for j = �, . . . ,N)

�T�−1,j(u) = F̂j,�−1(u)k̂j(u) +
�

j<s N

F̂s,�−1(u)k̂s(u)Êjs(u). (B.14)

Similarly we can prove that the commutation relations between the Gauss coordi-
nates yield

�Tj,�−1(u) = k̂j(u)Ê�−1,j(u) +
�

j<s N

F̂sj(u)k̂s(u)Ê�−1,s(u), (B.15)

where the Gauss coordinates F̂s,�−1(u) and Ê�−1,s(u) are given by (4.17) and (4.19) for 
s = �, . . . ,N.

To finish the proof of the theorem we have to prove that the Gauss coordinates 

F̂s,�−1(u), Ê�−1,s(u) and k̂s(u) given by the equalities (4.17)–(4.19) for s = �, . . . ,N will 
imply the same structure of the Gauss coordinate k̂�−1(u).

To do this we can use again the commutation relations (2.3) for 
(i, j, k, l)→ (�− 1, �, �, �− 1) to obtain in the limit v →∞

�
�T�−1,�(u), �T�,�−1[0]

�
= c
�
�T��(u)− �T�−1,�−1(u)

�
, (B.16)

where the zero mode operator �T�,�−1[0] can be deduced from (4.15)
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�T�,�−1[0] = −EN+1−�,N+2−�[0] = −E��,��+1[0].

Now the proof of (4.18) for k̂�−1(u) follows from the inductive assumption (B.11) and 
the commutation relations

�
Ej,j+1[0], Fj+1,j(u)

�
= c(kj(u)kj+1(u)

−1 − 1),
�
Ej,j+1[0], Fj+1,j[0]

�
= c(kj [0]− kj+1[0]),

�
Ej,j+1[0],kj(u)

−1
�
= ckj(u)

−1Ej,j+1(u− c),

�
Ej,j+1[0], F̃j+1,�(u)

�
= cF̃j�(u),

and
�
Ej,j+1[0], Ẽ�j(u)

�
= −cẼ�,j+1(u).

This finishes the proof of theorem 4.2. □ 
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