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Abstract

In electric power systems, the requested electricity from loads must be immediately

balanced by the generation while maintaining secure network operation. Massive

deployment of non-dispatchable renewable energy sources (RES) challenges power

systems’ operation by adding uncertainty in the generation side, leading to stochas-

tic generation-load imbalances. Increasing RES penetration requires enhancing the

power systems’ flexibility, viz the ability to balance load and generation changes.

There are several alternatives to improve power systems’ flexibility, ranging from

technological solutions, such as fast generators and storage technologies, to the re-

design of electricity markets for the procurement of demand response and generation

capacity reserves. It is utterly necessary for modern power systems operation to

adequately characterize renewable generation uncertainty and flexibility solutions

available for their efficient, secure and reliable operation.

This thesis investigates new mathematical modeling development of three flexi-

bility measures: energy storage units, integration between heat and power sectors,

and wholesale electricity markets for energy and balancing provision. Specifically,

the original contributions of this thesis are as follows.

First, we provide a novel detailed convex mathematical model for electric energy

storage units’ operation. We demonstrate that the developed model improves batter-

ies’ characterization accuracy while preserving computational tractability through

computational test cases against different storage models. The computational stud-

ies verify the operational reliability of the storage units, where ideal storage models

lead to an 11% mismatch between scheduled and deliverable power.

Second, we propose a market for heat exchange between integrated heat-and-

power microgrids. The designed market presents a convex decomposable structure,

making it suitable for decentralized microgrids’ coordination and dual pricing deriva-

tion. We analyze the influence of the microgrids’ heat interconnection’s efficiency,

capacity, and topology on optimal heat exchange and pricing. The presented heat

market reduces operational costs and electricity imports from the external network,

increasing the microgrids’ operational flexibility.

Finally, we generalize the existing chance-constrained energy and reserves market
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designs to include the modeling of asymmetric forecast errors of renewable gener-

ation. The developed market can reduce demand payments while reflecting the

uncertainty introduced by renewable generators in the balancing prices, i.e., re-

newable generators with worse forecasts have higher balancing prices. The derived

energy and balancing prices constitute a competitive equilibrium and provide use-

ful information for investors by reflecting the locations resulting in lower balancing

compensation costs.

Thus, the main contribution of this thesis is the development, implementation,

and analysis of new mathematical models for capturing flexibility from storage tech-

nology assets and new market designs. Computational tractability and economic

interpretability are thoughtfully studied.
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Chapter 1

Introduction

Future energy systems will be integrated among energy sectors, decarbonized, and

geographically decentralized [1]. Electric power systems are at the center of the en-

ergy sector transformation. They can provide clean and efficient energy supply to the

different energy sectors and consumers [2]. Renewable energy generation will pro-

vide the means for decarbonizing the heating and transportation sectors, reducing

both emissions and operating costs. National governments recognize that the tran-

sition towards renewable generation technologies reduces the environmental impact

of the energy sector and is also economically competitive with fuel-based generation

[3]. The sustainability efforts and policies are supported by the fact that decrease

in renewable generation costs are steadily falling to competitive levels [4], leading

to an increase of renewable penetration in electric power systems. Consequently,

renewable electricity capacity additions have been continuously increasing for the

last 20 years [5]. An important benchmark in renewable capacity installation was

crossed in 2012, when the worldwide new capacity installation of renewable energy

capacity surpassed that of non-renewable generation plants. Since then, the gap

between annual renewable capacity installation versus non-renewable technologies

continues to widen [6].

Even though the growing use of variable renewable generation1 provides envi-

ronmental benefits; it presents challenges to the reliable and secure power system

1Renewable energy sources such as impoundment hydropower can have their power output
controlled, while sources dependent on weather conditions like solar photovoltaic and wind turbines
have variable generation profiles.
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operation. Unlike water, gas, and heating utilities, where the supply networks can be

used to store the demanded commodity partially, the electric demand must be con-

tinuously balanced. Therefore, electricity generation must always match its demand.

The stochastic nature of renewable sources requires the availability of resources for

load balancing through changes in renewable power generation.

Power system flexibility, defined as the ability to balance variations in the balance

between its demand and generation, can cope with some of the abovementioned

limitations [7]. Given the variable nature of some renewable energy sources (RES)2,

power systems must balance not only the changes on the users’ demand, but also

those derived from RES generation. Therefore, a flexible power system is one that

balances changes in its net load, i.e., the difference between the users’ demand and

the RES generation.

Along this line, a general and adequate definition of flexibility is also given by

Alizadeh et al.: “the ability of a system to deploy its resources to respond to changes

in the net load, where the net load is defined as the remaining system load not served

by variable generation” [8]. Additionally, Chicco et al. define the flexibility in multi-

energy systems as "the technical ability of a system to regulate multi-energy supply,

demand, and power flow subject to steady-state and dynamic constraints and while

operating within predefined/desired boundary regions for certain energy vectors" [9].

This definition extends the electric net load balancing to include the management

of the energy flows of the interconnected energy systems through space and time.

In the following sections be present an overview of the flexibility in power sys-

tems, the main flexibility masures, and how to measure the flexibility provision of

the units in a system.

1.1 Flexibility in power systems: an overview

Given the increasing interest towards renewable energy sources, the International

Energy Agency (IEA) was tasked by the 2005 Gleneagles G8 summit to study and

provide a report on the necessary measures for the integration of renewable energy
2In this thesis we will refer as RES to variable renewable energy sources, unless explicitely

stated otherwise.

2



Chapter 1. Introduction 1.1. Flexibility in power systems: an overview

sources in large scale power systems. The IEA’s report titled “Empowering Variable

Renewables – Options for Flexible Electricity Systems” provides a definition of a

flexible power system: “a flexible electricity system is one that can respond reliably,

and rapidly, to large fluctuations in supply and demand” [7]. The most important

factor influencing the need for flexibility in a power system is the supply variations,

i.e., variable renewable generation; since the changes in demand have been easier to

predict and balance based on decades of industry experience [10].

We must now differenciate the terms of flexibility and reliability in power sys-

tems, since these two terms have been used interchangeably in the literature [8].

Reliability is a core function of power systems and relates to a system’s ability to

continuously and adequately supply electrical energy to its users [11]. On the other

hand, flexibility pertains to a system’s ability to respond to changes in net load [8].

Therefore, flexibility is a facet of a reliable power system’s operation.

The RES variability impact can be assessed under the different time frames of

interest for the power system, Figure 1.1, which can be classified in the following

stages [12]:

• Regulation – seconds: unpredictable fast changes of net load are balanced.

• Balancing – hours: forecast errors on demand and RES generation are bal-

anced.

• Scheduling – days-weeks: net load variability during the different periods of

the day is balanced.

• Planning – months-years: the system’s generation and network capacity is

increased to balance seasonal and interannual changes in demand and RES

generation levels. A special case in this stage is that of hydro-scheduling, for

which the use of large impoundment hydro power plants is scheduled based on

probabilistic information of the future climatological conditions affecting the

reservoir levels.

Additionally, the study of power systems flexibility encompasses electric systems

of diverse size which can range from the couple of meters (household level) to thou-
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Figure 1.1: Flexibility measures available to power systems

sands of kilometers (continental level). The combination of the spatial and temporal

characterization of power systems’ flexibility creates a diverse field of problems, i.e.,

applications, on which it can be analyzed, Figure 1.2.
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Figure 1.2: Spatio-temporal distribution of flexibility provision

One dimension through which flexibility can be analyzed and quantified is as the

maximum change in power, also known as ramp rate, that a system can undergo in

a given time frame, e.g., a battery changing its power output in milliseconds, a gas

turbine ramping to full capacity in few of minutes, and a coal fired power plant that

can ramp up few MWs per hour [10]. Generation plants that have higher ramp rates,

i.e., can change their generation output faster, are preferred to balance changes in

demand and renewable generation. This is why the faster generation units such

as those with gas turbines are favored for load following over steam turbine power
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plants, generally coal or nuclear fuelled, which can be used to cover the predicted

base load [12]. Additional measures besides generation units can be employed for net

load balancing. In the next section we present the main flexibility measures available

for electric power systems and their main characteristics for flexibility provision.

1.2 Flexibility measures

For the optimal planning and operation of the power system, the installation and

deployment of the available flexibility measures must be done cost-effectively, con-

strained by the technical limitations of the system [7]. The flexibility of a system

can be enhanced by either the separate or combined use of measures, Figure 1.3,

related to the use of generation units, electric energy storage, demand management,

optimal network management, integration with other energy systems, and efficient

market mechanisms; which are described in the following.

Figure 1.3: Flexibility measures available to power systems

1.2.1 Flexibility from the generation side

Technical flexibility

Electric generation technologies can have a wide array of technical characteristics

based on their primary energy sources, underlying thermodynamic and mechanical
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processes, and physical components used for power generation. These technical

characteristics determine the available flexibility from power generation technologies.

In this manner, we present now the main technical characteristics of the generation

units related to flexibility provision.

• Operating range: based on their generation technology, power plants usually

have a technical minimum load for electric power production. The difference

between this technical minimum and the maximum generation capacity of the

unit constitutes plant’s operating range. Greater operating ranges and lower

technical minimums allow for higher absorption of RES variability [13].

• Ramp rates: the maximum change in power generation, upwards and down-

wards, over a time range that a unit can undergo is known as the ramp rate

[13]. Units with greater ramp rates provide the system with better response

to sudden changes in RES production.

• Startup/shut down times: power plants require different amounts of time

from being completely shutdown to become fully operational, and to perform

the shut down process. A plant’s startup and shut down times depend on the

complexity of its electricity generation technology. The startup and shut down

times of a power plant have a high influence on its cycling, i.e., how frequent

are its startups during a day to balance load changes [14].

• Minimum up and down times: fuel-based generation units have a char-

acteristic time in which it cannot be turned off once started, and one that

restricts its switching on after a shut down process is completed [15]. Smaller

minimum up and down times allow for the more frequent use of a generation

unit to balance RES variability [13].

• Fuel flexibility: in fuel-based generation units, the aforementioned techni-

cal characteristics depend on the type of prime mover and its primary energy

source, i.e., fuel. Therefore, in the selection of power plants for capacity in-

stallation, it is necessary to establish the type of fuel employed based on the

system’s flexibility requirements, such as maximum ramping [16]. Additionally,
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some generation technologies allow, up to certain degree, for the combination

of fuels, modifying the plant’s technical characteristics, e.g., the blending of

hydrogen with natural gas [17].

Scheduling flexibility

Generation units have their participation in the load-balancing dispatch based on

their technical and economic characteristics [14]. For the flexible operation of a

power system it is necessary to consider over a sufficiently long horizon: i) the

marginal cost of generation, ii) startup and shut down costs, and iii) minimum

operation times [18]. Units with higher startup costs and times are usually used to

cover the system’s base load for the entirety of the day, e.g., nuclear and coal power

plants. Plants with low startup costs are employed for load-following, i.e., to switch

on/off based on small demand variations. An example of load-following generation

is hydropower. Finally, when demand peaks occur with higher ramping rates, more

flexible generation units are employed, e.g., combustion engines.

1.2.2 Flexibility from electric energy storage

Electric energy storage can provide load balancing services to the power system

by storing the excess energy produced by the RES, and by discharging its stored

energy when there is a decrease in the RES output. Given the large variety of energy

storage technologies, they can provide multiple services to the electric system based

on their technical characteristics, ranging from instantaneous balancing services (in

milliseconds) to seasonal shifting (several months) [19].

1.2.3 Flexibility from the demand side

Demand side management

Since the net demand must be balanced at any time in power grids, it is possible

to reduce the generation requirements by adjusting the consumers demand to offset

changes in RES, i.e., increase/decrease the demand for higher/lower RES output.

For their participation in demand side management, the consumer loads require

7



1.2. Flexibility measures Chapter 1. Introduction

controllability from its user, who in turn adjusts the load’s demand based on the

system operator’s requests. Examples of controllable loads are heating, ventilation,

and air conditioning (HVAC) systems and energy-intensive industrial processes such

as pulp and paper production [20]. Load increase can be applied for valley filling and

load growth, whereas demand decrease is applied for peak shaving, and conservation.

Additionally, demand can be postponed or advanced through load shifting, i.e.,

modifying the schedule of a process such as the use of a dishwasher or a step in an

assembly line. The modification of the demand could be financially compensated

based on agreed contracts or the applicable regulation.

Electric vehicles (EVs)

Considering that EVs can act either as load or generators by changing the charg-

ing/discharging regime of their batteries, they can be used to provide short-term

balancing to the power network during the hours in which they are idle and con-

nected to a charging station [21]. EV owners can be compensated based on the

utilized capacity and type of services provided, e.g., fast charging/discharging or

charging interruption. Additionally, the mobile characteristic of electric vehicles

could permits their use by system operators as movable batteries that can provide

services at different locations in different times of the day.

Buildings’ thermal inertia

Electricity consumption in buildings is not limited to powering consumer appli-

ances but also accounts for the controlling of heat, ventilation and air conditioning

(HVAC) systems that provide thermal comfort. HVAC systems are operated in a

manner that regulates the spaces’ temperature and air quality within an established

comfort region. The change in temperature and air quality in buildings follows

thermal processes defined by the physical characteristics of the HVAC system, the

building and its surroundings. Thus, temperature gains/losses in a building are not

inmediatly felt after the shut down of the HVAC system. Therefore, the smart con-

nection/disconnection of HVAC systems permits the modification of the building’s

load, while maintaining the comfort conditions within the predefined boundaries
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[22].

1.2.4 Flexibility from the electric network

Electric transmission lines can allow the unlocking of flexibility resources commonly

“hidden” by conservative engineering limits and jurisdictional barriers for their op-

eration. Being an investment-intensive resource, power networks require accurate

assessment of the flexibility that can be extracted from them, delaying the installa-

tion of new lines and transmission equipment.

Dynamic line rating and FACTS devices

Electric energy transmission is performed through insulated conductors ranging from

tens of meters to hundreds of kilometers. Each conductor has a rated transmission

capacity, amperes (A), based on its thermal characteristics. Traditionally the lines’

thermal rating is considered as a constant parameter, based on manufacturer infor-

mation and the average temperature at the installation site. In reality, the trans-

mission capacity of a power line changes with weather parameters, such as solar

radiation, temperature, and wind speed; which, for example, would allow for the

transmission of higher amounts of power when higher wind speeds occur [23].

An active approach to increase the power capacity of power lines with the use of

Flexible AC Transmission Systems (FACTS). FACTS devices provide reactive power

balancing along the power lines, thus reducing the total apparent power transmit-

ted and increasing the active power holding capacity of the lines. Additionally,

FACTS devices increase the power controllability of the line flow and and improve

the stability of the power networks [24].

Topology reconfiguration

Electric power networks are built based on realibility and security standards that

lead to generation and transmission overcapacity. The transmission capacity re-

dundancy leads to higher operating costs due to increased losses in the conductors

and the appearance of loop flows. Since the electricity flow through the network
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follow Kirchhoff’s laws based on the electric properties of the lines and nodal power

balances, the electric power system could benefit from controllability of the power

flow directions. The reconfiguration of the network topology aids to gain control

over the network’s power flow directions, and could be performed by changing the

online/offline status of a power line, traditionally considered as a fixed parameter

in power system operation models [25]. Network topology reconfiguration can thus

help reduce network losses and line overloading, clearing the path for the flow of

RES power for its greater integration in the load balance and for the more efficient

disptach of flexibility measures for net load balancing. In this manner, the use

of network reconfiguration in power system management can help improve system

efficiency and increase its flexibiity.

Cross-border interconnection

Net load balancing must be achieved for the electric power system as a whole.

However, it is possible to diminish the flexibility requirements for an area via its

interconnection with adjacent ones [13]. The different load and RES profiles, as

well as the flexibility resources, can be shared among the areas for load balancing

while providing economic benefits for those that provide flexibility services. An

example of large-scale aggregation of balancing areas is the NordPool market, which

allows the transmission of cheaper Danish wind generation, balanced by controllable

Norwegian hydroelectricity [7].

Analogous to the use of balancing areas, it is possible to increase a system’s

flexibility via electricity import and export. In the case of importing and exporting,

the balancing of the area is not ensured by a centralized controller but instead aided

by the transmission of electricity between two systems based on commercial contracts

[26]. An example of the use of cross-border interconnection for load balancing is the

future European balancing market in which over 40 transmission system operators

(TSOs) of 35 countries will be able to exchange balancing services in the intraday

market for different types of products, i.e., provision of balancing power with an

associated activation time frames [27].
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1.2.5 Flexibility from multi-energy systems

Electric power systems can be connected to other energy systems, such as district

heating networks through cogeneration units, electric boilers, and heat pumps, dis-

trict cooling through compression chillers, gas networks for fuel supply to the power

plants and via power-to-gas technologies, among others. An multi-energy system is

a system where multiple energy carriers can be converted, transported and stored

for the supply of users’ demand. The increase in the power system’s flexibility is

achieved through the synergy between the different subsystems and their character-

istics, i.e., electricity and gas can be efficiently transmitted over long distances, gas

and chemical carriers such as liquid fuels can be cheaply stored, and heating and

cooling networks count with thermal inertia, which allows them to act as buffers for

slow energy release [28].

Flexibility from thermal networks

Unlike electric power balance which occurs almost instantly, thermal systems have

an intrinsic source of inertia in the form of thermal capacity [29]. Sources of inertia

in thermal networks can be found in heat/cold carrier fluids, thermal energy storage

units, and buildings. With the use of heat generation units linking the electricity and

thermal systems, such as cogeneration plants, heat pumps and power-to-heat units,

it is possible to transfer the variability of RES to the thermals systems. For example,

during periods of high RES production, it is possible to produce more heat and less

electricity, allowing the thermal inertia of the system to accumulate the extra heat

and release it during hours where the RES is lower and more electricity is needed.

Thus, not only increasing the system’s flexibility, but also reducing its fuel-related

costs and emissions.

Power-to-gas

Synthetic fuel gases, such as hydrogen and methane, can be produced by using the

excess electricity generated during high RES periods, to be either locally consumed,

transported through the gas network or stored for later consumption [30]. Addition-

11



1.2. Flexibility measures Chapter 1. Introduction

ally, the synthetically generated fuel gases can be used to power balancing generation

in periods of RES deficit. Due to its compressibility, natural gas pipelines can be

used to store gas for its later use by controlling the internal pipeline pressure. Ad-

ditional synthetic gas could also be injected in periods of excess electric renewable

generation. Therefore, gas systems can be operated as temporary primary energy

storage to balance net load fluctuations in the power system [31].

Power-to-fuel

An alternative to the conversion of excess RES electricity into gas fuels is its use

for producing liquid fuels. Hydrogen produced from excess RES generation can

be then converted into liquid hydrocarbons like diesel and gasoline for their use in

auxiliary power generation units, transportation and base chemical materials [32].

Thus, providing not only increase flexibility to the electric network during periods

of high RES generation, but also reducing the use of fossil fuels and their associated

emissions.

1.2.6 Flexibility from markets

Proper electricity markets design can also enhance the flexibility of electric power

systems by providing economic incentives to guarantee the capacity availability of

flexibility providers. For instance, based on expected net load imbalances, market

operators can schedule generation units to provide balancing reserves. The reserves

are scheduled as stand-by generation capacity that can be used to balance net load

variations. Multiple types of reserves can be then scheduled based on the required

response time, prioritizing faster and dispatched generation (spinning reserve) while

utilizing slower and offline generators (non-spinning reserve) for imbalance events of

significant duration or magnitude.

The role of electricity markets in the flexibility provision is thus that of maximiz-

ing the participation of RES generation in the electric dispatch, while minimizing

the reserves required for its balancing [33].
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1.2.7 Renewable generation curtailment

A last resort option for balancing excess renewable generation is to curtail the RES,

i.e., their power output is reduced. RES curtailment usually follows transmission

congestion or excess production during periods of low demand. Overinvestement

in renewables to meet to renewable penetration and emission goals could lead to

excessive use of RES curtailment as a flexibility measure [34]. In this manner, RES

curtailment acts as a measure of how inflexible a system is.

1.3 Flexibility quantification

The flexibility contribution of technical measures such as generators, load manage-

ment and energy storage units can be characterized by their power capacity 𝜋 in

MW, maximum ramp rate 𝜌 in MW/min, energy provision capacity 𝜀 in MWh, and

ramp duration 𝜏 in min [35]. Since the ramp duration can be derived from the

selected time horizon and the energy provision capacity, the characterization of a

flexibility measure can be performed solely by 𝜋, 𝜌, and 𝜀. Additionally, each flexi-

bility dimension can be set with a minimum and a maximum value. 𝜋+/− represent

the minimum and maximum power generation levels (of negative value if power con-

sumption is present), 𝜌+/− represent the upward and downward ramp rates, and 𝜀+/−

the maximum energy that a measure can produce (positive) and receive (negative).

Based on this flexibility metrics, it is possible to quantify a system’s flexibility ca-

pability, the flexibility required by a variable resource and event, and the remaining

flexibility after the requirements are satisfied [36].

An initial approach for calculating the aggregated flexibility of a system is by

a Minkowski sum of its flexibility metrics [36].. The Minkowski sum is calculated

by adding component by component the system units’ values of both positive and

negative . For example, the aggregated system ramps are calculated by

𝜌+total =
∑︁

𝑔∈Units

𝜌+𝑔 , (1.1)
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𝜌−total =
∑︁

𝑔∈Units

𝜌−𝑔 . (1.2)

The Minkowski sum is used analogously for estimating 𝜋 and 𝜀. By being able

to represent the flexibility characteristics of a given measure in a three-dimensional

space, it is possible to easily compare the strengths and weaknesses among measures.

This type of comparison between a storage and a conventional generation unit is

presented in Fig. 1.4. For instance, in the figure it can be seen how the generation

unit is more suitable for balancing events that require higher amounts of energy,

while the storage unit can provide a faster response, for both up and down ramps.
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Figure 1.4: Flexibility volumes for a conventional generation unit (red), energy
storage unit (blue), and their combined operation (purple).

However, the Mikonswski summ does not consider the effect of the network on

the flexibility provision. A steady-state approach for represent the feasible operation

of generation units is to represent it through steady-state security regions [37]. In a
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steady-state security region each node of the power system has an associated set of

active and reactive power injections for which the power flow equations and security

constraints are satified. The use of steady-state security regions can be expanded to

represent the feasible operating region for flexibility provision by including changes in

the system net load, and the energy and ramp capabilities of the installed flexibility

measures.

An example for the derivation of the feasible operating region for a generator

unit is presented in Figure 1.53. The electric generator is connected by a trans-

mission line to a demand in a generic two-node system as shown in Figure 1.5(a).

The generator feasible operating region, highlighted in purple in Figure 1.5(b), is

obtained by introducing the limits on the generation output based on the network

and generator constraints. The generator capability curve (green) presents the gen-

eration limits based on the current and power limits in the electric generator. For

this illustrative example a synchronous generator is depicted in Figure 1.5(b). Ad-

ditionally, a minimum power generation limit can be introduced to represent the

technical minimum load for the generator. Steady-state voltage limits (yellow) and

the power transmission limit related to the line’s thermal capacity (red) relate the

generator’s output with the satisfaction of the power flow equations and the secure

system operation. Finally, the generator’s ramp rate (brown) delimits the power

decrease of the generation unit based on the current operating point (teal). Note

that the generator operating point (teal) indicates higher power generation that that

requested by the demand (orange) to account for the losses in the transmission line.

As seen in the example presented in Figure 1.5, the incorporation of the network

and generation contraints could have a great impact on the flexibility provision.

1.4 Research gaps and thesis aim

Electric power systems require significant capital investments in flexible and efficient

energy technologies for the clean energy transition, as highlighted in the vision for

the European energy system by 2050 developed by the European Technology and
3The presented limits have been simulated in a tightly constrained system to highlight the effect

of network constraints on the generator’s feasible operation region.
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(a) Sample two-node power system.

(b) Generator feasible operating region after the application of network lim-
its.

Figure 1.5: Effect of network constraints on flexibility provision: (a) two-node sys-
tem, and (b) generator feasible operating region.

Innovation Platform for Smart Networks for the Energy Transition (ETIP SNET)

[2]. However, such investments are usually misled by improper characterization of

the currently available flexibility measures. The proper assessment of the existing

technical resources, the efficient coordination with other energy infrastructures, and

the creation of market structures with adequate price signals can deter substantial

investments in redundant flexible equipment. Therefore, we consider that a better

mathematical representation of the technologies, coordination strategies, and mar-

kets that affect the flexible electricity supply must be considered for the development

and operation of future power systems. This thesis aims to provide mathematical

tools for the accurate representation of flexibility measures in electric power sys-

tems. In this work, we center our attention on three primary measures to provide
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flexibility to future electric power systems: electric energy storage, integration with

the heating sector, and bundled energy-and-reserves electricity markets.

We decided to establish as our subject of study the operational flexibility of

electric power systems, more specifically, the operational flexibility related to the

scheduling of the generation and storage resources in day-ahead dispatch and energy

markets, since it is in this time frame where the bulk of the operation scheduling and

economic interactions are settled. In this manner, our interest relates to the system

operation for fixed intra-day time steps spanning up to weekly time horizons.

The adopted modeling framework is that of convex optimization. The convex

optimization framework provides the following benefits for our work:

1. Convex optimization is more computationally efficient that its non-convex

counterpart.

2. Unlike non-convex optimization, convex optimization models guarantee the

existence of a unique (global) optimal solution. Thus, the obtained results are

reproducible on any device and optimization solver.

3. The uniqueness of the optimal solution makes convex models suitable for eco-

nomic interpretation, since it guarantees the existence of a unique price when

using a dual-pricing for market formulations.

4. Finally, convex optimization is the standard methodology employed in most

of the electric power systems in the world.

We describe the challenges related to the power system’s flexibility facets of

electric energy storage, integration with the heating sector, and bundled energy-

and-reserves electricity markets in the following sections.

1.4.1 Energy storage for renewable balancing

Energy storage systems (ESS) are an attractive measure for the flexibility enhance-

ment of power systems since they can provide instantaneous load balancing, in

the order of milliseconds, preventing the use of slower fuel-based generation [38].
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Among the different types of ESS, battery energy storage (BES) is gaining signifi-

cant interest in the provision of grid support, and load shifting [39]. The advantages

of employing BES include their good modular configurability, fast response times,

and high energy efficiency, e.g., Li-ion has a cycle of efficiency of 70-95%. BES

finds applications in the smoothing of the power fluctuations from renewable energy

sources [40], frequency support to low-inertia distributed generators [41], participa-

tion in demand response programs [42], fast-charging stations for electric vehicles

[43], vehicle-to-grid operation [21], power system restoration [44], among others.

Due to their high energy density, high efficiency, long life cycle, and low mainte-

nance, Li-ion batteries currently dominate the battery storage market with a 55%

market share [45]. The increasing deployment of electric vehicles and battery sys-

tems has led to a rapid decrease in Li-ion battery pack prices, falling about 85%

from 2010 to 2020, reaching a volume-weighted average of 176 $/kWh [46]. The

quick adoption of Li-ion batteries makes them a representative technology for an-

alyzing the characterization of BES, which can be subsequently adapted to other

technologies.

The fast response of BES increases the power system’s reliability [47]. However,

it is necessary to accurately model their operation to efficiently quantify the flexi-

bility they can provide to the electric network. This analysis is necessary since their

efficiency and maximum power delivery change depending on the stored energy [48].

In this thesis, we propose a new model for Li-ion battery systems that increases

the characterization accuracy of their efficiency and power limits for their use in

power systems operational problems. The proposed model provides a better repre-

sentation of the flexibility provided by electric energy storage units while remaining

computationally tractable.

1.4.2 Coordinated operation of integrated heat–and–power

systems

The operational integration of energy systems allows increasing flexibility through

the use of existing synergies [49]. The most studied integration is that between
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electric and heating networks, given that the use of cogeneration units, electric

boilers, and heat pumps in district heating systems links the heat and electricity

systems [50]. The coordinated operation of the heat and power systems enhances

the electric flexibility by: i) providing supply redundancy in the heating sector with

power-to-heat devices, ii) storing excess renewable generation as thermal energy in

thermal energy storage devices and district heating pipelines [51], and iii) decoupling

generation and demand with the use of the thermal inertia, e.g., by pre-heating the

network [52].

To properly exploit the flexibility gained from the integration of heat and power

systems, it is necessary to provide economic stimuli for their efficient coordination

beyond the possibility of selling back to the electric network the unused electric en-

ergy generated from cogeneration units. From a market perspective, the integration

of heat and electricity systems has been analyzed through dispatch coordination

[53, 54], energy trading [55], and in entirely integrated markets [56, 57]. These

works proposed market and coordination mechanisms to trade both electricity and

heat within integrated heat-and-power systems. Additional works have developed

operational models that would allow the trading of electricity between integrated

heat-and-power microgrids [58]. However, the exciting possibility of heat exchange

between microgrids for flexibility enhancement has yet to be adequately analyzed in

the power systems literature.

The thermal interconnection of microgrids’ heating networks has been studied

for its ability to reduce operational costs by increasing the revenue of industrial

sites that could transfer their high-temperature waste heat to others that require

extra capacity to fulfill their peak loads [59]. The heat exchange between microgrids

could reduce their operation costs, deter the installation of additional heating capac-

ity that would otherwise be under-used, and liberate cogeneration and storage units

to provide electric flexibility. The optimal coordination of heat exchange between

microgrids has been studied for both the operation and planning stages [60, 61].

However, to increase the attractiveness of such coordination schemes between mi-

crogrids, it is necessary to establish a framework that minimizes participants’ costs,

establishes fair pricing of the exchanged energy, and preserves their independent
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operation and privacy. This thesis investigates the economic interaction of inte-

grated heat-and-power microgrids participating in a heat exchange market. For this

purpose, we formulate a market design based on convex optimization suitable for

decentralized microgrids coordination. Based on the developed formulation, we ana-

lyze the effect of interconnection capacity, efficiency, and topology on heat exchange

and price formation.

1.4.3 Market design for power systems with high RES pene-

tration

Not all aspects of flexibility provision are technical. A flexible power system must

only count on the technical resources necessary to overcome load imbalances, but

also it must ensure the reliable deployment of those flexibility measures. Elec-

tric markets can and do generate financial incentives for the availability and use

of generation and demand resources as flexibility measures. These types of incen-

tives are evidenced in power markets for reserves and balancing services. Balancing

markets allocate explicitly and implicitly resources for load balancing. Based on

forecasted load imbalances determined using stochastic and security studies, a por-

tion of the generation capacity is committed to providing balancing services to the

system [62, 63].

A common explicit and suboptimal approach for the commitment of automatic

generation reserve are to set a fixed fraction of the generators’ capacity as in the

Italian market, where participant generators are required to be available to provide

frequency containment reserve of at least ±1.5% (upwards/downward) of their ca-

pacity [64], or to determine the system reserve based on security criteria such as the

N-1 as in the Colombian system where the reserve capacity corresponds to the max-

imum value between 5% of the hourly demand and the largest available generation

capacity [65]. In this type of market design, with fixed reserves levels, balancing

payments are typically made based on generation bids. The explicit determination

of reserve requirements can be inefficient since it under-dispatches a more efficient

generation to provide balancing services that may not require the entirety of the
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reserved capacity. Additionally, the price paid for reserves’ provision does not re-

flect additional costs incurred by the renewable generation balancing. Therefore, the

revenue paid out in the energy market will be unrelated to the planning reserves,

and could not guarantee revenue sufficiency [66].

Stochastic information of renewable generation can be considered for determin-

ing ex-ante the flexibility requirements at the different regulation intervals to be

explicitly represented in the markets [62]. Another approach is to implicitly charac-

terize the stochastic nature of the renewable generation in the bundled dispatch of

energy and balancing provision in the wholesale electricity markets. Thus, energy

and reserves are jointly optimized. The implicit representation of reserves in the

market clearing process reduces the costs during real-time operation [63]. Common

approaches for the representation of renewable stochastic information in reserves

markets include the uncertainty representation by stochastic scenarios [67], the use

of worst-case scenario approaches via robust optimization [68], and the use of prob-

abilistic constraints for the risk-aware fulfillment of reserve requirements [69]. The

use of risk-aware probabilistic constraints, i.e., chance constraints, provides an effi-

cient convex approach for determining reserve levels while reflecting the risk profile

of the systems operator [70]. The main drawback of the existing chance-constrained

market formulations is their representation of renewable forecast errors as symmetric

and system-wide Gaussian errors, i.e., the considered forecasted errors are summed

for the entire system and are represented by a normal distribution [71, 72]. The

normality assumption misrepresents the empirical measurements by system opera-

tors that reflect the tendency of asymmetry of forecast errors [73], resulting in the

overestimation of the required reserves by following symmetric balancing provision

policies. Additionally, the aggregation of forecast errors as a balancing require-

ment on the system level and its consequent unique price obscures the correlation

between the uncertainty sources, leading to an inefficient allocation of balancing

reserves. Electricity markets must provide proper reserves and balancing price sig-

nals to: i) accurately represent the uncertainty introduced by the renewable energy

sources, ii) optimize the allocation of flexible balancing resources, and iii) indi-

cate the best location for installing future renewable generation projects. Thus,
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traditional Gaussian-system-wide approaches for balancing scheduling fall short in

optimizing the levels and costs of reserve provision.

This thesis presents a stochastic electricity market design for the better repre-

sentation of renewable generation uncertainty and the determination of generation

balancing services. The proposed energy and balancing market extends the charac-

terization of renewable generation to include asymmetrically estimated and empirical

forecast distributions, providing asymmetrical and nodal generation balancing.

1.5 Thesis Objectives

The general objective of this thesis is to provide an enhanced characterization of

flexibility measures available to electric power systems.

The specific objectives of this thesis are the following:

1. To develop a detailed characterization model of electric energy storage devices

that increases the representation accuracy of their operation performance while

being computationally efficient.

2. To provide a market design that allows the exchange of heat between thermal

networks, providing the efficient pricing of the transferred heat and preserving

the operational independence and privacy of its participants.

3. To formulate an energy and reserves market to represent and balance asym-

metric errors in forecasted renewable generation.

1.6 Thesis Structure

This thesis is organized into four additional chapters. An independent nomencla-

ture to describe the extensive mathematical expressions and formulated models is

presented in each chapter. Additionally, the structure of each chapter allows for its

self-contained reading and understanding. The structure of the remaining chapter

is outlined as follows:

22



Chapter 1. Introduction 1.6. Thesis Structure

Chapter 2 develops a linear programming characterization model for Lithium-

ion battery storage systems. The model allows representing non-constant battery

efficiencies and power limits. First, we present an equivalent circuit representation

for the electrochemical behavior of Li-ion batteries. We then introduce a detailed

linear model extended from the described equivalent circuit for the state-dependent

charge and discharge processes of Li-ion batteries based on the characterization

of battery efficiencies and power limits. Lastly, we integrate our proposed Li-ion

battery model in both a day-ahead economic dispatch and a stochastic unit com-

mitment to illustrate the benefits of a detailed linear battery model compared to

existing literature models.

Chapter 3 proposes a market design for the heat transfer between integrated

heat-and-power microgrids. Motivated by the increasing integration of heat and

electricity energy sectors, we present a basic market structure for exchanging heat

between sites, which reduces operational costs, improves operational flexibility, and

increases generation usage. The proposed market structure can be managed in both

a centralized and decentralized manner, preserving the independence and privacy of

the participating microgrids. We provide an analysis of the formation of the heat

transfer price and its dependency on the technical interconnection features affecting

its value. The market is formulated as a convex model, whose decomposition into a

decentralized optimization approach is presented and guaranteed to achieve optimal

convergence.

