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Abstract

Quantum integrable models are a special class of physical models. These models
describe non trivial systems of interacting particles and at the same time they can be
studied accuracy using mathematical tools. They offer us a unique training ground for a
deep study of non-trivial physical phenomena explicitly.

A wide class of quantum integrable models is associated with higher rank algebras.
Integrable models with symmetries of high rank appear in condensed matter physics, in
particular in the gl(m|n)-invariant XXX Heisenberg spin chain, in multi-component
Bose/Fermi gas [37], and in the study of models of cold atoms (the Hubbard model [33],
the t-J model [34-36]). Also spin chains of higher rank are interesting in the context of
computing correlation functions in N= 4 supersymmetric Yang-Mills theory [8, 9].

The role of the scalar product of Bethe vectors is extremely important in the study of
correlation functions of local operators of the underlying quantum models [4, 13, 61].
One can reduce the problem of calculation of the form factors and the correlation
functions of local operators to the calculation of the scalar products of the Bethe vectors
[15, 16].

The study of integrable systems with high rank symmetry is still a challenging task.
Until recently, such models have either not been studied at all, or have been studied under
various simplifying hypotheses. The results presented in the thesis are the first in this

direction.
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Chapter 1

Introduction



My thesis presents the results of five articles in which I am one of the
co-authors. The articles are devoted to the study of Bethe vectors and their
scalar products in quantum integrable models with high rank symmetry. This
research is the development of mathematical apparatus of the study of cor-
relation functions of these systems. In fact, this thesis is completely devoted
to the description of Bethe vectors and to the study of their properties.

In this Chapter I give an overview of the results of my thesis. To simplify
explanation in this Chapter we consider Yangian Y (gly) case [1-4] instead
of super-Yangian Y (gl,,,) and quantum affine algebra U,(gly) cases [2-5]
considered in the rest Chapters.

1.1 Quantum R-matrix structure

Quantum integrability was discovered in 1931 by Hans Bethe [6] for Heisen-
berg spin chain (1.11). He discovered an exact solution to the spectral prob-
lem

;) = Ejl;) (1.1)
considering eigenstate [1/;) as a clever linear superposition of plane waves.
We call a system integrable if its spectral problem can be solved exactly. This
method now known as Coordinate Ansatz Bethe. It continues to be relevant
to a multitude of widely differing problems.

One of the continuation of this method is the Algebraic Bethe Ansatz
which is the basis of this work. The most fundamental structure of the
algebraic Bethe ansatz is R-matrix. Depending on point of view one can
perceive it a scattering matrix of some 2 — 2 scattering process [7-9] or
as a sct of structure functions of bilinear algebra which depends on spectral
parameter [1-3]. This algebra is called RT'T-algebra. Elements of the algebra
can be encoded in N x N matrix 7'(u) which is called monodromy matrix.
Usually relations in the RT'T-algebra (this algebra was introduced in [13])
are formulated as an equation in the tensor product of two finite-dimensional
spaces Vi ® Va:

Ru(u, U) Tl(U)TQ(’U) == TQ(U)Tl(U) ng(u, ’U). (12)

Here subscripts mean tensor multiplier in which the operator acts. Here
Ti(u) = T(u) ® 1 and Ty(u) = 1 ® T'(u), their elements act in some space
‘H called physical space. The arguments u, v of the monodromy matrix are
called spectral parameters. The spectral parameter is a complex number.
The R-matrix acts in both spaces. In this Chapter we use R-matrix associ-
ated with Y (gly) [24]

Rio(u) =ul+c P, (1.3)



where 1 is the unity operator, Pj5 is permutation operator, and parameter ¢
is a complex number. Yangian is RTT-algebra (1.2) with rational R-matrix
(1.3) (such representation of quantum algebras was obtained in [3, 4]).

Let us multiply (1.2) by the inverse matrix to Ri(u,v) and take the
trace over space V) ® V5. Using the property of the trace one can obtain
commutativity relation

t(u),t(v)] =0, (1.4)
for the transfer matrix

t(u) = ZTM(U)- (1.5)

Due to equation (1.4) the coefficients in a series expansion at some point
ug of the transfer matrix t(u) = >, (u — uo)* Hj, commute

[H,, H,) =0. (1.6)

These coefficients are called Hamiltonians. One can say that the transfer
matrix is a generating function of the commuting Hamiltonians of some in-
tegrable system.

Thus, the presence of R-matrix structure implies the presence of a large
number of conservation laws in the system and indicates the integrability of
this system.

To use algebraic Bethe ansatz approach, besides quantum R-matrix struc-
ture one needs an existence of a special vector |0) € H called vacuum. This
vector must have several properties

Ti(w)]0) =0,  with i< j

Tii(w)|0) = Xi(u)]0), (1.7)

where \;(u) are some functions depending on the concrete quantum inte-
grable model. The action of Tj;(u) with ¢ < j onto vacuum |0) is nontrivial.
In the quantum integrable models the multiple action of upper-triangular el-
ements of monodromy matrix onto |0) generates a basis in the physical space
H.

Generalized model. In the framework of Chapter 1 we assume that \;(u)
are free functional parameters and we do not specify any of their concrete
dependencies [13, 19, 61]. It means that one can find concrete quantum
integrable model for any specific choice of \;(u).

1.2 Spin chain as basic example

In the past, the structure of the R-matrix was discovered in a large number
of quantum systems [33-37]. Usually it is a very non-trivial problem to find



R-matrix structure. One of the simplest examples is a spin chain. One can
construct quantum integrable system inductively using general properties of
R-matrix.

To construct a spin chain we use the rational Y (gly) R-matrix (1.3). In
this case the monodromy matrix of the spin chain is

T()(U) = ROl(U — {1)R02(u — 52) R Ron(u — fn) (18)

Here Ry;-matrix acts non-trivially in the space Vo®V;, and as unity in the rest
spaces V; (with j # ¢). The monodromy matrix acts in the space V@V, @VL®
... ®V,. This space is divided into two parts: physical space H =V, ® Vo ®
...®V, and auxiliary space V. We consider the monodromy matrix as matrix
acting in the N-dimensional auxiliary space with noncommutative elements
acting in the physical space H. The parameters &; are called inhomogeneities.
The monodromy matrix satisfies the RTT-relation (1.2).

The model described by monodromy matrix (1.8) is called the inhomo-
geneous gly XXX spin chain. It is the most typical example of quantum
integrable model with quantum R-matrix structure. It exists for any R-
matrix.

One can set all parameters & = 0. Then, the model becomes homoge-
neous spin chain. To describe the quantum integrable system obtained from
this monodromy matrix let us consider one very special Hamiltonian in the
expansion of transfer matrix of homogeneous spin chain

H = (t(0))~*(0). (1.9)

From (1.9) one can obtain that Hamiltonian is a sum of permutations [26]
H=c) P (1.10)

This Hamiltonian is the sum of operators, each of them acting in two adjacent
spaces. This property is called ultra locality.

If size of the monodromy matrix is N = 2, this Hamiltonian coincides
with XXX Heisenberg spin chain [55, 56

XXX _ T v v z 5%
H = E 07 o T ol ol +of ofy, (1.11)
i

where o;’s are usual Pauli matrices acting in the space V;.

In the case of spin chain vacuum vector is |0) = egl) ®...0 egN), where

e&i) is a vector (1,0,0,...,0)T from the space V;. According to (1.7) the lower



triangular elements of the monodromy matrix annihilate the vacuum. The
vacuum is eigenvector for the diagonal elements with eigenvalues

Mu) =[] (w—=¢&+0),
- (1.12)
Aw) =]Jw-&), i=2... N

The monodromy matrix of the inhomogeneous XXX spin chain (1.8) satisfies
all the necessary properties for the application of the algebraic Bethe ansatz
approach.

1.3 Algebraic Bethe ansatz for gl,

Let us consider how algebraic Bethe ansatz works in the most simple case of
N =2 [3, 44]. In this case the monodromy matrix is 2 x 2 matrix

_ (Aw)  B(u)
T(u)_<c(u) D(u)). (1.13)

To apply algebraic Bethe ansatz we need a vector |0) € H called vacuum.
Vacuum should have the following properties:

A(u)|0) = a(u)]|0),
D(u)|0) = d(u)|0), (1.14)
C(u)|0) =0,

where a(u) and d(u) are the eigenvalues of corresponding operators on vac-
uum.

To simplify all the next expressions let us introduce shorthand nota-
tion [41]. The symbol “bar” in @ means that it is a set of variables @ =
{u1,us,...,u,}. The subscript i in & means that one element of the set is
excluded @; = @\{u;}. We also use superscripts to denote the different sets
t', 2 and so on. If some function depends on a set instead of a variable then
one should understand that this expression is a product of this function over
all elements in this set. One can use also this notation for function depending
on two sets of variables. For example

a(@ = [Ja(), f@o)=1] [[ flawv). — (115)

u; €U UK EU v ED,jFI



Using RTT-relation (1.2) with R-matrix (1.3) one can show that
T,y (), Ty (v)] = 0. (L.16)
So, we can also extend the shorthand notation to the product of operators
T,y (1) = Ty )Ty (ua) ... T (). (L17)

In the case of gl, there is only one monodromy matrix elements acting
nontrivial onto vacuum |0). It is upper triangular element B(u). One can
introduce a Bethe vector associated with set @ = {uq,us, ..., u,}

B(@) = B (@) |0) = B(u1)B(us) . .. B(uy,)|0). (1.18)

Due to (1.16) Bethe vector is symmetric in elements of set u. We suppose
that Bethe vector can become eigenvector of transfer matrix t(u) = A(u) +
D(u). To find it out we need the commutation relations of the diagonal
elements with B(u). These commutation relations follow from the RTT
relation (1.2):

D(u)B(v) = f(u,v)B(v)D(u) + g(v,u)B(u)D(v) (1.19)
where e C
fow) === bW =3— (1.20)

The action of the transfer matrix ¢(u) = A(u)+ D(u) on the Bethe vector
(1.18) gives us the equation

n

t(z)B(u) = 7(z|a) B(a) + Z g(z,u)\; B(u; U{z}), (1.21)
where
T(zlu) = a(2) f(u,z) + d(z) f(z,a), (1.22)
and
A = aluwg) f(ag, uw;) — d(wg) f(ug, @;). (1.23)

If we set all A; = 0 then Bethe vector B(u) becomes eigenvector with
eigenvalue 7(z|u) (1.22). The conditions A; = 0 are called the system of
Bethe equations.

Unfortunately, generalization of this scheme to algebras of higher rank is
not so simple.



In the first time formula for the Bethe vector in the gl; case was pro-
posed by P. P. Kulish and N. Yu. Reshetikhin [9]. Later this formula was
reformulated [18] in the following way

00 =t T T @ T (120
Here sets of the Bethe parameters @ and v are divided into two subsets
u = {4y, uy} and © = {0, Uy}, such that #u, = #0v;. The sum is taken
over all possible partitions of this type. The function K is Izergin determi-
nant [29] (partition function of six-vertex model with domain wall boundary
conditions)

2 2

I C Vi — Uy +c ¢
K(olu) = H (ui — u;)(v; — vi) H c o ((Uz‘ —u;+0)(v; = uﬂ')) .

1<j 2,
(1.25)
Let us notice that this Bethe vector depends on two sets of variables u,v.
All the upper triangular elements of the monodromy matrix are involved in
a construction of Bethe vector. Now it is not a monomial in the elements of
the monodromy matrix and the number of terms grows exponentially with
the sizes of sets u,v. A the coefficients are extremely nontrivial.

Chapter 2 contains a generalization of the Bethe vector and its proper-
ties (like co-product property and recurrence equation for Bethe vectors) that
help to apply Algebraic Bethe ansatz scheme to models with super-Yangian
Y (gl,,,) symmetries.

1.4 Bethe vector and Gauss decomposition

One of the most important notions of Algebraic Bethe Ansatz is a Bethe
vector. It depends on a set of complex variables called Bethe parameters.
The distinguishing feature of these vectors is that they become eigenvectors
of the transfer matrix provided the Bethe parameters satisfy a special sys-
tem of equations (Bethe equations) (1.34). In this case we call it on-shell
Bethe vector or eigenvector . Otherwise, if the Bethe parameters are generic
complex numbers, then the corresponding vectors are called off-shell Bethe
vector, or simply Bethe vector. In this section we deal with the universal
monodromy matrix. This means that it depends only on the underlying
algebra generators. For models related to higher rank symmetries, in addi-
tion to our construction there are also method based on the so-called Nested
Bethe Ansatz, which was elaborated in the pioneering papers [10, 19, 20],
and method based on the trace formula [30].
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To define construction of the Bethe vector, that we use, one needs to con-
sider Yangian double algebra DY (gly) [2]. This algebra can be constructed
as two copies of RTT-algebra (1.2) with cross RTT-relation between these
copies [21] . Tt is algebra generated by two monodromy matrices 7% with
relations

Ris(u —v) T (u)Ty (v) = Ty (0) T (u) Ris(u —v), p,v=+. (1.26)

We identify the monodromy matrix 77" (u) with the previous monodromy
matrix 7'(u) (1.8) and look for the eigenvector only of the transfer matrix
t7(z) = tr T*(z), but to express the Bethe vector we need to use both of
monodromy matrices 7. At the very end the Bethe vector depends only on
the entries of the monodromy matrix 7" and does not depend on the entries
of the monodromy matrix 7. Within particular integrable system (for ex-
ample, the spin chain from the section 1.2) there is no second monodromy
matrix 7'~. It seems that 7~ can not be constructed in the framework of the
integrable system in a regular way, but T~ arises naturally when we consider
quantum algebras. One can consider 7T~ as external algebra of symetries of
the integrable system.

There are another ways to describe quantum algebras [1-4]. One of them
is an approach based on Drinfeld currents [2]. In order to establish a relation
between two representation of Yangian double algebra one has to use the
following Gauss decomposition of the monodromy matrices [31]

T%(u) = F=(u) - K= (u) - E¥(u). (1.27)

In the above formula F*(u) are upper-triangular matrices with unities 1 on
the diagonal, K*(u) = diag(ki (u), k3 (u), ..., k3% (u)) are diagonal matrices,
and E*(u) are lower-triangular matrices, again with unities on the diagonal.

The elements of matrices F*, K*, E* should be considered as other basis
elements of Yangian double algebra DY (gly) (1.26) instead of TL]—L The
commutation relations for the elements of matrices F*, K* E* follow from
RTT-relations (1.26). Details of this connection can be found in [19, 31].
These commutation relations are given in the Chapter 2.

It turns out that the Bethe vector has a simpler presentation in terms of
currents F*, K+ E*, despite the fact that the integrable system is usually
formulated in terms of T}

We formulate a construction of the Bethe vector in terms of the full
currents

Filuw) = Fa () = Fiy () (1.28)
We emphasize that the full currents depend on both parts of the Yangian
double algebra. Our construction of Bethe vector depends on the elements
of F'* only.

11



Bethe vector depends on N — 1 sets (of the size r;) of parameters ¢ =
{ti. 5, ... t. } associated with the simple roots of the algebra gl. The Bethe
vector is symmetric with respect to permutations of Bethe parameters from
the same sets. For brevity, we unite all the sets ' by one set t.

Then, the construction of the Bethe vector associated with the set ¢ is
given by

B(E) = N (D) P* (Fi(t]) . Filt]) o Faa () Faa(5)) 10,
(1.29)
where the normalisation

N (p) = L M) H 1) (1.30)

7,+1 3
H— t t <k< l<'r1

Here the symbol Pt means projection, which annihilates all the terms with
F;” on the left

PT(F () QF*)) =0, (1.31)

where Q(F*)) means any polynomial in the elements of the matrices F*,

Using commutation relation for the full current one can prove that the
Bethe vector (1.29) is symmetric under permutations of the clements ¢i < ¢!
of the same set #*. In the Chapter 2 we proof that this construction satisfy
all required properties to be Bethe vector.

To get the formula in term of the monodromy matrix (1.8) entries one
should substitute all full currents in (1.29) using equation (1.28) and using
commutation relations for the entries of the matrices F* reorder in the way
to put all the entries of the matrix F~) on the left

B(f) = P* (Z@ @+<F+>> 10), (1.32)

where Q7 (F*) are polynomials in the elements of the matrices F* respec-
tively. Then we drop all the terms nonconstant ); (F~) and express all the
rest F'* in term of T} using formulas inverse to the Guasse decomposition
(1.27).

One can find some properties of the P* in the Chapter 2. In [24] one
can find the motivation and details of introducing this projection at the level
of the Hopf algebra. Details of calculation of this projection in the simplest
cases of U,(gl,) and U,(gly) one can find in [25].

In the Chapter 2 we give the proof of construction (1.29) in more general
case of Y(gl(n|m)). This result is based on the study of the g-deformed case
[26-28].

12



We find the formulas for action of T;;(%) onto Bethe vector (1.29) as linear
expansion in Bethe vectors in the Chapter 2. One can find action formulas
for the gl; case in [31] and for the gl,; case in [32]. We use action formulas
of upper triangular 7;;(z) to find the recursion equation for Bethe vector.

The diagonal elements Tj;(2) are included in the definition of the transfer
matrix (1.5) t(2) = >, T5i(2). It is proven [10, 30] that Bethe vector becomes
eigenvector for transfer matrix

(=) B(D) = 7(=[D) B(D), (1.33)

if Bethe parameters satisfy the system of equations

M(tF) F( ) FEL L)
Mo (8F) (R, EF) f(85, 251) (1.34)

This system is called Bethe equations. In principle, a system of the equations
for the Bethe parameters t called the Bethe equations if the condition for
their satisfaction implies that the Bethe vector becomes the eigenvector of

the transfer matrix.
Then the eigenvalue is

- Z N(2) [T, 2) f(z, T, (1.35)

where sets 10 = £V = .

We use action formulas of lower triangular 7;;(z) to find the recursion
equation (1.43) for the highest coefficient (1.42).

An important property of the Bethe vector is the co-product property.
It is also known as the composite model introduced in [33]. Assume that
the monodromy matrix (1.8) can be represented as product of two other
T(u) = T ()T (u) (such that [T® (u), TM(v)] = 0). Then the relation
which expresses the Bethe vector B(¢) associated with T'(u) in term of Bethe
vectors B (f) associated with 7 (u) is called co-product formula:

HN 1f T N—-1 N-—1
=1 B &) T AL (E) @ B? 2@
Z ivlzf t8+1 ts H g
(1.36)

Here the sum is taken over all possible partitions of all the sets of the Bethe
parameters £* into pairs of subsets t* = {tF tF}.

The composed model was introduced for the calculation of the form fac-
tors of local operators in gl, models [33]. The same idea was used in [34, 35

13



for gly case and in [36] for gly; case. We find another application of the co-
product property described in [37, 38]. Our method based on the co-product
formula directly leads to the sum formula, in which the scalar product is
given as a sum over partitions of Bethe parameters. The structure of the
scalar product of the Bethe vectors is encoded in the co-product formula for
the Bethe vector.

1.5 Scalar product of Bethe vectors

Scalar products of Bethe vectors play a very important role in the Algebraic
Bethe ansatz. They are a necessary tool for calculating form factors and
correlation functions within this framework.

To define a scalar product of Bethe vectors we need a dual Bethe vector.
The dual Bethe vector belongs to dual physical space H*. We suppose that
the dual physical space H* contains a dual vacuum (0| (such that (0|0) = 1)
with properties

(0|T;5(u) = 0, with ¢ < j
(O[Ti(w) = Ai(u) 0],

where functions \; are the same as in (1.7). Then the dual Bethe vector
C(t) can be obtained from Bethe vector B(f) using ”transposition” antimor-
phism U (the supersymmeric analog of this antimorphism is described in
[40]) defined by

(1.37)

U(AB) =V (B)¥(A),
W (Tij(u)) = Tji(u), (1.38)
U (|0)) = (0].
The dual Bethe vector is

C(b) = W(B(D)). (1.39)
Now we can define the scalar product of the Bethe vectors
S(s]t) = C(3)B(1). (1.40)

One can prove that scalar product is symmetric S(5]t) = S(¢|5) applying
antimorphism W and taking into account W2 = 1.

The sum formula for the scalar product was obtained in the gl, case [13],
in the gl; case [39] and in the gly; case [41].

In the Chapter 3 using the co-product formula (1.36) and the idea of the
generalized model we prove that the scalar product (1.40) of Bethe vectors

14



has the following bilinear form

f) ZHAk ) Akt (8 ))\k+1( ))\k()

HN‘l (3%, 55) S (0. 1)
[0 s s fE™ 8

Here all the sets of the Bethe parameters t* and 5* are divided into two
subsets t* = {tF %} and 5* = {5¥ 5%} such that ##* = #35°. The sum is
taken over all possible partitions of this type.

The function Z(5]t) is called the highest coefficient. It appears in the
scalar product (1.41) in the term associated with extreme partition sF = 5%,
8=, and #*F = & =0

AAACTED) (1.41)

N-1

S(sl8) = Z(s10) [ ()M () + ... (1.42)

k=1

The highest coefficient were obtained in the gl, [29] and gly; [41] cases ex-
plicitly in the determinant form, and in the gl case [40] as sum.

The highest coefficient Z(5|t) can be determined recursively using the
action formulas and recursion for Bethe vectors, which is given in Chapter
3. The highest coefficient Z(5|t) possesses the following recursions:

Z(glf)zz Z g(ﬂlagll)f(t_l P)f(t_]llvgll)

-1
P=2 part(s,...,57"1) f(se,5077)
part(th,.. ,EP*I)
y H 9(57,5 ti’,ytul 1)f(,§g_, g;l’)f(fi’,t_ﬁ)
v=2 SV S )f(tlyaty_ )
X7 ({sw om0 1}7{5”»---»EN‘l}I{fﬁ,fﬁ,...,fﬁ‘l},{f”,...,fN-l}),

(1.43)
Here for every fixed p € {2,..., N} the sums are taken over partitions

= {tF Yy withk=1,...,p—1and 58 = {5F s} with k=2,...,p—1,
such that #tF = #5* =1 for k = 2,...,p — 1. The subset 3! is a fixed Bethe
parameter from the set 5'. There is no sum over partitions of the set 5! in
(1.43).

Chapter 5 contains generalization of equations (1.41) and (1.43) to the
case of quantum affine algebra U, (gly).
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1.6 Norm of eigenvector

One can prove that a norm of eigenvector of transfer matrix (1.5) has a
determinant form. Chapter 4 contains proof of this statement.

Let us describe the idea of proof. There is a list of axioms that is given in
the Chapter 4. This set of axioms defines a function in a unique way. We
proved that the norm and some combination with determinant satisfy this
list of axioms at the same time. Thus, they coincide.

Finally, the result of this statement is

s@p = [T T 7 (]‘_[ f(z?”“,t‘”)) det G, (1.44)

v=1 p,q=1
p#q

where matrix G is (N — 1) x (N — 1) block-matrix. The size of the block
G is 7, x r,. To describe the elements of G**) we introduce a function

)
Au(t5) f(E5, ) f(8
)\/.L+1<tj) f(t] ) t]) f(t/H_ 7tj)
It is easy to see that Bethe equations (1.34) can be written as
oW =1 p=1,...,.N-1, j=1...1. (1.46)
The entries of matrix GG are defined as
dlog W
(UW) _ J
Gy = _Cﬁ—t,’;' (1.47)

This statement generalizes Gaudin formula in gl, case [1] and Reshetikhin
result in gly case [39]. There are determinant formulas of norm of the Bethe
vector in trigonometric gl; [9] and gly; [51] cases. Also norm of Bethe vectors
for higher rank symmetries has been considered before, e.g. in [63]. Chapter
5 contains analogous determinant representation in quantum affine Uq(ﬁln)
case.

1.7 Symmetry of Bethe vector

Using the RTT relation one can prove that the inverse monodromy matrix
T

Tm(u) = (T(u));fl—kl—j,N—l-l—i (1.48)
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satisfies the same RT'T relation

~ ~ A ~

Rig(u—v) Th(w)Ty(v) = To(v)T1(u) Riz(u —v) (1.49)

does the monodromy matrix 7.

Thus, there are two quantum R-matrix structures for each system with
higher rank symmetry. They are associated with two monodromy matrices
T and T, and both have the same R-matrix.

Let us define hatted Bethe vectors Iﬁ%(f) associated to the monodromy
matrix T in the same way as for usual Bethe vector B(f) with replacement
T (k) — 15 (te).

The main point of the Chapter 6 is a correspondence between IB%(E) and
B(¢). One can formulate this result in the following theorem.

Theorem 1.7.1. The Bethe vectors B and B of integrable models with gl(N)-
mvariant R-matriz are related by

B(F) = (~1)* (f[ f(f”l,fs)) B (u(7)). (1.50)

Here #t is total cardinality of all the sets t, and
pE) = p{E 2 ) = VT e V2 2¢, . B — (N =1)c}. (1.51)

This theorem in the case of GL(3) was proved in [27].

Applying equation (6.4.2) to scalar product of Bethe vectors (1.29) and
taking into account that 7" and T satisfy the same RTT-algebra one can get
relation for the highest coefficient (1.42) in the scalar product

Z(u@N®) = 2D T[] FE ) 5. (152)
k=1

There is a generalization of the statement of the theorem (1.7.1) and its
corollary to super-Yangian and quantum affine cases. We mention it in the
end of the Chapter 6. The trigonometric analogue of the equation (6.5.12)
in the case of GL(3) was proved in [48].
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Introduction:

In this Chapter we considered how to express Bethe vectors in two dif-
ferent ways using two Gauss decompositions. We proved that these two rep-
resentations give the same Bethe vectors considering actions of monodromy
matrix entries onto them. The formula describing co-product property of
Bethe vectors was obtained. Also it was proven that if parameters of Bethe
vectors satisfy some system of equations (Bethe equations), then Bethe vec-
tors become eigenvectors of the transfer matrix.

Contribution:

I calculated the action of the monodromy matrix entries onto Bethe vec-
tors (4.66) and (4.68). Using these formulas I calculated the action of the
transfer matrix onto Bethe vector (4.70) and showed that if parameters of
Bethe vector satisfy Bethe equations (4.75), then Bethe vector becomes eigen-
vector of the transfer matrix. In addition, I used the action formulas in the
next Chapters to calculate scalar products of Bethe vectors.
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1. Introduction

The calculation of form factors and correlation functions in quantum integrable
models is one of the most important problems in the area of exactly solvable models
in statistical physics and low-dimensional quantum mechanics. A lot of results were
obtained in this direction starting from the earliest years in the development of the
Quantum Inverse Scattering Method (QISM) [1], [2]. For models connected with

various deformations of the affine algebra gl(2) one of the most important results is
a determinant presentation for the particular case of the scalar product in which one
of vectors is an eigenvector of the transfer matrix [3]. This result lets us go directly
to the problem of calculating the correlation functions [4] of the local operators in
integrable models (see the survey [5] and the references there).

One of the most important notions of the QISM is a Bethe vector. In g[(?)-based
models the Bethe vector is a monomial in the upper-right element of the monodromy
matrix (the creation operator) applied to the pseudo-vacuum vector. It depends on
a set of complex variables called Bethe parameters. The distinguishing feature of
these vectors is that they become eigenvectors of the transfer matrix if the Bethe
parameters satisfy a special system of equations (the Bethe equations). In this case
we call them on-shell Bethe vectors. Otherwise, if the Bethe parameters are generic
complex numbers, then the corresponding vectors are called off-shell Bethe vectors,
or simply Bethe vectors. In this paper we deal with the universal monodromy
matrix. This means that it depends only on the underlying algebra generators. We
refer to the corresponding Bethe vectors as universal Bethe vectors.

The main purpose of this paper is to study Bethe vectors in the Yangian double
DY (gl(mn)). Our first goal is to obtain explicit formulae for them. The second
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goal is to derive formulae for the action of the monodromy matrix entries on the
off-shell Bethe vectors. Achieving these two goals enables us to pose the prob-
lem of calculating the scalar products of Bethe vectors, which in turn is necessary
for studying the form factors and correlation functions in integrable models with
underlying gl(m|n) supersymmetry.

For models connected with higher-rank symmetries, the QISM is based on the
so-called nested Bethe ansatz, which was elaborated in the pioneering papers [6]—[8].
There a recursive procedure was developed for constructing Bethe vectors corre-
sponding to the algebra gl(N) from the known Bethe vectors of the algebra gl(N—1).
Formally, this method enables us to obtain explicit formulae for Bethe vectors in
terms of certain polynomials in the creation operators (upper triangular entries of
the monodromy matrix) acting on the pseudo-vacuum vector. However, the pro-
cedure is quite involved, and therefore no explicit representations were obtained in
the early works mentioned above, with the exception of graphical representations
found by Reshetikhin in [9] for models with the algebra gl(3). The use of this dia-
gram technique yielded a formula for the scalar products of off-shell Bethe vectors
in terms of sums over partitions of the sets of Bethe parameters (a sum formula).

In [10] and [11] the Bethe vectors for the integrable models associated with
deformed algebras QT [(IV) were obtained as the traces of products of the monodromy
matrices, R-matrices, and certain projections. These results were generalized to
supersymmetric algebras in [12]. This approach makes it possible in some cases
to calculate the norms of the nested Bethe vectors, but not their scalar products.

An alternative approach to the construction of Bethe vectors was proposed
in [13]. This method explores the relation between two different realizations of
the quantized Hopf algebra Uq(gT[(N )) associated with the affine algebra QT[(N ), the
first in terms of the universal monodromy matrix T(z) and the RTT commutation
relations, and the second in terms of the total currents, which are defined by the
Gauss decomposition of the monodromy matrix T(z) [24]. Further, it was shown
in [14]| that the two different types of formulae for the universal off-shell Bethe
vectors (constructed from the monodromy matrix) are related to the two different
current realizations of the quantum affine algebra Uq(gT[(N )) and their associated
projections.

Moreover, the approach using the current generators of the deformed current
algebras makes it possible to calculate the action of the monodromy matrix elements
on the universal Bethe vectors. These action formulae turned out to be very useful
for calculating form factors in the different quantum integrable models connected
with rational and trigonometric deformations of the affine algebra gl(3) [15]-[17].
Recently, similar results were obtained for the models with the superalgebras 5[(1 2)
and gl(2|1) in [18] and [19]. In these works the explicit formulae for the Bethe
vectors and the action formulae in [20] and [21] were used in an essential way.

In the present paper we use the approach of [13]. In this framework the universal
off-shell Bethe vector is defined as a projection of a product of total currents applied
to the pseudo-vacuum vector. We defer the detailed definition to §3, because it
requires the introduction of many new concepts and new notation. For the same
reason, we postpone a description of our main results to § 3.5. Here we would like to
mention only that we construct explicit formulae for the universal Bethe vectors in

28



36 A.A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, and N. A. Slavnov

terms of the current generators of the Yangian double DY (gl(m|n)) for two different
Gauss decompositions of the universal monodromy matrix and two different current
realizations of this algebra. These different Gauss decompositions correspond to
the embeddings of DY (gl(m — 1|n)) or DY (gl(m|n — 1)) in DY (gl(m|n)). On the
level of the RTT realization these embeddings are either in the lower-right corner
or in the upper-left corner of the universal monodromy matrix. Using the first
or the second type of these embeddings, we obtain two different representations for
the Bethe vectors, which we denote by B(¢ ) and B(¢), respectively, where ¢ is a set
of Bethe parameters (3.11). We prove that these two representations are equivalent,
that is, B(L) = B(Z).

The paper is organized as follows. In §2 we introduce the necessary notation
used for calculations in graded vector spaces, as well as the RTT and current real-
izations of the algebra DY (gl(m|n)). In § 3 we define universal Bethe vectors using
the notion of projections onto intersections of different types of Borel subalgebras.
As already mentioned, § 3.5 contains the main results obtained in this paper. §4
contains calculations of the action of the monodromy matrix elements on Bethe
vectors in the generic case of DY (gl(m|n)). It is proved there, using these action
formulae, that the vectors we have constructed become on-shell Bethe vectors if
the supersymmetric Bethe equations for the Bethe parameters are satisfied. In §5
we calculate the projections of a product of currents and present explicit formulae
for the off-shell Bethe vectors as sums over partitions of the Bethe parameters.
In Appendix A we introduce the notion of composed currents and study the rela-
tion between them and the Gauss coordinates of the universal monodromy matrix.
Appendix B describes important properties of the projections. Appendix C shows
how the Izergin and Cauchy determinants arise in the course of resolving the hier-
archical relations in the determination of explicit formulae for the off-shell Bethe
vectors.

2. Universal monodromy matrix

In this paper we adopt the following approach. We do not consider any spe-
cific supersymmetric exactly solvable models defined by a particular monodromy
matrix T(z) satisfying the standard RTT relation. Instead, we treat a T-operator
(2.3) as the universal monodromy matrix whose matrix elements are the generat-
ing series of the full set of generators of the Yangian double DY (gl(m|n)) acting
in a generic representation space of this algebra, which is a rational deformation
of the affine algebra gl(m|n). These representations are not specified, except for
the requirement that left and right pseudo-vacuum vectors exist, which ensures the
applicability of the algebraic Bethe ansatz. To construct Bethe vectors we will use
only the one T-operator T*(z) from the dual pair {T*(z), T~ (z)} which gener-
ates the whole algebra DY (gl(m|n)). The eigenvalues \;(z) of the diagonal matrix
elements on the pseudo-vacuum vectors (see (2.12) and (2.13)) are free functional
parameters which can be set equal to zero if necessary.

We first give a definition of Zs-graded linear spaces and their multiplication rules,
and we describe matrices acting in these spaces.

2.1. Z,-graded linear spaces and notation. Let C™" be a Z,-graded linear
space with a basis e;, i = 1,...,m + n, where the vectors {ej,es,...,e,} are even
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and the vectors {e,,+1,€m42,--,€min} are odd. The Zs-grading of the indices is
as follows:

[i]=0 fori=1,2,...,m and [ij]=1 fori=m+1,m+2,....,m+mn. (2.1)

Let E;; € End(C™/™) be the matrix with the only non-zero entry equal to 1 at
the intersection of the ¢th row and jth column.
The basis vectors e; and the matrices E;; have the following grading:

le;] =[] and [E;] =[i]+[j] mod 2.
The tensor product is also graded according to the rule
(Eij & Ek;l) . (qu X Ers) = (_)qk]"‘[l])([p]‘f'[Q])Eijqu ® EklErs~

Let P be the graded permutation operator acting in the tensor product C™" ®
C™I" as follows:

m—+n
P= Z (_)[b]Eab ® Epq.
a,b=1

Let
c

u, =
g(u,v) = —

be a rational function of the spectral parameters u and v and let ¢ be a deformation
parameter. By rescaling the spectral parameters it is always possible to set ¢ = 1,
but we will keep it for later convenience.

We define R(u,v) € End(C™™ @ C™™) as a rational supersymmetric R-matrix
associated with the vector representation of gl(m|n),

R(u,v) =1® 1+ g(u,v)P, (2.2)

where we have introduced the identity matrix in C™"™ by

m-+n

I= ) Ei

=1

2.2. Commutation relations for the universal monodromy matrix. The
superalgebra DY (gl(m|n)) is a graded associative algebra with unit 1 and is

generated by the modes ¢ ¢ e Z,1< 1,7 <N +1, of the T-operators

1,57
N+1
THuw) =101+Y Y BEyo T lu™! (2.3)
£>0 v,5=1
<0

where ¢ > 0 (respectively, £ < 0) refers to the + index (respectively, the — index)
in T*(u) and N = m 4+ n — 1 is the number of simple roots of the superalgebra
gl(m|n). The monodromy matrix elements Tzij(u) are subject to the relations

R(u,v) - (TH(u) @ 1) - (I T"(v)) = (I® T"(v)) - (TH*(u) @ 1) - R(u, v), (2.4)
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where p, v = £. For the monodromy matrix! T(u) to be globally even, we fix the
grading of the monodromy matrix elements as follows:

[Tiy(w)] = [i] + [j] mod 2.
The tensor product of matrices and algebra generators is also graded, that is,
(Bij ® Tij(u) - (Brg @ Tra(v)) = (=) DR By @ Ty (u) Tra (v).

The subalgebras formed by the modes TEEJ) (for £ > 0 and for £ < 0) of the

T-operators T*(u) are the standard Borel subalgebras U(b*) C DY (gl(m|n)).
These Borel subalgebras are Hopf subalgebras of DY (gl(m|n)). Their coalgebraic
structure is given by the graded coproduct

n4+m
A(TE () = 3 (=) E+HDEIDTE () @ T, (u). (2.5)
k=1

By the commutation relations (2.4) the universal transfer matrix t(u), defined

as the supertrace
n+m

t(u) = str(TH(w) = Y (4TS (w) (2.6)

=1

of the universal monodromy matrix T*(u), commutes for arbitrary values of the
spectral parameters:
[t(u), t(v)] = 0.

Thus, it can be regarded as a generating function for the commuting integrals of
motion in the corresponding supersymmetric quantum integrable model.
All the commutation relations (2.4) can be rewritten in the form

[T (w), T 4 (0)} = T () Ty () — (=) FFIDEFDTE (0) T (w)
= (_)[i]([k]+[l])+[k][l]g(%U) (TZ,j (’U)Tﬁz(u) _ TZ,j(u)TZ’-’,l(v)), (2.7)

where p,v = +. Renaming in (2.7) the indices and the spectral parameters by
t <k, j <[, and u < v, we obtain the equivalent relation

[T% (), T}y (0)} = T4 (W) TE y(v) — (=) EHDEHDTY ()T ()
= (=)D g (, 0) (T (W) TR (0) = T7 ) (0) T 5 (). (2.8)

Note that, according to the commutation relations (2.7) and (2.8), the odd matrix
elements of the monodromy matrix do not commute, in contrast to the even ones:

h[i](”? U)

T T . =
z,](u) ’L,j(v) h[j]('v,u)

Ty ; (U)Tffj(u) (2.9)

'We use the notation T(u) to denote either T (u) or T~ (u) when both matrices share the
same properties.
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Here and below we use the graded rational functions?

Cr; u— v+
fig(urw) = 1+ g v) = 1 A= St () =

and?
ey = (e,
Below we also use the notation
€i,j =1—0i;,
where 0; ; is the Kronecker symbol.

2.3. Morphism of DY (gl(m|n)), singular vectors, and Gauss decompo-
sitions. Since the R-matrix (2.2) and the universal monodromy matrix (2.3) are
globally even, one can easily check that the map*

- Tzij('“) N (_)[i]([j]+1)Tj¢i(u) (2.10)

is an antimorphism of DY (gl(m|n)) which is a super- (or equivalently, graded)
transposition compatible with the notion of super-trace. This map satisfies

U(A-B) = (—)AIBly(B) . ¥(4) (2.11)

for arbitrary elements A, B € DY (gl(m|n)) and will be used to relate right and left
states, or equivalently, Bethe vectors and the dual ones.
Let |0) and (0| be vectors satisfying the conditions

+ _ . . + - S
Ti,j(u)|0> =0, i>j, Ti’i(u)|0> =A"(u)|0), i=1,...,N+1, (2.12)

+ . . . + e -
<0|Ti7j(u) =0, i<}y, (0|Tm-(u) =X"(u)(0], i=1,...,N+1, (2.13)

where in (2.12) the monodromy matrix elements are acting to the right, while in
(2.13) they are acting to the left. Such vectors, if they exist, are called singular
vectors. If the pseudo-vacuum vectors |0) and (0| belong to the finite-dimensional
representations of the Yangian double DY (gl(m|n)), then the functions A (u) are
coinciding rational functions of the spectral parameter [22] expanded in the differ-
ent domains: the function A\ (u) is a series with respect to u~! and the same func-
tion A; (u) is a series with respect to u. In what follows we will use the same notation
Ai(u) for the functions A\ (u).

For the T-operators fixed by the relations (2.4) we have two possibilities for
introducing the Gauss coordinates. The first possibility is to introduce chz(u),

u—v—+c u—v—+ec .
——  and h(u,v) = —— and use it occa-
— c

2We will keep the usual notation f(u,v) =
sionally.

3Introduction of this graded deformation parameter lets us write many relations systematically,
and this is why we do not scale the deformation parameter ¢ to be equal to 1.

4We keep the superscripts + in order to make the antimorphism compatible with the inclusion
of a central charge in the Yangian double.
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Ef (u), 1<i<j<N+1,and kf(u), £=1,...,N + 1, such that

T3 (u) =F7,(u + > F, (w) B, (u), (2.14)
1<4<i
T (u) =k (w) + ) FF, (w)E;; (u), (2.15)
1<i<t
T5(u) = kF(wES () + Y Fi(w)ky (u)Eg; (u). (2.16)
1<e<i

In the second case we introduce ﬁfz(u), Efj(u), 1<i<j< N+1, and Eét(u),
¢=1,...,N+1, such that

(v) + Z (_)([€]+[i])([€]+[j])132t7i(U)E;t(u)ﬁiz(u% (2.17)

J<UILN+1
T (u) = k¥ (u) + Z (—)([g]HjDFZj(u)k:f(u)E;L:e(u), (2.18)
J<LLN+1
T (u) = k5 (w)E (u) + Z (—)“”*“”“”*“”szj(u)ki(u)Efe(u)- (2.19)
J<LLNA1

One can verify that the antimorphism (2.10) and the Gauss decomposition

(2.14)—(2.16) imply the following formulae for the Gauss coordinates:
U(FL.(u)) = (EAUHDETF (4 .U EL () = (UEHDEF (4 :
(FFu(w) = MOFVEE ), w(EE ) = IR,
\I!(k’g (u)) =k (u).

Similarly,

W(FE () = () ITEE @), w(EE () = (-)PES, (),
(ki (u)) =k (u).
The Gauss decomposition formulae also imply that
5 ()0) =B (u)[0) =0, i<j,  kf(u)]0) = k7 (w)]0) = AF (w)|0);
OFFF,(w) = OFF,(w) =0, i<j,  (OkF()= (OkF (u) = AF(u)(0].
2.4. Current realizations of DY (gl(m|n)). Let
Fi(u) = Fz++1 z( ) — Fz_—l—l z( ) and  FEj(u) = E:rz+1( ) — Ez‘_,z‘+1(u)
be total currents [23]. Note that according to (2.20) we have
W(F () = ~() I B () = — By (w),

W(E;(u)) = — (=)D () = — (= )3m By (), i=1,...,N. (221

This proves that the graded transposition is an idempotent of order 4 and its square
counts the number of odd elements modulo 2.

33



Current presentation for the double super-Yangian DY (gl(m|n)) 41

Using straightforward calculations [24], [25] and the Gauss decomposition
(2.14)—(2.16), we can obtain the following non-trivial commutation relations in
terms of the total currents Fj(t) and E;(t) and the Cartan currents ki (t):

+ 1 _
ik (w) Fi(0)k; (u) 1:f (v, u) Fy(v), (2.22)
ki (WE (0)k5 (w) ™ = fp(u,0) Fi(v),

+ =+ —
ik (U)1 i(V)k; (U): ) (v, w) Ei(v), (2.23)
ki (W) Bi(0)ki () = fiiin (u,0) Bi(v),

= ((u—v)em + C[i] F;(v)F;(u),
= (v —v)esm — ) Ei(v) Ei(u),
= (u — v — ¢py1)) Fir1(0) Fi(u),
= (u = v)Eit1(v) Ei(u)

9

[Bi(w), Fy(0)} = By () Fy (v) — (=) DO F (o) B )
= b, 0) (K () K7 ()7 = K (0) K7 ()7, (2.28)

where 6(u,v) is the rational d-function given by (2.32). These calculations also lead

to the Serre relations. For the simple root currents Fj(u), i = 1,..., N, they have
the form
Symy,, ., (w2 = 11)8i,m — cfig1)) (Fi(ur) Fi(uz) Fiy (v)
— 2F;(w1) Fi1(0) Fi(uz2) + Fiy1(v) Fi(u1) Fi(ug))) = 0, (2.29)
SYMy,, i, (((u1 — u2)0im + c[i])(Fz-(ul)Fi(uz)Fi_l(v)
— 2F;(u1) F;—1(v) Fi(u2) + Fi—1(v) Fi(u1) Fi(us2))) = 0, (2.30)

Sym,,, ., ((u1 — ug + ¢) [Fm(U1>Fm(U2>Fm_1('l)l)Fm+1(U2)
— 2F, (u1) Fppe1 (v1) Fy (u2) Frps1 (v2) ]
+2¢ Frpoq1(v1) Fpy(ur) Frp (u2) Frp g1 (02)
+ (uz — w1 + ) [Frn—1(v1) Frng1 (02) Fyy (1) Fy (u2)
— 2F1(v1) Fp (w1) Fpg1 (v2) Foo (u2)]) = 0. (2.31)

Analogous formulae for the currents E;(u), 7 =1,..., N, can be obtained by apply-
ing the antimorphism ¥ to these relations. This amounts to replacing F;(u) by
E;(u) and ¢ by —c in (2.29)—(2.31).
The rational, or equivalently, additive d-function used in (2.28) can be repre-
sented as a difference of two series:
1 1 v"
d(u,v) =d(v,u) = — = Z sl (2.32)

nez

where

i) et ig(l) ew
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Here the symbol > in the rational function ( ) means that |u| > |v| and this
U—7)>
rational function should be represented as the first series in (2.33). In turn, the

symbol < in the rational function means that |u| < |v| and this rational

(u—v)<
function should be represented as the second series in (2.33). Below we will also use
1
the notation ﬁ to stress that one can use either of the two series expansions
U—0)g
=

n (2.33) for the rational function :
u—v

It is known [14] that another current realization of the Yangian double
DY (gl(m|n)) can be obtained using a different Gauss decomposition of the
monodromy matrix, as in (2.17)—(2.19). The commutation relations between
the Cartan currents k:i( ) and the simple root total currents Fj(u) and Ej;(u)
given by

Fi(u) =Ff,;(u) —Fy (),  Eiw)=Ef (u)—E; (u) (2.34)

are gathered below:

. 2.36

ki ( ) 1Ez(v)kf+1(u) = fli+1)(u, v) Ei(v), (230

((u = V)€s,m + cp) Fi(w) Fy(v) = ((u — v)esm — cp) Fi(v) Fy(u), (2.37)
((u = 0)€s,m — i) Ei (W) Ei(v) = ((u — v)es,m + cii) Ei (0) E; (w), (2.38)
(u—v — ciip) Fi (W) Frpr (v) = (u— v) iy (0) F (u), (2.39)
(u—0)Ei(u) Ei1(v) = (u—v = cjiya) Bipr () Bi (u), (2.40)

[Ei(u), Fj(0)} = Ey(u) F(v) — (=) @D E (0) B (u)
= G g0, o) (K (w) Wiy () 7 =Ky (0) ki (0) 7). (241)

The Serre relations for the simple root currents Ez(u), t=1,...,N, now have the
form
Sy, (02 = w1)8im — cppen)) (Bi(ur) Ei(uz) B (v)
— 2E;(u1) Ei 11 (0) Ei(u2) + Eiy1(v) Ei(ur) Ei(uz))) = 0, (2.42)
Symy, vy (U1 = 12)0im + ) (Ei(ur) Ei(uz) By (v)
— 2F;(u1) Ei_1(v) Ei(ug) + E; 1 (v) Ei(u1) Ei(u2))) = 0, (2.43)
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Sym,,, ., ((u1 —ug +¢) [Em (ul)Em (uz)Em_l(vl)EmH(vg)
— 2B (u1) By —1(01) B (u2) B 41 (v2)]
+ 2¢E—1(v1) Ep (1) Em (us) Eppy1 (v2)
+ (uz — w1 + €) [Epe1(v1) Ens1 (v2) By (1) By (u2)
= 0.

— 2F,1(01) B (w1) By i1 (02) By (u2)]) (2.44)

Thanks to the antimorphism W, there are analogous relations for the currents F\Z(u),
i = 1,...,N, with the replacements E;(u) — F;(u) and ¢ — —c in the formulae
(2.42)—(2.44). The action of the antimorphism (2.10) on the currents F;(u), E;(u),
and ky(u) is given by the same formulae as in (2.21).

Note that in the commutation relations (2.24), (2.25), (2.37), and (2.38) one
can replace cp; by cfiyq). Indeed, ¢ = cfjpq) when @ # m, while for ¢ = m the
factor (u—wv)e; ,,, vanishes, and thus it does not matter whether we use cj;) or cfi41).

3. Universal Bethe vectors

It follows from the commutation relations (2.4) that the subalgebras U*

generated by the modes of the T-operators TZ(-;.I) form two Borel subalgebras of

DY (gl(m|n)). Moreover, by (2.5) they are Hopf subalgebras. We call U* the
standard Borel subalgebras of the Yangian double DY (gl(m|n)).

As we already mentioned, the universal Bethe vectors are constructed from the
matrix elements of one universal monodromy matrix T;'; These operators belong
to the standard ‘positive’ Borel subalgebra U*. The goal of this section is to

express the universal Bethe vectors in terms of the current generators of the Yangian
double DY (gl(m|n)), using the approach developed in [13], [14], and [26].

In this paper we consider formulae for the Bethe vectors compatible with two
different ways of embedding an algebra of smaller rank in an algebra of larger rank.
Namely, from the explicit formulae for the right Bethe vectors B(t) (see (5.17)) one
can conclude that the Bethe vector B(f) is obtained by resolving the hierarchical
relations based on the embedding of the Yangian double DY (gl(m — 1|n)) in the
larger algebra DY (gl(m|n)). Similarly, it follows from (5.25) that the Bethe vec-
tor I/Bg(f ) is obtained by resolving the hierarchical relations based on the embedding
of the Yangian double DY (gl(m|n — 1)) in the larger algebra DY (gl(m|n)). To
express the Bethe vectors B(Z) and B(Z) in terms of the current generators we will
use two different types of Gauss decompositions of the monodromy matrix elements
and the corresponding current generators |14].

The general theory of the relation between Bethe vectors and currents was devel-
oped in the paper [26] and then applied in [13| and [14] to the construction of the
hierarchical Bethe vectors for quantum integrable models associated with the quan-

tum affine algebra U,(gl(N)). The main tool used in those papers was the language
of projections onto intersections of Borel subalgebras of different type.
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To describe the Bethe vectors B(t) and C(t) we will use the current Borel sub-
algebras associated with the Gauss decomposition (2.14)—(2.16) and the antimor-
phism (2.10). For the Bethe vectors B(f) and C(¢) we will use the same anti-

morphism and the current Borel subalgebras associated with the second Gauss
decomposition (2.17)—(2.19).

3.1. Notation and conventions. We will denote sets of variables by bars over
letters: u, v, and so on. To simplify formulae below, we use a shortened notation
for products of functions depending on one or two variables. Namely, whenever we
indicate that a function \; depends on a set of variables, the notation \;(%) stands
for the product of the functions A;(ug) over the set w. Similarly, the notation
fq(@,v) (or gp;(@,v), or hy;(w,v)) denotes the double product of these functions
over the corresponding sets. For example,

@) =[] Aj(w) and  fy@v) =[]  fulueoe).
UpEW UpEW, Vyr €V
Moreover, we use the same convention when considering products of commuting
operators. For example,
T;;(@) = [[Tij(ue)  for [i] + [j] = 0 mod 2.
¢

We also introduce several rational functions which will appear in the text below.
First, for any function z(uy,us) we set

A, (u) = H z(up,ur) and Al (z) = H x(ug, ug ),
1<0<<a 1<6<l'<a

where a = #u.
Second, for arbitrary sets of parameters u and v we define

e\ Af[i] (ﬂ) f[z](ﬂ76)
O K@ Moy

) for i # m and with Ay(w) for i = m.
,0) for i # m and with ¢(u,v) for i = m.

and v, (u,v) = (3.1)
The first function coincides with Ay, (
The second function coincides with f;(
Similarly, we define

u
u

. Af[i+1] (ﬂ)

5:(1) = S+ (W, 0)
’ A (@)dum

aIld P)/’L(/u” U) = h(@,a)(si,m ’

For i # m,

Vi (E) = Af[z‘+1] (ﬂ) and :}/\’t (67 @) = f[i—l—l] (ﬂ7 6)7
while for ¢ = m,

Am(w) = A (w) and 7, (w,v) = g(v, 7).

Note that the function v, (@) differs from 7, (@) by the factor (—)###¥=1)/2 Gim-
ilarly,

Y (@, D) = (=)F "5, (@, D). (3.2)
Also, note that ~;(u) = 7;(w) and ~;(u,v) = 7;(u,v) for i # m.



