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Abstract 

Fast developments in technology and industry require optimal materials for various 

applications, which highlights the role of materials science in solving its central problem: 

discovery of optimal materials, having any required properties, in the entire chemical space 

(i.e., among all possible combinations of elements across the periodic table). Despite the great 

development of computers and the success of the crystal structure prediction methods such as 

metadynamics1 and evolutionary algorithms,3–5 the problem has remained unsolved because of 

the high level of complexity. This thesis summarizes our efforts to solve it. We present the 

coevolutionary optimization algorithm, or Mendelevian search (MendS) method, that we 

developed to predict optimal materials while aiming for target properties, which was made 

possible by the implementation of well-designed variation operators. The multi-objective 

optimization technique, explained in Chapter 3, was used to ensure that the predicted materials 

are simultaneously optimal in a given property and have a minimal energy. We introduce the 

idea of organizing the chemical space so that neighboring systems are likely to have similar 

crystal structures and properties; therefore, the prediction of one optimal material in this space 

leads to the prediction of other optimal materials. We examined our MendS method by 

searching for low-energy hard and superhard binary systems. The results of this search are 

presented in the last chapter.  
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CHAPTER 1.  

INTRODUCTION 

Discovery of new materials with specific properties is the main goal of materials science, 

whose progress has played a significant role in the history of humanity and the development of 

civilization. From the Stone Age to the Bronze Age to the modern times, novel materials helped 

the development of societies, with pioneer nations in this field attaining a greater power and 

influence over other nations. For example, the discovery of iron, copper, and some of their 

alloys thousands of years ago had a great impact on the technology of that time, and by utilizing 

these materials in tools and weapons, developed nations spread and increased their influence 

over other nations. In today’s world, materials science is closely tied to the technological and 

industrial applications. The discovery of steel and silicon are just two examples of new 

materials that caused revolutions in transportation and communication, bringing about railways 

and electronic chips. 

Until recently, materials discovery was purely empirical. Up to 1912, it was not possible 

to determine the positions of atoms in a crystal. Later, this limitation was overcome with the 

development of X-ray diffraction techniques.5 Nowadays, several diffraction techniques, such 

as the X-ray diffraction, neutron diffraction, and electron diffraction, can accurately determine 

the crystal structure of materials. However, despite all the developments, the experimental 

discovery of materials is limited and even made unaffordable by the high cost of trial and error 

and the time-consuming procedure of synthesis. On the other hand, the rapid progress in 

technology and technological race shorten the time for invention and application and increase 

the demand for new materials. 

Unlike experimental studies, the computational materials design opened a way to predict 

new materials at much lower costs. The development of modern computers and advanced 

methods, such as density functional theory (DFT), made it possible to accurately predict the 

properties of materials numerically without going through the expensive and time-consuming 

procedures of blind experimental study. Although computational studies need to be verified by 

experiments, this seems to be an acceptable alternative helping to meet the growing demand 

for new materials. 

This thesis summarizes our efforts to develop the advanced Mendelevian search (MendS) 

method that provides unbiased systematic solution to the central problem of materials science 

— the discovery of optimal materials with the required properties in the entire chemical space 

— and its application in the search for hard and superhard materials. The method consists of 

several submethods. In Chapter 1, some background of the crystal structure and geometry 

optimization is provided. Chapter 2 introduces the important features and concepts of the 

evolutionary methodology USPEX for the crystal structure prediction. In Chapter 3, the multi-

objective optimization method as a tool for materials design is presented in the form of a 

published paper. In Chapter 4, we introduce a new model of organizing a chemical space. 

Chapter 5 focuses on the well-designed coevolutionary algorithm that combines all the 

previously discussed submethods into a single code, MendS. In Chapter 6, we show the results 
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of the Mendelevian search for low-energy hard and superhard materials. A brief discussion and 

conclusion is presented in Chapter 7. 

1.1. Structure of Materials 

The first step toward a computational study of a material is the knowledge of its atomic 

structure, which enables the precise simulation and then the calculation of numerous properties 

using state-of-the-art quantum mechanical methods. 

In this thesis, we are mainly interested in the atomic structures of crystalline solids. Unlike 

amorphous materials such as glass, which have no long-range atomic order, crystal structures 

are periodic in the three-dimensional space and thus have long-range order. 

 

Figure 1. The crystalline and amorphous forms of silica — SiO2. 

The smallest unit of this repeated pattern is called a unit cell. The unit cell is, in fact, a 

parallelepiped defined by six parameters — three lengths of the cell edges (a, b, c) and three 

angles between them (α, β, γ) — known as the lattice parameters. 

Fig. 1 shows structures of a crystalline and a glassy (amorphous) form of silicon dioxide, 

or silica. A regular arrangement of atoms in the crystalline structure is the result of the repetitive 

translation of the unit cell (i.e. the green square in Fig. 1a) along its principal axes.  

Crystalline materials are classified into seven different crystal systems. These crystal 

systems are easily identified by the cell parameters – see Table 1. Among these systems, 

triclinic (anorthic) is the lowest symmetry system with no restrictions on the values of lattice 

parameters while in other crystal systems, symmetry reduces the number of unique lattice 

parameters. In all the crystal systems, crystalline lattices are considered to have ‘lattice points’ 

on the corners of the unit cell. However, it is possible to generate a lattice with non-trivial 

centering vectors. 

In 1849, Auguste Bravais found that all regular crystals can be described with 14 lattice 

types for the seven crystal systems. Lattices with lattice points only on the corners are called 

primitive and are designated with the symbol P. Lattices with additional lattice points (non-

primitive lattices) are described as centered lattice and regarding the position of additional 

lattice points in center of the unit cell or center of side/all faces, it is called body-centered 

(designated symbol – I), based-centered (designated symbol – S or C), face-centered 
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(designated symbol – F), respectively. There is a rhombohedral-centered lattice specifically for 

trigonal crystal system, and it is designated with the symbol R – see Table 1. 

Table 1. Crystal systems, Bravais lattice types and their point groups. 

Crystal systems Cell parameters Bravais Lattice Point groups 

Triclinic a ≠ b ≠ c; α ≠ β ≠ γ aP 1, 1̅ 

Monoclinic a ≠ c; α = γ = 90˚, β ≠ 90˚ mP, mS 2, m, 2/m 

Orthorhombic a ≠ b ≠ c; α = β = γ = 90˚ oP, oS, oI, oF 222, mm2, mmm 

Tetragonal a = b ≠ c; α = β = γ = 90˚ tP, tI 4, 4̅, 422, 4/m,4mm, 4̅2m, 

4/mmm 

Hexagonal - 

hexagonal 

a = b; α = β = 90˚, γ = 120˚ hP 6, 6̅, 622, 6/m, 6mm, 6̅m2, 

6/mmm 

Hexagonal - 

rhombohedral 

a = b = c; α = β = γ ≠ 90˚ hR 3, 3̅, 32, 3m, 3̅m 

Cubic a = b = c; α = β = γ = 90˚ cP, cI, cF 23, m3̅, 432, 4̅3m, m3̅m 

A unit cell reflects full information about the symmetry of crystalline materials. Generally, 

there are two types of symmetries: the translational symmetry, which is the periodic repetition 

of a unit cell along its principal axes, and the point symmetry. The point group includes such 

symmetries as reflection, rotation, inversion, and rotoinversion. In total there are 32 unique 

crystallographic point groups. These 32 point groups are shown in Table 1.  

Also, by combining translational symmetry and point group symmetry, new symmetry 

operations can be created. For example, combination of proper rotations with translations give 

rise to operations described as screw axes and combination of reflections (mirror planes) with 

translations give rise to glide plane operations. 

 

Figure 2. The crystal structure of NaCl, CsCl, and ZnS. All these crystal structures belong to the cubic 

crystal system, but with different space groups. Both NaCl and ZnS have the face-centered lattice type, 

whereas the atomic arrangement is octahedral in NaCl and tetrahedral in ZnS, making them belong to 

different space groups. 

Combination of the seven crystal systems with the 14 Bravais lattices, the 32 point groups, 

screw axes, and glide planes yields to a total of 230 unique space groups in the three 

dimensional space. Space group is, in fact, a group of symmetry operations that are combined 

to describe the symmetry of a periodic object (crystal structure) in a three dimensional space. 

In point groups, all the symmetry elements pass through a single point in the object while in 

space groups, there is no need for intersect of symmetry elements in a single point. The initial 
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letter of a space group symbol represents the lattice type (P, C, F, etc.), and followed by the 

point group symbol in which the rotation and reflection elements are extended to include screw 

axes and glide planes. The crystal structures of some compounds with cubic crystal system and 

different space groups are shown in Fig. 2. 

1.2. Geometry Optimization 

Geometry optimization, local optimization, relaxation, and energy minimization are 

different terms representing the same task: finding the spatial arrangement of atoms in which 

the net interatomic force on each atom is zero or close to zero and the configuration is located 

at a stationary point on the potential energy surface (PES). The gradient, or the first derivative 

of energy with respect to geometry r, gives the negative of the force: 𝐹(𝑟) = −
𝜕𝑈

𝜕𝑟
. If the first 

derivative is equal to zero, the point is located at a minimum, maximum, or transition state 

(saddle point) of the PES. To distinguish among these points, the second derivative of the 

energy must be examined. The matrix of the second derivative is called the Hessian matrix. By 

the diagonalization of the Hessian matrix, eigenvalues and eigenvectors can be calculated. The 

vibration frequencies are proportional to the square root of the eigenvalues. If all the 

eigenvalues are positive, the point is located at a minimum on the PES. In case all the 

eigenvalues are negative, the point is located at a maximum. If there are one or more negative 

eigenvalues – leading to imaginary frequencies – the point is located at a saddle point on the 

PES. 

There are several techniques of geometry optimization (e.g., the conjugate gradients 

method,6 Newton-Raphson method,7 Broyden (BFGS) algorithm,8 etc.), whereas the energy 

function can be determined by solving the quantum mechanical equations and by the density 

functional theory (DFT) methods, or by parameterized analytical functions. 

1.3. Energy of a Structure 

From a thermodynamic point of view, the most stable crystal structure is that with the 

lowest Gibbs free energy at given temperature and pressure.  

𝐺 = 𝐸 + 𝑃𝑉 − 𝑇𝑆,                                                    (1.1) 

where E is the internal energy, P is the pressure, V is the volume, T is the temperature, and S is 

the entropy of the system. In different situations, Gibbs free energy can be formulated 

differently. The Eq. (1.1) only applies to isotropic materials with hydrostatic pressure case. In 

general, for dealing with solid materials, the PV term is replaced by strain-stress tensor as 

formulated in Eq. (1.2) 

𝐺 = 𝐸 − ∑ 𝜀𝑖𝑗𝜎𝑖𝑗𝑖𝑗 − 𝑇𝑆,                                              (1.2) 

where 𝜀 and 𝜎 are strain and stress tensors respectively. 

Among these terms, the calculation of PV and 𝜀𝑖𝑗𝜎𝑖𝑗 is rather straightforward, whereas the 

calculation of TS using the first principles is complicated. In this thesis, all the energy 

calculations were done at zero pressure and temperature; this also means that the strain-stress 
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term in Eq. (1.2) is zero. Therefore, the internal energy E is the only term to be calculated. This 

calculation is discussed in the following section.  

1.4. Density Functional Theory 

In quantum physics, particles show a wave behavior, and an expression describing their 

various properties, equivalent to Newton’s second law in classical physics, is the Schrödinger 

equation. Finding the wave function 𝜓 of an N-electron quantum system makes it possible to 

calculate the energy and many other properties of the system. To do it, the Schrödinger equation 

must be solved: 

𝐻̂𝜓 = 𝐸𝜓,                                                                     (1.3) 

𝐻̂ = 𝑇̂nucl + 𝑈̂nucl + 𝑇̂e + 𝑈̂e + 𝑉̂.                                                  (1.4) 

The Eq. (1.3), is known as time-independent Schrödinger equation. This equation is for 

systems in the stationary state and does not contain the relativistic effects – for studying the 

behavior of quantum mechanical systems with relativistic effects, one may use the Klein–

Gordon equation. The Born-Oppenheimer approximation separates the degrees of freedom of 

fast electrons from those of slow ions and neglects the ionic terms. Thus, the Hamiltonian of 

Schrödinger equation can be written as: 

𝐻̂ = 𝑇̂e + 𝑈̂e + 𝑉̂ = ∑(−
ℏ2

2𝑚𝑖
∇𝑖

2)

𝑁

𝑖

+ ∑𝑈(𝑟𝑖, 𝑟𝑗)

𝑁

𝑖<𝑗

+ ∑𝑉(𝑟𝑖)

𝑁

𝑖

,                  (1.5) 

where 

𝑈(𝑟𝑖, 𝑟𝑗) =
𝑒2

4𝜋𝜖0|𝑟𝑖 − 𝑟𝑗|
, and 𝑉(𝑟𝑖) = ∑(−

𝑒2𝑍𝑙

4𝜋𝜖0|𝑅𝑙 − 𝑟𝑖|
)

𝑙

. 

In these equations, 𝑇̂ describes the kinetic energy of electrons, 𝑈̂ describes the electron-

electron Coulomb repulsion, 𝑟𝑖 and 𝑟𝑗 are the positions of interacting electrons, 𝑉̂ describes the 

electron-ion Coulomb attraction, 𝑅𝑙 is the position of nuclei and 𝑍𝑙 is the atomic number of 

nuclei. The subscripts e and nucl represent the electronic and ionic parts of the operators. 

The many-body Schrödinger equation (Eq. 1.3) provides almost exact wave function for 

studying the behavior of the system, but except for a few simple systems, i.e. hydrogen atom, 

it is not solvable analytically. There are sophisticated approximations which one can 

conveniently solve numerically, such as the Hartree–Fock and post-Hartree–Fock methods 

based on the expansion of wave functions in Slater determinants. The most accurate of these 

methods are exhaustingly expensive and impractical, especially for large systems. 

In 1964, Hohenberg and Kohn (H–K) published and proved two theorems9 that originated 

the density functional theory. The theorems stated that: 

1. The ground state charge density of a system uniquely determines its potential and all 

other properties (such as the wave function, energy, etc.). 

2. A universal functional of energy E[n] can be defined in terms of the density n(r), 

which is valid for any external potential 𝑣ext(𝑟). For any particular 𝑣ext(𝑟), the exact 
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ground state electron density of the system is determined by minimizing this 

functional. 

DFT attracted attention as it provided a way to map the many-body problem onto a single-

body problem. It determines the properties of a many-body system using the electron density 

functional.  

In 1965, Kohn and Sham introduced the equation10 which was a major step toward a 

quantitative modeling of electronic structures.11 In the proposed approach, each particle 

interacts with a density of electrons rather than other particles. This reduces the many-body 

problem of N electrons with 3N spatial coordinates to a single-body problem with 3 spatial 

coordinates, which can be perfectly solved using the computers. 

The Kohn–Sham equation is a Schrödinger-like equation that applies on a fictitious system 

with noninteracting electrons that generates the same electron density as any given real system 

with interacting electrons. As the electrons in the Kohn–Sham system are noninteracting, the 

Kohn–Sham wave function is a single Slater determinant constructed from a set of orbitals that 

are the lowest-energy solutions to the Kohn–Sham equation: 

(−
ℏ2

2𝑚
∇2 + 𝑣eff(𝑟))𝜑𝑖(𝑟) = 𝜀𝑖𝜑𝑖(𝑟),                                       (1.6) 

where the local effective potential energy acting on a system is 

𝑣eff(𝑟) = 𝑣ext(𝑟) + 𝑒2 ∫
𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟′ +

𝛿𝐸xc[𝑛]

𝛿𝑛(𝑟)
, and 𝑛(𝑟) = ∑|𝜑𝑖(𝑟)|

2

𝑖

. 

The external potential 𝑣ext(𝑟) is the Coulomb attraction from nuclei. All the terms of the 

Kohn–Sham equation are known except for the exchange-correlation term 𝐸xc[𝑛]. The Kohn–

Sham equation can be solved self-consistently and the results are expected to be exact if the 

exchange-correlation term is known. Extremely good results can be produced by making 

simple approximations. Many efforts have been made to develop the approximations, such as 

the local density approximation (LDA), generalized gradient approximation (GGA), Meta-

GGA, hybrid functional, and others, which nowadays are referred to as the “Jacob’s ladder of 

the DFT”.12  

DFT has been widely used during the past decades and remains one the most popular 

methods for studying materials computationally. It can accurately describe the ground state 

properties of a solid-state system (such as lattice parameters, formation energy, etc.) and is 

therefore a powerful evaluation tool. 

1.4.1. Exchange and Correlation terms 

All the terms in Kohn-Sham equation are known except for the exchange and correlation 

terms. Exchange is due to the Pauli exclusion principle, which forbids two identical fermions 

to lie in the same quantum state. Therefore, two electrons with the same quantum numbers, n, 

l and m, can occupy the same quantum state only if their last quantum number, ms, is different. 

Meaning that two electrons with parallel spins are not allowed to sit in the same quantum state. 
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This phenomenon causes an effective repulsion between electrons with similar spins which is 

named as the exchange interaction term. 

The correlation term is due to impossibility of two molecules to occupy the same place. 

This effect already exists at the classical level. For example, in an ensemble of interacting 

classical particles (e.g. billiard balls), there are correlation effects – if a ball is in one place, it 

is not possible for another ball to be at the same place. The same rule applies to the gas 

molecules. In fact, this effect is one of the essential ingredients of Van der Waals equation of 

gases. 

Although the form of these terms are unknown there are several methods to approximate 

their values. 

1.4.2. Local Density Approximation (LDA) 

To estimate the exchange and correlation term, several approximations are examined. The 

simplest approximation, known as local density approximation, uses the energy of electrons as 

in a homogenous electron gas (HEG). The exchange-correlation energy, EXC[n(r)], in the LDA 

is defined as: 

E𝑋𝐶[𝑛(𝒓⃗ )] = ∫ 𝜀𝑋𝐶(𝑛(𝒓⃗ ))𝑛(𝒓⃗ )𝑑3𝑟                                           (1.7) 

where 𝜀𝑋𝐶(𝑛(𝒓)) is the exchange-correlation energy per unit volume of a homogenous 

electron gas with density n(r). The values of 𝜀𝑋𝐶 were calculated by Ceperley et al., using the 

Quantum Monte Carlo technique,13 and were parameterized by Perdew et al.14 

LDA has a tendency to favor more homogeneous systems and overbinds molecules and 

solids. In weakly bonded systems, these errors are exaggerated and bond lengths are too short.15 

Generally, LDA gives good results for systems with the smoothly varying charge densities –

materials consisting of sp electrons, with nice covalent bonds, or simple metals. 

1.4.3. Generalized Gradient Approximation (GGA) 

Although, LDA leads to good results (for materials with slowly varying charge density) 

for some properties (i.e. lattice constants, bulk moduli, equilibrium geometries, and vibrational 

frequencies),16 its drastic overbinding, makes it necessary to calculate the derivatives of 

electronic densities in order to account for the non-homogeneity of the true electron density. 

Doing this to satisfy known constraints for the exact functional, one arrives at a family of 

functionals at the level of generalized gradient approximation (GGA) and have the following 

form: 

 𝐸𝑋𝐶
𝐺𝐺𝐴[𝑛(𝒓⃗ )] = ∫𝜀𝑋𝐶(𝑛(𝒓⃗ ), ∇𝑛(𝒓⃗ ))𝑛(𝒓⃗ )𝑑3𝑟                                      (1.8) 

Using the GGA, better results for molecular geometries and ground-state energies have 

been achieved. As it was mentioned earlier, there are meta-GGA methods that are often more 

accurate than GGA. In their natural form, these methods contain the first and second derivatives 

of electron density (the Laplacian) – more accurate but more expensive. There are several types 
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of GGA and meta-GGA methods, because of the form of density functionals and different 

definition of their parameters. In this thesis, we widely used the GGA-PBE17 method. The 

advantage of this method over other GGA functionals is that it is fully non-empirical and has 

good numerical behavior (avoiding pathologies, albeit rare, of PW91).
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CHAPTER 2. 

Crystal Structure Prediction Using the Evolutionary Algorithm 
USPEX 

Abstract 

For a long time, it was thought that crystal structures cannot be predicted on the basis of only 

the chemical composition because even the simplest systems have a huge number of possible 

configurations. However, many algorithms that solve this problem have been proposed during 

the past decades, including the metadynamics, minima hopping, evolutionary algorithm, and 

other techniques that screen the structures in the promising regions of the potential energy 

surface (PES) and discard those in the unpromising regions. In this chapter, we briefly explain 

some of the state-of-the-art methods for crystal structure prediction and then present a concept 

of evolutionary algorithm (EA) as implemented in the USPEX code, which showed high 

efficiency in the crystal structure prediction.  