Chapter 4 introduces in chance-constrained energy and reserves electricity mar-

kets the concept of asymmetric balancing provision to renewable generation imbal-

ances. Electricity markets must optimize the generation dispatch, ensuring that the

dispatched generation can absorb deviations from renewable generation forecasts.

Unlike the existing literature, we propose a market design that allows the differ-

entiated generation response to both positive and negative forecast deviation for

renewable generation, i.e., for both surplus and deficit generation. The developed

market structure reduces consumers’ payments, showing more significant savings for

systems with high renewable penetration.

Chapter 5 presents the thesis’ conclusions, discussion and recommendation for
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future research.

Appendix B describes the stochastic unit commitment model with renewable

generation and energy storage for the second case study in Chapter 2.

Appendix C derives the expected generation costs under the asymmetric bal-

ancing framework developed in Chapter 4.

1.7 Thesis Contributions

This doctoral thesis contributes to the power system’s state of the art by provid-

ing new mathematical methods for the flexibility characterization of future power

systems with high renewable penetration. In particular, we approach three main

flexibility measures in power systems and develop detailed representation models

under the framework of convex optimization theory. Below we present the general

and specific contributions of this thesis. The general contributions of this thesis are

described as the methodological contributions, whereas the specific contributions

are described as the steps taken to achieve the general ones.

1.7.1 General Contributions

The general contributions of the doctoral research summarized in this thesis are:

I. We provide a detailed convex characterization model for electric energy storage

units. Through computational test cases, we demonstrated that the developed

model allows improving the characterization accuracy of non-ideal batteries

while preserving computational tractability and ensuring operational feasibil-

ity of the resultant scheduling. - Chapter 2

II. We propose a convex and decomposable market design for the heat exchange

between integrated heat-and-power microgrids. To the authors best knowl-

edge, this is the first market model that allows the analysis of the price for-

mation for the heat exchange between microgrids. The proposed market and

its derived prices result in a competitive equilibrium, resulting in an efficient

heat exchange. - Chapter 3
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III. We extend the chance-constrained energy and reserves’ market design present

in the literature to include the modeling and balancing of asymmetric proba-

bilistic forecast errors of renewable generation. The developed asymmetric bal-

ancing market reduces both demand payments while reflecting the uncertainty

introduced by the renewable generators in the balancing prices, i.e., renewable

generators with worse forecasts have higher balancing prices. - Chapter 4

1.7.2 Specific Contributions

The specific contributions of the technical chapters of this thesis are:

Chapter 2

i) Develop a convex detailed model for Li-ion battery characterization: we intro-

duce a convex non-constant efficiency characterization of Li-ion batteries by

lifting its operational variables, power, and energy into a three-dimensional

space. The introduced linear model allows representing the efficiency changes

in the battery operation by using sampling points of its operational region

while maintaining its characterization computationally efficient.

ii) Introduce non-constant battery power limits: additionally, to improving the

state-dependent efficiency representation, the developed model characterizes

the non-constant efficiency, charge and discharge, as a function of the battery’s

state of charge. The use of state-dependent power limits prevents the overes-

timation of the battery’s flexibility provision. Thus, preventing a shortage of

energy delivery during the real-time operation.

Chapter 3

i) Design of a convex heat market between heat-and-power microgrids: we propose

the formulation of a convex market that achieves the optimal heat exchange

between microgrids while being decomposable for decentralized implementa-

tion. By using the properties of the convex coordination market, we derive its

heat transfer prices, proving that they constitute a competitive equilibrium,
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where each participant maximizes its profits and has no incentive to deviate

from the market outcome.

ii) Sensitivity analysis of the key drivers of heat transfer quantities and prices: the

analytically derived heat exchange prices are dependent on the interconnection

capacity and transfer efficiency. We analyze the effects that the interconnec-

tion parameters have on the heat exchange and economic interaction between

microgrids.

iii) Presentation of a decentralized model for the heat market: to support the

practical implementation of the proposed heat exchange market, we present

an equivalent formulation that enables decentralized microgrid coordination

with a distributed optimization algorithm. The presented algorithm is based

on the alternating direction method of multipliers (ADMM), and unlike the

ADMM, it provides optimality guarantees for the coordination of three or more

microgrids.

Chapter 4

i) Extension of the chance-constrained power market designs: we propose an en-

ergy and reserve market that considers both the asymmetric and node-to-node

reserve provision for the balancing of renewable energy sources. The proposed

market structure incorporates the probabilistic information characterizing the

renewable energy sources and the correlation between their energy generation.

ii) Derivation of efficient energy and reserve prices: we derive analytically the

energy and reserve prices paid to the generators. The derived prices are proved

to form a competitive equilibrium. Additionally, we obtain the penalty prices

that the renewable generators must pay as a function of their introduced fore-

cast error.

iii) Comparison of chance-constrained balancing frameworks: we prove that exist-

ing models in the literature represent particulars cases of the presented renew-

able balancing framework after symmetry in reserve provision and uncertainty
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aggregation are assumed. The comparison with the existing framework is em-

ployed to draw relations between the symmetric and asymmetric pricing and

the node-to-node and system-wide pricing.
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Chapter 2

A Non-Ideal Linear Model for

Electric Energy Storage

Currently, the characterization of electric energy storage units used for power sys-

tem operation and planning models relies on two major assumptions: charge and

discharge efficiencies, and power limits are constant and independent of the electric

energy storage state of charge; misestimating the available storage flexibility.

This chapter proposes a detailed model for the characterization of steady-state

operation of Li-ion batteries in optimization problems. The model characterizes the

battery performance, including non-linear charge and discharge power limits and

efficiencies, as a function of the state of charge and requested power. We then derive

a linear reformulation of the model without introducing binary variables, which

achieves high computational efficiency while providing high approximation accuracy.

The proposed model characterizes Li-ion batteries’ performance and operational

limits more accurately than those present in classical ideal models.

The primary contribution of this study is the development of a detailed linear

Li-ion battery model for its use in the operation optimization of power systems.

This work takes into account the use of energy storage for economic operations

in which the time steps considered are in the order of minutes/hours. Therefore

the transient characterization of the batteries is assumed negligible. The proposed

methodology models the operation limits and efficiencies of Li-ion batteries based

on their characteristic charging and discharging curves. These characteristic curves
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can be obtained based on either computational simulations or by direct measure-

ments, which allows the proposed model to be adapted to different energy storage

technologies and updated when new simulated/measured data is available.

The contents of this chapter are partially based on a paper published in the IEEE

Transactions on Power Systems [74] and a chapter published in the book Handbook

of Optimization in Electric Power Distribution Systems [75].

This chapter is organized as follows. Section 2.2 presents an equivalent circuit

representation for the electrochemical behavior of Li-ion batteries, inspired by the

work of Berrueta et al. [76]. In Section 2.3 we introduce a detailed non-linear model

extended from the described equivalent circuit for the state-dependent charge and

discharge processes of Li-ion batteries based on the characterization of battery ef-

ficiencies and power limits. Thirdly, in Section 2.4, we propose a linear approach

for battery operation by defining the convex curves of detailed non-linear battery

models. Lastly, Section 2.5 and 2.6 respectively integrate our proposed Li-ion bat-

tery model into a day-ahead economic dispatch and stochastic unit commitment,

illustrating the benefits of a detailed linear battery model compared with: the non-

convex formulation of Section 2.2, existing ideal model approaches (see, e.g., [77]),

and the approximation of non-convex curves through piecewise linearization based

on mixed-integer programming. The computational and reliability benefits of im-

plementing the developed model are also quantified. We observed approximately

12% of energy mismatches between schedules that use an ideal model versus those

that use our proposed battery model.

Nomenclature

The mathematical symbols used in this chapter are described in the table below.

Given that there are several optimization models presented in this chapter with

similar variables, the variables are listed next to their corresponding models.

Indexes

𝑔 Generation unit.

𝑙 Power line.
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𝑛 Power node.

𝑡 Time step.

𝑗, 𝑘 Indexes for characterization sample sets 𝐽 and 𝐾.

Parameters

𝐴𝑘 Interaction parameters for Redlich-Kister equation [J· mol−1]

𝐴𝑛𝑙 Line-to-node incidence matrix

𝐴SEI Area of solid-electrolyte interface [m2]

𝐶 Cost [$/Wh]

𝜒𝑎𝑛𝑑/𝑐𝑡𝑑 Anode/catode molar fraction

∆ Size of time step [h]

𝛿/𝛿 Minimum/Maximum angle allowed [rad]

𝐸A Activation energy [kJ · mol−1]

𝜂𝑐 Coulombic efficiency

𝜂cha/dis Charge/discharge efficiency

𝐸 Battery energy capacity [Wh]

𝐹 Maximum power flow [W]

𝐹 Faraday constant [s · A · mol−1]

Γ𝑠,𝑛 Battery-to-node incidence matrix

𝑖 Current [A]

𝑘0 Reaction rate constant [m · s−1]

Ω𝑔,𝑛 Generator-to-node incidence matrix

𝑃 Power [W]

𝑃/𝑃 Minimum/maximum power [W]

𝑅 Gas constant [J · mol−1K−1]

𝑅𝑐𝑡 Charge transfer equivalent resistance [Ω]

𝑅𝑑𝑖𝑓,𝑒𝑙𝑒𝑐/𝑚𝑒𝑚 Electrode/Membrane diffusion equivalent resistance [Ω]

𝑅𝑜ℎ𝑚 Ohmic losses equivalent resistance [Ω]

𝑆𝑂𝐶 State of charge [p.u.]

𝑆𝑂𝐶𝑠𝑢𝑟 State of charge at electrodes’ surface [p.u.]

𝑇 Temperature [K]
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𝑈𝑏𝑎𝑡,0 Reference equilibrium potential [V]

𝑣𝑒𝑞 Equilibrium voltage [V]

𝑣𝐼𝑁𝑇 Non-ideal interaction voltage [V]

𝑣𝐼𝑁𝑇,𝑎𝑛𝑑/𝑐𝑡𝑑 Non-ideal anode/catode interaction voltage [V]

𝑋𝑙 Series reactance in the line 𝑙 [p.u.]

2.1 Introduction

The need for a secure and flexible operation of electric power systems and the falling

prices of batteries has made large-scale Electric Energy Storage (EES) systems a vi-

able and widely studied option. In particular, Li-ion battery systems have gained

considerable attention because of their high energy density, power ratings, efficiency,

and long lifetime [78]. As an example, in South Italy and South Australia, 40 MW

and 100 MW storage systems have been installed, respectively [79, 80]. The intro-

duction of EES, alongside renewable energy generation, compels the development

of tools that can manage these systems optimally for maximum grid reliability and

profitability [81].

The two major applications of EES that help achieve higher profit potential

include frequency regulation and load shifting [82]. Multiple market mechanisms

have been proposed for providing services to the power grid from EES: bulk energy

storage, vehicle-to-grid (V2G), and distributed battery networks. V2G enables the

use of electric vehicles to provide the aforementioned services, in addition to demand

shifting via the smart charging of vehicles [21]. Domestic batteries can also be used

for grid-scale services through their aggregation [83]. Given the fast response needed

for primary frequency control applications (in the range of seconds), battery systems

would require the modeling of their dynamic processes. On the other hand, load

shifting applications assume steady state behavior, i.e., constant parameters during

the operational time steps considered, from minutes to hours.

Battery models can be divided into mathematical, electrochemical, and equiva-

lent circuit [84] models. The first category, mathematical models, describes battery

behavior based on the state of charge - 𝑆𝑂𝐶 (i.e., the ratio between stored energy
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and battery capacity), state of health (the battery’s ability to perform in comparison

to manufacturer specifications), and other macroscopic properties. Computational

methods are used to derive mathematical models with a small number of variables,

resulting in low computational costs, but without reflecting the internal processes

in the cells, e.g., the changes on the equivalent voltage as a function of the stored

energy. The second category, electrochemical models, describes the chemical behav-

ior of battery cells based on the physical and chemical processes that occur in the

battery cells. Because of their accuracy, electrochemical models can be applied to

the optimization of processes that are related to the design of the cell’s physical

parameters. Additionally, reduced-order electrochemical models allow the accurate

modelling of the electrochemical processes in the battery, while providing a com-

putationally efficient storage characterization for online control applications [84].

However, dynamic models are not suitable for their use in optimization applications

which require the analysis of large time horizons. The third category, equivalent

circuit models, provides an equivalent representation of the battery cell based on

laboratory measurements. The electric elements in the circuit can be denoted by a

combination of linear and exponential models to attune for the dynamic processes in

the battery. The resultant circuits provide computationally efficient models, with-

out requiring time-consuming laboratory measurements for the estimation of battery

parameters [85].

Vagropoulos et al. developed a linear optimization model for the optimal opera-

tion of an electric vehicle aggregator [86]. The model is based on battery charging

processes at constant efficiency, which are divided into two stages: constant current

and constant voltage charge. Pandžić et al., provided piecewise linearized charging

limits based on the battery’s stored energy levels [87]. Their model is based on a

constant-current-constant-voltage charging cycle and validated based on laboratory

experiments. The effect of the requested current in storage efficiency is modeled

by Wang et al. [88]. A concave and monotonically increasing function is provided

to represent battery efficiency in terms of deviations from the system’s reference

current.

A detailed characterization of the loss mechanisms prevalent in both battery and
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power electronics is provided by Schimpe et al. [78]. An analysis of the efficiency

changes as a function of the stored energy level and power request is provided by

Morstyn et al. [89]. The energy storage system characterization is approximated as

a second-order model for its application in model predictive control for distributed

microgrids with photovoltaic generation.

Ali et al. developed a methodology for the non-linear estimation of Li-ion battery

parameters in an equivalent circuit model [85]. The estimated parameters reflect the

dynamic processes by characterizing the elements in the equivalent circuit model as

a function of the 𝑆𝑂𝐶. Berrueta et al. developed an equivalent circuit model for

a Li-ion battery based on experimental data and the underlying electrochemical

phenomena that characterize its performance [76]. The proposed model achieves

high accuracy while being computationally simple to implement. Additionally, the

model characterizes the battery by the use of its state variables: cell temperature,

current, and SOC. An efficiency-based equivalent circuit model has been proposed

by Rampazzo et al. [90]. The model simulates the battery performance based on

the battery state during the operation, as in [76]. A Mixed Integer Linear Program-

ming (MILP) model for representing the behavior of a Li-ion battery pack based on

the battery’s electrochemical behavior was developed by Sakti et al. [48]. In this

MILP model, the power limits and battery efficiency are expressed as a function

of the 𝑆𝑂𝐶 and the power output. The nonlinearities present in the characteriza-

tion are addressed through piecewise linearization based on simulated sample points.

2.2 Battery Electrochemical Model

A Li-ion battery reversibly stores electric energy as electrochemical energy. The pos-

itive electrode, cathode, of a Li-ion battery is composed of metal oxide materials,

usually transition metals, and the negative electrode, anode, is made of graphite.

When the battery is being charged, the Li ions flow from the cathode to the an-

ode, where they combine with the incoming electrons and are later stored in the

graphite layers [91]. During the discharge process, electrons are transferred from
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the battery cell, and the Li ions flow through the electrolyte back to the cathode.

After its dynamic processes have stabilized, a Li-ion battery can be represented

as an equivalent resistive circuit (Fig. 2.1). The equivalent circuit representation

consists of a voltage source associated with the electrochemical equilibrium voltage

and three resistors that represent different electrochemical processes: ohmic losses,

charge transfer, and membrane diffusion. In this section we describe each of the

elements and its correspondence with the underlying electrochemical phenomena

based on the experimentally validated model of Berrueta et al. [76].

𝑣 𝑒
𝑞
(𝑆
𝑂
𝐶
,𝑇
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−+
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𝑅𝑑𝑖𝑓,𝑚𝑒𝑚(𝑇 )
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Figure 2.1: Steady-state battery equivalent circuit

2.2.1 Equilibrium voltage

The equilibrium voltage, 𝑣𝑒𝑞, indicates the difference in electrochemical potential

(voltage) between the electrodes after the charge transfer dynamic processes have

reached a steady state. Battery equilibrium voltages can be expressed as a sum-

mation of the three processes inside the cell, (2.1). The cell reference potential is

defined by 𝑈𝑏𝑎𝑡,0, which indicates the cell potential at standard concentrations. The

concentration, i.e., molar fraction 𝜒, of the reactants on the electrodes changes with

the amount of stored energy, which is captured by expressions (2.1a) and (2.1b).

Therefore, there is a change in the cell potential for nonstandard concentrations

obtained by the second term in the summation. The combination of the first two

terms gives the Nernst equation for nonstandard conditions (reactions not occurring

at 298.15𝐾, 1 atmosphere, or a cathode and anode molarity of 1.0𝑀). The third
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term, 𝑣𝐼𝑁𝑇 , reflects the non-ideal interactions between Li ions and the host matrix.

The non-ideal interactions can be calculated based on a Redlich-Kister polynomial

equation of seventh order, (2.1d).

𝑣eq(𝑆𝑂𝐶,𝑇 )=𝑈bat,0+
𝑅𝑇

𝐹
· 𝑙𝑛
(︂

(1 − 𝜒ctd) · 𝜒and

𝜒ctd·(1 − 𝜒and)

)︂
+𝑣INT (2.1)

where

𝜒and = 0.083 + 0.917 · 𝑆𝑂𝐶, (2.1a)

𝜒ctd = 1 − 0.7 · 𝑆𝑂𝐶, (2.1b)

𝑣INT = 𝑣INT,ctd − 𝑣INT,and, (2.1c)

and

𝑣INT,𝑗=
7∑︁

𝑘=1

𝐴𝑘

[︃
(2𝜒𝑗−1)𝑘−2𝜒𝑗(𝑘−1)(1 − 𝜒𝑗)

(2𝜒𝑗−1)2−𝑘

]︃
, 𝑗= and, ctd. (2.1d)

2.2.2 Resistive elements

The resistive elements 𝑅ohm and 𝑅𝑐𝑡 indicate fast-dynamic processes. The former is

associated with the ohmic phenomena that represents the losses related to the move-

ment of electrons and ions during charging and discharging processes; it depends

linearly on the SOC and temperature, (2.2). The latter, 𝑅𝑐𝑡, models charge trans-

fer through the solid-electrolyte interface (SEI), (2.3). The SEI serves as a barrier

between the electrodes and the electrolyte solution, preventing their spontaneous

reaction (short-circuit) and enabling battery charge reversibility.

𝑅ohm(𝑆𝑂𝐶,𝑇 ) = 𝑅ohm,0 +𝑅ohm,T·𝑇 +𝑅ohm,SOC · 𝑆𝑂𝐶 (2.2)

𝑅𝑐𝑡(𝑆𝑂𝐶,𝑇 )=
1

(𝜒𝛼,𝑎𝑛𝑑·𝜒𝛼,𝑐𝑡𝑑)0.5
·
[︃
𝑅 · 𝑇 · 𝑒𝐸𝐴/𝑅·𝑇

𝐹 2 · 𝐴𝑆𝐸𝐼 · 𝑘0

]︃
. (2.3)

The last resistive element of the equivalent circuit model is related to the diffusion

of Li ions through the membrane. The diffusion process causes a voltage drop in the

battery cell and is inversely proportional to the operating temperature (2.4). Similar

to the membrane diffusion process, there exists an electrode diffusion mechanism
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(2.5).

𝑅𝑑𝑖𝑓,𝑚𝑒𝑚(𝑇 ) = 𝐾𝑑𝑖𝑓,𝑚𝑒𝑚 · exp

(︃
𝑏𝑑𝑖𝑓,𝑚𝑒𝑚

𝑇 − 𝑇0,𝑑𝑖𝑓,𝑚𝑒𝑚

)︃
(2.4)

𝑅𝑑𝑖𝑓,𝑒𝑙𝑒𝑐(𝑇 ) = 𝐾𝑑𝑖𝑓,𝑒𝑙𝑒𝑐 · exp

(︃
𝑏𝑑𝑖𝑓,𝑒𝑙𝑒𝑐

𝑇 − 𝑇0,𝑑𝑖𝑓,𝑒𝑙𝑒𝑐

)︃
. (2.5)

Changes in the concentration of lithium on the electrodes results in a new perceived

state of charge at the cell’s electrode surface, 𝑆𝑂𝐶𝑠𝑢𝑟. The difference between the

𝑆𝑂𝐶 and 𝑆𝑂𝐶𝑠𝑢𝑟 results in a voltage drop that can be obtained in terms of the

electrode diffusion process, (2.6).

𝑆𝑂𝐶𝑠𝑢𝑟= 𝑆𝑂𝐶 −𝑅𝑑𝑖𝑓,𝑒𝑙𝑒𝑐 · 𝑖 · 𝜂𝑐 (2.6)

where the coulombic efficiency, 𝜂𝑐, is given by

𝜂𝑐= 𝜂𝑐,0 + 𝜂𝑐,𝑇 · 𝑇 + 𝜂𝑐,𝑖 · 𝑖. (2.7)

In summary, all of the components present in the equivalent steady-state circuit

model depend either on the temperature, 𝑇 , the state of charge, 𝑆𝑂𝐶, the current,

𝑖, or a combination of all factors.

For the calculations presented in the following sections, the battery modeled will

be that presented in [76], with 40 Ah and 133 V. A constant battery temperature of

25∘C will be assumed. The 𝑆𝑂𝐶 and the current will be considered control variables

because they directly relate to the stored energy and the power requested from the

battery. The values and the characterization of the battery parameters presented in

this section, and used in the rest of the work, can be found in [76].

2.3 Mathematical Battery Characterization

In this section, we present an alternative formulation to the classical ideal bat-

tery model used in the operation optimization of power systems (see e.g., [77]) by

incorporating features that represent the internal electrochemical processes at the
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battery cell level. Consequently, we provide a more accurate description of battery

behavior that can be used for power system economic operation. In doing so, charg-

ing and discharging power and SOC limits must be derived. However, instead of

providing independent limits, as in [77], we derive the limits from internal battery

processes. The resulting mathematical battery model is of higher-dimension (more

variables are needed), and it is non-linear and non-convex (a non-desired property

for power system optimization models). On the other hand, it provides a more

accurate mathematical description of the battery that is useful for power system

optimization models. In this section, we gradually introduce the model, while in the

next section, we propose a convex (linear) approach for the battery model.

2.3.1 Power Limits

The 𝑆𝑂𝐶 at the electrode surface, 𝑆𝑂𝐶𝑠𝑢𝑟, is modeled based on (2.6) and (2.7) as:

𝑆𝑂𝐶𝑠𝑢𝑟 = 𝑆𝑂𝐶−𝑅𝑑𝑖𝑓,𝑒𝑙𝑒𝑐·𝑖·[𝜂𝑐,0+𝜂𝑐,𝑇 · 𝑇+𝜂𝑐,𝑖·𝑖], (2.8)

where

0 ≤ 𝑆𝑂𝐶𝑠𝑢𝑟 ≤ 1. (2.9)

During the discharging process, the state of charge at the electrodes’ surface 𝑆𝑂𝐶𝑠𝑢𝑟

decreases; whereas in the charging one, it increases. Therefore the 𝑆𝑂𝐶𝑠𝑢𝑟 lower

bound is active during the discharge (but not its upper bound). Similarly, the

𝑆𝑂𝐶𝑠𝑢𝑟 upper bound is active during the charge. The calculation of the discharging

limits is then derived as follows

0 ≤ 𝑆𝑂𝐶cha
𝑠𝑢𝑟 , (2.10)

where the maximum discharging current 𝐼dis
0 is the solution of the equation

𝑆𝑂𝐶cha
𝑠𝑢𝑟

(︁
𝐼

dis
0

)︁
= 0. (2.11)

We can obtain an explicit solution, in closed form, derived for the maximum dis-

charging and charging current, 𝐼dis
0 and 𝐼cha

0 , from the second-order polynomial resul-
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tant of solving (2.11). The maximum discharge current can be obtained by solving

the following quadratic expression:

0 = 𝑎𝑑𝑖𝑠 ·
(︀
𝐼

dis
0

)︀2
+ 𝑏𝑑𝑖𝑠 · 𝐼dis

0 + 𝑐𝑑𝑖𝑠, (2.12)

with

𝑎𝑑𝑖𝑠 = −𝑅𝑑𝑖𝑓,𝑒𝑙𝑒𝑐 · 𝜂𝑐,𝑖, (2.12a)

𝑏𝑑𝑖𝑠 = −𝑅𝑑𝑖𝑓,𝑒𝑙𝑒𝑐[𝜂𝑐,0 + 𝜂𝑐,𝑇 · 𝑇 ], (2.12b)

𝑐𝑑𝑖𝑠 = 𝑆𝑂𝐶. (2.12c)

Analogously, by bounding the 𝑆𝑂𝐶𝑠𝑢𝑟 in (2.9) by its upper limit, the maximum

charging power can be obtained with the following quadratic expressions:

0 = 𝑎𝑐ℎ𝑎 ·
(︀
𝐼

cha
0

)︀2
+ 𝑏𝑐ℎ𝑎 · 𝐼cha

0 + 𝑐𝑐ℎ𝑎, (2.13)

with

𝑎𝑐ℎ𝑎 = −𝑅𝑑𝑖𝑓,𝑒𝑙𝑒𝑐 · 𝜂𝑐,𝑖, (2.13a)

𝑏𝑐ℎ𝑎 = −𝑅𝑑𝑖𝑓,𝑒𝑙𝑒𝑐[𝜂𝑐,0 + 𝜂𝑐,𝑇 · 𝑇 ], (2.13b)

𝑐𝑐ℎ𝑎 = 𝑆𝑂𝐶 − 1. (2.13c)

The current limits 𝐼cha/dis
0 refer to the limitations in the charge transfer pro-

cess. To consider the manufacturer limits which prevent cell damage, the parameter

𝐼
cha/dis
𝑐−𝑟𝑎𝑡𝑒 is introduced. Thus, the maximum permissible current for a battery can be

calculated based on 𝐼cha/dis
0 and 𝐼cha/dis

𝑐−𝑟𝑎𝑡𝑒 by:

𝐼
cha/dis

= 𝑚𝑖𝑛{𝐼cha/dis
0 , 𝐼

cha/dis
𝑐−𝑟𝑎𝑡𝑒 }. (2.14)

From expressions (2.12)–(2.14), it is now possible to calculate the maximum permis-

sible current as a function of the energy stored. The maximum permissible C-rates

for the discharge and charge current, 𝐼dis/cha
𝑐−𝑟𝑎𝑡𝑒 , have been set to 5𝐶1 and 1𝐶 to match

the typical manufacturer limits used in [76]. Accordingly, we have plotted the max-

1A C-rate of 5𝐶 indicates 5 times the nominal current for discharging according to typical
manufacturer specifications.
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imum feasible working points for discharging and charging currents vs. the SOC in

Figs 2.2(a) and 2.2(b).

As shown in Fig. 2.2(a) for low 𝑆𝑂𝐶, the maximum current for discharging

decreases. At low 𝑆𝑂𝐶, the internal battery resistance, 𝑅𝑡𝑜𝑡 = 𝑅𝑜ℎ𝑚+𝑅𝑐𝑡+𝑅𝑑𝑖𝑓,𝑚𝑒𝑚,

increases considerably, decreasing the equivalent voltage, 𝑣𝑒𝑞, below zero, which

indicates an erroneous sense of battery depletion. This behavior corresponds to the

voltage cut-off in the battery cells, which would result in a battery shut down by

the management system [92].

The charging current limits deviate from the 1𝐶 rating for higher values of 𝑆𝑂𝐶,

which is greater than 0.93, Fig. 2.2(b). The physical limitations for cell charging

correspond to a greater rate of voltage rise, when compared with the rate of charge

absorption. This results in the saturation of electrochemical cells and an increase in

stresses within the cells.

(a) Discharge current (b) Charge current

Figure 2.2: Maximum current normalized to the battery capacity, as a function of
the SOC. Shadow areas indicate feasible operation.

The expressions for calculating discharging power limits (2.15a), 𝑃 dis, and charg-

ing power limits (2.15b), 𝑃 cha, are derived using the circuit-equivalent battery model

and currents limits.

𝑃
dis

= 𝑣𝑒𝑞 · 𝐼𝑑𝑖𝑠 −
(︀
𝐼
𝑑𝑖𝑠)︀2 ·𝑅𝑡𝑜𝑡 (2.15a)

𝑃
cha

= 𝑣𝑒𝑞 · 𝐼𝑐ℎ𝑎 +
(︀
𝐼
𝑐ℎ𝑎)︀2 ·𝑅𝑡𝑜𝑡. (2.15b)
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2.3.2 Charging and Discharging Battery Efficiencies

To characterize battery usage on an operation optimization model, it is necessary to

derive an expression for the battery’s performance, both for charging and discharging

regimes. The battery discharging efficiency is given by (2.16). The symbol 𝑝dis

denotes the power discharged to the electric grid, and so 𝑝dis = 𝑣 · 𝑖. The symbol

𝑝out denotes outgoing power from the battery cells, 𝑝out = 𝑣𝑒𝑞 ·𝑖. Applying Kirchoff’s

Voltage Law on the circuit in Fig. 2.1, we can derive the discharging efficiency of

the battery.

𝜂dis =
𝑝dis

𝑝out = 1 − 𝑖 ·𝑅𝑡𝑜𝑡

𝑣𝑒𝑞
. (2.16)

Similar to discharging efficiency, we can derive a charging efficiency expression as

follows

𝜂cha =
𝑝in

𝑝cha =
𝑣𝑒𝑞

𝑣𝑒𝑞 + 𝑖 ·𝑅𝑡𝑜𝑡

. (2.17)

As seen in Fig. 2.3(a) and 2.3(b), the efficiency of a battery improves for higher 𝑆𝑂𝐶

and C-rates closer to 1𝐶. This result corresponds to previous experimental analyses

performed in [48, 78, 90]. The discharging efficiency lowers for higher current values

and low 𝑆𝑂𝐶, dropping as much as 33% from its maximum value. The charging

efficiency presents a similar behavior, with a smaller efficiency drop correspondent

to the smaller operating region, 0 − 1𝐶.

2.3.3 Non-Linear Battery Model

By considering the aforementioned charging and discharging power limits and effi-

ciencies, we can derive a new detailed battery model that is similar to conventional

methodologies [77]. The approach is presented in Model 1. Equations (2.18a) and

(2.18b) indicate the discharging and charging power limits. Contrary to conventional

models, the limits are SOC-dependent. Equation (2.18c) denotes the energy balance

along the time steps. The energy stored in the battery at time 𝑡 is calculated as the

sum of the energy stored in the previous time step 𝑡− 1 and the energy entering the
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(a) Discharge efficiency (b) Charge efficiency

Figure 2.3: Discharging and charging efficiencies vs. the SOC and discharging and
charging power

battery cell in the previous time-step. It is given by the product of 𝑝cha
𝑡−1𝜂𝑡−1∆ minus

the energy exiting the cell, which is represented by the term 𝑝dis
𝑡−1

1

𝜂dis
𝑡−1

∆. The pa-

rameter ∆ is the size of time steps as an hourly fraction; employed to transform the

use of power into energy. Battery energy capacity limits are described by (2.18d).

The battery state of charge, 𝑆𝑂𝐶𝑡, in p.u., is calculated as a function of the stored

energy, 𝑒𝑡, by (2.18e). Finally, efficiencies and power limits are included in (2.18f).

Model 1 NLP Li-ion battery model
Variables:
𝑝dis
𝑡 , 𝑝cha

𝑡 discharging and charging power [W]
𝑃

dis
𝑡 , 𝑃

cha
𝑡 maximum discharging and charging power [W]

𝜂dis
𝑡 , 𝜂cha

𝑡 discharging and charging efficiency [–]
𝑒𝑡, 𝑆𝑂𝐶𝑡 battery energy level (absolute and relative values) [Wh,–]

Constraints:

0 ≤ 𝑝dis
𝑡 ≤ 𝑃

dis
𝑡 , ∀𝑡 (2.18a)

0 ≤ 𝑝cha
𝑡 ≤ 𝑃

cha
𝑡 , ∀𝑡 (2.18b)

𝑒𝑡 = 𝑒𝑡−1 + 𝑝cha
𝑡−1𝜂

cha
𝑡−1∆ − 𝑝dis

𝑡−1

1

𝜂dis
𝑡−1

∆, ∀𝑡 (2.18c)

0 ≤ 𝑒𝑡 ≤ 𝐸, ∀𝑡 (2.18d)
𝑆𝑂𝐶𝑡 = 𝑒𝑡/𝐸, ∀𝑡 (2.18e)
(2.15) − (2.17). (2.18f)
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2.4 Linear Reformulation Approach

In the aforementioned non-linear Model 1, non-convexities arise from discharging

and charging power limits and efficiencies (2.18f), including bilinear products in the

energy balance constraint (2.18c). In this section, we propose a linear approach

through a convex envelope for the characterization of battery charge and discharge.

To handle the bilinear products in the battery energy balance equation, we add

two new variables, incoming and outgoing power from battery cells, 𝑝in and 𝑝out,

respectively. They are introduced in equations (2.16) and (2.17) and given by:

𝑝out = 𝑝dis 1

𝜂dis (2.19a)

𝑝in = 𝑝cha𝜂cha. (2.19b)

Expressions in (2.19) allow us to define the energy balance equation as an affine

function of 𝑝𝑜𝑢𝑡 and 𝑝𝑖𝑛

𝑒𝑡 = 𝑒𝑡−1 + 𝑝in
𝑡−1∆ − 𝑝out

𝑡−1∆. (2.20)

This substitution can be done without the need for evaluating the bilinear products

of (2.19) because 𝜂out is dependent on the power provided by the battery, 𝑝dis, and

the 𝑆𝑂𝐶, e.g. a function of 𝑖 and 𝑣𝑒𝑞, see (2.16). Therefore, the values of 𝑝out can be

obtained in terms of 𝑝dis and 𝑆𝑂𝐶, which are the variables of interest in operation

models implementing electric energy storage through batteries.

The outgoing power from the battery cells, 𝑝out, can be approximated by a convex

combination of sampling points. That is, we can construct a polyhedral envelope

of the 𝑝out by sampling from the model given in Section 2.2, or alternatively, by

experiments like in [76]. Therefore, for every tuple [𝑝dis, 𝑆𝑂𝐶, 𝑝out]⊤, we draw 𝐽

samples through simulations, represented by [ ̂︀𝑃 dis
𝑗 , 𝑆𝑂𝐶𝑗, ̂︀𝑃 out

𝑗 ]⊤. The linear convex

envelope is formulated in (2.21). A 3-dimensional representation of 𝑝dis vs. 𝑆𝑂𝐶 and

𝑝out is presented in Fig. 2.4(a), where the solid areas indicate the simulated values

based on Eq. (2.19a). The sampled points 𝑗 ∈ 𝐽 are highlighted as black dots, and

the convex envelope connecting the sampled points is shown by the connecting lines
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between the points. As it can be observed, the proposed approach based on the

convex envelope for a feasible set points is very close to the non-linear mathematical

definition.

𝑝out =
∑︁

𝑗

̂︀𝑃 out
𝑗 · 𝑥𝑗 (2.21a)

𝑝dis =
∑︁

𝑗

̂︀𝑃 dis
𝑗 · 𝑥𝑗 (2.21b)

𝑆𝑂𝐶 =
∑︁

𝑗

𝑆𝑂𝐶𝑗 · 𝑥𝑗 (2.21c)

1 =
∑︁

𝑗

𝑥𝑗 (2.21d)

0 ≤ 𝑥𝑗, ∀𝑗 ∈ 𝐽. (2.21e)

Analogously, 𝑝in can be approached by the convex envelope defined in (2.22). Simi-

larly, it is also compared with the non-linear definition in Fig. 2.4(b).

