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Abstract

Three-dimensional chromatin of Drosophila nuclei is constituted of complex struc-
tures, such as compartments and topological domains. These structures were re-
vealed by Hi-C, an advanced molecular biology method for probing the architecture
of DNA in a population of cells. The readout of this method is a heatmap of av-
eraged interactions in millions of cells, which cannot be readily deconvolved into
three-dimensional structures of individual cells. Thus, the emergence and proper-
ties of compartments and topological domains remain poorly understood in insects.
To overcome this limitation, we study the properties of chromatin in individual cells
of Drosophila, obtained by single-cell Hi-C (scHi-C). However, we demonstrate that
single-cell Hi-C data is profoundly sparse and noisy and does not allow for direct
interpretation of its features. Thus, we first study population Hi-C features of the
Drosophila chromatin. For example, it has been long believed that chromatin forms
two compartments, active and repressive, the latter being associated with the nu-
clear lamina. We question whether lamina is indeed the driver of such segregation
and analyze population Hi-C for Drosophila cells that are depleted of the lamina.
We demonstrate that lamina binding alone cannot be the driver of spatial segre-
gation of domains. On a local scale, the chromatin of Drosophila is constituted of
insulated domains, and the active chromatin state and binding of insulators have
been proposed as their formation factors. We confirm that both these factors are
important for domain positioning by training interpretable machine learning models
on published epigenetic and Hi-C data for Drosophila. We notice that Hi-C data pro-
cessing requires an essential step of coverage normalization, which effects on the data
remain poorly understood. We fill this gap and demonstrate that contacts’ uneven
coverage of genomic regions is associated with active chromatin states. Importantly,
we observe the same bias when we finally investigate the properties of chromatin in
individual Drosophila cells by single-cell Hi-C. scHi-C is a recent powerful technique
that allows studying chromatin folding without averaging over a large number of
cells. By studying the data generated by scHi-C, we observe prominent cell-to-cell
variability in the long-range contacts between active genomic regions and relatively
high conservation on the local scale of domains. We suggest a significant contri-
bution of stochastic processes to the formation of the Drosophila 3D genome and
propose several possible models explaining our observations. Finally, we summarise
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the computational approaches to study chromatin folding in individual cells based
on scHi-C and outline future directions for the development of this field.
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Glossary

boundary outer genomic bins of TADs. 16–18, 45, 104

CCF cumulative contact frequency. 12, 71, 72, 104, 163

chromatin DNA-protein complex of the eukaryotic nucleus. 11, 13, 148

chromatin feature a distinguished instance of chromatin structure having the spe-
cific pattern of DNA contacts in Hi-C maps. 19, 45, 148

compartment a pattern of long-range contacts of chromosomes observed as a
checkerboard in Hi-C maps. 13, 15, 71

compartmentalization a mechanism or process of chromatin compartments for-
mation. 14, 15

contact an event of capturing two DNA fragments in close spatial proximity, ob-
served as a pair of DNA segments in Hi-C read or read pair. 13, 71, 148

CTCF CCCTC-binding factor. 16, 17

DCC Dosage Compensation Complex. 16

epigenetics heritable information stored in the nucleus or cells but not encoded
directly in the DNA sequence. Includes histone modifications, methylation of
DNA and other information. 15, 45

genomic bin an instance of sequential segments of the genome of equal size used
in genomics for simplification of calculations, typically of several kilobase pairs
(kb). 14, 23, 71

Hi-C high-throughput chromosomes conformation capture. 11–14, 16, 19–23, 45,
71, 104, 163

IC iterative correction. 20, 71

insulation an effect observed as reduced number of interactions between two ge-
nomic segments relative to expected. Happens at the boundaries of TADs. 16,
45
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Glossary Glossary

LAD lamina associating domain. 15, 22, 23

lamin-DamID DNA adenine methyltransferase identification for lamina, experi-
mental technique to detect lamina binding in the nucleus. 15, 23

lamina a proteinaceous interior lining of the nucleus. 12, 22

loop extrusion a hypothesized mechanism of chromatin folding involving DNA,
the dynamic molecule of loop extruder and (optionally) barrier elements. 14,
15

NL nuclear lamina. 23

nucleus a separate double membrane-bound organelle of the cell containing its
DNA in the form of chromatin. 13

scHi-C single-cell Hi-C. 11, 12, 19–21, 72, 104, 148

SMC structural maintenance of chromosome. 16, 17

snHi-C single-nucleus Hi-C. 4, 104

TAD topologically associating domain. 9, 13, 14, 16–18, 22, 23, 45, 46, 72, 104,
105, 163
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Chapter 1

Introduction

The thesis is dedicated to studying chromatin folding in individual cells. Most of our

knowledge of chromatin folding in individual cells was accumulated for mammalian

models. However, the folding of chromatin in fruitfly, Drosophila melanogaster,

which is an insect, is less well understood and can potentially shed light on general

and unique properties of chromatin structure formation across broader domains of

life.

A recent and powerful method to probe the chromatin structure is single-cell

Hi-C (scHi-C), an adaptation of popular high-throughput chromosomes conforma-

tion capture (Hi-C) 1 for individual cells and nuclei. Both Hi-C and scHi-C are

sequencing-based methods that require complex processing of the data, which is

affected by multiple experimental artifacts. Thus, we dedicate a substantial part of

this research to studying conformation capture data processing.

In this work, we focus on the three-dimensional architecture of individual cells of

Drosophila assayed by scHi-C and discuss the discoveries in the light of chromatin

folding models of Drosophila obtained from population Hi-C.

1.1 Thesis Structure

Chapter 2 - Background Literature overview on chromatin structure, methods

to study it, and features that can be detected.
1
Usually, several millions of cells serve as input for traditional Hi-C. We will refer to this

experimental biology technique as population Hi-C, bulk Hi-C, or Hi-C.
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Chapter 1. Introduction 1.1. Thesis Structure

Chapter 3 - Thesis Objectives Here I define the thesis objectives.

Chapter 4 - Role of nuclear lamina in Drosophila chromatin formation

Here I analyze bulk Hi-C data and assess the nuclear lamina binding as a po-

tentially important factor for chromatin structure formation in individual cells.

Chapter 5 - Structural factors of Drosophila bulk chromatin Here I study

the protein binding and histone marks that affect the local structure formation

in bulk Hi-C.

Chapter 6 - Technical factors affecting Hi-C data Here I investigate the prop-

erties of cumulative contact frequency (CCF) on bulk data, which is unavoid-

able in scHi-C.

Chapter 7 - Chromatin folding in individual cells of Drosophila Here I in-

vestigate the properties of chromatin in individual cells of Drosophila based

on scHi-C.

Chapter 8 - Literature review of scHi-C and discussion Here I summarize the

computational methods for scHi-C and highlight the future of this research

field.

Chapter 9 - Conclusion In the last chapter, I discuss the obtained results.
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Chapter 2

Background

DNA of eukaryotic cell bound by an armory of proteins, a complex also called chro-

matin, folds in a confined space of the nucleus. The three-dimensional architecture

of chromatin is not merely a passive consequence of structure formation mechanisms

(Fig. 5-1). There is growing evidence that it plays a crucial role in gene regulation

and disease [Anania and Lupiáñez, 2020].

Figure 2-1: Principles of chromatin folding in Dro-
sophila. DNA is confined in a limited space of the
nucleus, achieving 105 � 106 folding. The structure is
affected by numerous processes happening in the nu-
cleus. These changes are propagated to the vital bio-
logical processes, for which DNA and its architecture
are responsible.

Advances in the rapid un-

derstanding of chromatin fold-

ing principles can be attributed

to the development of high-

throughput chromosomes con-

formation capture (Hi-C) and

its derivatives, a method to

probe genome-wide pairwise

DNA contacts in a population

of cells [Lieberman-Aiden et al.,

2009] (Fig. 2-2). In particular,

we know that locally chromatin

folds into topologically associ-

ating domains (TADs). In con-

trast, the long-range contacts of

chromatin are organized into compartments [Goel and Hansen, 2020, Lieberman-

Aiden et al., 2009].
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Chapter 2. Background
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lamina-associating 
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CTCF

Hi-C readout Potential 
mechanisms

Figure 2-2: Overview of chromatin features detectable by population Hi-C. Left: Hi-
C readout for Drosophila with marked features. Yellow denotes hypothetical promoter
of the gene which is activated by enhancer (blue) in the same TAD. Right: Possi-
ble interpretation of the Hi-C features and potential mechanisms explaining their emer-
gence according to the literature. Hi-C datasets collected from [Wang et al., 2018],
processed with distiller [by Open Chromosome Collective] at the genomic bin size of
3 Kb and stored on HiGlass web server [Kerpedjiev et al., 2018] by the following link:
http://higlass.skoltech.ru/app/?config=KqBRGptVTsm5glGq0djqxQ valid by the date of
thesis submission.

Two acknowledged fundamental mechanisms of chromatin structure formation

are loop extrusion and compartmentalization [Nuebler et al., 2018] (Fig. 2-3). The

first one compacts chromatin on a local scale. In contrast, the second one acts on a

large scale. Minor and more targeted mechanisms contribute, such as the formation

of Polycomb loops [Du et al., 2020, Eagen et al., 2017]. Extrusion [Banigan et al.,

2020] and compartmentalization compact chromatin in the nuclei of a broad range

of species, and cross-species comparisons shed light on universal principles of action

of these mechanisms. Striking conservation of mechanisms was suggested because

TADs are present across a wide range of species, including mammals, insects, and

nematodes [Dekker and Heard, 2015]. Moreover, TAD positioning is surprisingly

conserved in mammalian evolution, further suggesting the functional importance

of structural folding [Rudan et al., 2015]. At the same time, TADs are highly

dynamic structures that are lost as a bulk signature during mitosis in each cell

division [Naumova et al., 2013, Abramo et al., 2019].

Drosophila melanogaster is one of the popular model species, which chromatin

14



Chapter 2. Background

Figure 2-3: Two mechanisms of chromatin structure formation, loop extrusion and com-
partmentalization, with schematic representation of underlying processes and resulting
Hi-C features. Reproduced from [Mirny et al., 2019], with the permission.

structure formation principles are poorly understood. The availability of various

datasets on this species’ epigenetics presents a unique opportunity to deepen our

knowledge of chromatin folding principles [Moretti et al., 2020]. Hi-C based on

the population of cells has revealed important averaged patterns of DNA folding in

Drosophila.

The chromatin of this insect falls into two compartments, active and repressed [Row-

ley et al., 2017]. The knowledge of drivers of this segregation is still incomplete

despite extensive studies in other species, e.g., mammals [Erdel et al., 2020]. In par-

ticular, inactive chromatin is associated with lamina, a proteinaceous interior lining

of the nucleus [Gruenbaum and Foisner, 2015], typically assayed by DNA adenine

methyltransferase identification for lamina, experimental technique to detect lamina

binding in the nucleus (lamin-DamID). Extended chromatin regions called lamina

associating domains (LADs) are involved in this interaction. Lamina binding is a

potential driver for compartments formation. However, while it remains a crucial

factor of chromatin formation in Drosophila, this hypothesis remains speculative and

requires further investigation.
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Chapter 2. Background

On a local scale, the chromatin of Drosophila is constituted of insulated domains,

or TADs [Sexton et al., 2012]. It was proposed earlier that active chromatin drives

the insulation in Drosophila [Ulianov et al., 2016], while in mammals, the dominant

mechanism is loop extrusion [Fudenberg et al., 2016] (Fig. 2-4).

Figure 2-4: Loop extrusion mechanism and
its major players in mammals. Reproduced
from [Fudenberg et al., 2016], with the per-
mission.

In the loop extrusion mechanism,

structural maintenance of chromosome

(SMC) complexes (typically, cohesin)

act as extruding factors, and DNA-

binding protein CCCTC-binding factor

(CTCF) serves as a barrier element [Rao

et al., 2014]. This barrier element stops

the translocation of structural mainte-

nance of chromosome (SMC) complex

[Li et al., 2020, Fudenberg et al., 2017]

leading to the formation of TADs.

The loop extrusion theory was con-

firmed by the studies of cohesin and CTCF depletion [Nora et al., 2017, Rao et al.,

2017], and multiple molecular mechanisms were proposed for SMC action [Yatske-

vich et al., 2019]. However, loop extrusion for Drosophila is debated [Matthews and

White, 2019].

One of early evidence of loop extrusion in mammals was the presence of con-

vergent CTCF binding at the boundaries of TADs [Rao et al., 2014]. Later it was

confirmed that positioning of CTCF contributes significantly to the contact proba-

bility prediction of the population Hi-C [Rowley et al., 2017, Fudenberg et al., 2020,

Belokopytova et al., 2020]. While SMC proteins are notably conserved across the

domains of life [Cobbe and Heck, 2004], CTCF has appeared in evolution only re-

cently [Heger et al., 2012]. If loop extrusion is a universal mechanism, this raises

the question: what are the barrier elements in species with no CTCF? Various fac-

tors have been proposed, including moving polymerase in bacteria [Brandão et al.,

2019], Dosage Compensation Complex (DCC) in C. elegans [Crane et al., 2015] and

cohesin itself in yeast [Costantino et al., 2020].
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Chapter 2. Background

Figure 2-5: Fragment of alignment of CTCF orthologs in a broad range of mammals
and in Drosophila. Red square denotes the conserved sequence required for binding with
SMC complex. Sequences of CTCF orthologs were obtained from UniProt [Consortium,
2015], and alignment was performed in JalView [Waterhouse et al., 2009] with Muscle
algorithm [Edgar, 2004]. Conserved sequence is highlighted in red, as reported in [Li et al.,
2020]. Grey demarcates the border between the mammalian and Drosophila sequences.

CTCF of Drosophila is encoded in its genome, actively expresses and binds

DNA in a sequence-specific manner [Heger et al., 2012]. The motif itself is very

similar to that in mammals [Holohan et al., 2007]. However, CTCF binding is not

enriched at TAD boundaries in most of Drosophila cell lines [Ulianov et al., 2016],

except neuronal cells [Chathoth and Zabet, 2019]. Instead, there are at least eight

other motifs enriched at the TAD boundaries [Ramírez et al., 2018]. Some studies

report 12 architectural proteins that contribute to the structure formation [Rowley

et al., 2017]. Some propose that pairs of proteins BEAF-32/CP190 and BEAF-

32/Chromator can act instead of the usual CTCF/SMC pair [Wang et al., 2018].

A promising approach to unravel TAD-forming mechanisms is to adapt machine

learning models that predict the presence of TADs based on the epigenetic markers

(such as regression models in [Ulianov et al., 2016]).

Notably, CTCF-SMC complex functioning in mammals requires formation of

conserved binding surface [Li et al., 2020] organized by three proteins: CTCF, Scc1

and SA2. Disruption of a small 9-a.a. region in CTCF aminoacid sequence results in

disruption of complex formation and loss of CTCF barrier function. In Drosophila,

the CTCF ortholog also has the putative conserved binding motif (Fig. 2-5).

However, there are multiple substitutions in CTCF, SA2, and Scc1 orthologs that

might affect the conserved binding surface (Fig. 2-6). For example, there is a notable

substitution of mammalian D326 in SA2 with proline. D326 is an aspartic acid

responsible for hydrogen bond formation between proteins. Proline (replacing D326

17



Chapter 2. Background

Figure 2-6: Structure of conserved binding surface between CTCF fragment, Scc1 and
SA2 (two proteins of SMC complex in mammals), with demonstration of aminoacids sub-
stitutions in Drosophila. Each amino acid is marked by its position and type in mouse,
and the substitutions are marked if present in Drosophila. The underlined amino acids are
the ones that are either conserved between species or substituted with amino acids with
similar properties. Structural alignment is based on [Li et al., 2020], and substitutions are
manually marked as described in Fig. 2-5.

in Drosophila) is a very rigid aminoacid. Moreover, N-terminal group of proline never

forms a hydrogen bond, thus, making proline unfavorable in most regions of alpha-

helices and beta-sheets. This suggests that the binding surface between CTCF,

SA2, and Scc1 might be disrupted in Drosophila. This hypothetical impairment

of binding might explain the presence of multiple other barrier elements that are

frequently found at TAD boundaries in Drosophila. Thus, the studies of chromatin

formation mechanisms in insects will shed light on evolutionary mechanisms that

explain the formation of chromatin architecture.

The most comprehensive and informative methods to study chromatin forma-

tion mechanisms are genome-wide techniques of two principal types: microscopy
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Chapter 2. Background

Formaldehyde crosslinking of proteins

Restriction of chromatin 
by restriction enzyme
at restriction sites

Restriction enzymes
leave free ends of DNA

Ligation of free ends

Removal of proteins 
and de-crosslinking

Polymerase Phi29 
amplifies DNA

Sometimes Polymerase Phi29 
hops between DNAmolecules

Figure 2-7: ScHi-C technique based on [Ulianov* et al., 2021]. Image by M. Guriev,
reproduced with permission.

methods [Szabo et al., 2018] and conformation capture based on the population of

cells [Goel and Hansen, 2020]. The first approach has limited resolution and the

number of regions and cells that can be studied. The second approach results in the

population-average readout, which does not account for the cell-to-cell variability of

chromatin features [Fudenberg et al., 2016] and does not allow the observation of

the properties of chromatin structure in individual cells. Single-cell Hi-C (scHi-C),

Hi-C adapted for individual cells, overcomes this limitation [Nagano et al., 2013]

(Fig. 2-7). The power of this method is that the contacts observed together happen

in the same 3D conformation of chromatin, which allows the creation and direct

interpretation of polymer models describing each cell [Nagano et al., 2013] and the

study of mechanisms of structure formation in a more straightforward way [Flyamer

et al., 2017, Gassler et al., 2017].

Currently, multiple protocols for scHi-C were proposed [Nagano et al., 2013,

2017, Ramani et al., 2017, Flyamer et al., 2017, Tan et al., 2018], and a limited

number of works is dedicated to summarise and compare them [Ulianov et al., 2017,
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Chapter 2. Background

Lando et al., 2018, Zhou et al., 2021]. Moreover, the scHi-C data properties are not

entirely understood, although many are similar to population Hi-C [Nagano et al.,

2013, Flyamer et al., 2017]. Importantly, there is little guidance for scHi-C data

processing, and most of the software is used ad hoc.

Previous single-cell studies of Drosophila chromatin were based on microscopy

only. The presence of domain structure was demonstrated on several genomic

loci [Szabo et al., 2018]. The application of scHi-C will allow to study these prop-

erties at the whole-genome level and may shed light on the mechanisms governing

chromatin compaction in single cells.

Notably, readouts of Hi-C method are prone to methodological artifacts, such

as dependence of the number of contacts on the technical characteristics of the

underlying genomic regions [Imakaev et al., 2012]. To normalize out these artifacts,

the Hi-C data is iteratively corrected (or ICed, from iterative correction (IC)). These

artifacts are most likely to be present in scHi-C as well, which requires investigations

on their nature in both bulk and single-cell Hi-C.
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Chapter 3

Thesis Objectives

The goals of the research:

• Assess the factors that can affect Hi-C-based readouts

• Create the list of factors affecting Drosophila chromatin structure formation

based on bulk Hi-C

• Discover the role of lamina binding in Drosophila chromatin structure forma-

tion

• Design a computational approach to study chromatin in single cells based on

scHi-C

• Formulate the principles of chromatin structure formation in Drosophila
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Chapter 4

Nuclear lamina integrity is required

for proper spatial organization of chro-

matin in Drosophila

It is well-established that lamina-binding regions of Drosophila form local chro-

matin domains [Kharchenko et al., 2011, Filion et al., 2010], suggesting that TADs

are closely related to LADs. Simple superposition of TADs and LADs demonstrates

profound correspondence between these regions across the genome (Fig. 4-1). How-

ever, whether this effect is correlative or causative remains poorly understood. One

explanation might be that lamina is a driving force of domains or compartments

formation in Drosophila. An alternative is that substantial overlap between TADs

and LADs is a consequence of repositioning of the regions inside the nucleus due to

other processes, not related to lamina binding per se.

If lamina binding is a crucial mechanism of chromatin formation of Drosophila,

then it might become the primary target for further studies of folding patterns in

individual cells. If it is not, the degree of its contribution to the structure formation

should be determined.

The project to answer these questions had started in collaboration with the

Institute of Gene Biology (and researchers from other institutions) long before I

joined the lab at Skoltech. Our collaborators in Prof. Razin’s group created the

cells with depleted lamina. They performed the wet-lab part of Hi-C for them.

Processing of Hi-C data was less automatized and understood at these times.
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Chapter 4. Nuclear lamina integrity is required for proper spatial organization of chromatin in
Drosophila

Figure 4-1: Genome-wide annotations for chromosomal fragments of TADs and LADs
in Drosophila cell line, based on Hi-C from [Ulianov et al., 2016]. We can observe a
substantial overlap of annotations. White spaces between segments represent either inter-
TADs/inter-LADs, or the boundary bins between two neighboring segments. Inter-TADs
are genomic regions between TADs, since the TAD segmentation is not complete. For
example, if the TAD found by automatic TAD caller is very small (1-2 genomic bins), it is
considered as interTAD. Inter-LADs are genomic regions that were not assigned to LADs
by lamin-DamID.

Thus, I implemented data processing (read mapping, quality control, TAD calling)

and explored potential experimental artifacts (self-circles, dangling ends, backward

ligation, mirror reads). It was essential to develop an in-lab software for this part,

and it is further used in other studies (Chapters 6, 7). This study was a primer for

my research on bulk and single-cell Hi-C data of Drosophila.

Taken together, it was a long path towards understanding the role of nuclear

lamina (NL). In the first Hi-C experiments on NL disruption, TADs were less pro-

nounced, and the distance decay was less steep than in wild-type. It turned out that

the cells were dying during the treatment. During the first several months of this

project, the effect that we observed was chromatin decompaction in the dead cells.

Luckily, soon the experiments were repeated on live cells (confirmed by microscopy),

and we studied the true effect of chromatin detachment from lamina in Drosophila

cells. The final version of the manuscript was prepared mostly by the co-authors,

although I contributed as well (see "Publications" at p. 4 for details).

The conclusion is that disruption of NL does not force the global reorganization

of TADs and compartments in Drosophila. TADs do not change their positions
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Chapter 4. Nuclear lamina integrity is required for proper spatial organization of chromatin in
Drosophila

radically, although they become less compact. This observation is in line with the

hypothesis that some inactive chromatin domains are attached to the lamina. How-

ever, the attachment is not crucial for their formation. This study was a final stop

for the research of the lamina binding in Drosophila cells. I use this important

knowledge in Chapters 5 and 7.
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How the nuclear lamina (NL) impacts on global chromatin architecture is poorly understood.

Here, we show that NL disruption in Drosophila S2 cells leads to chromatin compaction and

repositioning from the nuclear envelope. This increases the chromatin density in a fraction

of topologically-associating domains (TADs) enriched in active chromatin and enhances

interactions between active and inactive chromatin. Importantly, upon NL disruption the

NL-associated TADs become more acetylated at histone H3 and less compact, while back-

ground transcription is derepressed. Two-colour FISH confirms that a TAD becomes less

compact following its release from the NL. Finally, polymer simulations show that chromatin

binding to the NL can per se compact attached TADs. Collectively, our findings demonstrate

a dual function of the NL in shaping the 3D genome. Attachment of TADs to the NL makes

them more condensed but decreases the overall chromatin density in the nucleus by

stretching interphase chromosomes.
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The nuclear lamina (NL)1 is a meshwork of lamins and
lamin-associated proteins lining the nuclear envelope (NE).
Several lines of evidence support the idea that the NL is a

platform for the assembly of the repressive compartment in the
nucleus. In mammals, nematode and Drosophila, the lamina-
associated chromatin domains (LADs)2–5 contain mostly silent
or weakly expressed genes2–6. Activation of tissue-specific gene
transcription during cell differentiation is frequently associated
with translocation of loci from the NL to the nuclear interior4,7–11.
The expression level of a reporter gene is ~5-fold lower when it is
inserted into LADs compared to inter-LADs12. Artificial tethering
of weakly expressed reporter genes to the NL results in their
downregulation thus indicating that contact with the NL may
cause their repression13–15. Accordingly, many transcriptional
repressors, including histone deacetylases (HDACs) are linked to
the NL16. The high throughput chromosome conformation
capture (Hi-C) technique has revealed the spatial segregation of
open (DNase I-sensitive) and closed (DNase I-resistant)
chromatin into two well-defined compartments17. Importantly, in
mammalian cells, the DNase I-resistant compartment is strongly
enriched with NL contacts18,19. Moreover, a whole-genome DNase
I-sensitivity assay in Drosophila S2 cells indicated that LADs
constitute the densely packed chromatin20. Additionally, super-
resolution microscopy studies in Kc167 cells show that inactive
chromatin domains (including Polycomb (Pc)-enriched regions)
are more compact than active ones21.

The newly developed single-cell techniques demonstrate that
LADs, operationally determined in a cell population, may be
located either at the NL or in the nuclear interior in individual
cells19,22. Surprisingly, the positioning of LADs in the nuclear
interior barely affects the inactive state of their chromatin22. This
raises the question as to whether contact with the NL makes
the chromatin in LADs compact and inactive. However, few
studies directly address this issue. It has been shown that lamin
Dm0 knock-down (Lam-KD) in Drosophila S2 cells decreases
the compactness of a particular inactive chromatin domain23.
Accordingly, the accessibility of heterochromatic and promoter
regions has been shown to increase upon Lam-KD in Drosophila
S2R+ cells24. However, the impact of the NL on the maintenance
of the overall chromatin architecture remains mostly unexplored.

Here we show that upon loss of all lamins, the density of
peripheral chromatin is decreased in Drosophila S2 cells leading
to the slight overall chromatin compaction. At the same time,
chromatin in LADs becomes less tightly packed which correlates
with the enhancement of initially weak level of histone H3
acetylation and background transcription in these regions.

Results
Lam-KD in S2 cells results in general chromatin compaction.
We have studied the effects of NL disruption on global chromatin
architecture, histone acetylation and gene expression in Droso-
phila. To select an appropriate experimental model, we first
analysed the presence of ubiquitous lamin Dm0 and tissue-
specific lamin C proteins25 in several Drosophila cell lines by
Western-blotting. Whereas the level of lamin Dm0 is similar in
S2, Kc167, and OSC lines, lamin C is robustly present in Kc167
and OSC, but almost completely absent in S2 cells (Fig. 1a).
Hence, to remove all lamins, we performed Lam-KD in S2 cells by
RNAi (Fig. 1b) and stained the nuclei with anti-histone H4
antibody to visualise the bulk chromatin, and with anti-lamin-B-
receptor (LBR26) antibody to visualise the NE (Fig. 1c and Sup-
plementary Fig. 1a). Quantification of the fluorescence intensity
along the nuclear diameter reveals a slight but statistically sig-
nificant shift in the radial distribution of total chromatin from the
NE towards the nuclear interior upon Lam-KD (Fig. 1d and

Supplementary Fig. 1a). To validate this observation, we per-
formed fluorescence in situ hybridization (FISH) with a probe
from the cytological region 36C, which was previously mapped as
a LAD in the Kc167 cells5 (Fig. 1e). The radial position of this
region is shifted towards the nuclear interior in Lam-KD S2 cells
when compared to control cells (hereinafter treated with dsRNA
against bacterial lacZ gene) (Fig. 1e). Notably, this observation
agrees with previously published results11 which we reanalysed
to demonstrate a shift in the radial position of two other loci
(22A and 60D) from the NE upon Lam-KD (Fig. 1f). Moreover,
we observed an en masse chromatin compaction as a result of NL
disruption, since the average volume of total chromatin, recon-
structed by DAPI staining, is markedly diminished upon Lam-KD
(Fig. 1g and Supplementary Fig. 1b). Remarkably, the average
volume of nuclei, reconstructed by LBR-stained NE, was not
affected by Lam-KD (Supplementary Fig. 1c). Taken together,
these observations indicate that disruption of the NL results in
general chromatin compaction and repositioning from the NE.

In mammalian cells, the presence of either lamin A/C or LBR is
necessary for proper positioning of the heterochromatin at the
nuclear periphery27. In contrast, in Drosophila S2 cells, where
lamin C is not expressed (Fig. 1a), depletion of LBR does not
notably affect chromatin positioning relative to the NE (Fig. 1h
and Supplementary Fig. 1d). We confirmed this observation by
FISH with the probe from the 36C region examined upon Lam-
KD. We found that this region is not repositioned relative to the
NE upon LBR depletion (Fig. 1i). These results indicate that
the main heterochromatin tethers are different in mammals and
Drosophila with the lamin Dm0 providing the major impact on
LAD attachment, at least in S2 cells.

Lam-KD in S2 cells enhances weak transcription in LADs. To
examine which genes are associated with the NL, we have
used previously published lamin–DamID data for Kc167 cells5,28
that are closely related to S2 cells, are of a similar embryonic
origin, and have highly correlated transcriptome profiles (Pear-
son’s R= 0.89)29. As we were not confident that LADs on the
X chromosome occupy the same positions in the female Kc167
and in the male S2 cells30, we excluded X-chromosome from the
downstream analysis. We hypothesised that upon Lam-KD, the
detachment of LADs from the NE might result in the elevated
expression of genes located therein. To test this hypothesis, we
performed transcriptome profiling in control and Lam-KD S2
cells using RNA-seq (Supplementary Fig. 2a) and revealed 60
differentially expressed genes (40 up- and 20 downregulated
genes) (Fig. 2a). However, the observed increase in gene expres-
sion (Supplementary Fig. 2b) does not correlate with the presence
of promoters of differentially expressed genes specifically in LADs
(P= 0.21, permutation test), thus suggesting that either an
indirect effect of NL disruption or alterations in chromatin
interactions in the nuclear interior are affecting transcription. We
then analysed changes in total transcription inside and outside of
LADs (i.e. in the inter-LADs). Depletion of lamin Dm0 results in
the moderate upregulation of the generally very weak background
transcription in LADs (Supplementary Fig. 2c), but not in the
inter-LADs (Fig. 2b, c).

To confirm RNA-seq results, we applied RT-qPCR to analyse
the transcription level of 14 randomly selected genes whose
promoters are located in different LADs (Supplementary Table 1).
Almost all of these genes are expressed in S2 cells at a very low
level. 12 out of 14 genes appeared to be upregulated upon Lam-
KD (~2 fold on average) when compared to control S2 cells
(Fig. 2d, top panel). It has previously been shown that Lam-KD in
Drosophila S2 cells results in increased DNase I sensitivity and
the derepression of several testis-specific genes in the silent
chromatin domain from the 60D chromosomal region11. We
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found that all the genes located in this LAD are almost uniformly
upregulated upon Lam-KD in S2 cells (Fig. 2d, bottom panel).
Thus, NL disruption results in the partial derepression of
chromatin in LADs leading to the increased background
transcription.

It has been shown that pan-acetylation of histones H3 and H4
coupled with general DNase I-sensitivity was elevated in the 60D
LAD upon Lam-KD in S2 cells23. To check whether the
repression of transcription in LADs may be caused by histone
deacetylation, we determined histone H3 pan-acetylation level
across the entire genome by chromatin immunoprecipitation
(ChIP-seq) (Supplementary Fig. 2d). We found that the general
level of histone H3 acetylation is markedly elevated in LADs, but
not in the inter-LADs upon Lam-KD when compared to control
cells (Fig. 2c, e). Thus, we suggest that a fraction of HDACs
associated with the NL31,32 may be at least partially responsible
for the low level of histone H3 acetylation and for the
transcriptional repression in LADs making their chromatin less
accessible for spurious binding by trans-acting factors.

Lam-KD in S2 cells leads to decompaction of inactive TADs.
To explore genome-wide effects of NL disruption on the spatial
organization of chromatin, we applied the Hi-C technique17

to control and Lam-KD S2 cells and identified topologically-
associating domains (TADs)33–35 (Fig. 3a) using previously
described two-step procedure36. The strong similarity between
Hi-C map data obtained in this work with that previously
published for S2 cells37 (Supplementary Fig. 3a), as well as the
high correlation between Hi-C replicates (Supplementary Fig. 3b)
demonstrates the high quality and reliability of the data.
Furthermore, in agreement with the conservation of TAD
boundaries in unrelated Drosophila cell types36,38 and upon
different biological conditions39, pairwise comparison of TAD
positions between Lam-KD and control cells does not show
statistically significant alterations (Supplementary Fig. 3c). We
conclude that NL disruption in S2 cells does not affect
the overall TAD profile genome-wide. This allows us to compare
the average contact frequency (ACF, see Methods) within
each TAD between control and Lam-KD S2 cells. We argue that
differences in ACF should reflect changes in the physical density
of a TAD.

Figure 3b shows a clear negative trend between LAD coverage
within a TAD and intra-TAD ACF changes upon Lam-KD
relative to control cells. This trend is absent when LAD coverage
is plotted against ACF variability between control replicates
(Supplementary Fig. 3d). Remarkably, the opposite trend is
revealed between intra-TAD ACF changes and the proportion
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types40 (c) within these TADs. Trend line is in red. d Separation of TADs into four groups according to the Jaccard similarity coefficient. Box plots show the
proportion of active chromatin (“red” (active TSS) plus “purple” (elongation) chromatin types40) and LAD coverage28 within each group. e Transcription
level in the four groups of TADs according to RNA-seq in control S2 cells. f Changes of intra-TAD ACF between Lam-KD and control cells in the four
groups of TADs. g Variances of log2(FC) of the intra-TAD ACF upon Lam-KD compared to control cells in the four groups of TADs. ***P < 0.001, *P < 0.05
in a Levene’s test. h Changes of total transcription (left panel) and H3 pan-acetylation (right panel) levels between Lam-KD and control cells in the
four groups of TADs. i Changes of ACF values, H3 pan-acetylation and total transcription in the inter-TAD regions between Lam-KD and control cells.
See Fig. 1g legend for description of boxplot elements represented on panels (d–f), (h) and (i). In panels e, f, h, i, ****P < 0.0001, ***P < 0.001, **P < 0.01,
*P < 0.05, NS non-significant difference (P > 0.05) in a Wilcoxon test
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of “red” plus “purple”, but not “coral” plus “brown” active
chromatin types (according to 9-type chromatin annotation
in S2 cells40; Fig. 3c and Supplementary Fig. 3e). To simulta-
neously account for the LAD coverage and the proportion
of “red” plus “purple” chromatin types, we calculated the
Jaccard coefficient between these two metrics for each TAD.
Based on this, we then divided the ranked TADs into four
equal-sized groups A, B, C and D (Fig. 3d), with TADs in
group A being relatively enriched in active chromatin and
depleted of LADs, and TADs in group D being depleted of
active chromatin and enriched in LADs. Consistent with
chromatin type annotation, transcription level in control S2
cells appears to be highest in TADs from group A, and lowest
in TADs from group D (Fig. 3e).

Strikingly, we observed the opposite changes of ACF values
upon Lam-KD in the TADs from groups A and D having polar
metrics. ACF values are increased in the TADs from group A
containing the highest proportion of active chromatin and the
lowest LAD coverage and are decreased in the TADs from group
D with the lowest proportion of active chromatin and the highest
LAD coverage (Fig. 3f). TADs from groups B and C, which
preserve (group B) or slightly decrease (group C) their ACFs
upon Lam-KD (Fig. 3f), likely represent the mixture of chromatin
increasing and decreasing its density. In support of this idea, the
variance of ACF changes is the lowest within group D TADs
(Fig. 3g) which strongly correspond to LADs, when compared to
other groups containing the mixture of active and inactive
chromatin types (Fig. 3d).

Consistent with the transcriptional derepression in LADs
(Fig. 2a, b), the overall level of transcription is markedly elevated
in the group D TADs upon Lam-KD when compared to control
cells (Fig. 3h, left panel). In contrast, TADs from group A
demonstrate a weak decrease in transcription upon Lam-KD.
Moreover, we found that upon Lam-KD, the histone H3
acetylation level is enhanced in TADs in a strong quantitative
manner dependent on their LAD coverage (Supplementary
Fig. 3f), with the most pronounced increase of acetylation
observed in the group D TADs (Fig. 3h, right panel).

We then asked how Lam-KD influences ACF, transcription
and histone H3 acetylation in the inter-TADs which represent the
most active genome regions36. In agreement with the observa-
tions for the group A TADs, we found an increase of ACF and a
decrease in transcription within inter-TAD regions upon Lam-
KD (Fig. 3i). However, contrary to group A TADs, total histone
H3 acetylation level appears to be decreased upon Lam-KD in the
inter-TADs (Fig. 3i).

Collectively, these findings indicate that upon NL disruption,
chromatin becomes more densely packed in the active, and less
densely packed in the inactive genomic regions.

