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Abstract

Sparse matrices play an enormous role in physics, biology, finance and in
many other fields of science. They correspond to the networks, in which the
number of theoretically possible connections (relationships) between the modules
largely exceeds the actual number of connections. In this thesis I report our results
showing that the average spectral density of the ensemble of sparse graphs can be
approximated by the Dedekind η-function, which is a modular form with respect to
the modular group 𝑆𝐿(2,𝒵). The asymptotic behaviour of the spectral density in all
rational points within the support is shown to reproduce two-dimensional Lifshitz
tails, which turn into one-dimensional at the edge of the spectrum. This finding
unravels a fundamental connection between localization in low dimensions and the
hyperbolic geometry. The emerging dimension 𝐷 = 2 of eigenvalues of a large
sparse matrix revisits the well-known repulsion of eigenvalues in Gaussian invariant
ensembles, responding to the two-dimensional Coulomb gas confined to a line.

Ultrametric structure of the spectral density can be explicitly constructed
by considering an exponentially growing planar tissue on the Euclidean plane.
Strong incompatibility of the local differential growth protocol with the geometric
constraints evokes buckling of the tissue into the third dimension. We show that the
buckling profile can be described by the eikonal equation and the metric is expressed
through the Dedekind η-function. As another example of the system that gets
pushed into a regime with strong correlations, we consider two-dimensional random
trajectories evading obstacles of different geometrical shapes. We demonstrate that
in the strong stretching regime the circular trajectories fluctuate with the PDF
that is described by one of the tails of the Tracy-Widom distribution and the one­
dimensional KPZ growth exponent.

The isolated spectrum of random walks on a graph frequently becomes
a robust tool for the dimensionality reduction of sufficiently dense data. In
the sparse case localization on star-like graphs takes place, however, the non­
backtracking walks are able to perform community detection in this case. In this
thesis, using spectral properties of different stochastic operators we investigate
topological structure of two real world networks: core-periphery organization of
the cryptocurrencies network and communities in chromatin networks. In the latter
case, we propose two operators, based on the non-backtracking walks, whose spectra
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reflect biologically significant communities in single cell Hi-C maps. Our approach
provides a generalized framework for communities in Erdös-Rényi graphs beyond
the conventional stochastic block model.
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1. Introduction

The study of random matrices spectra has been greatly inspired by the problem
of nuclear interactions, where complexity of the Hamiltonian was first recognized
and tackled within this approach by Eugene Wigner and Freeman Dyson [1, 2].
Experimental spectra of heavy nuclei demonstrated the same statistical properties
as spectra of random matrices. Namely, the spacing distribution of neighboring level
states was shown to be in an excellent agreement with the so-called Wigner surmise,
𝑃 (𝑠) = π𝑠

2 exp
(︀
−π𝑠2/4

)︀
, which is the exact result for the Gaussian orthogonal

ensemble [3]. Universality of their approach has made the random matrix theory
(RMT) one of the most powerful tools in complex systems research and has revealed
a vast number of applications in disordered systems, number theory, quantum
information, integrable systems and quantum chromodynamics, as well as in finance
and networks [4, 5].

In general, the spectral decomposition of a random matrix is a non-trivial
task: while the entries of the random matrix, in the simplest case, are independently
distributed, its eigenvalues usually turn out to be strongly correlated. Indeed, it
is already seen from the form of the Wigner surmise: for absolutely uncorrelated
random variables the distance between the neighboring states would follow the
Poisson distribution. In the Wigner level spacing the probability of consecutive
eigenvalues to be close becomes arbitrary small, reflecting effective repulsion of
the eigenvalues.
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1.1 Spectrum of dense random matrices

1.1.1 Gaussian invariant ensemble

Following the classical line of argument, let us consider an ensemble of dense
random matrices of size 𝑁

𝐽 =

⎡
⎢⎢⎢⎢⎣

𝐽11 𝐽12 . . . 𝐽1𝑁

𝐽21 𝐽22 . . . 𝐽2𝑁

. . . . . . . . . . . .

𝐽𝑁1 𝐽𝑁2 . . . 𝐽𝑁𝑁

⎤
⎥⎥⎥⎥⎦

with 𝐽𝑖𝑗 being i.i.d. random variables drawn from the normal distribution. Then,
the probability to observe the matrix 𝐽 is as follows

𝑃 [𝐽 ] ∝ exp

[︃
−1

2

∑︁

𝑖,𝑗

|𝐽𝑖,𝑗|2
]︃

(1.1)

Gaussian distribution of the entries is chosen not only for the sake of simplicity,
but because the resulting measure of the matrix is invariant under rotation of the
coordinate system. In fact, if one requires that a random matrix with independent
entries (Wigner ensemble) is rotational invariant, then the matrix belongs to the
Gaussian ensemble. This is a consequence of a theorem by Porter and Rosenzweig [6,
3]. Weyl’s lemma [7] states that the rotational invariant measure (1.24) can only be a
function of powers of traces, 𝑃 [𝐽 ] = 𝑓(𝑇𝑟𝐽, 𝑇𝑟𝐽2, 𝑇 𝑟𝐽3, ...), by the cyclic property
of the trace. Thus, the Gaussian measure (1.24) needs to possess additionally certain
symmetries in order to be rotational invariant. For example, if 𝐽 is complex, then 𝐽

needs to be a Hermitian matrix and one can rewrite (1.24) through the trace of |𝐽 |2.
In general, the nature of the matrix entries fixes the universality class of

rotational invariant measures, which is encoded in the value of the parameter β

(Dyson index). If the entries are real numbers, the number of possible components
is one and β = 1. For complex and quaternion entries β = 2 and β = 4,
accordingly. Therefore, for independent entries with rotational invariance one enjoys
three possible classes of universality (i) β = 1, Gaussian orthogonal ensemble
(GOE), (ii) β = 2, Gaussian unitary ensemble (GUE) and (iii) β = 4, Gaussian
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symplectic ensemble (GSE). Let us rescale the matrix elements by
√
β𝑁 , then the

universal Gaussian measure (1.24) reads

𝑃 [𝐽 ] ∝ exp

[︂
−β

𝑁

2
𝑇𝑟(𝐽†𝐽)

]︂
(1.2)

Having the measure of the matrix defined, one is generally interested in the
joint probability distribution of 𝑁 eigenvalues. For rotationally invariant measures
this quantity is exactly solvable and all eigenvalues are real. One typically needs to
change the variables in order to diagonalize the matrix. Real symmetric matrices
can be diagonalized by some orthogonal transformation 𝐽 = 𝑂Λ𝑂𝑇 , where Λ =

𝑑𝑖𝑎𝑔(λ1,λ2,...,λ𝑁) and 𝑂 is the matrix of the eigenvectors. Then, one have to switch
from 𝑁(𝑁+1)/2 independent variables {𝐽𝑖𝑗} to 𝑁 eigenvalues {λ𝑖} and 𝑁(𝑁−1)/2

independent components of the eigenvectors {𝑂𝑖𝑗}

𝑃 ({𝐽𝑖𝑗})
∏︁

𝑖6𝑗

𝑑𝐽𝑖𝑗 =

𝑃 (𝐽11 ({λ𝑖, 𝑂𝑖𝑗}) , ..., 𝐽𝑁𝑁 ({λ𝑖, 𝑂𝑖𝑗}))
⃒⃒
⃒{𝐽𝑖𝑗} → {λ𝑖, 𝑂𝑖𝑗}

⃒⃒
⃒𝑑O

𝑁∏︁

𝑖=1

𝑑λ𝑖 (1.3)

and to compute the Jacobian of the transformation. For the rotationally invariant
ensembles this Jacobian depends only on the eigenvalues and is precisely a so-called
Vandermonde determinant

⃒⃒
⃒{𝐽𝑖𝑗} → {λ𝑖, 𝑂𝑖𝑗}

⃒⃒
⃒ =

∏︁

𝑗<𝑘

(λ𝑗 − λ𝑘) (1.4)

For the other two types of symmetry the Vandermonde is raised to the power β.
Finally, for the Gaussian measure (1.2) the joint probability distribution takes the
following simple form

𝑃 (λ1, λ2, ..., λ𝑁) =
1

𝑍𝑁
exp

[︃
−β

2
𝑁

𝑁∑︁

𝑖=1

λ2𝑖

]︃∏︁

𝑗<𝑘

|λ𝑗 − λ𝑘|β (1.5)

where the latter "interaction"term comes from the Jacobian and 𝑍𝑁 is the partition
function

𝑍𝑁 =

∫︁ ∞

−∞
...

∫︁ ∞

−∞

𝑁∏︁

𝑖=1

𝑑λ𝑖 exp

[︃
−β

𝑁

2

𝑁∑︁

𝑖=1

λ2𝑖

]︃∏︁

𝑗<𝑘

|λ𝑗 − λ𝑘|β (1.6)
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It is straightforward to see from (1.6) that the eigenvalues repel each other as a
two-dimensional Coulomb gas confined to a line

𝑍𝑁 =

∫︁ ∞

−∞
...

∫︁ ∞

−∞

𝑁∏︁

𝑖=1

𝑑λ𝑖 exp

⎡
⎣−β

2

⎧
⎨
⎩

𝑁∑︁

𝑖=1

𝑁λ2𝑖 −
∑︁

𝑗 ̸=𝑘
log |λ𝑗 − λ𝑘|

⎫
⎬
⎭

⎤
⎦ (1.7)

1.1.2 Average density of states

It is worth to note that apart from Coulomb-gas repulsion between the
eigenvalues, the first term under exponent in the partition function (1.7) responds
for the external harmonic field accumulating all the eigenvalues at the origin. The
two terms are of the same order 𝑂(𝑁 2) and balance each other, making the typical
eigenvalue λ𝑡𝑦𝑝 ∼ 𝑂(1). This allows to rewrite the partition function in the following
scaling form

𝑍𝑁 =

∫︁ ∞

−∞
...

∫︁ ∞

−∞

∏︁
𝑑λ𝑖 exp

[︀
−β𝑁 2𝐸({λ𝑖})

]︀
(1.8)

where the scaled energy of the Coulomb gas 𝐸({λ𝑖})

𝐸({λ𝑖}) =
1

2𝑁

𝑁∑︁

𝑖

λ2𝑖 −
1

2𝑁 2

∑︁

𝑗 ̸=𝑘
log |λ𝑗 − λ𝑘| (1.9)

or, in the continuous limit,

𝐸(ρ(λ)) =
1

2

[︂∫︁
λ2ρ(λ)𝑑λ−

∫︁ ∫︁
log |λ− λ′|ρ(λ)ρ(λ′)𝑑λ𝑑λ′

]︂
(1.10)

with ρ(λ) = 1
𝑁

∑︀
δ(λ − λ𝑖) is the "charge"density. Minimization of the energy

subject to the constraint
∫︀
ρ(λ)𝑑λ = 1 in the thermodynamic limit 𝑁 → ∞ allows to

recover the famous Wigner semi-circle law for the average density of states. Variation
of the action functional with respect to ρ(λ) produces an integral equation, which
can be solved using the Tricomi theorem [8] for compact supports λ ∈ [𝑎, 𝑏] (see, for
example, [9] for details). Finally, the scaled semi-circle with 𝑅 =

√
2 can be obtained

𝑛(λ) = ⟨ρ(λ)⟩ = 1

π

√︀
2− λ2. (1.11)



12

Though the semi-circle law is most easily derived for the Gaussian symmetrical
ensembles, it can be shown that it holds for a large class of Wigner matrices (non­
invariant) as soon as the distribution of the entries decays sufficiently fast [10].
However, in general, there is no reason to expect the semi-circle for an arbitrary
symmetric matrix, especially, when its entries are not guaranteed to be independent.
For example, for the Wishart ensemble of covariance matrices 𝑊 = 𝑋†𝑋, where 𝑋

is a rectangular 𝑀 ×𝑁 random Gaussian matrix (real or complex), 𝑐 = 𝑁/𝑀 6 1,
the spectral density is replaced by the Marčenko-Pastur distribution [11]

𝑛𝑀𝑃 (λ) =
1

2πλ

√︀
(λ− 𝑎)(𝑏− λ) (1.12)

where [𝑎, 𝑏] defines the support and 𝑎 =
(︀
𝑐−1/2 + 1

)︀2, 𝑏 =
(︀
𝑐−1/2 − 1

)︀2.
The presented Coulomb-gas approach to the semicircle law is based on the

mean-field argument and, thus, is valid in the thermodynamic limit. In other words,
when 𝑁 → ∞, there is a hard boundary at λ𝑚𝑎𝑥 =

√
2, which all eigenvalues of an

infinite-size random matrix cannot exceed. However, at finite 𝑁 some of the leading
eigenvalues can overcome the boundary of the semi-circle due to fluctuations. Two
natural questions arise: what is the finite-N correction to the typical width of this
boundary and how does the largest eigenvalue fluctuate? It turns out that typical
fluctuations of the largest eigenvalue are much more universal than the shape of
the average spectral density.

1.1.3 Extreme eigenvalue statistics

Though the questions raised are undoubtedly interesting in their own right,
there is a deep physical motivation for the extreme eigenvalue statistics. The first
example comes from the problem of a light particle moving on a 𝑁 -dimensional
landscape, 𝑉 (𝑦1, 𝑦2, ..., 𝑦𝑁)

𝑑𝑦𝑖
𝑑𝑡

= −∇𝑦𝑖𝑉 (1.13)

If the landscape is rugged (which is usually the case in the most of interesting physics
scenarios, eg. glasses [12, 13] or string landscapes [14]), there are many stationary
points 𝑦*, such as ∇𝑉 |𝑦=𝑦* = 0. However, only exponentially small number of them
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are stable. Indeed, near stationary points the curvature of the landscape is described
by the Hessian matrix 𝐻𝑖𝑗 =

𝜕2𝑉
𝜕𝑦𝑖𝜕𝑦𝑗

|𝑦=𝑦*, which is a symmetric matrix with 𝑁 real
eigenvalues. In particular, eigenvalues of the Hessian matrix determine stability of
the stationary points. If all λ𝑖 < 0, the stationary point is a local maximum; if
all λ𝑖 > 0, the stationary point is a local minimum; as long as some of the 𝑁

eigenvalues have different sign, the stationary point inevitably becomes a saddle. In
the spirit of the RMT a sufficiently rugged and complex landscape can be associated
with a random Hessian matrix, belonging to GOE universality class. Then, in the
framework of the random Hessian model the fraction of local maxima (minima) is
given by statistics of the largest (smallest) eigenvalue of the random matrix

𝑞𝑁 = 𝑃𝑟𝑜𝑏.[λ1 6 0, λ2 6 0, ..., λ𝑁 6 0] = 𝑃𝑟𝑜𝑏.[λ𝑚𝑎𝑥 6 0] ∼ exp
[︀
−θ𝑁 2

]︀
(1.14)

which is exponentially small, implying that most of the stationary points of a
complex landscape are saddles. Exact result for the stability parameter is derived
in [15], θ = 1

4 log(3) ≈ 0.27.
Another seminal example arises in ecosystems and is provided by the classical

work of Robert May [16]. Let us consider a dynamical system of 𝑁 distinct species,
interacting with each other and collectively causing dramatic consequences for some
of the species. To begin with, we shall consider the non-interacting system around
a fixed point, characterized by stationary densities 𝑐*𝑖 , 𝑖 = 1, 2, ..., 𝑁 . In the vicinity
of the fixed point any small perturbation induces the reverse response that aims at
bringing the system back to the equilibrium. The effect of these small perturbations
on relaxation can be captured by a harmonic potential, 𝑑𝑥𝑖

𝑑𝑡 = −𝑥𝑖(𝑡), where 𝑥𝑖 =

𝑐 − 𝑐*𝑖 is deviation from the equilibrium density. Now, one may ask, what happens
with stability of the fixed points, when one switches on pairwise interactions between
the species? Interestingly, more complex the interactions between the species are, the
more universal is the behavior of the system. Indeed, the evolution of a particular
kind 𝑖 near the equilibrium point is described, in the linear approximation, by the
following equation

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= −𝑥𝑖(𝑡) + α

𝑁∑︁

𝑖=1

𝐽𝑖𝑗𝑥𝑗(𝑡) (1.15)

where α is the strength of the interactions and matrix elements 𝐽𝑖𝑗 = 𝐽𝑗𝑖 can be
approximated by normal uncorrelated random variables. We see that this ecological
stability problem gets mapped onto the random Hessian model discussed above.
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Namely, the population is stable iff αλ𝑖−1 6 1 for all 𝑖 = 1, 2, ..., 𝑁 . This condition
imposes restriction on the upper bound of the maximal eigenvalue λ𝑚𝑎𝑥 6 1/α of
the random matrix 𝐽 . In his work May has noticed that there is a critical value of the
interactions strength α𝑐, below which the population stays stable, while for larger
values α > α𝑐 = 1/

√
2 the population undergoes a sharp transition to instability.

This essential result is an achievement of the random matrix theory and follows from
the position of the spectral edge of the Wigner semi-circle (1.11).

However, the critical value of α𝑐 is appropriate in the thermodynamic limit,
𝑁 → ∞, when the sharp transition occurs. At finite population sizes 𝑁 the average
bulk spectral density is not sufficient. One needs the statistics of fluctuations of the
largest eigenvalue of a random matrix

ℱ𝑁(𝑤) = 𝑃𝑟𝑜𝑏.[λ𝑚𝑎𝑥 6 𝑤] (1.16)

Note that this largest eigenvalue is coupled with all other eigenvalues through the
Coulomb-gas interactions discussed in the previous subsection. Thus, as we will
see below, fluctuations of the largest eigenvalue in such a simple random matrix
model demonstrate universal behaviour typical to extreme value statistics of strongly
correlated random variables in sharp contrast to the universality of i.i.d. random
variables [17]. From the joint PDF for all eigenvalues (1.5) one can express the CDF
for the largest eigenvalue as follows

ℱ𝑁(𝑤) =
𝑍𝑁(𝑤)

𝑍𝑁(𝑤 = ∞)
(1.17)

and 𝑍𝑁(𝑤) is a partition function of the confined 2D Coulomb gas in harmonic
potential conditioned to the upper bound (a hard wall) at 𝑤

𝑍𝑁(𝑤) =

∫︁ 𝑤

−∞
...

∫︁ 𝑤

−∞

𝑁∏︁

𝑖=1

𝑑λ𝑖 exp

⎡
⎣−β

2

⎧
⎨
⎩

𝑁∑︁

𝑖=1

𝑁λ2𝑖 −
∑︁

𝑗 ̸=𝑘
log |λ𝑗 − λ𝑘|

⎫
⎬
⎭

⎤
⎦ (1.18)

Typical fluctuations occur in the small vicinity ∆ =
√
2−λ𝑚𝑎𝑥 of the spectral edge,

∫︁ √
2

√
2−Δ

𝑛(λ)𝑑λ ∼ 1

𝑁
(1.19)

Using Wigner semi-circle asymptotic 𝑛(λ) ∝
√︀√

2− λ, one arrives at the estimate
∆ = 𝑂(𝑁−2/3) for the width of the spectral edge [9]. The edge turns from soft
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to hard as 𝑁 → ∞, as it should be. More accurate analysis reveals the following
asymptotic behaviour of λ𝑚𝑎𝑥

λ𝑚𝑎𝑥 =
√
2 +

1√
2
𝑁−2/3χβ (1.20)

where χβ is a random variable with the Tracy-Widom distribution [18, 19]. For the
most interesting cases β = 1, 2, 4 the TW distribution can be expressed through
a solution of the Painlevé II equation

𝑞′′(𝑠)− 2𝑞3(𝑠)− 𝑠𝑞(𝑠) = 0 (1.21)

As 𝑠 → ∞ the second term can be neglected which yields the Schrödinger-type
equation in the linear potential, 𝑞(𝑠) ∼ 𝐴𝑖(𝑠). Then, the CDF of TW distribution
ℱβ(𝑥) is expressed through the certain integrals of 𝑞(𝑠), for example, for the unitary
ensemble (β = 2) one has

ℱ2(𝑥) = exp

(︂
−
∫︁ ∞

𝑥

(𝑠− 𝑥)𝑞2(𝑠)𝑑𝑠

)︂
(1.22)

Figure 1.1 — A sketch of the scaled Wigner semi-circle for the average spectral
density, the Tracy-Widom distribution for the largest eigenvalue and left and right
large deviation tails. The picture is taken from [9].
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Importantly, the TW distribution is asymmetric around the position of the
spectral edge. The right tail, 𝑥 → ∞ of the PDF is inherited from the Airy function,
while the left one reflects an abrupt decay with cubic dependency under the exponent

𝑓β(𝑥) ∼

⎧
⎪⎪⎨
⎪⎪⎩

exp

(︂
− β

24
|𝑥|3
)︂
, 𝑥 → −∞

exp

(︂
−2β

3
|𝑥|3/2

)︂
, 𝑥 → +∞

(1.23)

Noteworthy, fluctuations of the top eigenvalue in the Wishart ensemble [20, 21, 22]
are also described by the TW distribution, despite the average spectral density is
given by a different law, (1.12). Furthermore, universality of the TW distribution has
been demonstrated in a broad variety of seemingly unrelated problems united by the
presence of strong correlations. It appears as a distribution function of the maximal
height of 𝑁 1+1 non-intersecting Brownian motions ("viscous"walkers) [23], which,
in turn, are related to 2D quantum chromodynamics [9]; in the problem of the
longest increasing subsequence in random permutations [24]; 1D directed polymers
in a random environment [25, 26, 22]; area-tilted random walks [27]; traffic models
of the TASEP type [28]; growth models in the 1D KPZ universality class [29, 30].

Apart from typical fluctuations taking place in the small vicinity of the
spectral edge ∆ ∼ 𝑁−2/3, one can be interested in anomalously large fluctuations
of order 𝑂(1), see Fig.1.1. Physically such atypical fluctuations correspond to either
pulled or pushed Coulomb gas, when the hard wall is either taken away from the
spectral boundary or compresses the gas, correspondingly. The respective tails of
the distribution are derived in [31, 15, 32]. These tails smoothly approach the tails
of the TW distribution as one is moving towards the spectral edge. As it is seen from
(1.23) the left tail induces the cubic dependency of the free energy of the pushed
Coulomb gas. Thus, as one is approaching the spectral edge from below, the third­
order phase transition occurs. The critical zone of the width 𝑁−2/3 is described
by the TW distribution, therefore, the transition from strong to weak coupling is,
presumingly, quite universal. In particular, it takes place for the May’s model as
the strength of pairwise interactions between the species decreases. See [9] for more
discussion and relation to 2D QCD.
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1.2 Spectrum of sparse random matrices

1.2.1 Replica and cavity methods

In general, 𝑁 × 𝑁 matrix is defined as sparse if the number of non-zero
elements in its rows and columns is 𝑂(1), i.e. does not grow with the system size.
For Erdös-Rényi (ER) graphs this implies that the probability of a random link
should behave as 𝑝 = 𝑞/𝑁 , where 𝑞 > 0 is some constant. When 𝑞 = 𝑂(𝑁) the
ER graph is dense and the properties of the corresponding adjacency matrix largely
follow the theory of invariant Gaussian ensembles, discussed in the previous section.
From the point of the tight binding Anderson model, where bonds are formed only
with the neighboring sites on a 𝑑-lattice, such dense matrices correspond to 𝑑 → ∞.
However, upon decreasing of 𝑞 (diluting the system or decreasing the effective 𝑑)
the average spectral density becomes spiky and does not resemble the classical semi­
circle anymore.

The study of sparse matrices spectra had initiated with pioneering works of
G. Rodgers and A. Bray [34] and then was advanced by many others [35, 36, 39].
Typically, one considers real symmetric matrices 𝐽𝑖𝑗 of size 𝑁 , drawn from the
probability distribution

𝑃 [𝐽𝑖𝑗] =
(︁
1− 𝑝

𝑁

)︁
δ(𝐽𝑖𝑗) +

𝑝

𝑁
ℎ(𝐽𝑖𝑗) (1.24)

where ℎ(𝑥) is some probability distribution, non-singular at 𝑥 = 0. For the Bernoulli
ensemble ℎ(𝑥) = δ(𝑥 − 1); in the original work of Rodgers and Bray an even form
was used ℎ(𝑥) = 1/2 (δ(𝑥− 1) + δ(𝑥+ 1)). The spectral density of a particular
random realization reads

ρ(λ) =
1

𝑁

𝑁∑︁

𝑖=1

δ(λ− λ𝑖) (1.25)

As shown by Edwards and Jones [40], the density (1.25) can be rewritten as

ρ(λ) = − lim
ε→0+

2

π𝑁
ℑ
(︂

𝜕

𝜕𝑧
log𝒵𝐽(𝑧)

)︂

𝑧=λ−𝑖ε
(1.26)
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where 𝒵𝐽(𝑧) is the following partition function

𝒵𝐽 =

∫︁ 𝑁∏︁

𝑖=1

𝑑𝑥𝑖√
2π

exp

(︃
−1

2

𝑁∑︁

𝑖,𝑗=1

𝑥𝑖 (𝑧𝐼 − 𝐽)𝑥𝑗

)︃
(1.27)

and 𝐼 is the identity matrix. Thus, we see that the term under the exponent can
be associated with the Hamiltonian

ℋ𝐽(𝑥, 𝑧) =
1

2

𝑁∑︁

𝑖,𝑗=1

𝑥𝑖 (𝑧𝐼 − 𝐽)𝑥𝑗 (1.28)

and the problem of spectral density gets reformulated into the statistical mechanics
problem of 𝑁 interacting particles 𝑥𝑖, 𝑖 = 1,2,...,𝑁 with pairwise coupling constants
𝐽𝑖𝑗 and self-interaction (harmonic oscillators) with strength 𝑧.

To compute the averaged spectral density one needs to average (1.25) over the
ensemble of matrices (1.24). Using the expression (1.26) one encounters calculation
of the log𝒵𝐽 , for which the replica trick has been invented

⟨log𝑍⟩ = lim
𝑛→0

1

𝑛
(⟨𝑍𝑛⟩ − 1) (1.29)

To deal with the 𝑛 → 0 limit correctly, some assumptions about the invariance of
the solution (replica symmetry) among replica are required. However, in complex
systems with large number of order parameters the number of co-existing phases
with small free energy difference is large. This leads to the replica symmetry breaking
and corrugated distribution of the overlap between the states [38, 37]. Despite this
formal inconsistency, in all cases when the replica solution can be compared with
exact one, they give the same result.

Computation of the moments of the partition function generates replica
variables {𝑥α𝑖 } ,α = 1,2,...,𝑛, which need to be decoupled. This is done in
[34] by introducing the auxiliary fields through the Hubbard-Stratonovich (HS)
transformation and, as a result, a cumbersome integral equation for the spectral
density was obtained. In [35] the authors implement a supersymmetrical method
of calculation, which was shown to be equivalent to the replica trick and to give
identical results. Importantly, at large 𝑝 (see (1.24)) limit, the authors of [34, 35]
recover the semi-circle distribution, however, in the sparse case the obtained results
are difficult to analyze analytically. The following exponential tail of the spectral
density was obtained in [34] from the leading non-perturbative contribution

log ρ(λ) ∼ −λ2 log
(︀
λ2/𝑒𝑝

)︀
(1.30)
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which strikingly differs the sparse system from the dense one, where the spectral
density has a finite support in the thermodynamic limit. Simple geometrical
arguments [42] explaining the unbound density are as follows. Large eigenvalues
correspond to the states (eigenvectors) localized on nodes with extremely high
degree, also known as hubs. Local topology of the graph around the hub is the
one of a star-graph with the core degree 𝑘 and the largest eigenvalue

√
𝑘. The

last statement is reasonable in the limit of asymptotically large 𝑘, for which the
environment around the hub becomes not important and weakly contributes to the
spectrum. The probability of such hub to appear in the Erdös-Rényi ensemble is
exp(−𝑝)𝑝𝑘/𝑘!. Thus, the amount of states around λ =

√
𝑘 is

∆𝑛(𝑘) ≈ ρ
(︁√

𝑘
)︁(︁√

𝑘 −
√
𝑘 − 1

)︁
∼ 𝑒−𝑝𝑝𝑘

𝑘!
(1.31)

Now, using the Stirling’s approximation, one immediately arrives at the tail (1.30).
To obtain full spectral density several approximate schemes, e.g. the effective
medium approximation (EMA) or single defect approximation (SDA), were proposed
[41, 42, 43]. However, they are not quiet accurate. The EMA scheme assumes that
all nodes are equivalent and, thus, does not work well for sufficiently sparse graphs,
due to their intrinsic inhomogeneity in local connectivity.

An important piece of study on sparse matrices spectra is provided by the
numerical work [36], where the authors were one of the first to demonstrate that
the spectrum of a large sparse matrix consists of a family of spikes, arranged in
some regular pattern Fig.1.2(a),(b). In particular the singularity at λ → 0 was
reported to behave as

ρ(λ) ∝ 1

|λ| log (|λ|)3
(1.32)

provided that 𝑝/𝑁 → 0. At the same time, at the edges of the spectrum exponential
tails were present, confirming the analytical results of Rodgers and Bray. Despite
the obvious difference with the semi-circle law, the authors have found that the
level spacing distribution is much more universal even for the finite-𝑑 lattices (sparse
case). The Wigner-Dyson universality remains as long as we are above the Anderson
delocalization-localization transition point 𝑝 > 𝑝𝑞. In order to catch the transition
point 𝑝𝑞 the authors suggest to use relative variance ratio 𝑅 = ⟨δρ(λ)2⟩/⟨ρ(λ)⟩,
where ⟨δρ(λ)2⟩ is the variance of the energy spectrum. When the fluctuations exceed
𝑅 > 1/2, the states become localized.
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An intuitive and relatively robust approach to the spectra is provided by the
cavity method [39]. Its success is relied on a fundamental observation that in the
sparse case the graphs can be approximated by a set of trees-like subgraphs. Then
if a subgraph is rooted at the node 𝑖, one can consider a graph, in which this node
is removed 𝒢𝐽 → 𝒢𝑖𝐽 . Marginal Gibbs-Boltzmann probability distributions with
Hamiltonian (1.28) and partition function (1.27)

𝑃𝐽(𝑥) =
1

𝑍𝐽(𝑧)
exp (−ℋ𝐽(𝑥,𝑧)) ; 𝑥 = {𝑥1,𝑥2,...,𝑥𝑁} (1.33)

are factorised in the neighborhood of the removed node 𝑖 (Bethe approximation)

𝑃 𝑖(𝑥𝜕𝑖) =
∏︁

𝑙∈𝜕𝑖
𝑃 𝑖(𝑥𝑙) (1.34)

where 𝜕𝑖 is the set of neighbors of the node 𝑖. In this approximation the set of
cavity distributions {𝑃 𝑗(𝑥𝑖)} (1.34) obeys recursive equations that yield Gaussian
solutions. Thus, the original distributions {𝑃 (𝑥𝑖)}, are expressed through the cavity
ones as

𝑃 (𝑥𝑖) =
exp

(︀
−𝑧𝑥2𝑖/2

)︀

𝑍𝑖

∫︁
𝑑𝑥𝜕𝑖 exp

(︃
𝑥𝑖
∑︁

𝑙∈𝜕𝑖
𝐴𝑖𝑙𝑥𝑙

)︃∏︁

𝑙∈𝜕𝑖
𝑃 𝑖(𝑥𝑙) (1.35)

are also solved by Gaussian functions. As a result, the final expression for the average
spectral density can be written as

ρ(λ) = lim
ε→0+

1

π𝑁

𝑁∑︁

𝑖=1

ℑ
[︀
⟨𝑥2𝑖 ⟩𝑃

]︀
𝑧=λ−𝑖ε (1.36)

with the variance ⟨𝑥2𝑖 ⟩𝑃 = ∆𝑖(𝑧) being the solution of a pair of coupled equations,
for the cavity variance

∆𝑗
𝑖 (𝑧) =

1

𝑧 −∑︀𝑙∈𝜕𝑖∖𝑗 𝐴
2
𝑖𝑙∆

𝑖
𝑙(𝑧)

(1.37)

and for the variance on the original graph

∆𝑖(𝑧) =
1

𝑧 −∑︀𝑙∈𝜕𝑖𝐴
2
𝑖𝑙∆

𝑖
𝑙(𝑧)

(1.38)

Iterative solution for (1.37) and (1.38) allows to compute the original variance and,
finally, the average spectral density, using (1.36). It is done in [39] for the Poisson
ensemble of real symmetric matrices of size 𝑁 = 1000 following the distribution



21

(1.24) with bimodal form of ℎ(𝑥). The result was compared with the direct numerical
diagonalization of the matrices. It was shown that the cavity solution is much closer
to the exact solution than EMA and SDA. In particular, the spiky behaviour of the
spectral density in the central region was reproduced for small ε, see Fig.1.2(c).

Figure 1.2 — (a), (b): Plots of the average density of states and the relative variance
for a set of random realizations; numerical diagonalization of matrices with 𝑁 =

1000 and 𝑝 = 1 (a), 𝑝 = 1.2 (b). The plots are taken from [36]. (c): Iterative solution
of cavity equations for ε = 0 (blue circles) and ε = 5 * 10−3 (solid red line) for the
bimodal distribution ℎ(𝑥), average connectivity 𝑐 = 3 and 𝑁 = 1000 [39]. The
central region consists of a dense collection of δ functions (inset).

1.2.2 Ultrametricity in spectral density

As it was already noted in the abstract, the sparse graphs are internally
equipped with the ultrametric. In ultrametric spaces the third requirement for the
metric spaces (triangle inequality) is replaced with the strong triangle inequality,
i.e. 𝑑(𝑥,𝑧) 6 max{𝑑(𝑥,𝑦), 𝑑(𝑦,𝑧)}. Due to this property, an ultrametric ball consists
of an hierarchy of smaller balls and is isometric to a branching tree of hierarchically
nested basins. The basins self-organize into a self-similar energy landscape, so that
the ultrametric distance (the barrier) between any two basins can be projected to
the distance along the graph to the root of their minimal common subtree.

Ultrametric spaces has been discussed in broad fields of physical, biological
and social sciences, in particular, in the context of clustering of big data [44, 45].
Ultrametric spaces in the number theory are exemplified by fields 𝒬𝑝 of 𝑝-adic
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numbers and rings 𝒬𝑚 of 𝑚-adic numbers, where 𝑚 is a composite integer
[46, 47, 48]. Low-temperature states of spin glass are organized according to the
strong triangle inequality due to the large number of frustrations. Relaxation on
the phase landscape takes place via tree-like branching into hierarchically nested
domains. Since phase trajectories cannot explore the whole landscape, relaxation
in a space with many metastable states is reminiscent to local optimization.
Ultrametric organization of equilibrium states has been observed in random models
with long-ranged correlations for spin glass, such as Sherrington-Kirkpatrick model
[49, 50, 51, 52]. Complex landscapes of protein molecules are described by ultrametric
ansatz following the idea that relaxation in proteins occurs locally, i.e. the time to
leave the basin is much larger than the equilibration time within the local minimum
[53, 54, 55, 56].

Ultrametric branching of basins on a complex landscape is isomorphic to the
ensemble of large random trees embedded into a high-dimensional space. In [57] it
was shown that a random tree generated recursively in a 𝐷-dimensional Euclidean
space, 𝐷 → ∞, is ultrametric in the sense of variances of distance between a pair
of points. The procedure consists in consecutive generation of new nodes of the tree
in vicinity of the points, belonging to the edge of the tree, drawn from the normal
distribution. More generally, it has been observed that a set of random points in a
multi-dimensional Euclidean space can be associated with the sparse graph with, on
average, ultrametric distances between the points.

In [58] the spectrum of ensembles of sparse graphs was shown to demonstrate
ultrametric properties. The authors of [58] consider an ensemble of sparse
Erdös-Rényi graphs, parameterized by an edge probability 𝑞, whose adjacency
matrices are 𝑁 × 𝑁 symmetric matrices 𝐴𝑖𝑗

𝐴𝑖𝑗 =

{︃
1,with probability q
0,with probability 1-q

(1.39)

When 𝑞 = 𝑂(1) the matrices are dense and the average spectral density follows the
Wigner semi-circle, while 𝑞 = 𝑐/𝑁, 𝑐 = 𝑂(1) corresponds to the sparse case. The
transition point separating the two regimes is the percolation point 𝑞𝑐 = 1/𝑁 , at
which the percolation transition occurs. For 𝑞 ≪ 𝑞𝑐 there are only few edges and most
of the nodes are isolated graph vertices. At 𝑞 > 𝑞𝑐 the graph has a giant component.
Below the percolation point 𝑞 < 𝑞𝑐 the giant component is absent and almost
all of the disconnected components are trees (see Fig.1.3(a)). This fundamental
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topological property of ensembles of sparse graphs allows for a great simplification
for the problem of the average spectral density. In particular, this is used in the
cavity approach for the spectral density (Bethe approximation) [39]. Furthermore,
it turns out that the main contribution to the universal shape of the spectral density
comes from linear subgraphs, whose fraction is about 95%.