(a) Discharging power (b) Charging power

Figure 2.4: Operating region of Li-ion battery in variable space of (a)
[𝑝dis, 𝑆𝑂𝐶, 𝑝out]⊤, and (b) [𝑝cha, 𝑆𝑂𝐶, 𝑝in]⊤. The curve indicates non-linear depen-
dence, black dots denote sampled points, and the lines between the sampled points
define the convex envelope of the sampled points.

𝑝in =
∑︁

𝑘

̂︀𝑃 in
𝑘 𝑦𝑘 (2.22a)

𝑝cha =
∑︁

𝑘

̂︀𝑃 cha
𝑘 𝑦𝑘 (2.22b)

𝑆𝑂𝐶 =
∑︁

𝑘

𝑆𝑂𝐶𝑘𝑦𝑘 (2.22c)
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Figure 2.5: Block diagram representing the proposed battery characterization model.

1 =
∑︁

𝑘

𝑦𝑘 (2.22d)

0 ≤ 𝑦𝑘, ∀𝑘 ∈ 𝐾. (2.22e)

The expressions for battery characterization are given as a function of the 𝑆𝑂𝐶

as a consequence of the dependence of the 𝑣𝑒𝑞 and power limits on it, including

the computational advantages of employing a normalized parameter. The resultant

linear model for battery characterization is presented in Model 2and represented in

Fig. 2.5. As seen in Figure 2.5, the proposed battery characterization model receives

as an input the sampling point for the discharging and charging processes derived

from the employed exact battery model and by their linear combination, derives the

battery power and energy state.

The 𝑆𝑂𝐶 is characterized by (2.21c) and (2.22c). If both expressions were jointly

considered, the battery would appear to be charging and discharging at the same

time. This corresponds to the fact that to guarantee an approximation through a

convex combination of sampling points, constraints (2.21d) and (2.22d) require that

at least one 𝑥𝑗 and one 𝑦𝑗 be greater than zero, simultaneously making 𝑝dis and 𝑝cha

non zero. In Model 1, this does not occur because the energy balance, (2.18c), uses

efficiencies 𝜂dis and 𝜂cha that are lower than one. Therefore, simultaneously charging

and discharging would go against the economic objective of minimizing the cost of

power system operations because energy would be lost during the imperfect (and si-

multaneous) charge and discharge processes. This behavior is ensured for a majority

of power system applications where the power balance constraints can be satisfied
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within the technical limits of the generators and demand, i.e., when the demand can

be fulfilled without recurring load shedding or generation curtailment. An exception

to this case is when there exist economic incentives for the use of a particular type

of generation, e.g., renewable energy generation, or when the cost of simultaneous

changing/discharging losses are too small in comparison to the total system costs.

If simultaneous charging and discharging is possible in the storage application, the

proposed method could be combined with the use of a binary variable to represent

the state of the battery, i.e., charging or discharging.

Based on convex combination constraints and the economic use of the battery,

constraints (2.21c) and (2.22c) can be combined through a summation in (2.23f).

For this constraint to allow a discernment of the charging and discharging processes

without the introduction of binary variables, an additional condition is introduced:

each sampling set must have at least two sampling points equal to [0, 0, 0]⊤ and

[1, 0, 0]⊤; which respectively represent the cases when the battery is not active 𝑝 = 0,

but is fully discharged or fully charged. Consequently, for a discharge 𝑝dis > 0,

𝑥𝑗0 = 0 and then 𝑝cha = 0, since 𝑦𝑗0 = 1; an analogous relationship would follow for

the charging cycle.

For the considered discharging convex approximation by our proposed method

we have a maximum approximation error of 9.03%, a mean error of 1.21%, and

a standard deviation of 1.39%, when 14 sampling points are considered. For the

charging process sampled with 20 points, we have a maximum approximation error

is of 1.12%, with a mean error of 0.22% and a standard deviation of 0.18%. The

greater approximation error for the discharging curve can be explained by the greater

changes in current that the sampling points in the y-axis (6 points for both the charge

and discharge) must approximate, when compared to the charging range.

2.5 Test Case 1: Network-Constrained Economic

Dispatch

To evaluate the effect of the proposed characterization on battery operation, we

compare four energy storage models under a network-constrained economic dispatch.
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The following storage modeling approaches were compared:

• Case NLP: the storage systems is modeled as described in Model 1, resulting

a non-linear non-convex (NLP) problem.

• Case LP–Ideal: an ideal battery was considered, i.e., Model 1 is employed,

but the parameters 𝑃 cha, 𝑃 dis, 𝜂cha
𝑡 , and 𝜂dis

𝑡 were assumed to be constant.

• Case LP–Approx: the battery is modeled as described in Model 2, employing

a convex piecewise linearization of its characteristic curve.

• Case MILP: for the representation of the non-convex nature of the charac-

teristic curves, Fig. 2.4, a piecewise linearization using binary variables is

employed [93]. The resultant model is a mixed-integer linear programming

(MILP) one and is presnted in Appendix A.

A conventional economic dispatch, based on a lossless DC approximation, with

linear costs is modeled by Model 3. The scheduled cost of energy generation is

given by (2.24). Equation (2.24a) represents the power balance at every node 𝑛 of

the system for every time step. The power entering the node from each connected

line, 𝑓𝑙𝑡, is equal to the nodal demand, 𝑃D
𝑛𝑡, minus the power generated at the node,

𝑝𝑔𝑡, minus the discharging power of the battery connected to this node, 𝑝dis
𝑠𝑡 , plus

its charging power, 𝑝cha
𝑠𝑡 . The power flowing in line 𝑙 is modeled by (2.24b) using

line-to-node incidence matrix, 𝐴𝑛𝑙. Equations (2.24c), (2.24d), and (2.24e) establish

the technical limits of the generators 𝑔, power lines 𝑙 and voltage angle at node 𝑛,

respectively. The reference voltage angle is set by (2.24f). Battery energy level at

the end of a dispatch horizon is set to be equal to the initial battery energy level

(2.24g).
The computational tests were performed using a modified version of the IEEE

Reliability Test System (IEEE RTS) [94]. The generator technical data, the line

parameters, the load profile, including the battery parameters, are given in the on-

line dataset [95]. The optimization horizon was set to 24 hours, with 10-minute

intervals. The load data was scaled to the IEEE RTS system based on the demand

data from the Iberian Electricity Market on June 20, 2018 [96]. The simulations are
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performed using the modeling software Julia [97], JuMP [71], with Gurobi [98] and

IPOpt [99] as solvers. A summary of the characteristics and results of the evaluated

cases is provided in Table 2.1. As seen in Table 2.1, the employed battery models

result in comparable objective values. However, the selection of different modeling

approaches has an impact on the optimization problem structure and its solution

time. The non-linear non-convex programming (NLP) model at 231.3 seconds is

solved a hundred times slower than its linear counterparts, while the mixed-integer

linear programming (MILP) model requires 143.3 seconds for its solution. The

fastest model is the ideal linear programming (LP-ideal) one, where the power lim-

its and efficiencies are considered constant. However, as discussed in Section 2.5.2,

the reliability of the derived battery scheduling for the LP model is compromised

by its assumptions. It must be noted that even though the proposed linear approx-

imation (LP-Approx) model introduces additional variables and linear constraints

to represent more accurately the battery performance across it operating region, it

provides optimal solutions considerably faster, 3.4 seconds, than the NLP and MILP

models.

Table 2.1: Summary of optimization results
NLP LP–Ideal MILP LP–Approx

Objective value 57 305 57 312 57 307 57 308
∆ [%] - 0.01 0.01 0.01
Time [s] 231.3 1.2 143.3 3.4
Constraints 10 657 9 937 24 049 10 369
Continuous variables 18 576 11 088 20 592 16 272
Binary variables - - 13 824 -

2.5.1 Results

Case NLP- Non-linear programming model

The general non-linear programming (NLP) model, Model 1, has been evaluated

to provide a reference for the battery operation. The scheduled battery operation is

presented for both charge and discharge in Fig. 2.6(a) and Fig. 2.6(b), respectively.

The real maximum charging and discharging power limits have been calculated based
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on (2.15a)–(2.15b) and represented by the red dashed line in the figures. Battery

usage follows charging cycles for periods of lower demand, to subsequently discharge

during higher load request. Power limits for both charge and discharge change

throughout the day as a function of the stored energy, as described in Section 2.3.1.

Case LP–Ideal– Ideal battery model

In this case, the battery model is based on [77]. For doing so, we considered

Model 1, where power limits and efficiencies have constant values. The current

limits, (2.14), are set to 1C and 5C. The voltage at the battery terminals is set

constant at the rated value of 133𝑉 . For the ideal battery model, the efficiencies

are set to constant values, 𝜂cha
𝑡 = 0.972 and 𝜂dis

𝑡 = 0.868. The constant efficiencies

were calculated as the mean of the values given by (2.16) and (2.17).

As a result of the economic dispatch defined in Model 3, the battery was scheduled

to charge from and discharge to the network as shown in Fig. 2.6(c) and 2.6(d),

respectively. As it can be seen, the scheduled operation of the ideal battery violates

the calculated limits during peak charge and discharge.

Case LP–Approx- Proposed linear battery model

The scheduled operation of the proposed model is given in Fig. 2.7(a) and Fig.

2.7(b), characterized by its higher use, i.e., during more time steps. For this battery

model, the efficiencies depend on the state of charge and the power request, i.e.,

higher efficiency for higher SOC and lower power charge/discharge. Consequently,

the battery use in this case must balance the power delivered with the efficiency and

the system’s marginal cost of generation. For this purpose, the battery is used at

lower power levels, when compared to the ideal model with constant efficiency, to

operate at higher efficiency. This change in scheduling can be observed in more time

steps used for charge and discharge. Greater use of the non-ideal battery allows the

objective value of this test case to be the same as that obtained for the ideal battery,

even though the battery has a varying efficiency.
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(a) Case NLP: charging power vs. time (b) Case NLP: discharging power vs. time

(c) Case LP–Ideal: charging power vs.
time

(d) Case LP–Ideal: discharging power vs.
time

Figure 2.6: Scheduling of the battery charge and discharge processes for (a)-(b)
Case NLP, and (c)-(d) Case LP–Ideal. The dotted line denotes the maximum
power as a function of the 𝑆𝑂𝐶 based on Model 1. The red areas indicate infeasible
operation.

Case MILP- Mixed-integer linear programming model

With the aim of comparing the proposed convex model with one that captures the

non convexity nature of the battery characteristic curves, a mixed-integer program-

ming model (MILP) has been used to represent the non convex piecewise lineariza-

tion of the curve through the triangle method [93]. The charging and discharging

curves have been each represented with 15 sampling points, taking a base of 5 points

for the SOC- and 3 for the 𝑝out/cha-axis. The higher number of points in the SOC-

axis allows a better representation of the power limits as a function of the stored

energy.

The results of the MILP model are presented in Fig. 2.7(c) and Fig. 2.7(d). This

case employs the battery in two charging and discharging cycle with greater inten-

sity, shorter time of use and higher requested power. The objective value resultant
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of the MILP model is the closest one, albeit by a small margin, to that provided by

the complete non-convex formulation (NLP). Nonetheless, its computational cost is

considerably higher than that of the proposed model, correspondent to the expo-

nential increase of its solution time in relation to the number of binary variables.

This makes it unsuitable for real life applications where the amount of batteries and

size of the time horizon of interest is considerably larger.

(a) Case LP–Approx: charging power vs.
time

(b) Case LP–Approx: discharging power
vs. time

(c) Case MILP: charging power vs. time (d) Case MILP: discharging power vs. time

Figure 2.7: Scheduling of the battery charge and discharge processes for (a)-(b)
Case LP–Approx, and (c)-(d) Case MILP. The dotted line denotes the maximum
power as a function of the 𝑆𝑂𝐶 based on Model 1. The red areas indicate infeasible
operation.

2.5.2 Reliability Model Assessment

The schedule of an ideal battery model for power charging and discharging is possible

in unfeasible regions of battery operation. Therefore, it is expected that there will

be situations in which the battery cannot provide the power/energy required by the

schedule. To calculate this mismatch, we introduce a reliability metric obtained as
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follows:

1. For the time steps in which 𝑝cha
𝑡 or 𝑝dis

𝑡 consider values outside of the regions

defined by (2.21)–(2.22), we set their values to be equal to the maximum power

attainable for the given 𝑆𝑂𝐶.

2. The realized (corrected) charging and discharging schedule for the battery is

used for updating new energy levels, 𝑒𝑟𝑒𝑎𝑙𝑡 , based on (2.18c).

3. The energy imbalance/deviation is then calculated as the sum of the differences

between the scheduled and the realized energy levels, as follows:

Imbalance =
∑︁

𝑡

(︀
𝑒real
𝑡 − 𝑒𝑡

)︀
(2.25)

Fig. 2.8 presents the scheduled 𝑆𝑂𝐶 for an ideal battery and the realized levels

resulting from this analysis. It can be observed that there exists not only a dis-

crepancy between the scheduled and the realized values, but the battery would also

reach negative energy levels, i.e., selling more energy than the available one. The

energy deviation calculated by (2.25) accounts for 12.2% of the scheduled energy

to be stored in the battery, resulting not only in a profit detriment for the owner

but also on an overestimation of the system reliability that leads to a false sense of

flexibility.

2.6 Test Case 2: Battery Modeling Impact on Stochas-

tic Operation

A modified IEEE 33-bus system is used to test different aspects of the distribu-

tion system operation under uncertainty [100]. The formulated unit commitment

problem is presented as a two-stage stochastic optimization model with solar gener-

ation and a battery system. For brevity, the detailed model formulation is given in

Appendix B.

The radial distribution system, represented in Fig. 2.9, operates at 12.66 kV,

with an aggregated peak demand of 4.37 MVA. The system counts with a connection
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Figure 2.8: Analysis of deviations and unfeasible scheduling for an ideal battery

to the main transmission grid at node 1, two fuel-based generators at nodes 22 and

33, and a photovoltaic system of 1.5 MW at node 18. The capacity of the generators

1 and 2 are respectively 1.5 and 3 MW, and their marginal cost of generation Φfuel
𝑔

is 150 and 120 e/MWh, respectively. A lithium-ion energy storage system with a 3

MWh (power rate of 3MW, 15MW at 5C) has been placed at node 18. The network,

generation and demand data, as well as the sampling point of the storage system,

are available in the online appendix [101].

Figure 2.9: 33-bus test system

In order to simplify the analysis, only three scenarios for the stochastic RES

generation will be considered. The scenarios were generated through a forecast

using a seasonal ARIMA model based on surface radiation data corresponding to

the first month of the year 2017 on Desert Rock, Nevada, USA [102]. The ARIMA

method was chosen to produce a more accurate forecast, resulting in a non-smooth
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generation curve for the 24 hours of study (see in Fig. 2.10). The probabilities

associated with scenarios 1, 2, and 3 have been manually set respectively at 25, 50,

and 25%.

Figure 2.10: Total demand per time step and scenario of solar energy generation.

We have tested the proposed electric distribution operation with energy storage

models in four cases described as follows:

• Case 1–D: optimal system’s operation is solved by adopting an ideal energy

storage model (2.18) in a deterministic unit commitment. The RES generation

is taken as the average forecast, i.e., the mean value between the three sce-

narios. The average discharge and charge battery efficiencies are set to 86.8%

and 97.2%, respectively.

• Case 1–S: an ideal energy storage model (2.18), and a stochastic unit com-

mitment model (Model 10) are employed.

• Case 2–D: the solution is based on the proposed non-ideal energy storage model

(Model 2) while using the deterministic unit commitment version for optimal op-

eration model of the distribution grid.

• Case 2–S: the system is optimized with the developed a non-ideal energy storage

(Model 2), and a stochastic unit commitment model (Model 10).
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Table 2.2: Results summary for computational test cases.
Case NLP Case LP–Ideal Case LP–Approx Case MILP

Battery model Ideal Non-ideal
Type Deterministic Stochastic Deterministic Stochastic
Total costs [e] 7 909.5 7 954.4 7 906.2 7 952.6
Computational time [s] 141.6 501.8 119.7 733.2
Total imports [MWh] 19.0 16.6 19.0 16.7
Total export [MWh] 0.0 0.0 0.0 0.0
Total realized up-reserve (𝜔1) [MWh] – 0.64 – 0.44
Total realized up-reserve (𝜔2) [MWh] – 3.0 – 3.0
Total realized up-reserve (𝜔3) [MWh] – 3.1 – 3.1
Total realized down-reserve (𝜔1) [MWh] – 0.5 – 0.4
Total realized down-reserve (𝜔2) [MWh] – 0.0 – 0.1
Total realized down-reserve (𝜔3) [MWh] – 0.0 – 0.1

2.6.1 Scheduling results

The results summary for the different test cases is presented in Table 2.2. As seen

in the table, the total costs remained almost the same for all the cases. However, it

is important to note that there is also a reduction in cost by using a detailed battery

model instead of the ideal one; explained by the use of the battery in regions of

higher efficiency.
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Model 2 Linear Li-ion battery model
Variables:
𝑒𝑡, 𝑆𝑂𝐶𝑡 battery energy level (absolute and relative values) [Wh,–]
𝑝dis
𝑡 , 𝑝cha

𝑡 discharging and charging power [W]
𝑝out
𝑡 , 𝑝in

𝑡 power outgoing and incoming at the cells [W]
𝑥𝑗𝑡, 𝑦𝑘𝑡 auxiliary variables related to the characterization sets 𝐽 and 𝐾 [–]

Constraints:

𝑒𝑡 = 𝑒𝑡−1 +
(︀
𝑝in
𝑡−1 − 𝑝out

𝑡−1

)︀
∆, ∀𝑡 (2.23a)

𝑝out
𝑡 =

∑︁

𝑗

̂︀𝑃 out
𝑗𝑡 𝑥𝑗𝑡, ∀𝑡 (2.23b)

𝑝dis
𝑡 =

∑︁

𝑗

̂︀𝑃 dis
𝑗𝑡 𝑥𝑗𝑡, ∀𝑡 (2.23c)

𝑝in =
∑︁

𝑘

̂︀𝑃 in
𝑘𝑡𝑦𝑘𝑡, ∀𝑡 (2.23d)

𝑝cha =
∑︁

𝑘

̂︀𝑃 cha
𝑘𝑡 𝑦𝑘𝑡, ∀𝑡 (2.23e)

𝑆𝑂𝐶𝑡 =
∑︁

𝑗

𝑆𝑂𝐶𝑗𝑡𝑥𝑗𝑡 +
∑︁

𝑘

𝑆𝑂𝐶𝑘𝑡𝑦𝑘𝑡, ∀𝑡 (2.23f)

𝑆𝑂𝐶𝑡 = 𝑒𝑡/𝐸, ∀𝑡 (2.23g)
1 =

∑︁

𝑗

𝑥𝑗𝑡, ∀𝑡 (2.23h)

1 =
∑︁

𝑘

𝑦𝑘𝑡, ∀𝑡 (2.23i)

0 ≤ 𝑥𝑗𝑡, ∀𝑗, 𝑡 (2.23j)
0 ≤ 𝑦𝑘𝑡, ∀𝑘, 𝑡. (2.23k)
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Model 3 Network-Constrained Economic Dispatch with EES

Variables:
𝑝𝑔𝑡 generated power by 𝑔 during 𝑡 [W]
𝑓𝑙𝑡 line power flow through 𝑙 on 𝑡 [W]
𝛿𝑛𝑡 voltage phase angle at 𝑛 on 𝑡 [rad]

Objective:

min. ∆ ·
∑︁

𝑔,𝑡

𝐶𝑔𝑝𝑔,𝑡 (2.24)

Constraints:∑︁

𝑙

𝐴𝑛𝑙𝑓𝑙𝑡=𝑃
D
𝑛𝑡−
∑︁

𝑔

Ω𝑔𝑛·𝑝𝑔𝑡−
∑︁

𝑠

Γ𝑠𝑛[𝑝dis
𝑠𝑡 −𝑝cha

𝑠𝑡 ], ∀𝑛, 𝑡 (2.24a)

𝑓𝑙𝑡 = 𝑆𝑏𝑎𝑠𝑒
1

𝑋𝑙

∑︁

𝑛

𝐴𝑛𝑙 · 𝛿𝑛𝑡, ∀𝑙 (2.24b)

𝑃 𝑔 ≤ 𝑝𝑔𝑡 ≤ 𝑃 𝑔, ∀𝑖, 𝑡 (2.24c)
−𝐹 𝑙 ≤ 𝑓𝑙𝑡 ≤ 𝐹 𝑙, ∀𝑙 (2.24d)
𝛿𝑛 ≤ 𝛿𝑛,𝑡 ≤ 𝛿𝑛, ∀𝑛 (2.24e)
𝛿𝑛=𝑛0,𝑡 = 0, ∀𝑡 (2.24f)
𝑒𝑡=1 = 𝑒𝑡=|𝑇 | (2.24g)
Battery model (Model 2): (2.23). (2.24h)
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The purchase of energy from the main grid for the four test cases is displayed

in Fig. 2.11. The solar production is presented normalized to their maximum

value, i.e., its capacity factor. Similarly, energy import prices are represented in

the background. As it can be seen from the figure, the import of energy for the

test cases follows the demand throughout the day. The presence of higher radiation

between 10:00 and 15:00 allows to complement the use of the fuel-based generation,

reducing the need for energy import. The import reduction around the noon hours is

greater for the test cases that considered the probabilistic scenarios, Case LP–Ideal

and Case MILP; given their consideration of the weighted effect from higher RES

generation.

Figure 2.11: Power import per case, in comparison with the normalized solar radi-
ation and energy import price.

Fig. 2.12 presents the energy storage operation for Case MILP. The use of

the storage system for each scenario follows a similar pattern, except around the

noon hours. During this time frame, the use of the storage has a direct relationship

with the amount of RES generation of each scenario; for scenario 1 there is an

intense storage usage, greater than, for instance, scenario 2. Whereas around the

noon hours, the energy storage is discharged at (almost zero) constant power in
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scenario 3. The difference in the storage usage between the scenarios highlights the

importance of pairing RES with energy storage systems since they allow to balance

the power generation from RES sources.

Figure 2.12: Storage usage for Case 2–S. Each trace represents the operation of the
energy storage system for a different stochastic scenario. In the background, average
solar generation.

2.6.2 Operation Reliability

Even though the total cost obtained, the amount of imported energy and employed

reserves are similar through the four test cases, the ideal energy storage model

employed in Case 1–D and Case 1–S does not take into account the variation of

the maximum power that a storage system can charge and discharge as a function

of its state of charge. The use of constant power limits could lead to infeasible

operation of the battery, resulting in situations where the scheduled power falls

outside the feasible region of operation. Fig. 2.13 presents the differences between

the scheduled battery energy level for each scenario and the corrected operation, i.e.,

with the requested power being limited by the control system when the scheduled

storage usage surpasses the technical limits presented in Section 2.3. The energy
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deviation (scheduled minus corrected) for scenarios 1 to 3 was of 78.8, 113.4, and

24.7kWh, respectively representing 3.6%, 6.2%, and 1.0% of the scheduled energy to

be stored with the battery. Such scheduling imbalances could produce violations of

the system constraints and must be covered by the distribution system operator by

purchasing more energy in the real-time market or utilizing the backup generation,

incurring in additional operating expenses. Therefore, it becomes of the utmost

importance not only the accurate modeling of the network and generation technical

limits but also those of the energy storage system that provides additional flexibility

and reserve for supporting reliable operation under uncertain and intermittent RES

generation.

(a) Storage energy level in scenario 1 (b) Storage energy level in scenario 2

(c) Storage energy level in scenario 3

Figure 2.13: Storage energy level for Case 1–S. The solid line represents the sched-
uled level, while the shaded area displays the realized energy level after accounting
for operation infeasibilities, i.e., limiting the power discharge to a function of the
𝑆𝑂𝐶. The red area represents negative realized values.
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2.7 Conclusions

This chapter proposes a detailed model for battery characterization in optimization

problems. The model is built based on a Li-ion battery, where the relationship be-

tween the state of charge, the charging and discharging efficiencies, and the power

limits are described. Based on the battery’s equivalent circuit representation, a

linear reformulation is then proposed based on a convex envelope for all feasible

operation set-points. The energy storage model is convexified providing an accurate

and simple set of linear constraints that models the storage behavior with no com-

promise of the computational time. Although the model is constructed from a Li-ion

battery data, it is general enough to cope with a variety of different technologies.

Two test cases has been presented to evaluate the benefits of employing the pro-

posed model. In the first test case, a deterministic network-constrained economic

dispatch, the performance of the developed model is compared against non-ideal

(NLP), ideal (LP), and mixed-integer linear programming (MILP) models com-

monly used in the power systems literature. The ideal model presents violations of

the technical battery power limits, accounted for a 12% deviation from the sched-

uled battery usage, highlighting the importance of such a detailed model to avoid

wrong estimations of attainable flexibility and risking damaging the storage system.

Even though the NLP and MILP models accurately represent the battery’s per-

formance and feasible operating region, their computational burden is considerably

higher than that of the developed model. In the second test case, the stochastic

unit commitment with renewable generation, energy storage and reserves provision

is modeled. For this test case, the system scheduling, and reserves purchase and de-

ployment is compared for the ideal and the proposed storage models. The scheduling

results shows that there does not exist an increase in operation costs by utilizing the

developed linearized model with a more constrained operation with state-dependent

efficiency. Finally, under the different stochastic scenarios, the battery usage and

its scheduling imbalances increase with renewable generation levels.

Given the increasing need for flexibility and reliability in energy systems, the

proposed linear model allows characterizing the operation and technical limits of
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electric battery systems through a computationally-efficient approach. The intro-

duced battery characterization has been successfully applied in combination with

online state-of-charge and state-of-health estimators, to monitor the battery perfor-

mance and its capacity fading [103]. These systems could provide a continuously

updating version of the battery capacity and performance, allowing to update the

characteristic operation curves for charge and discharge presented in Section 2.4. We

advocate, then, for the use of more detailed battery models like the one proposed

in this chapter for consideration in existing power systems operation and planning

problems that involve electric energy storage devices.
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Chapter 3

A Heat Market for Interconnected

Multi-energy Microgrids

Thermal networks, part of heat-and-power multi-energy microgrids, may face ca-

pacity issues, generation and distribution ones, either due to the increase in the

requested demand or capacity underused, which is sized for peak hours. Under-

capacity issues may be addressed with generation and pipeline capacity expansion,

resulting in considerable capital costs and extra maintenance costs. In the case of

over-capacity, better usage of the existing assets may bring further revenues and

increase the multi-energy microgrid’s overall energy efficiency. In the electricity sec-

tor, it is being considered the interconnection of microgrids via the distribution sys-

tem network, since microgrids can operate in both islanded and network-connected

modes. In this chapter, in a similar fashion, we propose the interconnection of ad-

jacent thermal networks enabling direct heat trading among them to increase the

micro-grids’ supply flexibility, help meeting demand peaks, and reduce operational

costs. Examples of integrated heat-and-power microgrids that could benefit from

thermal interconnections are industrial parks, university campuses, hospitals, and

even residential complexes with a shared heat generator.

This chapter presents a market model for the optimal heat transfer between

thermally interconnected heat-and-power microgrids. The resulting model is a con-

vex quadratic programming model that enables the derivation of heat transfer prices

that guarantee a competitive equilibrium. Heat transfer between microgrids resulted
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in thermal energy price reductions of about 2.4% for the presented case study. We

performed numerical tests to exhibit the impact of connection topology, thermal

power transfer capacity, and interconnection efficiency on transferred energy and

prices.

The contents of this chapter are partially based on a paper submitted to the

journal Energy Conversion and Management.

This chapter is organized as follows. Section 3.2 introduces the thermal coordi-

nation market, that models the operation of each integrated microgrid and the heat

transfer between them as a convex quadratic optimization model. In Section 3.3,

we derive the heat transfer prices and analytically prove that they establish a com-

petitive equilibrium for the coordination market. The modeling of the coordination

market as an equivalent decentralized optimization problem is presented in Section

3.4. Lastly, in Section 3.5, we realize the computational tests and sensitivity anal-

ysis that highlight the impact on the transferred quantities and their prices by the

difference in area prices, transfer capacity, and efficiency, as well as interconnection

topology.

Nomenclature

The mathematical symbols used in this chapter are described in the table below:

Indexes

𝑎 Integrated heat-and-powers areas (microgrids)

𝑏 ∈ 𝒯𝑎 Areas with direct thermal connection to 𝑎

Parameters

𝐶
(·)
(·),𝑎 Area generation cost coefficients [–]

𝐾
(·)
𝑎,𝑙 Area coefficients for generation operation boundaries 𝑙 [–]

𝐻D
𝑎 Area heat demand [MWh]

𝐻
tr
𝑎𝑏 Heat transfer capacity between areas 𝑎 and 𝑏 [MWh]

𝑃D
𝑎 Area electricity demand [MWh]

𝑃 𝑎 Area electricity exchange capacity with the external grid [MWh]
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𝜂tr
𝑎𝑏 Transfer efficiency of the pipeline between areas 𝑎 and 𝑏 [–]

𝜋
imp/exp
𝑎 Area electricity import/export price [e/MWh]

Variables

𝑐𝑎 Area generation costs [e/MWh]

𝑐exch
𝑎 Area electricity exchange costs with external grid [e/MWh]

ℎ
(𝑎)
𝑎𝑏 Area 𝑎’s local variable of the heat transferred from 𝑎 to 𝑏 [MWh]

ℎ𝑎 Area heat generation [MWh]

𝑝𝑎 Area electricity generation [MWh]

𝑝
imp/exp
𝑎 Area imported/exported electric energy [MWh]

𝛾𝑎 Area marginal heat cost [e/MWh]

𝛾eff
𝑎 Perceived export price at area 𝑏 after the interconnection losses has been

considered [e/MWh]

𝜅𝑎 Marginal cost savings that would be derived from increasing the export

capacity for the interconnection 𝑎–𝑏 [e/MWh]

𝜆𝑎 Area marginal electricity cost [e/MWh]

𝜇𝑎𝑙 Area marginal generation cost increment of area a for reaching the gen-

eration operational boundary 𝑙 [e/MWh]

𝜑𝑎𝑏 Marginal costs savings incurred by increasing the electricity import ca-

pacity for area 𝑎 [e/MWh]

𝜒𝑎𝑏 Marginal heat export cost from area 𝑎 to area 𝑏 [e/MWh]

𝜓𝑎𝑏 Marginal costs savings incurred by increasing the electricity export ca-

pacity for area 𝑎 [e/MWh]

3.1 Introduction

Heat-and-power microgrids1, i.e., systems with local generation that are connected

to external networks and can operate either in a network-connected or islanded

modes, are often present in urban areas independently of whether a district heating

system is present or not; this is the case of hospitals, university campuses, shopping
1For simplicity and to improve readability, we will use the terms microgrid and area inter-

changeably for the remainder of the chapter.
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malls, sports centers, or even residential areas with shared heating system, includ-

ing building blocks. The design and management of such microgrids could be a

challenging task, having to deal with under- and over-capacity issues while seeking

for flexible operation. The adequacy of operational flexibility and under-capacity in

supply of thermal energy including generation and distribution, may be addressed

with a set of possible solutions, such as supply temperature increase, pipeline ex-

pansion, additional generation capacity installation, and via more modern solutions

like thermal storage deployment [104]. These measures, mainly design ones, could

result in generation, distribution, or storage capacity redundancy or under-use, with

the microgrid units being used at rated capacity for low period of time.

The implementation of a heat market between microgrids could reduce opera-

tional costs by diversifying revenue streams and increase generation efficiency with

the an operation of the microgrid units closer to their nominal value [105]. Thus,

leading to enhanced flexibility and reduction of primary energy consumption, helping

to achieve emission reduction goals. Heat transfer between areas would be especially

beneficial in cases when the demand peaks of each microgrid are not simultaneous, or

when one of the areas possesses either underused capacity or energy storage to pro-

duce internal load-shifting. These area characteristics would enhance the economic

benefits derived from a heat market without the need of increasing the installed

generation capacities. Furthermore, such market can be used to enhance flexibil-

ity for the fulfillment of electric loads or making profit out of the electric market.

An example of these cases is when the thermal loads are met by energy conversion

units interconnected with the electric grid, e.g., combined heat and power (CHP)

cogenerating heat and electricity or power-to-heat (P2H) units converting electricity

into heat via heat pumps or electric boilers. P2H is becoming more common with

the progressive electrification of the heating systems. The dimensions of connected

microgrids can range from smaller ones such as building blocks provided with shared

heat generation units and their own heat network, to clusters of building blocks or

other kind of buildings, like hotels, shopping malls, hospitals and university cam-

puses that may reach the size of a town district as small DH networks. A general

area configuration representing the previously described heat-and-power microgrids
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is presented in Figure 3.1 with a basic interconnection topology for the heat transfer

between the microgrids.

Figure 3.1: General configuration of heat-and-power areas with heat interconnection.

In the following Section 3.1.1 we describe the main characteristics of a heat trad-

ing system between microgrids. On Section 3.1.2 we discuss the existing approaches

for coordination of energy exchange between multi-energy microgrids.

3.1.1 Heat market implementation

Heat trade between microgrids can be performed by interconnecting areas directly

via pipelines through which heat transfer fluid from one grid flows directly to the

other, or indirectly via heat transfer hubs (HTHs) [106]. In the first case fluid

pressure balance needs to be accurately monitored and controlled so as to enable

safe and effective exchange of heat, leveraging upon the experience of district heating

networks management. In the second case, the HTH is a heat exchanging substation

between two or more areas that brings the exchanging temperature to lower levels

with the use of heat exchangers. In the HTHs, energy exchange is allowed through

the interconnection of the supply and return circuits of the areas [60]. The use of

HTHs suits better the scenario where the networks operate at different temperatures

and unidirectional flow is required. Such a scenario is when one area is fed by a

CHP with pressurized water above 100∘C or just below (2nd and 3rd generation

DH), and the other one works with heat pumps and water at 50–60 ∘C suitable for

renewable energy integration (4th generation DH).

Interconnected heating networks have been studied under the paradigm of energy
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hubs (EHs) and interplant interconnection. A multi-objective optimization model

for the heat and electricity transfer between energy hubs with emissions and cost

reduction was presented by Maroufmashat et al. [107]. This work was expanded

by including the optimal design and planning of interconnected EHs [108]. These

works presented the multi-energy balance for the interconnected microgrid systems,

showing an increase in the microgrids’ operational flexibility and cost reduction by

transferring heat between locations. Ayele et al. developed an extended multi-

carrier multi-site energy hub model. The presented model allows for the calculation

of the electricity and heat flows between the microgrids, while accounting for the

network losses and flow directions derived from hydraulic balances. The heat trans-

fer through interplant integration was studied by Chang et al. [60]. In this work,

a mixed-integer non-linear programming (MINLP) model is introduced to design

a system that would allow the plants’ coordination while minimizing the total an-

nual costs. The proposed MINLP model allowed the design of the heat transfer

mechanisms in a centralized interplant heat transfer hub, which reduces costs when

compared to a direct interplant transfer through long pipelines. A model for the

planning of heat integration between industrial plants is presented in [61]. The

objective of the resultant mixed-integer linear programming (MILP) model is the

minimization of the total operational costs, including the costs of pipeline instal-

lation. The authors presented computational scenarios with industrial plants with

different generation units and energy requirements. It was observed that for low

investment budgets, the preferred solution is the interconnection via above-ground

pipelines with high-pressure steam. For larger budgets, the optimal solution is to

utilize underground pipelines, given their lower heat losses, and with lower steam

pressure. The conducted tests report that the heat integration of industrial plants

would allow at least a 20% reduction of operational costs, pipeline invested included.