 

Keywords: Evolutionary algorithm, potential energy surface, relaxation, global search. 

2.1. Introduction 

Knowing only the crystal structure of a material is enough to calculate its numerous 

properties using state-of-the-art quantum mechanical methods. However, until recently, it was 

thought that crystal structures cannot be predicted and the only practical way to obtain them is 

by using diffraction methods such as the X-ray diffraction, which are limited to the quality of 

data, especially at high pressures and temperatures. Therefore, finding another way to obtain 

crystal structures was essential to overcome these limitations. On the other hand, theoretical 

crystal structure prediction is a good alternative when the experimental studies are limited. 

The potential energy surface (PES) has an overwhelming number of local minima (Fig. 3). 

Fortunately, it is not necessary to study the entire energy landscape to locate the global 

minimum, and only the promising regions can be explored. There are several methods for doing 

this, such as simulated annealing,18,19 basin hopping,20 minima hopping,21 and 

metadynamics.1,22 Here, we briefly introduce these methods. 

2.1.1. Simulated annealing 

This approach is based on the concept of physical annealing. The Monte Carlo method is 

used to evolve the initial configuration. The new configuration is generated by a random move 

of ions, and in each step, the algorithm decides if the move is accepted or not. The simulation 

starts at a high temperature, where almost all the moves are accepted, and moves are attempted 

until the system reaches the thermal equilibrium point. This process is continued until the 

system is frozen. If the annealing process is continuous and carried out very slowly, there is a 

high chance to reach the global minimum (most stable structure). However, in practice it is 
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extremely hard to run such calculations with sufficiently slow cooling rate, and results are often 

far from global minimum. 

 

Figure 3. A schematic plot of the potential energy surface. 

2.1.2. Basin hopping 

This algorithm maps the PES onto a set of staircases with plateaus, or basins of attraction, 

corresponding to the set of configurations that lead to the given minimum after the 

optimization. For exploring the energy landscape the Monte Carlo simulation was used with a 

constantly reducing temperature by 0.8. In each step, all coordinates are displaced by a random 

number in the range of [-1, 1]. The energy of new coordinates is then minimized using 

conjugated gradients. If the energy of the new configuration is lowered, the move is accepted. 

Otherwise, the move is only accepted with a probability of ((Eold -Enew)/(kBT)).23 The key to 

the possible success of the basin hopping algorithm is due to removing the energy barriers of 

PES and converting the PES into the set of basins of attraction of all local minima. Therefore, 

it is possible for a system to hop between basins. Basin hopping method was used to predict 

the structure of Lennard-Jones clusters with 1-110 particles,20 and for even larger systems. 

2.1.3. Minima hopping 

Minima hopping performs molecular dynamic simulations instead of Monte Carlo as in 

basin hopping.23 This method is consisting of (1) an inner part: to perform jumps from one 

local minimum to another, and (2) an outer part: to accept or reject the new local minimum. 

The new local minimum is accepted only if the energy difference between the current local 

minimum and new local minimum is less than a predefined Ediff. Ediff is not a constant and each 

time that a new local minimum is rejected or accepted, Ediff is increased or decreased. 

Therefore, if the inner part only proposes the moves that go up in energy, such moves will 

finally be accepted after Ediff has been sufficiently increased after many rejections. In the 

original method, the geometry relaxations were done using the combination of standard 

steepest descent and conjugate gradient method.21 Jumping to a new local minimum (results of 

the inner part) leads to three different cases: (1) geometry relaxation gives back the current 

local minimum, (2) reaching an already visited local minimum, and (3) finding a new local 

minimum – the most desirable outcome, because of the chance to explore new configurations. 

If the first or second case happens, the value of Ekinetic is increased to help the algorithm jumping 
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over high energy barriers and explore new local minima. If the third case happens, Ekinetic will 

be decreased. 

Minima hopping recognizes the regions that have been already explored and avoids 

revisiting these parts of the energy landscape. The method has been successfully applied to 

study the high pressure structures of Si2H6,
24 LiAlH4,

25 Zn(BH4)2,
26 etc. 

2.1.4. Metadynamics 

The metadynamics22 algorithm adds a positive Gaussian potential to the energy landscape 

to lower and overcome the barriers.23 The algorithm starts from a set of equilibrated collective 

coordinated (i.e. cell parameters) at a given pressure and temperature. Evaluates the pressure 

tensor, while keeping the cell parameters fixed, during a long enough molecular dynamic 

relaxation. Then the cell parameters are updated and particle positions are rescaled to fit into 

the new lattice box. As the initial free-energy well is gradually filled, the lattice undergoes a 

set of deformations until a transition state is reached and the system enters into the basin of 

attraction of a new state.1 Adding positive Gaussian potential energy to fill the wells, makes it 

easier for a system to jump from one well to another well to explore other regions of the PES. 

The metadynamics algorithm keeps the history of visited spots and discourages a system from 

revisiting the same spot and encourages an efficient exploration of the PES.  

All the methods discussed above need to have an initial guess of the structure. If a good 

structure is guessed, in a region close to the global minimum, these methods have the advantage 

to converge fast into the global stable structure. Otherwise, these methods are not very 

effective. This way, the problem of global search turns into a local search in a relatively small 

region of the energy landscape. As a characteristic of the energy landscape, most of the low-

energy minima are located in the same regions, and corresponding structures have similar bond 

lengths and coordination environment of atoms,2 which makes the final structure similar to the 

initial one. Therefore, these methods are more effective when the initial structure is close to 

the global minimum, whereas a good starting point is not always known in advance. 

Among these methods, metadynamics has reduced the dimensionality of the problem to a 

small number of order parameters. The approach is often successful and efficient but having 

its failures. In this method, the lattice parameters are usually presented as a six-dimensional 

order parameter; its choice, however, is not always clear.2  

In the rest of this chapter, first, we briefly mention a few methods that their effectiveness 

is not influenced by the choice of the initial population, such as random sampling,27 particle 

swarm optimization 28 (PSO), and evolutionary algorithm 29 (EA). Then we discuss the concept 

and features of the evolutionary algorithm implemented in the USPEX 2,4,30 (Universal 

Structure Predictor: Evolutionary Xtallography) code which was extensively used in the 

prediction of new materials in our work. 

2.1.5. Random sampling 

This method starts by distributing (sampling) a large number of randomly generated 

structures all over the PES. These structures are then optimized to their local minimum and the 

energetically best structure is the natural choice of structure searching. However, the method 
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becomes efficient when these structures are not generated fully randomly. By choosing 

stoichiometry, imposing symmetry, using chemical ideas, shaking, etc., Pickard and Needs 

implemented an efficient random structure search algorithm in the AIRSS (ab initio random 

structure searching) code.27 

2.1.6. PSO 

The particle swarm optimization 28 (PSO) algorithm is inspired by the social behavior of 

birds flocking, and designed to solve the multidimensional optimization problems. The PSO 

algorithm starts with a number of random structures (random initial population similar to 

genetic algorithm), while a randomized velocity is assigned to each of these structures. Each 

structure keep track of its current velocity and location before and after the local optimization 

(relaxation), in addition to the location of the lowest energy structure in the population. Based 

on this information, the new velocity is calculated for each structure. Then the new location 

can be calculated based on the new velocity and previous location before the local optimization. 

Velocity plays an important role in determination of the direction and speed of the 

structural movements and gives a superior ability to the PSO algorithm to overcome the large 

barriers of the energy landscape.23 We can mention CALYPSO 31 (Crystal structure AnaLYsis 

by Particle Swarm Optimization) as one of the successful crystal structure prediction packages 

based on PSO algorithm.  

2.1.7. Evolutionary algorithm 

These algorithms are inspired by Darwin’s evolutionary theory, and are based on the 

concept of “survival of the fittest” in nature. The evolutionary algorithm does not need any 

initial guess of the structures or the order parameters. They are fully nonlocal and suitable for 

multidimensional problems. EA is more efficient when the energy landscape has an overall 

shape that is expected for chemical systems (Fig. 3). 

Mimicking the evolution in nature, an evolutionary algorithm tries to generate better and 

better structures in iterations (generations) by selecting the fittest structures as parents and 

applying to them variation operators such as heredity and mutation. The EA starts with a 

number of random structures (initial population). These structures are locally optimized and 

more chance are given to the best structures – those with lower energy among the population 

– to produce new structures and transfer their favorable properties to their children.  

One of the important advantages of an evolutionary algorithm is its capability to predict 

several low-energy metastable structures (local minima) in addition to those with the global 

minimum energy. However, it must be mentioned that neither the evolutionary algorithm nor 

any other algorithm in practice can guarantee finding the global minimum. 

2.2. Evolutionary Algorithm USPEX  

USPEX is a crystal structure prediction code, based on the evolutionary algorithm, that 

demonstrated high efficiency,32–34 especially in searching for atomic structures of materials 

with up to 100 atoms in the unit cell. In addition to 3D bulk materials, USPEX can search for 

optimal structures of surfaces, 2D crystals, polymers, nanoparticles, and proteins. During an 
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evolutionary search, USPEX optimizes materials with respect to a fitness function. This fitness 

can be any property or a combination of properties such as enthalpy, hardness, magnetization, 

elastic constants, and others, as explained in Chapter 3. USPEX is interfaced with a variety of 

the available DFT, molecular dynamics, and semi-empirical codes that are used to relax the 

structures and obtain their energies and other properties. 

The algorithm of USPEX is shown in Fig. 4. In the first generation, several structures 

(initial population) are produced using random operators (e.g., random symmetry and random 

topology). These structures are then relaxed using the quantum mechanical calculations or 

other methods, their energies are obtained and used for ranking the relaxed structures – the 

structures are ranked based on the so-called fitness which can be energy, or any other property 

of a material that is defined by user. In the population of the fittest structures, only those with 

the highest rank, usually 70%, have a chance to be selected as parents. Then, variation operators 

such as mutation or heredity are applied to these parents, producing the structures of the next 

generation. The loop continues until the predefined number of generations is reached.  

 

Figure 4. The algorithm of USPEX. 

2.2.1. Selection Method 

Selecting good parents is very important for the success of the algorithm. In this work, the 

roulette wheel selection method35 was used and each system was assigned the weight function 

wr > 0 (r = 1, 2, …, N) derived from its fitness rank. To reasonably increase the chance of 

selection for best-ranked systems, a quadratic dependence to the fitness rank is assigned. The 

probability of selection of each system with the fitness rank r is defined as: 

𝑃𝑟 =
𝑤𝑟

𝑛𝑟 × ∑𝑤𝑟
, 𝑟 = 1, 2, … ,𝑁                                              (2.1) 

𝑤𝑟 = (𝑁 + 1 − 𝑟)2                                                               (2.2) 
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where N is the last fitness ranking number, which is equal to the number of all systems in the 

simple ranking or to the number of the Pareto fronts in the multi-objective Pareto ranking 

(Chapter 3); nr is the number of systems having the same fitness ranking r. 

2.2.2. Variation Operators 

Variation operators are at the heart of the evolutionary algorithm. They are used for 

generating new structures and must be designed carefully. The following variation operators 

are provided in USPEX: 

Heredity produces new structures by cutting and pasting slices of parent structures. These 

slices are selected based on their degree of order.  

Softmutation obtains a new structure by moving an atom or atoms of a parent structure 

along the eigenvectors of the softest modes because low-frequency eigenmodes correspond to 

the directions of low curvature of the energy surface.4 

Permutation produces a new structure by switching two or more atoms in a parent 

structure. 

Transmutation generates new structures by changing the chemical identity of a randomly 

selected atom to another chemical species in the system – it is used in the variable-composition 

mode. 

Rotational mutation creates new structures by mutating orientations of randomly selected 

molecules – only for molecular crystal structure prediction. 

Lattice mutation finds new structures by distorting the lattice of some known structures.2  

Spin mutation randomly reinitializes the magnetic moments of a parent structure in a way 

that at maximum, one symmetry element of multiplicity two is broken. 

2.2.3. Random Structure Generators 

A fully random initialization of structures is not a good option, especially for large 

systems. Therefore, two random generators — random symmetry and random topology — are 

implemented in the code. The initial population is generated randomly; to preserve its diversity, 

random generation is used for obtaining a fraction of the subsequent populations. 

Random symmetry: using 230 space groups, a well-ordered and chemically reasonable 

structure is generated by randomly placing an atom in a general Wyckoff position and 

multiplying it using the space group symmetry operations. If two or more atoms are placed 

closer to each other than a predefined threshold, they are merged into one atom put in a special 

Wyckoff position by averaging their coordinates.4 

Random topology: structures are generated using the previously known topologies of 

crystal structures from the databases.36 

2.2.4. Fingerprint Function 

If a structure is allowed to be generated over and over again, especially if it is energetically 

favorable, the algorithm will be stuck at some local minima, making it very difficult to produce 

radically new structures. To avoid this inefficiency, the USPEX code provides the fingerprint 
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function that distinguishes between structures (e.g., using the bond lengths, angles, symmetry, 

stoichiometry, energy difference, etc.) and discards the identical ones.37 

2.2.5. Degree of Order 

The order parameter quantifies the degree of symmetry of the environment of a given 

atom; it is also possible to define the average degree of order of a fragment of a structure.4 This 

is especially important when selecting the less defective part of the parent structure for heredity 

and the more defective part for mutation. 

2.2.6. Perturbation 

The relaxation does not break the symmetry, it can instead increase it to the supergroup.4 

To make the symmetry breaking possible during the relaxation, a small random displacement 

of the atomic position is applied to structures. 
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CHAPTER 3.  

Multi-objective Optimization as a Tool for Materials Design 

Abstract 

In this chapter, we explain the concepts of Pareto optimality and Pareto dominance and use 

them in solving the multi-objective (MO) optimization problems. We discuss several different 

MO optimization methods and show how the MO optimization can be used for designing new 

materials. A simple Pareto-based MO optimization method is examined on several practical 

case studies to assess its efficiency in optimizing the double-objective problems. 

 

Keywords: Domination, Pareto dominance, hardness, convex hull 

3.1. Introduction 

Computational optimization is essential for solving a wide range of scientific, 

technological, and engineering problems. Generally, these problems can be classified into 

single-objective and multi-objective (MO) ones. Single-objective problems are those with only 

one objective to be optimized. In MO problems, several objectives, often conflicting, are 

optimized simultaneously, which makes these optimizations more complex than single-

objective ones. An improvement in one objective usually leads to a degradation of the other 

ones. MO problems have a set of optimal solutions called the Pareto front, and the task of MO 

optimization methods is to find it. A decision maker can then select the preferable solutions 

from the set taking into account various considerations (e.g., the cost, expected ease of 

synthesis, etc.). Optimizing the energy alone results in a stable, usually (but not always) easy 

to synthesize phase which, however, does not necessarily possess the best properties. If only 

the physical properties are optimized, the theoretical limit for a property of interest can be 

achieved, but the energy of the predicted phase may be so high that the chances of its synthesis 

become negligible. The MO optimization of the energy and a target property is the best known 

way to find compounds of practical interest possessing attractive properties and a high chance, 

albeit not a guarantee, of being synthesizable. In this chapter, we show how several MO 

optimization methods can be used in solving the central problem of computational materials 

design: the discovery of new materials optimal in multiple properties. A simple Pareto-based 

MO optimization method is applied to several practical cases, demonstrating its efficiency with 

double-objective problems. 

3.2. What Is the Pareto Front? 

The goal of MO optimization methods is to find a set of optimal solutions with a trade-off 

between the objectives. This set of solutions is called the Pareto front. We use the Pareto front 

concept to rank the solutions in the population and give more weight to the best solutions (for 

more details see section 3.4.).  Solution S1 is said to be Pareto dominant compared to solution 

S2 if it is at least as good as solution S2 in every objective and better than solution S2 in at least 
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one objective. A solution that is not dominated by any other solution is called a nondominated 

solution. A schematic representation of solutions on the Ashby plot38 (a two-dimensional plot 

of any two objectives where each objective is plotted along one of the axes) is shown in Fig. 5. 

The goal is to find a set of solutions that minimize objectives X and Y in the best way. Solution 

C dominates solution D because it has a lower (or better) value of both objectives than solution 

D. Likewise, solutions A and B dominate solution E. Solutions A, B, and C do not dominate 

each other because solution A is better than solutions B and C in one objective but worse than 

them in the other objective. Solutions A, B, and C are nondominated solutions. The Pareto front 

is a set of nondominated solutions. 

 

Figure 5. Illustration of the dominance concept. 

In mathematical terms, for a set of solutions {𝑆𝑛} (𝑛 = 1,… ,𝑁), with each solution having 

𝐹𝑚 (𝑚 = 1,… ,𝑀) objectives, the MO optimization can be formulated as follows: 

S = [S1, S2, …, SN];                                    # A set of solutions 

F = [F1, F2, …, FM];                                  # A set of objectives 

counter = 0;    

Pcounter = Ø; 

while length({S}) ≠ 0                                 # While there are solutions in the population 

S = (S ∪ Pcounter) – (S ∩ Pcounter)      # Removing the nondominated solutions from 

           the population 

for (i,j = 1 : N,  and i ≠ j) 

if   Fk(Si) ≤ Fk(Sj) &  Fk(Si) < Fk(Sn),   (k = 1,…, M, Sn⊆S & Sn≠Ø) 

Si >> Sj ;                          # Si dominates Sj 

end 

end 

for (i,j = 1 : N,  and i ≠ j) 

 if   Si >> Sj                                      

 S* = Si ;                           # Si a nondominated solution 

 end  

 end 

 counter = counter + 1; 

{Pcounter} = S*;                                  # Copying the nondominated solutions to {P} 

end 
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Solution S* that is not dominated by any other solution is called Pareto optimal. 

{𝑃𝑡} (𝑡 =  1, … , 𝑇, and 𝑇 ≤ 𝑁) is a set of nondominated solutions, or the Pareto front. After 

the first Pareto front {P1} is found, it is removed from the main population and a search for 

nondominated solutions is conducted in the remaining population, yielding the second Pareto 

front {P2}. The process is repeated until all solutions are classified in different Pareto fronts. 

In the worst situation, when each Pareto front includes only one solution, the number of Pareto 

fronts T can be equal to the number of sets of solutions N. This usually happens when the 

objectives are not conflicting (i.e., in the case of linear relation between all objectives).  

In a MO optimization, if one solution can be found which is more optimal than all other 

solutions in every objective, it is called the utopian solution. It always exists for single 

objective, whereas MO problems do not necessarily have a utopian solution. 

3.3. Different MO Methods 

In general, in an efficient Pareto-based MO optimization method, the distance to the 

optimal front should be minimized and the diversity of the generated solutions should be 

maximized. The latter is useful when more than two objectives are optimized. In this section, 

we discuss a simple Pareto ranking method, which is sufficient for a double-objective 

optimization, and some more complex MO optimization methods. 

3.3.1. Layer Classification (a Simple Pareto Ranking) 

The set of nondominated solutions, which form the Pareto front, is determined using the 

dominance concept: it is assigned the highest rank as having the highest probability of selection 

in the current population. Then it is temporarily removed, and the next Pareto front is found for 

the remaining population. This procedure is repeated until all solutions are classified into 

different Pareto fronts (Fig. 6). There is no priority in selecting the structures within the same 

Pareto front, which can be done using any binary method, like a tournament selection. The 

solutions of the first Pareto front have the highest probability of selection, followed by the 

second Pareto front, and so on. This method, which we call the layer classification Pareto 

technique, is used in some of the other methods introduced in this chapter. In some cases, 

however, it fails, particularly when the number of objectives increases, and therefore all of the 

following methods use additional techniques to obtain reliable results. 

 

Figure 6. Layer classification of solutions in different Pareto fronts for minimizing two objectives. 
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3.3.2. Vector Evaluated Genetic Algorithm (VEGA)39 

This method is not based on Pareto optimality techniques. It works as a typical genetic 

algorithm with one difference in the parent selection method. Let us consider an m-objective 

problem with maximum N number of best solutions that are allowed to be selected as parents 

in each generation. At the end of each generation, the population is ranked for each single 

objective and N/m of the best ranked solutions are added to a hypothetical archive. If a solution 

is optimal in n objectives (n ≤ m), it is n times more likely to be selected than a solution optimal 

in only one objective. However, this method is susceptible to the shape of the Pareto front and 

fails to generate solutions that do not necessarily excel in one objective but are optimal in the 

sense of the Pareto front.40 

3.3.3. Nondominated Sorting Genetic Algorithm (NSGA) 

In the proposed NSGA,41 the layer classification method is used and a sharing function is 

then applied to the solutions of each Pareto front so that some priority is given to the solutions 

in the less crowded regions. This sharing function is totally dependent on the choice of the 

user-predefined sharing parameter 𝛿share that denotes the largest value of distance metric 

within which two solutions share each other’s fitness.42 To overcome the user dependencies 

and other failures of this fitness sharing method,41 in NSGA-II it was replaced with the 

“crowded comparison approach”42 which also gives some priority to the solutions placed in the 

less crowded regions of each Pareto front but has no user-dependent parameters. 