Lam-KD in S2 cells impairs spatial chromatin segregation. In
mammals, TADs belonging to the same epigenetic type (active or
inactive) tend to interact with each other across large genomic
distances, thus partitioning the interphase chromatin into A and
B compartments17. The molecular mechanisms driving such
interactions are largely unknown, but a role for the NL has been
suggested6. To identify chromatin compartments in control and
Lam-KD S2 cells, we applied principal component analysis
(PCA), which is commonly used for compartment calling17. The
first principal component (PC1) profile clearly correlates with the
transcription profile, where the positive values of PC1 correspond
to the transcriptionally active loci (Fig. 4a and Supplementary
Fig. 4a and b). Surprisingly, and contrary to the findings in
Drosophila embryos35, the spatially distant interactions in control
S2 cells appear to be enhanced, relative to those expected, for
only the genomic regions with a PC1 > 0, i.e. within the active
A compartment (Fig. 4b). To verify that this is not due to tech-
nical problems in our analysis, we applied PCA to the previously
published Hi-C data35 and confirmed the existence of A and B
compartments in the embryos (Supplementary Fig. 4c). Upon
Lam-KD in S2 cells, interaction frequency is markedly decreased
within the A compartment and is increased for the regions with
a PC1 < 0, i.e. within the inactive chromatin (Fig. 4c and d
and Supplementary Fig. 4d). Importantly, we observed the
notable gain of interactions between A compartment and the rest
of the genome upon Lam-KD (Fig. 4d). These results indicate
that NL disruption leads to partial “blurring” of chromatin
compartmentalisation.

Chromatin density is decreased upon TAD release from the
NE. One of the most striking observations of our study is the
decrease of chromatin density in a fraction of NL-attached TADs
upon their release from the NE. To confirm this observation by
an alternative approach, we performed two-colour FISH using a
pair of probes positioned at the borders of a long TAD/LAD
which is located at the cytological region 36C and which reduces
its ACF upon Lam-KD (Fig. 5a). We found that the inter-probe
distances in this TAD normalised to the nuclear radius (radial-
normalised distance, RND) are increased upon Lam-KD com-
pared to those in control cells (Fig. 5b), thus indicating that the
chromatin density of this TAD decreases. Moreover, in a fraction
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of untreated S2 cells, where both FISH probes are confined within
the shell adjoining to the NL, the RND between probes are
smaller than between probes located more distally from the NE
(Fig. 5c). Thus, detachment from the NL appears to be sufficient
for LAD decompaction even if the NL is intact.

NL is able to mechanically compact LADs. To find out whether
it is an inherent feature of the chromatin in LADs to become
loosely packed after the detachment from the NL, we performed
polymer modelling of chromatin-NE interactions. We employed
dissipative particle dynamics (DPD)-based simulation of a model
polymer (MP) whose folding pattern closely recapitulates for-
mation of globular chromatin domains (such as TADs and LADs)
built up from non-acetylated nucleosomes36. Here, the MP
folding is simulated in the presence of a surface mimicking the
NL due to its ability to interact with globular domains of the MP
(blue blocks, containing “non-acetylated” sticky particles, Fig. 6a).
Each blue block of the MP adopts two alternative states: it can be
considered as a LAD when attached to the surface by at least one
particle, or as a non-LAD when none of its particles are in contact
with the surface (Fig. 6a). To obtain a dataset large enough for
statistical analysis, we performed ten independent simulations.
Firstly, we observe a clear TAD profile at the ensemble distance
map indicating that the presence of a surface does not influence
the overall folding pattern of the MP (Supplementary Fig. 5). We
then ranked blue blocks from all runs according to the number of
their contacts with the surface and plotted these values against the
number of spatial interactions between particles in each block.
We revealed a positive correlation between the number of intra-
block contacts and the number of particles within this block
interacting with the surface (Fig. 6b). Accordingly, the volume of
a block decreases (Fig. 6c) and the shape of a block gradually
changes from a sphere to a “pancake” with an increasing number

of surface contacts (Fig. 6d). These results indicate that chromatin
attachment to the NL per se is sufficient to compact LADs, likely
confining interactions between nucleosomes in a LAD from a 3D
volume to a 2D surface.

Discussion
Here, using a variety of approaches we explored what happens to
chromatin upon NL disruption. Using immunostaining and FISH
experiments, we revealed that Lam-KD in Drosophila S2 cells
leads to a slight reduction in total chromatin volume and, as a
result, an increase in chromatin packaging density (Fig. 1 and
Supplementary Fig. 1). However, the stronger compaction of
chromatin is not homogeneous and depends on the epigenetic
state and scale. Our Hi-C analysis clearly indicates two opposite
trends in chromatin behaviour. The contact frequency in the
active chromatin increases over short distances (i.e. within the
“active” TADs and the inter-TADs) and decreases over long
distances (i.e. within the A compartment). Whereas in the inac-
tive chromatin it, inversely, decreases over short distances (i.e.
within the TADs mostly corresponding to LADs), but increases at
the chromosomal scale (Figs. 3 and 4).

We suggest a model explaining general chromatin stretching as
well as the condensation of inactive chromatin in TADs mediated
by the NL (Fig. 6e). If chromatin mobility is constrained by its
tethering to the NL, then the release from this tethering will lead
to chromatin shrinkage due to macromolecular crowding41 and
inter-nucleosomal interactions42,43. Therefore counterintuitively,
the NL appears not to restrict chromatin expansion but provides
an anchoring surface necessary to keep interphase chromosomes
slightly stretched. At the same time, inactive chromatin may
become additionally condensed due to the deacetylation by
HDACs, linked to the NL31,32, and/or mechanically, due to
chromatin binding with the NL (Fig. 6d).
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A recently published study analysed the 3D genome organi-
zation upon NL disruption in mouse embryonic stem cells
(mESCs)44. It is interesting to compare our results from Droso-
phila with those from mice. Upon loss of all lamins, the general
TAD profile is still preserved in both species, however, intra- and
inter-TAD interactions are altered. Strikingly, upon loss of all
lamins, a fraction of NL-attached TADs becomes less condensed
in both species (Fig. 3; ref. 44). However, in contrast to Drosophila
S2 cells, this is not accompanied by a general detachment
of chromatin from the NE in mESCs44. Additionally, distant
interactions within the inactive chromatin are mostly increased
in both species upon lamin loss (Fig. 4d; ref. 44.). Finally, while
some genes located at the nuclear periphery and in the nuclear
interior have changed their expression both in mESCs44 and in
Drosophila S2 cells (Fig. 2a), an increase in the background
transcription upon lamin loss is detected specifically in Droso-
phila LADs (Fig. 2b), and this was not reported for mESCs44.
Taken together, these findings indicate that both in mammals and
Drosophila the NL not only makes nearby chromatin more
compact and repressed, but also affects chromatin interactions
and gene expression in the nuclear interior.

The diversity of mechanisms of chromatin attachment to the
NL in Drosophila and mammals may explain the differences in
chromatin behaviour in response to the lack of all lamins. For
example, it was shown that LBR and PRR14 proteins participate
in the tethering of the H3K9-methylated chromatin to the NE in
mammals27,45. Whereas in mammalian ESCs LADs are strongly
enriched with the H3K9me2/32,4,46, in Drosophila Kc167 and,
likely, in S2 cells this modification is not present in LADs5,28.
Accordingly, our results indicate that LBR is not required to keep
chromatin at the nuclear periphery in S2 cells (Fig. 1h, i).
Therefore, the removal of all lamins may not be sufficient to
detach all LADs from the NE in mESCs, but can release LADs
in Drosophila S2 cells.

In conclusion, using different approaches we revealed that NL
disruption in Drosophila S2 cells leads to general chromatin
compaction, accompanied by the impaired spatial segregation of
total chromatin into active and inactive types, and the decom-
paction of a fraction of NL-attached TADs linked to partial
derepression of their chromatin. Importantly, the observed phe-
nomena may be related to the abnormal expression of genes in
lamin-associated diseases1.
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Methods
Cell cultures and RNAi. The Drosophila melanogaster S2 cell line (from the col-
lection of IMG RAS) and Kc167 cell line (from the Drosophila Genomics Resource
Center) were grown at 25 °C in Schneider’s Drosophila Medium (Gibco) supple-
mented with 10% heat-inactivated fetal bovine serum (FBS, Gibco), 50 units/ml
penicillin, and 50 µg/ml streptomycin. OSCs47 kindly provided by M. Siomi were
cultured in Shields and Sang M3 insect medium (Sigma-Aldrich) supplemented
with 10% heat-inactivated FBS (Gibco), 10% fly extract (http://biology.st-andrews.
ac.uk/sites/flycell/flyextract.html), 10 µg/ml insulin (Sigma-Aldrich), 0.6 mg/ml
glutathione (Sigma-Aldrich), 50 units/ml penicillin, and 50 µg/ml streptomycin.
dsRNAs against lacZ or lamin Dm0 for RNAi treatment of S2 cells were prepared
as previously described11. dsRNAs against LBR were prepared in the same fashion
using the Drosophila genome DNA as a template for PCR amplification and pri-
mers provided in the Supplementary Table 1. Treatment of cells with dsRNA was
performed over four days using a previously described protocol48.

Western-blot analysis. Proteins were extracted with 8 M urea, 0.1 M Tris-HCl,
pH 7.0, 1% SDS, fractionated by SDS-PAGE (12% acrylamide gel) and transferred
to a PVDF membrane (Immobilon-P, Millipore). Blots were developed using
alkaline phosphatase-conjugated secondary antibodies (Sigma) and the Immun-
Star AP detection system (Bio-Rad). The following antibodies were used for
detection: murine monoclonal anti-lamin Dm0 (1:2000; ADL6749), rabbit poly-
clonal anti-lamin C25 (1:10000), murine monoclonal anti-beta Actin (1:3000;
ab8224, Abcam).

Chromatin visualisation by histone H4 or DAPI staining. Lam-KD, LBR-KD or
control S2 cells were seeded on coverslips for 30 min. After rinsing with PBS, cells
were fixed in 100% methanol for 5 min at room temperature (for further exam-
ination of chromatin distribution based on the immunostaining of histone H4) or
in 4% formaldehyde in PBS for 25 min at room temperature (for further estimation
of chromatin volume based on DAPI staining), rinsed with PBS three times,
blocked with PBTX (PBS with 0.1% Tween-20 and 0.3% Triton X-100) containing
3% normal goat serum (Invitrogen) for 1 h at room temperature. The remaining
immunostaining procedure was performed as previously described50. As primary
antibodies we used murine monoclonal anti-histone H4 (1:200; ab31830, Abcam),
guinea pig polyclonal anti-LBR26 (1:1000), rabbit polyclonal anti-lamin Dm051
(1:500). As the secondary antibodies we used Alexa Fluor 546-conjugated goat anti-
rabbit IgG (Invitrogen) or Alexa Fluor 488-conjugated goat anti-mouse IgG
(Invitrogen), or Alexa Fluor 633-conjugated goat anti-guinea pig IgG (Invitrogen).

ImageJ quantitation of chromatin distribution. Using ImageJ, we measured
histone H4, LBR and lamin Dm0 profiles across the nucleus diameter of the
equatorial focal plane of nuclei of Lam-KD, LBR-KD or control S2 cells. Fluor-
escent intensities were extracted, individual profiles were first normalised on the
average intensity, then on the diameter of the nucleus (delimited by peaks of LBR
fluorescence for Lam-KD, or by peaks of lamin Dm0 fluorescence for LBR-KD) and
further aligned to determine the averaged profile. Nuclei from 2–3 independent
experiments (60 nuclei per experiment) were analysed.

Estimation of the volume of DAPI-stained chromatin. Confocal images con-
taining 20–30 DAPI-stained formaldehyde-fixed Lam-KD or control S2 cells were
processed and analysed with the same parameters using IMARIS 7.4.2 software
(Bitplane AG). Only nuclei with the lowest residual lamin Dm0 staining were used
for analysis in Lam-KD cells, whereas in control cells, conversely, the nuclei with
poor lamin Dm0 staining were not taken for analysis. For background subtraction,
images were thresholded to ~15% of the maximal intensity of the channel so
that the generated nuclear surfaces would not expand beyond the peak of LBR
fluorescence intensity. With these parameters, the surfaces of nuclei, appropriate
for analysis, were automatically reconstructed. Finally, the volumes of ~100
reconstructed nuclei were retrieved from the Statistics tab for the analysis.

Two-colour FISH. ~20-kb FISH probes were generated using a long-range PCR kit
(Encyclo Plus PCR (Evrogen)) by PCR-amplification of 4 tiling genome fragments
covering either the region 2 L:16964000–16982000 or 2 L:17310000–17328000,
with the use of primer pairs provided in the Supplementary Table 1. 1 µg of
template DNA for hybridization was labelled by random primed synthesis with
the DIG DNA labelling kit (Roche) or by ChromaTide Alexa Fluor 546–14-dUTP
(Life Technologies). Probes were further combined and hybridized with S2 cells
as described previously23. For NL or FISH probe detection, as the primary anti-
bodies we used guinea pig polyclonal anti-LBR26 (1:1000), or rabbit polyclonal
anti-lamin Dm051 (1:500) and sheep polyclonal anti-DIG-FITC (1:500, Roche). As
the secondary antibodies we used Alexa Fluor 633-conjugated goat anti-guinea pig
IgG (Invitrogen), or Alexa Fluor 546-conjugated goat anti-rabbit IgG (Invitrogen)
and Alexa Fluor 488-conjugated goat anti-FITC IgG (Invitrogen).

Measurement of distances between FISH probes and the NE. Three-
dimensional image stacks were recorded with a confocal LSM 510 Meta laser
scanning microscope (Zeiss). Optical sections with 0.4-μm intervals along the

Z-axis were captured. Images were processed and analysed by using IMARIS
7.4.2 software (Bitplane AG) with the blind experimental setup. Distances between
both probes or between the probes and the NE were counted as previously
described23. Briefly, we were unable to fully reconstruct the surfaces of nuclei
automatically based on their LBR or lamin Dm0 immunostaining. Therefore, the
nuclear rim of a particular nucleus was manually outlined in all optical sections
of the stack by the middle of its LBR or lamin Dm0 staining to further reconstruct
the surface of this nucleus automatically. To determine the distance between FISH
signals and the NE, the instrument “measurement point” was positioned on the
brightest voxel of the FISH probe and another “measurement point” was posi-
tioned on the reconstructed nuclear surface at the point of its earliest intersection
with a progressively growing sphere from the first “measurement point”. The
distance between two “measurement points” (i.e. the shortest distance between
the centre of the FISH probe and the middle of the NE) was measured for each
nucleus. Distances between two FISH probes were measured correspondingly.
Data were obtained in two independent experiments for 75–100 nuclei per
experiment. In parallel, volumes of nuclei were retrieved, and radii of nuclei were
calculated considering nuclei to be spherical. Finally, distances were normalised
to the nuclear radii.

Analysis of gene expression. Total RNA was isolated from Lam-KD or control S2
cells using Trizol reagent (Invitrogen), and contaminating DNA was removed by
DNase I treatment. RNA quality was assessed using capillary electrophoresis with a
Bioanalyzer 2100 (Agilent). Poly(A)+ RNA was extracted from total RNA using
oligo(dT) magnetic beads (Thermo Fisher Scientific). NEBNext Ultra II RNA
library preparation kit (New England Biolabs) was used for preparation of libraries
following manufacturer’s instructions. Libraries from two biological replicates of
Lam-KD or control S2 cells were quantified using a Qubit fluorometer and
quantitative PCR, and sequenced on the Illumina NextSeq resulting in 8.4–9.4 ×
106 80-nt single-end reads. Reads were mapped to the D. melanogaster reference
genome (version dm3) using HISAT52 v2.1.0 with option –max-intronlen 50,000.
Reads with low mapping quality were removed using SAMtools53 with option -q
30. We calculated log2 transcription levels in 20-kb genomic bins using BEDtools54
v2.16.2 with option -split, and then applied the hclust function in R to cluster the
replicates using 1-Spearman’s correlation coefficient as a distance metric. Gene
expression was quantified with StringTie52 for the reference annotation version
r5.12. We filtered out genes with zero expression in more than two replicates.
Among the remaining 10,076 genes, the differentially expressed genes were defined
using the edgeR55 package with trimmed mean of M values (TMM) normalisation
at FDR= 0.05 cutoff. Genes were assigned to the LADs if their TSSs were located
within LADs, while genes were assigned to the inter-LADs if their TSSs were at
least 1-kb distant from LADs. A pseudocount was added to all expression values
to get rid of zeros. The pseudocount was calculated as the minimal value in the
gene expression table after normalisation. Then, we averaged the replicates and
calculated log2(FC) values between Lam-KD and control samples.

Real-time RT-qPCR assay for the randomly selected genes from different LADs
was performed on cDNAs synthesised with oligo(dT) primers on the poly(A)+
RNA isolated from 3 biological replicates of Lam-KD or control S2 cells, using
EvaGreen chemistry (Jena Bioscience) and the CFX96 hardware (BioRad).
Expression levels of genes were normalised on the act5C gene expression. For semi-
quantitative RT-PCR, applied for the analysis of genes from the 60D LAD, the
reverse transcription of RNA was performed using SuperScript II reverse
transcriptase (Invitrogen) in the presence of hexamer random primers. PCR
amplification of cDNAs was performed with the addition of 33P-dATP. Probes
after PCR were separated in 5% PAAG, which was then fixed, dried and exposed to
the storage phosphor screen (Amersham Biosciences). The signals were scanned
with a Phosphorimager Storm-820 (Molecular Dynamics). For each primer pair the
number of PCR cycles were optimised to fit the exponential phase of amplification
which was controlled by two-fold cDNA dilution. The expression levels of
genes were normalised to the ubiquitous CG4589 gene expression. Sequences of
gene-specific primers are presented in the Supplementary Table 1.

ChIP-seq procedure and data analysis. ChIP-seq from two biological replicates
of control and Lam-KD S2 cells with anti-H3-pan acetylated antibodies (Active
Motif, #39139) was performed as previously described56, with some modifications.
After rinsing with PBS, ~2 × 107 cells were fixed with 1.8% formaldehyde in PBS
containing 0.5 mM DTT for 20 min at room temperature. Cross-linking was
stopped by adding glycine to 225 mM for 5 min and washing in PBS containing
0.5 mM DTT three times for 5 min. Cells were washed once in the A2 buffer
(140 mM NaCl, 15 mM HEPES pH 7.6, 1 mM EDTA, 0.5 mM EGTA, 1% Triton
X-100, 0.1% sodium deoxycholate, 0.5 mM DTT, complete EDTA-free protease
inhibitor cocktail (Roche)). Cells were lysed in the A2 buffer containing 1% SDS for
10 min at room temperature, after that the lysate was 20-fold diluted by the A2
buffer and incubated for 2 min at 4 °C. After sonication with VCX 400 Vibra-Cell
Processor (Sonics; 30 pulses of 10 sec with 10-sec intervals at 15% max power) and
10-min high-speed centrifugation, the fragmented chromatin (with the average
DNA fragment size ~0.5 kb) was recovered in the supernatant. For each immu-
noprecipitation, ~10 μg of chromatin (~700 µl) was pre-incubated in the presence
of 100 μl of Protein A-Sepharose (PAS, 50% w/v, GE Healthcare) for 1 h at 4 °C.
PAS was removed by centrifugation, 5% of chromatin was isolated as an “Input”
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material, after that 2 µl anti-H3-pan acetylated antibodies (Active Motif, #39139)
were added to the rest chromatin and samples were incubated overnight at 4 °C in
a rotating wheel. Then, 100 μl of PAS was added and incubation was continued
for 4 h at 4 °C. Samples were centrifuged at maximum speed for 1 min and the
supernatant was discarded. Samples were washed four times in the A2 buffer
containing 0.05% SDS and twice in 1 mM EDTA, 10 mM Tris (pH 8), 0.5 mM DTT
buffer (each wash for 5 min at 4 °C). Chromatin was eluted from PAS in 100 μl of
10 mM EDTA, 1% SDS, 50 mM Tris (pH 8) at 65 °C for 10 min, followed by
centrifugation and recovery of the supernatant. PAS material was re-extracted in
150 μl of TE, 0.67% SDS. To reverse cross-links, the combined eluate (250 μl)
was incubated 6 h at 65 °C and treated by Proteinase K for 3 h at 50 °C. Samples
were phenol-chloroform extracted and isopropanol precipitated in the presence
of 20 μg glycogen. DNA was dissolved in 100 μl of water. ChIP samples containing
~25 ng of precipitated DNA, as well as “Input” samples were prepared for next-
generation sequencing using a NEBNext Ultra II DNA library prep kit for Illumina
(New England Biolabs). Libraries were sequenced on the Illumina HiSeq 2000
resulting in 3.1–3.4 × 106 75-bp single-end reads. Reads were mapped to the
D. melanogaster reference genome (version dm3) using Bowtie 2 v2.2.1 (with
the –very-sensitive option)57. Reads with low mapping quality were removed using
SAMtools53 with option -q 30. Duplicate reads were removed using SAMtools
rmdup. We calculated log2 ChIP and input signals in 1-kb genomic bins using
BEDtools54 v2.16.2, and then applied hclust function in R to cluster the replicates
using 1-Spearman’s correlation coefficient as a distance metric. Reads were
assigned to LADs if they overlapped LADs, while reads were assigned to inter-
LADs if they were at least 1-kb distant from LADs. We calculated read numbers
within each LAD and inter-LAD, normalised the values for the sum of read
coverage per replicate, excluded zero-covered LADs and inter-LADs from further
analysis, averaged the replicates, and calculated log2(FC) values between Lam-KD
and control ChIP samples.

Hi-C procedure and data analysis. Hi-C libraries from two independent biolo-
gical replicates of control and Lam-KD S2 cells were prepared essentially as
described previously36 using the HindIII-HF restriction enzyme (NEB). Libraries
were sequenced on the Illumina HiSeq 2000 platform resulting in 3–4 × 107 paired-
end reads. Reads were mapped to the D. melanogaster reference genome (version
dm3) using Bowtie 2 v2.2.1 (with the –very-sensitive option)57. The Hi-C data were
processed using the ICE pipeline v0.9 (20 iterations of iterative correction) as
described58. Hi-C interaction maps with 20-kb resolution were obtained. TADs
were predicted using the Armatus software59 v1.0, in which the average size and
the number of TADs is determined by the scaling parameter γ. TAD annotation
was performed in two steps as described36. First, we manually selected parameter γ
to achieve good partitioning of TADs (γ= 1.20 for Lam-KD cells and γ= 1.12 for
control cells). Then, TADs larger than 600 kb were split into smaller TADs with the
scaling parameter γ multiplied by 2. After that, the smallest TADs (equal or less
than 60 kb) were annotated as inter-TADs due to their poorly resolved internal
structure. As a result, 576 (in control) and 588 (in Lam-KD) TADs were revealed.
To examine whether TAD positions are altered upon Lam-KD, we analysed the
degree of overlap of each TAD in the merged replicates of control and Lam-KD
cells with that in the control replicates or in the Lam-KD replicates and did not find
statistically significant difference (P > 0.05 in a two-sided Wilcoxon test). ACF
within each TAD was calculated as an average value of iteratively corrected read
numbers between all genomic bins belonging to the TAD, excluding boundary bins
from both TAD sides. ACF within each inter-TAD was calculated as an average
value of iteratively corrected read numbers between all genomic bins belonging
to the inter-TAD and the boundary bins of adjacent TADs. For each TAD, we
calculated the ratio between ACF value in each Lam-KD replicate and ACF value in
each control replicate (four ratios in total). TADs with at least three ratios of the
same sign were used for the downstream analysis. We note that when we selected
TADs according to more strict criterion (i.e. all four ratios were changed in the
same direction), it did not affect the results of analysis (Supplementary Fig. 6).
Chromatin compartments were annotated using the principal component analysis
as described17. Saddle plots were generated as described58. Briefly, we used the
observed/expected Hi-C maps, which we calculated from 20-kb iteratively cor-
rected interaction maps of cis-interactions by dividing each diagonal of a matrix
by its chromosome-wide average value. In each observed/expected map, we
rearranged the rows and the columns in the order of increasing PC1 values (which
we calculated for the control matrices). Finally, we aggregated the rows and the
columns of the resulting matrix into 20 equally sized aggregated bins, thus
obtaining a saddle plot of compartmentalization.

Analysis of published data. We employed chromatin type annotation for S2
cells40. Proportions of chromatin types in 20-kb bins were calculated. Annotation
of LADs was obtained from ref. 28. We calculated the proportion of LAD length in
each 20-kb TAD bin.

Polymer modelling. We used Dissipative Particle Dynamics (DPD) to perform
computer simulations, as previously described36 with some modifications. Briefly,
macromolecules are represented in terms of the bead-and-spring model, with the
particles interacting by a conservative force (repulsion), a dissipative force

(friction), and a random force (heat generator). A detailed description of the
implementation of this technique was provided earlier60. The simulated cell volume
was 50 × 50 × 50 DPD units, density equals 3, so the total number of particles in the
system is 375,000. We assume that a particle corresponds to a nucleosome. In
addition, we introduce special boundary conditions, which are periodic for the
solvent and impermeable for other particles. The surface consists of immobile,
hexagonally positioned particles. In our simulations, particles mimic either “active”
or “inactive” nucleosome types, while the surface mimics the NL. “Inactive” par-
ticles may create reversible “saturating” bonds61,62 with each other as well as with
the particles of a surface. Each “inactive” particle may have only one additional
bond per moment, which simulates an interaction of a positively charged histone
tail of non-acetylated nucleosome with the “acidic patch” of another
nucleosome42,43,63. Our copolymer chain is represented by 64 blocks each con-
sisting of 500 “inactive” and 50 “active” particles. The probability of creating an
association between two “inactive” particles was set to 0.001, between the “inactive”
particle and the surface – 0.007, while the probability to break such association was
set to 0.01. During simulations, all particles were checked every 200 DPD steps,
when the local equilibration was obtained. We performed 10 independent runs on
the MSU supercomputer “Lomonosov-2” using our own implementation for the
domain decomposition parallelised DPD code which is available at GitHub
[https://github.com/KPavelI/dpd].

Statistical analysis. We applied the Wilcoxon test to check whether the dis-
tribution of log2(FC) values was symmetric around zero, as well as to test whether
two distributions of log2(FC) values differed by a location shift of zero.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw and processed Hi-C, RNA-seq and ChIP-seq data were deposited in the GEO NCBI
under the accession number GSE110082. DPD code is available at GitHub [https://
github.com/KPavelI/dpd]. The source data underlying Fig. 1a, b, d–f, h, i, 2d, 3, 5b, c and
Supplementary Fig. 1c are provided as a Source Data file. All other data supporting the
findings of this study are available from the corresponding authors upon request. A
reporting summary for this Article is available as a Supplementary Information file.
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Supplementary Fig. 1 Immunostaining of chromatin in Lam-KD, LBR-KD and control cells. a A representative 
example of nuclei immunostained with antibodies against histone H4, LBR and lamin Dm0 in Lam-KD and 
control cells. Fluorescence intensity along the yellow-framed zone was measured using ImageJ software and 
presented below the images. b A representative example of nuclei immunostained with antibodies against lamin 
Dm0 (green) and counterstained by DAPI (blue) with the subsequent automatic reconstruction of the chromatin 
surface by DAPI staining using IMARIS software in Lam-KD or control S2 cells. Scale bar 5 µm. c Distribution 
of the volume of nuclei in Lam-KD (n=275) or control (n=275) S2 cells reconstructed by the LBR-stained NE 
using IMARIS software. NS – non-significant difference (P > 0.05 in a Wilcoxon test). Thick black lines and white 
dots represent median and average values, respectively. d A representative example of nuclei immunostained 
with antibodies against histone H4, LBR and lamin Dm0 in LBR-KD and control cells. Fluorescence intensity 
along the yellow-framed zone was measured using ImageJ software and presented below the images. 
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Supplementary Fig. 2 RNA-seq and ChIP-seq profiling in Lam-KD and control S2 cells. a Cluster 
analysis of biological replicates of the RNA-seq experiment. b Changes of gene expression for the 
differentially expressed genes in Lam-KD relative to control cells. The P-values for the comparison 
between “in LADs” and “in inter-LADs” groups, as well as for testing that average values in 
distributions exceed zero (the latter are shown below the box plots) were estimated in a Wilcoxon test. 
c A representative screenshot from the UCSC Genome Browser showing up-regulation of 
background transcription in LADs. d Cluster analysis of biological replicates of the ChIP-seq 
experiment.
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Supplementary Fig. 3 Hi-C analysis and characteristics of TADs from the four groups. a Comparison of 
heatmaps generated based on Hi-C data for control S2 cells in this work and for S2 cells in supplem. ref. 1. 
Pearson’s correlation coefficients between ICE-corrected Hi-C matrices for each chromosome are shown 
to the right. b Pearson’s correlation coefficients between ICE-corrected Hi-C matrices obtained in biological 
replicates of Hi-C experiments performed in this work. c Proportions of TADs located at the same position 
(±1 bin) in control and Lam-KD cells. d Intra-TAD ACF variability between replicates for control cells does 
not correlate with the LAD coverage (left panel) and the proportion of active chromatin (right panel) within 
TADs. e Intra-TAD ACF changes upon Lam-KD do not correlate with the proportion of “coral” plus “brown” 
chromatin types within TADs. f Changes of histone H3 pan-acetylation level in TADs upon Lam-KD 
positively correlate with the LAD coverage (left panel) and negatively correlate with the proportion of “red” 
plus “purple” chromatin types (supplem. ref. 2; right panel). Trend lines are in red.
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Supplementary Fig. 6 (related to Fig. 3) Strict criterion of TAD selection (i.e. all four ratios of replicates were 
changed in the same direction upon Lam-KD) does not affect the results of analysis. Changes of intra-TAD ACF 
(left panel), total transcription (middle panel) and H3 pan-acetylation (right panel) between Lam-KD and control 
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Supplementary Table 1. Primers used in this study.

SerT GACATGACCACGCCCAGGTTCACG TCCGATACTGATCTTCCGACGGGCA
CG3419 CATCGCACATATACAGCCTGCCCTTGC TTGGTCCCGACTTCTTCACCTCGCA
CG42383 CCCGGAAACAGTTCATGGGACCAGG GCGGAAAGGCGGTCATCAGGACAAA
prom TGCTTCTCTGGGCTATTGGCACTCCG GCTTGTCGCTGAACTGCTCGTCCGT

CG15873 CGGAACCCGTGGGAGAAAGCATGAA CGCAGTCGGAAAGGGATTGGATGGT
CG15874 CAAAGGTTGCGGGAAATGGGCTTGT GTCCAGGCTGCGGGCACTCCTCT
CG3483 AAGCAGTTCGCCCAGTTCGCCTACG GCCACCGTGATCCTTTTGCGCTTGT
CG4563 TCAACCTGGGCGACCTGGGCTACTT ATCTCGCATCCCGCACGCCTACC
CG13579 CTGCGAGCCCTTCTACAGCAAGCCA GGTCGGATCGTTTAGCCGGAAGCG
CG3492 GCAGTGAAGCGCGGACCCTACACAA TGTGGGATCGGATCTTGGGCATCG
CG3494 TGCCCAAAGATCTGCCCTTGCTCTCC CAGCGTGGCAACTGGCGGAAGCGA
CG16837 CGTTCGTCAATCTCTTCGCCCATCG CCAGGGTCATGTGGATTTCGCCCAT
CG13589 CACCCCTTGCTAAAATGACGAATGC TTTCGCTGGTTCTATGAATGTGGCA
CG13590 CCTTACTGCCCCTTCTGTGCTTCGAGC CCACCATCAACCACACCTGTCCCTATGAG
CG4589 CGGAACAATATGGGACACACGAGCAACA CGACCCTGTCCACGACGATAACGGC

Eaat1 TACATTGGCATCATAAACTCATC AACATCACAAGACCCAGGAC
CG30395 AGTTATACTTCAATGCACCTGTTT ATGGGAGTCTTCGGGCTTAC
CG34391 GGCTAATGCTGCTTGAATGC TGTGGGTAACCTGCTTGGAT
CG5162 ATCCTAACACCTACTGGCATAA CAGGGTATCAACGAAACGAG
CG34370 AATCATCAGCCAATTCTAACTACC TCTTCCTTAGCATCGCCCAC
Rim AGCCGACACCATTACCACCT CGAATGTTTGTCAGAATCCCT
wat CGGCACCAGAGCTAATGTAT CACCCTGAACACCCTTACGC

beat-Va ATCCGTCACAAACAGAGCAT TCTTTGGGGAAAACAACATC
Sls CCACCATGATGTTGTTGCAC CACTTCCGCTACCATCCATA
Byn ACATTGGCGCTCACTATTTG GAGGCACTGATCTTCACGAC
Goe CTGTAGGACGACCAGAACCC CATGATCCCACTAATTTGAGC

CG31814 CATTAGAGCATCTCGACCCA GGGAATTGAAAAGGACTAAGTAAA
Fili GGCAATGTGATGAGCGAACT  TGATTAAGGGCAGATATGAAAA
Mb1 TCAGTTATTGATAAATGGACGCA AGTGGATAGCGGATGGAATG

1 CCTCCATTTCCACCCACAGTTTCCCA GCCCAAGTGCCACGAGCCTCAAATAA
2 TTATTTGAGGCTCGTGGCACTTGGGC GCGATTTTCAGGACTCGGGGACTGG
3 CCAGTCCCCGAGTCCTGAAAATCGC TTTTTGCTTTGACAACCCTGCCGCA
4 TGCGGCAGGGTTGTCAAAGCAAAAA CCTTGTCCAGAGGATAAAAAACGGTGCCC

1 GCCCACCACCCACTTTTTGGCTTTG CCCTCTGACCCAACAGCACGTTTTTCA
2 GGGAGGGCGAACATTGTGGGATCAG TTTGTCATTGTGGGTGCGTTGCTGC
3 GCAGCAACGCACCCACAATGACAAA GAGAGCGAGCAAAAAGGCCGTGGAA
4 TTCCACGGCCTTTTTGCTCGCTCTC GGAGCTCTTGTGAGGCCCGAACCAA

Direct primer
Reverse primer

Direct primer
Reverse primer

GAATTAATACGACTCACTATAGGGAGAATGTCGAGCAAATCCCGACGT

GAATTAATACGACTCACTATAGGGAGAGGCAAAGGCACCCACCACTCGT
GAATTAATACGACTCACTATAGGGAGACCCAGTCCAAGCAGCCCAGCC

Gene or 
primer name Direct primer (5’->3’) Reverse primer (5’->3’)

Primers for 2L 16,964,000-16,982,000 amplification (green FISH probe)

Primers for 2L 17,310,000-17,328,000 amplification (red FISH probe)

Primers for lamin Dm0 dsRNA preparation

Primers for LBR dsRNA preparation

Primers for RT-PCR of genes from other LADs

Primers for RT-PCR of genes from 60D LAD

GAATTAATACGACTCACTATAGGGAGAGCGACTGCTTCAACTTGGCATC
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Figure 5-1: Black-box models for prediction
of chromatin features of Drosophila. Inputs
for the models serve as a measure of binding
of transcription factors and histone modifi-
cations, factors of epigenetics that can drive
the structure formation in vivo. These mech-
anisms are mimicked by black-box models in
silico.

On a local scale, Drosophila chromatin

is constituted of Topologically Associat-

ing Domains, or TADs, visible in bulk

Hi-C. TAD is an insulated neighbor-

hood of the genome, with more con-

tacts within it than with surrounding

regions. The boundaries of these neigh-

borhoods are associated with the bind-

ing of insulating proteins (proteins that

lead to the insulation effect when bound

to DNA). However, a previous study

by our group [Ulianov et al., 2016] has

demonstrated that they are not the pri-

mary factors demarcating the bound-

aries.

Thus, it was important to study

the problem of TAD boundaries-forming

factors in depth in bulk Hi-C before
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Chapter 5. A machine learning framework for the prediction of chromatin folding in Drosophila
using epigenetic features

studying it at the level of individual

cells. We applied an interpretable machine learning model to predict TADs in bulk

data based on epigenetic features, including insulators and histone modifications.

The results suggested that a protein of the insulator type (Chriz) and active histone

modification (H3K4me3) are the most relevant for the prediction across multiple cell

types of Drosophila.

I want to emphasize that these results further guided the search of factors re-

sponsible for TADs formation in single cells in Chapter 7. Although the model was

developed by the first author of this study, I significantly contributed to the text and

prepared some of the figures of this paper. I also designed some of the computational

experiments which were then implemented by the first author.
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ABSTRACT
Technological advances have lead to the creation of large epigenetic datasets, including
information aboutDNAbinding proteins andDNA spatial structure. Hi-C experiments
have revealed that chromosomes are subdivided into sets of self-interacting domains
called Topologically Associating Domains (TADs). TADs are involved in the regulation
of gene expression activity, but the mechanisms of their formation are not yet fully
understood. Here, we focus on machine learning methods to characterize DNA folding
patterns in Drosophila based on chromatin marks across three cell lines. We present
linear regression models with four types of regularization, gradient boosting, and
recurrent neural networks (RNN) as tools to study chromatin folding characteristics
associated with TADs given epigenetic chromatin immunoprecipitation data. The
bidirectional long short-term memory RNN architecture produced the best prediction
scores and identified biologically relevant features. Distribution of protein Chriz
(Chromator) and histonemodificationH3K4me3were selected as themost informative
features for the prediction of TADs characteristics. This approach may be adapted
to any similar biological dataset of chromatin features across various cell lines and
species. The code for the implemented pipeline, Hi-ChiP-ML, is publicly available:
https://github.com/MichalRozenwald/Hi-ChIP-ML

Subjects Bioinformatics, Computational Biology, Molecular Biology, Data Mining and Machine
Learning, Data Science
Keywords Topologically Associating Domains (TADs), Recurrent Neural Networks (RNN), Hi-C
experiments, Linear Regression, Gradient Boosting, Chromatin, DNA folding patterns, Machine
Learning

INTRODUCTION
Machine learning has proved to be an essential tool for studies in the molecular biology
of the eukaryotic cell, in particular, the process of gene regulation (Eraslan et al., 2019;
Zeng, Wang & Jiang, 2020). Gene regulation of higher eukaryotes is orchestrated by two
primary interconnected mechanisms, the binding of regulatory factors to the promoters
and enhancers, and the changes in DNA spatial folding. The resulting binding patterns
and chromatin structure represent the epigenetic state of the cells. They can be assayed

How to cite this article Rozenwald MB, Galitsyna AA, Sapunov GV, Khrameeva EE, Gelfand MS. 2020. A machine learning framework
for the prediction of chromatin folding in Drosophila using epigenetic features. PeerJ Comput. Sci. 6:e307 http://doi.org/10.7717/peerj-cs.307



by high-throughput techniques, such as chromatin immunoprecipitation (Ren et al., 2000;
Johnson et al., 2007) and Hi-C (Lieberman-Aiden et al., 2009). The epigenetic state is tightly
connected with inheritance and disease (Lupiáñez, Spielmann & Mundlos, 2016; Yuan
et al., 2018; Trieu, Martinez-Fundichely & Khurana, 2020). For instance, disruption of
chromosomal topology in humans affects gliomagenesis and limb malformations (Krijger
& De Laat, 2016). However, the details of underlying processes are yet to be understood.