An important result of the work [58] is calculation of the mass distribution of
various subgraphs in the vicinity of the percolation transition point. This is done by
considering a kinetic linking of a disjoint graph with a constant rate and following
the fraction of clusters of the certain size 𝑐𝑘 = 𝑁𝑘/𝑁

𝑑𝑐𝑘
𝑑𝑡

=
1

2

∑︁

𝑖+𝑗=𝑘

(𝑖𝑐𝑖)(𝑗𝑐𝑗)− 𝑘𝑐𝑘; 𝑐𝑘(0) = δ𝑘,1 (1.40)

Figure 1.3 — (a): Typical sample of subgraphs in a realization of the sparse graph
with size 𝑁 = 500 slightly above the percolation transition point, 𝑞 = 2.0028*10−3.
(b): Spectral density averaged over 1000 realizations with same parameters as in (a).
The inset shows a fracture of the spectral density around λ = 2 and the tail, related
with the density coming from branching trees. Illustrations are taken from [58].

The equation (1.40) states that a new cluster with size 𝑘 = 𝑖+ 𝑗 can form as
a result of joining of two disjoint clusters of sizes 𝑖 and 𝑗 and can disappear if any
of the nodes of the cluster gets linked with a node of other clusters. At time 𝑡 the
average connectivity of the graph is 𝑞 = 𝑡/𝑁 . Thus, we can relate the sparsity of
the graph with a particular mass distribution of the clusters. In the case of linear
clusters the corresponding kinetic equation yields exactly exponential distribution
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of the chains at the percolation point

𝑄𝑘 =
1

2
exp(−𝑘) (1.41)

Calculation of the spectra of sparse graphs in the approximation of only
linear subgraphs with the exponential mass distribution (1.41) results in peculiar
ultrametric profiles for the density. This profiles are found strikingly similar to the
spectral densities obtained from the direct numerical matrix diagonalization and
subsequent averaging in the ensemble of all sparse graphs. The hierarchical structure
of the density is reminiscent of the Dedekind η-function, η(𝑧), which is defined in
the upper half-plane ℑ𝑧 > 0 as follows

η(𝑧) = exp

(︂
𝑖π𝑧

12

)︂ ∞∏︁

𝑛=0

(1− exp (2𝑖π𝑛𝑧)) (1.42)

Namely, a conjecture that the spectral density of the linear chains distributed
exponentially 𝑄𝑛 ∼ 𝑞𝑛 for 𝑞 → 1− is isomorphic to

√︀
− log |η(𝑧)| with ℑ(𝑧) → 0

has been proposed in [58]. This conjecture was subsequently proven analytically in
[61] and the spectral density for the ensemble of linear chains was shown to express
through a so-called popcorn function, which can be regularized by the Dedekind
η-function close to the real axis (see Chapter 2).

Despite the number fraction of linear subgraphs in the ensemble of all
subgraphs close to the percolation point approaches 0.95, it turns out that mass
fraction is only ≈ 0.65, meaning that a small number (about 5%) of disconnected
subgraphs in the ensemble are essentially huge trees. However, as the numerical
analysis shows [58], their contribution is limited to the edges of the spectral density.
It is known that the leading eigenvalue of a tree with a maximal degree 𝑑 is
constrained from above by 2

√
𝑑− 1, and the upper bound is achieved for 𝑑-regular

trees. Linear chains can be formally defined as regular trees with 𝑑 = 2, thus, the
largest eigenvalue is λ𝑚𝑎𝑥 = 2. Leading correction to the spectrum of linear chains
in vicinity of the percolation point is coming from 3-branching trees, which produces
additional density in the interval [2, 2

√
2], see the inset in Fig.1.3(b). At the same

time, they only slightly perturb the spectral density in the middle of the spectrum.
Furthermore, some large symmetric trees share the ultrametric spectra

properties with the ensemble of linear subgraphs. In particular, spectrum of a binary
tree and spectrum of a star-graph belong to the set of eigenvalues of all the composing
linear subgraphs [59]. This is the direct corollary from the theorem of Rojo and Soto
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[60], stating that the spectrum of a generalized Bethe tree consists of the eigenvalues
of all principle submatrices of some tridiagonal matrix. In the case of a regular
Bethe tree with degree 𝑑 = 3 (binary tree) the corresponding tridiagonal matrix is
nothing but an adjacency matrix of a linear chain scaled by

√
2; for regular trees

of arbitrary degree the matrix and its eigenvalues get scaled by
√
𝑑− 1. Therefore,

we see that the spectrum of a large Bethe tree possesses the self-averaging property:
it is equivalent to the spectral density of the ensemble of exponentially distributed
linear chains. Eigenvalues of any tree are calculated in [42] by means of recurrent
relations for the characteristic polynomial, in a way similar to the cavity method.
For non-regular generalized Bethe trees the correspondence with the ensemble of
linear chains is absent. However, we note that the ultrametric peculiarities of the
spectrum still persist due to the number-theoretic relations emerging along with the
computation of multiplicities of the eigenvalues.

1.3 Community detection in networks

A complex system can be represented as a network with nodes responding
to the agents and weights of edges proportional to the pairwise strength of
interaction between the agents [62]. The network model allows to extract valuable
information on hidden topological structure of the system. One of the most
practically important examples of such structure is a mesoscopic organization of the
agents into modules or communities [63, 64, 65]. However there are many different
definitions of communities in networks, it is qualitatively understood as a group
of nodes characterized by reinforced interactions with nodes of the same group,
relatively to the other nodes [66]. Typically formation of communities is conjugated
with a self-organization evoked by collective interactions of all the nodes in the
network and, thus, is irreducible to action of independent agents of the complex
system. On practice, the community detection in real networks allows to detect a
hidden topological large-scale structure of the system, being an extremely hot topic
in various technological [67, 68], biological [69, 70, 71, 72], social [73, 74, 75] and
economical [76, 77] contexts.

A widely used approach in the community detection is a spectral
decomposition of a linear operator defined on the network: the information on
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communities is then encoded in several leading eigenvectors [82, 83]. It has been
recently shown that all of the commonly used matrices (adjacency, Laplacian,
modularity, non-backtracking) classify well the nodes as long as the network
density is sufficient [84, 85]. In particular, the modularity operator has proven itself
as one of the most efficient characteristic successfully detecting communities in
stochastic networks of various nature [86, 65, 87, 75, 88, 89]. To extract deterministic
communities from the fluctuations, the modularity score measures the community­
wise weight difference between the observed network and the expected one in the
framework of a null generative model, in which the individual degrees of nodes
are kept invariant under randomization of the edges. Fixation of the degrees from
the sample makes the modularity applicable to scale-free networks, a wide class,
including most of the real-world networks [91].

1.3.1 Modularity functional

Modularity functional has been initially proposed by Mark Newman in his
seminal paper [65] and, since then, has been vastly used for community detection
in networks of various intrinsic nature [86, 65, 87, 75, 88, 89]. The modularity is
a functional over a network partition into the 𝑛 groups 𝐺𝑝, 𝑝 = 1, 2, ..., 𝑛, which
relates observed weights to expected weights in an annealed ensemble of graphs with
fixed strength (or just degree for a non-weighted graph) 𝑘𝑖 of each individual node 𝑖

and 𝑚 = 1
2

∑︀
𝑖 𝑘𝑖 being the total strength of the network. Formally, the modularity

functional 𝑄 ≡ 𝑄{𝐺1, 𝐺2, ..., 𝐺𝑛} over an arbitrary splitting into the groups 𝐺𝑝

can be written as follows

𝑄 =
1

4𝑚

∑︁

𝑝

∑︁

(𝑖,𝑗)∈𝐺𝑝

(︂
𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗
2𝑚

)︂
(1.43)

where 𝐴𝑖𝑗 is the adjacency matrix of the network and the expected matrix is
proportional to the product of the respective strengths k𝑇k. Maximization of the
functional (1.43) yields the "optimal" splitting, which corresponds to the intrinsic
community structure provided the network is not very sparse and the communities
are sufficiently resolved [84, 85]. Originally, the modularity score (1.43) has been
proposed [65] for partition of the scale-free networks, in which the distribution of
the degrees is power law and does not follow the Poisson statistics, typical for the
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class of the Erdös-Rényi models. Indeed, using any vector k (for example, from the
real data) as a parameter, one can take care of the scale-freeness of a real network.
Ensemble of random graphs, produced by randomization of edges with conservation
of the nodes strengths is known as the configuration model [92].

The brute-force maximization of the modularity functional is not typically
necessary. There is a simplified spectral approach based on the leading eigenvectors
of the modularity matrix. Suppose for simplicity there are only two communities
in the network. One can assign a "spin direction"𝑠𝑖 = ±1 to each node of the
network depending on the group this node belongs to and rewrite the modularity
as a quadratic form in the spin space s

𝑄 =
1

4𝑚

∑︁

𝑖,𝑗

(︂
𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗
2𝑚

)︂
(𝑠𝑖𝑠𝑗 + 1) =

1

4𝑚
s𝑇𝐵s (1.44)

where 𝐵 = 𝐵𝑖𝑗 is the modularity operator

𝐵𝑖𝑗 = 𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑚

(1.45)

and we have used in (1.44) the fact that the rows of the modularity matrix are
summed to zero; this is obvious from (1.45). Applying the spectral decomposition of
(1.44), one can make use of the principal component approximation, which is well
justified for sufficiently resolved communities. In the case of two communities the
optimal partition is encoded in the leading eigenvector of the matrix 𝐵

𝑄 ≈ (4𝑚)−1λ1(u1s)
2 (1.46)

where u1 is the normalized leading eigenvector and λ1 is the corresponding (largest)
eigenvalue. In order to maximize (1.46), one has to choose the most collinear spin
vector s to the given u1. Therefore, the optimal solution s takes the value 𝑠𝑖 = +1,
if the corresponding component of 𝑢1,𝑖 is positive and 𝑠𝑖 = −1, otherwise.

Note that though modularity maximization is one of the most natural
approaches for community detection in scale-free graphs, it has a known limitation
when the typical size of communities is small. Namely, it was shown that modularity
fails to resolve true communities when their number is larger than

√
2𝑚 [66]. Instead,

the optimal solution by modularity yields larger groups and sufficiently small clusters
do not get resolved. This maximal number of communities is known as the resolution
parameter. Several tricks have been proposed to overcome this issue and effectively
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increase the resolution. One of them [93, 94] is to incorporate a tunable parameter
γ into the definition of modularity

𝑄(γ) =
1

4𝑚

∑︁

𝑖,𝑗

(︂
𝐴𝑖𝑗 − γ

𝑘𝑖𝑘𝑗
2𝑚

)︂
δ𝑔𝑖,𝑔𝑗 (1.47)

where 𝑔𝑖 stands for the group of the node 𝑖. When the parameter γ = 1 one gets back
to the traditional modularity (1.43). However, if γ > 1 one effectively places more
expected weight to the nodes, forcing modularity to resolve smaller communities.
In the other approach, one can introduce self-loops to the nodes [95]. In fact, this
is equivalent to the increase of γ; tuning the weight of the self-loops, it is possible
to regulate the size of the communities. Despite its phenomenological introduction
the parameter γ has a clear physical interpretation that will be discussed in the
next section.

1.3.2 Stochastic block model

Stochastic block model (SBM) is the simplest and most commonly used
Erdös-Rényi graph model with explicit communities. In this model 𝑁 nodes of a
network are split into 𝑞 different groups 𝐺𝑖, 𝑖 = 1,2, ..., 𝑞 and the edges between
each pair of nodes are distributed independently with a probability that depends
on the group labels ("colors") of respective nodes. It is said, there is a matrix of
pairwise group probabilities Ω = ω𝑟𝑡 with 𝑟,𝑡 = 1, 2, ..., 𝑞 and a randomly chosen
pair of nodes (𝑖,𝑗) belonging to groups 𝑖 ∈ 𝐺𝑟, 𝑗 ∈ 𝐺𝑡 is linked by an edge with
probability ω𝑟𝑡. The corresponding entry in the adjacency matrix 𝐴𝑖𝑗 is 1 with
probability ω𝑟𝑡 and 0 otherwise (or 𝐴𝑖𝑗 is a Poisson variable with λ = ω𝑟𝑡 for
the weighted version of the model). Often communities can be considered identical
(known as a planted stochastic block model); in this case,

Ω𝑟𝑡 =

{︃
𝑤𝑖𝑛, 𝑟 = 𝑡

𝑤𝑜𝑢𝑡, 𝑟 ̸= 𝑡
(1.48)

Furthermore, in the simplest scenario all the communities have equal size, 𝑛𝑐 =

𝑁/𝑞, and along with (1.48) they become completely equivalent in the space of
parameters. Then, the average internal and external degrees of the nodes are
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Figure 1.4 — Benchmark of Newman and Girvan. The three networks correspond to
three different mean external degrees ⟨𝑘𝑜𝑢𝑡⟩ = 1 (a), ⟨𝑘𝑜𝑢𝑡⟩ = 5 (b) and ⟨𝑘𝑜𝑢𝑡⟩ = 8

(c). The total mean degree ⟨𝑘⟩ = 16, number of communities 𝑞 = 4 and communities
size 𝑛𝑐 = 32 are fixed. In (c) the groups are indistinguishable by eye and it is hard
for the most simplest methods to detect the true community structure (though, they
are still detectable, see the next section). The networks are taken from [96].

⟨𝑘𝑖𝑛⟩ = 𝑤𝑖𝑛𝑛𝑐 and ⟨𝑘𝑜𝑢𝑡⟩ = 𝑤𝑜𝑢𝑡𝑛𝑐(𝑞 − 1), correspondingly. The total mean degree
is ⟨𝑘⟩ = (𝑤𝑖𝑛 + 𝑤𝑜𝑢𝑡(𝑞 − 1))𝑛𝑐. Since the beginning of the 21st century, one of the
most popular SBM benchmarks in the literature has been a benchmark of Michelle
Girvan and Mark Newman [97]. It fixes the number of communities to 𝑞 = 4, the
size 𝑛𝑐 = 32 and the total average degree to ⟨𝑘⟩ = 16. Thus, different scenarios
of communities resolution can be modelled by changing only one parameter, for
example, ⟨𝑘𝑜𝑢𝑡⟩, see Fig.1.4. The last figure (c) has almost mixed communities as we
can see by eye. Therefore, a natural question arises: is it possible to resolve the true
community structure, in principle? The answer is intrinsically probabilistic. Since
the networks are stochastic, a fair question would compare the probability to sort
an arbitrary node of the network correctly into its home group with 𝑃𝑟𝑎𝑛𝑑 = 1/𝑞,
i.e. the probability of the correct sorting with help of a 𝑞/2-dimensional die. This
brings us to the idea of statistical inference of the optimal network partition: the
optimal is the one that maximizes the likelihood that what we see in the experiment
is SBM with a particular set of parameters.

Recently it has been shown [90] that maximization of the generalized
modularity functional (1.47) is equivalent to the statistical inference of communities
in the framework of the degree corrected version of the planted stochastic block
model. Degree corrected SBM ensemble corresponds to the configuration model
with fixed strengths {𝑘𝑖}, i.e. the expected weight of the edge (𝑖, 𝑗) is a product



30

of the SBM probabilities (1.48) and 𝑃𝑖𝑗 =
𝑘𝑖𝑘𝑗
2𝑚 . Statistical inference approach is

formulated as follows. Suppose that an adjacency matrix 𝐴 from the Poisson degree
corrected SBM ensemble is observed as a realization. With given 𝐴, what are the
optimal parameters of the underlying stochastic model? The statistical weight of
𝐴 conditioned on the cluster probability matrix Ω, degrees {𝑘𝑖} and group labels
of the nodes {𝑔𝑖}, reads

𝑊 (𝐴| Ω, {𝑘𝑖}, {𝑔𝑖}) =
∏︁

𝑖<𝑗

(︀
𝑃𝑖𝑗 ω𝑔𝑖𝑔𝑗

)︀𝐴𝑖𝑗
𝐴𝑖𝑗!

exp
(︀
−𝑃𝑖𝑗 ω𝑔𝑖𝑔𝑗

)︀
(1.49)

where the product runs over all pairs of nodes in the network. Since there are no
self-edges in the network, all the diagonal elements of the matrix 𝐴 are zeros and we
do not include them into the product (1.49). The corresponding partition entropy
of the polymer SBM is

log𝑊 (𝐴| Ω, {𝑘𝑖}, {𝑔𝑖}) =
∑︁

𝑖<𝑗

(︀
𝐴𝑖𝑗 logω𝑔𝑖𝑔𝑗 − 𝑃𝑖𝑗ω𝑔𝑖𝑔𝑗

)︀
(1.50)

where we have omitted all the constant terms independent of the partition. For
identical communities (see (1.48)), we get

⎧
⎨
⎩
ω𝑔𝑖𝑔𝑗 = 𝑤𝑜𝑢𝑡 + δ𝑔𝑖𝑔𝑗 (𝑤𝑖𝑛 − 𝑤𝑜𝑢𝑡)

logω𝑔𝑖𝑔𝑗 = log𝑤𝑜𝑢𝑡 + δ𝑔𝑖𝑔𝑗 (log𝑤𝑖𝑛 − log𝑤𝑜𝑢𝑡)
(1.51)

Taking into account (1.51) and omitting again all irrelevant constant terms, we
arrive at the final expression for the entropy (1.50)

𝑇 log𝑊 (𝐴| Ω, {𝑘𝑖}, {𝑔𝑖}) =
∑︁

𝑖<𝑗

(︂
𝐴𝑖𝑗 − γ

𝑘𝑖𝑘𝑗
2𝑚

)︂
δ𝑔𝑖𝑔𝑗 (1.52)

where 𝑇 = (log𝑤𝑖𝑛 − log𝑤𝑜𝑢𝑡)
−1 has the sense of temperature and

γ =
𝑤𝑖𝑛 − 𝑤𝑜𝑢𝑡

log𝑤𝑖𝑛 − log𝑤𝑜𝑢𝑡
(1.53)

is a parameter describing the cluster probabilities inherited from the initial definition
of the stochastic blocks. We see from (1.52) that maximization of the network entropy
with respect to the partition into communities is equivalent to maximization of the
generalized modularity (1.47). Furthermore, the parameter γ is connected with the
properties of the communities. Let us define 𝑤𝑖𝑛 = ℎ𝑤𝑜𝑢𝑡, where for assortative
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communities ℎ > 1. Clearly, one of the parameters of the model can be chosen
arbitrary, since it just rescales the overall average density of the graph; without loss
of generality we may choose 𝑤𝑜𝑢𝑡 = 1. Then one obtains ℎ = exp (1/𝑇 ) and the
following dependency of γ on the effective temperature of the system

γ(𝑇 ) = 𝑇 (exp (1/𝑇 )− 1) (1.54)

Physically, the increase of the effective temperature is associated with a weaker
structuring into the communities. At 𝑇 → ∞ we recover the classical modularity
case with γ = 1, which, thus, can be called the "weak modularity". On the contrary,
when community structure is sufficiently well pronounced ("strong modularity"), it
is more reliable to make the parameter γ free and look for the best γ𝑜𝑝𝑡. This
can be done using the following renormalization scheme: (i) one takes a trial value
of the parameter, e.g. γ0 = 1; (ii) maximizes the modularity functional with this
𝑄 (γ0); (iii) calculates the sample mean for the pairwise strength inside the obtained
communities 𝑤𝑖𝑛 and outside 𝑤𝑜𝑢𝑡; (iv) computes the corrected value of γ1 according
to (1.53); (v) repeats the procedure until convergence γ∞ = γ𝑜𝑝𝑡. In practice, several
steps of the iteration is sufficient to achieve the convergence, if the clustering network
is fit by the SBM.

Note that for the regular graph 𝑘𝑖 ≡ 𝑘 and in the "weak modularity"regime
the functional (1.47) is equivalent to the Laplacian. For non-regular graphs
with inhomogeneous distribution of degrees a normalized version of the
Laplacian is frequently used, e.g. the symmetric normalized Laplacian, 𝐿𝑠𝑦𝑚 =

𝐷−1/2 (𝐷 − 𝐴)𝐷1/2, where 𝐷 is the degree matrix. These operators are considered
as classical or traditional in the literature, because they have been widely used for
the purposes of clustering (often, spectral) of sufficiently dense networks. However,
all of them notably fail when the total density of the network is drastically reduced
up to the regime, when the network becomes sparse.

1.3.3 Detectability transition

Detectability of communities in random networks is formulated in the
probabilistic sense and in the thermodynamic limit. Suppose one has an ensemble
of random networks of total size 𝑁 ≫ 1 with 𝑞 equivalent communities. Then the
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communities are called detectable if there is an algorithm that correctly classifies
more than 1/𝑞 nodes in a typical realization of the network. In the 𝑁 → ∞ limit
there is a sharp transition at the edge of the detectability regime. A naive conjecture
would be to say that communities are detectable as long as 𝑤𝑖𝑛 > 𝑤𝑜𝑢𝑡 or

⟨𝑘𝑖𝑛⟩ >
⟨𝑘𝑜𝑢𝑡⟩
𝑞 − 1

, (1.55)

i.e. already a very weak tendency towards cluster formation can be successfully
exploited by a hypothetic algorithm. It turns out that this is a correct transition
point for dense networks, when 𝑤𝑖𝑛 and 𝑤𝑜𝑢𝑡 stay constant with increase of the
system size [85]. Otherwise, the network is sparse and (1.55) does not provide us the
transition anymore. It has been shown that the detectability transition for sparse
networks occurs much earlier

⟨𝑘𝑖𝑛⟩ −
⟨𝑘𝑜𝑢𝑡⟩
𝑞 − 1

>
√︀
⟨𝑘𝑖𝑛⟩+ ⟨𝑘𝑜𝑢𝑡⟩ (1.56)

In other words, although the groups in the network are still treated as communities,
according to the definition (1.48), they are not detectable by any algorithm or the
community detection is exponentially hard.

Real-world networks are always finite, thus, there is no proper detectability
transition for them; instead, there is usually a smooth crossover from the range
of parameters, where the detection is possible, to the range, where it is frequently
hardly possible. For the benchmark of Girvan-Newman illustrated in the Fig.1.4 one
can readily calculate where the dense-graph transition point is, ⟨𝑘𝑜𝑢𝑡⟩ = 𝑘𝑑𝑒𝑛𝑠𝑒 = 12,
while the sparse transition occurs at ⟨𝑘𝑜𝑢𝑡⟩ = 𝑘𝑠𝑝𝑎𝑟𝑠𝑒 = 9. Since the total size of the
network is rather small, 𝑁 = 128, these numbers are not quiet appropriate for
this benchmark. Numerical analysis of different most powerful community detection
methods shows that the true crossover takes place somewhere in between 9 and 12,
though, it seems to be rather close to 12 [66].

Since in the sparse case the probability matrix Ω is 𝑂(1/𝑁), it is useful
to switch to the rescaled variables 𝑐𝑖𝑛/𝑜𝑢𝑡 = 𝑁𝑤𝑖𝑛/𝑜𝑢𝑡. We shall also introduce a
conjugated variable 𝑐 = 𝑐𝑖𝑛/𝑞 + 𝑐𝑜𝑢𝑡(𝑞 − 1)/𝑞, which equals to ⟨𝑘𝑖𝑛⟩ + ⟨𝑘𝑜𝑢𝑡⟩, the
mean number of edges per node. In the case of two groups, 𝑐 = (𝑐𝑖𝑛 + 𝑐𝑜𝑢𝑡) /2. In
the rescaled variables the detectability transition (1.56) simply reads

𝑐𝑖𝑛 − 𝑐𝑜𝑢𝑡 > 𝑞
√
𝑐 (1.57)
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From the condition (1.57) the idea of the spectral clustering can be easily understood,
when there are two communities in the network, 𝑞 = 2. For a dense Erdös-Rényi
graph 𝑐 = 𝑂(𝑁) the term on the right hand-side of (1.57) is the edge of the
Wigner semi-circle, λ𝑐 = 2

√
𝑐. The first eigenvector of the adjacency matrix sorts

the nodes to their degree, while the second one correlates with the true assignment
to communities. For SBM the position of the second eigenvalue is well-known

λ2 =
𝑐𝑖𝑛 − 𝑐𝑜𝑢𝑡

2
+

𝑐𝑖𝑛 + 𝑐𝑜𝑢𝑡
𝑐𝑖𝑛 − 𝑐𝑜𝑢𝑡

(1.58)

Therefore, the detectability condition (1.57) is simply equivalent to λ2 > λ𝑐. In
other words, the communities are resolved as long as the second eigenvalue of the
adjacency matrix is separated by a non-zero gap from the boundary of the Wigner’s
disk. Condition λ2 = λ𝑐 is equivalent to 𝑤𝑖𝑛 = 𝑤𝑜𝑢𝑡 for a dense SBM in the
thermodynamic limit.

Figure 1.5 — (a) Non-backtracking spectrum of a SBM graph with two communities,
𝑐 = 3 and 𝑐𝑖𝑛 − 𝑐𝑜𝑢𝑡 = 4. The leading eigenvalue λ1 = 𝑐, the second one λ2 =

(𝑐𝑖𝑛 − 𝑐𝑜𝑢𝑡) /2 and the boundary of the disk positions at λ𝑐 =
√
𝑐; (b): For the

same parameters of the network as in (a), the overlap of the true nodes assignment
with the spectral network partition performed by different traditional operators,
non-backtracking operator as well as by the belief propagation (BP) method. The
detectability transitions occurs very close to the theoretical threshold 2

√
𝑐 ≈ 3.46.

Illustrations are taken from [98].

However, in the sparse case 𝑐 does not grow with 𝑁 and the spectral density
is not a semi-circle anymore. A particular position of the boundary, separating
the isolated part of the spectrum from the bulk, is vague. As we have discussed
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in the previous section the spectrum of sparse Erdös-Rényi graphs is unbound in
the thermodynamic limit and is populated by eigenvalues, which represent star­
like subgraphs with arbitrary large degree, appearing with exponentially vanishing
probability. In case of real-world sparse graphs with scale-free distribution of degrees
𝑃 (𝑘) ∼ 𝑘−γ the probability of these subgraphs (hubs) is even larger and the spectral
density should demonstrate a heavy tail with exponent 2γ− 1. Thus, in the sparse
regime the leading eigenvectors of the adjacency matrix get concentrated on hubs
and not on true communities. In fact, all the traditional operators (adjacency,
modularity, Laplacian) fail to resolve the clusters above the theoretical threshold
(1.57). All such operators are associated with symmetric random walks on graph:
the adjacency matrix is the transfer matrix of the walker 𝑡 → 𝑡 + 1; normalized
Laplacian is a transition operator for the probability flow of the walk; modularity
operator evaluates the flow above the expected in the configuration graph model.
Random walks entropically favor the hubs and localize on them, throwing large
eigenvalues to the isolated part of the spectrum.

To overcome this difficulty, it was proposed to exploit the spectrum of the
Hashimoto matrix B, which is a transfer matrix of non-backtracking walks on a
graph [99]. It is defined on the edges of the directed graph, 𝑖 → 𝑗, 𝑘 → 𝑙, as follows

B𝑖→𝑗,𝑘→𝑙 = δ𝑖𝑙(1− δ𝑗𝑘) (1.59)

It is seen from (1.59) that the non-backtracking operator prohibits immediate returns
to the point which a walker has visited at the previous step, thus, it avoids hubs.
As a result, even in the sparse case the leading eigenvectors ignore hubs (in fact,
they ignore all hanging trees in the network, take a look at the "reluctant non­
backtracking"modification as a way around [100]). Since matrix B is non-symmetric,
its spectrum is complex, and has a clear demarkation between the bulk and the
isolated part. For SBM graphs the bulk density of B is constrained within a circle of
radius λ𝑐 =

√
𝑐. Isolated eigenvalues lie on the real axis to the right from the circle’s

boundary, see Fig.1.5(a). The second eigenvalue of the Hashimito operator is

λ2 =
𝑐𝑖𝑛 − 𝑐𝑜𝑢𝑡

2
> λ𝑐 =

√
𝑐 (1.60)

This spectral condition immediately brings us to (1.57). Therefore, making use of
the leading eigenvectors of 𝐵 for the network partitioning results in detection of
communities all the way down to the theoretical limit (1.57) for sparse graphs.
Since the second eigenvector 𝑢

(2)
𝑖→𝑗 of the non-backtracking operator, in contrast to
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the adjacency or modularity, is defined on directed edges of the network, in case
of two communities one needs to evaluate the spin variables 𝑔𝑖 = ±1 in order to
classify the nodes. The contribution to the 𝑖-th node 𝑔𝑖 comes from the flow along
all directed edges pointing to 𝑖. Thus, in order to switch from edges to nodes, one
needs to evaluate the sign of the sum 𝑣𝑖 =

∑︀
𝑗 𝐴𝑖𝑗𝑢

(2)
𝑗→𝑖 and to assign the node 𝑖

accordingly, 𝑔𝑖 = 𝑠𝑖𝑔𝑛(𝑣𝑖).
The matrix 𝐵 can be also derived as a result of linearization of the update

equations for belief propagation (BP) [98]. In Fig.1.5(b) we provide a plot from [98],
showing the performance of different spectral algorithms based on linear operators,
as well as of the BP method. It is seen that the spectral clustering based on the non­
backtracing does the job almost perfectly, overlapping with the true assignment
similarly to the BP, while all traditional operators break down well above the
theoretical threshold and perform not better than chance in a wide range of 𝑐𝑖𝑛−𝑐𝑜𝑢𝑡.
In [101] M. Newman has suggested a modified operator, which conserves non­
backtracking probability flow at each step of the walker. Newman’s non-backtracking
enjoys slightly better behaving spectral boundary and more less spiky eigenvectors.
We note that such neutralization towards the expected flow becomes crucial in the
case of SBM with inhomogeneous background, such as chromatin graphs equipped
with intrinsic linear memory (see Chapter 7).
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2. Rare-event statistics and modular
invariance

Introduction
Here, based on the "Euclid orchard"construction, we provide simple geometric

arguments that explain the equivalence of various distributions resulting from the
rare-event statistics. In particular, we discuss the number-theoretic properties of
the spectral density of exponentially weighted ensemble of linear polymer chains. It
can be shown that the eigenvalue statistics of corresponding adjacency matrices in
the sparse regime demonstrates peculiar hierarchical structure that is described by
the popcorn (Thomae) function, discontinuous in the dense set of rational numbers.
Moreover, at the edges the spectral density exhibits the Lifshitz tails, reminiscent
of the 1D Anderson localization. Finally, based on the Dedekind η-function, we
suggest a continuous approximation of the popcorn function and demonstrate that
the hierarchical ultrametric structure of the popcorn-like distributions is ultimately
connected with hidden 𝑆𝐿(2,𝑍) modular symmetry.

Contribution
I have established the connection of the spectral density of ensemble of linear

chains with the popcorn function and, using modular properties of the Eisenstein
series, have approximated it by the Dedekind η-function near the real axis. I have
demonstrated the ubiquity of popcorn-like distributions using simple toy statistical
models, based on the "Euclid orchard"construction.
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Here we provide simple geometric arguments, based on the ”Euclid orchard” construction, that
explain the equivalence of various distributions, resulting from the rare-event statistics. In partic-
ular, we discuss the number-theoretic properties of the spectral density of exponentially weighted
ensemble of linear polymer chains. It can be shown that the eigenvalue statistics of correspond-
ing adjacency matrices in the sparse regime demonstrates peculiar hierarchical structure that is
described by the popcorn (Thomae) function, discontinuous in the dense set of rational numbers.
Moreover, at the edges the spectral density exhibits the Lifshitz tails, reminiscent of the 1D An-
derson localization. Finally, we suggest a continuous approximation of the popcorn function, based
on the Dedekind η-function, and demonstrate that the hierarchical ultrametric structure of the
popcorn-like distributions is ultimately connected with hidden SL(2, Z) modular symmetry.

I. INTRODUCTION

The so-called ”popcorn function” [1], g(x), known also
as the Thomae function, has also many other names:
the raindrop function, the countable cloud function, the
modified Dirichlet function, the ruler function, etc. It is
one of the simplest number-theoretic functions possess-
ing nontrivial fractal structure (another famous exam-
ple is the everywhere continuous but never differentiable
Weierstrass function). The popcorn function is defined
on the open interval x ∈ (0, 1) according to the following
rule:

g(x) =





1
q if x = p

q , and (p, q) are coprime

0 if x is irrational
(1)

The popcorn function g is discontinuous at every ratio-
nal point because irrationals come infinitely close to any
rational number, while g vanishes at all irrationals. At
the same time, g is continuous at irrationals.

One of the most beautiful incarnations of the popcorn
function arises in a so-called ”Euclid orchard” representa-
tion. Consider an orchard of trees of unit hights located
at every point (an, am) of the two-dimensional square
lattice, where n and m are nonnegative integers defining
the lattice, and a is the lattice spacing, a = 1/

√
2. Sup-

pose we stay on the line n = 1 −m between the points
A(0, a) and B(a, 0), and observe the orchard grown in
the first quadrant along the rays emitted from the origin
(0, 0) – see the Fig. 1.

Along these rays we see only the first open tree with
coprime coordinates, M(ap, aq), while all other trees are
shadowed. Introduce the auxiliary coordinate basis (x, y)
with the axis x along the segment AB and y normal to
the orchard’s plane (as shown in the Fig. 1a). We set
the origin of the x axis at the point A, then the point B
has the coordinate x = 1. It is a nice school geometric

A B x

y

(a)

(b)

x

y

Figure 1: (a) Construction of the Euclid Orchard; (b) Popcorn
(Thomae) function.

problem to establish that: (i) having the focus located at
the origin, the tree at the point M(ap, aq) is spotted at
the place x = p

p+q , (ii) the visible height of this tree is
1
p+q . In other words, the ”visibility diagram” of such a

lattice orchard is exactly the popcorn function.

The popcorn correspondence p
q → 1

q arises in the Eu-

clid orchard problem as a purely geometrical result. How-
ever, the same function has appeared as a probability
distribution in a plethora of biophysical and fundamen-
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tal problems, such as the distribution of quotients of
reads in DNA sequencing experiment [2], quantum 1/f
noise and Frenel-Landau shift [3], interactions of non-
relativistic ideal anyons with rational statistics param-
eter in the magnetic gauge approach [4], or frequency
of specific subgraphs counting in the protein-protein net-
work of a Drosophilla [5]. Though the extent of similarity
with the original popcorn function could vary, and exper-
imental profiles may drastically depend on peculiarities
of each particular physical system, a general probabilis-
tic scheme resulting in the popcorn-type manifestation of
number-theoretic behavior in nature, definitely survives.

Suppose two random integers, φ and ψ, are taken
independently from a discrete probability distribution,
Qn = fn, where f = 1 − ε > 0 is a ”damping factor”.
If gcd(p, q) = 1, then the combination ν = φ

φ+ψ has the

popcorn-like distribution P (ν) in the asymptotic limit
ε� 1:

P

(
ν =

p

p+ q

)
=
∞∑

n=1

fn(p+q)

=
(1− ε)p+q

1− (1− ε)p+q ≈
1

ε(p+ q)
(2)

The formal scheme above can be understood on the ba-
sis of the Euclid orchard construction, if one would con-
sider a 1 + 1 directed walker on the lattice (see Fig. 1a),
who performs φ directed steps along one axis of the lat-
tice, following by ψ directed steps along another axis. At
every step the walker dies with probability ε = 1 − f .
Then, having a number of the walkers starting from the
origin of the lattice, one would get an ”orchard of walk-
ers”, i.e. at every spot ν on the x axis a fraction of
survived walkers P (ν) would be described exactly by the
popcorn function.