Even though the previously referred models allow for the transfer of heat among

locations, along with electricity, and gas, they explore the systems operation but do

not consider the economic interaction between them. This is due to the fact that in

the operational stage the costs’ minimization was performed in a centralized manner

and the payment allocation between the different microgrids (plants or hubs) was
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not analyzed. To the authors’ best knowledge, thermal EHs interconnection with an

analysis of the market structure, i.e., price derivation and price-dependence analysis

on technical aspects, has not been performed. Therefore, the market design for the

heat trade between interconnected multi-energy microgrids represents an interesting

flexibility measure to analyze and gain insights into its economic benefits.

3.1.2 Market coordination

As previously mentioned, a heat market implementation can be economically and

technically advantageous for its participants. Nevertheless, it is needed to find a way

for it to be performed effectively, which will also affect the business model to adopt.

The market coordination could be centralized, where the market operator must have

full knowledge of the participating areas’ technical and economic parameters, and

control, directly or indirectly the decision variables. In this case, the net heat import

payments are collected by the market operator and redistributed to the net heat ex-

porters based on the exchanged energy and its price. A centralized market operation

raises concerns about both the practical implementation and privacy preservation of

its participants. Consequently, there is an increasing interest in the use of decentral-

ized algorithms to represent multi-agent optimization problems [109]. In this way,

the exchanged heat quantity and price is iteratively and independently calculated

by each microgrid to optimize its economic operation based on the offered trading

volumes and prices. This approach is thus characterized by the bilateral agreement

between microgrids for the exchange of heat and does not require a third-party for

the payments settlement. The requirements for decentralized coordination method-

ologies are: i) assurance of convergence to the global optimum, ii) preservation of

private area information, iii) rapid convergence, and iv) recoverability of optimum

transfer quantities and their exchange prices.

The coordination of the electric power system and the district heating system

was modeled in a decentralized manner through a combined heat and power dis-

patch model using Bender’s decomposition [110]. In this work, the operators of the

electric and thermal subsystems optimize their sub-problems and transfer boundary

variables, and operation bounds iteratively until convergence to the optimal solution.
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However, the focus of this work was on the coordination of the electric and heating

subsystems (utilities), rather than that of independent multi-energy microgrids. The

pricing for the energy exchange between electric microgrids was investigated by Lu

et al. [111]. The trading mechanism divides the microgrids into supply and demand

pools, and iteratively verifying the feasibility of the optimal decentralized exchange

quantities based on the bids of the microgrids. Given that in [111] the trading was

performed based on genetic algorithms with binary variables, the methodology does

not guarantee solution optimality and cannot be scaled to larger systems. Cheng

et al. presented a game-theoretical approach for the heat integration of industrial

plants [59]. The optimal interconnection topology, transfer flows, and transfer prices

were derived with a MILP model. This design methodology considered the presence

of thermal-only plants. However, a MILP formulation does not allow the the exact

problem decomposition for decentralized operation. The decentralized coordination

of heat-and-power energy hubs with the electric distribution network was presented

in [58]. The alternating direction method of multipliers (ADMM) was used to elec-

tricity exchange between the EHs and the external distribution network. In the

ADMM, the microgrids iteratively exchange the amount of power that they would

prefer to exchange, i.e., each agent optimizes its operation. If there is a disagreement

between the desired exchange quantities, the exchange is penalized, and every agent

must optimize its operation once again with the new penalty value. A decentralized

direct-current energy exchange network (EEN) composed of microgrids (MGs) was

proposed by Liu et al. [112]. The EEN allows the electricity trade with the alter-

nating direction method of multipliers (ADMM), preserving the private information

of the participating MGs.

The interconnection of heating areas requires the design of a heat transfer mar-

ket. An efficient market operation guarantees the optimal heat exchange between

areas and its adequate pricing. Thus, ensuring that the market outcomes are ben-

eficial for all of its participants. Performing a market analysis would allow network

owners to understand the economic benefits of interconnecting with neighboring net-

works and through investment studies assess its viability. This chapter studies the

basic structure of a heat market for interconnected thermal networks. We model
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these thermal networks as heat-and-power microgrids where heat and electricity are

locally generated and distributed to serve the demand. The inclusion of electric-

ity generation is due to the high total efficiency of CHP plants (considering both

electric and thermal energy generated), which therefore is utilized to produce about

four-fifths of the thermal energy in current district heating systems [113]. Due to

ambitious decarbonization targets, the interconnection between thermal and electric

energy vectors is indeed expected to increase [51]. Current regulations and technical

challenges related to responsibilities on system stability and security do not allow

the bidirectional electricity transfer between microgrids through the external distri-

bution network. Therefore, we assume that the electricity exchange is not performed

bilaterally among microgrids, but between the microgrids and the external distri-

bution network that acts as an infinite capacity source/sink of electric energy. The

contributions of this chapter are fourfold:

i) Design of a convex heat market between heat-and-power microgrids. Such a

market, to the authors’ best knowledge, is yet to be analyzed in the literature

that mainly focuses on electricity and gas interconnections.

ii) Sensitivity analysis of the key drivers of heat transfer quantities and prices:

transfer capacity, transfer efficiency, and interconnection topology.

iii) Leveraging the properties of the convex coordination market, we derive its

heat transfer prices, proving that they guarantee a competitive equilibrium,

where each participant maximizes its profits and has no incentive to deviate

from the market outcome.

iv) Presentation of an equivalent decentralized coordination model for the heat

transfer between microgrids that preserves operation independence and pri-

vacy. Therefore, increasing the implementation applicability of the proposed

market in real-world scenarios.
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3.2 Heat market formulation

The purpose of the coordination market is the calculation of the optimal heat transfer

between integrated multi-energy heat-and-power microgrids. This section presents

the units performance and operation region characterization, the heat transfer be-

tween areas, and the model for the electricity exchange with the external gird. The

full model is summarized at the end of the section.

3.2.1 Assumptions

The following assumptions were made in order to simplify the presented analysis:

i) Only thermal interconnection: the considered areas can only transfer ther-

mal energy between them through short-distance, i.e., hundreds of meters,

heating pipelines.

ii) Aggregated generation and demand: each area is modeled as if a single

unit and user represent respectively all the internal generation and demand.

Therefore, no network constraints in neither the thermal nor electric systems

are considered. The generation and demand clustering is done to simplify the

analysis and reduce the model size, considering that the aim is to assess the

proposed market operation.

iii) Operation scheduling: short-term phenomena such as thermal inertia and

stochastic demand are not considered.

iv) Single time-step: the heat market operation is analyzed considering indi-

vidual time steps in the scheduling regime, e.g., one hour. Therefore, ramp

constraints, as well as energy storage units, are not considered.

Given that this work describes the basic operation of a market for the coordination of

heat transfer between microgrids, the underlying area characterization is simple but

comprehensive enough to include the relevant features of integrated heat and power

microgrids. The considered assumptions could be easily adjusted to represent a

more detailed operation of the interconnected areas, without affecting the economic

and technical principles discussed in this work.
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3.2.2 Operational costs

In a multi-area dispatch, the operational costs can be classified as: i) generation

costs, and ii) electricity exchange costs.

Generation costs

The generation costs for an area that can produce both electricity and heat can be

modelled as a second-degree polynomial of its thermal, ℎ𝑎, and electric, 𝑝𝑎, output:

𝑐𝑎 = 𝐶p
2,𝑎𝑝

2
𝑎 + 𝐶p

1,𝑎𝑝𝑎 + 𝐶h
2,𝑎ℎ

2
𝑎 + 𝐶h

1,𝑎ℎ𝑎 + 𝐶hp
𝑎 ℎ𝑎𝑝𝑎 + 𝐶0,𝑎, ∀𝑎 (3.1)

where 𝐶p
2,𝑎, 𝐶

p
1,𝑎, 𝐶

h
2,𝑎, 𝐶

h
1,𝑎, 𝐶

hp
𝑎 , and 𝐶0,𝑎 are cost coefficients. These coefficients can

be fitted based on the electric and thermal energy conversion efficiencies of the

generation units throughout the operating region. A thermal-only microgrid can

be modelled by setting to zero the value of the appropriate coefficients, related to

electric generation.

Electricity exchange costs

The cost of electricity exchange with the external grid can be calculated based on

the imported, 𝑝imp
𝑎 , or exported, 𝑝exp

𝑎 , energy:

𝑐exch
𝑎 = 𝜋imp

𝑎 𝑝imp
𝑎 − 𝜋exp

𝑎 𝑝exp
𝑎 , ∀𝑎 (3.2)

where 𝜋imp
𝑎 and 𝜋exp

𝑎 are the given values for the electricity import and export prices

for each area.

3.2.3 Area generation characterization

The area representing the multi-energy microgrid, capable to generate heat and

power is modelled as a single cogeneration unit. In this manner, several electric-

only, heat-only and cogeneration units are clustered as a single generation unit.

The relationship between the generated heat and power in each area can be

described as a convex operation region, Figure 3.2. In this way it was possible
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to be as much general as possible, aiming at representing any kind of heat and

power generation unit, consistently with the high level scope of this chapter, while

for specific studies ad hoc cost functions could be identified and implemented. This

region can be characterized as the area between the inequalities describing the edges

by [57]:

𝑝𝑎𝐾
p
𝑎𝑙 + ℎ𝑎𝐾

h
𝑎𝑙 ≤ 𝐾0

𝑎𝑙, ∀𝑎, 𝑙. (3.3)

The signs of the coefficients 𝐾p
𝑎𝑙, 𝐾

h
𝑎𝑙, and 𝐾0

𝑎𝑙 define the type of bound 𝑙 of the

Figure 3.2: General convex operation region for a cogeneration area. The sign of
the boundary parameters depend on the type of boundaries, 1–6.

polygon. Convex polygons represent units with two independent variables for its

electricity and heat generation, e.g., fuel and the valve opening in a extraction con-

densing steam turbine, as well as units with one independent variable coupled with

thermal energy storage. Units with one independent variable, (fuel) are represented

by two inequalities, a combination of lines ¬ and °, that represent a line segment,

e.g., back-pressure turbines. Note that heat-only areas can be described with (3.3),

by fixing the appropriate coefficients to zero, resulting in a horizontal line shifted

to zero of value of the 𝑦 axes. Electricity-only areas are analogously defined by a

vertical line set at zero on the 𝑥 axes.
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3.2.4 Heat transfer between areas

We consider an energy-based steady-state operation, as per assumption, to coordi-

nate the heat transfer between areas, i.e., temperature dynamics and time delays

along the pipeline are neglected. The heat carrier, namely water, mass flow and

temperature at the connection pipelines are assumed to be such that could ensure

the transfer of the scheduled amount of thermal energy. The heat flow between two

areas can be mathematically modelled either with 1) a heat transfer as a centralized

value, or 2) through a heat transfer with local copies. Both approaches and their

mathematical properties will be examined in this subsection.

Heat transfer as a centralized value

The thermal energy flow between two areas, 1 and 2 in Figure 3.3(a), can be de-

scribed in terms of the heat sent/received at the ends of the pipeline and its transfer

efficiency 𝜂tr
12. The relationship between the heat sent from area 1, and that received

at area 2 from area 1 can be described by:

ℎsent
12 = ℎ12 (3.4a)

ℎreceived
21 = 𝜂tr

12ℎ12 = 𝜂tr
12ℎ

sent
12 . (3.4b)

For the two-area case, expressions (3.4) allow us to include the heat export and

import in the areas’ heat balances as:

𝐻D
1 = ℎ1 + 𝜂tr

21ℎ21−ℎ12, (3.5a)

𝐻D
2 = ℎ2 + 𝜂tr

12ℎ12−ℎ21, (3.5b)

ℎ12 · ℎ21 = 0, (3.5c)

ℎ12, ℎ21 ≥ 0, (3.5d)

where 𝐻D
𝑎 and ℎ𝑎 are respectively the total areal heat demand and generation. The

quantities ℎ12 and ℎ21 represent the heat transferred from area 1 to area 2 and in

the reversed direction. Expression (3.5c) ensures that only one area is exporting

heat at a time, while (3.5d) sets the export quantities as non-negative.

75



3.2. Heat market formulation Chapter 3. Microgrids Heat Exchange Market

The set of expressions (3.5) allows to completely model the heat transfer between

two areas, but (3.5c) makes this a non-convex model. Expression (3.5c) can be

omitted, since there is an economic objective of minimizing operational costs and

the transfer efficiency 𝜂tr
12=𝜂

tr
21<1.

Having the variables ℎ12 and ℎ21 “shared” between the areas, i.e., they are in-

cluded in the heat balances of both areas, is not suitable for economic operation,

since there is not a straightforward way of decomposing the operation problem be-

tween the areas in such a manner that each area solves a model with variables and

parameters that are not present in its neighbors energy balances. Therefore, besides

disallowing independent area operation, the centralized heat transfer scheme (3.5)

requires the sharing of operational and technical information which could lead to

strategic bidding by the other areas.

To overcome this issue, we model the heat transfer between areas in terms of

local copies of the transfer variables, i.e. each area has a local variable representing

the values of the shared variables involved in the transfer.

Heat transfer with local copies

An alternative approach for the transfer of heat between two areas is to create local

copies of the transfer variables, e.g., the variable ℎ12 will be represented as a local

copy ℎ(1)12 in area 1 and another one ℎ(2)12 in area 2; as shown in Figure 3.3(b). The

use of local copies allows us to rewrite the thermal energy balances(3.5) as:

𝐻D
1 = ℎ1 + 𝜂tr

12ℎ
(1)
21 −ℎ(1)12 , (3.6a)

𝐻D
2 = ℎ2 + 𝜂tr

21ℎ
(2)
12 −ℎ(2)21 , (3.6b)

ℎ
(1)
12 = ℎ

(2)
12 , (3.6c)

ℎ
(1)
21 = ℎ

(2)
21 , (3.6d)

ℎ
(1)
12 , ℎ

(1)
21 , ℎ

(2)
12 , ℎ

(2)
21 ≥ 0. (3.6e)

Expressions (3.6c) and (3.6d) ensure the agreement (coordination) on the exchanged

heat by the areas. In a decentralized framework, i.e., each area solves its own

operation model, expressions (3.6c) and (3.6d) are verified between iterations. In
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Section 3.4 we present the decentralized coordination of the heat market.

For transfer efficiencies 𝜂tr
12<𝜂

tr
21=1 this approach leads to a unique and convex

solution of the heat transfer problem, since the transfer of heat in two directions

at the same time would result in higher costs due to the apparent wasted heat.

Therefore, at the optimal solution: ℎ(1)12 · ℎ(2)12 = 0 and ℎ(1)21 · ℎ(2)21 = 0.

(a) Global transfer value (b) Local area copies

Figure 3.3: Modelling of heat transfer values.

3.2.5 Energy balances

The electric energy balance is characterized by meeting the electric load 𝑃D
𝑎 , with the

area generation 𝑝𝑎 and the use of the energy exchange with the external distribution

network through electricity import 𝑝imp
𝑎 and export 𝑝exp

𝑎 :

𝑃D
𝑎 = 𝑝𝑎 + 𝑝imp

𝑎 − 𝑝exp
𝑎 , ∀𝑎. (3.7a)

The thermal load balancing of area 𝑎 is achieved through the use of the internal

heat generation ℎ𝑎 and the heat transfer with neighboring areas 𝑏 ∈ 𝒯𝑎. 𝒯𝑎 is the

set containing the areas connected to 𝑎. The generalization of the thermal energy

balance for two areas presented in Section 3.2.4 can be written as:

𝐻D
𝑎 = ℎ𝑎 +

∑︁

𝑏∈𝒯𝑎

(︁
𝜂tr
𝑏𝑎ℎ

(𝑎)
𝑏𝑎 −ℎ

(𝑎)
𝑎𝑏

)︁
, ∀𝑎. (3.7b)

3.2.6 Electricity exchange limits

There exists a limit on the maximum amount of electricity that can be imported

(exported) to (from) the external grid. This limit is set by the transformer capacity

at the main substation, i.e., point of common connection with the external grid.
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The area bounds for electricity import 𝑝imp
𝑎 and export 𝑝exp

𝑎 are set by

0 ≤ 𝑝imp
𝑎 ≤ 𝑃𝑎, ∀𝑎 (3.8a)

0 ≤ 𝑝exp
𝑎 ≤ 𝑃𝑎, ∀𝑎. (3.8b)

3.2.7 Global system optimization

Model 4 summarizes the global model for the optimal heat exchange between multi-

energy microgrids. The optimal operation of a combined heat-and-power microgrid

is performed by minimizing its operational costs composed of the generation costs,

and the electricity import and export costs through the main substation to the ex-

ternal electric system (3.9a), while satisfying the thermal and electric demand. The

generation costs (3.9b) are given as a quadratic polynomial of the heat and power

generation in the areas. Areal electric and thermal energy balances are respectively

set in (3.9c) and (3.9d). In the heat balance (3.9d) 𝑏 ∈ 𝒯𝑎 are the areas thermally

connected to 𝑎. The feasible operation region for the equivalent combined heat and

power unit is defined by a convex polygon (3.9e).

Heat transfer continuity is ensured in (3.9f), whereas heat transfer limits are set

by (3.9g). Please note that we do not bound the variable ℎ(𝑏)𝑎𝑏 , since through (3.9f)

Model 4 Area Coordination Dispatch [QP]

min.
∑︁

𝑎

(︀
𝑐𝑎 + 𝜋imp

𝑎 𝑝imp
𝑎 − 𝜋exp

𝑎 𝑝exp
𝑎

)︀
(3.9a)

subject to

𝑐𝑎 = 𝐶p
2,𝑎𝑝

2
𝑎 + 𝐶p

1,𝑎𝑝𝑎𝐶
h
2,𝑎ℎ

2
𝑎 + 𝐶h

1,𝑎ℎ𝑎

+𝐶hpℎ𝑎𝑝𝑎 + 𝐶0,𝑎, ∀𝑎 (3.9b)
(𝜆𝑎): 𝑃D

𝑎 = 𝑝𝑎 + 𝑝imp
𝑎 − 𝑝exp

𝑎 , ∀𝑎 (3.9c)

(𝛾𝑎): 𝐻D
𝑎 = ℎ𝑎 +

∑︁

𝑏∈𝒯𝑎

(︁
𝜂tr
𝑏𝑎ℎ

(𝑎)
𝑏𝑎 −ℎ

(𝑎)
𝑎𝑏

)︁
, ∀𝑎 (3.9d)

(𝜇𝑎𝑙) : 𝑝𝑎𝐾
p
𝑎𝑙 + ℎ𝑎𝐾

h
𝑎𝑙 ≤ 𝐾0

𝑎𝑙, ∀𝑎 (3.9e)
(𝜒𝑎𝑏): ℎ

(𝑎)
𝑎𝑏 = ℎ

(𝑏)
𝑎𝑏 , ∀𝑎, 𝑏∈𝒯𝑎 (3.9f)

(𝜅𝑎): 0 ≤ ℎ
(𝑎)
𝑎𝑏 ≤ 𝐻

tr
𝑎𝑏, ∀𝑎 (3.9g)

(𝜓𝑎): 0 ≤ 𝑝imp
𝑎 ≤ 𝑃𝑎, ∀𝑎 (3.9h)

(𝜑𝑎): 0 ≤ 𝑝exp
𝑎 ≤ 𝑃𝑎, ∀𝑎. (3.9i)

78



Chapter 3. Microgrids Heat Exchange Market 3.2. Heat market formulation

it will implicitly be bounded by (3.9g). The explicit addition of transfer limits for

ℎ
(𝑏)
𝑎𝑏 leads to a redundancy of constraints, which translates into a degenerated dual

problem. Thus, it would be possible that the dual variables take different values,

through the use of different solving algorithms. Given that we derive the market

prices from the values of Model 4’s dual variables, dual degeneracy could lead to

multiple prices for each area employing a different solution algorithm. Degeneracy

in the dual problem is thus a property not desirable for the economic coordination

of microgrids, and is easily avoidable by not imposing bounds on ℎ
(𝑏)
𝑎𝑏 . Finally, the

limits for electricity exchange with the external grid are set by (3.9h) and (3.9i).

3.2.8 Flexibility gains from thermal interconnection

The thermal interconnection between adjacent microgrids reduces operational costs

by reducing the thermal generation costs of the heat importing area, and increasing

the exporter’s revenue. Additional to its financial benefits, the thermal intercon-

nection between microgrids increases their thermal and electric flexibility. Figure

3.4 displays in green the feasible operating region of an illustrative area genera-

tion represented as an extraction condensing steam turbine. Prior to its thermal

interconnection with another area, the optimal electricity and heat generation are

displayed as a circle and its electric flexibility as a blue line, i.e., how much its elec-

tric power output can change. Without interconnection the area cannot modify its

heat generation, since it must match the local demand and cannot import or export

heat. However, if so needed, the electricity generation could be increased to match

an increase on the electric demand up to the limit defined by the blue line.

Once there exists a thermal interconnection of capacity 𝐻tr
𝑎𝑏 with another area,

the heat generation must not exactly match the local demand, gaining the orange

line as a new feasible operating range. In a similar manner, since the generated heat

can be adjusted by managing the imported/exported heat, the feasible electricity

output can also be altered within the new feasible operating region, indicated by

the purple line. For this particular case, the increase in electric flexibility only

comes from reducing the thermal output by importing heat, since exporting heat and

consequently increasing the thermal generation would reduce the feasible electricity
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generation. Therefore changes in the electric demand would be met with either a

change in imported/exported electricity from the external grid or with increasing

the heat import and adjusting the electricity generation accordingly.

Electricity

Optimal dispatch
Without interconnetion:

With interconnetion capacity       :
Gained electric flexibility 

Gained thermal flexibility 

Electric flexibility 

H
ea

t 

Figure 3.4: Flexibility gains derived from a thermal interconnection of capacity 𝐻tr
𝑎𝑏

3.3 Pricing heat transfer between areas

Duality theory can be used to derive the electricity and heat prices in an integrated

energy system [57]. The dual multipliers of the expressions in Model 4 are presented

next to them in Greek alphabet, e.g., 𝜆𝑎 for expression (3.9c) and 𝛾𝑎 for expression

(3.9d). The dual multipliers represent the changes in the objective function derived

from the modification of the constant terms in the expressions [114]. Therefore, the

meaning of the dual variables can be understood as follows: i) 𝜆𝑎 and 𝛾𝑎 are respec-

tively the marginal electricity and heating costs at area 𝑎; ii) 𝜒𝑎𝑏 is the marginal

heat export cost from area 𝑎 to area 𝑏; iii) 𝜇𝑎𝑙 is the marginal generation cost incre-

ment of area 𝑎 for reaching the generation operational boundary 𝑙; iv) 𝜅𝑎𝑏 reflects

the marginal cost savings that would be derived from increasing the export capacity

for the interconnection 𝑎−𝑏; and finally v) 𝜓𝑎 and 𝜑𝑎, analogously to 𝜅𝑎𝑏, represent

the marginal costs savings incurred by increasing the electricity import and export

capacity for area 𝑎. The value of the dual values at the optimum operation point,

i.e., at its minimum cost, can be calculated by solving Model 4’s dual problem.
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Alternatively, based on Model 4’s optimality conditions we can derive analytical ex-

pressions for the dual variables that relate them to our scheduling (primal) variables

(𝑝𝑎, ℎ𝑎, and ℎtr
𝑎𝑏). This second approach is the one used in this work, since it allows

us to infer the physical meaning behind the derived analytical expressions of the

energy prices.

3.3.1 Optimality conditions

To obtain the expressions relating the primal and dual variables of Model 4, we can

represent the optimization Model 4 as its equivalent Lagrangian function ℒ that

combines its objective function with its constraints. The Lagrangian function of the

coordination market 3.9 is given by:

ℒ=
∑︁

𝑎

[︃
𝑐𝑎+𝜋

imp𝑝imp
𝑎 − 𝜋exp𝑝exp

𝑎

+𝜆𝑎
(︀
𝑃D
𝑎 − 𝑝𝑎 − 𝑝imp

𝑎 + 𝑝exp
𝑎

)︀

+𝛾𝑎

(︃
𝐻D

𝑎 − ℎ𝑎 −
∑︁

𝑏∈𝒯𝑎

(︁
𝜂tr
𝑏𝑎ℎ

(𝑎)
𝑏𝑎 −ℎ

(𝑎)
𝑎𝑏

)︁)︃

+
∑︁

𝑏∈𝒯𝑎
𝜒𝑎𝑏

(︁
ℎ
(𝑏)
𝑎𝑏 − ℎ

(𝑎)
𝑎𝑏

)︁

+
∑︁

𝑙

𝜇𝑎𝑙

(︀
𝑝𝑎𝐾

p
𝑎𝑙 + ℎ𝑎𝐾

h
𝑎𝑙 −𝐾0

𝑎𝑙

)︀

+𝜅𝑎𝑏

(︁
ℎ
(𝑎)
𝑎𝑏 −𝐻

tr
𝑎𝑏

)︁
+𝜓𝑎

(︀
𝑝imp
𝑎 − 𝑃𝑎

)︀
+𝜑𝑎

(︀
𝑝exp
𝑎 − 𝑃𝑎

)︀
]︃
. (3.10)

The Karush-Kuhn-Tucker (KKT) conditions for the optimality of the Lagrangian

function (3.10) are: primal feasibility, dual feasibility, complementary slackness

(3.11), and stationarity (3.12). These set of conditions can be used to derive the

analytical expressions that relate the operational and dual variables. The derived

analytical expressions provide an understanding of the technical variables influence

on the price formation.
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Primal feasibility

The heat market model (3.9) is known as the primal optimization model. At the

optimum, the constraints of the area coordination model, (3.9b)–(3.9g), must be

satisfied. In other words, the optimal operation point must be feasible.

Dual feasibility

The dual variables associated with the inequalities must be greater or equal to zero,

i.e., 𝜇𝑎𝑙, 𝜅𝑎𝑏, 𝜓𝑎, 𝜑𝑎 ≥ 0.

Complementary slackness

The product of the dual variables with their respective inequalities in standard form

must be equal to zero:

0 = 𝜇𝑎𝑙

(︀
𝑝𝑎𝐾

p
𝑎𝑙 + ℎ𝑎𝐾

h
𝑎𝑙 −𝐾0

𝑎𝑙

)︀
, ∀𝑎, 𝑙 (3.11a)

0 = 𝜅𝑎𝑏

(︁
ℎ
(𝑎)
𝑎𝑏 −𝐻

tr
𝑎𝑏

)︁
, ∀𝑎 (3.11b)

0 = 𝜓𝑎

(︀
𝑝imp
𝑎 − 𝑃𝑎

)︀
, ∀𝑎 (3.11c)

0 = 𝜑𝑎

(︀
𝑝exp
𝑎 − 𝑃𝑎

)︀
, ∀𝑎. (3.11d)

The value of the dual variables associated with the inequalities values could become

non-zero only when their respective inequalities are binding. Therefore, 𝜇𝑎𝑙≥0 if

area 𝑎 is operating at its operational bound 𝑙, i.e., if 𝑝𝑎𝐾p
𝑎𝑙 + ℎ𝑎𝐾

h
𝑎𝑙 = 𝐾0

𝑎𝑙.

Stationarity:

In a convex optimization problem, the optimum is an stationary point of the La-

grangian function ℒ. Therefore, at the optimum the gradient of the Lagrangian

function ℒ (3.10) equals zero.

∇ℒ =
−→
0 . (3.12)
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The gradient ∇ℒ can be split in terms of the primal variables so as to derive them

analytically as:

0=
𝜕ℒ
𝜕𝑝𝑎

= 2𝐶p
2,𝑎𝑝𝑎+𝐶

p
1,𝑎+𝐶

hp
𝑎 ℎ𝑎−𝜆𝑎+

∑︁

𝑙

𝜇𝑎𝑙𝐾
p
𝑎𝑙, ∀𝑎 (3.12a)

0=
𝜕ℒ
𝜕ℎ𝑎

= 2𝐶h
2,𝑎ℎ𝑎+𝐶

h
1,𝑎+𝐶

hp
𝑎 𝑝𝑎−𝛾𝑎+

∑︁

𝑙

𝜇𝑎𝑙𝐾
h
𝑎𝑙, ∀𝑎 (3.12b)

0=
𝜕ℒ
𝜕ℎ

(𝑎)
𝑎𝑏

= 𝛾𝑎 − 𝜒𝑎𝑏 + 𝜅𝑎𝑏, ∀𝑎 (3.12c)

0=
𝜕ℒ
𝜕ℎ

(𝑎)
𝑏𝑎

= 𝜂tr
𝑏𝑎𝛾𝑎 − 𝜒𝑏𝑎, ∀𝑎 (3.12d)

0=
𝜕ℒ𝑎

𝜕𝑝imp
𝑎

= 𝜋imp
𝑎 − 𝜆𝑎 + 𝜓𝑎, ∀𝑎 (3.12e)

0=
𝜕ℒ𝑎

𝜕𝑝exp
𝑎

= −𝜋exp
𝑎 + 𝜆𝑎 + 𝜑𝑎 ∀𝑎. (3.12f)

As an example, the terms 𝜆𝑎 and 𝛾𝑎 respectively represent the marginal generation

cost of the areas with respect to their electricity and heat generation, namely the

extra cost of generating one additional unit of electricity and heat; and their values

are given by

𝜆𝑎 = 2𝐶p
2,𝑎𝑝𝑎 + 𝐶p

1,𝑎 + 𝐶hp
𝑎 ℎ𝑎 +

∑︁

𝑙

𝜇𝑎𝑙𝐾
p
𝑎𝑙, ∀𝑎 (3.13a)

𝛾𝑎 = 2𝐶h
2,𝑎ℎ𝑎 + 𝐶h

1,𝑎 + 𝐶hp
𝑎 𝑝𝑎 +

∑︁

𝑙

𝜇𝑎𝑙𝐾
h
𝑎𝑙, ∀𝑎. (3.13b)

Note how the coupling of heat and power generation is reflected in the marginal gen-

eration costs (3.13a) and (3.13b). The heat generation ℎ𝑎 influences the marginal

electric generation cost in (3.13a) and the electricity generation affects the marginal

heating costs in (3.13b). In an area without cogeneration units, the heat genera-

tion does not affect the marginal electricity cost nor the electricity generation the

marginal heating cost, since 𝐶hp
𝑎 =0.

3.3.2 Heat transfer price

The optimal operation point of Model 4 satisfies the optimality conditions presented

in Section 3.3.1. Therefore, from the KKT stationarity conditions at the optimum
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(3.12), we can now derive the prices 𝜒𝑎𝑏 for the heat transfer as

𝜒𝑎𝑏 = 𝛾𝑎 + 𝜅𝑎𝑏. (3.14)

The heat export price given by expression (3.14) can be understood as follows: in

case of exporting heat without reaching the transfer limits, the export price 𝜒𝑎𝑏 is

equal to the local heat price 𝛾𝑎.2 If the maximum transfer capacity is reached, then

the price is increased by 𝜅𝑎.

Additionally, from the derivative of the Lagrangian by the imported heat ℎ(𝑎)𝑏𝑎

(3.12d), the import price depends on the local heating price of the receiving area

and the interconnection efficiency:

𝜒𝑎𝑏 = 𝜂tr
𝑎𝑏𝛾𝑏 (3.15)

Expression (3.15) indicates that the price paid to area 𝑎 for exporting heat to 𝑏 is

dependent on the local heat price at 𝑏 and the interconnection efficiency between

them. Therefore, if two areas are exporting heat to area 𝑏 and their transfer ef-

ficiency to 𝑏 is equal, they will both be paid at the same price, independently of

their costs curves and transferred quantities. Analogously, if one area has a lower

interconnection efficiency with area 𝑏, it will be paid at a lower price than those

with higher efficiency to compensate for the transfer losses.

3.3.3 Competitive equilibrium

The prices 𝜒𝑎𝑏 obtained in (3.14) can be used to organize the centralized heat transfer

market. The centralized heat transfer market defines a competitive equilibrium if

by setting a heat transfer price 𝜋𝑎𝑏 [69]:

1. The market clears at the optimal values ℎ(𝑎),*𝑎𝑏 = ℎ
(𝑏),*
𝑎𝑏 , ∀𝑎, 𝑏.

2. Each area 𝑎maximizes its profit under an export payment of Πexp
𝑎 =

∑︀
𝑏∈𝒯𝑎 𝜋𝑎𝑏ℎ

(𝑎),*
𝑎𝑏

2The heat consumption prices inside the areas and the export prices are not flat tariffs. These
prices are influenced by the demand levels and transfer quantities as seen in expressions (3.13a)
and (3.13b).
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and import payment of Πimp
𝑎 =

∑︀
𝑏∈𝒯𝑎 𝜋𝑏𝑎ℎ

(𝑎),*
𝑏𝑎 , i.e., the market is incentive-

compatible.

To prove that the use of 𝜋𝑎𝑏 as the heat transfer price leads to a competitive

equilibrium, let us consider the area profit-maximization problem (APMP) given in

Model 5.

Model 5 Area Profit-maximization Problem (APMP) [QP]

max.

Revenue⏞  ⏟  ∑︁

�̸�=𝑎

𝜋𝑎𝑏ℎ
(𝑎)
𝑎𝑏 + 𝜋p

𝑎𝑃
D
𝑎 + 𝜋h

𝑎𝐻
D
𝑎 + 𝜋exp

𝑎 𝑝exp
𝑎

−
(︃
𝑐𝑎+

∑︁

�̸�=𝑎

𝜋𝑏𝑎ℎ
(𝑎)
𝑏𝑎

)︃
+ 𝜋imp

𝑎 𝑝imp
𝑎

⏟  ⏞  
Cost

(3.16a)

subject to

𝑐𝑎 = 𝐶p
2,𝑎𝑝

2
𝑎+𝐶

p
1,𝑎𝑝𝑎+𝐶

h
2,𝑎ℎ

2
𝑎+𝐶

h
1,𝑎ℎ𝑎+𝐶

hpℎ𝑎𝑝𝑎+𝐶0,𝑎, (3.16b)

(𝜆𝑎): 𝑃D
𝑎 = 𝑝𝑎 + 𝑝imp

𝑎 − 𝑝exp
𝑎 , (3.16c)

(𝛾𝑎): 𝐻D
𝑎 = ℎ𝑎 +

∑︁

𝑏∈𝒯𝑎

(︁
𝜂tr
𝑏𝑎ℎ

(𝑎)
𝑏𝑎 −ℎ

(𝑎)
𝑎𝑏

)︁
, (3.16d)

(𝜇𝑎𝑙) : 𝑝𝑎𝐾
p
𝑎𝑙 + ℎ𝑎𝐾

h
𝑎𝑙 ≤ 𝐾0

𝑎𝑙, (3.16e)
(𝜅𝑎): 0 ≤ ℎ

(𝑎)
𝑎𝑏 ≤ 𝐻

tr
𝑎𝑏, ∀𝑏 ∈ 𝒯𝑎 (3.16f)

(𝜓𝑎): 0 ≤ 𝑝imp
𝑎 ≤ 𝑃𝑎, (3.16g)

(𝜑𝑎): 0 ≤ 𝑝exp
𝑎 ≤ 𝑃𝑎. (3.16h)

In the APMP (3.16), it is of no importance for area 𝑎 that its local copy of

ℎ
(𝑎)
𝑎𝑏 matches that of the adjacent areas, i.e., the continuity constraint (3.9f) does

not appear in the APMP. This is because it is the responsibility of the centralized

market operator to guarantee the heat transfer continuity between areas.