Current presentation for the double super-Yangian DY (gl(m|n)) 45

3.2. Deformed symmetrization. For any formal series G(¢) depending on the
set of variables ¢ (see (3.11) below) we define the deformed symmetrization (or
c-symmetrization) to be the sum®

al (t5ciory = toegp))€s,m +C
[um— ny os (¢ os(£)/=s,m [s] o
SEORD DN | B | B B ”)E —SGen,  (33)
ceS+ s=1 o<t os(eh) os(f)/~s,m [s]
o (0)>a (L)

where Sz = S, X -+ x S, is the direct product of the groups S, of permutations
of the integers 1,...,r,, s =1,..., N, and “¢ is the corresponding permuted set of
Bethe parameters (3.11). By the arguments at the end of § 2.4, the formula for the
deformed symmetrization can easily be written as

al (t —t%. 0 )Esm + ¢
S (T ooy ~ los(ey)€sm + Clsp1]
smee® =3 [T Il G = e o 60D 69
oc€SF s=1 o<’ os (L) os(0)/)ts:m [s+1]
o (6)>a" (L")

In what follows we will use either (3.3) or (3.4), depending on the situation.
We say that a series Q(t) is c-symmetric if

Sym; Q(F) = (ﬁrs!)@(f)-

Note that for s = m the product over ¢ and ¢ is equal to (=)7(®™), where
P(c™) is the parity of the permutation ¢, and the sum over all permutations ¢
is nothing else but the antisymmetrization over the set ¢™.

3.3. The Bethe vector B(¢) and the dual Bethe vector C(t). We first
explain the relation between the Bethe vector B(¢) and the current presentation
(2.22)—(2.28).

Let Up C DY (gl(m|n)) be the DY (gl(m|n)) subalgebra generated by the modes
of the simple root currents Fi(e), t=1,...,N, ¢ € 7Z, and by the modes of the
‘positive’ Cartan currents kj(.el), j=1,....,N+1, ¢ > 0. In the framework of
the quantum double construction, the subalgebra Uy C DY (gl(m|n)) dual to Uy is
generated by the modes of the simple root currents Ei(e), 1=1,...,N, { € Z, and
by the modes of the ‘negative’ Cartan currents kj(-el), j=1,...,N+1,¢ <0.

We call the subalgebras Ur and Ug current Borel subalgebras. They are Hopf
subalgebras of DY (gl(m|n)) with respect to the so-called Drinfeld coproduct

APN(F(2) = Fi(2) @ 1+ kL (2) (K (2) 7' @ Fy(2),
AP (k5 (2)) = kjf (2) © k5 (2), (3.5)
AP Ei(2)) =1® Ei(2) + Ei(2) ® ki (2)(k; (2))7 1,

which obviously differs from the coproduct given by (2.5).

SRecall that N = m +n — 1 is the number of simple roots of the superalgebra gl(m|n).
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In order to express the Bethe vectors B(¢) in terms of the current generators,
we need only the one current Borel subalgebra Ur and its coalgebraic properties
given by the first two equalities in (3.5). Consider the following intersections of this
current Borel subalgebra with the standard Borel subalgebras U=*:

Up =UprnNU~ and Uf=UprnUT. (3.6)

Each of these intersections is a subalgebra of DY (gl(m|n)) [26], and they are coide-
als with respect to the coproduct (3.5):

APNUN) =Uf @Ur and APNUL) =Ur @ Uj. (3.7)
To see this we introduce the expansion of the following combination of Cartan
currents:
k(@) =143 02
£>0
Then the coproduct (3.5) maps the modes Fi(e) of the currents Fj(z) to
APEN =FO 91410 F + Y s er Y. (3.8)
>0

The properties (3.7) become obvious in view of (3.8).

According to the Cartan—Weyl construction of the Yangian double we have to
find a global ordering on the generators of this algebra. There are two different
choices for this ordering. We choose the ordering such that elements in the subal-
gebra U, precede elements of the subalgebra U+ [26], [27]. We say that an arbitrary
element . € Up is ordered if it is represented in the form

F=F_. F,,

where Z € U}t.
According to the general theory [26] one can define the projections of any ordered
elements of the subalgebra Ugr on the subalgebras (3.6) using the formulae

P}F(y_'§+):€(3z_)y+, Pf_(y_'g;_,_):g_&“(gﬁq_), <9Z:|:€U}j;‘:, (39)
where the counit map €: Up — C is defined by the rules
e(F =0, «1)=1, &) =0

Let Uy be the completion of Uy, which is formed by infinite sums of monomials
that are ordered products of the form

N

JZ{ilél) _ __%a&l)’ /) < Ay,

where szfige”) is either Fi(lel) or k:z(fl ). It can be proved [26] that

1) the action of the projections (3.9) extends to the algebra Up;
2) for any .# € Up with ADP)(F) = F' @ F" we have

F =Py (F')- PH(F"). (3.10)
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The formula (3.10) is an important tool for calculating the universal Bethe vec-
tors. It allows us to present an arbitrary product of currents in the ordered form
using simple formulae for the Drinfeld current coproducts.

Now we can define the universal Bethe vector. Let

F={t1,.. . th ot 2 N (3.11)

1) 27 ? TN

be a set of parameters. The superscript labels the different types of Bethe parame-
ters and refers to the simple root numbering, and the subscript counts the number
of parameters of a given type. There are r, Bethe parameters of type / =1,..., N.

Let ] Aq (respectively, II Aa) denote the ordered product of non-commuting
a a
operators A, such that Ay is on the right (respectively, on the left) of A, for ¢ > ¢:

I] Ac=4;4;,21 -+ Ain A and [ Aa=4Ai Aipx -+ Aj_1 Aj.

j>a>i i<a<j

We define an ordered product of total currents,

#0= 1 ( II =), 3.12

1<a<N N 1<U<r,

which is a formal series with respect to the ratios % /t¢ (b > ¢) and t¢/ t5 (i >7)

and takes values in the completion Ur (see [26]). The product (3.12) has poles for
some values of the ratios ¢} /t¢ and t¢/ t7. The operator-valued coeflicients at these

poles take values in the completion Uy and can be identified with composed root

currents (see Appendix A). Note also that in view of the commutation relations

between currents, the product (3.12) as well as its projections are c-symmetric.
Let us introduce the normalized product of currents

. TToC, ve(T) g
F(+) = t), 3.13
) o f[z+1](f”1afe)a¢( ) (313

where v, is given by (3.1). Then the universal off-shell Bethe vector B(%) is defined
as the action of the projection on this normalized product, applied to the singular

vector |0):
N

B(t) = P/ (F()) [] As()]0). (3.14)
s=1
Note that in view of the commutation relations (2.24) and (2.26) between currents
the normalized product of currents (3.13) is symmetric with respect to permutations
of Bethe parameters of the same type.

The normalization of the universal off-shell Bethe vector is chosen so that it
removes all zeros and poles originating from products of currents. For example,
according to the commutation relations (2.24), the products of currents .Z,(t")
have poles when tf —th+ cgg = 0 for j > i and £ # m, and zeros for all ¢
when t? — t{ = 0. The potential singularities are compensated by the rational
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functions in the numerator of the prefactor in (3.13). On the other hand, the
products of currents .%,(t*).%,,1(t**!) have poles when t?“ — tf = 0 and zeros
when tf“ —th+ cie+1) = 0 for all 7, j. These possible singularities are compensated
by the product of the rational functions fio41)(t*"*,#°) ! in the denominator of the
prefactor in (3.13).

Our strategy is to calculate first the projection in (3.14) and then to rewrite the
result of this calculation as some polynomial in the monodromy matrix elements.

This will be done in § 5. Then we define the dual Bethe vector C(¢) by the formula
C(t) = ¥(B(?)), (3.15)

where the antimorphism (2.10) is extended from the algebra to vectors of the rep-
resentation of this algebra using the relations ¥(]0)) = (0] and ¥((0|) = |0).
Alternatively, the formula for the dual Bethe vector can be found via the pro-
jection method and another choice of the current Borel subalgebra, the Drinfeld
coproduct, and the associated projections from the ordered product of currents

I ( I Et})).

NZ>2a>1l “rgo=6>1
We do not perform these calculations in this paper.

3.4. The Bethe vector B(f) and the dual Bethe vector C(£). For the Bethe

vector B() and the dual Bethe vector C(£) one has to explore the second cur-
rent realization (2 35)—(2.41) of the Yangian double DY (gl(m|n)) given by the

currents Fj(z), E;(z), and ki( ), which are related to the monodromy matrix ele-
ments through the Gauss decomposition (2.17)—(2.19) and the Frenkel-Ding for-
mulae (2.34).

As in the previous subsections, to describe the Bethe vector ]ﬁ%(f ) we define

a Borel subalgebra Up such that the ‘positive’ Cartan currents Ej(z) are in Up

and have the coalgebraic properties

APN(F(2) =1 @ Fi(2) + Fi(2) @ B (2) (B, (2)) 5.16)
N(D) o+ _ 7+ 7+ )
AP (EF(2)) = kF (2) @ kT (2).

We again consider the intersections of this current Borel subalgebra with the
standard Borel subalgebras U~,

Un =UprNU~ and Ut =UpnUT, (3.17)
and check the coideal properties of these intersections,
APNTH) =Up@Uf and APV (U;) =Uyn @ Up
with respect to the coproduct (3.16).

Using the same cycling ordering for the Cartan—Weyl generators of U F as we

used for ordering elements in Up, we say that an arbitrary element Z el r is
ordered if

—~

F=F_ - Fy,
where @ € (/J\'}iE
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Again, according to the general theory formulated in [26] one can define the

projections of any ordered elements of the subalgebras U r and U £ on the subalge-
bras (3.17) by using the formulae

~ —

PHZ. - F.)=8F )7, Pr(7. 7)) =F aF)., Frelp, (318)
where the counit map &: DY (gl(m|n)) — C is defined by the rules
B =0 and 2K =0,

and ﬁi(e) and E]@ are modes of the currents ﬁz(z) and E:r (z) in the second current
realization of the Yangian double DY (gl(m|n)).

Defining the completion U g, we can verify [26] that:
1) the action of the projections (3.18) extends to the algebras Ur;
2) for any 7 € Up with K(D)(agf) = 7' ® .F" we have

F =P, (7")-PH(T)). (3.19)

For the set (3.11) of Bethe parameters we consider the normalized ordered prod-
uct of currents

/T Hé\f:1 ’AW(#) T
F(F) = , 3.20
Oy (320
where o o
Z(f) = ﬁa(tg)). (3.21)

N>a>1 Nre>0>1

The universal off-shell Bethe vectors associated with the second current realiza-
tion of the Yangian double DY (gl(m|n)) are defined in terms of the action of the
above projections on the singular vector |0) as follows:

B() = P/ (F()) [] Aasr(8)]0). (3.22)

The normalization of this universal off-shell Bethe vector is again chosen in such
a way as to remove all zeros and poles arising from products of currents.
The dual Bethe vector C(%) is defined using the antimorphism (2.10):

C(t) = v (B(7)). (3.23)

3.5. Main results. In this paper we verify the following.
e The two different ways of constructing the Bethe vectors lead in the end to the
same result, that is,

A~

B(f) =B(f) and C()=C(). (3.24)

In §4 we will prove this statement for the Bethe vectors B(Z) and B(Z) only. The

proof for the dual vectors C(f) and C(f) follows from application of the antimor-
phism ¥ to the first equality in (3.24).
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e Bethe vectors become on-shell, or equivalently, become eigenvectors of the
supersymmetric transfer matrix t(z) (2.6) with the eigenvalue (4.78), if the Bethe
equations (4.75) for the parameters (3.11) are satisfied.

e Explicit formulae for the Bethe vectors in terms of the monodromy matrix
elements are given by (5.17) and (5.25). Explicit formulae for the dual vectors can
be obtained using the antimorphism (2.10).

e The coproduct properties for the Bethe vectors are given in the relations (4.8)
and (4.9). They express the coproduct of a Bethe vector in term of Bethe vec-
tors belonging to the two copies of DY (gl(m|n)) arising under application of the
coproduct.

4. Formulae for the action of the monodromy matrix elements

The goal of the present section is to prove that the Bethe vectors B(Z) and B(7)
coincide. After obtaining formulae for the universal off-shell Bethe vectors in
terms of elements of the monodromy matrix (see §5), we will see that a direct proof
of the equality (3.24) is a rather complicated combinatorial problem. Instead, we
will prove it by checking that both of these vectors satisfy the same recurrence rela-
tions with respect to the action of the upper triangular and diagonal monodromy
matrix elements on these vectors. To check this statement it is not necessary to get
explicit formulae for the universal off-shell Bethe vectors in terms of the monodromy
matrix elements. Before starting this analysis, we show that the Bethe vectors B(t)
and I@(f ) have the same coproduct properties that follow from the coproduct (2.5)
for the monodromy matrix.

4.1. Coproduct properties of the Bethe vectors. Calculating the coproduct
of the product of the currents F;(t) using the first formula in (3.5), we get that the
Drinfeld coproduct of the ordered product of simple root currents .7 (t) is

APHZE) = > - > Hse o

0<s1<m1 0<8N<7“N £=1

« Sy ( 2:(6)7( MBI IR (0) RNURY

s=1 f=s4+1
where the sets t’ and t”" are
2. 4N N
_{t R Y UL - SUNEY AN\ 0 8
2, N
{t81+1,.. rl,tszﬂ,.. trz,...,tsNH,...,t,,,N},
and Zs(t) is the rational function
N-1 a+1 N—
t9 —t,," " —¢
I\ J4 V4 [a+1] a+1l ,a
Zs(t) = H H T H H Jran (G 7).
a=1  s5,<€<rg 12 a=1  s5,<l<r,y
0<£/<Sa+1 0<£/<8a+1

The formula (4.1) enables us to obtain the coalgebraic properties of the nor-
malized product of currents (3.13) with respect to the Drinfeld coproduct. Indeed,
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the c-symmetrization can be transformed into the usual symmetrization over the
set {t*} due to the property

7s(8) Symyz (G(t°)) = Symz (75 (£*) G (£)). (4.2)

Then the symmetrization can be replaced by the sum over partitions and subsequent
symmetrization over each subset:

Symg (1) = > Symy, Symg (). (4.3)

ts={t7,t5;}

Here the summation is over the partitions of the set {#*} into two disjoint sub-
sets {ti} and {¢;} with cardinalities #17 + #t7; = #t°, where

E:{fl,...,t_N}iﬂUfH (4.4)

and
th={t,..., 8V, tn={tg, ..., tN}. (4.5)

Using (4.2) and (4.3) and the fact that the normalized product of currents F(t)
is symmetric with respect to permutations in each set of Bethe parameters t¢,

¢=1,...,N, we can transform (4.1) into a sum over the partitions given by (4.4)
and (4.5):
(D) (E(F Hiv 1 Vs (i 1) 1 y
APHF(E) =) == Hks+1 ti)ky (t) ' @ F(tu). (4.6)

1 1
part 11s=1 f8+1 (t8+ ts

With the help of the Drinfeld coproduct (3.16) for the second current realization
of DY (gl(m|n)) we can show that the coproduct of the normalized product of
currents (3.20) is given by

. ~ _)FEE AT te . 18
75 )

part Hszl f[S-l-l] (tig—’_l ts) s=1

where the summation is over the disjoint subsets defined by (4.4) and (4.5).
We can use the formulae (4.6) and (4.7) to establish the coproduct properties
of the universal Bethe vectors (3.14) and (3.22). It was proved in |26] that for any

clements .% € Up and & F e U r the following equations hold:

A(Pf(F)) = (Pf @ P (AP (F)) mod Uf & J,

APHZ)) = (P o PH(AP(F)) mod Uff ©J,
where J and J are ideals in the corresponding subalgebras which annihilate the
singular vector |0). A proper definition of these ideals is given in the beginning of

the next subsection. Using these equalities and the formulae (4.6) and (4.7), we get
that

T Hiv 1 Vs (i 4) (1) (1) (7s (2)/(fF a (2) (7s
B(f) =) —x HA D@ @B (fn) [[ AP #) (48)

part H =1 f[8+1 (t8+1 ts s=1
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and

mo oy rm ~ /Te T N N
o R A ) s s .
B(t) = Z N-1 —ls+1 -ISI =B (&) H Agr)l(tn) ® B (&) H AP ().
part Hs:l f[5+1] (tII ’ tI> s=1

s=1
(4.9)

Taking (3.2) into account, we conclude that the universal Bethe vectors B(t) and
]@(f ) have the same coproduct properties, which indicates that they may coincide.
Below we will show that they satisfy the same recurrence relations, thereby proving
that they do coincide.

The coproduct formulae (4.1) and (4.6) are very powerful tools for calculating
the projection of a product of currents. Indeed, using the fundamental property in
(3.10) of the projections P3, we get from (4.1) that

N
T 1 r— T\ p— T/ T
F() = Z Z HmSymf(Z§(t)Pf (FENP(Z("))),
0<s1<r1 O0<sny<rn =1 '
(4.10)
and from (4.6) that

N s 18
FE) = ). [ 7. (. 1) Py (F(&)) - P} (F(tn)). (4.11)

N-1 7s+1 75\ f
ST | N G

This equality and the analogous equality for the product of currents ﬁz(t) will be
used in the § 5 to solve the hierarchical relations for the nested Bethe vectors and to
obtain explicit formulae for them in terms of the monodromy matrix elements. This
will be achieved by an explicit calculation of the projection of the corresponding
products of currents, which reduces to a calculation presented in Appendix C.

4.2. Ideals of the Yangian double and presentations of the projections.
To calculate the action of monodromy matrix elements on Bethe vectors, we have to
formulate an important auxiliary statement about the action of monodromy matrix
elements T:rj(z) on ‘negative’ projections of composed currents Py (Fy,i(w)) and

]3f_ (ﬁ kl(w)) modulo certain ideals. This can be proved in the same way as used

in [27] for the quantum affine algebra Uq(g[(N )), and therefore we just sketch it
below.

Let Ul:;t and U Et be the intersections of the standard Borel subalgebras U+ and
the current Borel subalgebras Ur and Ug used in §3.3. Let I C DY (gl(m|n)) be
the ideal constructed from the elements of the form .#_ - .% such that #_ € Up,
ZF € Up, and e(F_) = 0. Here and below, ¢ is the counit in the Hopf alge-
bra DY (gl(m|n)). It is clear from the definition (3.9) of the projection PJT that the

whole ideal [ is annihilated by it: PJT (I) =0. Let K € DY (gl(m|n)) be the ideal
generated by the elements which contain any combination of the ‘negative’ Cartan
currents k; (u). By the commutation relations in DY (gl(m|n)), K is indeed an ideal
because the ‘negative’ Cartan currents cannot be annihilated by any of the commu-
tation relations in DY (gl(m|n)). Let J C DY (gl(m|n)) be the ideal generated by
the elements of the form % - &, such that & € Uy, # € U, and (&) = 0. By
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the definition of this ideal, any element in J annihilates the right vacuum vector:
J|0) = 0. Below we will use the symbols ~;, ~x, and ~; to denote equalities in
the Yangian double DY (gl(m|n)) modulo terms from the corresponding ideals I,
K, and J. Similarly, starting from the current Borel subalgebras U r and U B, We
deﬁne the ideals I K and J and the equivalence relations ~7, ~5, and ~ 7.

Since the off-shell Bethe vectors defined in (3.14) and (3.22) obviously do not
belong to the ideals I and K nor the ideals Tand K , we can compute the action of
the monodromy matrix elements on the Bethe vectors modulo these ideals. More-
over, since the ideals J and J annihilate the vacuum vector |0), we can also skip
the terms from these ideals when calculating the action of the monodromy matrix
on the projections of currents.

Using the commutation relations (2.7) and (2.8) between the Gauss coordinates
of the ‘positive’ and ‘negative’ monodromy matrices, as well as the relations (A.32)
and (A.36) between the ‘negative’ projections of composed currents and the Gauss
coordinates, we can prove the following.

Proposition 4.1 (see [27]).

TF(2) - P (Fra(w)) ~1. 5 —drcird19(2,w) T (2), (4.12)
T (2)- 13f_ (Fia(w)) ~ER _$lc[l,k]5i,k9(zaw)Tl-':j(z)7 (4.13)

where cp g s given by (A.30), and®
o, = (=) AFUDEFEGT for | > 5,
b = (—)+0 forl <.

Remark 4.1. One can extend the values of the indices k& and [ in (4.14) to the
values k = 7 and [ = 4:

(4.14)

o, =1 for k=35 and $z=1 for | =1

(this extension will be justified later; see Proposition 4.6).

Sketch of the proof of Proposition 4.1. The appearance of the Kronecker symbols ¢;;
and d; i in (4.12) and (4.13), respectively, was proved in [27]. Let us give arguments
which fix the rest of the terms on the right-hand side of (4.12) and (4.13), including
the phases (4.14). To do this we consider the equations (4.12) and (4.13) applied
to a right singular vector.

It is clear from the Gauss decompositions (2.14) that

g (w)]0) =Ty (W) Ty (w) ~0).

Then the equation (2.8) can be interpreted as

T () Ty (w) Ty (w) ™ ~rke (—)m“””“””““b(%w)T;fk(Z)Tf,j(w)Tﬁl(w)(_l, |
4.15

6The asymmetry in the symbols ¢, and $l is related to the asymmetry in the different Gauss
decompositions.

46



54 A. A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, and N. A. Slavnov

and due to the Kronecker symbol §;; on the right-hand side of (4.12) the ‘negative’
monodromy matrix elements on the right-hand side of (4.15) cancel each other.
Taking (A.32) into account, we get that ¢, = (—)*I{+UD+EID],

Similarly, it follows from the Gauss decomposition (2.17) that

F,;l(w)|0> = Tl_,k(w)TI;,k(w)_1|0>~
Then the equation (2.7) can be interpreted as

T ()T (W) Ty (w)™H g g (=) AWM g (2 )T (2) T (w) Ty (w) 7

(4.16)
and due to the Kronecker symbol d; 5, on the right-hand side of (4.13) the ‘negative’
monodromy matrix elements on the right-hand side of (4.16) disappear, leading
to q/[)\l = (—)1+[i]. U

We conclude this subsection by formulating the following proposition.

Proposition 4.2. The off-shell Bethe vectors given by (3.14) and (3.22) satisfy
the same recurrence relations following from the action by the upper triangular
monodromy matriz elements T; ;(2), i < j, on these vectors. This implies that the
Bethe vectors coincide:

B(f) = B(f).

The proof of this proposition will be given in the next two subsections, §§4.3
and 4.4.

4.3. Auxiliary presentations for the projections. To calculate the action of
the upper triangular and diagonal monodromy matrix elements on the Bethe vectors
(3.14) and (3.22), we have to obtain a special presentation for the projections of the
products of simple root total currents. A systematic way to get such a presentation
is based on techniques elaborated in [28]. Below we use the results contained in
that paper, adapting them to the case under consideration.

Proposition 4.3. The following identities hold for i < j:

j—i i+0—1
Pr(F@) - Fi() = 3 iy L] o070 P (Frprsni(87)
£=0 s=1
X Py (Fipopa (77 - Fi (7)), (4.17)
j—i j+1
Pr (@) @) =3 ety iy 1 g8 P (Fy e (#7)
£=0 s=j5—/¢
X Pr(Fj g1 (77) - B (tY). (4.18)

Proof. The two equalities can be proved similarly, using the definitions of the pro-
jections. Therefore, we give a detailed proof only for (4.17). We start from the
definition

Py (Fi(t')--- F5(¢))) = Py (Fi(t")) - Py (Fia(8"11) - - F5 (7))
+ Py (B () Fy () Frya (872) - Fy(19)). (4.19)
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Using the definition

F @ = / aw £

and the commutation relation

L () Fi(u) — 8(u,0) Py, (), (4.20)

Fi(u)Fipa(v) = (@ —0)-

which is a particular case of the definition of the composed current (A.1) or (A.9),
we get that

Fi(+) (ti)Fz'+1 (ti—l—l) = fliz) (t”l : ti)Fi+1 (ti—i—l)Fi(-l-) (tz’; ti—l—l)

e 9 () Fra (87, (4.21)
where F7 (15 4111 = Fi(+)(ti) R F™ (#1+1). Because of the com-
pitl — i + C['H—l]
mutativity of the current F;(t) with Fjo(t*72)--- F;(t7), the first term in (4.21)

vanishes under the ‘negative’ projection in the second term of (4.19). On the other
hand, by the second relation in (A.13),

Fiio (1) = =0 (Fia (7)) + ey Frp ((HHED @), (4.22)

where the operators 7o) ( - ) are called screening operators and are defined by (B.1).

The second term on the right-hand side of (4.22) also vanishes under the ‘negative’
projection in the second line of (4.19). Thus, (4.19) turns into

Py (Fi(t") - F(¢)) = Py (Fi(t")) - Py (Fia (07 - F5 (7))

— g9 (L)L po (P (Fipa (8771 - F3 (1)) (4.23)

1

In the second line of (4.23) we obtain the ‘negative’ projection of the product of
currents Fj 1 (t'*1) .- F;(¢7). Therefore, we can use this equality recursively to get
in the first step that

Py (Ey(t)) - Fj(t9)) = P; (Ey(t))) - Py (Fia (1) - Fj(¢9))
* C[_ivli+2]g[i+1] () Py (Figo,i(tF)) Py (Figa(tP7) - Fy(#))
+ g 9 () g (072 6

X Lo (S0 (PF (Fioa(t2) - Fi(1)))),

where we have again used (4.22) and the commutativity of the screening operators
and the projections (see Appendix B). Continuing this recursion process, we prove
(4.17). The equality (4.18) can be proved similarly starting from the commutation
relations

- u— v+ C[i-l—l] ~

Fi1(u)Fi(v) = (=)~ Fi(v)Fi1 (u) + 6(u, v) Fry2,4(v)

and using the first equality in (A.17). O
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For each simple root index ¢ = 1,..., N we introduce the following notation for
ordered products of currents:

Fi(f) = F(t)) - F(t) and F(F) = (%) E(t).

Using the normal ordering relation (3.10) (in the form (4.10)) and (4.17), we can
prove the following statement.

Proposition 4.4. The equality
P;(ﬁ’l(fl) e EN(EN)) = P]T(ﬁ’l(fl) e ﬁN_l(fN_l)) - Fn(tY)

— Z(Cg Symt—z,_._,gN [Ge(#_l, ce ,EN) [£1N+1]P (FN+1 g(tl ))
(=1

X PH(F1(F) - Fia (B FlF) - Fna () - Fn(EN)] + W (4.24)

holds, where for 1 < ¢ < N the rational functions

G, ) = fig () T gy 6 8) fraany (4571 F) (4.25)
s=/¢

appear along with the combinatorial factors

Co=]] . (4.26)

o (rg = 1)

In (4.24), W denotes terms having t_he structure Py (ijl(wl))Pf_ (Fjy ip (w2)) F
with j1 = jo for some element F € Up.

In (4.24) we used the shortened notation
e .
_{t P Z 1,tf+1,...7t£e}7 /L:17...77a£,

where the Bethe parameter t¢ is omitted from the set £, £ =1,... , N.

By (4.12), the action of any monodromy matrix element T+J( ) on the terms W
belongs to the ideal I, except for the terms proportional to d;;,0;, 4,. These terms
are irrelevant in view of the condition j; > jo > is.

Proof. 1t was proved in [28| that the projection
PHFR) - Fn ()
can be represented in the form”
PH(Fy-- =Y PPy (Fxi10) - P (P Fnoa) - P, (4.27)

where @( - (FNg1 g)) is a certain polynomial with rational coefficients in the
‘negative’ prOJectlons of the composed currents Fxyi4, £ =1,...,N, and the .7,

"In fact, this was proved in [28] for the case of the currents F\g, but it can easily be repeated
for the currents Fy, leading to (4.27).
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are the products of currents corresponding to the simple roots ¢. For brevity we
did not write the arguments of the currents in (4.27).

It was shown in [28] that only ‘negative’ projections of currents P, (Fnt1,e(t))
appear on the right-hand side of (4.27). The other ‘negative’ projections of cur-
rents P (Fir o(t)) with N > ¢ > ¢ do not appear. The main reason for such
a phenomenon is the factorization of projections of products of currents. We will
demonstrate this phenomenon below in the simplest non-trivial case of N = 2,
using the normal ordering relation (4.10).

Moreover, by (4.12) it is enough to keep in (4.27) only the first-order polynomials
in the ‘negative’ projections of composed currents. Indeed, after the action of the
monodromy matrix element Tjj(z) on a product of two ‘negative’ projections of

composed currents Py (FN_H,gl (t)) Py (FN+1,£2 (t)), the terms which are not in the
ideals I and K are proportional to d; ¢, 0n+1,¢,, and they vanish because /o < N +1.

Let us show how relations of the type (4.27) arise in the simple case of m =
2 and n = 1. We rename the sets of parameters as t' = w and t?* = v with
cardinalities #u = a and #v = b to simplify the formulae below. In this case the
formula (4.10) can be rewritten as

P}"(Fl(ul) s Fl(ua) . FQ(’Ul) .. 'FQ(Ub)) = Fl(ul) s Fl(ua) . FQ(’Ul) .. 'FQ(Ub)

—§ﬁga;;mpygum»pj@uwynpu%ypymyupx%n
— Sy—mg %Pf_ (FQ(U]_))P;_ (Fl(ul) s Fl(ua) . FQ(’UQ) s FQ(U[)))
—Sym fvr, ) !pf— (Fl(ul)FQ(Ul))

U (@ — 1) (b—1)

X P;_ (Fl (Ug) s Fl(ua) . FQ(UQ) < FQ(Ub)) + W. (428)
We keep the double symmetrized term in (4.28) because it is the source of the
‘negative’ projection of composed currents P (F3,1(v)) (see (4.29) below), while

the quadratic terms from P (F1(u1)F>(v1)) disappear in the next step of the recur-
sion.

Applying (4.28) recursively, we can replace the ‘positive’ projections by the cor-
responding products of total currents. Using the equality

Pf_ (Fl(u)Fg(’U)) = Pf_ (Fl(u))Pf_ (FQ(’U)) + C_lg(’l),"l,L)Pf_ (Fg,l(’l})), (429)
which is a direct consequence of (4.20), we obtain instead of (4.28) the equality of
formal series (recall that Fiyq ;(t) = Fi(t))

Pf(Fl(ul) s -Fl(ua) : Fg(vl) c .Fz(w,)) = Fl(ul) s -Fl(ua) : FQ(Ul) c 'FQ("U[,)
—gaﬁaéqﬁqmgﬂmgﬁuwy~Fu%yfxmynpx%)
—Sy—mg%Pf_ (Fg’g(’l)l))Fl(ul) s -Fl(ua) . FQ(’UQ) e 'FQ(’Ub)

¢ 'g(vi, ) f(v1, W)

(a— D (b—1)
X Py (F31(v1))Fi(u2) - - Fi(ug) - Fa(va) - - Fa(vp) + W,

- Symﬂ,ﬁ
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where the terms denoted by W again belong to the ideal I after the action of any
monodromy matrix element. Finally, using the normal ordering rule (4.10) for the
product of currents .%1, we can replace these products by their ‘positive’ projections
to obtain

P (Fi(ur) - Fi(uq) - Fa(v1) -+ Fa(uy))
= P}"(Fl(ul) .. ~F1(ua)) . FQ(Ul) s FQ(Ub)

—Sy—mg %Pf— (F372(U1))P;_(F1(’LL1) .. -Fl(ua)) . FQ(UQ) "'FQ(’Ub)

c (g(ilal;l;l()l;fgvi,):ll) Pf_ (Fg,l(’ul))

X P (Fi(ug) - Fi(ua)) - Fa(va) - - Fa(up) + W. (4.30)

- Symﬂ,i

We see that the terms containing the ‘negative’ projection of a current Pf_ (Fz,l (uq ))
disappear from the final formula (4.30).

Now we prove the statement of Proposition 4.4 in the general case, using the
normal ordering relation (4.10). Taking into account the arguments above, we
write

PW%(F)---% G NG >) Al Do Py () I ()

_ Z(Cg Symte ..... IN lf[g] tla H f[5+1] + tl)Pf_ (Fg(tf) . FN(t{v))

{=1

x PH(F(EY) - Fooa (71 Fod) - Fn(E)) | + W, (4.31)

where we keep only the terms containing P, (Fe(t{)--- Fn(tY)) as the source of

the ‘negative’ projection of a composed current P (F Na1e(tY )), and W denotes
terms which give elements of the ideal I after the action of any monodromy matrix
element T:fj (z). Using (4.17), we can replace (4.31) by

Pf(ﬁl(fl)“-cof (NN EY)) = () Ty (I (EY)

- ZCZ Symg g~ [Gf(te ' afN) e, N+1]Pf (FN+1 é(tl ))
{=1

x PH(FE) - Foa (B Fo(@) - F(B))] + W, (4.32)

Now we can use a result from [28] asserting that only ‘negative’ projections of
composed currents P (FNJFLg(t{V )), {=1,...,N, appear on the right-hand side

of (4.27). This allows us to replace the first term % (#') --- Fn_1 (N 1) Zn ()
on the right-hand side of (4.32) by

PJT (54’1(51) - -ﬁN_l(fN_l))ng(fN).
Similarly, the ‘positive’ projections of products of composed currents

PH(FAE) - Fra (i) () - Fn(E))
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under the sum sign in (4.32) can be replaced by
PHA@) - For @) Fulll) - Fua () - Fn @),

and this replacement changes only the structure of the elements in W. This finishes
the proof of Proposition 4.4. [

Similarly, using (3.19) and (4.18), we can prove the following statement.

Proposition 4.5. The equality

ﬁ;(%(t‘N) - FUTY) = PH(FNAN) - Fa(B)) - AU

- Zsymtl yeent (CEGE( ) t£+1) ‘n, e_|_1]Pf_ (ﬁ€+1,1(t71“1))

—

xP;uN(fN) Fra@NFE,) - FoB) FE)] + W (433)

T2

holds, where for 1 < ¢ < N the rational functions

Gﬁ(t_lv s 7t_e+1) = f[ tz—'—l te H g1 S—|—1] T‘s+1’ rs)f[s—|—1] (tf';:_ll ) tfﬂs) (434)

appear along with the combinatorial factors

N ¢ 1
it (4.35)

The symbol W denotes terms with the structure Py (ﬁjl,l(wl))Pf_ (ﬁh,l(wg)).

Again, the action of any monodromy matrix element T;‘:j (z) on W belongs to

the ideal I in view of (4.13). The terms not belonging to this ideal are proportional
to d; j,01,5,, and they vanish due to the condition 1 < js.

4.4. Action of the monodromy matrix element T ;(2). Let us apply the

monodromy matrix element Ti’j( z) from the left to (4.24) and (4.33). As one
can easily verify, the structure of the action formulae differs significantly in the
cases © < j and @ > j.

The action of the monodromy matrix elements T ;(z) for i < j leads to recursion
relations which relate Bethe vectors depending on fewer Bethe parameters to Bethe
vectors depending on more of these parameters. If we prove that the action formulae
for i < j are the same for B(¢) and B(?), then this will mean that these vectors
satisfy the same recurrence relations, and thus B(Z) and B(Z) coincide.

The action formulae for the diagonal monodromy matrix elements T; ;(2) lead
to the Bethe equations. They prove that the Bethe vectors become eigenvectors of
the transfer matrix if the Bethe equations are satisfied.

Finally, the action formulae for the monodromy matrix elements T; ;(z) with ¢ > j
are necessary for calculating the scalar products of Bethe vectors. This last problem
is beyond the scope of the present paper, and we will consider the general action
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formulae in this case in a separate publication. From now on, we restrict ourselves
to the action of the monodromy matrix elements T; ;(z) with i < j.
We introduce the shortened notation

Fo= F({T), Fl=F@), and F=7F(,)

and the analogous notation

—~ —~

Fo= 71, Fi=F{F) ad F| =F(,),

where #§ = {t*}\ {t{} and &, = {t'} \ {t{,} are the sets of Bethe parameters of the
same type with either the first or the last element omitted.
For 1 < ¢ < N we introduce the two sets of rational functions

GZ(EE_lv cee vt_q) = f[@] (t€7#_1)

q—1
< [ s+ & ) faan (875 8), €< g <N,
s=/{
_ _ _ (4.36)
G?(tp, e ,t£+1) = fle+1] (t“—l, tﬁe)
£—1
X H g[5+1] (tf‘:_+11 ) tf‘s )f[8+1] (tij+11 ) tf’s)7 1 < p < £
s=p

The rational functions in (4.25) and (4.34) are particular cases of the functions
in (4.36):
Ge(t) =GN (f) and G(f)=Gy(?).
Forg=j541,...,N+1landp=1,...,i—1 we also define the rational functions
Z5(z;t) = g(z,t‘f_l)Gg_l(f) and  Z7(z;t) = g(2, 10 )G]_,(t). (4.37)

We extend these definitions to ¢ = j and p = i by setting Zg(z; t) = zﬁ(z, t)=1.
Finally, let
e/

o _ 1
i _H(rs—l)!'

s={
Then the combinatorial factors given by (4.26) and (4.35) are

C,=C) and C,=C!.

Proposition 4.6. The following equivalence relations hold:

T} (2) - PH(F1 - Fn) ~rk D Symg e [0,CT 23 (1)
q=j
XTE (2) Fr o Ty Tl Fo] Ty Ty (438)
TH () PH P F) ~p g S S, ot [T B2 (:7)
p=1
CTH () B BT T Fps o Ty (430)

53



Current presentation for the double super-Yangian DY (gl(m|n)) 61

where the sign factors ¢4 forq=j3+1,...,N +1 and gp forp=1,...,i—1 are
giwen by (4.14), and ¢; = ¢; = 1.
Proof. We begin the proof with the relation (4.38). Assume that j = N 4 1. Then

by (4.12), under the action of T:TN 41(2) the sum over £ on the right-hand side of
(4.24) and also the terms W give elements of the ideal I. As a result,

T v (2) - PF(AE) - Fn(EY))

~ri Thy i (2) - PE(FE) - Fua (V7)) - Fa (V). (4.40)

Again using (4.24) for the projection PJT (F1(tY) -+ Fn-1(FV 1)), we can continue
this process and get that

T;FNH( )-P;(ﬂl(fl)'--ﬁN(fN)) ~IK T:Nﬂ(z)-91(51)'-~Q’N(5N). (4.41)

Assume now that j < N. Then by (4.12), besides the first term as in (4.40)
there will be a contribution of the term corresponding to ¢ = j in the sum on the
right-hand side of (4.24), so that

TH(2) - PH(F1 - Fn) ~i T(2) - PP (F - Fnoa) - P
+ Symgg LN [</5N+19(Z t )CNG (t)
x T, N+1( z) Fr- Fjo TN N} (4.42)

In view of (4.41) and (4.12) we can omit the projection operator PJT applied to the
product of currents Fy --- F; 1 F;--- Ty,

We leave the second term on the right-hand side of (4.42) as it is and consider
the first term. In this term we have the projection Pf+ (ﬁl T N—l) and we can
again use the presentation (4.24) for a product of currents in the smaller-rank
algebra gl(m|n — 1). As before, the only contribution comes from the regular term
and the one term with £ = j in the sum over £. We obtain

T;’:( z) - P+( - FN) N]KT+( ) - P+(J1 “FN_2)  FN_1FN
+Sym£j,...,£N—1[¢Ng(Z7tiV HeN G N(T)
X T n(2) P Ty T Fiy ] T
Sy [on1g(e )CNCY ()T () - P Ty T T
Continuing this process, we conclude that the action of the monodromy matrix

element T;f (z) on the projection P+( - Zn) modulo elements in the ideals [
and K is given by

T} (2) PH(P1 Pn) ~r TF(2) - T Ty

N1
+ Y Symp,gailbeg(z tiTHCITIGITH(E)
q=j+1
X T} (2) - Fre Ty F) Ty Ty Py (4.43)
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Using the relation (4.33) and arguments similar to those above, we get that

T:( ) P+( fl)’\/f,f{sz(z)-ﬂN...gl
1—1
+Y Symppioildpg(z, 2 )T GY_ (F)
p=1
X Ty (2) T TiF Ly ) Fpr - Fr. (444)

With the notation (4.37) the formulae (4.43) and (4.44) are equivalent to the asser-
tion of Proposition 4.6. [J

The next step is to use the explicit representations for the monodromy matrix
element T;-’:j (z) in terms of the Gauss coordinates (2.14),

= ) Fl 2k (2)ES,(2), (4.45)

1<p<s

and in terms of the ‘hatted” Gauss coordinates (2.17),

TH() = S () @RS R ()BT, (2), (4.46)

q
J<gSN+1

where we have formally set F;Lz(z) = ﬁ‘jj(z) = Ejz(z) = E+ (2) = 1. These
representations allow us to move the Gauss coordinates E;Z( ) and EJr ,(#) through
the corresponding products of currents.

As we will demonstrate below, for i < j these permutations transform the prod-
uct of currents in (4.38) into the product

Fioo Tyt Tl Tl T Ty T T Ty Ty, (447

and the product of currents in (4.39) into the product

TN T To T Fir T Tl T Fpr - T (4.48)
forp=1,...,iandg=7,...,N + 1. R
According to (A.29) and (A.35), the Gauss coordinates F} (z) and F, (2) can
be replaced by the total composed currents F, ,(z) and F, ,(z) modulo terms in
the ideal I. Then by (A.5) and (A.7) the products of currents

6\// 5\// a\ LY 6\ . O-\/ LY 6\/
Jp"'fi_l'fz f]_l JJ Jq—l

and
35;_1 ﬁj' T 35%” 1 ﬂ;’ (4.49)

in (4.47) and (4.48) will be extended by the corresponding simple root currents
depending on the auxiliary parameter z.
This observation shows that the action of the monodromy matrix element T;‘:j (2)

on the projections of currents P;r (1 Fn) and ]3}" (gf\ N ) have a similar

55



Current presentation for the double super-Yangian DY (gl(m|n)) 63

structure. This is the first sign that the recursion relations for the Bethe vectors
(3.14) and (3.22) coincide.

Let us be more precise. In view of (A.37) the Gauss coordinate E;z(z) commutes
with all the products of currents %, ---.%;_; except %, ---.%#;_1. This is because
by (A.37) the Gauss coordinate EJr ( ) is constructed from modes of the currents
Ey(2),Ept1(2),..., Ei—1(z). From the commutation relations (2.28) for the simple
root total currents we obtain the commutation relations of the simple root Gauss
coordinates,

By (0), Ffy ,(u)} = [’“]) (K, (o) (0) ™1 = Ky () (u) ™),
]

(v—u
[Ez z+1( v), Fz_-i-l z( )} = ity (kiy-l( )k:f(v) kz_-i-l( )k'_(u)_l)a

(v —u)>

which also follow from (2.8). From this we conclude that

By ps1(2), Fp(8)} ~i gppany (8, 2)9) (1),

where
by (t) = kpa (O ()7

We recall that |-, -} is the graded commutator defined in (2.28). Using this com-
mutation relation, the commutation relations of the Cartan currents with the total
currents F,(t), and the definition of deformed symmetrization (3.3), we have

n i Nrp=1)dp,m

Symie g+ 11 (87, 2) Fp (7, )¢y (87,)]- (4.50)

Let us explain the appearance of the phase factor (—)("=~1 in this formula,
for p = m. Using the definition of the graded commutator in (2.28), the com-
mutativity . (t)F,(t') = Fn(t')Y)(t), and the anticommutativity of the cur-
rents F,(t), we conclude that

[Em m+1( ) ‘/m(fm)}
~K Z(—)Hg(za tg" ) En(t7") - Fon (61U (80 ) P (6731) - Fin (817,

(__)(rm—l)
(rm —1)!

where the symbol ASymy.. (-) stands for antisymmetrization over the set of vari-
ables ™. It coincides with the deformed symmetrization Symz..(-) (see (3.3)) over
the same set.

Within the product of screening operators yEngl -+ 0 in the formula (A.37)

Ep+1

for the Gauss coordinate E; ;(2), only the screening operator 50 does not com-
5 p+1

~K Asymfm (Q(thTm)Fm(tT)"'F ( Tm —1)77[}+( ))

- + :
mute with the Cartan current k-, (17 ):

YEI(J% (k;_+1(t£p)) = _C[p+1]k;_+1(tfp)E;+1,p+2(t£p)a
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which can be obtained from the commutation relation (2.23). Again using (A.37),
we find that

(_)(rp—l)ép,m

B4 o)}~

Symg [gp41) (17, , 2) Fp (&0, )0y (87, )E iy 5 (87

(4.51)
In view of the result

E)(2) Fpr1- Fii1~5 0
we can represent (4.51) as an action of the Gauss coordinate E;Z(z) on the product
of currents .%, - - -.%;_1 modulo elements in the ideals K and J

(—)(Tp—l)(Sp,m _ i .
(rp — 1)! Symi [gpp41) (8. 2) Fp (8] )¢y (8)
X By i(t7,) - Fpra (BT0) - Full)). (4.52)

In the last line of (4.52) we can use (4.51) again, and by repeating the calculations
finally get that

Ef(2) - Fp(f) - Fi(T) ~i,s

i—1
E;:Z(z) . gip({P) .. gi_l({z—l)gi({z) ~K.J € H(_)(rs_l)és’m
s=p
X Symfp,...,fi—l C;,_l zf(z, f)fp(ffp) - (til 11)31({ )

kasH t8 t2 )71, (4.53)

where €, is the sign factor
=1 and e, = ()"l forp=1,2,...,i—1. (4.54)

We recall that the rational function if (2;t) is defined by (4.36) and (4.37).
Similarly, taking into account that the Gauss coordinate E;-fq(z) does not com-

mute only with the product of currents %_1(51—1) e gz;({j ) in the product (4.49),
we find that

(_)([q]+[p])([q]+[j])ﬁ+ (2) - Fgr (Y- T3 ()T (F )

72,4

.....

- 1[@’ V21 ) Ty a () x -

x F3(8) Fi ( H kS (kA ()Y, (4.55)
where €, is the sign factor
¢ =1 and ¢, = (—)UHPDEHUIR for g =5 4+1,5+2,...,N, (4.56)

and the rational function Z(z;1) is defined by (4.36) and (4.37).
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The Gauss coordinates F (z) and ﬁj’p(z) in (4.45) and (4.46) can be replaced
by the products of the corresponding currents (see the formulae (A.5), (A.29)
and (A.7), (A.34), respectively):

q—2

F+ NI Hf[s+1 Zs+1,Zs) 1Fp(zp)"'Fq—l(zq—l)|zp=...=zq_1=z7 (4-57)
=p

Fap(2) ~p Hf[sﬂ (zas1,28) " Fymr(zg-1) Fo(mp)|, _ _, ., (4.58)
=p

where we have changed the order in the products of currents and have introduced
an auxiliary set of variables Z = {z,,...,z,-1}, which in the end should all be set
equal to the parameter z.

Combining (4.38), the Gauss decomposition (4.45), the action (4.53) of the Gauss
coordinates E;;Z.(z), and the formula (4.57), we can obtain the action formulae of

the monodromy matrix elements T:fj (z) on the unnormalized Bethe vector

N
B(F) = P (F (D)) [[ )]0},

=1

where the ordered product of simple root currents .Z(t) is given by (3.12). We
have

i N+1
/() =Y D $&Cy'CI 1H( )(ra =) m
p=1 g=j s=p

.....

. ) Zf(z;fp,...,fi)Z?(z;fj_l,...,fq_l)
X(z;tp, ..., ta71)

X ’%)({17 T {p_l’ {Zp7t_£p}7 ceey {Z’i—latfﬂZ 11} {Z%{i}v ey {Zj—lﬂ?j_l}a

— —a—1 — —
{zj,t{},...,{zq_l,t'f },tq,...,tN)

Apr1 (B2 ) - NN (E) -+ Ao (971
p+1( p) z( 1_1) J( 1) q 1( 1 ))\p(Z)] , (4.59)
)‘p(zp) T )‘q—l(’zq—l) Zp=r=2q_1=%
where we have introduced yet another rational function X(z,#?,...,#971) depending
on the auxiliary set Z and the Bethe parameters:
X(Ea £p7 cee 7{(1—1) = H f[s—|—1](zs+17 {Zsa Eis})
—2
X H f[s—l—l Zs+1, {Z87t } H f[s+1] Zs+1s {Z87 1})f[p]( Ty~ )_1- (4'60)
5=]

Similarly, using (4.39), the Gauss decomposition (4.46), the action (4.55) of
the Gauss coordinate E;r’q (z), and the formula (4.58), we can calculate the action

58



66 A. A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, and N. A. Slavnov

formula of the monodromy matrix element T;‘:j (z) on the unnormalized Bethe vector

(1) = H K (0)10),

where the ordered product of currents ,;:(f ) is given by (3.21). We have

i N+1

T80 -3 3 bacy e Tl e

p=1 q=j
- ZF (2, .. t’)Zq( S L
..... - R
x B, {2}, {zior, ] 1} {zz,t} Az, P,
(2,8}, {zg1, 10 1},fq,...,t‘N)

Aprt (B2 ) - XN (BN (#]) - Mg (877
% p+1( p) ( 1_1) J( 1) q 1( 1 ))‘q(z)l 7 (4.61)
)‘p+1(zp) T Aq(zq—l) Zp=r=zq 1=2
where we have introduced another rational function X(E, t?,...,t771) depending on
the auxiliary set Z and the Bethe parameters:
j—2
X(z,#,..., 197 Hf[s+1 {zs11, 5,7 m+1 , Zs) H Sis+1) ({zo41, 71} 25)
=p s=i—1
q—2
— 1y —1
X H f[8+1] <{Z8+17t1+1}728)f[q] (Zq_l,f? 1) : (4'62)
s=75—1

Let us compare the phase factors in the first rows of (4.59) and (4.61). Using

the definitions of these factors in (4.14), (4.54), and (4.56), we observe that ¢, = €,
for p=1,...,4. On the other hand, at first glance

bg = (_)[q][j]+([q]+[j])[i] (4.63)
seems to differ from
6 = (_)[q][j]+([q]+[j])[p]. (4.64)

However, this is not true, because of the restrictions on p, ¢, j, and ¢. If the
parities of the indices [p] and [i] coincide, then the factors (4.63) and (4.64) also
coincide. Now consider the case where the parities of [p] and [i] are different. Recall
that p < 4. By the definition of the grading (see (2.1)), this means that [p] = 0
and [i]] = 1. But in this subsection we consider the action of diagonal and upper
triangular monodromy matrix elements T+j( z) on Bethe vectors. This means that
there is the restriction p < ¢ < j < ¢, so that if [p] # [i], then [j] = [¢] = 1 and
both factors in (4.63) and (4.64) are equal to —1. Below we will denote these phase
factors as

Pgep = ¢p€q Yp,q- (4.65)
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We can now restore the normalizations of the Bethe vectors (3.14) and (3.22) and
observe that the actions of the diagonal and upper triangular monodromy matrix
elements on these Bethe vectors lead to the same recurrence relations. This means
that the Bethe vectors given by (3.14) and (3.22) coincide.

We start our restoration of the normalization with the Bethe vectors (3.14) using
(4.59). Note that the deformed symmetrization in the action formula (4.61) turns
into the usual symmetrization in (4.66) in view of the property (4.2). Using the
explicit expressions for the rational functions (4.25), (4.34), and (4.60), we get that

i N+1
T .(2) - B(t) = Z Z PpCLtCI?
p=1 q=j
X Symg g1 g a1 [ D(E)Y(2,0)A(z;1)B({z,t})], (4.66)

where the sign factor ¢, , is given by (4.65), and the Bethe vector B({z,%}’) on the
right-hand side of this equality depends on the following set of parameters:

{Z,f}’ = {Elv"'75]3_1,{2,1?5})},...,{2,15;2 11} {Z,t_i},...,{z,fj_l},

{z,f{},...,{z,f‘f_l},fq,...,tN}.