In order to have a relevant physical picture, consider
a toy model of diblock-copolymer polymerization. With-
out sticking to any specific polymerization mechanism,
consider an ensemble of diblock-copolymers AB, poly-
merized independently from both ends in a cloud of
monomers of relevant kind (we assume, only A − A and
B − B links to be formed). Termination of polymer-
ization is provided by specific ”radicals” of very small
concentration, ε: when a radical is attached to the end
(irrespectively, A or B), it terminates the polymerization
at this extremity forever. Given the environment of infi-
nite capacity, one assigns the probability f = 1 − ε to a
monomer attachment at every elementary act of the poly-
merization. If NA and NB are molecular weights of the
blocks A and B, then the composition probability distri-

bution in our ensemble, P
(
ϕ = NA

NA+NB

)
, in the limit of

small ε� 1 is ”ultrametric” (see [6] for the definition of
the ultrametricity) and is given by the popcorn function:

P

(
ϕ =

p

p+ q

)
≈ 1

ε(p+ q)

def
=

1

ε
g(ϕ) (3)

In the described process we have assumed identical in-
dependent probabilities for the monomers of sorts (”col-
ors”) A and B to be attached at both chain ends. Since
no preference is implied, one may look at this process
as at a homopolymer (”colorless”) growth, taking place
at two extremities. For this process we are interested
in statistical characteristics of the resulting ensemble of
the homopolymer chains. What would play the role of
”composition” in this case, or in other words, how should
one understand the fraction of monomers attached at one
end? As we show below, the answer is rather intriguing:
the respective analogue of the probability distribution is
the spectral density of the ensemble of linear chains with
the probability QL for the molecular mass distribution,
where L is the length of a chain in the ensemble.

To our point of view, the popcorn function has not
yet received decent attention among researchers, though
its emergence in various physical problems seems impres-
sive, as we demonstrate below. Apparently, the main dif-
ficulty deals with the discontinuity of g(x) at every ratio-
nal point, which often results in a problematic theoretical
treatment and interpretation of results for the underly-
ing physical system. Thus, a natural, physically justified
”continuous approximation” to the popcorn function is
very demanded.

Below we provide such an approximation, showing the
generality of the ”popcorn-like” distributions for a class
of one-dimensional disordered systems. We demonstrate
that the popcorn function can be constructed on the basis
of the modular Dedekind function, η(x + iy), when the
imaginary part, y, of the modular parameter z = x + iy
tends to 0.

II. SPECTRAL STATISTICS OF
EXPONENTIALLY WEIGHTED ENSEMBLE OF

LINEAR GRAPHS

A. Spectral density and the popcorn function

The former exercises are deeply related to the spectral
statistics of ensembles of linear polymers. In a practi-
cal setting, consider an ensemble of noninteracting linear
chains with exponential distribution in their lengths. We
claim the emergence of the fractal popcorn-like struc-
ture in the spectral density of corresponding adjacency
matrices describing the connectivity of elementary units
(monomers) in linear chains.

The ensemble of exponentially weighted homogeneous
chains, is described by the bi-diagonal symmetric N ×N
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adjacent matrix B = {bij}:

B =




0 x1 0 0 · · ·
x1 0 x2 0
0 x2 0 x3
0 0 x3 0
...

. . .




(4)

where the distribution of each bi,i+1 = bi+1,i = xi (i =
1, ..., N) is Bernoullian:

xi =

{
1 with probability f

0 with probability ε = 1− f
(5)

We are interested in the spectral density, ρε(λ), of the
ensemble of matrices B in the limit N →∞. Note that at
any xk = 0, the matrix B splits into independent blocks.
Every n×n block is a symmetric n×n bi-diagonal matrix
An with all xk = 1, k = 1, ..., n, which corresponds to a
chain of length n. The spectrum of the matrix An is

λk,n = 2 cos
πk

n+ 1
; (k = 1, ..., n) (6)

All the eigenvalues λk,n for k = 1, ..., n−1 appear with
the probability Qn = fn in the spectrum of the matrix
(4). In the asymptotic limit ε � 1, one may deduce an
equivalence between the composition distribution in the
polymerization problem, discussed in the previous sec-
tion, and the spectral density of the linear chain ensem-
ble. Namely, the probability of a composition ϕ = p

p+q in

the ensemble of the diblock-copolymers can be precisely
mapped onto the peak intensity (the degeneracy) of the
eigenvalue λ = λp,p+q−1 = 2 cos πp

p+q in the spectrum

of the matrix B. In other words, the integer number k
in the mode λk,n matches the number of A-monomers,
NA = kz, while the number of B-monomers matches
NB = (n + 1 − k)z, where z ∈ N , in the respective
diblock-copolymer.

The spectral statistics survives if one replaces the en-
semble of Bernoullian two-diagonal adjacency matrices B
defined by (4)–(5) by the ensemble of random Laplacian
matrices. Recall that the Laplacian matrix, L = {aij},
can be constructed from adjacency matrix, B = {bij},
as follows: aij = −bij for i 6= j, and aii =

∑N
j=1 bij .

A search for eigenvalues of the Laplacian matrix L for
linear chain, is equivalent to determination its relaxation
spectrum. Thus, the density of the relaxation spectrum
of the ensemble of noninteracting linear chains with the
exponential distribution in lengths, has the signature of
the popcorn function.

To derive ρε(λ) for arbitrary values of ε, let us write
down the spectral density of the ensemble of N ×N ran-
dom matrices B with the bimodal distribution of the el-

ements as a resolvent:

ρε(λ) = lim
N→∞

〈 n∑

k=1

δ(λ− λkn)
〉
Qn

= lim
N→∞
y→+0

y Im
〈
Gn(λ− iy)

〉
Qn

= lim
N→∞
y→+0

y
N∑

n=1

Qn Im Gn(λ− iy) (7)

where 〈...〉Qn
means averaging over the distribution Qn =

(1−ε)n, and the following regularization of the Kronecker
δ-function is used:

δ(ξ) = lim
y→+0

Im
y

ξ − iy (8)

The function Gn is associated with each particular gap-
less matrix B of n sequential ”1” on the sub-diagonals,

Gn(λ− iy) =
n∑

k=1

1

λ− λk,n − iy
(9)

Collecting (6), (7) and (9), we find an explicit expression
for the density of eigenvalues:

ρε(λ) = lim
N→∞
y→+0

y
N∑

n=1

(1− ε)n
n∑

k=1

y
(
λ− 2 cos πk

n+1

)2
+ y2

(10)
The behavior of the inner sum in the spectral density in
the asymptotic limit y → 0 is easy to understand: it is
1
y at λ = 2 cos πk

n+1 and zero otherwise. Thus, one can

already infer a qualitative similarity with the popcorn
function. It turns out, that the correspondence is quan-
titative for ε = 1 − f � 1. Driven by the purpose to
show it, we calculate the values of ρε(λ) at the peaks, i.e.
at rational points λ = 2 cos πp

p+q with gcd(p, q) = 1 and

end up with the similar geometrical progression, as for
the case of diblock-copolymers problem (2):

ρε

(
λ = 2 cos

πp

p+ q

)
=
∞∑

s=1

(1− ε)(p+q)s−1

=
(1− ε)p+q−1

1− (1− ε)p+q

∣∣∣∣∣
ε→0

≈ 1

ε(p+ q)

def
= g

(
1

π
arccos

λ

2

)
(11)

The typical sample plot ρε(λ) for f = 0.7 computed nu-
merically via (10) with ε = 2×10−3 is shown in the Fig. 2
for N = 103.

B. Enveloping curves and tails of the eigenvalues
density

Below we pay attention to some number-theoretic
properties of the spectral density of the argument −λ,
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Figure 2: The spectral density ρε(λ) for the ensemble of bi-
diagonal matrices of size N = 103 at f = 0.7. The regulariza-
tion parameter ε is taken ε = 2× 10−3.

since in this case the correspondence with the composi-
tion ratio is precise. One can compute the enveloping
curves for any monotonic sequence of peaks depicted in
Fig. 2, where we show two series of sequential peaks:
S1 = {1–2–3–4–5–...} and S2 = {2–6–7–...}. Any mono-
tonic sequence of peaks corresponds to the set of eigen-
values λk,n constructed on the basis of a Farey sequence
[7]. For example, as shown below, the peaks in the series
S1 are located at:

λk = −λk,k = −2 cos
πk

k + 1
, (k = 1, 2, ...)

while the peaks in the series S2 are located at:

λk′ = −λk′,2k′−2 = −2 cos
πk′

2k′ − 1
, (k′ = 2, 3, ...)

Positions of peaks obey the following rule: let
{λk−1, λk, λk+1} be three consecutive monotonically or-
dered peaks (e.g., peaks 2–3–4 in Fig. 2), and let

λk−1 = −2 cos
πpk−1
qk−1

, λk+1 = −2 cos
πpk+1

qk+1

where pk and qk (k = 1, ..., N) are coprimes. The position
of the intermediate peak, λk, is defined as

λk = −2 cos
πpk
qk

;
pk
qk

=
pk−1
qk−1

⊕ pk+1

qk+1
≡ pk−1 + pk+1

qk−1 + qk+1

(12)
The sequences of coprime fractions constructed via the
⊕ addition are known as Farey sequences. A simple geo-
metric model behind the Farey sequence, known as Ford

circles [8, 9], is shown in Fig. 3a. In brief, the con-
struction goes as follows. Take the segment [0, 1] and
draw two circles O1 and O2 both of radius r = 1

2 , which
touch each other, and the segment at the points 0 and 1.
Now inscribe a new circle O3 touching O1, O2 and [0, 1].
Where is the position of the new circle along the segment?
The generic recursive algorithm constitutes the Farey se-
quence construction. Note that the same Farey sequence
can be sequentially generated by fractional-linear trans-
formations (reflections with respect to the arcs) of the
fundamental domain of the modular group SL(2, Z) –
the triangle lying in the upper halfplane Im z > 0 of the
complex plane z (see Fig. 3b).
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Figure 3: Ford circles as illustration of the Farey sequence
construction: (a) Each circle touches two neighbors (right
and left) and the segment. The position of newly gener-
ated circle is determined via the ⊕ addition:

pk−1

qk−1
⊕ pk+1

qk+1
=

pk−1+pk+1

qk−1+qk+1
; (b) The same Farey sequence generated by se-

quential fractional-linear transformations of the fundamental
domain of the modular group SL(2, Z).

Consider the main peaks series, S1 = {1–2–3–4–5–...}.
The explicit expression for their positions reads as:

λk = −2 cos
πk

k + 1
; k = 1, 2, ... (13)

One can straightforwardly investigate the asymptotic be-
havior of the popcorn function in the limit k →∞. From
(11) one has for arbitrary f < 1 the set of parametric
equations:





ρε(λk) =
fk

1− fk+1

∣∣∣
k�1
≈ fk

λk = −2 cos
πk

k + 1

∣∣∣
k�1
≈ 2− π2

k2

(14)
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From the second equation of (14), we get k ≈ π√
2−λ .

Substituting this expression into the first one of (14),
we end up with the following asymptotic behavior of the
spectral density near the spectral edge λ→ 2−:

ρε(λ) ≈ exp

(
π ln f√
2− λ

)
(0 < f < 1) (15)

The behavior (14) is the signature of the Lifshitz tail
typical for the 1D Anderson localization:

ρε(E) ≈ e−CE−D/2

; (16)

where E = 2− λ and D = 1.

III. FROM POPKORN TO DEDEKIND
η-FUNCTION

A. Some facts about Dedekind η-function and
related series

The popcorn function has discontinuous maxima at ra-
tional points and continuous valleys at irrationals. We
show in this section, that the popcorn function can be
regularized on the basis of the everywhere continuous
Dedekind function η(x + iy) in the asymptotic limit
y → 0.

The famous Dedekind η-function is defined as follows:

η(z) = eπiz/12
∞∏

n=0

(1− e2πinz) (17)

The argument z = x+iy is called the modular parameter
and η(z) is defined for Im z > 0 only. The Dedekind η-
function is invariant with respect to the action of the
modular group SL(2,Z):

η(z + 1) = eπiz/12 η(z)

η
(
− 1
z

)
=
√
−i η(z)

(18)

And, in general,

η

(
az + b

cz + d

)
= ω(a, b, c, d)

√
cz + d η(z) (19)

where ad − bc = 1 and ω(a, b, c, d) is some root of 24th
degree of unity [10].

It is convenient to introduce the following ”normal-
ized” function

h(z) = |η(z)|(Im z)1/4 (20)

The real analytic Eisenstein series E(z, s) is defined in
the upper half-plane, H = {z : Im (z) > 0} for Re (s) > 1
as follows:

E(z, s) =
1

2

∑

{m,n}∈Z2\{0,0}

ys

|mz + n|2s ; z = x+ iy

(21)

This function can be analytically continued to all s-plane
with one simple pole at s = 1. Notably it shares the same
invariance properties on z as the Dedekind η-function.
Moreover, E(s, z), as function of z, is the SL(2,Z)–
automorphic solution of the hyperbolic Laplace equation:

−y2
(
∂2

∂x2
+

∂2

∂y2

)
E(z, s) = s(1− s) E(z, s)

The Eisenstein series is closely related to the Epstein
ζ-function, ζ(s,Q), namely:

ζ(s,Q) =
∑

{m,n}∈Z2\{0,0}

1

Q(m,n)s
=

2

ds/2
E(z, s), (22)

where Q(m,n) = am2 + 2bmn+ cn2 is a positive definite

quadratic form, d = ac − b2 > 0, and z =
−b+ i

√
d

a
.

Eventually, the logarithm of the Dedekind η-function is
known to enter in the Laurent expansion of the Epstein
ζ-function. Its residue at s = 1 has been calculated by
Dirichlet and is known as the first Kronecker limit for-
mula [11–13]. Explicitly, it reads at s→ 1:

ζ(s,Q) =
π√
d

1

s− 1

+
2π√
d

(
γ + ln

√
a

4d
− 2 ln |η(z)|

)

+O(s− 1) (23)

Equation (23) establishes the important connection be-
tween the Dedekind η-function and the respective series,
that we substantially exploit below.

B. Relation between the popcorn and Dedekind η
functions

Consider an arbitrary quadratic form Q′(m,n) with
unit determinant. Since d = 1, it can be written in new
parameters {a, b, c} → {x = b

c , ε = 1
c} as follows:

Q′(m,n) =
1

ε
(xm− n)2 + εm2 (24)

Applying the first Kronecker limit formula to the Epstein
function with (24) and s = 1+ τ , where τ � 1, but finite
one gets:

ζ(s,Q′) =
π

s− 1

+ 2π

(
γ + ln

√
1

4ε
− 2 ln |η(x+ iε)|

)

+O(s− 1) (25)
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On the other hand, one can make use of the ε-
continuation of the Kronecker δ-function, (8), and assess
ζ(1 + τ,Q′) for small τ � 1 as follows:

ζ(1 + τ,Q′) ≈ 1

ε

∑

{m,n}∈Z2\{0,0}

ε2

(xm− n)
2

+ ε2m2

=
2

ε
lim
N→∞

N∑

m=1

N∑

n=1

1

m2
δ
(
x− n

m

)
≡ θ(x) (26)

where x ∈ (0, 1) and the factor 2 reflects the presence of
two quadrants on the Z2-lattice that contribute jointly to
the sum at every rational points, while θ assigns 0 to all

irrationals. At rational points θ
(
p
q

)
can be calculated

straightforwardly:

θ

(
p

q

)
=

2

ε

∞∑

m|q

1

m2
=

π2

3εq2
(27)

Comparing (27) with the definition of the popcorn func-
tion, g, one ends up with the following relation at the
peaks:

g

(
p

q

)
=

√
3ε

π2
θ

(
p

q

)
(28)

Eventually, collecting (25) and (28), we may write
down the regularization of the popcorn function by the
Dedekind η(x+ iε)|ε→0 in the interval 0 < x < 1:

g(x) ≈
√
−12ε

π
ln |η(x+ iε)| − o (ε ln ε)

∣∣∣∣∣
ε→0

(29)

or

− ln |η(x+ iε)|ε→0 =
π

12ε
g2(x) +O(ln ε) (30)

Note, that the asymptotic behavior of the Dedekind η-
function can be independently derived through the du-
ality relation, [6]. However, such approach leaves in the
dark the underlying structural equivalence of the pop-
corn and η functions and their series representation on
the lattice Z2. In the Fig. 4 we show two discrete plots
of the left and the right-hand sides of (30).

Thus, the spectral density of ensemble of linear chains,
(11), in the regime ε � 1 is expressed through the
Dedekind η-function as follows:

ρε(λ) ≈

√√√√−12ε

π
ln

∣∣∣∣∣η
(

1

π
arccos

λ

2
+ iε

) ∣∣∣∣∣ (31)

IV. CONCLUSION

We have discussed the number-theoretic properties of
distributions appearing in physical systems when an ob-
servable is a quotient of two independent exponentially

0.0 0.2 0.4 0.6 0.8 1.0
0

10 000

20 000

30 000

40 000

50 000

60 000

Figure 4: Plots of everywhere continuous f1(x) = − ln |η(x+
iε)| (blue) and discrete f2(x) = π

12ε
g2(x) (red) for ε = 10−6

at rational points in 0 < x < 1.

weighted integers. The spectral density of ensemble
of linear polymer chains distributed with the law fL

(0 < f < 1), where L is the chain length, serves as
a particular example. At f → 1, the spectral density
can be expressed through the discontinuous and non-
differentiable at all rational points, Thomae (”popcorn”)
function. We suggest a continuous approximation of the
popcorn function, based on the Dedekind η-function near
the real axis.

Analysis of the spectrum at the edges reveals the Lif-
shitz tails, typical for the 1D Anderson localization. The
non-trivial feature, related to the asymptotic behavior of
the shape of the spectral density of the adjacency ma-
trix, is as follows. The main, enveloping, sequence of
peaks 1 − 2 − 3 − 4 − 5... in the Fig. 2 has the asymp-

totic behavior ρ(λ) ∼ qπ/
√
2−λ (at λ → 2−) typical for

the 1D Anderson localization, however any internal sub-
sequence of peaks, like 2 − 6 − 7 − ..., has the behavior
ρ′(λ) ∼ qπ/|λ−λcr| (at λ → λcr) which is reminiscent of
the Anderson localization in 2D.

We would like to emphasize that the ultrametric struc-
ture of the spectral density is ultimately related to
number-theoretic properties of modular functions. We
also pay attention to the connection of the Dedekind η-
function near the real axis to the invariant measures of
some continued fractions studied by Borwein and Bor-
wein in 1993 [17]. The notion of ultrametricity deals
with the concept of hierarchical organization of energy
landscapes [19, 20]. A complex system is assumed to
have a large number of metastable states corresponding
to local minima in the potential energy landscape. With
respect to the transition rates, the minima are suggested
to be clustered in hierarchically nested basins, i.e. larger
basins consist of smaller basins, each of these consists of
even smaller ones, etc. The basins of local energy minima
are separated by a hierarchically arranged set of barriers:
large basins are separated by high barriers, and smaller
basins within each larger one are separated by lower bar-
riers. Ultrametric geometry fixes taxonomic (i.e. hi-
erarchical) tree-like relationships between elements and,



7

speaking figuratively, is closer to Lobachevsky geometry,
rather to the Euclidean one.
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3. From geometric optics to plants: the
eikonal equation for buckling

Introduction
Optimal buckling of a tissue, e.g. a plant leaf, growing by means of exponential

division of its peripheral cells, is considered in the framework of a conformal
approach. It is shown that the boundary profile of a tissue is described by the
2D eikonal equation, which provides the geometric optic approximation for the
wavefront propagating in a medium with an inhomogeneous refraction coefficient.
By means of a local conformal mapping of the hyperbolic triangle onto the Euclidean
one, we demonstrate that the elastic energy of the buckled tissue is expressed
through the Dedekind η-function. Thus, the hierarchical organization of soft growing
membranes is a natural result due to the number-theoretic properties of the
underlying modular form.

Contribution
I have derived the eikonal equation from the condition of the area conservation

and performed numerical integration of the profiles with the Dedekind function on
the right-hand side in various geometrical settings.
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Optimal buckling of a tissue, e.g. plant leaf, growing by means of exponential division of its periphery cells, is considered in the
framework of a conformal approach. It is shown that the boundary profile of the tissue is described by the 2D eikonal equation,
which provides the geometric optic approximation for the wave front propagating in the media with inhomogeneous refraction
coefficient. The variety of optimal surfaces embedded in 3D is controlled by spatial dependence of the refraction coefficient
which, in turn, is dictated by the local growth protocol.

1 Introduction

A variety of complex 2D profiles of growing tissues emerges
due to the incompatibility of local internal (differential)
growth protocol with geometric constraints imposed by em-
bedding of these tissues into the Euclidean space. For exam-
ple, buckling of a lettuce leaf can be naively explained as a
conflict between natural growth due to the periphery cells divi-
sion (typically, exponential), and growth of circumference of a
planar disc with gradually increasing radius. Due to a specific
biological mechanism which inhibits growth of the cell expe-
riencing sufficient external pressure, the division of inner cells
is insignificant, while periphery cells have less steric restric-
tions and proliferate easier. Thus, the division of border cells
has the major impact on the instabilities in the tissue. Such
a differential growth induces an increasing strain in a tissue
near its edge and results in two complimentary possibilities: i)
in-plane tissue compression and/or redistribution of layer cells
accompanied by the in-plane circumference instability, or ii)
out-of-plane tissue buckling with the formation of saddle-like
surface regions. The latter is typical for various undulant nega-
tively curved shapes which are ubiquitous to many mild plants
growing up in air or water where the gravity is of sufficiently
small matter1,2.

A widely used energetic approach to growing patterns ex-
ploits a continuous formulation of the differential growth and
is based on a rivalry between bending and stretching ener-
gies of elastic membranes2,7–9,12,18–20, reflecting the choice
between options (i) and (ii) above. For bending rigidity of a
thin membrane, B, one has B ∼ h3, while stretching rigidity,
S behaves as S ∼ h, where h is the membrane thickness14.

a J.-V. Poncelet Laboratory, CNRS, UMI 2615, 119002 Moscow, Russia; E-
mail: sergei.nechaev@gmail.com
b P.N. Lebedev Physical Institute, RAS, 119991 Moscow, Russia
c Physics Department, Moscow State University, 119992 Moscow, Russia
d The Skolkovo Institute for Science and Technology, 143005 Skolkovo, Russia

Therefore, thin enough tissues, with h� 1, prefer to bend, i.e.
to be negatively curved under relatively small critical strain.

The latter allows one to eliminate the ”stretching” regime
from consideration, justifying the geometric approach for in-
finitesimally thin membranes4,5,10,12,17,21,22 (see also6). Here
the determination of typical profiles of buckling surfaces relies
on an appropriate choice of metric tensor of the non-Euclidean
space, and is realized via the optimal embedding of the tissue
with certain metrics into the 3D Euclidean space. It should be
mentioned, that the formation of wrinkles within this approach
seems to be closely related to the description of phyllotaxis via
conformal methods23.

In this letter we suggest a model of a hyperbolic infinites-
imally thin tissue, whose periphery cells divide freely with
exponential rate, while division of inner cells is absolutely
inhibited. Two cases of proliferations, the one-dimensional
(directed) and the uniform two-dimensional, are considered.
The selection of these two growth models is caused by the in-
tention to describe different symmetries inherent for plants at
initial stages of growth. As long as the in-plane deformations
are not beneficial, as follows from the relationship between
bending and stretching rigidities, all the redundant material of
fairly elastic tissue will buckle out. In order to take into ac-
count the finite elasticity of growing tissue, resulting from the
intrinsic discrete properties of a material, we describe the tis-
sue as a collection of glued elementary plaquettes connected
along the hyperbolic graph, γ . The discretization implies the
presence of a characteristic scale, of order of the elementary
cell (plaquette) size, below which the tissue is locally flat.

As we rely on the absence of in-plane deformations, this
graph has to be isometrically embedded into 3D space. The
desired smooth surface profile is obtained in two steps: i)
isometric mapping of the hyperbolic graph onto the flat do-
main (rectangular or circular) with hyperbolic metrics, ii) sub-
sequent restoring of the metrics into the 3D Euclidean space
above the domain. We demonstrate that such a procedure leads
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to the ”optimal” buckling of the tissue and is described by the
eikonal equation for the profile, f (x,y), of growing sample,
which by definition, is a variant of the Hamilton-Jacobi equa-
tion.

The paper is organized as follows. We introduce necessary
definitions in Section 2.1; the model under consideration and
the details of the conformal approach are provided in Sec-
tions s:2, 2.3 and Appendix; the samples of various typical
shapes for two-dimensional uniform and for one-dimensional
directed growth, are presented in Section 3; finally, the results
of the work are summarized in Section 4, where we also spec-
ulate about possible generalizations and rise open questions.

2 Buckling of thin tissues in cylindric and pla-
nar geometries

2.1 Basic facts about the eikonal equation

To make the content of the paper as self-contained as possi-
ble, it seems instructive to provide some important definitions
used throughout the paper. The key ingredient of our consid-
eration is the ”eikonal” equation, which is the analogue of the
Hamilton-Jacobi equation in geometric optics. As we show
below, the eikonal equation provides optimal embedding of an
exponentially growing surface into the 3D Euclidean plane.
Meaning of the notion ”optimal” has two different connota-
tions in our approach:

i) On one hand, from viewpoint of the Hamilton-Jacobi the-
ory, the eikonal equation appears in the minimization of the
action A =

∫
γ Ldt with some Lagrangian L. According to the

Fermat principle, the time of the ray propagation in the inho-
mogeneous media with the space-dependent refraction coeffi-
cient, n(x,y), should be minimal.

ii) On the other hand, the eikonal equation emerges in our
work in a purely geometric setting following directly from the
conformal approach.

First attempts to formulate classical mechanics problems in
geometric optics terms goes back to the works of Klein27 in
19th century. His ideas contributed to the corpuscular theory
in a short-wavelength regime, as long as the same mechanical
formalism applied to massless particles, was consistent with
the wave approach. Later, in the context of general relativity,
this approach was renewed to treat gravitational field as an
optic medium28.

The Fermat principle states that the time dt for a ray to
propagate along a curve γ between two closely located points
M(x) and N(x+ dx) in an inhomogeneous media, should be
minimal. The total time T can be written in the form T =
1
c
∫ N

M n(x(s))ds where n(x) = c
v(x) is the refraction coefficient

at the point x = {xi} of a D-dimensional space (i = 1, ...,D), c
and v(x) are correspondingly the light speeds in vacuum and
in the media, and d|x| = ds is the spatial increment along the

ray. Following the optical-mechanical analogy, according to
which the action in mechanics corresponds to eikonal in op-
tics, one can write down the ”optic length” or eikonal, S = cT
in Lagrangian terms: S =

∫ N
M L(x, ẋ)ds with the Lagrangian

L(x, ẋ) = n(x(s))
√

ẋ(s)ẋ(s), where ẋ2 = ∑D
i=1
( dxi

ds

)2. We
would like to mention here, that optical properties of the me-
dia can be also treated in terms of induced Riemann metrics in
vacuum:

S =
∫ N

M
n(x(s))ds =

∫ N

M

√
ẋg(x)ẋds (1)

where gi j = n2(x)δi j stands for induced metrics components
in isotropic media case. Thus, from the geometrical point, the
ray trajectory can be understood as a ”minimal curve” in a
certain Riemann space. This representation suggests to con-
sider optimal ray paths as geodesics in the space with known
metrics g.

Stationarity of optic length, S, i.e. δS = 0, together with the
condition |ẋ|= 1, defines the Euler equation:

d
ds

(
n(x)

dx
ds

)
= ∇n(x) (2)

from which one can directly proceed to the Huygens principle
by integrating (2) over s: ∇S(x)= n(x) dx

ds . Squaring both sides
of the latter equation we end up with the eikonal equation:

(∇S(x))2 = n2(x) (3)

The eikonal equation Eq.(3) has the same form as the
Hamilton-Jacobi equation in mechanics for action in the D+
1-dimensional space, which in turn can be understood as the
relativistic equation for the light, propagating in the Rieman-
nian space.

2.2 The model: formalization of physical ideas

In our work the eikonal equation arises in the differential
growth problem in a purely geometric setting. Consider a tis-
sue, represented by a colony of cells, growing in space without
any geometric constraints. The local division protocol is pre-
scribed by nature, being particularly recorded in genes and is
accompanied by their mutations16. The exponential cell di-
vision is implied, as already mentioned above. To make our
viewpoint more transparent, suppose that all cells, represented
by equilateral triangles, divide independently and their prolif-
eration is initiated by the first ”protocell”. Connecting the cen-
ters of neighboring triangles by nodes, we rise a graph γ . The
number of vertices, Pγ(k), in the generation k, grows exponen-
tially with k: Pγ(k) ∼ ck (c > 1). It is known that exponential
graphs possess hyperbolic metrics, meaning that they can be
isometrically (with fixed branch lengths and angles between
adjacent branches) embedded into a hyperbolic plane. Thus, it
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is clear, that the corresponding surface, pulled on the isometry
of such graph in the 3D Euclidean space, should be negatively
curved.

To have a relevant image, suppose that we grow the surface
by crocheting it spirally starting from the center3. Demand-
ing two nearest neighboring circumference layers, P(r) and
P(r+∆r), to differ by a factor of c (where c = const> 1), i.e.,
P(r +∆r)/P(r) = c, we construct an exponentially growing
(hyperbolic) surface, see Fig.1a. The crocheted surface has
well-posed properties on large scales, but should be precisely
described on the scale of order of the elementary cell. As
we have mentioned, the microscopic description is connected
with the specific local growth protocol. The simplest way to
generate the discrete hyperbolic-like surface out of equilateral
triangles, consists in gluing 7 such triangles in each graph ver-
tex and construct a piecewise surface, shown in Fig.1b. On
the scale less than the elementary cell ABC this surface is flat.
Thus, the size a (|AB|= |AC|= |BC|= a) of the triangle ABC
stands for the rigidity parameter, playing the role of a charac-
teristic scale in our problem, below which no deviations from
the Euclidean metrics can be found. We rely on small enough
values of the parameter a, otherwise, it brings the absence of
stretching energy of the tissue into question. Later on we shall
see that buckling of growing surface essentially depends on
this parameter.

(b)(a)

A

C

B

a

Fig. 1 (a) Hyperbolic surface obtained by spiral crocheting from the
center; (b) Hyperbolic piecewise surface constructed by joining 7
equilateral flat triangles (copies of the triangle ABC) in each vertex.
The triangle ABC is lying in z = x+ iy plane in the 3D Euclidean
space, |AB|= |AC|= |BC|= a.

We discuss buckling phenomena for two different growth
symmetries shown schematically in Fig.2a-b: i) uniform two-
dimensional division from the point-like source (Fig.2a), and
ii) directed one-dimensional growth from the linear segment
(Fig.2b). In Fig.2a-b different generations of cells are shown
by the shades of gray. For convenience of perception, sizes
of cells in each new generation are decreasing in geometric
progression, otherwise it would be impossible to draw them
in a 2D flat sheet of paper and the figure would be incompre-

hensible. In Figs. Fig.2c,d we imitate the protocols of growth
depicted above in Figs. Fig.2a,b by embedding the exponen-
tially growing structure in the corresponding plane domain
equipped with the hyperbolic metrics. The advantage of such
embedding consists in the possibility to continue all functions
smoothly through the boundaries of elementary domains, that
cover the whole plane without gaps and intersections. Details
of this construction and its connection to the growth in the 3D
Euclidean space are explained below.

�
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���(a)

(c)

(b)

(d)
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BC
-1 0

A

Fig. 2 (a) Uniform two-dimensional hyperbolic growth out of the
unit domain in the plane; (b) One-dimensional hyperbolic growth
out of the linear segment; c) Tessellation of the hyperbolic Poincaré
disc by the images of flat Euclidean triangles; d) Tessellation of the
domain in the hyperbolic half-plane by the images of flat Euclidean
triangles.

A widely used model (see, for example17) suggests that the
optimal buckling surface is fully determined by the metric ten-
sor through minimization of a discrete functional of special
energetic form. Namely, define the energy of a deformed thin
membrane, having buckling profile f (x,y) above the domain,
parameterized by (x,y), as:

E{ f (x,y)} ∼∑
i, j

((
fi j

)2
−∑

α,β
∆α

i jgαβ ∆β
i j

)2

(4)

where gαβ is the induced metrics of the membrane, fi j ≡
| f (xi,yi) − f (x j,y j)| is the distance between neighboring
points and ∆i j is the equilibrium distance between them. The
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typical (optimal) shape f̄ (x,y) is obtained by minimization of
(4) for any rigidity. However, the metric tensor, gαβ is a priori
unknown since its elements depend on specifics of the differ-
ential growth protocol, therefore some plausible conjectures
concerning its structure should be suggested. For example,
in17 a directed growth of a tissue with one non-Euclidean met-
rics component, gxx(y), was considered. The diagonal compo-
nent gxx(y) was supposed to increase exponentially in the di-
rection of the growth, y, and crumpling of a leaf near its edge
was finally established and analyzed.

2.3 Conformal approach

The preset rules of uniform exponential cells division deter-
mine the structure of the hyperbolic graph, γ , while the in-
finitesimal membrane thickness allows for the isometrical em-
bedding of the graph γ into the 3D space. We exploit con-
formal and metric relations between the surface structure in
the 3D space and the graph γ embedded into the flat domain
with the hyperbolic metrics. The embedding procedure con-
sists of a sequence of conformal transformations with a con-
straint on area preservation of an elementary plaquette. This
eventually yields the knowledge of the Jacobian (the ”coef-
ficient of deformation”), J(x,y), for the hyperbolic surface,
which is embedded into the 3D space via the orthogonal pro-
jection. Equipped by the key assumption, that a smooth yet
unknown surface f (x,y) is function, our procedure straightfor-
wardly implies a differential equation on the optimal surface.
Note, that a version of the crocheted surface cannot be recon-
structed in the same way since it is not a function above some
planar domain.

To realize our construction explicitly, we first embed iso-
metrically the graph γ: i) into the Poincaré disk (|w| < 1) for
the model of uniform planar growth, and ii) into the strip of
the half-plane (Imr > 0,−1< Rer < 0) for the model of one-
dimensional growth. In Fig.3 we have drawn the tessellation
of the Poincaré disc and of the strip by equilateral curvilinear
triangles, which are obtained from the flat triangle ABC of the
hyperbolic surface (see Fig.1b) by conformal mappings z(w)
and z(r) discussed below. Note, that a conformal mapping
preserves the angles between adjacent branches of the graph.
The graph γ , shown in Fig.3, connects the centers of the tri-
angles and is isometrically embedded into the corresponding
hyperbolic domain. Besides, the areas of images of the do-
main ABC are the same.

For the sake of definiteness consider the graph γ , isomet-
rically embedded into the hyperbolic disk, shown in Fig.3a.
Now, we would like to find the surface in the 3D Euclidean
space above the w-plane such that its Euclidean metrics coin-
cides with the non-Euclidean metrics in the disk. The Hilbert
theorem35 prohibits to do that for the class of C2-smooth sur-
faces. However, since we are interested in the isometric em-

(a) (b)

B

C

A

�
�

BC

A

Fig. 3 Tessellation of the hyperbolic plane by the images of the
curvilinear triangle ABC: (a) for Poincaré disc; (b) for a strip of the
upper half-plane. The graph γ connects the centers of images of
ABC.

bedding of piecewise surface consisting of glued triangles of
fixed area, we can proceed with the standard arguments of dif-
ferential geometry36. The metrics ds2 of a 2D surface, param-
eterized by (u,v), is given by the coefficients

E = r2
u, F = r2

v , G = (ru,rv) (5)

of the first quadratic form of this surface:

ds2 = E du2 +2F dudv+Gdv2 (6)

The surface area then reads dS =
√

EG−F2 dudv.
The area SABC of the planar triangle ABC on the plane z =

x+ iy can be written as:

SABC =
∫

4ABC

dxdy = const (7)

where the integration is restricted by the boundary of the tri-
angle. Since we aimed to conserve the metrics, let us require
that the area of the hyperbolic triangle ABC, after the confor-
mal mapping, is not changed and, therefore, it reads:

SABC =
∫

4ABC

|J(z,w)|dudv; J(z,w) =

∣∣∣∣∣
∂ux ∂uy

∂vx ∂vy

∣∣∣∣∣ (8)

where J(z,w) is the Jacobian of transition form z to new co-
ordinates, w. If z(w) is holomorphic function, the Cauchy-
Riemann conditions allow to write

J(w) =
∣∣∣∣
dz(w)

dw

∣∣∣∣
2

≡ |z′(w)|2. (9)

On the other hand, we may treat the value of the Jacobian,
J(w), as a factor relating the change of the surface element
under transition to a new metrics, the co-called ”coefficient
of deformation”. Let us note here, that the model of ”glued
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triangles” should eventually yield the surface from C1 class in
order to be classified as an isometric immersion, since such
immersion is allowed by the Nash’s theorem,11. As long as
the metrics in the hyperbollic domain should reproduce the
Euclidean metrics of C1-smooth surface, f (u,v), one should
set J =

√
EG−F2, where E,G,F are the coefficients of the

first quadratic form of the surface f . Now, if f (u,v) is function
above w-plane, its Jacobian adopts a simple form:

J(u,v) =
√

1+(∂u f )2 +(∂v f )2 (10)

Making use of polar coordinates in our complex w-domain,
{(ρ,φ) : u = ρ cosφ ,v = ρ sinφ}, we eventually arrive at the
following nonlinear partial differential equation for the surface
profile f (ρ,φ) above w:

(
∂ρ f (ρ,φ)

)2
+

1
ρ2

(
∂φ f (ρ,φ)

)2
= |z′(w)|4−1 (11)

In the case of the hyperbolic strip domain, Fig.3b, the equa-
tion for the growth profile above the domain can be written in
local cartesian coordinates, r = s+ it:

(
∂s f (s, t)

)2
+
(

∂t f (s, t)
)2

= |z′(r)|4−1 (12)

Note, that the inequalities |z′(w)|> 1, |z′(r)|> 1, following
from (11)-(12), determine the local condition of existence of
non-zero real solution and, as we discuss below, can be inter-
preted as the presence of a finite scale surface rigidity.