Let ℒ𝑎 be the Lagrangian function of the APMP (3.16), then the optimal sta-

tionarity conditions of the APMP are:

0=
𝜕ℒ𝑎

𝜕𝑝𝑎
= −𝜋p

𝑎 + 2𝐶p
2,𝑎𝑝𝑎+𝐶

p
1,𝑎+𝐶

hp
𝑎 ℎ𝑎+

∑︁

𝑙

𝜇𝑎𝑙𝐾
p
𝑎𝑙, (3.17a)

0=
𝜕ℒ𝑎

𝜕ℎ𝑎
= −𝜋h

𝑎 + 2𝐶h
2,𝑎ℎ𝑎+𝐶

h
1,𝑎+𝐶

hp
𝑎 𝑝𝑎+

∑︁

𝑙

𝜇𝑎𝑙𝐾
h
𝑎𝑙, (3.17b)
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0=
𝜕ℒ𝑎

𝜕ℎ
(𝑎)
𝑎𝑏

= −𝜋𝑎𝑏 + 𝛾𝑎 + 𝜅𝑎𝑏, (3.17c)

0=
𝜕ℒ𝑎

𝜕ℎ𝑏𝑎
= 𝜋𝑏𝑎 − 𝜂tr

𝑏𝑎𝛾𝑎, (3.17d)

0=
𝜕ℒ𝑎

𝜕𝑝imp
𝑎

= 𝜋imp
𝑎 − 𝜆𝑎 + 𝜓𝑎, (3.17e)

0=
𝜕ℒ𝑎

𝜕𝑝imp
𝑎

= −𝜋exp
𝑎 + 𝜆𝑎 + 𝜑𝑎. (3.17f)

From (3.17c) and (3.17d), we obtain:

𝜋𝑎𝑏 = 𝛾𝑎 + 𝜅𝑎𝑏, (3.18a)

𝜋𝑏𝑎 = 𝛾𝑎𝜂
tr
𝑏𝑎. (3.18b)

Respectively comparing expressions (3.18) and (3.18b) with (3.12c) and (3.12d), we

obtain that:

𝜋𝑎𝑏 = 𝜒𝑎𝑏, ∀𝑎, 𝑏 ∈ 𝒯𝑎. (3.19)

From (3.19), if ℎ(𝑎)𝑎𝑏 =ℎ
(𝑎),*
𝑎𝑏 , ∀𝑎, 𝑏 ∈ 𝒯𝑎, it follows that 𝜋𝑎𝑏=𝜒*

𝑎𝑏, ∀𝑎, 𝑏 ∈ 𝒯𝑎. Therefore,

{ℎ(𝑎),*𝑎𝑏 , 𝜋𝑎𝑏} maximize (3.16) and solve Model 4; proving that the established heat

transfer market leads to a competitive equilibrium.

3.3.4 Transfer price dependence on interconnection capacity

The maximum transfer capacity between areas can influence not only the heat trans-

fer price, but also the internal area prices. Figure 3.5(a) presents two areas with

different price curves and possible transfer scenarios. The 𝑥–axes represents the

area heat generation, while the 𝑦–axes the associated heat price. In scenario (I)

there is no transfer allowed between areas and their generation matches the internal

demand. Based on this operation point, the shaded areas represent the range in

which the generation can change subject to the transfer capacity. Note that in this

scenario the heating price at area 𝑎 is lower than that of area 𝑏. Therefore it would

be beneficial for both areas to have heat exchanged from area 𝑎 to 𝑏, since area 𝑎
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would increase its revenue and area 𝑏 reduce its costs.

Scenario (II) presents an export scenario, from area 𝑎 to 𝑏, at a value that allows

for the prices at area 𝑎 and 𝑏 to become equal. This is the maximum transfer

value that enables the economic feasibility of the transaction. Heat export increases

the required generation, resulting in the increase of heating costs 𝛾𝑎. Similarly,

an importing area reduces its heating price by generating less. Thus, the optimal

amount of transferred heat would be one that allows the prices in both areas to

reach the same value. This corresponds to the fact that further heat exchange

would reduce the heating price of the importing area and increase that of the price

of the exporting one, creating a price mismatch in the opposite direction and making

the exchange economically inefficient.

If the export quantity was increased to the maximum transfer limit, scenario

(III), the price in area 𝑎 would rise above that of area 𝑏. Therefore, the maximum

transferable quantity is not only dependent on the technical limits, but also on the

price difference between the areas. The exported quantity will increase until the

prices in the areas are matched or the technical transfer limit is reached. In case

that the transfer limit is reached, there will be a price difference ∆ between the areas,

scenario (II) of Figure 3.5(b). It must be noted that the quantities transferred and

their prices are dependent on the requested area demands, since a change in demand

would shift the operation points of scenario (I) in Figures 3.5(a) and 3.5(b).

3.3.5 Transfer price dependence on interconnection efficiency

Due to the losses in the interconnection pipe, area 𝑏 receives a quantity of 𝜂tr
𝑎𝑏ℎ𝑎𝑏

from the originally transferred quantity ℎ𝑎𝑏 from area 𝑎. Therefore, we can define an

effective import price 𝛾eff
𝑎𝑏 of an interconnection as the perceived export price after
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(a) General model of two-area interconnection: (I) before transfer, from
area 𝑎 to 𝑏 (II) below maximum capacity, and (III) at maximum ca-
pacity.

(b) Constrained model of two-area interconnection: (I) before transfer,
and (II) transfer from area 𝑎 to 𝑏 at maximum capacity.

Figure 3.5: Effect of transfer capacity on heat transfer quantities and prices: (a)
with sufficient capacity, and (b) with insufficient capacity. 𝜂tr

𝑎𝑏=1

the losses have been accounted for 3:

𝛾eff
𝑎𝑏 =

ℎsent
𝑎𝑏 𝛾𝑎

ℎreceived
𝑎𝑏

=
ℎ𝑎𝑏𝛾𝑎
ℎ𝑎𝑏𝜂tr

𝑎𝑏

,=
𝛾𝑎
𝜂tr
𝑎𝑏

, ∀𝑎, 𝑏 ∈ 𝒯𝑎. (3.20)

The effective import price 𝛾eff
𝑎𝑏 thus increases for lower interconnection efficiencies

𝜂tr
𝑎𝑏. The influence of the interconnection efficiency on the effective import price

is shown in Figure 3.6 through three scenarios: (I) 𝜂tr
𝑎𝑏=1, (II) 𝜂tr

𝑎𝑏=0.9, and (III)

𝜂tr
𝑎𝑏=0.7. In scenario (I) the effective import price matches the heating price in area

𝑏 and the exported quantity equals that received.

At a transfer efficiency 𝜂tr
𝑎𝑏=0.9, scenario (II), the quantity of heat transferred is

3The steady-state pipeline heat losses are approximately independent to mass flow rates in prac-
tical applications, while being mostly dependent on pipeline inlet temperatures [115]. Therefore,
the pipeline losses can be controlled by managing the pipe’s inlet temperature.
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reduced and its price increased. At this efficiency level, the amount of heat exported

from area 𝑎 is lower than that received by area 𝑏. The changes in the quantity and

price of heat transferred reflect the losses in the transfer process.

When the interconnection efficiency is too low, as in scenario (III) with 𝜂tr
𝑎𝑏=0.7,

the effective import price without transfer becomes greater than the heat price in

area 𝑏. Therefore, even though the price in area 𝑎 is lower than that of area 𝑏, the

losses in the interconnection pipeline make it appear greater and make the transfer

economically inefficient.

Figure 3.6: Influence of interconnection efficiency 𝜂tr
𝑎𝑏 on heat transfer.

There are three possible relations between local heat prices and effective import

prices: (I) 𝛾𝑏<𝛾eff
𝑎𝑏 , (II) 𝛾𝑏=𝛾eff

𝑎𝑏 , and (III) 𝛾𝑏>𝛾eff
𝑎𝑏 ; as shown in Figure 3.7.

In the first scenario, the pipeline efficiency is too low, 𝜂tr
𝑎𝑏<𝜂

in
𝑎𝑏, resulting in great

transfer losses. Thus, the effective import price is greater than the heating cost at

area 𝑏 and there is no heat transfer. In region (I) as the interconnection efficiency

increases, the effective import price decreases. However, the heating price at area 𝑏

remains constant since there is no transfer that leads to generation reduction in the

area.

Once the efficiency increases above a certain value, 𝜂in
𝑎𝑏≤𝜂tr

𝑎𝑏≤𝜂sat
𝑎𝑏 , the losses in the

interconnection are reduced to a point in which the transfer becomes economically

feasible. Along region (II) the effective import price matches the heat price at area

𝑏. With the increase of efficiency, both prices are reduced, since less generation is

required in area 𝑏.

As the transfer efficiency increases beyond 𝜂in
𝑎𝑏, the quantity of transferred heat

also increases. This increase in exported heat continues until reaching the intercon-
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nection capacity, when the transfer efficiency equals 𝜂sat
𝑎𝑏 . After this point, region

(III) with 𝜂sat
𝑎𝑏 <𝜂

tr
𝑎𝑏, the heat pipeline is saturated and the heat transfer equals the

interconnection capacity. Once the interconnection is saturated, there appears a

price difference between the effective import price and the heating price in area 𝑏.

This price difference, gives an economic signal that the transfer capacity could be

increased to further reduce the operational costs.

Figure 3.7: Possible transfer scenarios based on the interconnection efficiency 𝜂tr
𝑎𝑏.

3.4 Decentralized thermal coordination

It is not always possible to solve the area coordination problem in a centralized way.

A centralized optimization would require complete knowledge of the internal area

characteristics, which might not be desirable for cases in which two independent

microgrids decide to exchange heat while preserving their private information. In

such cases it is necessary to agree on the transferred heat and its price in a decen-

tralized manner, with each area optimizing its own system while exchanging only

the information related to the transfer quantity and its price.

For this purpose, we would like to split Model 4 into area sub-problems, so that

each area optimizes its own operation in a decentralized manner without sharing

their full system’s information to third parties. Constraint (3.9f) binds the areas
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together. Therefore, we cannot directly solve the problem independently on each

area without accounting for the impact of the continuity of heat transfer between

the areas. Constraint (3.9f) is called the complicating or coupling constraint of the

master area coordination problem.

With the knowledge that (3.9f) is the complicating constraint, Model 4 can be

written in compact form as:

min.
∑︁

𝑎

𝑐𝑎(𝑥𝑎) (3.21a)

(𝜒𝑎𝑏) : ℎ
(𝑎)
𝑎𝑏 = ℎ

(𝑏)
𝑎𝑏 , ∀𝑎, 𝑏 ∈ 𝒯𝑎 (3.21b)

𝑔𝑎(𝑥𝑎) ≤ 0, ∀𝑎. (3.21c)

where 𝑥𝑎 are the state variables for each microgrid of the global system. 𝑥𝑎 contains

information on microgrid 𝑎’s control and dependent variables. Constraint (3.21b)

represents the heat transfer continuity equation (3.9f). Constraint (3.21c) includes

the cost characterization (3.9b), energy balances (3.9c)–(3.9d), generation charac-

terization (3.9e), and limits over dependent and control variables (3.9g)–(3.9i). The

set of constrains (3.21c) represents both equality and inequality constraints.

Problem (3.21) can be rewritten based on its reduced Lagrangian function as:

min.
∑︁

𝑎

(︃
𝑐𝑎(𝑥𝑎)+

∑︁

𝑏∈𝒯𝑎

[︁
𝜒𝑎𝑏

(︁
ℎ
(𝑎)
𝑎𝑏 −ℎ

(𝑏)
𝑎𝑏

)︁
+𝜒𝑏𝑎

(︁
ℎ
(𝑏)
𝑏𝑎 −ℎ

(𝑎)
𝑏𝑎

)︁]︁)︃
(3.22a)

s.t. 𝑔𝑎(𝑥𝑎) ≤ 0, ∀𝑎. (3.22b)

Problem (3.22) is obtained by adding to the objective function the multiplication

of the the exchange coordination equality (3.21b) in its standard form (equal to zero)

times its dual variable 𝜒𝑎𝑏. Note that at the optimum the exchange coordination

equality (3.21b) holds. Thus, the term ℎ
(𝑎)
𝑎𝑏 −ℎ

(𝑏)
𝑎𝑏 = 0 and does not affect the optimal

objective value.

Given its convexity and decomposable structure, i.e., for each area 𝑎 the copies

of the heat transfer from other areas ℎ(𝑏)𝑎𝑏 can be fixed yielding independent op-

erational problems, problem (3.22a) can be solved in a distributed and iterative

manner through the alternating direction method of multipliers (ADMM) [116]. For
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the coordination of more than 2 areas, the use of the traditional ADMM, intro-

duced in [117, 118] and extensively analysed in [116], does not guarantee converge

to the optimal solution for problems with three or more blocks (areas) [119]. The

uncertainty of obtaining the global optimum in the exchange market is not desired

since it would lead to inefficient heat transfers between the areas. Resulting in

suboptimal transfer quantities and prices. Therefore, we employ a Jacobi–Proximal

ADMM (JP–ADMM), introduced by Deng et al. [120], to model the distributed

solution of the coordinated market. The JP–ADMM is suitable for the solution of

the coordination market in a distributed manner with convergence assurance.

In the JP–ADMM, in every iteration each area optimizes its own sub-problem

and exchanges with the other areas the optimal values of its local copy for the

transferred heat ℎ(𝑎)𝑎𝑏 . With the optimized values for ℎ(𝑎)𝑎𝑏 , the transfer prices 𝜒𝑎𝑏

are calculated. If the calculated transfer prices do not alter the optimal exchanged

heat, the problem has been solved; else, the areas optimize their sub-problems once

more with the new transfer prices and the iterations continue until optimal exchange

quantities and prices are obtained.

We present below the decentralized operation of the heat market under the JP–

ADMM algorithm, detailing the steps of the iterative procedure and the calculation

of its parameters. The steps of the JP–ADMM are summarized in Figure 3.8 and

are described as follows:

Step 0 – Initialization and distribution of parameters and vari-

ables:

In the initial iteration, 𝑘=0, the coordination parameters 𝜖𝑠>0, 𝜌>0, 𝑠𝑘=0
𝑎𝑏 ≫𝜖 and

the area variables ℎ(𝑎),𝑘=0
𝑎𝑏 , ℎ

(𝑎),𝑘=0
𝑏𝑎 , 𝜒𝑘=0

𝑎𝑏 , 𝜒𝑘=0
𝑏𝑎 are initialized. The allowed conver-

gence gap is given by 𝜖, the step-size by 𝜌 and the change of the transfer-price update

by 𝑠𝑘𝑎𝑏. The initialized variables and coordination parameters are distributed to all

areas.
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Step 0 – Each area initializes its
variables and parameters, ℎ(𝑎),𝑘=0

𝑎𝑏 ,
ℎ
(𝑎),𝑘=0
𝑏𝑎 , 𝜒0

𝑎𝑏, 𝜒
𝑘=0
𝑏𝑎 ,𝜖>0, 𝜌>0, 𝑠𝑘=0≫𝜖𝑠.

Step 1 – Each area optimizes
its subproblem (3.23) and
obtains transfer quantities,

ℎ
(𝑎),𝑘+1
𝑎𝑏 and ℎ

(𝑎),𝑘+1
𝑏𝑎 , ∀𝑏 ∈ 𝒯𝑎.

Step 2 – Transfer prices update:

𝜒𝑘+1
𝑎𝑏 := 𝜒𝑘

𝑎𝑏 + 𝜁𝜌
(︁
ℎ
(𝑎),𝑘+1
𝑎𝑏 − ℎ

(𝑏),𝑘+1
𝑎𝑏

)︁

𝜒𝑘+1
𝑏𝑎 := 𝜒𝑘

𝑏𝑎 + 𝜁𝜌
(︁
ℎ
(𝑎),𝑘+1
𝑏𝑎 − ℎ

(𝑏),𝑘+1
𝑏𝑎

)︁

Step 3 – Price change:

𝑠𝑘+1
𝑎𝑏 :=

(︀
𝜒𝑘+1
𝑎𝑏 − 𝜒𝑘

𝑎𝑏

)︀2
+
(︀
𝜒𝑘+1
𝑏𝑎 − 𝜒𝑘

𝑏𝑎

)︀2
(︀
𝜒𝑘
𝑎𝑏

)︀2
+
(︀
𝜒𝑘
𝑏𝑎

)︀2

Increase 𝑘:=𝑘 + 1,
and distribute
ℎ
(𝑎),𝑘
𝑎𝑏 , ℎ

(𝑎),𝑘
𝑏𝑎 .

Are all
𝑠𝑘+1
𝑎𝑏 ≤ 𝜖?

Optimal results

No

Yes

Figure 3.8: Coordination between the areas with the Jacobi–proximal alternating
direction method of multiplies (JP–ADMM).

Step 1 – Area subproblem optimization:

In the JP–ADMM each area optimizes its own subproblem, Model 6, (3.23), by

fixing during iteration 𝑘 the values of 𝜒𝑎𝑏=𝜒
𝑘
𝑎𝑏 and 𝜒𝑏𝑎=𝜒

𝑘
𝑎𝑏 ∀𝑎, 𝑏 ∈ 𝒯𝑎, as well as

those of the heat import and export of the interconnecting areas (ℎ(𝑏)𝑎𝑏 =ℎ
(𝑏),𝑘
𝑎𝑏 and

ℎ
(𝑏)
𝑏𝑎 =ℎ

(𝑏),𝑘
𝑏𝑎 ).

In the area subproblem (3.23), the terms with the superscript 𝑘 indicate that

these variables are set as constants during the 𝑘𝑡ℎ iteration. The term (𝜌/2)
⃦⃦
𝑅𝑘

𝑎𝑏

⃦⃦2
2

represents the penalty for deviations on the heat transfer continuity between areas
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Model 6 JP–ADMM Area Sub-problem: 𝑘𝑡ℎ iteration [QP]

min.
∑︁

𝑎

[︃
(︀
𝑐𝑎 + 𝜋imp

𝑎 𝑝imp
𝑎 − 𝜋exp

𝑎 𝑝exp
𝑎

)︀

−
∑︁

𝑏∈𝒯𝑎

(︃
𝜒𝑘

𝑏𝑎ℎ
(𝑎)
𝑏𝑎 −𝜒𝑘

𝑎𝑏ℎ
(𝑎)
𝑎𝑏 +

𝜌

2

⃦⃦
𝑅𝑘

𝑎𝑏

⃦⃦2
2

)︃]︃

+
1

2
‖H𝑎 −H𝑘

𝑎‖2P𝑎
(3.23a)

subject to

𝑐𝑎 = 𝐶p
2,𝑎𝑝

2
𝑎 + 𝐶p

1,𝑎𝑝𝑎𝐶
h
2,𝑎ℎ

2
𝑎 + 𝐶h

1,𝑎ℎ𝑎 + 𝐶hpℎ𝑎𝑝𝑎 + 𝐶0,𝑎, ∀𝑎 (3.23b)
(𝜆𝑎): 𝑃D

𝑎 = 𝑝𝑎 + 𝑝imp
𝑎 − 𝑝exp

𝑎 , ∀𝑎 (3.23c)

(𝛾𝑎): 𝐻D
𝑎 = ℎ𝑎 +

∑︁

𝑏∈𝒯𝑎

(︁
𝜂tr
𝑏𝑎ℎ

(𝑎)
𝑏𝑎 −ℎ

(𝑎)
𝑎𝑏

)︁
, ∀𝑎 (3.23d)

(𝜇𝑎𝑙) : 𝑝𝑎𝐾
p
𝑎𝑙 + ℎ𝑎𝐾

h
𝑎𝑙 ≤ 𝐾0

𝑎𝑙, ∀𝑎 (3.23e)
(𝜅𝑎): 0 ≤ ℎ

(𝑎)
𝑎𝑏 ≤ 𝐻

tr
𝑎𝑏, ∀𝑎 (3.23f)

(𝜓𝑎): 0 ≤ 𝑝imp
𝑎 ≤ 𝑃𝑎, ∀𝑎 (3.23g)

(𝜑𝑎): 0 ≤ 𝑝exp
𝑎 ≤ 𝑃𝑎, ∀𝑎. (3.23h)

for the 𝑘𝑡ℎ iteration. The vector 𝑅𝑘
𝑎𝑏=
[︁
ℎ
(𝑎)
𝑎𝑏 −ℎ

(𝑏),𝑘
𝑎𝑏 , ℎ

(𝑏),𝑘
𝑏𝑎 −ℎ(𝑎)𝑏𝑎

]︁⊤
collects the residuals

of the transfer between areas 𝑎 and 𝑏 at iteration 𝑘.4 The term
⃦⃦
𝑅𝑘

𝑎𝑏

⃦⃦2
2

becomes zero

once the transferred quantities have been agreed between the areas.

The final term in the objective function, 1
2
‖H𝑎−H𝑘

𝑎‖2P𝑎
, is a proximal term that

prevents the divergence between iterations [120]. H𝑎 is the vector containing the

quantities of heat transfer: H𝑎=
[︁
ℎ
(𝑎)
𝑎𝑏1
, ℎ

(𝑎)
𝑏1𝑎
, ..., ℎ

(𝑎)
𝑎𝑏|𝒯𝑎|

, ℎ
(𝑎)
𝑏|𝒯𝑎|𝑎

]︁⊤
, where 𝑏𝑡 ∈ 𝒯𝑎 are the

areas connected to 𝑎. P𝑎⪰0 is a symmetric and positive semi-definite matrix, and

the operator ‖𝑌𝑎‖2P𝑎
is defined as ‖𝑌𝑎‖2P𝑎

:=𝑌 ⊤
𝑎 P𝑎𝑌𝑎.

The values of P𝑎 that guarantee convergence are given by:

P𝑎 = 𝜏𝑎I, ∀𝑎 (3.24a)

where

𝜏𝑎 > 𝜌

(︂
𝑁

2 − 𝜁
− 1

)︂
‖T𝑎‖22, ∀𝑎. (3.24b)

𝑁 is the total number of areas and 𝜁 > 0 is the damping parameter for the update

4The 𝑙2–norm of a vector 𝑌 , also known as the Euclidean norm, denoted by ‖𝑋‖2 is calculated

as ‖𝑌 ‖2=
(︀∑︀𝑛

𝑖=1 |𝑦𝑖|2
)︀1/2. Thus, in expression (3.23a)

⃦⃦
𝑅𝑘

𝑎𝑏

⃦⃦2
2
=
(︁
ℎ
(𝑎)
𝑎𝑏 −ℎ

(𝑏),𝑘
𝑎𝑏

)︁2
+
(︁
ℎ
(𝑏),𝑘
𝑏𝑎 −ℎ

(𝑎)
𝑏𝑎

)︁2
.
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of the transfer prices 𝜒𝑎𝑏 between iterations. Given that T𝑎 is the transfer vector for

the local copies of the heat import and export variables for area 𝑎, its elements are

1 for each of the export variables and -1 for the import ones. Therefore the value of

‖T𝑎‖22 can be calculated by:

‖T𝑎‖22 = T⊤
𝑎 T𝑎 =

|𝒯𝑎|∑︁

𝑏=1

(︀
|1|2 + | − 1|2

)︀
=

|𝒯𝑎|∑︁

𝑏=1

2 = 2|𝒯𝑎|, ∀𝑎 (3.24c)

Since expression (3.24c) holds for every area5, we can calculate the value of 𝜏𝑎 by

transforming inequality (3.24b) into:

𝜏𝑎 > 2|𝒯𝑎|𝜌
(︂

𝑁

2 − 𝜁
− 1

)︂
, ∀𝑎. (3.24d)

Finally, the constraints of the area subproblem, (3.23b) – (3.23h), represent the

internal area constraints discussed in Section 3.2.

With Model 6 each area optimizes its operation, calculating ℎ(𝑎)𝑎𝑏 and ℎ
(𝑎)
𝑏𝑎 , ∀𝑏 ∈

𝒯𝑎. The obtained transfer quantities are set as the local area copies for the next

iteration, i.e., ℎ(𝑎),𝑘+1
𝑎𝑏 :=ℎ

(𝑎)
𝑎𝑏 and ℎ(𝑎),𝑘+1

𝑏𝑎 :=ℎ
(𝑎)
𝑏𝑎 , ∀𝑏 ∈ 𝒯𝑎.

Step 2 – Variables distribution and price update:

Once each area has optimized its own subproblem, the obtained transfer values are

distributed among them. With the new values of ℎ(𝑎),𝑘+1
𝑎𝑏 and ℎ

(𝑏),𝑘+1
𝑎𝑏 , each area

updates 𝜒𝑘+1
𝑎𝑏 and 𝜒𝑘+1

𝑏𝑎 with:

𝜒𝑘+1
𝑎𝑏 = 𝜒𝑘

𝑎𝑏 + 𝜁𝜌(ℎ
(𝑎),𝑘+1
𝑎𝑏 − ℎ

(𝑏),𝑘+1
𝑎𝑏 ), ∀𝑎, 𝑏 ∈ 𝒯𝑎 (3.25a)

𝜒𝑘+1
𝑏𝑎 = 𝜒𝑘

𝑏𝑎 + 𝜁𝜌(ℎ
(𝑎),𝑘+1
𝑏𝑎 − ℎ

(𝑏),𝑘+1
𝑏𝑎 ), ∀𝑎, 𝑏 ∈ 𝒯𝑎. (3.25b)

5For example, consider the case where there are three areas {1, 2, 3} with connection between
areas 1–3 and 2–3, but not between 1–2. For the number of area interconnections we obtain that
|𝒯1|=|𝒯2|=1 and |𝒯3|=2. The transfer vectors for the local copies T𝑎 are: T1=T2=[1,−1]

⊤ and
T3=[1,−1, 1,−1]

⊤. Consequently, ‖T1‖22=‖T2‖22=[1,−1][1,−1]
⊤
=12+(−1)

2
=2=2|𝒯1|=2|𝒯2|; and

‖T3‖22=[1,−1, 1,−1][1,−1, 1,−1]
⊤
=12+(−1)

2
+ 12+(−1)

2
=4=2|𝒯3|.
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Step 3 – Convergence check:

The changes in the transfer prices after iteration 𝑘 are computed by:

𝑠𝑘+1
𝑎𝑏 =

(︀
𝜒𝑘+1
𝑎𝑏 − 𝜒𝑘

𝑎𝑏

)︀2
+
(︀
𝜒𝑘+1
𝑏𝑎 − 𝜒𝑘

𝑏𝑎

)︀2
(︀
𝜒𝑘
𝑎𝑏

)︀2
+
(︀
𝜒𝑘
𝑏𝑎

)︀2 , ∀𝑎, 𝑏 ∈ 𝒯𝑎. (3.25c)

The distributed optimization has converged and the optimal values have been ob-

tained when 𝑠𝑘𝑎𝑏 ≤ 𝜖; else, the iterations continue and 𝑘:=𝑘 + 1.

3.5 Numerical tests

In this section numerical tests are conducted to illustrate the area coordination for

an hourly time step in a heat market. These test cases are divided into two main

sub-cases: i) a two-area, and ii) a three-area system. In the two-area system, the

conditions for heat transfer between areas are discussed, i.e., price difference between

areas, electricity import prices and interconnection capacity. Additionally, the iter-

ative decentralized coordination procedure is analyzed. For the 3-area sub-case, the

effects of the interconnection topology, capacities, and transfer efficiencies are exam-

ined. The system operational data, assumed parameters and prices, adapted from

[121] and [122] is presented in Table 3.1. Each of the areas is represented as having

a convex operating region, Figure 3.9, which is analogous to that of an extraction

condensing steam turbine. The simulations are performed using the modeling soft-

ware Julia 1.5.3 [123], with the optimization package JuMP [124], and Gurobi 9.1.1

[98] as solver. The test machine features an Intel(R) Core(TM) i7-10710U CPU @

1.10 GHz, 1608 MHz, 6 Cores, 12 Logical Processors.

3.5.1 Two-area case

In order to study the conditions for heat transfer between areas, a two-area case is

devised. The operating costs and heat exchange of both areas 1 and 2 are compared

when they are both with and without interconnection.

During the independent operation shown in Figure 3.10(a), i.e., without heat

transfer, the internal heat prices in areas 1 and 2 resultant of their optimal inde-
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Table 3.1: Test System Data
Area 1 Area 2 Area 3 Units

𝑃D
𝑎 200 70 80 MWh
𝐻D

𝑎 125 95 30 MWh
𝐶p

2,𝑎 0.0345 0.0435 0.072 e/MWh2

𝐶p
1,𝑎 14.5 36 20 e/MWh

𝐶h
2,𝑎 0.030 0.027 0.020

𝐶h
1,𝑎 4.20 0.60 2.34 e/MWh

𝐶hp
𝑎 0.031 0.011 0.040 e/MWh

𝐶0,𝑎 26.50 12.50 15.65 e
𝜋imp
𝑎 28 30 27.6 e/MWh
𝜋exp
𝑎 22.4 24 22.1 e/MWh

𝐻
tr
𝑎𝑏 = 10 MW, 𝜂tr

𝑎𝑏 = 0.9

Figure 3.9: Equivalent Operating Regions of the Area Generation

pendent dispatch are respectively 16.02 and 5.73 e/MWh. The lower heat price

in area 2 makes it convenient to transfer heat from area 2 to area 1. It must be

noted that the electricity price at each area matches their respective import prices,

since electric import from the grid occurs when the internal prices is greater or equal

the import price. In this case, the marginal electricity generation cost of area 2 is

greater than the electricity import price, allowing it to import all of the electricity

necessary to cover its demand from the external network. Since the electric import

capacity is not reached, both the local and import prices are equal.

Once a connection of 10 MW with a transfer efficiency of 0.9 is considered, Figure
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3.10(b), the coordination results in area 2 exporting heat to area 1 at maximum

capacity and at an optimal price of 14.05 e/MWh. The heating price in area 1 is

reduced by 2.4%, from 16.02 to 15.61 e/MWh.

Since there exists a capacity saturation of the interconnection pipeline, there

exists a price difference between areas 1’s importing price of 14.05 e/MWh and

its local heating price at 15.61 e/MWh. The congestion surplus for exporting at

maximum capacity, 𝜅21, is 7.78 e/MWh, i.e., 55.4 % of the export tariff. The

congestion surplus is the difference between the transfer price and the local price at

area 2, and serves as an indicator of the economic inefficiency of operating with a

limited transfer capacity. In this case, an increase in the interconnection capacity

would allow for the matching of the local and import prices.

Given that area 1 now has to produce 9 MWh of heat less, 10 MWh multiplied

by the transfer efficiency of 0.9, it can reduce its heat generation. The lower heat

generation translates into a heat price decrease, to 15.61e/MWh. Now area 1 can

produce more electricity while maintaining its marginal generation price of electricity

matching the network import price, at 28 e/MWh. Consequently, the quantity of

electricity imported by area 1 is reduced.

By allowing heat transfer between the areas, their operational costs are reduced.

Area 2 derives the greatest total cost reductions during the scheduled hourly ex-

change, 80.5 e versus 0.9 e, since it benefits from the lower internal heat prices.

Area 1’s heat import leads to a decrease in its heat generation, thus reducing its

marginal electricity generation costs by (3.13a); resulting in higher internal elec-

tricity generation by area 1 and a consequently reduction of its electricity import

from the external network. The increase of electricity generation by area 1 increases

overall generation efficiency by working closer to its nominal conditions.

Decentralized two-area coordination

The decentralized Jacobi-proximal ADMM was used to solve the two-area system

of Figure 3.10(b). To ensure global convergence, the parameters for the JP-ADMM

discussed in Section 3.4 were set as 𝜖=10−9, 𝜁=1, 𝜌=0.01, and 𝜏1=𝜏2=0.025. Ar-

eas 1 and 2 start the iterative procedure by setting their export quantities and
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(a) Without interconnection

(b) With interconnection

Figure 3.10: Results of the two-area Coordination: (a) without, and (b) with inter-
connection.

prices respectively at 0 MWh and 0 e/MWh, as presented in Figures 3.11(a) and

3.11(b). After the first two iterations, it is determined that area 2 possesses the

lowest marginal heat costs. Therefore, it is more convenient to export heat from

area 2 to area 1. Consequently setting the export quantity for area 1 at zero and

increasing that exported from area 2, Figure 3.11(a). Through the iterations, the

areas must now agree on the transfer quantity and its price. This coordination is

now done by increasing the transfer quantity until it reaches the maximum transfer

capacity at 10 MWh. On the other hand, the export price is raised, Figure 3.11(b),

up to the value when the effective import price equals the internal heat price of area

1 within the set tolerance.
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(a) Heat Transfer vs. Iteration (b) Transfer Price vs. Iteration

Figure 3.11: Results of the two-area ADMM Coordination: (a) amount of heat
transferred, and (b) transferred heat price.

Sensitivity analysis: interconnection capacity

A sensitivity analysis for the maximum heat transfer capacity has been performed to

exemplify the impact of the transfer capacity on the economic coordination between

the areas.

The transferred heat increases as a function of the available capacity until the

capacity reaches a transfer saturation point 𝐻tr,sat, Figure 3.12(a). At 𝐻tr,sat the

effective import price for area 2 (internal heat price over the transfer efficiency)

matches the heat price of area 1, i.e., it costs the same to produce an extra MWh

locally in area 1 than to import it, Figure 3.12(b) . Therefore, once the saturation

capacity is reached, there are no economic benefits of increasing the transfer capacity.

At the saturation capacity 𝐻tr,sat, the following relationship holds 𝛾1 = 𝜂tr
21𝛾2.

The economic benefits of the heat interconnection between the areas are repre-

sented in the reduction of the total areal operational costs, Figure 3.12(c). Given

that area 2 experiences the highest price change, it obtains higher costs reductions

than area 1.

Sensitivity analysis: electricity import price

As with the maximum transfer capacity, the effects of the electricity import prices on

the heat transfer between areas are analyzed. Changes on area 2’s electricity import

price do not affect neither the amount of heat transferred nor its price, Figure 3.13.

However, the electricity import price for area 1 has an impact on the heat transfer
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(a) Heat Transfer (b) Marginal Gen Cost and
Transfer Cost

(c) Heat Expense

Figure 3.12: Sensitivity analysis of the heat transfer capacity’s impact on: (a)
amount of heat transferred, (b) price differences, and (c) operational cost savings.
𝜂tr
𝑏𝑎 = 0.9.

price but not on the transferred heat, which is maintained at a value of 10 e/MWh

as in the base case.

Changes on the electricity import price for area 1 affect how much electricity

this area will import, thus affecting its internal electricity generation and with it the

heating price 𝛾1 (3.13b), to which the heat transfer price 𝜒21 is directly proportional

(3.15)6. Thus, increments on the electricity import price, 𝜋imp
1 , lead to an increase

on the electricity generation in area 1, increasing the local heating price, 𝛾1, and

with it the heat import price from area 2, 𝜒21. Note that the heat transfer price

increases with the electricity import price, up to the point where the area 1 does not

import more electricity, i.e., when the generated power matches the local demand.

For area 2 the changes on its electricity import price do not affect the heat exchange

price, since this area has higher electricity generation costs; leading it to import

electricity at a level that fully satisfies entirely its internal demand.