The rational function D(%) is given by the product

o 1—1 f[s ( 5 _s ) qg—1 f[s (‘s s)
P = U =i o Wi e

s=j

(4.67)

The form of the other two rational functions Y(z,¢) and A(z;t) strongly depends
on the values of p and ¢. For p <7 and ¢ > j

i—1

j—1 q—1
Y(z,8) = fi)(z. ) fig (% 2) [ [ nE;, . 2)°m [ @ 2)% [ [ 0B 2)%m
s=1 s=j

s=p
9(z, )Hi_ig[sﬂ](tiﬂl,ts ) 9(2775({_1)1_15;? g[8+1](ti+1,t‘{)
[0 ) flsan (5L, 7) 1925 fissny (B0, 1)
Apa1(E)) - N(E )N () -+ Ao (171
Ap+1(2) -+ Ag-1(2) ’

)

Az t) =

forp=iand q > j

j—1
V) = fa(o P a2 [ .2

1 s
9(z, 1 )Hq_J R GRRNGY

h(Fs, 2
Xsl;[j(1z) H f[.s+1(+1t)

LT /\j(t{)"')‘q—l(t(ll_l)
A = i@ A ()Pt
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forp<iand ¢g=

i—1
Y(z,8) = fi(z. 2 ) fip (. 2) [ n(E,, 2)0

S

i1 2P VT2 grarp (£541 ¢
% H h(f‘q,z)és*m g( :p_)QHS_p gi +1]( rs+—1 rs) :
H =p—1 f[s+1] (t,,~5+1,t3)
Aprr (B8)) -+ Nt )
(Ap+1(2) -+ Ajor(2))Pprra—r !

and finally, for p =17 and ¢ = j

A(z;t) =

j—1
WeT) = e P (@, ) T A 2

7Y Ai(2)%
Azt) = (Aig1(2) -+ A1 (2))Prra =2

where 0; ; is the Heaviside step function

L, i<y,
o= {1
0, ©2>7.
Now we restore the normalization of the Bethe vectors (3.22) using (4.61). Again

using the explicit expressions for the rational functions (4.25), (4.34), and (4.62),
we obtain the action formula

7 N4+1
Ti(2) BE) =) > 9paCy'CH
p=1 q¢=j
X Symp g1 g a1 [ DE)Y(2,0)A(z1)B({z,1})], (4.68)

where the only difference from the action formula (4.66) is that the function D(¢)
is replaced by

1

(8, 72.) T fen(@ 1)
H o L o 89

— ’f‘b7 ’I"b S=]

Comparing the action formulae (4.66) and (4.68), we can prove Proposition 4.2 if
we prove that the functions D(Z) and D(f) actually coincide. First of all, we recall
that for s # m the rational functions fis(u,v) and fis11)(u,v) in the definitions of
the functions (4.67) and (4.69) coincide. A difference is possible only in the case
when s = m, since by definition

uUu—7v—+c U—v—2=cC
and  fip41y(u,v) = —— .

f[m] (U, U) =

u—v

Assume first that m ¢ {p,...,i — 1} and m ¢ {j,...,¢ — 1}. Then the func-
tions (4.67) and (4.69) coincide. If m € {p,...,i — 1}, then both the factors

u—v
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in the functions D(f) and D(f) that depend on the Bethe parameters ™ are
equal to g(t7* ,#" ). Similarly, if m € {j,...,¢q — 1}, then these factors are equal
to g(t7*,t7*). This means that in the Yangian double DY (gl(m|n)) the Bethe vec-
tors constructed using the first current realization (3.14) coincide with the Bethe
vectors constructed using the second current realization (3.22).

This concludes the proof of the main statement formulated in Proposition 4.2.

4.5. Actions of the diagonal elements and the Bethe equations. In this
subsection we consider the action of the universal transfer matrix t(z) in (2.6)
on Bethe vectors. For this we must find the action of the diagonal monodromy
matrix elements. Hence we should set ¢ = j on the right-hand side of the action
formula (4.66). Since the action formulae (4.66) and (4.68) are equivalent, we use
the first of them. We have

N+1 . N+1

t(z) -B(t) = Z(_)[i] Z Z PpgCim1CI!

i=1 p=1 q=i

x Symp s [DE)Y (2 DAz )B({z. )], (4.70)
where

2BV =4 P e Y B Y L B et e Y
{ Tp i1 1 1

and, we recall, N =m +n — 1.
Among all the terms on the right-hand side of (4.70) there are the so-called
‘wanted’ terms corresponding to p = ¢ = 7. One can easily see that their sum is

equal to
N+1

D (N (2) fa (2,8 frg (B, 2)B(E).
i=1
Let us compare the terms in (4.70) coming from the actions of the monodromy
matrix elements T; ;(z) and T;11 ;+1(2). In both cases they correspond to the terms
in the sums over p and ¢ on the right-hand side of (4.66) for p = ¢ and ¢ = i + 1.
For the action of the matrix element (=) T; ;(2) these terms are

1 Ai(t1) T 8) o L a w _
Symy: S0 VAR B(t,..., 0L {z, 0, 80 N
(ri —1)! i lf[z‘+1](tz+1atl1) h(ty, t4)00m ( {6} )
X g(z,ti)f[i](z,fi_l)f[iH] (t_iH?z)h(_i, Z)csi’m . (4.71)

For the action of the matrix element (—)+T,,; ;1 (2) the analogous terms are
(=) Doim Niw(ty,)  Ju(t,. 4
i Symy i i1 i 7i )\oi
(rz - 1)' f[z](t?",L?t ) h(tri’tri) o
xB(E, ..., 07 {z, 8 1,0 L EY)

x g(z, tf;i)f[i] (2, fi_l)f[iﬂ] (T 2)h(E.

7

L 2)00m | (4.72)
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The symmetrizations in (4.71) and (4.72) can be replaced by summations over ¢ =
1, ey Tyt

T )\Z tz ; f’L’tl B . . » B
l (E) f[](€ Z) ]B(tl,...,tz_l,{z,t}g})tz-‘_l,...,tN)

N R AR GRS

x g(z,t) fi (2, 77 1) fopny (FF, 2) (T, 2)5“"] (4.73)

and

T3 ) % ; ti,fi B B o B
o (_)(m—l)&-,mzl /\z—i-il(_tie_)l f[,](—f 68) ]B(tl,...,tz_l,{Z,tZ},tH_l,..-,tN)
-1 f[z](tevt ) h(teate) o

<9l ) (o E M e (B 2 (4.74)
If the set of Bethe parameters ¢ satisfies the system of equations

)\H—l(_t@ (ri—1)85.m f[_z‘] @:t@) h(%@?’m 1l (tz_, t_i_l)‘
Az(tz) h(t27t2)62m f[z] (t27t2) f[z—i—l] (tz—i_l;tZ) ’
then the terms in (4.73) and (4.74) cancel each other. If ¢ # m, then the equa-

tions (4.75) become the standard Bethe equations analogous to those arising in the
algebra gl(N + 1):

=(-) (4.75)

Nic (B fg@oty) [, 1)

) JH . (4.76)
Ai(ty) S (@0, t5) frip (T, 1))
For i = m the Bethe equations (4.75) simplify to
m m ym—1

Am(t7Y)  fQ7 L)

This simplified form of the Bethe equations is typical for the models of free fermions,
but one should remember that in the case under consideration the parameters t}"
are coupled through the equations (4.76) with ¢ = m =+ 1.

If the Bethe equations are satisfied, then the Bethe vector becomes an eigenvector
of the transfer matrix (2.6):

with the eigenvalue

N+1

T(z;t) = Z(—)M)\i(z)f[i] (Z,Ei_l)f[i](fiaz)- (4.78)

=1

In this case we call B(¢) an on-shell Bethe vector. Note that the Bethe equa-
tions (4.76) and (4.77) can be regarded as the condition of absence of poles of the
eigenvalue (4.78) at the points z = t°.
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Let us verify that all the remaining ‘unwanted’ terms in the action of the transfer
matrix (2.6) on the on-shell Bethe vector vanish. To do this we calculate the general
coefficient of the Bethe vector

B(#,..., £, {z,f@i}, ]z, ﬁjfa},f“'a*'l, Lt (4.79)
for fixed i and® a > 0 in the sum over the index ¢, of the Bethe parameters tlgb for
b=1,...,i+ a. These sums arise from the symmetrizations in (4.70). One can see
that a vector with Bethe parameters as in (4.79) can arise only from the actions of
the diagonal monodromy matrix elements T, , (z) with b=1i,...,i+a+ 1. To get
such a vector one must take the term with p — i and q = i1+a+1 in the sums over p
and ¢ in (4.66). Recalling the definition of the phase factor ¢; ;yq+1 in (4.65) for
each b =1,...,7+ a+ 1 and denoting it by ¢; j+q+1(b), we find that

1 for b = 1,
(i irar1(h) = S () forb=i+1,...,i+a,
—1 forb=14a+ 1.

Substituting the explicit Bethe equation in the function A(z;%¢), we get that the
coefficient of the Bethe vector (4.79) on the right-hand side of the action formula
(4.70) is proportional to the expression

i+a
g(ztp) " = Y gt )T =gz )T
b=i+1

which obviously vanishes. We note that the same trivial identity was used in [27]
(see the unnumbered formula on p. 29 of that paper) to prove that a universal
off-shell Bethe vector becomes on-shell if the Bethe equations are satisfied.

5. Explicit formulae for the universal Bethe vectors

5.1. Hierarchical relations for the Bethe vectors B(t). By calculating the
‘positive’ projection in the formula (3.14) for the Bethe vector B(¢), we can obtain
a hierarchical recurrence relation which connects the Bethe vectors constructed for
the Yangian double DY (gl(m|n)) with the Bethe vectors for DY (gl(m — 1|n)). Let
us separate the product of currents #(t') = Fy(t1)--- Fi(t;,) from the product
of the other currents .%,(t*), ¢ = 2,..., N, and apply the normal ordering rule
(4.11) to the latter product. It is obvious from this rule that in order to obtain the
desired hierarchical relations for the Bethe vectors (see (5.3) below) it is sufficient
to calculate the projection

PHZE) - P (Z2B)F(E) - Fn(@))). (5.1)

Using the property P, (& - PJT (#")) = 0 for arbitrary elements .%,.%’ € Up such
that €(.%#') = 0, we reduce the problem to the calculation of the projections

PH () - Py (F2(8) - Py (F3(8) - Pr (Fn(E)) ) (5.2)

8The case a = 0 was considered above to obtain the Bethe equations.
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This calculation is given in Appendix C, where it is shown to provide an answer in
the form of a sum over partitions of the sets ! and ff , 0 =2,...,N, of the Bethe
parameters in the expression (5.2).

To obtain the hierarchical relations for the Bethe vectors in the framework of
this approach, we use the formula (4.11) to rewrite the Bethe vector (3.14) as a sum
over partitions of the sets of Bethe parameters

=2, Ny = Ul

where
t{:{f%,...,tfv} and tiI:{E%IP' tII}

The primed set of Bethe parameters ¢’ differs from the full set ¢ of these parame-
ters (3.11) by excluding the Bethe parameters of the first type #'. It follows from
(4.11) and the properties of the projections that

B () = Z 7 Vtg il)zﬁ (Fou(ty) - Fou(ty, )Py (F(ED)) Ry (1)
N

1 ]V_ s {Sat_s m—1in)r te
[To vt tt)  pom—y () [T A®), (53)

X - -
f[ ](E%Iﬂtl) Hi\rzgl f[s—l—l] (tigl-l_17tf) s=2

where we have identified # with #! and used the fact that the Cartan currents ki (2)
commute with all the currents F(¢'), s =2,..., N. Let

71(751)
frz (12, 1)

where £/ = {2, ...,t"}. Then the expression on the first line of the right-hand side
of (5.3) is equal to

2 (t) = Py (Foa(ty) - Faa(ty, )Py (F(E))k{ (2), (5.4)

X (L 1)). (5.5)
To calculate the ‘positive’ projection of the product of currents
Foa(t) - Faalty,)

and the ‘negative’ projection P, (F(z')) in (5.4), we use the formulae (C.23) and
(C.25) for different 4, starting from larger i to smaller i. We use the first formula
(C.23) for i = m +1,...,N, going from ¢ = N to i = m + 1, and the second

formula (C.25) for ¢ = 2,...,m, going from i = m to i = 2.

The results in Appendix C show that the sets ¢ will always be further divided
into subsets. To describe this, for each subset t*, £ = 1,..., N, we introduce the
subdivision

= {t),lh 1, Ey} (5.6)

such that the following constraints hold for the cardinalities of the subsets:
o = .
#t, =#t, forall /#¢ and ¢=max((,¢),...,N. (5.7)

In (5.6) and (5.7) the superscripts of the subsets, as usual, describe the type of the
Bethe parameters, while the subscripts count the subsets in the subdivision (5.6).
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One should not confuse this notation with the notation #f = ¢\ {t{} used in the
previous section §4.

Moreover, to get a non-trivial result in the calculation of the ‘positive’ projection
in (5.4), we have to impose the following restrictions on the cardinalities of the
subsets £°:

HE > H#HE > > H#E > 0.

Appendix C shows how the Izergin determinant Kp;)(y|7) [29] (see (C.22)) arises
in the calculation of the projections. It also shows how the result of these calcu-
lations can be rewritten in the form of sums over partitions of the sets of Bethe
parameters into subsets. Let

Ko(y|z) = K3 (y[7) fori=1,...,m,
Ki1(y|T) = K (|T) = Ko(Z|y) fori=m-+1,...,N.

It is also convenient to introduce, for any sets i and = of the same cardinality, the
following product of rational functions:

Cylr) = 9(y,T)h(z, T). (5.8)

We consider in greater detail the calculation of the projections, using the results
obtained in Appendix C. The subdivision (5.6) can be represented using the table

Uty U - Uity Ut Uy U Uty U Ty
BU-- U, U B Ul U U U R
fmor U Bt U B U U BT U B

tm U tmpy U U R Ut (5.9)
U U Rt U
N U !
by

where the cardinalities of all the subsets in the same column are equal.
For any set w of cardinality #w = d we introduce the following ordered product
of composed (or simple, when j =i+ 1) currents:
Fji(W) = Fji(wi) - Fji(wa) - - - Fji(waq). (5.10)

Then the ‘negative’ projection Py (F(t')) in the definition of the element (5.4) can
be written in the form

N 18
Higs;ﬁs((;i, 5oy 71 (Fsa@Pr (o Py (P 771
X Py (Fnian(EY)))...)),
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and in the first step we have to calculate

N1 (Y )y (EY)
Sy (N, V1)

using either (C.23) or (C.25), depending on the relation between m and N.

If m < N, and hence [N] = 1, then we have to use (C.23) in order to obtain
for the element (5.11) a sum over the partitions ¥~ = {#¥_1 U#N "'} such that
N = #N (see the next-to-last line in the table above), where we identify the
sets £y = tV:

Pf_ (LO/\N,N_l(EN_l) . Pf_ (§N+17N(EN))), (5.11)

fl(tN 1 tN 1)K1(t |tN 1)
AN TN TN TN

(O # R @ Y

IN-1= (FNTuEN )
X Py (Fnpn-a(fy ) - Fuon-a(Ey))).

On the other hand, if m = N, and hence [N] = 0 (this case corresponds to the
algebra gl(m|1)), then we have to use (C.25) in order to obtain the element (5.11)
again as a sum over the same partitions of %V ~1:

FN—1 zN— TN | N —
#tN TN —1 fO(t ' UN 1) (tmtzv 1)
IN-1(T ) Z TN FN-1
fN_lé{f%:iUt_%_l} fO( tN 1>f0(tN7tN )

X Ap(EN DT P (Fnaan-1 Ty ) - Fnv-1(Ty_1))-

The next step is to calculate the projections
'YN—2(EN_2)7N—1(EN_1)P—

fin—y (V=L EN=2) S

x Py (Fnvpn-alfy ) - Funalin 1)),

using (C.23) for m < N — 1 and (C.25) for m = N — 1. Continuing the calculation
of the element (5.4) using first (C.23) and then (C.25), we eventually get that

N—-1 N
™ 41 z\—1
2 (t) = > I II fern@H
P (0. T} (=1 (<a<q'<N
¢=1,....N

N fig (@, 8 et A

<1 11 by (£, 26)5em I I &K@z

(fN—1,N—2(fN_2)

I=1 £<q<q’'<N q=2 (=2
N q N m N
72— 1 L\ H— 1
I T sa@ T ean™ 11 2
q=m+1 L=m+1 q=m (=2 qg=m

X ()P (Fniialy) - Fmiri(ly) - Fona (lmy) -+ Far () ki (1),
(5.12)

The projection in the last line in (5.12) can be calculated by the method in
[13]. Being multiplied from the right by the product of the Cartan currents k; (1),
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it can be expressed in terms of an ordered product of monodromy matrix ele-
ments Ty 4(¢), £ = 2,...,N + 1. This shows that the hierarchical relations which
we have resolved by calculating the projections in (5.3) are compatible with the
embedding of DY (gl(m — 1|n)) in DY (gl(m|n)).

Finally, the element (5.4) is given as a multiple sum over partitions:

N
= > II @77

g=m+1 {=m+1 g=m (=2
X T v 1 (E0) TN (1) - Trmgr () - T (Gre—y) -+ - T12(81).
(5.13)
Here we have used the notation
Ts 5 (W) = Ap(@) ™' T 5 (w1) T j(wa) - - - Ty j(wa—1)Ti j(wq) (5.14)

for any set w of cardinality #w = d and for [i] + [j] = 1. It is obvious that by the
commutation relation (2.9) this product of odd matrix elements is symmetric with
respect to permutations of the parameters w;.

5.2. The Bethe vectors B(t). We substitute the expression (5.13) with the
subsets in (5.5) into the hierarchical relation (5.3), and then we repeat the same
procedure for the Bethe vector B(™~1") (1) in the second line of (5.3). In the
end we will obtain an explicit expression for the Bethe vector B(™™)(£) as a sum
over multiple partitions of the set of Bethe parameters. Each term of this sum
is a rational coefficient multiplied by symmetric products of monodromy matrix
elements. To describe this expression it is necessary to introduce a more convenient
indexing of the multiple partitions.
For all ¢ =1,..., N we introduce the partition of the sets of Bethe parameters

Uy

indexed by pairs of positive integers ¢, ¢’ such that

Al
»-QN

(5.15)

||C2

1<g¢g<l<qd <N

We also introduce ordering rules < and < for these pairs according to the following
convention:

¢.q¢ <p,p if g<p, V¢, p' or q=p, ¢ <V, (5.16)
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and

¢.q <xp,p i g<p, V¢, P, or gq=p, ¢d<p, or g=p, ¢ =Y.

Using this notation and combining (5.3) with (5.13), we obtain for the Bethe
vector the expression

B(t) = B(2)0),

where the pre-Bethe vector B(t) is given by a sum over the partitions (5.15):

part q,¢'’<p,p’ (=1 q,9’ < p,p’

Z H Hf[“‘l tsz_f’ )_1 H pp”_qq Hf[fl ')
;s

£ m

2m1 m—1

”i—[ tell—[ﬁﬁc 7

qg=1 qg'=m l=q+1

Zqt1
q N— N q

Il &u@, t“H II 1] Ko@)
m+

xmrf:l ﬁ

g=1 q'=m+1 (= 1 g=m q':q—l-l l=q+1
—
1 79
< 1 ( I Tew@o) H Toq (Tg,q —1)>
1<g<m Y N+12q¢'>2m+1 m>=q' >q+1

x ﬁ( ﬁ Toq (s )ﬁﬁﬁm ). (5.17)

m+1Lg<N Y N+12q"2q+1 =2 q=1 q'=¢£

The partitions of the Bethe parameters can be pictured as an ordered table which
is the following union of diagrams analogous to (5.9):

70 70 7 70
tpo U tpepr U oo Uy U gy
741 +1 41
bpopr U o Uiy o Uy
U : : (5.18)
¢=1,...,.N _—
thno1 Y N

tE,N

The ordering means that if ¢/ < £, then the diagram corresponding to ¢’ in (5.18)
is on the left of the diagram corresponding to ¢. The ordering rules (5.16) mean
literally that if q,q’ < p,p’, then the subset te o 1n the ¢'th row is located to the
left of the subset te p in the (th row of the dlagram All the subsets in the same
column have the same cardinality. The subsets which describe a partition of Bethe

parameters of the same type are in the same row of the diagram (see examples of
such tables in (5.19), (5.21), and (5.23)).

Example 5.1. Let uslook at the formula (5.17) in some particular cases of small m
and n.
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The case m = 2 and n = 1. In this case N = m +n — 1 = 2 and the partitions of
the sets ! and #? can be pictured by the following union of two diagrams:

the ty U

t e U 13, (249
In this case the formula (5.17) simplifies:
B(2|1) Z f 1f t1 ,29 t1 1)9(%,27 ﬁ,z)c(h 2|t1 2)
part
X T13(81 2)T12(F7 1) T2,3(855) T2 2(F7 5). (5.20)

After the identifications 1 | = Uy, #], = Wi, t35 = U1, and 13 , = Uy, we recover
from (5.20) the expression (5.32) for the Bethe vector.

The case m = 2 and n = 2. The partitions (5.15) can be described by the following

table:
the #y U tip Uty

G o U ti3 U B, U B, (5.21)
£ tis U 5y U tis

It corresponds to the union of three diagrams of the form (5.9). With this notation,
(5.17) takes the form

£,1°) = Z fo (ﬁ,za {75_%,1 U 51,2})_1130({{%,3 U %,2 U @,3}751)_
part
X fl(f?,?n {5%2 U ZF%,3})_1fl ({523 U 5373}752)
X fo (75_%,37 {t_i,z U 7?%,1})f()(ﬂ,2: 2?%,1)
X 9(53,37 {%2 U E%,:s U @,2})9(53,27 {f%:a U ﬁ,z})g({%,m {%2)
X f1 (53,37 {t3 3 U & 3})f1(£§,3, ty 3)
X C(ﬁ zﬂ 2) (tl 3|t1 3)K1(F1)’,3|£% )Kl(fgg

7

X T1,4(1 3)T1,3(F7 2) T1,2(61 1) Ta,4 (85 3)T2,8(85 o) T3 4 (£ 5)

) M

x Ta (1 1,2)T2,2(t1,3)T3,3(t1,3)T373(£§ 3)- (5.22)

)

BCI2) (71

There is a rule for constructing a pre-Bethe vector from any given table of parti-
tions (5.15). We demonstrate this rule for the diagram (5.21), considering each line
in (5.22) and explaining all the factors in this formula with the help of (5.21).

e For a given subset #! ; in the /th row of the diagram (5.21) the first and
second lines in (5.22) (whlch correspond to the values ¢ = 2,3) are products of the
reciprocal functions f ( ; ],te 1) , where the subset tk,l is either above or on
the left of the starting subset te

e The third, fourth, and ﬁfth lines in (5.22) correspond to certain products
formed for each row of the diagram in accordance with the following rule. For the
rows corresponding to #* with £ < m (respectively, with £ = m or with ¢ > m) we
form products of the functions fo(Z,7) (respectively, g(Z,y), or f1(Z,7y)). In these
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products the subset 7 is to the right of the subset y in each row of the diagram
(5.21).

e The sixth line in (5.22) is a product of Cauchy determinants or Izergin deter-
minants for neighbouring pairs of subsets (£* ; 41 tf g ) belonging to the same column
of the diagram corresponding to some /.

For £ =1,...,m — 1 and any pair (t_fj,tfj Y = (z,7), we use:
the Izergin determinant Ko(Z|y) if f+ 1< k< j<m—1;
the normalized Cauchy determinant C(Z|y) (5.8) if /+1 < k< m <j < N;

the Izergin determinant K;(Z|g) it m+1 <k <j < N.

For { = m,...,N — 1 and any pair (ffj,tk 1) = (7,y), we use the Izergin
determinant K;(Z|y) if £+ 1<k <j < N.

Note that the asymmetry between the cases / < m and ¢ > m is due to the
hierarchical relation (5.3), which is based on the series of inclusions gl(m|n) D
glim —1|n) D --- D gl(1|n) D gl(n).

In our example of the diagram (5.21) there are four such pairs

(ﬁ,zaﬂ,z)» (E%,:saﬂ,:s), (ﬁ’,&ﬁ,:&)’ and (%,37@,3)-

There are no Ky(Z|y) determinants in this example, but they can appear for
higher m. For instance, they appear in the Bethe vector for the algebra gl(3|2)
and are constructed for the pair of subsets ({3 ,,%] ) using the diagram in (5.23).

e The seventh line is an ordered product of monodromy matrix elements T; ;
with 7 < j and depends on the subsets ¢ i j—1- It is the usual product for even matrix
elements (that is, when [i] + [j] = 0 mod 2) and the normalized product (5.14)
otherwise. The order of the factors in the product is from top to bottom for the lines
and from right to left within a line, as becomes clear upon comparing the seventh
line in (5.22) and the diagram (5.21).

e The last line in (5.22) is the product of the diagonal matrix elements depending
on the remaining subsets of Bethe parameters which were not used in the previ-
ous line. The index of a diagonal matrix element T; ; coincides with the number of
the line in the diagram. The order in this product is irrelevant, because the diago-
nal elements commute when the pre-Bethe vector (5.22) acts on the pseudo-vacuum
vector |0).

The case m = 3 and n = 2. The Bethe vectors in this case can be constructed
by the rules described above on the basis of the following table of partitions of the
Bethe parameters ¢!, 2, 3, and £*:

Bt Uty Uty Uty

2 E{Qu%zgut4utzu%%u%i4 (5.23)
,E3 . t 1,3 U t1,4 U t 2.3 U t2,4 U @,2 U @’4 '
t G u 3, U 13,Ul],

5.3. The Bethe vectors ]ﬁ%(f ). In a completely analogous way one can obtain
for the Bethe vectors (3.22) defined by means of the second current realization
of the Yangian double DY (gl(m|n)) hierarchical relations which are compatible with
the embedding of DY (gl(m|n—1)) in DY (gl(m|n)). Another possibility for obtain-
ing these hierarchial relations is to apply a special map to (5.3) and (5.13). This
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morphism was discussed in [30]. It maps the Bethe vectors B(¢) of DY (gl(m|n))

to the Bethe vectors B(Z) of DY (gl(n|m)) (see (5.26) and the discussion that fol-
lows). Thus, using this map and the exchange m « n, we can obtain an explicit
hierarchical relation for the Bethe vector B(Z). We do not give it here, but we give
an analogue of (5.17) for B(%).

Again, for all / =1,..., N we introduce a partition of the sets of Bethe param-
eters analogous to (5.15):

¢ N
T 7t
= U, (5.24)
indexed by pairs of positive integers ¢, ¢’ with
1<qg<e<qd <N.

We also introduce the ordering rules > and %= for these pairs according to the
following conventions:

vip=d,q if p>q,Vpqg or p=4q,p>q,
and
.0 =q.qd if p'>q,V¥pq or p=qd,p>q o p=dq, p=q
In this notation we have for the Bethe vector the expression
B(f) = B(7)|0),
where the pre-Bethe vector @(t_ ) is given by the sum over the partitions (5.24),

N—-1
BO) =Y II Il fern@ i)

part p’,p=q’,q £=1

N
X H q 0t H £+1 p P g,q)
' \p>q',q ef
N q —1 q —1 N m ¢ —1
< 1T 1I 1II Ee@ieo 11 11 C(tLrit
@=m+2 g=m+1 f=m+1 ¢'=m+1 q=1 ¢=m
N m—1 m—1 /— q/—l

< I 1T 1 Bt 11 H 11 Katti/slt.)
q’: l=q

o | ( quJrl H qu+1 qq)>
1<

qg<m m<q<q’

< T <1_> Ty q+1 (£ )H H HTHM+1 tt ), (5.25)

=1 q'=¢+1 g=1
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and where in contrast to (5.8) we normalize the Cauchy determinant C(j|z) as
follows: R
Cylz) = 9(z,9)h(y,y) = C(z[y).
The partitions of the Bethe parameters used in (5.25) also can be pictured using
an ordered union of diagrams analogous to (5.9):

Bo U lhpy U - U B, U &),

_ -1 -1

te,e—1 U - Uty Uty

(=N...1 , S
tio U 14

71

tia

The ordering here is opposite to the one used in the table (5.18). This means that
a triangle for a smaller ¢ in (5.18) is to the right of a triangle for a larger ¢. All
the subsets in a given column again have the same cardinality. The subsets which
describe partitions of the Bethe parameters of the same type are in the same row
of the table (see examples of such tables in (5.27) and (5.29)).

We note that the two realizations (5.17) and (5.25) are related by the morphism ¢
defined in [30] by

DY (gl(m|n)) — DY (gl(n|m)),
L . (5.26)
T;j(x) — (_1)[1][j]+[]]+1Tj’,i’ (), K'=m+n+1-—k.

Indeed, starting from the pre-Bethe vector B(¢) € DY (gl(m|n)) and applying ¢ to
it, we get the pre-Bethe vector (—1)#*=#t"B(35) € DY (gl(n|m)), where the set f is
divided into subsets { ; satisfying (5.15), while the set 5 is divided into subsets 54

1,J
£'—1
/ 1j/_17

where k' = m + n + 1 — k for any k. In particular, p(B(f)) = (—1)#**#"B(3)
when m = n, as can be checked in the example m = n = 2 described by (5.22)
and (5.30).

satisfying (5.24). The relatlon between these partitions is given by &} =5

Example 5.2. For m = 2 and n = 1 the partition (5.24) can be pictured using the

table

0.27
th thy U i, (5:27)
and the formula (5.25) reduces to
B (¢ Zf ) (200 11)9(8 2,15 1) Ko (85,1 183,1)
part
x T13(85,1)T2,3(83 2) T1,2(81 1) T2 (821), (5.28)
Which implies (5 33) (see below) after the identifications ¢} ; = @, ty, = T,
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In the case m = 2 and n = 2 the partitions (5.24) can be described using the
following union of diagrams:

£ By U, U B,
£ 5, U &5, U By U &, (5.29)
F : tdlg,l U tg,l U tdi,l

According to this table, the formula (5.25) takes the form

B2 (', Zfo {t21 Utl 1) 1f0({%,2Uf:2;,1}7%,1)_1

part
< fif L, {85, UG, VB DT AT s UB 1)

X fo(fil’),h {t_%,l U t_},l})f()(%,lv ﬂ,l)
X 9({%,1 U %,2 U @,1}7%,2)9({%,2 U %,1}7 %,1)9(%,17@2)
X fl({t_gﬁ Ufg,z}7£§,1)f1(_3 & 3)

X KO(E%,HE%J)KO(%,H% 1)0(7?3 E% 1)0(7?%,2 %2)
X T1,4(85 1) To,a(f5 2) T34 (13 5)T1,3(85 1) T2,3(85 ) T12(f1 1)
X Ta,2(t3 1) Ta.2(F51)Ts3,3(f3,2) T3,3(f3 1) (5.30)

Comparing (5.30) and the diagram (5.29), we can formulate the rules for associating
with a partition diagram an explicit formula for the Bethe vector in a way similar
to that in the previous subsection. We leave this as an exercise for the interested
reader.

5.4. Dual Bethe vectors and examples for DY (gl(2|1)). In order to obtain
explicit expressions for the dual Bethe vectors C(£) and C(Z) we have to exploit
the definition and the properties of the antimorphism (2.10), (2.11). It is clear
that for even operators ¥(T; ;(uw)) = T;,;(u). Consider an odd monodromy matrix
element T; ;(u) for ¢ < j. This means that [i] = 0 and [j] = 1, and it follows
from the commutation relations (2.9) that for any set w with cardinality #u = a
the product T; ;(w) given by (5.14) is symmetric with respect to permutations
of the parameters u;.

For an odd monodromy matrix element T; ;(u) with ¢ > j and the set T we
define the product

T;,; (W) = A}, (W)~ Ty 5 (u1) Ta i (uz) - - - Ti g (a—1)Ts j (ua),

which is also symmetric with respect to permutations in the set w due to the com-
mutation relations (2.9).

Let us apply the antimorphism (2.10) to the product T; ;(w) with i < j. Using
the property (2.11), we get for ¢ < j that

U (T (@) = An@) (T j(ur)Tij(uz) -~ Tij(ug—1)Tij(ua))
= (=)D 2AL @)W (T (ua)) ¥ (Tij(wa—1)) - W (Tij(u2)) W (Ti i (ur))
= (=) DAL @)W (T j(ur)) W (T j(ua)) - - W (Ti i (ua—1)) ¥ (T j(ua))
(_)a(a—l)/Qr]I‘j’i (ﬂ)
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Similarly, for ¢ < 7 we can calculate that
U(T;:(q) = (=) *TV/2T, S (a) (5.31)
by taking into account that in this case
U(Tyi(w) = (=) DT, 5 (w) = =Ty 5 (w).
The relation (5.31) shows that for any ¢ and j such that [i] + [j] =1
U (0 (T:,;(@)) = (—)"Ti;(@),

and the antimorphism W is an idempotent of fourth order.

Thus, we have described the action of ¥ on symmetric products of even and odd
operators. Applying this action to the pre-Bethe vectors B(¢) in (5.17) and B( t)in
(5.25), we obtain explicit expressions for the dual pre-Bethe vectors C(Z) and C(%),
respectively. Up to a common sign factor they are still given by (5.17) and (5.25)
with the opposite order of operator products and the replacement T; ; — T, ;. Let
us give explicit formulae for the particular case of the (dual) Bethe vectors B(t ),
B(%), C(f), and C(¥) defined by (5.20) and (5.28) and connected with the Yangian
double DY (gl(2|1)). In this case we have two sets of Bethe parameters £* with
cardinalities #t¢ = 1, ¢ = 1,2, which we rename as ' = and #*> = v with cardi-
nalities 1 = a and ry = b. The formulae (3.14), (3.15), (3.22), and (3.23) for these
Bethe vectors take the form

Ba,(u, v) )™M g(on, ) f (@, T ) g (B, 01 (T, )

x T 3(u1)T1 o (urr) T2 3 (v11) A2 (01)]0), (5.32)
B, (u, ) ZK (v1|@y) f (Tr, @i ) g (v, or)

X Tl,g(UI)TQ,:),(UH)TLQ(U{I))\Q(UI)|0>, (5.33)
Cap(@,v) = ()P V2 f(w,m) ZQ(EI,ﬂl)f(ﬂI,EII)Q(WH,FI)h(ﬂI,ﬂI)

X (0]A2(v1)Ts (UII) T2,1(unn) - Ts,1(ur), (5.34)

Cap(@,0) = (=)’ 2f(@,0)" Y K, (v1]t) £ (1, ar) g (011, 01)

x (0[A2(ur) T2,1 (urr) T2 (vir) Ts,1 (v1), (5.35)

where the sums run over partitions of the sets w = {uy, a1} and v = {vy, 011} such
that #u; = #v; = p < min(a, b).

The formulae (5.32)—(5.35) were already used in the series of papers [18]-[20] to
calculate the form factors of the monodromy matrix elements in the supersymmetric
quantum integrable models associated with the super-Yangian Y (gl(2]1)).

Appendix A. Composed currents and Gauss coordinates

In the completed algebras Ur, Ug, U, and Ug a product of total currents
has some specific analytical properties. This means that if one performs the nor-
mal ordering of the current generators in these products, then one can see the
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pole structure of this product, which is encoded in the commutation relations of
the total currents. This normal ordering procedure demonstrates that the prod-
ucts Fi(u)Fi+1(v), Ei1(v)Ei(u), Fiy1(v)Fi(u), and F;(u)Eiyq (v v) have simple poles
at u = v. We define the composed currents F};(u), F; ;(u), FN( ), and Em( )
for 1 <17 < j < m—+n inductively as residues:

Fji(v) = res Fo i (v)Fja(u) = — res F,i(uw)F}q(v), (A.1)
Ei,j (U) = TIes Ea,j (U)Ei,a(v) = —res Ea,j (U)Ez',a(u)v (A2)
Fi(v) = res Fjo(u)Foi(v) = — res Fyq(v)Fyi(w), (A.3)
E; ;(v) = res B 4(v)Eq j(u) = — res E; o (u)E, ;(v), (A.4)

where ¢ < a < j and we have denoted the simple root currents as follows: F;(u) =
Fir1i(u), Bi(u) = Eiip1(u), Fi(u) = Fiyi(u), and Ei(u) = By i1 (u).

Calculating the residues in (A.1)—(A.4) with the help of the commutation rela-
tions (2.26), (2.27), (2.39), and (2.40), respectively, we obtain

Fj,i(“):C[iH]"'C[g‘ 15,5 1(v)F. j—1,5— 2(v) - Fig1,i(v), (A.5)
E; j(v) = clig1) - -y Biiv1 (V) B2 (v) - By j(v), (A.6)
Fji(v) = clivn) - o Fisri(0) Fry,iga (v) - E—,j_m (A7)
Eij(0) = iy - Bj1,(0)Ejaj 1 (v) -+ By (v). (A.8)

Let us prove one of these formulae, namely, (A.5). Consider (A.1) for j =1+ 2
and a = ¢ + 1. Since we know that the product Fji; ;(v)Fit2+1(u) has a simple
pole at u = v, we can calculate the residue in (A.1) as follows:

Firai(v) = res Fip1i(0)Figaipa(u) = (u = v)Fiyri(v) Frazin (u)|,
=(u—v+ C[i+1])Fi+2,i+1(u)Fi+1,i(v)|u:v = C[i+1]Fi+2,i—|—1(U)Fi+1,i(v)-

Here we have used the commutation relation (2.26) in passing from the first line
to the second line. Now we perform the analogous calculation in the case of
the current Fj.3;(v), using the simple root current Fj3;.2(u) and the composed
current Fjio;(v) that we just calculated. By the commutativity of Fji3;+o(u)
and Fj11,;(v) we get that

Fiy3.4(v) = cipnlivo Firs,iv2 (V) Fig2,i01(v) Figa,i(v).

Iterating the calculation, we get the formula (A.5). The proof of the formu-
lae (A.6)—(A.8) is completely analogous.

The composed currents are important in calculating the universal Bethe vectors
using the formulae (3.14) and (3.22). In this section we show that the projections
of composed currents discussed in §4 coincide with the Gauss coordinates of the
universal monodromy matrix (2.14)—(2.16) and (2.17)—(2.19) up to some unessential
prefactors. To do this we rewrite the defining formulae for the composed currents
in integral form.
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Both equations in (A.1) can be expressed in terms of contour integrals:

Fji(v) =— ]{jg duF, ;(v)Fj o(u) —I—]{j du

o (u—v)>

= — uly i(u)Fjq(v u—— A (o i(u .
— ?{cood Foil )Fj,a()+]{cod o)< Fjo(w)Fai(w), (A9)

where Cy and (U4, are small closed contours around the points 0 and oo on the
complex u-plane. The rational functions 1/(u — v)g are defined by the series in
(2.33).

For any formal series G(u) = Y ,., GYu™t"1 we define G (u) by

GH(w)=+> GOu " (A.10)

£20
E<O

It is obvious that the half-currents F(&) and E(®) coincide with the corresponding
projections of currents only for the simple root currents F;(u) and F;(u). For the
composed currents this is not the case, but nevertheless one can prove that

PH(F ) (u) - 7)
Pf (6B} (u))

Py (7 FiP(w)
P (ESD (u) - &)

0, 0,
(A.11)
0 0

for any elements 7 € UE and & € Up. Similar properties can be formulated for
the projections P;t and P*.
Using the notation (A.10) and calculating the formal contour integrals in (A.9) as

duG 74 duG(u) = G, (A.12)

we obtain the following expressions for the composed currents F} ;(v):

Fji(v) = [E}0), Foi(0)] = cja B o) (0) Fai(v)

J,a”’

A.13
= [F,a(0), F] + o Fya(0) FLH (v). 1)

For the composed currents F; j(v) defined by (A.2) we have

U — U+ Clq)

(u—v)s

L E B WUV . (A
_ f%d Eu( >Ez,a<>+;4cod B (0B (o), (A4

E,-,j(v) = —fg du Ea,j(u)Ei,a(v) +ji du Ei,a(U)Ea,j(u>

oo

<
or by using (A.12) we get for these composed currents that

Eij(0) = [Eia(v), B = o) B (0)ES (v)
= (B, B0 j(0)] + i EC (0) Ea (). (A.15)

1,a )
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Similarly, for the currents F 5,i(v) defined by (A.3) we have

Fu) = § duBuFiuo) = § duIE (0)F )
I T N B L . L0 Se |
—fcod By a(0) Fui(w) fcmd ), (A6

or after calculating these formal contour integrals we get that

Fji(v) = [E\9), E, i(0)] + cpo Fai(0) FL 2 (v)

J,a?

= [E.a(0), EY] = el FL (0) Ej o (v). (A.17)

Finally, for the composed currents Ejl(v) defined by (A.4) we can calculate

Bis0)= § duBia(wEus(w) - § du” B, ) B
Coo Co (u—v)<
- j’{ du B o (w) By (v) — f{ du TR (0B a(u),  (A.18)
Co Coo (u—v)>

or, equivalently,
- - i, o
Eij(v) = [Eia(v), ED] + i BSY (0) B o (v)
= [EY) Ea;(v)] = ¢y By (0)ES (0). (A.19)

1,a 7

Projections of composed currents. The formulae (A.13), (A.15), (A.17), and
(A.19) are very useful for calculating the projections of composed currents. Indeed,
let us take a = j—1 in the first line of (A.13) and apply the ‘positive’ projection PJZF
defined by (3.9) to both sides of this equality. Similarly, we can consider the second
line in (A.13) for a = ¢ + 1 and apply the ‘negative’ projection P to this equality.
Using the properties of the projections (A.11), we have

P (Fja(v) = [F% P (Fj-1:(v))],

Jj—1
Py (i) = [Py (Fjia(0), F1 ]
where we have used the commutativity of the projections with the adjoint action
of the zero modes of the simple root currents, which will be proved in Appendix B.
Then the equations (A.20) can easily be iterated to obtain
P{ (Fji(v) =7 o 7, ), Lo (Fi i (v),

F Fi+1

Py (Fji(v)) = (=Y g © "'ij(OJ (Fi1(v),

(A.20)

(A.21)

where we have used the relation between the projections of the simple root currents

and the Gauss coordinates: Pjit (Fig1,i(v)) = iF;tH ;(v).
In a quite similar way we can get from (A.15), (A 17), and (A.19) that

P (Bijw) = (Y7 0 Spo, - Zpo (Bl ),

Pe_ (Em(v)) = _yE§O)yE§3-)1 o LSﬂEJ(O_) (E]_ 1 j( ))

(A.22)
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Af_ (F\JZ( )) = _5&(0) yA(O) ""71352)1 (ﬁi——kl,i(v))? (A.23)
Af (Fji(v)) = ()77~ 15”A<o>5” PO Lo, (ﬁ}tjq(’v)): |
P (Busl) = (0, S0, S0, (B ).
i= (A.24)

ﬁe—i_ (Ei’j(v)) = YElgo)yEi(:) . yA(o) ( G— 1](11))

In the rest of this section we are going to show that the ‘positive’ projections
of composed currents given by the first lines in (A.21) and (A.22) and the second
lines in (A.23) and (A.24) coincide with the Gauss coordinates of the universal
monodromy operator T;fj (v). To do this we consider the relation (2.8) for i — 1,
j—ij—1Lk—j53—-11l—j,andt<j—1:

(T2 (), T ()] = 2T )T o () = T ()T (W) (A25)

To obtain (A.25) from (2.7), we take into account that

(_)([i]+[j—1])([j—1]+[j]) —1

for any i and j satisfying i < j — 1, and the sign factor (—)VIEH+ET=ID+ELT-1] ig
equal to (—)U—1,

One can easily see from the Gauss decomposition and the mode expansions of
the Gauss coordinates (2.3) that the zero modes of the monodromy matrix elements
coincide with the zero modes of the corresponding currents:

0 (0
res vT} () = (Tf,, )@ = Ff, ) = FL 0O =FO =FY,

. 1+1,2
. + + 3O — (gt )0) £+ )0 (0) _ 75(0) (A-26)
Jres 0T ;(v) = (T )7 = (Byy)™ = (B )™ = B7 = B

We multiply (A.25) by v and let v — co. By (A.26), this relation becomes

[J 1]T ( ) yF(o) (T?,:j_l(u)), (A27)
or, equivalently,
Clj—1] (F]iz(u)kzi(u) o) = ij(O—)l (Fj':_“(u)k’zi(u) ), (A.28)

where the dots denote the terms given by the Gauss decomposition (2.14). One
can use weight arguments to prove that the contribution of these terms vanishes,

and by the commutativity of the Cartan current k;(u) with the zero mode F j@l
for i < j — 1, we get from (A.28) that

+ +
Clj— ]F i(u) = yp(o) (Fj—l,i(u))'
Iterating this relation for ‘positive’ Gauss coordinates, we obtain

cfig ¥ (u) = T, o) (Fii1i(w) = Pf (Fji(w) (A.29)
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in accordance with the first line in (A.21), where we use the notation

Cli,j] = Cli4+1]Cli+2] * " C[j—2]C[j—1]- (A.30)

In particular, we set c[; ;41] = 1.

The formula (A.29) describes the connection between the ‘positive’ projection of
composed currents and the ‘positive’ Gauss coordinates. The connection between
the ‘negative’ projection of composed currents and the ‘negative’ Gauss coordinates
is more complicated. To find it we apply the ‘negative’ projection to the first
equality in (A.13) for a = j — 1 to obtain

Pf_ (FJ,Z(U)) = (ij(O) C[J 1]Fj] 1(’LL))Pf_ (Fj_l,i(u)), (A31)

where we have used the equality F]( j)l( ) = F;;_1(u) between ‘negative’ half-
currents and ‘negative’ Gauss coordinates. Iterating (A.31), we obtain for the ‘neg-
ative’ projection an expression which uses only the zero-mode screening operators

and the ‘negative’ Gauss coordinates:
Py (Fi(w) = =(Fpo, = e -1 (w) (Lpo, = c-aFilja(w) x -
X (‘sﬂp@l — i1 Fiio i (u ))Fz_—l—l i(w),
where in the last step we have used the relation

Py (Fiy1i(u) = —Fpy i (u).
Multiplying out the parentheses in the equality above, we finally get that

Py (Fji(u) = —cpi (Fj_,i(u)+ Do Y Fr ) F;,il(U)F;,i(U)).
=1 G>ig>e >0 >0
(A.32)
This expression is very useful for calculating the action of the monodromy matrix
elements on Bethe vectors.

On the other hand, we can establish a connection between the projection of the
composed current given by the second line in (A.23), and the Gauss coordinate
defined by the relation (2.17). To do this we consider (2.7) for i — i, j =k — i+1,
l — j,and ¢ < 7 — 1, which reduces to
(0) = 4y

U — v 1+1,24+1

[T’L 1—1—1( ) Tj_—l—l,]

()T (w) = Ty i (W T (V). (A33)
As before, the factor (—)HA+EHDEH+ED s equal to 1 for any i and j satisfying
i < j—1, and the sign factor (—)HHU+ED+E+I] ig equal to (=), Multiplying
the equality (A.33) by u and letting u — oo, we obtain from (2.17) a relation
between the Gauss coordinates:

C[i+1]ﬁ;r,i( ) = _yA(O)( 31,+1( )) (A.34)
Iterating this equality, we find that
cig i) = (=) T - yﬁj(o_)z(ﬁj:j—l(u)) = P (Fji(v)).  (A.35)
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For the relation between the ‘negative’ projection of composed currents and the
‘negative’ Gauss coordinates we have

j—i—1
Py (Fji(u) = —cpig) (Fj_,i(u)_'_ PR DY F;i(U)F;,il(U)--'F;iz(U))
/=1 J>ip > >0 >0
(A.36)
Again starting from (2.8) for i - i+1,j — i, k—j,l —i+1,andi<j—1,
we obtain a connection between the Gauss coordinate E:r] (v) and the projection

of the composed current ]36+ (EZ j(v)) by using analogous arguments and the Gauss
decomposition (2.19):

i B (0) = S -+ g (B 5(0) = P (Bii(v)-

Finally, from the relation (2.7) fori — j—1,j— i, k—j,l—=j—1,i<j—1
and (2.16) we get that
C[i,j]E:j (u) = (_)j—i—ly (0)1 - yElg:)_)l (E:’H_l(u)) = Pe+ (Ei,j (”U)) (A37)
Summarizing the above considerations, we conclude that the ‘positive’ projec-
tions of composed currents coincide with the corresponding Gauss coordinates of
the universal monodromy operator. The formulae for the connection for the ‘nega-
tive’ projections of composed currents are a bit more complicated, and one can also
obtain formulae similar to (A.32) and (A.36) for the other two types of composed
currents E; ;(u) and E; ;(u).

Appendix B. Commutativity of the
projections and the screening operators

The adjoint actions by the zero modes of simple root currents F(O) E(O) and
F(O) E( ) play an important role. For any elements .% € Ug, & € Ug, ¥ Z c UF,
and & € U £ we introduce the screening operators

S (Z) = [FY, 2], #p0(6) = [EY, 4], )
’ 1

—

S0 (F) = [FY, 7], Fp0(6) = [EY, &),

One can check that the intersections of standard and current Borel subalgebras
are all stable under the corresponding action of the screening operators.

Let us check, for example, that the subalgebras Ul}t defined by (3.6) are invariant
under the adjoint action of the screening operators .%o fori =1,..., N. It follows

from (3.10) that any element .# € Up can be repreéented in the normal ordered
form .7 =3, Je R f(+) , where ﬁéi) € UZ by definition. Then

S0 F) = X S (F) - 54 Y0 (5,
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and by the definition (3.9) of the projection P;r we have

Py (nyO)(gi)) = Zg(nym (7)) -7 +Z S p© (7). B2)
¢

The first sum on the right-hand side of (B.2) vanishes because .,.«0) (9}(_)) ceUy

if e(ﬁé_)) = 0. It also vanishes if 5(37£(_)) = 1 in view of the definition of the
screening operators and the commutation relations

Spo (ki (W) = g B (ki (w) and - F oo (ki () = e B (ki (),

which easily follow from (2.22). Since 5(3%(_)) € C, the equality (B.2) can be
rewritten in the form

ij_ (yFi(O) (ﬁ = F(O) (Z e(F# ) ﬁ(—i_))) yF(O) (ij_ (ﬁ)),

which proves the assertion. The commutativity of the projections and the other
relevant screening operators can be proved similarly.

Appendix C. Calculation of the projection

Let 7 be a set of variables with cardinality #v = b. Consider a product of
composed currents (A.5)

Fj i(v1) - Fiyi(va) - Fy,i(ve—1) - Flyi(vp), (C.1)
with the following restrictions on the indices of the composed currents:
NnzZjez 212020+ 1 (C.2)

In previous papers on the method of projections these products were called strings.

For any ¢,/ = 1,...,N with ¢ < ¢ denote by Uy, the subalgebra of Up
generated by the modes of the currents Fy(t), Foy1(t),..., Fp(t). Then U7, =
Ug,e N Kere is the corresponding augmentation ideal.

Proposition C.1. The commutation relations between composed currents imply
the equality

Fiioi(w) - Fyioi(ua) - Py (Fjyi(v1) - Fjyi(va) -+ Fyyi(ve—1) - Fjyive))

—b b a
Sym ng[z] ve,ue) [ oy (e, we /)fz](wz/ ) 11 f g, wpr)

C
(a — 1<e<t'<b fii (v ve) (=1 ¢'=b+1

X Fjic1(u1) - Fiyio1(ug) -+ Fjyio1(up) - Fiio1(upg1) -+ Fz‘,i—l(ua)‘|

mod Pf_( is,jl_l) . Ui—l,jl—l- (C?))
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Proof. In what follows, equality of elements .} and .7 in the subalgebra Uz mod-
ulo elements of the form Py (Uij_l) -Uj—1,j—1 will be denoted by @ ~; ; <.

Let us prove (C.3) step by step. First of all, we observe that the ‘negative’
projection of the product of composed currents (C.1) with the restrictions (C.2)
can be factorized [13], [14]:

Py (Fjyi(v1) - Fjyi(v2) - Fyyyive—1) - Fy,i(vs))
=Py (Fj,i(v1;02,...,0)) - Py (Fj, i(va;v3,...,0p)) - - Py (Fj,.i(vp)),

where F} ;(vi;v2,...,vp) is the linear combination

b
f[z Vyr, U€
F‘ﬂ‘ V1,V2,...,0 b i 'Ul h U@Ul -1 i Vy C.4
9(1 J ; Hfz]W'"Ul J() ( )

e’;ﬁe

of composed currents of the same type. Next, we observe that due to the first
relation for the composed currents in (A.13) we have

Py (Fyi(0) + 57 ) iy o (P (Fjoai(0)) + 7 4(0).
Iterating this relation, we find that

Py (Eja(0) + Fj ;) (0) iy S o - oy (B (Fina(®)) + FL 7 4(0),

41

and since Py (Fit1,(v)) + FZ(le ;(v) =0, we arrive at the relation

Py (Fji(v)) ~i; F](z)( )-
This means that

Py (Fy,i(v1) - iy i(v2) - Fjy_y i(vo-1) - Fj, i(vp))
~ig (PF ) wrsv, . 0p) - FC ) (a3 s, vp) - FU ) (). (C.5)

Ji,t J2,? Jb,?