To establish a bridge between optic and growth problems,
let us mention that, for example, equation (11), coincides with
the two-dimensional eikonal equation (3) for the wavefront,
S(w), describing the light propagating according the Huygens
principle in the unit disk with the refraction coefficient

n(w) =
√
|z′(w)|4−1 (13)

We can construct the conformal mappings z(r) and z(w)
of the flat equilateral triangle ABC in the Euclidean complex
plane z = x+ iy onto the circular triangle ABC in the complex
domains r = s+ it and w = ρ(cosφ + isinφ) correspondingly.
The absolute value of the Gaussian curvature is controlled by
the number, V , of equilateral triangles glued in one vertex:
the surface is hyperbolic only for V > 6. The surfaces with
any V > 6 have qualitatively similar behavior, however the
simplest case for analytical treatment corresponds to V = ∞,
when the dual graph γ is loopless. The details of the confor-
mal mapping of the flat triangle with side a to the triangle with
angles {0,0,0} in the unit strip r are given in the Appendix.
The Jacobian J(z(r)) of conformal mapping z→ r reads:

J(r) = |z′(r)|2 = h2

a2 |η(r)|8 (14)

Fig. 4 Orthogonal projection above the Poincaré disc: area of the
curvilinear triangle in Euclidean space coincides with the area of the
triangle in hyperbolic metrics in Poincaré disc.

and the Jacobian of the mapping z→ w, is written through
the function r(w) that conformally maps the triangle from the
strip onto the Pincaré disk:

J(w) = |z′(w)|2 = 3h2

a2
|η(r(w))|8
|1−w|4 (15)

where

r(w) = e−iπ/3 e2iπ/3−w
1−w

−1; h =

(
16
π

)1/3 Γ( 2
3 )

Γ2( 1
3 )
≈ 0.325

(16)
In both cases (14) and (15), the function in the right-side of
the equation is the Dedekind η-function25:

η(w) = eπiw/12
∞

∏
n=0

(1− e2πinw) (17)

3 Results and their interpretation

The eikonal equation, (3), with constant refraction index, n,
corresponds to optically homogeneous 2D domain, in which
the light propagates along straight lines in Euclidean metrics.
On the other hand, in this case the eikonal equation yields the
action surface with zero Gaussian curvature: a conical surface
above the disk, S(ρ,φ)∼ ρ , for the uniform 2D growth and a
plane above the strip, S(s, t)∼ t, for the directed growth. Note,
that at least one family of geodesics of these surfaces consists
of lines that are projected to the light propagation paths in the
underlying domain. We will show below that the geodesics
of the eikonal surface conserve this property even when the
media becomes optically inhomogeneous.

For growth, the constant refraction index corresponds to an
isometry of a planar growing surface and absence of buck-
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ling. The conformal transformation, that results in the corre-
sponding ”coefficient of deformation”, J2(u,v) = n2(u,v)+1,
is uniformly compressive and the tissue remains everywhere
flat. Thus, it becomes clear, why the essential condition for
buckling to appear is the differential growth, i.e. the spatial
dependence of local rules of cells division.

We solve (11) and (12) numerically with the Jacobian,
corresponding to exponentially growing circumference, (14)-
(15), for different parameters a. We have chosen the Dirichlet
initial conditions along the line (for directed growth above the
strip) and along the circle of some small enough radius (for
uniform 2D growth above the disk). The right-hand side of the
eikonal equations for the specific growth protocol is smooth
and nearly constant up some radius and then becomes more
and more rugged. The constant plateau in vicinity of initial
stages of growth is related with the fact, that exponentially di-
viding cells can be organized in a Euclidean plane up to some
finite generations of growth. However, as the cells prolifer-
ate further, the isometry of their mutual disposition becomes
incompatible with the Euclidean geometry and buckling of
the tissue is observed. Note, that the Jacobian is angular-
dependent, that is the artefact of chosen triangular symme-
try for the cells in our model. The existence of real solution,
f̄ (u,v) of the eikonal equation is related to the sign of its right-
hand side and is controlled by the parameter a, while the com-
plex solution f (u,v) = fR(u,v)+ i fI(u,v) can be found for ev-
ery a.

First, we consider the 2D growth above the Poincaré do-
main, starting our numerics from low enough values of a,
for which the right-hand side of the eikonal equation, (11),
is strictly positive on the plateau around the source of growth.
Physically that means flexible enough tissues, since, by con-
struction, we require a to be a scale on which the triangu-
lated tissue does not violate flat geometry. The real solution
f̄ (u,v) for these parameters exists up to late stages of growth,
see Fig.5 left. Note, that a conical solution at early stages
of growth is related to the plateau in the Jacobian and, as it
was discussed above, corresponds to the regime when cells
can find places on the surface without violating the flat geom-
etry. From the geometric optics point of view, this corresponds
to constant refraction index and straight Fermat geodesic paths
in the underlying 2D domain. We show in Fig.5 that under in-
creasing of a the initial area of conical behavior is shrinking,
since the critical generation, at which the first buckling mode
appears, is lower for larger cells. In course of growth, the sur-
face is getting negatively curved for some angular directions,
consistent with chosen triangular symmetry. It is found rem-
iniscent of the shape of bluebells and, in general, many sorts
of flowers.

At late stages of growth, as we approach the boundary of the
Poincaré disk, ρ → 1 at some fixed value of φ , corresponding
values of the right hand side of (11) become negative, lead-

ing to the complex solution of the eikonal equation. Fortu-
nately, we may infer some useful information from the holo-
morphic properties of the eikonal equation in this regime, not
too close to the boundary of the disc. Applying the Cauchy-
Riemann conditions to the solution of the eikonal equation, f ,
we have: ∂u fR = ∂v fI and ∂v fR = −∂u fI . Thus, the function
f̄ can be analytically continued in the vicinity of points along
the curve Γ in the (uv) plane, at which the right hand side of
the eikonal equation nullifies. Moreover, using this property,
one can show, that the absolute value of the complex solution
in the vicinity of Γ smoothly transfers to the real-valued solu-
tion, as one approaches the Γ curve:

lim
(u,v)→Γ

(∇| f (u,v)|)2 = (∇ fR(u,v))
2 |Γ ≡

(
∇ f̄ (u,v)

)2

| f (u,v)| =
√

f 2
R(u,v)+ f 2

I (u,v)
(18)

 

 

 

Fig. 5 The bluebell phase, obtained by numerical solution of (11)
for two flexible tissues: a = 0.07 (first row) and a = 0.14 (second
row). Figures on the right show appearance of buckling instabilities
at the edge with growth.

The non-existence of real solutions of the eikonal equation
at late stages is a direct consequence of the presence of finite
bending scale, on which the tissue is locally flat. As it was
mentioned above and is shown in Fig.5, low values of a lead
to elongated conical regime. Since a stands for the scale on
which the circumference length of the tissue doubles, in the
a→ 0 limit the real solution exists everywhere inside the disk,
but it is everywhere flat (conical). Hopefully, the analytic con-
tinuation allows one to investigate buckling for negative values
of n2(u,v) = J2(u,v)− 1 by taking the absolute value of the
solution, at least not far away from the zero-curve Γ. In this
regime buckling instabilities on the circumference of the blue-
bell arise. In Fig.6 we show proliferation of buckling near the
critical point. First, the evolution of buckling instabilities at
the edge can be understood as a subsequent doubling of peaks
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and saddles along the direction of growth. Then some hierar-
chy in peaks size is seen. We note, that this hierarchical orga-
nization is a natural result due to the theoretic-number prop-
erties of the Dedekind η-function. Though it is known, that
in real plants and flowers buckling instabilities do not prolif-
erate profoundly, since the division process is getting limited
at late stages of growth, the formal continuation of the eikonal
equation beyond Γ predicts a self-similar buckling profile at
the circumference of growing tissues.

 

 

 

 

Fig. 6 Development of buckling instabilities at the edge of flower
for rigidity parameter a = 0.14. The right figures show hierarchical
organization of the flower’s circumference in detail.

Now we pay attention to the directed growth above the
half-plane domain. Here we solve the equation (12) with the
Dirichlet boundary conditions, set along the line t = 1, and
the tissue is growing towards the boundary t = 0 in the upper
halfplane Imr > 0. At low stages of growth the solution is flat
until the first buckling mode appear, Fig.7. The subsequent
growth is described by taking the absolute value of the solu-
tion, since no real solution exists anymore. As in the former
case, the behavior is controlled by the value of a.

When the growth approaches the boundary, the edge of
the tissue becomes more and more wrinkled. Emergence of
new buckling modes is the consequence of the Dedekind η-
function properties: doubling of parental peaks at the course
of growth. Under the energetic approach for a leaf, very
similar fractal structures can be inferred from the interplay
between stretching and bending energies in the limit of ex-
tremely thin membranes: while the cell density (and the cor-
responding strain, σ ) on the periphery increases, the newly
generating wavelengths decrease, λ ∼ σ−1/4,15.

Increasing the size a of the elementary flat triangle domain,
we figure out, that for some critical value, acr, the starting
plateau of the corresponding Jacobian crosses the zero level
and becomes negative. Our model implies no solutions for
such stiff tissues. This limitation is quite natural since we do

 

Fig. 7 Numerical solutions of (12) for the directed growth. Figures
show enhancing of buckling at the edge.

not consider in-plane deformations of the tissue. In reality,
for a > acr the tissue is so stiff, that it turns beneficial to be
squeezed in-plane rather than to buckle out. One may conjec-
ture that a is the analogue of the Young modulus, E, that is
known to regulate the rigidity of the tissue in the energetic ap-
proach, along with the thickness, h, and the Poisson modulus,
µ , in their certain combination, known as bending stiffness,
D = Eh3

12(1−µ2)
.

It is worth mentioning that at first stages of growth, until
the instabilities at the circumference have not yet appeared,
at certain angles (triangle-like cells) the surface bends simi-
lar to the Beltrami’s pseudosphere, that has a constant nega-
tive curvature at every point of the surface, compare Fig.5 and
Fig.8. The similarity is even more striking for very low a,
when the triangulating parameter is fairly small. It is known
that the pseudosphere locally realizes the Lobachevsky geom-
etry and can be isometrically mapped onto the finite part of
the half-plane or of the Poincaré disk, Fig.8a-b. According
to the Hilbert theorem,35, no full isometric embedding of the
Poincaré disk into the 3D space exists. Thus, in order to or-
ganize itself in the 3D space, the plant grows by the cascades
of pseudospheres, resembling peaks and saddles, that is an al-
ternative view on essence of buckling. Moreover, it has been
shown in the recent work of Gemmer et al., that presence of
branch points and lines of inflection lowers the bending energy
of the buckling isometry and essentially leads to formation of
fractal-like patterns on the edge of a strip with prescribed met-
ric tensor,13. These results chord well with our discrete model
of glued triangles, where the choice for the metrics is made
naturally.

Interestingly, some flowers, such as calla lilies, initially
grow psuedospherically, but then crack at some stage of
growth and start twisting around in a helix. Apparently, this is
another route of dynamic organization of non-Euclidean isom-

1–11 | 7



etry in the Euclidean space. The Dini’s surface, Fig.8c is
known in differential geometry as a surface of constant neg-
ative curvature and, in comparison with the Beltrami’s pseu-
dosphere, is infinite. The problem of sudden cracking of the
lilies seems to be purely biological, but as soon as the crack
appeared, the flower may relief the stresses caused by sub-
sequent differential growth through twisting its petals in the
Dini’s fashion.

(a) (b) (c)

Fig. 8 (a)-(b) Pseudosphere and correspondence of boundaries on
the Poincaré disc; (c) Dini surface.

Turn now to the eikonal interpretation of buckling. For the
sake of simplicity, we will proceed here in the cartesian co-
ordinates. Seeking the solution of (3) and (12) in the implicit
form H(x)≡ H(x0,x1,x2) = H0 with x0 = i f , x1 = u, x2 = v,
we can rewrite (12) as:

gi j ∂H(x)
∂xi

∂H(x)
∂x j = 0; gik =




n2 0 0
0 1 0
0 0 1


 (19)

Eq.(19) reveals the relativistic nature of the eikonal equation24

and describes the propagation of light in a (2+1)D space-time
in the gravitational field with induced metrics g defined by the
metric tensor gik, where n≡ n(x1,x2), speed of light put c = 1.
Having g, one can reconstruct geodesics that define the paths
of the light propagation in our space-time. The parameterized
geodesics family, xλ (τ), where λ = 0,1,2, can be found from
the equation:

d2xλ

dτ2 +Γλ
i j

dxi

dτ
dx j

dτ
= 0 (20)

where

Γi
kl =

1
2

gim
(

∂gmk

∂xl +
∂gml

∂xk −
∂gkl

∂xm

)
(21)

are Christoffel symbols and gi j is the covariant form of the
metrics (gi jg jk = δ k

i ). Calculating the symbols for the spe-
cific metrics (19), we end up with the set of equations for the

geodesics in a parametric form:





uττ −
1
n3

∂n
∂u

f 2
τ = 0,

vττ −
1
n3

∂n
∂v

f 2
τ = 0,

fττ −
2
n

dn
dτ

fτ = 0

(22)

From the first two lines of (22), one gets uττ
vττ

= ∂n
∂u

(
∂n
∂v

)−1
.

Note, that the same relation follows directly from (2), if
the planar domain is parameterized by the same coordinates
x = x(u,v). Thus, one may conclude, that the projections of
the geodesics from the (2+1)D space-time onto the (uv)-plane
coincide with light trajectories in the flat domain with refrac-
tion coefficient n(u,v).

4 Conclusion and conjectures

In this paper we discussed the optimal buckling profile forma-
tion of growing two-dimensional tissue evoked by the expo-
nential cell division from the point-like source and from the
linear segment. Such processes imply excess material gener-
ation enforcing the tissue to wrinkle as it approaches the do-
main boundary. Resulting optimal hyperbolic surface is de-
scribed by the eikonal equation for the two-dimensional pro-
file, and allows for simple geometric optics analogy. It is
shown that the surface height above the domain mimics the
eikonal (action) surface of a particle moving in the 2D me-
dia with certain refraction index, n, which, in turn, is linked to
microscopic rules of elementary cell division and symmetry of
the plant. The projected geodesics of this ”minimal” optimal
surface coincide with Fermat paths in the 2D media, which is
the intrinsic feature of the eikonal equation. This result sug-
gests an idea to treat the growth process itself as a propagation
of the wavefronts in the media with certain metrics.

We have derived the metrics of the growing plant’s sur-
face from microscopic rules of cells division and have shown
that the solution of the eikonal equation describes buckling
of tissues of different rigidities. Our results, being purely ge-
ometric, rhyme well with a number of energetic approaches
to buckling of thin membranes, where the stiffness is con-
trolled by the effective bending rigidity. We show that pres-
ence of a finite scale on which the tissue remains flat, re-
sults in negatively curved growing surfaces and the eikonal
equation implies absence of real solution at late stages of the
growth. Though, an analytical continuation can be constructed
and erratic self-similar patterns along the circumference can
be obtained. In reality, there is a biological pressure-governed
mechanism that prohibits infinite cell division, thus, intense
buckling is rather scarce in flora.
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Recall, that the right-hand side of the eikonal equation mim-
ics the squared refraction index, (13), if buckling is interpreted
as wavefront propagation in geometric optics. At length of our
work it was pointed out, that for the differential growth prob-
lem, negative square of refraction index leads to complex solu-
tion for f . Does complex solution have any physical meaning
for growth? We can provide the following speculation. The
complex solution appears for the late stages of growth when
the finite bending scale of the tissue prohibits formation of
very low-wavelength buckling modes. Since in this regime
the tissue would experience in-plane deformations, one may
improve the geometric model by letting branches to accumu-
late the ”potential energy”. Thereby, the analogy between op-
tics and differential growth can be advanced by noting that the
negative squared refraction index means absorbtion properties
of the media. The propagating wavefront of a moving parti-
cle, dissipates the energy in areas where the refraction index
is complex-valued. In the differential growth the prolifera-
tion of buckling modes may be limited by the energy losses at
branches, that would suppress buckling.

The challenging question concerns the possibility to extend
our approach to the growth of three-dimensional objects, for
example, of a ball that size R grows faster than R2. In this
case, the redundant material can provoke the surface instabil-
ities. We conjecture that some analogy between the boundary
growth and optic wavefronts survives in this case as well.

Authors are grateful to M. Tamm, A. Grosberg, M. Lenz,
L. Mirny and L. Truskinovsly for valuable discussions of var-
ious aspects of the work and to A. Orlov for invaluable help
in numerical solution of the eikonal equation. The work is
partially supported by the IRSES DIONICOS and RFBR 16-
02-00252A grants.

Appendix: Conformal transformation of the flat
triangle to the Poincare domain

The conformal mapping z(w) of the flat equilateral triangle
ABC located in z onto the zero-angled triangle ABC in w,
used in the derivation of (14), is constructed in four sequential
steps, shown in Fig.9.

First, we map the triangle ABC in z onto the upper half-
plane ζ of auxiliary complex plane ζ with three branching
points at 0, 1 and ∞ – see Fig.9a-b. This mapping is realized
by the function z(ζ ):

z(ζ ) =
Γ( 2

3 )

Γ2( 1
3 )

∫ ζ

0

dξ
ξ 2/3(1−ξ )2/3 (23)
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Fig. 9 Conformal mapping z(w) is realized as a composition of
three mappings: z(ζ ) [(a)–(b)], ζ (r) [(b)–(c)], and r(w) [(c)–(d)].
Finally we have z(ζ (r(w))).

with the following coincidence of branching points:




A(z = 0) ↔ A(ζ = 0)

B(z = 1) ↔ B(ζ = 1)

C(z = e−i π
3 ) ↔ C(ζ = ∞)

(24)

Second step consists in mapping the auxiliary upper half-
plane ℑζ > 0 onto the circular triangle ABC with angles
{α,α,0} – the fundamental domain of the Hecke group26 in r,
where we are intersted in the specific case {α,α,0}= {0,0,0}
– see Fig.9b-c. This mapping is realized by the function ζ (r),
constructed as follows29. Let ζ (r) be the inverse function of
r(ζ ) written as a quotient

r(ζ ) =
φ1(ζ )
φ2(ζ )

(25)

where φ1,2(ζ ) are the fundamental solutions of the 2nd order
differential equation of Picard-Fuchs type:

ζ (ζ −1)φ ′′(ζ )+
(
(a+b+1)ζ − c

)
φ ′(ζ )
+abφ(ζ ) = 0 (26)

Following29,30, the function r(ζ ) conformally maps the
generic circular triangle with angles {α0 = π|c− 1|,α1 =
π|a+ b− c|,α∞ = π|a− b|} in the upper halfplane of w onto
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the upper halfplane of ζ . Choosing α∞ = 0 and α0 = α1 = α ,
we can express the parameters (a,b,c) of the equation (26)
in terms of α , taking into account that the triangle ABC in
Fig.9c is parameterized as follows {α0,α1,α∞} = {α,α,0}
with a = b = α

π + 1
2 ,c =

α
π +1. This leads us to the following

particular form of equation (26)

ζ (ζ −1)φ ′′(ζ )+
(α

π
+1
)(

2ζ −1
)
φ ′(ζ )

+
(α

π
+

1
2

)2
φ(ζ ) = 0 (27)

where α = π
m and m = 3,4, ...∞. For α = 0 Eq.(27) takes an

especially simple form, known as Legendre hypergeometric
equation31,32. The pair of possible fundamental solutions of
Legendre equation are

φ1(ζ ) = F
( 1

2 ,
1
2 ,1,ζ

)

φ2(ζ ) = iF
( 1

2 ,
1
2 ,1,1−ζ

) (28)

where F(...) is the hypergeometric function. From (25) and
(28) we get r(ζ ) = φ1(ζ )

φ2(ζ )
. The inverse function ζ (r) is the so-

called modular function, k2(r) (see31? ,32 for details). Thus,

ζ (r)≡ k2(r) =
θ 4

2 (0,e
iπr)

θ 4
3 (0,eiπr)

(29)

where θ2 and θ3 are the elliptic Jacobi θ -functions33? ,

θ2
(
χ,eiπw)= 2ei π

4 r
∞

∑
n=0

eiπrn(n+1) cos(2n+1)χ

θ3
(
χ,eiπr)= 1+2

∞

∑
n=1

eiπrn2
cos2nχ

(30)

and the correspondence of branching points in the mapping
ζ (r) is as follows





A(ζ = 0) ↔ A(r = ∞)

B(ζ = 1) ↔ B(r = 0)

C(ζ = ∞) ↔ C(r =−1)

(31)

Third step, realized via the function r(w), consists in map-
ping the zero-angled triangle ABC in r into the symmetric tri-
angle ABC located in the unit disc w – see Fig.9c-d. The ex-
plicit form of the function r(w) is

r(w) = e−iπ/3 e2iπ/3−w
1−w

−1 (32)

with the following correspondence between branching points:




A(r = ∞) ↔ A(w = 1)

B(r = 0) ↔ B(w = e−2πi/3)

C(r =−1) ↔ C(w = e2πi/3)

(33)

Collecting (23), (29), and (32) we arrive at the following
expression for the derivative of composite function,

z′(ζ (r(w))) = z′(ζ )ζ ′(r)r′(w) (34)

where ′ stands for the derivative. We have explicitly:

z′(ζ ) =
Γ( 2

3 )

Γ2( 1
3 )

θ 16/3
3 (0,ζ )

θ 8/3
2 (0,ζ ) θ 8/3

0 (0,ζ )

and

ζ ′(r)|= iπ
θ 4

2 θ 4
0

θ 4
3

; i
π
4

θ 4
0 =

d
dζ

ln
(

θ2

θ3

)

The identity

θ ′1(0,e
iπζ )≡ dθ1(χ,eiπζ )

dχ

∣∣∣∣∣
χ=0

= πθ0(χ,eiπζ )θ2(χ,eiπζ )θ3(χ,eiπζ )

enables us to write
∣∣z′(r)

∣∣2 = h2 ∣∣θ ′1
(
0,eiπr)∣∣8/3

(35)

where h =
( 16

π
)1/3 Γ( 2

3 )

Γ2( 1
3 )

, and

θ1(χ,eiπr) = 2ei π
4 r

∞

∑
n=0

(−1)neiπn(n+1)r sin(2n+1)χ (36)

Differentiating (32), we get

r′(w) =
i
√

3
(1−w)2

and using this expression, we obtain the final form of
the Jacobian of the composite conformal transformation
J(z(ζ (r(w)))):

J(z(w)) = |z′(w)|2 = 3h2 |η(r(w))|8
|1−w|4 (37)

where
η(r) =

(
θ ′1(0,e

iπr)
)1/3

is the Dedekind η-function (see (15)), and the function r(w)
is defined in (32).
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4. Anomalous one-dimensional fluctuations
of a simple two-dimensional random

walk in a large-deviation regime

Introduction
The following question is the subject of our work: could a two-dimensional (2D)

random path pushed by some constraints to an improbable “large-deviation regime”
possess extreme statistics with one-dimensional (1D) Kardar-Parisi-Zhang (KPZ)
fluctuations? The answer is positive, though non-universal, since the fluctuations
depend on the underlying geometry. We consider in detail two examples of 2D
systems for which imposed external constraints force the underlying stationary
stochastic process to stay in an atypical regime with anomalous statistics. The first
example deals with the fluctuations of a stretched 2D random walk above a semicircle
or a triangle. In the second example we consider a 2D biased random walk along
a channel with forbidden voids of circular and triangular shapes. In both cases we
are interested in the dependence of a typical span ⟨𝑑(𝑡)⟩ ∼ 𝑡γ of the trajectory of
𝑡 steps above the top of the semicircle or the triangle. We show that γ = 1/3, i.e.,
⟨𝑑(𝑡)⟩ shares the KPZ statistics for the semicircle, while γ = 0 for the triangle. We
propose heuristic derivations of scaling exponents γ for different geometries, justify
them by explicit analytic computations, and compare with numeric simulations. For
practical purposes, our results demonstrate that the geometry of voids in a channel
might have a crucial impact on the width of the boundary layer and, thus, on the
heat transfer in the channel.

Contribution
I have participated in derivation of the scaling relations for different curved

geometries and in analytic calculation of the probability distribution of a large
fluctuation for the semi-circle setting.
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The following question is the subject of our work: could a two-dimensional random

path pushed by some constraints to an improbable ”large deviation regime”, possess

extreme statistics with one-dimensional Kardar-Parisi-Zhang (KPZ) fluctuations?

The answer is positive, though non-universal, since the fluctuations depend on the

underlying geometry. We consider in details two examples of 2D systems for which

imposed external constraints force the underlying stationary stochastic process to

stay in an atypical regime with anomalous statistics. The first example deals with

the fluctuations of a stretched 2D random walk above a semicircle or a triangle.

In the second example we consider a 2D biased random walk along a channel with

forbidden voids of circular and triangular shapes. In both cases we are interested

in the dependence of a typical span 〈d(t)〉 ∼ tγ of the trajectory of t steps above

the top of the semicircle or the triangle. We show that γ = 1
3 , i.e. 〈d(t)〉 shares

the KPZ statistics for the semicircle, while γ = 0 for the triangle. We propose

heuristic derivations of scaling exponents γ for different geometries, justify them by

explicit analytic computations and compare with numeric simulations. For practical

purposes, our results demonstrate that the geometry of voids in a channel might

have a crucial impact on the width of the boundary layer and, thus, on the heat

transfer in the channel.

I. INTRODUCTION

Intensive investigation of extremal problems of correlated random variables in statistical
mechanics has eventually led mathematicians, and then, physicists, to understanding that
the Gaussian distribution is not as ubiquitous in nature, as it has been thought over the
centuries, and shares its omnipresence (at least in one dimension) with another distribution,
known as the Tracy-Widom (TW) law. The necessary (though not sufficient) feature of the
TW distribution is the width of the distribution, controlled by the critical exponent ν = 1

3
,

the so-called Kardar-Parisi-Zhang (KPZ) exponent. For the first time, the KPZ exponent
has appeared in the seminal paper [1] (see [2] for review) as the growth exponent in a non-
equilibrium one-dimensional directed stochastic process, for which the theoretical analysis
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has been focused mainly on statistical properties of the enveloping surface developing in
time.

Nowadays one has accumulated many examples of one-dimensional statistical systems of
seemingly different physical nature, whose fluctuations are controlled by the KPZ exponent
γ = 1

3
, contrary to the exponent γ = 1

2
typical for the distribution of independent random

variables. Among such examples it is worth mentioning the restricted solid-on-solid [3] and
Eden [4] models, molecular beam epitaxy [5], polynuclear growth [6–10], several ramifications
of the ballistic deposition [11–14], alignment of random sequences [15], traffic models of
TASEP type [16], (1+1)D vicious walks [17], area-tilted random walks [18], and 1D directed
polymer in random environment [19]. Recently, this list has been replenished by the one-
dimensional modes describing the fluctuational statistics of cold atoms [20].

Here we study a two-dimensional model demonstrating the one-dimensional KPZ critical
behavior. The interest to such systems is inspired by the (1+1)D model proposed by H.
Spohn and P. Ferrari in [21] where they discussed the statistics of 1D directed random walks
evading the semicircle. As the authors stated in [21], their motivation was as follows. It is
known that the fluctuations of a top line in a bunch of n one-dimensional directed ”vicious
walks” glued at their extremities (ensemble of world lines of free fermions in 1D) are governed
by the Tracy-Widom distribution [17]. Proceeding as in [22], define the averaged position
of the top line and look at its fluctuations. In such a description, all vicious walks lying
below the top line, play a role of a ”mean field” of the ”bulk”, pushing the top line to
some equilibrium position. Fluctuations around this position are different from fluctuations
of a free random walk in absence of the ”bulk”. Replacing the effect of the ”bulk” by
the semicircle, one arrives at the Spohn-Ferrari model where the 1D directed random walk
stays above the semicircle, and its interior is inaccessible for the path. In [21] the authors
confirmed that this system has a KPZ critical exponent.

In our work we study fluctuations of a two-dimensional random path pushed by some ge-
ometric constraints to an improbable ”large deviation regime” and ask the question whether
it could possess extreme statistics with one-dimensional Kardar-Parisi-Zhang (KPZ) fluctu-
ations. We propose the ”minimal” model and in its frameworks formulate the answer to the
question posed above.

We consider an ensemble of two-dimensional random paths stretched over some forbidden
void with prescribed geometry and characteristic scale, R. Stretching is induced by the re-
striction on wandering times, t, such that cR < t� R2. The resulting paths conformations
are ”atypical” since their realizations would be highly improbable in the ensemble of uncon-
strained trajectories which exhibit the Gaussian behavior. Statistics in such a tiny subset of
the Gaussian ensemble is naturally controlled by collective behavior of strongly correlated
modes, thus, for some geometries one might expect extreme distribution with KPZ scaling
for fluctuations, similarly to the (1+1)D model of [21]. Simple dimensional analysis supports
this hypothesis. Indeed, consider a realization of the stretched random walk in 2D with the
diffusion coefficient D evading a circular void in two distinct regimes. An unconstrained
t-step random walk, with t � R2 fluctuates freely and does not feel the constraint, thus,
the only possible combination of D and t, which has the dimension of length, could be
d ∼ (Dt)1/2 for the typical span of the path. In the opposite regime, πR < t � R2, the
chain statistics is essentially perturbed by the constraint. In the limit of strong stretching,
t ∼ R, these two parameters (t and R) should enter symmetrically in the combination for the
span. The suitable dimension is given by the scaling expression d ∼ (DRt)γ with γ = 1/3,
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which is the unique combination that in the limit t � R2 recovers a physically relevant
condition d� R and at t ∼ R2 gives d ∼ R. Such a dimensional analysis strongly relies on
the uniqueness of the scale, characterizing constraint, which is true only for homogeneously
curved boundaries and breaks down for more complex algebraic curves, like cubic parabola or
boundaries with a local cusp (triangle). In particular, trajectories above triangular obstacles
fluctuate irrespectively to the size of the void even in the ”strong stretching regime”.

The paper is organized as follows. in Section II we formulate the model of a 2D stretched
random walk above the semicircle (model ”S”) and the triangle (model ”T”) and provide
scaling arguments for the averaged span of paths above the top of these voids, supported
by numeric simulations. in Section III we solve the diffusion equation in 2D in the limit
of stretched trajectories N = cR above the semicircle and the triangle. in Section IV we
discuss the results of numeric simulations for fluctuations of biased 2D random walks above
forbidden voids of different shapes. in Section V we summarise the obtained results and
discuss their possible generalizations and applications.

II. TWO-DIMENSIONAL RANDOM WALK STRETCHED OVER THE VOIDS

OF VARIOUS SHAPES

A. The model

We begin with the lattice version of the model. Consider the N -step symmetric random
walk, rn = {xn, yn}, on a two-dimensional square lattice in a discrete time n (n = 1, 2, ..., N).
The walk begins at the point A, terminates after N steps at the point B, and satisfies three
requirements: (i) for any n one has yn ≥ 0, (ii) the random walk evades the semicircle of the
diameter 2R, or the rectangular triangle of the base 2R, i.e. it remains outside the obstacles
shown in Fig. 1 and (iii) the total number of steps is much less than the squared size of the
obstacle, N � R2. Note that the requirement (i) is not crucial and can be easily relaxed.
The points A and B are located in one lattice spacing from left and right extremities of the
obstacle (semicircle or triangle) – see Fig. 1.

We are interested in the critical exponents γ of in the dependence 〈d(R)〉 ∼ Rγ as R→∞
for the model ”S” and the model ”T”. In this section we provide qualitative scaling estimates
for the mean span of two-dimensional stretched paths above any smooth algebraic curve and
support our analysis by numeric simulations.

B. Scaling arguments: from semicircle to algebraic curve

Normally, a stretched path follows the straight line as much as possible, and gets curved
only if curving cannot be avoided. A random path which has to travel a horizontal distance,
xS, is localized within a strip of typical width (”span” in a vertical direction), yS ∼

√
xS. If

the path is forced to travel a distance xS along some curved arc, and the arc fits this strip,
the curving of the arc can be ignored. Consider a path that has to follow a circle of radius
R. Note that the arc of that circle of length xS fits a strip of width x2S/R. Therefore the
arc length, curving of which can be ignored, is

x2S/R ≤
√
xS (1)
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FIG. 1: Two-dimensional random walk on a square lattice in the upper half-plane, that evades:

(a) Model ”S”: the semicircle of radius R, and (b) Model ”T”: the rectangular triangle of base

2R. The number of steps N � R2.

This puts a limit to xS: it has to be at most R2/3. At shorter distances the stretched path can
be considered as an unconstrained random walk. Therefore, the span in vertical direction is

of the order of yS ∼
√
R2/3 = R1/3. Beyond this ”blob” of length xS = R2/3 the arc itself

deviates considerably from a straight segment, and the estimate
√
xS for fluctuations above

it is no longer applicable.

To add some geometric flavor to these arguments, consider Fig. 2a and denote by yS an
average span of the path in vertical direction above the point C of the semicircle, and by xS
– the typical size of the horizontal segment, along which the semicircle can be considered as
nearly flat. We divide the path in three parts: AA′, A′B′ and B′B. The parts AA′ and BB′

of the trajectory run above essentially curved domains, while the part A′B′ constitutes a
segment that is mainly flat. Schematically this is shown in Fig. 2b: in the limit yS � R, the
horizontal segment LM linearly approximates the corresponding arc of the circle. Our goal is
to estimate xS and to provide self-consistent scaling arguments for fluctuations yS(R) ∼ Rγ

of the stretched path.

From the triangle KLM we have:

|LM | =
√
R2 − |KM |2 =

√
R2 − (R− yS)2

∣∣∣
yS�R

≈
√

2RyS (2)

Since |LM | ≡ xS, the condition of stretched trajectories, yS � R, implies the relation

xS ∼
√
RyS (3)

Consider now a two-dimensional random walk which starts at the point L near the left
extremity of the excluded shape and terminates anywhere at the segment MN (|MN | ≡ yS).
Since the horizontal support, |LM | = xS, of the path is flat, the span of the trajectory in
vertical direction is the same as for an ordinary random walk. Thus, we can estimate the
typical span, yS, as

yS ∼
√
xS (4)

On the scales larger than xS the curvature of the semicircle becomes essential and the relation
(3) is not valid anymore.
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FIG. 2: (a) Two-dimensional random walk evading the semicircle. The part A′B′ lies above the

essentially flat region of the semicircle. The figure (b) provides an auxiliary geometric construction

for Eq.(2).