3.3.4. Pareto Envelope-Based Selection Algorithm (PESA) 

In this method, only nondominated, or Pareto front, solutions are permitted to be ranked 

and selected. After the Pareto front is determined, a square (generally, ‘hyperbox’ in higher 

dimensional objective space) is defined as a result of finding the closest distance between two 

neighbor solutions for each objective. In a hyperbox that has the maximum number of 

solutions, each solution gets the minimum isolation value, and vice versa (Fig. 7). The 

probability of selecting these solutions is proportional to their isolation value. The goal is to 

give a higher probability of selection to solutions in the isolated regions than those in the 

crowded regions. The selection of individuals on the basis of the probability of selection given 

to each of them is called the individual-based selection. In PESA-II, it was replaced with the 

region-based selection, in which the isolation value is given to hyperboxes instead of solutions. 

As a result, hyperboxes get selected instead of solutions. The hyperbox that contains fewer 

solutions is considered more isolated than the one with more solutions, and hyperboxes with 

higher isolation values are preferred. After the hyperbox is selected, one of its solutions is 

picked randomly. This method, more efficient than the individual-based selection, is preferred 

by the author. More details on the distribution of probabilities and the selection mechanism are 

available in the original paper.43 
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Figure 7. In PESA, hyperboxes are defined to help select the solutions. 

3.3.5. Strength Pareto Evolutionary Algorithm (SPEA) 

The first version of SPEA was published in 1999.44 The method appeared to have serious 

problems in special situations and was claimed to be unsuccessful42,43,45 in finding the optimal 

solution. In SPEA2 (2001),45 the selective fitness assignment method was completely changed 

and a more solid algorithm was proposed. Here we discuss the fitness assignment in both 

methods and briefly mention the main failures of SPEA1. 

In SPEA1,44 the population is divided into two groups: external, composed of 

nondominated solutions, and internal, composed of dominated solutions. The optimal solutions 

can be selected from both groups, hence the fitness is assigned to all population members. The 

fitness is evaluated using a predefined strength function. For a nondominated solution, the 

strength is equal to the number of other solutions it dominates divided by the size of the internal 

group N. For a dominated solution, the strength is obtained by summing up the strengths of 

nondominated solutions that dominate it. The selective fitness is equal to the strength of the 

solution if the solution is a member of the external group. Otherwise, the selective fitness is 

equal to the strength of the solution plus one to make sure that nondominated solutions are 

always preferred to dominated ones (Fig. 8a). However, the method fails when many solutions 

are dominated by the same nondominated individuals and therefore have the same fitness. For 

example, in the particular case when only one nondominated solution exists, SPEA1 behaves 

like a random search algorithm. In addition, SPEA1 is mostly unsuccessful in the convergence 

and quick convergence with the optimal solutions. 
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Figure 8. Different fitness assignment in (a) SPEA1 and (b) SPEA2 for the same distribution of 

solutions. According to the density estimation technique used in SPEA2, because the solution shown in 

blue lies in the less crowded region, it has a higher chance of being selected than the one shown in red. 

To eliminate these deficiencies, completely different fitness assignment was proposed in 

SPEA2.45 To improve the convergence to the best optimal solutions, an archive with a fixed 

size is defined, and only the solutions belonging to it are allowed to be selected. If the number 

of nondominated solutions equals the size of the archive, only these solutions are selected. If it 

exceeds the size of the archive, nondominated solutions from the dense regions (those 

containing many nondominated solutions close to each other) are eliminated from the archive. 

If the size of the archive is larger than the number of nondominated solutions, the free places 

are filled by dominated solutions according to their fitness. If many solutions have the same 

fitness, the density estimation technique is used. More details on the density estimation 

technique used in SPEA2 are available in the original paper.45 

The strength in SPEA2 is computed for each solution, either dominated or nondominated, 

as the number of other solutions it dominates. The raw fitness is obtained by summing up the 

strengths of all solutions that dominate the target solution (therefore, the raw fitness is zero for 

all nondominated solutions). If the raw fitness is the same for two or more solutions, the fitness 

assigned to each solution is calculated as the sum of the raw fitness and the density of the 

region. In both SPEA1 and SPEA2, the fitness is to be minimized. Although SPEA2 was 

claimed to be very effective in the MO optimization, sometimes it fails to give a proper ranking 

to nondominated solutions. For example, in Fig. 8b, the solution shown in blue belongs to the 

third Pareto front but, because it is placed in the less crowded region, it has a better ranking 

than the one shown in red, belonging to the second Pareto front. 

3.4. Combining the MO Optimization with USPEX for Materials Design 

We performed the MO evolutionary search for materials optimal in hardness and stability 

(the energy above the convex hull) for FexBy, MoxBy, and MoxNy binary systems using the 

USPEX code.2,4 In these calculations, the simple Pareto ranking method (layer classification 

Pareto technique) was used, without any further procedures such as the fitness sharing, crowded 

comparison, clustering, or any other methods taking into account the density of solutions in the 

objective space. These additional procedures strengthen the MO Pareto-based methods when 

three or more objectives are under study. Although they can also be useful when dealing with 
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two objectives, we chose to keep it simple as long as it works well (this method was efficiently 

used in the prediction of new hard46 and thermoelectric47 materials). 

In this method, at the end of each evolutionary generation, the fitness derived from the 

Pareto rank is assigned to each structure. The highest rank, or the lowest fitness, is assigned to 

the structures forming the first Pareto front, and these structures have the highest probability 

of being selected as parents. The structures of the next generation are created by applying 

heredity and mutation operators to these parents. The combination of the MO optimization and 

evolutionary search is expected be very efficient. The method always tries to fill the blank 

spaces in the Ashby plot in which structures with a combination of several optimal properties 

could be placed. These spaces are filled by creating new structures produced by the optimum 

parent structures selected from the same region of the Ashby plot. The blank spaces in the 

Ashby plot get filled with the good structures because only the optimum structures are selected 

from an unlimited number of those that can be created, whereas the bad structures are discarded 

from the population instantly (this method is also useful when a concave Pareto front is 

obtained). Finding all the optimum structures in these regions may take a long time and even 

then is not guaranteed. However, useful (even if approximate) Pareto fronts are obtained using 

this well-defined method which intelligently produces optimal solutions even when the time 

and computational power are limited.  

The method of MO optimization discussed here is effective for two dimensions. Its 

efficiency decreases dramatically with an increase in the number of objectives, or properties to 

be studied for each material, because of an increase in the number of optimal structures. The 

dimensionality of the Pareto front is proportional to the number of properties that we wish to 

optimize. For example, when the dimensionality increases from two to three, the Pareto front, 

which was a one-dimensional line, becomes a two-dimensional plane. Similarly, for four 

properties, the Pareto front becomes a 3D hyperplane, and so on. The number of optimal 

structures placed on the Pareto front increases and the intelligent evolutionary algorithm 

becomes useless with a random parent selection. 

Several examples of crystal structure prediction using the evolutionary methodology 

USPEX in combination with the simple Pareto ranking (layer classification) method are 

presented here. The goal of these calculations is to find hard and stable structures in target 

systems using the MO optimization method and assess the efficiency of this method and the 

evolutionary crystal structure prediction. In these examples, all the ab initio calculations were 

done using the PBE exchange-correlation functional17 and the projector augmented-wave 

(PAW) method48,49 as implemented in the VASP code50 with the plane-wave basis set cutoff 

of 550 eV and the Brillouin zone sampling using a grid with a spacing of 2𝜋 × 0.06 Å–1. The 

evolutionary calculations for each binary system had the initial population size of 120, the 

subsequent population size of 60 structures, and were run for 50 generations. The hardness was 

computed using the Lyakhov–Oganov model.51 

3.4.1. Example 1: MoxNy 

Stable compounds of the MoxNy system were previously studied52 using the single-

objective optimization mode of USPEX, and the obtained results can be used to evaluate the 

efficiency of the simplest MO optimization method implemented in USPEX. 
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In the previous work,52 MoN, MoN2, and Mo4N3 were the stable compounds under zero 

pressure. Also, two very low-energy metastable Mo2N structures and one metastable Mo3N2 

structure have been reported.52 In this research, we found four stable compounds of this system: 

MoN, MoN2, Mo2N, and Mo3N2. The reason for this difference is that in this research, the 

stable Mo4N3 structure was not found, and, as a consequence, metastable structures of Mo2N 

and Mo3N2 appeared on the convex hull (Fig. 9a). It worth mentioning that since evolutionary 

algorithms do not guarantee finding the global minimum, failing to find a stable structure 

(global minimum energy) may occur in any SO or MO evolutionary algorithm, however, 

generally, the possibility of losing a global minimum in a SO evolutionary search should be 

less than a MO search. All other stable and metastable compounds reported in the previous 

work were found in this research. Moreover, a new metastable compound Mo5N2 with the 

energy of 2 meV/atom above the convex hull, which has never been reported before, was 

discovered in our calculations. We also found another structure of Mo2N with Cmcm space 

group which is a little more stable than the computationally predicted I41/amd structure52 of 

this compound. The stable P63/mmc-MoN2 structure found in this work is in perfect agreement 

with the computationally found stable structure of MoN2
52 and is lower in energy by 

0.8 eV/atom, and therefore thermodynamically more stable, than the experimentally reported 

R3̅m structure (later shown by Yu et al. (2016) to be incorrect). 

 

Figure 9. Convex hull diagram (left) and Ashby plot of hardness and energy above the convex hull 

(right) for the Mo–N system. The stable Mo4N3 compound reported in the literature is shown by a 

hollow red circle. The low-energy metastable Mo5N2 and Cmcm structure of Mo2N are shown in blue.  

In this example, the MO optimization not only discovered several unknown low-energy 

metastable structures, but also successfully reported all the already studied stable and 

metastable structures of the MoxNy system except one, Mo4N3. This indicates that if two 

properties are optimized, the MO optimization method is almost as efficient as the single-

objective optimization. 

The Ashby plot of hardness and instability of the MoxNy system is shown in Fig. 9b. 

Several hard and stable or low-energy metastable structures were found in this system. 

Although most of the structures are in the hardness range of 10–20 GPa and energy range of 

0.1–0.5 eV/atom above the convex hull, the algorithm tried to focus on the regions where 

optimal structures in both properties are located. 
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3.4.2. Example 2: FexBy 

Using the same method to study the FexBy system, in this work we found two stable binary 

compounds, FeB and FeB3, and several metastable compounds: FeB2, FeB3, FeB4, Fe2B, Fe3B5, 

and Fe3B10. Some of these compounds have been reported to be stable or metastable in the 

literature,53,54 whereas some were discovered in this work. The differences between our results 

and the findings reported in other works are discussed below. 

In the literature, FeB, FeB2, and Fe2B are reported to be stable, whereas our calculations 

showed Fe2B and FeB2 to be metastable by 3 meV/atom and 42 meV/atom, respectively. 

Although both these compounds were found in this research, their lowest-energy structures 

have not yet been discovered. Two structures of FeB3 were found in our calculations. Most 

likely, this compound would not appear on the convex hull if the stable structure of FeB2 were 

found. Nevertheless, FeB3 is not reported either as stable or metastable in the literature. FeB4 

was found to be metastable in this work, in agreement with the earlier studies.53,54 Fe4B is one 

of the reported metastable compounds that were not detected in our calculations. In this work, 

several simultaneously hard and stable or low-energy metastable phases were detected for the 

FexBy system, and some of them are superhard (Fig. 10b). 

 

Figure 10. Convex hull diagram (left) and Ashby plot of hardness and energy above the convex hull 

(right) for the Fe–B system. The stable and metastable compounds reported in the literature are shown 

by hollow red circles and polygons. The low-energy metastable structures found in this work are shown 

in blue. 

3.4.3. Example 3: MoxBy 

For this system, MoB and MoB2 were found to be stable, in full agreement with the 

previous studies.55,56 Many metastable MoxBy compounds have been reported both 

theoretically57 and experimentally:55 MoB3, MoB4, Mo2B, Mo2B5, Mo3B2, and Mo5B3. In this 

search, we found eight low-energy metastable compounds: Mo2B, MoB3, MoB5, Mo3B5, 

Mo3B2, Mo4B, Mo5B2, and Mo2B3. Three of them, Mo2B, Mo3B2, and MoB3, have already been 

reported as metastable. Five previously unknown compounds discovered in this work — MoB5, 

Mo2B3, Mo3B5, Mo4B, and Mo5B2 — have their energies lying above the convex hull by 

55 meV/atom, 29 meV/atom, 57 meV/atom, 23 meV/atom, and 21 meV/atom, respectively. 

Although three reported metastable compounds, MoB4, Mo2B5, and Mo5B3, were not found in 
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our calculations, the MO optimization acted successfully, discovering five new low-energy 

metastable compounds of the MoxBy system, which indicates the efficiency of the method in 

crystal structure prediction when several properties are to be optimized (see Fig. 11). 

 

Figure 11. Convex hull diagram (left) and Ashby plot of hardness and energy above the convex hull  

(right) of the Mo–B system. The metastable compounds reported in previous studies are shown by 

hollow red polygons, the compounds discovered in this work are shown in blue. 

The stable binary compounds with the highest Lyakhov–Oganov hardness for each of the 

above examples are MoN2 (32.6 GPa), FeB3 (20 GPa), and MoB2 (19.6 GPa). These phases 

have P63/mmc, P21/m, and R3̅m space groups, respectively (Fig. 12). Whereas the Lyakhov–

Oganov model of hardness is convenient for screening, being very cheap and numerically 

robust, more accurate values are predicted using Chen’s model.58 The latter, however, requires 

the calculation of the elastic tensor and is therefore much more computationally expensive. 

Therefore, after the initial screening using Lyakhov-Oganov model, the final hardnesses were 

computed using Chen’s model. In Fig. 10b and 11b, the hardest stable compound (with a 

hardness of 33.6 GPa) corresponds to pure α-boron. 

 

Figure 12. Structures of stable binary compounds with the highest Lyakhov–Oganov hardness among 

the systems studied in this work: (a) P63/mmc-MoN2 (Chen’s hardness 22.3 GPa), (b) P21/m-FeB3 

(Chen’s hardness 30.2 GPa), (c) R3̅m-MoB2 (Chen’s hardness 28.5 GPa). 

3.5. Conclusion 

In this chapter, some of the most prominent multi-objective optimization methods were 

discussed, and the layer classification Pareto technique in combination with USPEX was used 

in the search for simultaneously hard and stable materials. The most desirable and favorable 

outcome of materials design is the discovery of new materials with simultaneously optimal 
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multiple properties because, in our examples, unstable hard materials are as useless as stable 

soft materials. We need to have materials that are optimal in all required properties, and the 

MO optimization method can be used as a verified tool for attaining this goal. The combination 

of the evolutionary search and MO Pareto ranking provides a powerful means for the discovery 

of such new materials. 
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CHAPTER 4. 

Nonempirical Definition of the Mendeleev Numbers: Organizing the 
Chemical Space 

Abstract 

Organizing a chemical space so that elements with similar properties would take neighboring 

places in a sequence can help to predict new materials. In this paper, we propose a universal 

method of generating such a one-dimensional sequence of elements, i.e. at arbitrary pressure, 

which could be used to create a well-structured chemical space of materials and facilitate the 

prediction of new materials. This work clarifies the physical meaning of Mendeleev numbers, 

which was earlier tabulated by Pettifor. We compare our proposed sequence of elements with 

alternative sequences formed by different Mendeleev numbers using the data for hardness, 

magnetization, enthalpy of formation, and atomization energy. For an unbiased evaluation of 

the MNs, we compare clustering rates obtained with each system of MNs. 

 

Keywords: Mendeleev number, chemical scale, Pettifor map 

4.1. Introduction 

Vast amounts of information about the physical properties and crystal structures of 

materials have been produced and need to be organized in a clear way to facilitate insight. Even 

for known materials many properties remain unexplored, and a clear organization of data 

similar to Mendeleev’s Periodic Table would help to estimate these properties a priori and 

uncover those regions of the chemical space that deserve a deeper study. To solve this 

challenging problem, it is necessary to construct a coherent chemical space, basically a 

coordinate system, in which materials with similar properties are closely related and likely to 

be placed in neighboring regions. This way, prediction of one material would lead to predictions 

of other materials with similar or perhaps even better properties.  

This idea of a chemical space can be explained on a simple example of a set of colored 

pencils, in which the pencils are put in an order so that the color variation between the adjacent 

pencils is minimal (Fig. 13). In this example, the pencils represent the elements of the Periodic 

Table while the colors represent their properties. A combination of two different colors can be 

considered a binary system in which fractions of colors represent the composition 

(stoichiometry), while the resulting color shows the properties of the system. A two-

dimensional color map, built in such a way, represents a chemical space where binary systems 

with similar properties are located close to each other, which is the direct result of a suitable 

one-dimensional arrangement of the elements.  

A similar idea of “structure map” was explored in 1984 by Pettifor,59 who suggested that 

a well-structured chemical space can be derived by changing the sequence of the elements in 

the Periodic Table.59 He proposed a chemical scale that determines the “distance” between the 

elements on a one-dimensional axis and a Mendeleev number (MN) — an integer showing the 
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position of an element in the sequence.60 Pettifor claimed that binary compounds with the same 

structure type occupy the same region in a two-dimensional map plotted using the MNs (the 

Pettifor map). He evaluated the chemical scale by presenting a map clearly separating 34 

different structure types of 574 binary AB compounds (Fig. 14a).59 Later, Pettifor showed that 

the MN approach also works for other AxBy compounds.60 Although Pettifor derived the 

chemical scale and Mendeleev number empirically and based his assessment on only several 

hundred binary compounds, his study provided a phenomenally successful ordering of the 

elements confirmed in many later works.61,62 In this work we denote Pettifor’s MN as MNP. 

We expect that a nonempirical method of finding the MNs would perform even better.  

 

Figure 13. A colored pencil diagram demonstrating the idea of chemical space. 

Earlier, in 1929, Goldschmidt tried to find a systematic relationship between the chemical 

composition and crystal structures of materials. His goal, in particular, was to find how a crystal 

structure (the geometric arrangement of atoms in a crystal) depends on the chemical 

composition. The result of his work, known as Goldschmidt’s law of crystal chemistry, states 

that the crystal structure is determined by stoichiometry, atomic size, and polarizability of 

atoms/ions.63 In 1955, Goldschmidt’s law was modified by Ringwood when he added the 

electronegativity as another important parameter determining the crystal structure.64 Based on 

this premise, we define the chemical scale and MN from these atomic properties. 

In 2008, Villars et al. propose a different enumeration of the elements (called periodic 

number – PN), emphasizing the role of valence electrons.65 In contrast to the atomic number 

(AN), PN depends in details on the underlying Periodic Table of the elements. 

In 2016, Glawe et al. proposed another sequence of elements (modified MN – in this work 

we show by MNm) based on their similarity, defining elements A and B to be similar if they 

crystallize in the same structure type when combined with other elements of the Periodic Table. 

For example, the alkali metals (Li, Na, K, etc.), forming the rocksalt crystal structure when 

mixed with Cl, are similar by this definition.62 Applying this definition and using the available 

crystal structures in the Inorganic Crystal Structure Database (ICSD),66 the degrees of 

similarity of each element with respect to other elements were calculated. Based on these data, 

the best sequence of elements was optimized using a genetic algorithm, so that similar elements 

occupy neighboring places in this arrangement.  
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Figure 14. Structure maps of 521 binary AB compounds using Pettifor’s chemical scale and our 

redefined chemical scale. 

However, defining the MNs with the help of databases has its drawbacks. The first and 

most important one is that the calculations of the MNs in this case are property-dependent. The 

quality of the results is lowered because all the structures in the ICSD were taken into account, 

including theoretical and experimental, stable and metastable at the same time. Also, note that 

for some elements the data in the ICSD are insufficient.  

In this paper, we present a simple, physically meaningful, fully nonempirical universal 

method of defining the MNs and obtaining the universal sequence of elements (USE). We then 

compare different MNs using our own theoretical database, which contains about 500,000 

crystal structures.  

As the chemistry of the elements and materials changes under pressure, so will the MNs. 