Hence, by calculating the projection (5.2) one can move the terms of the form

Py (Ufyq j—1) to the left through the product of currents Fi(u)--- Fj_1(u), where

they disappear under the action of the ‘positive’ projection PJT . This fact allows
us to replace the product of currents and the ‘negative’ projection on the left-hand
side of (C.3) by the product

(=) Fsi1(u1) - Fii1(ua) - FC) (rsva, . ovp) - FC ) (vavs, o) -+ - FU )(vb)

J1,? J2,t

The commutation relations between the product of the currents Fj ;_;(u) and the
‘negative’ half-currents Fj(;)(v) can be calculated with the help of the relation

Frioa(W)F ) (0) = frg(v,u) (F (0) = by (0,0) 2 FL ) () Frima ()
+ C[Z] g[z](u, ’U)FJ’Z_l(U) (06)
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The latter equality is a consequence of the commutation relations
Fiic1(u)Fyi(v) = fri(v,u) Fji(u)Fii1(u) = 6(u, v) Fji-1(u)
between simple root currents and composed currents and the definition of the ‘neg-
ative’ half-current
F( ) Z F(p) —p—1

p<0

Using the commutation relations (C.6), we get that

Fi i 1(u) - Fi i 1(Ua) - Fj(,;)(v)
= f[i] (U,ﬂ)Fj(,,- )(U; Uty ooy Ug)  Figoq(ur) - Fiio1(ug)

a

* (ug — Ug )€imt1 + €
n Z C[i]lg[i] (g, v) H q q [i]
qg=1

o1 (Mg = Ug )€imr1 — Cfi

X Fiia(ur) o Fiia(ug1) - Fiioa(ugrr) - Fiio1(ua) - Fyio1(ug), (C.7)

where
(=) (). _ (=) - -1 f[Z] Ug,uq (-)
Fia . ota) = B (0) = 2 (v, ) H fig (g T () (C9)
q#

The linear combination of ‘negative’ half-currents (C.8) in the first term on the
right-hand side of (C.7) commutes with all the products of currents

Fi_g(u), .. .,Fl(u).

Therefore, this term eventually disappears under the action of the ‘positive’ projec-
tion in (5.2). To transform the sum over g on the right-hand side of (C.7), we move
the composed current to the right using for ¢ # m + 1 the commutation relation

Fji—1(u2)Fii—1(ur) = frig(ua, ug) T F; i1 (u1) Fy o1 (uz) (C.9)

and for ¢ = m + 1 the commutation relation

Fjm(u2) Frng1,m (W1) = = fimgn) (w2, 1) ™ Frnp1,m (W) Fj m (u2)

or, what is the same,

Fjom(u2) F1,m (u1) = — f(u1, u2) ™ Frpg1,m (u1) Fjm (u2). (C.10)

Here we have used the fact that [m + 1] = 1 and fi(uz,u1) = f(uy,us). The two
cases i # m + 1 and ¢ = m + 1 can be combined into one formula, and by the
definition (3.3) of the deformed symmetrization the sum in (C.7) can be written as

Frioi(ur) - Fiioi(ug) - B (v)
-1

Cr.
Yid (g 1)1 [_]1)! Symy (g7 (tia, V) Fii—1(u1) -+ Fy i1 (ua—1) - Fji—1(uq)), (C.11)
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or, equivalently,

Fii—1(u1) - Fii—1(uq) - Fj(;)(v)
1

Cr.
~i,g ﬁ Symﬂ(g[i] (Uh U)f[i] (Ul,ﬂl)Fj,z‘—l(Ul) : Fi,i—l(u2) T Fi,i—l(ua))-
(C.12)

Here we have to use the commutation relations (C.9) and (C.10) in order to
obtain (C.12) from (C.11).

By using the definition of the linear combination of half-currents (C.4) and the
summation formula

b b
gp) (w, v1) f1a) (U1, u) = gy (w, v1) f1a) (01, v1) + Zg[i] (u, ve)gpi) (v1, ve) H fri) (ver, ve)
=2 /:
v
we can now rewrite the equality (C.12) as
—1
L

F,-,,-_l(ul) v Fz-,i_l(ua) . Fj(;)(vla V2,... 7vb) ~i,5 (CL o 1)[
_ S (@1, ur)

Fj i “Fiie v Fiica(ua) |-
) LR, () Fuicam) - Pica ()

X Symy (g[i](uh Ul)f[i](ula

We can use this result for calculating the commutation of the product of cur-
rents Fj;_1(u1)---F;;_1(u,) with the ‘negative’ projection (C.5) modulo terms
which vanish under the action of the ‘positive’ projection in (5.1). The result gives
us the proof of the relation (C.3). Note that the deformed symmetrization Symg;
over the set u becomes the usual antisymmetrization over this set for i = m+ 1. [

We stress the meaning of (C.3). Moving the ‘negative’ projection of the string
(C.1) through the product of currents F;; 1(ui)---F;;_1(uy), we obtain linear
combinations of analogous strings

Fiica(ur) - Fyyim1(ug) - Fy, io1(ua) (C.13)

modulo terms which are irrelevant for calculation of the ‘positive’ projection in the
definition of the Bethe vector (3.14), and with the restrictions

N ZJ22 2 Ja1 2 Ja 21, (C.14)

so that the first b indices jy, £ = 1,...,b, in the string (C.13) coincide with the
corresponding indices in the string (C.1), and the remaining indices are equal to i:
Jo+1 =" =Ja =1

This linear combination is given by the deformed symmetrization over the set w,
which can be reduced to a sum over partitions of this set. We describe these
partitions.

Let p; be the number of equal indices j, starting from j;. Then let ps be the
number of equal indices j, starting from j,, 41, and so on. Assume that the whole
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set of indices j, is divided into s subsets of identical indices with cardinalities py,

=1,...,s,and all p; > 0. The integer s counts the number of groups of composed
currents of the same type in the string (C.1). It is clear that 1 < s < b, including
the cases when all the currents are the same (s = 1) or all currents are different
(s = b). The restriction on the indices in the product of composed currents (C.1)
induces a natural decomposition

6:{01,1)2,...,1}(,_1,1}5}i{@l,...,@s} (C15)

of the set v into s disjoint subsets with cardinalities #v? = p,;, ¢ = 1,...,s. Here

we had to use a superscript to count these subsets, and this superscript should not

be confused with the index which characterizes the type of Bethe parameters.
Assume that a > b. Let us decompose the set u into s + 1 disjoint subsets

U= {ui, o, ..., Ug_1,Uq} = {0, ..., 0,0} (C.16)

such that
#ul =p, >0 and #uT'=a—b.

The last subset 7" can be empty for the terms with a = b in (C.3). According to
the definition of the sizes of the subsets u?, g =1,..., s, we have

jlz...:jpl >jp1+1:...:jp2>...>jps_1+1:..-:jps>'l..

Let
Jpeci41 =+ = Jp, =

for ¢ =1,...,s. Using the definition of the ordered product of composed or simple
currents of the same type given by (5.10) and dividing the initial set of variables v
in (C.15) into the subsets v?, ¢ = 1,...,s, we can transform the string (C.1) as
follows:

Fji(v1) - Fyyi(va) - Fy ) i(vp—1) - Fy, i(vp)
— 9]-1’1-(@1) . 9]571-(62) ‘e fj;_l,i(ﬁs_l) . 9};,@(68). (C.17)

Denote the ordered product of currents on the right-hand side of (C.17) by

gj’,i(g) = yji,i(ﬂl) . ﬁjé,i(ﬁz) e

Js_l,i(ﬁs_l) . ng,i(ﬁs),
where 7 = {j1, -+ ,j.} and j; > 55 > - > jL > .

Similarly, after dividing the set @ into the subsets (C.16), we transform the
string (C.13) into

Fri1(@) = Fjaa(@) - Fyy i1 @) Fjr i (@) - Fiia (@), (C.18)

where 7 = {j1,...,7s, 1}

In order to rewrite the sum over permutations of the elements of the set w on the
right-hand side of (C.3), we multiply both sides of (C.18) by the rational function
Ay, (WA, (w)~%m+1. Then using the fact that for any formal series G(u) the
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deformed symmetrization (or antisymmetrization in the case when i = m + 1) can
be transformed into the usual symmetrization over u, that is, using

AV R——— (20 om),

Ah[i] (w)dm+1 Symg(G(W) = Symy Ah[i] (w)dm+1

we can replace it by the sum over partitions (C.16) and by symmetrizations over
the subsets in the partition:

Symg(-) = Z Symgr Symgs - - - Symge Symgs+1( ).

a={a',...,us,us+1}

Below we use the fact that after multiplication of both sides of (C.3) by the
rational function Ay (W)Ap, (@)% m+1, we can sum over the symmetrizations in
all the disjoint subsets u?, ¢ = 1,...,s+ 1, on the right-hand side of (C.3).

For any composed current Fj;(u), j > i, we introduce its parity p; ; defined by

. . 1, i<m<y—1,
Mi,j—[@]+[J]—{

0, ¢>morm>j—1.

We refer to composed currents with parity 1 as odd and to those with parity 0
as even. Using the commutation relations for simple root currents, one can check
that the commutation relations between even composed currents are the same as
for even simple root currents, while odd composed currents anticommute:

(u—v —cp) Fja(u)Fi(v) = (u— v+ cp)) Fyi(v) Fyi(u)  for p;; =0,

(C.19)
Fii(u)Fji(v) = —Fj 3 (v) Fj i (u) for p;; = 1.

If m+1 < i < N, then it is clear from the restrictions (C.2) and (C.14) that
only even currents (simple and composed alike) appear in both sides of (C.3).
Otherwise, for i = m + 1 all the currents (again, simple and composed alike) on
the right-hand side of (C.3) are odd. But if 1 < ¢ < m, then there are both odd
and even currents on the right-hand side of (C.3), and according to the structure of
the initial string (C.1) all the odd currents are to the left of all the even currents.
In this case there are s’ (1 < s’ < s) factors in the string which are products of
the same odd currents. In view of the commutation relations (C.19) for composed
currents, the symmetrizations over the subsets u? with ¢ = 1, ..., s’ and over those
with ¢ = s’ +1,...,s + 1 will be implemented differently. For m +1 < i < N
the symmetrizations over all the subsets u? for ¢ = 1,...,s 4+ 1 are the same. The
number s’ can be calculated as follows:

S/ = ,LLZ,Jé (020)
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We first consider the case m + 1 < ¢ < N. Multiplying both sides of (C.3) b
the function ~;_1 (@), we get that

—b s+1

Vit (W)-Fii-1 (@) - Pp (F,4(0)) ~ig, % > I fu@,a")
(4]

a={ut,....,u%,ust1} q<q’

X Hf (07 u?)yi1 (1) -1 (W)

q<q’
X S 7749 A q 7 5 / 3 21
[T s 35, [t T ot 0], e (€20
q=1 =< ug,ue/Gu

where we have used the fact that the product of the function 7;_;(w) and the
string (C.18) is symmetric with respect to permutations within each subset u?. In
particular, this symmetry allows us to get rid of symmetrization over the subset
u*t! and cancel the combinatorial factor ((a — b)!)_1 in (C.3). Note that if i =
m+1, then all the currents in the product .%; ,, (@) become odd, and the symmetry
with respect to permutations of the variables in each subset u? is ensured by the
function v (w) = Ay, (W).

The remaining symmetrization over each subset u?, ¢ =1, ..., s, is the well-known
Izergin determinant [29] defined for two sets ¥ and T with the same cardinal-
ity #y = #x = p as follows:

p
Ky (ylr) = SymglA}[] H 91) (Ye: ) H Ji (yer 33@)1

=1 e<er
913 (Ye, zer)
= Ay, @A, (@i (7, 7) det [—] S (o)
91i] 91i] [¢] hia (e o) g p—y.
Thus, we conclude that if the index ¢ belongs to the interval m + 1 < ¢ < N, then

(C.3) can be rewritten as a sum over partitions of u which is determmed by the
string .%5;(0):

Yi—1 (W) Fii-1(w) - Py (F7.4(0))

—b s+1

C;.
~i,51 d — Z H f[z uq uq H f[z 'Uq Eq
Af[i] (U) u={ut,...,u%ust1} q<q’ q<q’
X H Ky ([a?)yi—1(u) F5,i-1(u). (C.23)
g=1

Consider now the case when 1 < 7 < m. As mentioned above, in this case
the product of currents .%; ;1 (u) contains both odd and even composed currents.
Therefore, to perform symmetrization over the subsets u? we have to use different
approaches for odd and even currents.

Let s’, 1 < s’ < s, be the number of products of the same odd currents on the
right-hand side of (C.3), which is given by (C.20). Then the symmetrization over
the subsets u? for s’ < ¢ < s+ 1 in (C.21) is exactly the same as described above.
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It leads to the appearance of Izergin determinants depending on the corresponding
sets of variables. Since variables in the subsets u? for 1 < ¢ < s’ become arguments
of odd anticommuting currents, the relation (C.3) takes the following form after
multiplication by the function in (3.1):

Yi— 1( )fzz 1(ﬂ)‘PJc_(§j/7i(§))

=b s+1
~id & [z]( 3 Z H f[z (ud, uq H f Uq ,a?) H K (v?|a)
(Y u={ul,...,usus+1} q<q’ q<q’ g=s'+1
S/
X H Symﬂq l uq Hg[l ”Ug,Ug H f ’Ug/ Ug):| Vg,V €T
q:l £<‘€, uz,uel Euq
X Yi—1( HAh[] F7,i-1(W), (C.24)
where we have used the factorization Alf[i] (w?) = A’g[ ]( 1) /h[z-] (a?).
The fact that the products of odd currents on the right-hand side of (C.24) can be
taken out from under the sign for symmetrization over the subsets u?, ¢ = 1,...,5s’,

follows from the observation that for 1 < i < m the function v;—1(a) = Ay, (u)
contains the factors Ay, (u?) and Ay, (u?). The first factor together with the
function A;lm (u?) gives a function that is symmetric with respect to the variables
in the subset u?:

while the second factor Ay, (u?) makes symmetric the product of the odd currents
depending on the variables in u?.

We denote the normalized symmetrization in the third line of (C.24) by ;) (v[w):
(01) = &, (1) Sying| &), () ) TL (e TT St W] e
e Ug, Uy €T

This function is proportional to the Cauchy determinant, as follows from the chain
of equalities

o (Tl0) = &}, (@A) (@ >ASym—[Hgm vpvue) T Sy (o un)

o< ]vg,vel €V; ugEu

- A/fm (@) Af,) (0) ASymz [ H 91y (ve, W)]
¢

/ — —
T (U)Af[i] (0) N e N
— A?L[g (E)Ag[i] (@) 9[i] (U7 U) = Ah[i] (U)Ah[i] (U)g[z] (’U, ’LL),

Ve EV; UpEU

where the symbol ASym; means antisymmetrization with respect to the set w.
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Thus, for 1 < ¢ < m the relation (C.3) can be represented as the following sum
over partitions:

Vi1 (W) Fi i1 (@) - Py (Fy a(v))

-b s+1 S

Cr; 7 7
~ig A[—]— > I ro@.a) I fu @ . a%)
Fi (@) u={a!,...,us,us+t1} q<q’ q<q’
< [[€a@m) [ K@ @)y (@) F,i-(a), (C.25)
q=1 q=s'+1

where s’ is given by (C.20).

Now we apply (C.23) and (C.25) to the calculation of the projection (5.2) and
thereby obtain the recursion relation for the Bethe vectors (3.14).

We should add to (C.23) and (C.25) the rule for ordering the subsets u?. As
we indicated in the definition of the string (C.18), the subsets with smaller indices
occur in more complicated composed currents to the left in (C.18).
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Chapter 3

Scalar products of Bethe
vectors in the models with
gl(m|n) symmetry
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Introduction:

In this Chapter, using co-product properties of Bethe vectors we proved
that the scalar product has bilinear structure with the rational coefficients.
All the coefficients can be expressed in terms of the highest one. Using re-
currence relations for Bethe vectors it was proven that the highest coefficient
satisfies recurrence equations.

Contribution:

I proved that the scalar product has bilinear structure in A;’s (Section
6.1). Using automorphism ¥ (3.20)-(3.23) I proved recurrence formulas (4.5)
and co-product formula (A.4) for dual Bethe vectors. All these results are
necessary for calculation of the scalar products.
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1. Introduction

The problem of calculating correlation functions of quantum exactly solvable models is of
great importance. The creation of the Quantum Inverse Scattering Method (QISM) in the early
80s of the last century provided a powerful tool for investigating this problem [1-4]. The first
works in which QISM was applied to the problem of correlation functions [5,6] were devoted
to the models related to the different deformations of the affine algebra 3[(2). Already in those
papers, the key role of Bethe vectors scalar products was established. In particular, a sum formula
for the scalar product of Bethe vectors was obtained in [5]. This formula gives the scalar product
as a sum over partitions of Bethe parameters.

A generalization of QISM to the models with higher rank symmetry was given in papers
[7-9] where the nested algebraic Bethe ansatz was developed. There a recursive procedure was
developed to construct Bethe vectors corresponding to the gl(N) algebra from the known Bethe
vectors of the gl(N — 1) algebra. The problem of the scalar products in SU (3)-invariant models
were studied in [10], where an analog of the sum formula for the scalar product was obtained
and the norm of the transfer matrix eigenstates was computed. Recently in a series of papers
[11-16] the Bethe vectors scalar products in the models with gl(3) and gl(2|1) symmetries were
intensively studied. There determinant representations for some important particular cases were
obtained leading eventually to the determinant formulas for form factors of local operators in the
corresponding physical models [17-20]. A generalization of some of those results to the models
with trigonometric R-matrix was given in [21,22].

Concerning the scalar products in the models with higher rank (super) symmetries, only few
results are known for today. First, it is worth mentioning the papers [23,24], in which the authors
developed a new approach to the problem based on the quantized Knizhnik—Zamolodchikov
equation. There the norms of the transfer matrix eigenstates in gl(/N)-based models were calcu-
lated. Some partial results were also obtained when specializing to fundamental representations
or to particular cases of Bethe vectors [25-28].

In this paper we study the Bethe vectors scalar products in the models described by gl(m|n)
superalgebras. Hence it encompasses the case of gl(m) algebras. In spite of we work within the
framework of the traditional approach based on the nested algebraic Bethe ansatz, we essentially
use recent results obtained in [29] via the method of projections for construction of Bethe vectors.
This method was proposed in the paper [30]. It uses the relation between two different realiza-
tions of the quantized Hopf algebra U, (g[(N )) associated with the affine algebra g[(N ), one in
terms of the universal monodromy matrix 7'(z) and R7T T-commutation relations and second in
terms of the total currents, which are defined by the Gauss decomposition of the monodromy
matrix 7(z) [31]. In [29] we generalized this approach to the case of the Yangians of gl(m|n)
superalgebras. Among the results of [29] that are used in the present paper, we note the formulas
for the action of the monodromy matrix entries onto the Bethe vectors, and also the coproduct
formula for the Bethe vectors.

The main result of this paper is the sum formula for the scalar product of Bethe vectors. In our
previous publications (see e.g. [15,21]) we derived it using explicit formulas of the monodromy
matrix elements multiple actions onto the Bethe vectors. This method is straightforward, but
it becomes rather cumbersome already for gl(3) and gl(2|1) based models. Furthermore, the
possibility of its application to the models with higher rank symmetries is under question. Instead,
in the present paper we use a method based on the coproduct formula for the Bethe vectors.
Actually, the structure of the scalar product is encoded in the coproduct formula. Therefore, this
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method directly leads to the sum formula, in which the scalar product is given as a sum over
partitions of Bethe parameters.

The sum formula contains an important object called the highest coefficient (HC) [5]. In the
gl(2) based models and their g-deformation the HC coincides with a partition function of the
six-vertex model with domain wall boundary condition. An explicit representation for it was
found in [32]. In the models with gl(3) symmetry the HC also can be associated with a special
partition function, however, its explicit form is much more sophisticated (see e.g. [11,13]). One
can expect that in the case of higher rank algebras an analogous explicit formula for the HC
becomes too complex. Therefore, in this paper we do not derive such formulas, but instead, we
obtain recursions, which allow one to construct the HC starting with the ones in the models with
lower rank symmetries. These recursions can be derived from recursions on the Bethe vectors
that we also obtain in this paper.

As we have already mentioned, the Bethe vectors scalar products are of great importance in
the problem of correlation functions of quantum integrable models. Certainly, the sum formula
is not convenient for its direct applications, as it contains a big number of terms, which grows
exponentially in the thermodynamic limit. However, it gives a key for studying particular cases
of scalar products, in which the sum over partitions can be reduced to a single determinant.
This type of formulas can be used for calculating form factors of various integrable models of
physical interest, like, for instance, the Hubbard model [33], the t-J model [34-36] or multi-
component Bose/Fermi gas [37], not to mention spin chain models as they are nowadays tested
in condensed matter experiments [38]. We also hope that our results will be of some interest
in the context of super-Yang—Mills theories, when studied in the integrable systems framework.
Indeed, in these theories, the general approach relies on a spin chain based on the psu(2, 2|4)
superalgebra. We believe that the present results will contribute to a better understanding of the
theory.

The article is organized as follows. In section 2 we introduce the model under consideration.
There we also specify our conventions and notation. In section 3 we describe Bethe vectors of
gl(m|n)-based models. Section 4 contains the main results of the paper. Here we give a sum for-
mula for the scalar product of generic Bethe vectors and recursion relations for the Bethe vectors
and the highest coefficient. The rest of the paper contains the proofs of the results announced in
section 4. In section 5 we prove recursion formulas for the Bethe vectors. Section 6 contains a
proof of the sum formula for the scalar product. In section 7 we study highest coefficient and find
a recursion for it. Proofs of some auxiliary statements are gathered in appendices.

2. Description of the model
2.1. gl(m|n)-based models

The R-matrix of gl(m|n)-based models acts in the tensor product C"" @ C™" where C"I"
is the Z,-graded vector space with the grading [i]=0for 1 <i <m, [i]=1form <i <m +n.
Here, we assume that m > 1 and n > 1, but we want to stress that our considerations are ap-
plicable to the case m =0 or n = 0 as well, i.e. to the non-graded algebras. Matrices acting
in this space are also graded. We define this grading on the basis of elementary units E;; as
[Eijl =1[i] + [j] € Z; (recall that (E;j)ap = 6;adjp). The tensor products of C™I" spaces are
graded as follows:

A® Eij) - (Eu®1) = ()TN £y ¢ Ey;. 2.1)
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The R-matrix of gl(m|n)-invariant models has the form

c

R(u,v) =1+ g(u,v)P, glu,v) = 2.2)

u-—v

Here c is a constant, I and P respectively are the identity matrix and the graded permutation
operator [39]:

n—+m n—+m '
I=1®1= Y E;®E;, P=)Y (-DVE;®E;. (2.3)
i,j=1 i,j=1

The key object of QISM is a quantum monodromy matrix 7 (). Its matrix elements 7; ; (u)
are graded in the same way as the matrices [E;;]: [T; j(u)] = [i] + [j]. The grading is a mor-
phism, i.e. [T; j(u) - Ty ;(v)] = [T} j ()] + [Tk, (v)]. Their commutation relations are given by
the RT T -relation

Ru,v)(Tw)@1)(A1®Tw) =1 TW)(Tu) ®1)R(u,v). (2.4)

Equation (2.4) holds in the tensor product C"" ® C"" ® H, where H is a Hilbert space of the
Hamiltonian under consideration. Here all the tensor products are graded.

The RTT-relation (2.4) yields a set of commutation relations for the monodromy matrix
elements

(75,5 @), T ()} = (= DIEHD Mg 0 ) (T35 T 1) = Ti @) T3 ()

= (=)D g 0, 0) (T3 )Ty 0) = Tt (T @), 2
where we introduced the graded commutator
[T, @), T ()} = T, j @) T (v) — (= HTHDEHD 7 00T, ). (2.6)
The graded transfer matrix is defined as the supertrace of the monodromy matrix
m—+n
T =strT)=Y (~HYUT; ;). 2.7)
j=1

One can easily check [39] that [T («), 7 (v)] = 0. Thus the transfer matrix can be used as a
generating function of integrals of motion of an integrable system.

2.2. Notation

In this paper we use notation and conventions of the work [29]. Besides the function g(u, v)
we introduce two rational functions
u—v+c
fw,v)y=14+gu,v) = ——,
u—v
_fu,v) u—v+c

N g(u,v) N c

(2.8)

h(u,v)

In order to make formulas uniform we also use ‘graded’ functions
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. NG
g1, v) = (—Dlig(u, vy = S
u—v
_ —_1l]
i, v) = 1+ gy, v) = 2.9)
| _ fin,v) (= v) + (=Dle
) oy T e
and
. _ Ji(, v) N _ Jii+n(, v)
Vz (I/[, U) - h(l/[, U)Si,m ’ Vl (us U) - I’l(U, u)gi,m . (210)

Observe that we use the subscript i for the functions y and yp instead of the subscript [i].
This is because these functions actually take three values. For example, y;(u, v) = f(u, v) for
i<m,yi(u,v)=g(,v) fori =m, and y;(u, v) = f(v,u) fori > m. It is also easy to see that
Vi, v) = (=D’ y; (u, v).

Let us formulate now a convention on the notation. We denote sets of variables by bar, for ex-
ample, u. When dealing with several of them, we may equip these sets or subsets with additional
superscript: 5t Y, etc. Individual elements of the sets or subsets are denoted by Latin subscripts,
for instance, u ; is an element of u, t,i is an element of 7' etc. As a rule, the number of elements
in the sets is not shown explicitly in the equations, however we give these cardinalities in special
comments to the formulas. We assume that the elements in every subset of variables are ordered
in such a way that the sequence of their subscripts is strictly increasing: #' = {t{, té', ceeh t;'l_ }. We
call this ordering the natural order.

We use a shorthand notation for products of the rational functions (2.8)—(2.10). Namely, if
some of these functions depends on a set of variables (or two sets of variables), this means that
one should take the product over the corresponding set (or double product over two sets). For
example,

gli,v)= [ g, v),
ujEu
fine = =[] finw™ " ).

i i
1€t

ve 1= [T [T vetsh 0.

i ~gi 70
SjES 1 et

2.11)

By definition, any product over the empty set is equal to 1. A double product is equal to 1 if at
least one of the sets is empty.

Below we will extend this convention to the products of monodromy matrix entries and their
eigenvalues (see (3.3) and (3.4)).

3. Bethe vectors

Bethe vectors belong to the space H in which the monodromy matrix entries act. We do not
specify this space, however, we assume that it contains a pseudovacuum vector |0), such that

T,iw)|0) =2;w)|0), i=1,....m+n,

1
T;,j()|0) =0, 1>, D
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where A; (#) are some scalar functions. In the framework of the generalized model [5] considered
in this paper, they remain free functional parameters. Below it will be convenient to deal with
ratios of these functions

Ai(u)
Aip1(u)’

We extend the convention on the shorthand notation (2.11) to the products of the functions
introduced above, for example,

o (u) = i=1,....m+n—1. (3.2)

=[] m@p., i@ =[] (33)

uj €l thetl
We use the same convention for the products of commuting operators
Ty =[] Tjwp.  for  [[1+[j]=0,  mod2. (3.4)
uj S7
Finally, for the product of odd operators 7; ; with [i] + [j] = 1 we introduce a special notation
T j(uy) ... T; j(up)
[Tickeezphue, up)’

T j(uy) ... T; j(up)
H1§k<€§ph(uk’ u@),

T j(u) = i1+ [j1=1, I <],

(3.5)

Ti j(u) = i1+ [j1=1, P> ].
Due to the commutation relations (2.5) the operator products (3.5) are symmetric over permuta-
tions of the parameters u.

3.1. Coloring

In physical models, vectors of the space H describe states with quasiparticles of different
types (colors). In gl(m|n)-based models quasiparticles may have N =m 4+ n — 1 colors. Let
{r1,...,rn} be a set of non-negative integers. We say that a state has coloring {ry,...,ry}, if
it contains r; quasiparticles of the color i. A state with a fixed coloring can be obtained by
successive application of the creation operators 7; ; with i < j to the vector |0), which has zero
coloring. Acting on this state, an operator 7; ; adds quasiparticles with the colors i, ..., j —1, one
particle of each color. In particular, the operator 7; ;1 creates one quasiparticle of the color i, the
operator 77,4, creates N quasiparticles of N different colors. The diagonal operators 7; ; are
neutral, the matrix elements 7; ; with i > j play the role of annihilation operators. Acting on the
state of a fixed coloring, the annihilation operator 7; ; removes from this state the quasiparticles
with the colors j,...,i — 1, one particle of each color. In particular, if j — 1 < k < i, and the
annihilation operator 7; ; acts on a state in which there is no particles of the color k, then this
action vanishes.

This definition can be formalized at the level of the Yangian through the Cartan generators of
the Lie superalgebra gl(m|n). Indeed, the zero modes

o u
T;;[0] = ulggoz(Tij(u) — 8ij)

form a gl(m|n) superalgebra, with commutation relations
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(734101, Tul0]) = (=D (5 735101 — 86 Tal01) .okl = 1.....m+n.
(3.6)

This superalgebra is a symmetry of the generalized model, since it commutes with the transfer
matrix, [7;;[0], T(2)]=0,i,j=1,...,m + n. In fact the monodromy matrix entries form a
representation of this superalgebra:

(7510). T (@)} = (=) (5 73 0) =63 T () . ikl = 1,comton.

(3.7)
In particular, for the Cartan generators 7;[0] we obtain
[75;10]. T @] =(=DY(8;; = 8jx) Tu(). jkI=1,....m+n. (3.8)
Then, the colors correspond to the eigenvalues under the Cartan generators'
J
hj=) (=DM Tu0], j=1.....m+n—1. (3.9)

k=1

Indeed, one can check that

gitk,)=—1 ifk<j<lI
(), T()] =¢k,1) Tiy(z) with ik, D)=+1 ifl<j<k (3.10)
gj(k,1)=0 otherwise

These eigenvalues just correspond to creation/annihilation operators as described above.

Bethe vectors are certain polynomials in the creation operators 7; ; applied to the vector |0).
Since Bethe vectors are eigenvectors under the Cartan generators Tyx[0], they are also eigenvec-
tors of the color generators %, and hence contain only terms with the same coloring.

Remark In various models of physical interest the coloring of the Bethe vectors obeys certain
constraints, for instance, r;{ > r» > --- > ry. In particular, this case occurs if the monodromy
matrix of the model is given by the product of the R-matrices (2.2) in the fundamental represen-
tation. We do not restrict ourselves with this particular case and do not impose any restriction for
the coloring of the Bethe vectors. Thus, in what follows r; are arbitrary non-negative integers.
In this paper we do not use an explicit form of the Bethe vectors, however, the reader can find
it in [29]. A generic Bethe vector of gl(m|n)-based model depends on N =m +n — 1 sets of

variables 7', 72, ..., tN called Bethe parameters. We denote Bethe vectors by B(7), where
- 1 1.2 2.  ..N N
S PRI AR RN S SUNES SN K & (3.11)

and the cardinalities r; of the sets ' coincide with the coloring. Thus, each Bethe parameter t,i
can be associated with a quasiparticle of the colori.

Bethe vectors are symmetric over permutations of the parameters t,i within the set 77, however,
they are not symmetric over permutations over parameters belonging to different sets ' and 7/.
For generic Bethe vectors the Bethe parameters t,i are generic complex numbers. If these pa-
rameters satisfy a special system of equations (Bethe equations), then the corresponding vector

I The last generator /45, is central, see (3.10).

101



284 A. Hutsalyuk et al. / Nuclear Physics B 923 (2017) 277-311

becomes an eigenvector of the transfer matrix (2.7). In this case it is called on-shell Bethe vec-
tor. In this paper we consider generic Bethe vectors, however, some formulas (for instance, the
sum formula for the scalar product (4.11), (4.15)) can be specified to the case of on-shell Bethe
vectors as well.

Though we do not use the explicit form of the Bethe vectors, we should fix their normalization.
We have already mentioned that a generic Bethe vector has the form of a polynomial in 7; ; with
i < j applied to the pseudovacuum |0). Among all the terms of this polynomial there is one
monomial that contains the operators 7; ; with j —i = 1 only. Let us call this term the main term
and denote it by B(7). Then

B() =B@) +.... (3.12)

where ellipsis means all the terms containing at least one operator 7; ; with j —i > 1. We will
fix the normalization of the Bethe vectors by fixing a numeric coefficient of the main term

= Ty 2" ... Ty, n+1GY)|0)
B(f) = — e .
Lo A1 DTLS fien @t 1t

(3.13)

where
Tiiv1()) ... Tiiv1 (2,)

. . Si,m ’
(H1§j<k§r,~ h(tllc’ t;)>
Recall that we use here the shorthand notation for the products of the functions A ;1 and f;41;.

The normalization in (3.13) is different from the one used in [29] by the product ]_[?':1 A1),
This additional normalization factor is convenient, because in this case the scalar products of the
Bethe vectors depend on the ratios «; (3.2) only.

Since the operators 7; ;1 and T j 41 do not commute for i # j, the main term can be written
in several forms corresponding to different ordering of the monodromy matrix entries. The or-
dering in (3.13) naturally arises if we construct Bethe vectors via the embedding of gl(m — 1|n)
to gl(m|n).

T iv1(F) = (3.14)

3.2. Morphism of Bethe vectors
Yangians Y (gl(m|n)) and Y (gl(n|m)) are related by a morphism ¢ [40]

| Y(glm|n)) — Y (gl(n|m)),
Tleln(u) — (_1)[z][J]+[J]+1 TIGTZ—j,N+2—i(”)’ =1 . . N+1,

(3.15)

and we recall that N =m + n — 1. Here we also have equipped the operators 7;; with addi-
tional superscripts showing the corresponding Yangians. This mapping also acts on the vacuum
eigenvalues A; (1) (3.1) and their ratios o; (1) (3.2)

, {ki(u) — —hnprmi@),  i=1,...,N+1,

3.16
L i=1,...,N. (3.16)

() — ayy1—i(u)’

Morphism ¢ induces a mapping of Bethe vectors B”!" of Y (gl(m|n)) to Bethe vectors B
of Y (gl(n|m)). To describe this mapping we introduce special orderings of the sets of Bethe
parameters. Namely, let
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=Ny and  T={N,.. 0. (3.17)
The ordering of the Bethe parameters within every set ¥ is not essential. Then
(=D B"" @)
[Tl an+1-k (@)

Applying the mapping (3.18) to B”!" and then replacing m <> n we obtain an alternative
description of the Bethe vectors corresponding to the embedding of gl(m|n — 1) to gl(m|n). The
use of ¢ (3.18) allows one to establish important properties of the Bethe vectors scalar products
(see section 7.2).

go(IB%’"'"Ft)) = (3.18)

3.3. Dual Bethe vectors

Dual Bethe vectors belong to the dual space H*, and they are polynomials in 7; ; with i > j
applied from the right to the dual pseudovacuum vector (0|. This vector possesses properties
similar to (3.1)

(OIT;,; (u) = A; (){0], i=1,....m+n,
(OIT; j(u) =0, <],

where the functions A; (1) are the same as in (3.1).

We denote dual Bethe vectors by C(7), where the set of Bethe parameters 7 consists of several
sets 7 as in (3.11). Similarly to how it was done for Bethe vectors, we can introduce the coloring
of the dual Bethe vectors. At the same time the role of creation and annihilation operators are
reversed.

One can obtain dual Bethe vectors via a special antimorphism of the algebra (2.4) [40]

(3.19)

W T ) — (—DAGHED T @), (3.20)

This antimorphism is nothing but a super (or equivalently, graded) transposition compatible with
the notion of supertrace. It satisfies a property

V(A - B) = (—D)IAIBly(B) . w(A), (3.21)

where A and B are arbitrary elements of the monodromy matrix. If we extend the action of this
antimorphism to the pseudovacuum vectors by

w(j0))=(0l,  W(Al0))=(0|¥(A),

w(0))=10),  Ww((0]A) =W (A)|0),
then it turns out that [29]

U(B(@)=C@{), V(CO)=(D"B(), (3.23)

where r,, = #t".

(3.22)

Remark It should not be surprising that \IJZ(IBS(I_)) = B(t). The point is that the antimorphism
W is idempotent of order 4 and its square is the parity operator (counting the number of odd
monodromy matrix elements modulo 2).

Thus, dual Bethe vectors are polynomials in 7; ; with i > j acting from the right onto (0.
They also contain the main term C(7), which now consists of the operators 7; ; withi — j = 1.
The main term of the dual Bethe vector can be obtained from (3.13) via the mapping W:
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) = (—1)mm=DI2O Ty 1 y(@) ... To 1 ()
[Ty At G TS fiien @+ )

(3.24)

where
Tit1,i(@) .- Tit1,i(t,)

i i\
(H1§j<k§ri h(tj’ tk))

Finally, using the morphism ¢ we obtain a relation between dual Bethe vectors corresponding
to the Yangians Y (gl(m|n)) and Y (gl(n|m))

Tiy1i(') = (3.25)

cr @)

= .
[Tz @n+1-1(75)

w(C’"'”(?)) = (3.26)

4. Main results

In this section we present the main results of the paper. They are of three types: recursion
formulas for Bethe vectors; sum formula for the Bethe vectors scalar product; recursion formulas
for the scalar product highest coefficients. Recall that we formally consider the case m,n # 0.
However, in subsection 4.3 we specify our results to the particular case of gl(m)-based models,
that is, n = 0. The case m = 0 can be obtained from the latter via replacement ¢ — —c in the
R-matrix (2.2).

4.1. Recursion for Bethe vectors
Here we give recursions for (dual) Bethe vectors. These recursions allow us to construct Bethe
vectors, knowing the ones depending on a smaller number of parameters. The corresponding

proofs are given in section 5.

Proposition 4.1. Bethe vectors of gl(m|n)-based models satisfy a recursion

N+1
(N Ti,;(2) (kN
B 7' L {# =)= Y BAT LA D
— A (2) _ J
J=2 part(2,....t7=1)
S o o
% Hizz ay (tl”)g[u] (tlv, t_lv I)Vv (tﬁ)a tlv) @.1)
= — - —. :
W', 2" T2 foen @)
Here for j > 2 the sets of Bethe parameters t2, ..., 11\ are divided into disjoint subsets 1 and
ty (v=2,...,j— 1) such that the subset t’ consists of one element only: #t” = 1. The sum is
taken over all partitions of this type. We set by definition t_ll =zand "t =0,
We used the following notation in Proposition 4.1
B({z. i} (7)) =Bz 1 }: % ... 1Y), )
- =1 (# N -1, = —j—1_ =j - '
B({tl}; {té‘}é : {tk}j ) =B t]f; BT Y.

This and similar notation will be used throughout of the paper.
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Remark We stress that each of the subsets t? e, t_IN in (4.1) must consist of exactly one ele-
ment. However, this condition is not feasible, if the original Bethe vector B(¢) contains an empty
set 7¥ = ) for some k € [2, ..., N]. In this case, the sum over j in (4.1) breaks off at j = k.
Indeed, the action of the operators T ;(z) with j > k on a Bethe vector necessarily creates a
quasiparticle of the color k. Since this quasiparticle is absent in the lhs of (4.1), we cannot have
the operators 77 j(z) with j > k in the rhs. Similar consideration shows that if B(z) contains
several empty sets 7¥1, ..., 7*¢, then the sum ends at j = min(ky, ..., k¢).

Remark One can notice that for m = 1 an additional factor A (¢!, z) ! appears in the recursion.
The point is that with this recursion we add a quasiparticle of the color 1 to the original set of
quasiparticles via the actions of the operators 77, ;. For m =1 all these operators are odd, which
explains the appearance of the factor 4(7', z)~!. This difference can also be seen explicitly in the
example of recursion for the main term (3.13)

N Ti2(2)B@)
Bt ) = o m@ o (*3)

Using the mappings (3.15) and (3.20) one can obtain one more recursion for the Bethe vectors
and two recursions for the dual ones.

Proposition 4.2. Bethe vectors of gl(m|n)-based models satisfy a recursion

N

_ _ _ T;, (2) o ) o

B(|i*}Y 1;{z,tN}):Z% S B(ES E)
j=1 N+ part(f/,...,tN—1)

N-1 vl v 7V 7
y D= @ %@, i)
RN, 258 T fn @, 771

4.4)
Here for j < N the sets of Bethe parameterst!, ..., tN "1 are divided into disjoint subsets t” and

ty (v=j,...,N — 1) such that the subset t; consists of one element: #t = 1. The sum is taken
over all partitions of this type. We set by definition t_lN =z and 1° = .

Remark 1f the Bethe vector B(¢) contains several empty sets 7%t ... ¥ then the sum over j
in (4.4) begins with j = max(ky, ..., kg) + 1.

Acting with antimorphism (3.20) onto equations (4.1) and (4.4) we immediately arrive at
recursions for the dual Bethe vectors.

Corollary 4.1. Dual Bethe vectors of gl(m|n)-based models satisfy recursions

- T
Clas BN =Y X e s ) e

j—1 - -y =v—=1\ A —p =
X Hi:z av(5)gw1 Gy, 51 Py, 5))

<1 8 Jj—1 vl Tvy (*3)
h(st, 2% T2y fro+n GV 5Y)

and
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N
L N-1 _ _ivi—1. = N—=1, =N\ IN+1,j(2)

(i e E A D S S ¢ il F R it I Bl G DGR
— = AN+1(2)

J=1part(s/,...5N-1)

-1 _ — —y =
[T e s YL 5)
RGN, 2PN TT0Z fu G501

Here the summation over the partitions occurs as in the formulas (4.1) and (4.4). The numbers
r1 (resp. ry ) are the cardinalities of the sets 5! (resp. 5 ). The subsets 5y consist of one element:

#s; = 1. If C(5) contains empty sets of the Bethe parameters, then the sums cut similarly to the
case of the Bethe vectors B(t). By definition 511 =zin (4.5), EIN =z in (4.6), and §° =5Vt = ¢.

(4.6)

The proof of Corollary 4.1 is given in section 5.2.

Using recursion (4.1) one can express a Bethe vector with #7! = r| in terms of Bethe vectors
with #7' = r; — 1. Applying this recursion successively we eventually express the original Bethe
vector in terms of a linear combination of terms that are products of the monodromy matrix
elements 77 ; acting onto Bethe vectors with # ' = 0. The latter effectively corresponds to the
Yangian Y (gl(m — 1|n)) (see [29]):

4.7)

ks k1"

B™ " (g; (7)) =B~ (7) :

Thus, continuing this process we formally can reduce Bethe vectors of Y (gl(m|n)) to the ones of

Y (gl(1|n)).
Similarly, using recursion (4.4) and

B (N1 ) = B (@), (4.8)

we eventually reduce Bethe vectors of Y (gl(m|n)) to the ones of Y (gl(m|1)). The combination
of both recursions thus defines a unique procedure for constructing Bethe vectors with respect to
the known Bethe vectors of Y (gl(1|1)): B! (7) = T}.2(#)|0)/A2(f). Similarly, one can built dual
Bethe vectors via (4.5), (4.6). These procedures, of course, are of little use for practical purposes,
however, they can be used to prove various assertions by induction.

4.2. Sum formula for the scalar product

Let B(7) be a generic Bethe vector and C(5) be a generic dual Bethe vector such that #7* =
#sk = rk, k=1, ..., N. Then their scalar product is defined by

S| = C(5)B(). (4.9)

Note that if #7% #* #5% for some k € {1,..., N}, then the scalar product vanishes. Indeed, in this
case the numbers of creation and annihilation operators of the color k£ do not coincide.
Applying (3.22) to the scalar product and using [B(7) | = [C(7)] = r, [29] we find that

S| = C@)B(s) = S(75). (4.10)

Computing the scalar product one should use commutation relations (2.5) and move all oper-
ators 7; ; with i > j from the dual vector C(5) to the right through the operators 7; ; withi < j,
which are in the vector B(¢). In the process of commutation, new operators will appear, which
should be moved to the right or left, depending on the relation between their subscripts. Once
an operator 7; ; with i > j reaches the vector |0), it either annihilates it for i > j, or gives a
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function A; for i = j. The argument of the function A; can a priori be any Bethe parameter té‘
or séf. Similarly, if an operator 7; ; with i < j reaches the vector (0|, it either annihilates it for
i < j,orgives a function A; for i = j, which depends on one of the Bethe parameters.

Due to the normalization of the Bethe vectors the functions A; then turn into the ratios «;.
Thus, the scalar product eventually depends on the functions «; and some rational functions
which appear in the process of commutating the monodromy matrix entries.

The following proposition specifies how the scalar product depends on the functions ;.

Proposition 4.3. Let B(t) be a generic Bethe vector and C(5) be a generic dual Bethe vector
such that #* =#5 = ri, k=1, ..., N. Then their scalar product is given by

N
SGID = Whntt Gu. Sulfv, i) [ | e GO ). (4.11)
k=1

Here all the sets of the Bethe parameters t* and 5% are divided into two subsets t* = {t*, i}
and 5% = {Elk, Efl‘}, such that #t_lk = #§Ik. The sum is taken over all possible partitions of this type.

The rational coefficients Wg"al’: depend on the partition. They are completely determined by the
R-matrix of the model and do not depend on the ratios of the vacuum eigenvalues ay,.

Proposition 4.3 states that after calculating the scalar product the Bethe parameters of the type
k (t}‘ or s? ) can be arguments of functions A;1 or A; only. Due to the normalization of the Bethe
vectors these functions respectively cancel in the first case or produce the functions ¢y in the
second case. We prove Proposition 4.3 in section 6.1.

We would like to stress that the rational functions W;;'r:' are model independent. Indeed, within
the QISM framework the Hamiltonian of a quantum model is encoded in the supertrace of the
monodromy matrix 7 (u). Thus, one can say that the quantum model is defined by 7' (). Looking
at presentation (4.1 1) one can notice that the model dependent part of the scalar product entirely

lies in the o functions, because only these functional parameters depend on the monodromy
matrix. On the other hand, the coefficients Wg;rl'f are completely determined by the R-matrix,
that is, they depend only on the underlying algebra. Thus, if two different quantum integrable
models have the same R-matrix (2.2), then the scalar products of Bethe vectors in these models
are given by (4.11) with the same coefficients WS;lr?.

The Highest Coefficient (HC) of the scalar product is defined as a rational coefficient corre-
sponding to the partition 5; = 5, f; =7, and 5y = fy = @. We denote the HC by Z”!"(5|f). Then,

the HC is a particular case of the rational coefficient” WF',’;K' :

Wg’m";(g,mt‘, g) = Z™"(5|0). (4.12)

Similarly one can define a conjugated HC 7’“'” (5]) as a coefficient corresponding to the partition
EHIE, er:t_, and§1=t_I=@.

W@, 510,10 = Z"" 317). (4.13)

Due to (4.10) one can easily show that

2 Note that we have changed the definition of the HC with respect to the one that we used in our previous publications.

Now it involves a normalization factor ]_[?7:_11 fij+11 GARS Ej)f[j+1] (L 70y,
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7" Gl = 2" @19). (4.14)
The following proposition determines the general coefficient W, a|n in terms of the HC.
Proposition 4.4. For a fixed partition t* = { 1k ) and 5% = {sI , su} in (4.11) the rational coef-

ficient melt has the following presentation in terms of the HC:

TV, e GE, 0y i, 76
N—1 _j+l ) SN
im0 Juan G LSO i@ T i)
(4.15)

mn,- - - - - - -
W Sy, 5l B = 27 GlE) 2 ()

The proof of Proposition 4.4 is given in section 6.2.
Explicit expressions for the HC are known for small m and n [15]. In particular,

Z G0 = g6, D). (4.16)

Determinant representations for Z2/? or Z°? were obtained in [32]. Relatively compact formulas
for Z™" at m + n = 3 were found in [11,14,15], however, representations for the HC in the
general gl(m|n) case are very cumbersome. Instead, one can use relatively simple recursions
established by the following propositions.

Proposition 4.5. The HC Z"™ (5|7) possesses the following recursion over the set 5':
N+1 -1 <1 =1 71y po7l <1
Zm|n(S|t)— Z Z g1t 5 ))’l(tl ) f (. 57)
N IGRSLE
P=2 pant(s2,...,57~ 1 Jim P, 51 §
part(7',.... 7P~ 1)

~1 _
" Ii—[ g1 GY 5 D@ 8D G Sy (5, 1)
f[l)](sv’gl )f[\)](tlv’tv l)

Ky P=1 (kN (k=1 [\ N
Z’"'”<{ AT HE YT (4.17)
Here for every fixed p € (2, ..., m + n} the sums are taken over partitions t* = {t*, i*} with
k=1,...,p— 1 and 55 = (55,55} with k =2,..., p — 1, such that #i* = #5*¥ =1 for k =
2,...,p— 1. The subset 511 is a fixed Bethe parameter from the set 5'. There is no sum over

partitions of the set §' in (4.17).
The proof of this proposition is given in section 7.1.

Corollary 4.2. The HC Z"™V"(5|t) satisfies the following recursion over the set t" :

N N N~ N - N -

Zm|n(§|lr) _ Z Z g(sllv’th)yN(s[I[v’sllv)f(sévst[N)
B Fin| @, EP~ RN, 7N yomN

p=1 pant(s?,....5V) PR o

part(t_" ..... -1y

1—[ g[V+1](Sl Slv)g[v+l](t_1v+1 _v));v(gﬁ),_v));v(tv t r)
S+ GUTL S o @ 1)

x Z'"'"({ S G M HR T o (4.18)
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Here for every fixed p € {1,...,m +n — 1} the sums are taken over partitions t* = {t_lk , t_é‘}
withk=p,...,N —1 ands = {sl ,sﬂ} with k= p,...,N, such that#t_lk:#EIk: 1 for k =
p,..., N — 1. The subset tIN is a fixed Bethe parameter from the set t~. There is no sum over

partitions of the set tV in (4.18).

This recursion follows from (4.17) and a symmetry property of the HC (7.14) proved in sec-
tion 7.2.

Remark Similarly to the recursions for the Bethe vectors the sums over p in (4.17), (4.18) break
off, if HC Z™"(5|r) contains empty sets of the Bethe parameters. If the colors of the empty sets
are {ki, ..., k¢}, then the sum over p ends at p = min(ky, ..., k) in the recursion (4.17), while
in the recursion (4.18) it begins at p = max(ky, ..., k¢) + 1. These restrictions follow from the
corresponding restrictions in the recursions for the Bethe vectors.

Using Proposition 4.5 one can built the HC with #5! = #f! = r| in terms of the HC with
#5! = #1' =r| — 1. In particular, Z™" with #5' =#! =1 can be expressed in terms of Z"I"
with #5! = #11 = 0. Itis obvious, however, that

zmn @, 5510, (731 = zm 1 (Y ). (4.19)

due to (4.7). Thus, equation (4.17) allows one to perform recursion over m as well.

Similarly, Corollary 4.2 allows one to find the HC with #5NV = #N = ry in terms of the HC
with #5V = #tY = ry — 1 and to perform recursion over 7.

Thus, using recursions (4.17) and (4.18) one can eventually express zmin (5|¢) in terms of
known HC, say, for m + n = 2. However, the corresponding explicit expressions hardly can be
used in practice, because they are too bulky. At the same time, these recursions appear be very
useful for proofs of some important properties of HC.

4.3. Simplified expressions for models with gl(m) symmetry

As already mentioned, the results stated above are also valid for the case of gl(m) Lie algebras
with m > 1, simply by setting n = 0. This implies N = m — 1. In that case, most of expressions
simplify, due to the absence of grading. We present here the simplified results occurring for

gl(m).
e Bethe vectors of gl(m)-based models satisfy the recursions

L pml, s~ T1 @) P N (PR
Bl M= X BATRER T

. < _.
Jj=2 part(i2,...,t7—1)

TE @) e@ sy 7

[ (4.20)
1_[1)=1 f(tv—Ha tlv)
where the conditions on sets of Bethe parameters are the same as in Proposition 4.1,
n-2, — (Z) =1 [k ym—2. m—
BT N M R I
Jj=1 part(z_/ ..... fm—2)
Te@ L FEL )
X - (4.21)

nv:j f(tlvv tv_l)
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where the conditions on sets of Bethe parameters are the same as in Proposition 4.2. The
starting point for these recursions is the gl(2) Bethe vector B(¢) = T12(7)|0) /A2(%).
e Dual Bethe vectors of gl(m)-based models satisfy the recursions

PR _ ym—1, Tj.1(2)
Cles' B {5 H=22 > cds bl D Ajzl(z)

j=2 part(s2 571

l'[’ Lo GgGY, 5 Y FGY 5

(4.22)
l_[v=1 f(sv+l,§lv
and
ST DD S TR et
J=1 part(s/,...,5m=2) 4
TS eGSO 5D s

l_[v:j f(EIV, gv—l)
The conditions on the sets of parameters and partitions are given in Corollary 4.1. The start-
ing point for these recursions is the g[(2) dual Bethe vector C(7) = (0| T»; () /A2(1).

e For a fixed partition 75 = {¢*, ¥} and 5% = {5¥, 5} in (4.11) the rational coefficient Wt
has the following presentation in terms of the HC:

M1 FGE 50 Fak,
[T/ 2f( sitshra iy

In the gl(2) and gl(3) cases this expression reduces to the formulas respectively obtained in
[5]and [10].
e The HC Z™ (5|r) possesses the following recursions:

m |
- ioshral thFalsh
Zm(s|t):Z Z 1 I 1 : o 1
fGPs0
p= 2part(s ..... sP—1
part(z ..... =1

W 1, Sulin, ) = Z™ (5if) Z™ (i)

(4.24)

5 11[ GG )€( VT l)f_(E;_,EI”)f(t” )
=2 f(sv,sl )f(tlvatv_l)
x Z" ({55107, {5"}’;"1|{f§}f‘1; {t"‘}';;_l), (4.25)
and

m—1 “m—1 =m—1 -m—1 -m—1 -1 -m—1
Z"(5|7) = Z Z gt 5 )f(;l(lt_lp’ ;_;1_1) V@5 )

=1 part(sP,...5" 1)
part(¢?,..., tm 2)

1—[ S gL g @ B FGYL ) F LB
f<§v+1,§1“>f(fl”“,tv>

x Z’"<{ O o R [T R T3 (4.26)
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The conditions on the sets of parameters and partitions are given in Proposition 4.5 and
Corollary 4.2. Here, the starting point corresponds to the gl(2) case, in which Z%(5 [7) is
equal to the partition function of the six-vertex model with domain wall boundary conditions
[5,32].