3.5.2 3-area test case

In this numerical test, we explore the effects that the interconnection topology, trans-

fer capacity, and interconnection efficiencies have in the heat transfer quantities and

prices for the 3-area coordination. For this purpose, three possible interconnection

topologies are considered: i) triangular connection, i.e., all networks are intercon-
6We remind the reader about the relationship between the internal electricity generation 𝑝𝑎

and the internal heating price 𝛾𝑎: 𝛾𝑎 = 2𝐶h
2,𝑎ℎ𝑎 + 𝐶h

1,𝑎 + 𝐶hp
𝑎 𝑝𝑎 +

∑︀
𝑙 𝜇𝑎𝑙𝐾

h
𝑎𝑙. Additionally, the

relationship between the local heating price 𝛾𝑎 and the heat import transfer price 𝜒𝑏𝑎 is given by:
𝜒𝑏𝑎 = 𝜂tr

𝑎𝑏𝛾𝑎.
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Figure 3.13: Effect of the Electricity Import Prices on the Heat Transfer Price

nected; and ii) 1-3-2 interconnection, i.e., area 1 and 2 have a connection only to

area 3; and iii) reduction of transfer efficiency for the triangular interconnection due

to larger distance between areas 1 and 3. The results of modifying the topological

and interconnection parameters are expected to be maintained for larger and more

complex interconnection topologies, since the underlying influence of the technical

parameters on the economic operation follows the same principles.

For each topology, 3 sub-cases are created in which all the existent interconnec-

tions have the same transfer capacity. The transfer capacity for the sub-cases is set

to the values of 20, 40 and 80 MW.

Triangular Coordination

In this configuration, there exists interconnections between all the three areas; la-

beled here as a triangular configuration. This case will present the optimal heat

exchanges and prices when there is the possibility to transfer heat between any pair

of areas.

The results of optimal heat exchange for the triangular configuration are pre-

sented in Figure 3.14(a). The resultant flow directions are represented by arrows.

Based on their cost parameters and local demand area 1 has the highest marginal

heat generation costs, and thus it imports heat from the other areas for the three

capacity sub-cases. Similarly, area 2 has the lowest marginal costs and exports heat
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to areas 1 and 3. Note that the price difference between areas 1–2, as for 1–3, allows

for heat transfer towards area 1 in all the sub-cases.

Area 2 and 3 export 20 MWh of heat to area 1, at maximum capacity, while

area 2 exports an additional 5.55 MWh to area 3 at a lower price. Area 2 cannot

increase the quantity of heat it exports to area 3, since at a transfer of 5.55 MWh

the internal price of area 3 matches the effective import price from area 2 to 3, i.e.,

𝛾3=7.90=7.11/0.9=𝛾2/𝜂
tr
23=𝛾

eff
23 .

Once the capacity is increased to 40 MWh, the transfer from area 2 to area 1

is increased to the maximum allowed quantity and the heat transferred to area 3 is

reduced, since it is more profitable to export to area 1. The exported quantity from

area 3 to area 1 is reduced, since at a net import of 50 MWh the marginal generation

price in area 1 matches the effective import price of 13.72 e/MWh. Thus, area 3

cannot compete with the new price from area 2. If area 3 increased its amount of

transferred heat, its price would increase and this new price would not be acceptable

for area 1. This case is an example of how the saturation of the transfer capacity

between two areas can favor a third one, since are 3 receives higher revenue from a

topology with a capacity of 20 MWh than it does for one with 40 MWh.

An additional increase in the transfer capacity to 80 MWh does not increase the

total area 1 imports, since the transfer of an extra unit of heat would increase the

effective import price and reduce the local area 1 price. Consequently making the

price of area 1 lower than the effective import price, which leads to an economically

inefficient transfer. Therefore, the total import of area 1 remains the same as that

imported for the case with 40 MWh but the imported heat from area 2 is increased

by 0.6 MWh, at which point the local price of area 2 matches that of area 3 at 12.35

e/MWh. At a capacity of 80 MW, it is not convenient the transfer between areas

2 and 3, given that they have equal internal prices and the transfer of heat would

incur in economic losses due to the inefficiency of the interconnection.
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(a) Triangular coordination with 𝜂tr
𝑎𝑏 = 0.9.

(b) 1-3-2 coordination with 𝜂tr
𝑎𝑏 = 0.9.

(c) Triangular coordination with 𝜂tr
12 = 𝜂tr

23 = 0.9 and 𝜂tr
13 = 0.8.

Figure 3.14: Topologies for the 3-area case: (a) triangular, (b) 1-3-2, and (c) trian-
gular with 𝜂tr

13 = 0.8. The internal heating prices are given for each sub-case next
to the areas in their same color. The transferred heat between areas and its price is
given along the edges connecting the areas. The arrows indicate the obtained heat
exchange direction.
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Topology effect: 1-3-2 coordination

In this topology, area 3 serves as a buffer between areas 1 and 2, Figure 3.14(b).

For the sub-cases with a capacity of 20 and 40 MWh, area 3 exports heat to area

1 at the maximum capacity, owing to the fact that it must not compete with area

2. However, as in the triangular topology, the maximum quantity at which area

1 can benefit from importing is 51.54 MWh. Therefore, even though the capacity

is increased to 80 MWh, area 3 cannot increase it exports to area 1 beyond this

quantity.

At a maximum capacity of 20 MWh, area 3 receives from area 2 the same quantity

of heat as in the triangular case. For the case with 40 and 80 MWh, the transfer

between area 2 and 3 increases due to the fact that area 3 is exporting more to area

1. Thus, area 3 benefits from arbitraging between the import price from area 2 and

export price to area 1. Area 3 can purchase heat from area 2 at a lower price than it

charges area 1. This increment reflects the lack of connection between areas 1 and

2, since area 2 must now redirect all of its export to area 3 at a lower price than

what it would charge if it had a direct connection to area 1, receiving 11.25 instead

of 12.35 e/MWh.

The use of the presented heat market model could be employed to analyze the

economic viability of establishing inter-area pipelines and the optimal interconnec-

tion topology. As seen on Figure 3.14, for areas 2 and 1 the most profitable config-

uration is a triangular on2, while for area 3 the 1-2-3 configuration. The investment

costs would thus determine the optimal configuration between the three areas.

Efficiency effect

To analyze the impact of the efficiency in import prices from different areas, the

triangular case has been modified with 𝜂tr
12=𝜂

tr
23=0.9 and 𝜂tr

13=0.8, Figure 3.14(c).

For the capacity sub-cases of 20 and 40 MWh, the transfer quantities are the same

as the topology with equal interconnection efficiency. However, unlike the case with

equal transfer efficiencies, area 1 pays different import prices to areas 2 and 3.

In the base case with a 90% transfer efficiency, Figure 3.14(a), even though areas

2 and 3 have different internal prices, of respectively 7.11 and 7.90 e/MWh, their
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export to area 1 is paid for both at 12.93 e/MWh. This corresponds to the fact

that the export price to area 1 is determined by its internal heat price and the

interconnection efficiency as seen in expression (3.15). Since the transfer efficiency

between areas 1–2 and 1–3 equals 0.9, areas 2 and 3 receive the same price of export

to area 1, which corresponds to the value that the heat received by area 1 has; not

to the cost incurred by the exporter. When the interconnection efficiency between

areas 1 and 3 is reduced, the price paid to area 3 is reduced to compensate for higher

losses, Figure 3.14(c).

For a transfer capacity of 80 MWh, area 2 assumes the total share of the export

to area 1. The reduction of the export from area 3 represents that the effective

import price 𝜒eff
31 is higher than the local heat price in area 1, corresponding to the

lower interconnection efficiency. The exports of area 3 must be then redirected to

area 2 which has a higher local price and lower transfer losses. However, the export

to area 2 is done at a lower price than that received from area 1 at a higher efficiency

of 0.9.

3.6 Conclusions

In this work, we analyzed the main economic principles in heat markets for in-

tegrated heat-and-power microgrids, i.e., networks that can generate thermal and

electric energy to satisfy their internal demand. We present a convex heat market

formulation in both a centralized and decentralized manner. A centralized market

approach can be used by an operator when managing a vast number of small heat

microgrids in an urban area. Thus, reducing the communication overhead necessary

for a decentralized approach. On the other hand, a decentralized market allows

preserving each area’s independent operation and privacy while guaranteeing fast

optimality convergence, modeled in this work done via a Jacobi–Proximal ADMM.

Heat transfer between areas reduces overall energy consumption and expenses for

the market participants. The profitability of heat exchange between adjacent areas

is influenced by i) price difference between local heat prices, ii) interconnection

efficiency, iii) connection topology and iv) transfer capacity. In the presented case
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studies, heat transfer at maximum capacity reduced heating-related costs by more

than 10%.

Savings derived from the implementation of a heat transfer market are depen-

dent on differences between local area prices, interconnection capacity, and transfer

efficiency. The evaluation of interconnection capacities and configurations would al-

low network owners and investors to assess the economic benefits derived from such

a market.
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Chapter 4

Energy and Balancing Pricing in

Stochastic Power Markets

Recently, chance-constrained stochastic energy markets have been proposed to ad-

dress shortcomings of scenario-based stochastic market designs. In particular, the

chance-constrained market-clearing avoids trading off in-expectation and per-scenario

characteristics and yields unique energy and reserves prices. However, current for-

mulations rely on symmetric control policies based on the aggregated system imbal-

ance, which restricts balancing providers in their energy and reserve commitments.

This chapter extends existing chance-constrained market-clearing formulations by

leveraging node-to-node and asymmetric balancing policies and deriving the result-

ing energy and reserve prices. The proposed node-to-node policy allows for relating

the remuneration of balancing providers and payment of uncertainty sources using

a marginal cost-based approach. Further, we introduce asymmetric balancing into

the chance-constrained framework and show how this additional degree of freedom

affects the market outcomes.

The contents of this chapter are partially based on a paper submitted to the

journal IEEE Transactions on Power Systems.

This chapter is organized as follows. Section 4.2 presents the developed formula-

tion for an energy and spinning reserves market based on asymmetric node-to-node

balancing. Next, based on duality theory, Section 4.3 derives the energy and bal-

ancing prices from the market proposed in Section 4.2. In Section 4.4 we relate
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the proposed market scheme with those present in the literature, by modifying the

balancing rules and comparing the obtained energy and balancing prices, while Sec-

tion 4.5 determines the main factors influencing the energy and balancing prices for

the different balancing frameworks. Section 4.6 analyzes the incurred costs from

renewable forecasting errors and proves how these costs equal the payments made

to balancing generators. Thus, providing an approach to pricing compensation costs

from renewable generators introducing uncertainty in the system. Finally, Section

4.8 numerically contrasts the generation dispatch under diverse balancing provision.

The computational results show a decrease in balancing requirements and costs un-

der the proposed balancing framework.

Nomenclature

The mathematical symbols used in this chapter are described in the table below:

Abbreviations

CC-OPF chance-constrained optimal power flow

GPM𝑖 generator 𝑖’s profit maximization problem

ISO Independent system operator

LBP Locational balancing price

LMP Locational marginal price

N2N Node-to-node

OPF Optimal power flow

OPF-N2N-AB Optimal power flow with asymmetric node-to-node balancing pol-

icy

OPF-N2N-SB Optimal power flow with symmetric node-to-node balancing pol-

icy

OPF-SW-AB Optimal power flow with asymmetric system-wide balancing pol-

icy

OPF-SW-SB Optimal power flow with symmetric system-wide balancing policy

RES Renewable energy sources

SW System-wide
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Indexes

𝑖, 𝑗 Network nodes

𝑢, 𝑣, 𝑤 Renewable generation units

Sets

𝒞𝑖 Nodes with direct connection to 𝑖

𝒢 Controllable generators

𝒰 Renewable generators

𝒰𝑖 Renewable generators located at 𝑖

Parameters

𝑐(·),𝑖 Generation cost coefficients [–]

𝐷𝑖 Nodal power demand [MW]

𝑒 Vector of ones of appropriate dimensions [–]

𝐹 𝑖𝑗 Maximum active power line flow [MW]

𝑀 Vector of expected negative and positive forecast errors (𝑀=E[𝜔])

[–]

𝑃 𝑖/𝑃 𝑖 Generation capacity limits [MW]

𝑠2 Sum over the covariance matrix of forecast errors (𝑠2=𝑒Σ𝑒) [MW2]

w𝑢 Stochastic renewable power output at 𝑢 (w𝑢=w𝑢 + 𝜔𝑢) [MW]

w𝑢 Forecasted renewable power output at 𝑢 [MW]

𝑋𝑖𝑗 Line reactance [p.u.]

𝑧𝑖 Auxiliary parameter (𝑧𝑖=
√︀

(1 − 𝜖𝑖)/𝜖𝑖) [–]

𝜖𝑖 Probability of generation capacity constraints violation [–]

𝜇𝑢 Expected value of the forecast error 𝜔𝑢 [MW]

𝜎𝑢,𝑣 Covariance between forecast errors at 𝑢 and 𝑣 [MW2]

Σ Covariance matrix of forecast errors (Σ=𝑐𝑜𝑣[𝜔]) [MW2]

𝜔 Vector of nodal forecast errors
[︁
𝜔−

1 , ...,𝜔
−
|𝒰|,𝜔

+
1 , ...,𝜔

+
|𝒰|

]︁
[MW]

𝜔𝑢 Stochastic generation forecast error at 𝑢 (𝜔𝑢=𝜔-
𝑢 + 𝜔+

𝑢 ) [MW]

𝜔
-/+
𝑢 Negative/positive component of the forecast error 𝜔𝑢 [MW]
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Variables

𝐴𝑖 Vector of balancing participation factors
[︁
𝛼−
𝑖1, ..., 𝛼

−
𝑖|𝒰|, 𝛼

+
𝑖1, ..., 𝛼

+
𝑖|𝒰|

]︁⊤

[–]

𝐶𝑖 Expected generation cost [$]

𝑓𝑖𝑗 Active power flow on line (𝑖, 𝑗) [MW]

𝑝𝑖 Uncertain power output by the controllable generator at 𝑖 [MW]

𝑝𝑖 Scheduled power output by the controllable generator at 𝑖 [MW]

𝑆𝑖 Auxiliary variable (𝑆𝑖=
√︀
𝐴⊤

𝑖 Σ𝐴𝑖) [MW]

𝛼
-/+
𝑖𝑢 Asymmetric balancing participation factors for the controllable

generator at 𝑖 to balance forecast deviations at 𝑢 [–]

𝛽𝑢 Ratio between nodal and system-wide balancing prices [–]

𝛿𝑖/𝛿𝑖 Dual multiplier related to generation capacity [$]

𝜆𝑖 Electricity price [$/MWh]

𝜃𝑖 Voltage angle [rad]

𝜒
-/+
𝑢 Asymmetric nodal balancing price [$]

Functions

𝑐𝑖(·) Generator cost function

𝑐𝑜𝑣[·] Expected value of a random variable

E[·] Expected value of a random variable

P[·] Event probability of occurrence

𝑓𝜔𝑢(·) Probability density function of the forecast error 𝜔𝑢

4.1 Introduction

The deployment of renewable energy sources (RES) challenges wholesale electricity

markets’ efficiency, which largely treat RES injections as deterministic and do not

internalize their stochasticity rigorously. Although, as Hobbs and Oren discuss in

[125], recent market design improvements have targeted (and often succeeded in)

improving economic and energy efficiency in the presence of RES stochasticity, they
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have been “primarily incremental in nature,” benefiting from enhanced computa-

tional capabilities and supply/demand technologies. As a result of these incremental

changes, market-clearing procedures have become increasingly complex and market

outcomes “are not transparent and perhaps have contributed to decreases in trad-

ing activity” [125]. This lack of transparency inhibits meaningful interpretations of

energy and reserve allocations and prices, i.e., there is no technically and economi-

cally sound intuition on (i) which resources drive the demand for balancing services

and how much they should pay for it, and (ii) which resources are most efficient to

mitigate this stochasticity and how much they should be paid. This chapter aims

to develop a stochastic market design that allows such intuitive interpretations and

insights into the energy and reserve price formation under RES stochasticity.

Existing stochastic market designs rely on either scenario-based stochastic pro-

gramming [67] or chance-constrained [70] dispatch models, which outperform de-

terministic benchmarks in terms of the total operating cost and the accuracy of

reserve allocations, [126]. In [127, 128, 129], a two-stage scenario-based stochastic

programming framework is used for the day-ahead market-clearing optimization,

which yields scenario-specific locational marginal prices (LMPs). Although these

LMPs are useful to understand dispatch and price implications of each scenario, it

is impossible to ensure cost recovery simultaneously (i.e., each producer recovers its

production cost from market outcomes) and revenue adequacy (i.e., the payment

collected by the market from consumers is greater than the payment by the market

to producers) in each scenario and in expectation over all scenarios without welfare

losses and relying on out-of-market corrections and uplift payments [130].

As an alternative to [127, 128, 129, 130], the work in [131, 132, 133, 134, 135]

developed a stochastic market design that internalizes the RES stochasticity by

means of its statistical moments (e.g., mean and variance) and chance constraints

from [70]. Although stochastic by design, the models in [131, 132, 133, 134, 135]

render deterministic reformulations that computationally outperform scenario-based

formulations, see [70], and produce uncertainty- and risk-aware LMPs and reserve

prices. Although these prices capture all uncertainty realizations assumed, they are

scenario-agnostic, which guarantees cost recovery and revenue adequacy for convex
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markets [132, 135], as well as minimizes the uplift for non-convex markets [132].

Further, [132] shows the chance-constrained framework makes it possible to ensure

the cost recovery for each uncertainty realization and in expectation without wel-

fare losses. The qualitative analyses in [132, 133, 134] show that these LMPs do not

explicitly depend on statistical moments and risk preferences of the market, while

reserve prices explicitly depend on these parameters. Despite these computational

and market design advantages relative to [127, 128, 129, 130], the chance-constrained

framework has several limitations. First, it typically assumes that the RES stochas-

ticity is symmetric, which does not hold in practice, [72, 73], where upward and

downward reserve needs vary significantly. Second, while allowing for a nodal re-

serve allocation, it lacks a nodal reserve pricing mechanism, thus preventing from

fairly charging and remunerating those resources that drive the need for and provide

balancing services, respectively.

This chapter extends the market design originally proposed in [132, 133, 134]

to accommodate asymmetric reserve provision, node-to-node reserve pricing, and

provide techno-economic insights on the energy and reserve price formation process

under uncertainty. Considering the asymmetric reserve provision leads to appropri-

ately sizing and allocating reserve requirements based on empirical RES statistics

(e.g., moments), while the node-to-node reserve pricing mechanism leads to the

transparent allocation of (i) uncertainty costs among RES resources and (ii) re-

serve payments among producers, thus incentivizing the efficient energy and reserve

co-optimization to firm up RES generation as necessitated in [125].

4.2 Asymmetric Chance-Constrained OPF

Consider an electricity market operator that uses an optimal power flow (OPF)

formulation to compute a least-cost generator schedule. As shown in [131, 132, 133,

134, 135], traditional deterministic OPF-based market designs (see, e.g., [136] for

reference) can be efficiently robustified against uncertain injections from RES by

means of chance-constraints. For this purpose, injections at every network node 𝑢

that hosts an uncertain RES resource is modeled as random variable w𝑢 using a
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forecast value w𝑢 and a forecast error term 𝜔𝑢 as follows:

w𝑢 = w𝑢 + 𝜔𝑢. (4.1)

Typically, 𝜔𝑢 is assumed to be zero-mean and normally distributed, [69, 70, 126,

131, 133, 134, 135]. However, in practice, empirical measurements of solar and

wind power forecast errors are often asymmetric and can not be captured well by a

Gaussian normal distribution, [72, 73]. As a result, the impact of forecast errors from

nodes with significant asymmetries might be over- or under-estimated. For example,

by inspecting day-ahead forecast and actual generation data recorded at two nodes in

the ENTSO-E (European Network of Transmission System Operators for Electricity)

in 2020, plotted in Figure 4.1, the diversity of forecast error distributions becomes

evident. While the forecast at the German node, Figure 4.1(a), is symmetric and

may be parametrized as a normal distribution, the forecast at the Italian node,

Figure 4.1(b), is strongly skewed to overestimate generator output and a normal

distribution is unsuitable to model the forecast error distribution. Additionally,

there exists a tendency of RES operators to report generation values lower than

the day-ahead forecast; which could be a result of strategic forecast offering by the

generator in order to obtain additional benefits from the market regulations. See

also discussion in [137, Section 6.6.].

As a result, assuming normally distributed (symmetric) forecast errors in combi-

nation with a symmetric balancing regulation policy as in [69, 70, 126, 131, 133, 134,

138, 139, 140, 141, 142, 143] can lead to ineffective and inefficient operating decisions

and electricity prices. Therefore, to adequately capture possible forecast error asym-

metries and improve the efficiency of balancing reserve quantification and allocation,

this chapter explicitly models negative and positive forecast errors (i.e., real-time

energy deficit and surplus, respectively) and proposes a suitable asymmetric bal-

ancing regulation policy. Sections 4.2.1 and 4.2.2 below describe the asymmetric

model of uncertain injections and introduce an asymmetric balancing reserve policy,

respectively. Section 4.2.3 derives the resulting chance-constrained optimal power

flow problem.
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Figure 4.1: Day-ahead forecast 𝑤𝑡 and actual generation 𝑝𝑡 per unit of maximal
power generation in a European aggregation area. An accurate forecast falls on
the line 𝑝𝑡 = 𝑤𝑡. Figure 4.1(b) illustrates that forecasting errors in practice can be
non-zero-mean.

4.2.1 Asymmetric Uncertainty Model

Consider random variable 𝜔𝑢 as

𝜔𝑢 = 𝜔-
𝑢 + 𝜔+

𝑢 , (4.2)

where 𝜔-
𝑢 ≤ 0 and 𝜔+

𝑢 ≥ 0 are the negative and positive components of the fore-

cast error such that 𝜔-
𝑢𝜔

+
𝑢 = 0, i.e., 𝜔-

𝑢 and 𝜔+
𝑢 are mutually exclusive events.

First, we assume that any expected systematic forecast error can be considered

as a fixed parameter in the model (e.g. by accounting it to fixed load forecasts),

so that the total imbalance 𝜔𝑢 can always be corrected to have zero-mean. See

e.g. [133]. Second, from (4.2) and the linearity of the expectation, it follows that

E[𝜔𝑢] = E[𝜔−
𝑢 + 𝜔+

𝑢 ] = 0, i.e., E[𝜔+
𝑢 ] = −E[𝜔-

𝑢] = 𝜇𝑢. Therefore, for a zero-mean

forecast the expected deviation on both directions, positive and negative, are equal

independently of the forecast distribution. Figure 4.2(a)–(b) illustrate this repre-

sentation, which allows for modeling asymmetric distributions.

Mean 𝜇𝑢 of the forecast distributions can be obtained by considering them as dis-

tributions truncated at zero. For instance, for an estimated continuous distribution,
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it follows:

𝜇𝑢 = E[𝜔𝑢≥0] = E
[︀
𝜔+

𝑢

]︀
=

∫︁ ∞

0

𝜔𝑢𝑓𝜔𝑢(𝜔𝑢) 𝑑𝜔𝑢, ∀𝑢 (4.3)

where 𝑓𝜔𝑢 is the probability density function of the forecast error 𝜔𝑢.

(a) Symmetric forecast error (b) Asymmetric forecast error

Figure 4.2: Nodal forecast errors 𝜔𝑢 for (a) symmetric or (b) asymmetric probability
distributions with zero expected value.

4.2.2 Asymmetric Node-to-Node Balancing

To ensure that the power system remains balanced (i.e., generation equals demand

at all times), generators with balancing control capabilities react to any real-time

imbalances 𝜔-
𝑢, 𝜔+

𝑢 by increasing or decreasing their power outputs. We model this

balancing control policy using asymmetric “node-to-node” balancing participation

factors 𝛼−
𝑖𝑢, 𝛼

+
𝑖𝑢 ∈ [0, 1] that capture the participation of a generator at bus 𝑖 to

balancing the negative and positive imbalance caused by a stochastic resource at

bus 𝑢. Note that for ease of notation, we assume that each node 𝑖 hosts exactly

one controllable generator and each node 𝑢 hosts exactly one uncertain RES. The

resulting uncertain power output 𝑝𝑖 of each controllable generator is then given by:

𝑝𝑖 = 𝑝𝑖−
∑︁

𝑢

(︀
𝛼-
𝑖𝑢𝜔

-
𝑢+𝛼+

𝑖𝑢𝜔
+
𝑢

)︀
, ∀𝑖 (4.4a)

∑︁

𝑖

𝛼-
𝑖𝑢 = 1,

∑︁

𝑖

𝛼+
𝑖𝑢 = 1, ∀𝑢 (4.4b)
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where 𝑝𝑖 and 𝛼-
𝑖𝑢, 𝛼

+
𝑖𝑢 ∈ [0, 1] are decision variables that define the power output

and asymmetric participation factors for balancing reserve provision. Constraints

Eq. (4.4b) ensure system balance for all outcomes 𝜔-
𝑢, 𝜔+

𝑢 [140, 143]. Note that

uncertain variables are written in bold font throughout this chapter.

4.2.3 Model Formulation

Following [69, 131, 133, 134, 135], the model objective is to minimize the expected

production cost of conventional generators. By replacing 𝑝𝑖 from (4.4a) in (4.5),

the expected generation cost 𝐶𝑖 of generator 𝑖 can be calculated as in Eq. (4.6) (see

Appendix C for details):

𝑐𝑖(𝑝𝑖)= 𝑐2,𝑖(𝑝𝑖)
2+𝑐1,𝑖(𝑝𝑖)+𝑐0,𝑖, ∀𝑖 (4.5)

E[𝑐𝑖(𝑝𝑖)]=: 𝐶𝑖

= 𝑐2,𝑖𝑝
2
𝑖 + 𝑐1,𝑖𝑝𝑖 + 𝑐0,𝑖 −(2𝑐2,𝑖𝑝𝑖+𝑐1,𝑖)(𝑀𝐴𝑖)+𝑐2,𝑖

[︀
(𝑀 ·𝐴𝑖)

2+𝑆2
𝑖

]︀
, ∀𝑖, (4.6)

where𝑀 is the row vector of expected negative and positive forecast errors,𝑀 = E[𝜔],

with 𝜔=
[︁
𝜔−

1 ,𝜔
−
2 , ...,𝜔

−
|𝒰|,𝜔

+
1 ,𝜔

+
2 , ...,𝜔

+
|𝒰|

]︁
, and 𝐴𝑖 is the vector of balancing partic-

ipation factors for generator 𝑖, 𝐴𝑖=
[︁
𝛼−
𝑖1, 𝛼

−
𝑖2, ..., 𝛼

−
𝑖|𝒰|, 𝛼

+
𝑖1, 𝛼

+
𝑖2, ..., 𝛼

+
𝑖|𝒰|

]︁⊤
. The · oper-

ator denotes the dot-product of two vectors. The covariance matrix of the forecast

errors is given by Σ=𝑐𝑜𝑣[Ω] and 𝑆𝑖=
√︀
𝐴⊤

𝑖 Σ𝐴𝑖=
⃦⃦
𝐴𝑖Σ

1/2
⃦⃦
2
. Upper and lower power

output limits are enforced by the chance constraints (4.7a) and (4.7b), respectively,

and parameter 𝜖𝑖 is chosen to ensure constraint satisfaction with an 1−𝜖𝑖 guarantee:

P
[︀
𝑝𝑖 ≤ 𝑃 𝑖

]︀
≥ 1 − 𝜖𝑖, ∀𝑖 (4.7a)

P[−𝑝𝑖 ≤ −𝑃 𝑖] ≥ 1 − 𝜖𝑖, ∀𝑖. (4.7b)

Constraints (4.7a) and (4.7b) must reflect the probability that the aggregated ful-

fillment of the node-to-node balancing commitment does not exceed the capacity

limits. Therefore, the underlying probability distribution functions representing the

different RES must be reflected in the generation capacity limits. However, unlike
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for Gaussian distributions, the aggregation of asymmetric distributions truncated at

do not have an equivalent deterministic representation. To overcome this issue, we

apply the Chebyshev inequality to (4.7) for representing its satisfaction probability

for any kind of underlying distribution [69]. Thus, the capacity constraints (4.7) can

be reformulated by means of the Chebyshev approximation, as the deterministically-

equivalent constraints (4.8a) and (4.8b):

𝑝𝑖 −𝑀 ·𝐴𝑖 + 𝑧𝑖𝑆𝑖 ≤ 𝑃 𝑖, ∀𝑖 (4.8a)

−𝑝𝑖 +𝑀 ·𝐴𝑖 + 𝑧𝑖𝑆𝑖 ≤ −𝑃 𝑖, ∀𝑖, (4.8b)

where the parameter 𝑧𝑖=
√︀

(1 − 𝜖𝑖)/𝜖𝑖.

Using (4.4b), (4.6), (4.8a), and (4.8b), Model 7 formulates an OPF problem

with a deterministic equivalent of the chance-constrained generator dispatch for

node-to-node asymmetric balancing policy (OPF-N2N-AB). The objective function

in (4.9a) minimizes the expected system generation cost and is subject to DC power

flow network constraints (4.9b)-(4.9e), asymmetric node-to-node balancing adequacy

requirements (4.9f)–(4.9g), and chance-constrained generator output limits (4.9h)–

(4.9i). In the OPF-N2N-AB, the network buses are indexed by 𝑖, the RES buses by

𝑢 ∈ 𝒰𝑖, and the power lines by the tuple (𝑖, 𝑗) with 𝑗 ∈ 𝒞𝑖. The nodal demand is

given by 𝐷𝑖 and the lines’ reactance by 𝑋𝑖𝑗. The line flow is represented by 𝑓𝑖𝑗 and

the nodal voltage angle by 𝜃𝑖. Line capacity limits are set at 𝐹 𝑖𝑗, while the minimum

and maximum generation capacity limits are respectively defined as 𝑃 𝑖 and 𝑃 𝑖.

The decision variables of OPF-N2N-AB are collected in set Ξ = {𝑝𝑖, 𝛼-
𝑖𝑢, 𝛼

+
𝑖𝑢, 𝑓𝑖𝑗}.

Greek symbols in parenthesis define dual multipliers associated with each constraint.

Note that OPF-N2N-AB is a non-linear program (NLP) with second-order conic con-

straints. Specifically, objective (4.9a) contains bi-linear terms that require suitable

solution techniques presented in Section 4.7. However, the second-order conic so-

lution space spanned by constraints (4.9b)–(4.9i) is convex and thus enables the

analytical derivations in the following sections.
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Model 7 OPF-N2N-AB

min.
Ξ

∑︁

𝑖

[︃
𝑐2,𝑖𝑝𝑖

2 + 𝑐1,𝑖(𝑝𝑖) + 𝑐0,𝑖

−(2𝑐2,𝑖𝑝𝑖+𝑐1,𝑖)(𝑀 · 𝐴𝑖)+𝑐2,𝑖
[︀
(𝑀 · 𝐴𝑖)

2+𝑆2
𝑖

]︀
]︃

(4.9a)
subject to:

(𝜆𝑖): 𝑝𝑖 +
∑︀

𝑢∈𝒰𝑖
w𝑢 −𝐷𝑖 −

∑︀
𝑗∈𝒞𝑖𝑓𝑖𝑗 = 0, ∀𝑖 (4.9b)

(𝜓𝑖𝑗): 𝑓𝑖𝑗 −
1

𝑋𝑖𝑗

(𝜃𝑖 − 𝜃𝑗) = 0, ∀𝑖, 𝑗∈𝒞𝑖 (4.9c)

(𝜂𝑖𝑗): 𝑓𝑖𝑗 ≤ 𝐹 𝑖𝑗, ∀𝑖, 𝑗∈𝒞𝑖 (4.9d)
(𝜂

𝑖𝑗
): −𝑓𝑖𝑗 ≤ −𝐹 𝑖𝑗, ∀𝑖, 𝑗∈𝒞𝑖 (4.9e)

(𝜒-
𝑢):

∑︁

𝑖

𝛼-
𝑖𝑢 = 1, ∀𝑢 (4.9f)

(𝜒+
𝑢 ):

∑︁

𝑖

𝛼+
𝑖𝑢 = 1, ∀𝑢 (4.9g)

(𝛿𝑖): 𝑝𝑖−𝑀 ·𝐴𝑖+𝑧𝑖𝑆𝑖≤ 𝑃 𝑖, ∀𝑖 (4.9h)
(𝛿𝑖): −𝑝𝑖+𝑀 ·𝐴𝑖+𝑧𝑖𝑆𝑖≤−𝑃 𝑖, ∀𝑖. (4.9i)

4.3 Pricing Energy and Balancing Provision

From the perspective of an electricity market operator, e.g., as in current U.S.

practice an Independent System Operator (ISO), OPF-N2N-AB resembles a market

clearing problem that is used to compute optimal (least-cost) generator dispatch

and balancing reserve decisions 𝑝*𝑖 , 𝛼
-,*
𝑖𝑢 , 𝛼+,*

𝑖𝑢 and efficient corresponding prices for

energy 𝜋p and reserves 𝜋-
𝑢, 𝜋+

𝑢 . The price-quantity tuples (𝜋p, 𝑝*𝑖 ), (𝜋-
𝑢, 𝛼

-), (𝜋+
𝑢 , 𝛼

+,*
𝑖𝑢 )

are efficient if they support a competitive equilibrium, i.e., they ensure that [69]:

1. The market clears at 𝑝*𝑖 +
∑︀

𝑢∈𝒰w𝑢 −∑︀𝑗∈𝒞𝑖 𝑓𝑖𝑗=𝐷𝑖, ∀𝑖, ∑︀𝑖 𝛼
-,*
𝑖𝑢 =

∑︀
𝑖 𝛼

+,*
𝑖𝑢 =

1, ∀𝑢.

2. Prices 𝜋p, 𝜋-
𝑢 and quantities 𝑝*𝑖 , 𝛼

-,*
𝑖𝑢 maximize the profit of 𝑖 given by Π𝑖 =

𝜋p
𝑖 𝑝

*
𝑖 +
∑︀

𝑢

(︀
𝜋-
𝑢𝛼

-,*
𝑖𝑢 +𝜋+

𝑢 𝛼
+,*
𝑖𝑢

)︀
− 𝐶𝑖, i.e., there is no incentive to deviate these

market outcomes.