The proposed universal method makes it possible to define the MNs of the elements by their 

electronegativity and atomic radius at any pressure. In Section 3, we use these properties to 

compute MNs of a number of elements at high pressures (50 GPa, 200 GPa, and 500 GPa). 
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4.2. Computational Methods  

Unlike Pettifor, who derived his MNP empirically, we offer a nonempirical (and, therefore, 

more universal) definition. The most important chemical properties of an atom are the radius 

Ra, electronegativity χ, polarizability α, and valence v. We disregarded the polarizability in 

favor of the electronegativity because they are strongly correlated.67 For simplicity, we also 

excluded the valence, which is not constant for many elements. Thus, we only consider the 

electronegativity and atomic radius to define the MNs and obtain the USE (Table 2). 

  

Figure 15. Electronegativities and atomic radii of the elements. The regression line is shown in blue. 

We used the Pauling scale for the electronegativity χ.68 For each element there are many 

values of atomic radius depending on the bonding type (ionic, covalent, metallic, and van der 

Waals), oxidation state, and coordination number. The problem is that we need to use values 

obtained in a consistent way for all elements, and such values were not available. In this work, 

the atomic radius Ra is defined as half the shortest interatomic distance in the relaxed simple 

cubic structure of an element. A significant correlation between Pauling’s electronegativity χ 

and atomic radius Ra (Fig. 15) means that one of them or better some combination of the two 

can be used as a single parameter approximately characterizing the chemistry of an element. 

To find an approximate combination of these two parameters into one, the regression line in 

the space of χ and Ra was computed and all the elements were projected onto it (Fig. 15). The 

zero value on this scale was assigned to the projection of the first element (the one having a 

large atomic radius and low electronegativity) onto the regression line, while the coordinates 

of other elements on the line were defined as the distance of their projections from zero – these 

are defined as the chemical scale. The Mendeleev number, USE, was defined as the sequential 

number of the projected element on the regression line (see Table 3). 
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Table 2. Electronegativities and atomic radii of the elements used for obtaining 

the universal sequence of elements (USE). 

Element Atomic radius 

Ra (Å) 

Pauling  

Electronegativity (χ) 
Element Atomic radius 

Ra (Å) 

Pauling  

Electronegativity (χ) 

H 0.727 2.2 In 1.541 1.78 

He 1.286 3.1 Sn 1.541 1.96 

Li 1.374 0.98 Sb 1.553 2.05 

Be 1.090 1.57 Te 1.596 2.1 

B 0.933 2.04 I 1.721 2.66 

C 0.891 2.55 Xe 2.344 2.6 

N 0.932 3.04 Cs 2.535 0.79 

O 0.997 3.44 Ba 1.962 0.89 

F 1.089 3.98 La 1.647 1.1 

Ne 1.409 3.2 Ce 1.467 1.12 

Na 1.701 0.93 Pr 1.367 1.13 

Mg 1.508 1.31 Nd 1.320 1.14 

Al 1.355 1.61 Pm 1.635 1.13 

Si 1.269 1.9 Sm 1.626 1.17 

P 1.223 2.19 Eu 1.620 1.2 

S 1.293 2.58 Gd 1.623 1.2 

Cl 1.431 3.16 Tb 1.613 1.1 

Ar 1.933 3.1 Dy 1.613 1.22 

K 2.151 0.82 Ho 1.604 1.23 

Ca 1.761 1 Er 1.602 1.24 

Sc 1.466 1.36 Tm 1.602 1.25 

Ti 1.308 1.54 Yb 1.759 1.1 

V 1.209 1.63 Lu 1.605 1.27 

Cr 1.162 1.66 Hf 1.454 1.3 

Mn 1.136 1.55 Ta 1.358 1.5 

Fe 1.131 1.83 W 1.316 2.36 

Co 1.137 1.88 Re 1.287 1.9 

Ni 1.160 1.91 Os 1.278 2.2 

Cu 1.203 1.9 Ir 1.288 2.2 

Zn 1.320 1.65 Pt 1.311 2.28 

Ga 1.365 1.81 Au 1.374 2.54 

Ge 1.365 2.01 Hg 1.556 2 

As 1.369 2.18 Tl 1.617 1.62 

Se 1.418 2.55 Pb 1.622 1.87 

Br 1.551 2.96 Bi 1.635 2.02 

Kr 2.077 3 Po 1.670 2 

Rb 2.319 0.82 At 1.777 2.2 

Sr 1.935 0.95 Rn 2.544 2.2 

Y 1.625 1.22 Fr 2.567 0.7 

Zr 1.463 1.33 Ra 2.114 0.9 

Nb 1.362 1.6 Ac 1.838 1.1 

Mo 1.294 2.16 Th 1.655 1.3 

Tc 1.257 1.9 Pa 1.436 1.5 

Ru 1.249 2.2 U 1.339 1.38 

Rh 1.264 2.28 Np 1.291 1.36 

Pd 1.306 2.2 Pu 1.271 1.28 

Ag 1.379 1.93 Am 1.261 1.3 

Cd 1.509 1.69 Cm 1.279 1.3 
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4.3. Results and Discussion  

In a well-ordered sequence of elements, the atoms with similar properties are close to each 

other. Therefore, in the two-dimensional chemical space based on such sequence, the properties 

of neighboring binary systems should exhibit a close relation. On this premise, we evaluate 

different MNs: atomic number (AN), Villars’ periodic number 65 (PN), Pettifor’s Mendeleev 

number 60 (MNP), modified Mendeleev number 62 (MNm), and Mendeleev number in this work, 

the universal sequence of elements, (USE). These MNs are shown in Table 3.  

To examine different MNs, a database containing about 500,000 theoretical and 

experimental crystal structures of unary and binary compounds was compiled. These structures 

were relaxed using density functional theory within the generalized gradient approximation 

(DFT-GGA) and the database was set up so as to contain neither duplicates nor very unstable 

structures (whose energy is more than 0.5 eV/atom above the convex hull). Some crystal 

structures in the database were imported from other online databases, such as ICSD 66 and 

COD,69 while the majority came from the previous calculations based on the evolutionary 

algorithm USPEX.2–4  

The database contains the crystal structure information for 1,591 binary and 80 unary 

systems – excluding Ar, Xe, Ce, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Rn, Bk, Cf, 

Es, Fm, Md, No, Lr, Rf, and Db. Of these, only 446 systems have the magnetic information 

that are obtained in several multi-objective evolutionary searches for low-energy and highly 

magnetized phases, as implemented in the USPEX algorithm.70 The hardness of all crystal 

structures in this database was computed using the Lyakhov-Oganov model.51 The database is 

fully consistent because all crystal structures were relaxed and their energies computed in the 

same settings using the density functional theory with the projector-augmented wave method 

(PAW) and PBE 17 functional as implemented in the VASP code.48,50 To compare the 

performance of different MNs for binary systems, the 2D maps of various properties were 

plotted, among them the hardness (representing the mechanical properties), magnetization 

(electronic properties), enthalpy of formation, and atomization energy (thermodynamic and 

chemical properties). 

For hardness and magnetization, the representative structure of each binary system is a 

structure with the energy less than 0.1 eV/atom above the convex hull, having the highest 

hardness or magnetization, respectively. For generating the chemical spaces of the enthalpy of 

formation and atomization energy, the representative structure of each binary system is a 

structure with the lowest enthalpy of formation or lowest atomization energy, respectively. In 

all cases, no restrictions on stoichiometries of studied structures were imposed. The generated 

chemical spaces of hardness, magnetization, enthalpy of formation, and atomization energy 

using different MNs are shown in Fig. 16, 17, 18, and 19, respectively. 
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Table 3 . The universal sequence of elements (USE), coordinates of the elements on the regression line 

– chemical scale (CS), atomic number (AN), periodic number 65 (PN), Pettifor’s Mendeleev number 60 

(MNP), modified MN 62 (MNm). 

# USE CS AN PN MNP MNm # USE CS AN PN MNP MNm 

1 Fr 0 H Li He He 51 Bi 1.517 Sb Re V V 

2 Cs 0.077 He Na Ne Ne 52 Sn 1.56 Te Fe W Cr 

3 Rb 0.272 Li K Ar Ar 53 Zn 1.566 I Ru Mo Mo 

4 K 0.411 Be Rb Kr Kr 54 Hg 1.571 Xe Os Cr W 

5 Ra 0.486 B Cs Xe Xe 55 Te 1.594 Cs Co Tc Re 

6 Ba 0.606 C Fr Rn Rn 56 Sb 1.601 Ba Rh Re Tc 

7 Sr 0.662 N Ca Fr Fr 57 Ga 1.62 La Ir Mn Os 

8 Ac 0.827 O Sr Cs Cs 58 V 1.646 Ce Ni Fe Ru 

9 Ca 0.834 F Ba Rb Rb 59 Mn 1.661 Pr Pd Os Ir 

10 Na 0.843 Ne Ra K K 60 Ag 1.676 Nd Pt Ru Rh 

11 Rn 0.871 Na Sc Na Na 61 Cr 1.702 Pm Cu Co Pt 

12 Yb 0.892 Mg Y Li Li 62 Be 1.71 Sm Ag Ir Pd 

13 La 0.984 Al La Ra Ra 63 Kr 1.71 Eu Au Rh Au 

14 Pm 1.011 Si Ac Ba Ba 64 Ge 1.733 Gd Be Ni Ag 

15 Tb 1.012 P Ce Sr Sr 65 Re 1.735 Tb Mg Pt Cu 

16 Sm 1.041 S Th Ca Ca 66 Si 1.75 Dy Zn Pd Ni 

17 Gd 1.061 Cl Pr Yb Eu 67 Tc 1.76 Ho Cd Au Co 

18 Eu 1.063 Ar Pa Eu Yb 68 Cu 1.804 Er Hg Ag Fe 

19 Y 1.071 K Nd Y Lu 69 I 1.81 Tm B Cu Mn 

20 Dy 1.081 Ca U Sc Tm 70 Fe 1.824 Yb Al Mg Mg 

21 Th 1.091 Sc Pm Lu Y 71 As 1.827 Lu Ga Hg Zn 

22 Ho 1.094 Ti Np Tm Er 72 Ni 1.845 Hf In Cd Cd 

23 Er 1.101 V Sm Er Ho 73 Co 1.847 Ta Tl Zn Hg 

24 Tm 1.107 Cr Pu Ho Dy 74 Mo 1.877 W C Be Be 

25 Lu 1.116 Mn Eu Dy Tb 75 Ar 1.885 Re Si Tl Al 

26 Li 1.141 Fe Am Tb Gd 76 Pd 1.89 Os Ge In Ga 

27 Ce 1.144 Co Gd Gd Sm 77 Ir 1.905 Ir Sn Al In 

28 Mg 1.218 Ni Cm Sm Pm 78 Os 1.913 Pt Pb Ga Tl 

29 Pr 1.232 Cu Tb Pm Nd 79 Pt 1.931 Au N Pb Pb 

30 Hf 1.257 Zn Bk Nd Pr 80 Ru 1.937 Hg P Sn Sn 

31 Xe 1.263 Ga Dy Pr Ce 81 P 1.953 Tl As Ge Ge 

32 Zr 1.266 Ge Cf Ce La 82 Rh 1.97 Pb Sb Si Si 

33 Nd 1.276 As Ho La Ac 83 W 1.973 Bi Bi B B 

34 Sc 1.281 Se Es Fm Th 84 Se 1.997 Po O Bi C 

35 Tl 1.304 Br Er Es Pa 85 Au 2.027 At S Sb N 

36 Pa 1.385 Kr Fm Cf U 86 B 2.106 Rn Se As P 

37 Pu 1.396 Rb Tm Bk Np 87 S 2.116 Fr Te P As 

38 U 1.397 Sr Yb Cm Pu 88 Br 2.12 Ra Po Po Sb 

39 Cm 1.401 Y Lu Am Am 89 Cl 2.332 Ac H Te Bi 

40 Am 1.416 Zr Ti Pu Cm 90 H 2.366 Th F Se Po 

41 Np 1.425 Nb Zr Np Bk 91 Ne 2.373 Pa Cl S Te 

42 Cd 1.433 Mo Hf U Cf 92 He 2.418 U Br C Se 

43 Pb 1.442 Tc V Pa Es 93 C 2.43 Np I At S 

44 Ta 1.449 Ru Nb Th Fm 94 N 2.675 Pu At I O 

45 In 1.458 Rh Ta Ac Sc 95 O 2.849 Am He Br At 

46 Po 1.477 Pd Cr Zr Zr 96 F 3.08 Cm Ne Cl I 

47 At 1.502 Ag Mo Hf Hf 97 
 

 Bk Ar N Br 

48 Nb 1.503 Cd W Ti Ti 98   Cf Kr O Cl 

49 Ti 1.513 In Mn Nb Ta 99   Es Xe F F 

50 Al 1.514 Sn Tc Ta Nb 100   Fm Rn H H 
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4.3.1. Evaluation of a chemical space 

In a correctly defined chemical space, closely located materials should have similar 

properties. The most promising materials will then be clustered in one or few “islands” in this 

space. To predict new materials, it could be sufficient to explore these islands instead of the 

entire chemical space. The fewer these islands are, the easier it would be to locate and explore 

them for promising materials. A chemical space containing many small islands is less amenable 

for the prediction of materials than the one with fewer big islands. Therefore, for evaluating 

each chemical space, it is useful to find these islands and calculate the number of (similar) 

materials they cover.  

For doing this, we used the idea of the clustering algorithm proposed by Rodriguez and 

Laio 71 and applied it to clustering regions of the chemical space on the basis of their similarity. 

In this simple method, each cluster is defined by a cluster center and a number of similar data 

points around it. For finding the cluster centers, two quantities are to be calculated for each 

data point i: its local density ρi, and its distance δi from the nearest point with a higher density. 

In the original method, ρi is equal to the number of points that are closer than dc to the point i 

(we call these points: local neighbors), where dc is a cutoff radius. Also, δi for the point with 

the highest density is equal to its distance from the furthest data point. This way, the cluster 

centers are those points with high value of both ρ and δ. Clearly, the point with the highest 

density ρi, is always a cluster center.  

In our modified method, we only consider the point with the highest density as a cluster 

center, and therefore, there is no need for calculation of δi. Then, we remove the cluster center 

and all its local neighbors from the dataset, we calculate ρi again for the remaining data points, 

and find a new cluster center. We continue this loop until all the data points are assigned to a 

cluster. The points with zero local density ρi are isolated points. In our method, ρi is equal to 

the number of points that are closer than dc to the point i, and their property difference to the 

point i is less than dp, where dp is a property difference cutoff. We need to clarify that data 

points closer than dc to a local neighbor – neighbors of the local neighbors – with property 

difference less than dp from the cluster center, are also included in the cluster and considered 

as local neighbors of the cluster center, but these points are not included in calculation of local 

density ρi in the first place.  

The number of clusters (i.e. islands) that cover all binary systems in the chemical spaces 

of the MNs, is a good quantitative evaluation of these MNs. The lower the number of clusters, 

the better-clustered the chemical space. However, as cutoff values, i.e. dc and dp, are increased, 

the number of clusters decreases (see Fig. 20).  

For finding the cluster centers, the constant cutoff radius dc equal to 5 blocks was used –

clusters expand by including neighbors of the local neighbors as mentioned above, and dc is 

only used to bound the neighborhood area of each system. To see how number of clusters in 

different MNs changes with respect to dp, we let this value changes as shown in Fig. 20 and 

Fig. 21. 

Another quantitative evaluation of the MNs is the number of systems that are covered by 

clusters. For this purpose, we define an imaginary “ideal MN” (MNideal) for each property, 

which clusters all the materials in a minimum number of clusters (Nmin) in the target chemical 
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space. Nmin can be easily calculated by having the property range of distributed systems in a 

chemical space (as shown in the color bar of Fig. 16, 17, 18, and 19) and dp (maximum property 

difference between a cluster member and the cluster center) – the range of this value with regard 

to the change of the dp is shown in Table 4. Therefore, our second evaluation criterion is the 

fraction of all systems that are covered by the first (biggest) Nmin clusters – the results of this 

evaluation are shown in Fig. 21. These two evaluations provide an insight into the clustering 

rate of different MNs. 

As mentioned earlier, only 1591 binary and 80 unary systems are studied in our database 

which is about a half of the total binary and unary systems that can be created from the 

combination of 80 elements – totally 3240 systems can be created. Of these, hardness, enthalpy 

of formation, and atomization energy are presented for almost all the studied systems (about 

50% of total systems) while magnetization was computed only in 446 systems (about 14% of 

total systems). The amount of missing information can influence the correct clustering of the 

chemical space – for example, when a cluster cannot expand because of the lack of data points 

around it, and not because of the existence of dissimilar systems around it. To solve this 

problem, we assigned a value to the property of each missing system by cubic interpolation of 

its neighbors’ property in the scale of each MN. Then the property of the missing system is 

calculated as the average of its values in different MN scales – in the spirit of the committee 

voting approach. We evaluated our committee voting approach, by removing materials with 

explicitly calculated properties in our database, and predicting their properties using committee 

voting. On average, the error (difference between the predicted and calculated values) of the 

predicted values are: 3.24 GPa for hardness, 0.014 μβ/Å
3 for magnetization, 0.175 eV/atom for 

the enthalpy of formation, and 0.48 eV/atom for atomization energy – between 3.5% (for 

enthalpy of formation) to 7% (for magnetization) of the property ranges.  

In the following, we discuss different MNs by calculating their clustering rate and 

visualizing their 2D maps (Pettifor maps) of the hardness, magnetization, enthalpy of 

formation, and atomization energy.  

4.3.2. Hardness 

The hardest structure with the energy less than 0.1 eV/atom above the convex hull is the 

representative structure of a binary system. To get a more accurate map of hardness, the 

hardnesses of these representative structures were calculated using the Mazhnik-Oganov model 
72 of hardness. Then the hardness of the missed systems is calculated using the committee 

voting method (see Fig. 16) – in Fig. 16, we assigned a hardness value of 50 GPa to materials 

harder than 50 GPa. In clustering the hardness maps, we only include materials harder than 5 

GPa because the majority of materials are soft (with hardness less than 5 GPa) which is not 

interesting for us and reduces the difference of the clustering rates of different MNs. 

Hardest materials are usually compounds of carbon, boron, and nitrogen with each other 

or with other elements. When these three elements sit in neighboring places (i.e. in AN and 

MNm), a number of big islands are produced depending on the arrangement of other elements. 

Despite that, if other similar elements are placed far from each other, they form several distant 

islands that are not clustered together (see Fig. 16a). Table 4 shows the number of clusters to 
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cover all binary systems (harder than 5 GPa) in the hardness maps of the MNs. These results 

are shown in more details in Fig. 20. The maximum number of clusters (islands), in small dp, 

is found for AN which was expected due to the splotchy hardness map it produced. In the Nmin 

biggest clusters, AN covers fewer binary systems than all other MNs in different range of dp 

(see Fig. 21). The highest clustering rate is calculated for USE that clusters regions of hardness 

map in lower number of clusters, than other MNs, in whole range of dp (Fig. 20). Fig.21 shows 

that USE covers 78% to 96% (for different dp) of all materials harder than 5 GPa in its biggest 

Nmin clusters. Better clustering of materials with similar hardness by USE was expected even 

by visualizing the produced Pettifor maps of hardness. USE has significantly reduced the size 

of the regions containing materials harder than 15 GPa – exploring about a quarter of the 

chemical space is enough to predict almost all the hard materials – that also places soft materials 

in each other’s vicinity. Reducing the size of promising regions of the chemical space is 

important, especially, when doing an automatic and systematic search for materials with 

optimal properties.73 

 

Figure 16. 2D maps of the hardness (GPa) obtained using Mazhnik-Oganov model 72 of hardness of 

binary systems, plotted in various MNs. The representative for each binary system is the phase with the 

highest hardness in our database. The material with the highest hardness is shown by black hollow 

circle. 
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Table 4. Clustering rate based on: (a) the number of clusters for different MNs in comparison to the 

minimum number of clusters , Nmin, in a imaginary ideal MN (MNideal), and (b) fraction of binary 

systems that are covered by the first (biggest) Nmin clusters in different MNs. The clustering rates are 

calculated based on the change of the dp. 