5. Proof of recursion for Bethe vectors

One can prove Proposition 4.1 via the formulas of the operators T ;(z) action onto the Bethe
vector. These formulas were derived in [29]

T1,j(2)B(1) = n;B({z, t_k}{_1§ {t_k}jv)
N+1

+ > > HyanB((n MY T )T G

g=j+1part(t/,...,t971)

Here in the second line for every ¢ we have a sum over partitions of the sets 7/, ...,79~!. The
coefficient n; in (5.1) is
nj = 4@ fin@, Dh@", ). (5:2)

The coefficient H, ; depends on the partitions and has the form

_ . _ I _1
H, j(part) = fi (17, )h(@, D)VIR@E™, )~V () g1z, )

q—1 q—1
% 1_[ g0 (lrlv’ t—Iv—l) 1_[ Q. (5.3)
v=j+1 v=j
where
Q= ()t 1) (5.4)

= f[v+]](;v+l’ ZTI\)) .
Note that in (5.1) the operators 71 ;(z) act onto B(f), while in (4.1) these operators act onto

IB%({I_I}; {t_é‘}é_l; {t_k}j,v). Therefore, we can directly use the action formula (5.1) for j =2 only.

For j > 2 we should replace in (5.2) and (5.3) the sets 72, ..., 1771 with the subsets t_g, cen, f,{_l

before substituting (5.1) into recursion (4.1).

We look for the terms in the formulas (5.2) and (5.3) where we should do the replacement
(t%,...,t/ "1y > {t_llz,...,t_[{_l}. The sets {%,...,7/ 71} appear only in the factors i ("™, z)l/]
and h(i", z)!91=U1 and provided that m € {2, ..., j — 1}. This implies that for m = 1 there is no
replacement to do. For m > 1, we have [j] = 1, because j > m, and [¢g] = [j], because g > j.
Then, the factor A (#", z)!91=1/1 drops out, and we should only replace h (™, z)l/1 — h(#", 7)1,

Thus, we arrive at the following action formula:

1 @B Y (i ()
=Bz 7 = 7 D)

N+1

+ 3 > HyaB({z. 7' (2. 5815 (), (5.5)

g=j+1part(t/,...,ta71)
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where
;=% @ fin@, Dh@', DV, 2)°m, (5.6)

and

- _ —1
H, j(part) = fi (7, Dh@", DRE", 2P 0y D g1z i)

g-1 g-1
< [T sm@. 57 H ] (5.7)
v=j+1 v=j

Now everything is ready for substituting the action formula (5.5) into recursion (4.1). Let

N+1

— . Hi;;g[v](flv,fll)—l)gv -1V, [k j—l. N
X_ng,J(Z) ) M(Z)h(p,Z)am,lf[z](t_z’z)laﬂ({z ok ). 68

part(i2,...,t7~1)

It is easy to see that X is nothing else but the r.h.s. of recursion (4.1). Thus, our goal is to show
that X = B({z,7'}; {#*},). Substituting (5.5) into (5.8) we obtain

N+1 ~ j—1 v v—1
njl_[ =2g[v](t1 )2 -1 “1Jj—1 (kN
X=> 2 = S B({z. 7'z i) (7))
1 Sm,l ) 9 b e W 1) ’ J
122 -y 2O D (5, 2)
N+1 N+1 ~ i—1 -y Ty—
+i i 3 Hy,j (part) [T) 5 g1 @, 7~ H<
71 Om.1 2
J=2 q=j+1part(?,....7971) AR, 2y fin (7, 2)
- 2g—1 .-
x B({z. 7'} fz. iy 45 1)) (5.9)
It is convenient to divide X into three contributions
X=X 4 Xx@ 4 x&, (5.10)
The first term XD corresponds to j = 2 in the first line of (5.9):
- - N
1 n2B({Z’ tl}; {tk}z )
X = TRV = (5.11)
M (2)h(t, 2)om1 fi21(27, 2)
Substituting here 7, we see that
XM =Bz, 7'}; [F)2). (5.12)

The contribution X® includes the terms with j > 2 from the first line of (5.9). The contribu-
tion X® comes from the second line of (5.9). Consider X® changing the order of summation
and substituting there (5.7). We have

N+1g-1 - _ _
X9 = i Yy @@ oh@ G o
M)A (T, 2)%n1 fi) (12, 2)

q=3 j=2part(2,...,79~1)
-1 qg—1
gz, 1) v f YT

ﬁ [Tem@. 5" He | Bdz.i'}: 2. 538+ (7)), (>.13)
g I % v=2

The sum over j can be easily computed
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q—1

Zg(t )__Z(tl _tI] 1)—_(?1 l_t )=—1/g(z, fq ) (5.14)
j=2

and we recall that by definition 7! = z. Thus,

N+1

A (2) fig1(F, D) @, )1 4=
(3) B : v 1
) Z > L, M @h (), 2 fi (2, 2) ng[”]( )82y

x B({z, 7'} {2, 1151 7). (5.15)
On the other hand, the contribution X® is

N+1

xX0=%" Y 2@ fin(@, Dh@',

)[J]
)“Z(Z)h(tﬂ , Z)‘Sm 1f[2](fz Z) 1_[ 8[v] (tI >

Q2,
J=3 part(s2,...,t/ 1)

x B({z.7'}; 2. 717 (790, (5.16)
Comparing (5.16) and (5.15) we see that they cancel each other. Thus, X = IB%({Z t } {tk} ). O

5.1. Proofs of Proposition 4.2

Let us derive now recursion (4.4) starting with (4.1) and using morphism (3.15). Since the
mapping (3.15) relates two different Yangians Y (gl(m|n)) and Y (gl(n|m)), we use here addi-
tional superscripts for the functions g(u, v), f(u, v), y (u, v), and y (u, v). For example, notation
f['f]ln (u, v) means that the function fj,)(u, v) is defined with respect to Y (gl(m|n)):

f(u,v), v <m,

min _ ) =
ﬂﬂOhw—[fwML b=m. (5.17)

At the same time the notation f{;l]m (u, v) means that the function f[,)(u, v) is defined with respect
to Y (gl(n|m)):

f(u,v) v<n

n|m _ ) ’ — Ity
ﬁﬂOnw—[fwML I (5.18)
The other rational functions should be understood similarly. It is easy to see that
g (u,v) = gy, (v, 1),
fil vy = fi, .0, (5.19)

Y, v) = Pl (v, w).

Let us act with ¢ onto (4.1). Due to (3.15)—(3.18) we have

mln nlm
(2) T (2)
i [J] N+2—j,N+1
w( M) )_( SEE R o
Bm {7k 2; ’_l
o (B (e 7 (1)) = cpyreima S A b 27D (521)

an (@) [T N1k (75
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and
j—1 B (s () )
o [ B (ERTHFYD [Tow@) | = (= 1)yrmtmitl] =
G B U 1_[2 [To ) o1k ()
(5.22)

Thus, the action of the morphism ¢ onto (4.1) gives

N+1

_ TNio—i () _ _
| Ny _ N+2—j,N+1 | . k2 -1
Jj=2 part(¢2,...,t7=1)
l_[,f SEpy Y, f Dy @, i)
o mln 1 (5.23)
h(t z)om! l_[ [v_|_1](tv+ A )
Using the relations (5.19) and the trivial identity 8m, | =0n, N We recast (5.23) as
& Ty jv1@) 2
-1 +2-/, N+ k\J L [7k .7l
B ) = Y SRS S iR (i)
Jj=2 part(t_2 ..... ti=1)
nlm = ~n|m v
1)y ', 1)
l_[v 2g[N+2 v] YN+1—v _ (5.24)

h(@', 2y T2 [7\'/’11 @5 2D

Finally, relabeling the sets of the Bethe parameters tk — tN+1=K and changingv — N +1 —v
we obtain

N

B ()Y (e i)y = 30 ENEE S e e (N
=

A z . J
] A1) part(i/ ... iN-1)

N—1 1
LS N AR VT (A
BN, 2y TIL Sy G

It remains to replace m <> n, and we arrive at (4.4). O

(5.25)

5.2. Proof of recursion for dual Bethe vectors

To obtain recursion for dual Bethe vectors it is enough to act with antimorphism (3.20) onto
recursions (4.1) and (4.4). Consider in details the action of W onto (4.1).

Acting with W on the lhs of (4.1) we obtain a dual vector (C({z, 7! }; {t_k}év) due to (3.23). In
the rhs we have

(T ;B) = (—DVIBIC T, . (5.26)

The parity of the Bethe vector can be determined via the coloring arguments. Recall that Bethe
vectors are polynomials in the operators 7; ; acting on the vector |0), and all the terms of these
polynomials have the same coloring. Due to the general rule, a quasiparticle of the color m can be
created by the operators 7; ; with i <m and j > m. Hence, all these operators are odd, because
[i1=0fori <m and [j] =1 for j > m. On the other hand, the action of an even operator T; ;
cannot create a quasiparticle of the color m due to similar arguments. Thus, if a Bethe vector
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has a coloring {rq, ..., ry}, then all the terms of the polynomial in 7; ; contain exactly r,, odd
operators, where r,,, = #". Thus, [B(#)] =r,, mod 2.
In the case under consideration we should find the number r;, of the odd operators in the

Bethe vector B({7'}; {fé‘}é_l; {t_k}i.v). Let r,, = #t™ in the original vector B(f). If m = 1, then

rlo=ry. If 1 <m < j, thenr, =r, — 1. Finally, if m > j, then r,, = ry,. All these cases can be
described by the formula r), =r,; — [j1+ 8,1 Thus, we obtain

1. (N 1. (=1i=1 (= N Tj.1(2) 1
C=ifiln=2 3 CdiRiah Tt e
=2 e 77 22(2)
J== part(t-,..., /=)
L o o
1]):2 oy (1) 8 (7 f l))’v (. 1)
- _1 - _ )
h(@t, 2P 102 frornn (@41 8%)

(5.27)

where r), =rpy — [j1+ Sm.1.
This expression can be slightly simplified. Recall that 7;(x, y) = (—1)%miy;(x, y). Thus,
changing y, (17, 1") — y»(t], 1) in (5.27) we obtain

j—1 j—1
[[n@. &)= DU Ty a2, (5.28)
V=2 v=2

It remains to observe that [2] = §,,,1. Thus, substituting (5.28) into (5.27) and replacing the sets
7* with 5% we arrive at (4.5). Recursion (4.6) can be obtained exactly in the same way.

6. Proof of the sum formula for the scalar product
6.1. How the scalar product depends on the vacuum eigenvalues )\;(z)

In this section, we investigate the functional dependence of the scalar product on the func-
tions ;. Proposition 4.3 states that the Bethe parameters from the sets 5' and #' can be the
arguments of the functions «; only. In other words, the scalar product does not depend on «; (s,f)
or o (tf) with £ #1.

We prove this statement via induction over N =m +n — 1. For N = 1 it becomes obvious.
Assume that it is valid for some N — 1 and consider the scalar product of the vectors C™"(5) and
B () with m +n — 1 = N. Observe that we added superscripts to the Bethe vectors in order to
distinguish them from the vectors corresponding to gl(m — 1|n) algebra. We first prove that the
scalar product does not depend on the functions ai(s,f) with ¢ #i fori=2,...,N.

Successive application of the recursion (4.5) allows one to express a dual Bethe vector C™in(5)
in terms of dual Bethe vectors C"~!"(5). Schematically this expression can be written in the
following form

m-+n T: (Sl) T: (Sl )
min = _ @) —m—1ln [ =Ny IO L 10
cE = Z > el 5 @C s ) PWED . (6.0)
JlseesJr =2 (62,...,6V}
Here r; = #5' and 6 C §' for i =2,..., N. The sum is taken over multi-index {ji, ..., j }.
Every term of this sum contains also a sum over partitions of the sets 52,...,5" into subsets

115



298 A. Hutsalyuk et al. / Nuclear Physics B 923 (2017) 277-311

)

.....

&2,...,6"N and their complementary subsets. The factors @5“: i (0) are some numerical co-
1

efficients whose explicit form is not essential. It is important, however, to note that in (4.5) they
depend on «; (s,i) withi =2,..., N and do not depend on the functions «; with other arguments.

Let us multiply (6.1) from the right by a Bethe vector B/ () and act with the operators
T; ,,,1(5 117) onto this vector. Due to the results of [29] the action of any operator T;;(z) onto the

Bethe vector B™/"(7) gives a linear combination of new Bethe vectors B”!"(T), such that T =
(z!,..., 7V} and 7' C {f' U z}. In the case under consideration each of the operators ij,l(s},)

annihilates a particle of color 1. Hence, the total action of T}, 1(s{)...T jrl,l(srll) annihilates all
the particles of color 1 in the vector B”/" (). Thus, after this action the Bethe vector B”!" (f)

turns into B"~1"(%), where T = {72,..., 7V} and T/ C {# U5}
Tj1(sy) ... Ty, 1(s}) B} - N
: ik B™"(7) = OO @B tn(zk1. 6.2
WED 0) {_ZZ_N} () (7)) (6.2)
T4, ..., T

Here the coefficients @@ (T) of the linear combination depend on the original sets ¥ and sub-
sets TX. They involve the functions «; whose arguments belong to the set {5' U1}. Therefore, the
factors ®(’)(f) do not depend on «; (s,’() withi, j=2,..., N.
Thus, we obtain a recursion for the scalar product
_ - 5 () = _ A _i\N
B =y e} . @eP@cr e B (T 6.3)

.....

where 6% ¢ 5% and 7% ¢ {§' U 7¥}. The sum is taken over subsets ¥ and 7.
) ) . _ N _ ;N
Due to the induction assumption, the scalar product C"” 1'"({0" }2 )B™ 1|"({tk }2 ) depends
on the functions «; with arguments O’]i and rli. Since o,i € §', we conclude that the Bethe pa-

rameters s]i fori =2,..., N can become the arguments of the functions «; only. The numerical
)

.....

coefficients @5? i (&) and ®D(T) do not break this type of dependence. Thus, we prove that
1l

in the scalar product C"" (5)B"!"(f) the Bethe parameters s,i withi =2, ..., N can become the
arguments of the functions «; only.

Due to the symmetry (4.10), an analogous property holds for the Bethe parameters 7' with
i =2,..., N.Namely, these parameters can be the arguments of the functions «; only.

It remains to prove that the Bethe parameters from the sets 5' and 7! can be the arguments of
the function «1. For this we use the second recursion for the dual Bethe vector (4.6) and repeat
all the considerations above. Then we find that the Bethe parameters s,i withi=1,...,N —1
can become the arguments of the functions «; only. Then, the use of (4.10) completes the proof
of Proposition4.3. O

6.2. Proof of the sum formula

Consider a composite model, in which the monodromy matrix 7'(u) is presented as a product
of two partial monodromy matrices [6,20,29.41]:

Tw)=T?wWTY ). (6.4)

Within the framework of the composite model, it is assumed that the matrix elements of every
TOw) (I =1,2) act in some Hilbert space H?, such that # = HV @ H®. Each of T® (u)
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satisfies the RT T-relation (2.4) and has its own pseudovacuum vector [0)) and dual vector
(01D, such that 0) = [0)) ® [0)® and (0] = (0¥ @ (0|?). Since the operators 7,'% () and
Tk(’ll) (v) act in different spaces, they supercommute with each other. We assume that
0 H_ 4,0 l
i @100 =27 @0), i=1,....m+n 1=1,2 (6.5)
1 i T Ly e ’ — 1y 4~ .
0107w =" w1,

where )\.El) (u) are new free functional parameters. We also introduce

@)
A
algl)(u):(;‘)_(u), 1=1,2, k=1,...,N. (6.6)
A1 (@)
Obviously
ai@) =2P AP @), ) =al” e ). (6.7)

The partial monodromy matrices T (u) have the corresponding Bethe vectors B (7) and
dual Bethe vectors C® (5). A Bethe vector of the total monodromy matrix 7 (1) can be expressed
in terms partial Bethe vectors B (7) via coproduct formula® [29,41]

N (2),- = =
B(7) = Z l_[vzl O{\() )(tiv))/u(ti’{, tiv)
- N—1 v+1 v
[T= fo+n@™ .6
Here all the sets of the Bethe parameters 7" are divided into two subsets r” = {z”, £}, and the

sum is taken over all possible partitions.
Similar formula exists for the dual Bethe vectors C(s) (see Appendix A)

BY () @ B® (). (6.8)

N (1) <v SV SV
_1 oy (58 57, 85 _ _
CE=Yy. H“N—il ”( “)Z‘ji; 1) 0@ (5 0 CO G, (6.9)
[L=0 fornG™ 85
where the sum is organized in the same way as in (6.8).
Then the scalar product of the total Bethe vectors C(5) and B(7) takes the form

N (D r=vy ., (2D 7v SV oSV VTV
s = 3t G GIMELWNELL) g gy sO 7, 6.10)
15 Ao GITL S fosn @ L 2)
where
sOGI) =CP@BY @), $PGilfi) =CP 6B @), (6.11)

Note that in this formula #5 = #t_i“, (and hence, #5.; = #t_i‘i)), otherwise the scalar products S M
and S vanish. Let #5 =#t’ = k|, where k, =0, 1, ..., r,. Then #5 =#& =r, —k|,.

Now let us turn to equation (4.11). Our goal is to express the rational coefficients Wlﬁlr': in

terms of the HC. For this we use the fact that W;;l? are model independent. Therefore, we can

find them in some special model whose monodromy matrix satisfies the RT T -relation.

3 The terminology coproduct formula is used for historical reason, because (6.8) was derived for the first time in [29]
(see also [30] for the non-graded case) as a property of the Bethe vectors induced by the Yangian coproduct.
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Let us fix some partitions of the Bethe parameters in (4.11): 5 = {5/, 5;} and t* = {¢”, 1}
such that #5” = #1 = k,, where k, =0, 1, ..., r,. Hence, #5; = #1; =r, — k,. Consider a con-
crete model, in which®

aD@)=0, if zes’;

_ (6.12)
aP @) =0, if zet.
Due to (6.7) these conditions imply
ay(z) =0, if zes UL (6.13)

Then the scalar product is proportional to the coefficient WS;';; (51, Sulti, tn), because all other
terms in the sum over partitions (4.1 1) vanish due to the condition (6.13). Thus,

N
SGI7) = Wt Gr. 5l ) [ [ e GEreue 7). (6.14)
k=1

On the other hand, (6.12) implies that a non-zero contribution in (6.10) occurs if and only if
st C 5/ and £’ C ty. Hence, r, — k;, <k, and k;, < r, — k,. But this is possible if and only if
kj, +k, =r,. Thus, 5% =5 and £’ = #;. Then, for the complementary subsets we obtain 5" = 5
and ¢ =t'. Thus, we arrive at

N 1) - 2) = - o
[T e Gl @)y GYL 5y @ 1)
N—1 - 1 - — 1 -
Hv:l f[v-i-l](sl‘l)—i_ ’Slv)f[v—i-l](tlv—i_ ,t[][))

It is easy to see that calculating the scalar product SV (5;|f;) we should take only the term

S(5|F) = S Gy i) SP Gilh). (6.15)

corresponding to the conjugated HC. Indeed, all other terms are proportional to oz,()l)(z) with
z € 57, therefore, they vanish. Hence

N
SOGli) = [T @) -Z"" Guliy. (6.16)

v=1

Similarly, calculating the scalar product S (5;|#;) we should take only the term corresponding
to the HC:

N
SO Gl =[P G - 27" Giliy. (6.17)

v=1

Substituting this into (6.15) and using (6.7), (6.14) we arrive at
T e GEL 5O GEL 7
— T — T o
1_[?/:11 fi+nGi 5D fan @ LR
(6.18)

mn, - - - = - = =mln _ -
Wi G, suli, ) = 2" Gl 2" Gl

This expression obviously coincides with (4.15) due to (4.14).

4 This choice of the functions oy is always possible, for example, within the framework of inhomogeneous model with
spins in higher dimensional representations, in which inhomogeneities coincide with some of the Bethe parameters.
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7. Highest coefficient
7.1. Proof of the recursion for the Highest Coefficient

It follows from Proposition 4.3 that the scalar product is a sum, in which every term is propor-
tional to a product of the functions o. Let us call a term unwanted, if the corresponding product
of the functions oy contains at least one oy (tj? ), where t}‘ € t. Respectively, a term is wanted, if

all functions o depend on the Bethe parameters s;? from the set s.

Below we consider some equations modulus unwanted terms. In this case we use a symbol =.
Thus, an equation of the type [hs = rhs means that the /As is equal to the rhs modulus unwanted
terms.

Using the notion of unwanted terms one can redefine the HC (4.12) as follows:

N
S(5|7) = Hak(ik) AT Y (7.1)
k=1

On the other hand, it follows from the explicit form of Bethe vectors [29] that
Ti (") ... Ty n41(V)[0)
[T 2 GH TS fijen @1, )

because all other terms in the Bethe vector contain factors o (t}‘), and thus, they are unwanted.

B({) = B() = (7.2)

Hence, in order to find the HC it is enough to consider a reduced scalar product S (511)
NGRENGHE (C(§)ﬁ(t_). (7.3)
In order to calculate the reduced scalar product (7.3) we can use the recursion (4.5) for the
dual Bethe vector C(5). We write it in the form

paa 1 N Tp1 ()
oy — kPl <k P, 151 (r1 =18,
CH=Y Y  cdsh {5 }p)m(—l) " |
p=2 part(52,...,s71) 21
-1 _ e
IS Ggm G 5D 76 )
. —1 _ o
hGY 5D T2 fuen GV SY)
Here the sum is taken over partitions of the sets 5¥ = {5, 5} fork =2, ..., p, such that #5* = 1.
The Bethe parameter 5/ is fixed, and hence, the subset 5/ also is fixed. There is no the sum over

partitions of the set 5! in (7.4).
Thus, we obtain

(7.4)

N+1
S/=1T —1)dp “k\p—1 =k N “I\® /7
SGIn=7_ Y, DUTmiedsi T {5 ) ThaGHB®
p=2 part(52,...,57~1)
-1 _ N T
1525 0 G g G 50 Hpu Gy, 57)
— -1 - —1 — - :
JaGHRGY, 5D T2 froen GV SY)
The action of T}, (511) onto the vector ﬁ(t_) modulus unwanted terms is given by Proposition B.1.
Thus, we obtain

(7.5)
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N+1 .
I, t ,t ts,

SGIH=eGH Y. Y. (=D 6, 821 5y >V1<1 )fml(? 5
P=2 part(s2,....57~1) f[p](sp SI )h(sl sp )om:1

—1 _ _ AN oy -
oy &1L, 5 Dgren @, 1P G, 5P, 1)

=2 f[v](svsgl )f[v](tlst_v_l)
< CAsE T D BAR I ). (7.6)

Here " = §"*" = (. Calculating the reduced scalar products in (7.6) modulus unwanted terms
1 N~ 1 N = A
sl RGN 1) = [T s [ oo

x 2" ({51 }i’ LSRR,

and substituting this into (7.6) we immediately arrive at the recursion (4.17).
We have also used

(DT Dmp @ i) =@ E), G IORE ) = n G SO @ ).
7.2. Symmetry of the Highest Coefficient

Due to isomorphism (3.15) between Yangians Y (gl(m|n)) and Y (gl(n|m)) one can find a
simple relation between the HC corresponding to these algebras. In this section we obtain this
relation.

Consider the sum formula (4.11) for the scalar product of gl(m|n) Bethe vectors

S"GTE = W G Sulh ) ]"[omsl Yk (7). (7.8)

where we have stressed the ordering (3. 17) of the Bethe parameters. Let us act with the morphism
¢ (3.15) on the scalar product S’”'”(?l_f). This can be done in two ways. First, using (3.18) and
(3.26) we obtain

(=D C"™ @B @)
ket AN+ 1—k (5F)or 41— (T5)
_ (=D 8" (17
T vk (a1 ()

The scalar product S"Im (§17) has the standard representation (4.11). Thus, we find

so(S’"'”(fl?)) = w(Cm'”(ﬁ)Bmlnm) =

(7.9)

N

N (=)W (& Sl ) . o
g0<Sm|n(3,>|t)>:2: _ part l_[Olk(SlN kH)ak(tva 1y (7.10)

vart | i1 ON+1-k BF)an 41— (5 )

On the other hand, acting with ¢ directly on the sum formula (7.8) we have

N
mln o > _ _ -1
<0<S’"'"(?v’lt)) = W G wT ) ]"[(aNH_k(s{‘)aNH_k(rﬁ‘)) . (7.11)
k=1

part
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Comparing (7.10) and (7.11) we arrive at

N
NIM j«— <« < % —k -k
(=1 )" Woart G fuli 7o) [ [ w1 Gen+1-4@)
k=1

part
N
min — T -k -k
= Woak G ST ) [ | o1 GOan+1- () (7.12)
part k=1

Since «; are free functional parameters, the coefficients of the same products of ; must be equal.
Hence,

T =

Wit G Sl ) = (= 1) Wit G, S, 7). (7.13)
for arbitrary partitions of the sets § and 7. In particular, setting §; = f; = J we obtain

2" Gl = (— 1) Z"" G = (=1 2" G, (7.14)
Using this property one can obtain recursion (4.18) for the highest coefficient. Indeed, one can
easily see that applying (4.17) to the rhs of (7.14) we obtain (4.18) for the lhs of this equation.

8. Conclusion

In the present paper we have considered the Bethe vectors scalar products in the integrable
models solvable by the nested algebraic Bethe ansatz and possessing gl(m|n) supersymmetry.
The main result of the paper is the sum formula given by equations (4.11)and (4.15). We obtained
it using the coproduct formula for the Bethe vectors. This way certainly is more direct and simple
than the methods used before for the derivation of the sum formulas.

The sum formula is obtained for the Bethe vectors with arbitrary coloring. However, as we
have mentioned in section 3.1, in various models of physical interest the coloring of the Bethe
vectors is restricted by the condition r{ > rp > --- > ry. A peculiarity of these models is that
only the ratio o1 («) is a non-trivial function of u, while all other «’s are identically constants:
ar(u) = oy, k > 1 (actually, using a twist transformation, one can always make these constants
equal to 1: ax(u) =1, k > 1). Then equation (4.11) is simplified, and one can try to take the sum
over most of partitions, what should lead to a significant simplification of the sum formula. This
direction of possible development is very attractive, and we are planning to study this problem.

The sum formula involves the HC of the scalar product. We did not find a closed expression
for the HC, however, we have found recursions for it. Perhaps, this way of describing the HC is
preferable for the models with high rank of symmetry. Indeed, looking at the explicit formulas
for the HC in the gl(3)-based models one hardly can expect to obtain a relatively simple closed
formula for it in the general gl(m|n) case. On the other hand, the recursions obtained in this paper
allow one to study analytical properties of the HC, in particular to find the residues in the poles
of this rational function. Using these results it is possible to derive an analog of Gaudin formula
for on-shell Bethe vectors in the gl(m|n) based models exactly in the same way as it was done in
[5,10]. We will consider this question in our forthcoming publication.

As we have already mentioned in Introduction, the sum formula itself is not very convenient
for use. One should remember, however, that the sum formula describes the scalar product of
generic Bethe vectors, where we have no restriction for the Bethe parameters. At the same time,
in most cases of physical interest one deals with Bethe vectors, in which most of the Bethe
parameters satisfy Bethe equations. In particular, this situation occurs in calculating form factors.
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Then one can hope to obtain a significant simplification of the sum formula, as it was shown for
the models with gl(3) and gl(2|1) symmetries. We are planning to study this problem in our
further publications.

In conclusion we would like to discuss one more possible direction of generalization of our
results. In this paper we considered the so-called distinguished gradation, that is to say the special
grading [i]=0for 1 <i <m, [i]=1 for m <i <m + n. However, this is not the only possible
choice of grading. Other gradings induce different inequivalent presentations of the superalge-
bra, where the number of fermionic simple roots can vary from a presentation to another. These
different presentations are labelled by the different Dynkin diagrams associated to the super-
algebra. Obviously, since the different presentations deal with the same superalgebra, they are
isomorphic. However, the mapping between two presentations is based on a generalized Weyl
transformation acting on their Dynkin diagrams, lifted at the level of the superalgebra. These
generalized Weyl transformations, in particular, affect the bosonic/fermionic nature of the gener-
ators, and thus can change commutators to anti-commutators (and vice-versa). Then, the precise
expression of the mapping is heavy to formulate for all the generators of the Yangian. This is
also true for Bethe vectors and Bethe parameters, a precise correspondence can be quite intricate
to formulate. However, from the Lie superalgebra theory one knows that such a correspondence
must exist. These considerations have been developed in [45] for the construction of the mapping
on the particular case of the gl(1]2) algebra. The general case of generic gl(m|n) superalgebra is
presented in [46] for the form of the Bethe equations, but open spin chains (see also [47] where
the periodic case is reviewed). In conclusion, if a qualitative generalization of the present results
to the superalgebras with different gradings is rather straightforward, a precise correspondence
remains open.
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Appendix A. Coproduct formula for the Bethe vectors

The presentation (6.8) for the Bethe vector of the composite model can be treated as a coprod-
uct formula for the Bethe vector. Indeed, equation (6.4) formally determines a coproduct A of
the monodromy matrix entries

m—+n

ATy jw) =Y (=)UHDUIHED T 5 00) @ T, 4 (). (A1)
k=1

Then (6.8) is nothing but the action of A onto the Bethe vector [29].
The action of the coproduct onto the dual Bethe vectors can be obtained via antimorphism
(3.20). It was proved in [42] (see also similar consideration in prop. 1.5.4 of [43]) that

AoV =WV oA (A.2)
where

N (Tij@) =) Trx(w) ® Ty j (). (A3)
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Then
AC®D) =AY B(7)) = (¥ @ W) o A'(B(1))

) 7v v
= (VY QW) (Z LL.- o r 0 1 )IB%@)(fl)w“)(fn))

M5 foen@™, )
(D v
» Gy @), 1 _ _
_va 1o )wa D @) © CO@). (A4)
v 1 f[v+1]( tlv)

Relabeling here the subsets 7" <> ¢} we arrive at (6.9). O
Appendix B. Action formulas

In this section we derive the action of the operators T}, | on the main term (3.13). For this we
first consider some multiple commutation relations in the RT T-algebra (2.4).

B.1. Multiple commutation relations

Multiple commutation relations of the monodromy matrix entries in superalgebras were studi-
ed in [44]. Here we consider several particular cases of commutation relations with the operators
T, i1(5) (3.14).

It follows from (2.5) that

Tii ) Tii1(v) = frij, w) Ty i1 (V)T () + gy (u, V)T i1 )T, (),

Tii)Ti—1,i(v) = fliyu, v)Ti—1,i (V) Tii () + griy(v, u) Ti—1,i W) Ti,i (v).
We see that these commutation relations look exactly the same as in the case of algebra gl(n).
The only difference is that the functions f and g acquire an additional subscript indicating par-
ity. Therefore, for commutation relations, we can apply the standard arguments of the algebraic
Bethe ansatz [ 1 ,3,4]. In parpicular, let us consider commutation Qf the operator 7; ; (t(’x_l) with the
product T; ;41 (¢'), where t&_.l is a fixed parameter of the set 7i=1 Letus call a term wanted, if
it contains the operator 7; ; (té_l) in the extreme right position. Then moving Ti,,-(tét_l) through
the product T; ;11 (') we should keep the original argument of T; ; leading to

Tri(ty D Tiint1 () = fing (@ 1 DT ()T (1) (B.2)

Consider now commutation of the operator 7;41 ; (té_l) with the product T; ;1 ) using
Ti1,i T i41(0) = (D% T i1 (0) i1, ()
—g[t—i—l](” U)( it1,i+1@)T; () = Tigq,i+1(0)T;, l(u)) (B.3)

Let, as before, a term be wanted, if it contains the operator 7; ; (t(;_l) in the extreme right position.
Moving T,'H,,-(toll_l) through the product T; ;4+1(¢') we can obtain the terms of the following

type:
() TisriCy
. o iNT. . (4i—] _ .
s s o
() Tiprin DT, j=1...,m;
. ) =1\ i _
’ o )
(i)  Tipriv1(t, DTy,  j=1....7
(V) Tiprini DT, jija=1,...,r

(B.1)

(B.4)
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Among all these contributions only the terms (ii) are wanted. Thus, we have

ri
- L o . -
Tt DT ()2 AT N\ D T (DT, (B.5)
j=1

where A ; are rational coefficients to be determined. Due to the symmetry of T;, i+1(t_i) over 7!
it is sufficient to find A1 only. Then a wanted term must contain Ti+1,,~+1(ti)Ti,,-(t&_1) in the
extreme right position. We have

Tig1,i (6 DT ()
Tiig1 () Ti i1 (7 \ 1)

IGRLE

i1
=Tiv1,i(t, )

i H—l(_i \ i)

R )8m1 (B.6)

= g @ D (T (DT () — T (DT 67H)
The term T; 41 ;41 (té_l)Ti, . (t{) obviously gives unwanted contribution. The remaining operators

Tit1,i+1(t)T;;(ti~") should move through the product T; ;41 (' \ #}) via (B.1) keeping their
arguments. This leads to

Tini (0 DT () Z gy @, 1 )]_[fm(tk, Y fiien @, 1)

Tiig1(F\ 1]) ; -
X h(z‘i,—z;’)%T"“”'“(Ii)T"”'(I‘; ). (B.7)
Thus, using (2.10) we arrive at
Ay =gy, 1 )]_[fm(tk, AV IGINAY (B.8)

k=2

The final result can be written as a sum over partitions of the set 7'

Tini (DT (Y=Y gurn @ 7D fin @ 17 9@ 1)
X Ty i1 () Trg1ip1 GHT i (271, (B.9)

Here the set 7' is divided into subsets # and 7! such that # = 1.
B.2. Action formulas

In this section we consider the action of the operators 7}, 1(s) onto the main term of the
Bethe vector (3.13). Here p > 1 and s is a generic complex number. The result of this action
contains various terms, among which we will distinguish wanted and unwanted terms. Let a term
be wanted, if it is proportional to A;(s) and does not contain any «; (té‘ ). Otherwise a term is
unwanted.

Proposition B.1. Let IE%(I_) be the main term of a Bethe vector (3.13). Then the wanted term of the
action of T, 1 onto B(t) reads
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~ p—1 (t ) ( )
Ty 1()B(@) = A1 (s) Z l—[ g[£+l]f[1£ ]’(zﬁ ﬂyﬁ)
1>

part(r) £=2
p=1, =\ N

x g )P iy )f[l](fu,S)B({ } 7 }p)- (B.10)

Here the sum is taken over partitions of the sets t* withk =1,..., p — 1 into subsets i* and t*
such that #F = 1.

To prove Proposition B.1 we introduce for 1 <i <k <m +n
iy...T =10
B (7 }k = Tiit1@") ... Tr—1,£ (2 )[0) B.11)

[
IT= J+1(tj)l_[J { @)

where T; ;1 is defined by (3.14). Obviously, IB%LHm({t"}]lV ) = I?B(t_). We first prove several
auxiliary lemmas.

Lemma B.1. Let j < and j <i. Then
To,j (B (")~ =0. (B.12)

Proof. The proof is based on the arguments of the coloring. The operator 7 ; annihilates the
particles of the colors j, ..., £ — 1. On the other hand, for i > j the state Bik({t_‘)}f_l) does not
contain the particles of the color j. Hence, the action of Ty ; onto Bik({t_"}f_l) vanishes. O

Lemma B.2. Let j <i. Then
T; i) B () =2 ) Bau (). (B.13)

Proof. Obviously,

l l+1(t )
B (7). (B.14)
Aig1 (F) flipn (B, 1) i+l
When one commutes 7'; ; with one of the operators in the product T; ;11 ('), then from (2.5), we
obtain the operators T; ; or T;1,; acting on Bi41.4(). Due to Lemma B.1 this action vanishes,
because i > j. Thus,

B (7)) =

Tj () B (7)) =

T i+1 (T
)»,-H(t_i)}[:l(](f)ﬂrl ) Tj, J(S)Bl-i-l rk({t" },H) (B.15)

Continuing this process we eventually move 7 ; to the vacuum vector, where it gives A;(s). O

In the following lemmas the actions are considered modulus unwanted terms. Let t.~! be

a fixed parameter of the set 7/ ~!. We say that a term is wanted, if a Bethe parameter tlf for
J=1,...,k—1becomes an argument of A ;. Otherwise, a term is unwanted.

Lemma B.3. The wanted term of the action of T;, ,-(té_l) onto ﬁik({t_”}f_l) is given by

T DB () Z a2 fin @, DB (). (B.16)
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Proof. We present I@ik ({r¥ }f.‘_l) in the form (B.14). Then, moving 7; ; (t(’;{_l) through the product
T; im1 (') we should use (B.2), otherwise we obtain unwanted terms. Therefore, at the first step
we obtain

f[l](tl’ o., )Tl H—l(t )
Aip1 () flian (0, 17
Then application of Lemma B.2 completes the proof. O

T (DB ()1 =

T (DB (VD). (B.17)

Lemma B.4. The wanted term of the action of T; 1 i (t(ft_l) onto I@ik({t_”}f_l) is given by
T (1 B (1))
= " ai gL T fin . D9 G DB 1 YD. (B.18)
Here the sum is taken over partitions t' = {t!, 11} such that #t| = 1.

Proof. We again present ﬁik ({z” }i.‘ _1) in the form (B.14). Then, moving 7} ; (té_l) through the
product T; ; 1 (') we should use (B.9), otherwise we obtain unwanted terms. Thus, we obtain

T (OB =) g @ 7 finn @t i@ 1)

i1 () T i (DT (57 &
Ai1 () flin @ HL 1)
Then application of Lemmas B.2 and B.3 completes the proof. O

Broa(P¥oh. 819

Lemma B.5. Leti < p < k. Then
Tyt B (1}
~ j — ™ y _1 " —
= Y Badmy T Eh
part(r)

g @ O @, 1)

x g @ P ) fin 1l H . (B.20)
V= f[v] (tI ’ t )
i+1
Here the sum is taken over partitions of the sets t¥ = {t”, 1)} for v=1i,..., p — 1, such that

ore
#7V = 1.

Proof. The proof uses induction over p —i. If p —i = 1, then the statement coincides with
the one of Lemma B.4. Assume that (B.20) is valid for i replaced with i + 1. Then we use
presentation (B.14)

Ty it DT i1 ()
X1 (0) fripn L 1)
Moving T), ; (té_l) through the product T; ;11 (') we can obtain the terms of the following type:

Q) TpiCy h:

(i) Tpin1 )T,
(i) Tpiv1(y DTt
(V) Tpir1 () Tii(t)).

Tyt DBy (7)1 = Biy k()] (B.21)

(B.22)
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The term (i) vanishes due to Lemma B.1. The terms (iii) and (iv) give unwanted terms due to
Lemma B.2. Hence, only the term (ii) survives. Using the arguments similar to the ones that we
used for obtaining equation (B.9) we arrive at

Tpi ) DB (YD =D gurn@ 1) fin G 879 L 8D

Tiit1(5) Tpi1 (F)T;, ,(r’—l)
Xig1 (B frign @t 1)

Here the sum is taken over partitions 7 = {#{, 1} such that #/ = 1. Applying Lemma B.2 we
find

By e (Y5 (B.23)

Ty DB (YD =D M D@ 7 finn @t P )
Tiiv1 () Tpig1 (i)
Xip1 (1) fipn (@, 1)

The action of T} ;41 (] ) onto IB%lH k({t”} i1 ) is known due to the induction assumption. Substi-
tuting this known action into (B.23) we prove Lemma B.5. O

B e (YD) (B.24)

In fact, Lemma B.5 gives the proof of Proposition B.1. Indeed, it is enough to set i = 1 and
k=m + n in (B.20). We also set by definition tg = s and introduce an auxiliary empty set
"+ = (). Then Lemma B.5 describes the action of T, 1 (s) onto the main term B(7).
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Chapter 4

Norm of Bethe vectors in
models with gl(m|n) symmetry
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Introduction:

In this Chapter we formulated list of axioms which exactly fixed function
as determinant of matrix constructed from derivatives of Bethe equations.
Using results of previous chapters we proved that the norm of Bethe eigen-
vector satisfies these axioms. In the gl, case this statement was first proposed
by Gaudin. The determinant formula for the norm is necessary for calculation
of correlation functions.

Contribution:

I proved that the residue of the scalar product can be expressed as scalar
product too (6.11). It is a key part of proving that the norm of eigenvector
satisfies Korepin criteria (see Section 4.1).
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1. Introduction

In 1972 M. Gaudin formulated a hypothesis about the norm of the Hamiltonian eigenfunction
of the quantum nonlinear Schr dinger equation [1] (see also [2]). According to this hypothesis,
the square of the eigenfunction norm is proportional to a Jacobian closely related to the Bethe
equations. In 1982 V. Korepin proved the Gaudin hypothesis for a wide class of quantum in-
tegrable models [3]. In that work the Quantum Inverse Scattering Method (QISM) [4-7] was
used. An advantage of this method is that it allows one to consider quantum models of differ-
ent physical origin in a common framework. The work [3] dealt with the models described by
gl(2)-invariant R-matrix and its g-deformation. Using the same approach N. Reshetikhin gen-
eralized this result to the models with gl(3)-invariant R-matrix [8]. Recently, the norms of the
Hamiltonian eigenfunctions in the models with gl(3) trigonometric R-matrix were calculated
in [9].

A new approach to the problem based on the quantized Knizhnik—Zamolodchikov equation
was developed in a series of papers [10-12]. There the norms of the eigenstates in gl(N) based
models were calculated. It was shown that these results are equivalent to the Gaudin hypothesis.
Concerning models described by superalgebras it is worth mentioning the work [13], where an
analog of the Gaudin formula was conjectured for Hubbard model. Recently, the Gaudin norm
of the full psu(2, 2|4) spin chain was studied in [14].

In all the cases listed above the original hypothesis was confirmed. Schematically it can be
formulated as follows. Let |¢) be a Hamiltonian eigenstate. For quantum integrable models it can

be parameterized by a set of parameters |¢p) = |p(¢1,...,11)) satisfying a system of equations
(Bethe equations)
Fi(t,...,tp) =1, i=1,...,L, (1.1)

where F; are some functions depending on the model. Then the square of the norm of |¢) is
proportional to the following Jacobian

dlog F;

(pl¢) ~ det —=—. (1.2)
J

In the present paper we prove the Gaudin hypothesis for integrable models with gl(m|n) sym-
metry described by the super-Yangian Y (g[(m |n)). Our approach is very closed to the one of the
work [3]. It is based on the nested algebraic Bethe ansatz [ 15—17] and the notion of a generalized
model [3,18,19] (see also [6]). We begin with a sum formula for the scalar product of generic
Bethe vectors obtained in [20]. Using this formula we find a recursion for the scalar product and
then specify it to the case of the norm. In this way we prove that the norm and the Gaudin de-
terminant satisfy the same recursion. Taking into account the coincidence of the initial data, we
thereby prove the Gaudin hypothesis for the models described by the super-Yangian Y (g[(m |n)).

The paper is organized as follows. In section 2 we briefly recall basic notions of QISM spec-
ifying them to the models based on the super-Yangian Y (g[(m |n)). In section 3 we describe the
Bethe vectors of the models with gl(m|n)-invariant R-matrix and consider their scalar products.
Section 4 is devoted to the properties of the Gaudin matrix. Here we formulate the main result
of the paper. In section 5 we introduce the notion of a generalized model that serves as a main
tool of our approach. In section 6 we find a recursion for the scalar product of Bethe vectors.
We specify this recursion to the case of the norm in section 7 and show that it coincides with the
recursion for the Gaudin determinant. In this way we prove the generalized Gaudin hypothesis
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for the models with gl(m|n)-invariant R-matrix. Several auxiliary statements are gathered in ap-
pendices. In Appendix A we explain how to construct some representatives of the generalized
model in the framework of evaluation representation. Appendix B contains recursions for the
highest coefficients of the scalar products. Finally, in Appendix C we find residues in the poles
of the highest coefficients.

2. Basic notions

In this section we briefly recall basic notions of quantum integrable graded models. A more
detailed presentation can be found in [21].

The Z,-graded vector space C™" with the grading [i]=0 for 1 <i <m, [i]=1 for m <
i <m + n is a direct sum of spaces: C"!" = C"™ @ C". Vectors belonging to C™ are called even,
vectors belonging to C" are called odd. Matrices acting in C™mn are graded as [E;;] = [i]+[j] €
Z, where Ej; are elementary units: (E;j)ap = 8iadjp.

The R-matrix of gl(m|n)-invariant models has the form

2.1)

c
R(u,v) =1+ g(u,v)P, glu,v) = .

u—v
Here c is a constant, I and P respectively are the identity matrix and the graded permutation
operator [21]:

n+m n+m .
[=1®1= ZEii(X’Ejja P = Z(_I)U]Eij(g)Eji- 2.2)
i,j=1 i,j=1

In (2.2) we deal with the matrices acting in the tensor product C”" ® C™"  In its turn, the tensor
product of C™" spaces is graded as follows:

(1® Eyj) - (Eu ®1) = (=)D £y @ £;;. 2.3)
A basic relation of the QISM is an RT T-relation’
Ru, v )(Tw)@1)(1®TW)=(1®Tw)(Tu) @ 1)R(u, v). (2.4)

Here 7' (u) is a monodromy matrix, whose matrix elements are quantum operators acting in a
Hilbert space H. This Hilbert space coincides with the space of states of the Hamiltonian under
consideration. The matrix elements 7; j(u) are graded in the same way as the matrices [E;;]:
[7;,j ()] =[i] +[j] € Z>. Equation (2.4) holds in the tensor product Cln @ C™t @ . All the
tensor products are graded.

For the given R-matrix (2.1) the RT T -relation (2.4) implies a set of commutation relations
for the monodromy matrix entries

[7;.j ), Tea (@)} = (= )OEHIDHM g 0 0) (T3, )T, 00) = T 0 Tis ()

R (2.5)
= (=)D g 0, 0) (T30 Ty (0) = Tt T @),
where we introduced the graded commutator

1 Strictly speaking, in relation (2.4), we should use R (u, v) ® 19 instead of R (u, v), where 14, is the unit acting on H.
This makes all relations very heavy, and we write loosely R (u, v). This will be the case throughout the paper, but we
make this distinction in Appendix A to clarify the construction of the evaluation map.
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(73,0, Tea ()} = T, j @) T () — (= DEFDED T, 0y T3 5 ), (2.6)
The Hamiltonian and other integrals of motion of a quantum integrable system can be obtained
from a graded transfer matrix. It is defined as the supertrace of the monodromy matrix

m—+n

Tw) =strT @)=Y (DT ;). 2.7)
j=1

One can easily check [21] that [T (u), 7 (v)] = 0. Eigenstates of the graded transfer matrix
are eigenstates of the quantum Hamiltonian. As usual, they are defined up to a normalization
factor. The main goal of this paper is to find normalization factors such that the norms of the
corresponding eigenstates are equal to 1.

3. Bethe vectors and their scalar products

We do not specify a Hilbert space H where the monodromy matrix entries act, however, we
assume that it contains a pseudovacuum vector |0), such that
T;,iw))0) =2;w)|0), i=1,....m+n, 3.1)
T;,j()|0) =0, i>], '

where A;(u) are some scalar functions. Below it will be convenient to deal with ratios of these
functions

Ai(u)
Nig1(u)’
In the framework of the generalized model considered in this paper, they remain free functional
parameters. We discuss some properties of the generalized model in section 5.

We also assume that the monodromy matrix entries act in a dual space H* with a dual pseu-
dovacuum (0| such that
OT;,i ) =2;){0], i=1,....,m+n,
(0I7;,j (u) =0, 1<J.

o (u) = i=1,....m+n—1. (3.2)

(3.3)

Here the functions A; (#) are the same as in (3.1).

In the framework of the algebraic Bethe ansatz, it is assumed that the space of states ‘H
is generated by the action of the upper triangular elements of the monodromy matrix 7; ;(u)
with i < j onto the vector |0). In physical models, vectors of the space H describe states with
quasiparticles of different types (colors). In gl(m|n)-invariant models quasiparticles may have

N =m +n — 1 colors. Let {rq, ..., ry} be a set of non-negative integers. We say that a state has
coloring {r1, ..., rn}, if it contains r; quasiparticles of the color i, where i =1, ..., N. The ac-
tion of 7; ;(u) onto a state of a fixed coloring creates j —i quasiparticles of the colors i, ..., j —1.

More details on coloring can be found in [20].

A Bethe vector is a polynomial in the creation operators T; ; with i < j applied to the vector
|0). All the terms of this polynomial have the same coloring. In this paper we do not use an
explicit form of the Bethe vectors, however, the reader can find it in [22]. A generic Bethe vector
of gl(m|n)-invariant model depends on N =m + n — 1 sets of variables L2, . iN called
Bethe parameters. We denote Bethe vectors by B(7), where
Ny, (3.4)

2 2
fyeeont Sy

ry e

f={t,....th;

s hry
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and the cardinalities r; of the sets ! = {t{, ey tﬁi} coincide with the coloring. Thus, each Bethe

parameter t,i can be associated with a quasiparticle of the color i. We also introduce the total
number of the Bethe parameters

N
rz#f:Zr,-. (3.5)
i=1

Bethe vectors are symmetric over permutations of the parameters t,i within the set 7/, however,
they are not symmetric over permutations over parameters belonging to different sets 7' and
t/. For generic Bethe vectors the Bethe parameters t,i are generic complex numbers. If these
parameters satisfy a special system of equations (Bethe equations), then the corresponding vector
becomes an eigenvector of the transfer matrix (2.7). In this case it is called on-shell Bethe vector.
We give explicitly the system of Bethe equations (3.11) a bit later, after introduction a necessary
notation.

Dual Bethe vectors belong to the dual space 7*. They can be obtained as a graded transposi-
tion of the Bethe vectors (see e.g. [20,22,23]). We denote dual Bethe vectors by C(z), where  are
the Bethe parameters (3.4). Dual Bethe vectors become on-shell, if the set 7 satisfy the system
(3.11).

3.1. Notation

In this paper we use notation and conventions of the work [20]. Besides the function g(u, v)

we use one more rational function
u—v-+c
fu,v)y=1+gu,v) =——. (3.6)

u—v

In order to make formulas uniform we also introduce a ‘graded’ constant cp;; = (—1)llc. Re-
spectively, we use ‘graded’ rational functions g;j(u, v) and fi;1(u, v):

Cli]

grij(u, v) = —
- / (3.7)

Jinw, v) =1+ grij(u, v) = LJ“C[‘]
u—v

Finally, we define y; (u, v) as
. _ | fin(u,v), i #m,
yl(u, U)_ |:g[l~](l/[,v), l =m. (38)

Observe that the function y; takes three values, namely, y; (u, v) = f(u, v) fori <m, y;(u,v) =
g(u,v) fori =m, and y;(u,v) = f(v,u) fori > m.

Let us formulate now a convention on the notation. We use a bar to denote sets of variables.
The set of the Bethe parameters is denoted by 7 (like in (3.4)) or 5. The latter notation mostly is
used for the Bethe parameters of dual Bethe vectors. From now on individual Bethe parameters
are labeled with a Greek superscript and a Latin subscript, i.e. ', ty » and so on. The superscript
refers to the color, while the subscript counts the number of the Bethe parameters of the fixed
color. Thus, 7 = {7!,...,#N}, where i* = {t{‘ e tr‘; }. The integers r,, denote the cardinalities
r, = #t", and the total cardinality r is given by (3.5). Similar notation is used for the set 5.