To derive these prices from OPF-N2N-AB, we use duality theory similar to pre-

vious works on chance-constrained stochastic market design [69, 133, 134]. However,
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unlike in [69, 133, 134], the prices derived from the OPF-N2N-AB model will sup-

port asymmetric balancing needs and account for node-to-node participation factors,

thus enabling a more precise allocation of balancing resources. First, we prove:

Proposition 1. Consider the OPF-N2N-AB. Let 𝜆𝑖, 𝜒-
𝑢 𝜒+

𝑢 be the locational

marginal prices (LMPs) for energy and asymmetric locational balancing prices (A-

LBPs) defined as dual multipliers of constraints (4.9b), (4.9f), and (4.9g), respec-

tively. Then, these prices can be expressed as:

𝜆𝑖=2𝑐2,𝑖(𝑝𝑖 −𝑀 ·𝐴𝑖) + 𝑐1,𝑖 + 𝛿𝑖 − 𝛿𝑖, ∀𝑖 (4.10a)

𝜒-
𝑢=

1

|𝒢|
∑︁

𝑖

[︂
𝜇𝑢𝜆𝑖+

(︀
Σ−

𝑢𝐴𝑖

)︀(︂
2𝑐2,𝑖+

𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀)︂]︂
, ∀𝑢 (4.10b)

𝜒+
𝑢 =

1

|𝒢|
∑︁

𝑖

[︂
−𝜇𝑢𝜆𝑖+

(︀
Σ+

𝑢𝐴𝑖

)︀(︂
2𝑐2,𝑖+

𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀)︂]︂
, ∀𝑢. (4.10c)

where Σ−
𝑢 and Σ+

𝑢 are the rows of the covariance matrix Σ related to the asymmetric

forecast errors 𝜔-
𝑢 and 𝜔+

𝑢 , respectively.1

Proof . Consider the first-order optimality conditions of (4.9) for variables 𝑝𝑖, 𝛼-
𝑖𝑢,

and 𝛼+
𝑖𝑢:

2𝑐2,𝑖(𝑝𝑖 −𝑀 ·𝐴𝑖)+𝛿𝑖−𝛿𝑖−𝜆𝑖 = 0, ∀𝑖 (4.11a)
(︀
Σ−

𝑢𝐴𝑖

)︀(︂
2𝑐2,𝑖+

𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀)︂
+𝜇𝑢

(︀
2𝑐2,𝑖(𝑝𝑖−𝑀 ·𝐴𝑖)+𝛿𝑖−𝛿𝑖

)︀
−𝜒-

𝑢 = 0, ∀𝑖,𝑢 (4.11b)

(︀
Σ−

𝑢𝐴𝑖

)︀(︂
2𝑐2,𝑖+

𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀)︂
−𝜇𝑢

(︀
2𝑐2,𝑖(𝑝𝑖−𝑀 ·𝐴𝑖)+𝛿𝑖−𝛿𝑖

)︀
−𝜒+

𝑢 = 0, ∀𝑖,𝑢. (4.11c)

Expression (4.10a) immediately follows from separating 𝜆𝑖 from (4.11a). Note that

𝜒-
𝑢 and 𝜒+

𝑢 are the dual variables of the nodal balancing reserve adequacy constraints

in Eq. (4.9f) and (4.9g) and, therefore, are specific to node 𝑢 requiring balancing ser-

vices, as opposed to generator 𝑖 providing balancing services. Therefore, expressions

(4.11b) and (4.11c) have the same value for each generator 𝑖 and can be summed

over all |𝒢| generators, leading to
∑︀

𝑖∈𝒢 𝜒
-
𝑢 = |𝒢|𝜒-

𝑢 and
∑︀

𝑖∈𝒢 𝜒
+
𝑢 = |𝒢|𝜒+

𝑢 . Hence,

we obtain (4.10b) and (4.10c) by dividing (4.11b) and (4.11b) by |𝒢|. �

1For example, in a system with two RES Σ−
1 =

[︀
𝑉 𝑎𝑟(𝜔-

1), 𝑐𝑜𝑣(𝜔
-
1,𝜔

+
1 ), 𝑐𝑜𝑣(𝜔

-
1,𝜔

-
2), 𝑐𝑜𝑣(𝜔

-
1,𝜔

+
2 )
]︀
.
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Model 8 GPM𝑖-N2N-AB

max. Π𝑖 = 𝜋p
𝑖 𝑝𝑖+

∑︁

𝑢

(︀
𝜋-
𝑢𝛼

-
𝑖𝑢+𝜋+

𝑢 𝛼
+
𝑖𝑢

)︀
−𝐶𝑖 (4.12a)

subject to:(︀
𝛿𝑖
)︀
: 𝑝𝑖−𝑀 ·𝐴𝑖+𝑧𝑖𝑆𝑖 ≤ 𝑃 𝑖, ∀𝑖 (4.12b)

(𝛿𝑖): −𝑝𝑖+𝑀 ·𝐴𝑖+𝑧𝑖𝑆𝑖 ≤ −𝑃 𝑖, ∀𝑖. (4.12c)

We now prove that the dual variables used as prices in Proposition 1 together with

the primal dispatch decisions satisfy the conditions for a competitive equilibrium.

Theorem 1. Consider the OPF-N2N-AB, using 𝜋p = 𝜆*𝑖 , 𝜋-
𝑢 = 𝜒−,*

𝑢 and 𝜋+
𝑢 = 𝜒+,*

𝑢

as the LMPs and A–LBPs constitutes a competitive equilibrium.

Proof . Each generator 𝑖’s profit maximization problem (GPM𝑖) is modeled as given

in Model 8, which is abbreviated below as GPM𝑖-N2N-AB. The first-order optimal-

ity conditions of this optimization with respect to decision variables 𝑝𝑖, 𝛼-
𝑖𝑢, and 𝛼+

𝑖𝑢

lead to the expressions (4.13a),(4.13b), and (4.13c), respectively:

𝜋𝑖 = 2𝑐2,𝑖(𝑝𝑖 −𝑀 ·𝐴𝑖) + 𝑐1,𝑖 + 𝛿𝑖 − 𝛿𝑖, ∀𝑖 (4.13a)

𝜋-
𝑢 = 𝜇𝑢

(︀
2𝑐2,𝑖(𝑝𝑖−𝑀 ·𝐴𝑖)+𝑐1,𝑖+𝛿𝑖−𝛿𝑖

)︀
+
(︀
Σ−

𝑢𝐴𝑖

)︀(︂
2𝑐2,𝑖+

𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀)︂
, ∀𝑖,𝑢 (4.13b)

𝜋+
𝑢 = −𝜇𝑢

(︀
2𝑐2,𝑖(𝑝𝑖−𝑀 ·𝐴𝑖)+𝑐1,𝑖+𝛿𝑖−𝛿𝑖

)︀
,+
(︀
Σ+

𝑢𝐴𝑖

)︀(︂
2𝑐2,𝑖+

𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀)︂
, ∀𝑖,𝑢.(4.13c)

Due to the equality of first-order optimality conditions in (4.13a)–(4.13c) and in

(4.10a)–(4.10c), it follows that the primal (𝑝𝑖, 𝛼+
𝑖𝑢, 𝛼

-
𝑖𝑢) and dual (𝜆𝑖, 𝜒-

𝑢, 𝜒
+
𝑢 ) solu-

tion from the centralized OPF-N2N-AB model, which satisfies constraints (4.9b),

(4.9g) and (4.9f), also solves the GPM𝑖-N2N-AB model for each generator. Hence,

the prices obtained in Proposition 1 and derived from the OPF-N2N-AB, (4.10a)–

(4.10c), constitute a competitive equilibrium, i.e. 𝜋p = 𝜆*𝑖 , 𝜋-
𝑢 = 𝜒−,*

𝑢 and 𝜋+
𝑢 =

𝜒+,*
𝑢 . �

122



Chapter 4. Energy and Balancing Markets 4.4. Symmetric and System-wide Markets

4.4 Symmetric and System-wide Markets

Using the results derived in Section 4.3, we consider several particular cases that

allow for relating the obtained prices to existing results in [69, 70, 126, 131, 133,

134, 140, 143]. A summary of the relationship between the pricing for the different

balancing schemes is provided in Table 4.1.

4.4.1 Asymmetric System-wide Balancing – OPF-SW-AB

Instead of the node-to-node balancing regulation policy (4.4a), the proposed OPF-N2N-AB

can be modified to use a balancing policy based on the aggregated system-wide un-

certainty as in, e.g., [69, 131, 133, 134]. Here, the system-wide uncertainty is given

as:

Ω-=
∑︁

𝑢

𝜔-
𝑢, Ω+=

∑︁

𝑢

𝜔+
𝑢 , (4.14)

where in turn Ω+ and Ω- are linked by:

E
[︀
Ω++Ω-]︀=E[Ω]=0, (4.15)

and the the node-to-node participation factors used in the OPF-N2N-AB are set to

system-wide participation factors by enforcing 𝛼-
𝑖𝑢=𝛼-

𝑖 and 𝛼+
𝑖𝑢=𝛼+

𝑖 . As a result we

have that 𝐴𝑖=
[︀
𝛼-
𝑖, 𝛼

+
𝑖

]︀⊤. Although this approach resembles the pricing mechanism

from [69, 131, 133, 134], there is a notable distinction of this representation, because

it still accounts for asymmetric distributions and asymmetric provision of balancing

services.

We define Ω-/+=
[︀
Ω-,Ω+]︀ and expected value of Ω-/+ is then given by𝑀=E

[︁
Ω-/+

]︁

=[−𝜈, 𝜈], where 𝜈=
∑︀

𝑢 𝜇𝑢=
∑︀

𝑢 E[𝜔+
𝑢 ]=−∑︀𝑢 E[𝜔-

𝑢] is the expected value of the ag-

gregated asymmetric forecast errors. Finally, the covariance matrix of Ω-/+ is defined

as Σ = 𝑐𝑜𝑣
(︁
Ω-/+

)︁
.

1) Generation Output: Under the asymmetric balancing provision with system-

wide participation factors, we reformulate Eqs. (4.4a) and (4.4b) as follows:
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𝑝𝑖 = 𝑝𝑖−𝛼-
𝑖Ω

-−𝛼+
𝑖 Ω

+, ∀𝑖 (4.16a)
(︀
𝜒-, 𝜒+)︀: 1 =

∑︁

𝑖

𝛼-
𝑖 =

∑︁

𝑖

𝛼+
𝑖 . (4.16b)

2) Energy and Balancing Prices:

Following the procedure described in Proposition 1, we derive the following

prices:

𝜆𝑖 = 𝑐2,𝑖(𝑝𝑖 −𝑀 ·𝐴𝑖)+𝑐1,𝑖+𝛿𝑖−𝛿𝑖, ∀𝑖 (4.16c)

𝜒- =
1

|𝒢|
∑︁

𝑖

[︂
𝜈𝜆𝑖+(Σ-𝐴𝑖)

(︂
2𝑐2,𝑖+

𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀)︂]︂
, (4.16d)

𝜒+ =
1

|𝒢|
∑︁

𝑖

[︂
−𝜈𝜆𝑖+

(︀
Σ+𝐴𝑖

)︀(︂
2𝑐2,𝑖+

𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀)︂]︂
, (4.16e)

where Σ− and Σ+ are the rows of the covariance matrix Σ related to the asymmet-

ric forecast errors Ω- and Ω+, respectively. Additionally, 𝑆𝑖=
√︀
𝐴⊤

𝑖 Σ𝐴𝑖=
⃦⃦
𝐴𝑖Σ

1/2
⃦⃦
2
.

Note that the value of 𝑆𝑖 in the OPF-SW-AB and in the derived balancing poli-

cies presented below does not equal that of the OPF-N2N-AB. Even though the

expression for its calculation is the same, the way in which the vector 𝐴𝑖 and the

matrix Σ are formed depends on the balancing policy. Notably, the A–LBPs be-

come dependent on the aggregated asymmetric uncertainty in the system and as

such are equal for all the RES nodes, i.e., the generators are paid to balance the net

system imbalances independently of the source. Hence, relative to OPF-N2N-AB, a

system-wide balancing approach does not capture a one-to-one relationship between

individual sources of uncertainty and reserve providers, which may lead to inefficient

price signaling.

4.4.2 Symmetric Node-to-Node Balancing – OPF-N2N-SB

Another modification of OPF-N2N-AB is derived under the assumption that con-

trollable generators provide balancing regulation using nodal but symmetric partici-

pation factors, 𝛼𝑖𝑢 for a symmetric forecast error 𝜔𝑢=𝜔-
𝑢 +𝜔+

𝑢 . See, e.g., [140, 143].

Under these assumptions, we obtain 𝛼𝑖𝑢=𝛼-
𝑖𝑢=𝛼+

𝑖𝑢 and 𝐴𝑖=
[︀
𝛼𝑖1, 𝛼𝑖2, ..., 𝛼𝑖|𝒰|

]︀⊤. 𝜔

is the vector of nodal forecast errors and Σ is the covariance matrix of the nodal
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forecast errors.

1) Generation Output: Using these assumptions, (4.4a), (4.4b), (4.6) can be

reformulated as follows:

𝑝𝑖 = 𝑝𝑖 −
∑︀

𝑢(𝛼𝑖𝑢𝜔𝑢), ∀𝑖 (4.17a)

𝐶𝑖 = 𝑐𝑖(𝑝𝑖) + 𝑐2,𝑖𝑆𝑖, ∀𝑖, (4.17b)

(𝜒𝑢): 1 =
∑︁

𝑢

𝛼𝑖𝑢, ∀𝑢. (4.17c)

Expression (4.17b) no longer includes the expected balancing costs, which is can-

celled out by symmetric forecast errors.

2) Probabilistic Capacity Limits: Similarly to the expected cost in (4.17b), the

capacity limits do not consider the asymmetric nodal RES forecast errors, which

makes it possible to recast them as second-order conic constraints dependent on the

variances of the nodal forecast errors only:

(︀
𝛿𝑖
)︀
: 𝑝𝑖 + 𝑧𝑖𝑆𝑖 ≤ 𝑃 𝑖, ∀𝑖 (4.17d)

(𝛿𝑖): −𝑝𝑖 + 𝑧𝑖𝑆𝑖 ≤ −𝑃 𝑖, ∀𝑖 (4.17e)

3) Energy and Balancing Prices: Following the procedure described in Proposi-

tion 2, we derive the following prices:

𝜆𝑖 = 2𝑐2,𝑖𝑝𝑖 + 𝑐1,𝑖 + 𝛿𝑖 − 𝛿𝑖, ∀𝑖 (4.17f)

𝜒𝑢 =
1

|𝒢|
∑︁

𝑖

(︂
(Σ𝑢𝐴𝑖)

(︂
2𝑐2,𝑖 +

𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖 + 𝛿𝑖

)︀)︂)︂
, ∀𝑢, (4.17g)

where Σ𝑢 is the row of the covariance matrix Σ related to the nodal forecast error

𝜔𝑢. The LMPs do not change with the forecasted RES generation and the balancing

reserve has only one price 𝜒𝑢, which is insensitive to the direction of the RES forecast

errors and the LMPs. Note that the results in (4.17f) and (4.17g) are similar those

from [69, 133, 134].
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4.4.3 System-wide Symmetric Balancing – OPF-SW-SB

The most studied chance-constrained electricity market design has system-wide,

symmetric RES forecast errors and symmetric generation response firstly intro-

duced in [131] and then applied in [69, 133, 134]. This case can be modeled within

the proposed OPF-N2N-AB if Ω is the system-wide RES forecast error, such that

Ω=
∑︀

𝑢 𝜔𝑢, 𝐴-
𝑖=𝐴

+
𝑖 =[𝛼𝑖,∀𝑢] and 𝑆𝑖=𝑆𝑖=𝛼𝑖𝑠, where 𝑠2 is the total sum over the

covariance matrix, 𝑠2 = 𝑒Σ𝑒𝑇 .

1) Generation Output: Using these assumptions, (4.4a), (4.4b), (4.5), (4.6) can

be reformulated as follows:

𝐶𝑖 = 𝑐𝑖(𝑝𝑖) + 𝑐2,𝑖𝛼
2
𝑖 𝑠

2, ∀𝑖 (4.18a)

𝑝𝑖 = 𝑝𝑖 − 𝛼𝑖Ω, ∀𝑖 (4.18b)

(𝜒): 1 =
∑︁

𝑖

𝛼𝑖. (4.18c)

2) Probabilistic Capacity Limits: Similarly to (4.17d)-(4.17e), the capacity limits

are reduced to the linear constraints:

(︀
𝛿𝑖
)︀
: 𝑝𝑖 + 𝑧𝑖𝛼𝑖𝑠 ≤ 𝑃 𝑖, ∀𝑖 (4.18d)

(𝛿𝑖): −𝑝𝑖 + 𝑧𝑖𝛼𝑖𝑠 ≤ −𝑃 𝑖, ∀𝑖. (4.18e)

3) Energy and Balancing Prices: Following the procedure described in Proposi-

tion 2, we derive the following prices:

𝜆𝑖 = 2𝑐2,𝑖𝑝𝑖 + 𝑐1,𝑖 + 𝛿𝑖 − 𝛿𝑖, ∀𝑖 (4.18f)

𝜒 =
1

|𝒢|
∑︁

𝑖

(︀
2𝑐2,𝑖𝑠

2𝛼𝑖 + 𝑧𝑖𝑠
(︀
𝛿𝑖 + 𝛿𝑖

)︀)︀
. (4.18g)

Table 4.1: Variables for CC-OPF with balancing regulation
Balancing Type Participation Factor Energy Price Balancing Price

𝛼-
𝑖𝑢 𝛼+

𝑖𝑢 𝜆𝑖 𝜒-
𝑢 𝜒+

𝑢

Asymmetric Node-to-Node (OPF-N2N-AB) 𝛼-
𝑖𝑢 𝛼+

𝑖𝑢 𝑐2,𝑖(𝑝𝑖 −𝑀 · 𝐴𝑖)+𝑐1,𝑖+𝛿𝑖−𝛿𝑖
1
|𝒢|
∑︀

𝑖

[︁
𝜇𝑢𝜆𝑖+(Σ−

𝑢𝐴𝑖)
(︁

2𝑐2,𝑖+
𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀)︁]︁
1
|𝒢|
∑︀

𝑖

[︁
−𝜇𝑢𝜆𝑖+(Σ+

𝑢𝐴𝑖)
(︁

2𝑐2,𝑖+
𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀)︁]︁

System-wide (OPF-SW-AB) 𝛼-
𝑖 𝛼+

𝑖
1
|𝒢|
∑︀

𝑖

(︁
(Σ𝑢𝐴𝑖)

(︁
2𝑐2,𝑖 + 𝑧𝑖

𝑆𝑖

(︀
𝛿𝑖 + 𝛿𝑖

)︀)︁)︁

Symmetric Node-to-Node (OPF-N2N-SB) 𝛼𝑖𝑢 𝛼𝑖𝑢 2𝑐2,𝑖𝑝𝑖 + 𝑐1,𝑖 + 𝛿𝑖 − 𝛿𝑖

1
|𝒢|
∑︀

𝑖

[︁
𝜈𝜆𝑖+(Σ-𝐴𝑖)

(︁
2𝑐2,𝑖+

𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀)︁]︁
1
|𝒢|
∑︀

𝑖

[︁
−𝜈𝜆𝑖+(Σ+𝐴𝑖)

(︁
2𝑐2,𝑖+

𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀)︁]︁

System-wide (OPF-SW-SB) 𝛼𝑖 𝛼𝑖
1
|𝒢|
∑︀

𝑖

(︀
2𝑐2,𝑖𝑠

2𝛼𝑖 + 𝑧𝑖𝑠
(︀
𝛿𝑖 + 𝛿𝑖

)︀)︀
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4.5 Discussion and Insights on Locational Energy

and Balancing Prices

4.5.1 Symmetric vs Asymmetric Energy Pricing

In the asymmetric balancing schemes, the energy price 𝜆𝑖 reflects not only cost of

generation through cost coefficients 𝑐2,𝑖 and 𝑐1,𝑖, and the generation capacity limits

through duals 𝛿𝑖 and 𝛿𝑖, but also the expected generation adjusted by the expected

real-time balancing efforts, i.e., 𝑝𝑖 − 𝑀 ·𝐴𝑖. Therefore, the expected asymmetric

balancing provision affects the LMPs by reducing or increasing the expected avail-

able generation at the generation nodes. The influence of the expected balancing

provision on the LMPs does not occur in symmetric balancing markets, since the

expected balancing provision equals zero.

4.5.2 Symmetric vs Asymmetric Balancing Pricing

The locational balancing prices (LBPs) in the asymmetric balancing frameworks

include a term that relates the LMPs 𝜆𝑖 to the nodal expected asymmetric forecast

error 𝜇𝑢 in (4.10b)–(4.10c), and to the expected system-aggregated forecast error 𝜈

in (4.16d)–(4.16e). Therefore, the asymmetric LBPs reflect the expected balancing

need at the uncertain node and the LMP of the balancing generator.

4.5.3 Nodal vs System-Wide Balancing Pricing

It is of interest to understand and quantify how the introduction of uncertainty by

RES affects the system balancing prices. This analysis can be done by evaluating the

relationship between the LBPs and the system-wide balancing prices. To simplify

such comparison, we will focus on the symmetric balancing frameworks, since the

asymmetric balancing analysis leads to more complicated expressions which could

hinder the economic interpretation of the results.

In a symmetric balancing participation design defined as generators covering the

same proportion of the imbalance independently of the source, i.e., 𝛼𝑖𝑢=𝛼𝑖𝑣, ∀𝑖, 𝑢, 𝑣
as in Section 4.4.3 the system-wide and node-to-node participation factors are equal:
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𝛼𝑖=𝛼𝑖𝑢, and 𝛼𝑖Ω=
∑︀

𝑢(𝛼𝑖𝑢𝜔𝑢); ∀𝑖, 𝑢. It follows that:

𝑆𝑖 =
⃦⃦
𝐴𝑖Σ

1/2
⃦⃦
2

= 𝛼𝑖𝑠, ∀𝑖. (4.19)

It is possible to derive a relationship 𝛽𝑢 between the LBPs and the system-wide

balancing price, where

𝛽𝑢 =
𝜒𝑢

𝜒
, ∀𝑢. (4.20)

An analytical expression for (4.20) can be derived by factorizing (4.17g) in the

following way:

𝜒𝑢=
1

|𝒢|
∑︁

𝑖

(︂
(Σ𝑢𝐴𝑖)

(︂
2𝑐2,𝑖 +

𝑧𝑖
𝑆𝑖

(︀
𝛿𝑖 + 𝛿𝑖

)︀)︂)︂
, ∀𝑢 (4.21a)

using identity (4.19) and since 𝛼𝑖𝑣 = 𝛼𝑖, ∀𝑖, 𝑣

𝜒𝑢=
1

|𝒢|
∑︁

𝑖

[︃∑︁

𝑣

(𝛼𝑖𝑠𝑢𝑣)

(︂
2𝑐2,𝑖+𝑧𝑖

𝛿𝑖+𝛿𝑖
𝛼𝑖𝑠

)︂]︃
, ∀𝑢 (4.21b)

=
1

|𝒢|
∑︁

𝑖

[︂∑︀
𝑣 𝑠𝑢𝑣
𝑠2

(︀
2𝑐2,𝑖𝑠

2𝛼𝑖+𝑧𝑖𝑠
(︀
𝛿𝑖+𝛿𝑖

)︀)︀]︂
, ∀𝑢 (4.21c)

=

∑︀
𝑣 𝑠𝑢𝑣
𝑠2

[︃
1

|𝒢|
∑︁

𝑖

(︀
2𝑐2,𝑖𝑠

2𝛼𝑖+𝑧𝑖𝑠
(︀
𝛿𝑖+𝛿𝑖

)︀)︀
]︃
, ∀𝑢 (4.21d)

where the term inside the square brackets equals the balancing price 𝜒 (4.18g).

Using 𝑠2 = 𝑒Σ𝑒 =
∑︀

𝑣,𝑤 𝜎𝑣𝑤 we get

𝜒𝑢=

∑︀
𝑣 𝜎𝑢𝑣∑︀

𝑣,𝑤 𝜎𝑣𝑤
𝜒, ∀𝑢. (4.21e)

Finally, by rearranging the terms to match 𝛽𝑢’s definition (4.20)

𝛽𝑢 =

∑︀
𝑣 𝜎𝑢𝑣∑︀

𝑣,𝑤 𝜎𝑣𝑤
, ∀𝑢. (4.21f)

It must be noted that 𝛽𝑢 does not depend on system parameters, variables, or du-

als. Thus, the nodal balancing price depends on the effect that the uncontrollable

generator 𝑢 has on the system-wide variance, i.e., the higher the introduced uncer-

tainty by generator 𝑢, the higher the price that it must pay for deviations from its

forecasted generation. It can be easily seen that
∑︀

𝑢 𝛽𝑢 = 1. This equivalence allows

to understand the factor 𝛽𝑢 as node 𝑢’s contribution to the overall system balancing
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price.

As the LBPs 𝜒𝑢 carry information on the marginal balancing cost that a node

with uncertainty adds to the system, they can be used to incentivize system-beneficial

RES deployment strategies. For example, a RES investor would prefer to install their

RES project at a node with low, or ideally negative, correlation with the existing

uncertain RES in the system. Here, necessary compensations for introducing un-

certainty and increasing balancing requirements will be lower, possibly yielding a

neutral or even negative value of 𝛽𝑢.

The balancing prices derived from the proposed framework highlight the value

that the system as a whole derives from complementary RES generation,i.e., RES

generators with negative correlation to other RES, since a RES that compensates

the imbalance of others provides load balancing support and as such its balancing

costs are lower.

4.6 Analysis of RES Costs

Typically, RES operators submit zero-cost bids to electricity market operators, re-

flecting their zero or near-zero marginal production cost. However, they inflict non-

zero marginal cost to the system by driving the need for procuring balancing reserve

products. This section compares two approaches to quantify these costs by (i) using

the balancing payments to controllable generation resources and by (ii) using the

marginal balancing cost. We show that both approaches can be equivalent.

4.6.1 Compensating Balancing Cost

We define the the balancing cost incurred by the system for compensating imbalances

of a RES’ forecast as 𝐶𝛼
𝑢 given by the sum of payments for balancing regulation

towards reserve-providing generators:

𝐶𝛼
𝑢 = 𝜒𝑢

∑︁

𝑖

𝛼𝑖𝑢, ∀𝑢 (4.22a)

and since
∑︀

𝑖 𝛼𝑖𝑢=1 we obtain:
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𝐶𝛼
𝑢 =𝜒𝑢=

1

|𝒢|
∑︁

𝑖

[︂∑︀
𝑣 𝛼𝑖𝑣𝜎𝑢𝑣
𝑆𝑖

[︀
2𝑐2,𝑖𝑆𝑖+𝑧𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀]︀]︂
,∀𝑢. (4.22b)

The balancing compensation cost 𝐶𝛼
𝑢 paid by the RES at 𝑢 depends on the

uncertainty it introduces to the system (𝜎𝑢,𝑢) and its correlation with other nodes

𝑣 (𝜎𝑢,𝑣). If the RES at 𝑢 does not introduce uncertainty to the system, then 𝐶𝛼
𝑢 =0.

4.6.2 RES Costs as Marginal Balancing Costs

Since the RES are modelled with zero marginal operating cost, their revenue can be

calculated as:

𝑅𝑢 = −𝜕ℒSN

𝜕w𝑢

· w𝑢, ∀𝑢 (4.23)

where ℒSN is the Lagrangian function for the OPF-N2N-SB under the node-to-

node symmetric balancing framework presented in Section 4.4.2. If the standard

deviation 𝜎𝑢 of 𝜔𝑢 is proportional to its forecast injection, i.e. 𝜎𝑢=𝜅𝑢w𝑢, and 𝜁𝑢𝑣

is the correlation coefficient between uncertain injections at nodes 𝑢 and 𝑣 [141].

Then, the marginal revenue for the RES resource is:

−𝜕ℒSN

𝜕w𝑢

=𝜆𝑢−
∑︁

𝑖

(︂∑︀
𝑣 𝛼𝑖𝑢𝛼𝑖𝑣𝜁𝑢𝑣𝜅𝑢𝜎𝑣

𝑆𝑖

[︀
2𝑐2,𝑖𝑆𝑖+𝑧𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀]︀)︂
, ∀𝑢 (4.24)

where the positive part of expression (4.24) can be understood as the active power

price paid to RES generator 𝑢, 𝜋p
𝑢, and the negative one as the cost associated

with its stochastic generation, 𝑐𝑢. If the uncontrollable generation 𝑢 introduces no

uncertainty to the system, i.e., 𝜅𝑢=0, then 𝑐𝑢=0. The operation cost of the RES

generator is then given by:

𝐶w
𝑢 = 𝑐𝑢w𝑢, ∀𝑢. (4.25)
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4.6.3 Cost Equivalence between the Compensating and Marginal

Balancing Costs

The equivalence between 𝐶𝛼
𝑢 and 𝐶P

𝑢 can be demonstrated by examining (4.25):

𝐶w
𝑢 =𝑐𝑢w𝑢

=w𝑢

∑︁

𝑖

(︂∑︀
𝑣 𝛼𝑖𝑢𝛼𝑖𝑣𝜁𝑢𝑣𝜅𝑢𝜎𝑣

𝑆𝑖

[︀
2𝑐2,𝑖𝑆𝑖+𝑧𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀]︀)︂
, ∀𝑢 (4.26a)

=
∑︁

𝑖

(︂∑︀
𝑣 𝛼𝑖𝑢𝛼𝑖𝑣𝜁𝑢𝑣𝜅𝑢w𝑢𝜎𝑣

𝑆𝑖

[︀
2𝑐2,𝑖𝑆𝑖+𝑧𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀]︀)︂
, ∀𝑢 (4.26b)

since 𝜎𝑢=𝜅𝑢w𝑢 and 𝜎𝑢𝑣=𝜁𝑢𝑣𝜎𝑢𝜎𝑣

𝐶w
𝑢 =
∑︁

𝑖

(︂∑︀
𝑣 𝛼𝑖𝑢𝛼𝑖𝑣𝜎𝑢𝑣

𝑆𝑖

[︀
2𝑐2,𝑖𝑆𝑖+𝑧𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀]︀)︂
, ∀𝑢 (4.26c)

=𝛼𝑖𝑢

∑︁

𝑖

(︂∑︀
𝑣 𝛼𝑖𝑣𝜎𝑢𝑣
𝑆𝑖

[︀
2𝑐2,𝑖𝑆𝑖+𝑧𝑖

(︀
𝛿𝑖+𝛿𝑖

)︀]︀)︂
, ∀𝑢 (4.26d)

replacing 𝜒𝑢

𝐶w
𝑢 = 𝜒𝑢

∑︁

𝑖

𝛼𝑖𝑢 = 𝐶𝛼
𝑢 , ∀𝑢. (4.26e)

As shown in Eq. (4.26e), the total operating cost of uncontrollable generation re-

sources is equivalent when computed from balancing payments 𝐶𝛼
𝑢 and marginal

costs 𝐶w
𝑢 . However, the latter holds only if the total operating cost of uncontrollable

generation resources are computed under the assumption that the variances, 𝜎𝑢,𝑣,

are proportional to the injected power and fixed node-to-node correlation factors,

i.e., 𝜎𝑢=𝜅𝑢w𝑢. If these assumptions do not hold, the total operating cost of uncon-

trollable generation resources can only be computed via the balancing payments in

(4.22b).

4.7 Numerical Experiments

In this section, the proposed stochastic market-clearing model OPF-N2N-AB and

its modifications from Section 4.4 are evaluated on a modified IEEE 118-bus case

[134]. The experiments were conducted using Julia 1.53, JuMP 0.21.6 and Mosek

[144] on an Intel i7-1165G7 processor clocked at 2.80GHz with 16 GB of RAM. The
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code and data supplement can be downloaded from [145].

4.7.1 Test Case and Stochastic Data

For this case study, we add 11 utility-scale wind farms to the IEEE-118 bus test-

system as stochastic resources. Table 4.2 indicates their placement in the system.

Forecasts and forecast error distributions are emulated from real data of onshore

wind farms in different European regions collected between January 1st, 2020 and

October 1st. This data is available on the ENTSO-E transparency database [146].

Table 4.2 summarizes the used wind power data. Note, that the time series analyzed

were scaled per unit of capacity (p.u.o.C).

To study the impact of stochastic generation at different penetration levels, we

create four renewable penetration scenarios by scaling the installed capacity of each

wind farm by 50%, 100%, 200%, and 400%. In these scenarios, the available gen-

eration from all wind farms covers 4.8%, 9.7%, 19.4%, and 38.8% of total demand,

respectively.

Every wind farm was assigned an independent normal distribution 𝜔𝑢 ∼ 𝒩 (0, 𝜎𝑢)

with 𝜎𝑢 being estimated from data. From these parent distributions truncated dis-

tributions were inferred. For asymmetric balancing designs, we generate truncated

Normal distributions 𝜔+
𝑢 and 𝜔+

𝑢 from 𝜔𝑢 with the following parameters:

𝜎±
𝑢 = 𝜎𝑢

√︂
2𝜋 − 4

2𝜋
, 𝜇±

𝑢 = 𝜎𝑢

√︂
2

𝜋
(4.27)

We set the chance-constraint confidence level at (1−𝜖)=0.99, obtaining 𝑧𝑖≈9.95

Table 4.2: Forecasts 𝑤𝑢 mean and standard deviations at node 𝑢 [p.u.o.C.]

𝑢 3 8 11 20 24 26 31 38 43 49 53
𝑤𝑢 0.112 0.801 0.61 0.086 0.142 0.0 0.056 0.137 0.353 0.207 0.305
𝜎𝑢 0.1 0.26 0.22 0.25 0.22 0.19 0.14 0.44 0.17 0.13 0.07
𝜇𝑢 0.1544 0.4101 0.3539 0.3962 0.3483 0.3029 0.2267 0.7016 0.2791 0.2113 0.1106
𝜎-
𝑢 0.06 0.155 0.142 0.116 0.121 0.097 0.087 0.279 0.103 0.079 0.039

𝜎+
𝑢 0.056 0.155 0.126 0.19 0.142 0.134 0.084 0.251 0.108 0.081 0.045
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with the Chebyshev inequality as in [69].

4.7.2 Solution Methodology

Chance-constrained market clearing procedures as proposed in [131, 132, 133, 134]

can be solved in a single or two-step2 procedure using off-the-shelf solvers. However,

solving OPF-N2N-AB and its modifications shown in Section 4.4 requires dealing

with bilinear terms in the objective function. Therefore, we use McCormick en-

velopes to convexify the bilinear terms in (4.9a). The obtained envelopes are then

sequentially tightened around the initial operating point or one that was produced

by the previous iteration to improve the approximation. The proposed sequential

solution approach based on using off-the-shelf solvers is summarized as follows:

• Step 1. Obtain a solution to a convex approximation of the original OPF-N2N-AB

problem.

• Step 2. Tighten the convex approximation around Step 1 ’s solution by using a

decreasing scalar factor to reduce the distance between its obtained operation

point and the current bounds.

• Step 3. Stop if the convex approximation is good enough. If not, update and

return to Step 1 and repeat.

Two important notes must be made on the proposed solution methodology. First,

the convexified problem always yields a feasible solution to the OPF-N2N-AB, this

corresponds to the fact that the convexification is introduced to the problem’s objec-

tive, rather than to its constraints. Second, an optimal solution �̂�* of the convexified

problem provides an upper bound to the objective of the original non-convex prob-

lem, i.e., 𝐶(𝑥*) ≤ 𝐶(�̂�*), where 𝐶(·) is the objective function of OPF-N2N-AB,

and 𝑥* is an optimal solution to the original non-convex version of OPF-N2N-AB.

On the other hand the optimal objective value of the convexified problem 𝐶(�̂�*)

provides a lower bound to the objective of the original non-convex problem, i.e.,
2To derive prices from a chance-constrained unit commitment problem, it is necessary to run

the problem a second time with fixed binary variable to obtain prices from dual multipliers. See
[132].
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𝐶(�̂�*) ≤ 𝐶(𝑥*). Therefore, we can observe that 𝐶(�̂�*) ≤ 𝐶(𝑥*) ≤ 𝐶(�̂�*). Whereas

𝐶(𝑥*) cannot be computed directly, both values 𝐶(�̂�*) and 𝐶(�̂�*) can. We evaluate

as the stopping criteria on Step 3 the approximation accuracy 100(𝐶(�̂�*)/𝐶(�̂�*) − 1).