It should be noted that (4) is insensitive to a specific way of stretching. Eq (4) remains
unchanged even if we introduce an asymmetry in random jumps along x–axis while keeping
the symmetry of jumps in y direction. Substituting the scaling (4) into (2), we obtain for
the semicircle (the model ”S”):

xS ∼
√
R
√
xS (5)

From the first equation of (5) we get for the semicircle:

xS ∼ R2/3; yS ∼
√
xS ∼ R1/3 (6)

which implies that γ = 1
3
. The analytic computations presented in Section III for the model

”S” support this conclusion. Let us note that the large-scale deviation principle for the
constrained 1D random walk process has been discussed recently in [23].

We expect that our scaling can be extended to random walks above any algebraic curve.
The critical exponent γ for the fluctuations of the stretched random walk above the curve
Γ: y = xη in 2D should be understood as follows. Define the characteristic length scale, R,
and represent the curve Γ in dimensionless units:

y

R
≈
( x
R

)η
(7)

For η = 2 we are back to semicircle (3). As in the former case, Eq. (7) should be equipped
by (4). Solving these equations self-consistently, we get the following scaling dependence for
the span yG(R) of the path above the curve Γ:

yG(R) ∼ Rγ; γ =
η − 1

2η − 1
(8)

Note that for η → ∞ the curve is straight and we get the fluctuations with the standard
Gaussian exponent, γ = 1/2, which is the exponent of fluctuations above the straight line.
The opposite case of a cusp can be approached in the limit η → 1, which gives γ = 0. This
result rhymes well with simulations of paths stretched over the triangle (see below) and
analytic solution of the diffusion equation (Section III).
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C. Heuristic arguments: triangle

To estimate the fluctuations of the path of N steps stretched over the triangle of base
2R, the above arguments for the semicircle need to be modified since the curvature of the
triangle is non-analytic being concentrated at one single point C at the tip of the obstacle.
To proceed, some auxiliary construction should be used – see Fig. 3a and its zoom in Fig.
3b.

FIG. 3: (a) Two-dimensional random walk evading a triangle, and (b) the magnified part of the

system near the tip of the triangle. The points A′ and B′ are respectively the points of the first

entry by the random walk into the wedge above the point O and the last exit from it; (c) subpart of

the random walk from A to A′ which does not escape the wedge with zero’s boundary conditions.

We split the full trajectory between points A and B into three parts: the part of N1

steps running between point A and first entry to the point A′, the part of M steps running
between the points A′ and B′, and the part N2 running between B and first entry to the
point B′. The parts N1 and N2 lie above the flat boundaries of the triangle AOB, while the
part A′B′ is located in the vicinity of the tip of the triangle. The partition function, ZN , of
the full N -step path with the extremities at A and B can be written as follows:

ZN(R) =
∑

{N1+M+N2=N}

∑

{m1,m2}
UN1(m1, R)WM(m1,m2)UN2(m2, R) (9)

where UN1(m1, R), WM(m1,m2), UN2(m2, R) are, respectively, the partition functions of
parts AA′, A′B′ and B′B, the first sum runs over N1,M,N2 such that N1 + M + N2 = N
and m1 and m2 are the positions of the points A′ and B′ at the edges of the wedge (see Fig.
3b). The partition functions UNi(mi, R) (i = 1, 2) can be computed on the lattice in the
geometry shown in Fig. 3c with zero’s boundary conditions in the wedge

UNi(mi, R) =
1

π2

∫ π

0

dq1

∫ π

0

dq2 sin(q1R
√

2) sin q1 sin(q2mi) sin q2(cos q1 + cos q2)
Ni (10)

where q1 and q2 are the Fourier-transformed coordinates along the wedge sides. In (10) the
subpath of Ni steps is not yet stretched, i.e. Ni, mi and R are all independent.

Our goal now is to estimate the typical length M of the subpath between the points A′

and B′ as shown in Fig. 3b. Below we show that M = const which immediately leads to
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the conclusion that yT = const. To proceed, it is convenient to pass to the grand canonical
formulation of the problem. Let us define the generating function Z(s, R) =

∑∞
N=0 ZN(R)sN

of the grand canonical ensemble, and introduce the variable β = − ln s, which has the sense
of an ”energy” attributed to each step of the trajectory (note that β > 0 since 0 < s < 1).
To ”stretch” the trajectory, we should imply β � 1. In the stretched regime β � 1 the
generating function of UNi(mi, R) can be estimated as follows

U(β,mi, R) =

∫ ∞

0

UNi(mi, R)e−βNidNi ∼
miRβ

3/4
s exp

(
−2
√
βs
√
m2
i + 2R2

)

(m2
i + 2R2)5/4

(11)

where we also supposed that R � 1 and introduced βs = β − ln 4. The shift by ln 4
in β comes from the fact that the partition function (10) on the square lattice has the
exponential prefactor 4Ni ≡ eNi ln 4 which should be properly taken into account in the
generation function.

The generation function of ZN(R) reads:

Z(β,R) =
∞∑

N=0

ZN(R)sN =
∑

{m1,m2}
U(β,m1, R)W (β,m1,m2)U(β,m2, R) (12)

Now we should account for the contribution of W (β,m1,m2) to (12). Note, that each step
of the path of length M between points A′ and B′ carries the energy β > 0. To maximize
the contribution of W (β,m1,m2), one should make the corresponding length M between A′

and B′ as small as possible, since we loose the energy βM for M steps. Thus, M should
be of order of max(m1,m2). From (11)–(12) we immediately conclude that at βs � 1
the major contribution to Z(β) comes from mi which should be as small as possible, i.e.
m1 ∼ m2 = const. This immediately implies that M = const and the span yT (for N = cR
and R� 1) becomes independent on R:

yT = const (13)

The same conclusion follows from the solution of the boundary problem in the open wedge
for the model ”T” – see Section IV. Note, that putting η = 1 into (8), we get γ = 0, thus
arriving at the same conclusion of independence of the span of fluctuations of stretched path
above the tip of the triangle on R.

D. Numerics

Here we confirm our scaling and heuristic analyses of the mean height of the 2D ensemble
of stretched trajectories above the top of the semicircle and the triangle using numeric simu-
lations. Let us emphasize that this part pursues mainly the illustrative goals, while detailed
analytic computations for distribution functions are provided in the following Section III.

Specifically, we have enumerated all N -step paths on the square lattice, travelling from
the point A(−R− 1, 0) to the point D(0, R+ d) above the top of the semicircle or triangle,
as shown in Fig. 1a,b. Let us emphasize that this is an exact path counting problem.
The step length of a path coincides with the lattice spacing. We allow all steps: ”up”,
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”down”,”right”, ”left” and set the constraint N = cR on the total number of steps. The
values of R and c in the simulations are as follows: R = {10, 20, 40, 60, 100, 200, 300, 400}
and c = {5, 10, 20}. Counting ensemble of trajectories from A to D is sufficient for extracting
the scaling dependence 〈d(R)〉 ∼ Rγ since the part of the path from A to C is independent
from the part from C to B. The enumeration of trajectories respects boundary conditions
and is performed recursively within the box of size 3R × 3R with the bottom left corner
located at the point (−2R, 0).

The results of simulations in doubly-logarithmic scale log 〈d(R)〉 vs logR for the averaged
span 〈d〉 of paths above the top of the semicircle of radius R and the triangle of base 2R are
presented in Fig. 4. The physical meaning of the constant c is the effective ”stretching” of
the path: the less c, the more stretched the path (definitely, on the square lattice c > 4.

1 0 1 0 01

1 0

1 0 0

1 0 1 0 01

1 0

1 0 0

( b )

M o d e l  " S "
 c = 5 ,    s l o p e  0 . 3 6
 c = 1 0 ,  s l o p e  0 . 3 8
 c = 2 0 ,  s l o p e  0 . 3 9

log
 <d

(R
)>

l o g  R

s l o p e  0 . 3 3

( a )

s l o p e  0 . 3 3

M o d e l  " T "
 c = 5 ,    s l o p e  0 . 0 3
 c = 1 0 ,  s l o p e  0 . 0 7
 c = 2 0 ,  s l o p e  0 . 1 1

log
 <d

(R
)>

l o g  R

FIG. 4: The mean deviation of the path of N steps above the semicircle (a) and the triangle (b)

for different values of the parameter c, which controls ”stretching” of the path (the less c the more

stretched the path).

As one sees from Fig. 4a, all stretched paths above the semicircle demonstrate the scaling
〈d(R)〉 ∼ Rγ with the exponent γ close to 1/3. For less stretched paths (larger values of
c) the deviation form the scaling with γ = 1

3
becomes notable. The span of stretched 2D

trajectories above the tip of the triangle shown in Fig. 4b are almost independent on R (i.e.
the exponent γ is close to 0). This result is consistent with our scaling estimates, as well as
with the theoretical arguments presented below. Some conjectures about possible physical
consequences of the difference between fluctuations of stretched random trajectories above
the semicircle and above the triangle are formulated in Section IV.
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III. 2D STRETCHED RANDOM WALKS ABOVE THE SEMICIRCLE AND

TRIANGLE: ANALYTIC RESULTS

A. Semicircle

The symmetric two-dimensional random walk on a lattice depicted in Fig. 1a in the
limit N → ∞, a → 0 (where a is the lattice spacing) where Na = t, converges to the

two-dimensional Brownian motion of time t with diffusion coefficient D = a2

4
, that evades

the semicircular void of radius R. Let P (ρ, φ; ρ0, φ0; t) be the probability density to find the
random walk of length (time) t at the point (ρ, φ) above the void under the condition that
the path begins at the point (ρ0, φ0). The function P (ρ, φ; ρ0, φ0; t) ≡ P (ρ, φ, t) satisfies the
diffusion equation in polar coordinates





∂P (ρ, φ, t)

∂t
= D

[
1

ρ

∂

∂ρ

(
ρ
∂P (ρ, φ, t)

∂ρ

)
+

1

ρ2
∂2P (ρ, φ, t)

∂φ2

]

P (ρ = R, φ, t) = P (ρ→∞, φ, t) = P (ρ, φ = 0, t) = P (ρ, φ = π, t) = 0

P (ρ, φ, 0) = δ(ρ− ρ0)δ(φ− φ0)

(14)

The explicit solution of (14) reads

P (ρ, φ, t) =
∞∑

k=1

2ρ0
π

sin(kφ0) sin(kφ)

∫ ∞

0

e−λ
2DtZk(λρ, λR)Zk(λρ0, λR)λdλ (15)

where

Zk(λρ, λR) =
−Jk(λρ)Nk(λR) + Jk(λR)Nk(λρ)√

J2
k (λR) +N2

k (λR)
(16)

and J and N denote correspondingly the Bessel and the Neumann functions. Introducing
the new variables, µ and r, and making in (16) the substitution

λ =
µ

R
, ρ = R + r, (17)

we arrive at the following expression for P (ρ, φ, t):

P (r, φ, t) =
2ρ0
πR2

∞∑

k=1

sin(kφ0) sin(kφ)

∫ ∞

0

e−
µ2Dt

R2 Zk

(
µ+

µr

R
, µ
)
Zk

(
µ+

µr0
R
, µ
)
µdµ (18)

The probability to stay above the top of the semicircle consists of two parts: the proba-
bility P ′ = P

(
r, φ = π

2
, t′
)

to run from the point A to the point (r, φ = π
2
) during the time

t′ and the probability P ′′ = P
(
r, φ = π

2
, t′′
)

to run from the point (r, φ = π
2
) to the point B

during the time t′′ = t− t′. Obviously, P ′ and P ′′ are independent, thus the total probability
to find path at the point (r, φ = π

2
) above the semicircle can be estimated as Q = P ′ × P ′′

where t′ = t′′ = t/2, namely

Q
(
r, φ =

π

2
, t
)

=
1

N P 2
(
r, φ =

π

2
, t = cR

)
; N =

∫ ∞

0

P 2
(
r, φ =

π

2
, t
)
dr (19)
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Recall that we are interested in stretched trajectories only, meaning that we should impose
the condition t = cR and consider the typical width, d(R) of the distribution Q(r, R), where
d2(R) is defined as follows:

〈
d2(R)

〉
=

∫ ∞

0

r2Q
(
r, φ =

π

2
, cR

)
dr −

(∫ ∞

0

r Q
(
r, φ =

π

2
, cR

)
dr

)2

(20)

at large R. By the condition t = cR to deal with stretched trajectories, our consideration
differs from the standard diffusion process above the impenetrable disc, which was exhaus-
tively discussed in many papers, for example, in [24]. In the figure Fig. 5 we have plotted
(for D = 1):

(a) The expectation d̄(R) =
√
〈d2(R)〉 as a function of R in doubly logarithmic coordinates

which enables us to extract the critical exponent γ in the dependence d̄(R) ∼ Rγ (Fig.
5a),

(b) The distribution function Q
(
r, φ = π

2
, cR

)
of r at some fixed c (c = 5) and R in

comparison with the function bAi2(a1 + `r), where Ai(z) = 1
π

∫∞
0

cos(ξ3/3 + ξz) dξ
is the Airy function (see, for example, [25]), a1 ≈ −2.3381 is the first zero of Ai,

b =
[∫∞

0
Ai2(a1 + `r)dr

]−1
, and `(c) is the c-dependent numeric constant (Fig. 5b).

8 0 1 0 0 1 2 0 1 4 0 1 6 0

8

9

1 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 00 , 0 0

0 , 0 1

0 , 0 2

0 , 0 3

0 , 0 4

0 , 0 5

log
 d(

R)

l o g  R

c  = 1 0 ,  s l o p e  0 . 3 3

( b )

-

Q(
r), 

 Ai
2 (a 1+ 

l r)

r

  Q ( r , φ= π / 2 , c R )
  A i 2 ( a 1 +  l  r )

( a )
FIG. 5: (a) Expectation d̄ as a function of R is doubly logarithmic coordinates for stretched

trajectories above the semicircle; (b) Comparison of the distribution Q(r) with Ai2(a1 + `r) for the

radius of a semicircle R = 100, where a1 ≈ −2.3381 is the first zero of Ai and ` ≈ 0.0811.

As one sees from Fig. 5, the function Ai2(a1 + `r) perfectly matches the probability
distribution Q

(
r, φ = π

2
, cR

)
. The detailed analysis of this correspondence is postponed to

the paper [26], which will be devoted to the discussion of the statistics of closed stretched
random ”flights” above the circle.

B. Triangle

The statistics of random paths above the triangle can be treated in polar coordinates
centered at the tip C of the triangle as shown in Fig. 1b. The random walk is free in the



11

outer sector ACB with the angle 3π
2

and zero boundary conditions at the sides AC and
BC are applied. Seeking the solution for the corresponding diffusion equation in the form
P (r, v, t) = T (t)P(r, v), we have:





ν2P(r, v) +

(
∂2rr +

∂r
r

+
∂2vv
r2

)
P(r, v) = 0

P(r = 0, v) = P(r →∞, v) = P (r, 0) = P
(
r,

3π

2

)
= 0

∂tT (t) + ν2DT (t) = 0

(21)

Separating variables, we can write P(r, v) = Q(r)V (v) and get a set of coupled eigenvalue
problems for the ”angular”, v, and ”radial”, r, coordinates.

{
∂2vvV (v) + λ2nV (v) = 0

V (0) = V
(
3π
2

)
= 0

;

{(
r2∂2rr + r∂r +

(
ν2r2 − λ2n

))
Q(r) = 0

Q(r = 0) = Q(r →∞) = 0
(22)

The particular solutions to the ”angular” and ”radial” boundary problems read as follows:



Vn ∝ sin

(
2nv
3

)

Qn ∝ J 2n
3

(νr)
(23)

The function P (r, v, t) can be written now as follows:

P (r, v, t) =
∞∑

n=1

∞∫

0

An(ν)J 2n
3

(νr) sin

(
2nv

3

)
e−ν

2Dtdν (24)

where constants An(ν) satisfy the initial conditions:

∞∑

n=1

∞∫

0

An(ν)J 2n
3

(νr) sin

(
2nv

3

)
dν = δ(r −R)δ(v − v0) (25)

and

An(ν) =
4R

3π
sin

(
2nv0

3

)
νJ 2n

3
(νR) (26)

Rewrite the sum in (24) as follows:

P (r, v, t) =
∞∑

n=1

4R

3π
sin

(
2nv0

3

)
sin

(
2nv

3

) ∞∫

0

νJ 2n
3

(νR)J 2n
3

(νr)e−ν
2Dtdν (27)

Evaluating the integral in (27):

∞∫

0

νJ 2n
3

(νR)J 2n
3

(νr)e−ν
2Dtdν =

1

2Dt
e−

r2+R2

4Dt I 2n
3

(
rR

2Dt

)
(28)
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we arrive finally at the following expression for the probability distribution:

P (r, v, t) =
4R

3π

1

2Dt
e−

r2+R2

4Dt

∞∑

n=1

sin

(
2nv0

3

)
sin

(
2nv

3

)
I 2n

3

(
rR

2Dt

)
(29)

Consider a conditional probability distribution for the trajectory passing from A to B
above the triangle through the point D:

P (A→ D → B) =
P (A→ D)P (B → D)∫ ∞

0

P (A→ D)P (B → D)dr

(30)

where P (X → D) is the probability to run from the point X to the point D(d, 3π
4

) above
the tip of the triangle. The sum in (28) has the following asymptotic behavior

∞∑

n=1

sin

(
2nv0

3

)
sin
(nπ

2

)
I 2n

3
(x) ∼ xe−x

6/7

(31)

Collecting (29)–(31), we find the behavior of 〈d〉 for t = cR

〈d〉 =

∫ ∞

0

rP (A→ D → B)dr ∼ const (32)

which means that the fluctuations of stretched trajectories above the tip C of the triangle
are bounded and do not depend on R. This result supports the simple scaling consideration
exposed in Section II.

IV. BIASED 2D RANDOM WALKS IN A CHANNEL WITH FORBIDDEN

VOIDS

As a further development of the problem of 2D random walk statistics above the semicircle
and triangle, we numerically consider an ensemble of 2D random walks with a horizontal
drift in a presence of forbidden voids of different shapes, as it is shown in Fig. 6. The setting
of this model slightly differs from the one discussed above. We regard an ensemble of long
trajectories (t � R) starting at the point A located to the left from the semicircle of the
triangle, however we do not fix the terminal point of the path, allowing it to be everywhere.
Instead of controlling the lengths of the path, t, we have fixed the value of the horizontal
drift, ε. Thus, the coordinates of the tadpole of a growing lattice path obey the following
recursive transformations:

(xt+1, yt+1) =





(xt − 1, yt) with probability 1
4
− ε

(xt + 1, yt) with probability 1
4

+ ε
3

(xt, yt + 1) with probability 1
4

+ ε
3

(xt, yt − 1) with probability 1
4

+ ε
3

(33)
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d
d

drift drift

(a) (b)

y

x

y

x

Model "S" Model "T"

R

2R

FIG. 6: Biased 2D random walk in a channel with forbidden voids in a form of semicircle (a) and

a triangle (b).

at ε = 0 we return to the symmetric two-dimensional random walk, while at ε = 1
4

the
backward steps are completely forbidden.

We have performed Monte-Carlo simulations to determine the fluctuations of 2D trajec-
tories with the drift ε (ε ≥ 0) above the top of the semicircle (triangle). The corresponding
results are presented in Fig. 7 for ε = 3

28
, for which the quotient of forward to backward

horizontal jump rates is equal to 2. In the case of a semicircle, the KPZ scaling for the
expectation, 〈d(R)〉 ∼ R1/3, holds, while for the case of the triangle the fluctuations do not
depend on R, and the behavior 〈d(R)〉 = const is clearly seen. We have simulated of order of
103 lattice trajectories up to the length tmax = 2×103 in the presence of voids characterized
by R = {250, 500, 750, 1000, 1250, 1500} (measured in the units of lattice spacing). Thus,
the statistics of biased 2D random walks in presence of forbidden voids of semicircular and
triangular shapes matches the fluctuations of stretched 2D random walks above the same
shapes discussed at length of the Section II.

Found behavior of biased random walks in vicinity of excluded voids of various shapes,
allows us to make a conjecture about possible thermodynamic properties of laminar flows
in tubes with periodic contractions. The combination of the drift and geometry pushes the
laminar flow lines which spread near the boundary, into a large deviation regime with the
extreme value statistics, typical for 1D systems with spatial correlations. Since the width
of the fluctuational (skin) layer near the boundary is shape-dependent, one may expect
different heat emission of laminar flows in presence of excluded voids of different geometries.

V. DISCUSSION

In this work we considered simple two-dimensional systems in which imposed external
constraints push the underlying stochastic processes into the ”improbable” (i.e. large devia-
tion) regime possessing the anomalous statistics. Specifically, we dealt with the fluctuations
of a two-dimensional random walk above the semicircle and the triangle in a special case of



14

6 0 0 1 2 0 0 1 8 0 03

4
5
6
7
8
9

1 0

6 0 0 1 2 0 0 1 8 0 03

4
5
6
7
8
9

1 0

( b )( a )

M o d e l  " T "
 n u m e r i c  s i m u l a t i o n
 f i t :  s l o p e  - 0 . 0 2

log
 <d

>

l o g  R

M o d e l  " S "

 n u m e r i c  s i m u l a t o n
 f i t :  s l o p e  0 . 3 1

log
 <d

>

l o g  R

FIG. 7: Mean deviations of open random paths shown in Fig. 6 for ε = 3
28 : (a) above the top of

the semicircle; (b) above the tip of the triangle.

”stretched” trajectories. We proposed the simple scaling arguments supported by the ana-
lytic consideration. As a brief outline of the results, it is worth highlighting three important
points:

• Imposing constraints on a conformational space, which cut off a tiny region of available
ensemble of trajectories, we can push the sub-ensemble of random walks into the
atypical large deviation regime possessing anomalous fluctuations, which could have
some similarities with the statistics of correlated random variables;

• Stretching 2D random paths above the semicircle, we may effectively reduce the space
dimension: in specific geometries we force the system to display the 1D KPZ fluctua-
tions;

• Strong dependence of the fluctuation exponent γ on the geometry of the excluded
area, manifests the non-universality in the underlying reduction of the dimension.
We outline three archetypical geometries: stretching above the plane (Gaussian, with
γ = 1/2), above the semicircle (KPZ-type, with γ = 1/3) and above the triangle or the
cusp (finite, with γ = 0). For an algebraic curve of order η the fluctuation exponent
is γ = η−1

2η−1 .

Our results demonstrate that geometry has a crucial impact on the width of the boundary
layer in which the laminar flow lines diffuse. We could speculate that such an effect is
important for some technical applications in rheology of viscous liquids, for instance, for
cooling of laminar flows in channels with periodically displaced excluded voids of various
shapes (like shown in Fig. 5). Such a conjecture is based on the following obvious fact.
The heat transfer through walls depends not only on the total contact surface of the flow
with the wall, but also on a width of a mixing skin layer: the bigger a mixing layer near
the boundary, the better cooling. However as we have seen throughout the paper, the width
of the mixing layer is shape-dependent, and hence, it might control the ”optimal” channel
geometry for cooling of laminar viscous liquids flows.
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The 1D KPZ-type behavior in a 2D restricted random walk goes far beyond the pure
academic interest. Two important relevant applications should be mentioned. First, by
this model we provide an explicit example of the two-dimensional statistical system which,
being pushed to the large-deviation (”atypical”) region, mimics the behavior of some one-
dimensional correlated stochastic process. Second, our study deals with the manifestations of
a 1D KPZ-type scaling in the localization phenomena of 2D constrained disordered systems.
Namely, let us estimate the free energy, F (N) of an ensemble of N -step paths stretched
above the semicircle as shown in Fig. 8a.

FIG. 8: (a) Two-dimensional random walk evading the semicircle. The part A′B′ lies above the

essentially flat region of the semicircle; (b) splitting in blobs of a trajectory evading curved surface

(semicircle).

One can split the entire stretched path of length N running from A to B above the
semicircle into the sequence of independent ”blobs” with the longitudinal size LS = xS ∼
R2/3 and the transversal size DS = ys ∼ R1/3 – see Fig. 8b. Thus, taking into account the
additive character of the free energy, we can estimate F (N) of ensemble of N = cR–step
paths as

F (R) ∼ N

LS
∼ R

R2/3
∼ R1/3 (34)

Therefore, the Gibs measure, which provides expression of the ”survival probability” in the
curved channel of length N ∼ R and diameter ∼ R1/3, can be estimated as follows

P (R) = e−F (R) ∼ e−αR
1/3

(35)

where α is some model-dependent numerical constant. Passing to the grand canonical for-
mulation of the problem, i.e. attributing the energy E to each step of the path (remembering
that N = cR), one can rewrite the expression for P (R) in (35) as follows

P (E) =

∫ ∞

0

P (R) e−ER dR ∼ ϕ(E) e−b/
√
E (36)

where b = 2α3/2

33/2
and ϕ(E) is a power-law function of E.

To provide some speculations behind the behavior (36), recall that the density of states,
r(E), of the 1D Anderson model (the tight-binding model with the randomness on the
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main diagonal) at E → 0, has the asymptotics (36), known as the ”Lifshitz singularity”,

r(E) ∼ e−a/
√
E, where E is the energy of the system and a is some positive constant (see

[27, 28] for more details).

The asymptotics (35), has appeared in the literature under various names, like ”stretched
exponent”, ”Griffiths singularity”, ”Balagurov-Waks trapping exponent”, however, as men-
tioned in [29], in all cases this is nothing else as the inverse Laplace-transformed Lifshitz
tail of the one-dimensional disordered systems possessing Anderson localization (36). We
claim that the KPZ-type behavior with the critical exponent γ = 1

3
can also be regarded

as an incarnation of a specific ”optimal fluctuation in a large deviations regime” for the
one-dimensional Anderson localization. Finding in some 2D systems a behavior typical for
1D localization, seems to be a challenging problem of connecting localization in constrained
2D and 1D systems. In details this issue will be discussed in a forthcoming publication.
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5. Core-periphery organization of the
cryptocurrency market inferred by the

modularity operator

Introduction
Modularity matrix has long been used for inferring modular structure of

stochastic networks of different scale-free nature. In this paper we show efficiency
of the modularity to detect the core-periphery organization on the example
of the cryptocurrency correlation-based network. The cryptocurrencies exemplify
assets with dual macroeconomical background sharing properties of currency
and stock markets with a non-obvious topological organization. We demonstrate
that the modularity operator applied to a daily correlation-based network rules
out community structure of the cryptocurrency market, simultaneously revealing
stratification into a core and a periphery. Classification of tokens into two
groups is shown to be day-dependent, however, stable tokens with statistically
significant participation ratio can be easily identified. To approve the core-periphery
organization of the stable assets, we compute the centrality measure of the two
groups and show that it is considerably less for the periphery than for the
core. Embedding of a subgraph of the stable tokens into the Euclidean space
demonstrates clear spatial core-shell segregation. Furthermore, we show that the
degree distribution of the minimal spanning tree has a distinctive power-law tail
with exponent γ ≈ −2.6 which makes the cryptomarket an archetypal example of
the scale-free network. Economical reasoning suggests that the revealed topological
motif is in the full agreement with the outliers hypothesis. The core is driven
by traditionally liquid and highly capitalized tokens, resembling blockchain and
payment systems, while the periphery is marked by the stable tokens with little
exposure to the market. We report that the very center of the core is populated
by tokens with strong financial usage, while main drivers of the market (such as
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ETH or XRP) turn out to locate in the middle layers. This is an clear evidence of
speculative processes underlying formation and evolution of the market.

Contribution
I have performed the spectral clustering on the cryptocurrencies data using

the Newman’s modularity, have calculated the closeness centrality measure, have
visualized the network in the Euclidean space and have constructed the mean
spanning tree on the most stable nodes.
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Modularity matrix has long been used for inferring modular structure of stochastic networks
of different scale-free nature. In this paper we show efficiency of the modularity to detect the
core-periphery organization on the example of the cryptocurrency correlation-based network. The
cryptocurrencies exemplify assets with dual macroeconomical background sharing properties of cur-
rency and stock markets with a non-obvious topological organization. We demonstrate that the
modularity operator applied to a daily correlation-based network rules out community structure
of the cryptocurrency market, simultaneously revealing stratification into a core and a periphery.
Classification of tokens into two groups is shown to be day-dependent, however, stable tokens with
statistically significant participation ratio can be easily identified. To approve the core-periphery
organization of the stable assets, we compute the centrality measure of the two groups and show that
it is considerably less for the periphery than for the core. Embedding of a subgraph of the stable
tokens into the Euclidean space demonstrates clear spatial core-shell segregation. Furthermore, we
show that the degree distribution of the minimal spanning tree has a distinctive power-law tail with
exponent ≈ −2.6 which makes the cryptomarket an archetypal example of the scale-free network.
Economical reasoning suggests that the revealed topological motif is in the full agreement with the
outliers hypothesis. The core is driven by traditionally liquid and highly capitalized tokens, resem-
bling blockchain and payment systems, while the periphery is marked by the stable tokens with
little exposure to the market. We report that the very center of the core is populated by tokens
with strong financial usage, while main drivers of the market (such as ETH or XRP) turn out to
locate in the middle layers. This is an clear evidence of speculative processes underlying formation
and evolution of the market.

I. INTRODUCTION

Many core properties of a complex system (such as a market) can be captured in the network representation [1], in
which the nodes respond to agents (say, buyers and vendors) and weights of the edges are defined by some quantitative
measure of pairwise interactions between the agents (say, amount of goods traded). Resulting dimensionality reduction
allows to extract valuable information on hidden topological structure of the system. One of the most striking
and practically important examples of such structure is a mesoscopic organization of the agents into modules or
communities [2–4]. Though the precise definition of a community depends on a generative stochastic model of the
network [5], it is generally understood as a group characterized by reinforced interactions within itself, while having
significantly less interaction strength with other nodes of the network. Whether it is a result of self-organization or
intrinsic heterogeneity, such modular structuring is an important signature of collective behaviour, i.e. irreducible to
action of independent agents, in the complex system. Practically speaking, the community detection problem allows
to infer hidden relationships in the system and is an extremely hot topic in various technological [6, 7], biological
[8–11], social [12–14] and economical [15, 16] contexts.

Not all of the real-world stochastic networks self-organize in modules, i.e. have a deterministic community structure.
A stochastic network per se might have a different topological organization or be statistically indistinguishable from
a random preferential attachment [39]. An alternative scenario includes formation of a dense core and of a relatively
sparse periphery (shell). Such organization manifests the existence of a strongly interacting group of agents pulling the
strength over the other players, which, in turn, are left to relatively weakly interact with each other being still strongly
connected to the core. Notably, a network is capable of changing its topological mode from the ”core-periphery” to
the ”communities” if the interaction strength of the periphery with itself overcomes the interaction strength between
the periphery and the core. Myriad methods have been proposed to separate the cores from the peripheries in real
stochastic networks on the basis of different quantitative measures and definitions of a core [40–43]. The most popular
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approach has been suggested by Borgatti and Everett [40] and is constructed on a generative block model of a network
with a fully-connected subgraph (the core). The rest subgraph (the periphery) is assumed to have no internal edges,
however, is fully-connected to the core. Nevertheless, frequently one does not know from the very beginning the
intrinsic topological structure of the network and what family of methods is appropriate to use. Thus, it is desirable
to have an approach that would determine an ”optimal” splitting of a stochastic network into statistically significant
groups of arbitrary mutual topological relationship.

A widely used approach in the community detection is a spectral decomposition of a linear operator defined on
the network: the information on communities is then encoded in several leading eigenvectors [17, 18]. It has been
recently shown that all of the commonly used matrices (adjacency, Laplacian, modularity, non-backtracking) classify
well the nodes as long as the network density is sufficient [19, 20]. In particular, the modularity operator has proven
itself as one of the most efficient characteristic successfully detecting communities in stochastic networks of various
nature [4, 14, 21–24]. To extract deterministic communities from the fluctuations, the modularity score measures
the community-wise weight difference between the observed network and the expected one in the framework of a
null generative model, in which the individual degrees of nodes are kept invariant under randomization of the edges.
Fixation of the degrees from the sample makes the modularity applicable to scale-free networks, a wide class including
most of the real-world networks [39].

In this paper we show the efficiency of the communities-specialized modularity operator in splitting the stochastic
network into two groups with distinct centrality measures on the example of the cryptocurrency market, which
exemplifies a youngling complex system with an unexplored topological motif. Cryptocurrencies have gained sufficient
popularity over last several years due to their decentralized nature and sudden boost in capitalization in 2017. Still
developing, maturity of the cryptomarket has been recently revealed from statistical characteristics of the bitcoin
(BTC) time series [26] and of the bitcoin/etherium (BTC/ETH) rates [27], such as multifractality and volatility
autocorrelations. Operation of cryptocurrencies (tokens) does not require a central authority and is sustained through
a blockchain. Many of the tokens are functional units of the blockchain-based framework of technological companies
which are issued during initial coin offerings (ICOs) and subsequently distributed to public through the crowd-funding
mechanism. In contrast to stock markets, where clustering of the stocks is economically pre-determinant, in currency
markets the reasoning behind formation of communities is more vague. A peculiarity of the tokens is that their nature
is in between the two. On the one hand, the tokens represent monetary units, but, one the other hand, they are
associated with a business model belonging to a certain technological sector.

Structure of stock and foreign exchange markets has previously been probed by ultrametric hierarchical and minimal
spanning trees [28–32]. In particular, this technical approach to the US stock market was shown to be consistent with
the standard of S&P500, classifying stocks into sectors or industries. One typically builds up the metric space based
on cross-correlations emerging between the stocks and studies its temporal evolution. The minimal spanning tree then
corresponds to a shortest path graph connecting all the nodes in the network, so that the leaves correspond to isolated
communities [33]. The ultrametric tree approach fits the metric space of the market with an ultrametric model [31],
i.e. aims to establish hierarchical relationships between the communities by organizing them into self-nested basins.
Valuable evidence of collective behaviour comes from comparison of the leading eigenvalues of the network with
spectral density the corresponding random matrix ensemble. Thus, coherent movements of the market as a whole are
reflected in the magnitude of the largest eigenvalues of the metric tensor [34–37]. In [38] a magnification of the largest
eigenvalue of the correlation matrix during market crashes has been demonstrated, implying strong coupling of the
stocks during economical crises.

Can one identify a community-structure in the market of cryptocurrencies, analogous to sectors, industries and sub-
industries existing in the stock market? Or does the core-periphery organization fit the cryptomarket better? There
is a need to simultaneously examine both scenarios, which, as we show, can be met using the spectral modularity
approach. To reveal the hidden topological structure of the cryptomarket, we model it by a correlation-based network,
in which the tokens represent the nodes and the correlations between the vectors of the log-returns set up weights
of the edges. The base currency was chosen to be the historical market leader, bitcoin (BTC), so that the network
is insensitive, at least explicitly, to the volatility with respect to stable fiat currencies (ex., US dollar). In order to
rule out the scam assets notoriously flooding the cryptomarket over the last two years [44], we perform a preliminary
low-volume filtering. We assume that, because of their fraudulent essence, the scam tokens would hardly participate
in formation of a stable long-term topological organization of the market. Having cleansed the ensemble of tokens
from the scam, we maximize the modularity score in the principal eigenvector approximation for different base days
and show that the topology of the cryptomarket responds to a stable core-periphery structure with a diffusive ring
layer of non-stable tokens. We verify the robustness of the splitting done by the modularity using the closeness
centrality measure [46, 47], as well as using the Euclidean metric tensor. The latter allows us to visualize the stable
core-periphery organization of the network using the multi-dimensional scaling algorithm [48]. To ensure consistence
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between different approaches, we additionally grow the mean spanning tree on the Euclidean manifold showing that
the outer part of the tree corresponds to the periphery while the central part connects the tokens from the core in
full agreement with predictions of the modularity.

The structure of the paper is as follows. In the Section II we describe the cryptomarket filtering from the scam
assets, construct the correlation-based network of the true tokens and discuss the spectral modularity approach. In
the Section III we report main results of the paper and in the Section IV we make the conclusion.

II. DATA AND METHODS

A. Price-volume data and scam filtering

All technical price-volume data on tokens has been taken from the Binance exchange [51]. As a quantitative measure
of each particular token in the space, we have naturally chosen to calculate the logarithmic daily returns

r
(T, t)
i = lnPi(T − t)− lnPi(T − t− 1); t = 0, 1, 2, ..., D − 1 (1)

where Pi(τ) is the price of the i-th token at the day τ ; T denotes the base day the log-returns are computed for, t
enumerates the components and D is dimensionality of the log-returns vector.