The study of Hi-C maps of genomic interactions revealed the structural and regulatory
units of eukaryotic genome, topologically associating domains, or TADs. TADs represent
self-interacting regions of DNA with well-defined boundaries that insulate the TAD from
interactions with adjacent regions (Lieberman-Aiden et al., 2009; Dixon et al., 2012; Rao et
al., 2014). In mammals, the boundaries of TADs are defined by the binding of insulator
proteinCTCF (Rao et al., 2014).However,DrosophilaCTCFhomolog is not essential for the
formation of TAD boundaries (Wang et al., 2018). Contribution of CTCF to the boundaries
was detected in neuronal cells, but not in embryonic cells ofDrosophila (Chathoth & Zabet,
2019). At the same time, up to eight different insulator proteins have been proposed to
contribute to the formation of TADs boundaries (Ramírez et al., 2018).

Ulianov et al. (2016) demonstrated that active transcription plays a key role in the
Drosophila chromosome partitioning into TADs. Active chromatin marks are preferably
found at TAD borders, while repressive histone modifications are depleted within inter-
TADs. Thus, histone modifications instead of insulator binding factors might be the main
TAD-forming factors in this organism.

Todetermine factors responsible for theTADboundary formation inDrosophila,Ulianov
et al. (2016) utilized machine learning techniques. For that, they formulated a classification
task and used a logistic regression model. The model input was a set of ChIP-chip signals
for a genomic region, and the output, a binary value indicating whether the region was
located at the boundary or within a TAD. Similarly, Ramírez et al. (2018) demonstrated
the effectiveness of the lasso regression and gradient boosting for the same task.

However, this approach has two substantial limitations. First, the prediction of TAD state
as a categorical output depends on the TAD calling procedure. It requires setting a threshold
for the TAD boundary definition and it is insensitive to sub-threshold boundaries.

Alternatively, the TAD status of a region may be derived from a Hi-C map either by
calculation of local characteristics of TADs such as Insulation Score (Crane et al., 2015),
D-score (Stadhouders et al., 2018), Directionality Index (Dixon et al., 2012), or by dynamic
programming methods, such as Armatus (Filippova et al., 2014). Methods assessing local
characteristics of TADs result in assigning a continuous score to genomic bins along
the chromosome. Dynamic programming methods are typically not anchored to a local
genomic region and consider Hi-C maps of whole chromosomes. The calculation of
transitional gamma has the advantages of both approaches (Ulianov et al., 2016). It runs
dynamic programming for whole-chromosome data for multiple parameters and assesses
the score for each genomic region.

The second limitation is that regression and gradient boosting in Ulianov et al. (2016)
and Ramírez et al. (2018) account for the features of a given region of the genome, but
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ignore the adjacent regions. Such contextual information might be crucial for the TAD
status in Drosophila.

For a possible solution, one may look at instructive examples of other chromatin
architecture problems, such as improvement of Hi-C data resolution (Gong et al., 2018;
Schwessinger et al., 2019; Li & Dai, 2020), inference of chromatin structure (Cristescu et
al., 2018; Trieu, Martinez-Fundichely & Khurana, 2020), prediction of genomic regions
interactions (Whalen, Truty & Pollard, 2016; Zeng, Wu & Jiang, 2018; Li, Wong & Jiang,
2019; Fudenberg, Kelley & Pollard, 2019; Singh et al., 2019; Jing et al., 2019; Gan, Li & Jiang,
2019; Belokopytova et al., 2020), and, finally, TAD boundaries prediction in mammalian
cells (Gan et al., 2019;Martens et al., 2020).

The machine learning approaches used in these works include generalized linear
models (Ibn-Salem & Andrade-Navarro, 2019), random forest (Bkhetan & Plewczynski,
2018; Gan et al., 2019), other ensemble models (Whalen, Truty & Pollard, 2016), and
neural networks: multi-layer perceptron (Gan et al., 2019), dense neural networks (Zeng,
Wu & Jiang, 2018; Farré et al., 2018; Li, Wong & Jiang, 2019), convolutional neural
networks (Schreiber et al., 2017), generative adversarial networks (Liu, Lv & Jiang, 2019),
and recurrent neural networks (Cristescu et al., 2018; Singh et al., 2019; Gan, Li & Jiang,
2019).

Among these methods, recurrent neural networks (RNNs) provide a comprehensive
architecture for analyzing sequential data (Graves, Jaitly & Mohamed, 2013), due to the
temporal modeling capabilities. A popular implementation of RNN long short-term
memory (LSTM) models (Hochreiter & Schmidhuber, 1997) creates informative statistics
that provide solutions for complex long-time-lag tasks (Graves, 2012). Thus, the application
of LTSM RNNs to problems with sequential ordering of a target, such as DNA bins
characteristics, is a promising approach. Moreover, this feature is particularly relevant for
the TAD boundary prediction in Drosophila, where the histone modifications of extended
genomic regions govern the formation of boundaries (Ulianov et al., 2016).

Here, we analyze the epigenetic factors contributing to the TAD status of the genomic
regions of Drosophila. As opposed to previous approaches, we incorporate information
about the region context on two levels. First, we utilize the context-aware TAD characteristic
transitional gamma. Second, we use the advanced method of recurrent neural network that
preserves the information about features of adjacent regions.

MATERIALS AND METHODS
Data
Hi-C datasets for three culturedDrosophila melanogaster cell lines were taken fromUlianov
et al. (2016). Cell lines Schneider-2 (S2) and Kc167 from late embryos and DmBG3-c2
(BG3) from the central nervous system of third-instar larvae were analysed. TheDrosophila
genome (dm3 assembly) was binned at the 20-kb resolution resulting in 5950 sequential
genomic regions of equal size. Each bin was described by the start coordinate on the
chromosome and by the signal from a set of ChIP-chip experiments. The ChIP-chip data
were obtained from the modENCODE database (Waterston et al., 2009) and processed as
in Ulianov et al. (2016).
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As chromatin architecture is known to be correlated with epigenetic characteristics in
Drosophila (Ulianov et al., 2016; Hug et al., 2017; Ramírez et al., 2018), we selected two sets
of epigenetic marks, i.e., transcription factors (TF), and insulator protein binding sites, and
histone modifications (HM), for further analysis. The first set included five features (Chriz,
CTCF, Su(Hw), H3K27me3, H3K27ac), which had been reported as relevant for TAD
formation in previous studies (Ulianov et al., 2016). The second set contained eighteen
epigenetic marks in total, extending the first set with thirteen potentially relevant features
chosen based on the literature (RNA polymerase II, BEAF-32, GAF, CP190, H3K4me1,
H3K4me2, H3K4me3, H3K9me2, H3K9me3, H3K27me1, H3K36me1, H3K36me3,
H4K16ac). To normalize the input data, we subtracted the mean from each value and
then scaled it to the unit variance using the preprocessing scale function of the Sklearn
Python library (Pedregosa et al., 2011). We standardized each feature independently; the
mean and variance were calculated per each feature (chromatin mark) separately across all
input objects (bins), see Fig. S2. For the full list of chromatin factors and theirmodENCODE
IDs, see Table S1.

Target value
TADs are calculated based onHi-C interactionsmatrix. As a result of TADcalling algorithm,
TADs are represented as a segmentation of the genome into discrete regions. However,
resulting segmentation typically depends on TAD calling parameters. In particular, widely
used TAD segmentation software Armatus (Filippova et al., 2014) annotates TADs for
a user-defined scaling parameter gamma. Gamma determines the average size and the
number of TADs produced by Armatus on a given Hi-C map.

Following Ulianov et al. (2016), we avoided the problem of selection of a single set of
parameters for TADs annotation and calculated the local characteristic of TAD formation of
the genome, namely, transitional gamma. The calculation of transitional gamma includes
the TAD calling for a wide range of reasonable parameters gamma and selection of
characteristic gamma for each genomic locus. This procedure is briefly described below.

When parameter gamma is fixed, Armatus annotates each genomic bin as a part of a
TAD, inter-TAD, or TAD boundary. The higher the gamma value is used in Armatus, the
smaller on average the TADs sizes are. We perform the TAD calling with Armatus for a set
of parameters and characterize each bin by transitional gamma at which this bin switches
from being a part of a TAD to being a part of an inter-TAD or a TAD boundary. We
illustrate the TADs annotation and calculation of transitional gamma in Figs. 1A–1C.

Whole-genome Hi-C maps of Drosophila cells were collected from Ulianov et al. (2016)
and processed using Armatus with a gamma ranging from 0 to 10 with a step of 0.01. We
then calculated the transitional gamma for each bin. The resulting distribution of values
can be found in Fig. 1D. We note that the value 10 is corresponding to the bins that form
TAD regions that we have never observed as being TAD boundary or inter-TAD. These
bins might switch from TADs with the further increase of gamma. However, they represent
a minor fraction of the genome corresponding to strong inner-TAD bins.
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Figure 1 (A–C) Example of annotation of chromosome 3R region by transitional gamma. For a given
Hi-Cmatrix of Schneider-2 cells (A), TAD segmentations (B) are calculated by Armatus for a set of
gamma values (from 0 to 10, a step of 0.01). Each line in B represents a single TAD. Then gamma tran-
sitional (C) is calculated for each genomic region as the minimal value of gamma where the region be-
comes inter-TAD or TAD boundary. The blue line in C represents the transitional gamma value for
each genomic bin. The plots (B) and (C) are limited by gamma 2 for better visualization, although they
are continued to the value of 10. Asterisk (*) denotes the region with gamma transitional of 1.64, the
minimal value of gamma, where the corresponding region transitions from TAD to inter-TAD. (D) The
histogram of the target value transitional gamma for Schneider-2 cell line. Note the peak at 10.

Full-size DOI: 10.7717/peerjcs.307/fig-1

Problem statement
To avoid ambiguity, we formally state our machine learning problem:

• objects are genomic bins of 20-kb length that do not intersect,
• input features are the measurements of chromatin factors’ binding,
• target value is the transitional gamma, which characterizes the TAD status of the region
and, thus, the DNA folding,

• objective is to predict the value of transitional gamma and to identify which of the
chromatin features are most significant in predicting the TAD state.

Selection of loss function
The target, transitional gamma, is a continuous variable ranging from 0 to 10, which
yields a regression problem (Yan & Su, 2009). The classical optimization function for the
regression is Mean Square Error (MSE), instead of precision, recall or accuracy, as for
binary variables. However, the distribution of the target in our problem is significantly
unbalanced (see Fig. 1D) because the target value of most of the objects is in the interval
between 0 and 3. Thus, the contribution of the error on objects with a high true target
value may be also high in the total score when using MSE.

We note that the biological nature of genomic bins with high transitional gamma
is different from other bins. Transitional gamma equal to 10 means that the bin never
transformed from being a part of a TAD to an inter-TAD or TAD boundary. To solve this
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contradiction, we have introduced a custom loss function called modified weighted Mean
Square Error (wMSE). It might be reformulated as MSE multiplied by the weight (penalty)
of the error, depending on the true value of the target variable.

wMSE = 1
N

NX

i=1

(ytruei �ypredi)
2↵�ytruei

↵
,

where N is the number of data points, ytruei is the true value for data point number i,
ypredi is the predicted value for data point number i. Here, ↵ is the maximum value of ytrue
increased by 1 to avoid multiplying the error by 0. The maximum value of the transitional
gamma in our dataset is 10, thus in our case, ↵ equals 11. With wMSE as a loss function,
the model is penalized less for errors on objects with high values of transitional gamma.

Machine learning models
To explore the relationships between the 3D chromatin structure and epigenetic data,
we built linear regression (LR) models, gradient boosting (GB) regressors, and recurrent
neural networks (RNN). The LR models were additionally applied with either L1 or L2
regularization and with both penalties. For benchmarking we used a constant prediction
set to the mean value of the training dataset.

Due to the DNA linear connectivity, our input bins are sequentially ordered in the
genome.NeighboringDNA regions frequently bear similar epigeneticmarks and chromatin
properties (Kharchenko et al., 2011). Thus, the target variable values are expected to be
vastly correlated. To use this biological property, we applied RNN models. In addition,
the information content of the double-stranded DNA molecule is equivalent if reading
in forward and reverse direction. In order to utilize the DNA linearity together with
equivalence of both directions on DNA, we selected the bidirectional long short-term
memory (biLSTM) RNN architecture (Schuster & Paliwal, 1997). The model takes a set
of epigenetic properties for bins as input and outputs the target value of the middle bin.
The middle bin is an object from the input set with an index i, where i equals to the floor
division of the input set length by 2. Thus, the transitional gamma of the middle bin is
being predicted using the features of the surrounding bins as well. The scheme of this
model is presented in Fig. 2.

We exploited the following parameters of the biLSTM RNN in our experiments.
The sequence length of the RNN input objects is a set of consecutive DNA bins with

fixed length that was varied from 1 to 10 (window size).
The numbers of LSTM units that we tested for were 1, 4, 8, 16, 32, 64, 128, 256, 512.
The weighted Mean Square Error loss function was chosen and models were trained

with a stochastic optimizer Adam (Kingma & Ba, 2014).
Early stopping was used to automatically identify the optimal number of training epochs.

The dataset was randomly split into three groups: train dataset 70%, test dataset 20%, and
10% data for validation.

To explore the importance of each feature from the input space, we trained the RNNs
using only one of the epigenetic features as input. Additionally, we built models in which
columns from the feature matrix were one by one replaced with zeros, and all other features
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Figure 2 Scheme of the implemented bidirectional LSTM recurrent neural networks with one out-
put. The values of {x1,..,xt } are the DNA bins with input window size t , {h1,..,ht } are the hidden states of
the RNN model, yt/2 represents the corresponding target value transitional gamma of the middle bin xt/2.
Note that each bin xi is characterized by a vector of chromatin marks ChIP-chip data.

Full-size DOI: 10.7717/peerjcs.307/fig-2

were used for training. Further, we calculated the evaluation metrics and checked if they
were significantly different from the results obtained while using the complete set of data.

RESULTS
Chromatin marks are reliable predictors of the TAD state
First, we assessed whether the TAD state could be predicted from the set of chromatin
marks for a single cell line (Schneider-2 in this section). The classical machine learning
quality metrics on cross-validation averaged over ten rounds of training demonstrate
strong quality of prediction compared to the constant prediction (see Table 1).

High evaluation scores prove that the selected chromatinmarks represent a set of reliable
predictors for the TAD state of Drosophila genomic region. Thus, the selected set of 18
chromatin marks can be used for chromatin folding patterns prediction in Drosophila.

The quality metric adapted for our particular machine learning problem, wMSE,
demonstrates the same level of improvement of predictions for different models (see
Table 2). Therefore, we conclude that wMSE can be used for downstream assessment of
the quality of the predictions of our models.

These results allow us to perform the parameter selection for linear regression (LR) and
gradient boosting (GB) and select the optimal values based on the wMSE metric. For LR,
we selected alpha of 0.2 for both L1 and L2 regularizations.

Gradient boosting outperforms linear regression with different types of regularization
on our task. Thus, the TAD state of the cell is likely to be more complicated than a linear
combination of chromatin marks bound in the genomic locus. We used a wide range
of variable parameters such as the number of estimators, learning rate, maximum depth
of the individual regression estimators. The best results were observed while setting the
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Table 1 Evaluation of classical machine learning scores for all models, based on 5-features and 18-
features inputs.

Model type MSE MSE MAE MAE R2

Train Test Train Test

Constant prediction 3.71 3.72 1.36 1.31 0

Using 5 features:
LR + L1 2.91 2.91 1.11 1.11 0.21
LR + L2 2.92 2.93 1.12 1.12 0.21
LR + L1 + L2 2.86 2.87 1.11 1.11 0.23
GB-250 2.45 2.67 1.10 1.11 0.28
biLSTM RNN 2.36 2.90 0.92 1.01 0.33

Using 18 features:
LR + L1 2.77 2.77 1.09 1.09 0.25
LR + L2 2.69 2.69 1.08 1.08 0.27
LR + L1 + L2 2.67 2.68 1.07 1.07 0.28
GB-250 2.22 2.53 1.06 1.07 0.32
biLSTMRNN 2.03 2.45 0.85 0.90 0.43

Table 2 WeightedMSE of all models, based on 5-features and 18-features inputs.

5 features 18 features

Train Test Train Test

Constant prediction 1.61 1.62 1.61 1.62
Linear Regression 1.20 1.20 1.13 1.14
Linear regression + L1 1.17 1.17 1.12 1.12
Linear regression + L2 1.18 1.19 1.11 1.12
Linear regression + L1 + L2 1.17 1.16 1.11 1.11
Grad boosting 100 estimators 1.11 1.13 1.08 1.10
Grad boosting 250 estimators 1.06 1.11 0.95 1.07
biLSTM 64 units & 6 bins 0.83 0.88 0.79 0.84

‘n_estimators’: 100, ‘max_depth’: 3 and n_estimators’: 250, ‘max_depth’: 4, both with
‘learning_rate’: 0.01. The scores are presented in Tables 1 and 2.

The context-aware prediction of TAD state is the most reliable
The alternative model that we studied was biLSTM neural network, which provides explicit
accounting for linearly ordered bins in the DNA molecule.

We have investigated the hyperparameters set for biLSTM and assessed the wMSE on
various input window sizes and numbers of LSTM units. As we demonstrate in Fig. 3, the
optimal sequence length is equal to the input window size 6 and 64 LSTM units. This result
has a potential biological interpretation as the typical size of TADs in Drosophila, being
around 120 kb at 20-kb resolution Hi-C maps which equals to 6 bins.

The incorporation of sequential dependency improved the prediction significantly, as
demonstrated by the best quality scores achieved by the biLSTM (Table 2). The selected
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Figure 3 Selection of the biLSTM parameters. Weighted MSE scores for the train and test datasets are presented. (A) Results of RNN with 64
units for different sizes of sequence length. The sequence size corresponds to the input window size of the RNN or number of bins used together as
an input sequence for the neural network. (B) Results of RNN with an input sequence of six bins for the different number of LSTM units. The box
highlights the best scores. The biLSTM with six input bins and 64 LSTM units was used throughout this study if not specified otherwise.

Full-size DOI: 10.7717/peerjcs.307/fig-3

biLSTM with the best hyperparameters set performed two times better than the constant
prediction and outscored all trained LR and GB models, see Tables 1 and 2. We note that
the proposed biLSTMmodel does not take into account the target value of the neighboring
regions, both while training and predicting. Our model uses the input values (chromatin
marks) solely for the whole window and target values for the central bin in the window for
training and assessment of validation results. Thus, we conclude that biLSTM was able to
capture and utilize the sequential relationship of the input objects in terms of the physical
distance in the DNA.

Reduced set of chromatin marks is su�cient for a reliable prediction
of the TAD state in Drosophila

Next, we used an opportunity to analyse feature importance and select the set of factors
most relevant for chromatin folding. For an initial analysis, we selected a subset of five
chromatin marks that we considered important based on the literature (two histone marks
and three potential insulator proteins, 5-features model).

The 5-features model performed slightly worse than the initial 18-features model (see
Tables 1 and 2). The difference in quality scores is rather small, supporting the selection of
these five features as biologically relevant for TAD state prediction.

We note that the small impact of shrinking of the number of predictorsmight indicate the
high correlation between chromatin features. This is in line with the concept of chromatin
states when several histone modifications and other chromatin factors are responsible for
a single function of DNA region, such as gene expression (Filion et al., 2010; Kharchenko et
al., 2011).

Feature importance analysis reveals factors relevant for chromatin
folding into TADs in Drosophila

We have evaluated the weight coefficients of the linear regression because the large weights
strongly influence the model prediction. Chromatin marks prioritization of 5-features LR
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Figure 4 WeightedMSE using one feature for each input bin in the biLSTMRNN. The first mark (‘all’)
corresponds to scores of NNs using the first dataset of chromatin marks features together, the last mark
(‘const’) represents wMSE using constant prediction. Note that the lower the wMSE value the better the
quality of prediction.

Full-size DOI: 10.7717/peerjcs.307/fig-4

model demonstrated that the most valuable feature was Chriz, while the weights of Su(Hw)
and CTCF were the smallest. As expected, Chriz factor was the top in the prioritization
of the 18-features LR model. However, the next important features were histone marks
H3K4me1 and H3K27me1, supporting the hypothesis of histone modifications as drivers
of TAD folding in Drosophila.

We used two approaches for the feature selection of RNN: use-one feature and drop-one
feature. When each single chromatin mark was used as the only feature of each bin of the
RNN input sequence for training, the best scores were obtained for Chriz and H3K4me2
(Figs. 4, 5 and 6), similarly to the LR models results. When we dropped out one of the five
features, we got scores that are almost equal to the wMSE using the full dataset together.
This does not hold for experiment with excluded Chriz, where wMSE increases. These
results align with the outcome of use-one approach and while applying LR models.

Similar results were obtained while using the broader dataset. The results of applying
the same approach of omitting each feature one by one using the second dataset of features
allowed the evaluation of the biological impact of the features. The corresponding wMSE
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Figure 5 WeightedMSE using four out of five chromatin marks features together as the biLSTMRNN
input. Each colour corresponds to the feature that was excluded from the input. Note that the model is af-
fected the most when Chriz factor is dropped from features.

Full-size DOI: 10.7717/peerjcs.307/fig-5

scores are presented in Fig. 6 as well as the result of training the model on all features
together.

The results of omitting each feature one by one while using the second dataset of
features are almost identical as we expected. It could be explained by the fact that most of
the features are strongly correlated.

TAD state prediction models are transferable between cell lines of
Drosophila

In order to explore the transferability of the results between various Drosophila cell lines,
we have applied the full pipeline for Schneider-2 and Kc167 cells from late embryos and
DmBG3-c2 (BG3) cells from the central nervous system of third-instar larvae. Across all
cell lines, the biLSTM model has gained the best evaluation scores (Table 3). On average,
the smallest errors were produced on the test set of the BG3 cell line.

Notably, the selected top features are robust between cell lines. The results of the usage
of each feature separately for each of the cell lines can be found in Fig. S1. Chriz was
identified as the most influencing feature for Schneider-2 and BG3 while being in the top
four features for Kc167. Histone modifications H3K4me2 and H3K4me3 gain very high
scores on each dataset. However, CTCF was found in the top of the influencing chromatin
marks only on the Kc167, while insulator Su(Hw) constantly scores almost the worst wMSE
across all cell lines.
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Figure 6 WeightedMSE on the test dataset while using each chromatin mark either as a single feature
(blue line) or excluding it from the biLSTMRNN input (yellow line).

Full-size DOI: 10.7717/peerjcs.307/fig-6

Table 3 WeightedMSE on cross-validation of all methods for each cell line and while using them to-
gether. Lower wMSE orresponds to better quality of prediction.

Method Schneider-2 Kc167 DmBG3-c2 All

Constant prediction 1.62 ± 0.09 1.53 ± 0.06 1.36 ± 0.05 1.51 ± 0.04
Linear regression 1.14 ± 0.08 1.01 ± 0.06 0.91 ± 0.08 1.04 ± 0.04
Linear regression + L1 1.12 ± 0.07 1.04 ± 0.06 0.95 ± 0.07 1.05 ± 0.04
Linear regression + L2 1.12 ± 0.07 1.01 ± 0.06 0.9 ± 0.08 1.03 ± 0.04
Linear regression + L1 + L2 1.11 ± 0.07 1.02 ± 0.06 0.91 ± 0.07 1.03 ± 0.04
Gradient boosting 1.07 ± 0.06 0.98 ± 0.07 0.86 ± 0.08 0.96 ± 0.04
biLSTM 64 units & 6 bins 0.86± 0.04 0.83± 0.04 0.73± 0.01 0.78± 0.01

The all-cell-lines model improves prediction for most cell lines
Finally, we tested the improvement of the prediction models that can be achieved by
merging the information about all cell lines. For that, we merged all three cell lines as the
input dataset and used the all-cell-lines model for the prediction on each cell line.
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The gain of scores was the highest for Schneider-2 and Kc167, while BG3 demonstrated
a slight decline in the prediction quality. We also note that biLSTM was less affected by the
addition of cross-cell-line data among all models.

In general, the quality of the prediction has mostly improved, suggesting the universality
of the biological mechanisms of the TAD formation between three cell lines (two embryonic
and one neuronal) of Drosophila.

DISCUSSION
Here, we developed the Hi-ChIP-ML framework for the prediction of chromatin folding
patterns for a set of input epigenetic characteristics of the genome. Using this framework,
we provide the proof of concept that incorporation of information about the context of
genomic regions is important for the TAD status and spatial folding of genomic regions.
Our approach allows for diverse biological insights into the process of TAD formation in
Drosophila, identified using the features importance analysis.

Firstly, we found that chromodomain protein Chriz, or Chromator (Eggert, Gortchakov
& Saumweber, 2004), might be an important player of the TAD formation mechanism.
Recurrent neural networks that used only Chriz as the input produced the highest scores
among all RNNs using single epigenetic marks (Figs. 4, 6). Moreover, the removal of Chriz
strongly influenced the prediction scores when four out of five selected ChIP features
were together (Fig. 5). All linear models assigned the highest regression weight to the
Chriz input signal. Further, with the L1 regularization Chriz was the only feature that
the model selected for prediction. This chromodomain protein is known to be specific
for the inter-bands of Drosophila melanogaster chromosomes (Chepelev et al., 2012), TAD
boundaries and the inter-TAD regions (Ulianov et al., 2016), while profiles of proteins
that are typically over-represented in inter-bands (including Chriz) correspond to TAD
boundaries in embryonic nuclei (Zhimulev et al., 2014). The binding sites of insulator
proteins Chriz and BEAF-32 are enriched at TAD boundaries (Hou et al., 2012; Hug et al.,
2017; Ramírez et al., 2018; Sexton et al., 2012). Wang et al. (2018) reported the predictor
of the boundaries based on the combination of BEAF-32 and Chriz. This might explain
BEAF-32 achieving the third rank of the predictability score.

Secondly, the application of the recurrent neural network using each of the selected
chromatin marks features separately (Fig. 6) has revealed a strong predictive power
of active histone modifications such as H3K4me2. This result aligns with the fact that
H3K4me2 defines the transcription factor binding regions in different cells, about 90% of
transcription factor binding regions (TFBRs) on average overlap with H3K4me2 regions,
and use H3K4me2 together with H3K27ac regions to improve the prediction of TFBRs
(Wang, Li & Hu, 2014). HistonemodificationsH3K4me3,H3K27ac,H3K4me1,H3K4me3,
H4K16ac, and other active chromatin marks are also enriched in inter-TADs and TAD
boundaries (Ulianov et al., 2016). In addition, H3K27ac and H3K4me1 distinguish poised
and active enhancers (Barski et al., 2007; Creyghton et al., 2010; Rada-Iglesias et al., 2011).

Thirdly, models using Su(Hw) and CTCF perform as expected given that, for the
prediction of TAD boundaries, the binding of insulator proteins Su(Hw) and CTCF have
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performed worse than other chromatin marks (Ulianov et al., 2016). In Drosophila, the
absence of strong enrichment of CTCF at TAD boundaries and preferential location of
Su(Hw) inside TADs implies that CTCF- and Su(Hw)-dependent insulation is not a major
determinant of TAD boundaries. Our results also demonstrate that the impact of Su(Hw)
and CTCF is low for both proteins.

Thus, our framework not only accurately predicts positions of TADs in the genome but
also highlights epigenetic features relevant for the TAD formation. Importantly, the use
of adjacent DNA bins created a meaningful biological context and enabled the training of
a comprehensive ML model, strongly improving the evaluation scores of the best RNN
model.

We note that there are few limitations to our approach. In particular, the resolution of
our analysis is 20 kb, while TAD properties and TAD-forming factors can be different at
finer resolutions (Wang et al., 2018; Rowley et al., 2017; Rowley et al., 2019). On the other
hand, the use of coarsemodels allowed us to test the approach and select the best parameters
while training the models multiple times efficiently. The training of the model for Hi-C
with the resolution up to 500 bp presents a promising direction for future work, leading
to the clarification of other factors’ roles in the formation of smaller TAD boundaries that
are beyond the resolution of our models.

We also note that transitional gamma is just one of multiple measures of the TAD
state for a genomic region. We motivate the use of transitional gamma by the fact that it
is a parameter-independent way of assessing TAD prominence calculated for the entire
map. This guarantees the incorporation of the information about the interactions of the
whole chromosome at all genomic ranges, which is not the case for other approaches
such as the Insulation Score (Crane et al., 2015), D-score (Stadhouders et al., 2018), and
Directionality Index (Dixon et al., 2012). On the other hand, the presented pipeline may be
easily transferred to predict these scores as target values, which is an important direction
for the extension of the work.

Here we selected features that had been reported to be associated with the chromatin
structure. We note there might be other factors contributing to the TAD formation that
were not included in our analysis. The exploration of a broader set of cell types might
be a promising direction for this research, as well as the integration of various biological
features, such as raw DNA sequence, to the presentedmodels. We also anticipate promising
outcomes of applying our approach to study the chromatin folding in various species except
for Drosophila.

The code is open-source and can be easily adapted to various related tasks.

CONCLUSIONS
To sum up, we developed an approach for analysis of a set of chromatin marks as predictors
of the TAD state for a genomic locus. We demonstrate a strong empirical performance of
linear regression, gradient boosting, and recurrent neural network prediction models for
several cell lines and a number of chromatin marks. The selected set of chromatin marks
can reliably predict the chromatin folding patterns in Drosophila.
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Recurrent neural networks incorporate the information about epigenetic surroundings.
The highest prediction scores were obtained by the models with the biologically
interpretable input size of 120 kb that aligns with the average TAD size for the 20 kb
binning in Drosophila. Thus, we propose that the explicit accounting for linearly ordered
bins is important for chromatin structure prediction.

The top-influencing TAD-forming factors of Drosophila are Chriz and histone
modification H3K4me2. The chromatin factors that influence the prediction most are
stable across the cell lines, which suggests the universality of the biological mechanisms
of TAD formation for two embryonic and one neuronal Drosophila cell line. On the
other hand, the training of models on all cell lines simultaneously generally improves the
prediction.

The implemented pipeline called Hi-ChIP-ML is open-source. The methods
can be used to explore the 3D chromatin structure of various species and may be
adapted to any similar biological problem and dataset. The code is freely available at:
https://github.com/MichalRozenwald/Hi-ChIP-ML.
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11 H3K9me3 4183 3013 312
12 H3K27ac 3757 3757 295
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16 H3K36me3 303 302 301
17 H4K16ac 320 318 316
18 RNA-polymerase-II 329 328 950
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Table 1. The modENCODE IDs of chromatin factors for three selected Drosophila cell lines.

MODENCODE IDS

NAME SCHNEIDER-2 KC167 DMBG3-C2

CHRIZ 279 277 275
CTCF 3749 3749 3671
SU(HW) 5147 3801 3717
BEAF-32 922 3745 3663
CP190 925 3748 3666
GAF 3753 3753 2651
H3K4ME1 3760 5138 2653
H3K4ME2 965 4935 2654
H3K4ME3 3761 5141 967
H3K9ME2 311 938 310
H3K9ME3 4183 3013 312
H3K27AC 3757 3757 295
H3K27ME1 3943 3942 3941
H3K27ME3 298 5136 297
H3K36ME1 3170 3003 299
H3K36ME3 303 302 301
H4K16AC 320 318 316
RNA-POLYMERASE-II 329 328 950



Chapter 6

Cumulative contact frequency of a chro-

matin region is an intrinsic property

linked to its function

Iterative correction of population Hi-C data is a routine practice that mitigates

uneven visibility of the genomic regions arising due to different coverage by restric-

tion fragments, different PCR amplification effectiveness, chromatin accessibility to

the reagents, and other experimental biases. It does so by iteratively normalizing

the contact matrix by a vector of sums of contacts for each region, what we call

marginal distribution of contacts or cumulative contact frequency (CCF). In other

words, CCF is an aggregated number of contacts for each genomic region, or genomic

bin.

However, some properties of CCF were not understood before us. In particular,

we did not know what potentially important biological signal is removed with it. In

this study, we deploy the correlation analysis of CCF on bulk Hi-C and demonstrate

that CCF is correlated with active states of chromatin and active compartment.

Thus, with iterative correction of bulk Hi-C data, we remove potentially relevant

biological information instead of only technical biases. Currently, there are no other

solutions to treat this fundamental problem of Hi-C data.

It is important to note that we calculate CCF correlations with other features

genome-wide after the aggregation of contacts for each genomic bin. Indeed, there is

another specialized application of correlation for compartments calling [Lieberman-
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its function

Aiden et al., 2009]. In compartment calling, the correlation of interaction patterns

is calculated for all pairs of genomic bins. This procedure retains mainly the signal

from long-range contacts; it does not allow the study of local chromatin features,

such as TADs and loops. Thus, its applications are limited to compartments calling

only. This approach should not be confused with our study.

Finally, I want to emphasize that in single-cell Hi-C, as opposed to bulk, we

usually do not normalize raw data by CCF because the data is too sparse to obtain

interpretable results after iterative correction. Thus, all critical experimental biases

of CCF are present in scHi-C data.

With this study, I explored possible ways to treat the marginal distributions

of contacts in individual cells in the future, the knowledge exploited in Chapter 7.

Additionally, the software developed here was used in the later studies. My con-

tribution to this work is shared with co-authors. Although they prepared the final

figures, I made the preliminary calculations and independently reproduced most of

the results presented here. I also wrote a substantial part of the text below.
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ABSTRACT
Regulation of gene transcription is a complex process controlled by many factors,
including the conformation of chromatin in the nucleus. Insights into chromatin
conformation on both local and global scales can be provided by the Hi-C (high-
throughput chromosomes conformation capture) method. One of the drawbacks of
Hi-C analysis and interpretation is the presence of systematic biases, such as different
accessibility to enzymes, amplification, and mappability of DNA regions, which all
result in different visibility of the regions. Iterative correction (IC) is one of the
most popular techniques developed for the elimination of these systematic biases.
IC is based on the assumption that all chromatin regions have an equal number
of observed contacts in Hi-C. In other words, the IC procedure is equalizing the
experimental visibility approximated by the cumulative contact frequency (CCF) for
all genomic regions. However, the differences in experimental visibility might be
explained by biological factors such as chromatin openness, which is characteristic
of distinct chromatin states. Here we show that CCF is positively correlated with active
transcription. It is associated with compartment organization, since compartment A
demonstrates higher CCF and gene expression levels than compartment B. Notably, this
observation holds for a wide range of species, including human,mouse, andDrosophila.
Moreover, we track the CCF state for syntenic blocks between human and mouse and
conclude that active state assessed by CCF is an intrinsic property of the DNA region,
which is independent of local genomic and epigenomic context. Our findings establish
a missing link between Hi-C normalization procedures removing CCF from the data
and poorly investigated and possibly relevant biological factors contributing to CCF.

Subjects Bioinformatics, Cell Biology, Computational Biology, Genomics, Molecular Biology
Keywords Hi-C, Chromatin, Compartments, Conformation capture

INTRODUCTION
The conformation of chromatin in the nucleus plays an important role in many
cellular processes, including the regulation of gene transcription and DNA replication
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(Cremer et al., 2006; Sexton et al., 2007; Bickmore, 2013; Armstrong et al., 2018; Fulco et al.,
2019). The regulation of gene expression often involves long-range chromatin interactions
between regulatory elements. Therefore, the spatial organization of chromatin could
provide insight into these complex regulatory processes.

Hi-C is a method for genome-wide chromosome conformation capture, which enables
the interrogation of all loci at once by combining DNA proximity ligation with high-
throughput sequencing (Lieberman-Aiden & Van Berkum, 2009). However, data obtained
by Hi-C have both technical and experiment-induced biases. Because of that, different
regions of the genome may have different visibility in the experiment, yielding systematic
errors in data interpretation. To correct for this bias, several approaches exist, reviewed
in Lajoie, Dekker & Kaplan (2014) and Schmitt, Hu and Ren (2016). Some recent advances
in the Hi-C data analysis allow for various modifications of the correction procedure, such
as probabilistic modeling (Yaffe & Tanay, 2011), Vanilla-Coverage (Lieberman-Aiden &
Van Berkum, 2009), binless normalization (Spill et al., 2019) and other. One of the most
commonly used methods for the elimination of systematic biases is the iterative correction
(IC) (Imakaev et al., 2012). In particular, it is used as a gold standard in the Hi-C data
processing package cooler (Abdennur & Mirny, 2019).