Below we consider partitions of the Bethe parameters into disjoint subsets. The subsets are
denoted by Roman numbers, i.e. t_I“ , EI”I, and so on. A special notation t_J‘.L (resp. E;f ) is used for the
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subset of 7* (resp. §*) complementary to the parameter t}‘ (resp. sj.‘ ), i.e. t_;.‘ ="\ {t;.‘ } (resp.
=5\

We use a shorthand notation for products of the functions (3.2), (3.7), and (3.8). Namely, if
some of these functions depend on a set of variables (or two sets of variables), this means that
one should take the product over the corresponding set (or double product over two sets). For
example,

a,@) =[], fia@ i =[] fuaG O,
’,")et_v 1 et

£k
w6l s =TT [T weysd. (3.9)

VgVl oV egl
SjESI Sp €571

By definition, any product over the empty set is equal to 1. A double product is equal to 1 if
at least one of the sets is empty.

To illustrate the use of the shorthand notation (3.9) we give here a system of Bethe equations.
Recall that if the Bethe parameters 7 satisfy the system of Bethe equations, then the corresponding
(dual) Bethe vector is on-shell. Being written in a standard notation this system has the following
form:

r VRV v+1 v+1 v
ol @D N TIE fooen @™o t)) v=1,...,N,
0y (1)) = (= 1) 0m l)(l_[ ’ ) |

@) IS fmegg™h o I e
k#j
(3.10)
The use of the shorthand notation allows one to rewrite this system as
Y — (—1)ovmm—=1) y‘)(tf")’ t_y)f[”+1](fv+l’ tjv) v=1,...,N,
ay(t;) = (=1 : : (3.11)
g V(@ 10) frn @), 071 j=1....r.

3.2. Initial normalization of Bethe vectors

Although we do not use explicit formulas for the Bethe vectors, we should fix their initial
normalization. We use the same normalization as in [20].

It was already mentioned that a generic Bethe vector has the form of a polynomial in 7; ;
with i < j applied to the pseudovacuum |0). Among all the terms of this polynomial there is one
monomial that contains the operators 7; ; with j —i =1 only. We call this monomial the main
term and fix the normalization of the Bethe vectors by fixing a numeric coefficient of the main
term

-1 N
B = — 2 Ivvn @B (3.12)
[T it DTS fien @ 1)
where ellipsis means all the terms containing at least one operator 7; ; with j —i > 1. We also
introduced symmetric operator products in (3.12):

Ti,i-q-l(l‘_i) _ ll+1(t ) ll—i-l(t ) . (3.13)

<H1§j<k§r,~ h(t,i,t})) "
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One can easily check that due to the commutation relations (2.5) the operator products T; ;4 )
do are symmetric over fiforalli=1,...,m+n—1.

Recall that we use here the shorthand notation for the products of the functions A;; and
fij+11- The normalization in (3.12) is different from the one used in [22] by the product
]_[;V:1 Ajt1 (/). This additional normalization factor is convenient, because in this case the scalar
products of the Bethe vectors depend on the ratios «; (3.2) only.

Since the operators T; ; 11 and 7} ;11 do not commute for i # j, the main term can be written
in several forms corresponding to different ordering of the monodromy matrix entries. The order-
ing in (3.12) naturally arises if we construct Bethe vectors via the embedding of Y (g[(m — 1|n))
into Y (gl(m|n)).

3.3. Scalar product of Bethe vectors

The scalar product of Bethe vectors is defined as
S5 = C(5)B(1). (3.14)

Here 5 and ¢ are sets of generic complex numbers of the same cardinality #5 = #¢. One can show
that the scalar product of Bethe vectors of different coloring vanishes [20], therefore, below we
consider only the case #5 =#t" =r,,v=1,..., N (recall that N =m +n — 1).

In [20] we found a sum formula for this scalar product

Z"n (sp1a) 2™ (7). (3.15)

SGH =" 102 e GP)en (v G 5DV (@ 1)
- N-1 v+l v v+l 7y

l_[])zl f[v—i—l](sn » ST )f[v—i—l](tl ) tH)

Here all the sets of the Bethe parameters 7* and 5 are divided into two subsets 7 = {7/, f;j} and
5V = {57, 51}, such that ##;' = #5;. The sum is taken over all possible partitions of this type.

The function Z™" (5|7) is the highest coefficient (HC). This is a rational function of the Bethe

parameters. It can be constructed recursively starting with HC in gl(1|1) superalgebra (see also

[25] for an explicit determinant representation of HC in gl(2|1) superalgebra)

ZM G0 = g6, D). (3.16)

The recursions for HC are given in Appendix B.

The most important property of HC is that this function has simple poles at 57 = t;.‘ s U=
IL...,N,j=1,...,r,.
Proposition 3.1. The residues of HC in the poles at s7 = tj“ ,

proportional to Z™" (5 \ {s?}lt_\ {t]p.L}):

w=1,....,N, j=1,...,r, are

_ YRGS I Gl WAL AR Kl IFAN {248
ZMn (517 o :g[/,b+1](t;'LaS7) I B _J+IJ . . ) — J
Sj _>tj f[,u‘i‘l](tﬂ atj )f[ll](sj aSM )

+reg,

(3.17)
where reg means regular terms.
We prove this proposition in Appendix C.
The square of the norm of the Bethe vector traditionally is defined as
St =C@OB(®), (3.18)
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that is, this is the scalar product at § = 7. Equation (3.15) still holds in this case, however, separate
terms of the sum over partitions may have singularities due to the poles of HC. Thus, in order to
approach the case of the norm one should take a limit § — ¢ in (3.15). The limit § — ¢ means
thats;%—nj.* forallpu=1,...,Nand j=1,...,7,.

Finally, to obtain the norm of on-shell Bethe vector, one should impose Bethe equations
(3.11). According to the generalized Gaudin hypothesis, the square of the norm of on-shell Bethe
vector in gl(m|n)-invariant models is proportional to a special Jacobian. We describe this Jaco-
bian in the next section.

4. Gaudin matrix

The Gaudin matrix G for gl(m|n)-invariant models is an N x N block-matrix. The size of the
block G*") is r,, x r,,. To describe the entries G%’v) we introduce a function

Y@ 1) fuo @l Y

(M) — S,m(rm—1) 1%
dV = (=1 a, (t7) = — . 4.1)
7 BT @ fren @)
It is easy to see that Bethe equations (3.11) can be written in terms of CI)&“ ) as
oW=1  u=1...N j=l...r (4.2)
The entries of the Gaudin matrix are defined as
()
dlog®’
(p,v) J
Gjlli Y= —Clu+1] 977 (4.3)
k
We are now in position to state the main result of this paper:
Theorem 4.1. The square of the norm of the on-shell Bethe vectors reads
N N—1 -1
coOBO=[] [] wep.t) (H frorn @, z‘”)) det G, (4.4)
v=1 p,q=1 v=1

P#q
where the matrix G is given by (4.3).

We prove this formula in the rest of the paper.
4.1. Properties of the Gaudin matrix

First of all, let us give explicit expressions for the matrix elements of the Gaudin matrix (4.3).
We have for the elements in the diagonal blocks G “):

Tu—1

T
G = a3 X = 3 Kt 1P 3 )
=1 g=1

}"M_A,_]

+ 2 Ty |+ Kl 1), (4.5)
p=1
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Here
Xt =—c i1<>a() (4.6)
ji= [;Hrl]dZ g, (2 z:t}“ .
and
2¢2(1 =8, ) c?
Ku(x,y) = ——S22 T (x, ) = : 4.7)
. (x—y)?—c2 1l (x — y) X —y +cu))

The near-diagonal blocks are
1 Al 1
GUH D = (P (D, GV = —Fn . (4.8)

If | — v| > 1, then G = 0.
Consider now some properties of the Gaudin matrix determinant. Let

FO(X;7) =detG. 4.9)

Here we have stressed that the function F® (X 7) depends on two sets of variables. One of these
sets consists of the Bethe parameters 7 (3.4). Another set is

={Xi.... XXt Xn s XY XY (4.10)

ry’ ry’
The superscript r shows the total number of Bethe parameters or, what is the same, the total
number of parameters X', Hor=4#f =#X.
In specific models the variables X  are functions of the Bethe parameters (see (4.6)). Here we

consider a more general case, where the sets X and 7 are independent. In other words, we study
det G with the matrix elements (4.5), (4.8), but we do not impose (4.6).

Korepin criteria  The function F® (X; 1) obeys some characteristic properties. These properties
listed below are quite analogous to the properties of the Gaudin determinant in the gl(2) case.
Due to the parallel to the original paper [3] we call them Korepin criteria.

(i) The function F®(X;7) is symmetric over the replacement of the pairs (X*, t;.‘ ) <
(X5 1).
(i) Itis alinear function of each X K.
(i) FO (X1t = X] for#i =r= 1
(1v) The coefficient of X 7 is given by a function F*~1 with modified parameters X 4
r -
%(Zf”) — FED o\ X0 (7 11y, @.11)

where the original variables X} should be replaced by X mOd v

X]I(md;“ _ XM _ M(t“, M)

Xmod n+1 — XM-H +( I)Sm M+1\7[M+1](tk ,IM)
Xmodu I_XM 1_’_‘7[“ (IM’ n— 1)’
X

mOdv_Xk, [v—pu| > 1.

(4.12)

(v) FO(X:1) =0, if all X} =0.
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The properties (1)—(iv) are quite obvious. In order to check the property (v) one should take
the sum of all columns (or rows) of the matrix G

N ry
Yy Gw =x". (4.13)

v=1 k=1

Hence, if all X 7 =0, then this linear combination vanishes, and thus, det G = 0.

Proposition 4.1. The Korepin criteria fixes the function F® (X; 1) uniquely.

Proof. The proof is exactly the same as in the gl(2) case [3]. For completeness, we repeat it here.
Let functions Fir)()_( ;1) and F;r)()_( ; 1) satisfy Korepin criteria. Then for r = #7 = 1 we have
Fgl)(Xl; tll) = Fgl)(Xl; tll). Assume that Fir_l)()_(; 1) = Fg_l)()_(; t). Then for #f =r we have

9 _ _
e (FP(X; 1) —FP(X; 1) =0, (4.14)
j

due to the property (iv) and the induction assumption, and

FX: D) ~F (X)) =0, (4.15)

due to the property (v). Since the function Fgr) (X;7) — Fg)(}_{ : 1) is linear over each X 7 , equa-
tions (4.14) and (4.15) yield F\”(X; 1) — F'(X; 1) = O for #7 =r. O

Thus, in order to prove (4.4) it is enough to show that the properly normalized scalar product
of on-shell Bethe vectors C()B(f) obeys Korepin criteria.

5. Generalized model

The notion of the generalized model was introduced in [3] for gl(2) based models (see also
[6,8,18,19]). This model also can be considered in the case of the super-Yangian Y(g[(m|n)).
In fact, the generalized model is a class of models. Each representative of this class has a
monodromy matrix satisfying the R7T T -relation (2.4) with the R-matrix (2.1), and possesses
pseudovacuum vectors with the properties (3.1), (3.3). A representative of the generalized model
can be characterized by a set of the functional parameters o, (1) (3.2). Different representatives
are distinguished by different sets of the ratios o, (u).

The sum formula (3.15) for the scalar product is valid for any representative of the general-
ized model. Then we can consider the scalar product as a function depending on two types of
variables: the Bethe parameters 5 and 7 on the one hand, and the functional parameters «,, on the
other hand. Indeed, even if some t;‘ (resp. sj.L ) is fixed, then the function o, (t]‘.‘ ) (resp. o, (s;.‘ ))
changes freely when running through the class of the generalized model. In particular, using only
inhomogeneous models with spins in higher dimensional representations one can easily construct
representatives of the generalized model (see Appendix A), for which

L)

au@) =[] fra, &"). (5.1)
j=1
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Here inhomogeneities E;" ) are arbitrary complex numbers, and L") are arbitrary positive in-
tegers. It is clear that even being restricted to this class of functions o, we can approach any
predefined value of «, (1) at u fixed.

The meaning of Bethe equations (3.11) also changes in the generalized model. For a given
representative this is a set of equations for the Bethe parameters. In the generalized model this
is a set of constraints between two groups of independent variables tj‘.L and a, (t;‘ ). Indeed, one
can fix an arbitrary set of the Bethe parameters 7 and then find a set of functions «,, such that
the system (3.11) is fulfilled. For example, one can look for the functions ¢, in the form (5.1).

Then Bethe equations become a set of constraints for inhomogeneities & 49 Since the number of
inhomogeneities is not restricted, one can always provide solvability of the system (3.11).
We will see in section 6 that if t;‘ = s;.L for some p and j, then the scalar product depends also

on the derivatives a;L (t j‘ ) of the functional parameters «,. They arise due to the presence of poles

in the HC Z™!"(51|#) and Z™" (#;1|511). The derivatives O[//L (tj.‘ ) also can be treated as independent
functional parameters, because generically the values of a function and its derivative in a fixed
point are not related to each other. In particular, the square of the norm of a Bethe vector depends
on three type of variables: the Bethe parameters, the values of the functions «,, in the points

t;.L , and the values of the derivatives a;L in the same points. If the Bethe vector is on-shell, then
We can express o, (tf ) in terms of the Bethe parameters due to (3.11). However, the derivatives
O[/CL (I;TL ) still remain free. In particular, the variables X 7 (4.6) and the Bethe parameters ¢ can be
considered as independent variables in the framework of the generalized model.

To illustrate an advantage of the generalized model we prove here an identity that will be used

below.

Proposition 5.1. For arbitrary complex t and 5 such that #5 = #t > 0

Z"Mn Gp\a) 2™ (7 |5p) = 0. (5.2)

3 T, oGl 50y (L 1)

N—1 vl - v+l
1= foenGr L s)) foen @ 5

Proof. Observe that the lhs of (5.2) is a particular case of the scalar product formula (3.15) at
oa,(u)=1forv=1,...,N.

Recall that the sum formula (3.15) holds for an arbitrary representative of the generalized
model. Among these representatives there exists a model such that 7'(x) = 1. Indeed, this mon-
odromy matrix obviously satisfies the RT T-relation (2.4). One can postulate that the matrix
elements 7; ;(u) act in some Hilbert space H, for example, H = C with a pseudovacuum [0) = 1.
The dual space H* then coincides with 7, and (0] = 1. The conditions (3.1), (3.3) obviously are
fulfilled, and o (u) =1 for v =1, ..., N. Thus, the lhs of (5.2) is equal to the scalar product of
Bethe vectors in the model with 7'(u) = 1. But the latter vanishes, because T; ; =0 for i # j,
and hence, B(1) =0, C(5) =0for# =#5>0. O

6. Recursion for the scalar product

Let us turn back to the scalar product in the form (3.15). Suppose that st = tj” for some j
and w. The total scalar product is not singular, because the RT T-commutation relations are not
singular. However, the highest coefficients in (3.15) might have poles. The poles occur if either

sjf € 5 and t;.‘ €1 or sj.‘ € 5 and tJ’.‘ e f11. Resolving these singularities at sj.‘ = tJ‘.L we obtain
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derivatives of the functions «,(z). Our goal is to find, how the scalar product depends on these
derivatives.
For this it is convenient to introduce

VoL v zv—1
8u(1) = (1Pt oy P DTG )
j P ) fron @ 1) v=1,...,N

VoY, s)) fin (s}, 57
Yo (87,5 frvan 5VFL s7)

Gy (s¥) = (=) =Dg, (s¥)

where (here and below) 70 = 5§ = #"*+" = §"+" = ¢J. This implies in particular that the products

involving elements from these empty sets are equal to 1.
Then, replacing o, with &, in the scalar product (3.15) we arrive at
ay (5D, (1) sV, sY oty
SGIF) = Z IT,- 1 oy (570 ( H)Vv( 1S II IV Z7 Gl 2" (). (6.2)
v 1 f[v—i—l](sl Sn)f[v—i—l](tn I )

Note that the product of the sign factors (— 1)‘3%”1(""_1) gives 1, because #5" + #1{]' = ry.

Let sj.L € 51 and tj.L € 11. We denote the corresponding contribution to the scalar product by
SM G5, If s — 7/, then due to (3.17) the HC Z™" (51171 has a pole. Let 5{° = 5,500, 1f =
{t, &), and 5{ =5y, ff =1 for v # w. Then using (3.17) we obtain

o Mo
o Vu(tl/,f-))’u(swsp o
"Gl , = 8 () s) T o 2 Gr i) +reg,
s; =1 S 00 fra G5, 51 )

(6.3)
where reg means regular part.
The product of the f-functions and y-functions in (6.2) transforms as follows:
- — T s U
T v Gy, sy @ 1) B V(5 Syt 25)
N—1 v+l - o+l Doy —u—1 —u+1
102 fioenGEEL s foen Gt 2) f[u](S}L,Sff )f[u+1](f{f+ J}L)
N SV oQv 7V gV
_ Sy, S ty,
l_[v_lyv(l Y (4 (6.4)

X N—-1 v+ ’
npzl f[v—l—l](sl/ SII)f[v+l](t11 /)
Combining (6.3) and (6.4) we obtain for the contribution SV (57)

Vu(l‘u’ M)V/L(S
) fun (s, 51~ l)f[u+1](t“+1, tf)
<y Hi;:_ll&v@;)&_v G AGE Eﬁman, v
T2 fosnGE S foen G ED
where now the sum is taken over partitions of the sets 7 \ {t;.‘ } and § \ {sj.‘ } respectively into
subsets {5y, s} and {7y, 71}. Recall also that E;‘ =51\ {s;‘} and t_j.‘ =1t {t;‘}.

Similarly one can consider the case s;f € s and tj‘.L € f;1. Denoting the corresponding contri-
bution by S©@ (5|7) we find

SUGI|,_ e =86 )gsn ]

2" 5plty) 2™ (fy|sn) + reg, (6.5)
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Yl sty et 71
fi ](t“ D) fluen GrHL 5%
. nszl Gy (57 )ozvan,)yv(sI Shov (B i 7
TV frosnGYF 58 frosnn GO 79

Here the sum is taken over partitions of the sets 7 \ {tj’.‘ } and s\ {sj.‘ } respectively into subsets
{51, 5w} and {#1, 11y}

Now we combine (6.5) and (6.6). Relabeling the subscripts of subsets I’ — I, II' — II and
substituting &(s? ) and &(tj’.‘ ) respectively in terms of oz(sjf ) and oz(t;.‘ ) we arrive at
(= D)2wmm =Dy, G5, sy @ 1))

Sluen AL s ) fruen (F4 L, t”)

S%m\ o = ) Y 1)

Z"" Gili) 2™y |sw) +reg. (6.6)

= gt @) 5 (@4 — e t)))

Z"n (s117) 2™ (7y1|5) + S. (6.7)

Z 1_[,) 1 oy (57 )&u(fﬁ)yv G sy, )
- 1 —_—

v l f[V+1](SI Sﬁ)f[v+l](tﬁ+ JIU)

Here S denotes the terms that depend on the function o, (¢ ;‘ ) but not on its derivative. The sum is

taken over partitions of the sets 7 \ {t;‘ }and 5\ {sj.L } respectively into subsets {51, 5y} and {r1, fir}.
Then performing the limit s;.L — tj.‘ in (6.7) we obtain

n P R S TR )

_ (1t 27 OV 1Yl )

sy =ty f[u+1](§“+1,f“)f[uﬂ](l““,tf)
Z 1_[ 1av(sl )av(t[[)yv (SI 7SH)VU (t[[a I )
v 1 f[v-{-l](sl Sn)f[v-i-l](tﬂ ) I)

where X 7 is defined by (4.6) and S does not depend on X 7 .
One might have the impression that the sum over partitions in the second line of (6.8) gives the
scalar product S(s '\ {sj.L AR {tj.‘ }). This is not exactly so, because the functions &, and &+ still

Zmn 51\ 2™ (f|51) + S, (6.8)

depend on t’.‘ (see (6.1)). However, we can get rid of this dependence if we introduce modified

functional parameters oz,(, I . Namely, for u fixed we set ozv )(z) =aoy(z),if [v—pu| > 1, and

(f ,2)
O[/(/,mOd) (Z) — (_l)éu’maM(Z) Y Z
Yu(z, )

a1V (@) = 1 @) fiurn @ 1), 6.9)

(mod)( )= o—1(2)

f[ll] (tjbs Z) .
Then, substituting &, in (6.8) in terms of a\(,m(’d) we obtain

,u
sj=t% f[wrl](sth gy )f[u+1](t“+1,tf)
d d N W -
s T, ™ )™ )(tﬁ)yu(sl‘i,sl")yv(tf’,tﬁ)
. T
1_[ — f[;+1](SH Sf)f[j+1](tlj )

Z"n (sp17) 2™ (7 |5m) + S

(6.10)
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The sum over partitions in (6.10) gives the scalar product C(5 \ {sj.‘ DB \ {t/'}) in a new rep-
resentative of the generalized model, in which the a-functions are modified according to (6.9).
Thus, we arrive at

n I T o
S(517) _ (1m0 2 0DV 10 1)
5=t} A GRHL D) flun @ 1))

L3 (6.11)

ST\ (YN (2D

where the modification of the scalar product means that now we should use the modified
o-functions (6.9).

Thus, we conclude that if s;.‘ = t;‘ , then the scalar product linearly depends on the loga-
rithmic derivative X 7 . The coefficient of X 7 is proportional to the modified scalar product

C(s\ {s;f DB\ {t]‘f }) in a new representative of the generalized model.
7. Norm of on-shell Bethe vector

It was already discussed that for # = § the scalar product depends on the Bethe parameters
tj‘.’, the functional parameters a,)(tj‘.’), and the logarithmic derivatives X; (4.6). In the case of
the norm of on-shell Bethe vectors the functions «, are related to the parameters ¢ via Bethe
equations (3.11). Therefore, the norm of an on-shell Bethe vector is a function of the Bethe
parameters tj‘f and the parameters X }’

Let
. N V.
N®(X;7) = (H I mr;,z;)) [ forn@ . 7)) lim CEB®), (7.1)
v=1p,q=1 v=1 St

P#q
where B(7) is on-shell.

Lemma 7.1. The function N (X: 1) fulfills the Korepin criteria.
Proof. Properties (i)—(ii) are quite obvious. Property (iii) follows from a direct calculation. If

only one Bethe parameter of the color 1 is involved, then the Bethe vector and the dual Bethe
vector have respectively the following form (see [22])

T (1)) (1))
B(t)) = —210);  C(t}) = (0] 2= (7.2)
)\Z(tl) )\2(1(1)
Using commutation relations (2.5) we immediately obtain
(0172,1(s)T1,2(1)|0)
CE)B@E) = ——= ’ = (- g, - . 7.3
(s)B() 32 ()i (O) (=D"g (s, D) (a1 (1) — a1 (s)) (7.3)
Setting here s =t = tll we find
C)B(t)) =ai(t])X], (74)

and finally, using the Bethe equation « l(tll) = 1 we arrive at property (iii).
The recursion (4.11) and the modification (4.12) follow from the considerations of the previ-
ous section. Indeed, taking the limit § — ¢ in (6.11) we find
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V)
yﬂ(t] st])

S @115

2
% lim S(5]7) = (— 1)5um<’m—1>aﬂ(z“)( ) lim STODE\ {1\ (4D,

(7.5)

Substituting here o, (t;.‘ ) from the Bethe equations (3.11) we have

mSTVGE\ (KN, (7.6

8 . - Vu(fﬂ,tﬂ)yu(t]“, _M)
— lim S(s|t) = T ]
0X; 51 S @) fun (o 1= )H’

Thus, the coefficient of 05/0X 7 is proportional to the norm of the Bethe vector of a new repre-
sentative of the generalized model. In this representative the functional parameters «,, should be
modified according to (6.9). Obviously, this modification implies the modification (4.12) of the
parameters X .

Remarkably, the new vector is still on-shell. Indeed, it is easy to see that the functional pa-
rameters oz,()mOd)

In particular,

can be expressed in terms of the Bethe parameters 7 \ {tj‘.L } via Bethe equations.

(mod) /My __ Spum(rm—2)
o () = (=D = - :
vk Vilp 1o 1) fr (g 1)

(7.7)

where we introduced tk =\ (")t } Observe that if u = m, then #t“ #5 j‘ =r, — 1,
therefore the sign factor in (7.7) changes We also have

by u+1
(t“+2 )

tk

pu+l —;H—l
(mod)(tu—i-l) (1)t (rm=D) Yur1(t, ", ) fu+2
Y1 +1 _u+l ’
Vur1 (@, ;ﬁL )f[u+1](tk , f)
p—1 —u—1 -1
Va1 @ h ) @)

u—1 _pu—1 1 -, o
V1@ ot ) flu—n @) T472)

(7.8)
(mOd)(t ) (_1)8M—l,m(rm_l)

The other Bethe equations for a‘gmfd) with |[v — u| > 1 do not change. Thus, we arrive at the
property (iv) for the function N® (X 7).
Finally, property (v) can be deduced as follows. Since all the poles of the HC in (3.15) are

simple, it is enough to develop functions a,)(s;) up to the first order over the difference s; — tj‘.’

for taking the limit § — ¢:

v(Z)

@ (s)) = o (1)) + (5] = 1))

%) ((s; — t}))2> . (7.9)

Y
Z—tj

Ifall X }’ = 0, then the derivatives of «,, vanish, and we can substitute o, (s;) =, (t}’) into (3.15)
in the limit 5§ — 7. This leads us to

505V A
lim S(S|t)—l_[06u(t )hmz v lyv( II G IE3+1 _
5>t s>t v 1 f[u+1](511 Iv)f[v+1](t1 ’tﬁ)
x Z’”'"(§1|t1) 7"z |5m). (7.10)

However, due to (5.2) the sum over partitions in (7.10) vanishes for arbitrary complex § and 7. In
this way we arrive at the property (v). O
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Due to Proposition 4.1 we conclude that
N®(X;7) = det G, (7.11)
leading to (4.4).

8. Conclusion

We considered a generalized quantum integrable model with gl(m|n)-invariant R-matrix. We
showed that the square of the norm of on-shell Bethe vectors of this model is proportional to a
Jacobian of the system of Bethe equations. This result completely matches the original Gaudin
hypothesis on the norm of the Hamiltonian eigenvector. One can expect that this hypothesis
can be further generalized. In particular, it is quite natural to have a similar formula for the
models based on Uy, (g[(m)) and U, (g[(m|n)) algebras. This will be the subject of our further
publications.

The problem of the norm of on-shell Bethe vectors is very important for the calculation of
form factors and correlation functions in the models of physical interest. Further development in
this direction requires more detailed analysis of the Bethe vectors scalar products. Formally, the
sum formula gives an explicit result for the scalar product of generic Bethe vectors, however, this
representation is not convenient for applications in many cases. At the same time, one can hope
to find more compact representations for particular cases of the scalar product, as it was done in
the models with gl(2|1)-symmetry [26]. At present, work in this direction is underway.
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Appendix A. Y (gl(m|n)) representations induced from gl(m|n) ones

A wide class of representations for the Yangian Y (g[(m |n)) can be constructed from represen-
tations of gl(m|n). The construction relies on the notion of evaluation morphism and evaluation
representations [27,28]. Before detailing it, we make a short summary on irreducible representa-
tions of gl(m|n).

A.l. Highest weight representations of the Lie superalgebra gl(m|n)

For simplicity, we present highest weight representations for the Lie superalgebra gl(m|n)
with m # n, but most of the discussion applies also to the case m = n. Highest weight repre-
sentations were studied in [29,30], see also [31] for a review on superalgebras. We introduce the
gl(m|n) generators e;; obeying

[eij . e} = 8j e — (—)TITUDIHID 5, ¢ (A.1)

Highest weight representations of the Lie superalgebra gl(m|n) are characterized by a weight
= (A1 .oer Aman) € C™T and a highest weight vector |0) such that

€iil0) =2;10) and ¢;[0)=0, i<}, (A2)
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where ¢;; are the representatives of the gl(m|n) generators. The highest weight vector |0) will
produce the pseudovacuum (3.1) through the evaluation morphism, see section A.2 below. In
other words, if ) denotes the mapping from the superalgebra to a representation space V},
then e;; = my (e;;) is a matrix (or an operator for infinite dimensional representations) acting on
vectors in V.. The associated Kac module is obtained through the (multiple) applications of the
representatives e;;, i > j, on |0).

Among highest weight representations, the finite dimensional ones are characterized” by in-
tegrable dominant weights, such that

Ai —Aip1 €44, i#m, 1<i<m+n—-1 and i, €cR.
Obviously any weight A is a linear combination of the fundamental (dominant) weights®

2D =q,..,1,0,..,0), i=1,..,m+n.
—_— —
i m+n—i

For integrable dominant weights, the linear combination has non-negative integer coefficients,
up to two real numbers. The first corresponds to the fermionic root, i.e. to A,,. The second is
associated to the eigenvalue of the gl(1) part that distinguishes gl(m|n) from its simple part
sl(m|n). It can be related to the weight At

The representations associated to fundamental weights are called fundamental representa-
tions. There are m 4+ n — 1 of them, and the first one, A" corresponds to what is usually called
the fundamental representation. It is (m + n)-dimensional, and in that case m, 1) (e;;) = Ejj. Its

contragredient representation (which is also (m + n)-dimensional) corresponds to Almtn=1)
A.2. Evaluation map

The evaluation morphism ev(§), for & € C, is an algebra morphism from Y (gl(m|n)) to
U (gl(m|n)), the enveloping algebra of gl(m|n). It is defined by

c . m—+n .
ev(&): T(u) — I+EE with E= ) (-DVE; ®ej, (A.3)
i,j=1

with I =1 ® 1, where we introduced 1 the unit of U (gl(m|n)) and we used the same notation as
in section 2. In component, the evaluation map reads

ev(§)(T;j(w)) =8ij1+ MC[TIJS €ji.
Indeed, since the Lie superalgebra relations (A.1) are equivalent to

[E1, E2]=P(E; —Ey),

C

it is easy to show that I 4+ = 3 E obeys the Yangian RT T -relations (2.4). Remark that the gener-

ators of gl(m|n) are related to the zero modes described in [20]: e;; = (=1 T;;[0].

2 For superalgebras, the irreducible part of the representation can be a coset of the Kac module, due to the existence of
atypical representations.

3 The last weight A(mn) provides a trivial representation for s[(m|n) and is related to the g[(1) algebra which is central
in gl(m|n).
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Then, using the evaluation morphism one can construct, from any gl(m|n) representation iy,
a representation for the Yangian Y (g[(m |n)). The evaluation representation evy (§) = my oev(§)
is defined as:

Cli]
en(®)(Ty@) =8 1x + L ey
u—§
where ¢;; = my(e;;) is the matrix representation of e;; in the vector space V) and 1y is the
identity matrix in this space. The weights of the Yangian representation ev; (§) read

Cli]
u —

T;iw)[0) = A; ()|0) with  A;(u) =1+

s)\i,

and we have

Cli]
u—§&
according to the relations (A.2). Then it is clear that the highest weight vector of gl(m|n) becomes
the pseudovacuum vector (3.1).

Let us emphasize the difference between A;, that are the weights for the Lie superalgebra
gl(m|n), and A; (1), that are the weights for the Yangian Y(g[(m |n)).

T;j(u)]0) = ejil0)=0, j<i

A.3. Representations associated to f[;1(u, v)

Forany j=1,2,...,m + n and any complex &, we introduce the evaluation representation
Ev;(§) associated to the weight AU It corresponds to the Yangian weights

h (1) = S, &) if u < j,
a 1 if > J.

. . . 0 j .
We consider the following representation: ®§V=1 ®,Ig:jl Ev; (Slgj ) ). Since we have a tensor product

of highest weight representations, the weights for this tensor product are given by the product of
the individual weights for each representations, that is

N LW
@) = [T fin@.&”). w=1.2...m+n.

j=nk=1
This leads to (5.1).

Appendix B. Recursion for the highest coefficient

One can build the HC Z™" starting from the known results at m +n = 2 via recursions derived
in [20]. For m = 2, n = 0 we deal with the HC of gl(2) based models, that is equal to the partition
function of the six-vertex model with domain wall boundary condition [3,24]. The case m =0,
n = 2 becomes equivalent to the previous one after the replacement the constant c — —c in the
R-matrix (2.1). Finally, for m =n =1 the HC has the form [25]

ZW G170 =g, ). (B.1)

In recursive construction of the HC, two cases should be distinguished: (1) n > 0 and m > 0;
(2) n =0 or m = 0. We first consider the case n > 0 and m > 0. Then, the recursive procedure is
based on the following reductions [20]:
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zmn@g, 5%, 5N 2, iy =zl SN LY,

zmint sV E g, N gy =zt sV L N

b

(B.2)

9

and we recall that N =m + n — 1. Thus, in particular, knowing zm=1n for some m and n we
automatically know Z”" with #5! = #7! = 0. Then, to obtain Z"" with #5! = #! > 0 we can
use a recursion [20]

N+1 g(El El) Om,1
I - -1 = — —1 - )
A GDES D DA (G R G N A R (AW (ﬁ)
P=2 part(s2,...,5°~1) S 51
part(7!,...,77~1)

p—1

o g, S 1) f (7, 57) I g1 @ 5 Dem G5 D @ v Gl §)

fimG@e, 57 " Fin G5 f @, )
(B.3)
Here
—oro—1 - —0—1 =
Z" ST SO T )
=z s s s T e ). (B.4)

For every fixed p € {2,..., N + 1} in (B.3) the sums are taken over partitions 1 = {¢{, 77} with
o=1,...,p—1land5° = (57,5} witho =2,..., p — 1, such that #7{ =#s{ = 1. The subset
EII is a fixed Bethe parameter from the set 5!. There is no sum over partitions of the set 5! in
(B.3).

Similarly, knowing Z”!"~! for some m and n we automatically know Z"" with #5V =

#N = 0. Then, to obtain Z™!" with #5V = #¥ > 0 we can use the second recursion

. ~1 N (=o1p—1 (o N [ &G H) i
ZAMGDED DI DI A (S MR b T MG ;{rﬁ}p>(—“’f )

Fal 5

- - - - - - N—1 - 1 - - 1 = _ _ - -
5 g, iMyyn G S FGY LY I GRS T [ (A 20 D (A0 LY (A2

o — el B Ll
fim @@, 1771 v=p Sro+1 GV L)) foan (@ T 1)

(B.5)

Here

A R A T LS )

) o1 =p N5l —p—1 p =N
:Zm|n(s ,...,Sp ,SH,...,Snlt ,...,tp ’tH""’tH)' (B6)

For every fixed p € {1,..., N} in (B.5) the sums are taken over partitions 1 = {f{, ;] } with
o=p,...,N—1and 59 = {57,571} with o = p, ..., N, such that #7{ = #5{ = 1. The subset
t_IN is a fixed Bethe parameter from the set V. There is no sum over partitions of the set V in
(B.5).

Now, let us describe the situation in the case n = 0. The formulas (B.3), (B.5) remain valid
in this case, however, they are slightly simplified. First of all, §,,,1 = 6,,,4 = 0 1n this case.
This leads to the disappearance of the factors in the first lines of (B.3), (B.5). Second, all the
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y -functions should be replaced by the f-functions. Finally, all the subscripts of the g-functions

and f-functions disappear: g[,j(x, y) = g(x, ), fluj(x, y) = f(x, y).
However, the main peculiarity of this case is that the reductions (B.2) take the form

20, 5%, 5N Ly =z 0GR s, L e,

zmMOGt, s i, L gy = 20 s, L . B

Thus, if either 51 = 7! = @ or ! = 71 = @, then in both cases Z"0 reduces to Z™ 110,
Finally, the case of gl(0|n) algebras reduces to the case considered above after the replacement
the constant ¢ — —c in the R-matrix (2.1). Therefore, we do not consider this case below.

Appendix C. Residues in the poles of the highest coefficient

We give a detailed proof of Proposition 3.1 for the case m > 0 and n > 0. The case m =0 or
n = 0 can be considered exactly in the same manner.

The proof is based on the reductions (B.2), recursions (B.3), (B.5), and explicit representation
(B.1) for Z''(5|7). First, one can easily see that due to (B.1)

ZWGID| =8, 1)8G) 5,8t HZ S 1E7) + reg. (C.1)
J J

This expression obviously coincides with (3.17) for m = n = 1. Equation (C.1) serves as the

basis of induction.*

Assume that (3.17) is valid for all m’ and n’, such that m’ 4 n’ is fixed. Then due to (B.2) the
residue formula (3.17) holds for Z"1" with m =m’ + 1, n’ =n at r; = 0 (that is, 5! = 7! = @)
and for Z"" withm =m’, n =n’ + 1 at ry = 0 (that is, 5¥ =7V = (). Then using recursions
(B.3) and (B.5) we should prove that (3.17) remains true for r; > 0 and ry > 0. It so happens
that recursion (B.3) allows one to prove (3.17) for s# and t* with u =2, ..., N. At the same
time recursion (B.5) provides the proof for s# and r* with u =1, ..., N — 1. Combining both
recursions we prove the residue formula (3.17) for all s# and #.

Let us show how this method works. Consider, for example, the recursion (B.3). It is conve-
nient to write it in the following form:

N+1
A GHES ISl 60} (C.2)
p=2

where
-1 =1
g Sp)

8m,1
=D S A (AN G N (A LN T }ﬁ)(m)

o S ot oo o1 p—1 I ol o o
% 812] (tlls SII))/I (t117 lel)f(tlll, SII) /i—[ g[v—i—l](tlvs tIv l)g[v](slvs SIU I)Vu (tlv’ tﬁ)yv (SIvIa SIv)
fir G507 v [ GV 87D fn @ 7N

(C.3)

4 For completeness of the proof one should also check (3.17) for m = 2 and n = 0. This was done in [3].
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We first consider the case r| = #s I'— #1 = 1. Then #EIII = #t_IlI = 0, hence, we actually have
Z"=1I" in the rhs of (C.3). According to the induction assumption the residue formula (3.17) is
valid for these HC.

Let s? = tJ‘.L for i > 1 in the Ths of (C.2). In the rhs of this equation one should consider
separately the terms with different p. Namely, one should distinguish between four cases: p < u;
p>pu+Lp=pn+1p=pn.

Let p < w. The pole at s? = t;.L in the rhs of (C.3) occurs in the HC only. Then due to the
induction assumption the residue of the HC in the rhs of (C.3) gives the factor

TSGR YRGS R AR

S @HL 1) fa (5, 51471

This coefficient does not depend on the partitions. The remaining sum over partitions obviously
reduces to ZZ”" 5\ {sﬁ.‘}lt_\ {t;.‘}). Thus, for p < p we arrive at

Ay = (C.4)

Zn (s)7) = A ZpM G\ ASENEN AL D) + reg. (C.5)
J J
Consider now the terms with p > u + 1. The pole in the rhs of (C.3) occurs in the HC pro-
vided 5" € 5y and 1" € fyy. Let 5 = {s}, 5y} and ff = {t}’. fyy}. Then the residue of the highest
coefficient gives the factor

G YRGS YNNG

(C.6)
— 1 -
fren @ f G5
The second line of (C.3) gives additional factors depending on s7 and t;.L :
Vg s )y,
AT j M (C7)

1"
f[/H—l](tI stH)f[u](sj ssl )

Together with (C.6) they give A, (C.4). The rest of (C.3) does not depend on s7 and %, hence,
we again obtain (C.5), but now for p > u + 1.
The third case is p = u + 1. Again, the pole occurs in the HC, and we set sII = {s"' i ,sH,}

tH = {t", fII,}. Now the factor coming from the HC is

g[ﬂ"‘l](tj ,S ))/‘u(tlIL/y t;L)y,LL(SfLa gﬁ/)

—pu—1
S @60 fua 5,50 )

We also have from the second line of (C.3)

(C.8)

Vu(t_lﬂ, t;-L))/M(Sj-L, EIM)

— (C.9
fua Gl 57 h

and altogether we again obtain (C.4). Thus, equation (C.5) holds for p = u + 1.
Finally, let p = . Then we have form the HC

g[lzb-i‘l](t;/b’ S;L)'J/M(ZTM, t;,L)yM(sjb’ EjL)
_ —u—1 .
S @D frun (555

(C.10)
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The additional factor f, (s? 51 ~!) comes from the second line of (C.3), and we again obtain

the A, coefficient (C.4). The remaining sum over partitions still gives ZZ""(E \ {s?‘ HEN {t}”L 1.

Thus, equation (C.5) is proved for all p. Due to (C.2) this immediately yields the residue
formula (3.17) for 2™,

As soon as (3.17) is proved for r; = 1 we can use it as a new basis of induction. We assume that
(3.17) is valid for some r; > 0 and then prove that it remains true for r; + 1. All considerations
are exactly the same as in the case r| = 1, therefore we omit them.

In this way we prove the residue formula for all 5# and 7* except 5' and 7!. To prove (3.17) for
the residue at sjl. = t} we should use the second recursion (B.5) and perform similar calculations.
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Chapter 5

Scalar products and norm of
Bethe vectors for integrable
models based on U,(gl,,)
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Introduction:
This Chapter generalizes results of two previous Chapters to the case of
quantum affine algebra U,(gl,,).

Contribution:

Using antimorphism ¥ (3.14) I proved recurrent relations for dual Bethe
vectors. We used these formulas to calculate scalar product of Bethe vectors.
Using the scalar scalar product of Bethe vectors I proved generalization of
Gaudin theorem for norm of Bethe vectors to case of quantum affine algebra
U,(gl,,). As in super-Yangian case Y (glum), it is a key object for calculation
of correlation functions.
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Abstract

We obtain recursion formulas for the Bethe vectors of models with periodic boundary
conditions solvable by the nested algebraic Bethe ansatz and based on the quantum
affine algebra U, (gl.). We also present a sum formula for their scalar products. This for-
mula describes the scalar product in terms of a sum over partitions of the Bethe param-
eters, whose factors are characterized by two highest coefficients. We provide different
recursions for these highest coefficients.

In addition, we show that when the Bethe vectors are on-shell, their norm takes the
form of a Gaudin determinant.
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1 Introduction

Integrable models have the striking property that their physical data are exactly computable,
without the use of any perturbative expansion or asymptotic behavior. For this reason, they
have always attracted the attention of researchers. In the twentieth century, quantum inte-
grable models have been the source of many developments originating in the so-called Bethe
ansatz, introduced by H. Bethe [1]. In a few words, the Bethe ansatz is an expansion of Hamil-
tonian eigenvectors over some clever basis (similar to planar waves) using some parameters
(the Bethe parameters, which play the role of momenta). Demanding the vectors to be eigen-
vectors of the Hamiltonian leads to a quantization of the Bethe parameters which takes the
form of a system of coupled algebraic equations called the Bethe equations. Knowing the form
of the Bethe ansatz and the Bethe equations is in general enough to get a large number of
information on the physical data of the system.

In continuity to the Bethe ansatz technics, the Quantum Inverse Scattering Method (QISM),
mainly elaborated by the Leningrad/St-Petersburg School [2-5], has been the core of a wide
range of progress. These developments were performed in continuity with (or parallel to) the
works of C. N. Yang, R. Baxter, M. Gaudin, and many others, see e.g. [6-12].

The Bethe ansatz and QISM have provided a lot of interesting results for the models based
on gl, symmetry and its quantum deformations. Among them, we can mention the determi-
nant representations for the norm and the scalar products of Bethe vectors [13, 14]. Focusing
on spin chains with periodic boundary conditions, it is worth mentioning the explicit solution
of the quantum inverse scattering problem [15-17]. These results were used to study correla-
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tion functions of quantum integrable models in the thermodynamic limit via multiple integral
representations [ 18-20] or form factor expansion [21-23].

For higher rank algebras, that is to say for multicomponent systems, gl,,, spin chains and
their quantum deformation, or their Z,-graded versions, results are scarcer, although the gen-
eral ground has been settled many years ago [24-29]. Nevertheless, some steps have been
done, in particular for models with periodic boundary conditions: an explicit expression for
Bethe vectors of models based on Y (gl(m|n)) and on Uq(g[m) can be found in [30-32] and
[33-37]. The calculation of scalar product and form factors have been addressed for some
specific algebras. The case of the Y (gl;) algebra has been studied in a series of works present-
ing some explicit forms of Bethe vectors [38], the calculation of their scalar product [39-43]
and the expression of the form factors as determinants [44, 45]. Results for models based
on the deformed version U, (gl3) have been also obtained: explicit forms of Bethe vectors can
be found in [46], their scalar products in [47-49] and a determinant expression for scalar
products and form factors of diagonal elements was presented in [50]. The supersymmetric
counterpart of Y(gl3), the superalgebra Y(gl(2|1)) has been dealt in [51-54]. Some partial
results were also obtained for superalgebras in connection with the Super-Yang-Mills theo-
ries [55-57]. However a full understanding of the general approach to compute correlation
functions is still lacking. Recently, some general results on the scalar product and the norm of
Bethe vectors for Y (gl(m|n)) models have been obtained in [58, 59], in parallel to the original
results described in [13, 39]. The present paper contains similar results for models based on
the quantum affine algebra U, (E;\[m).

It is known (see e.g. [13, 14, 60]) that most of the results concerning the scalar products of
Bethe vectors in the models described by the Y (gl,) and U, (E[z) algebras can be formulated in
a sole universal form. This is because the R-matrices in both cases correspond to the six-vertex
model. An analogous similarity takes place in the general Y (gl,,) and U, (E;\[m) cases. In spite
of some differences between the R-matrices of Y(gl,,,) and U, (E[m) based models the general
structure for the recursions on Bethe vectors, their scalar products, and the properties of the
scalar product highest coefficients, is almost identical. Moreover, most proofs literally mimic
each other for both cases. Thus, we do not reproduce the proofs entirely, referring the reader
to the works [58, 59] for the details. Instead, we mostly focus on the differences between
these two cases.

The plan of the article is as follows. We describe our general framework in the two first
sections: section 2 contains the algebraic framework used to handle integrable models, and
section 3 gathers some properties of the Bethe vectors of Uq(ﬁ\[m) based models. Section 4
presents our results, which are of two types. Firstly, we show results obtained for generic
Bethe vectors: several recursion formulas for the Bethe vectors (section 4.1); a sum formula
for their scalar products (section 4.2); and properties of the scalar product highest coefficients
(section 4.3). Secondly, considering on-shell Bethe vectors, we give a determinant form 4 Ia
Gaudin for their norm (section 4.4). The following sections are devoted to the proofs of our
results. Section 5 deals with the Bethe vectors constructed within the algebraic Bethe ansatz
and presents the proofs for the results given in section 4.1. Section 6 contains the proof of the
sum formula, and in section 7 we consider the symmetry properties of the highest coefficients.
Appendix A presents the explicit construction of Bethe vectors in a particular simple case. Some
of the results obtained in the present paper were already presented in the case of U, (gly) in
different articles: we make the connection with them in appendix B. A coproduct property for
dual Bethe vectors is proven in appendix C.
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2 Description of the model

2.1 TheU, (Ey\[m) based quantum integrable model

Let R(u, v) be a matrix associated with the vector representation of the quantum affine algebra
Uy(aln):
q\Ytm

R(u,V) = f(u,V) Z Eii®Eii + Z (Ell®E]]+E]]®Ell)

1<i<m 1<i<j<m 2.1)
+ Z g(u,V)(uEij®Eji+VEﬁ®Eij),
1<i<j<m

where (E; j)lk =06,6 ik> L, [,k=1,...,m are elementary unit matrices and the rational func-
tions f (u,v) and g(u,v) are
-1 -1
u—q v —
faun="1"" =10, 2.2)
u—v u—v

with q a complex parameter not equal to zero. This matrix acts in the tensor product C" ® C™
and defines commutation relations

R, v)(Tw)®1)(18T(v))=(1® T(»))(T()® 1)R(y,v) (2.3)

for the quantum monodromy matrix T (u) of some quantum integrable model.

Equation (2.3) holds in the tensor product C™ ® C™ ® 5, where ¢ is a Hilbert space of
the model. Being projected onto specific matrix element the commutation relation (2.3) can
be written as the relation for the monodromy matrix elements acting in the Hilbert space 5

[T;,;(), Tey()] = (Fv) = 1){8y) T ;0T () — 85 Ty ()T (0) }

2.4
+g(u,v) {(U5l<j +v6) T j(VT; (W) — (u8; <k +vEi<;) Tk,j(u)Ti,l(V)}>
where 6;.; =1ifi < j and 0 otherwise.
The transfer matrix is defined as the trace of the monodromy matrix
m
T =tuTw)= > T;u). (2.5)
j=1

It follows from the RT T-relation (2.3) that [Z(u), Z(v)] = 0. Thus the transfer matrix can
be used as a generating function of integrals of motion of an integrable system.

We call such a model Uq(ﬁm) based quantum integrable model because of the R-matrix
used in definition of the commutation relations (2.3) and also because the centerless quan-
tum affine algebra Uq(am) itself can be defined using the commutation relations (2.3) by
identification of the quantum monodromy matrix T (u) with the generating series of the Borel
subalgebra elements in Uq(a\[m).

Assume that the operator

m
¥ = ull}go T(U) with ¥ = .Zl El] ® gi,j
L]=

is well defined. We call such operators % ; zero modes operators' and it follows from the
commutation relations (2.4) that?

i Ty (w) = qou0 Ty (W) % ;. (2.6)

n fact the zero mode generators exist whatever is the asymptotic behavior of T(u) at u = 0o. We have taken
this particular behavior to simplify the presentation.
2To get this result one needs to assume that the zero mode matrix £ is upper-triangular.

4
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Matrix elements T; ;(u) of the monodromy matrix T'(u) form the algebra with the commu-
tation relations (2.4) which we denote as .«/,.. Further on we will consider certain morphisms

which relate algebras .«7;: and ,Qf,?l_l (see section 3) as well as embeddings of the smaller rank
algebra ,efrfl_l into the bigger rank algebra .7,

We wish here to make some comments on the distinction between .<Z;. and Uy (Ej\[m) alge-
bras. The R-matrix we use is definitely the one associated to the Uq(ﬁ\[m) algebra. However,
in order to define this algebra, more elements are needed, such as the Lax operator(s) and
their expansion with respect to the spectral parameter. On the other hand, the definition of
an integrable model ‘only’ needs a monodromy matrix obeying an RT T -relation. Hence, we
refer to the .o/, algebra when dealing with this monodromy matrix, while the denomination
Uq (am) will be used when mentioning the underlying models.

Most of the time, one may identify the .7, algebra with a Borel subalgebra in the quantum
affine algebra U, (ﬁ\[m). This allows to define the model and its Bethe vectors. However, when
considering dual Bethe vectors and the morphism ¥ (see section 3.2) the situation is more
delicate. This is particularly acute when the central charge is not zero, and we use the .</;.
algebra to bypass these subtleties. In particular, the morphism ¥ maps .¢f,) to % while it
maps U; U, where U; and U are dual Borel subalgebras in Uq(i;\[m).

A similar discussion can be found in [32] on the Yangian case.

2.2 Notation

In this paper we use notation and conventions of the work [58]. Besides the functions g(u, v)
and f(u,v) (2.2), we introduce the rational functions

g(r)(u,v) =vg(u,v), g(”(u, v)=ug(u,v). 2.7)

Let us formulate now a convention on the notation. We denote sets of variables by bar,
for example, ii. When dealing with several of them, we may equip these sets or subsets with
additional superscript: §'. t”, ete. Individual elements of the sets or subsets are denoted
by Latin subscripts, for instance, u; is an element of &, t]i( is an element of ' etc. Subsets
complementary to the elements u; (resp. t}i() are denoted by bar, i.e. u; (resp. f,i(). Thus,
a; =1\ {u;} and f]i =f\ {t]i}. For any set i1, we will note #1 the cardinality of the set i. As a
rule, the number of elements in the sets is not shown explicitly in the equations, however we
give these cardinalities in special comments to the formulas.

We use a shorthand notation for products of functions f, g or g""): if some function
depends on a set of variables (or two sets of variables), this means that one should take the
product over the corresponding set (or double product over the two sets). For example,

gP@ =] [ePw,v), @ en=[]ru.c & OH=]]]]r60t). @8
uj€il tfett 5] €5) tyett
t#j
The same convention is applied to the products of commuting operators. Note that (2.4)

implies in particular that

[Tl-,j(u), Ti,j(")]=0> V i,j:].,...,m. (29)
Thus, the notation
T@ = ] 7, (2.10)
ukeﬂ

is well defined.