  (a) Number of clusters to cover all binary 

systems 

(b) Fraction of binary systems that are covered 

by the first Nmin clusters 

 dp Nmin AN PN MNP MNm USE AN PN MNP MNm USE 

H
a

rd
n

es
s 

 

1.5 15 98 87 74 80 65 0.59 0.68 0.71 0.7 0.78 

2.5 9 62 53 50 55 44 0.72 0.77 0.8 0.79 0.83 

3.5 7 43 39 39 51 27 0.79 0.83 0.85 0.79 0.89 

4.5 5 32 37 28 43 24 0.8 0.84 0.88 0.82 0.9 

5.5 5 29 33 26 34 23 0.83 0.87 0.91 0.85 0.91 

6.5 4 21 35 20 26 14 0.89 0.87 0.93 0.89 0.96 

M
a

g
n

et
iz

a
ti

o
n

 0.005 18 70 48 60 63 64 0.83 0.88 0.84 0.85 0.84 

0.01 9 36 30 30 39 35 0.89 0.91 0.92 0.9 0.92 

0.02 5 20 15 12 15 14 0.94 0.96 0.97 0.97 0.97 

0.03 3 12 10 11 8 9 0.95 0.98 0.97 0.98 0.97 

0.04 3 11 8 10 8 9 0.95 0.99 0.98 0.98 0.98 

0.05 2 11 5 8 6 6 0.96 0.99 0.99 0.98 0.99 

E
n

th
a

lp
y

 o
f 

fo
rm

a
ti

o
n

 

0.05 50 240 197 196 182 193 0.75 0.78 0.79 0.79 0.79 

0.1 25 136 95 95 87 100 0.83 0.9 0.9 0.89 0.88 

0.2 13 76 54 47 59 60 0.88 0.93 0.95 0.93 0.93 

0.3 9 59 37 39 39 46 0.93 0.96 0.95 0.95 0.95 

0.4 7 35 28 24 31 29 0.94 0.97 0.98 0.96 0.97 

0.5 5 24 21 21 21 24 0.96 0.97 0.96 0.98 0.96 

A
to

m
iz

a
ti

o
n

 

en
er

g
y

 

0.1 44 439 325 321 350 440 0.33 0.46 0.51 0.44 0.35 

0.2 22 194 141 158 164 190 0.53 0.76 0.71 0.63 0.64 

0.3 15 130 96 80 89 94 0.69 0.8 0.79 0.77 0.84 

0.4 11 110 54 52 63 84 0.71 0.86 0.87 0.8 0.86 

0.5 9 76 49 50 57 70 0.76 0.89 0.87 0.8 0.88 

0.6 8 65 37 33 47 47 0.82 0.9 0.89 0.88 0.89 

4.3.3. Magnetization 

As mentioned before, our database contains magnetic information for only 14% of the total 

binary systems and the magnetic information is assigned to the majority of the systems (about 

86%) using committee voting method. This, obviously, increases the clustering rate for all the 

MNs. The range of magnetization is from zero for nonmagnetic and antiferromagnetic 

materials to 0.198 μβ/Å
3 corresponding to the magnetization of iron. Among all elements that 

we included, and their compounds, Fe has the highest magnetization. This result is correct. In 

reality, Gd has a slightly higher magnetization, but lanthanoids were not included for technical 

reasons (problems with available pseudopotentials, and with convergence). For evaluating 

magnetization maps of different MNs, we disregarded materials with magnetization less than 

0.02 μβ/Å
3 (see Table 4) – this helps us to better distinguish performance of different MNs.  

Looking at Fig. 17, at the first glance, it seems that AN provides a slightly better map with 

clear separation of materials with similar magnetization. Although that might be true for 

promising regions, a closer look to Fig. 17a shows that AN clusters other regions of the 

chemical space, with lower magnetization, less efficiently by following its periodic pattern – 
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see Table 4, Fig. 20, and Fig. 21. The clustering rate for all the MNs are very high as could be 

expected – small number of clusters that quickly approaches the Nmin (minimum number of 

clusters that is required by an ideal MN), and high coverage of binary systems (from 83% for 

small dp, to 99% for bigger dp) in the first Nmin clusters. 

In Fig. 17, the main two islands of materials with high magnetization, correspond to the 

compounds of some transition metals such as Fe, Co, Ni, and some actinoids such as Pu 

(lanthanoids also form highly magnetic phases, but as we mentioned above, were excluded for 

technical reasons) – this can be clearly seen in the magnetization map of AN (Fig. 17a).  

  

Figure 17. 2D maps of magnetization (in the unit of μB
.Å-3) of binary systems, plotted in various MNs. 

The representative for each binary system is the phase with the highest magnetization in our database. 

The material with the highest magnetization is shown by black hollow circle. 

4.3.4. Enthalpy of formation  

Pettifor maps of the enthalpy of formation produced by different MNs are shown in Fig. 

18. The plots were made taking in each binary system the AxBy compound with the lowest 

enthalpy of formation in the database. Unlike hardness and magnetization map, in the maps of 

the enthalpy of formation, binary systems with lower values of the enthalpy of formation are 

more favorable (depicted with red color).  

Looking at Fig. 18, one can see that PN, MNP, MNm, and USE, have produced similar 

maps of the enthalpy of formation. In all these maps, promising materials (with more 

exothermic chemical reactions – shown in orange and red) are gathered in a small region, right 

bottom – left top, of the map. This means that very dissimilar elements often form stable 

compounds. The lowest enthalpy of formation was found for ThF4 (−4.11 eV/atom), followed 
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by AcF3 (−4.09 eV/atom), CaF2 (−3.92 eV/atom) and ZrF4 (−3.62 eV/atom). Other notable 

values include Th4O7 (−3.61 eV/atom), Y2O3 (−3.48 eV/atom), Al2Ta (−3.18 eV/atom), 

Al2O3 (−2.95 eV/atom), CaO (−2.95 eV/atom), SiO2 (−2.79 eV/atom), Al5Ge2 (−2.44 

eV/atom). Note that fluorides and oxides are the most exothermic compounds, which is easy 

to understand, since F and O have the highest electronegativities. Materials that are shown in 

yellow color (with an enthalpy of formation between −2 and −2.5 eV/atom) can be found 

mostly around the promising regions (shown in red). Fig. 20 shows that among these MNs, 

MNm provides a slightly better map, while the performance of all MNs (except for AN) are 

similarly good. Fig. 18 suggests that USE performs better in clustering promising regions 

(shown in yellow, orange and red) by condensing them in a smaller area. On the other hand, 

AN produced a periodic map which is inefficient for clustering compounds with similar 

enthalpies of formation. As expected, our clustering evaluations show that AN clusters regions 

of the chemical space less efficiently than other MNs (see Fig. 20, and Fig. 21).   

 

Figure 18. 2D maps of the enthalpy of formation (eV/atom) of binary systems, plotted in various MNs. 

The representative for each binary system is a structure with the lowest enthalpy of formation in our 

database. The material with the lowest enthalpy of formation on the map is shown by black hollow 

circle. 

4.3.5. Atomization energy 

Figure. 19 shows maps of the atomization energy produced by different MNs. Similar to 

the enthalpy of formation, lower values of atomization energy are preferred. More negative 

values of atomization energy (shown in orange and red) means that more energy is required to 

break all bonds in the crystal. For this property, we took into account the spin-polarization 

energies of atoms, to take into account that ground states of isolated atoms of most elements 
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are spin-polarized. Among the elements, tungsten has the lowest atomization energy equal to 

−8.51 eV/atom, while among binary compounds the lowest value is achieved in Ta-C (−8.78 

eV/atom for Ta6C5 and −8.79 eV/atom for Ta2C). Atomization energy measures the total 

strength of bonding in the solid, and is correlated with the melting temperature. Indeed, 

tungsten has the highest melting temperature among elements (3695 K), while among binary 

compounds, HfC and TaC have the highest melting temperatures above 4000 K.74 For Hf-C, 

our calculations show atomization energy equal to −8.16 eV/atom. The atomization energy of 

some representative solids such as graphite, BN (zinc-blende phase), silica (SiO2), and NaCl 

are −7.98 eV/atom, −7.01 eV/atom, −6.52 eV/atom, and −3.16 eV/atom respectively, which 

are very close to the values from experiment.  

Similar to other properties, i.e. the enthalpy of formation and hardness, AN produces a 

map with a periodic pattern (Fig. 19a), which means clustering materials with similar properties 

in many small islands instead of few big islands. Looking at the atomization energy maps in 

the space of MNs in Fig. 19 and their clustering evaluations in Fig. 20, and Fig. 21, it is clear 

that PN and MNP and MNm do better job by smoothly clustering materials with similar 

atomization energy, while clustering rates for USE, and AN are progressively lowered. 

However, by increasing the dp, number of clusters in AN and USE quickly approaches to the 

number of clusters in PN, MNP, and MNm, while Fig. 21 shows that number of covered systems 

by minimum number of clusters (Nmin) for AN is less than all other MNs in all range of dp.  

  

Figure 19. 2D maps of the atomization energy (eV/atom) of binary systems, plotted in various MNs. 

The representative for each binary system is a structure with the lowest atomization energy in our 

database. The material with the lowest atomization energy on the map is shown by black hollow circle. 
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In a nutshell, except for AN which provides a patchy periodic chemical space, other MNs 

provide a convenient well-structured chemical space for the properties on which we did tests – 

hardness (representing the mechanical properties), magnetization (electronic properties), 

enthalpy of formation and atomization energy (thermochemical properties). Among them, 

USE, with a simple definition from the most important elemental properties (i.e. atomic radius 

and electronegativity), generates an overall best clustering in the chemical space (see Table 4, 

and Fig. 20) with clearer separation of regions that contain materials with similar properties. 

Such well-organized chemical space facilitates the prediction of new materials by exploring 

the promising regions at the expense of unpromising ones.73 

 

Figure 20. Number of clusters vs. property difference cutoff (dP) for different Mendeleev numbers – in 

comparison to a hypothetical ideal MN – for the hardness, magnetization, enthalpy of formation, and 

atomization energy. 
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Figure 21. Fraction of binary systems that are covered by a minimum number of clusters as required in 

an ideal MN to cover all the binary systems for different dP. 

4.3.6. A well-defined chemical space at high pressures  

The chemistry of the elements and compounds changes with pressure. The discussed MNs 

are either fixed (AN, PN, and MNP) or obtained by optimizing some evaluation function based 

on big data (MNm), and adapting these MNs to high pressures is either impossible or requires 

large amounts of data, huge efforts, and vast computational resources. The USE is the only 

Mendeleev number that was constructed on a fundamental basis, using the most important 

elemental properties — electronegativity and atomic radius, and as these properties change 

under pressure, so will the USE. 

The atomic radius of an element can be defined (as we defined throughout this work) and 

calculated as half the shortest interatomic distance in the relaxed simple cubic structure of that 

element under pressure. The electronegativity of many elements has been calculated at various 

pressures.75,76 Using these data, the USE was obtained at various pressures (Table 5). This can 



 

43 
 

help to predict new materials at arbitrary pressure, only by having a number of relevant data 

on other systems and plotting them onto the well-organized map produced by the USE.  

Table 5. The USE at high pressures. 

# 50 GPa 200 GPa 500 GPa # 50 GPa 200 GPa 500 GPa 

1 Xe Cs Ba 36 As Ir Ru 

2 Cs Ba Cs 37 Ge Nb Ca 

3 Ba Po Bi 38 Re As As 

4 Po Bi Pb 39 Ga Se Hf 

5 Bi Pb Po 40 Pt Pd Al 

6 Sr Xe Sn 41 Ti Sc Se 

7 Pb Tl Tl 42 Os Br Rh 

8 I Sn Xe 43 Ir Ru Zn 

9 Tl Sb Sb 44 Tc Al Cu 

10 Y Te In 45 Pd Na Sc 

11 Rb In Te 46 Ru Ar Na 

12 Te I Hg 47 Rh Rh Br 

13 Sb Rb Rb 48 Al Zn Cr 

14 Kr Hg Cd 49 Cl Ti Si 

15 Ca Sr Au 50 V Cu Ar 

16 Sn Y I 51 Zn V Nb 

17 In Cd Sr 52 S Si Mn 

18 Lu Lu Ag 53 Si Cr V 

19 Hg Au Y 54 Cr Mn Fe 

20 Hf Kr Lu 55 P P Ni 

21 K Ta Zr 56 Cu Fe Ti 

22 Nb Ag W 57 Mn S P 

23 Sc Zr Ta 58 Fe Cl Co 

24 Cd W Re 59 Li Ni S 

25 Br Hf Pt 60 Co Co Cl 

26 Ta Re Os 61 Ni Li Li 

27 Zr Pt Mo 62 Ne Be Be 

28 Ar Mo Kr 63 Be B B 

29 Na Os K 64 F Ne Ne 

30 Au K Ga 65 O C C 

31 W Ge Ge 66 B N N 

32 S Ga Tc 67 N O O 

33 Mg Mg Ir 68 C F F 

34 Ag Ca Pd 69 He He He 

35 Mo Tc Mg 70 H H H 

4.4. Conclusions 

Having a well-defined sequence of the elements (Mendeleev numbers, or MNs), where similar 

elements take neighboring places, one can produce an organized map of properties for binary 

or more complex systems that leads to the prediction of new materials by having information 

on their neighboring systems. We defined a simple, physically meaningful, and universal way 

to order the elements. In this work, we studied our MN (USE), in addition to a number of 

previously known MNs such as atomic number (AN), Villars’ periodic number 65 (PN), 

Pettifor’s Mendeleev number 60 (MNP), modified Mendeleev number 62 (MNm), using provided 

data on binary systems from our and other online databases, such as ICSD 66 and COD.69 Two-

dimensional maps of the hardness, magnetization, enthalpy of formation, and atomization 

energy were plotted using the provided data in the space of MNs and it turned out that most of 

these sequences (except for AN) indeed work well at clustering materials with similar 
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properties. The evaluation of the MNs showed the overall best clustering rate of the chemical 

spaces produced by USE for target spaces, i.e. hardness, magnetization, and enthalpy of 

formation. Also, unlike other MNs, USE can be defined at any arbitrary pressure, which is a 

step forward for the prediction of materials under pressure. Importantly, our work clarifies the 

physical meaning of the Mendeleev number (previously defined empirically): it is a collapsed 

one-number representation of the important atomic properties (such as atomic radius, 

electronegativity, polarizability, and valence). 
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CHAPTER 5. 

Coevolutionary Search for Optimal Materials in the Space of All 
Possible Compounds 

Abstract 

Over the past decade, evolutionary algorithms, data mining, and other methods showed great 

success in solving the main problem of theoretical crystallography: finding the stable structure 

for a given chemical composition. Here we develop a method that addresses the central 

problem of computational materials science: the prediction of materials that possess the best 

combination of target properties among all possible combinations of all elements. This 

nonempirical method combines our coevolutionary approach with the carefully restructured 

“Mendelevian” chemical space, energy filtering, and Pareto optimization to ensure that the 

predicted materials have optimal properties and a high chance to be synthesizable. The first 

calculations, presented here and discussed in Chapter 6, illustrate the power of this approach. 

 

Keywords: Coevolutionary algorithm; evolutionary algorithm; hardness; Mendeleev numbers; 

multi-objective optimization. 

5.1. Introduction  

Discovery of materials with optimal properties (e.g., the highest hardness, the lowest 

dielectric permittivity, etc.) or an optimal combination of properties (e.g., the highest hardness 

and fracture toughness) is the central problem of materials science. Until recently, experiment 

was the only possible method in materials discovery, with all limitations and expense of trial-

and-error approach, but the ongoing revolution in theoretical and computational materials 

science begins to change the situation. Using the quantum mechanical calculations, it is now 

routine to predict many properties when the crystal structure is known. In 2003, Curtarolo 

demonstrated data mining method for materials discovery77 by screening crystal structure 

databases, which can include known or hypothetical structures, via ab initio calculations. At 

the same time, major progress was seen in fully nonempirical crystal structure prediction. 

Metadynamics1 and evolutionary algorithms2–4 have convinced the community that crystal 

structures are predictable.  

Despite the success of these and other methods, a major problem remains unsolved: the 

prediction of a material with optimal properties among all possible compounds. 4950 binary 

systems, 161,700 ternary systems, 3,921,225 quaternary systems, and an exponentially 

growing number of higher-complexity systems can be created by 100 best-studied elements in 

the periodic table. In each system, a very large number of compounds and, technically, an 

infinite number of crystal structures can be constructed computationally, and the direct 

screening of such a multitude is impractical. Only about 72% of binary, 16% of ternary, 0.6% 

of quaternary, and less than 0.05% of more complex systems have ever been studied 

experimentally,78 and even in those systems that have been studied, new compounds are being 
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discovered.32,79,80 Studying all these systems, one by one, using global optimization methods is 

unrealistic. Data mining is a more practical approach, but the above statistics shows that the 

existing databases are significantly incomplete even for binary systems, whereas using this 

method for ternary and more complex systems would be inefficient. Besides, data mining 

cannot find fundamentally new crystal structures. When searching for materials optimal in 

more than one property, these limitations of both approaches become even greater. We present 

a new method implemented in our code, MendS (Mendelevian Search), and show its 

application to discover hard, superhard, and magnetic materials. 

 

Figure 22. Pettifor maps showing the distribution of hardness in binary systems, using (a) atomic 

numbers, (b) Villars’ Periodic number, (c) Pettifor’s MN, and (d) MN obtained in this work. Noble gases 

were excluded because of their almost complete inability to form stable compounds at normal 

conditions. Rare earths and elements heavier than Pu were excluded because of the problems of the 

DFT calculations. In total, we consider 74 elements that can be combined into 2,775 possible binary 

systems. Each pixel is a binary system, the color encodes the highest hardness in each system. 

5.2. Mendelevian Space  

Global optimization methods are effective only when applied to property landscapes that 

have an overall organization, e.g., a landscape with a small number of funnels. Discovering 

materials with optimal properties, i.e. performing a complex global optimization in the 

chemical and structural space, requires a rational organization of the chemical space that puts 
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compounds with similar properties close to each other. If this space is created by ordering the 

elements by their atomic numbers, we observe a periodic patchy pattern (Fig. 22a), unsuitable 

for global optimization. 

As we mentioned in Chapter 4., Pettifor suggested a new quantity, the so-called “chemical 

scale,” that arranges the elements in a sequence so that similar elements are placed near each 

other, and compounds of these elements also display similar properties.59 This way, structure 

maps60 with well-defined regions of similar crystal structures or properties can be drawn. In a 

thus ordered chemical space, evolutionary algorithms should be extremely effective: they can 

zoom in on the promising regions at the expense of unpromising ones.  

In Chapter 4., we explained our method in redefining the chemical scale and Mendeleev 

number (USE), based on the most important chemical properties of the atom — size R and 

electronegativity χ (Pauling electronegativity) — the combination of which can be used as a 

single parameter succinctly characterizing the chemistry of the element. However, we need to 

emphasize that the chemical scale and MN are only used in this method for visualizing the 

results (the choice of MN for plotting such a Pettifor map is up to the user), while in our global 

coevolutionary algorithm, each atom is represented by both its size R and electronegativity χ 

to increase the accuracy. In this work, the atomic radius R is defined as half the shortest 

interatomic distance in the relaxed (for most elements hypothetical) simple cubic structure of 

an element – see Table 2. 

 

Figure 23. Correlation between the Mendeleev numbers defined in this work and those proposed by 

Pettifor. 

Fig. 23 shows the overall linear correlation between the Mendeleev numbers redefined in 

this work and those proposed by Pettifor. Carefully defined Mendeleev numbers should lead 

to a strong clustering in the chemical space, where neighboring systems have similar properties. 

The results of our searches for hard binary compounds using the MN suggested by Pettifor and 

our redefined MN are shown on the Pettifor maps (Fig. 22b, c). Satisfyingly, our redefined 

MNs result in a better-organized chemical space with a clearer separation of regions containing 

binary systems with similar hardness. In fact, if our MNs (which are the sequences of projected 

elements on their regression line in the space of crudely correlated atomic radius and 
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electronegativity) generate a good 2D map, with clear grouping of similar chemical systems 

(e.g., Na-Cl, K-Cl, Ca-Cl, Na-Br systems are located nearby), then a much better grouping is 

expected in the space of the initial two parameters R and χ, and it is in this space where variation 

operators of our method are defined (Fig. 24a, b). Also it worth mentioning that sizes and 

electronegativities of the atoms change under pressure – and using standard definitions of the 

Mendeleev number (such as AN, or Pettifor's MN) will not work well. Our recipe, however, is 

universal and only requires atomic sizes and electronegativities at the pressure of interest. In 

this paper, we illustrate our method by binary systems, although more complex, at least ternary, 

systems are also tractable. 

 

Figure 24. MendS algorithm, (a) Scheme showing how the chemical heredity and (b) chemical mutation 

create new compositions. The probability, displayed in shades of gray, is given to each possible child 

according to its distance from the fitter parent (dark green point). (c) Flowchart of the coevolutionary 

algorithm used in MendS (EA — evolutionary algorithm, MO — multi-objective).   