While IC is based on the assumption that all loci have equal visibility (observed
number of contacts), the differences in experimental visibility may be explained not
only by technical or experimental biases but also by biological factors. Notably, local
chromatin conformation correlates with functional characteristics of the genome, such as
individual histone modifications (Khrameeva et al., 2012) or their combinatorial patterns
that establish certain functionality for each region, chromatin states (Ernst et al., 2011).
Therefore, elimination of the differences in the visibility of chromatin regions could lead
to the loss of a biologically meaningful signal.

Features such as TADs, enriched contacts, and compartments are usually called in
normalized Hi-C interaction maps (Forcato et al., 2017). Experimental visibility is treated
as a purely methodological artifact that is assumed not to affect the detection of these
features. Other studies (Chandradoss, Guthikonda & Kethavath, 2020; Beagrie et al., 2017),
have previously highlighted the importance of experimental visibility of DNA regions in
Hi-C. However, to our knowledge, the relation of this genomic characteristic to expression
and chromatin states has not been analyzed. Here, we establish a relation between visibility
of DNA in Hi-C, assessed by the cumulative contact frequency (CCF), and chromatin
states in a range of species.

METHODS
Analysis of Hi-C data
Processing of Hi-C data

We analyzed Hi-C maps for human cell lines HMEC, HUVEC, and K562, mouse cell line
CH12-LX (Rao et al., 2014), and fruit fly (Ulianov et al., 2015) Schneider-2 (S2) cells (GEO
database, accession numbers GSE63525 and GSE69013, respectively). We downloaded
the processed Hi-C maps in the hic format from (Rao et al., 2014) and in the txt format

Samborskaia et al. (2020), PeerJ, DOI 10.7717/peerj.9566 2/15



from (Ulianov et al., 2015). TheHi-Cmaps were converted to thematrix format and binned
at the 1 Mb resolution. The main results were obtained for the human cell line HMEC and,
where possible, for other cell lines and species to demonstrate the generalizability of our
findings (see Supplemental Information).

To eliminate possible technical artifacts of Hi-C, such as single-sided reads and their
subsets, mirror reads (Galitsyna et al., 2017), even though the coverage profile for these
reads might be well-correlated with the coverage profile of double-sided reads (Imakaev et
al., 2012), we removed the diagonal 1-Mb elements of theHi-Cmaps. Additionally, for CCF
calculations, we removed the secondary diagonal corresponding to regions immediately
adjacent to each other and all contacts at the distance up to 5 Mb in order to remove the
area of high contact frequencies that could hinder subsequent analysis. Genomic regions
corresponding to rows and columns of Hi-C maps, which contained no values, were also
removed from all analyses.

We calculated the cumulative contact frequency (CCF) as the sum of contact frequencies
of each locus. To make CCF comparable between different cell lines and resolutions,
we further report it as the percentage from the maximum CCF in the Hi-C map. We
considered two types of CCF: whole-genome and inter-chromosomal (calculated for
inter-chromosomal Hi-C maps). Inter-chromosomal CCF was analyzed separately to
demonstrate that intra-chromosomal contacts do not drive our observations.

TAD and compartment calling

We used the Armatus algorithm (Filippova et al., 2014), as implemented in the Lavaburst
package (accessed 01-12-18, modularity scoring function and gamma parameter
1.0 (Abdennur, 2018)), for TAD calling in human Hi-C maps at the 1 Mb resolution.
We considered all segments smaller than three bins as interTAD regions. This allowed us
to classify the genomic bins into two categories: TAD and interTAD bins. We then used
these bins separately for the correlation analysis of CCF at TAD and interTAD genomic
regions.

In order to identify chromatin compartments, we performed computational analysis
as in Lieberman-Aiden & Van Berkum (2009). For that, we normalized the whole-genome
contact matrix by the expected contact frequency matrix, generated by averaging contact
probabilities for loci at each genomic distance. We then calculated the Pearson correlation
coefficients for each row/column pair of each element of the normalized matrix to obtain
the correlation matrix. The resulting correlation matrix was then used for the principal
component analysis (PCA). We used the first principal component of the resulting
correlation matrix as a compartment annotation for the genome.

Notably, the first principal component for human and mouse datasets demonstrated the
highest proportion of variance explained (PVE of the first component ranging from 0.60
for HMEC and HUVEC cells to 0.80 for K562 cells) and had a characteristic checkerboard
pattern in accordance with previous findings (Lieberman-Aiden & Van Berkum, 2009; Rao
et al., 2014). We were unable to detect compartments in the analyzed Drosophila dataset
(PVE for the first component of S2 cells is 0.11), probably due toDrosophila compartments
being much smaller than the selected dataset resolution (1 Mb).
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Functional characteristics
We estimated the functional characteristics of genomic regions by combinatorial patterns
of chromatin marks, or chromatin states, for human (Ernst et al., 2011), mouse (Yue
et al., 2014), and Drosophila (Kharchenko et al., 2011). These chromatin states were
originally derived from a set of ChIP-seq experiments for various chromatin factors by
Hidden Markov Models, and represented distinct states with specific ChIP-seq signatures.
Chromatin states are better for the assessment of functional properties of genomic regions
than individual marks from two perspectives. First, they represent an integrated view of
the region’s expression and functional characteristics; the experimental noise of individual
ChIP-seq experiments is smoothed out. Second, the analysis of chromatin states is simpler,
compared to a set of marks.

We retrieved fifteen states from Ernst et al. (2011) for the human genome, seven states for
themouse genome (Yue et al., 2014), andnine states for theDrosophila genome (Kharchenko
et al., 2011). The original datasets were downloaded in the format of a non-intersecting
set of genomic regions, with a unique chromatin state assigned to each region. In order to
match the Hi-C data uniform grid, we segmented the genome into non-overlapping 1-Mb
genomic windows, or bins, starting from the first position of each chromosome. For each
genomic bin, we then computed the fraction of coverage of each chromatin state. If the
initial chromatin state segment spanned the bin boundary, it was split into two parts by
the bin boundary and counted as contributing to both bins that it overlaps, proportionally
to the resulting fragments sizes. Thus, for each bin and chromatin state, we obtained a
single number from 0 to 1, reflecting the coverage of this bin by the chromatin state. Bins
containing no annotation of chromatin states were removed from further analysis.

The chromatin states for the human genome from Ernst et al. (2011) are named by
the principal function of the respective regions. We separated them into two groups
by functional activity. The first group is active chromatin: Active Promoter, Weak
Promoter, Inactive/poised Promoter, Strong Enhancer (2), Weak/poised Enhancer (2),
Weak Transcription, Transcriptional Elongation, Transcriptional Transition. The second
group is inactive chromatin: Repetitive/CNV (2), Heterochromatin.

Chromatin states for mouse from Yue et al. (2014) are named by the histone
modifications prevalent in the corresponding state. The active marks are represented
by: H3K4me3, H3K4me1/3, H3K4me1, H3K4me1+H3K36me3, and H3K36me3. Only
one state, H3K27me3, represents inactive chromatin, and one state is comprised of all
unmarked genomic regions.

The states for theDrosophila genome are called ’’colors’’ with functional load described in
the original publication (Kharchenko et al., 2011). Based on that, we separated Drosophila
states into two groups, active chromatin, comprized of RED (1) and MAGENTA (2)
colors, and inactive/repressed chromatin, comprized of DARKGRAY (6), DARKBLUE (7),
LIGHTBLUE (8), LIGHTGRAY (9).

Correlation analysis
To characterize correlation patterns, we used two approaches. First, we calculated
the Pearson correlation coefficients between CCF and chromatin state proportions
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in each region of the whole genome. To further validate the findings, we used
Stereogene (Stavrovskaya et al., 2017), a tool for the genome-wide feature correlation
analysis. We explored the relationship between pairs of characteristics of the genome,
such as CCF, GC-content, and proportion of each chromatin state. Stereogene divides
the input data into a series of fixed-length windows (adjustable parameter that was set
to 10 Mb), and the independent correlation is calculated for each set. The distribution
of these correlations allows one to observe the variation in the correlation coefficient
across the genome and to identify regions with non-typically high positive or negative
correlation. These distributions are compared against a randomized control derived from
the data (Stavrovskaya et al., 2017), and p-values are calculated for the observed correlations
in the real data.

Analysis of syntenic regions
Syntenic regions (size 2Mb and larger) were obtained from theMouse Genome Informatics
database (MGI) (Finger et al., 2011). The regions of homology with the human genome
(size 1Mb) were established using the LiftOver tool (Hinrichs, 2006). The contact frequency
for ambiguously mapped regions was split proportionally to the lengths of the mapped
fragments. For this analysis, we defined large chromosomes as chromosomes 1–9, and small
chromosomes as chromosomes 14–22. The Pearson correlation coefficient was calculated
between the human and mouse CCF.

RESULTS
Increased CCF is associated with active transcription
As active transcription requires binding of RNA polymerase and a variety of transcription
factors, increased gene expression is intuitively associatedwith loose packaging of chromatin
and thus better accessibility to the Hi-C reaction and higher CCF. At the same time, active
chromatin is involved in a larger number of interactions, including distant regulatory
ones. Thus, one might expect regions with high CCF to show high gene expression levels
and regions with low CCF to exhibit low gene expression. To validate this hypothesis, we
constructed a whole-genome Hi-C map combined with the functional state plot showing
the distributions of chromatin state proportions for each genomic region (Figs. 1A–1C).
Indeed, for all analyzed human cell lines (HMEC, HUVEC, and K562), the regions with
high CCF tend to be enriched in chromatin states corresponding to active transcription,
while regions showing low CCF are enriched in heterochromatin and repeats (Fig. 1C,
Fig. S1).

Chromosomes are known to segregate into two mutually exclusive types of chromatin,
referred to as ‘‘A’’ and ‘‘B’’ compartments (Lieberman-Aiden & Van Berkum, 2009). Active
chromatin corresponds to the A compartment, while repressed chromatin is enriched
within the B compartment. Using correlation analysis of normalized Hi-C maps and PCA,
we segregated the genome into two types of chromosomal regions. We observe that human
compartment A has high levels of CCF in HMEC and other human cell lines (Fig. 1D,
Fig. S2).
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Figure 1 Cumulative contact frequency (CCF) is positively correlated with active transcription. (A)
Schematic representation of inter-chromosomal (blue line) and total (orange line) CCF. (B) Cell lines and
organisms analyzed in this study. (C) Hi-C map combined with a plot of chromatin state proportions. Red
lines on the Hi-C map show regions of anomalously high CCF. Green lines separate individual chromo-
somes. Proportions of each chromatin state for each genomic region are displayed above the Hi-C map.
An enlarged fragment of the Hi-C map for chromosome 1 is shown below. (D) Dependency of CCF on
the first principal component. (E) Dependency of chromatin state proportions on CCF. (F-H) Correla-
tion patterns between chromatin states and CCF exhibit different features for large and small chromo-
somes. First 15 rows in the matrix correspond to the 15 chromatin states, rows 16-17 exhibit total and
inter-chromosomal CCF. Colors demonstrate the Pearson correlation coefficients. Whole-genome corre-
lation patterns (F), correlation patterns for chromosome 2 (G) and chromosome 22 (H) are shown. Hu-
man cell line HMEC.

Full-size DOI: 10.7717/peerj.9566/fig-1

CCF is linked to active chromatin states
To get a more precise estimate of dependencies between CCF and chromatin states, we
visualized the growth of chromatin state percentages at increasing CCF (Fig. 1E, HMEC
cells). We observe the growth of percentages of the chromatin states corresponding to
active transcription (Weak Transcription, Transcriptional Elongation, and Transcriptional
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Transition, in particular) with larger CCF. This result does not depend on the Hi-C data
resolution, as proved by the same analysis repeated for 1 Mb, 500 Kb, 250 Kb, 100 Kb, and
50 Kb resolutions (Fig. S3).

To further validate the result, we calculated the correlations between each of the
chromatin states and CCF (Fig. 1F) enabling comparative analysis of different genomic
regions. CCF is positively correlated with active chromatin state proportions in HMEC
cells (correlation coefficient 0.53). The same result is obtained for other human cell lines
(Fig. S1): HUVEC (correlation coefficient 0.47) and K562 (correlation coefficient 0.35).
As an additional proof of concept, the homogeneity of correlations across the genome was
confirmed for the cell line HMEC (Fig. S4) with the Stereogene tool (Stavrovskaya et al.,
2017). Notably, the correlation patterns are similar for large chromosomes but different
for smaller ones (Fig. 1F, Fig. S5).

To show that the dependencies between CCF and chromatin states are not specific to
humans, we additionally analyzed the Drosophila cell line S2 and mouse cell line CH12-LX.
ForDrosophila and mouse, the chromatin state annotations (Kharchenko et al., 2011) differ
from that in human. In particular, there are fewer chromatin states, and their functional
characteristics are different. However, for Drosophila, we observe a positive correlation of
CCF with chromatin states RED (1) and MAGENTA (2) (Fig. S6), which are representative
of active chromatin with expressed genes. For mouse, we observe a positive correlation of
CCF with all chromatin states but the one characterized by absence of chromatin marks
(Fig. S7).

TADs and interTAD regions demonstrate different patterns for the human genome
(Fig. S8). TAD CCF is correlated with active chromatin and anti-correlated with inactive
chromatin, while interTAD CCF is correlated with heterochromatin and insulator
chromatin states. The latter fact might be related to the interTAD insulator property. By
contrast to humans, TADs and interTAD regions have only slight differences in Drosophila
(Fig. S9), where both TAD and interTAD CCF demonstrate a positive correlation with
active chromatin states and a negative correlation with inactive chromatin states.

CCF association with active chromatin is not driven by GC-content
The observed correlation between CCF and chromatin states is not necessarily direct and
causative, as there might exist other genetic or epigenetic factors underlying both CCF
and active chromatin state. If there is such a confounding factor, then accounting for its
influence would diminish the observed correlations.

One possible type of confounders are GC-content and chromosome length. Our initial
analysis demonstrates that GC-content and chromosome length are indeed both correlated
with contact frequency, and the dependencies are linear or nearly linear (Fig. S10–Fig. S11).
Inter-chromosomal CCF decreases with chromosome length, which indicates that small
chromosomes tend to make more inter-chromosomal contacts than large chromosomes,
in line with previous studies showing that small chromosomes are gene-rich and tend to
interact with each other (Fig. S11A) (Lieberman-Aiden & Van Berkum, 2009). In particular,
the correlation between the chromosome length and an average inter-chromosomal CCF
is -0.42 for the cell line HMEC.
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To test whether CCF is correlated with active chromatin state in the absence of these
confounding factors, we performed a simple division of CCF by these factors and re-
calculated the correlation plots. CCF normalized by the chromosome length or by the GC-
content demonstrated the same correlation patterns as non-normalized CCF (Figs. S10B,
S11B). To further validate this observation, we applied linear regression to predict CCF
from the GC-content. The correlation patterns are weakened, but still the same as for
non-normalized CCF (Fig. S10B). Further, normalization of CCF by the chromosome
length and subsequent removal of the GC-content effect shows that, even combined, the
chromosome length and GC-content cannot explain the observed correlation patterns
(Figs. S10B, S11B).

CCF for di�erent chromosomes reveals hidden variability in
correlation patterns
Each chromosome has its own unique properties, which cannot be detected while
considering the correlation pattern for the whole genome. Since each chromosome
differs in contact frequency preferences, the correlation patterns calculated for separate
chromosomes may also differ. Indeed, while the first nine chromosomes show a correlation
pattern similar to that of thewhole genome, smaller chromosomes exhibit individual unique
correlation patterns (Figs. 1G–1H, Fig. S5).

One possibility is that we have observed a statistical artifact, caused simply by differences
in the sample size, as, naturally, more fragments are considered for large chromosomes
than for small ones. However, downsampling large chromosomes to the size of small
chromosomes demonstrates that correlations of small chromosomes still are outliers
(Figs. 2A–2B, Fig. S12). It suggests that the observed effects for small chromosomes are not
due to the small sample size.

We have noticed that another important factor might be the size of centromeres, which
might have different sizes hence forming different fractions of chromosomes. We have
excluded the centromere regions and demonstrated that the observed correlation patterns
are not related to differences in the centromere size (Fig. S13).

Notably, for individual chromosomes of theDrosophila genome, the correlation patterns
are more similar (Fig. S6). However, a direct comparison with the results for human is
impossible due to differences in chromatin state annotations between the human and
Drosophila datasets.

Comparison of CCF in syntenic blocks between mouse and human
Small chromosomes might show unique correlation patterns due to the impact of specific
evolutionary conserved regions, such as syntenic blocks. To test this hypothesis, we
annotated syntenic regions and calculated CCF for them in the human and mouse datasets.

Indeed, syntenic regions of short chromosomes demonstrate correlations between
contact frequency and chromatin states that are not characteristic of syntenic blocks in
long chromosomes (Figs. 2A–2B, note the difference between real correlations (red line)
and controls (blue bars)). Moreover, syntenic regions have similar preferences in contact
frequencies between two species (Figs. 2C–2E).
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Figure 2 CCF is a position-independent inherent property of chromatin regions conserved in syntenic
transitions. (A–B) Distribution of correlations between CCF and active promoter state (A) or heterochro-
matin state (B) for random fragments of chromosome 2 (blue bars) is compared with the real correlation
for chromosome 22 (red line). Human cell line HMEC. (C) Schematic representation of a syntenic region
between two chromosomes of the human and mouse genomes. Human cell line HMEC and mouse cell
line CH12-LX. All syntenic regions of size 1 Mb are obtained by mapping the mouse genome to the hu-
man genome using the Liftover tool. (D–G) CCF in human versus CCF in mouse for syntenic regions in
large human chromosomes and large mouse chromosomes (D), small human chromosomes and small
mouse chromosomes (E), large human chromosomes and small mouse chromosomes (F), small human
chromosomes and large mouse chromosomes (G). Each dot represents a syntenic region (size 1 Mb).

Full-size DOI: 10.7717/peerj.9566/fig-2
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To understand how syntenic regions inherit the properties during genomic
rearrangements in evolution, we identified syntenic blocks located in small chromosomes
of the human genome, but in large chromosomes of the mouse genome, and visa versa.
Notably, these regions exhibit similar CCF in the human andmouse genomes (Figs. 2F–2G,
the correlation between the contact frequencies in the human and mouse genomes ranges
from 0.82 to 0.83). Thus, the observed correlation preferences are intrinsic properties of
syntenic blocks as they do not depend on the location of the region in the genome and are
inherited despite evolutionary rearrangements between chromosomes (Fig. 2, Fig. S14–Fig.
S15).

DISCUSSION
Data normalization is a typical step of Hi-C data processing that corrects hidden biases
of the interaction signal (Lyu, Liu & Wu, 2019; Calandrelli et al., 2018; Sauria et al., 2015).
One of the most widely used normalization methods is the iterative correction (IC),
which assumes equal visibility of each genomic region in the experiment. Various features
of Hi-C maps, such as TADs, enriched contacts and compartments, are called after the
step of normalization. However, the equal visibility assumption might result in removal
of biologically relevant information obtained from Hi-C. We sought to dissociate the
technical and biological signal that is removed by IC.

Here, we introduce cumulative contact frequency (CCF) for a genomic region as the
number of contacts for a region in a non-normalized Hi-C map. We then analyze CCF
properties, including correlation with biologically meaningful signals such as chromatin
compartments, transcriptional activity, and chromatin states.

We observe that for human cells, large CCF is predictive of active chromatin and
compartment A. This result holds for multiple resolutions of the Hi-C data and several
human cell types. We also have used the Stereogene approach (Stavrovskaya et al., 2017) to
demonstrate that the correlations are reproduced for the subsets of genomic regions.

Moreover, positive correlation of CCF with active chromatin states holds for Drosophila
and mouse, suggesting broad generalizability of our conclusions. Notably, we use human
and mouse Hi-C that were mapped by Rao et al. (2014) and Drosophila Hi-C that was
mapped byUlianov et al. (2015)with different data processing pipelines. We find it striking
that the general correlations of CCF are independent of the details of the upstream data
processing, which is supportive of the biological importance of CCF. Parallel analysis of
CCF properties in multiple cell types demonstrates robustness of the observed correlations,
suggests a general similarity between cell types, and further supports the proposed relevance
of the CCF signal.

To further separate the biologically relevant signal of CCF from possible technical
artifacts, we have considered confounding factors that might affect our analysis. GC-
content is a well-known source of variability in the genomic coverage for sequencing
experiments, Hi-C, in particular (Yaffe & Tanay, 2011). We have demonstrated that CCF
is predictive of active chromatin even after the removal of this confounding factor.

One of the first observations obtained using Hi-C method was the tendency
of small chromosomes to interact with each other while being more active
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(Lieberman-Aiden & Van Berkum, 2009). Thus, CCF might be different for chromosomes
of different sizes. In order to control for that, we have used CCF normalized by the
chromosome size and demonstrated reproducibility of the observed correlation patterns.

Surprisingly, we have observed that CCF of small and large chromosomes differs. We
suggest that this difference might happen not because of the chromosome size, but because
of the intrinsic properties of the regions. First, we have confirmed it by downsampling
large chromosomes to the size of small ones. Second, we have compared CCF in syntenic
regions between the human and mouse genomes and observed that CCF does not change
after translocation between large and small chromosomes.

There are still some other possible technical confounding factors that might contribute
to the CCF properties, such as the density of restriction fragments in a genomic bin,
mappability of the region, chromatin openness as assessed by DNase-seq or ATAC-seq
(Yaffe & Tanay, 2011). These factors remain out of scope of the present research.

Importantly, all these observations do not allow us to introduce a causative link between
chromatin activity and CCF. We also do not account for the evolutionary history and
sequence conservation of corresponding regions, which might reveal the reasons for our
cross-species observations. Extensive further research is required to shed the light on these
problems.

Nevertheless, our results allow to suggest that removal of CCF in the IC procedure is
currently understudied. CCF contains biologically relevant information that is not affected
by GC-content and chromosome size. Currently, the effect of removal of this information
on calling of Hi-C features, such as TADs, enriched contacts, and compartments, has not
been studied. We propose to take the Hi-C normalization step with caution and interpret
Hi-C features that are robust to the removal of CCF and present in both non-normalized
and normalized maps.

CONCLUSIONS
In this work, we dissociate the technical and biological signal that is removed by the iterative
correction (IC), one of the most widely used methods of Hi-C data normalization. For
that, we study cumulative contact frequency (CCF) defined as the number of contacts for a
genomic region in a non-normalized Hi-C map. We demonstrate that CCF has significant
biological properties, such as correlation with chromatin compartments, transcriptional
activity, and active chromatin states. These properties are independent of GC-content
and chromosome sizes. They can be generalized to a broad range of species (human,
mouse, andDrosophila). Surprisingly, these properties are inherited and preserved between
syntenic regions of human and mouse genomes. We conclude that the importance of CCF
is underestimated, and it should be removed from Hi-C maps with caution.
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Supplementary Materials 

 

Supplemental Figure S1. Whole-genome correlation patterns for three human cell lines. 
Chromatin states for the human cell lines are correlated with the total CCF and inter-
chromosomal CCF. First 15 rows in the matrix correspond to the 15 chromatin states, rows 16-17 
exhibit whole-genome and inter-chromosomal CCF. Colors show the Pearson correlation 
coefficients. Note that correlation patterns are similar for whole-genome and inter-chromosomal 
CCF.  



 

Supplemental Figure S2. Dependency of CCF on the first principal component. The first 
principal component was calculated using PCA analysis of the Hi-C maps at 1 Mb resolution in 
three human cell lines: HMEC, HUVEC, and K562. 



 

Supplemental Figure S3. Dependency of chromatin state proportions on CCF. CCF and 
chromatin states were calculated for five resolutions (bin sizes) – 1 Mb, 500 Kb, 250 Kb, 100 Kb 
and 50 Kb. Human cell line HMEC. 



 

Supplemental Figure S4. Validation of correlations between chromatin states 1 to 15 and 
whole-genome CCF with the Stereogene tool. The distribution of real correlations (blue line) is 
compared with randomly selected windows (red line). Stereogene parameters except for the 
window size (size 10 Mb) were set to default. For each chromatin state, the top panel shows the 
distribution of correlations, while the bottom panel shows the cross-correlation function. Human 
cell line HMEC. 



 

Supplemental Figure S5. Correlation patterns for different human chromosomes. Note that 
correlation patterns are similar for large chromosomes, but are different for small chromosomes. 
Human cell line HMEC. 



 

Supplemental Figure S6. Correlation patterns of whole-genome CCF and chromatin states 
in Drosophila. The correlation patterns are similar for the whole genome and individual 
chromosomes. Drosophila cell line S2-DGRC. 






Supplemental Figure S7. Correlation patterns of whole-genome CCF, interCCF, and 
chromatin states in mouse. Mouse cell line CH12-LX. Resolution of the Hi-C map is 1 Mb. 



 

Supplemental Figure S8. Correlation patterns for TAD and interTAD regions in human. 
(A) Correlation patterns between two types of CCF and chromatin states for the whole-genome 
TADs (found using the Armatus algorithm, gamma = 1.0). (B) Correlation patterns for the 
whole-genome interTADs (all regions between TADs found using the Armatus algorithm, 
gamma = 1.0). Human cell line HMEC. 



 

Supplemental Figure S9. Correlation patterns for TAD and interTAD regions in 
Drosophila. (A) Correlation patterns between whole-genome CCF and chromatin states (states 1 
to 9) for the whole-genome TADs (found using the Armatus algorithm, gamma = 1.0). (B) 
Correlation patterns for the whole-genome interTADs (all regions between TADs found using the 
Armatus algorithm, gamma = 1.0). Drosophila cell line S2-DGRC. 



 

Supplemental Figure S10. Whole-genome correlation patterns are not driven by GC-
content. (A) GC-content and whole-genome CCF are highly correlated (Pearson’s R=0.41). 
Orange circles show GC-content values in each genomic 1 Mb bin. The green line represents the 
linear regression, which was further used to predict CCF in B. The area around the line 
represents the confidence interval. (B) The Pearson correlation coefficients between the 15 
chromatin states, GC-content, CCF, CCF divided by the GC-content, and CCF predicted by the 
GC-content using the linear regression shown in A. 



 

Supplemental Figure S11. Whole-genome correlation patterns are not driven by 
chromosome length. (A) Correlation of inter-chromosomal CCF with the chromosome length 
(an average length of two interacting chromosomes). The Pearson correlation coefficient is 
specified on the plot. (B) The Pearson correlation coefficients between the 15 chromatin states, 
GC-content, CCF normalized by the chromosome length, and CCF normalized by the 
chromosome length with subsequent removal of the GC-content dependency by additional 
normalization for GC-content. Human cell line HMEC.  



 

Supplemental Figure S12. Correlation for the human chromosome 22 is compared with 
correlations for random fragments of a large chromosome equal in length (50 Mb). (A) 
Distribution of correlations between inter-chromosomal CCF and active promoter chromatin 
state for random fragments of chromosomes 1-4 (blue histograms) compared with the real 
correlation for the chromosome 22 (red line). (B) Distribution of correlations between inter-
chromosomal CCF and heterochromatin state for random fragments of chromosomes 1-4 (blue 



histograms) compared with the real correlation for the chromosome 22 (red line). Human cell 
line HMEC. !



 

Supplemental Figure S13. Correlation patterns for the whole human genome with 
centromeres excluded. Correlation patterns between total CCF and chromatin states 1 to 15 for 
the whole genome with centromeres excluded at each chromosome. Human cell line HMEC. 



 

Supplemental Figure S14. Contact frequency for chromatin regions is conserved in syntenic 
transitions between the mouse and human genomes. (A) CCF in human versus CCF in mouse 
for syntenic regions in large human chromosomes and large mouse chromosomes. (B) CCF in 
human versus CCF in mouse for syntenic regions in small human chromosomes and small mouse 
chromosomes.  (C) CCF in human versus CCF in mouse for syntenic regions in large human 
chromosomes and small mouse chromosomes. (D) CCF in human versus CCF in mouse for 
syntenic regions in small human chromosomes and large mouse chromosomes. Each dot 
represents a syntenic region of size 2 Mb and larger obtained from the Mouse Genome 
Informatics database (MGI). Cell lines HMEC (human) and CH12-LX (mouse). Pearson’s R is 
specified on each plot. !



 

Supplemental Figure S15. Contact frequency for syntenic regions in the mouse and human 
genomes. CCF in human versus CCF in mouse is shown. (A) All syntenic regions are obtained 
by mapping the mouse genome to the human genome using the Liftover tool. Each dot represents 
a syntenic region (size 1 Mb). (B) All syntenic regions of size 2 Mb and larger obtained from the 
Mouse Genome Informatics database (MGI) are displayed. Each dot represents a syntenic region. 
Cell lines HMEC (human) and CH12-LX (mouse).



Chapter 7

Order and stochasticity in the folding

of individual Drosophila genomes

The previous studies developed our understanding of bulk Hi-C data and the primary

factors affecting chromatin structure in Drosophila cell population. These results

guided my thought and experiments in the major project dedicated to single-cell

chromatin structure analysis.

The whole project was initiated by the group of Prof. Razin, who obtained the

raw data at IGB RAS and performed single-cell Hi-C (scHi-C) Drosophila cells. In

fact, it was single-nucleus Hi-C (snHi-C), which is sometimes referred to as scHi-C,

by the family name of similar experimental techniques.

When we acquired the data, four works on scHi-C existed, all of them in mammals

and produced with different protocols. Thus, my role was to design the computa-

tional experiments and the tools for them from scratch. The complete description of

my research path can be found in the main text of this chapter, Methods (starting

from "snHi-C raw data processing and contact annotation" to "Robustness of TAD

calling") and Supplementary materials (Figures 1 to 20, excluding Figure 4e-k and

7c-d).

This study had important theoretical outcomes. First of all, we discovered com-

partments and TADs in individual cells of Drosophila. Importantly, they are present

when we compare to random background model that accounts for the marginal dis-

tribution of contacts, or CCF. The following surprising conclusion is the orderliness

of TADs as compared to mammalian cells. TADs boundaries tend to be located
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Chapter 7. Order and stochasticity in the folding of individual Drosophila genomes

at the same positions in individual cells, which coincides with enrichment of active

chromatin factors and depletion of inactive ones. Moreover, active chromatin par-

takes in long-range interactions, which are substantially variable between individual

cells. It allowed us to conclude that stable TADs are formed of inactive chromatin,

which has an increased number of short-range interactions.
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Mammalian and Drosophila genomes are partitioned into topologically associating domains

(TADs). Although this partitioning has been reported to be functionally relevant, it is unclear

whether TADs represent true physical units located at the same genomic positions in each

cell nucleus or emerge as an average of numerous alternative chromatin folding patterns in a

cell population. Here, we use a single-nucleus Hi-C technique to construct high-resolution Hi-

C maps in individual Drosophila genomes. These maps demonstrate chromatin compart-

mentalization at the megabase scale and partitioning of the genome into non-hierarchical

TADs at the scale of 100 kb, which closely resembles the TAD profile in the bulk in situ Hi-C

data. Over 40% of TAD boundaries are conserved between individual nuclei and possess a

high level of active epigenetic marks. Polymer simulations demonstrate that chromatin

folding is best described by the random walk model within TADs and is most suitably

approximated by a crumpled globule build of Gaussian blobs at longer distances. We observe

prominent cell-to-cell variability in the long-range contacts between either active genome loci

or between Polycomb-bound regions, suggesting an important contribution of stochastic

processes to the formation of the Drosophila 3D genome.
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The principles of higher-order chromatin folding in the
eukaryotic cell nucleus have been disclosed thanks to the
development of chromosome conformation capture tech-

niques, or C-methods1,2. High-throughput chromosome
conformation capture (Hi-C) studies demonstrated that chro-
mosomal territories were partitioned into partially insulated
topologically associating domains (TADs)3–5. TADs likely coin-
cide with functional domains of the genome6–8, although the
results concerning the role of TADs in the transcriptional control
are still conflicting6,9–12. Analysis performed at low resolution
suggested that active and repressed TADs were spatially segre-
gated within A and B chromatin compartments13,14. However,
high-resolution studies demonstrated that the genome was par-
titioned into relatively small compartmental domains bearing
distinct chromatin marks and comparable in sizes with TADs15.
In mammals, the formation of TADs by active DNA loop
extrusion partially overrides the profile of compartmental
domains15,16. Of note, TADs identified in studies of cell popu-
lations are highly hierarchical (i.e., comprising smaller sub-
domains, some of which are represented by DNA loops5,17).

Partitioning of the genome into TADs is relatively stable across
cell types of the same species3,4. The recent data suggest that
mammalian TADs are formed by active DNA loop extrusion18,19.
The boundaries of mammalian TADs frequently contain con-
vergent binding sites for the insulator protein CTCF that are
thought to block the progression of loop extrusion19–21. Con-
tribution of DNA loop extrusion in the assembly of Drosophila
TADs has not been demonstrated yet22; thus, Drosophila TADs
might represent pure compartmental domains23. Large TADs in
the Drosophila genome are mostly inactive and are separated by
transcribed regions characterized by the presence of a set of active
histone marks, including hyperacetylated histones5,24. Some
insulator/architectural proteins are also overrepresented in Dro-
sophila TAD boundaries24–26, but their contribution to the for-
mation of these boundaries has not been directly tested. The
results of computer simulations suggest that Drosophila TADs are
assembled by the condensation of nucleosomes of inactive
chromatin24.

The current view of genome folding is based on the population
Hi-C data that present integrated interaction maps of millions of
individual cells. It is not clear, however, whether and to what
extent the 3D genome organization in individual cells differs from
this population average. Even the existence of TADs in individual
cells may be questioned. Indeed, the DNA loop extrusion model
considers TADs as a population average representing a super-
imposition of various extruded DNA loops in individual cells18.
Heterogeneity in patterns of epigenetic modifications and tran-
scriptomes in single cells of the same population was shown by
different single-cell techniques, such as single-cell RNA-seq27,
ATAC-seq28, and DNA-methylation analysis29. Studies per-
formed using FISH demonstrated that the relative positions of
individual genomic loci varied significantly in individual cells30.
The first single-cell Hi-C study captured a low number of unique
contacts per individual cell31 and allowed only the demonstration
of a significant variability of DNA path at the level of a chro-
mosome territory. Improved single-cell Hi-C protocols32,33
allowed to achieve single-cell Hi-C maps with a resolution of up
to 40 kb per individual cell32,34 and investigate local and global
chromatin spatial variability in mammalian cells, driven by var-
ious factors, including cell cycle progression33. Of note, TAD
profiles directly annotated in individual cells demonstrated pro-
minent variability in individual mouse cells32. The possible con-
tribution of stochastic fluctuations of captured contacts in sparse
single-cell Hi-C matrices into this apparent variability was not
analyzed32. More comprehensive observations were made when
super-resolution microscopy (Hi-M, 3D-SIM) coupled with high-

throughput hybridization was used to analyze chromatin folding
in individual cells at a kilobase-scale resolution. These studies
demonstrated chromosome partitioning into TADs in individual
mammalian cells and confirmed a trend for colocalization of
CTCF and cohesin at TAD boundaries, although the positions of
boundaries again demonstrated significant cell-to-cell varia-
bility35. Condensed chromatin domains coinciding with popula-
tion TADs were also observed in Drosophila cells36,37. In
accordance with previous observations made in cell population
Hi-C studies24, the obtained results suggested that partitioning of
the Drosophila genome into TADs was driven by the stochastic
contacts of chromosome regions with similar epigenetic states at
different folding levels38.

Although studies performed using FISH and multiplex hybri-
dization allowed to construct chromatin interaction maps with a
very high resolution35, they cannot provide genome-wide infor-
mation. Here, we present single-nucleus Hi-C (snHi-C) maps of
individual Drosophila cells with a 10-kb resolution. These maps
allow direct annotation of TADs that appear to be non-
hierarchical and are remarkably reproducible between indivi-
dual cells. TAD boundaries conserved in different cells of the
population bear a high level of active chromatin marks sup-
porting the idea that active chromatin might be among deter-
minants of TAD boundaries in Drosophila24.