By definition, any product over the empty set is equal to 1. A double product is equal to
1 if at least one of the sets is empty. Below we will extend this convention to the products of
eigenvalues of the diagonal monodromy matrix entries and their ratios (see (3.3)).
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3 Bethe vectors

Pseudovacuum vector. The entries T; ;(u) of the monodromy matrix T(u) act in a Hilbert
space #. We do not specify s, but we assume that it contains a pseudovacuum vector |0),
such that

T; ;(w)]|0) = A;(u)]0), i=1,...,m,

T; ;(u)|0) =0, i>7, 3.1

where A;(u) are some scalar functions. In the framework of the generalized model [13] consid-
ered in this paper, the scalar functions A;(u) remain free functional parameters. Let us briefly
recall that the generalized model is a class of models possessing the same R-matrix (2.1) and
having a pseudovacuum vector with the properties (3.1) (see [13, 58] for more details). Any
representative of this class can be characterized by a set of functional parameters that are the
ratios of the vacuum eigenvalues A;:

Ai(w)

a;(u) = () i=1,...,m—1. (3.2)

We extend to these functions the convention on the shorthand notation (2.8), for instance:

@ =] [mw),  a@ =] ] (3.3)

lljel_l téefi

Coloring. In physical models, the space 5 is generated by states with quasiparticles of dif-
ferent types (colors). In U, (E;\[m) based models quasiparticles may have N = m —1 colors. For
any set {rq,...,ry} of non-negative integers, we say that a state has coloring {ry,...,ry}, if it
contains r; quasiparticles of the color i. This definition can be formalized at the level of the
quantum algebra U, (E;\[m) through the diagonal zero modes operators % ; (2.6). The colors
correspond to the eigenvalues under the commuting generators®

j
b=[]%x j=1..m—1. (3.4)
k=1

Indeed, one can check from (2.6) that

ik, D=-1, if k<j<l,
b T (z) =q9® 0T (2)h; with { ek, )=+1, if 1<j<Kk, (3.5)
ej(k,1)=0 otherwise.

The eigenvalues ¢;(k, 1) just correspond to the coloring mentioned above.

To get a zero coloring of the vector |0), one needs to shift h; to h; = b; ;{=1 A L0778,
where A,[0] is the eigenvalue of |0) under %, ;. Then, all states in . have positive (or null)
colors. A state with a given coloring can be obtained by successive application of the creation
operators T; ; with i < j to the vector |0). Acting on a state, an operator T; ; with i < j adds
one quasiparticle of each colors i,..., j—1. In particular, the operator T; ;. creates one quasi-
particle of the color i, the operator T; ,, creates N quasiparticles of N different colors. The
diagonal operators T;; are neutral, the matrix elements T; ; with i > j play the role of anni-
hilation operators. They remove from any state the quasiparticles with the colors j,...,i —1,
one particle of each color. In particular, if j—1 < k <1, and the annihilation operator T; ; acts
on a state in which there are no particles of the color k, then its action yields zero.

3The last generator b, is central, see (3.5).
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Bethe vectors. Bethe vectors belong to the space 5. Their distinctive feature is that when
Bethe equations are fulfilled (see section 3.3) they become eigenvectors of the transfer matrix
(2.5). Several explicit forms for Bethe vectors can be found in [37]. We do not use them in
the present paper, however, in section 4.1 we give a recursion that formally allows the Bethe
vectors to be explicitly constructed. In the present section, we only fix their normalization.

Generically, Bethe vectors are certain polynomials in the creation operators T; ; applied
to the vector |0). These polynomials are eigenvectors under the Cartan generators % x, and
hence they are also eigenvectors of the color generators h;. Thus, Bethe vectors have a definite
coloring and contain only terms with the same coloring.

A generic Bethe vector of Uq(ﬁ\[m) based model depends on N = m — 1 sets of variables
t1,t2,...,tN called Bethe parameters. We denote Bethe vectors by B(f), where

P = {tl,...,t}I;tf,...,tfz;...;tfl",...,t’r‘]’v}, (3.6)
and the cardinalities r; of the sets f' coincide with the coloring. Thus, each Bethe parameter
t,i( can be associated with a quasiparticle of the color i.

Bethe vectors are symmetric over permutations of the parameters t]‘; within the set £ (see
e.g. [37]). However, they are not symmetric over permutations over parameters belonging to
different sets f' and #/.

We have already mentioned that a generic Bethe vector has the form of a polynomial in
T; ; with i < j applied to the pseudovacuum |0). Among all the terms of this polynomial, there
is one monomial that contains the operators T; ; with j —i =1 only. Let us call this term the

main term and denote it by B(f). Then
B(D)=B()+..., 3.7)

where the ellipsis stands for all the terms with the same coloring that contain at least one
operator T; ; with j —i > 1. We fix the normalization of the Bethe vectors by requiring the
following form of the main term

— Ty o(t)... Ty n+1(FV)]0)
B(t) = —% ST IN=1 s riiq 2
[Tio, A BOTTL, f(EH, ED)

Recall that we use here the shorthand notation for the products of the functions A;,; and f, as
well as for a set of commuting operators T; ;. Let us stress that this normalization is different
from the one used in [37] where the coefficient of the operator product in the definition of
B(f) was just 1. This additional normalization factor is convenient, in particular because the
scalar products of the Bethe vectors depend on the ratios a; (3.2) only.

Since the operators T;;;; and T; ;. do not commute for i # j, the main term can be
written in several forms corresponding to different ordering of the monodromy matrix entries.
The ordering in (3.8) naturally arises if we construct Bethe vectors via the nesting procedure
corresponding to the embedding of 4277?1_1 in .o/, to the lower-right corner of the monodromy
matrix T (u).

(3.8)

3.1 Morphism of Bethe vectors
The quantum algebras .« and sz,?q_l are related by a morphism ¢ [37]:
o(TW) = UT' WU, ie ¢(Tep®) = Trsipmei—a(w), (3.9)

-1
where U = 2?1:1 E; m+1—; and we put a tilde on the generators of .} to distinguish them

from those of .¢f,. ¢ defines an idempotent isomorphism from .¢f,, to 42%,,‘11_1. This mapping
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also acts on the vacuum eigenvalues A;(u) (3.1) and their ratios a;(u) (3.2)

:{ W) = Apar—(@), i=1...,m, (3.10)

a;(u) - %.(u), i=1,...,m—1.

We can extend this morphism to representations, defining ¢(|0)) = |O~), where |0) and |~)
are the pseudovacua in ¢ and 5 respectively. It has been shown in [37] that this morphism
induces the following correspondence between Bethe vectors

Lemma 3.1. The morphism ¢ induces a mapping of Bethe vectors B,(t) € s to Bethe vectors
Bq—l(f) S 32,;

B,-1(7)
- q
o (By(D) = ——————., (3.11)
[ iz Ona1(E9)
where we have introduced the special orderings of the sets of Bethe parameters*
T={t},2,...,iN} and t={i",..., 15, t'}. (3.12)

3.2 Dual Bethe vectors

Dual Bethe vectors belong to the dual Hilbert space 7#*, and they are polynomials in T; ; with
i > j applied from the right to the dual pseudovacuum vector (0|. This vector possesses the
properties similar to (3.1)

<O|Ti,i(u)=li(u)(0|, i=1,...,m,

(0IT; (0 =0, i<, ©19
where the functions A;(u) are the same as in (3.1).

We denote dual Bethe vectors by C(t), where the set of Bethe parameters ¢ consists of
several sets ' as in (3.6). As it was done for Bethe vectors, we can introduce the coloring of
the dual Bethe vectors, with now the role of creation and annihilation operators reversed.

One can obtain dual Bethe vectors via the special antimorphism ¥ given by

U(T(w) = T'w™), ie W(T,w) = Ty ™). (3.14)

-1
¥ defines an idempotent antimorphism from .« to .« . Let us extend the action of this
antimorphism to the pseudovacuum vectors by

w(]0)) = (0], w(4]0)) = (0] (A), 515
w((o)=l0),  w((ola)=w(a)o),
where A is any product of T; ;. Then it turns out that [37]
U(By(D)=Cpa(Fh),  ¥(Cy(D)=B(E™), (3.16)

where, again, we put a subscript on (dual) Bethe vectors to distinguish the ones of .¢7; from
-1
those of ./, . We used the notation

1 1 1 1 1 1
t =::{— —,...,—1,—2,...,7}.
t trl ty trN

“Let us stress that the order of the Bethe parameters within every subset ¥ is not essential.
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The main term of the dual Bethe vector can be obtained from (3.8) via the mapping® W:

~ - (O Ty 41 N (V) ... To 1 (E1)
(C(t) = N —- N—1 - -
l_L-=1 7%+1(tl)l_[i=1 fE+, )

Finally, using the morphism ¢ we obtain a relation between dual Bethe vectors correspond-

(3.17)

ing to the quantum algebras ./, and ,27,‘,11_1
Cy (1)

— (3.18)
nlzjﬂ Ay 41—k (EF)

e(Cy(®) =

3.3 On-shell Bethe vectors

For generic Bethe vectors, the Bethe parameters t,i{ are generic complex numbers. If these
parameters satisfy a special system of equations (the Bethe equations, see (3.19)), then the
corresponding vector becomes an eigenvector of the transfer matrix (2.5). In this case it is
called on-shell Bethe vector. In most of the paper we consider generic Bethe vectors. However,
for the calculation of the norm of Bethe vectors we will consider on-shell Bethe vectors. In
that case, the parameters ¢ and a,, will be related by the following system of Bethe equations

o FULEDFEL )
GRSV GREDY

and we recall that t7 = t”\ {t}’}. Usually, when the functions a,, are given (and define a
physical model), one considers these equations as a way to determine the allowed values for
the Bethe parameters t. For the generalized models, where the functions a,, are not fixed,
the Bethe equations form a set of relations between the functional parameters au(t;‘ ) and the
Bethe parameters t;.

a,(t v=1,...,N, j=1,...,1,, (3.19)

3.4 Coproduct property and composite models

The proofs for the results shown in the present paper rely on a coproduct property for Bethe
vectors, which connects the Bethe vectors belonging to the spaces (1) and # to the Bethe
vectors in the space 51 ® 53, This property is intimately related to the notion of composite
model, that we introduce now. It is important to point out that in this section we consider
Bethe vectors corresponding to different monodromy matrices. We stress it by adding the
monodromy matrix to the list of the Bethe vectors arguments. Namely, the notation B(Z|T)
means that the Bethe vector B(t) corresponds to the monodromy matrix T.

In a composite model, the monodromy matrix T (u) is presented as a product of two partial
monodromy matrices [32, 62-64]:

T(w) = TAWTM(w). (3.20)

Here every T!(u) satisfies the RT T-relation (2.3) and has its own pseudovacuum vector |0)®
and dual vector (0|, such that |0) = |0} ® |0)® and (0] = (0| ® (0|®®). The operators
Tl.(?)(u) and T,Ell)(v) act in different spaces, and hence, they commute with each other. We

assume that o o
T ]0)” = A (W)0)®,

=1,...,m, [=1,2, (3.21)
(0OT 2w = 2" 01,

>To get a dual Bethe vector in Uq(é\[m) one should start from Uy (al,.), see [37] where these considerations are
detailed.
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where AEZ)(u) are new free functional parameters. We also introduce

A(”(u)
L =5 [=1,2, k=1,...,N. (3.22)
A0 @’
Obviously
L@ =2"wWAPw, g w=awaPw. (3.23)

The partial monodromy matrices T)(u) have the corresponding Bethe vectors B(|T(®)
and dual Bethe vectors C(5|T()). A Bethe vector B(Z|T) of the total monodromy matrix T(u)
can be expressed in terms partial Bethe vectors B(Z|T() via coproduct formula [34, 35]

N 2
s = S b= oPEf (E E)
l_[v—l f(l’v+1, 'V)
Here all the sets of the Bethe parameters t” are divided into two subsets t” = {t”,t}}, and

the sum is taken over all possible partitions.
A similar formula exists for the dual Bethe vectors C(5|T) (see appendix C)

B(t;|TM) @ B(;| T®). (3.24)

N (1) V(Y 5
v—1 >S ii

where the sum is organised in the same way as in (3.24).

L CGEITP) @ C T, (3.25)

4 Main results

In this section we present the main results of the paper. For generic Bethe vectors, we provide
recursion formulas (section 4.1), sum formulas for their scalar products (section 4.2), and
recursions for the highest coefficients (section 4.3). For on-shell Bethe vectors, we exhibit a
Gaudin determinant form for their norm (section 4.4).

We would like to stress that all the results are given in terms of rational functions f (u,v)
(2.2), g(l’r)(u,v) (2.7), and ratios of the eigenvalues a;(u) (3.2). Therefore, they can easily
be compared with the results obtained in [58, 59] for the models with the Yangian R-matrix.
This comparison shows that in both cases the results have completely the same structure.
The only slight difference consists in the fact that in the case of the Yangian the functions
¢W(u,v) and g (u,v) degenerate into one function g(u,v). As we have already mentioned
in Introduction, this similarity of the results is not accidental. It is explained by the similarity
of the corresponding R-matrices. Due to this reason the proofs of most of the results listed
above for the Uq(E;\[m) based models are identical to the corresponding proofs in the Yangian
case. To show this we give a detailed proof of the sum formula (4.11). However, for the proofs
of other statements we refer the reader to the works [58, 59].

The essential difference between models that are described by Y (gl,,,) and U, (gl,,) algebras
is the action of morphisms ¢ (3.9) and ¥ (3.14). In particular, in the case of the Yangian, the
antimorphism (3.14) turns into an endomorphism, while in the Uq@\lm) case this mapping
connects two different algebras. Therefore, all the proofs based on the application of the
mappings ¢ and ¥, are given in details.

4.1 Recursion for Bethe vectors

Here we give recursions for (dual) Bethe vectors. The corresponding proofs are given in sec-
tion 5.

10
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Proposition 4.1. Bethe vectors of U, (ﬁ\[m) based models satisfy a recursion

v (N Ty(2) 1Y (=kVi-1. (=N
j=2 part(£2,...,t771)

j-1 7 l —1 F
o, (EN gV, Of (), T
T '
l_[v=1 f(l"""'l, tIv)
Here for j > 2 the sets of Bethe parameters t2,...,t/=! are divided into disjoint subsets t’and t)

(v=2,...,j—1) such that the subset t! consists of one element only: #t” = 1. The sum is taken
over all partitions of this type. We set fll =z and tN*! = §. Recall also that N = m—1.

(4.1)

We used the following notation in proposition 4.1
B({z, '} {#}) =B({z, £} 2%...; ),
_ 11j=1 (=N 1 - PP _
]B%({tl}; {tf}z ; {tk}j )=B(t}; tf; st L, ).
Similar notation will be used throughout the paper.
Remark. We stress that each of the subsets EIZ, e, ffv in (4.1) must consist of exactly one
element. However, this condition cannot be achieved if the original Bethe vector B(t) contains
an empty set £ = () for some k € [2,...,N]. In this case, the sum over j in (4.1) ends at j = k.

If B(t) contains several empty sets ki, ..., t*, then the sum finishes at j=min(kq,..., k).
Using the mapping (3.9) one can obtain a second recursion for the Bethe vectors:

(4.2)

Proposition 4.2. Bethe vectors of U, (ﬁ\[m) based models satisfy a recursion

Y N— _ iN+1(2) =1 (ryN—1 -
BT {5 1= Zl—;Nf(z) > BAER )
J= part(t/,...,tN-1)
l_[v—] g(r)(tv+1 V)f(t ]:))
X .
[T fE Y

Here for j < N the sets of Bethe parameters t/, ..., are divided into disjoint subsets t” and
t; (v=7j,...,N—1) such that the subset t” consists of one element: #t" = 1. The sum is taken
over all partitions of this type. We set by definition ffv =zand t° = (.

4.3)

EN_l

Remark. If the Bethe vector B(t) contains several empty sets th ...tk then the sum over
j in (4.3) begins with j = max(ky,...,k;)+ 1.
Acting with the antimorphism (3.14) onto equations (4.1) and (4.3) we arrive at

Corollary 4.3. Dual Bethe vectors of U, (E;\[m) based models satisfy recursions

1. (KN & 11 (k-1 Ny D)
c({z,35'}; {5 }2)=Z Z c({s}; {5 }2 ;{3 }j ) )

Jj=2 part(s2,...,5/1)

N (30 FA I GRS VI o
v=1f(5”+1,51 )

, (44

and

_kIN—-1 _ y 11 (e aN—-1 _ TN+1,'(Z)
el ash=2, 20 ch RN TG

j=1 part(s/,...,sN"1)

N— 1 Dczv
Xﬂ gOEHLENfGY,5)

(4.5)
[T, £Gr5)

11
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Here the summation over the partitions occurs as in the formulas (4.1) and (4.3). The subsets §IV
consist of one element: #5" = 1. If C(5) contains empty sets of Bethe parameters, then the sum
cuts similarly to the case of the Bethe vectors B(t). By definition 3_11 =zin (4.4), s'fv =zin (4.5),
and 5 =5Vt =g

Applying successively the recursion (4.1), we eventually express a Bethe vector with
#t! = r; as a linear combination of Bethe vectors with #t = 0. The latter effectively corre-
spond to the quantum algebra Vef,?l_l:

BOW(0; {£4)3) =B D) (4.6)
t

k1’
where we put a superscript to distinguish the Bethe vectors in .¢7,, from those of ,szn‘i_l. Thus,
continuing this process we formally can reduce Bethe vectors of .7, to the known ones of ﬂzq.
Similarly, one can build dual Bethe vectors via (4.4), (4.5). Unfortunately, these procedures
are too cumbersome for explicit calculations. However, they can be used to prove various
assertions by induction.

4.2 Sum formula for the scalar product

In this section we collect some results concerning scalar products of generic Bethe vectors. The
proofs of propositions 4.4 and 4.5 literally coincide with the ones given in [58] for the Yangian
case. Nevertheless, to illustrate this similarity we present one of these proofs (proposition 4.5)
in section 6.
Let B(t) be a generic Bethe vector and C(5) be a generic dual Bethe vector. Then their
scalar product is defined by
S(5|t) = C(5)B(t). 4.7)

Note that if #t* # #35* for some k € {1,...,N}, then the scalar product vanishes. Indeed, in
this case the numbers of creation and annihilation operators of the color k in B(t) and C(3)
respectively do not coincide. Thus, in the following we will assume that #f* = #5X = r,
k=1,...,N.

Due to the normalizations (3.8) and (3.17), the scalar product of Bethe vectors depends
on the functions A; only through the ratios a;. The following proposition specifies this depen-
dence.

Proposition 4.4. Let B(t) be a generic Bethe vector and C(S) be a generic dual Bethe vector such
that #t% = #5* =r,, k =1,...,N. Then their scalar product is given by

N
SGRESIRTANCRATNS] [ EACH RG] (4.8)
k=1

Here all the sets of the Bethe parameters t* and §* are divided into two subsets t* = {flk, f]]f} and
k

sk= {5 ,s,']’[‘ }, such that #EI" = #§Ik. The sum is taken over all possible partitions of this type. The
rational coefficients W, depend on the partition of t and 3, but not on the vacuum eigenvalues

Ak. They are completely determined by the R-matrix of the model.

Proposition 4.4 states that in the scalar product (4.7), the Bethe parameters of the type
k (t;.‘ or s;.‘) are arguments of the functions a; only. This property has been proven for the
case of Bethe vectors associated to the Yangian Y (gl(m|n)) in [58], and the proof for .o/,
follows exactly the same lines. The only difference lies in the relation (7.7) which now relates
scalar products in different quantum algebras. However, this does not affect the functional

12
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dependence stated in proposition 4.4. Simply, one has to work the proof simultaneously in

A, and in ﬁn%_l. We refer the interested reader to [58] for more details.

We would like to stress that the rational functions W,,,,; are model independent. Thus, if
two different models share the same R-matrix (2.1), then the scalar products of Bethe vectors
in these models are given by (4.8) with the same coefficients W,,.. In other words, the model
dependent part of the scalar product entirely lies in the a; functions.

The Highest Coefficient (HC) of the scalar product is defined as the rational coefficient
corresponding to the partition §, =3, t, = t, and §, = t; = ). We denote the HC by Z(5|t):

Wpart(g; @lf’ Q)) = Z(glf) (4.9)

It corresponds to the coefficient of ]_[I,:]=1 ak(s'k) in the formula (4.8).
Similarly one can define a conjugated HC Z(5|t) as the coefficient corresponding to the
partition §; =5, {; =, and §, = t, = 0.

Wpart(ﬂaglga t) =Z(§|E) (4.10)

In the following, when speaking of both HC and conjugated HC, we will loosely call them the
HCs.
The following proposition determines the general coefficient Wy, in terms of the HCs.

Proposition 4.5. For a fixed partition t* = {flk,f]]f} and ¢ = {s'lk,s'f} in (4.8) the rational
coefficient Wy, has the following presentation in terms of the HCs:

[T, FGR.80F (E5, )
[T5 FGshra ™ i)

Whare(5,, 51T, £1) = Z(5,|8) Z(S,]E,) (4.11)

Note that this proposition was already proven in the case of %q in [13] and Jz%f in [48].
A comparison with the previous results obtained for m = 3 is given in appendix B. The proof
for .o, is given in section 6.

4.3 Properties of the highest coefficient

In this section we list several useful properties of the HCs. Most of them are quite analogous
to the properties of the HC in the Yangian case (see [58, 59]). The exception is the symmetry
properties given in the following proposition.

Proposition 4.6. The HC and conjugated HC in the quantum algebras Uq(am) and Uz (al,)
are connected through the relations:

Z,(31T) = Z 1 (5]0), (4.12)
2,1 =Z(F7ETY, (4.13)

where again we put a subscript to indicate to which algebra the HC corresponds to.
The HC possesses also the symmetry

Z,(S[6)=Z,(T7's 7). (4.14)

The proof of this proposition is given in section 7.

Explicit expressions for the HC are known for m = 2,3 [49, 60], but they become very
ponderous when m is generic. Fortunately, one can use relatively simple recursions described
in the subsequent propositions.

13

169



Scil SciPost Phys. 4, 006 (2018)

Proposition 4.7. The HC Z(5|t) possesses the following recursion over the set 5':

O gD, shHf (L, EDf (E2,51)
z@H=> > —
P=2 part(s%,...571) fGrs )
part(z!,...,tP71)
y b AR G F Ol (AR AR T GO T 1 (AN A
) FGY, D (B, 01)
— —1 1IN, (- —1 1.3 N
X Z({S]I:}i) > {Sk}p |{tlll<}§_) ; {tk}p )' (4’15)

In (4.15), for every fixed p € {2,...,N + 1} the sums are taken over partitions t* = {flk, fff}
withk =1,...,p—1 and §* = {s'lk,s'ff} with k = 2,...,p — 1, such that #fIk = #s'lk =1 for
k =2,...,p— 1. The subset 5_11 is a fixed Bethe parameter from the set §*. There is no sum over
partitions of the set 5 in (4.15).

The proof of this proposition coincides with the corresponding proof in [58].

Corollary 4.8. The HC Z(3|t) satisfies the following recursion over the set " :

N gDEN,sf @Y, EN, 3
6=, . -
fQ&, 1)
p=1 part(s®,...sV) L
part(#?,...,t8 1)
y 1 8DE 5@ ENF (5,5 () ED
V=p f(§v+1:‘§lv)f(flv+1’ Ev)
2 1P=1 (kAN (=k1P—1 (=kIN
xZ({sk}}; ,{s{f}pl{tk}i ;{tllf}p ). (4.16)
In (4.16), for every fixed p € {1,...,N} the sums are taken over partitions t* = {flk, f]’f}
with k = p,...,N and 5 = {s'lk,§]’[‘} with k = p,...,N — 1, such that #flk = #sTIk =1 for

k=p,...,N—1. The subset ffv is a fixed Bethe parameter from the set tN. There is no sum over
partitions for the set t in (4.16).

This recursion follows from (4.15) and equation (4.14).

Remark. Similarly to the recursions for the Bethe vectors the sums over p in (4.15), (4.16)
break off, if HC Z(5|t) contains empty sets of the Bethe parameters with the colors {ky,...,k;},
such that k; < -+ < k,. Namely, the sum over p in (4.15) ends at p = k;, while in (4.16) it
begins at p = k, + 1 . These restrictions follow from the corresponding restrictions in the
recursions for the Bethe vectors.

Using proposition 4.7 one can built the HC with #5' = #t! = r; in terms of the HC with
#51 = #t! = r; — 1. Tterating the process, Z(5|f) with #5' = #t' = r; can be expressed in
terms of Z(3|t) with #35! = #&' = 0. Moreover it is obvious, due to (4.6), that

Zm@, 55110, {F53)) = DR IER ), (4.17)

where the superscript indicates for which algebra, .¢f,, or ﬂfl_l,
equation (4.15) allows one to perform recursion over m as well.

Similarly, corollary 4.8 allows one to find the HC with #5V = #t¥ = ry in terms of the
HC with #5V = #t" = ry —1 and to perform another recursion over m. In both cases, the
initial condition corresponds to the ﬂ; case, where the HC is nothing but the Izergin—Korepin
determinant [13, 60].

To conclude this section we describe the properties of HC in the poles.

the HC is computed. Thus,
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Proposition 4.9. The HC has poles at sj.i =t" pu=1,...,N, j=1,...,r, The residues in these

poles are proportional to Z (s \ {sf}lf \ {t;‘}):

FEL PG ZG\ (HE\ (1)

£ (01, f (57, 501)

Z(3]t) = g(l)(tj-‘,sj-i) +reg, (4.18)
7Y

where reg means regular terms.

This property is in complete analogy with the Yangian case [59] and can be proved via
induction and recursions (4.15), (4.16). In its turn, the residues of the HC play a crucial role
in the proof of the Gaudin formula for the norm of on-shell Bethe vectors.

4.4 Norm of on-shell Bethe vectors and Gaudin matrix

The Gaudin matrix G for U, (ﬁ\[m) based models is an N x N block-matrix. The sizes of the blocks

G are ry X r,, where r, = #t". To describe the entries GJ(.Z’V) we introduce a function

JFE Y F(e, T

u

(bgu) - au(tj )f(t‘.L, Ej‘)f(fﬂﬂ,t;*)' (4.19)
It is easy to see that Bethe equations (3.19) can be written in terms of @g“ ) as
V=1, j=1,..,r, v=1...,N. (4.20)
The entries of the Gaudin matrix are defined as
)
G =—(q—q e olost; k;gtcfj : (4.21)
k

Explicitly, the diagonal blocks G read
Tu Tu—1 Tu+1
GJ(.Z’“) = éjk[X;.‘ —Z%(tﬁ.ﬂ th) + Zj(tﬁ.‘, tg‘l) + Zf(t,’f“, t“)] + J{(tﬁ.‘, ty), (4.22)
p=1 q=1 r=1
while the off-diagonal blocks are given by

(u,u—1) _ u o u—1 (u,u+1) _ u+l
ij __j(tjwtk ): ij __j(tk >t'):

(4.23)
G =0 if |u—v>1.
In (4.22) and (4.23), we have introduced the functions
d
w_ —1
XJ - _(q —q )Z E IOg a,u(z) Zztj-‘, (424)
(q+q g—q"Vxy (q—q ")’xy
H(x,y)= , and f#(x,y)= . (4.25)
(gx—qly)q'x—qy) d (gx—q'y)(x—y)
Theorem 4.10. The square of the norm of the on-shell Bethe vector reads
N "k

c@B®) =] J(FELE T ] £ e5) deta, (4.26)

k=1 p,q=1

P#q

where the matrix G is given by (4.21), or explicitly in (4.22) and (4.23).
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The proof of the similar theorem for the models described by the Y (gl,,,) and Y (gl(m|n))
R-matrices can be found in [59]. Despite the fact that in the case of U, (gl,,) algebra the proof
is completely identical, we will briefly outline the main steps.

The main idea is to prove that the norm of on-shell Bethe vector satisfies several properties
called Korepin criteria. Namely, let F')(X; ) be a function depending on r variables X ;“L and

r variables t? . It is assumed that this function satisfies Korepin criteria, if it possesses the
following properties.

(i) The function F*(X:1)is symmetric over the replacement of the pairs (X J“ M) - (X ,‘j s tf .
(ii) Itis a linear function of each X J“ .
(i) FOXL; ) =X] forr=1.

(iv) The coefficient of X ;L is given by a function F®~!) with modified parameters X Y

IFW(X; f)

it M PR AT (4.27)
J

where the original variables X, should be replaced by X ;{n(’d;v:

XU = B — (e, el

k j’>k”
mod;u+1 +1 +1
b SR ED (ARE (i } 428)
mod;u—1 -1 -1 :
X oM =Xy +f(t§*, e )
X?Od”:X,f, [v—pu| > 1.

Here ¢ (x,y) and #(x,y) are some two-variables functions. Their explicit forms are
not essential.

(v) FOX; 1) =0, if all X =0.

The properties (i)-(v) fix function F(X; f) uniquely (see [13, 59]). On the other hand,
one can easily show that these properties are enjoyed by the determinant of the matrix G given
by equations (4.22), (4.23). Thus, F(X; ) = detG.

The proof that the norm of the on-shell vector satisfies Korepin criteria is realized within
the framework of the generalized model. In this model, Bethe parameters and logarithmic
derivatives X J“ (4.24) are independent variables. Then properties (i)—(iii) are fairly obvious.
Property (v) follows from the analysis of a special scalar product in which all X' = 0. Finally,
property (iv) is a consequence of the recursions of the highest coefficients with coinciding
arguments (4.18). These recursions allow us to establish a recursion for the scalar product,
which in turn implies property (iv) for the norm.

5 Proof of recursion for Bethe vectors

5.1 Proofs of proposition 4.1

One can prove proposition 4.1 via direct application of the nested algebraic Bethe ansatz. Let
us briefly recall the basic notions of this method and introduce the necessary notation.
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The nested algebraic Bethe ansatz relates Bethe vectors of .¢/, and JZfi_l invariant systems.
To distinguish objects associated to the ﬂ:fl_l algebra from those from the ./, one, we use a
special font for the former, keeping the usual style for the later. For example, we denote the
basis vectors in C™ by e;, where (ek)j =0 ik and j,k = 1,...,m, while the basis vectors in

C™ ! are denoted by ey, where (ek)j =0 jks and j,k = 2,...,m. Note that the enumeration of

the basis vectors e starts at 2, not 1. We will use the same prescription for the other objects
related to the ,er?l_l algebra and the C™! space.
We present the original monodromy matrix in the block form

_(Alw) B(u)

where D(u) is a (m — 1) x (m — 1) matrix with elements D; ;(u), i,j =2,...,m.
Obviously, the elements D; ;(u) enjoy the commutation relations (2.4). Hence, the matrix
D(u) satisfies the RT T -relation

r(u,v)-(D(w)®1)-(1®D(v))=(1®D(v)) - (D(w)®1)- r(u,v), (5.2)

where r(u,v) is the R-matrix corresponding to the vector representation of the algebra
Uq(g[m—l)

r(u,v) = f(u,v) Z Eii®Eii + Z (E11®E]]+E]]®Eu)

2<i<m 2<i<j<m (5.3)
+ Z g(u,v)(uEl]®E11+VE11®EU)
2<i<j<m

In (5.3), E;j, i,j =2,...,m, are elementary units acting in C™ ! in accordance with the style
convention described above.
Now we are in position to describe the main procedure of the nested algebraic Bethe ansatz.
Let B(|T) =B(i',..., 7™ '|T) be a Bethe vector of the U, (al,,) based monodromy matrix T (u)
such that #t” =r,,. Let us introduce a Hilbert space
%('"1) — Cm—l R ® Cm_lj (54)

-~
ot

and an inhomogeneous monodromy matrix
1 1 1
T[rl](u,t ) = ro,rl(u, trl)...rojl(u, tl). (5.5)

Remark that Tp, j(u, t!) corresponds to a Uq(ﬁ\[m_l) model. Indeed, in (5.5), ro(u, t;) are
the R-matrices (5.3) and they act in C™! ® (1), The first subscript refers to an auxiliary
space C™!, while the second subscript refers to the k-th copy of C™! in the definition (5.4)
of ). It is clear that T[rl](u, t1) satisfies the RT T-relation (5.2).

Consider a monodromy matrix

Trrq(w, B1) = D) Tj, y(u, E1). (5.6)

The entries of this matrix act in the space # ® ) where 4 is the space where the ele-
ments of the original monodromy matrix (5.1) act. It is clear that T[rl](u, t!) satisfies the RT T
relation, because both D(u) and T, 3(u, t!) satisfy this relation and their matrix elements act
in the different quantum spaces (respectively in 5 and s (")). The space of states of f[rl]
has a pseudovacuum vector |0) ® 2, , where

—1\®
Q, =e;®-®e e (Cm) (5.7)
b}
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The subscript r; on €2, shows the number of copies of C™ ! in the space ().

Let B(t| T[r )= B(2,..., i T[r .1) be Bethe vectors of the monodromy matrix (5.6), and
~(r1—

let a; 1)(u) be the ratios of the vacuum eigenvalues of 'T'[rl_l](u). Then the Bethe vector
B(%|T) has the following presentation [29, 65]

) o Ty () T, (67)
B(t|T) = Z_ Az(tl)f(tz,_l) [ Loekry

where [B(Eﬁ[ﬁ])]kl,...,krl
Representation (5.8) allows us to obtain a recursion for the Bethe vector. This can be done
in the framework of a composite model. Indeed, we have

(5.8)

are components of the vector B(£|Tj, 1) in the space #("1).

Tt @) = Tpr oy @ ro 1 (w, £7), (5.9)

where
Trp,—11(w) = D) Ty —17(w) = D(W) ro -, (u, t}l) T, té). (5.10)

We can associate the monodromy matrices T[rl_l](u) and rgy1(u, t%) respectively with T@(w)
and TMW(u) in (3.20). Then the partial Bethe vectors respectively are B(]| T[rl_l]) and B(t|rg ).
Using the coproduct formula (3.24) we obtain

mo Ty (). T1,k,1(t:1)

BET)= >

kpseenky =2 A (ED)f (22, E1)

[T @ EF @) o -
x Z v+1 7y [B(tan[rl_l])]kz
part(f2,...,fn-1) [1050 F (L E)

The sum is taken over partitions of the sets {£2,...,™ '} as it is described in (3.24). The
functions &Vrl_l)(u) are the ratios of the vacuum eigenvalues of T, _q;(u)

ke, [B(kao,ﬂ]kl . (5.11)

.....

F(r—1)
~ Ayt
@ = 2 —1)( ) (5.12)
A (W
where N N
(Tr-uw),, 10 © 9, =27 Pwio) e 2y, o, (5.13)

and . _; is defined similarly to (5.7). It is convenient to divide the set t! into two subsets
tl= t1 u t1 where t1 consists of one element t1 and tl ={tl,..., t}l} is the complementary
subset Then it is easy to see from the deﬁmtlon (5.6) that

25 7 (w) = 25()f (w, 1),

- (5.14)
A D) = A,(w), y>2,
and hence,
@ V(W) = ay()f (w, ), 5.15)
anD(w) = a, (), v>2.
Due to (5.8) we see that
mo Ty, (ty). . Tk, (fil) o )
> []Bs(t,,|T[rl_1])]k2mkq =B(E,|T). (5.16)

1 2 5l
Kyoolir, =2 Ao(E)f (€, 1))
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Substituting this into (5.11) we find

; &) TS e @F L) [BE)],

BEHT) = > >, ey BRI =k (5.17)
pan(@ -1y k= 22 o r@tey S

The components of the vector B(t,|r, ;) are computed in appendix A (see (A.4)). It follows

from these formulas that the k-th component of this vector corresponds to the partitions for

which the subsets Elk, e El’“_l are empty, while the subsets t” with 2 < v < k consist of one

element. This gives us

i ~ m Tl,k(tll) kel fayymed l_[i;; av(EIV)g(l)(flv’ flv—l)f(fnv’ Elv
BET) = > > e B({t'}, {T} D) 1= 7o)

part(£2,...,tm—1) k=2

(5.18)

Recall that here by definition the subsets ! and ! are fixed: f! = t{ and ] =t} = '\ ¢].
Then, replacing f* — {z, f'} and setting fll =z we arrive at (4.1).

5.2 Proofs of proposition 4.2

Let us derive now the recursion (4.3) starting with (4.1) and using the morphism (3.9). The

proof mimics the one done in [58], and we just point out the differences. Since the mapping
—1

(3.9) relates two different quantum algebras .«/,% and .¢/f , we use here an additional sub-

script for the different rational functions, to denote the value of the deformation parameter.
For instance

1 _ 1
fq(u,v) = M, and gq(u,v) =174 s (5.19)
u—v u—v
while . .
fq_l(u, V)= w, and gq_1(u, V)= —4 . (5.20)
u—v u—v
It is easy to see that
g;i)l (u,v) = gél)(v, u) and fp(u,v) = f(v,u). (5.21)
We act with ¢ onto (4.1) using (3.9)—(3.11). It implies in particular
. j-1 B ({Tk)) {2 ;D)
_ V=1 (=N . q N Ui dj-1
o | B,({E* 1 {E 5 {EI O] |en@) | = — - (5.22)
( ! e g l:! I ngﬂ A1k (EF)

Remark that the functions a, play a non-trivial role in the game. Then, the action of the
morphism ¢ onto (4.1) gives

N+1

Torro s .
B ()2 (s 0= > 2 S gy
j=2 An4+1(2) part(2,...,5-1)
| IR T (A
X .

1 ~ =
l_[]v=l q(t v+1, tlv)

(5.23)

Using the relations (5.21), relabeling the sets of the Bethe parameters tX — t¥*17% changing

indices j — N +2—j, v — N +1— v and replacing ¢~! — g (which means going from Vef,?l_l
to .o/y) we get (4.3). O
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5.3 Proofs of corollary 4.3

The proof for corollary 4.3 follows the same steps as in section 5.2, but using the antimorphism
¥ instead of the morphism . Thus, we just sketch the proof.

—1
One starts with relation (4.1) and applies ¥, to get in .o/,

(LRSS (BB )Y

J=2 part(#2,...,t/1) A (—)

rlf RO GRS TGS

5.24
l_[ tv+1 tv) ( )
Now, renaming the parameters t; — %, z— % and using the relations
(1 1y= 0 -
8(37) =ghtey) and fq( )—fq—l(x,y) (5.25)
we obtain
1y RNy K 21, (7KL g1k Tj1(2)
Cras B h{t)=2, 2 cnd@h{EL T
j=2 part(#2,...,ti-1) 2()
| N G PRI (R A VAR A 9]
X . (5.26)

l_[v—l fq—l(t y+1 tv)

It remains to change ¢! — q to get relation (4.4). Similar considerations lead to (4.5). O

6 Proof of proposition 4.5

In this section we provide an explicit representation of the rational coefficients Wy, (4.8) in
terms of the HC. For this we consider the original monodromy matrix T(u) as a monodromy
matrix of a composite model (3.20). Then we should use the representation (3.24) for the
Bethe vector B(t) and the representation (3.25) for the dual vector C(5). As a consequence,
the scalar product S(5|t) = C(5)B(¢) takes the form

N (1) v (2) 7Y v gV
SGID) = Z =1 05 BN () f (57, 50)f (£, ¢

f( v+1 V)f(tv+l kY S(l)( |t)S(2)(511|t11) (6.1)
V—l S5 b 1

where
SO = CEITOBEHITD),  SBE1E;) = CGEI TP)B(E; | T@). (6.2)

Note that in this formula #s'i” = #fiv, (and hence, #§i’i’ = #EV) otherwise the scalar products
SM and S@ vanish. Let #5) = #t” =k, where k), =0,1,...,r,. Then #5} = #t) =r,— k.

Now let us turn to equation (4.8). Our goal is to express the rational coefﬁc1ents Whare in
terms of the HC. For this we use the fact that W),,; are model independent. Therefore, we can
find them in some special model whose monodromy matrix satisfies the RT T -relation.

Let us fix some partitions of the Bethe parameters in (4.8): 5" ={5),5'}and t” = {t”, ¢}
such that #35" = #t" = k,, for some k, =0, 1,. ,- Hence, #§ = #t’ =r,—k,. Consider a
concrete model in Wthh

alVz)=0, if z€3, 63
a@@@)=0, if zet’ ©3
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Due to (3.23) these conditions imply

a,(z)=0, if zes’ut’. (6.4)

Then the scalar product is proportional to the coefficient W,,,(5,,5,]t,, t,), because all other
terms in the sum over partitions (4.8) vanish due to the condition (6.4). Thus,

N
S(§|f) = Wpart(s-bgnlfl’ fn) l_[ ak(glk)ak(ff)' (6.5)
k=1

On the other hand, (6.3) implies that a non-zero contribution in (6.1) occurs if and only if
§¥ C5’and t) C t). Hence, r,—k/, < k, and ki, < r,,—k,. But this is possible if and only
if k), + k, = r,. Thus, 5} = 35" and £ = . Then, for the complementary subsets we obtain
§/ =57 and t = t". Thus, we arrive at

N - - —y - —y =
[T, eGP ENF G Nf )

SG|E) = — 12 s 5 )SPEE). (6.6)
[ FGr L anfE L, e R

It is easy to see that calculating the scalar product SM(5,|z,) we should take only the term
corresponding to the conjugated HC. Indeed, all other terms are proportional to a(vl)(z) with
z € §HV , therefore, they vanish. Hence

N
sOGIE) =] [« - ZG . 6.7)

r=1

Similarly, calculating the scalar product S®)(5,|f,) we should take only the term corresponding
to the HC:
N
sAGIE) =] [«P6) - zGlE). (6.8)
r=1
Substituting this into (6.6) and using (3.23), (6.5) we arrive at (4.11).

The reader can easily convince himself that the above proof coincides with the one given
in [58] for the Y (gl(m|n)) based models.

As already mentioned, the proofs for the results presented in section 4.2 and 4.4 are also
similar to those of the Y (gl(m|n)) based models and given in [58, 59], thus we don’t repeat
them here. In the following section we deal with the proof for section 4.3, focusing on the
parts that truly differ from the Yangian case.

7 Symmetry of the highest coefficient
To prove (4.12), we consider the sum formula (4.8)
N
SeGIE) =D W (5,5, T | JawE)an(), (7.1)
k=1

where we have stressed the ordering (3.12) of the Bethe parameters and put a label q to

distinguish scalar product for the algebra .o/, from ﬂ,‘{l. Let us act with the morphism ¢
(3.9) on this scalar product. This can be done in two ways. First, using (3.11) and (3.18) we
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obtain
Cq-1(5)Bg (D)
[ Tie: @ns1-k ) AN 111 (TF)

S41(51D)

o (S,G1D)) = ¢(Cy5)By (D)) =

=— —— —. (7.2)
[ L1 @1 (5F) Ay 14 (E5)
The scalar product Sq_l(‘sTl‘f) has the standard representation (4.8). Thus, we find
—1
— Wq t((gl’ Enl?v ?l[) N ~ ~ -
e (54610) = > = [ @G @ . (7.3)
part l_[k=1 Ay 11—k () oy 111 (EF) =1
On the other hand, acting with ¢ directly on the sum formula (7.1) we have
N

. . _ o -1

(P(Sq(g)l t)) = Z art(sl’ tl: tn)l_[(aN+1—k(slk)aN+1—k(t]I:)) . (7.4)
part k=1

Comparing (7.3) and (7.4) we arrive at

N
-1
E:q<—<—‘—‘—||~ =k~ -k
Wpart(sl’ Slll tl’ t]I) aN+1—k(SI )aN+1—k(t][)
k=1

part

N
=2 WSl T [@rrsl B 79
k=

part

Since a; are free functional parameters, the coefficients of the same products of @; must be
equal. Hence,
ngart(?l’ §>11 |?1: ?ll) quart(gn: §1 rfn: ?1): (7.6)
for arbitrary partitions of the sets § and t. In particular, setting 5, = £, = ) we obtain (4.12).
To prove (4.13), we start again with the sum formula (4.8) and use the antimorphism ¥':

B(Sy(51)) = Cqr(FTIB(E ) =S (T 5. (7.7)
The lhs of (7.7) can be computed from the relation (4.8):
N
w(s,GlE) = > Wi G.slE. 1] |a ( - )a ( ) (7.8)
k=1 I

The rhs of (7.7) is computed directly from (4.8) written for sz,?l_

N
_ o111 —— ~r1N_ 1
S (t™ s 1)—2 Part(t B 1)nak(§)ak(§—k). (7.9)
k=1 I I
Since a; are free functional parameters, the comparison of these two equalities leads to
4 (z =17 7 gl sl z—1jz—1 z—1
Woar (51> Sultis ) = Wi (80, 67 157 7,57 ). (7.10)
Setting §, = £, = 0, we get (4.13).
Combining (4.12) and (4.13), we get (4.14).

Applying the property (4.14) to (4.15), one obtains a new recursion written for the pa-
rameters £~ and §!. Using the relations

11
g0(=,2)=¢B(.x) and f(— —) F,x)
Xy
together with the replacement ! — f and §7! — 5, we get the recursion (4.16) for the
highest coefficient.
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Conclusion

In this paper, we have shown how the results obtained for the scalar products and the norm
of Bethe vectors for Y (gl(m)) based models can be generalized to the case of Uq(ﬁ\[m) based
models. In this way, we have obtained recursion formulas for the Bethe vectors of these models,
as well as a sum formula for their scalar products. We have obtained different recursions for
the highest coefficients, which characterize the sum formula. When the Bethe vectors are
on-shell, we have also shown that their norm takes the form of a Gaudin determinant.

Comparing these results with the ones obtained for the case of Y (gl(m)), one can see that
for the most of them the generalization is quite straightforward. The only minor difference is
that in the Yangian case the highest coefficient of the scalar product coincides with its conju-
gated, while for the .¢f, algebra they are related by the transformations (4.12), (4.13). This
difference was already pointed out in [49] for the particular case of the U, (E;\[3) based models.

The sum formula itself is rather bulky, however, we recall that it is obtained for the most
general case of the Bethe vectors scalar product. This formula can be used as a starting point
for calculating form factors of the monodromy matrix entries. In this case we deal with scalar
products involving on-shell Bethe vectors. Then, the free functional parameters o (u) disap-
pear from the sum formula due to Bethe equations, and we obtain a possibility for additional
re-summation. This re-summation might lead to compact determinant representations for
form factors (see e.g. [50] for the ”‘273? case), like in the case of the norm of on-shell Bethe
vector.

One more possible simplification of the sum formula is related to consideration of specific
models, in which the free functional parameters a; (u) are fixed. For instance, for the spin chain
based on Uq(ﬁ\[m) fundamental representations, a;(u) is a rational function, while a;(u) =1
for k > 1. Thus, in this case most of these functional parameters also disappear from the sum
formula, which gives a chance for its simplification.

These two possibilities of further development certainly are worthy of attention. Finally,
we wish to note that it seems to us rather obvious that the results presented here can also be
readily generalized to the case of models based on U, (gi(m|n)). We plan to come back on this
generalization in a further publication.
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A The simplest Uq(ﬁ\[m) Bethe vectors

In this section we construct Bethe vectors for a very specific case of the .¢/,, monodromy matrix
T(u) = R(u, &), where R(u, &) is given by (2.1) and & is a complex number. In other words,
we consider spin chain with only one site which carries a fundamental representation of .<7,..
The Bethe vector construction procedure is still based on the embedding (5.1) of ,fol_l into
./, In this appendix, to distinguish Bethe vectors corresponding to the R-matrices (2.1) and
(5.3) we respectively equip them with superscripts (m) or (m—1).

This case has many peculiarities which allow a simple and explicit calculation of Bethe
vectors. First of all, the space of states is ## = C™ with the pseudovacuum |0) = e;. As usual,
the Bethe vectors depend on N = m — 1 sets of variables t”. However, due to the nilpotency

23

179



Scil SciPost Phys. 4, 006 (2018)

of the creation operators® each set consists at most of one element. Furthermore, D; ;|0) = |0)
foralli=2,...,m. Therefore, in the framework of the algebraic Bethe ansatz, the matrix D is
equivalent to the identity matrix. Hence, we can omit this matrix in the definition (5.6).

Proposition A.1. The monodromy matrix T (u) = R(u, &) has m — 1 Bethe vectors of the form

k—1

D)+v £v—1
B(m)({rV}’;—l,{@}k—l)=(]‘[M)gm(tl,aek, k=2...m  (AD

i f(tv, tv—l)

One additional Bethe vector coincides with the pseudovacuum e;.

Proof. One can easily prove (A.1) via induction over m. Indeed, for m = 2 we have only
two Bethe vectors: the pseudovacuum e; = ((1,) €C? and

B (t1) = Typ(t1) ey = gV(t1, €) Eyy ey = g0(¢1, &) ey = gO(t, 5)((1))- (A.2)

Assume that (A.1) holds for m —1. One of the U, (E;\[m) Bethe vectors still coincides with

the pseudovacuum vector BU™(() = e;. The other Bethe vectors can be constructed via (5.8),
where one should set A,(u) = 1:

m BM(¢2, ..., tm 1)
BM(eL,. ) = Tl’k(tl)el[ ]".

(A.3)
= f(e2,ch)

Here [B(m_l)(tz, e, tm_l)]k is the k-th component of the Bethe vector B("1() of the mon-
odromy matrix r(u, t') (5.3). Due to the induction assumption we have

' k=l (O)(pv (-1
[B(m—”m%‘%{ﬂ}?—”]k=5fk(r_!%)gww>. (a4

Thus, taking into account that for k > 1, Ty j(u) = gO(u, £)E;; and

Tl,k(tl)el = g(l)(tl> g)eka (AS)

we immediately arrive at (A.1).

B Comparison with known results of U, (gl;) based models

Propositions 4.4 and 4.5 were already obtained for m = 3 in [46, 49], but using different
normalization of Bethe vectors, and a different notation and normalization for the HC. We
present here the connection between the two conventions. To clarify the presentation we will
put a subscript old for the quantities dealt in [46, 49], and a subscript new for the ones used
in the present article.

Normalisation of (dual) Bethe vectors. By comparison of their main terms, we get the
following correspondence for Bethe vectors:

29(8%)
A3(£2)

A5(5%)
A5(52)

Bew(F) = Byg(F1,72) and C,p,,(5) = Co1a(5,52), (B.1)
where § = {5!,5%} and f = {t!, £2}. Note that in [46, 49], the sets §',52 and t', £ were noted
i, v¢ and @®, ¥® respectively.

SObviously, T; ;(u) = gP(u, §)E;; for i < j.
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Sum formula. Once the normalisation is fixed, one can compare the scalar product of Bethe
vectors and the expressions given in proposition 4.4. In [49], the scalar product is expressed
in term of functionals r1(z) = a;(2) and r5(z) = a,(2)~!. Using the normalisation (B.1), we
get a sum formula identical to (4.8) with

— =

stogl &t i 5 A pr2 - o
Wold( §2 EIZ | —5 EHZ ) =f(52:51)f(t2: tl)Wnew (svsnltl: tn)- (B.Z)
1 I

I

Note that in order to make the comparison, one has to exchange the subsets 5_11 > §Hl in

one of the sum formulas. This change is harmless since one performs a summation over all
partitions §' = {51,351 }.

Expression in term of HCs. Applying the correspondence (B.2), the relation (4.11) is iden-
tical to the one obtained in [49] with

D/=1 =11=2 = 0 -9 - 1 —9y=1 =
Z(El?i(s:l’tllszx tz) :f(szxsl)f(tzytl) ZneW(s:l’szltl’tz)’ (B 3)

ZO) 1152, 12) = (52,50 F (B2, 1) Z e 51, 82120, E2).

C Coproduct formula for the dual Bethe vectors

The presentation (3.24) for the Bethe vector of the composite model can be treated as a co-
product formula for the Bethe vector. Indeed, equation (3.20) formally determines a coproduct
A of the monodromy matrix entries

A(T; (W) = Z Ty (W) ® T; k (u). (c.1)
k=1

Then (3.24) is nothing but the action of A onto the Bethe vector.
The action of the coproduct onto the dual Bethe vectors can be obtained via antimorphism
(3.16) thanks to the relation
Ag1o¥=(VeW)oA, (C.2)

where

AT (W) = D Ty (W) @ Ty (1), (C.3)
Then applying (C.2) to By(t), we get

A1 (F(Bo (D)) = A1 (T (F1) = (¥ © ) 0 AL (B,(D))

N MD)rzv Ty v
_ (\I’®\I’) (Z l_[v=l av (tl )fq t][’tI ) Bq(fl)®Bq(fl))

| N A G AR (€4
N  ~1)r.1 Ty F
[T- a(vl)(f_{)fq(tnv’ £ I _—
=y — T e ().
l_[v:]_ fq(t]I]}+1J th
Relabeling the subsets " < % and using (5.25), we arrive at
I
] [T @V ELED ]
A1 (C(B) =Y ﬂ ﬁv_;f “(fjﬂ t L Cyr(f,) ® Cya (£). (C.5)
y=1Jg 1t
It remains to make the change g~' — q to obtain (3.25). a
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Introduction:

In this Chapter we proposed a new representation of Bethe vectors in
terms of inverse monodromy matrix entries. It was proven that such rep-
resentation is related to the usual one, but with the converted parameters.
This relation gives important formula describing symmetry of the highest
coefficient in the scalar product.