5.3. Method  

The whole process can be described as a joint evolution (or coevolution) of evolutionary 

runs, each of which deals with an individual binary variable-composition system. Having 

defined the chemical space, we initialize the calculations by randomly selecting a small number 

of systems from the entire chemical space for the first MendS generation. These systems are 

then optimized by the evolutionary algorithm USPEX2–4 in its variable-composition mode,81 

searching for compounds and structures with optimal properties, in our example, we 
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simultaneously maximized hardness and stability, after which MendS jointly analyses the 

results. Removing the identical structures using the fingerprint method,82 jointly evaluating all 

systems, refining and preparing the dataset, and discarding the structures that are unstable by 

more than 1.0 eV/atom, MendS ranks all systems of the current generation and selects the fittest 

(usually 70% of them) as potential parents for new systems. Applying the variation operators, 

such as mutation and heredity, to these parent systems yields offspring systems for the next 

coevolutionary generation. Additionally, some systems are generated randomly to preserve the 

chemical diversity of the population. This process is continued until the number of 

coevolutionary generations reaches the maximum predefined by the user (Fig. 24c). The 

underlying ab initio structure relaxations and energy calculations were performed using the 

density functional theory with the projector augmented-wave method (PAW) and GGA-PBE 

functional as implemented in the VASP code.48,50 The details on the input parameters of 

MendS, USPEX, and VASP are given in Appendix 1. 

5.3.1. Defining the Fitness: Multi-objective (Pareto) Optimization 

The combination of multi-objective Pareto optimization with evolutionary algorithm 

works efficiently, especially when optimizing two-objective problems (see Chapter 3 of this 

thesis). Here we performed searches that simultaneously optimized (1) stability, measured as 

the distance above the convex hull, and (2) hardness, computed using the Lyakhov–Oganov 

model.51 

The multi-objective optimization usually yields a set of materials, with a trade-off between 

their properties, that form the first Pareto front. Similarly, 2nd, 3rd, …, nth Pareto fronts can 

be defined (Fig. 25). In our method, the Pareto rank47,70 is used as a fitness (see Chapter 3). 

 

Figure 25. The MendS results of the simultaneous hardness and stability optimization of all unary and 

binary compounds: (a) 1st generation, (b) 10th generation, (c) 20th generation. The first five Pareto 

fronts are shown, green points representing all sampled structures. The instability of each compound is 

defined using Maxwell’s convex hull construction. Diamond, the hardest material, is indicated by a star. 
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5.3.2. Variation Operators in a Chemical Space 

The variation operators are very important for an efficient sampling of a chemical space 

using the previously sampled compositions and structures. These operators ensure that different 

populations not only compete, but also learn from each other. In an efficient algorithm, the 

chemical space is defined by just one number for each element — the Mendeleev number, or 

chemical scale. We use this for plotting the Pettifor maps, but within the algorithm, each 

element is described by two numbers — electronegativity χ and radius R, rescaled to be 

between 0 and 1 — and it is this space where the variation operators act. Three variation 

operators are defined in the chemical space: chemical heredity, reactive heredity, and chemical 

mutation. 

Chemical heredity replaces elements in parent systems with new elements so that their 

electronegativities and atomic radii lie between those of their parents (Fig. 24a). Thus, the 

regions of the chemical space between the parents are explored: 

AB + CD → XY,                                                             (5.1) 

where X is between A and C or A and D, which is selected randomly, and Y is between the 

other two elements (B and D or B and C). 

Reactive heredity creates an offspring by taking combinations of the elements from 

parents. For example, if the parents are A–B and C–D, their child is one of the A–C, A–D, B–

C, and B–D systems. 

Chemical mutation randomly chooses one of the elements of a parent and substitutes it 

with another element in its vicinity in the space of χ and R (Fig. 24b). 

In both chemical mutation and chemical heredity, the probability is assigned to all 

elements: 

𝑃𝑖 =
𝑒−𝛼𝑥𝑖

∑𝑒−𝛼𝑥𝑖
, 𝑖 = 1, 2, …,                                                (5.2) 

where x is the distance of element i from the parent element, and α is a constant (here we use 

α = 1.5). In the case of chemical heredity, the probability gives a higher weight to the fitter 

parent, shown by a dark green point in Fig. 24a, b.  

The result of applying these variation operators is shown in Fig. 26: the promising regions 

of the chemical space are sampled more thoroughly at the expense of the unpromising regions. 

When a new system is produced from parent systems, it inherits from them a set of optimal 

crystal structures which are added to the first generation, greatly enhancing the learning power 

of the method. 
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Figure 26. Systems selected (a, d) randomly in the 1st generation, and using all variation operators in 

(b, e) the 5th and (c, f) 10th generations in searching for (a–c) hard and (d–f) magnetic materials. 

Randomly generated systems are shown by violet circles. 

After finishing the coevolutionary simulation, we took the most promising systems 

identified in it and performed longer evolutionary runs for each of them, calculating the final 

hardness using the Chen–Niu model,58 and fracture toughness — using the Niu–Niu–Oganov 

model.83 We reported some of these results in a separate paper on the Cr–B, Cr–C, and Cr–N 

systems,46 and our study of the W–B system84 was inspired by the present finding of promising 

properties in the Mo–B system. The new results are discussed in Chapter 6. 

5.4. Mendelevian Search for Hard and Superhard Materials 

The Pareto optimization70 of hardness and stability was performed over all possible 

structures (with up to 12 atoms in the primitive cell) and compositions of binary compounds of 

74 elements: all elements excluding the noble gases, rare earth elements, and elements heavier 

than Pu. In this work, 600 systems were computed in 20 MendS generations from a total of 

2775 binary and unary systems that can be composed of 74 elements (i.e., only about one fifth 

of all possible systems were sampled). The efficiency of this method in finding optimal 

materials is shown in Fig. 25. In this fast calculation, numerous stable and metastable hard and 

superhard materials were detected in a single run. Carbon (diamond and other allotropes) and 

boron, known to be the only superhard elements, were both found. In addition, not only our 

calculation revealed several new binary compounds, but also many already known hard 

systems, or system that were reported to be potentially hard during decades, were found in a 

single run. Among them BxCy,
85 CxNy,

86,87 BxNy,
88,89 BxOy,

85,90,91 RexBy,
92,93 WxBy,

94 SixCy,
95–98 

WxCy,
96–98 AlxOy,

96–98 TixCy,
98 SixNy,

98 TixNy,
98 BexOy,

98 RuxOy,
99,100 OsxOy,

101 RhxBy,
102 
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IrxBy,
102 OsxBy,

103–105 and RuxBy.
103–105 Several binary systems with a very promising hardness 

were also found in the calculation: MoxBy,
57,92 TcxBy,

106,107 BxPy,
108 VxBy,

109–111 FexBy,
53,112 

MnxBy,
113,114 and MnxHy. They are discussed in Chapter 6. All the systems studied during the 

calculation are listed in Appendix 2 (Table 7). 

All known binary superhard systems were found in a short coevolutionary run, which 

demonstrates the power of our method. It can be applied to other types of materials. The results 

of this search is thoroughly discussed in Chapter 6. 

5.5. Mendelevian Search for Magnetic Materials 

In addition to the Mendelevian search for stable/metastable hard and superhard materials, 

we performed another Mendelevian search for materials with maximum magnetization and 

stability to examine the power and efficiency of the method in fast and accurate determination 

of materials with target properties. We performed this calculation over all possible structures 

(with up to 12 atoms in the primitive cell) and compositions limited to the binary compounds 

of 74 elements (i.e. all elements excluding the noble gases, rare earth elements, and elements 

heavier than Pu). In this calculation, well-known ferromagnets iron, cobalt, nickel, and several 

magnetic materials made from the combination of these and other promising elements were 

detected before the 6th generation. The magnetization of each structure was found in the spin-

polarized calculations using the GGA–PBE functional17 as implemented in the VASP code.48,50 

More details on the structure relaxation and input parameters can be found in Appendix 1. The 

chemical space in the Mendelevian search for magnetic materials is shown in Fig. 26d–f, which 

was formed after calculating the magnetization of 450 binary systems over 15 generations. In 

this plot, the materials with high magnetization are clustered together. Fig. 26d–f shows how 

the (co)evolutionary optimization discovered all the promising regions at the expense of the 

unpromising ones. This calculation has found that among all substances, bcc-Fe has the highest 

magnetization at zero Kelvin. The system selection in the 5th and 10th generations is shown in 

Fig. 26e and f. 

5.6. Conclusion 

We developed a method for predicting materials having one or more optimal target 

properties. The method, based on the suitably defined chemical space, powerful evolutionary 

algorithm, and multi-objective Pareto optimization technique, was examined by searching for 

low-energy hard and superhard materials. Well-known superhard systems — diamond, boron 

allotropes, and the B–N system — were found in a single calculation together with other hard 

systems, both known and unknown. The results of this search are discussed in Chapter 6. A 

similar chemical map was produced for magnetic materials; well-known magnetic systems 

such as Ni, Co, Fe were found within a few generations. The examples of hard materials and 

ferromagnets found using this method show its power and efficiency, which can be used to 

search for optimal materials with any combination of properties at arbitrary conditions. As the 

first step in the prediction of novel materials possessing desired properties, this fully 

nonempirical method to a large extent solves the central problem of computational materials 

science. 
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CHAPTER 6. 

Computational Prediction of Hard and Superhard Materials  

Abstract 

Superhard materials are a class of materials with unique mechanical properties that are widely 

used in many industrial applications. In this chapter, we present our results of the Mendelevian 

search in which several transition metal borides were studied and many new hard and 

superhard phases were predicted. Several low-energy phases of the Mn–H system were 

predicted to be unexpectedly hard. 

 

Keywords: Hardness; fracture toughness; elastic properties; Mendelevian search; multi-

objective optimization. 

6.1. Introduction  

Modern technology requires new materials displaying unique combinations of mechanical, 

electronic, and other properties to replace the traditional materials widely used in the industry. 

We developed a new method,73 presented in Chapter 5, that makes it possible to predict the 

optimal materials on the basis of all possible combinations of all the elements from the Periodic 

Table. This nonempirical method combines our coevolutionary approach with a carefully 

restructured “Mendelevian” chemical space (Chapter 4), energy filtering, and Pareto 

optimization70 (Chapter 3) of target properties and stability to ensure that the predicted 

materials have optimal properties and a high chance to be synthesizable.  

Superhard materials are a class of materials with unique mechanical properties that are 

widely used in many industrial applications, like mining, defense, and space industries.115 

Materials with the Vickers hardness greater than 40 GPa are called superhard. The hardest 

material known to date is diamond, with the Vickers hardness of 60 to 120 GPa.96,116 Among 

the noncarbon superhard materials, the cubic boron nitride displays the Vickers hardness of 

~60 GPa.89,96,117 Materials having unique mechanical properties include some borides, carbides, 

and nitrides of transition metals, such as chromium,46,118  rhenium,92,93,119 molybdenum,56,57 

tungsten,84,94,120,121, and so forth. Some of these carbides (WC) and nitrides (TiN) are widely 

used in manufacturing and mining, for example, in the drilling equipment. 

Diamond and the cubic BN are high-pressure phases. In this work, we pay more attention 

to hard and superhard transition metal borides which form the majority of our findings in the 

Mendelevian search calculations. Many of these are stable at ambient conditions and are 

expected to be easy to synthesize.  

Crystal structure prediction methods develop rapidly122–124 and can already be used to 

discover novel superhard materials. To facilitate this, simple and reliable ways of computing 

the hardness and fracture toughness are necessary.  
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6.2. Empirical Models of Hardness 

Hardness is a complicated property of materials that cannot be evaluated directly from the 

atomistic simulations because it usually includes many nonlinear and mesoscopic effects. 

However, several empirical models make it possible to estimate the hardness from the atomic-

scale properties. Chen’s model58 is based on the assumption that the size of an indentation in 

the hardness test is correlated with the shear modulus of the material G, whereas the width of 

an imprint is inversely proportional to the square of the bulk modulus B, and therefore the 

proportionality for the Vickers hardness HV is:58 

𝐻V ∝ 𝐺(𝐺 𝐵⁄ )2.                                                               (6.1) 

The analysis of the experimental data for many materials58 has led to the empirical formula 

for the Vickers hardness: 

𝐻V = 2(𝑘2𝐺)0.585 − 3,                                                     (6.2) 

where k = G/B is the Pugh ratio, G is the shear modulus, and B is the bulk modulus. HV, B, and 

G are expressed in GPa. The test calculations of the Vickers hardness using Chen’s model agree 

well with the reference experimental data:58 the calculated value for diamond is 98 

(experimental value ~96),116 for TiN — 22.6 (20.5),125 for c–BN — 56.9 (~55).116,126 

Although this model is reliable, the calculation of the elastic constants of materials on a 

large scale is computationally expensive.  

The Lyakhov–Oganov model,51 which computes the hardness from bond hardnesses, is 

more convenient for high-throughput searches: it is numerically stable, usually reliable, and 

can be used at no significant cost, requiring as an input only the crystal structure and chemical 

composition. 

6.3. A Simple Model of Fracture Toughness from First Principles 

For industrial applications, the fracture toughness, along with hardness, also plays a key 

role. Unfortunately, the hardest materials — covalent crystals — are usually brittle, whereas 

the materials with the highest fracture toughness are metals whose hardness ranges from low 

to medium. 

The fracture toughness can be calculated using the empirical model from Ref.83: 

𝐾IC = 𝛼𝑉
1
6𝐺 (

𝐵

𝐺
)

1
2
,                                                      (6.3) 

where α is the enhancement factor accounting for the degree of metallicity, V is the volume per 

atom, G and B are the shear and bulk moduli, respectively.83 For insulators, semiconductors, 

transition metal carbides, nitrides, borides, and hydrides, α = 1.83 The calculated values of 

fracture toughness of diamond, WC, TiN, and c–BN are close to those measured 

experimentally: 6.33 MPa·m0.5 for diamond (experimental value 4–7 MPa·m0.5),127,128 

5.37 MPa·m0.5 for WC (experimental value 5–8 MPa·m0.5),129 3.9 MPa·m0.5 for TiN 

(experimental value 4–5 MPa·m0.5),129 and 5.41 MPa·m0.5 for c–BN (experimental value 2–

5 MPa·m0.5).126 
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6.4. Results of the Mendelevian Search for Hard and Superhard Binary systems 

We performed a Mendelevian search for hard and superhard binary systems (Chapter 5). The 

multi-objective Pareto technique70 (Chapter 3) and energy filtering, which discarded the 

structures whose energy was above the convex hull by at least 0.5 eV per atom, were used to 

ensure that the evolutionary algorithm generates hard phases that have a low energy. In this 

calculation, 600 binary systems, or about one-fifth of all the systems that can be composed of 

74 elements, were studied in 20 MendS generations. Impressively, all the hard unary and binary 

materials reported in the literature and materials claimed to be potentially hard were found in 

this calculation, among them diamond and its polytype lonsdaleite as the hardest and boron 

allotropes as the second hardest elemental phases, were found correctly in our Mendelevian 

search. BxCy,
85 CxNy,

86,87 BxNy,
88,89 BxOy,

85,90,91 RexBy,
92,93 WxBy,

94 SixCy,
95–98 WxCy,

96–98 

AlxOy,
96–98 TixCy,

98 SixNy,
98 TixNy,

98 BexOy,
98 RuxOy,

99,100 OsxOy,
101 RhxBy,

102 IrxBy,
102 OsxBy,

103–

105 and RuxBy.
103–105 are some of the examples of binary systems reported to be hard in the 

literature and found by us in this single calculation – the list of studied systems is shown in 

Appendix 2.  

The huge size of the compositional space (2775 systems, each with about 102 possible 

compositions (for limited number of atoms – up to 12 atoms in the primitive cell), each 

composition having an astronomically large number of possible structures) makes it necessary 

to reduce the number of generations or population size, or both, to shorten the time of 

calculations. With reduced computational settings, structures and compositions found may be 

approximate and may need to be refined using a precise evolutionary calculation for each of 

these systems. Table 6 presents the results for some promising systems that were further studied 

using the evolutionary calculations. Of these, some transition metal borides are predicted to be 

hard; MoxBy
56,57 and MnxBy

114 have been reported as hard materials; a potential of TcxBy,
130 

FexBy,
131 and VxBy

110
 to be hard has been discussed. Several previously unknown hard 

structures more stable than the already reported ones were predicted in these systems (Table 6). 

Completely new hard systems, SxBy and BxPy, were revealed in the calculations, and the MnxHy 

system was unexpectedly discovered to contain very hard phases. It must be noted that Table 

6 only contains phases, usually, harder than 30 GPa. For instance, in each of the predicted 

systems, a number of low-energy or stable phases were predicted, but due to the low value of 

hardness were not included in Table 6. The convex hull plots, are based on both the simulation 

and the experimental phases. However, we declare that not all the experimentally known phases 

are included in the convex hull plots. 

6.4.1. Mo–B 

Our calculations detected several simultaneously hard and low-energy structures of the 

MoxBy system (Table 6, Fig. 27), of which only the stable R3̅m structure of MoB2 was studied 

before experimentally. The hardness of this structure reported both experimentally 

(24.2 GPa)132 and theoretically (33.1 GPa)56 is in close agreement with the value calculated in 

this work (28.5 GPa). MoB3 and MoB4 were widely studied before,56,57 with several low-

energy and hard structures reported for these systems (i.e., R3̅m-MoB3 having the hardness of 

31.8 GPa,57 P63/mmc-MoB3 — 37.3 GPa,56 and much softer P63/mmc-MoB4 — 8.2 GPa56). In 
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this work, new low-energy structures with high hardness were discovered for these systems 

(Table 6). 

 

 

Figure 27. Crystal structures of the Mo–B phases found using the evolutionary calculations: (1) R3̅m-

MoB2, (2) P3̅m1-MoB3, (3) P6̅m2-MoB5, (4) A2/m-MoB3, (5) P63/mmc-MoB3, (6) R3̅m-MoB3, 

(7) Pmmn-MoB4, (8) R3m-MoB8, (9) Cmcm-Mo2B3, (10) Imm2-Mo2B3. 

6.4.2. Mn–B 

We propose several new low-energy and simultaneously hard compounds of the MnxBy 

system (Table 6). A previous study113 showed P21/c-MnB4 as stable and having a very high 

hardness, obtained both computationally (40.5 GPa)113 and experimentally (34.6–37.4 GPa),133 

and C2/m-MnB4 was claimed to be the second low-energy structure with the energy difference 

of 18 meV/atom. This research confirms the stability of P21/c-MnB4. However, we discovered 

another MnB4 structure, having Pnnm space group, whose energy is between the energies of 

two previously proposed phases of MnB4 (Table 6). In this work, it was found that the 

ferromagnetic phase of Pnnm-MnB4 is more stable than the nonmagnetic one and has the 

hardness of 40.7 GPa. The crystal structures of studied Mn–B phases are shown in Fig. 28. 

 

Figure 28. Crystal structures of the Mn–B phases found using the evolutionary calculations: (1) Pnnm-

MnB4, (2) Pm-MnB13, (3) P6̅m2-MnB3, (4) P21/c-MnB4, (5) R3̅m-MnB4, (6) P6̅m2-MnB5. 
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6.4.3. Tc–B 

Because of the radioactivity of technetium, the TcxBy system has not been studied 

experimentally. However, the computational studies of this system started recently.106,107,130,134 

In 2015, P3̅m1-TcB was predicted to be energetically more favorable than previously discussed 

Cmcm and WC-type structures.106 The reported hardness for this structure is 30.3 GPa,106 

which is very close to the hardness of P3̅m1-TcB predicted in this work (31 GPa). This 

structure is positioned 13 meV/atom above the convex hull because of the discovery of other 

stable compounds (e.g., Tc3B5) in this work. P6̅m2-TcB3 with the predicted hardness of 

27.2 GPa was discovered as a stable structure at zero pressure. This structure was also detected 

in other works107,134 and was claimed to be synthesizable under pressures above 4 GPa.107 In 

addition, we discovered P3̅m1-TcB3, another low-energy structure lying 3 meV/atom above 

the convex hull and having a hardness of 33.1 GPa. P6̅m2-Tc3B5, a compound stable at zero 

pressure with a hardness of 30.6 GPa, was discovered for the first time in this work. Several 

low-energy metastable phases of the TcxBy system obtained in this research, with a hardness in 

the range of 30–36 GPa, are presented in Table 6. Their crystal structures are shown in Fig. 29. 