Results
High-resolution single-nucleus Hi-C reveals distinct TADs in
Drosophila genome. To investigate the nature of TADs in single
cells and to characterize individual cell variability in Drosophila
3D genome organization, we performed single-nucleus Hi-C
(snHi-C)32 (Fig. 1a) in 88 asynchronously growing Drosophila
male Dm-BG3c2 (BG3) cells (Supplementary Fig. 1a) in parallel
with the bulk BG3 in situ Hi-C analysis and obtained 2–5 million
paired-end reads per single-cell library (for the data processing
workflow, see Supplementary Fig. 1b). To select the libraries for
deep sequencing, we subsampled the snHi-C data to estimate
the expected number of unique contacts that could be extracted
from the data (Supplementary Fig. 2a; also see “Methods”).
Twenty libraries were additionally sequenced with 16.7–36.5
million paired-end reads, and we extracted 8032–107,823 unique
contacts per cell (Supplementary Table 1). We developed a cus-
tom pairtools-based approach termed ORBITA (One Read-Based
Interaction Annotation) (Fig. 1b) to eliminate artificial contacts
generated by spontaneous template switches of the Phi29 DNA-
polymerase39,40 (Fig. 1c, d) during the whole-genome amplifica-
tion (WGA) step (see “Methods”). In contrast to the hiclib32,41
(see “Methods”) annotations showing up to 20 contacts per
restriction fragment (RF) in a single nucleus, ORBITA detects one
or two unique contacts per RF (Fig. 1d, Supplementary Fig. 2b, c).
We tested ORBITA by analyzing previously published snHi-C
data from murine oocytes32 and found that ORBITA allowed us
to filter out artificial junctions in this dataset (Supplementary
Fig. 3a). Notably, hiclib and ORBITA detect a similar number of
contacts per RF in single-cell Hi-C data obtained without the
usage of Phi29 DNA-polymerase33 (Supplementary Fig. 3b).
Thus, ORBITA efficiently filters out artificial Phi29 DNA-
polymerase-produced DNA chimeras from snHi-C libraries.

We then constructed snHi-C maps with a resolution of up to
10 kb (Fig. 1e). In single nuclei, the dependence of the contact
probability on the genomic distance, Pc(s), has a shape
comparable to that observed in the bulk BG3 in situ Hi-C
regardless of the number of captured contacts (Fig. 1f), indicating
that the key steps of the snHi-C protocol such as fixation, DNA
fragmentation, and in situ ligation were performed successfully.
To estimate the overall quality of the snHi-C libraries, we first
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calculated the number of captured contacts per cell. On average,
we extracted 33,291 unique contacts from individual nuclei that
represented 5% of the theoretical maximum number of contacts
and corresponded to four contacts per 10-kb genomic bin (see
“Methods”); in the best cell, 17% of contacts were recovered
(Fig. 2a, b, Supplementary Table 1). Relying on the number of
captured contacts, we then estimated the proportion of the
genome available for the downstream analysis. At 10-kb

resolution, ~82% of the genome on average was covered with
contacts in each individual cell, and 67% of genomic bins
established more than 1 contact (Fig. 2c). Notably, in the
previously published mouse snHi-C datasets, ~0.6% of theoreti-
cally possible contacts were detected on average (Fig. 2b). Because
the top-20 mouse snHi-C libraries from Flyamer et al.32
demonstrated a comparable genome coverage with contacts and
a number of contacts per 10-kb genomic bin (Fig. 2d), we could
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Boxplots represent the median, interquartile range, maximum and minimum. e Distributions of the number of contacts in windows of fixed size (100 kb for
the Cell 4, and 400 kb for the Cell 6; chr2R) in snHi-C data and shuffled maps for two individual cells (blue bars). The red curve shows the Poisson
distribution expected for an entirely random matrix with the same number of contacts. P-values were estimated by the goodness of fit test. n= 211 and 52
windows for the cell 4 and for the cell 6, respectively.
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directly compare the Drosophila and mouse snHi-C maps (see
below). Next, to verify that these sparse snHi-C matrices were not
generated by random fluctuations of captured contacts, we
calculated the distributions of the contact numbers in sliding
non-intersecting windows of different fixed sizes. In contrast to
the shuffled maps, these distributions in the original data are
distinct from the Poisson shape typical for random matrices
(Fig. 2e, see “Methods” and Supplementary Fig. 4). We conclude
that the snHi-C maps obtained here are of acceptable quality and
indeed reflect specific patterns of spatial contacts in chromatin.

Visual inspection of snHi-C maps revealed distinct 50–200 kb
contact domains that closely recapitulated the TAD profile in the
bulk BG3 in situ Hi-C data (Fig. 3a). To call TADs in snHi-C data
systematically, we used the lavaburst Python package with the
modularity scoring function32. For each nucleus, we performed
TAD segmentation in snHi-C maps of 10-kb resolution at a broad
range of the gamma (γ) master parameter values (Fig. 3b, see
“Methods” and Supplementary Fig. 5). Of note, the majority of
the identified boundaries were resistant to the data down-
sampling, indicating that these boundaries did not result from
fluctuations of captured contacts in sparse snHi-C matrices
(Supplementary Fig. 6). In individual nuclei, we identified
554–1402 TADs with a median size of 60 kb covering 40–76%
of the genome at the γ value corresponding to the maximal
number of TADs called (γmax). At 10–20 kb resolution, the
median size of Drosophila TADs was previously estimated as
100–150 kb5,24,25. To obtain a robust TAD profile, we used γmax/2

corresponding to TADs with a median size equal to that for
TADs identified in the Drosophila cell population according to
the previously published data24. At γmax/2, we identified
510–1175 TADs with a median size ~90 kb covering up to 89%
of the genome in best snHi-C matrices (Supplementary Fig. 5).

To additionally validate the single-cell TAD segmentations, we
utilized a modification of the recently published42 spectral
clustering method based on the non-backtracking random walks
(NBT; see “Methods”). The non-backtracking operator is used to
resolve communities in sufficiently sparse networks42,43, thus
providing a useful tool for TAD annotation in single-cell Hi-C
matrices. The method performs dimensionality reduction of the
network using the leading eigenvectors of the non-backtracking
operator, which has a distinctive disc-shape complex spectrum
with a number of isolated eigenvalues on the real axis
(Supplementary Fig. 7d). The resulting average size of the
detected TADs was 110 kb, closely matching the typical TAD size
in the population-averaged data and in the single-cell modularity-
derived segmentations. The mean number of detected TADs per
cell (855 and 920 for the NBT and modularity, respectively) and
single-cell TAD segmentations were remarkably similar between
the two methods (Supplementary Fig. 7a) and demonstrated the
same epigenetic properties (Supplementary Fig. 7c, see below).
Moreover, the modularity-derived TAD boundaries were robust
to the data resolution changes. On average, 84.8% of modularity-
derived boundaries at the 20-kb resolution and 78.6% of
boundaries at the 40-kb resolution have a matching boundary
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Fig. 3 Stable TAD boundaries are defined by high level of active epigenetic marks. a Example of a genomic region on Chromosome 2L with a high
similarity of TAD profiles (black rectangles) in individual cells and bulk BG3 in situ Hi-C data. Number of unique captured contacts is shown in brackets.
Positions of TAD boundaries identified in bulk BG3 in situ Hi-C data (top panel) are highlighted with gray lines. Here and below, TADs are identified using
lavaburst software. b Dependence of the contact domain (CD) size (green), genome coverage by CDs (orange), and number of identified CDs (violet) on
the γ value in bulk (left) and single-cell (right) BG3 Hi-C data. γ values selected for the calling of sub-TADs (γmax) and TADs (γmax/2) are marked with
vertical gray lines. c Percentage of TAD boundaries shared between single cells, bulk BG3 in situ Hi-C, and merged snHi-C data. d Percentage of shared
boundaries in real snHi-C, shuffled control maps, and bootstrap expected. Boxplots represent the median, interquartile range, maximum and minimum. **p
< 0.01 using the Mann–Whitney two-sided test. n= 380 comparisons between individual cells. e Percentage of shared boundaries in real snHi-C for
Drosophila, murine oocytes from Flyamer et al.32 and G2 zygote pronuclei from Gassler et al.34. Boxplots represent the median, interquartile range,
maximum and minimum. n= 380 comparisons between individual cells. f Heatmaps of active (H3K4me3, RNA Polymerase II) and inactive (H1 histone)
chromatin marks centered at single-cell TAD boundaries from different groups (±100 kb). Bulk—conventional BG3 in situ Hi-C; merged—aggregated snHi-
C data from all individual cells; stable and unstable—boundaries found in more and in less than 50% of cells, respectively; cell-specific—boundaries
identified in any one individual cell; TAD bins—genomic bins from TAD interior; random—randomly selected genomic bins.
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at the 10-kb resolution. This is significantly higher than the 43
and 58% expected at random, respectively. Taken together, these
results indicate that TAD profiles are robust and, thus, acceptable
for the downstream analysis.

TADs are largely conserved in individual Drosophila nuclei,
and stable TAD boundaries are enriched with active chroma-
tin. We found that TADs tended to occupy similar positions in
different cells regardless of the number of captured contacts
(Fig. 3a, Supplementary Fig. 8). On average, 46.6% of population-
identified TAD boundaries were present in each of the single cells
analyzed (Fig. 3c), and 39.5% of boundaries were shared between
different cells in pairwise comparisons (Supplementary Fig. 8).
This is significantly higher than the percentage of shared
boundaries for shuffled control maps (32.9%) and the percentage
expected at random (33.1%, Fig. 3d). Notably, 44% of NBT-
identified single-cell TAD boundaries were conserved in pairwise
cell-to-cell comparisons (Supplementary Fig. 7b), supporting the
results obtained in the analysis of modularity-derived TAD
boundary profiles. In individual mammalian cells, TADs fre-
quently overpassed the boundaries identified in the cell popula-
tion, arguing for a substantial degree of stochasticity in genome
folding32,35,44. We used the ORBITA algorithm to reanalyze
previously published snHi-C data from murine oocytes32 and G2
zygote pronuclei34 and found that 31.2 and 21% of boundaries
were shared on average between any two cells, respectively
(Fig. 3e, Supplementary Fig. 9). This result is reproduced at 40-kb
resolution and persists for a broad range of snHi-C datasets’
quality (Supplementary Fig. 10). We conclude that, in Drosophila,
TADs have more stable boundaries as compared to mammals.
This corroborates recent observations of the Cavalli lab37 and
may reflect the differential impact of loop extrusion18,19,34 and
internucleosomal contacts24 on TAD formation16,23.

Population TADs in Drosophila identified at 10–20 kb resolu-
tion mostly correspond to inactive chromatin, whereas their
boundaries and inter-TAD regions correlate with highly acety-
lated active chromatin24,45. These are further partitioned into
much smaller domains with the size of about 9 kb25 and, thus,
unavailable for the analysis at the resolution of our Hi-C maps.
To examine the properties of TAD boundaries at the single-cell
level, we divided all TAD boundaries from snHi-C data into three
groups according to the proportion of cells where these
boundaries were present and analyzed them separately (number
of boundaries of each type and distances between neighboring
boundaries within each type are shown in Supplementary Fig. 13).
The boundaries present in a large fraction of cells (more than 50%
of cells) defined here as “stable” overlapped 73% of conserved
boundaries between BG3 and Kc167 cell lines46 and had high
levels of active chromatin marks (RNA polymerase II, H3K4me3;
Fig. 3f, Supplementary Figs. 11, 12). They were also slightly
enriched in some architectural proteins associated with active
promoters (BEAF-32, Chriz, CTCF, and GAF; Supplementary
Fig. 11, 12). In contrast, boundaries identified in less than 50% of
cells and defined here as “unstable” (as well as boundaries
identified in just one cell termed cell-specific boundaries) were
remarkably depleted of acetylated histones and features of
transcriptionally active chromatin while being enriched in histone
H1 and other proteins of repressed chromatin similarly to the
internal TAD bins (Fig. 3f, Supplementary Fig. 11, 12). The
epigenetic profiles of “unstable” boundaries may be due to the fact
that actual profiles of active chromatin in individual cells differ
from the bulk epigenetic profiles used in our analysis. However, it
may also reflect a certain degree of stochasticity in chromatin
fiber folding into contact domains35. Taking into consideration
the fact that active chromatin regions mostly colocalize with

stable boundaries, one would expect the “unstable” boundaries
tend to be located in the inactive parts of the chromosome.

TADs in individual Drosophila cells are not hierarchical.
Drosophila TADs are hierarchical in cell population-based Hi-C
maps45,47. It is, however, not clear whether the hierarchy exists in
individual cells or emerges in the bulk BG3 in situ Hi-C maps as a
result of averaging of alternative chromatin configurations over a
number of individual cells. To test this proposal, we focused on
two TAD segmentations: at γmax/2 (TADs) and γmax (smaller
domains referred to as sub-TADs located inside TADs, Fig. 4a).
We analyzed only the haploid X chromosome to avoid combined
folding patterns of diploid somatic chromosomes. We assumed
that if TADs in individual nuclei are truly hierarchical, then sub-
TADs belonging to the same TAD should be demarcated with
well-defined boundaries arising from specific folding of the
chromatin. To determine whether this is the case, we tested the
resistance of sub-TAD boundaries to the data downsampling
(two-fold depletion of total number of contacts in the snHi-C
maps). In contrast to relatively stable TAD boundaries, sub-TAD
boundaries showed a two-fold reduction in the probability of
detection in downsampled datasets (Fig. 4b). Moreover, we found
that profiles of sub-TADs were highly different in individual
nuclei: only approximately 20% of sub-TAD boundaries in
individual cells were shared in pairwise comparisons, similar to
the shuffled controls (Supplementary Fig. 14). Hence, a potential
hierarchy of TAD structure in single cells appears to reflect local
Hi-C signal fluctuations. The hierarchical structure of TADs
observed in bulk Drosophila Hi-C data45,48, thus, likely results
from the superposition of multiple alternative chromatin folding
patterns present in individual nuclei; this is also supported by the
visual inspection of snHi-C maps (Fig. 4c).

A-compartment in individual Drosophila nuclei. In animal
cells, TADs of the same epigenetic type interact with each other
across large genomic distances, forming compartments that
spatially segregate active and inactive genomic loci in the nuclear
space13. Similarly to Drosophila embryo5, S249, and Kc167 cells50,
we observed an increased long-range interaction frequency within
the A-compartment in the bulk BG3 in situ Hi-C data (Fig. 4d–f;
Supplementary Fig. 15). Supporting this observation, we also
found increased long-range interactions between genomic regions
of the X chromosome activated by male-specific-lethal (MSL)
complex binding51 (Fig. 4h) in both BG3 in situ Hi-C data and
the merged cell. In contrast, we observed a weak enrichment of
long-range interactions between Polycomb-repressed regions52,53
bound by dRING (Fig. 4i)54 and nearly no enrichment for B-
compartment regions (Fig. 4d, e, g).

We could not directly detect compartments in individual nuclei
due to the sparsity of the maps, but we observed a substantial
enrichment of contacts in the A-compartment after averaging
contacts in each individual nucleus across the population-based
compartment mask (Fig. 4d, Supplementary Fig. 15). Compart-
mentalization might, thus, be a genuine feature of chromatin
folding of Drosophila individual nuclei. The presence of extensive
long-range contacts between the active genome regions in
individual chromosomes is also supported by the contact
probability Pc(s) plotted for active and inactive genomic bins
separately: Pc(s) between active genome regions has a gentler
slope outside TADs, indicating that active, but not inactive
chromatin forms spatial contacts across large genomic distances
(Fig. 4e). These results suggest that active and inactive genome
loci are spatially segregated in individual Drosophila nuclei; active
regions establish long-distance contacts, possibly at transcription
factories and nuclear speckles55–58.
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Modeling of DNA fiber folding within X-chromosome by
constrained polymer collapse. We next applied dissipative par-
ticle dynamics (DPD) polymer simulations59 to reconstruct the
3D structures of haploid X chromosomes (Supplementary
Fig. 16a) in individual cells using the snHi-C data (Fig. 5a,
Supplementary Fig. 16b). The chromatin fiber path in these
structures is strictly determined by the pattern of contacts derived
from the snHi-C experiments and, thus, reflects the actual folding
of the X chromosome in living cells60. As revealed by TAD
annotation, the DPD simulations successfully reproduced chro-
matin fiber folding even at short and middle genomic distances
because TAD positions along the X chromosome were largely
preserved between the models and the original snHi-C data
(Fig. 5a, Supplementary Figs. 17, 19a, b; also see “Methods”).
Moreover, the simulations correctly reproduced chromatin fold-
ing at the scale of the whole chromosome with a well-defined A-
compartment (Fig. 5a, Supplementary Fig. 18). Additionally, to
validate the simulation results using an alternative approach, we
performed multicolor in situ fluorescence hybridization (FISH)
with two intra-TAD probes and one probe located outside the
selected TAD. The distributions of inter-probe spatial distances
extracted from the X chromosome model closely resemble those
of the FISH analysis (Supplementary Fig. 19c). Taken together,
these observations confirm the validity of our approach.

The snHi-C maps show remarkable cell-to-cell variability in
the distribution of captured contacts (Figs. 3a, 4c); therefore, we
performed a pairwise comparison of 3D models of the X
chromosome in individual cells using the coefficient of the
difference at a broad range of genomic distances (Fig. 5b; see
“Methods”). The higher the value of the coefficient, the higher the
difference between the distance matrices obtained from the
models. We have found that chromatin fiber conformation was
strikingly different between individual models (red curve, Fig. 5b)
in comparison to different configurations (at different time
points) of each particular model (blue curve, Fig. 5b), showing the
prominent cell specificity in the organization of the X chromo-
some territory (CT). Notably, shuffling of contacts (see
“Methods”) in the snHi-C data prior to simulations significantly
decreased the variability in the chromatin fiber conformation at
long distances (gray curve, Fig. 5b). Despite cell-to-cell differences
in the overall 3D shape of a particular TAD (Fig. 5c,
Supplementary Fig. 19d), the variability of the chromatin fiber
conformation was substantially lower at short ranges (within
TADs) as compared to long-range distances (Fig. 5b). This
difference could be due to an increased flexibility in chromatin
folding arising from larger genomic distances. In addition, the
curve of the coefficient of difference between individual models
reached the plateau outside TADs (Fig. 5b), suggesting that the
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Fig. 4 Chromatin in individual Drosophila cells is compartmentalized and lacks folding hierarchy at the level of TADs. a Examples of TAD (black
triangles) and sub-TAD (light blue triangles) positions in the haploid X chromosome in individual nuclei with 77,770 unique contacts. b Percentage of TAD
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Mann–Whitney two-sided test. n= 20 cells. c Genomic regions with alternative chromatin folding patterns in individual cells. Positions of sub-TADs and
TADs identified in bulk BG3 in situ Hi-C data (top panels) are highlighted with light gray and dark gray rectangles, respectively. Positions of TAD
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shading shows the genomic distances corresponding to the average TAD size in single nuclei. f Average plot of long-range interactions between top 1000
regions of A compartment annotated by bulk Hi-C data (in bulk Hi-C and merged snHi-C). g Average plot of long-range interactions between top 1000
regions of B compartment annotated by bulk Hi-C data (in bulk Hi-C and merged snHi-C). h Average plot of interactions between top 500 regions enriched
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merged snHi-C).
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variability of chromatin folding inside and outside TADs was
governed by different rules. Due to the fact that TADs in Drosophila
(at the 10–20 kb resolution of the Hi-C maps) are largely composed
of inactive chromatin, we propose that the chromatin fiber
conformation within TADs is mostly determined by interactions
between adjacent non-acetylated nucleosomes. In contrast, at large
genomic distances, TADs interact with each other in a stochastic
manner, imposing the spherical form of the CT that is observed in
all model structures (Fig. 5a, Supplementary Figs. 16, 20). In line
with this hypothesis, the dependence of spatial distance R between
any two particles on the genomic distance s revealed two distinct
modes of polymer folding (Fig. 5d). At the scale of ~100 kb (e.g.,
inside TADs), the chromatin fiber demonstrated a random walk
behavior (s0.5) similar to the chromatin of budding yeast. At larger
distances, R(s) had a scaling similar to a crumpled globule build of
Gaussian blobs (s0.14)61. Thus, chromatin folding within TADs and
at the scale of the whole CT could be driven by different molecular
mechanisms.

Analysis of the radial distributions of transcriptionally active,
inactive, and Polycomb-bound genome regions in our models
demonstrated that active chromatin tended to be located in the
CT interior, whereas inactive regions were located near the CT
surface (Fig. 5e, f); this can be driven by interactions with the
nuclear lamina62. Formation of nuclear microcompartments such

as Polycomb bodies63 represents another factor determining the
large-scale spatial structure of the X chromosome territory. We
analyzed patterns of interactions between individual Polycomb-
occupied regions in the 3D models. To this aim, each of such
regions was assigned a consecutive number according to their
positions along the chromosome. The examples of 2D maps
demonstrating regions residing in a spatial proximity in each cell
are presented in Fig. 5g (upper panels). We found that Polycomb-
occupied regions interacted with each other in a cell-specific
manner and, moreover, such contacts occurred between loci
regardless of the genomic distances between them (Fig. 5g, upper
panels). Using a similar approach, we constructed 2D interaction
maps of active genomic regions (Fig. 5g, bottom panels). Active
genome regions also interacted with each other across large
genomic distances in a cell-specific manner (Fig. 5g, bottom panels).
We propose that these two types of long-range interactions:
stochastic assembly of Polycomb bodies and transcription-related
microcompartments (factories64), underlie the cell-specific con-
formation of the chromatin fiber within CTs in Drosophila.

Discussion
Folding of interphase chromatin in eukaryotes is driven by
multiple mechanisms operating at different genome scales and
generating distinct types of the 3D genome features16,20. In
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mammalian cells, cohesin-mediated chromatin fiber extrusion
mainly impacts the genome topology at the scale of ~100–1000 kb
by producing loops, resulting in the formation of TADs18,19 and
establishing enhancer-promoter communication65. Chromatin
loop formation by the loop extrusion complex (LEC) in mam-
malian cells is a substantially deterministic process due to the
preferential positioning of loop anchors encoded in DNA by
CTCF binding sites (CBS). The cohesin-CTCF molecular tandem
modulates folding of intrinsically disordered chromatin fiber16,23.
On the other hand, association of active and repressed gene loci
in chromatin compartments13,14, and formation of Polycomb and
transcription-related nuclear bodies66,67 in both mammalian and
Drosophila cells shape the 3D genome at the scale of the whole
chromosome. These associations appear to be stochastic: a par-
ticular Polycomb-bound or transcriptionally active region in
individual cells interacts with different partners located across a
wide range of genomic distances68.

Here, we applied the single-nucleus Hi-C to probe the 3D
genome in individual Drosophila cells at a relatively high reso-
lution that was not achieved previously in single-cell Hi-C stu-
dies. Based on our observations, we suggest that, in Drosophila,
both deterministic and stochastic forces govern the chromatin
spatial organization (Fig. 6a).

We found that the entire individual Drosophila genomes were
partitioned into TADs; this observation supports the results of
recent super-resolution microscopy studies37. TAD profiles are
highly similar between individual Drosophila cells and demon-
strate lower cell-to-cell variability as compared to mammalian
TADs. According to our model24, large inactive TADs in Dro-
sophila are assembled by multiple transient electrostatic interac-
tions between non-acetylated nucleosomes in transcriptionally
silent genome regions. Conversely, TAD boundaries and inter-
TAD regions at the 10-kb resolution of Hi-C maps in Drosophila
were found to be formed by transcriptionally active chromatin.
This result may explain why TADs in individual cells occupy
virtually the same genomic positions (Fig. 6b). Gene expression
profile is a characteristic feature of a particular cell type, and,
thus, should be relatively stable in individual cells within the
population. In agreement with this, we demonstrated that
invariant TAD boundaries present in a major portion of indivi-
dual cells were highly enriched in active chromatin marks.
Moreover, stable boundaries were also largely conserved in other
cell types (see “Results” and ref. 46), possibly due to the fact that
TAD boundaries were frequently formed at the position of
housekeeping genes.

In contrast to stable TAD boundaries, the boundaries that
demonstrate cell-to-cell variability bear silent chromatin. Some
cell-specific TAD boundaries may originate at various positions
due to a putative size limit of large inactive TADs or other
restrictions in chromatin fiber folding. Indeed, it appears that the
assembly of randomly distributed TAD-sized self-interacting
domains is an intrinsic property of chromatin fiber folding35. In
mammals, the positioning of these domains is modulated by
cohesin-mediated DNA loop extrusion35, whereas in Drosophila,
it may be modulated by segregation of chromatin domains
bearing distinct epigenetic marks16,23. Even if cell-specific and
unstable TAD boundaries are distributed in a random fashion,
they should be depleted in active chromatin marks because active
chromatin regions are mainly occupied by stable TAD bound-
aries. We also cannot exclude that variable boundaries and the
TAD boundary shifts are caused by local variations in gene
expression and active chromatin profiles in individual cells that
we cannot assess simultaneously with constructing snHi-C maps.

Our results are also compatible with an alternative mechanism
of TAD formation. Given that the above-mentioned cohesin-
driven loop extrusion is evolutionarily conserved from bacteria to

mammals69, it is compelling to assume that extrusion works in
Drosophila as well. Despite the presence of all potential compo-
nents of LEC (cohesin, its loading and releasing factors), TAD
boundaries in Drosophila are not significantly enriched with
CTCF24,25 and do not form CTCF-enriched interactions or TAD
corner peaks. These observations suggest that the binding sites of
CTCF or other distinct proteins do not constitute barrier ele-
ments for the Drosophila LEC even if these proteins are enriched
in TAD boundaries; this may be due to some other properties of a
genomic region. For example, stably bound cohesins were pro-
posed to act as the barriers for cohesin extrusion in yeast70.

Active transcription interferes with DNA loop extrusion71,72.
Because TAD boundaries in Drosophila are highly transcribed, we
propose that open chromatin with actively transcribing poly-
merase and/or a high density of chromatin remodeling complexes
could serve as a barrier for the Drosophila LEC. Contrary to the
strictly positioned and short CBSs in mammals, active loci
flanking Drosophila TADs represent relatively extended regions
up to several dozens of kb in length. Probabilistic termination of
LEC at varying points within such regions in different cells of the
population could explain the absence of canonical loop signals
and the presence of strong compartment-like interactions
between active regions flanking a TAD (Fig. 6c). This model also
provides a potential explanation for the relatively high stability of
TAD positioning in individual Drosophila cells in comparison to
mammals. A relative permeability of CBSs in mammalian cells
allows LEC to proceed through thousands of kilobases and to
produce large contact domains17. Extended active regions acting
as “blurry” barrier elements where LEC termination occurs at
multiple points, should stop the LEC more efficiently, making the
TAD pattern more stable and pronounced.

Taken together, the order in the Drosophila chromatin 3D
organization is manifested in a TAD profile that is relatively
stable between individual cells and likely dictated by the dis-
tribution of active genes along the genome. On the other hand,
our molecular simulations of individual haploid X chromosomes
indicate a prominent stochasticity in both the form of individual
TADs and the overall folding of the entire chromosome territory.
According to our data, the active A-compartment is
easily detectable in individual cells, and the profiles of interaction
between individual active regions are highly variable between
individual cells. Notably, this also holds true for Polycomb-
occupied loci that are known to shape chromatin fiber in living
cells48.

Although these highly variable long-range interactions of active
regions and Polycomb-occupied loci are closely related to the
shape of chromosome territory (CT), the cause-and-effect rela-
tionships between them and the stochastic nature of the cell-
specific chromatin chain path are currently unclear. The main
question to be answered by future studies is whether these
interactions are fully stochastic or at least partially specific. The
possible molecular mechanisms that may provide specific com-
munication between remote genomic loci separated by up to
megabases of DNA are not known. In a scenario of the absence of
any specificity, the pattern of contacts inside A-compartment and
within Polycomb bodies in a particular cell is established by
stochastic fluctuations of the large-scale chromatin fiber folding.
In this case, the large-scale chromatin fiber folding dictates the
cell-specific location of Polycomb-enriched and active chromatin
regions in the 3D nuclear space. The formation of Polycomb
bodies and transcription-related chromatin hubs is achieved by
confined diffusion of these regions and might be further stabilized
by specific protein-protein interactions and liquid-liquid phase
separation73. This mechanism allows to sort through alternative
configurations of the 3D genome and to transiently stabilize those
that are functionally relevant under specific conditions. A balance
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between the order and the stochasticity appears to be an intrinsic
property of nuclear organization that enables rapid adaptation to
changing environmental conditions.

Methods
Cell culture. Drosophila melanogaster ML-DmBG3-c2 cell line (Drosophila
Genomics Resource Center) was grown at 25 °C in a mixture (1:1 v/v) of Shields
and Sang M3 insect medium (Sigma) and Schneider’s Drosophila Medium (Gibco)
supplemented with 10% heat-inactivated fetal bovine serum (FBS, Gibco), 50 units/
ml penicillin, and 50 µg/ml streptomycin.

Single-nucleus Hi-C library preparation. We modified the previously published
single-nucleus Hi-C protocol32 as follows: 5–10 million cells were fixed in 1×
phosphate-buffered solution (PBS) with 2% formaldehyde for 10min with occasional
mixing. The reaction was stopped by the addition of 2M glycine to give a final
concentration of 125mM. Cells were centrifuged (1000 × g, 10 min., 4 °C), resus-
pended in 50 μl of 1× PBS, snap-frozen in liquid nitrogen, and stored at −80 °C.
Defrozen cells were lysed in 1.5ml isotonic buffer (50mM Tris-HCl pH 8.0, 150mM
NaCl, 0.5% (v/v) NP-40 substitute (Fluka), 1% (v/v) Triton-X100 (Sigma), 1× Halt™
Protease Inhibitor Cocktail (Thermo Scientific) on ice for 15min. Cells were cen-
trifuged at 2500 × g for 5min, resuspended in 100 μl of 1× DpnII buffer (NEB), and
pelleted again. The pellet was resuspended in 200 μl of 0.3% SDS in 1.1× DpnII buffer
and incubated at 37 °C for 1 h. Then, 330 μl of 1.1× DpnII buffer and 53 μl of 20%
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Triton X-100 (Sigma) were added, and the suspension was incubated at 37 °C for 1 h.
Next, 600 U of DpnII enzyme (NEB) were added, and the chromatin was digested
overnight (14–16 h) at 37 °C with shaking (1400 rpm). On the following day, 200 U of
DpnII enzyme were added, and the cells were incubated for an additional 2 h. DpnII
was then inactivated by incubation at 65 °C for 20min. Nuclei were centrifuged at
3000 × g for 5min, resuspended in 100 μl of 1× T4 DNA ligase buffer (Fermentas),
and pelleted again. The pellet was resuspended in 400 μl of 1× T4 DNA ligase buffer,
and 75U of T4 DNA ligase (Fermentas) were added. Chromatin fragments were
ligated at 16 °C for 6 h. Next, the nuclei were centrifuged at 5000 × g for 5min,
resuspended in 100 μl of sterile 1× PBS, stained with Hoechst, and single nuclei were
isolated into wells of a standard 96-well PCR plate (Thermo Fisher) using FACS (BD
FACSAriaTMIII). Each well contained 3 μl of sample buffer from the Illustra Gen-
omiPhi v2 DNA amplification kit (GE Healthcare). Sample buffer drops containing
isolated nuclei were covered by 5 μl of mineral oil (Thermo Fisher) and incubated at
65 °C for 3 h to reverse formaldehyde cross-links. Total DNA was amplified according
to a previously published protocol74. The amplification was considered successful if
the sample contained ≥1 μg DNA. The DNA was then dissolved in 500 μl of soni-
cation buffer (50mM Tris-HCl (pH 8.0), 10 mM EDTA, 0.1% SDS) and sheared to a
size of ~100–1,000 bp using a VirSonic 100 (VerTis). The samples were concentrated
(and simultaneously purified) using AMICON Ultra Centrifugal Filter Units to a total
volume of about 50 μl. The DNA ends were repaired by adding 62.5 μl MQ water, 14
μl of 10× T4 DNA ligase reaction buffer (Fermentas), 3.5 μl of 10mM dNTP mix
(Fermentas), 5 μl of 3 U/μl T4 DNA polymerase (NEB), 5 μl of 10 U/μl T4 poly-
nucleotide kinase (NEB), 1 μl of 5 U/μl Klenow DNA polymerase (NEB), and then
incubating at 20 °C for 30min. The DNA was purified with Agencourt AMPure XP
beads and eluted with 50 μl of 10mM Tris-HCl (pH 8.0). To perform an A-tailing
reaction, the DNA samples were supplemented with 6 μl 10× NEBuffer 2, 1.2 μl of 10
mM dATP, 1 μl of MQ water, and 3.6 μl of 5 U/μl Klenow (exo-) (NEB). The
reactions were carried out for 30min at 37 °C in a PCR machine, and the enzyme was
then heat-inactivated by incubation at 65 °C for 20min. The DNA was purified using
Agencourt AMPure XP beads and eluted with 100 μl of 10 mM Tris-HCl (pH 8.0).
Adapter ligation was performed at 22 °C for 2.5 h in the following mixture: 41.5 μl
MQ water, 5 μl 10× T4 DNA ligase reaction buffer (Fermentas), 2.5 μl of Illumina
TruSeq adapters, and 1 μl of 5 U/μl T4 DNA ligase (Fermentas). Test PCR reactions
containing 4 μl of the ligation mixture were performed to determine the optimal
number of PCR cycles required to generate sufficient PCR products for sequencing.
The PCR reactions were performed using KAPA High Fidelity DNA Polymerase
(KAPA) and Illumina PE1.0 and PE2.0 PCR primers (10 pmol each). The tempera-
ture profile was 5min at 98 °C, followed by 6, 9, 12, 15, and 18 cycles of 20 s at 98 °C,
15 s at 65 °C, and 20 s at 72 °C. The PCR reactions were separated on a 2% agarose gel
containing ethidium bromide, and the number of PCR cycles necessary to obtain a
sufficient amount of DNA was determined based on the visual inspection of gels
(typically 12–15 cycles). Four preparative PCR reactions were performed for each
sample. The PCR mixtures were combined, and the products were separated on a
1.8% agarose gel. 200–600 bp DNA fragments were excised from the gel and purified
with a QIAGEN Gel Extraction Kit.

Bulk BG3 in situ Hi-C library preparation. Bulk BG3 in situ Hi-C libraries were
prepared as described previously24 with minor modifications. The first steps of the
protocol (from fixation to DpnII enzyme inactivation) were completely identical to
the corresponding steps in the single-cell Hi-C library preparation procedure
described above. After DpnII inactivation, the nuclei were harvested for 10 min at
5000 × g, washed with 100 μl of 1× NEBuffer 2, and resuspended in 50 μl of 1×
NEBuffer 2. Cohesive DNA ends were biotinylated by the addition of 7.6 μl of the
biotin fill-in mixture prepared in 1× NEBuffer 2 (0.025 mM dATP (Thermo Sci-
entific), 0.025 mM dGTP (Thermo Scientific), 0.025 mM dTTP (Thermo Scien-
tific), 0.025 mM biotin-14-dCTP (Invitrogen), and 0.8 U/μl Klenow enzyme
(NEB)). The samples were incubated at 37 °C for 75 min with shaking (1400 rpm).
Nuclei were centrifuged at 3000 × g for 5 min, resuspended in 100 μl of 1× T4 DNA
ligase buffer (Fermentas), and pelleted again. The pellet was resuspended in 400 μl
of 1× T4 DNA ligase buffer, and 75 U of T4 DNA ligase (Fermentas) were added.
Chromatin fragments were ligated at 20 °C for 6 h. The cross-links were reversed
by overnight incubation at 65 °C in the presence of proteinase K (100 μg/ml). After
cross-link reversal, the DNA was purified by single phenol-chloroform extraction
followed by ethanol precipitation with 20 μg/ml glycogen (Thermo Scientific) as the
co-precipitator. After precipitation, the pellets were dissolved in 100 μl 10 mM
Tris-HCl pH 8.0. To remove residual RNA, samples were treated with 50 μg of
RNase A (Thermo Scientific) for 45 min at 37 °C. To remove residual salts and
DTT, the DNA was additionally purified using Agencourt AMPure XP beads
(Beckman Coulter). Biotinylated nucleotides from the non-ligated DNA ends were
removed by incubating the Hi-C libraries (2 μg) in the presence of 6 U of T4 DNA
polymerase (NEB) in NEBuffer 2 supplied with 0.025 mM dATP and 0.025 mM
dGTP at 20 °C for 4 h. Next, the DNA was purified using Agencourt AMPure XP
beads. The DNA was then dissolved in 500 μl of sonication buffer (50 mM Tris-
HCl (pH 8.0), 10 mM EDTA, 0.1% SDS) and sheared to a size of approximately
100–1000 bp using a VirSonic 100 (VerTis). The samples were concentrated (and
simultaneously purified) using AMICON Ultra Centrifugal Filter Units to a total
volume of approximately 50 μl. The DNA ends were repaired by adding 62.5 μl MQ
water, 14 μl of 10× T4 DNA ligase reaction buffer (Fermentas), 3.5 μl of 10 mM
dNTP mix (Fermentas), 5 μl of 3 U/μl T4 DNA polymerase (NEB), 5 μl of 10 U/μl

T4 polynucleotide kinase (NEB), 1 μl of 5 U/μl Klenow DNA polymerase (NEB),
and then incubating at 20 °C for 30 min. The DNA was purified with Agencourt
AMPure XP beads and eluted with 50 μl of 10 mM Tris-HCl (pH 8.0). To perform
an A-tailing reaction, the DNA samples were supplemented with 6 μl 10× NEBuffer
2, 1.2 μl of 10 mM dATP, 1 μl of MQ water, and 3.6 μl of 5 U/μl Klenow (exo−)
(NEB). The reactions were carried out for 30 min at 37 °C in a PCR machine, and
the enzyme was then heat-inactivated by incubation at 65 °C for 20 min. The DNA
was purified using Agencourt AMPure XP beads and eluted with 100 μl of 10 mM
Tris-HCl (pH 8.0). Biotin pulldown of the ligation junctions was performed as
described previously, with minor modifications. Briefly, 4 μl of MyOne Dynabeads
Streptavidin C1 (Invitrogen) beads were used to capture the biotinylated DNA, and
the volumes of all buffers were decreased by 4-fold. The washed beads with cap-
tured ligation junctions were resuspended in 50 μl of adapter ligation mixture
comprising 41.5 μl MQ water, 5 μl 10× T4 DNA ligase reaction buffer (Fermentas),
2.5 μl of Illumina TruSeq adapters, and 1 μl of 5 U/μl T4 DNA ligase (Fermentas).
Adapter ligation was performed at 22 °C for 2.5 h, and the beads were sequentially
washed twice with 100 μl of TWB (5mM Tris-HCl (pH 8.0), 0.5 mM EDTA, 1M
NaCl, 0.05% Tween-20), once with 100 μl of 1× binding buffer (10 mM Tris-HCl
(pH 8.0), 1 mM EDTA, 2 M NaCl), once with 100 μl of CWB (10 mM Tris-HCl
(pH 8.0) and 50 mM NaCl), and then resuspended in 20 μl of MQ water. Test PCR
reactions containing 4 μl of the streptavidin-bound Hi-C library were performed to
determine the optimal number of PCR cycles required to generate sufficient PCR
products for sequencing. The PCR reactions were performed using KAPA High
Fidelity DNA Polymerase (KAPA) and Illumina PE1.0 and PE2.0 PCR primers (10
pmol each). The temperature profile was 5 min at 98 °C, followed by 6, 9, 12, 15,
and 18 cycles of 20 s at 98 °C, 15 s at 65 °C, and 20 s at 72 °C. The PCR reactions
were separated on a 2% agarose gel containing ethidium bromide, and the number
of PCR cycles necessary to obtain a sufficient amount of DNA was determined
based on the visual inspection of gels (typically 12–15 cycles). Four preparative
PCR reactions were performed for each sample. The PCR mixtures were combined,
and the products were separated on a 1.8% agarose gel. 200–600 bp DNA frag-
ments were excised from the gel and purified with a QIAGEN Gel Extraction Kit.
Two biological replicates were performed.

snHi-C raw data processing and contact annotation. The whole-genome
amplification step of snHi-C uses the Phi29 DNA polymerase, which is known to
produce chimeric DNA molecules by randomly switching the DNA template40.
DNA molecules created by the template switch were further amplified during the
snHi-C protocol and resulted in chimeric reads. Notably, in theory, template
switches can be detected by the presence of two consecutive parts of the same read
that map to different genomic locations and do not align immediately next to the
restriction sites at the DNA breakpoint. This situation is different from the stan-
dard Hi-C, where each read pair is considered to be a true contact pair regardless of
the DNA breakpoint presence and annotation. Standard Hi-C processing tools,
such as hiclib32,41, Juicer75, and HiCExplorer26, typically rely on mapping of both
reads in a Hi-C pair and do not account for the presence of chimeric parts in a
single side of paired-end sequencing. We devised a more accurate approach for
processing of snHi-C data that annotates each DNA breakpoint observed in each
single-end read, and selects the contacts that do not represent possible template
switches of Phi29 polymerase. Thus, we developed a custom approach for snHi-C
data processing termed ORBITA (One Read-Based Interaction Annotation), as
described below.