Importantly, we calculate the price time series Pi(τ) in the base currency Bitcoin (BTC) in order to discard global
movements of the cryptomarket from our analyses. Bitcoin has been a global market leader and it is assumed that
most of the tokens are positively correlated with BTC. These coherent shifts are known to be the result of a strong
collective response of the market to external macro-economical impulses and news, such as SEC regulations, large
investments of institutional organizations etc.

The market of cryptocurrencies has experienced a strong inflow of macro-economically inappropriate tokens over
the last several years, called ”scam tokens” [44]. These are units resembling fake ventures launched for a short-term
speculative purpose in order to execute ”pump and dump” schemes. Soon after the release such assets accidentally
loose their attractiveness for the investors, following by an abrupt drop in their price. Therefore, it seems naturally to
assume that scam tokens do not reflect the long-standing network structure of the market, but rather make the data
on ”true tokens” (non-scam) noisy. Though a precise definition of a scam token would need to account for a complex
combination of different factors, such as their price-volume data, white papers, founding teams, ICO information etc.
[45], our aim here is to provide a simple general scheme eliminating assets that are non-representable for the global
topological structuring. We assume that low-traded tokens are likely to be non-representable for our purpose, thus,
one can roughly define a token as a scam if its daily volumes have appeared to be less than 10 BTC more than in
5% of days in the dataset. From Fig.1 it is seen that the amount of all tokens (the true and scam) is somewhat 3
times larger than the amount of true tokens. In other words, the size of the scam market is approximately twice the
number of the true tokens. This unambiguously shows the importance of the filtration preceding the analyses.

B. Construction of the correlation-based network

A key step of the current study is construction of the weighted network. In what follows we assume that the nodes
of the network represent the true tokens and the weight of an edge (”strength” of the connection) is associated with
their pairwise correlation. Such networks are called correlation-based (CB) and are commonly used when an agent of
a complex system can be characterized by a vector of a multi-dimensional space. This approach inevitably neglects
many-agents interactions existing in the real market, such as a state of a pair of currencies conditioned by a certain
value of a third one. However, it is believed that such reduction of complexity allows to unravel basic principles,
driving the market’s structuring.

Instantaneous correlations between a pair of tokens i, j at the base day T are characterized by the matrix a
(T )
ij of

the Pearson’s correlation coefficients between the vectors r
(T, .)
i and r

(T, .)
j according to the following relation

a
(T )
ij =

(
r
(T, .)
i , r

(T, .)
j

)

√(
r
(T, .)
i , r

(T, .)
i

)√(
r
(T, .)
j , r

(T, .)
j

) (2)
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where the scalar product is understood in the Euclidean sense. However, a straightforward use of the matrix a
(T )
ij

as weights of edges for the respective CB-network is not convenient for our further analyses because of its negative
values. Thus, we will use either

(i) the scaled correlation matrix

Ã(T ) =
(
A(T ) + JN

) 1

2
(3)

where JN is the all-ones matrix and N is the amount of true tokens in our set (dimensionality of the matrix A; note
that N does not depend on the base day T , see discussion below); or

(ii) the pairwise distances matrix dij

d
(T )
ij =

√
2(1− a(T )

ij ) (4)

The distances d
(T )
ij respond to the Euclidean metric space and the base day T . In particular, one can prove that

(4) satisfies the triangle inequality. In particular, the elements dij can be associated with the shortest path distance
between the assets i and j in this metric space and can be used for construction of the minimal-spanning tree.

W, days

Size of the
network USD/BTC

with scam

true tokens

Figure 1: How should one choose the window size W? The amount of all tokens (blue) and of the true tokens (red) as functions
of the window size and fixed D = 100. Moving average (100 days) of the BTC price (dashed): the window size of the moving
average coincides with the number of days involved in calculation of the correlations, i.e. D.

In order to study evolution of the market’s structure, we investigate temporal variations of the weight matrices
(i) and (ii) as the base day T is sliding in a window of the size W starting from the last base day T0, so that
T = {T0, T0 − 1, T0 − 2, ..., T0 −W + 1}. In what follows, we fix the dimensionality of the returns vector D = 100.
We collect the historical data starting from November 11th, 2018, which, therefore, stands for the last base day T0 in
our dataset. As for the window size W , it should be chosen accordingly to a trade-off between the size of the network
and considerable significance of the forthcoming statistical analyses. On the one hand, the window W needs to be
large enough, in order to keep track of conservative features in the fluctuating market’s structure. On the other hand,
the market of cryptocurrencies has not yet shaped, therefore, the lifetime of many of important tokens in the market
essentially restricts the window size from above. In the Fig.1 we show how fast the number of available tokens in the
market decreases with increase of the window size W . For instance, if one takes a one-year window, the respective set
of tokens would consist of as few as one hundred true tokens. The next important circumstance to take into account is
the state of the cryptomarket, which is illustrated in the same figure by the moving-averaged USD price of the bitcoin
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(MA is taken for 100 days, which coincides with the depth D of the log-returns vectors), the main actor in the market.
The turn of 2017 was marked by a rapid boost of the cryptomarket and by a subsequent drop in January 2018. We
assume that the seismic regime of the market in the beginning of the year might unbalance emerging bonds between
the tokens and, eventually, might obscure the topological structure of the whole market. Taking all the considerations
above into account, we have chosen the window size to be equal to W = 200, which implies that W +D = 300 days
are involved in computation of the correlations (from January 14th, 2017, to November 11th, 2017). This is a safe
range that does not enter into the quaky regime of the market and accumulates N = 157 non-scam tokens in our
ensemble. Note that the size N of the ensemble is determined only by the window size W , not by the choice of the
base day T .

C. Spectral modularity approach

Having the network defined, we probe its topological structure in the framework of the classical cluster analyses.
For this purpose we use the spectral modularity approach. Modularity quality function has been used vastly for
communities detection in networks of various intrinsic nature [4, 14, 21–24]. The modularity is a functional over a
network partition into the n groups Gp, p = 1, 2, ..., n, which relates observed weights to expected weights in an
annealed ensemble of graphs with invariant strengths ki of each individual node i and m = 1

2

∑
i ki being the total

strength of the network. Formally, the modularity functional Q ≡ {G1, G2, ..., Gn} over different splitting into groups
Gp can be written as follows

Q =
1

4m

∑

p

∑

(i,j)∈Gp

(
ãij −

kikj
2m

)
(5)

where ãij are the weights of the respective edges of the network, taken from the scaled correlation matrix Ã, see (3)
[52]. Maximization of the functional (5) yields the ”optimal” splitting, which corresponds to the intrinsic community
structure, subject to the network is not very sparse and the communities are sufficiently resolved [19, 20]. Originally,
the modularity score (5) has been proposed [4] for partition of the scale-free networks, in which the distribution of the
nodes degrees is some power law and does not follow the Poisson statistics, typical for the class of the Erdos-Renyi
models. Recently it has been shown [25] that maximization of the modularity functional is equivalent to the maximum
likelihood for a degree corrected version of the planted stochastic block model. The latter observation implies that
the modularity maximization is qualified for the networks consisting of statistically indistinguishable communities,
which for many of the real-world networks is, of course, an approximation.

In the case of two groups there is a simplified spectral approach, based on the principal eigenvector of the modularity
matrix. One can assign a ”spin direction” si = ±1 to each node of the network, depending on the group this node
belongs to, and rewrite the modularity as a quadratic form in the spin space s

Q =
1

4m

∑

i,j

(
ãij −

kikj
2m

)
(sisj + 1) =

1

4m
sTBs (6)

where B = bij is the modularity operator

bij = ãij −
kikj
2m

(7)

and we have used in (6) the fact that the rows of the modularity matrix are summed to zero. Applying the spectral
decomposition of (6), one can make use of the principal component approximation, which is is justified for sufficiently
resolved communities. In this case the optimal partition becomes encoded in the leading eigenvector of the matrix B

Q ≈ (4m)−1λ1(u1s)
2 (8)

where u1 is the normalized leading eigenvector and λ1 is the corresponding (largest) eigenvalue. In order to maximize
(8), one has to choose the most collinear spin vector s to the given u1. Therefore, the optimal solution s takes the
value si = +1, if the corresponding component of u1(i) is positive and si = −1 otherwise [53].

Below, on a particular example of the crypto-network, we show that the modularity operator might give meaningful
information even when the network lacks intrinsic community structure. In particular, the spectral approach described
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above is able to efficiently determine the core and the periphery of a network. Indeed, it is seen from (5) that, absence
of communities in the network forces the modularity to optimize itself in order to accumulate the maximal weight
in the one group. Thus, a sufficiently dense core could be resolved: nodes within the core have stronger connections
with each other comparatively to their mean external strength with the second group, which becomes associated with
the periphery.

III. RESULTS

A. Stability of splitting inferred by the modularity

We analyse the log-returns correlations emerging between the tokens of the cryptomarket for W = 200 base days
starting from November 11 (T = 0) to April 26 (T = 200) of 2018. The ensemble of tokens actively trading in this
time window (non-scam tokens according to our volume-based definition in the previous section) has the size N = 157.
Scaled correlations comprise weights of the respective edges in the CB-network representation of the cryptomarket.
At each base day T the spectral properties of the modularity operator defined on a spin-space (assuming two groups
in the network) have been studied in approximation of the leading eigenvector: the edge of the spectrum of the

modularity matrix b
(T )
ij describes the topological pattern of the network. In particular, the signs of components of

the leading eigenvector determine the group the corresponding token gets assigned into. Information on the splitting,
produced at each base day T is recorded so that the first group is the one containing another crypto leader, Etherium
(ETH, one of the most popular blockchain platform). As a matter of fact, the main outlier of the market, USDT
(analogue of USD), is then always classified to the second group. Such group labeling allows one to keep track of the
topological difference between the groups produced by the modularity and is discussed below.

Assignment of tokens to the groups has found to be day-dependent, which implies stochastic character of the
market. To infer conservative properties of the market’s structure, we aim at determining stable tokens that might
be associated with a certain group with sufficient statistical significance. In order to quantify the stability of tokens,
we introduce a participation ratio φ that equals to the fraction of days a token spends in the ETH group (and 1− φ
days in the USDT group, correspondingly). The Fig.2a demonstrates that the distribution of tokens by the number
of days a token spends in the ETH group is pronouncedly bimodal. Peaks located at the edges of this histogram infer
tokens persisting in their respective groups over the course of time. A value φ∗ = 0.8 is chosen to provide a threshold
for a token to be classified as a stable token of the first group. Accordingly, 1−φ∗ = 0.2 is a maximal fraction of days
a token is allowed to spend in the first group to be classified as a stable token of the second group. The two clauses
above might be combined in a following single one: the token is stable only if its participation ratio φ satisfies the
following condition

|φ− 0.5| > 0.3 (= φ∗ − 0.5) (9)

Such definition results in the identification of Nc = 57 stable ETH-coupled tokens, Np = 38 stable USDT-coupled
tokens and Nns = 62 non-stable ones, which correspond to the central part of the histogram Fig.2a. The top ten
most liquid tokens of the first group are {ETH, BCH, EOS, XRP, TRX, NEO, QTUM}, while the top ten ones of the
second group are {USDT, MCO, DOGE, BCD, PRO, ARDR, MAID, ZEN, R, GUP}, see Fig. S1. The first group is
comprised of the most liquid, highly capitalized blockchains and payment systems like Ethereum, Ripple, EOS and
Bitcoin Cash. As for the second group, no general principle under its formation can be ruled out apart from that it
includes the main market’s outlier USDT. We will see below that is simply because the second group topologically is
not a community, but a periphery of the ETH group.

The Fig.2b illustrates that population of the two groups fluctuates, though these fluctuations are mostly related
to the non-stable tokens. In the same figure the daily sizes of the intersections with the stable sets are shown to be
much more characteristic, being slightly below the level lines, denoting the sizes of the stable sets (Nc and Np). The
deviations from the level lines become more considerable both for the two groups as one approaches the end of the
window: this is a signature of the market rally that was taking place in the beginning of the year. Notably, if at the
base day T = 0 one assigns two colors to the groups of sizes N ′c ≈ 85 (red) and N ′p ≈ 70 (blue) assuming the market
is typically getting split into, then the expected number of red and blue tokens falling by chance into these groups
N ′c and N ′p is less than the sizes of the stable groups (46 < Nc = 57; 31 < Np = 38). This is a supportive argument
in favour of non-random distribution of tokens between the two groups and points out to the intrinsic connection
between the essence of an asset and its affinity either to ETH or to USDT.
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T

𝑁𝑁𝑐𝑐 = 57

𝑁𝑁𝑝𝑝 = 38

number of days a token 
gets assigned to the ETH group

number
of tokens

number
of tokens
in a
group

stable
USDT group

stable
ETH groupnon-stable tokens

𝜙𝜙∗1 − 𝜙𝜙∗

(a) (b)

Figure 2: Inferring stability of the splitting. (a): distribution of tokens by the number of days they are assigned to the ETH
group by modularity. Black vertical lines resemble critical fractions of days in the window of size W = 200, tokens need to
spend to be classified in the stable groups. (b): Daily sizes of the two groups, ETH-coupled (red) and USDT-coupled (blue),
as determined by modularity (dashed); sizes of the intersection between the two groups and the corresponding stable groups
(solid). Dashed gray lines show the sizes of the stable groups.

In order to determine a topological structure of the splitting produced by the modularity we compute the, so-called,

closeness centrality [46, 47] for the two groups. The closeness centrality C
(T )
i of an asset i is a measure of its centrality

with respect to a subgraph G in a certain metric space, computed at the base day T

C
(T )
i =

1

〈d(T )
ij 〉 j∈G

(10)

where dij ≡ d(T )
ij are the Euclidean distances between the nodes i and j, (4). Here we compute the centralities of the

tokens with respect to the ETH group.

Time series of the closeness centrality, as the base day changes, are shown for all N = 157 tokens in the Fig.3(a). It
is seen that up to fluctuations in the intermediate layer populated by the non-stable assets the centrality of the ETH-
coupled tokens remarkably exceeds the centrality of the USDT-coupled ones. It is said that all the tokens assigned
by modularity into the first group are sufficiently closer to each other than to the tokens from the second group.

Importantly, the non-stable tokens do not greatly affect stratification of the tokens in the Fig.3(a). It implies that
the non-stability transition at the points φ∗ and 1 − φ∗ is smooth, i.e. the proportion of days the token spends in
either group decreases non-abruptly. This result is much more evident from the Fig.3(b) where we have provided
a correlation plot of the mean token’s centrality 〈C(T )〉T versus its participation ratio φ. Pronounced correlations
between the two quantities might be readily noticed. The non-stable assets transit continuously between red and blue
phases, evenly filling the correlation strip. Though the transition between the ETH and the USDT groups is smooth,
we will se below that the properties of the two phases are quiet different.

Evolution of the strip in the Fig.3(a) demonstrates that the centrality of the first group is slightly increasing as T
decreases (the historical time increases). This implies kinetic fortification of the market structuring: the stable tokens
of the first group are interacting stronger with each other in the course of the historical time. A bimodal distribution
of the ETH centrality, see Fig.3(c), is an evidence of a qualitative change in the cryptomarket behaviour, possibly
related to relaxation after the peak in January 2018.

In the Fig.3(a) we depict the time series for ETH separately in order to illustrate that, contrary to the intuitive
thinking, the ETH does not constitute the center of the first group. The leadership in the first group considerably
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Figure 3: The closeness centrality rationalizes the groups, produced by modularity. Red marks denote tokens from the ETH
group, blue ones denote tokens from the USDT group and gray ones stand for the non-stable tokens. (a): closeness centrality
of the tokens at each particular base day; (b): Scatter plot of the mean closeness centrality of a token and its participation
ratio; (c): Distribution of centrality measure of ETH token; (d): Sorted mean rank of the centrality versus the index of token
in the sequence is illustrated for the two groups separately.

fluctuates, though ETH never takes it in the window studied: the orange line resembling ETH never crosses the
envelope of the red strip. The mean rank of the centrality Fig.3(d) supports this statement. It illustrates the average
location of the token relatively to the other tokens of the group. The tokens are sorted according to their rank along
the x-axis. It is seen that ETH is fairly close to the middle of this sequence, having the mean rank of centrality
〈rank

(
C(T )

)
ETH
〉T = 39, which brings it to the 24th place among all the tokens in the first group. In other words,

almost half of the tokens in the ETH group are found to correlate with the rest of the group stronger than ETH does.
A possible explanation is the following. One can assume that crypto market prices are driven mostly by financial usage
(as speculation and investment). Thus, tokens with many non-speculative use cases are, in general, less correlated
with the others. At the same time, tokens that represent purely investment instruments, given the same level of price
manipulation activity, are most mutually correlated along with their share investors sentiment. Therefore, ETH as a
token which is actively used for functional purposes (e.x., for ICOs) like most other high cap tokens is not in the very
center of the universe.

The second group does not show such amplification of the centrality in the course of the historical time, implying
that its interactions with the first group are marginally weak. The bottom curve in the Fig.3(a) corresponds to USDT,
i.e. the dollar analogue has the lowest centrality in the market, permanently. The centrality rank of USDT equals the
size of the network 〈rank

(
C(T )

)
USDT

〉T = N = 157. Such a strong opposition of USDT to the first group constitutes
a major factor driving segregation in the market. Repulsion of USDT draws off a part of the market from the first
group and, thus, leads to formation of the second group.

Interestingly, as we see from the Fig.3(d), the sorted mean rank of the centrality almost coincides with the index
number of the token in the sequence for the ETH group (the corresponding coefficient is ≈ 1.01). Note that the unit
coefficient would naturally arise in the static sequence or in case when one forbids ”overtakes” between the tokens
(e.x., for self-excluding particles diffusing on a line). One can infer that fluctuations of mutual positions of the tokens
in the first group are only local and do not lead to the global redistribution of the assets’ locations inside the group.
At the same time, the structure of the second group is much more dynamic: the sorted rank as a function of the
index number demonstrates the slope ≈ 1.92. This is almost twice larger than it would be for the static sequence and
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implies relative boosting of the second group outwards the first group. A reason for this internal boosting is repulsion
between the outliers and the ETH group.

B. Embedding the network into a metric space: the core-periphery structure

In the previous section we have studied stability of the topological splitting into two groups, produced by the
modularity at different base days. Here we prove that the metric structure of these two groups corresponds to
the core-periphery organization of the network. A self-obvious core-shell metric profile straightforwardly follows from
visualization of the averaged characteristic matrices, see heatmaps in the Fig.4. Indeed, the mean internal correlations
of the first group (the core) with itself is notably larger than the mean external correlations with the second group
(the periphery). In the language of the Euclidean metrics dij , tokens of the first group are closer to each other, than
to tokens of the second group, which is consonant with the closeness centrality, discussed in the previous section,
Fig.3. At the same time the periphery (i.e. the USDT group) interacts considerably weaker with itself than with the
core, see Fig.4. The bright line in the averaged distances matrix and, correspondingly, the dark one in the averaged
correlation matrix resemble USDT, which demonstrates the lowest negative correlations with the rest of the market,
around −0.4. As we have observed, qualitatively these patterns describe well the networks at all base days T from
the window, i.e. the same structure emerges in all realizations of daily matrices. Accordingly, communities in the
classical sense have never formed in the days analyzed.

𝐷𝐷 𝑇𝑇
𝑇𝑇

𝐴𝐴 𝑇𝑇
𝑇𝑇 𝐷𝐷 𝑇𝑇

𝑇𝑇
𝐴𝐴 𝑇𝑇

𝑇𝑇

Figure 4: Averaged matrices of the pairwise distances D and of the pairwise correlations A between the tokens; stable groups
are marked with red. The tokens are sorted by their typical volume separately inside each group: in the core, in the periphery
and in the non-stable layer.

Additionally, we embed the core-periphery structure of the cryptomarket into the Euclidean space, using the
characteristic matrix of pairwise distances dij . This was done using the sklearn library, which realizes the multi-
dimensional scaling (MDS) algorithm [48]. Generally speaking, reconstruction of the coordinates in the Euclidean
metric space by the pairwise distances is an ill-posed problem. Thus, the MDS algorithm seeks an optimal fitting
determined by the minimal residual ”stress” of the manifold. Having the coordinates of tokens obtained we have
performed a series of the following transformations: (i) first, we translate the network so that USDT token gets
positioned at the origin, (ii) second, we rotate the structure at some angle so that the polar angle of ETH equals π/4.
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These two transforms allow to run the MSD algorithm for different base days and visualize the network’s organization
at the first quadrant. And finally, (iii) we inverse the network over the line, connecting USDT and ETH, if a third
token of our choice (we have chosen ADA) is found to be located in the upper half-plane relatively to this line.
Applying the transformations listed above to the sets of coordinates computed at different base days, we uniquely set
up the structure of the rigid network in the metric space.

Analyzing evolution of the network with the change of the base day T we have found that the overall core-periphery
structure persists. The periphery is inhomogeneously distributed around the core, often significantly shifted to the
origin, where USDT is localized by construction. Generally, the fluctuating structure of the network is best described
by the matrix of mean pairwise distances 〈dij〉. The corresponding typical embedding is illustrated in the Fig.5(a).
One can notice a two-phase geometrical separation of the network into the core and the shell with a clear boundary
between them. Thus, it can be visually verified that the spectral modularity algorithm has successfully identified the
tokens belonging to the core and to the periphery.

In order to infer additional information on structuring taking place in the network, we investigate the growth of
the minimal spanning tree (MST) on it. The MST is a connected subgraph of a given graph, which has no cycles and
collects the minimum possible weight on the graph. If weights of the edges of a graph, for instance, are described by
the matrix dij , then the corresponding MST sets up the shortest paths along the graph between any two nodes. For a
CB-network the MST characterizes routes the correlations propagate. In the Fig.5(a) we show the minimal spanning
tree constructed via the Kruskal’s algorithm [49]. Different fractions of the tree from ϕ = 0.25 to ϕ = 1 are shown in
the Fig.5(a), mimicking the growth of the tree (the process of its construction).

It can be noticed that the first two stages of the growth φ < 0.5 correspond to the core of the network, i.e. the core
comprise of TOP-50% of the most strong interactions of the MST, while the outer part of the tree, φ > 0.5, connects
tokens from the periphery. Second, as the tree is growing, its leaves do not form ultrametrically nested modules as it
has been reflected in the subindustrial structure of the stock market [28–31]. Abundance of intersection of links rather
implies absence of the secondary structuring in sub-modules and communities within on top of the core-periphery
organization. The same conclusion is drawn by the modularity which, as reported above, has failed to split the two
core and the periphery into smaller groups.

We report formation of hubs in the MST of stable cryptotokens such as STRAT, REQ, NEO and LEND within the
core and PTOY, OK, BITB, GUP within the periphery which is a manifestation of the scale-freeness of the network.
In order to further investigate this phenomenon we plot the degree distribution of the MST and establish a power-law
tail with exponent γ = −2.58, see Fig.5(b). This result is a qualitative indicator of the scale-freeness inherent to the
cryptomarket. Notedly, the foreign exchange market has been shown to demonstrate a generally wider distribution
of the MST degree with exponents which are dependent on the base currency but generally do not exceed γ < 2 [50].

IV. CONCLUSION

In this note we have shown that the modularity functional is capable of splitting the network into the core and the
periphery. The functional has been defined on a correlation-based network of cryptocurrencies and has subsequently
been optimized in the largest eigenvalue approximation. The method is robust in the sense that it both discards the
hypothesis about intrinsic community structure of the network and establishes the core-periphery organization. This
organization has been shown to be consonant with the centrality measure with respect to the core, i.e. tokens from
the periphery have considerably less centrality than ones from the core. Splitting provided by modularity depends
on the base day which exhibits stochastic nature of the market. However, distribution of the participation ratio with
respect to one of the groups is bimodal, which is a signature of the two phases present in the system. Associating the
tails of the distribution with the two phases, the two stable groups of tokens can be established.

In order to study the topological motif of the network, we have visualized the mean matrix of pairwise correlations
and the mean matrix of the pairwise distances with rows and columns sorted according to the outcome of the spectral
modularity. It is clear that the average correlation-based weight accumulated in the core within itself exceeds both
the weight of the periphery-periphery and of the core-periphery interaction, supporting the core-periphery topological
organization of the network. By means of the multidimensional scaling algorithm we have embedded the network to
the metric space and have demonstrated stratification into the dense community of tokens in the center of the universe
and the periphery which gets positioned around the core. This organization in the metric space is found to be stable
to variations of the base day. An averaged pairwise distances matrix produces a clear separation of the network into
two phases corresponding to the two stable sets of tokens found with the spectral modularity approach. Evolution
of the minimal spanning tree grown on the core-periphery metric structure demonstrates no formation of isolated



11

𝜑𝜑 = 0.25 𝜑𝜑 = 0.5

𝜑𝜑 = 0.75 𝜑𝜑 = 1

𝛾𝛾 ≈ −2.58
(a) (b)

degree, 𝑘𝑘

scaled
# of 
bins

Figure 5: (a): Visualization of the average core-periphery metric structure and the growing minimal spanning tree embedded
into it. The network is constructed by its mean matrix of pairwise distances 〈dij〉 using the multi-dimensional scaling algorithm.
The minimal spanning tree is determined using the Kruskal’s algorithm; a subsequent growth of the MST occurs in four stages
corresponding to the four quantiles its edges are sorted into by their weight: (i) TOP-25%, (ii) TOP-50%, (iii) TOP-75%
and (iv) all the edges belonging to the tree. Tokens belonging to the core and to the periphery are marked by red and blue
correspondingly. Sizes of the nodes are proportional to their strengths. Four strongest nodes of the core and of the periphery
are annotated. (b): Degree distribution of the MST in the double-log scales demonstrates a power-law tail P (k) ∼ k−γ with
exponent γ ≈ −2.58. The histogram is plotted for the logarithmically spaced bins and the y-axis stands for the amount of
nodes divided by the corresponding width of the bin.

leaves, which might have been referred as sub-communities, corroborating the conclusions drawn by the modularity.
This result puts the the cryptocurrency market in contrast both with the stock market and with the foreign exchange
market, where hierarchical modular organization takes place and macro-economically determined. We also note that
the scale-free exponent γ of the cryptocurrency market, reconstructed based on its minimal spanning tree, places it
into the archetypal class of the scale-free networks with 2 ≤ γ ≤ 3.

Economical explanation of the core-periphery topological structure of the crypto market is straightforward. Stable
coins (like USDT and NBT) are filtered to the periphery, which is expected as these coins have no exposure to the
crypto market and have low correlation with other crypto currencies. Most actively traded peripheral coins excluding
stable coins are Dogecoin and Bitcoin Diamond, which are the bitcoin forks with very high volatility and relatively
controversial reputation. Periphery tokens comprise opposition to traditional crypto market and, due to quiet low
correlation with the rest of the market, can be named outliers. Most liquid, high cap blockchains and payment
systems (like Ethereum, Ripple, EOS and Bitcoin Cash) belong to the core cluster. It matches expectations as these
tokens show less uncorrelated behavior (pumps and dumps) than smaller tokens. These tokens drive the whole market
behavior so they are in the center of it. At the same time the very center of the core is filled not by the leader tokens,
but rather by much less known small-cap ones (like Stratis, Request, SALT). These tokens form hubs in the metric
structure and have high centrality measure, which is explained by their significant financial usage (as speculation and
investment). In contrast, the high cap tokens of the core (ETH, XRP, EOS, BCH etc.) are not purely investment
instruments, their financial manipulation is moderate and, as a result, that are shifted from the very center of the
core.



12

Acknowledgments

We are grateful to Mikhail Tamm for discussions and to the referee for useful suggestions on the manuscript. KP
acknowledges the support of the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”
(grant 17-12-278).

[1] M. Newman, Networks: an introduction (Oxford University Press, 2010).
[2] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, V. and D. Parisi, Defining and identifying communities in networks.

PNAS 101, 2658 (2004).
[3] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato, Finding statistically significant communities in networks.

PloS one 6, e18961 (2011).
[4] M. E. Newman, Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104

(2006).
[5] S. Fortunato and D. Hric, Community detection in networks: A user guide. Physics reports 659 (2016).
[6] R. Albert, J. Hawoong and A.-L. Barabasi, Internet: Diameter of the world-wide web. Nature 401, 130 (1999).
[7] A. Broder, et al., Graph structure in the web. Computer networks 33, 309 (2000).
[8] J. Dekker, M. A. Marti-Renom, and L. A. Mirny, Exploring the three-dimensional organization of genomes: interpreting

chromatin interaction data. Nat. Rev. Gen. 14, 390 (2013).
[9] R. Pastor-Satorras, and A. Vespignani, Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200 (2001).

[10] H. Jeong, et al., The large-scale organization of metabolic networks. Nature 407, 651 (2000).
[11] E. Ravasz, et al., Hierarchical organization of modularity in metabolic networks. Science 297, 1551 (2002).
[12] S. Redner, How popular is your paper? An empirical study of the citation distribution. The Europ. Phys. J. B-Cond.

Matt. and Compl. Sys. 4, 131 (1998).
[13] M. Newman. The structure of scientific collaboration networks. PNAS 98, 404 (2001).
[14] J. Chen, O.R. Zaiane, and R. Goebel, Detecting communities in social networks using max-min modularity. Proceedings

of the 2009 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, (2009).
[15] C. Piccardi, L. Calatroni, and F. Bertoni, Communities in Italian corporate networks. Physica A: Statistical Mechanics

and its Applications 389, 5247 (2010).
[16] R. Corrado and M. Zollo, Small worlds evolving: governance reforms, privatizations, and ownership networks in Italy, Ind.

Corp. Change 15, 2 (2006).
[17] U. Von Luxburg, A tutorial on spectral clustering. Stat. and comp. 17, 395 (2007).
[18] M. Krivelevich and B. Sudakov, The largest eigenvalue of sparse random graphs. Comb., Prob. and Comp. 12, 61 (2003).
[19] R. R. Nadakuditi, and M. Newman, Graph spectra and the detectability of community structure in networks. Phys. Rev.

Lett. 108, 188701 (2012).
[20] A. Decelle, et al., Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications.

Phys. Rev. E 84, 066106 (2011).
[21] H. K. Norton, et al., Detecting hierarchical genome folding with network modularity. Nat. Met. 15, 119 (2018).
[22] J. Grilli, T. Rogers, and S. Allesina. Modularity and stability in ecological communities. Nat. Comm. 7, 12031 (2016).
[23] R. Guimera, et al., Origin of compartmentalization in food webs. Ecology 91, 2941 (2010).
[24] M. Sales-Pardo, R. Guimera, A. A. Moreira, and L. A. N. Amaral, Extracting the hierarchical organization of complex

systems. PNAS 104, 15224 (2007).
[25] M. E. J. Newman, Equivalence between modularity optimization and maximum likelihood methods for community detec-

tion. Phys. Rev. E 94, 052315 (2016).
[26] S. Drozdz, et al. Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multi-

scaling effects. Chaos 28.7 (2018).
[27] S. Drozdz, et al. Signatures of crypto-currency market decoupling from the Forex. arXiv preprint arXiv:1906.07834 (2019).
[28] J.-P. Onnela, et al., Dynamics of market correlations: Taxonomy and portfolio analysis. Phys. Rev. E 68, 056110 (2003).
[29] R. B. Roy and U. K. Sarkar, A social network approach to change detection in the interdependence structure of global

stock markets. Soc. Net. Anal. and Mining 3, 269 (2013).
[30] V. Boginski, S. Butenko, and P. M. Pardalos, Mining market data: a network approach. Comp. & Oper. Res. 33, 3171

(2006).
[31] R. N. Mantegna, Hierarchical structure in financial markets. The Europ. Phys. J. B-Cond. Matt. and Comp. Sys. 11, 193

(1999).
[32] R. N. Mantegna, and H. E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance, 1999.
[33] C. H. Papadimitriou, and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity. Printice-Hall.Inc., En-

glewood Cli s, New Jersey (1982).
[34] L. Laloux, et al., Random matrix theory and financial correlations. Int. J. of Theor. and Appl. Fin. 3, 391 (2000).
[35] V. Plerou, et al., Random matrix approach to cross correlations in financial data. Phys. Rev. E 65, 066126 (2002).



13

[36] S. Valeyre, D. S. Grebenkov, and S. Aboura, Emergence of correlations between securities at short time scales. Physica A:
Stat. Mech. and its Appl. (2019).

[37] D. M. Song, et al., Evolution of worldwide stock markets, correlation structure, and correlation-based graphs. Phys. Rev.
E 84, 026108 (2011).

[38] S. Drozdz, et al., Dynamics of competition between collectivity and noise in the stock market. Physica A: Stat. Mech. and
its Appl. 287, 440 (2000).

[39] A. L. Barabasi, and R. Albert, Emergence of scaling in random networks, Science 286, 509 (1999).
[40] S. P. Borgatti and M. G. Everett, Models of core/periphery structures. Social Networks 21, 4 (2000).
[41] M. Newman and M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69, 2 (2004).
[42] P. Holme, Core-periphery organization of complex networks. Phys. Rev. E 72, 4 (2005).
[43] M. P. Rombach et al., Core-periphery structure in networks. SIAM J. on Appl. Math. 74, 1 (2014).
[44] U. W. Chohan, Initial coin offerings (ICOs): Risks, regulation, and accountability (2017).
[45] S. Bian, et al., ICOrating: A deep-learning system for scam ICO identification. arXiv preprint arXiv: 1803.03670 (2018).
[46] S. Wasserman and K. Faust, Social network analysis: Methods and applications, Vol. 8. Cambridge university press, (1994).
[47] L. C. Freeman, Centrality in social networks conceptual clarification. Social networks 1.3 (1978).
[48] I. Borg and P. Groenen, Modern multidimensional scaling: Theory and applications. J. of Edu. Meas. 40.3 (2003).
[49] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American

Mathematical society 7.1 (1956).
[50] J. Kwapie, et al. Analysis of a network structure of the foreign currency exchange market. Journal of Economic Interaction

and Coordination 4.1 (2009).
[51] http://www.binance.com.
[52] Here in (5) and below all characteristic tensors are computed for the particular base day, but we do not denote this fact

explicitly for the brevity of respective formulas.
[53] Note that the optimal spin vector s ≡ s(T ) is different for different base days T .

99



97

6. Order and stochasticity in the folding of
individual Drosophila genomes

Introduction
Mammalian and Drosophila genomes are partitioned into topologically

associating domains (TADs). Although this partitioning was reported to be
functionally relevant, it is unclear whether TADs represent true physical units
located at the same genomic positions in each cell nucleus or emerge as an average
of numerous alternative chromatin folding patterns in a cell population. Here,
applying an improved single-nucleus Hi-C technique (snHi-C), we constructed
Hi-C maps in individual Drosophila genomes with a 10 kb resolution. These
maps demonstrate chromatin compartmentalization at the megabase scale and
partitioning of the genome into non hierarchical TADs at a scale of 100 kb, which
closely resembles the TAD profile in the bulk in situ Hi-C data. Over 40nuclei,
and these boundaries possess a high level of active epigenetic marks. Polymer
simulations demonstrate that chromatin folding is best described by the random
walk model within TADs and is best approximated by a crumpled globule build of
Gaussian blobs at longer distances. We observed prominent cell-to-cell variability
in the long range contacts between either active genome loci or between Polycomb­
bound regions, arguing for an important contribution of stochastic processes to the
formation of the Drosophila 3D genome.

Contribution
I have verified that the experimental sparse Hi-C matrices are not equivalent

to random realizations of the configuration model graphs with conserved contact
probability. I have proposed a method to annotate TADs in sparse Hi-C matrices
based on the non-backtracking walks. I have demonstrated the efficacy of the method
on the ensemble of single cell matrices and have proved that the found domains are
epigenetically significant.
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Abstract 

Mammalian and Drosophila genomes are partitioned into topologically 

associating domains (TADs). Although this partitioning has been reported to be 

functionally relevant, it is unclear whether TADs represent true physical units 

located at the same genomic positions in each cell nucleus or emerge as an average 

of numerous alternative chromatin folding patterns in a cell population. Here, we 

used a single-nucleus Hi-C technique (snHi-C) to construct high-resolution Hi-C 

maps in individual Drosophila genomes. These maps demonstrate chromatin 

compartmentalization at the megabase scale and partitioning of the genome into non-

hierarchical TADs at the scale of 100 kb, which closely resembles the TAD profile 

in the bulk in situ Hi-C data. Over 40% of TAD boundaries are conserved between 

individual nuclei; these boundaries possess a high level of active epigenetic marks. 