 

Figure 29. Crystal structures of the Tc–B phases found using the evolutionary calculations: (1) P3̅m1-

TcB, (2) P3̅m1-TcB3, (3) P6̅m2-TcB3, (4) P21/m-TcB4, (5) P63/mmc-TcB4, (6) R3̅m-TcB4, (7) R3m-

TcB7, (8) R3m-TcB8, (9) P6̅m2-Tc3B5. 

6.4.4. V–B 

Many efforts have been focused on searching for low-energy phases of VxBy and studying 

their electrical and mechanical properties. As a result, several low-energy hard and superhard 

phases have been predicted.109,110 Nevertheless, the experimental data only exists for the well-

known hexagonal VB2 (AlB2-type) with P6/mmm space group,111 shown in Fig. 30(2). In 

addition to previously studied Cmcm-VB, Immm-V3B4, and P6/mmm-VB2,
109 which were also 

found in our calculations, several boron-rich low-energy phases having very high hardness 

were discovered (Table 6). Their calculated hardness is very close to or above 40 GPa: 

39.7 GPa for VB7, 40 GPa for VB5, and 44.5 GPa for VB12. The energy of a newfound 

extremely hard phase P4̅m2-V3B4 is 6 meV/atom lower than that of the previously known 

Immm structure. The crystal structures of these phases are shown in Fig. 30. 
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Figure 30. Crystal structures of the V–B phases found using the evolutionary calculations: (1) Cmcm-

VB, (2) P6/mmm-VB2, (3) Immm-V3B4, (4) P4̅m2-V3B4, (5) P6̅m2-VB5, (6) I4/mmm-VB12, (7) P3m1-

VB7. 

6.4.5. Fe–B 

The studies of the FexBy system were mostly dedicated to the FeB2 and FeB4 

phases,131,135,136 whereas several works explored different FexBy compounds.53,112 The reported 

stable phases are Fe2B, FeB, and FeB2. In this work we detected another stable phase, P21/m-

FeB3, having a hardness of 30.2 GPa, which to our knowledge has never been reported 

theoretically or experimentally. The orthorhombic Pnnm-FeB4, whose energy is 2 meV/atom 

above the convex hull (Table 6), has been synthesized at pressures above 8 GPa, and its 

hardness has been reported to be 62(5) GPa,137 which has encouraged many computational 

studies of this structure. However, such a high value of hardness has not been 

confirmed,112,131,136,138 and several independent works reported the Vickers hardness varying in 

the range of 24–29 GPa.112,131,136,138 The predicted crystal structures of the Fe–B phases are 

shown in Fig. 31. 

 

Figure 31. Crystal structures of the Fe–B phases found using the evolutionary calculations: (1) P21/m-

FeB3, (2) A2/m-FeB4, (3) Immm-FeB4, (4) Pnnm-FeB4, (5) R3̅m-FeB4, (6) Pm-Fe2B11. 
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Table 6. The predicted Vickers hardness (Hv), fracture toughness (K1C) and enthalpy above the convex hull of selected materials found using MendS. Theoretical 

values from previous works are shown in parentheses, experimental values are in brackets. The values of hardness for superhard materials are highlighted in bold. 

The hardness was computed using the Chen-Niu model,58 the fracture toughness — using the Niu-Niu-Oganov model.83 Ref: a 95, b 96, c 57, d 56, e 132, f 113, g 133, h 139, 

i 140, j 106, k 107, m 109, n 111, p 138, q 137. 

                                                 
†‡ For these phases we found that ferromagnetic solutions are more stable than non-magnetic. Elastic constant were computed assuming these are ferromagnetic 

structures, the energy difference between the ferromagnetic and non-magnetic solutions for † and ‡ is 0.037 (eV/transition-metal) and 0.092 (eV/transition-metal) and 

magnetization is equal to 0.016 and 0.034 μB
.Å-3, respectively. 

 Compounds Hv (GPa) K1C 

(MPa.m1/2) 

Instability 

(eV/atom) 

Space 

group 

 Compounds Hv (GPa) K1C 

(MPa.m1/2) 

Instability 

(eV/atom) 

Space 

group 

Carbon diamond 92.7 (93.6)b [96]b  6.33 0.13 𝐹d3̅𝑚 Boron α-boron 38.9 (39)h [27-34]i 2.87 0 R3̅m 

 lonsdaleite  93.6 6.36 0.139 P63/mmc  B 44.8 3.29 0.136 Cmc21 

B-S B4S3 30.5 1.83 0.102 Cmcm B-N BN 63.4 (64.5)b [66]b  5.1 0.075 F4̅3m 

 MoB2 28.5 (33.1)d [24.2]e  3.76 0 R3̅m  TcB 31 (30.3)j  3.83 0.013 P3̅m1 

 MoB3 35.3 3.74 0.035 P3̅m1  TcB3 27.2 (29)k  3.6 0 P6̅m2 

 MoB3 32.2 3.63 0.077 A2/m  TcB3 33.1 3.79 0.003 P3̅m1 

 MoB3 35.3 (37.3)d  3.63 0.017 P63/mmc  TcB4 31.8 3.56 0.069 P21/m 

 MoB3 33.1 (31.8)c  3.57 0.011 R3̅m  TcB4 30.2 3.54 0.069 R3̅m 

Mo-B MoB4 35.4 3.57 0.099 Pmmn Tc-B TcB4 30 (32)k  3.57 0.027 P63/mmc 

 MoB5 35.7 3.62 0.054 P6̅m2  TcB7 35.9 3.35 0.084 R3m 

 MoB8 36.6 3.24 0.118 R3m  TcB8 33.9 3.3 0.113 R3m 

 Mo2B3 32.2 3.95 0.029 Imm2  Tc3B5 30.6 3.87 0 P6̅m2 

 Mo2B3 30.4 3.87 0.043 Cmcm       

Si-C SiC 33.3 (33.1)a [34]b 2.94 0 F4̅3m B-P BP 37.2 (31.2)b [33]b 2.46 0 F4̅3m 

 SiC 33.1 2.94 0.001 R3m  B6P 41.1 2.87 0 R3̅m 

 VB 39.1 (38.3)m  3.66 0 Cmcm  MnH 29.5 3.2 0 P63/mmc 

 VB2 37.3 (39.5)m [27.2]n  3.75 0 P6/mmm  MnH 27.9 3.14 0.013 R3̅m 

 VB5 40 3.36 0.158 P6̅m2  MnH 26.3 3.07 0.044 Fm3̅m 

V-B VB7 39.7 3.19 0.143 P3m1 Mn-H Mn3H2 26.8 3.22 0.017 R32 

 VB12 44.5 3.34 0.125 I4/mmm  Mn3H2 27 3.26 0.019 P63/mcm 

 V3B4 37.8 3.74 0 P4̅m2  Mn4H3 27.6 3.23 0.002 P2/m 

 V3B4 35.9 (38.2)m  3.7 0.006 Immm  Mn6H5 27.3 3.17 0.011 A2/m 

 MnB3 32.2 3.5 0.029 P6̅m2  FeB3 30.2 3.32 0 P21/m 

 MnB4
† 40.7 3.65 0.009 Pnnm  FeB4 35.7 3.06 0.021 Immm 

Mn-B MnB4 38.2 3.56 0.1 R3̅m Fe-B FeB4
‡ 32 3.31 0.039 R3̅m 

 MnB4 38.1 (40.5)f [37.4]g  3.76 0 P21/c  FeB4 42.7 3.31 0.063 A2/m 

 MnB5 32.7 3.38 0.097 P6̅m2  FeB4 28.6 (28.4)p [62]q  3.32 0.002 Pnnm 
 MnB13 40.4 2.9 0.181 Pm  Fe2B11 33.8 3.37 0.081 Pm 
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6.4.6. B–P and Si–C 

The cubic boron phosphide BP with the zinc blende structure is a well-known compound 

in the BxPy system (Fig. 32(3)); its hardness was considered to be roughly the same as that of 

SiC.108 In our calculations, the hardnesses of SiC and BP were found to be 33 GPa and 37 GPa, 

respectively. In addition, another stable compound in this system, B6P, was discovered and 

predicted to be superhard. The computed hardness of B6P exceeds 41 GPa. This structure 

contains the α-rhombohedral boron-like clusters which are surrounded by phosphorus atoms, 

and is different from the experimentally known icosahedra B12P2. For the SiC system, a 

polytype of β-SiC having R3m space group was found, with nearly the same hardness and the 

energy 1 meV/atom higher than that of the known β-SiC with a diamond structure. 

 

Figure 32. Crystal structures of the Si–C and B–P phases found using the evolutionary calculations: 

(1) F4̅3m-SiC, (2) R3m-SiC, (3) F4̅3m-BP, (4) R3̅m-B6P. 

6.4.7. Mn–H and B–S 

Several very hard phases were found for MnxHy, an unexpected entry in the list of hard 

systems (Table 6). All these phases are nonmagnetic, highly symmetric (Fig. 33), and 

energetically favorable, being positioned either on the convex hull or close to it. Their hardness 

reaches 30 GPa. Two thermodynamically stable – located on the convex hull – compounds, 

P3̅m1-Mn2H and P63/mmc-MnH, were discovered in this system, with the computed hardness 

of 21.5 GPa and 29.5 GPa, respectively. Only the structures having a hardness above 26 GPa 

are shown in Table 6.  

 

Figure 33. Crystal structures of B4S3 and the Mn–H phases found using the evolutionary calculations: 

(1) Cmcm-B4S3, (2) P63/mmc-MnH, (3) Fm3̅m-MnH, (4) R3̅m-MnH, (5) P63/mcm-Mn3H2, (6) R32-

Mn3H2, (7) P2/m-Mn4H3, (8) A2/m-Mn6H5. 



 

61 
 

Generally, the BxSy system is not hard, but metastable boron sulfides are potentially hard. 

We found a low-energy metastable phase Cmcm-B4S3 (Fig. 33(1)) with a hardness exceeding 

30 GPa, which can stimulate future studies of this system. 

6.4.8. Cr–C and Cr–B  

Chromium-based materials reveal attractive mechanical properties. In the Cr–C system, 

only three stable carbides, Cr23C6, Cr3C2, and Cr7C3,
141–144 are known from experiments. Two 

metastable chromium carbides, CrC and Cr3C, have also been synthesized.145–147 In the Cr–B 

system, six different phases are known from experiments: Cr2B, Cr5B3, CrB, Cr3B4, CrB2, and 

CrB4;
118,148–150 their mechanical properties have been examined theoretically.46,148,151 Our 

recent study of chromium carbides46 using the evolutionary algorithm USPEX2,4,81 combined 

with the Pareto optimization of the enthalpy of formation and hardness46 led to the prediction 

of a new phase, Pmn2-Cr2C, in addition to the already known phases.152 This Pmn2-Cr2C phase 

is anticipated to have a shear modulus of 292 GPa, the highest among all chromium carbides, 

and the Vickers hardness of 27 GPa.46 The highest Vickers hardness among the chromium-

based materials, achieved in CrB4, has been reported to be in the range of 29–44 GPa,46,153 

whereas our calculations yield 48 GPa. 

 

Figure 34. 2D plot of the Vickers hardness vs. fracture toughness. Stable hard compounds from the 

previous works24, 25 are shown as “suns”; stable and metastable compounds found in this work are 

represented by circles and triangles, respectively. 
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In our calculations, some boron hydrides were predicted to be superhard, but they are not 

included in Table 6 because of their high energy. However, it may be possible to stabilize these 

hard phases under pressure or by a chemical modification.  

Fig. 34 shows the studied materials in the space of hardness and fracture toughness. 

Diamond and cubic BN possess the best properties but are metastable at normal conditions; 

among the stable phases, borides of transition metals, especially those from groups VB, VIB, 

and VIIB stand out: we noted VB2, V3B4, MoB2, CrB4, WB5, and MnB4 in particular. These 

and related materials are of high technological interest. 

The fact that all known binary superhard systems were found in a short coevolutionary run 

demonstrates the power of our method, which can be applied to other types of materials. 

More details on the structure relaxation and input parameters can be found in Appendix 1. 

6.5. Conclusion 

We discussed several examples of the transition metal boride systems that were 

computationally predicted and comprehensively studied, some of them potentially promising 

for practical applications. The new method, Mendelevian search, shows great predictive power 

in the search for hard and superhard materials. Modern computational techniques enable the 

prediction and relatively fast development of new materials with enhanced properties, like 

superhard compounds, that are destined to replace the traditional materials. 
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CHAPTER 7. 

Discussion and Conclusions 

This work aimed to find an unbiased and nonempirical solution for the main problem of 

computational materials science – prediction of new materials with optimal properties. 

Over the last few decades, with the development of algorithms and computers, 

computational materials science advanced rapidly. Simulation of materials on computers 

became possible and using quantum mechanical calculations one could optimize a given crystal 

structure and compute its different electronic, magnetic, optic, etc., properties. Later, with the 

implementation of algorithms such as evolutionary algorithms in computers, crystal structure 

prediction became possible. A huge number of new crystal structures for given materials were 

predicted in computers and many of them got confirmed by experiment. Computational 

materials science opened a new way for the design of new materials and helped experiment to 

save time and reduce the cost of the trial-and-error materials discovery.  

Despite all these developments, the central problem of materials science – finding new 

materials with optimal properties – remained unsolved because of its complexity.  

To solve such a challenging problem, we proposed the idea of an organized chemical space 

(also called Mendelevian space). In Mendelevian space, materials with similar properties are 

located in neighboring regions. If such space can be created, the prediction of new materials 

becomes possible by finding and exploring only those regions of the space that are more likely 

to contain optimal materials for the given properties. This way, prediction of one optimal 

material leads to the prediction of another optimal material and so on. We used the most 

important properties of elements, electronegativity and atomic radius, to define such space for 

elements where similar elements take neighboring places and therefore, compounds of these 

elements are likely to have similar properties in Mendelevian space.  

In the next step, we implemented a coevolutionary method, in which its variation operators 

(i.e. the central cores of the coevolutionary algorithm) are carefully designed to perform well 

in such an organized chemical space. Therefore, the outcome of a coevolutionary search is a 

set of the most optimal materials for the given properties. 

Each material, binary system in our work, has a large number of compositions (different 

stoichiometries), each with an infinite number of crystal structures. The best compounds and 

crystal structures of each material are predicted using the evolutionary algorithm USPEX. 

Multi-objective Pareto optimization was implemented in evolutionary algorithm USPEX to 

ensure that the predicted crystal structures are the best at least in one property, or sufficiently 

good in multiple properties simultaneously. 

Therefore, to solve the aforementioned problem, we implemented, a fully nonempirical, 

Mendelevian Search (MendS) method that combines our coevolutionary approach with the 

carefully restructured “Mendelevian” chemical space, energy filtering, Pareto optimization, 

and evolutionary algorithm crystal structure prediction. 

For testing our method, we searched for (1) low-energy hard and superhard binary systems, 

and (2) low-energy magnetic binary systems. The results of both searches are very promising, 
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however, we mainly focused on the results of the search for hard and superhard materials in 

this thesis. 

Using MendS, we searched for low-energy and hard crystal structures in 630 binary 

systems out of 2701 possible systems (about one-fifth of the entire chemical space) in 30 

coevolutionary generations. Amazingly, all the hard and superhard binary systems reported in 

decades, as well as those that were reported to have the potential to be hard were predicted in 

our search (list of the calculated systems are shown in Appendix 2 – Table 7). In each of these 

systems, several new phases were predicted, while only a few of the most promising ones are 

reported in this thesis. Mn-H was predicted to be unexpectedly hard. Well-known superhard 

systems — diamond, boron allotropes, and the B–N system — were found in a single 

calculation together with other hard systems, both known and unknown. A similar chemical 

map was produced for magnetic materials; well-known magnetic systems such as Ni, Co, Fe 

were found within a few generations. The examples of hard materials and ferromagnets found 

using this method show its power and efficiency, which can be used to search for optimal 

materials – with any complexity, at least ternaries – with any combination of properties at 

arbitrary conditions. As the first step in the prediction of novel materials possessing desired 

properties, this fully nonempirical method to a large extent solves the central problem of 

computational materials science.  
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APPENDIX 1.  

Input Parameters 

The Pareto optimization of hardness and stability was performed over all possible 

structures with up to 12 atoms in the primitive cell in the space of all possible binary 

compounds formed by 74 elements (excluding the noble gases, rare earth elements, and 

elements heavier than Pu). The input parameters of MendS were: population size: 30, 30% 

chemical heredity, 30% reactive heredity, 20% mutation, and 20% random systems. 

For each binary system, the evolutionary optimization was run with the following 

parameters: initial population size: 100, subsequent population size: 50, number of generations: 

6, 40% heredity, 30% mutation, 30% random selection.  

The comprehensive multi-objective evolutionary algorithm as implemented in USPEX 

was run on select promising binary systems with the following input parameters: initial 

population size: 120, subsequent population size: 60, number of generations: 50, 40% heredity, 

20% transmutation, 20% softmutation, 20% random selection. 

The underlying ab initio structure relaxations and energy calculations were performed 

using the density functional theory with the projector augmented-wave method (PAW) as 

implemented in the VASP code.48,50 In the spin-polarized calculations, the GGA-PBE 

functional17 was implemented. The cutoff energy of 600 eV and a k-mesh with the resolution 

of 0.06 × Å−1 was used in all VASP calculations. In 20 coevolutionary generations, 600 binary 

systems were studied. This calculation took 3 weeks using 280 cores, a surprisingly minor cost 

for a full exploration of the chemical space.
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APPENDIX 2. 

List of Studied Systems in the Mendelevian Search for Hard and 
Superhard Materials 

Table 7. Binary systems investigated during the MendS run. The variation operators used for creating 

the compounds are: R — random selection, CH — chemical heredity, RH — reactive heredity, M — 

mutation. 