Reads mapping. As the first step of the approach, FASTQ files with paired-end
sequencing data are mapped to Drosophila reference genome dm3 using Burrows-
Wheeler Aligner (BWA-MEM, console version 0.7.17-r1188)76 with default para-
meters. Notably, this mapping procedure allows independent alignment of chi-
meric parts of both forward and reverse reads. This step results in BAM files with
paired-end mapping information.

Annotated pairs retrieval. In the next step, the BAM files are parsed with an
adapted version of pairtools (https://github.com/mirnylab/pairtools) with our
newly implemented option ORBITA. Among many other utilities for Hi-C data
processing, we selected pairtools from the Mirny lab as the basis of our approach,
due to the convenience and modular structure of its code. This version of the tool
can be accessed at the GitHub repository https://github.com/agalitsyna/pairtools.

ORBITA treats each read in the BAM file independently, regardless of whether
it is forward or reverse. Reads that are uniquely mapped to a single location of the
genome are marked as type P, meaning that they are part of a standard Hi-C Pair
with no DNA breakpoint evidence. Reads that contain precisely two successive
regions uniquely mapped to different genomic locations (MAPQ > 1) are selected
for further DNA breakpoint annotation. ORBITA takes the genome restriction
annotation (provided as a BED file with DpnII restriction fragments positions,
produced by cooler digest77) and compares each breakpoint against the list of
restriction sites. For each 3′-end of the right chimeric part and 5′-end of the left
chimeric part (in other words, ligated ends), both upstream and downstream
restriction sites are annotated, and the distance to the closest one is calculated. If
both ends are located sufficiently close (<10 bp) to any restriction site in the
genome, ORBITA considers them as a true ligation junction of restricted fragments

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20292-z

10 NATURE COMMUNICATIONS | ����������(2021)�12:41� | https://doi.org/10.1038/s41467-020-20292-z | www.nature.com/naturecommunications



in the snHi-C proximity ligation step. These cases are marked as J type (ligation
Junction), with the evidence of traversing the ligation junction of DpnII restriction
fragments. If at least one ligated end of the chimeric read was not mapped to the
restriction site, ORBITA marks it as H (template switch, or Hopping of Phi29 DNA
polymerase). To simplify the ORBITA approach, we omit the cases with more
complicated scenarios of read mapping, when three or more uniquely mapped
chimeric parts of a single-end read were present. If the read contains multiple
mapped chimeric parts, it is discarded. ORBITA produces the resulting PAIRS file
with annotation of JJ pairs (with the evidence of the ligation) that are accepted for
further processing. If not explicitly mentioned, the generic names “pair” or
“contact” are used for snHi-C contacts with the evidence of the ligation junction.

Amplification duplicates removal. In the next step, we performed a correction for
amplified duplicates of snHi-C contacts. Standard Hi-C uses amplification by the
Illumina PCR protocol with primers that are ligated to the ends of sheared DNA17.
Thus, two independent Hi-C pairs can be PCR duplicates if their mapping posi-
tions coincide (e.g., see hiclib). However, the amplification in snHi-C32 is followed
by sonication, resulting in random breaks of ligated DNA fragments. Hence,
coinciding mapping positions cannot be used as a criterion of PCR duplication.
Notably, we cannot distinguish the amplified pair contacting restriction fragments
from the contacts of the same regions in the homologous chromosomes. Thus, we
removed all multiple copies of restriction fragment pairs and retained unique
contacts for each combinatorial pair of restriction fragments.

Fragment filtration. In the next step, we used restriction fragment filtration to
reduce the possible contribution of copy number variation, read misalignment, and
Phi29 DNA polymerase template switch that had not been removed by the
ORBITA filter.

In theory, each restriction fragment of DNA has two ends and is present twice
in the diploid nucleus of ML-DmBG3-c2 Drosophila cells; thus, we expect the
upper limit of four unique contacts per restriction fragment if no unannotated
genomic rearrangements, mismappings, or template switches occurred. For each
restriction fragment, we calculated the observed number of contacts and removed
fragments that had more than four contacts.

Before contact filtration by this rule, we compared the number of restriction
fragments with more than four unique contacts according to ORBITA and one
previous approach, hiclib for Flyamer et al. 2017. We obtained datasets for mouse
nuclei from Flyamer et al. 2017 and Nagano et al. 2017 and mapped with the hiclib
and ORBITA pipelines. We found a significant reduction in the number of unique
contacts per fragment for snHi-C from Phi29 DNA polymerase datasets (Flyamer
et al. 2017, present work], but not for scHi-C without Phi29 DNA polymerase
(Nagano et al. 2017) (Supplementary Figs. 2, 3). Thus, we conclude that ORBITA is
an effective approach to reduce the number of snHi-C artefactual contacts arising
from random template switches of Phi29 DNA polymerase.

Cell selection by raw data subsampling. We obtained filtered contacts for 88
individual nuclei after the initial round of sequencing. Before the second round of
sequencing, we assessed the robustness of the number of unique contacts by
subsampling of raw datasets (Supplementary Fig. 2a). For each library, we created a
uniform grid of sequencing depth (from 0 to the resulting number of reads with the
step of 100,000 reads). We then randomly selected X reads from the full library and
calculated the number of unique contacts (as described above) for each number
from the grid X. We repeated this procedure ten times and plotted the mean
number of unique contacts for each sequencing depth from the grid.

We proposed that there are a significant number of cells containing PCR
duplicates and that the number of contacts increases slowly depending on the
sequencing depth due to the poor efficiency of the snHi-C protocol. Further
sequencing of these cells would result in a relatively small improvement of the
detectable number of unique contacts. The number of contacts for other cells
increases more rapidly with the number of reads but reaches a plateau once the
maximum number of unique contacts is achieved. Thus, additional sequencing of
these cells might result in reading duplicated contacts.

For other cells, the number of contacts grew slowly with sequencing depth
(Supplementary Fig. 2a). However, for all these cells, the number of unique
contacts gradually increased with no plateau signature. We selected the cells
displaying the best growth of the number of contacts, indicative of the good quality
of the dataset. The top 20 cells by the number of unique contacts were subjected to
an additional round of sequencing. The same mapping and parsing pipeline was
used for these datasets. Technical replicates (initial and additional rounds of snHi-
C libraries sequencing) were merged at the annotated PAIRS file stage.

snHi-C interaction map construction. The resulting pair data were binned at 1 kb,
10 kb. 20-kb, 40-kb, and 100-kb resolutions with cooler version 0.8.577 and stored
in the COOL format. We constructed the merged dataset by summing all snHi-C
maps. To exclude self-interacting genomic bins and possible contribution of
dangling ends, self-circles41, and mirror reads78, we removed the first diagonal in
both single cells and the merged maps. The HiGlass server was used for data
visualization79. 10-kb resolution was used throughout the paper if another reso-
lution is not specified.

Bulk BG3 in situ Hi-C raw data processing. For bulk BG3 in situ Hi-C (two
biological replicates), reads were mapped to Drosophila reference genome dm3
with Burrows-Wheeler Aligner (BWA-MEM, console version 0.7.17-r1188)76 with
default parameters. For consistency with the snHi-C analysis, the resulting BAM
files were parsed with pairtools v0.3.0, (https://github.com/mirnylab/pairtools)
using default parameters. The resulting files were sorted by the pairtools module
“sort”; replicates were merged by the pairtools module “merge” and duplicates were
removed, allowing one mismatch between possible duplicates (pairtools dedup with
--max-mismatch 1 and—mark-dups options). The resulting PAIRS file was binned
with cooler77 at the same resolutions as the single-cell datasets. To remove the
contribution of possible Hi-C technical artifacts, such as backward ligation, dan-
gling ends, self-circles41, and mirror reads78, the first two diagonals of Hi-C maps
were removed. As the last step of bulk Hi-C processing, the maps were iteratively
corrected for the removal of coverage bias41 by the cooler balance tool with default
parameters77.

For the reproducibility control, both replicates were converted to interaction
maps independently by the above pipeline. The resulting maps demonstrated a
correlation of 0.9–0.95 as estimated by the HiCRep stratum-adjusted correlation
coefficient for intrachromosomal maps smoothed with one-bin offset and genomic
distance up to 300 kb at 20 kb resolution80.

snHi-C background model construction. We sought to create a background
model for snHi-C that can be used as a control for the subsequent analysis of
intrachromosomal snHi-C interaction maps. For that, we considered two major
factors contributing to the intrachromosomal contact frequency in the genomic
region: the contact probability for a particular genomic distance Pc(s)13, and region
visibility81.

For bulk BG3 in situ Hi-C, the Pc(s) is assessed by the mean number of contacts
for a certain genomic distance13. However, the same procedure cannot be readily
used for snHi-C due to data sparsity and missing data. Thus, to calculate Pc(s) for a
snHi-C dataset, we counted the number of contacts for a certain genomic distance
and normalized by the number of genomic bins that had contact in at least one
snHi-C experiment at any distance. Notably, we use the same procedure for the
visualization of snHi-C Pc(s) dependence on the genomic distance s (Fig. 1f and
Fig. 4e); the genomic distance step size was set to 1 kb. For snHi-C background
models, we used Pc(s) genomic distance step size 10 kb.

We assessed the region visibility in snHi-C by the marginal distribution of the
number of contacts for the region margi (in other words, the total number of
observed intrachromosomal contacts for a genomic region) using maps at a 10-kb
resolution.

For each snHi-C map, we calculated Pc(s) and the marginal distribution of
contacts and shuffled the positions of the contacts for each chromosome, so that
the marginal distribution was preserved, and Pc(s) was at least approximated
(Supplementary Fig. 4a–d). Note that for 3D modeling, we used more crude
shuffling without saving the marginal distribution of contacts.

Assessment of percentage of recovered contacts. To compare snHi-C datasets
across species (Fig. 2a–c), we assessed the percentage of recovered contacts out of
all possible contacts per nuclei.

First, we determined the theoretical size of the pool of restriction fragments for
the nucleus of each species and cell type. For Drosophila, we used a diploid male
cell line. Thus, the total number of restriction fragments was ~600,000, composed
of the double amount of fragments in autosomes (2 × 265,167, as assessed by the
dm3 in silico digestion) in addition to the number of fragments on chromosome X
(64,108). For mice, Flyamer et al. (2017) analyzed oocytes with four copies of the
genome, resulting in a total of 4 × 6,407,802 ~ 25,600,000 fragments. Gassler et al.
(2017) analyzed G2 zygotes pronuclei with two copies of the genome, resulting in a
total of 2 × 6,407,802 ~ 12,800,000 fragments (we did not distinguish between the
maternal and paternal pronuclei because the contribution of chromosome X is not
as significant for the mouse genome).

We next assessed the upper limit of the total number of possible contacts per
single nucleus, which is achieved when each restriction fragment formed two
contacts with the ends of any other restriction fragments from the pool. Because
the valency of each fragment is two, the theoretical upper limit is equal to the
number of restriction fragments.

We then divided the total number of observed contacts (recovered by ORBITA)
by the upper bound of the possible number of contacts, and we recovered up to
~16% of the total number of possible contacts for Drosophila (see Fig. 2b); this
number is approximately 2.6% for the best mouse dataset. The mean percentage of
recovered contacts is 4.9% for our dataset and <1% for Flyamer et al. (2017) and
Gassler et al. (2017).

However, this assessment of the percentage of recovered contacts is not exact
for several reasons: (1) we did not perform sorting prior to snHi-C to isolate
G1 cells; hence, some regions of the genome might have an increased copy number
in S or G2 cells; (2) some regions of the genome might be affected by deletions and
copy number variations that were not accounted for in our analysis. However, even
in the worst-case scenario, if we imagine that all Drosophila cells are in the G2
phase of the cell cycle, we recovered at least 8% of all possible contacts for the best
cells in our analysis, which is still a substantial improvement compared to recovery
for the best cells from mammalian studies.
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TAD calling in snHi-C and bulk BG3 in situ Hi-C data. We used Hi-C map
segmentation with lavaburst (v0.2.0) (https://github.com/nvictus/lavaburst) with
the modularity scoring function for TAD calling in Hi-C maps at 10-kb resolu-
tion32. All TAD segments smaller or equal to 3 bins (30 kb) were considered to be
inter-TADs24. lavaburst has a gamma (γ) parameter controlling the size and the
number of resulting TADs. We varied g from 0 to 375 with a step of 0.1 for
Drosophila datasets. The range and the step were selected to guarantee the com-
prehensive coverage of both extremes (a small amount of unusually large TADs
and a large amount of smallest possible TADs). We observed a sharp decrease in
median TAD size and an increase in the number of TADs with the γ increase
(Fig. 3b, Supplementary Fig. 5). After reaching the peak, the number of TADs starts
to drop because many segments fall beyond the minimal allowed TAD size. For
large γ, both the number of TADs and mean TAD size reach a plateau at low levels.
We considered the point of the maximum number of TADs (γmax) as the most
informative segmentation reachable by the algorithm for a particular dataset. The
mean TAD size is ~70 kb on average between cells compared to the expected 120
kb size of Drosophila TADs24. Thus, we considered this level to be the sub-TADs.
To guarantee a uniform γ selection procedure for all the cells, we arbitrarily
selected γmax/2 to obtain a resulting TAD segmentation (mean TAD size ~90 kb).

For the other resolutions of snHi-C maps, the same protocol of TAD calling was
applied, except the inter-TAD size threshold was set to 60 kb (3 bins at 20 kb) for
20 kb and 120 kb (3 bins of 40 kb) for 40 kb.

Robustness of TAD calling. To assess TAD calling robustness and filter out
potentially artifactual TAD boundaries, we performed TAD calling on snHi-C maps
with random subsampling of the contacts as a control. For each cell, we performed
ten iterations of independent subsampling of contacts leaving 95%, 90%, … 5% of
the initial number of unique contacts per dataset. For each subsampling, we per-
formed the TAD calling in the same manner as for the full dataset. We then
assumed the bins found as TAD boundaries in the full snHi-C maps with no
subsampling to be positives and inner TAD bins to be negatives. Based on this
definition, we calculated both false positive rates (FPR) and false negative rates
(FNR) for each cell and all subsampling levels. As expected, FNR gradually
decreased with the percentage of remaining contacts. FPR reached a maxima at
10–30% subsampling level and then gradually decreased (Supplementary Fig. 6a, b).

We then defined a TAD boundary support for a given subsampling level (X%).
TAD boundary support is calculated for each genomic bin as the number of
subsampling iterations with the number of contacts equal to or larger than X%,
where the bin was annotated as the TAD boundary (allowing a one-bin offset). We
used TAD boundary support as a predictor of observed TAD boundaries in each
cell (with no subsampling of the snHi-C dataset). We plotted receiver operating
characteristic (ROC) curves for each X= (95%, 90%, … 5%) and calculated the
ROC area under the curve (AUC) for each case (Supplementary Fig. 6c). Based on
the largest ROC AUC, we selected the best subsampling level predictive of
boundaries, X= 90% ROC AUC 0.9969 (Supplementary Fig. 6c). We then chose
the TAD boundary support threshold by optimizing the accuracy. We obtained an
accuracy of 0.9765 for the final criteria that the TAD boundary support is larger
than 45% for (90%..95%) subsampling levels.

We refined the boundaries based on these final criteria and observed only a
mild decrease in the number of boundaries per cell (Supplementary Fig. 6d). Thus,
we conclude that the TAD calling procedure is robust to subsampling. We used the
non-refined boundaries set in the paper if not stated otherwise.

For the refined boundaries set, we allowed a 10-kb offset for each boundary and
assessed the number of cells in which each genomic bin was annotated as a
boundary. We then defined the stable boundaries as bins that were annotated as
boundaries in more than or equal to 50% of cells (>= 7), and unstable boundaries
as the bins annotated as boundaries in less than 50% of cells (<7).

We compared stable boundaries with boundaries conserved between Kc167 and
BG3 cells46. For that, we obtained TAD positions from46, mapped them to the dm3
genome with liftover, and coarse-grained the coordinates to 10-kb bins. We then
allowed the 10-kb offset and counted the boundaries that overlapped with stable
boundaries obtained in the single-cell analysis.

Segmentation comparison. We introduced two types of similarity scores for
TAD/sub-TAD segmentation comparison:

(1) the percentage of shared boundaries, where we fixed the first segmentation
and compared it with the second segmentation. Each TAD boundary bin of
the second segmentation was allowed to include two of its closest neighbors
at a 10 kb distance (one bin offset). The number of shared boundaries
between two segmentations was calculated as a simple intersection of sets.
The percentage was calculated by division by the total number of bins
annotated as TAD boundaries in the first segmentation.

(2) Jaccard index for TAD bins, where the bins inside a TAD (excluding the
boundaries) were considered. The shared TAD bins between two
segmentations were calculated and divided by the total number of bins
annotated as TADs in both segmentations.

To assess the significance of obtained similarity score of TADs, we randomized
the locations of TAD boundaries preserving the distributions of TAD and inter-
TAD sizes and the number of TADs/inter-TADs per chromosome. Each

randomization was performed 1000 times; the distribution of scores was
approximated by Gaussian distribution; p-values were inferred from these
backgrounds. The same procedure was used for sub-TADs.

Non-backtracking approach for annotation of TADs in single cells contact
maps. The chromatin network, constructed on the basis of the single-cell Hi-C
data, can be classified as sparse (i.e., the number of actual contacts per bin in a
single-cell contact matrix (adjacency matrix of the network) is much less than the
matrix size N). The sparsity of the data significantly complicates the community
detection problem in single cells. It is known that upon dilution of the network,
there is a fundamental resolution threshold for all community detection methods82.
Furthermore, traditional operators (adjacency, Laplacian, modularity) fail far above
this resolution limit (i.e., their leading eigenvectors become uncorrelated with the
true community structure above the threshold)43. That is explained by the emer-
gence of tree-like subgraphs (hubs) overlapping with true clusters in the isolated
part of the spectrum for these operators. Localization on the hubs, but not on true
communities in the network, is a drawback of all conventional spectral methods in
the sparse regime.

To overcome the sparsity issue and to make spectral methods useful in the
sparse regime, Krzakala et al.43 proposed to construct the transfer-matrix of non-
backtracking random walks (NBT) on a directed network. The NBT operator B is
defined on the edges i→ j, k→ l as follows:

Bi!j;k!l ¼ δilð1# δjkÞ ð1Þ

By construction, NBT walks cannot revisit the same node on the subsequent
step and, thus, they do not concentrate on hubs. It has been shown that the non-
backtracking operator is able to resolve the community structure in a sparse
stochastic block model up to the theoretical resolution limit. In recently published
paper42, we have proposed the neutralized towards the expected contact probability
NBT operator for the sake of a large-scale splitting of a sparse polymer network
into two compartments.

Here, we are interested in the small-scale clustering into TADs, for which the
conventional NBT operator is appropriate. To eliminate the compartmental signal
from the data, we first cleansed all chromosome contact matrices starting from the
diagonal, corresponding to 1 Mb separation distance (100th diagonal in the 10-kb
resolution). To respect the polymeric nature of the contact matrices, we have filled
all empty cells on the leading sub-diagonals with 1. Then, the NBT spectra of all
single-cell contact matrices were computed. The majority of eigenvalues of the
non-Hermitian NBT operator are located inside the disc in a complex plane, and
some number of isolated eigenvalues with large amplitudes lie on the real axis. The
edge of the isolated part of the spectrum was defined as the real part of the largest
in absolute value eigenvalue with a non-zero imaginary part. All eigenvalues λi such
that Re(λi) > rc are isolated, and the corresponding eigenvectors correlate with
annotation into the TADs. The position of the spectral edge, determined by the
procedure above, has been found to be very close to the edge of the disk for the

stochastic block model rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d#1 d

d#1

" #q
, where d is the vector of degrees83. The

typical number of the isolated eigenvalues was around 100 for dense contact
matrices and somewhat less for sparser ones. The leading eigenvectors define the
coordinates uðiÞj ; j ¼ 1; 2; ¼ ;N of the nodes (bins) of the network in the space of
reduced dimension k << N. At the second step, the clustering of the data was
performed using the spherical k-means method, realized in the Python library
spherecluster84. The number of isolated eigenvalues establishes a lower bound on
the new space dimension k to be used for the clustering algorithm, since the
respective leading eigenvectors are linearly independent. The dimension of the
space k establishes a lower bound on the number of clusters because the leading
eigenvectors are linearly independent. To take into account the hierarchical
organization of TADs, we have communicated to the spherical k-means the
number of clusters somewhat larger than the lower bound. Although the final
splitting was found to be not particularly sensitive to this number, we have chosen
to split the network into 2.5*k clusters in order to obtain the same mean amount of
TADs per chromosome as with the modularity method (171 TADs).

The annotations produced by the spherical k-means on the single-cell Hi-C
matrices were contiguous (i.e., the clusters were sequence respective, thus
resembling TADs). The clusters (i) of size less than 30 kb and (ii) with amount of
contacts equal to 2(l – 1) (i.e., with no contacts other than on the sub-diagonals)
were excluded from the set as the inter-TADs regions. The ultimate median size of
the TADs across all single cells obtained by this algorithm was 110 kb (from 60 kb
to 260 kb), and the mean chromosome coverage was 82% (from 57 to 93%). The
same analyses of shuffled contact maps have revealed a similar number, size, and
coverage of the domains, formed purely due to fluctuations. The boundaries of the
NBT TADs in single cells were significantly conserved from cell to cell: the mean
pairwise fraction of matched boundaries was 44% for all the cells and 59% for the
five densest ones (for the shuffled cells with preservation of stickiness and scaling,
see the MSS model; the mean pairwise fraction was 38 and 50% for the five densest
cells).

Regarding the comparison of TAD boundaries with the modularity approach,
the mean fraction of conserved modularity boundaries is somewhat less – 42% for
all pairs of cells in the analyses and 52% for the five densest cells, whereas the
number of TADs per chromosome is the same in the two methods (171). Between
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the two methods, the mean number of matched boundaries for the corresponding
cells is 61%.

Compartment annotation in snHi-C and bulk BG3 in situ Hi-C. For compart-
ment annotation in bulk BG3 in situ Hi-C, we used eigenvector decomposition of
cis-interactions maps for each chromosome, as implemented in cooltools call-
compartments tool version 0.2.0 (https://github.com/mirnylab/cooltools). We then
reversed the sign of eigenvalues based on GC content (positive values corre-
sponding to an A compartment with larger GC content)26. We next carried out a
saddle plot analysis for each snHi-C dataset based on bulk BG3 in situ Hi-C
compartment annotation32. For this procedure, the bins in raw scHi-C maps were
reordered by ascending first eigenvector values and averaged to 5 × 5 saddle plots32.

Epigenetic analysis of TAD boundaries. For the functional annotation of TAD
boundaries, we downloaded modENCODE normalized array files85: total RNA of
ML-DmBG3-c2 cell line assessed by RNA tiling array (modENCODE id 713) and
the ChIP-chip for MOF (id 3041), BEAF-32 (id 921), Chriz (275), CP190 (924),
CTCF (3280), dmTopo-II (5058), GAF (2651), H1 (3299), HP1a (2666), HP1b
(3016), HP1c (942), HP2 (3026), HP4 (4185), ISWI (3030), JIL-1 (3035), mod
(mdg4) (324), MRG15 (3045), NURF301 (5063), Pc (325), RNA-polymerase-II
(950), Su(Hw) (951), Su(var)3-7 (2671), Su(var)3-9 (952), WDS (5148), H3 (3302),
H3K27ac (295), H3K27me3 (297), H3K36me1 (299), H3K36me3 (301), H3K4me1
(2653), H3K4me3 (967), H3K9me2 (310), H3K9me3 (312), H4K16ac (316). For
RNA-Seq coverage, we used the data from ref. 24. The files were binned at 10-kb
resolution by summation.

We plotted the ChIP-chip signal around different types of boundaries with
pybbi utility (https://github.com/nvictus/pybbi.git) based on UCSC tools86 and
constructed six sets of boundaries: boundaries found in the bulk in situ Hi-C,
boundaries found in the merged snHi-C dataset, boundaries present in >= 50% of
cells (>= 7 cells, stable boundaries), boundaries present in <50% of cells (<7 cells,
unstable boundaries), boundaries present in just one single cell, and random
boundaries. To obtain randomized boundaries, we shuffled bulk in situ Hi-C
boundaries across the Drosophila genome, preserving the number of boundaries
per chromosome. We also used the bins from the inner parts of TADs as a control
for the epigenetic analysis.

Functional annotation of distant contacts. The 10-kb genomic bins were sepa-
rated into four groups based on chromatin states for BG3 from Kharchenko et al.54:
active chromatin (>0.5 of RED and MAGENTA color), inactive chromatin (>0.5
LIGHT GRAY), Polycomb chromatin (>0.5 DARK GRAY), and unannotated (all
the rest) for functional annotation of distant contacts. The thresholds for functional
enrichment of particular types of chromatin were selected in order to guarantee the
selection of the regions with the most prominent properties of active/inactive/
Polycomb chromatin.

The 10-kb genomic bins were split into five groups based on the average
expression from two RNA-seq replicates in BG3 cells24 (0 expression, 38.1–40%,
40–60%, 60–80%, top 20% expression) for expression activity annotation. We were
not able to split the data using an even grid of percentiles (e.g., 0–20%, 20–40%)
because ~38% of all genomic bins had zero expression in both replicates. The same
functional annotation was used later for polymer model coloring.

Average loop. For the construction of an average loop of A-compartment regions
(Fig. 4f) and B compartment regions (Fig. 4g), MSL complex (Fig. 4h) and Poly-
comb (Fig. 4i), we selected the top 1000 genomic regions with the highest abun-
dance of the corresponding genomic annotations as potential looping positions. A
and B compartments were assessed by a cis-derived eigenvector of the bulk BG3
Hi-C data. MSL ChIP-Seq was obtained from Ramirez et al.51, GEO ID GSE58821).
dRING binding data were obtained from modENCODE as a ChIP-chip normalized
array file (ID 92754). We considered the pairs of potential looping positions cor-
responding to intrachromosomal interactions, at the genomic distances of more
than 600 kb, separated by up to 50 other looping positions. The snipping of Hi-C
square 600-kb windows, centered on the corresponding looping positions, was
done with cooltools (https://github.com/mirnylab/cooltools/tree/master/cooltools).
The aggregation was performed by summation. log10 values were plotted as
heatmaps.

Assessment of folding hierarchy of TADs. To assess the folding hierarchy at the
level of TADs, we used the assumption that the successive sub-TADs that form the
same TAD will have more interactions in the observed real snHi-C maps than in the
control maps described in the section “snHi-C background model” of these
Methods. We calculated the number of contacts directly from snHi-C maps and the
control maps. Only sequential sub-TADs falling into the same TAD were con-
sidered. The distribution of the number of contacts in the windows between
sequential sub-TADs was calculated. We compared the distributions of the number
of contacts between sub-TADs falling into the same TAD for real snHi-C maps and
the control maps. For each cell, we used either TAD/sub-TAD annotations from the
corresponding snHi-C map or TAD/sub-TAD annotation from bulk in situ Hi-C.

Marginal scaling (MS) and marginal scaling and stickiness (MSS) models. We
carried out the statistical analysis of the single-cell Hi-C maps to provide statistical
arguments supporting the premise that the clustering observed in snHi-C contact
matrices “is not random”. For this, we used two different models of a polymer
network based on Erdos-Renyi graphs, where bins of the contact map resemble
graph vertices, and contacts between bins are graph edges87 (Supplementary
Fig. 4a):

(a) In the MS model, we require the probability of contact between nodes to
respect the contact probability of the experimental contact map, i.e. P (s)=
Pc(|i− j|). Decay of the contact probability originates from the intrinsic
linear connectivity of the chromatin nodes; therefore, it is an important
ingredient for studying fluctuations in a polymer network. The probability
of the link between i and j in the random graph I, j= 1, 2…, N is, thus,
defined as follows:

pij ¼
Pcðji# jjÞ

PN#1
s¼1 ðN # sÞPcðsÞ

Nc ð2Þ

where the normalization factor in the denominator guarantees that the mean
number of links in the graph equals Nc (i.e., the number of experimentally
observed links in each single cell). To obtain the average scaling, we merge all
contacts from the available single cells and compute the average Pc(s). Given
the probability pij by Eq. 2, we randomly generate adjacency matrices that
have a homogenous distribution of contacts along the diagonals and do not
respect local peculiarities of the bins, such as insulation score, acetylation,
and protein affinity. Nevertheless, some non-homogeneity (clustering) of
contacts still emerges as a result of stochasticity in each realization of this
graph (Supplementary Fig. 4e).

(b) the MSS model introduces probabilistic non-homogeneity along the
diagonals of the adjacency matrices through definition of the “stickiness”
of bins, or. Specifically, under “stickiness”, we understand a non-selective
affinity ki of a bin i to other bins; the probability that the bin i forms a link
with any other bin in the polymer graph is proportional to its stickiness.
Thus, the clusters of contacts close to the main diagonal of contact matrices
form as a result of different “stickiness” of bins in the MSS model. Stickiness
might effectively emerge as a result of a particular distribution of “sticky”
proteins, such as PcG proteins known to mediate bridging interactions
between nucleosomes and to participate in stabilization of the repressed
chromatin state.

Assuming that the stickiness is distributed independently of the polymer scaling
Pc(|i− j|), we use the following expression for the probability of the link, pij, in the
MSS model:

pij ¼
kikjPcðji# jjÞ

P
i<j kikjPcðji# jjÞ

Nc ð3Þ

To derive the values of stickiness, we calculated the coverage at each bin in the
merged contact map ~ki , which stands for the average number of contacts at a
particular bin. Due to the polymer scaling, the rates of contacts along each row
(column) vary. Thus, ~ki is not equal to stickiness, ~ki≠ki . To determine the stickiness
values ki, one should correlate the experimental coverage ~ki with the theoretical
mean number of contacts per bin, according to Eq. 3:

~ki ¼
X

j
pij ¼ kiαi ð4Þ

where is “activity” of surrounding bins, measured for the i-th bin:

αi ¼
1
Z

X
j
kjPcðji# jjÞ; Z ¼ 1

Nc

X
i<j

kikjPcðji# jjÞ ð5Þ

Equation 3 sets a system of N non-linear equations that cannot be solved
analytically. To determine the stickiness values, we implement the numerical
method of iterative approximations. Namely, we start with:

kð0Þi ¼ ~ki; α
ð0Þ
i ¼ αið~kiÞ ð6Þ

and recalculate kð1Þi using Eqs. (4, 5) at the second step. After several recursive
steps, we find good convergence of the stickiness and activity to their limiting
values k1i and α1i . In particular, the derived values of the stickiness provide a good
estimate for the averaged theoretical coverage ~ki as compared to the experimental
coverage; see Supplementary Fig. 4f, g. Therefore, the derived null-model of single-
cell maps reproduces, on average, the observed coverage of contacts of each bin by
means of the individual stickiness assignment. We would like to point out the
difference between the limiting values of the stickiness and ~ki, used as a starting
approximation in the iterative procedure; Supplementary Fig. 4h. This difference is
a result of the non-homogeneous redistribution of contacts at each particular row
in accordance with the marginal polymeric scaling Pc(|i− j|).

Number of contacts in windows. The MS and MSS models introduced above
demonstrate apparent clustering of generated contacts close to the main diagonal
in realizations of adjacency matrices. In the MS model, this is purely due to
fluctuations: the mean weight of the link wij= ps depends only on the genomic
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distance between the bins s= |i− j| in the respective Poisson version of the
weighted network. In contrast, in the MSS model, the non-homogeneity of bin
sicknesses allows for a deterministic non-homogeneous distribution of contacts
along the main diagonal.

To statistically compare the clustering of contacts generated by the two models
with the clustering in experimental single cell Hi-C maps, we studied distributions
of the number of contacts in certain “windows” of different sizes. The inspected
windows are isoscele triangles with the base located on the main diagonal and
having the angle with the congruent sides. These windows look like TADs but, in
contrast to the latter, have a fixed size throughout the genome.

At a given window size W, we sampled the number of contacts falling in the
defined windows in each snHi-C map. We compared the samples originating from
100 random MS-generated maps and 100 random MSS-generated maps with
derived limiting values of stickiness (see the previous section for discussion of the
models).

Note that in the theoretical models (MS and MSS), all contacts are statistically
independent: in both models, the number of contacts falling in a window of size
can be interpreted as a number of “successes” occurring independently in a certain
fixed interval. In the MS model, the “success” rate is constant along each diagonal;
thus, for rather sparse MS maps (i.e. sufficiently small rates), one would expect the
observed contacts in the windows to follow the Poisson distribution. In the MSS
maps, the stickiness distributions introduce non-homogeneity to “success” rates
along the diagonals; however, as our analyses suggest, the random MSS maps
exhibit much more satisfactory Poisson statistics than their original experimental
counterparts; Supplementary Fig. 4j, k.

Deviations from the Poisson statistics of the snHi-C contact maps are evaluated
by the p-value of the χ2 goodness of fit test (Supplementary Fig. 4k). The heatmaps
of the common logarithm of p-values for the top-10 single cells and the
corresponding MS and MSS maps are presented in Supplementary Fig. 4j. The
random maps (the second and third rows) demonstrate reasonably even
distributions of the p-values across distinct single cells that rarely enter below the
significance level α= 10−5. Several atypically low p-values correspond either to the
most dense single cells and small window sizes (upper-left corner), for which the
sparse Poisson limit is violated, or to a quite uneven distribution of stickiness for a
given chromosome. Notably, the snHi-C maps demonstrate remarkable deviations
from the Poisson statistics for small window size W < 40 bins (<400 kb). As can be
seen from the heatmaps (Supplementary Fig. 4j) the χ2 test rejects the null
hypothesis at the significance level α= 10−5 for most of the single cells at small
scales. Therefore, the probability that the experimental contact maps are described
by the Poisson statistics is significantly low (α).

To understand the source of inconsistency between the experimental and
Poisson distributions, we plotted the histograms of the number of contacts along
with their best Poisson-fit for W= 10 (Supplementary Fig. 4k, left) and W= 40
(Supplementary Fig. 4k, right). The presence of large-scale heavy tails and low-scale
shoulders in the experimental histograms results in the rejection of the null
hypothesis.