Contribution:

I proved the central result of this Chapter Theorem 4.1. The statement
of the theorem is related to the symmetry of Dynkin diagram for gly. The
combinatorial formula (5.12) for the highest coefficient was obtained by me.
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Abstract. We consider quantum integrable models solvable by the nested
algebraic Bethe ansatz and possessing gl( N )-invariant R-matrix. We study two
types of Bethe vectors. The first type corresponds to the original monodromy
matrix. The second type is associated to a monodromy matrix closely related
to the inverse of the monodromy matrix. We show that these two types of
Bethe vectors are identical up to normalization and reshuffling of the Bethe
parameters. To prove this correspondence we use the current approach. This
identity gives new combinatorial relations for the scalar products of the Bethe
vectors. The ¢-deformed case, as well as the superalgebra case, are also evoked
in the conclusion.
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1. Introduction

The algebraic Bethe ansatz developed by the Leningrad school [1-3] is a powerful
method to investigate quantum integrable systems. One can use this approach to find
the spectra of quantum Hamiltonians. Besides, this method can be used for calculat-
ing correlation functions of quantum integrable models [4-7]. In the framework of the
algebraic Bethe ansatz this problem reduces to calculating scalar products of Bethe
vectors.

The notion of the Bethe vector is one of the most important notions of the algebraic
Bethe ansatz. These vectors belong to the physical space of states of the quantum
model under consideration. They depend on a set of complex numbers called Bethe
parameters. Under certain constraints imposed on the Bethe parameters, the Bethe
vector becomes an eigenvector of the quantum Hamiltonian. In this case it is commonly
called an on-shell Bethe vector. Otherwise, if the Bethe parameters are generic complex
numbers, the corresponding vector sometimes is called an off-shell Bethe vector.

In the gl(2) based model, the form of the Bethe vectors is quite simple [1-4].
However, in the quantum integrable models with higher rank symmetry algebra, the
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construction of Bethe vectors becomes very intricate. There are several ways to specify
these vectors. A recursive procedure for constructing the off-shell Bethe vectors was
given in the papers [8-10]. An explicit formula for these vectors (trace formula) con-
taining tensor products of the monodromy matrices and R-matrices was proposed in
[11-13]. Another approach to this problem, based on projections in the current alge-
bra was formulated in [14-17]. Explicit formulas for the Bethe vectors in terms of the
monodromy matrix entries acting on a reference state were obtained in [18, 19].

In this paper we find a new symmetry of the Bethe vectors in the models with
gl(N)-invariant R-matrix. It is quite natural to expect that the symmetries of the
monodromy matrix should generate corresponding symmetries of the Bethe vectors [10,
11, 18, 19]. In the present paper we consider a mapping of the monodromy matrix 7' to
a new matrix T closely related to the inverse monodromy matrix. We study the proper-
ties of the Bethe vectors associated to both matrices. We show how these two types of
Bethe vectors are related to each other. As a direct application of this correspondence,
we find new symmetries of the Bethe vector scalar products.

The paper is organized as follows. We recall basic notions of the algebraic Bethe
ansatz in section 2. There we also give a notation used in the paper. Section 3 is devoted
to the description of the properties of the Bethe vectors. The main results of our paper
are given in section 4, where we use an identification of the Bethe vectors with certain
combination of the generators of the Yangian double [19] to prove the claimed sym-
metry of the Bethe vectors. In section 5 we study symmetry properties of the scalar
products of the Bethe vectors. Several appendices gather technical details of the proofs.

2. RTT-algebra and notation

We consider quantum integrable models solvable by the algebraic Bethe ansatz and
possessing gl(/N)-invariant R-matrix

R(u,v) =11+ g(u,v)P, g(u,v) = ¢

u—u (2.1)
Here I = Zf\il &i; is the identity operator acting in the space CV, &; are N x N matri-
ces with the only nonzero entry equal to 1 at the intersection of the ith row and jth

column, P = ij:l&-j ®E ;i is the permutation operator acting in C¥ @ C¥, ¢ is a
constant, and u, v are arbitrary complex parameters called spectral parameters.

The key object of the algebraic Bethe ansatz is a monodromy matrix T'(u) with
operator-valued entries Tj; (u) acting in a Hilbert space H (physical space of a quantum

model). It satisfies an RTT-algebra:

R(u,v) (T(u) @1) I@ T(v)) = IR T(v)) (T'(u) ©I) R(u,v). (2.2)
Equation (2.2) yields the commutation relations of the monodromy matrix entries
T3 (w), Tra(v)] = g(u, v) (Tir(u)Tij (v) — Tu(v) T (w)) - (2.3)

Using (2.2) it is easy to prove that
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[T (w), T(v)] =0,

where T (u) = Y, T;;(u) is the transfer matrix. Thus, the transfer matrix is a generating
function for the integrals of motion of the model under consideration.

We assume the following dependence of the monodromy matrix elements 7}; (u) on
the parameter u

w) =01+ > Tylllu", (2.4)

>0

where 1 and T;;[¢] are respectively the unity and nontrivial operators acting in the
Hilbert space H.

Remark. In fact, for our purpose, the condition (2.4) is optional. We impose this
requirement on the asymptotics of T'(u) only in order to facilitate the presentation.
In quantum models of physical interest, the monodromy matrix may have a different
asymptotic expansion, however, it can easily be reduced to the expansion (2.4).

We also assume that the space H has a pseudovacuum vector |0) (reference state)
such that

Tii(u)0) = Ai(u)]0),
Tij(w)|0) =0, i>j, (2.5)

where \;(u) are some functions depending on the concrete quantum integrable model.
The action of Tj(u) with ¢ < j onto the pseudovacuum is nontrivial. In the models of
physical interest, multiple action of these operators onto |0) generates a basis in the
space H.

Since the monodromy matrix is defined up to a common normalization scalar factor,
it is convenient to deal with the ratios:

Ai(u)
Aip1(u)’
We treat the functions «;(u) as free functional parameters (generalized model) up to the
restriction which follows from (2.4).

Besides the original monodromy matrix 7'(u) we also can consider its inverse
matrix. For this, we first introduce the quantum determinant of the monodromy matrix

qdet (7 (u)) [20-23] by
qdet (T ngn ) T p1y (1) Topeay (=€) .. Tiy pvy(w — (N = 1)e).

a;(u) =

i=1,...,N—1. (2.6)

Here the sum is taken over all permutations p of the set {1,2,... N}, p(i) being the ith
element of the permutation p of the set {1,2,... N}. The quantum determinant belongs
to the center of the RTT-algebra

[ qdet(T'(w)), T;;(v) ] = 0.
It is also easy to see that due to (2.5)
qdet (T (u))]0) = Ay (u)Aa(u —¢) ... An(u— (N = 1)¢)|0).

https://doi.org/10.1088/1742-5468 /ab02£0 4
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Similarly to the quantum determinant, we can introduce quantum minors of the
sizemxm(A<m<N)

i () = Z s80(D) Tay ) () Tagbyio (=€) o Top o (10— (m = 1)c). (2.7)
p

Here the sum is taken over permutations of the set {1,2,... m}, p(i) being the ith ele-
ment of the permutation p of the set {1,2,... m}.

Now we can introduce the inverse monodromy matrix 7'(u)
T(u)T(u) =1, (2.8)

where the entries Tw(u) are given by quantum minors divided by the quantum
determinant

Tyj(u) = (1)t N (u — ¢) qdet(T (u)) ™. (2.9)

Here 7 and ) mean that the corresponding indices are omitted.
It is known [23] that the inverse monodromy matrix satisfies the RTT-relation with
opposite sign of the constant ¢, that is

(T35 (w), Tu(v)] = g(v,u) <Til(u)Tkj(U) — Tu(v)Ty; (U)> .
Then, defining ﬁj(u) by

Ti(u) = Ts1-jn41-i(u), (2.10)
we find that the elements ﬁj (u) satisfy commutation relations

(Do ), T(v)] = gu,0) (Ta()Tiyi(v) = Ta0)Tig(w))

Since these commutation relations coincide with (2.3), we conclude that T\(u) satisfies

the RTT-algebra (2.2) with the same R-matrix (2.1).
Thus, a mapping

T(u) — Tjj(u) (2.11)

is an automorphism of the RTT-algebra. The aim of this paper is to investigate the
symmetries of the off-shell Bethe vectors (see section 3) related to this automorphism.

Note that this symmetry is specific to higher rank algebras (and the existence of
several simple roots). Indeed, in the gl(2) case, one gets T'(u) = T (u), and the symmetry
becomes trivial, while it becomes informative as soon as the rank is higher than 1 (see
e.g. section 5).

2.1. Notation
In this section we describe the notation that we use below. First, we introduce a special
notation for the combination 1 + g(u,v)
u—v+c
flu,v) =1+g(u,v) = ———. (2.12)

u—7v
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Second, we formulate a convention on the notation of sets of variables. We denote
them by bar: ', 7%, and so on. Here the superscripts refer to different sets. Individual
elements of the sets are denoted by subscripts: t;'-, x3, and so on. Thus, for example,
t = {#},2} means that the set ¢ is the union of two sets ! and *. At the same time,
each of these two sets consists of the elements ¢* = {t{,¢5,...,t} }, where s =1,2.

Notation # + ¢ means that a constant ¢ is added to all the elements of the set t'.
Subsets of variables are denoted by roman indices: ¢, Zj;, and so on. In particular, we
consider partitions of sets into subsets. Then the notation {¢;, t5;} I ¢ means that the
set t* is divided into two disjoint subsets # and #§;. The order of the elements in each
subset is not essential.

To make the formulas more compact we use a shorthand notation for the products
of functions depending on one or two variables. Namely, if the f-function (2.12) depends
on a set of variables (or two sets of variables), this means that one should take the
product over the corresponding set (or the double product over both sets). For example,

=[[ rw.t), f&Ez=1] ] & (2.13)

t;etz t5€t5 vexr

We use the same prescription for the products of commuting operators, their vacuum
eigenvalues ); (2.5), and the ratios of these eigenvalues «; (2.6)

= [T M), @ =], 76 =]] T @149

t§ cti t;etl ts ety

We will extend this convention for new functions that will appear later. Finally, by
definition, any product over the empty set is equal to 1. A double product is equal to
1 if at least one of the sets is empty.

3. Bethe vectors

One of the main tasks of the algebraic Bethe ansatz is to find the eigenvectors of the
transfer matrix, that usually are called on-shell Bethe vectors. To do this, one should
first construct off-shell Bethe vectors (or equivalently, Bethe vectors), that belong
to the Hilbert space H. The latter are special polynomials in Ty (u) with < j act-
ing on |0). In the simplest gl(2) case the Bethe vectors have the form T35(u)|0), where
u={uy,...,un}, n=0,1,.... However, in the general gl(N) case, the form of the Bethe
vectors is much more involved (see e.g. [19]).

In the gl(N) based models, an off-shell Bethe vector B(¢) depends on N — 1 sets of
complex numbers ¢ = {t!,#2 ... ¥~} called Bethe parameters. The Bethe vector B(t)
is symmetric over permutations of the Bethe parameters within each subset #*. However,
it is not symmetric with respect to rearrangements of subsets, and also for replacements

tj» < tF. If the Bethe parameters satisfy a special system of equations (Bethe equations),
then the Bethe vector becomes an eigenstate of the transfer matrix. However, generi-
cally no constraint on the Bethe parameters ¢; are imposed.

https://doi.org/10.1088/1742-5468 /ab02{0 6
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Given a monodromy matrix T'(u), the different procedures’ to construct off-shell
Bethe vectors provide, up to a global normalization factor, the same vectors, although
several different explicit forms may exist due to the commutation relations (2.3). Then,
it remains to fix unambiguously this normalization factor. In this paper we use the
same normalization as in [24]. Namely, we have already mentioned that a generic Bethe
vector has the form of a polynomial in T} with ¢ < j applied to the pseudovacuum |0).
Among all the terms of this polynomial, there is one monomial that contains the opera-
tors Ty with j — ¢= 1 only. We call this term the main term and denote it by B(¢). We
fix the normalization of the Bethe vectors by fixing the numeric coefficient of the main
term

@ _ Tn N )Ty v (V72 - .T23(E2)T12(F)|0>.
15 A (8) TS F(E+, )

Recall that we use here the shorthand notation (2.13) and (2.14) for the products of the
operators T;;i1, the vacuum eigenvalues A;;1, and the f-functions.

3.1)

3.1. Bethe vectors of the matrix ?(u)

We have seen in the previous section that the matrix T\(u) satisfies the R7T'T-relation
(2.2). Using the definition of Tj; (see (2.9), (2.10) and (2.7)) one can find the action of
the operators T onto the pseudovacuum. A straightforward calculation shows that

T (u)]0) =0, i> 7,
T

1 (1)]0) = Ai(w)|0), (3.2)

where
N—1

. Ae(u — Le)
Ai(u) = AN— Z+1(u —i)c H Me(u— (€ —1)e) (3-3)

(=1

It follows from (3.3) that the ratios of the vacuum eigenvalues have the following form

Qi(u) = = = an—i(u — (N —i)c). (3.4)

Finally, the operators T with ¢ < j act on |0) as creation operators.
Thus, we can Construct off-shell Bethe vectors B(ﬂ associated to the monodromy
matrix 7T'(u). These vectors are uniquely defined provided their normalization is fixed.

We do this as in (3.1). Namely, the main term IE@ of the off-shell Bethe vector E(f)
reads

T L (Y )TN on—1(tN72) - 'f23(?)f12(51)|0>
B0 - [ Ao () T1,7 £, ) | 52

9 The known procedures are the nested algebraic Bethe ansatz [8-10], the trace formula [11-13], or the projection
of currents [14-17].
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Here we have extended the shorthand notation (2.13) and (2.14) to the products of the
operators T;;.; and the vacuum eigenvalues A; ;.
The main result of this paper is a correspondence between B(#) and B(t).

4. Correspondence between two types of Bethe vectors

In order to formulate the main result of this paper we introduce a mapping of the sets
of Bethe parameters:

M(D = :u’({fl’iz, s )fN_l}) = {ZN_I -G EN_2 - 26) s )El - (N - 1)6} (41)
Thus, this mapping reorders the sets ¢ and shifts every set t* by (i — N)c.
Theorem 4.1. The off-shell Bethe vectors B and B of integrable models with gl(N)-in-

variant R-matriz are related by
R _/N=2 -1
B(t) = (-1 (H f(ts“,ts)) B(u(t)). (4.2)
s=1

Here #t is the total cardinality of all the sets t', and according to (4.1)
B(u(t) =BV "' —c,t" = 2c,...,t" = (N = 1)c). (4.3)

We prove this theorem using identification of the off-shell Bethe vectors with cer-
tain combinations of the generating series of the Yangian double generators (see [19]).
The main tool of this approach relies on the Gauss coordinates of the monodromy
matrix rather than considering its matrix elements T} (u).

4.1. Gauss decomposition of the monodromy matrix

The idea of using the Gauss decomposition of the monodromy matrix satisfying the
RTT-relation (2.2) goes back to the paper [25] where this decomposition was used to
prove the isomorphism between R-matrix and current realization of the quantum affine
algebras. Then the Gauss decomposition of the monodromy was used in the series of
papers [14-17] to find closed and explicit formulas for the off-shell Bethe vectors. The
Bethe vectors were expressed in terms of the Gauss coordinates using a projection
method developed in those papers. In this section we find the relation between the
Gauss coordinates of the original 7'(u) and the ‘transpose-inverse’ monodromy f(u) It
will imply the statement of theorem 4.1.

As it was shown in the paper [19], in order to obtain the off-shell Bethe vectors in
the form where the main term B(f) is given by (3.1), one has to use the following Gauss
decomposition of the monodromy matrix 7'(u) (for i < j):

Tj(u) = Fyi(uk;(w) + > Foi(u)ke(u)Eje(u), (4.4)
J<I<N )
https://doi.org/10.1088/1742-5468 /ab02{0 8
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1<l<N
Tji(u) = kj(w)Eyj(w) + Y Foj(u)ke(u)Eig(w). (4.6)
<IN

These formulas are the result of product of three matrices
T(u) = F(u) - D(u) - E(u). 4.7

In the above formula, F(u) is an upper-triangular matrix with unities 1 on the diagonal,
D(u) = diag(k1(u), ko(u), ..., kn(u)) is a diagonal matrix, and E(u) is a lower-triangu-
lar matrix again with unities on the diagonal (see appendix B for an example of these
matrices in the case N = 3).

It is clear from the reference state definition (2.5) that the Gauss coordinates E;;(u)
annihilate this state: E;;(u)|0) = 0. The definition also implies that it is a common
eigenstate of the matrix D(u) diagonal elements: k;(u)|0) = A\;(«)|0) and that the Gauss
coordinates Fj;(u) create non-trivial vectors in the space of states of the quantum inte-
grable models. R

In order to describe the ‘transpose-inverse’ monodromy matrix 7'(u) in terms of the
Gauss coordinates Fj;(u), E;;(u), k;i(u) we have to invert the matrices F(u), D(u) and
E(u). The Gauss coordinates of the inverse matrices

Flu) ' =1+ > i<iCii Fi(u),
D(u)~" = diag(ki(u) ™" ke (w) ™, .. En(u)™h), (4.8)
E(u) ™ =T+, & Ey(u),

are given by the following.

Lemma 4.1. The Gauss coordinates Fj;(u) and E;j(u), 1 <i < j < N are

j—i—1
Fii(u) = > ()" > Faa@Fa (u) - Fia, (wFa (), (4.9)
£=0

J>ip>>101>1

j—i—1

Eij(w) = > (=) Y Ei(WEi_ ) EyuwEi; (w).  (4.10)
(=0 G>ig>e>i1 >0
Proof of this Lemma follows from a direct verification. ]

According to the assumed dependence (2.4) of the monodromy matrix 7'(u) on the
spectral parameter v we may conclude from the formulas (4.4)—(4.6) that the Gauss
coordinates Fj;(u), E;j(u), k(u) have the following dependence on the parameter u

Fi() = D Falnlu ™ Byg(u) = 3 Bylnu™ " k() = 1+ 3 ka0

n=0 n=>0 n=0

The zero mode operators Fj;[0], E;;[0] and %; [0] play an important role. In particular,
according to the RT'T commutation relations (2.2) the Gauss coordinates with bigger

https://doi.org/10.1088,/1742-5468 /ab02{0 9
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difference of the indices j — < may be expressed as commutators of zero-mode operators
and Gauss coordinates with smaller difference j — i. In what follows we will need following

Lemma 4.2. The Gauss coordinates Fj;(u), Eij(u) and Fji(u), Eij(u) can be written as
multiple commutators (j > 1)

Fji(w) = 17 [+ [[Fagma (@), FooagoalO)] Fyoagoof0] -+ Fusaia 0], Fianl0].

Fji(u) = =+ [Fm_l[()], [F]’—L]’—Q[O], e [Fi+3,i+2[0], [Fi+27i+1[0],Fi+1,i(U)]] ]]7 (4.12)

and
Eij(u) = ¢+ {EMH[O], {EM,M[O], R [Ej,gd,z[o], [Ejfz,jfl[o],Ejij(u)” ”

E”(u) = ¢t H o [[Ei,i—kl(u),Ei—O—l,i-‘rQ[O]} >Ei+2,i+3[0]} T ij—Q,j—l[O]:| ) Ej—l,j [0]} (4.13)

Proof is based on the RTT-relation for the monodromy matrix 7'(u) and its inverse
T'(u). Details are given in appendix A. ]

After applying the transposition with respect to the anti-diagonal to the inverse
monodromy matrix 7'(u), we obtain for the matrix T'(u) a Gauss decomposition (for
1< J)

ﬁ(u) = kN+1fj(u)_1FN+lfi7N+lfj (u) + Z E&NJrlfj (U)ke(u)_lﬁ‘NHf@z(U), (4.14)
1<O<N+1—j
Ti(u) = knpa—i(u) ™ + > Everi(uke(u) 7 Fapa—ie(u), (4.15)
1<0<N+1—i
Tji(u) = Eyojve-i@hyi @)™+ Y EBovgai(uhe(u) " Fasaj(u), (4.16)
1<<N+1—j )

similar to the Gauss decomposition (4.4)—(4.6) of the original monodromy matrix 7'(u).
The only crucial difference is the ordering of the ‘new’ Gauss coordinates in the form-
ulas (4.14)—(4.16).

We call a product of the Gauss coordinates normal ordered if all the coordinates
F,i(u) are on the left of the product of all other Gauss coordinates and all Ey(u) are on
the right. This ordering is adapted to the action of the Gauss coordinates onto reference
state described above.

By construction, the expressions (4.4)—(4.6) of the monodromy matrix elements 7%;(u)
in terms of the Gauss coordinates Fj;(u), E;;(u), i < j and k;j(w), 4,5 =1,..., N are writ-
ten in the normal ordered form. However, the formulas (4.14)—(4.16) for the inverse mono-
dromy matrix are not normal ordered. The normal ordering is given by the following.

Theorem 4.2. The normal ordered Gauss decomposition of the monodromy T\(u) has
literally the same form as in (4.4)—(4.6) with the Gauss coordinates Fj;(u), E;;(u), kj(w)
replaced by Fj;(u), Eij(u), k;(u) where (for i< j)

A

Fii(u) = Fyiinej(u— (N —j+1)e), (4.17)

https://doi.org/10.1088/1742-5468 /ab02{0 10
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() = ! T felu—te) (4.18)
’ kni—j(u— (N = j)e) -3 ke(u— (€ —1)c)’ '
Bij(u) = Engiojni1-i(u — (N = j + 1)c). (4.19)

Proof is based on the presentation of the Gauss coordinates as multiple commutators.
The shifts of the indices in (4.17) and (4.19) can be seen from the formulas (4.14) and
(4.16), while the shifts of the spectral parameters and transformation of the diagonal
generating series k;(u) — k;(u) follow from the commutation relations between Gauss
coordinates. They are gathered in appendix B. Note that formulas (4.18) are in accor-
dance with the action of the diagonal matrix elements (3.2) onto the reference state |0).

O

4.2. Bethe vectors and currents

This section is devoted to the proof of theorem 4.1. We heavily use the results of the
paper [19] where the off-shell Bethe vectors were explicitly constructed from the cur-
rent generators of the super-Yangian double DY (gl(m|n)). In what follows we will use
some results of this paper in the case m = N, n=0.

The Yangian double associated with the algebra gl(/N) is a Hopf algebra of a pair of
generating N x N matrices T%(u) satisfying the commutation relations

R(u,v) (T"(w) @ 1) T@ T"(v)) = @@ T"(v)) (T"(u) @ 1) R(u,v), (4.20)
where k,v = +. Being rewritten in terms of the Gauss coordinates E;S(u), Fﬁ(u) and
k¥ (u) (4.4)~(4.6) and generating series (currents) [25]

Fi(u) = thru(u) - F;M(u), Ei(u) = E;rz+1(u) - Ei_,i+1(u)a (4.21)

the commutation relations (4.20) can be presented in the form (so called ‘new’ realiza-
tion of the Yangian double)

ki (w) Fy(0)k (u) ™ = f(v,u) Fi(v),

K () E )k (0) ™ = f(u,0) Fy(v), (422
ki (u) T B )k (u) = f(v,u) Ei(v),
K () Ei(0)ki (u) = f(u,v) Ei(v), (429)
f(u,v) Fi(u)Fy(v) = f(v,u) Fi(v)Fi(u), (4.24)
f(v,u) Ei(u)Ei(v) = f(u,v) Ei(v)Ei(u), (4.25)
(u—v—c) Fi(u)Fi11(v) = (u =) Fiy1(v)Fi(u), (4.26)
https://doi.org/10.1088,/1742-5468 /ab02{0 11
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(u—v) Ei(u)Eit1(v) = (u—v —c) Eipa(v) Ei(u), (4.27)

(Eiw), Fy(0)) = ¢ b1 8, 0) (K () K ()7 = 7 (0)  kip@)7Y), @28)

and the Serre relations for the currents Ej u) and Fyu). In (4.28) the symbol 6(u,v)
means the additive J-function given by the formal series

1 vt
duv) == —. (4.29)

LeZ

The Borel subalgebra in the Yangian double generated by matrix 7" (u) is isomor-
phic to the standard gl(N) Yangian [23]. Then, we can identify the monodromy matrix
T(u) discussed in the previous sections with the generating matrix T (u). We also
identify the Gauss coordinates of these monodromy matrices

Fli(w) = Fji(u) = Y FynJu™,

n=0
Efj(u) = Eij(u) = 20 Eqgj[nJu™""", (4.30)
ki (u) = ki(u) =1+ ki[nju"
n=0

The currents Fyu), k (u) and E(u), k; (u) form the so-called dual Drinfeld Borel
subalgebras with their own Drinfeld coproduct properties. According to the general
theory of projections developed in [26] one can define the projections Pfi and PF onto
intersections of these current Borel subalgebras with the standard Borel subalgebras
formed by the Gauss coordinates Fi(u), Ef;(u), kj (u) and Fj;(u), Ej;(u), kj (u).

Due to the results of the papers [14, 19] the off-shell Bethe vectors can be identified
with the normalized projection of the product of the currents. In order to formulate
this result we need to introduce some notation. For any scalar function z(u,v) of two

variables and any set 4 = {uy,...,u,} we define the product
Aal0) = 1:[ vl ) (4.31)
i<j

Let F;(u), i =1,...,N — 1 be the ordered product of the currents
Fi(u) = Fi(ua) - Fi(ug—1) -+~ Fy(uz2) - Fi(u). (4.32)

Note that this product is not symmetric with respect to permutation of the parameters
u;, as it follows from the commutation relation (4.24).
One of the main result of the papers [14, 19] is the identification of the off-shell
Bethe vectors with the projections of the product of the currents:
N-1 o
Hz:1 Af(t ) Pt

MO = e

(fN—l(fN_l)fN—z(fN_z) T ]:2(?)-?1({1)) 10).- (4.33)
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Observe that the product A ;(£°)F,(#) is symmetric with respect to permutations within
the set %, due to the commutation relations (4.24). As a result, the Bethe vector given
by equation (4.33) is symmetric with respect to the permutations of the Bethe param-
eters of the same type.

Mathematically rigorous definitions of the projections onto different type Borel
subalgebras intersections can be found in the paper [26]. They use the different Hopf
structures associated with different type of Borel subalgebras in the Yangian double.
However, one may understand the projection entering the equation (4.33) in a more
simple way. In order to calculate this projection one has to replace each current by the
difference of the Gauss coordinates (4.21) and then use the commutation relations in
the Yangian double (4.20) between ‘positive’ and ‘negative’ Gauss coordinates sending
all ‘negative’ coordinates to the left and all ‘positive’ coordinates to the right. After
such ordering the action of the projection amounts to remove all the terms containing
at least one ‘negative’ Gauss coordinate on the left. Of course, practical implementa-
tion of this program is rather heavy. Fortunately, there exist effective methods to per-
form this procedure [14, 19].

In this paper we are not going to describe the methods which allow to calculate the
projection in (4.33) and re-express the result of this calculation in terms of the original
monodromy matrix element. We refer the interested reader to the paper [19]. In order
to prove the statement of theorem 4.1 we will need only the closed expression (4.33).

The main trick in the calculation of the projection in (4.33) is the appearance of
the so called composed currents Fj(u), ¢ < j in the commutation relations of the cur-
rents Fj i 1(w) and Fy;(uw) for s=1¢+1,...,j5 — 1. Then the rewriting of the projection
in (4.33) in terms of the monodromy matrix elements relies on the fact that projections
of the composed currents P} (Fj;(u)) coincide with the Gauss coordinates Fj;(u) (see

appendix A of the paper [19])
Pl (Fji(u)) = 77 1Ff(u) = ¢/~ j(w). (4.34)

In order to prove the statement (4.2) let us consider the rhs of this equality using
the expression (4.33). We have

N—(2_1)#t B (H@)

1 f({l—i—l)fé)
_ (—D)# T Ay = to)
TI52 FEAL ) FEN L — (04 1) e, V¢ — Le)
x Pf (Fy-1(f' = (N = 1)) Fy—a(# = (N = 2)c) - Fi(F¥ " = 0)) |0)

= 1:[ Ap(t) P (fl(fl)fz(fz) : "fN—2(fN_2)fN—1(fN_l)) 10)

N-1 w0
- H%l f@i(f ;)P; (Faa ) Fa@ ) BEEE)) [0). (435)
(=1 )

Here we have introduced the ordered product fz(f’) of the shifted currents given by the
product (4.32) with the currents F;(u) replaced by the shifted currents F;(u)

https://doi.org/10.1088/1742-5468/ab02f0 13
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Fi(u) = —Fy_i(u— (N —i)c). (4.36)

In (4.35), we also used the identity f(v,u) f(u — ¢,v) = 1 and the fact that the function
f(u,v) is translation invariant which implies Af(a —€) = Af(u). We also used the com-
mutation relations between currents Fj(u) and Fj1(v) which follow from (4.26). The
fact that one can use these commutation relations under the action of the projection
was proved in paper [14].

The assertion (4.2) of theorem 4.1 now follows from two lemmas.

Lemma 4.3. The mapping
Fj(u) = Fy(u) = —Fy_j(u— (N —d)¢), i=1,...,N—1,
Ei(u) — E;(u) :—EN_i(u—(N—i)c), i=1,...,N—1,

N—
K (w) = K (u) = = H o s B (4.37)
kNH_j(u—( e kF(u— (€ —1)e)’

is an automorphism of the Yangian double given by the commutation relations (4.22)—

(4.28).

Proof is based on a direct verification. It is clear that the automorphism (4.37) is in-
duced by the corresponding automorphism (2.11) of the RTT-algebra. O

Lemma 4.4. The projections of the composed currents P (F (1)), i < j which appear
in the commutation relations of the currents F s+1(u) and Fsz( Yfors=i+1,...,j—1
coincide with the shifted Gauss coordinates of the ‘transpose-inverse’ monodromy matrix

T(u)
P}F(ﬁ?ﬂ(u)> ¢ IFE—H i, N+1— ]( - (N+1 —])C)

i1 , (4.38)
=cJ FN+1—i,N+1—j(u —(N+1-j)c)
giwen by the multiple commutators (4.12).
Proof is given in appendix A. O

Proof of theorem 4.1. As we can see from the equation (4.35) the Bethe vector IE%(E)
for the generalized quantum integrable models built from the ‘transpose-inverse’ mono-
dromy matrix is given by the same formula as in (4.33) with currents F;(u) replaced by

the currents F (u). They satisfy the same commutation relations (4.22)—(4.28) with the
currents F;(u) and ki( ) due to lemma 4.3. Now using the statement of lemma 4.4 we
can apply all the techniques developed in the papers [14, 19] and prove that B(f) is the
off-shell Bethe vector constructed from the monodromy matrix elements TZJ( ) (2.10).
Then, this proves the statement of theorem 4.1. O

https://doi.org/10.1088/1742-5468 /ab02£0 14
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5. Symmetry of the highest coefficients

As a direct application of equation (4.2), we study symmetry properties of the scalar
products. For this, we should introduce dual Bethe vectors.

5.1. Dual Bethe vectors

Dual Bethe vectors belong to the dual space H* and can be obtained by the succes-
sive action of Tj; with i < j from the right onto a dual pseudovacuum (0| € H*. They
also depend on N — 1 sets of complex numbers {z!,72,...,zV~!}. Dual Bethe vectors
become dual eigenstates of the transfer matrix, if these parameters enjoy the system of
Bethe equations. For more details about these vectors, we refer the reader to the works
[19, 24].

For the moment, it is important for us that the dual Bethe vectors can be obtained
by a transposition of ordinary Bethe vectors. Namely, a mapping z/J(TZ-j (u)) = Tj;(u)
defines an anti-automorphism of the RTT-algebra [23]:

Y(AB) = (B)(A). (5.1)

Here A and B are arbitrary products of the monodromy matrix entries T};. Extending
this mapping to the Bethe vectors by @Z)(|O>) = (0|, one can prove that [18, 19]

C(z) = (B(z)), (5.2)

where C(z) is the dual Bethe vector. Using this formula one can prove that the dual
Bethe vectors also satisfy a property similar to (4.2). Namely, let C(z) and C(z) be dual

A~

Bethe vectors respectively associated to the monodromy matrices 7'(u) and T'(u). Then

N-2 -1
C(z) = (-)* (H fath is)) C(u(x)). (5.3)
s=1
Here the notation is the same as in (4.2).

5.2. Symmetries of the scalar products

The scalar products of the Bethe vectors are defined as
S(zlt) = C(z)B(?). (5.4)

The sets Z and ¢ are generic complex numbers such that #7' = #t' fori =1,..., N — 1.
If the latter condition does not hold, then the scalar product vanishes.
The scalar product of generic Bethe vectors can be described by a sum formula [24]
N-1
C@)B(E) = > Woar (@1, nilfr, fr) [ ] on(@h) o (#). (5.5)
k=1
Here all the sets of Bethe parameters #* and z* are divided into two subsets {t}, &} I #*
and {ZF, 78} F 7%, such that ##F = #7F. The sum is taken over all possible partitions
of this type. The coefficients Wy, are rational functions completely determined by the

https://doi.org/10.1088/1742-5468/ab02f0 15
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R-matrix. They do not depend on the ratios of the vacuum eigenvalues ay. Using the
results of section 4 we can easily find symmetry properties of these coefficients.

Proposition 5.1. For arbitrary partitions {t¥,t5} =% and {z},z5} - 7%, such that
#t¥ = #3% the corresponding coefficient Woar satisfies the following property

N-2
Wpart (jh jllﬁla EH) H f(jk+17 jk) f(fk+17 Ek) = Wpart (N(jl)a ,LL(EII) ’,LL(EI)y ,LL(EII))7

. (5.6)
where () is defined in (4.1).

Proof. We compute the scalar product in two different ways. First, performing in
(5.5) the replacements zF — V% — kc and tF — tN=F — k¢, we arrive at

C(u(2)) ZWpart s () (), ()

X H g (T F — ke) ap (B % — ke).
k=1

(5.7)
Due to (3.4) we obtain
N-1
C(u(z))B(u(t) = ZWpart(M(ffl), (Zn)|p(tr), u(tu)) Ao (Z7) o (£17).- (5.8)
k=1
Finally, using (4.2) and (5.3) we transform the lhs as follows:
N2 N—
C@B@E) [ @25 fE 1) =D W (@), (200) | u(fr), () H Gy ().
= = (5.9)

On the other hand, the scalar product of the Bethe vectors C(z) and B(Z) is given by
the sum formula

N-1

C(z)B(f) = Z Woart (Z1, Zultr, tn) | | G (2F) dn(81). (5.10)

k=1

Since the functions &;(u) are free functional parameters, the equations (5.9) and (5.10)
can give the same result if and only if the coefficients of every product of &; coincide.
Thus, we arrive at (5.6). ]

In particular, we can consider a partition such that z; = z and ¢; = ¢. Then respec-
tively Zj; = t;1 = 0. The corresponding coefficient Wi,y is called the highest coefficient.
We denote it by Z(Z|t):

Z(i"f) :Wpart(j7®|£7®) (511)

https://doi.org/10.1088/1742-5468 /ab02{0 16
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Then it follows immediately from (5.6) that

Z(u@|ulD) = 2l [] F@,2%) 1@, 8) (512

Conclusion

In this paper we have found a new symmetry of Bethe vectors. As we have mentioned,
an off-shell Bethe vector is a polynomial in the monodromy matrix entries 7}; applied to
the pseudovacuum. The new symmetry gives a description of the Bethe vector in terms
of the entries of the monodromy matrix ﬁj (2.10). As we have already mentioned, this
symmetry is specific to the algebras with the rank higher than 1. It cannot be seen on
the Bethe vectors corresponding to the gl(2) case, as it becomes trivial.

In paper [27], we have used already the symmetry of the Bethe vectors in the mod-
els with gl(3)-invariant R-matrix. In that paper the equivalence of the two representa-
tions was proved by the use of a recursion for the Bethe vectors. Generalization of this
method to the case of higher rank algebras is possible, but is technically very complex.
Therefore, our proof is based on the Gauss decomposition of the monodromy matrix
and the underlying current algebra. This approach was found to be very powerful in the
study of the Bethe vectors for the models with high rank of symmetry [19].

As a direct application of the new symmetry, we proved the identity for the highest
coefficients of the scalar product (5.12). However, this is not the only possible applica-
tion. The new representation allows one to study the properties of combined operators
that arise from the original monodromy matrix 7 and from the monodromy matrix

ﬁj. Recently this type of operators was considered in [28]. There, in particular, it was
conjectured that in gl(3)}invariant spin chains the operator

B9 (u) = Tys(u)Tis(u) — Tis(u)Tio(u) (5.13)

can be used for generating on-shell Bethe vectors. Our result allows us to obtain explicit
formulas for the action of B u) onto the Bethe vectors using known action formulas of
the operators Tj(u) [18]. This allowed us to prove the conjecture of [28] and show that
it is valid only for special (symmetric) representations of the Yangian [27].
Concluding, we would like to mention that symmetries of the RTT-algebra, analo-
gous to those considered in this paper, also exist for the RTT-relations associated to the
Uq(gljl) algebras and gl(m|n) superalgebras. As in the case discussed above, these sym-
metries generate new representations for the Bethe vectors associated with the inverse
monodromy matrix. In turn, these representations imply symmetries of scalar products,
in particular, symmetries of the highest coefficients. For the sake of completeness, we

present the latter in the case of Uq(@) and gl(m|n) algebras.

https://doi.org/10.1088/1742-5468/ab02f0 17
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For ¢-deformed algebra case Uq(ﬁ), the highest coefficient Z9(Z|t) was introduced
in [29]. Its symmetric property formally coincides with (5.12):

n—2
Z9 (@) () = Zz[f) ] fo@t+", 2%) po @ ), (5.14)
k=1
where
p(t) ={g 2t g2 g 2 Y (5.15)
and
qr—q 't
fia ) = F—— (5.16)

Relation (5.14) for the models described by Uq(gg) algebra was proven in [30] via
explicit representations for the highest coefficient.

For the superalgebra case gl(m|n) (with m,n > 0 and the grading [i] = 0 for i < m
and [i] = 1 for i > m), the highest coefficient Z"!"™(Z|f) was introduced in [24]. The rela-
tions between highest coefficients have slightly more complex form:

2" (u(@) (D) = (1" 2z, _,

m—1 n+m—2
[T sat e s ey T s s e, san)
k=1 k=m

with

p@) = {"" g (n— De, "2 4 (n = e, .. T F e 0 T e, 4 (m— 1)e)

(5.18)
Note that equation (5.17) maps the highest coefficient of the scalar product in the
gl(m|n) superalgebra to that of the scalar product in the gl(n|m) superalgebra. The
map ¢ — —c is specific to the superalgebra case (see [24] for more details).
Let us stress once more that equations (5.14) and (5.17) are direct consequences of
the symmetries of the Bethe vectors. The latter can be proved exactly by the same
method used in this paper.
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Appendix A. Proof of lemmas 4.2 and 4.4

We prove the statement of lemma 4.2 using the commutation relations between Gauss
coordinates. In order to obtain these commutation relations from the R7T7T-relation
(2.3) we use the approach of paper [25]. We also use the fact that we consider the
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generalized model, and hence, eigenvalues of the diagonal monodromy matrix elements
are arbitrary functional parameters. This means that after substitution of the Gauss
decomposition formulas into commutation relations (2.3), we obtain equations for all
possible products of the currents k;(u)k;(v) after normal ordering of the Gauss coordi-
nates according to the rules described before theorem 4.2. In particular, we obtain

ki(u)Fipi(0)ki(u) ™ = f(v,u)Fii(v) + g(u,v)Fip(u), (A1)
ki(w) By (0)ki(w) = f(v,u)E;i11(v) 4+ g(u, v)E; i1 (u), (A.2)
[Eiiv1(v), Fj(w)] = 05 9(v,w) (ki(u)kiﬂ(u)_l - k’i(“)kiﬂ(“)_l) , (A.3)

Fji(0)Fj1(w) = f(v,u)F; 1 (w)F; ;-1 (v)
+ g(u, v) <sz'(0) — Fji(u) + Fj—l,z‘(u)Fj,j—l(U)>a (A.4)

Eij-1(wEj—1;(v) = f(v,u)E;j_1;(v)E; ;-1 (u)
+ 9(u, v) (Ez‘j(v) — Eij(u) + Ej1; (U)Ez‘,j—l(u)>- (A.5)
These equalities can be used to prove (4.12) and (4.13). Since both proofs are iden-
tical we consider only (4.12). Using the dependence of the Gauss coordinates on the

spectral parameter (4.30) we can send u — 0o or v — 0o and consider the coefficients
of the leading terms in (A.4) at u! or v~! respectively. We obtain

Fji(v) = ¢ [F;;-1(v), Fj_1,[0]] (A.6)
and
Fji(u) — Fj_1(w)Fj -1 (u) = ¢ F;;100), Fj_pi(u))]. (A.7)

Now the first equation in (4.12) follows from a trivial induction of the relation (A.6). By
the induction over j, one can prove from (A.7) that following relation is valid

e[ F5110), [Fy1yl0] s [Favasia 0, [Fon 0], Faw)] ] -]

=> ()" Y. Fia(@Fi, () Fi,, (0)Fj i, (u), (A.8)

(=0 J>ip>>1128

for any s satisfying ¢ < s < j. The second equality in (4.12) is a particular case of (A.8)
at s =i+ 1. This ends the proof of lemma 4.2. O

In order to prove the statement of lemma 4.4 we use the results of the appendix A
of paper [19]. We consider the shifted currents Fz(u) (4.36) and the corresponding com-
posed currents F’],(u) defined in this appendix by the formulas (A.3) and (A.7). These
composed currents satisfy a relation identical to (A.17) in the same appendix of [19],
which implies

Pf (Ez(“)) = [P;r (FMH(U)»E[O]} (A.9)
https://doi.org/10.1088/1742-5468/ab02f0 19
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The commutativity between the projections and commutation relations with zero
modes was proved in appendix B of [19]. Now the chain of equations (i’ = N +1—j
and j' =N +1—1)

A~ A~

07 (1) = [ [ (s} 5 0] 5, 0] o]

= [ FalO], [Faica0], -+ | P[0 P (Faviasu = (V1= )e)) | -+ ]

_ [ij,j/_l[O], [Fj,_lyj,_Q[o], o [Fi,+27i,+1[0], Firiro(u— z"c)] H

=TT R (u—d'c) = T Fy v (u— (N 41— j)e) (A.10)
proves relation (4.38). This ends the proof of lemma 4.4. ]

Appendix B. Gauss coordinates and proof of theorem 4.2

Before starting the proof of theorem 4.2 we provide explicit formulas for the Gauss
decomposition used in this paper in the simplest nontrivial case N = 3. The monodromy
matrix reads

ki + ForkoEqo + Fa1ksErs Faojko + Fs1ksEos Faiks

T(u) = koE1 + FagksEqs ko + FagksEos  Faoks
k33 ko3 ks
1 Fo1 Fg ki 0 0 1 0 0
=10 1 Fs3 0 ko O Eo 1 0]. (B.1)

0 O 1 0 0 ks B3 Eos3 1

For brevity, we omitted in (B.1) the dependence on the spectral parameter u for all
Gauss coordinates E;j(u), Fji(u), and k;(w).

The Gauss decomposition (B.1) allows one to find easily the inverse monodromy
matrix

1 0 0\ /ki' 0 0 1 Fy Fy
Tw)=Tw ™ =[Ex 1 0[[0 k' 0]]0 1 Fyg

Ei3 Eo3 1 0 0 k') \o o 1
kit kT1Foy I
= [ Enki' k3" + Epk{'Fay ky 'Fap + Epoky 'Fyy (B.2)

I:31375171 I:32375271 + I:313k1711521 k§1 + I:323752711532 + I:313751711?31

where
F12(U) = —Flg(U), Fzg(U) = —F23(U) Fgl(U) == —Fgl(U) + F21 (U)FgQ(U),
Em(u) = —Ep(u), E23(U) = —Ea3(u) E13(U) = —Ei3(u) + Eg3(u)Ei2(u). (B.3)

u
Now the monodromy matrix T\(u) given by the relation (2.10) has the following
structure:

)
)
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kg_l + E23l€2_11532 + Elskil_lFM k2_1F32 + Euk‘l—lﬁ‘m kf1F31
T(’LL) = E23l€2_1~+ Elgl{?l_lF21 k‘2_1 —i:E12k1_1F21 ]{Zl_lF21
Eisk;? Bkt k!

It is similar to the structure of the original monodromy matrix 7'(u) (B.1). B9

We prove theorem 4.2 by induction starting from the lower-right corner of the
monodromy matrix T(’L/L\) Due to the formulas/\(4.14)—(4.16) the matrix elements from
the lower-right corner Ty (u), Tn—1,5(u) and T y—1(u) have following form:

Tyn(u) = k()™ Tn_in(u) = ki(w) " Foy(u), Ty y_1(u) = Bia(u)ky (u)~". (B.5)

In order to normal order these matrix elements we can use the commutation relations
(A.1) and (A.2) specialised to i =1 and v = 4 — ¢. This yields

T_1n (1) = ky(u) " Fay (u) = For (u — )k (u) ", (B.6)

Ty n-1(t) = Epp(u)ky(u) ™! = ky () " Eqp(u — ¢), (B.7)

and proves formulas (4.17) and (4.19) in the particular case t= N — 1 and j = N. Now
using (A.3) at i=1 and (B.6), (B.7) we can normal order the monodromy matrix
element

fN—l,N—l(U) = ]{32(1))_1 + Elg(v)kl(v)_lﬁgl (U)
to obtain

Elg(v)kl(v)_ngl (U) = Elz(U)FQl (U — C)]Cl (’U)_l
ki(v—c¢)
ks(v — ¢)k1(v)
As a result, the element fN_L ~—1(v) in the normal ordered form is equal to

 ki(v—o¢)
ka(v — ¢)k1(v)
thus proving (4.18) for j = N — 1.
Formulas (B.6), (B.7), and (B.8) are the base of the induction. Let us assume
that the statement of theorem 4.2 is valid for / < i< j < N in (4.17), (4.19) and for
¢ < j < N in (4.18). By exploring the commutation relations between the Gauss coor-

dinates and lemma 4.2 we will prove that these formulas are valid for ¢ — ¢ — 1.
Let us consider the commutation relation (2.3) for the monodromy matrix elements

=Fo1(v — )k (v) 'Ea(v —¢) + — ky(v)™h

Tn v (v) + For(v — o)k (v) 'Era(v — o), (B.8)

~

T;j(u) at the values of indices (i,j,k,1) = (¢ —1,7,7,7) and send u — co. Then the
coefficient of u~! gives (for j =¢,..., N)

Tpo1j(u) = 71| Ty5(u), Tom1500]]. (B.9)

The zero mode of the monodromy matrix element YA}_M [0] can be obtained from the
relation (4.14) and is equal to
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Ti-15[0] = Frrpn [0, (B.10)
where here and below the prime on the index j mean j' = N + 1 — j for any index j.
According to the induction assumption, the monodromy matrix elements 7};
(j =4,...,N) have the normal ordered form
Jj<s<N
where the Gauss coordinates F.;(u), ky(u), and Ej,(u) respectively are given by equa-
tions (4.17)—(4.19). One can prove f from the commutation relations between the Gauss
coordinates that the zero mode Ty, j[ ] (B.10) commutes with k;(u) and F;(u) Vi,

except for k;(u) and Fyj(u) = Fjy(u — s'c). These commutation relations are

¢ s (w), Barya (0] = B (w)ky () (B.12)
and

¢ Fos (), Frrin 0] = Forer o (= ') = By (u) (B.13)

To obtain (B.12) we used the second relation in (4.12), the commutation relation
[ki(v) ™ Figndl0]] = cki(v) ' Figai(v) = eFipra(v — e)ki(v) ™,

which follows from (A.1), and the commutativity [k;(v), Fj41 ;(u)] = 0 for j > 4. Equalities
(B.12) and (B.13) imply that the rhs of (B.9) is (for j = ¢,..., N)

Ty () = Bjoa (ks () + 7 Foor(w)hs(w)Esy(w). (B.14)

Jj<s<N

Similarly we can prove that the commutation relations between the Gauss coordi-
nates yield

~ ~

Tjo-1(u) = kj(W)Bep(uw) + Y Foi(u)ks(u)Bey (), (B.15)

j<s<N

where the Gauss coordinates F, —1(u) and Fo s s(u) are given by (4.17) and (4.19) for

To ﬁnlsh the proof of the theorem we have to prove that the Gauss coordinates

Fye-1(u), Ee14(u) and k,(u) given by the equalities (4.17)~(4.19) for s = ¢, ..., N will
imply the same structure of the Gauss coordinate ko_y ().

To do this we can wuse again the commutation relations (2.3) for
(1,7,k,1) = (£ —1,£,£,¢ — 1) to obtain in the limit v — oo

@-1,@@), fe,e—ﬂoﬂ =c (@Z(U) — @—1,2—1(”)) , (B.16)

where the zero mode operator @75_1[0] can be deduced from (4.15)
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Tyo-1[0) = —Ent1-en+2-6[0] = —Ep p41[0].

Now the proof of (4.18) for /%g_l(u) follows from the inductive assumption (B.11) and
the commutation relations

B[00, Fya(u)| = el (ko (w) ™ = 1),

B 54100, Fia1,00]] = c(s[0] = ky4[0]),

E; j+1[0], kj(u)_l} = ckj(u) " E; i (u - ¢),

B 5a0], By o) = eFjo(u),

and

B 4100, By (w)] = — B (w).
This finishes the proof of theorem 4.2. O
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Conclusions

In the thesis I consider description of Bethe vectors for quantum integrable

models with super-Yangian Y (gl

njm) and quantum affine U,(gl,) symmetries.

We use the “current approach” for the description of Bethe vectors based
on the Ding-Frenkel isomorphism between RTT and current realizations of
quantum algebras. This approach allows to obtain many useful properties of
Bethe vectors that are used to study their scalar product.

One can summarize our results:

In the case of Y(gl,,,) using Gaussian decompositions of the mon-
odromy matrix, the vector B(#) was constructed in terms of the total
currents associated with simple roots of the gl,,, algebra. It has been
shown that with both Gaussian expansions get the same Bethe vectors.

In the case of Y (gl,,,,,) action formulas of upper-triangular and diagonal
monodromy matrix elements 7;;(u) (with ¢ < j) onto Bethe vector was
obtained in terms of Bethe vectors decomposition. Action of transfer
matrix ¢(u) and conditions for eigenvectors (system of Bethe equations)
were also obtained.

In the case of Y'(gl,,,,) co-product formula for Bethe vectors was found
using Drinfeld co-product properties of currents.

In the cases of Y(gl,,,) and U,(gl,) bilinear sum formula for scalar
product was found using co-product formula for Bethe vectors. This
result is generalization of Izergin-Korepin formula in gl, case and Re-
shetikhin formula in gl; case to the higher rank cases.

In the cases of Y(gl,,,,) and U,(gl,) recursion equations for Bethe vec-
tors and the highest coefficient in the sum formula were found using
action formulas of monodromy matrix entries onto Bethe vectors.

In the cases of Y (gl,,,) and U,(gl,) it was proven that the norm of
eigenvector is proportional to the Jacobian of Bethe equations. This
statement was first proposed by Gaudin for the gl, case.
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e In the case of Y(gl,,) it was shown how to build Bethe vectors in terms
of inverse monodromy matrix entries. The connection of this represen-
tation of Bethe vector with usual one was determined.

The results obtained above are extremely important in context of calcu-
lation of the correlation functions of quantum integrable models with higher
rank algebras symmetry. The sum formula is milestone on this way. The
next step is to obtain a determinant representation of scalar products in the
case when one of the Bethe vectors is an eigenvector of transfer matrix. An
application of zero modes allows us to derive form-factors of local operators
from the form-factors of the monodromy matrix entries. And the multi-point
correlation function can be expanded in the form-factors of local operators.
We will consider these problems in our further work.

The current approach has proven itself as powerful and agile instrument in
algebraic Bethe ansatz. It provides a deep understanding of the symmetries
and properties that underlie integrability, and allows us to simplify and unify
the proofs of the properties of a scalar product of Bethe vectors. Thus, all
results of the thesis can be generalized to a wide class of integrable models
that are solved by algebraic Bethe ansatz. This class includes models related
to Yangian and quantum affine algebras of types A, B, C, and D and their
super generalization.
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