Polymer simulations demonstrate that chromatin folding is best described by the 

random walk model within TADs and is most suitably approximated by a crumpled 

globule build of Gaussian blobs at longer distances. We observed prominent cell-to-

cell variability in the long-range contacts between either active genome loci or 

between Polycomb-bound regions, arguing for an important contribution of 

stochastic processes to the formation of the Drosophila 3D genome. 

 



INTRODUCTION 

The principles of higher-order chromatin folding in the eukaryotic cell nucleus 

have been disclosed thanks to the development of chromosome conformation 

capture techniques, or C-methods1,2. High-throughput chromosome conformation 

capture (Hi-C) studies demonstrated that chromosomal territories were partitioned 

into partially insulated topologically associating domains (TADs)3-5. TADs likely 

coincide with functional domains of the genome6-8, although the results concerning 

the role of TADs in the transcriptional control are still conflicting6,9-12. Analysis 

performed at low resolution suggested that active and repressed TADs were spatially 

segregated within A and B chromatin compartments13,14. However, high-resolution 

studies demonstrated that the genome was partitioned into relatively small 

compartmental domains bearing distinct chromatin marks and comparable in sizes 

with TADs15. In mammals, the formation of TADs by active DNA loop extrusion 

partially overrides the profile of compartmental domains15,16. Of note, TADs 

identified in studies of cell populations are highly hierarchical (i.e. comprising 

smaller subdomains, some of which are represented by DNA loops5,17).  

Partitioning of the genome into TADs is relatively stable across cell types of 

the same species3,4. The recent data suggest that mammalian TADs are formed by 

active DNA loop extrusion18,19. The boundaries of mammalian TADs frequently 

contain convergent binding sites for the insulator protein CTCF that are thought to 

block the progression of loop extrusion19-21. Contribution of DNA loop extrusion in 

the assembly of Drosophila TADs has not been demonstrated yet22; thus, Drosophila 

TADs might represent pure compartmental domains23. Large TADs in the 

Drosophila genome are mostly inactive and are separated by transcribed regions 

characterized by the presence of a set of active histone marks, including 

hyperacetylated histones5,24. Some insulator/architectural proteins are also 

overrepresented in Drosophila TAD boundaries24-26, but their contribution to the 

formation of these boundaries has not been directly tested. The results of computer 

simulations suggest that Drosophila TADs are assembled by the condensation of 

nucleosomes of inactive chromatin24.  



The current view of genome folding is based on the population Hi-C data that 

present integrated interaction maps of millions of individual cells. It is not clear, 

however, whether and to what extent the 3D genome organization in individual cells 

differs from this population average. Even the existence of TADs in individual cells 

may be questioned. Indeed, the DNA loop extrusion model considers TADs as a 

population average representing a superimposition of various extruded DNA loops 

in individual cells18. Heterogeneity in patterns of epigenetic modifications and 

transcriptomes in single cells of the same population was shown by different single-

cell techniques, such as single-cell RNA-seq27, ATAC-seq28, and DNA-methylation 

analysis29. Studies performed using FISH demonstrated that the relative positions of 

individual genomic loci varied significantly in individual cells30. The first single-cell 

Hi-C study captured a low number of unique contacts per individual cell31 and 

allowed only the demonstration of a significant variability of DNA path at the level 

of a chromosome territory. Improved single-cell Hi-C protocols32,33 allowed to 

achieve single-cell Hi-C maps with a resolution of up to 40 kb per individual cell32,34  

and investigate local and global chromatin spatial variability in mammalian cells, 

driven by various factors, including cell cycle progression33. Of note, TAD profiles 

directly annotated in individual cells demonstrated prominent variability in 

individual mouse cells32. The possible contribution of stochastic fluctuations of 

captured contacts in sparse single-cell Hi-C matrices into this apparent variability 

was not analyzed32. More comprehensive observations were made when super-

resolution microscopy (Hi-M, 3D-SIM) coupled with high-throughput hybridization 

was used to analyze chromatin folding in individual cells at a kilobase-scale 

resolution. These studies demonstrated chromosome partitioning into TADs in 

individual mammalian cells and confirmed a trend for colocalization of CTCF and 

cohesin at TAD boundaries, although the positions of boundaries again 

demonstrated significant cell-to-cell variability35. Condensed chromatin domains 

coinciding with population TADs were also observed in Drosophila cells36,37. In 

accordance with previous observations made in cell population Hi-C studies24, the 

obtained results suggested that partitioning of the Drosophila genome into TADs 



was driven by the stochastic contacts of chromosome regions with similar epigenetic 

states at different folding levels38.  

 Although studies performed using FISH and multiplex hybridization allowed 

to construct chromatin interaction maps with a very high resolution35, they cannot 

provide genome-wide information. Here, we present single-nucleus Hi-C (snHi-C) 

maps of individual Drosophila cells with a 10-kb resolution. These maps allow 

direct annotation of TADs that appear to be non-hierarchical. At least 50% of TAD 

boundaries identified in each individual cell bear active chromatin marks and are 

highly reproducible between individual cells. 

 

To comply with the Thesis content, below I propose only the results of the 

group related to: 

 

(i) statistical analyses of the snHi-C maps aimed to prove that the maps are 

not random realizations provided some average characteristics of the 

spatial chromatin folding and answer the question of the correlation 

length of the genome at which the correlations between the pair contacts 

vanish (Section I);  

(ii) annotation of the maps into TADs by means of the representation of a 

snHi-C map as a sparse network with intrinsic contiguous communities 

and using the non-backtracking operator specialized in community 

detection tasks in sparse random networks (Section II).  

 
 
 
 
 
 
 
 
 
 
 
 



RESULTS  

 

Section I. Marginal scaling (MS) and marginal scaling and stickiness (MSS) 

models 

We carried out the statistical analysis of the single-cell Hi-C maps to provide 

statistical arguments supporting the premise that the clustering observed in snHi-C 

contact matrices “is not random”. For this, we used two different models of a 

polymer network based on Erdos-Renyi graphs, where bins of the contact map 

resemble graph vertices, and contacts between bins are graph edges39: 

a) In the MS model, we require the probability of contact between nodes to 

respect the contact probability of the experimental contact map, i.e. P(s)  =  Pc(|i −

j|). Decay of the contact probability originates from the intrinsic linear connectivity 

of the chromatin nodes; therefore, it is an important ingredient for studying 

fluctuations in a polymer network. The probability of the link between i and j in the 

random graph i, j = 1, 2 … , N is, thus, defined as follows: 

pij = Pc(|i−j|)
∑ (N−s)Pc(s)N−1
s=1

Nc,       (1) 

where the normalization factor in the denominator guarantees that the mean 

number of links in the graph equals Nc, (i.e., the number of experimentally observed 

links in each single cell). 

To obtain the average scaling, we merge all contacts from the available single 

cells and compute the average Pc(s). Given the probability 𝑝𝑝𝑖𝑖𝑖𝑖 by Eq. 1, we 

randomly generate adjacency matrices that have a homogenous distribution of 

contacts along the diagonals and do not respect local peculiarities of the bins, such 

as insulation score, acetylation, and protein affinity. Nevertheless, some non-

homogeneity (clustering) of contacts still emerges as a result of stochasticity in each 

realization of this graph (Fig. 1e). 

b) the MSS model introduces probabilistic non-homogeneity along the 

diagonals of the adjacency matrices through definition of the “stickiness” of bins. 

Specifically, under “stickiness”, we understand a non-selective affinity ki  of a bin i 



to other bins; the probability that the bin i forms a link with any other bin in the 

polymer graph is proportional to its stickiness. Thus, the clusters of contacts close 

to the main diagonal of contact matrices form as a result of different “stickiness'' of 

bins in the MSS model. Stickiness might effectively emerge as a result of a particular 

distribution of “sticky” proteins, such as PcG proteins known to mediate bridging 

interactions between nucleosomes and to participate in stabilization of the repressed 

chromatin state. 

Assuming that the stickiness is distributed independently of the polymer 

scaling Pc(|i-j|), we use the following expression for the probability of the link, 𝑝𝑝𝑖𝑖𝑖𝑖, 

in the MSS model: 

pij = kikjPc(|i−j|)
∑ kikjPc(|i−j|)i<j

Nc   (2) 

To derive the values of stickiness, we calculated the coverage at each bin in 

the merged contact map kı� , which stands for the average number of contacts at a 

particular bin. Due to the polymer scaling, the rates of contacts along each row 

(column) vary. Thus, kı�  is not equal to stickiness, kı� ≠ ki. To determine the 

stickiness values ki, one should correlate the experimental coverage kı�  with the 

theoretical mean number of contacts per bin, according to Eq. 2: 

kı� = ∑ pijj = kiαi (3) 

where  is “activity” of surrounding bins, measured for the i-th bin: 

αi = 1
Z
∑ kjPc(|i− j|)j , Z =  1

Nc
∑ kikjPc(|i− j|)i<j      (4) 

Eq. 3 sets a system of N non-linear equations that cannot be solved 

analytically. To determine the stickiness values, we implement the numerical 

method of iterative approximations. Namely, we start with: 

ki
(0) = kı� ,αi

(0) = αi(kı� )    (5) 

and recalculate ki
(1) using equations (3)–(4) at the second step. After several 

recursive steps, we find good convergence of the stickiness and activity to their 

limiting values ki∞ and αi∞. In particular, the derived values of the stickiness provide 

a good estimate for the averaged theoretical coverage kı�  as compared to the 



experimental coverage; see Fig. 1f,g. Therefore, the derived null-model of single-

cell maps reproduces, on average, the observed coverage of contacts of each bin by 

means of the individual stickiness assignment. We would like to point out the 

difference between the limiting values of the stickiness and kı� , used as a starting 

approximation in the iterative procedure; Fig. 1h. This difference is a result of the 

non-homogeneous redistribution of contacts at each particular row in accordance 

with the marginal polymeric scaling Pc(|i − j|). 

  

Number of contacts in windows 

The MS and MSS models introduced above demonstrate apparent clustering 

of generated contacts close to the main diagonal in realizations of adjacency 

matrices. In the MS model, this is purely due to fluctuations: the mean weight of the 

link wij = pij = ps depends only on the genomic distance between the bins s =

|i − j| in the respective Poisson version of the weighted network. In contrast, in the 

MSS model, the non-homogeneity of bin sicknesses allows for a deterministic non-

homogeneous distribution of contacts along the main diagonal. 

To statistically compare the clustering of contacts generated by the two 

models with the clustering in experimental single cell Hi-C maps, we studied 

distributions of the number of contacts in certain “windows” of different sizes. The 

inspected windows are isosceles triangles with the base located on the main diagonal 

and having the angle with the congruent sides. These windows look like TADs but, 

in contrast to the latter, have a fixed size throughout the genome. 

At a given window size W, we sampled the number of contacts falling in the 

defined windows in each snHi-C map. We compared the samples originating from 

100 random MS-generated maps and 100 random MSS-generated maps with derived 

limiting values of stickiness (see the previous section for discussion of the models). 

Note that in the theoretical models (MS and MSS), all contacts are statistically 

independent: in both models, the number of contacts falling in a window of size can 

be interpreted as a number of “successes” occurring independently in a certain fixed 

interval. In the MS model, the “success” rate is constant along each diagonal; thus, 



for rather sparse MS maps (i.e. sufficiently small rates), one would expect the 

observed contacts in the windows to follow the Poisson distribution. In the MSS 

maps, the stickiness distributions introduce non-homogeneity to “success” rates 

along the diagonals; however, as our analyses suggest, the random MSS maps 

exhibit much more satisfactory Poisson statistics than their original experimental 

counterparts; Fig. 1j,k. 

Deviations from the Poisson statistics of the snHi-C contact maps are 

evaluated by the p-value of the χ2 goodness of fit test (Fig. 1k). The heatmaps of the 

common logarithm of p-values for the top-10 single cells and the corresponding MS 

and MSS maps are presented in Fig. 1j. The random maps (the second and third 

rows) demonstrate reasonably even distributions of the p-values across distinct 

single cells that rarely enter below the significance level α = 10−5. Several 

atypically low p-values correspond either to extremely dense single cells and small 

window sizes (upper-left corner), for which the sparse Poisson limit is violated, or 

to a quite uneven distribution of stickiness for a given chromosome. Notably, the 

snHi-C maps demonstrate remarkable deviations from the Poisson statistics for 

small window size W < 40 bins (< 400 kb). As can be seen from the heatmaps (Fig. 

1j) the χ2 test rejects the null hypothesis at the significance level α = 10−5 for most 

of the single cells at small scales. Therefore, the probability that the experimental 

contact maps are described by the Poisson statistics is significantly low (α). 

To understand the source of inconsistency between the experimental and 

Poisson distributions, we plotted the histograms of the number of contacts along 

with their best Poisson-fit for W = 10 (Fig. 1k, left) and W = 40 (Fig. 1k, right). 

The presence of large-scale heavy tails and low-scale shoulders in the experimental 

histograms results in the rejection of the null hypothesis. 

Finally, the samples corresponding to larger windows are notably better 

described by the Poisson distribution, exhibiting a level of p-values similar to the 

random maps. The crossover W0 ≈ 40 (400 kb) corresponds to the scale of 3–4 

typical TADs; this implies that the positioning of the contacts inside a single TAD 

is sufficiently correlated. Correlations between the contacts of different pairs of loci 



can originate from a specific non-ideal folding of chromatin (e.g., fractal globule) or 

be a signature of active processes (e.g., loop extrusion) operating at the scale of one 

TAD. Larger window sizes accumulate contacts from different TADs, whereas most 

of the inter-TADs contacts are much less correlated. As a result, we see reasonable 

Poisson statistics of the number of contacts from larger windows with 𝑊𝑊 > 𝑊𝑊0. 

Taken together, we conclude that correlations in contacts is a structural feature of 

experimental single cell maps and that clusters (TADs) identified in the maps cannot 

be reduced to random fluctuations imposed by the white noise or imperfections of 

the experimental setup. 

 



 
 



Figure 1. snHi-C maps do not follow the rules of random distribution of 

contacts. 

a Background model of snHi-C interactions (MSS; Marginal Scaling with 

Stickiness Model). For each intrachromosomal map of the single nucleus, the 

number of contacts in each row or column (marginal distribution of the number of 

contacts) and the probability of contact for certain genomic distance Pc(s) are 

calculated. Then, the positions of observed contacts are randomly selected from all 

possible positions on the same chromosome so that the marginal distribution is 

exactly the same, and Pc(s) is approximately the same. 

b Scatter plot of the initial number of contacts per genomic bin in snHi-C map 

and after randomization for chr2R of Cell 1 with 107,823 unique contacts. 

c Contact probability Pc(s) for chr2R of Cell 1 before (green) and after (blue) 

randomization. 

d Cell 1 snHi-C interactions map for a region of chr2R (lower triangle) and 

randomized background control (upper triangle). Note the presence of contact 

clusters at the diagonal both in original and reshuffled data. 

e Examples of experimental (Exp) single-cell Hi-C maps with those simulated 

using the MSS and MS models. 

f-h Derivation of the stickiness values (Y axis) given the coverage of bins 

(numbers of contacts in rows, X axis) obtained by iterative approximations for the 

MSS model and chr2L (merged snHi-C data were used). At each step, the theoretical 

average for the coverage 𝑘𝑘𝚤𝚤�  at each particular bin 𝑖𝑖 is recomputed, and the stickiness 

values 𝑘𝑘𝑖𝑖 are corrected until convergence with experimental coverage is achieved. 

f Histograms of observed coverage from merged snHi-C map (blue) and of 

theoretical values (brown) calculated with 𝑘𝑘𝑖𝑖 = 𝑘𝑘𝚤𝚤�  (red) at the first step of the 

iterative procedure; wrong mean – computed with wrong stickiness. 

g The same histogram as in (f) after a series of iterative corrections of the 

stickiness values which led to convergence towards the limiting values 𝑘𝑘𝑖𝑖 = 𝑘𝑘𝑖𝑖∞. 

The resulting distribution of the coverage (red) reproduces the experimental values; 



true mean – computed with true stickiness, which is the outcome of the iterative 

procedure. 

h Distributions of the experimental coverage 𝑘𝑘𝚤𝚤�  (blue) and of the limiting 

stickiness 𝑘𝑘𝑖𝑖∞(red) are significantly different. Notably, the stickiness values 𝑘𝑘𝑖𝑖∞ have 

lower variance than the experimental coverage because the latter incorporate 

fluctuations of the contact probability, 𝑃𝑃𝑐𝑐(𝑠𝑠). 

i Initial and limiting scaling probability functions remain unchanged after the 

iterative approach. 

j Heatmaps of log10 of p-values for the χ2 test for the top 10 cells sorted to 

their contact densities. Experimental, MS, and MSS distributions of the number of 

contacts in windows of different size W = 10, 20, … , 100 bins at the main diagonal 

are statistically compared with the corresponding Poisson distributions. The original 

single cells demonstrate higher deviations from the Poisson statistics than the 

random models for small window sizes W ≤ 40 bins (400 kb). The χ2 test rejects 

the null hypothesis at the significance level α = 10−5 for most of the top-density 

single cells at the TAD scale. Clustering of contacts at the scale of TADs cannot be 

explained by the random models at the significance level α = 10−5. 

k Experimental, MS and MSS distributions of the number of contacts in 

windows of the size 𝑊𝑊 = 10 bins (100 kb) (left) and 𝑊𝑊 = 40 bins (400 kb) (right) 

displaced at the main diagonal Δ = 0 and their best Poisson distribution (in red). 

Three cells and three chromosomes are considered. The corresponding p-values of 

the 𝜒𝜒2 test are shown in each plot. 

 

 

 

 

 

 

 



Section II. Non-backtracking approach for annotation of TADs in single cells 

contact maps 

The chromatin network, constructed on the basis of the single-cell Hi-C data, 

can be classified as sparse (i.e. the number of actual contacts per bin in a single-cell 

contact matrix (adjacency matrix of the network) is much less than the matrix size 

N). The sparsity of the data significantly complicates the community detection 

problem in single cells. It is known that upon dilution of the network, there is a 

fundamental resolution threshold for all community detection methods40. 

Furthermore, traditional operators (adjacency, Laplacian, modularity) fail far above 

this resolution limit (i.e. their leading eigenvectors become uncorrelated with the 

true community structure above the threshold)41. That is explained by the emergence 

of tree-like subgraphs (hubs) overlapping with true clusters in the isolated part of the 

spectrum for these operators. Localization on the hubs, but not on true communities 

in the network, is a drawback of all conventional spectral methods in the sparse 

regime. 

To overcome the sparsity issue and to make spectral methods useful in the 

sparse regime, Krzakala et al.41 proposed to construct the transfer-matrix of non-

backtracking random walks (NBT) on a directed network. The NBT operator B is 

defined on the edges 𝑖𝑖 → 𝑗𝑗, 𝑘𝑘 → 𝑙𝑙 as follows: 

𝐵𝐵𝑖𝑖→𝑗𝑗,𝑘𝑘→𝑙𝑙 = 𝛿𝛿𝑖𝑖𝑖𝑖(1− 𝛿𝛿𝑗𝑗𝑗𝑗)       (6) 

By construction, NBT walks cannot revisit the same node on the subsequent 

step and, thus, they do not concentrate on hubs. It has been shown that the non-

backtracking operator is able to resolve the community structure in a sparse 

stochastic block model up to the theoretical resolution limit. In recently published 

paper42, we have proposed the neutralized towards the expected contact probability 

NBT operator for the sake of a large-scale splitting of a sparse polymer network into 

two compartments. 

Here, we are interested in the small-scale clustering into TADs, for which the 

conventional NBT operator is appropriate. To eliminate the compartmental signal 

from the data, we first cleansed all chromosome contact matrices starting from the 



diagonal, corresponding to 1 Mb separation distance (100th diagonal in the 10-kb 

resolution). To respect the polymeric nature of the contact matrices, we have filled 

all empty cells on the leading sub-diagonals with 1. Then, the NBT spectra of all 

single-cell contact matrices were computed. The majority of eigenvalues of the non-

Hermitian NBT operator are located inside the disc in a complex plane, and some 

number of isolated eigenvalues with large amplitudes lie on the real axis. The edge 

of the isolated part of the spectrum was defined as the real part of the largest in 

absolute value eigenvalue with a non-zero imaginary part. All eigenvalues 𝜆𝜆𝑖𝑖 such 

that 𝑅𝑅𝑅𝑅(𝜆𝜆𝑖𝑖) > 𝑟𝑟𝑐𝑐 are isolated, and the corresponding eigenvectors correlate with 

annotation into the TADs. The position of the spectral edge, determined by the 

procedure above, has been found to be very close to the edge of the disk for the 

stochastic block model 𝑟𝑟𝑐𝑐 = �〈𝑑𝑑〉−1 〈 𝑑𝑑
𝑑𝑑−1

〉, where 𝑑𝑑 is the vector of degrees43. The 

typical number of the isolated eigenvalues was around 100 for dense contact 

matrices and somewhat less for sparser ones. The leading eigenvectors define the 

coordinates 𝑢𝑢𝑗𝑗
(𝑖𝑖), 𝑗𝑗 = 1,2, … ,𝑁𝑁 of the nodes (bins) of the network in the space of 

reduced dimension 𝑘𝑘 ≪ 𝑁𝑁. At the second step, the clustering of the data was 

performed using the spherical k-means method, realized in the Python library 

spherecluster44. The dimension of the space 𝑘𝑘 establishes a lower bound on the 

number of clusters because the leading eigenvectors are linearly independent. To 

take into account the hierarchical organization of TADs, we have communicated to 

the spherical k-means the number of clusters somewhat larger than the lower bound. 

Although the final splitting was found to be not particularly sensitive to this number, 

we have chosen to split the network into 2.5*k clusters in order to obtain the same 

mean amount of TADs per chromosome as with the modularity method (171 TADs). 

The annotations produced by the spherical k-means on the single-cell Hi-C 

matrices were contiguous (i.e. the clusters were sequence respective, thus 

resembling TADs). The clusters (i) of size less than 30 kb and (ii) of size with 

amount of contacts equal to 2(𝑙𝑙 − 1) (i.e. with no contacts other than on the sub-

diagonals) were excluded from the set as the inter-TADs regions. The ultimate 



median size of the TADs across all single cells obtained by this algorithm was 110 

kb (from 60 kb to 260 kb), and the mean chromosome coverage was 82% (from 57% 

to 93%). The same analyses of shuffled contact maps have revealed a similar 

number, size, and coverage of the domains, formed purely due to fluctuations. The 

boundaries of the NBT TADs in single cells were significantly conserved from cell 

to cell: the mean pairwise fraction of matched boundaries was 44% for all the cells 

and 59% for the five densest ones (for the shuffled cells with preservation of 

stickiness and scaling, see the MSS model; the mean pairwise fraction was 38% and 

50% for the five densest cells). 

 

Regarding the comparison of TAD boundaries with the modularity approach, 

the mean fraction of conserved modularity boundaries is somewhat less—42% for 

all pairs of cells in the analyses and 52% for the five densest cells, whereas the 

number of TADs per chromosome is the same in the two methods (171). Between 

the two methods, the mean number of matched boundaries for the corresponding 

cells is 61%. 



 
 



 Figure 2. NBT as an approach for identification of TAD boundaries. 

a Percentage of TAD boundaries shared between NBT- and modularity-

derived TAD segmentations in individual cells. The mean percentage of shared 

boundaries is 61%. 

b Percentage of TAD boundaries shared between single cells for the NBT 

TAD calling procedure. The mean percentage of shared boundaries is 42%. 

c Epigenetic profiles around the NBT-identified TAD boundaries.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DISCUSSION 

Folding of interphase chromatin in eukaryotes is driven by multiple 

mechanisms operating at different genome scales and generating distinct types of 

the 3D genome features16,20. In mammalian cells, cohesin-mediated chromatin fiber 

extrusion mainly impacts the genome topology at the scale of approximately 100–

1000 kb by producing loops, resulting in the formation of TADs18,19 and establishing 

enhancer-promoter communication. Chromatin loop formation by the loop extrusion 

complex (LEC) in mammalian cells is a substantially deterministic process due to 

the preferential positioning of loop anchors encoded in DNA by CTCF binding sites 

(CBS). The cohesin-CTCF molecular tandem modulates folding of intrinsically 

disordered chromatin fiber16,23. On the other hand, association of active and 

repressed gene loci in chromatin compartments13,14, and formation of Polycomb and 

transcription-related nuclear bodies in both mammalian and Drosophila cells shape 

the 3D genome at the scale of the whole chromosome. These associations appear to 

be stochastic: a particular Polycomb-bound or transcriptionally active region in 

individual cells interacts with different partners located across a wide range of 

genomic distances. 

Here, for the first time, we applied the single-nucleus Hi-C to probe the 3D 

genome in individual Drosophila cells at a relatively high resolution that was not 

achieved previously in single-cell Hi-C studies. Based on our observations, we 

suggest that, in Drosophila, both deterministic and stochastic forces govern the 

chromatin spatial organization. 

We found that the entire individual Drosophila genomes were partitioned into 

TADs; this observation supports the results of recent super-resolution microscopy 

studies37. TAD profiles are highly similar between individual Drosophila cells and 

demonstrate lower cell-to-cell variability as compared to mammalian TADs. 

According to our model24, large inactive TADs in Drosophila are assembled by 

multiple transient electrostatic interactions between non-acetylated nucleosomes in 

transcriptionally silent genome regions. Conversely, TAD boundaries and inter-

TAD regions at the 10-kb resolution of Hi-C maps in Drosophila were found to be 



formed by transcriptionally active chromatin. This result may explain why TADs in 

individual cells occupy virtually the same genomic positions. Gene expression 

profile is a characteristic feature of a particular cell type, and, thus, should be 

relatively stable in individual cells within the population. In agreement with this, we 

demonstrated that invariant TAD boundaries present in a major portion of individual 

cells were highly enriched in active chromatin marks. Moreover, stable boundaries 

were also largely conserved in other cell types, possibly due to the fact that TAD 

boundaries were frequently formed at the position of housekeeping genes.  

In contrast to stable TAD boundaries, the boundaries that demonstrate cell-to-

cell variability bear silent chromatin. Some cell-specific TAD boundaries may 

originate at various positions due to a putative size limit of large inactive TADs or 

other restrictions in chromatin fiber folding. Indeed, it appears that the assembly of 

randomly distributed TAD-sized self-interacting domains is an intrinsic property of 

chromatin fiber folding35. In mammals, the positioning of these domains is 

modulated by cohesin-mediated DNA loop extrusion35, whereas in Drosophila, it 

may be modulated by segregation of chromatin domains bearing distinct epigenetic 

marks16,23. Even if cell-specific and unstable TAD boundaries are distributed in a 

random fashion, they should be depleted in active chromatin marks because active 

chromatin regions are mainly occupied by stable TAD boundaries. We also cannot 

exclude that variable boundaries and the TAD boundary shifts are caused by local 

variations in gene expression and active chromatin profiles in individual cells that 

we cannot assess simultaneously with constructing snHi-C maps. 

Our results are also compatible with an alternative mechanism of TAD 

formation. Given that the above-mentioned cohesin-driven loop extrusion is 

evolutionarily conserved from bacteria to mammals, it is compelling to assume that 

extrusion works in Drosophila as well. Despite the presence of all potential 

components of LEC (cohesin, its loading and releasing factors), TAD boundaries in 

Drosophila are not significantly enriched with CTCF24,25 and do not form CTCF-

enriched interactions or TAD corner peaks. These observations suggest that the 

binding sites of CTCF or other distinct proteins do not constitute barrier elements 



for the Drosophila LEC even if these proteins are enriched in TAD boundaries; this 

may be due to some other properties of a genomic region. For example, stably bound 

cohesins were proposed to act as the barriers for cohesin extrusion in yeast. 

Active transcription interferes with DNA loop extrusion. Because TAD 

boundaries in Drosophila are highly transcribed, we propose that open chromatin 

with actively transcribing polymerase and/or a high density of chromatin remodeling 

complexes could serve as a barrier for the Drosophila LEC. Contrary to the strictly 

positioned and short CBSs in mammals, active loci flanking Drosophila TADs 

represent relatively extended regions up to several dozens of kb in length. 

Probabilistic termination of LEC at varying points within such regions in different 

cells of the population could explain the absence of canonical loop signals and the 

presence of strong compartment-like interactions between active regions flanking a 

TAD. This model also provides a potential explanation for the relatively high 

stability of TAD positioning in individual Drosophila cells in comparison to 

mammals. A relative permeability of CBSs in mammalian cells allows LEC to 

proceed through thousands of kilobases and to produce large contact domains17. 

Extended active regions acting as “blurry” barrier elements where LEC termination 

occurs at multiple points, should stop the LEC more efficiently, making the TAD 

pattern more stable and pronounced. 

Taken together, the order in the Drosophila chromatin 3D organization is 

manifested in a TAD profile that is relatively stable between individual cells and 

likely dictated by the distribution of active genes along the genome. On the other 

hand, our molecular simulations of individual haploid X chromosomes indicate a 

prominent stochasticity in both the form of individual TADs and the overall folding 

of the entire chromosome territory. According to our data, the active A-compartment 

is radially detectable in individual cells, and the profiles of interaction between 

individual active regions are highly variable between individual cells. Notably, this 

also holds true for Polycomb-occupied loci that are known to shape chromatin fiber 

in living cells.  



Although these highly variable long-range interactions of active regions and 

Polycomb-occupied loci are closely related to the shape of chromosome territory 

(CT), the cause-and-effect relationships between them and the stochastic nature of 

the cell-specific chromatin chain path are currently unclear. The main question to be 

answered by future studies is whether these interactions are fully stochastic or at 

least partially specific. The possible molecular mechanisms that may provide 

specific communication between remote genomic loci separated by up to megabases 

of DNA are not known. In a scenario of the absence of any specificity, the pattern 

of contacts inside A-compartment and within Polycomb bodies in a particular cell is 

established by stochastic fluctuations of the large-scale chromatin fiber folding. In 

this case, the large-scale chromatin fiber folding dictates the cell-specific location of 

Polycomb-enriched and active chromatin regions in the 3D nuclear space. The 

formation of Polycomb bodies and transcription-related chromatin hubs is achieved 

by confined diffusion of these regions and might be further stabilized by specific 

protein-protein interactions and liquid-liquid phase separation. This mechanism 

allows to sort through alternative configurations of the 3D genome and to transiently 

stabilize those that are functionally relevant under specific conditions. A balance 

between the order and the stochasticity appears to be an intrinsic property of nuclear 

organization that enables rapid adaptation to changing environmental conditions. 
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7. Non-backtracking walks reveal
compartments in sparse chromatin

interaction networks

Introduction
Chromatin communities stabilized by protein machinery play essential role

in gene regulation and refine global polymeric folding of the chromatin fiber.
However, treatment of these communities in the framework of the classical network
theory (stochastic block model, SBM) does not take into account intrinsic linear
connectivity of the chromatin loci. Here we propose the "polymer"block model,
paving the way for community detection in polymer networks. On the basis of
this new model we modify the non-backtracking flow operator and suggest the
first protocol for annotation of compartmental domains in sparse single cell Hi-C
matrices. In particular, we prove that our approach corresponds to the maximum
entropy principle. The benchmark analyses demonstrates that the spectrum of the
polymer non-backtracking operator resolves the true compartmental structure up
to the theoretical detectability threshold, while all commonly used operators fail
above it. We test various operators on real data and conclude that the sizes of the
non-backtracking single cell domains are most close to the sizes of compartments
from the population data. Moreover, the found domains clearly segregate in the
gene density and correlate with the population compartmental mask, corroborating
biological significance of our annotation of the single cells into active and inactive
compartments.

Contribution
I have developed the polymer stochastic block model and the non-backtracking

flow operator, neutralized to the polymer contact probability. I have established the
connection with the generalized modularity and have proved that partition of a
chromatin network into two compartments by means of the leading eigenvector of
the proposed operator responds to the maximum entropy principle. I have tested
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the suggested framework on the benchmark, emulating compartmentalization in
single cells. I have realized the approach on real sparse data and have demonstrated
biological significance of the annotation by profiling the single cell domains using
the GC content and the leading eigenvector of the population-averaged Hi-C matrix.
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Non‑backtracking walks reveal 
compartments in sparse chromatin 
interaction networks
K. Polovnikov1,2*, A. Gorsky5,6, S. Nechaev3,4, S. V. Razin7,8 & S. V. Ulianov7,8

Chromatin communities stabilized by protein machinery play essential role in gene regulation and 
refine global polymeric folding of the chromatin fiber. However, treatment of these communities 
in the framework of the classical network theory (stochastic block model, SBM) does not take into 
account intrinsic linear connectivity of the chromatin loci. Here we propose the polymer block model, 
paving the way for community detection in polymer networks. On the basis of this new model 
we modify the non-backtracking flow operator and suggest the first protocol for annotation of 
compartmental domains in sparse single cell Hi-C matrices. In particular, we prove that our approach 
corresponds to the maximum entropy principle. The benchmark analyses demonstrates that the 
spectrum of the polymer non-backtracking operator resolves the true compartmental structure up 
to the theoretical detectability threshold, while all commonly used operators fail above it. We test 
various operators on real data and conclude that the sizes of the non-backtracking single cell domains 
are most close to the sizes of compartments from the population data. Moreover, the found domains 
clearly segregate in the gene density and correlate with the population compartmental mask, 
corroborating biological significance of our annotation of the chromatin compartmental domains in 
single cells Hi-C matrices.

Many real-world stochastic networks split into self-organized communities. Social networks feature circles of 
friends1–3, colleagues2, members of a karate club1, communities of dolphins4 etc. Cellular networks demonstrate 
modular organization, which optimizes crucial biological processes and relationships, such as synchronization of 
neurons in the connectome5, 6, efficiency of metabolic pathways7, 8], genes specialization9 or interaction between 
enhancers and promoters10.

Interest to polymer modular networks has appeared recently in the context of genome spatial folding. Prox-
imity of chromatin loci in space is believed to be deeply connected with gene regulation and function. Hi-C 
experiments11–13 provide the genome-wide colocalization data of chromatin loci. As the main outcome of the 
experiment, large genome-wide matrices of contacts from each individual cell or from the population are pro-
duced. Analyses of these matrices has revealed that the eukaryotic genome is organized in various and biologically 
relevant communities, whose main function is to insulate some regions of DNA and to provide easy access to the 
others. In particular, the data collected from a population of cells suggest that transcribed (“active”) chromatin 
segregates from the, “inactive” one, forming two compartments in the bulk of the nucleus12, 14. Within compart-
ments chromatin is organized further as a set of topologically-associated domains (TADs)15–17 that regulate 
chromatin folding at finer scales. However, interpretation and validation of communities in individual cells 
remains vaguely defined due to sparsity of respective data.

The broad field of applications of stochastic modular networks has initiated the boost development of com-
munity detection methods. Spectral algorithms exploit the spectrum of various operators (adjacency, Laplacian, 
modularity) defined on a network to identify the number of communities and to infer the optimal network 
partition18–22. Typically, leading eigenvectors of these operators positively correlate with the true community 
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structure or with the underlying core-periphery organization of the network23. These algorithms, along with the 
majority of theoretical results in the field, are derived for the stochastic block model (SBM)18, 22 as an extension 
of Erdös-Rényi graphs24 to graphs with explicitly defined communities. One of the strongest limitations of the 
SBM is that edges between vertices belonging to the same cluster inevitably attain equal weights. At the same 
time, biological networks typically have several levels of organization within their communities25. In particular, 
identification of several hierarchical levels in the network becomes tremendously important in the case of poly-
mer networks, where different pairs of loci have marginally different probabilities to form a contact in space26, 
caused by the frozen linear connectivity along the chain.

Even for simplest polymer systems the contact probability demonstrates a power-law behavior with the 
dimensional-dependent scaling exponent characterizing universal long-ranged behavior of polymer folding27. 
In this work we propose the “polymer stochastic block model” which reflects a specific global polymer network 
organization with explicit structuring into communities. The main new ingredient of the model under considera-
tion is the average contact probability P(s = |i − j|) between the pairs of loci (i, j) which is constant for standard 
non-polymeric networks, however cannot be neglected for polymers.