Finally, the samples corresponding to larger windows are notably better
described by the Poisson distribution, exhibiting a level of p-values similar to the
random maps. The crossover W0 ≈ 40 (400 kb) corresponds to the scale of 3–4
typical TADs; this implies that the positioning of the contacts inside a single TAD
is sufficiently correlated. Correlations between the contacts of different pairs of loci
can originate from a specific non-ideal folding of chromatin (e.g., fractal globule) or
be a signature of active processes (e.g., loop extrusion) operating at the scale of one
TAD. Larger window sizes accumulate contacts from different TADs, whereas most
of the inter-TADs contacts are much less correlated. As a result, we see reasonable
Poisson statistics of the number of contacts from larger windows with W >W0.
Taken together, we conclude that correlations in contacts is a structural feature of
experimental single cell maps and that clusters (TADs) identified in the maps
cannot be reduced to random fluctuations imposed by the white noise or
imperfections of the experimental setup.

Fluorescence in situ hybridization. The cells were harvested overnight on poly-l-
lysine coated coverslips placed in culture flasks. The cells were fixed in 4% paraf-
ormaldehyde for 10min, permeabilized in 0.5% Triton X-100, washed in PBS,
dehydrated in ethanol series, air-dried, stored at room temperature for 2 days, and
then frozen at −80 °C. Probes were prepared from fosmids by labeling with
fluorophore-conjugated dUTPs using nick-translation. Approximately 150 ng of
each probe was used in hybridization. Denaturation was performed at 80 °C for 30
min in 70% formamide (pH 7.5), 2× SSC. Hybridization of probes was done for 24 h
in 50% formamide, 2× SSC, 10% dextran sulfate, 1% Tween 20. Washing steps were
performed in 2× SSC at 45 °C followed by 0.1× SSC at 60 °C and 4× SSC, 0.1%
Triton X-100. For imaging, cells were counterstained with DAPI, and epifluorescent
images were acquired using a microscope setup comprising a Zeiss Axiovert 200
fluorescence microscope (Carl Zeiss UK, Cambridge, UK), X-Cite ExFo 120 Mer-
cury Halide (Exfo X-cite 120, Excelitas Technologies) fluorescent source with liquid
light guide and 10-position excitation, neutral density, and emission filter wheels
(Sutter Instrument, Novato, CA), ASI PZ2000 3-axis XYZ stage with integrated
piezo Z-drive (Applied Scientific Instrumentation, Eugene, OR), Retiga R1 CCD
camera (Qimaging, Surrey, BC, Canada). The filter wheels were populated with a
#89903 ET BV421/BV480/AF488/AF568/AF647 quinta set (Chroma Technology

Corp., Rockingham, VT). Image capture was performed using Micromanager 1.4
(https://open-imaging.com/). Hardware control and image capture were carried out
using µManager88. Images were deconvolved using Nikon NIS-Elements. Mea-
surements were taken using Imaris.

Polymer simulations. Simulation of 3D chromatin fiber enabled substantiation of
assumptions about factors that play key roles in chromatin organization and to
obtain important information about its packaging. We focused on the static
properties of the system and did not consider its dynamic properties.

Modeling pipeline, general description of the procedure. Many methods are
currently used to perform computer modeling of polymers. Due to the actual size
and complexity of the chromatin, the all- or united-atom model cannot be used to
simulate spatial scales of interest. The dissipative particle dynamics (DPD) tech-
nique was used because it enables modeling of the physical properties of polymer
systems59. DPD is a coarse-grain method of molecular dynamics. Newton’s
equations are solved numerically for each particle in the system for every time step.
The total force consists of conservative, dissipative, random, and elastic forces.

Conservative force is described by a soft potential within the sphere with cutting
radius Rc= 1.0. The soft potential has no singularity at the zero point
(Supplementary Fig. 21a). It is possible to use a large time step in the Velocity
Verlet integration scheme, in contrast to classical molecular dynamics (CMD) with
the Lennard-Jones potential. The typical time step in CMD is 20 times smaller than
in DPD. The solvent is taken into account explicitly; it is necessary for the DPD
thermostat to work89,90. The temperature control of the system is ensured by a
balance of dissipative and random forces that conserve the momentum. The elastic
force simulates the presence of a bond between beads. An ensemble of NVT
(number of particles, volume, temperature) is used. A detailed description of the
simulation method can be found elsewhere91. We used our own implementation of
DPD that is 2D parallelized and lightweight92.

In all simulations, the following parameters were used: app= ass= 25.0, aps=
26.63 (soft potential repulsion coefficient), in terms of Flory-Huggins’ theory
χ ¼ 0:5 ¼ 0:306*ðaps # appÞ, where app—repulsion coefficient between polymer
and polymer beads, ass—between solvent and solvent beads, aps—between polymer
and solvent beads; l0= 0.5 (undeformed bond length), k= 40 (bond stiffness),
dt= 0.04 (integration timestep), σ= 3 (number density), simulation box size 22 ×
22 × 22 DPD a.u.

With these parameters, the polymer chain (or chromatin fiber) is able to self-
intersect but still has an effective excluded volume. At χ= 0.5, the single polymer
chain in a dilute solution has a Gaussian conformation (i.e. it corresponds to a
simple random walk).

Each simulation was organized as follows:
The polymer chain is generated as a random walk within the cubic cell with the

size of 10 DPD units. Adjacent solvent particles are included into the simulation
cell with the size of 22 DPD units until the number density σ= 3. Additional bonds
between beads are added according to the snHi-C contact matrix. If i-th and j-th
beads have a contact, an additional harmonic bond between i-th and j-th beads is
added to the system if |i− j| > 1. We define contact as an event when the distance
between two beads (i, j) meets criterion Dij < Rcut= 0.7 Such Rcut value corresponds
to the average bond length. We count all the contacts in the system. So, in a system
any bead can have more than 1 contact. Additional bonds could be overstretched;
therefore, the system is equilibrated over 106 steps. The simulation time is two
orders of magnitude higher than the necessary equilibration time (Supplementary
Fig. 21b); hence, there are no doubts regarding the system equilibrium. According
to our calculations, the equilibration time is ~20k steps. The equilibrated system
contained overstretched bonds, which were removed one by one until the
maximum length became less than the threshold lmax < 1.5 DPD a.u.
(Supplementary Fig. 21c, Supplementary Table 2). Backbone bonds were not
removed, because they represented reliable information. The system was
equilibrated for 20k steps after each bond removal.

Values of the single-cell Hi-C matrix elements could vary because the restriction
fragment is smaller than the selected resolution (10 kb). Data regarding the exact
number of contacts between two fragments were not used. Therefore, the contact
matrix was considered to be binary. Only the X chromosome was simulated
because it is haploid. The X chromosome corresponds to the polymer chain
consisting of 2242 beads at 10 kb resolution. Every single chain bead represents 50
nucleosomes. Our model does not consider the shape of a 10-kb region or any
other internal properties.

Control simulations were organized in the same manner, but the contacts were
shuffled. Shuffling was performed while maintaining the number of contacts at
each genomic distance. We also performed simulations with shuffling on the long
genomic distances only and sampling the contacts from two cells (Supplementary
Table 3). The second case shows that reconstruction of the 3D conformation from
diploid chromosomes is meaningless in comparison with haploid chromosomes.

Coefficient of the difference. To compare two 3D structures, corresponding
distance matrices were calculated. Orientation of the chain in 3D space did not
affect the elements of distance matrices. The Coefficient of the difference is
introduced as K=Masym/Msym, where Masym= ||D–D′||/2 and Msym= ||D–D′||/2,
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where D and D′—distance matrices. ||Matrix||—is the Euclidean distance
(d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a211 þ a212 þ ::þ a221 þ ¼

p
, a##—matrix element). To avoid the contribu-

tion of thermal fluctuations, each distance matrix was averaged over 100 con-
formations with an output rate of 10k steps.

To demonstrate the independence of the final result on the initial conformation,
we repeated the calculation of the system ten times with the maximal number of
contacts. For each repeat, we created a new independent initial conformation, but
we kept the same set of additional bonds. The initial conformation does not affect
the final result in the simulation protocol.

Visualization of epigenetic states. The visualization was performed using the
pymol software v. 2.3.2 (https://pymol.org/2/). 1D epigenetic data were added to
the structure as a bead type and represented with a corresponding color. Analysis
of different epigenetic states was performed via Python scripts (https://github.com/
polly-code/DPD_withRemovingBonds). Before the visualization, some of the
conformations were smoothed by averaging coordinates within the window of 15
beads along the chain. This approach ensured that thermal fluctuations were
avoided (Supplementary Figs. 16, 21).

Radial distances and center of mass. We calculated the surface of the chro-
mosome territory as a convex hull. The distance to the surface was evaluated as the
minimal distance from the particle to the surface, and then the distance arrays were
averaged.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw and processed snHi-C and bulk BG3 in situ Hi-C data are available in the GEO
NCBI under accession number “GSE131811”. List of publicly available GEO sources used
in this study: “GSE122603” (Hi-C for Kc167 and BG3 cell lines for comparison of stable
TAD boundaries), “GSE58821” (MSL; ChIP-seq), “GSE69013” (RNA-Seq). List of
publicly available modENCODE data sources used in this study: total RNA of ML-
DmBG3-c2 cell line assessed by RNA tiling array (modENCODE id 713) and the ChIP-
chip for MOF (id 3041), BEAF-32 (id 921), Chriz (id 275), CP190 (id 924), CTCF (id
3280), dmTopo-II (id 5058), GAF (id 2651), H1 (id 3299), HP1a (id 2666), HP1b (id
3016), HP1c (id 942), HP2 (id 3026), HP4 (id 4185), ISWI (id 3030), JIL-1 (id 3035),
mod(mdg4) (id 324), MRG15 (id 3045), NURF301 (id 5063), Pc (id 325), RNA-
polymerase-II (id 950), Su(Hw) (id 951), Su(var)3-7 (id 2671), Su(var)3-9 (id 952), WDS
(id 5148), H3 (id 3302), H3K27ac (id 295), H3K27me3 (id 297), H3K36me1 (id 299),
H3K36me3 (id 301), H3K4me1 (id 2653), H3K4me3 (id 967), H3K9me2 (id 310),
H3K9me3 (id 312), H4K16ac (id 316). dRING binding data were obtained from
modENCODE as a ChIP-chip normalized array file (id 927). All other relevant data
supporting the key findings of this study are available within the article and its
Supplementary Information files or from the corresponding author upon reasonable
request. A reporting summary for this Article is available as a Supplementary
Information file. Source data are provided with this paper.

Code availability
The data processing pipeline is available at https://github.com/agalitsyna/sc_dros. The
modeling pipeline is available at https://github.com/polly-code/DPD_withRemovingBonds.
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Supplementary Figure 1.
(a) Example of individual nuclei isolation. FACS was performed using DAPI staining. P1 zone contains individual nuclei, and 
zone P2 contains high-confidence signals. Nuclei were harvested from zone P2. (b) Workflow of snHi-C data analysis.
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Supplementary Figure 2. Quality control of Drosophila snHi-C datasets.
(a) Dependence of number of unique contacts on library size in downsampling analysis (see Methods). The best 20 single 

cells (red) were selected and then used for additional sequencing. (b) Number of unique contacts per restriction fragment 

(RF) captured by ORBITA (orange) and hiclib (blue) for 20 best BG3 snHi-C datasets. Number of restriction fragments with 

more than four contacts is shown in every plot. Note that the number of contacts called by hiclib is larger than the number of 

contacts called by ORBITA. BG3 is a diploid male cell line; accordingly, in a single nucleus, each RF from autosomes and 

the X chromosome could establish no more than four and two unique contacts, respectively (see Online Methods for 

details); r.s., results of downsampling control, averaged over 10 repeat. (c) Number of unique contacts per restriction 

fragment (RF) captured by ORBITA (orange) and hiclib (blue) for chromosome X. BG3 cells have only one X chromosome; 

thus, only 2 unique contacts are possible for a single restriction fragment, corresponding to 2 ends of linear DNA fragment 

after restriction. r.s., as above.
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Supplementary Figure 3. Quality control for published mouse snHi-C using ORBITA.
(a) Number of unique contacts per restriction fragment (RF) captured by ORBITA (orange) and hiclib (blue) for ten cells 

from Flyamer et al. (2017)32. The cells are named according to the Supplementary Data from Flyamer et al. (2017)32. o – 

oocyte, N – non-surrounded nucleolus, H – Hoechst stain, I – Intermediate, r.s., results of downsampling control, 

averaged over 10 repeats. (b) Number of unique contacts per RF captured by ORBITA (orange) and hiclib (blue) for ten 

cells from Nagano et al. (2017)33. The cells are named according to Supplementary Data from Nagano et al. (2017)33; r.s., 

as above.
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Supplementary Figure 4. snHi-C maps do not follow the rules of random distribution of contacts.
(a) Background model of snHi-C interactions (MSS; Marginal Scaling with Stickiness Model). (b) Scatter plot of the initial 
number of contacts per genomic bin in snHi-C map and after randomization for chr2R of Cell 1 with 107,823 unique 
contacts. (c) Contact probability Pc(s) for chr2R of Cell 1 before (green) and after (blue) randomization. (d) Cell 1 snHi-C 
interactions map for a region of chr2R (lower triangle) and randomized background control (upper triangle) (see Methods). 
Note the presence of contact clusters at the diagonal both in original and reshuffled data. (e) Examples of experimental 
(Exp) single-cell Hi-C maps with those simulated using the MSS and MS models. (f-h) Derivation of the stickiness values (Y 
axis) given the coverage of bins (numbers of contacts in rows, X axis) obtained by iterative approximations for the MSS 
model and chr2L (merged snHi-C data were used). n = 2,302 bins. (f) Histograms of observed coverage from merged 
snHi-C map (blue) and of theoretical values (brown) calculated with (red) at the first step of the iterative procedure; wrong 
mean – computed with wrong stickiness. (g) The same histogram as in (f) after a series of iterative corrections of the 
stickiness values that led to convergence towards the limiting values. The resulting distribution of the coverage (red) 
reproduces the experimental values; true mean – computed with true stickiness, which is the outcome of the iterative 
procedure. (h) Distributions of the experimental coverage (blue) and of the limiting stickiness (red) are significantly different. 
Notably, the stickiness values have lower variance than the experimental coverage because the latter incorporate 
fluctuations of the contact probability. (i) Initial and limiting scaling probability functions (see Methods) remain unchanged 
after the iterative approach. (j) Heatmaps of log10 of p-values for the test for the top-10 cells sorted to their contact 
densities. Clustering of contacts at the scale of TADs cannot be explained by the random models at the significance level. 
(k) Experimental, MS, and MSS distributions of the number of contacts in windows of the size bins (100 kb) (left) and bins 
(400 kb) (right) displaced at the main diagonal and their best Poisson distribution (in red). P-values are calculated in 
Chi-Square Goodness of Fit Test. Left: n = 211, 279 and 224 windows for 2R, 3R and X, respectively. Right: n = 52, 69 and 
56 windows for 2R, 3R and X, respectively.



Supplementary Figure 5

Supplementary Figure 5. Selection of TAD calling parameters. 
'HSHQGHQFH�RI�PHDQ�7$'�VL]H��JHQRPH�FRYHUDJH�ZLWK�7$'V��DQG�QXPEHU�RI�FDOOHG�7$'V�RQ�WKH�Ȗ�SDUDPHWHU�YDOXH�
for all analyzed chromosomes for bulk in situ Hi-C data, merged dataset, and all single cells. Iterative correction of the 
maps was used prior to TAD calling for the bulk in situ Hi-C dataset. Count – number of TADs identified; Coverage – 
coverage of the genome with the TADs identified; mean – mean TAD size. In the inset: number – number of TADs and 
sub-TADs identified.
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Supplementary Figure 6

Supplementary Figure 6. TAD calling robustness to sampling procedure.
(a-b) Mean ratio of overrepresented boundaries (false positives) out of true non-boundary genomic bins (false positive rate 
(FPR)) (a) or underrepresented boundaries (False Negatives) out of true boundaries (false negative rate (FNR)) (b) for TAD 
calling on subsampled snHi-C maps (see Methods). The snHi-C maps were independently subsampled by 5% levels from 
the initial contacts of each dataset. Ten subsampling iterations per dataset and subsampling level were performed. Violet 
rectangle shows the diapason of data downsampling used for testing of TAD boundary robustness to sampling procedure.
(c) True TAD boundaries were predicted based on the collective support by different subsampling levels and iterations (see 
Methods). ROC curves for different threshold subsampling levels are shown. Subsampling level 95 corresponds to 95% of 
initial contacts per dataset; level 90 corresponds to collective support from 95% and 90% subsampling iterations etc. Level 
90 was selected as the threshold. The following final criteria were selected: collective support is smaller than 45% at 
90–95% subsampling levels. The resulting accuracy is 0.9765.
(d) Distribution of number of cells in which the boundary is present. Out of 9,942 initially called boundaries across all the 
cells and chromosomes, 9,788 are confirmed by subsampling analysis.
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Supplementary Figure 7. NBT as an alternative approach for identification of TAD boundaries.
(a) Percentage of TAD boundaries shared between NBT- and modularity-derived TAD segmentations in individual 
cells. The mean percentage of shared boundaries is 61%. (b) Percentage of TAD boundaries shared between single 
cells for the NBT TAD calling procedure. The mean percentage of shared boundaries is 42%. (c) Epigenetic profiles 
around the NBT-identified TAD boundaries. (d) Spectrum of the non-backtracking operator for cell 3, chr3L. The 
corresponding constraining disk of the radius rc for the stochastic block model is shown by red.
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Cell1 TADs
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Cell13 TADs

Cell14 TADs

Cell15 TADs

Cell16 TADs

Cell17 TADs

Cell18 TADs

Cell19 TADs

Cell20 TADs

Cell1 TADs control

Cell2 TADs control

Cell3 TADs control

Cell4 TADs control

Cell5 TADs control

Cell6 TADs control

Cell7 TADs control

Cell8 TADs control

Cell9 TADs control

Cell10 TADs control
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Cell12 TADs control

Cell13 TADs control

Cell14 TADs control

Cell15 TADs control

Cell16 TADs control

Cell17 TADs control

Cell18 TADs control

Cell19 TADs control

Cell20 TADs control
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Cell1 TADs

Cell2 TADs

Cell3 TADs

Cell4 TADs

Cell5 TADs

Cell6 TADs
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Cell9 TADs

Cell10 TADs

Cell11 TADs

Cell12 TADs

Cell13 TADs

Cell14 TADs

Cell15 TADs

Cell16 TADs

Cell17 TADs

Cell18 TADs

Cell19 TADs

Cell20 TADs

population SubTADs
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Cell2 SubTADs

Cell3 SubTADs

Cell4 SubTADs
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Cell14 SubTADs

Cell15 SubTADs
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Cell17 SubTADs

Cell18 SubTADs

Cell19 SubTADs

Cell20 SubTADs
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Supplementary Figure 8

Supplementary Figure 8. TAD boundaries are shared between individual Drosophila cells.
(a) Percentage of TAD boundaries shared between Drosophila BG3 single cells, bulk BG3 in situ Hi-C, and merged snHi-C data, pairwise comparisons. 
The mean percentage of shared boundaries between individual cells is 39.45%. On average, 46.6% of population-identified TAD boundaries are present 
in the single cells. In control maps with shuffled contacts (lower part of the plot) preserving marginal distributions and scaling, only 34.95% of boundaries 
are shared with population boundaries, and 32.47% of boundaries are shared between pairs of shuffled maps (see Methods). (b) P-values of permutation 
tests for the TAD boundaries from (a). Permutation tests were performed 1,000 times (see Methods). -log10 values are shown. (c) Jaccard index of 
shared TAD regions between Drosophila BG3 single cells, bulk BG3 in situ Hi-C, and merged snHi-C data, pairwise comparisons (see Methods). (d) 
Percentage of TAD boundaries shared between Drosophila BG3 single cells, bulk BG3 in situ Hi-C, and merged snHi-C data, TAD and sub-TAD, pairwise 
comparisons. (e) P-values of permutation tests for the TAD and sub-TAD boundaries from (d). Log10 values are shown.
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Supplementary Figure 9

Supplementary Figure 9. TAD boundaries are less stable between mouse cells.
(a) Percentage of TAD boundaries shared between murine oocytes single cells32 (top-20 cells based on the number of contacts), pairwise comparisons. 
The mean percentage of shared boundaries is 31.2%. (b) P-values of permutation tests for the TAD boundaries from (a). Permutation tests were 
performed 1,000 times. -log10 values are shown. (c) Jaccard index of shared TAD regions between mouse single oocytes34, pairwise comparisons. TADs 
were called with the procedure similar to the TAD calling in Drosophila, as described in Methods, varying gamma value from 0 to 375 during step 1. (d) 
Percentage of TAD boundaries shared between murine G2 zygotes pronuclei (top-20 pronuclei based on the number of contacts), pairwise comparisons. 
The mean percentage of shared boundaries is 21%.
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Supplementary Figure 10

Supplementary Figure 10. Different stability of TAD boundaries between mouse and Drosophila is robust to the 
data resolution selection and data quality.
(a) Percentage of shared boundaries for different levels of data quality, as assessed by mean number of contacts per 10-kb 
genomic bin per dataset. Boxplots represent the median, interquartile range, maximum and minimum. Total n = 380 
cell-to-cell pairwise comparisons for each of three types of boxplots in the analysis. Related to Fig. 3e. (b) Percentage of 
shared boundaries between all pairs of cells of Drosophila in this work, top-20 oocytes from Flyamer et al. (2017)32 and 
top-20 G2 zygote pronuclei34 at 40 kb. Boxplots represent the median, interquartile range, maximum and minimum. Total n = 
380 cell-to-cell pairwise comparisons for each of three types of boxplots in the analysis. (c) Percentage of shared 
boundaries for different levels of data quality, as assessed by mean number of contacts per 40-kb genomic bin per dataset. 
Boxplots represent the median, interquartile range, maximum and minimum. Total n = 380 cell-to-cell pairwise comparisons 
for each of three types of boxplots in the analysis. Related to Supplementary Fig. 10b.



Supplementary Figure 11

Supplementary Figure 11. Epigenetic properties of different types of TAD boundaries. 
Heatmaps with z-score (upper panel) of selected chromatin marks centered at single-cell TAD boundaries from different groups 
(+/- 100 kb). Bulk – conventional BG3 in situ Hi-C; merged – aggregated snHi-C data from all individual cells; stable – 
boundaries found in more than 50% of cells; unstable – boundaries found in less than 50% of cells; cell-specific – boundaries 
identified in any one individual cell; TAD bins – genomic bins from TAD interior; random – randomly selected genomic bins. TAD 
boundaries are refined by the subsampling robustness protocol (see Methods).



Supplementary Figure 12

Supplementary Figure 12. Epigenetic properties of different types of TAD boundaries (related to 
Supplementary Figure 11; stable – boundaries found in more than 60% of cells; unstable – boundaries found 
in less than 40% of cells).
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Supplementary Figure 13. Distributions of distances between boundaries of different types and the number of 
boundaries. Rows 1-4 represent the boundaries from individual cells. Rows 5-7 represent the boundaries from the bulk Hi-C 
data, merged datasets, alongside cell-specific boundaries, unstable and stable boundaries. In all the cases except 
cell-specific boundaries, the distributions are demonstrated up to 400 kb.
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Supplementary Figure 14

Supplementary Figure 14. Sub-TAD boundary profiles are not conserved between individual cells.
Percentage of sub-TAD boundaries excluding TAD boundaries shared between Drosophila BG3 single cells, bulk 
BG3 in situ Hi-C, merged snHi-C data, and control shuffled datasets, pairwise comparisons. P-values of permutation 
tests for the sub-TAD boundaries were performed 1,000 times and are not shown. All of them are <0.01.
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Supplementary Figure 15

Supplementary Figure 15. Saddle plots and average TAD in individual cells.
Top: saddle plots for bulk Hi-C and merged contacts from all snHi-C datasets are shown on top. Below: saddle plot, 
average TAD plot, and average TAD plot for shuffled controls are displayed for each cell. Shuffled controls were obtained by 
the procedure described in Supplementary Fig. 4a-d. For saddle plots of bulk and merged data, log2 of observed over 
expected of iteratively corrected maps was used. For individual cells and saddle plot, log2 of observed over expected of 
pulled raw maps is shown. For individual cells and average TAD plots, log2 of pulled raw maps normalized by the mean 
number of contacts in a sliced window around TAD is provided.
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Supplementary Figure 16

Supplementary Figure 16. Modeling of 3D folding of individual chromosomes. 
(a) Examples of FISH images (related to Supplementary Fig. 19c) demonstrating that ChrX is actually haploid in the used 
EDWFK�RI�WKH�%*��FHOO�OLQH��6FDOH�EDU� ���ȝP��(b) 3D models of individual X chromosomes obtained from real snHi-C contacts 
and from shuffled control snHi-C maps. The models are shown as a stick model; positions of each genomic bin were 
averaged in the sliding window of size 15 centered at each bin. The models obtained from real snHi-C contacts are colored 
by a rainbow approach and by chromatin colors (as described in Methods, red – active, dark grey – inactive). Source data 
are provided as a Source Data file.
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Supplementary Figure 17

Supplementary Figure 17. TAD boundaries are reproduced in single-chromosome models.
(a) Percentage of TAD boundaries shared between individual cells, 3D models, and 3D models derived from shuffled 
snHi-C data (control). (b) P-values of permutation tests for TAD boundaries for (a).
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Supplementary Figure 18

Supplementary Figure 18. Saddle plots and average TADs in individual models. 
Four images in a row represent a single model of a chromosome X. For each model, there are saddle plots for real snHi-C 
modeling, saddle plots for shuffled controls, average TADs for snHi-C, and average TADs for control models. log2 values 
of observed over expected for average distance matrices were used; thus, smaller values represent a closer distance of 
corresponding bins of genome in 3D space.
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Supplementary Figure 19. Models recapitulate biologically meaningful contacts in single cells.
(a) False negative rate (FNR) of contacts obtained from models (real contacts and control are compared). Here, the set of 
true contacts for each cell is defined as the list of genomic bin pairs (10-kb resolution) with at least 1 interaction in the 
snHi-C map at a distance > 20 kb. The set of predicted contacts in the model is defined as the list of pairs of polymer 
monomers closer than 0.7 units based on average distance matrices. False negatives for the cell are defined as the 
number of pairs of bins that interact based on snHi-C but do not interact in the models by the criteria above. FNR is 
smaller for all the models based on real contacts except for Cells 10 and 13. Dotted line – mean FNR for the control; blue 
– true contacts-based model; grey – shuffled contacts-based model. (b) True positive rate (TPR) of contacts obtained from 
models. TPR is higher for all the models based on real contacts and is even higher than the mean TPR for the control 
shuffled contacts-based models. True positives for the cell are defined as the number of pairs of bins that interact based 
on snHi-C and also interact in the models by the criteria above. (c) Comparison of spatial distances between FISH probes 
in the DPD-simulated models (three right plots) and in situ FISH (left). Multiple model runs are 100 independent runs of 
DPD simulations. Single model and control are distance measurements for the models represented in Supplementary Fig. 
16. Two independent sets of FISH probes were selected. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, ns – 
non-significant difference in the two-sided Wilcoxon test. Set of probes 1: n = 132 independent measurements; Set of 
probes 2: n = 122 independent measurements.
Set 1:
Probe-1 = chrX:3,871,158..3,892,065 bp
Probe-2 = chrX:3,960,041..3,983,074 bp
Probe-3 = chrX:4,054,120..4,075,361;
Set 2:
Probe-1 = chrX:17,644,479..17,663,154 bp
Probe-2 = chrX:17,704,670..17,725,745 bp
Probe-3 = chrX:17,764,735..17,783,789.
Source data are provided as a Source Data file.
(d) Visualization of FISH probe regions (set 2) in models and conformation comparison with models obtained from real 
contacts and the shuffled control. Yellow, light-blue, and red stick fragments represent three TADs; three spheres 
represent the corresponding FISH probes. 
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Supplementary Figure 20

Supplementary Figure 20. 3D modeling controls. 
(a) Models obtained for snHi-C interactions with shuffled contacts at a distance > 200 kb (long-distance shuffled control).
(b) Models obtained for snHi-C pairs of cells that were artificially merged and subsampled to the number of contacts of 
one of the cells. The number of contacts of the first cell in the pair was selected as a reference.
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Supplementary Figure 21

Supplementary Figure 21. DPD polymer simulations.
(a) Qualitative comparison of soft potential from DPD and Lennard-Jones potential (see Online Methods) from classical MD 
demonstrates a significant difference in behavior near zero. (b) Main graph is the dependency of Kolmogorov-Smirnov 
distance between distance matrices of final conformation and conformation at other timepoints. In the inset, there is the 
Euclidean norm of difference between two distance matrices: the final one and at other timepoints. Such tests revealed the 
fast relaxation of spatial conformation for the proposed reconstruction method. (c) Distribution of bonds’ length before and 
after removing overstretched bonds. Despite the threshold for additional bonds being l<1.5, the length of the backbone 
bonds could be higher than 1.5. After removing additional bonds, heavy tails of the distributions "before" are not present.



Cell Raw reads Mapped reads
P (typical Hi-
C) pairs

H (hops) 
pairs

J (junctions 
supported 
by 
restriction 
site) pairs

Removed 
duplicates

Number of 
unique 
contacts

Contacts 
from 
restriction 
fragments 
with > 4 
contacts

Contacts from 
restriction 
fragments with 
> 4 contacts 
on chrX

Maximum 
number of 
contacts 
per 
restriction 
fragments

Maximum 
number of 
contacts per 
restriction 
fragments 
on chrX

Number of 
restriction 
fragments 
with > 4 
contacts

Number 
of chr X 
restriction 
fragments 
with > 4 
contacts

Final 
unique 
contacts

Final 
unique 
contacts 
on chrX

Cell1 44148251 26639477 23543936 507058 2588483 5322544 349051 1905 18 11 5 371 4 107823 11898

Cell2 68632913 39168691 33757160 1059441 4352090 7703393 160751 421 4 25 5 77 1 77770 8174

Cell3 34187865 19797650 17446338 374445 1976867 3071733 295915 368 11 8 6 70 4 73691 8408

Cell4 58947730 22197761 19741636 508544 1947581 6938793 193845 72 6 11 6 14 1 41439 4867

Cell5 50651907 31979756 26885818 892647 4201291 4047611 70297 314 7 13 11 63 5 38174 3917

Cell6 49705351 16513692 13628560 661470 2223662 3629266 94498 58 5 6 5 11 1 35420 3628

Cell7 43834863 13472471 10757036 489079 2226356 3858726 86946 194 13 10 8 39 5 30620 3348

Cell8 55049855 11567500 9733256 438663 1395581 2461501 145606 56 0 8 4 10 0 38019 3275

Cell9 78541387 65267034 55840373 2020682 7405979 7281553 50349 666 22 24 13 106 9 27059 2732

Cell10 41639146 8557235 7157042 376074 1024119 2137327 67414 41 15 16 5 6 3 24882 2585

Cell11 59065312 34086673 30192109 740740 3153824 10265078 129935 229 1 20 5 41 1 25483 2558

Cell12 97406463 41318464 33589103 5018090 2711271 6957870 132613 155 18 37 10 19 3 27215 2988

Cell13 52867991 38130313 33034704 1502780 3592829 8718835 118149 201 9 10 10 37 5 22714 2344

Cell14 68676167 18782199 12614794 2894410 3272995 4745700 78900 163 2 11 11 31 3 21541 2046

Cell15 15004439 755908 661306 18173 76429 141119 58575 0 0 4 3 0 0 14919 1448

Cell16 58244415 22185479 16514468 872321 4798690 7708534 69613 388 7 29 29 60 7 14325 1168

Cell17 22231710 17614914 15932015 320181 1362718 2931803 47619 16 0 6 3 3 0 11087 1282

Cell18 38703945 22557412 10679605 597650 11280157 15133641 42358 453 10 29 7 76 12 12534 929

Cell19 59894379 34471518 28505516 602827 5363175 10805432 58616 280 1 12 10 59 3 11688 1002

Cell20 24336293 6568388 3720850 61977 2785561 4022939 24282 37 0 8 2 7 0 8032 765

Supplementary Table 1
Sequencing and mapping statistics for snHi-C datasets



Cell ID
Experimental 
data

Shuffled 
data

Difference between 
shuffled and 
experimental data

Shuffled on the 
long genomic 
distances only

1 1075 64 -1011 1271 
2 578 712 134 654 
3 640 1285 645 1257 
4 171 268 97 236 
5 224 438 214 
6 190 486 296 482 
7 208 503 295 451 
8 230 552 322 471 
9 59 128 69 

10 20 61 41 
11 38 214 176 
12 0 0 0 
13 13 248 235 
14 85 175 90 
15 8 166 158 
16 0 0 0 
17 0 2 2 
18 5 82 77 
19 2 25 23 
20 0 0 0 

Cell IDs
Cell4 - Cell8
Cell4 - Cell7
Cell1 - Cell2
Cell1 - Cell3
Cell2-Cell7 
Cell2-Cell3
Cell3-Cell6

Supplementary Table 2
Number of removed bonds. Green means number of the removed contacts in the 

shuffled models greater than in experimental data, red is the opposite.

Supplementary Table 3
Number of removed contacts if contacts sampled from two cells. Green means 
that number of the removed contacts in the model higher than in case of each 

cell of the mixture.

Number of removed bonds

893 

353 
299 

1146 
1238 
703 
703 



Chapter 8

Single-cell Hi-C data analysis: safety

in numbers

Single-cell Hi-C (scHi-C) is a rapidly developing technology that allows for unravel-

ing the variability of the chromatin structure between individual cells. While rela-

tively new, it has already improved our understanding of chromatin transformations

during the cell cycle, embryogenesis, and brain development. With scHi-C protocols

becoming accessible to more labs, specialized computational tools for analyzing the

generated data are being developed. However, while various approaches exist, there

is little guidance on what computational methods should be applied to solve specific

problems arising in the scHi-C data analysis.

In this review, I provide a comprehensive summary of the existing approaches to

analyzing diverse scHi-C data types and characterize limitations arising due to the

complex and sparse nature of the data. This is a guide through all aspects of scHi-

C data analysis, from the read processing to the aggregation analysis, chromatin

feature calling, embeddings, and 3D modeling. It reveals the theoretical limit of the

number of possible contacts, sources of experimental artifacts, and computational

approaches to mitigate them.

I introduce an important concept of ideal scHi-C experiment an ideal scHi-C

with 100% recovery of contacts, and demonstrate that it still cannot generate more

than 2.4 interactions per 1 Kb of the haploid mouse genome, which is two orders of

magnitude lower than bulk Hi-C. Thus, even with ideal scHi-C the contact matrices

will remain sparse, with compartments and TADs represented as individual contacts.
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This explains why specialized approaches are needed to analyze scHi-C data.

Despite there are approaches to obtain haplotype-specific contacts from scHi-C

data, majority of the scHi-C studies do not distinguish homologous chromosomes nor

sister chromatids. Current solutions to this problem involve specialized experimental

techniques, such as cell sorting, working with highly heterozygous cells and analyzing

sex chromosomes present in a single copy (as done in Chapter 7). Haplotype-resolved

contact maps of individual cells are one of future directions of development of scHi-C

field.

Finally, in this chapter I highlight future improvements and share our outlook

on possible developments of this powerful technique.
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Abstract

Over the past decade, genome-wide assays for chromatin interactions in single cells have enabled the study of individual
nuclei at unprecedented resolution and throughput. Current chromosome conformation capture techniques survey contacts
for up to tens of thousands of individual cells, improving our understanding of genome function in 3D. However, these
methods recover a small fraction of all contacts in single cells, requiring specialised processing of sparse interactome data.
In this review, we highlight recent advances in methods for the interpretation of single-cell genomic contacts. After
discussing the strengths and limitations of these methods, we outline frontiers for future development in this rapidly
moving field.

Key words: single cell; chromatin; single-cell Hi-C; conformation capture; single-cell sequencing

Introduction

Detecting specific DNA positioning in single cells was first pro-
posed over half a century ago [44, 72]. Deriving statistically
reliable general patterns of chromatin folding in single cells,
however, has been challenging [5]. Improvements towards this
goal have included: increasing the number of analysed cells,
studying more loci (up to the complete genome), reducing the
size of the interacting regions and improving discriminative
power for detection of contacts at a broader scale of spatial
distances. There are two main approaches: microscopy based and
capture based. These two types of methods, despite their limita-
tions, provide complementary views on the chromatin structure
of single cells [92].

Targeted microscopy approaches measure spatial distances
between genomic regions in individual cells using labelled
probes. These typically involve complicated probe design, which
can be overcome with a new in situ sequencing technique [73]
but remains challenging to implement. With any microscopy
approach, trade-offs have to be considered: which cells are
analysed (fixed or living), number of targeted regions, time
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dynamics and resolution of obtained images. For an extended
discussion, we refer the reader to recent reviews [5, 8].