Gen Compound 
Variation 

operator 

1st 

parent 

2nd 

parent 
Gen Compound 

Variation 

operator 

1st 

parent 

2nd 

parent 

1 Rh–B R – – 2 Cr–Co CH B Mo 

1 Na–B R – – 2 Rh–W CH C Nb 

1 Ca–Po R – – 2 Rh–Rh CH Mo C 

1 Zr–Ge R – – 2 Os–P CH Mo Pt 

1 H–N R – – 2 Al–Si CH Mo Np–Co 

1 Y–N R – – 2 V–Cr CH Os Be 

1 Ga–H R – – 2 P–P CH Mo Ru 

1 La–Pt R – – 2 Ga–S CH Nb–N As 

1 Sn–B R – – 2 Re–C CH Nb–N Rh 

1 Ru–N R – – 2 Mo–C RH C Mo–Ir 

1 Rb–Be R – – 2 Fe–B RH Fe B 

1 W–C R – – 2 As–Co RH As Np–Co 

1 Fe–Os R – – 2 Al–Os RH Os–Ru Bi–Al 

1 Ti–Pd R – – 2 As–Mo RH As Mo 

1 Th–Be R – – 2 Co–Rh RH Co Rh 

1 Rb–Mo R – – 2 Al–Be RH Be Al–As 

1 Ra–Zr R – – 2 Ru–C RH Ru W–C 

1 Ca–Rh R – – 2 W–H RH W–C Ga–H 

1 Np–Co R – – 2 Pd–W M W – 

1 Rb–H R – – 2 Sb–Rh M Rh – 

1 Bi–Al R – – 2 Sn–N M Ru–N – 

1 Os–Ru R – – 2 Ta–C M C – 

1 Li–Zn R – – 2 In–Rh M Rh – 

1 Al–As R – – 2 Mn–Be M Be – 

1 Mo–Ir R – – 2 Pu–Ge R – – 

1 Zr–Fe R – – 2 Li–Ir R – – 

1 Ac–Zn R – – 2 Li–Fe R – – 

1 Nb–N R – – 2 Ta–Po R – – 

1 Hf–Si R – – 2 Sr–P R – – 

1 Pa–Ir R – – 2 P–Cl R – – 

3 As–P CH C F–B 4 Be–Fe CH C Mn 

3 Fe–Co CH C C–Cr 4 Fe–Fe CH Cr B–H 

3 B–H CH Fe C 4 Pd–Au CH As Mo–H 

3 Mo–H CH W–H B 4 Cu–P CH V–Mo Ru 

3 Cu–Mo CH Ru Co–Rh 4 Pb–Nb CH Cr Fe 

3 Ga–Os CH B C 4 Ge–Ge CH B Sn 

3 Co–Ni CH V B 4 Cr–Cr CH Fe Mn 

3 Cr–Cu CH Mn Os 4 Ti–Ru CH Cr–Cu Cr–Rh 

3 Cu–Os CH Ir Co–Rh 4 P–Pt CH As–P Mo–H 

3 Mn–B RH Mn B 4 As–B RH B As 

3 V–P RH V Os–P 4 B–C RH C B–H 

3 Pd–Os RH Pd Al–Os 4 Fe–Cl RH Fe Cl 

3 V–Mo RH V Mo–C 4 Np–Mn RH Mn Np 
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Gen Compound 
Variation 

operator 

1st 

parent 

2nd 

parent 
Gen Compound 

Variation 

operator 

1st 

parent 

2nd 

parent 

3 Cr–Ir RH Cr Ir 4 Ca–C RH Ca C 

3 Sn–C RH Sn C 4 Mn–P RH Mn As–P 

3 Cr–Rh RH Cr Co–Rh 4 Pb–Mn RH Mn Pb 

3 Mn–Pd RH Mn Pd–W 4 V–Ir RH V Cr–Ir 

3 As–C RH Mo–C As–Mo 4 P–B RH B P 

3 Pt–Rh M Co–Rh – 4 Cd–Mn M Mn – 

3 Se–C M Mo–C – 4 Mn–C M C – 

3 Ge–W M Pd–W – 4 Ge–Cr M Cr – 

3 Rh–C M Ru–C – 4 Ge–C M C – 

3 Se–W M W–H – 4 Fe–Rh M Fe – 

3 Mo–Ru M Mo – 4 Ti–V M V – 

3 Li–Ta R – – 4 V–V R – – 

3 Po–P R – – 4 Ru–Rh R – – 

3 Sr–Cl R – – 4 Bi–As R – – 

3 Zn–P R – – 4 Mn–Rh R – – 

3 Al–Sb R – – 4 Nb–C R – – 

3 Pb–V R – – 4 Ge–Au R – – 

5 Al–Ru CH C B 6 Fe–Se CH Cr–C B–C 

5 Be–Be CH Mn B–C 6 Pd–Ir CH Fe C 

5 Fe–Ni CH Cr B–C 6 Nb–Ga CH Cr–B Cr–C 

5 As–H CH Nb–C B–H 6 Fe–Ru CH B Mn–S 

5 Zn–Cu CH V Mn–Rh 6 Tc–Pt CH C Co 

5 Hg–Fe CH B B–C 6 Al–P CH Mn–Pt Be–B 

5 Mo–P CH Cr Mn–Rh 6 Cu–Cu CH P Co 

5 Si–Cu CH Be Fe 6 Ru–H CH Mn–S Cr 

5 Co–Co CH Cr B 6 Cu–Co CH Fe Ni 

5 Cr–C RH B–C Ge–Cr 6 Mo–B RH B–H Mo 

5 P–H RH B–H P–B 6 Cu–H RH P–H Cu 

5 Be–B RH B Be 6 Fe–Mo RH Fe Mo 

5 Cr–B RH Ge–Cr Mn–B 6 Ni–P RH Fe–Ni Fe–P 

5 Fe–Ir RH Fe V–Ir 6 Si–B RH Si B–H 

5 Be–Rh RH Mn–Rh Be 6 Cr–P RH P Cr 

5 Mn–Cu RH Mn Cu–P 6 Fe–S RH Fe–Ni Mn–S 

5 Fe–P RH Fe Cu–P 6 Mn–H RH P–H Mn–Pt 

5 Ir–H RH V–Ir B–H 6 Mn–As RH Mn As 

5 Mo–Pd M Pd – 6 Ge–Fe M Fe–Ir – 

5 Mn–S M Mn–C – 6 Tc–Ni M Fe–Ni – 

5 Pd–Rh M Rh – 6 Os–S M Mn–S – 

5 Sc–Nb M Nb – 6 H–H M B–H – 

5 V–Ru M V–Ir – 6 U–Mn M Mn – 

5 Mn–Pt M Mn–Rh – 6 Be–Pt M Mn–Pt – 

5 K–Ti R – – 6 Ca–Be R – – 

5 Hg–Ag R – – 6 Mo–S R – – 

5 Po–Be R – – 6 In–Br R – – 

5 Pu–Sn R – – 6 Sc–Co R – – 

5 Cs–O R – – 6 Cr–N R – – 

5 Ca–Th R – – 6 Ga–V R – – 

7 Ni–B CH Cr–N B–C 8 Ni–C CH Si–H B–H 

7 Co–Os CH Mo–S B 8 Zn–Zn CH Ti Tc 

7 Os–Pt CH Mo–S B 8 Ni–Ni CH Co Fe–Ru 

7 Zn–Fe CH Si–B Cr 8 Al–H CH Mn–Fe Cr–N 

7 Ga–Ru CH Cr–P Mn–H 8 Ge–Cu CH Te Cr–B 

7 Al–Cr CH Ru–H Mn–H 8 Po–Fe CH Mn–Fe C 

7 Ni–Ru CH Tc–Pt B 8 Tc–Br CH Cr–N Te 

7 Be–Co CH B–H Mn 8 Ti–Ti CH Al–Cr Ti–Cr 

7 Co–Ru CH C Cr–P 8 Tc–Ir CH Mn–C Mo 
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7 Si–H RH Si Mn–H 8 Mn–Tc RH Mn Tc 

7 Tc–P RH P Tc 8 Cr–H RH Mn–H Mn–Cr 

7 Cr–Mo RH Mo–S Cr 8 Tc–Fe RH Tc Fe 

7 S–B RH Mo–S Si–B 8 Os–H RH Mn–H Os–Pt 

7 Tc–B RH B–C Tc 8 Cr–Fe RH Cr–N Mn–Fe 

7 Co–B RH B–C Co 8 Cr–Os RH Os Mn–Cr 

7 Mn–Cr RH Cr–N Mn–H 8 Mn–N RH Ti–Mn Cr–N 

7 Mn–Co RH Co Mn–As 8 Ti–Be RH Be Ti–Cr 

7 Mn–Fe RH Mn–As Fe 8 Pd–B RH B–H Pd 

7 Fe–H M H – 8 Zn–Mo M Cr–Mo – 

7 Tl–Ru M Ru–H – 8 B–B M Tc–B – 

7 Ti–Cr M Cr – 8 Sb–Ni M Ni – 

7 Te–Mn M Mn – 8 V–Tc M Tc–B – 

7 Al–Pt M Al–P – 8 Be–Ni M Be – 

7 Ti–Mn M Mn–As – 8 Mn–Mo M Cr–Mo – 

7 Ca–Ni R – – 8 Ac–Si R – – 

7 Zn–Be R – – 8 Hf–Bi R – – 

7 Br–S R – – 8 Pa–Si R – – 

7 In–Co R – – 8 Pu–Tc R – – 

7 Rb–Sc R – – 8 U–Se R – – 

7 Tc–Tc R – – 8 Pd–O R – – 

9 P–C CH Os–H B–H 10 Pa–P CH Rh B–H 

9 Co–Ir CH Mn–C C 10 Si–Fe CH Mn Cr–Ni 

9 Ni–O CH Cr–Fe Mn–N 10 Co–P CH V–B B–H 

9 Tc–Cu CH Mo Cr 10 In–Ge CH Cr–B Cr–H 

9 Ga–Be CH Cr–B Mn 10 V–Ni CH Tc–Ru B 

9 Cu–Ru CH Cr–H Os 10 Ge–Ni CH Cr Cr–N 

9 Hg–Ni CH C Cr–B 10 Hf–Be CH Mn Cr–H 

9 Cd–Be CH C Mn–H 10 Nb–Co CH Cr Si 

9 Cu–Rh CH Cr–N Os 10 Np–Cr CH Po Fe 

9 V–B RH V B 10 C–O RH Ni–O Tc–C 

9 Ni–N RH Cr–N Ni 10 Co–N RH Cr–N Co 

9 Mn–Ni RH Ni–C Mn–H 10 Si–Tc RH Si Tc–C 

9 Cr–Ni RH Ni–C Cr–Fe 10 Tc–H RH B–H Tc 

9 C–H RH B–H C 10 Ga–C RH Ga C 

9 Tc–C RH C Tc 10 Nb–V RH Nb–Ga V–B 

9 Ir–N RH Ir Cr–N 10 Ga–Ni RH Ni Ga–Be 

9 Tc–Po RH Tc Po 10 Be–N RH Be Cr–N 

9 C–N RH Mn–N C 10 Po–H RH B–H Po 

9 Zn–Mn M Mn – 10 Re–Fe M Fe – 

9 Co–H M B–H – 10 Zr–Be M Be – 

9 Cu–C M B–C – 10 V–Re M V – 

9 V–Fe M Fe – 10 Ga–Tc M Ga–Be – 

9 Tc–Ru M Tc–Ir – 10 Cr–W M Cr–N – 

9 Si–C M Ni–C – 10 Re–Cu M Cu – 

9 Y–Np R – – 10 Sr–U R – – 

9 Li–Sn R – – 10 Y–Zr R – – 

9 Sr–I R – – 10 Al–Mn R – – 

9 Te–Co R – – 10 Sb–Au R – – 

9 Rb–Ba R – – 10 Ag–C R – – 

9 Hg–Be R – – 10 Tl–Fe R – – 

11 V–Rh CH Mn Al–Mn 12 P–N CH Br–O B–H 

11 Mo–Ni CH V–Re Mn–H 12 Hg–Os CH B–H B–C 

11 Po–Cu CH V–Ni C 12 Be–F CH Mn–O O 

11 Cd–Pt CH Ga–C Np–Cr 12 Mo–Mo CH P Si 

11 Al–Co CH B Ga–C 12 Mg–Fe CH Al–C Zn–Cr 
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11 Mg–In CH B–C Ni 12 Re–Ru CH Zn–Cr Si 

11 Zn–Cr CH V Tc–H 12 Ta–Be CH Cr Be 

11 C–C CH B–H O 12 Co–C CH B–H Cr–O 

11 Co–Mo CH Cr–W Ni 12 Be–C CH B–H Be–O 

11 Al–C RH B–C Al–Mn 12 Cr–Be RH Be Cr–N 

11 Cr–O RH O Cr 12 Zn–V RH Zn–Cr V 

11 V–Si RH V Si 12 B–O RH Mn–O Cr–B 

11 Mn–O RH Mn O 12 Ga–Mo RH Mo Ga 

11 V–Mn RH Al–Mn V 12 N–O RH O Cr–N 

11 V–Be RH Zr–Be V 12 Be–Br RH Br V–Be 

11 Fe–N RH Fe Cr–N 12 Nb–Cu RH Nb–Ga Cu 

11 Cr–Tc RH Tc Cr–N 12 Ga–B RH Ga B–C 

11 Be–O RH Be O 12 Zn–O RH O Zn–Cr 

11 Br–O M O – 12 Pd–N M Fe–N – 

11 Tl–Mn M Mn – 12 Ti–B M B–H – 

11 Pu–N M Cr–N – 12 Si–O M Cr–O – 

11 Ge–B M B – 12 Nb–Tc M Cr–Tc – 

11 Tc–Co M Tc–H – 12 Pa–Be M Be – 

11 Tc–W M Tc – 12 Si–S M Fe–S – 

11 Pu–Cu R – – 12 Np–Os R – – 

11 Ba–Co R – – 12 Te–Ru R – – 

11 Hf–Pa R – – 12 Rb–Li R – – 

11 Cu–W R – – 12 Y–Nb R – – 

11 Nb–P R – – 12 Sc–I R – – 

11 Fr–Cu R – – 12 Tl–Pd R – – 

13 N–N CH C O 14 V–C CH Cr–B Cr–N 

13 P–Rh CH Ti O 14 Ga–Rh CH Se Mn–H 

13 Pu–S CH Cr–N Nb–Tc 14 Cu–Ni CH Ga B 

13 Sn–Ru CH Cr–B Ga–Mo 14 Zr–Zn CH Nb–Mn Cr 

13 Re–Tc CH Ti Mo 14 Pd–Ru CH P–Rh C 

13 Rh–O CH Zn–O F 14 Ni–Ir CH B–N P–Rh 

13 Ru–Ru CH P F 14 S–N CH O Fe 

13 In–Ru CH Si–S C 14 Ti–Mo CH Cr Fe 

13 Au–C CH Fe B–C 14 Zn–Tc CH Mo V 

13 P–O RH B–O P 14 V–N RH Al–V Cr–N 

13 B–N RH P–N Cr–B 14 Nb–Fe RH Nb–Mn Fe–Se 

13 Cr–Se RH Cr–Be Fe–Se 14 As–O RH As P–O 

13 Cr–Ru RH Cr Re–Ru 14 C–F RH C F 

13 Nb–Mo RH Nb–Ga Ga–Mo 14 Nb–H RH Nb–Mn Mn–H 

13 Be–Mo RH Mo Be–C 14 Nb–O RH Nb–Mn O 

13 Fe–Br RH Fe Br 14 V–O RH Rh–O V 

13 Re–B RH Re B 14 Ru–B RH Cr–B Cr–Ru 

13 Si–P RH Si P 14 N–F RH B–N F 

13 Al–V M V – 14 S–O M O – 

13 Pa–O M Si–O – 14 Ta–Mn M Mn – 

13 Nb–Mn M Mn – 14 Zn–N M B–N – 

13 Mn–I M Mn – 14 Ir–O M P–O – 

13 Re–H M Mn–H – 14 Si–N M Tc–N – 

13 Tc–N M P–N – 14 Cu–B M Cr–B – 

13 Ac–C R – – 14 Ac–Tl R – – 

13 Ga–As R – – 14 Sb–I R – – 

13 Ge–As R – – 14 Sb–Be R – – 

13 Ag–Ni R – – 14 Pa–Tc R – – 

13 Hf–F R – – 14 Ge–Si R – – 

13 Ca–Ac R – – 14 U–Au R – – 

15 Ni–Br CH Si–N N–F 16 Fe–C CH Mo–N B 
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15 Ni–F CH Si–N B–N 16 Y–Co CH Mn–H Cr 

15 Mo–N CH As–O Ni–P 16 Ni–Os CH B–N Si 

15 I–Fe CH O V–N 16 U–Co CH Cr–N Cr 

15 Cu–S CH Ta–Mn F 16 Re–Au CH Mo V–Ge 

15 Si–Rh CH Pd V–O 16 Tc–Mo CH B–C Mo–N 

15 Ag–W CH Nb–Fe Cr–N 16 Mn–Au CH C B–N 

15 Pt–Au CH C Ni 16 Ni–S CH B–N Fe 

15 Fe–O CH Cr–N F 16 Zn–Si CH V Ru 

15 V–F RH N–F V–C 16 Cr–Pt RH Pt Cr–B 

15 Ru–O RH V–O Ru–B 16 As–Ir RH Ir As 

15 Zr–V RH Zr V–N 16 Cr–Si RH Cr–N Si 

15 H–F RH Mn–H N–F 16 Si–F RH Si F 

15 Tc–F RH F Tc 16 B–F RH H–F B–C 

15 Cr–F RH N–F Cr–N 16 Mo–O RH O Mo–N 

15 V–Ge RH V Ge 16 Mn–Ru RH Mn–H Ru 

15 As–Ni RH As–O Ni 16 As–F RH F Cr–As 

15 Cr–As RH As Cr 16 Zr–O RH Zr–V O 

15 Bi–V M V–C – 16 V–Ag M V – 

15 Si–Ir M Si–N – 16 Nb–Si M Si – 

15 Cd–Ga M Nb–Ga – 16 Pu–Ni M Ni – 

15 Mg–C M V–C – 16 O–F M F – 

15 Hg–F M N–F – 16 Tc–As M Cr–As – 

15 Pu–H M Mn–H – 16 Ir–B M B–N – 

15 Sr–Co R – – 16 K–Sb R – – 

15 Ag–Mn R – – 16 Li–Cu R – – 

15 Ga–At R – – 16 In–S R – – 

15 Ti–Cu R – – 16 Ac–F R – – 

15 Ag–Pd R – – 16 Pu–F R – – 

15 U–Si R – – 16 Hg–Te R – – 

17 Ga–O CH Fe–C Cr–N 18 Ta–Ru CH Si–Mo Cr–N 

17 Zn–Co CH B–H Cr–B 18 Bi–Fe CH Cr–N B–C 

17 Ni–Rh CH Si B–C 18 Ag–Fe CH C B–C 

17 Cd–Tc CH Cr–Si Mo 18 Re–P CH Cr–Pd Mo 

17 Fe–Pt CH O Cr–N 18 Mg–As CH B–C Nb–B 

17 Rh–N CH C Mo–O 18 Al–Fe CH Mn Cr 

17 Al–Mo CH Tc Tc–As 18 Co–S CH B–C Cr–Au 

17 I–S CH Mo–O B–N 18 Zn–Ge CH B–N C 

17 Co–O CH Fe–C F 18 Zn–B CH Mn–H Cr 

17 Mn–Si RH Mn Cr–Si 18 Tc–Au RH Tc Au 

17 V–H RH V Mn–H 18 Al–Rh RH Rh Al–Mo 

17 Mn–F RH Mn O–F 18 H–O RH O–F B–H 

17 Ir–C RH Fe–C Ir–B 18 Si–Pt RH Mn–Si Pt 

17 Tc–O RH O–F Tc–As 18 Nb–Cr RH Cr Nb 

17 Si–Mo RH Tc–Mo Si 18 Mo–F RH Mo O–F 

17 As–N RH Cr–N As 18 Pd–C RH Cr–Pd B–C 

17 Pt–F RH Cr–Pt F 18 Mo–Rh RH Mo Rh 

17 Nb–B RH Nb–Si B–N 18 Ga–F RH F Ga–O 

17 Pa–Mn M Mn – 18 Hg–Cr M Cr – 

17 Hg–H M B–H – 18 Pu–Pt M Pt – 

17 Ag–Tc M Tc – 18 Cd–Pd M Pd – 

17 In–C M C – 18 Ti–N M Cr–N – 

17 Cr–Au M Cr–N – 18 Ag–N M B–N – 

17 Cr–Pd M Cr–B – 18 Zr–Mn M Mn–H – 

17 Mg–Be R – – 18 Ta–Mo R – – 

17 Ba–Hg R – – 18 Hf–Ni R – – 

17 Hg–Ir R – – 18 U–Cu R – – 
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17 Bi–At R – – 18 Ga–Po R – – 

17 Pa–Sb R – – 18 Li–Tl R – – 

17 Ru–Br R – – 18 Os–Se R – – 

19 Tc–Rh CH Pd Cr–N 20 Re–I CH Br Cr–N 

19 S–Cl CH Ni O 20 Be–Cu CH Mn Os–B 

19 Th–Rh CH C–C Mo–Rh 20 I–Os CH Re Tc–Rh 

19 Ir–Rh CH Se P 20 Bi–Ni CH Tc–Rh Os–B 

19 Au–S CH Se C 20 Be–S CH Mn–H B–H 

19 Br–C CH O–F B–N 20 Ta–Co CH Zr–Cr Zr–Ni 

19 Ti–C CH B–H B–N 20 Sn–Al CH Zr–Cr Re–Re 

19 Zr–Nb CH Cr Mn 20 Ag–Mo CH As Mn–Re 

19 Rh–H CH B–N Mo 20 Cl–H CH B C–C 

19 Mn–Re RH Zr–Mn Re–P 20 Zr–C RH C Zr–Ni 

19 Zr–B RH Zr–Mn B 20 Os–Rh RH Rh Os–B 

19 Ta–O RH O Ta–Mo 20 Rh–Cl RH S–Cl Rh–H 

19 Zr–Ni RH Ni Zr–Mn 20 Mn–Os RH Os–B Mn 

19 Zr–Cr RH Zr–Mn Cr–N 20 S–F RH S F 

19 As–Rh RH As Rh 20 Re–Os RH Re Os–B 

19 Pt–N RH Cr–N Pt 20 Si–Os RH Os–B Si 

19 Re–F RH Re–P O–F 20 Zr–Rh RH Rh Zr–B 

19 Mn–Se RH Se Mn 20 Re–Ir RH Re Ir–Rh 

19 Os–B M B – 20 Re–Rh M Rh–H – 

19 Re–Si M Re – 20 Pt–B M B–N – 

19 Se–F M F – 20 Ti–As M Ti–C – 

19 Bi–Cr M Cr–N – 20 Ta–Cr M Cr – 

19 Co–F M F – 20 Ti–Si M Si – 

19 Cd–Au M Tc–Au – 20 W–B M B–C – 

19 Pu–Ru R – – 20 K–Pd R – – 

19 I–N R – – 20 At–C R – – 

19 Ac–Be R – – 20 At–O R – – 

19 Li–C R – – 20 Li–Ti R – – 

19 U–Pt R – – 20 Rb–Na R – – 

19 Zn–Os R – – 20 Pb–C R – – 
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