Chromatin single cell networks are not only polymeric, but also sparse13, 28. It is known that upon reduction 
of the total number of edges in the network, there is a fundamental resolution limit for all community detection 
methods22, 29. Furthermore, traditional operators (adjacency, Laplacian, modularity) fail far above this resolu-
tion limit, i.e. their leading eigenvectors become uncorrelated with the true community structure above the 
threshold30. That is explained by emergence of tree-like subgraphs (hubs) overlapping with true clusters in the 
isolated part of the spectrum for these operators. The edge of the spectral density of sparse networks is universal 
and demonstrates the so-called “Lifshitz tail”31–34. Localization on hubs, but not on true communities is a draw-
back of all conventional spectral methods in the sparse regime.

To prevent the effect of localization on hubs and to make spectral methods useful in sparse regime, Krzakala 
et al. proposed to deal with non-backtracking random walks on a directed graph that cannot revisit the same 
node on the subsequent step30. The crucial property of non-backtracking walks35 is that they do not concentrate 
on hubs. It has been shown that the non-backtracking operator is able to resolve the community structure in 
sparse stochastic block model up to the theoretical resolution limit. Typically, the majority of eigenvalues of the 
non-backtracking operator (which is a non-symmetric matrix with complex eigenvalues) are located inside a 
disc in a complex plane, and a number of isolated eigenvalues lie on the real axis.

For the sake of community detection in sparse polymer networks we construct the polymer-type non-back-
tracking walks, appropriate for community detection in graphs with hidden linear memory (“polymeric back-
ground”). We establish the connection between this operator and the generalized polymer modularity, thus, 
bridging a gap with the maximum entropy principle. We test the performance of different spectral methods (with 
and without polymer background) on sparse artificial benchmarks of polymer networks that mimic compart-
mentalization in single cell Hi-C graphs. We show that polymer non-backtracking walks resolve the structure 
of communities up to the detectability threshold, while all other operators fail above it. In order to demonstrate 
efficiency of the method on real data, we partition a set of single cell Hi-C contact maps of mouse oocytes into 
active (A) and inactive (B) compartments by different operators. Found domains are shown to have similar sizes 
to the compartmental domains and correlate with the compartmental mask from the population-averaged data. 
Analyses of the GC content within the domains demonstrates enrichment and depression of the genes density 
in the two clusters, thus, corroborating their biological significance.

The structure of the paper is as follows. In Section “Stochastic block model with polymer contact probability” 
we propose the polymer stochastic block model, derive the entropy and the corresponding generalized modu-
larity functional. In Section “Polymer non-backtracking flow operator” we discuss polymer non-backtracking 
walks, prove their robustness on the benchmarks emulating compartments, and, finally, test them on the real 
single cell data. In Section “Conclusion” we draw the conclusions.

Stochastic block model with polymer contact probability
Definition of the model.  Characterize a N-bead polymer chain by coordinates {x1, x2, . . . , xN } of mono-
mers i = 1, 2, . . . ,N and construct a corresponding topological graph G = (V ,E) with the adjacency matrix 
Aij (accounting for the bead’s proximity in space). Such graphs are typically constructed upon processing of 
chromatin single cell Hi-C data and in computer simulations of DNA folding11, 12. A graph G does not contain 
pairwise spatial distances of the polymer configuration, however, provides information on spatial proximity of 
monomers (or groups of monomers), which is usually of major biological relevance. For the 1-bin resolution of 
G the polymer beads (bins) are the nodes V. The edge between a pair of nodes (i, j) is defined by the condition 
(i, j) ∈ E iff |xi − xj| < ε , where the threshold ε is some cutoff radius with which the contacts between the two 
loci are registered in Hi-C. Due to finite excluded volume of chromatin, the theoretical number of contacts per 
monomer that can be registered in single cell experiments is of order of few units, while the total size of the poly-
mer chain, measured in number of beads, is huge ( N ∼ 105 in the 1-kb resolution for human chromosomes). 
Thus, the single cell contact matrices are essentially sparse13, 28. Summation over realizations of adjacency matri-
ces Aij obtained from different cells results in a “population-averaged” matrix Aij . By construction, entries of 
the weight matrix Aij are proportional to the probability that the spatial distance between monomers (i, j) is less 
than ε.

Already for the simplest configurations, such as a conformation of ideal polymer chain isomorphic to the 
random walk, the matrix Aij is not expected to be uniform. This is due to a polymeric power-law behaviour of 
a contact probability,

(1)P(s) ∼ s−α , for s = |i − j|
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By definition, P(s) is probability to find two beads of a linear chain, separated by a chemical distance s, close to 
each other in space. The critical exponent, α , is an important parameter, which characterizes the “memory” about 
the embedding of a polymer loop of length s in a D-dimensional space27. Such a memory can arise due to some 
equilibrium topological state of chromatin, or could be a result of partial relaxation of mitotic chromosomes36. 
Notable examples of α , typically appearing in the chromatin context for chain embedding in a three-dimensional 
space, are α = 3/2 for ideal chain and α ≈ 1 for the crumpled globule12, 37–39.

Communities of folded chromatin refine the background (polymeric) contact probability at small scales and 
are biologically significant. We treat communities as canonical stochastic blocks18, 22 superimposed over the back-
ground. Stochastic block model is a network model in which N nodes of a network are split into q different groups 
Gi , i = 1, 2, . . . , q and the edges between each pair of nodes are distributed independently with a probability, 
depending on the group labels (“colors”) of respective nodes. In a matrix of pairwise group probabilities � = {ωrt} 
with (r, t) = 1, 2, . . . , q , any randomly chosen pair of nodes (i, j) (where i ∈ Gr , j ∈ Gt ) is linked by an edge with 
probability ωrt . The corresponding entry in the adjacency matrix Aij is 1 with probability ωrt and 0 otherwise. 
The sum of many such “single-cell” Bernoulli matrices generates an analogue of the “population-averaged” Hi-C 
matrix Aij with Poisson distributed number of contacts with the mean �Aij� = ωrt where i ∈ Gr , j ∈ Gt . To the 
first approximation, the communities can be considered identical (known as a “planted” version of the model)

Having (1) and (2), the simplest assumption one can come up with is that formation of compartments in chro-
matin is independent of the global memory of folding. Indeed, phenomenon of compartments is likely related 
to preferential interactions of nodes of the same epigenetic type (e.g., “active” or “inactive”) and is modelled as 
a phase separation of block-copolymers40. This allows to suggest the factorization of (1) and (2), so that the final 
probability for the edge (i, j) reads

To emulate A and B compartments in a single cell Hi-C network, we consider a simple adjacency benchmark 
of a polymer with two communities. Namely, we represent the chain as a sequence of alternating segments of A 
and B type (painted in red and blue), whose lengths are Poisson-distributed with the mean length � . An example 
of the resulting adjacency matrix is depicted in Fig. 1a. Note that due to decay of the contact probability, the 
“checkerboard” compartmentalization pattern is hardly seen in single cells Hi-C data28. Since segments of the 
same type are surrounded in space by segments of the other type, they form local “blob-like” clusters along the 
main diagonal of the adjacency matrix reminiscent to topologically-associated domains15. However, they are likely 
formed by a different mechanism and have an order of magnitude larger size than TADs40. Such a multi-domain 
blob structure in Fig. 1a is a manifestation of the polymeric nature of the network and it cannot be reproduced 
with communities of general memory-less networks, i.e. in the framework of the canonical stochastic block 
model with two clusters—see Fig. 1b for comparison.

(2)�rt =
{
win, r = t
wout , r �= t

(3)Probij = P(|i − j|)
{
ωin, r = t
ωout , r �= t

, i ∈ Gr , j ∈ Gt

Figure 1.   Adjacency matrices of N = 1000 with two clusters generated according to the (a) polymer 
stochastic block model ( win = 1,wout = 0.1,P(s) = s

−1, � = 100 ) and (b) canonical stochastic block model 
( win = 0.1,wout = 0.01, � = 500 ). Vertices in the graph are enumerated by the polymer coordinate (a) and first 
all red, then all blue ones (b).
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Statistical inference of polymer SBM and generalized modularity functional.  Suppose that a 
population-averaged matrix A is observed. By definition, each entry Aij of this matrix counts the amount of 
reads between the bins i and j coming from a population of single cells. Thus, after proper normalization, Aij is 
a Poisson variable with the mean dictated by (3), �Aij� = Pij ωgigj , and ωgigj = �ij are the pairwise group prob-
abilities (at the moment we do not require all the groups to be identical). Neglecting correlations between the 
matrix entries, the statistical weight of A conditioned on the cluster probability matrix � , background contact 
probability P and group labels of the nodes {gi} , can be factorized into the product of the Poisson probabilities 
for the entries Aij

where the product runs over all pairs of nodes in the network. Since there are no self-edges in the network, all the 
diagonal elements of the matrix Aij are zeros and we do not include them into the product (4). The corresponding 
partitioning entropy of the polymer SBM is

where we have omitted the constant terms − logAij! and Aij log Pij , independent of the partitioning. For identi-
cal communities (see (2)), we get

Taking (6) into the account and omitting again all irrelevant constant terms, we arrive at the final expression 
for the entropy (5)

where T =
(

logwin − logwout

)−1 is the effective temperature and

is a parameter describing the cluster probabilities inherited from the initial definition of stochastic blocks.
The entropic functional (7), up to normalization coefficients and constant terms, is the generalized modular-

ity functional. For Pij = didj/
∑

i di , where d is the vector of degrees, (7) reduces to the modularity proposed 
by Newman3, 41 for the sake of spectral community detection in scale-free networks. Recently it has been shown 
that the same functional can be used to partition a network with the core-periphery organization23. The operator 
of the generalized modularity reads

The second term in (9) can be understood as an expectation number of contacts between nodes (i, j) in the pop-
ulation-averaged data, or as a probability of the link in the single cell graph. Indeed, in absence of the stochastic 
blocks, this value equals Pij by definition. The factor γ responds for the clustering structure superimposed over 
the background. In the limit of “weak” communities, when win = wout → 1 , the partitioning yields γ → 1 , which 
corresponds to the pure background. To determine the optimal value of γ , one can run a recursive procedure, 
which consists of iterative maximization of the generalized modularity and renormalization of γ according to 
(8). We realize this approach in our numerical analyses below.

Polymer non‑backtracking flow operator
Non‑backtracking walks on a directed polymer network.  Search for the global maximum to the 
modularity functional is a very hard computational problem. One of most promising approaches which avoids a 
brute force, is to suggest that if the community structure is significantly strong, there is an operator whose eigen-
vectors encode the network partitioning in these communities3, 22. However, as it was first noted by Krzakala 
et al.30, for sparse networks leading eigenvectors become uncorrelated with true community structure well above 
the theoretical threshold. As a result, all conventional operators such as adjacency, Laplacian and modularity fail 
to find communities in rather sparse networks.

To overcome this difficulty, it was proposed to exploit the spectrum of the Hashimoto matrix B , which 
is a transfer matrix of non-backtracking walks on a graph35. It is defined on the edges of the directed graph, 
i → j, k → l , as follows

It is seen from (10) that the non-backtracking operator prohibits returns to the point which a walker has vis-
ited at the previous step. Since matrix B is non-symmetric, its spectrum is complex. For Poissonian graphs the 
spectral density of B is constrained within a circle of radius 

√
�d� in the complex plain and exhibits no “Lifshits 

(4)Z(A| �, P, {gi}) =
∏

i<j

(

Pij ωgigj

)Aij

Aij!
exp

(

−Pij ωgigj

)

(5)logZ(A| �, P, {gi}) =
∑

i<j

(

Aij logωgigj − Pij ωgigj

)

(6)
{

ωgigj = wout + δgigj (win − wout)

logωgigj = logwout + δgigj
(

logwin − logwout

)

(7)T logZ(A| �, P, {gi}) =
∑

i<j

(

Aij − γPij
)

δgigj

(8)γ =
win − wout

logwin − logwout

(9)Q = A− γP

(10)Bi→j,k→l = δil(1− δjk)
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tail” singularities near the spectral edge, in contrast to other conventional operators30, 31. Real eigenvalues of B 
lying out of the circle become relevant to the community structure even in sparse networks. Associating the 
corresponding eigenvectors with the network partitioning permits to detect communities all the way down to 
the theoretical limit. In19 M. Newman suggested a normalized operator, that conserves the probability flow at 
each step of the walker.

For the sake of community detection in sparse polymer graphs, we propose a conceptually similar operator 
that describes the evolution of the non-backtracking probability flow on a graph with intrinsic linear memory

In “Appendix” we establish the connection between the non-backtracking operator and the generalized modu-
larity, derived in the previous Section from the statistical inference of the polymer SBM. Thus, partitioning of a 
polymer network into two communities according to the leading eigenvector of the polymer non-backtracking 
flow operator (11) responds to the maximum entropy principle.

An example of the non-backtracking walk on a polymer graph is illustrated in the Fig. 2a. Note that despite 
immediate revisiting of nodes is forbidden, the walker is allowed to make loops. The second term in (11) plays a 
role of neutralization towards the contact probability, arising from the linear organization of the network. This 
compensation provides a measure for the non-backtracking operator to tell apart the true communities from the 
fluctuations, evoked by the polymeric scaling. Trivially, the proposed non-backtracking operator is converged to 
the Newman’s flow operator, when the background is non-polymeric, but rather corresponds to the configuration 
model with fixed degrees Pij = didj/2m

19. For a pure polymeric graph without contamination by communities, 
the spectrum of (11) lies inside a circle of radius r =

√

�d(d − 1)−1� . As sufficiently resolved communities are 
formed in the network, isolated eigenvalues pop up at the real axis.

In Fig. 2b we depict the non-backtracking spectrum of a polymer SBM, corresponding to the fractal globule 
polymer network with P(s) = s−1 of the size N = 1000 with two compartments, organized as contiguous alternat-
ing segments with the mean length � = 100 . For the parameters win , wout used, the two compartments are well 
resolved that is provided by the isolated eigenvalue separated from the circle. Since the leading eigenvector u(1) 
of the polymer non-backtracking flow, in contrast to the adjacency or modularity, is defined on directed edges 
of the network, one needs to evaluate the Potts spin variables gi = ±1 in order to classify the nodes. From the 
correspondence between the modularity and polymer flow operator one sees that contribution to the i-th node 
gi comes from the flow along all the directed edges pointing to i. Thus, in order to switch from edges to nodes, 
one needs to evaluate the sign of the sum vi =

∑

j Aiju
(1)
j→i and to assign the node i accordingly, gi = sign(vi).

Spectral clustering of the polymer stochastic block model.  In this section we investigate spec-
tral properties of the polymer non-backtracking flow and compare performance of various linear operators in 
partition the polymer SBM. The two compartments with � = 100 are superimposed over the fractal globule, 
P(s) = s−1 , with total size of the network, N = 1000 . We fix the weight of internal edges at win = 1 and change 
the resolution of compartments by tuning the weight of external edges, wout = 0.1− 0.8 . Efficiency of splitting 
is assessed by the fraction of correctly classified nodes.

In Fig. 3a we compare the performance of adjacency, normalized Laplacian, M. Newman’s non-backtracking 
flow operator, polymer modularity and polymer non-backtracking flow matrices. For the latter two, the optimal 

(11)Ri→j,k→l =
δil
(

1− δjk
)

di − 1
− γ

(

djdl
)−1

Pjl

Figure 2.   (a) Depiction of the polymer SBM network: the backbone (bold), contacts between genomically 
distant monomers (dashed) and two chemical sorts of the monomers (red and blue), arranged into contiguous 
alternating segments. An example of the non-backtracking walk on such graph is shown by arrows. Immediate 
returns are forbidden, preventing localization on hubs; (b) Spectrum of the polymer non-backtracking flow (11) 
for the fractal globular ( P(s) = s

−1 ) large-scale organization of the chain with two overlaid compartments with 
the mean length � = 100.
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value (8) of the parameter γ was chosen. It is evident that the polymer flow operator surpasses all conventional 
operators without the background, as well as the polymer modularity everywhere below wout ≈ 0.5 . Qualitatively 
similar behaviour was demonstrated by the traditional non-backtracking operator without the background, when 
it was compared to other operators in30. Therefore, our analyses (i) underscores the importance of taking into 
account the contact probability (polymer background) when dealing with polymer graphs, and (ii) recapitulates 
efficiency of non-backtracking walks in resolving communities in sparse networks.

It is worth noting that the abrupt fall in performance of the polymer flow operator coincides with the leveling 
of its amount of isolated eigenvalues at zero, see Fig. 3d. Values around wout ≈ 0.5 define the detectability transi-
tion, above which the leading eigenvector becomes uncorrelated with the true nodes assignment. To understand 
whether it corresponds to the theoretical detectability limit, we translate wout into the average amount of inner, 
cin = Nwin/2 , and outer, cout = Nwout/2 , edges and plot them as functions of wout . As it is shown in Fig. 3c, the 
polymer flow operator drops close to the theoretical detectability transition for regular stochastic block models42 
(i.e. each node has exactly cin random links with other nodes in its community and exactly cout randomly pointed 
links to nodes from the other community)

For the stochastic block model the number of isolated eigenvalues of B exceeds the number of communities 
by one30. However, in case of the polymer operator R the number of isolated eigenvalues can be much larger 
and “apparent” clusters might be formed “locally” at the main diagonal due to the frozen linear connectivity, see 
Fig. 1a. This is evident from the Fig. 3d, which shows that the number of isolated eigenvalues for the polymer 
flow operator can be of order of the amount of the segments ( N/� ), if wout is sufficiently low. Indeed, for the 
fractal globule probability of the edge between two distant segments of the same type is s times smaller than 
probability of the link for two close monomers ( s = |k −m| is the genomic distance between segments k and 
m). Due to the overall small number of contacts in the network, the polymer non-backtracking flow ends up 
rationalizing them as separate clusters.

The value of γ cannot be chosen arbitrary since it characterizes optimal parameters of stochastic blocks. Thus, 
one may propose the following iterative approach: 

(12)cin − cout > 2
√
cin + cout

Figure 3.   (a) Comparison of performance of different classical operators without background, polymer 
modularity and polymer non-backtracking flow operators ( N = 1000,P(s) = s

−1,win = 1, � = 100 ); (b) The 
iterative approach that can be used to determine the optimal value of γ for five values of wout ; the true optimal 
values of γ calculated from (8) are shown by dash; (c) The mean numbers of inner cin and outer cout edges are 
calculated for each value of wout in order to estimate the detectability threshold for the corresponding regular 
network. (d) Amount of isolated eigenvalues of the polymer flow operator plotted against wout . Full spectra of 
the polymer flow operator for the two values of wout are shown in the insets.
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1.	 begin with the initial value γ0 = 1 , for which we obtain the network partition;
2.	 use the amount of inner and outer edges for estimating win , wout;
3.	 recalculate γ1 according to (8);
4.	 repeat the procedure iteratively until γ converges to γopt.

Results of this procedure are demonstrated in the Fig. 3b for five different values of wout . It is seen that just several 
steps of iteration is sufficient to obtain a reasonable convergence towards the theoretical values provided by (8). 
A drawback of this iterative procedure is that at each step one needs to evaluate the spectrum of the operator 
2m× 2m , which could become a hard computational task for large and dense networks. As a reasonable approxi-
mation to the optimal value of γ for the polymer flow operator, one can evaluate γopt similarly for the polymer 
modularity, which is smaller in size and symmetric.

Polymer non‑backtracking flow resolves compartments in a single cell Hi‑C network.  To check 
robustness of the polymer non-backtracking flow operator on real Hi-C data we run it on a set of individual 
oocyte cells of mouse28. From the public repository we have taken the single cells Hi-C data on cis-contacts of 20 
chromosomes from 13 single cells (260 adjacency matrices, in total). While single cells matrices with sufficiently 
large number of contacts are not sparse and can be split into compartments using conventional methods largely 
used for the bulk data (e.g., the leading eigenvectors of observed/expected transformation of a population-aver-
aged Hi-C map,12), here we take the cells with low to moderate amount of contacts for the sake of comparative 
analyses of clustering performance of different spectral methods on sparse polymer graphs.

Before proceeding with the analyses of compartments in single cells, the raw data must be preliminary 
processed. In order to extract compartmentalization signal from the maps, we have coarse-grained them to the 
resolution 200 kb. At this resolution all finer genome folding structuring (like topologically-associated domains) 
is encoded within the coarse-grained blobs and does not communicate with two large-scale A and B compart-
ments. We note, that, in principle, the method is applicable at higher resolution as well. However, there are two 
important considerations. The non-backtracking operator is defined on the edges, therefore, the leading eigenvec-
tors need to be computed for much larger matrix than in case of traditional operators, which are defined on the 
nodes (e.g., modularity). This means that the computation time of the method is very sensitive to the resolution. 
Furthermore, one needs to be very careful with the overall network density: it decreases by several times upon 
decreasing of the bin size, so that one can occasionally cross the detectability limit (12). In each particular case 
the resolution for the annotation should be chosen with respect to the sparsity of the experimental single cell 
contact maps. According to this logic, we have decided to use the resolution 200 kb for the data of Flyamer et al.

Most of the contacts in the cells have degeneracy 1 at the chosen resolution, however, several pairs of bins 
have more than 1 contact. To preserve this feature of enhanced connectivity, we consider the counts of contacts 
between the pairs as weights of the corresponding edges. Furthermore, the single-cell maps are noisy and some 
of really existing contacts get lost due to technical shortcomings of the experimental protocol. As long as the 
neighboring blobs in the chromatin chain are connected with probability 1, all lost contacts Ai,i+1 need be added 
to the adjacency matrix manually; we assign the weight 1 to such edges. We also cleans the coarse-grained data 
from the self-edges, assigning Aii = 0.

To determine the background model for our analyses we calculate the contact probability 
P(s) = 1

N−s

∑N−s
i=1 Ai,i+s for each individual single cell and for the merged cell (summing single cells matrices), 

see Fig. 4a. Resulting dependence turns out to be fairly close to the fractal globule contact probability, P(s) ∼ s−α 
with α ≈ 1 at scales from ≈ 1-2Mb to the end of the chromosome. A shoulder at lower scales around 1 Mb reflects 
enhancement of the contact probability due to the compartmentalization. Importantly, the fractal globule scaling 
at the megabase scale is universal across different species and cell types; it is evident in the population-averaged 
contact matrices in mouse oocytes28, human lymphoblastoid cells12 and Drosophila cells43. As it was shown in 
previous Section, in order to extract compartmentalization profile overlaying a specific long-ranged folding, it 
is crucial to incorporate the respective background contact probability into the polymer model of the stochastic 
blocks.

Having the background model determined, we construct the polymer non-backtracking flow operator with 
the variable parameter γ and run the iterative clustering procedure to derive the optimal value γ0 . Similarly to the 
analyses on the benchmarks, see Fig. 3b, a swift convergence to the optimal value is observed here. The spectrum 
of the polymer flow operator for the cell 29749, chromosome 3 at γ0 ≈ 0.9 is shown in the inset of the Fig. 4b. 
Nineteen isolated eigenvalues on the real axis are separated from the bulk spectrum. As we have shown in the 
previous Section, this is a quite typical scenario for sparse polymer stochastic block models. In the sparse limit of 
the polymer SBM, the number of isolated eigenvalues could be much larger than the number of compartments.

The partition of the single cells in two compartments has been performed in the leading eigenvector approxi-
mation of the different operators. The boundaries of active and inactive domains are determined according to the 
sign of the respective compartmental signal (see Fig. 4b and Supplementary Fig. S1 online). It is known that the 
gene density is higher in the actively transcribed A compartment, thus, the fraction of GC letters in bins of active 
compartmental domains needs to be larger than in inactive domains. To validate that the clusters found in single 
cells respond to the transcriptional domains and are biologically significant, we calculate the GC content profiles 
around the centers of all A and B domains separately and then take the average of these profiles in each group. 
The types of the domains were phased in accordance with the leading eigenvector of the bulk data (population 
Hi-C on embryonic stem cells was used44; the eigenvector was computed on the observed-over-expected map). 
We also plot analogous profiles for the leading eigenvector of the bulk data. In absence of direct annotation 
methods for single cells due to their sparsity, these two measures have been of use to approximate positions of 
the compartmental domains in single cell Hi-C data28.
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As expected, the GC content for the population-averaged map and the bulk E1 vector both have pronounced 
peaks at the center of A domains and symmetrical dips at the center of B domains with the z-score amplitude 
equal to 0.4 (GC) and 0.7 (E1), correspondingly. Single cells profiles demonstrate notably lower amplitudes (see 
Fig. 4c,d and Supplementary Figs. S2, S3 online). However, only the polymer non-backtracking flow yields the 
annotation with the similar shape and span. Both profiles (for A and for B) of the polymer non-backtracking 
flow fall symmetrically to zero at the same genomic distance, around 4− 5 bins from the centers of domains, 
which also strikingly coincides with the span of the bulk profiles. This is also compliment to the similarity of 
the characteristic sizes of compartmental domains determined by the non-backtracking flow operator ( �l� ≈ 
2.2 Mb) and domains from the bulk data ( �l� ≈ 1.7 Mb). To test the effect of different α , we additionally run the 
polymer non-backtracking for α = 3/2 , which is the scaling exponent of the contact probability for the ideal 
chain packing. Comparison of the two values of the parameter is demonstrated in Supplementary Fig. S4 online: 
the profiles with α = 3/2 show significantly worse correlation with both GC content and the E1 bulk vector. 
This is consistent with the slope α ≈ 1 of P(s) for the set of single cells, Fig. 4a, underscoring the importance of 
neutralization on the appropriate average polymeric scaling before the clustering.

Note that the partitions of the polymeric operators (non-backtracking, modularity) are visibly much more 
adequate to apparent clustering of contacts in a particular cell (Supplementary Fig. S1 online). Despite the 
similarity in compartmental signals from the polymer modularity and from the polymer non-backtracking 
flow, the sizes of modularity domains are almost twice larger ( �l� ≈ 4.1 Mb) and show negative z-scores of GC 
content both for the active and inactive compartments. The profile of the E1 vector plotted for the polymer 
modularity has a similar bell shape, however, it levels at ≈ −0.07 and stays negative throughout the whole range 
of the compartmental interval. This is a consequence of sparsity, which results in a limited performance of all 
traditional spectral methods.

Conclusion
In this paper we have developed theoretical grounds for spectral community detection in sparse polymer net-
works. On the basis of suggested polymeric extension of the stochastic block model, we have proposed the 
polymer non-backtracking flow operator and have proven that its leading eigenvector performs partitioning of 
a polymeric network into two clusters according the maximum entropy principle. The established connection 
with the modularity functional provides a computationally efficient tool for the network partitioning and search 
for the optimal resolution parameter of the partition in polymer networks, which, however, is inferior to the 
non-backtracking in efficiency for sparse networks.

The proposed theoretical framework is verified by extensive numerical simulations of polymer benchmarks, 
constructed in order to emulate compartmentalization in sparse chromatin networks. Comparative analyses of 
different operators on the benchmark has suggested that the polymer flow detects the communities up to the 
theoretical detectability limit, while all other operators fail above it. At the same time, the amount of isolated 
eigenvalues of the polymer flow operator can be larger than amount of true communities present in the network, 
due to frozen linear connectivity that forces the chain to form “blobs” along the chain contour. This result dis-
tinguishes the polymer system with thespect the canonical stochastic block model, where the number of isolated 
eigenvalues of the non-backtracking exactly matches the number of communities.

Analyses of the single cell Hi-C data of mouse oocytes suggests that the non-backtracking walks efficiently 
split experimental sparse networks into biologically significant communities, characterized by enrichment and 

Figure 4.   (a The average contact probability P(s) of single cells (gray) and of the merged cell (solid, black) 
computed for logarithmically spaced bins with the logfactor 1.4; the fractal globule scaling P(s) ∼ s

−1 is also 
shown by dashed line for comparison. (b) Annotation of active (red) and inactive (blue) compartmental 
domains for one of the contact maps (cell 29749, chromosome 3, length N = 492 , 200kb resolution) by the 
polymer non-backtracking flow operator. Below the map the compartmental signal from the corresponding 
leading eigenvector of the polymer non-backtracking flow matrix is shown. Inset: the full spectrum of the 
polymer flow for the same contact map. (c,d) Averaged profiles of the GC content (z-scores) plotted around the 
centers of the compartmental domains (active—red, inactive—blue) for the population of cells and for a pool of 
single cells.
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depression of the genes density. The sizes of the compartmental domains are fairly close to the sizes of the 
population-averaged domains. Comparison with characteristics of the domains, inferred by other operators, 
underscores superiority of the non-backtracking walks in partitioning sparse polymer networks.

In this study we have exploited for the polymer network analysis only the simplest spectral characteristics. 
More involved ones, e.g. spectral correlators and the level spacing distribution, carry additional information 
about the propagation of excitations in network. The spectral statistics and non-ergodicity have been discussed 
in clustered networks in45, 46. In the context of the gene interactions the spectral statistics has been discussed 
in47 for the matrices with the real spectrum. The non-backtracking matrices enjoy complex spectrum hence the 
special means are required to analyze the level spacing in this case. The corresponding tool has been invented 
recently48, 49, therefore, the spectral statistics of the polymer non-backtracking flow operator certainly deserves 
a separate study.

Appendix
Methods.  Quadratic form of the polymer non‑backtracking operator.  Let us consider a quadratic form in-
volving the operator over the Potts spin variables gi , i = 1, 2, . . . ,N and introduce the 2m-dimensional (2m is 
the number of edges in the network) vector u, such as ui→j = gj . Then,

It can be shown that (13) coincides with the quadratic form of the generalized modularity. Let us consider the 
terms separately. The quadratic form of the first, non-backtracking term, yields

where the sum over k enumerates the edges of the node i except of the edge (i, j) and, thus, equals di − 1 . Expand-
ing the quadratic form of the second term similarly, we get

Collecting (14) and (15) together one arrives at

which is the quadratic form of the generalized modularity functional, proportional to the entropy of the polymer 
SBM.
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Figure S1: Annotations of active (red) and inactive (blue) compartmental domains for three chro-

mosomes (16, 3 and 13; resolution 200kb) of the cell 29749 by the polymer non-backtracking

flow operator, polymer modularity, M. Newman’s non-backtracking flow, normalized Laplacian

and adjacency. Below each map the compartmental signal from the leading eigenvector of the

corresponding operator is provided. Hi-C data is taken from Flyamer et al.
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Figure S2: Averaged profiles of the GC content (z-scores) plotted around the centers of the compart-

mental domains (active - red, inactive - blue) for the population (embryonic stem cells, data taken

from Bonev et al.), polymer non-backtracking flow operator, polymer modularity, M. Newman’s

non-backtracking flow, normalized Laplacian and adjacency. In case of single cells the average is

taken over all compartmental domains of respective type from 260 contact maps. Mean sizes of

the domains in bins (200 kb), inferred by each operator, are labeled on the plots.



4

𝑙𝑙 = 8.4 𝑙𝑙 = 10.9
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Figure S3: Averaged profiles of the leading eigenvector of the population-averaged Hi-C map (z-

scores, ES cells, data taken from Bonev et al.) plotted around the centers of the compartmental

domains (active - red, inactive - blue). The bulk matrices are preliminary normalized over ex-

pected and the eigenvector is phased with respect to the GC content, as usual. The profiles are

demonstrated for the same population (ES cells) and for the domains determined in single cells

by means of the polymer non-backtracking flow operator, polymer modularity, M. Newman’s non-

backtracking flow, normalized Laplacian and adjacency. In case of single cells the average is taken

over all compartmental domains of respective type from 260 contact maps. Mean sizes of the

domains in bins (200 kb), inferred by each operator, are labeled on the plots.
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Figure S4: Comparison of the compartmental domains, inferred by the polymer non-backtracking

flow for two values of α = 1 (fractal globule) and α = 3/2 (ideal chain). The profiles for the GC

content and for the bulk leading eigenvector E1 are demonstrated.
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Conclusion

In this thesis I have demonstrated a fundamental connection between the
average spectral density of an ensemble of sparse Erdös-Rényi graphs and action
of 𝑆𝐿(2, 𝑍) modular group in the hyperbolic space. The spectral densities of linear
and regular Bethe tree subgraphs comprise of an hierarchy of peaks located at all
rational points governed by number-theoretic relationships which can be analytically
approximated by the modular form (Dedekind η-function) close to the real axis.
Manifestation of the hyperbolic geometry in sparse graphs becomes particularly
evident when one is looking for a 𝐶1 immersion of the Poincare disk to the
three-dimensional Euclidean space. In our everyday life these immersions appear
as shapes of plants and leaves and feature surface undulations which are evoked
by the incompatibility of the local growth protocol with the ambient Euclidean
metric. One can say that naturally grown surfaces are often found buckled because
their growth generates the abundant material that cannot be disposed properly on
the Euclidean plane. Emerging undulations can be mapped onto the optimal path
problem of the light propagating in the media with a certain refraction index. In
the strong metric incompatibility regime (expected to realize in tumour growth) the
self-similar buckling patterns emerge at the boundary of the growing material. We
have demonstrated that this pattern can be described by the eikonal equation with
the refraction index that is expressed through the Dedekind η-function. Our purely
geometric arguments agree well with a number of energetic approaches to buckling
of thin membranes, where the stiffness is controlled by the effective bending rigidity.
However, the geometric approach allows to understand two important features
of observed buckling patterns: (i) self-similarity, as a result of the ultrametricity
inherited from the modular relations of the η-function and (ii) singularities, which
are an effect of non-analyticity of the immersion of surfaces with constant negative
curvature to ℛ3 (Hilbert’s theorem).

As an important feature of the spectral density of sparse graphs, we note
the emergence of the one-dimensional Lifshitz tail at the edge of the spectrum.
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This is a distinctive feature of the density of states in the sparse regime, which is
shown to be related to the KPZ behaviour in the grand canonical ensemble. As an
example, we have demonstrated that stretched two-dimensional random paths over
a semi-circular boundary become effectively one-dimensional and exhibit the KPZ
fluctuations with exponent γ = 1/3, contrary to γ = 1/2 for unconstrained random
paths. The Laplace transform of the corresponding Gibbs measure (or survival
probability in a curvilinear channel) produces the Lifshitz tail with 𝐷 = 1 for
stretched paths and with 𝐷 = 2 for the unconstrained ones. This mathematical
procedure physically corresponds to the grand canonical ensemble of stretched
random walks evading circular boundaries of different sizes.

Spectral random matrix theory is a hot topic in contemporary big data
analyses, since it provides effective tools for probing the topological structure of
real-world random networks. To this aim, I have studied an emergent correlation­
based network of cryptocurrencies and have demonstrated that though it has
a non-traditional core-periphery organization, it still can be captured by the
modularity operator, which, therefore, provides a universal means for studying
networks with undefined topological motif. Theoretical advancements in the field
of sparse random matrices are of even more practical importance, as long as most
of the real networks are huge with the size, much exceeding the number of effective
"connections"at each node. Community detection in sparse single cell Hi-C matrices
is one of the most actual and data-inspired problem in contemporary biology. Our
contribution to the field is the development of two conceptually novel algorithms,
which identify communities in sparse Erdös-Rényi graphs using non-backtracking
random walks. The respective operator is non-Hermitian and manages to resolve
communities in a sparse network up to the detectability threshold. Annotation
of contiguous communities in single cell networks allows to detect topologically­
associated domains, which are one of the most universal structural units of the
genome folding. The boundaries of the domains are shown to be filled with various
epigenetic markers, arguing in favour of the biological relevance of the found
communities. The other algorithm is elaborated to grasp another widely-known
structural element of the genome folding, so-called compartments, associated with
different activity of transcription. To this aim, we have proposed a modified non­
backtracking operator that is neutralized to the polymer contact probability in
order to take into account polymer connectivity of chromatin; we note that the
modified polymer-NBT is applicable to large-scale analyses of arbitrary networks
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with intrinsic linear memory or another known background. Our approach provides
the first method in chromatin bioinformatics for revelation of compartments directly
from sparse single cells Hi-C data.

Emergence of Lobachevsky geometry and hierarchical modularity in nature
can often be understood as being a result of optimal dynamics on the underlying
ultrametric landscape. Scale-free sparse graphs are known to be very deeply related
with the hyperbolic spaces, for example, in the sense of the geometric random graphs
in the Poincare disk. Thus, it is tempting to describe universalities inherent to many
complex systems by hidden ultrametric relationships between the agents. We hope
that the analytical results and practical tools collected under the roof of this Thesis
would serve a basis for and argue in favor of these attempts.
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