Chromosome conformation capture uses crosslinking, digestion
and proximity ligation to detect genomic regions located close
to each other in 3D space. It was originally designed for
inputs of millions of cells and had higher statistical power
than microscopy [23]. An explosion of conformation-based
techniques, including the high-throughput sequencing-based
Hi-C [64], has paved the way for new discoveries expanding
our general understanding of DNA folding in eukaryotic cells
[34], bacterial cells [19] and even viruses [9]. For eukaryotes,
these patterns include topologically associating domains (TADs),
promoter-enhancer and architectural loops and compartments
(reviewed in-depth by [6, 21, 22, 84]).

A long-standing impediment to our interpretation and
understanding of structure formation principles is that chro-
matin features in individual cells are not equivalent to the
average features in a population of cells [31]. To address this
problem, the first single-cell chromosome conformation capture assay
(scHi-C) reduced the scale of the traditional Hi-C protocol to
one cell per reaction tube [68]. Then, scHi-C was extended by
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introduction of sorting into multi-well plates and tagmentation
followed by polymerase chain reaction (PCR) [69]. A similar
approach, single-nucleus Hi-C (snHi-C) substituted traditional PCR
with whole-genome amplification and cut out the biotin fill-
in step. This came, however, at the cost of larger sequencing
volumes and data processing [28, 32]. Diploid chromatin conforma-
tion capture (Dip-C) has adapted tagmentation-based strategies
[86, 87], simplifying the experimental protocol [85]. Single-cell
combinatorial indexed Hi-C (sciHi-C) is yet another powerful
technique based on several rounds of combinatorial barcoding
of diluted samples without isolation of individual cells [49, 76].
scHi-C can be combined with other assays to investigate the
methylome, such as Methyl-3C and sn-m3C-seq [55, 57]. For the
sake of simplicity, we will refer to all the family of methods a
scHi-C throughout this review.

Alongside scHi-C, there is a growing family of many-body
interaction capture methods, including MC-3C [88], PORE-C [91],
Nano-C [13]. These methods recover up to several dozens of
pairwise contacts from individual cells but cannot yet compete
with scHi-C in genome-wide searches for architectural features.
Single-cell SPRITE is a ligation-free method that generates 30
timesmore contacts but captures interacting complexes instead
of pairs [2].

The main challenge of analysing scHi-C data is extreme data
sparsity. On average, up to 700 000 interactions are captured
in any given cell (for mouse [55]). Thus, the power of scHi-C
manifests itself when data formultiple cells are available. Firstly,
it makes the detection of chromatin patterns of individual cells
statistically reliable. Twenty cells may already be sufficient to
assess the presence of TADs, compartments and loops at the
level of individual cells of Drosophila [93]. Secondly,multiple cells
may be clustered into groups of similar types and pooled in
silico. Such pseudo-bulk Hi-C of scHi-C-guided groups is a better
alternative to bulk Hi-C, where the contacts formed in different
cell types are indistinguishable [69, 85, 87]. To analyse such
data, one needs specialised tools and computational pipelines,
which are currently designed ad hoc and are rarely re-used or
cross-tested. Here, we describe the diversity of recent scHi-C
studies and summarise computational approaches to single-cell
interactome data (for a recent review of similar topics, see [102]).

Overview of single-cell Hi-C techniques

Like traditional bulk Hi-C, single-cell Hi-C includes chromatin
crosslinking, cells permeabilisation, DNA digestion, proximity
ligation and library preparation. A crucial step of scHi-C, how-
ever, is either isolation or barcoding of individual cells. To separate
contacts from each nucleus, a typical approach is to isolate
cells or nuclei into individual reaction mixtures and perform
subsequent steps separately. The isolation can be done following
crosslinking of cells [28, 82], after ligation [85–87] or right before
de-crosslinking [16, 68, 69]. Technically, this is performed by
manual placement of each nucleus into a single tube [28, 32]
or fluorescence-activated cell/nucleus sorting (FACS/FANS) into
individual wells of a plate [16, 82, 87]. Right before or during
sorting, optional steps can be included, such as imaging [52, 82]
or bisulfite conversion [55, 57]. Isolation-free technique single-
cell combinatorial indexed Hi-C (sciHi-C) involves several rounds of
combinatorial barcoding of the diluted cells [49, 76]. Isolation-
free sciHi-C requires demultiplexing as one of the first data pro-
cessing steps, while the isolation approach may [69] or may not
include this step. A more comprehensive overview of the scHi-C
experimental technique can be found [92], but we will highlight

aspects of different protocols that are particularly relevant for
data processing (Figure 1).

The initial step of the scHi-C protocol is to crosslink cells with
formaldehyde, resulting in the fixation of DNA-DNA interac-
tions.Next, cellmembranes are lysed to guarantee the delivery of
reagents into the nucleus. Then, DNA is digested by a restriction
enzyme such as DpnII that cuts at the four-letter palindromic
motif GATC (Figure 1A). This produces free ends of restriction
fragments, which are then ligated either directly [28, 32, 85–87],
after biotin fill-in [68, 69, 82] or after ligation of a biotinylated
bridge adaptor [49, 76] (Figure 1B). Ligation junctions containing
biotin-labelled nucleotides are pulled down using streptavidin.
This pulldown is omitted in some scHi-C variants because it
results in a loss of meaningful contacts [28, 32, 85–87]. Regard-
less of the ligation procedure, properly formed junctions are
expected to contain specific sequences (restriction sites with or
without a bridge, Figure 1),which can be used to computationally
select real contacts [93]. The final step of scHi-C is to extract
DNA and prepare it for sequencing. Multiple library prepara-
tion strategies were probed with scHi-C (Figure 1C), including
whole-genome amplification (Illustra WGA in [28], META WGA
in [87]), tagmentation followed by PCR [69], digestion with a
restriction enzyme followed by primers ligation and PCR [68],
barcoding and PCR [76] or PCR with random primers [57]. While
tagmentation and restriction enzyme digestion generate fixed-
point cuts in the DNA resulting in simple rules for computational
deduplication of the pairs with coinciding mapping positions,
this is not the case for whole-genome amplification and PCR
with random primers, for which other deduplication schemes
should be used. Finally, amplifiedDNA is purified and sequenced
in the paired-end mode.

Data processing workflow

The data processing workflow (Figure 2A and B) consists of
general steps shared with typical Hi-C: optional pre-processing
of reads (trimming, demultiplexing, etc.), readmapping, optional
restriction fragment assignment, filtration of contacts and dedu-
plication and binning with generation of single-cell Hi-C maps.
The cells are typically filtered by the quality and/or the number
of contacts.

Mapping of reads

As with any other conformation capture, scHi-C generates
chimeric DNA molecules (Figure 2C), making the mapping of
these discontinuous reads to multiple genomic locations non-
trivial [51]. Standard mappers, such as bowtie2 [54], cannot
reliably map such reads. There are four main approaches
to treat scHi-C chimaeras, three of them transferred from
traditional bulk Hi-C: split read alignment, iterative mapping
and read clipping. The fourth approach is one-read-based
mapping (ORBITA), a special case of the split read alignment
[93], which attempts to find only those contact pairs that are
directly ligated (Figure 2c). In the split read alignment strategy,
specialisedmappers like bwamem [58] detectmultiple sequential
alignments in each read. Of these, only the representative
alignments are retained (typically, the alignments at 5′-end).
Some studies use the information about 3′-end alignments
to specify the endpoints of contacting fragments [86]. Iterative
mapping is a method of analysing chimeric reads initially used
for traditional Hi-C [42] and adapted for single-cells [28, 32]:
short 5′ sequences of increasing size are iteratively selected on
both forward and reverse reads until the mapping of the pair
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Single-cell Hi-C data analysis 3

Figure 1. Overview of variations in scHi-C protocols relevant for data processing. A. Cross-linking and digestion, used in any scHi-C. B. Variations of the ligation step.

C. Variations of the library preparation. RE1 and RE2 denote restriction enzymes selected for corresponding stages.

(or coverage of the full read length) is achieved [51]. In read
clipping, reads are scanned for the restriction site [69, 82] or
bridge adapter [76], and all the 3′ sequences after the match
are removed. Two resulting paired sequences (one for forward
and one for reverse read) are mapped independently and form
a contact pair if the mapping was successful. However, only
one-read-based interactions annotation utilises the information on
chimeric parts to guarantees that the observed pair is a direct
ligation junction of DNA fragments (Figure 2c). This approach
reduces erroneous contacts in scHi-C data [93].

Another problem during scHi-C readmapping is genetic vari-
ation.Some regions of the genomeof the studied cells differ from
the reference hampering themappability.Moreover, the cells are
not guaranteed to descend from a single clone [86] andmay have
intrinsic variation, such as single-nucleotide polymorphisms
(SNPs). Thus, some studies [82] ignore genomic locations with
SNPs and prohibit mapping mismatches. On the other hand,
SNPs can be a powerful source of information to help distinguish
haplotype alleles [16, 69, 86] and impute the contacts of the
maternal and paternal chromosomes [86].

Filtering of contacts

After mapping, the scHi-Cmaps are vastly populated with ampli-
fication duplicates, contacts of promiscuous genomic regions and arti-
factual contacts, which can be detected and filtered out.

Amplification duplicates are identical or nearly identical copies
of the same contact pairs generated during library preparation.
Depending on the experimental protocol, the scHi-C duplicates
do not necessarily have the same mapping positions in the
genome. Whole-genome amplification and PCR with random
primers produce DNA fragments that may originate at random
locations close to actual ligation position. Thus, if a group of con-
tact pairs has the same restriction fragments [76] or their termini
[69, 93], these contacts are likely to have been duplicated and
should be merged into a single contact. Alternatively, contacts
of the same 500 bp-bins [28] or contacts located closer than 1 kb
[86] may be merged directly [28] or iteratively [86].

The genome coverage in conformation capture is affected
by multiple factors, including replication, DNA accessibility, GC-
content and active chromatin state [42, 78, 97]. In bulk Hi-C,
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4 Galitsyna and Gelfand

Figure 2. Outline of single-cell Hi-C data processing. The steps in brackets are optional, depending on the scHi-C protocol and the pipeline specifics.

this is mitigated by correction, such as iterative balancing [42].
However, due to data sparsity, this step is not recommended
for scHi-C (although proposed as intermediary step of quality
assessment [40]), and little research has been devoted to scHi-
C correction alternatives [59, 66]. In the absence of data correc-
tion, scHi-C may bear intrinsic biases, such as larger numbers
of contacts formed by active regions [93] and early replication
domains [69]. Larger numbers of contacts have been suggested
for regions with genomic rearrangements [69], e.g. Stevens et al.
[82] detected trisomy by the increased number of contacts for the
whole chromosome.As a partial remedy, one can remove contacts
of promiscuous genomic regions [68, 69, 93], e.g. 1 Kb regions that
have more than ten contacts in a given cell [86].

Artifactual contacts are random contacts happening at various
stages of scHi-C sample preparation and data processing, typi-
cally not representative of the real 3D conformation of chromatin
and impairing downstream analysis. First of all, properly formed
andmapped pairs should be located close to the restriction sites.
scHi-C protocols using Phi29 phage polymerase can generate
switch templates duringWGA that are devoid of this feature and
should be discarded [93]. The original scHi-C protocol generates
a number of spurious ligations, likely represented by the pairs
supported by a single read [68]. Frequent artefacts are sequencing
pairing mismatches, having a global rate of 0.1% for Illumina [69,
76], as assessed by admixture of phiX174 DNA tomouse cells [69].
Stevens et al. [82] suggested a general scheme for filtering a broad
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Single-cell Hi-C data analysis 5

range of scHi-C artefacts, which is based on the assumption
that the regions in close spatial proximity have the neighbouring
genomic regions located nearby, also forming a contact. Thus, if
the contact is isolated (e.g. is not supported by neighbourswithin
2Mb distance [82]), it is likely to represent an artefact and should
be removed [82, 86].

Filtering of cells

Data from some cells should entirely be discarded due to the
failure of the protocol in those cells. Multiple criteria to identify
such problematic cellswere proposed: robustness to downsampling
[93], fraction of read-pairs sequenced only once [68] and fraction of

non-digested DNA [69]. The most commonly used criterion is
cell coverage, that is, the total number of detected contacts per
cell [69]. For example, the cell coverage in sciHi-C follows the
bimodal distribution,with low-coverage cells likely representing
in-solution DNA noise [76]. Yet, another popular criterion is
cumulative contacts properties, such as cis-to-trans ratio [68, 69,
76], defined as the ratio of the intrachromosomal contacts to the
interchromosomal contacts. Typically, interchromosomal con-
tacts in the chromatin occur with a lower probability than intra-
chromosomal ones, a phenomenon called chromosome territorial-

ity [17]. Artifactual contacts are less likely to depend on the 3D
distance between corresponding genomic positions and, thus,
a deviating cis-to-trans ratio for a cell might signify excessive
spurious ligation. Similar assumptions are used to filtrate the
cells by distance decay properties of contacts [69] and cross-species
ligation frequency [69, 76]. Another notion guiding the choice of
high-quality cells is that scHi-C contacts tend to be found in
clusters. Based on this observation, GiniQC measures the level
of unevenness of inter-chromosomal scHi-C maps [40].

Data structure

The scHi-C contact data are typically represented as a matrix,
similar to the standard Hi-C [68]. Each cell in this matrix cor-
responds to a pair of genomic bins, and the value in a cell is
the absolute number of interactions between these bins. A set
of experiments is stored as a set of matrices, while specialised
file formats exist to store matrices for a number of cells, such
as scool [96]. Hypergraphs [99] and ‘topics’ [49] are representa-
tions for a set of cells used for specialised applications, such
as prediction of contacts using machine learning [99] and data
decomposition [49]. For special applications, scHi-C can be rep-
resented as a vector, for example, when scRNA-Seq methods
are transferred to 2D data [37]. The 3D model is a popular
representation, although it requires substantial preprocessing
of the data and is not necessarily back-convertible to the set of
initial contacts [68, 82, 86].

Graph representation

Graph representation [10, 100] is a popular representation that
can be used to upper bound for the number of pairwise contacts in
scHi-C maps [93] (Figure 3A). This upper bound can be defined
for scHi-C but not bulk because a single cell with defined DNA
content is used in the experiment. It depends on the number of
restriction fragments that can potentially form contacts, which
in each cell depends on the restriction site frequency, the organ-
ism’s genome size and the number of DNA copies in a particular
cell type. For example, a single copy of themouse genomemm10
[15] contains 6.6 million DpnII restriction sites (Figure 3B). In
theory, if both ends of each restriction fragment were ligated to

the ends of other restriction fragments and all ends are ligated,
then the fragments form a circle graph. Thus, the number of
contacts that could be detected would equal to the number of
restriction fragments (Figure 3A). If two copies of the mouse
genome are present (in a diploid cell), the number of possible
contacts will be around 13.2 million. This number may be higher
for cells during mitosis, S or G2 phase of the cell cycle, when
the genomic content, and hence the number of restriction frag-
ments, is completely or partially doubled. Although non-realistic
to achieve in the working conditions of scHi-C, this number
can serve as a theoretical upper bound to the possible number
of pairwise contacts in a single nucleus. Notably, the largest
number of contacts per cell obtained to date for mammals [57,
85] is already larger than the theoretical limit for the haploid
genome of Drosophila melanogaster (Figure 3C), suggesting that
the complete recovery of contacts of small genomes is possible
with scHi-C.

The upper bound estimate can serve as a normalisation
factor for contacts recovery in scHi-C studies (Figure 3D). The
best standard scHi-C [93] has 17% contacts recovery and the joint
assay with methylation, sn-m3C-seq, almost reaches 25% [55]. It
is important to note that for an ideal scHi-C with 100% recovery,
we still cannot expect more than 2.4 interactions per 1 Kb of the
genome (for haploid mm10 genome). This number is two orders
of magnitude lower than bulk Hi-C (around 1700 contacts per
1Kb or genome in neural progenitor cells [7]). Thus, even if the
theoretical limit is reached, scHi-C remains profoundly sparse
and specialised software is required for its downstream analysis.

Data analysis

There are two general approaches to the scHi-C data analysis,
depending on the solution to the problem of low statistical
power of scHi-C data sparsity. In the first one, every single cell
is processed independently. It includes building its 3D model,
data imputation, aggregation analysis and features calling. In the
second approach, single-cell maps are analysed together, then
grouped and pooled to produce pseudo-bulk Hi-C maps.

Structure reconstruction

A typical approach for the 3D structure reconstruction is to build
a beads-on-string model restrained by molecular dynamics with
simulated annealing [68]. Each bead corresponds to a genomic
bin of a given size (ranging from 10 Kb [93] to 1 Mb [69]), while
each bond is either a polymer backbone or an observed scHi-
C contact. The simulation starts from a random initial confor-
mation, where the beads involved in observed scHi-C interac-
tions might be overstretched. The beads connected by bonds are
attracted to each other, forcing a rearrangement of the structure
so that connected beads are located in close spatial proximity.
Some bonds do not balance and remain overstretched; thus,
they can be removed [82, 93] as potential experimental arte-
facts [53]. Other proposed solutions include Bayesian inference
[11], recurrence plots [39] and lattice models [103]. All these
methods remain data driven and do not account for the actual
mechanisms of chromatin structure formation [43].

Imputation of missing data

Due to contacts sparsity, applications of bulk Hi-C analysis tools
to scHi-C are restricted [59]. To mitigate this effect, imputa-
tion techniques bring the numbers of scHi-C contacts closer
to bulk [102]. Zhou et al. [100] populate the map with contacts
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6 Galitsyna and Gelfand

Figure 3. A. Illustrative upper bound estimation of the possible number of pairwise contacts per single cell. The theoretical genome has nine restriction fragments that

form a circle graph after ideal ligation (nodes are restriction fragments with the valency of 2, edges denote ligation of their ends). B. Total numbers of DpnII restriction

sites for the single copies of popular genomes. C. Descriptive statistics of published scHi-C studies. The lines represent the upper bounds for the possible number of

contacts per single cell from (B). Colour indicate species. D. The best cells for some of the published scHi-C datasets as a function of the publication time. For C and

D, we use the numbers reported in the supplementary materials of the original studies, when possible. For each study, we indicate the first author and the names of

scHi-C techniques self-reported by the authors. For [49] and [76], the mean is calculated based on the median count per dataset. For [86], we used the cleaned contacts

after removal of damaged cells. For [55], the calculated mean is based on the numbers reported for 741 cells in the supplementary table.

generated by a random walk, making the scHi-C graph closer
to a complete clique. Stevens et al. [82] and Ulianov et al. [93]
use the maps imputed by polymer models. Notably, both TADs
and compartments can also be readily assessed from model-
imputed maps [82, 93], with TADs similar to those in original
scHi-C data [93]. As a substantial breakthrough in scHi-C data
imputation, inter-cellular patterns of contacts can be accounted
for by the hypergraph neural network [99]. Some studies test the
technical possibility to transfer dropout imputation algorithms

for single-cell RNA-Seq, although lacking theoretical support
[37].

Contacts aggregation and features calling

Two approaches have been suggested to study TADs, loops and
compartments in scHi-Cmaps, aggregation analysis and features
calling (Figure 5). During aggregation, the statistics of contacts is
accumulated over predefined regions of the genome (e.g. CTCF
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Single-cell Hi-C data analysis 7

Figure 4. Approaches to studying a single scHi-C map (A) and a set of scHi-C maps (B). Single-cell Hi-C maps from [28] for the region chr1:9000000-1000000.

binding positions to assess loops; bulk TADs or bulk compart-
ments). Aggregation confirms the presence of these chromatin
features in individual cells [32], and there is specialised software
for this purpose [29]. With features calling, the positions of indi-
vidual loops [82], TADs [28, 60, 75, 93] and compartments [75, 86]
are found directly in the scHi-C map, demanding high-quality
scHi-C maps and providing insight into variability between indi-
vidual cells. For example, the positions of TADs in individual
cells demonstrated higher stability of TAD boundaries between
individual cells of Drosophila than between mouse oocytes [93].

scHi-C embedding

scHi-C data are multidimensional (∼ N2 contacts measurements
for N genomic regions) and can be projected into a space of
lower dimension for visualisation, clustering and sorting. Typical
visualisation is a scatter plot where each dot is a cell, and the
axes correspond to some characteristics of the cells. The values
on the axes can be derived from some additional measurement,
such as the levels of the DNA replication marker geminin and
DNA content from FACS [69] or the level of DNA methylation
[55, 57]. Alternatively, the axes can represent some explicitly
calculated interpretable characteristic of the scHi-C maps, such
as the total number of contacts, the cis-to-trans ratio [16, 69] and
the percentage of local/mitotic contacts [16, 69]. Tan et al. [86]
characterise the 3D models instead, plotting the strength of the

Rabl configuration, the centrality of telomeres, the number of
interchromosomal neighbours, the average CpG content of the
neighbours and the probability of cell-type-specific loops.

Finally, the axes might not readily correspond to any known
biological characteristics—scHi-C maps can be transformed and
subjected to dimensionality reduction by the principal component
analysis (PCA) or other techniques (see Table 1 for comparison).
For example, Ramani et al. [76] apply PCA to matrices of inter-
chromosomal interactions and find that the first component
explains a large fraction of the variance (52.1%) and strongly cor-
relates with the coverage. The combination of the first and sec-
ond (1.07% explained variance) components distinguishes cell
types.Nagano et al. [69] observe the cell cycle-dependent embed-
ding of scHi-C by calculating the pairwise symmetric Kullback–
Liebler divergence on vectors of distance decays and subsequent
spectral embedding. Collombet et al. [16] apply uniform manifold

approximation and projection (UMAP) to vectors of TAD contact
profiles; Li et al. [60] perform PCA on pairwise similarities of TAD
profiles; Tan et al. [87] calculate the compartment score profiles
for each cell, take 20 principal components and then visualise
it with t-distributed stochastic neighbour embedding (t-SNE). One of
the most generalised approaches is HiCRep [100], which calcu-
lates a similarity matrix between each pair of individual cells,
taking the stratum-adjusted correlation coefficient (SCC) measure of
similarity. HiCRep with subsequent multidimensional scaling (MDS)
has proved to be one of the best approaches to study embedded
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8 Galitsyna and Gelfand

Figure 5. Comparison of aggregation of contacts and features calling for TADs, loops and compartments. All the examples are for the Drosophila scHi-C map of Cell 1

from [93]. Average TAD and saddle plot are for bulk TADs and compartments, while average loop is for the top 1000 regions with the highest content of RED chromatin

state from [48].

scHi-C datasets [65]. In this approach, Zhou et al. [100] propose to
impute potential dropouts before the embedding to increase the
cluster separation. The imputation was further supplemented
it with scRNA-Seq dropout correction methods [37] (but see the
discussion above).

An alternative, scHiCExplorer [96], implements an approx-
imate nearest neighbour method with a local sensitive hash
function, MinHash. Finally, some approaches suggest using
the co-occurrence of contacts in individual cells to base the
embedding onmeaningful single-cell patterns. For example,Kim
et al. [49] applied latent Dirichlet allocation to factorise the scHi-C
dataset into a set of documents, words and topics, and Zhang
et al. [99] used a hyper-graph neural network. In all these studies,

the axes created by in silico approaches are rarely interpreted,
and it might be of interest to correlate them with various scHi-
C characteristics such as the contact coverage, distance decay,
strength of TADs, loops and compartments.

Amore exotic approach is to describe scHi-C space in terms of
topological data analysis [10]. Finally, joint assays of the methy-
lome and interactome [55, 57] allow for independent embeddings
of scHi-C and single-cell methylation patterns and subsequent
comparison of resulting embeddings.

To date, no comprehensive studies on embedding all exist-
ing scHi-C datasets have been published. Moreover, there have
been no attempts to embed datasets originating from different
species, although scHi-C data for human [28, 49, 76, 86], mouse
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Single-cell Hi-C data analysis 9

Table 1. Summary of major scHi-C embedding techniques

Family of

embedding

methods

Linearity Primary

reference

Special scHi-C

pre-processing

Special measure of

similarity/difference

between cells

Explicit usage of

contacts

co-occurrence

patterns

PCA Linear [100] Raw binned matrix – No

[76] Interchromosomal

interactions profile

– No

[60] TAD profile – No

[87] Compartment score profile – No

t-SNE Non-linear [85] 20 PCs of compartment

score profiles

– No

Spectral

embedding

Non-linear [69] Distance decays Symmetric KL No

MDS Non-linear [65] Distance decay Jensen–Shannon

divergence

No

[100] scHi-C binned matrix after

smoothing and

random-walk imputation

SCC No

UMAP Non-linear [16] TAD contact profiles – No

[49] Cell-topic matrix after LDA – Yes

[99] Hypergraph embedding – Yes

MDS indicates multidimensional scaling; SCC, stratum-adjusted correlation coefficient; UMAP, uniform manifold approximation and projection.

[16, 68, 69, 76, 82, 85, 87], Drosophila [93] and rice [101] are avail-
able. This might identify species-specific patterns in genomic
interactions and their variability.

While both linear and non-linear embeddings of scHi-C have
been proposed, advanced manifold learning techniques are yet to
be developed for scHi-C, analogous to the outbreak of embedding
methods for single-cell RNA-Seq data (reviewed in [67]). At that,
multiple, diverse formalisations of scHi-C as matrices, graphs
and vectors allow for a broad field of embedding techniques to
be studied on these datasets.

In silico sorting, clustering and pooling

Based on the position in the embedding space, scHi-C data can be
in silico sorted [69] or clustered [85].Nagano et al. [69] observed the
ordering of the cells by the position in the cell cycle, while Tan
et al. [85] derived subtypes of mouse brain cells using k-means.
Collombet et al. [16] relied on outliers in the embedding space
to filter out cells undergoing mitosis and retain only interphase
embryonic cells.

Specialised approaches, including the ones based on
machine learning, have been designed for scHi-C data clustering.
Typically, these applications require embedding (see below). The
quality of clustering is tested on datasets with known ground
truth (e.g. types of pronuclei in the mouse zygote [28] or types
of cells forming the dataset [76]). Each cluster, or group of cells,
is assigned with a particular cell type and the quality is usually
assessed by normalised mutual information [62] or adjusted
rand score [62, 100].

The resulting groups of cells can be pooled by simple summa-
tion of single-cell Hi-Cmaps, resulting in ensemble, or pseudo-bulk,
Hi-C and analysed as typical bulk Hi-C [16, 69, 85]. Pseudo-bulk

scHi-C maps are a powerful technique for detection of cell-type
specific differences in the chromatin architecture. For example,
pseudo-bulk mitotic cells lack the TAD and compartment struc-
ture [69],while subtypes of brain cells have differences in regions
of cell-type specific genes [85].

The long-studied field is the reverse of the pooling, namely
deconvolution of bulk interaction maps into a set on single cells
[46]. Such approaches aim to construct a population of genome
structures with a total set of genomic interactions approxi-
mating (or equal to) a set observed in a population of nuclei.
Several advanced techniques including machine learning have
been suggested, such asmaximum likelihood [89],Bayesian inference
[12], fractal Monte Carlo weight enrichment with Bayesian deconvolu-

tion [74], Monte Carlo with bag of little bootstraps for the genera-
tion of bootstrap structures [83] and, most recently, stochastic
embedding [36]. However, these approaches are limited by the
number of models that approximate bulk datasets (up to several
tens of thousands), although around 5–10 million structures
contribute to the typical bulk Hi-C map. Nevertheless, it might
be interesting to demonstrate the reversibility of the pooling of
a low number of single-cell maps by applying some of these
methods to pseudo-bulk datasets. Guarnera et al. [36] assessed
the variability of polymers after deconvolution, which might be
interesting to compare with results obtained from embeddings
of real scHi-C.

Design of scHi-C controls

Due to the complex nature of scHi-C data, a good practice is to
design scHi-C controls to validate the hypotheses. These include
sampled, shuffled or de novo generated randomised scHi-C maps,
which typically have the same number of contacts as real cells.
Sampled maps are populated by contacts randomly selected from
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10 Galitsyna and Gelfand

bulk [93] or ensemble [68, 76] datasets. However, it creates maps
less sparse andheterogeneous than real scHi-Cmaps [100].Thus,
an effective number of sampled contacts can be increased or
additional artificial noise can be introduced [100]. Shuffled maps
are single-cell maps with randomly permuted pairs of contacts
[68]. This procedure retains coverage by contacts but removes
any information on the spatial structure, including distance
decay. Sampling and shuffling can be combined together: bulk
Hi-C maps first randomised, preserving the coverage and dis-
tance decay, and then sampled [69]. De novo generative models
do not rely directly on the observed contact maps while pre-
serving the meaningful properties of scHi-C maps. For example,
thresholding the distance between genomic regions in polymer
models [93] produces control maps with meaningful distance
decays. A more advanced alternative, stepwise generation of
single-cell Hi-C-like maps, preserves both distance decay and
observed coverage by contacts [93].

Controls like this allow differentiating the technical and bio-
logical properties of the single-cell contact maps for features
calling (such as TADs) and aggregation analysis [93]. They pro-
vided the baseline for assessing the general quality of modelling
by the number of violated constraints [68]. Further, they demon-
strated that scHi-C maps are non-random [82] and chromatin
features of the modelled cells are similar to that of the real cells
[69, 82, 93]. Yet another important observation is that real scHi-C
data are more variable and sparse than bulk subsamples [100].
Although randomised scHi-C control is a powerful method, it is
sporadically used in scHi-C studies. This will improve with the
development of specialised tools for this task and the emergence
of theoretical studies on the statistical properties of single-cell
contacts.

Outlook and challenges

Single-cell Hi-C is a young and rapidly developing field in chro-
matin biology. Due to its extreme data sparsity and complicated
experimental protocol, the quality of the datasets has been a
limiting factor. However, with the emergence of simplified and
cheaper protocols [76, 86], we anticipate continued growth of
both coverage of scHi-C and number of cells analysed, leading to
improved data resolution and statistical reliability of the biologi-
cal results. This will also stimulate the development of new data
processing and analysis methods. However, as we demonstrated
here, scHi-C data have a natural upper bound for the possible
number of recovered single-cell interactions; thus, data sparsity
will remain a challenge for the field.

Despite the substantial efforts to work with sparse data, the
computational analysis of scHi-C has not reached maturity yet.
For example, a recent re-analysis of datasets from three studies
demonstrated that inappropriate contacts mapping may result
in the accumulation of experimental artefacts and overestima-
tion of the number of recovered contacts [93]. However, if the
data from multiple studies were processed uniformly, it demon-
strated that TAD boundaries in Drosophila are more conserved
than in mouse. Similar comparative analysis of scHi-C results
will further shed light on reproducible chromatin features in
individual cells in an unbiased way.

Machine learning has a growing impact on our under-
standing of biological systems (reviewed in [27, 63]) and 3D
genomics [4, 30, 77, 79, 94, 95]. For single-cell chromatin research,
imputation and embedding are already driven by neural
networks [99] and other advanced machine learning methods
will emerge. Importantly, features calling from single-cell data
will be improved.

Next, an important direction is improving structural recon-
struction approaches. To date, scHi-C structure reconstruction
does not account for a specific mechanism of structure for-
mation. Alternative de novo modelling assumes the particular
mechanism but does not incorporate scHi-C contacts [28, 30].
These approaches can be, in theory, united to open intriguing
perspectives. For example, can we simulate loop extrusion [31]
that will produce the contact maps similar to those observed in
scHi-C? Can we infer the cohesin loading sites in individual cells
based on observed contacts? Finally, can we differentiate the
cohesin-dependent contacts in single cells from compartmental
ones [32] and study them independently?

These challenges are not the only ones that will require
computational solutions. An important direction will be the
design of new assays, as well as tools for their data processing.
For example, currently, restriction enzymes digest chromatin
into relatively large restriction fragments, which dictates the
strict upper bound for the total number of pairwise contacts
recoverable from a single cell. If micrococcal nuclease is used
instead, it will allow for up to 15 million contacts of individual
nucleosomes in the haploid human genome [1], increasing the
theoretical upper bound at least twice.

Joint assays, other than Methyl-3C and sc-me3C, will unravel
the interplay of chromatin architecturewith other cellularmech-
anisms. For example, measuring single-cell lamina-associating
domains (LADs) alongside scHi-C will shed light on the lamina
association of individual TADs. Indeed, bulk TADs do not entirely
correspond to either bulk [91] and single-cell LADs [50]. How-
ever, it is possible that single-cell TADs are elementary units
of interaction with lamina if there is a one-to-one correspon-
dence between TADs and LADs observed in the same cell. Next,
measuring chromatin openness and/or transcriptional activity
will accelerate the research on interplay and causality between
regulation, chromatin folding and gene expression [24]. On the
computational side, havingmore than one type of measurement
in single cells is a unique opportunity to develop joint embed-
ding [56]methods,which use both interaction graphs and single-
cell features to create meaningful low-dimensionality represen-
tation. Also, having several types of measurements will help to
develop and benchmark standard scHi-C embedding techniques.

Single-cell RNA-DNA contacts will help distinguish RNA-
mediated interactions from the rest and depict the single-cell
pattern of regulatory RNA functioning. However, the resolution
of bulk RNA-DNA interaction capture techniques is relatively
low [3, 33, 61, 81], which will remain a major impediment for
single-cell RNA-DNA interactions as well.

Currently, scHi-C requires vast sequencingwith relatively low
meaningful output (e.g. Ramani et al. [76] sequenced over 170
mln reads per dataset on average, only 11% of them resulting
in unique contacts). However, studying biological mechanisms
of chromatin compaction and regulation frequently requires
engineering and targeting of individual regions of the genome
limited in size. Thus, it might be beneficial to develop single-
cell Hi-C with enrichment for targets. Target enrichment for a
genomic region is already well developed for bulk chromosome
capture approaches [20, 25, 35]. Adaptation of these approaches
for the single-cell level will allow for specific enrichment of
single-cell interactions of regulatory regions that might undergo
the specific architectural changes in a cell population.

As both wet-lab and computational scHi-Cmethods improve,
it will lead to breakthroughs in understanding biological sys-
tems currently restricted by bulk Hi-C. For example, chromatin
transitions during mouse embryogenesis were studied by low-
input Hi-C [26, 47], which accommodates the limited number
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of embryos available but does not distinguish individual cells.
Starting from the zygote and up until the gastrulation (stage
E7.5), chromatin features gradually emerge. At stage E7.5, the
embryo has approximately 15000 cells, some differentiated into
progenitors of diverse tissues and organs [90]. Their variability
can be recovered only by scHi-C. Indeed, scHi-C demonstrated
cell- and allele-specific patterns of chromosomes folding in
mouse embryos but only up to a much earlier stage of 64 cells
[16, 28, 32]. Given the fact that existing scHi-C assay several tens
of thousands of cells [49], a whole-embryo single-cell chromatin
structure study is a realistic short-term goal. This opens an
intriguing perspective to answer fundamental questions about
chromatin dynamics in development. What paths do chromo-
somes follow in individual nuclei during tissue differentiation
and organogenesis? Can we track the lineages of cells based
on their chromatin, as we do for single-cell transcription [80]?
Finally, what are the rules governing chromatin transitions in
individual cells during the development of other species stud-
ied by bulk Hi-C, including human [14], Xenopus tropicalis [71],
Medaka fish [70],Danio rerio [45] and Drosophila melanogaster [41]?

Next, scHi-C will uncover the diversity of chromatin archi-
tecture within cancer cell, contributing to the clonal analy-
sis of solid and liquid tumours currently done with genomic
and transcriptomic methods. Finally, single-cell atlases of chro-
matin architecture for cell types of different organs will expand
our knowledge on chromatin structural diversity. Their proper
association with single-cell atlases of transcription [38] and
chromatin openness [18, 98] will unravel the interplay between
epigenetics, chromatin structure and gene expression.

Key Points

• Single-cell Hi-C is a powerful and rapidly developing
technology to study chromatin architecture,with com-
putational analysis playing a crucial role in extracting
biological meaning from its sparse readouts.

• The number of scHi-C pairwise genomic contacts
is limited by the number of genomic fragments in
the nucleus requiring special approaches for sparse
interactome data analysis, including structure recon-
struction, imputation of interactions, aggregation of
contacts and feature calling for a single map and
embedding, sorting, clustering and pooling for a set of
maps.

• We anticipate improvements in scHi-C data quality
and computational analysis to lead to the expan-
sion of scHi-C applications, eventually resulting in
breakthroughs in our understanding of cell function
comparable with those achieved by scRNA-seq and
scATAC-seq.
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Chapter 9

Conclusion

• Hi-C-based readouts can be affected by intrinsic properties of genomic regions.

In particular, the cumulative contact frequency (CCF) is associated with chro-

matin active state.

• Binding of insulator factor Chriz (Chromator) and histone modification H3K4me3

are the best predicting factors of TAD prominence in Drosophila based on pop-

ulation Hi-C, suggesting the importance of both histone-based and insulator-

based mechanisms of structure formation in Drosophila.

• Lamina binding is not crucial for the formation of TADs and compartments

in Drosophila, although its disruption causes redistribution of contacts.

• Single-cell Hi-C is a powerful and promising technology to study chromatin

architecture, with computational analysis playing a crucial role in extracting

biological meaning from its sparse readouts.

• Cell-to-cell variability in long-range contacts between active genomic regions

in Drosophila is prominent, while the local scale of domains is highly con-

served between individual cells. Stochastic processes significantly contribute

to the formation of Drosophila 3D genome with two possible models ("sticky"

nucleosomes and loop extrusion with barriers) explaining this outcome.
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