Once a the approximation accuracy is below the set tolerance level, we can derive

the prices using the convexification of model OPF-N2N-AB.

4.7.3 Comparison of Balancing Frameworks

System-wide and node-to-node balancing

First, we compare the symmetric balancing in the system-wide and node-to-node

cases. Both balancing frameworks are solved using Mosek. Table 4.3 summarizes

the main results for our base scenario with a renewable penetration rate of 9.7%.
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Figure 4.3: Relationship between 𝛽(±)
𝑢 and stochastic generation parameters.

Our results show that symmetric, zero-mean balancing yields the same objective

value in both system-wide and node-to-node frameworks. Moreover, we observe

regarding the dual values 𝜒 and 𝜒𝑢, that the sum of the nodal balancing prices

equals the system-wide balancing price, i.e.,
∑︀

𝑢 𝜒𝑢 = 𝜒, as shown analytically in

Eq. (4.20) above.

The dependence of 𝜒𝑢 on the variance 𝜎2
𝑢 is illustrated in Figure 4.3. A node-to-

node balancing framework provides better pricing signals by reflecting the influence

the forecast error variance introduced by the RES has on the price paid for its
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balancing.

Asymmetric balancing provision with varying amounts of renewable pen-

etration

Next, we study the asymmetric balancing provision as proposed in Section 4.7.2

with different renewable penetration levels. To facilitate comparison, results are

presented alongside those obtained using symmetric balancing (discussed in Section

4.7.3 above) in Figure 4.4.

Figure 4.4 contains the best objective value found in the sequential process de-

scribed in Section 4.7.2, such that 𝐶(�̂�*) ≈ 𝐶(𝑥*). Further it shows the payments

collected from consumers (𝜆𝐷), payments disbursed to wind farms (𝜆𝑊 ) and con-

ventional generators (
∑︀

𝑖 Π𝑖 ), respectively for the studied renewable penetration

levels of 4.8%, 9.7%, 19.4%, and 38.8%.

With an increasing penetration of wind generation, system cost given by objec-

tive value 𝐶(𝑥*) are decreasing due to the greater availability of low-cost energy

from RES. This leads to notable differences in payments made to conventional gen-

erators. However, for low renewable penetration rates, the total cost barely change

between market frameworks.

Our experiments confirm the revenue adequacy property of the prices, i.e., 𝜆𝐷 =

𝜆𝑊 +
∑︀

𝑖 Π𝑖. Table 4.4 shows consumer payments, generator revenues and gener-

ation costs using different market designs. The difference in consumer payments

between asymmetric and symmetric balancing markets is defined as ∆𝜆𝐷. The

Table 4.3: Computational Results for Markets with Symmetric Balancing Provision
(SW, N2N)

SW N2N
𝑧* [$/ℎ] 127020.2 127020.2

𝜒 22.9 -

𝑢 3 8 11 20 24 26 31 38 43 49 53
∑︀

𝜒𝑢 0.4 2.822 2.102 2.634 2.036 1.539 0.862 8.258 1.307 0.749 0.205 22.9
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Figure 4.4: Optimization results under different balancing frameworks and renew-
able penetration. Where 𝑧* represents the objective value, 𝜆𝐷 consumer payments,
𝜆𝑊 wind payments and

∑︀
𝑖 Π𝑖 the generators’ revenue.

approximation error introduced by the convexification is captured in the term 𝑒𝑟𝑟.

As summarized in Figure 4.4 and Table 4.4, markets with asymmetric node-to-node

balancing show that significant reductions in consumer payments are possible. Eval-

uating the solution obtained with the relaxed model yields an approximation error

of 1.79%, which is not enough to explain consumer payment reductions of well over

9%.

Two main takeaways can be drawn from the obtained results. First, the approx-

imation method works very well for system-wide asymmetric balancing markets.

Given a solution, the objective differs by less than 0.0026% from the exact objec-

tive. Second, this market design yields consistent reductions in consumer payments

compared to symmetric balancing strategies.

Figure 4.5 provides insights as to how prices are formed in the proposed asym-

metric node-to-node market framework. We can observe that the dual values 𝛿 are

proportional to the system’s renewable penetration level. This is due to less dis-

patchable generating capacity being required. Thus, less expensive generators must
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Table 4.4: Consumer Payments 𝜆𝐷 and Approximation Errors by Scenario

Scenario 4.8% 9.7% 29.4% 38.8%
S-SW 𝜆𝐷 [$∖ℎ] 188965.12 188082.21 174123.79 164091.47

A-SW
𝜆𝐷 [$∖ℎ] 188940.56 182724.69 170674.6 163494.45
∆𝜆𝐷 [%] -0.013 -2.85 -1.98 -0.364
err [%] 4.0e-5 1.0e-4 3.8e-4 2.63e-3

S-N2N 𝜆𝐷 [$∖ℎ] 188965.16 188082.55 174123.41 164091.43

A-N2N
𝜆𝐷 [$∖ℎ] 188869.01 188465.01 168506.01 148982.8
∆𝜆𝐷 [%] -0.051 +0.2 -3.23 -9.21
err [%] 0.70217 1.01088 1.15133 1.79429

be dispatched to clear the market. Simultaneously, the variance introduced into the

system increases with higher onshore wind capacity, which leads to tighter chance

constraints (4.9i) and (4.9h). Accordingly, more dispatchable generation capacity

must be reserved for balancing, which leads to the increase in dual values and,

subsequently, prices.
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Figure 4.5: Dual values 𝛿 and 𝛿 for different renewable capacity levels.

4.8 Conclusion

In this chapter, we have described and analyzed the economic impact of four ap-

proaches for the provision of balancing regulation in a chance-constrained optimal

power flow: system-wide symmetric, node-to-node symmetric, system-wide asym-
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metric, and node-to-node asymmetric. Both the locational marginal electricity prices

and the balancing regulation prices are derived and are proven to establish a compet-

itive equilibrium for all the balancing frameworks. The asymmetric node-to-node

regulation provides the lowest balancing prices while introducing to the electric-

ity prices a dependence on the generation participation in the balancing provision.

We have shown that asymmetric reserve provision facilitates more efficient reserve

pricing. This it is more relevant as the renewable generation capacity increases.

Additionally, the other configurations are proven to be particular subcases of the

asymmetric node-to-node regulation one, thus yielding higher operational costs.
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Chapter 5

Conclusions and Future Work

In this thesis, we aimed to provide a family of mathematical models for enhanced

characterization of flexibility measures available to the electric power systems. Un-

der the framework of convex optimization theory, we approached from three angles

the flexibility provision in electric power systems. We focus our investigation on the

mathematical modeling for the representation of i) the characterization of electric

energy storage systems for their use in operation and planning models, ii) a market

design for integrated heat-and-power microgrids, and iii) wholesale stochastic elec-

tricity markets with asymmetric and node-to-node balancing provision for renewable

variations.

5.1 Conclusions

The general conclusions of the doctoral research presented in this thesis are listed

as follows.

1. Pertaining electric energy storage characterization in operation scheduling

models:

• The use of ideal energy storage characterization models with constant

efficiency and power limits does not properly represent the operational

characteristics of batteries. It was evindenced in the performed studies

that the use of ideal models leads to overestimating the flexibility pro-
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vided by storage units. This overestimation results in faliure to fulfill the

real-time dispatch commitments.

• At higher renewable penetration levels, there is a greater mismatch be-

tween the scheduled dispatch of energy storage units with ideal models

and their real-time operation. Thus, higher levels of real-time balancing

must be procured from more expensive flexibility sources, which increase

the system operation costs.

• The lifting of the energy storage operational variables, power, and stored

energy, to a three-dimensional space, enables the representation of non-

constant efficiencies and power limits as linear constraints in optimization

problems.

• The lifted three-dimensional representation can then be used in linear pro-

gramming (LP) and mixed-integer linear programming (MILP) models

to characterize energy storage operation more accurately. Unlike MILP

models, LP models preserve computational tractability while also accu-

rately representing the storage performance with a mean error of 1.2%

between the exact and approximated operation region.

2. Pertaining the heat exchange between integrated heat-and-power microgrids:

• Heat exchange markets between integrated heat-and-power microgrids

can be established based on convex optimization models with decom-

posable structure, preserving operation independence and privacy, since

they do not exchange technical parameters but only the desired exchange

quatinty and its bid price.

• The exchange of heat between multi-energy microgrids increases their

electric operational flexibility by expanding the range in which the elec-

tricity generation can operate.

• Duality theory provides a framework for the derivation of heat exchange

prices. The derived prices constitute a competitive equilibrium, with each

participating microgrid maximizing its modeled operational profits.
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• The heat exchange prices are dependent on three main factors: i) the

interconnection efficiency, ii) the interconnection capacity, and iii) the

local heating price at the importing microgrid.

3. Pertaining the design of energy and reserves electricity markets:

• The use of stochastic energy and reserves markets must represent the

asymmetric nature of renewable generation forecast errors. There exists

evidence of renewable generation asymmetric forecast errors in several

existing markets.

• Gaussian distributions and system-wide aggregation for the representa-

tion for renewable forecast errors overestimates the required reserve levels

in the system, resulting in greater balancing expenses.

• The asymmetric and node-to-node provision of generation balancing re-

duces the system operation costs. The costs’ reductions could boost new

renewable investment levels.

• The pricing of asymmetric and node-to-node balancing reflects the un-

certainty introduced in the system by renewable energy sources, i.e.,

sources with higher forecast error variance have higher associated balanc-

ing prices. Additionally, this type of pricing reflects the statistical corre-

lation between the generation uncertainty of renewable energy sources at

different locations.

• The dependence between the balancing prices and the uncertainty of re-

newable energy sources serves as a signal for investors to locate renewable

generation projects at zones with a negative correlation with the exist-

ing system’s renewable sources. In this manner, their balancing costs

would be further reduced even with larger shares of renewable generation

sources.

• The derived asymmetric and node-to-node balancing prices reflect the

compensation costs that the market operation could charge renewable

energy sources for introducing uncertainty in the system operation.
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5.2 Discussion and Future Work Recommendations

Considering the central role that the electric power systems and renewable genera-

tion will play in the future technological development of the energy sector, the wide

range of flexibility measures in electric networks and their possible interconnection

with other energy systems provide a challenging and attractive field for the develop-

ment of new markets, and communication, control, and planning strategies for the

flexible power systems operation.

As seen in this thesis, there is no unified framework for quantifying a system’s

flexibility. The lack of consensus in the literature corresponds to the extensive array

of flexibility measures within electric power systems and the additional layers of

complexity introduced by its interconnection with other energy systems. Unlocking

flexibility through the centralized operation of multi-energy systems, albeit techni-

cally feasible, must also correspond with the seamless coordination of the different

energy markets, which operate at different time scales [8].

An additional limitation for the flexibility analysis of electric power systems is

the gap existing between the control layer (order of minutes) in which the flexibility

measures operate and the planning horizon (in years) for the sizing and selection

of these measures. The flexibility study must also include the stochastic nature of

variable renewable resources, which increases the mathematical complexity of whole

system consideration. Finally, decentralized control and communication infrastruc-

tures must be developed to coordinate the different flexibility and energy systems

to enable a fast and cost-effective response to variable renewable generation.

The flexible development of future power systems will be heavily influenced

by understanding the characteristics of the technical, interconnection, and market

mechanism design resources available to electric networks.

Sound developments on convex optimization and mathematical modeling should

be at the center of our recommendation for unlocking efficiently flexibilities from

different sources in modern power systems. Although being at the foundations for

a proper flexibility characterization, such tools should be complemented with other

regulatory nature strategies to achieve more significant impact. Additionally, the
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simultaneous implementation of several sources of flexibility in the power system

calls for further investigation to estimate their degree of substituteness and com-

plementness. However, we have devoted our research efforts to quantify the impact

of different flexibility solutions for power systems with a large share of renewables.

Finally, power systems are complex per se, where multiple agents and bodies simul-

taneously interact while at the same time being heavily affected by externalities.

Such complex interaction analysis will be part of our future research avenues, be-

ing the current thesis one of the fundamental mathematical building blocks for the

flexibility characterization to further expand.
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Appendix A

Mixed-integer linear programming

(MILP) battery characterization

This appendix presents in Model A.1 the formulation of the mixed-integer linear

programming for the piecewise linearization of the battery performance character-

ization based on the triangle method presented in [93]. The state of the battery,

discharge and charge, is controlled by the binary variables 𝑧cha
𝑡 and 𝑧dis

𝑡 in (A.1a).

In this method, the 𝑆𝑂𝐶, the 𝑝out, and the 𝑝in are taken as reference dimensions

with sampling values in sets 𝑗, 𝑘, and 𝑙, respectively. The values of the variables

𝑆𝑂𝐶𝑡, the 𝑝out/in
𝑡 , and 𝑝in/cha

𝑡 are obtained as a convex combination of their repective

sampling points in (A.1b)-(A.1f) with the use of the real auxiliary variables 𝛼𝑗,𝑘,𝑡

and 𝛼𝑗,𝑙,𝑡, respectively used for the discharging and charging processes. The selection

of the approximating segments is done by teh special order set (SOS) constraints

(A.1g) and (A.1h). Expressions (A.1i) and (A.1j) define the linear combination of

the sampling points. Finally, constraints (A.1k) and (A.1l) define the relationship

between the sampling points and the selected approximation segments.
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Model 9 Li-ion battery mixed-integer linear programming model [MILP]
Variables:
𝑒𝑡, 𝑆𝑂𝐶𝑡 battery energy level (absolute and relative values) [Wh,–]
𝑝dis
𝑡 , 𝑝cha

𝑡 discharging and charging power [W]
𝑝out
𝑡 , 𝑝in

𝑡 power outgoing and incoming at the cells [W]
𝑧cha
𝑡 , 𝑧dis

𝑡 ∈ {0, 1} Binary variables indicating if the battery charging or discharg-
ing.

𝛼𝑗,𝑘,𝑡 Variable associated with each discharging breakpoint (𝑗, 𝑘).
𝛼𝑗,𝑙,𝑡 Variable associated with each charging breakpoint (𝑗, 𝑙).
𝛽up
𝑗,𝑘,𝑡, 𝛽

low
𝑗,𝑘,𝑡 ∈ {0, 1} Binary variables associated with the upper and lower triangles

of the rectangle corresponding to the intervals [𝑆𝑂𝐶𝑗, 𝑆𝑂𝐶𝑗+1]

and [𝑃 out
𝑘 , 𝑃 out

𝑘+1], for the characterization of the discharge curve.
𝛽up
𝑗,𝑙,𝑡, 𝛽

low
𝑗,𝑙,𝑡 ∈ {0, 1} Binary variables associated with the upper and lower triangles

of the rectangle corresponding to the intervals [𝑆𝑂𝐶𝑗, 𝑆𝑂𝐶𝑗+1]

and [𝑃 in
𝑙 , 𝑃

in
𝑙+1], for the characterization of the charge curve.

Constraints:

𝑧cha
𝑡 + 𝑧dis

𝑡 ≤ 1, ∀𝑡 (A.1a)

𝑆𝑂𝐶𝑡 =
∑︁

𝑗

[︃∑︁

𝑘

𝛼𝑗,𝑘,𝑡 +
∑︁

𝑘

𝛼𝑗,𝑙,𝑡

]︃
· 𝑆𝑂𝐶𝑗, ∀𝑡 (A.1b)

𝑝out
𝑡 =

∑︁

𝑗

∑︁

𝑘

𝛼𝑗,𝑘,𝑡 · 𝑃 out
𝑘 , ∀𝑡 (A.1c)

𝑝dis
𝑡 =

∑︁

𝑗

∑︁

𝑘

𝛼𝑗,𝑘,𝑡 · 𝑃 dis
𝑗,𝑘 , ∀𝑡 (A.1d)

𝑝in
𝑡 =

∑︁

𝑗

∑︁

𝑙

𝛼𝑗,𝑙,𝑡 · 𝑃 in
𝑙 , ∀𝑡 (A.1e)

𝑝cha
𝑡 =

∑︁

𝑗

∑︁

𝑙

𝛼𝑗,𝑙,𝑡 · 𝑃 cha
𝑗,𝑙 , ∀𝑡 (A.1f)

∑︁

𝑗

∑︁

𝑘

(𝛽up
𝑗,𝑘,𝑡 + 𝛽low

𝑗,𝑘,𝑡) = 𝑧dis
𝑡 , ∀𝑡 (A.1g)

∑︁

𝑗

∑︁

𝑙

(𝛽up
𝑗,𝑙,𝑡 + 𝛽low

𝑗,𝑙,𝑡) = 𝑧cha
𝑡 , ∀𝑡 (A.1h)

∑︁

𝑗

∑︁

𝑘

𝛼𝑗,𝑘,𝑡 = 𝑧dis
𝑡 , ∀𝑡 (A.1i)

∑︁

𝑗

∑︁

𝑙

𝛼𝑗,𝑙,𝑡 = 𝑧cha
𝑡 , ∀𝑡 (A.1j)

𝛼𝑗,𝑘,𝑡 ≤ 𝛽up
𝑗,𝑘,𝑡 + 𝛽low

𝑗,𝑘,𝑡 + 𝛽low
𝑗−1,𝑘,𝑡 + 𝛽up

𝑗,𝑘−1,𝑡 + 𝛽𝑙𝑜𝑤
𝑗−1,𝑘−1,𝑡 + 𝛽up

𝑗−1,𝑘−1,𝑡, ∀𝑡 (A.1k)
𝛼𝑗,𝑙,𝑡 ≤ 𝛽up

𝑗,𝑙,𝑡 + 𝛽low
𝑗,𝑙,𝑡 + 𝛽low

𝑗−1,𝑙,𝑡 + 𝛽up
𝑗,𝑙−1,𝑡 + 𝛽𝑙𝑜𝑤

𝑗−1,𝑙−1,𝑡 + 𝛽up
𝑗−1,𝑙−1,𝑡, ∀𝑡. (A.1l)
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Appendix B

Stochastic Distribution Unit

Commitment

This appendix presents the full formulation of the stochastic unit commitment (UC)

problem used in Section 2.6’s test case for a distribution network with renewable

generation, energy storage and reserves, Model 10. The UC problem is modeled as

a two-stage stochastic optimization problem on which the first stage represents the

generation start-up/shut-down commitment, energy purchase and reserves alloca-

tion, on the second stage the reserves realization, generation and storage operation

are defined. The model below was presented in [147] and fully developed in [75].

The objective of the UC in a distribution system is to schedule the distributed

generation and electricity exchange with the main grid at a minimum cost, while

satisfying its demand and network constraints. The minimization of the generation

operation cost and the economic exchange with the main grid is stated in (B.1).

The generation start-up and shut-down costs are recovered as Φ (B.2) and the fuel

consumption costs in 𝑊𝜔 (B.5). 𝐾 defines the electricity exchange costs with the

main grid (B.3). The total reserve allocation cost Υ, (B.4), is given by the requested

capacity 𝑟
up/dw
𝑡 and the cost associated to it 𝐾up/dw

ℎ(𝑡) . Increasing the power output

by 𝑟up
𝑡,𝜔 during the operation stage will incur the system operator in an additional

costs with price 𝐾up
ℎ(𝑡) in e/MWh, whereas reducing its consumption will provide

him revenue at 𝐾dw
ℎ(𝑡). The reserve realization cost is given by (B.6).

Equation (B.7) defines the net power exchanged with the grid during the opera-
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tion stage as the sum of the scheduled import and export, plus the realized reserved.

Constant hourly power exchange with the main grid is set by (B.8). Constraints

(B.9) and (B.10) set the upper bound for the allocation of upward and downward

reserves in terms of the scheduled power import 𝑝imp
𝑡 and the maximum import

capacity 𝑃
imp. The bounds for reserve allocation based on the market rules are

presented in (B.11) and (B.12). The limits for the reserves realization during the

operational stage are set by (B.13) and (B.14). Finally, the hourly market nature

for the reserve allocation is guaranteed by (B.15).

The power flow equations are set by (B.16)-(B.22). Equations (B.16) and (B.17)

represent the active and reactive nodal power balances for each time step 𝑡 and

scenario 𝜔. The active power flow through line (𝑛,𝑚) is given in terms of its con-

ductance 𝐺𝑛,𝑚 and susceptance 𝐵𝑛,𝑚 by equation (B.18), where 𝑐𝑛𝑚 and 𝑠𝑛𝑚 are the

variables used to respectively represent the branch relationships 𝑉𝑛𝑉𝑚 cos(𝜃𝑛 − 𝜃𝑚)

and 𝑉𝑛𝑉𝑚 sin(𝜃𝑛 − 𝜃𝑚). Equation (B.19) provides the lines’ reactive power flow in

terms of their conductance, susceptance and line charging susceptance 𝑏cha
𝑛,𝑚. To keep

the dimensional equivalence between both sides of expressions (B.18) and (B.19),

the right-hand sides are multiplied by the base value of the apparent power 𝑆𝑏𝑎𝑠𝑒

in MVA. The SOCP relaxation of the expression 𝑐2𝑛𝑚 + 𝑠2𝑛𝑚 = 𝑐𝑛𝑛𝑐𝑚𝑚 is given by

(B.20), while the trigonometric symmetries of 𝑐𝑛𝑚 and 𝑠𝑛𝑚 are presented in (B.21)

and (B.22). The voltage limits at the nodes and the thermal rates for the power

lines are given by (B.23) and (B.24).

The generation start-up and shut-down costs are respectively given by (B.25)

and (B.26). Generation ramp constraints are given by (B.27) and (B.28), whereas

capacity limits are set by (B.29) and (B.30). The storage operation with non-

constant efficiency can be described in a linear way by (B.31)–(B.42). The battery

energy balance is given by (B.31), where 𝑝batt
𝑡 is the net power delivered to the

battery cell (positive if charging, negative if discharging), and defined in (B.32).

The discharging and charging powers are respectively described by equations (B.33)–

(B.34) and (B.35)–(B.36). The 𝑆𝑂𝐶 as a linear combination of the sampling points

is presented by (B.37), while its definition by (B.38). The linear combination of the

characteristic points during discharge and charge is ensured by (B.39)–(B.42).
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Model 10 Stochastic Distribution Unit Commitment
Indexes:
𝑔 conventional generation unit index
𝑗, 𝑘 sampling indexes for the battery charging and discharging operation

points
𝑛,𝑚 node index
𝑠 index for the battery storage system
𝑡 time step index
𝜔 index for probabilistic scenarios

Sets:
𝒢(𝑛) set containing the generators connected at 𝑛
ℎ(𝑡) hour containing time step 𝑡
𝒥 ,𝒦 set for battery operation sampling points
ℒ set containing every existing line (𝑛,𝑚)
𝒩 (𝑛) set containing the nodes 𝑚 connected to 𝑛
𝒮(𝑛) set containing the storage units connected at 𝑛

Parameters:
𝑏cha
𝑛𝑚 line charging susceptance of branch (𝑛,𝑚) [p.u.]
𝐸 battery capacity [MWh]
𝐹 𝑛𝑚 current limit for line (𝑛,𝑚) [p.u.]
𝐺𝑛𝑚, 𝐵𝑛𝑚 conductance and susceptance of line (𝑛,𝑚) [p.u.]
𝐾 imp

ℎ , 𝐾exp
ℎ import and export cost during ℎ [e/MWh]

�̂�r,up
ℎ , �̂�r,dw

ℎ up and down reserve deployment cost during ℎ [e/MWh]
𝑃 𝑔, 𝑃 𝑔 active power generation limits for 𝑔 [MW]
𝑃D
𝑛 , 𝑄

D
𝑛 demanded active and reactive power at 𝑛 [MW, MVAr]

̂︀𝑃 dis
𝑖 , ̂︀𝑃 cha

𝑗 sample points for the power discharged to and charged from the
electric grid [MW]

𝑃
imp power import limits [MWh]
̂︀𝑃 out
𝑖 , ̂︀𝑃 in

𝑗 sample points for power leaving and entering the battery cell [MW]
𝑃RES
𝑛,𝑡 active power generated by the renewable resource at 𝑛 during 𝑡 [MW]
𝑄

𝑔
, 𝑄𝑔 reactive power limits for 𝑔 [MVAr]

𝑅
up
, 𝑅

dw up and down reserve power limits
𝑅𝑈 𝑔, 𝑅𝐷𝑔 ramp-up and ramp-down limits for 𝑔. [MWh]
𝑆𝑏𝑎𝑠𝑒 base value for the apparent power [MVA]
𝑆𝑂𝐶𝑖, 𝑆𝑂𝐶𝑗 state-of-charge sample points for the discharging and charging pro-

cesses
𝑉 𝑛, 𝑉 𝑛 voltage limits at 𝑛 [p.u.]
Γgrid
𝑛 ,ΓRES

𝑛 binary indicator of connection to the main grid and the renewable
resources at 𝑛

∆ duration of time step in hours [h]
𝜑fuel fuel consumption costs of 𝑔 [e/MWh]
𝜑su
𝑔 , 𝜑

sd
𝑔 costs related to 𝑔’s start-up & shut-down [e]
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Model 10 Stochastic Distribution Unit Commitment [continued]

First-stage Variables:
𝐾 total economic exchange with the grid [e]
𝑝imp
𝑡 , 𝑝exp

𝑡, imported and exported power committed day-ahead [MW]
𝑟up
𝑡 , 𝑟

dw
𝑡 allocated up/down reserve during 𝑡 [MWh]

𝑧𝑔,𝑡 ∈ {0, 1} on/off status of generating unit 𝑔 on 𝑡
Φ total scheduling costs of generators [e]
Υ total reserve allocation cost [e]

Second-stage Variables:
𝑐𝑛𝑚,𝑡,𝜔 |𝑉𝑛,𝑡,𝜔||𝑉𝑚,𝑡,𝜔| cos(𝜃𝑛,𝑡,𝜔 − 𝜃𝑚,𝑡,𝜔) [p.u.]
𝑒𝑡,𝜔, 𝑆𝑂𝐶𝑡,𝜔 Battery energy level (absolute and relative values) [MWh, -]
𝑝𝑔,𝑡,𝜔, 𝑞𝑔,𝑡,𝜔 generated active and reactive power [MW, MVAr]
𝑝𝑛𝑚,𝑡,𝜔, 𝑞𝑛𝑚,𝑡,𝜔 active and reactive power flow through line (𝑛,𝑚) [MW, MVAr]
𝑝batt
𝑡,𝜔 Net battery power charged/discharge [MW]
𝑝dis
𝑡,𝜔, 𝑝

cha
𝑡,𝜔 Discharging and charging power during 𝑡 and scenario 𝜔 [MW]

𝑝grid
𝑡,𝜔 net real-time power exchanged with the main grid [MW]
𝑝out
𝑡,𝜔 , 𝑝

in
𝑡,𝜔 Power outgoing and incoming at the battery cells [MW]

𝑟up
𝑡,𝜔, 𝑟

dw
𝑡,𝜔 real-time deployed up/down reserves. [MWh]

𝑠𝑛𝑚,𝑡,𝜔 |𝑉𝑛,𝑡,𝜔||𝑉𝑚,𝑡,𝜔| sin(𝜃𝑛,𝑡,𝜔 − 𝜃𝑚,𝑡,𝜔). [p.u.]
𝑥𝑗,𝑡,𝜔, 𝑦𝑘,𝑡,𝜔 Auxiliary variables for the sample sets 𝒥 and 𝒦
𝑊𝜔 total operational costs of generators for scenario 𝜔 [e]
𝜑su
𝑔,𝑡,𝜔, 𝜑

sd
𝑔,𝑡,𝜔 start-up and shut-down cost for 𝑔 on 𝑡 and scenario 𝜔 [e]

Θ𝜔 total real-time reserves deployment cost for scenario 𝜔 [e]
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Model 10 Stochastic Distribution Unit Commitment [continued]

Objective:
min. 𝐾 +ϒ+Φ+ E[Θ𝜔 +𝑊𝜔] (B.1)

Constraints:
Costs:

Φ =
∑︁

𝑔,𝑡

𝜑su
𝑔,𝑡+𝜑sd

𝑔,𝑡 (B.2)

𝐾 = Δ𝑡·
∑︁

𝑡

[︀
𝐾 imp

ℎ(𝑡)𝑝
imp
𝑡 +𝐾exp

ℎ(𝑡)𝑝
exp
𝑡

]︀
(B.3)

ϒ = Δ𝑡 ·
∑︁

𝑡

(︀
𝐾r,up

ℎ(𝑡) 𝑟
up
𝑡 +𝐾r,dw

ℎ(𝑡) 𝑟
dw
𝑡

)︀
, (B.4)

𝑊𝜔 = Δ𝑡 ·
∑︁

𝑔,𝑡

(︀
𝜑fuel
𝑔 𝑝𝑔,𝑡,𝜔

)︀
, ∀𝜔 (B.5)

Θ𝜔 = Δ𝑡 ·
∑︁

𝑡

[︀
�̂�r,up

ℎ(𝑡) 𝑟
up
𝑡,𝜔 + �̂�r,dw

ℎ(𝑡) 𝑟
dw
𝑡,𝜔

]︀
, ∀𝜔 (B.6)

Reserves:

𝑝grid
𝑡,𝜔 = 𝑝imp

𝑡 −𝑝exp
𝑡 +𝑟up

𝑡,𝜔−𝑟dw
𝑡,𝜔 , ∀𝑡, 𝜔 (B.7)

𝑝
imp/exp
𝑡 = 𝑝

imp/exp
𝑡′ , ∀(𝑡,𝑡′)∈ℎ(𝑡) (B.8)

𝑃
imp ≥ 𝑝imp

𝑡 + 𝑟up
𝑡 , ∀𝑡 (B.9)

0 ≤ 𝑝imp
𝑡 − 𝑟dw

𝑡 , ∀𝑡 (B.10)
0 ≤ 𝑟up

𝑡 ≤ 𝑅
up
, ∀𝑡 (B.11)

0 ≤ 𝑟dw
𝑡 ≤ 𝑅

dw
, ∀𝑡 (B.12)

0 ≤ 𝑟up
𝑡,𝜔 ≤ 𝑟up

𝑡 , ∀𝑡, 𝜔 (B.13)

0 ≤ 𝑟dw
𝑡,𝜔 ≤ 𝑟dw

𝑡 , ∀𝑡, 𝜔 (B.14)

𝑟
up/dw
𝑡 = 𝑟

up/dw
𝑡′ ∀(𝑡,𝑡′) ∈ ℎ(𝑡) (B.15)

Electric Flow:

𝑃D
𝑛,𝑡,𝜔 = Γgrid

𝑛 ·𝑝grid
𝑡,𝜔 +

∑︁

𝑔∈𝒢(𝑛)
𝑝𝑔,𝑡,𝜔+

∑︁

𝑠∈𝒮(𝑛)
𝑝batt
𝑠,𝑡,𝜔+ΓRES

𝑛 ·𝑃RES
𝑛,𝑡,𝜔 −

∑︁

𝑚∈𝒩 (𝑛)

𝑝𝑛𝑚,𝑡,𝜔, ∀𝑛, 𝑡, 𝜔 (B.16)

𝑄D
𝑛,𝑡,𝜔 =

∑︁

𝑔∈𝒢(𝑛)
𝑞𝑔,𝑡,𝜔 −

∑︁

𝑚∈𝒩 (𝑛)

𝑞𝑛𝑚,𝑡,𝜔, ∀𝑛, 𝑡, 𝜔 (B.17)

𝑝𝑛𝑚,𝑡,𝜔 = 𝑆𝑏𝑎𝑠𝑒

[︀
𝐺𝑛𝑚𝑐𝑛𝑛,𝑡,𝜔 −𝐺𝑛𝑚𝑐𝑛𝑚,𝑡,𝜔 +𝐵𝑛𝑚𝑠𝑛𝑚,𝑡,𝜔

]︀
, ∀(𝑛,𝑚)∈ℒ, 𝑡, 𝜔 (B.18)

𝑞𝑛𝑚,𝑡,𝜔 = 𝑆𝑏𝑎𝑠𝑒

[︀
(𝐵𝑛𝑚 − 𝑏cha

𝑛𝑚)𝑐𝑛𝑛,𝑡,𝜔 −𝐺𝑛𝑚𝑠𝑛𝑚,𝑡,𝜔 −𝐵𝑛𝑚𝑐𝑛𝑚,𝑡,𝜔

]︀
, ∀(𝑛,𝑚)∈ℒ, 𝑡, 𝜔 (B.19)

𝑐2𝑛𝑚,𝑡,𝜔 + 𝑠2𝑛𝑚,𝑡,𝜔 +

(︂
𝑐𝑛𝑛,𝑡,𝜔 − 𝑐𝑚𝑚,𝑡,𝜔

2

)︂2

≤
(︂
𝑐𝑛𝑛,𝑡,𝜔 + 𝑐𝑚𝑚,𝑡,𝜔

2

)︂2

, ∀(𝑛,𝑚)∈ℒ, 𝑡, 𝜔 (B.20)

𝑐𝑛𝑚,𝑡,𝜔 = 𝑐𝑚𝑛,𝑡,𝜔, ∀(𝑛,𝑚)∈ℒ, 𝑡, 𝜔 (B.21)
𝑠𝑛𝑚,𝑡,𝜔 = −𝑠𝑚𝑛,𝑡,𝜔, ∀(𝑛,𝑚)∈ℒ, 𝑡, 𝜔 (B.22)

𝑉 2
𝑛 ≤ 𝑐𝑛𝑛,𝑡,𝜔 ≤ 𝑉

2
𝑛, ∀𝑛, 𝑡, 𝜔 (B.23)

𝐹
2
𝑙 ≥ (𝐵2

𝑛𝑚+𝐺2
𝑛𝑚)·(𝑐𝑛𝑛,𝑡,𝜔−2𝑐𝑛𝑚,𝑡,𝜔+𝑐𝑚𝑚,𝑡,𝜔), ∀(𝑛,𝑚)∈ℒ, 𝑡, 𝜔 (B.24)
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Model 10 Stochastic Distribution Unit Commitment [continued]
Constraints:

Generation Units:

0 ≤ 𝜑su
𝑔,𝑡 ≥ Φsu

𝑔

[︀
𝑧𝑔,𝑡 − 𝑧𝑔,𝑡−1

]︀
, ∀𝑔, 𝑡 (B.25)

0 ≤ 𝜑sd
𝑔,𝑡 ≥ Φsd

𝑔

[︀
𝑧𝑔,𝑡−1 − 𝑧𝑔,𝑡

]︀
, ∀𝑔, 𝑡 (B.26)

𝑝𝑔,𝑡 ≤ 𝑝𝑔,𝑡−1+Δ𝑡𝑧𝑔,𝑡𝑅𝑈𝑔, ∀𝑔, 𝑡 (B.27)
𝑝𝑔,𝑡 ≥ 𝑝𝑔,𝑡−1−Δ𝑡𝑧𝑔,𝑡𝑅𝐷𝑔, ∀𝑔, 𝑡 (B.28)
𝑧𝑔,𝑡𝑃 𝑔 ≤ 𝑝𝑔,𝑡 ≤ 𝑧𝑔,𝑡𝑃 𝑔, ∀𝑔, 𝑡 (B.29)
𝑧𝑔,𝑡𝑄𝑔

≤ 𝑞𝑔,𝑡 ≤ 𝑧𝑔,𝑡𝑄𝑔, ∀𝑔, 𝑡 (B.30)
Energy Storage:

𝑒𝑡,𝜔 = 𝑒𝑡−1,𝜔 + 𝑝batt
𝑡−1,𝜔Δ𝑡, ∀𝑡, 𝜔 (B.31)

𝑝batt
𝑡,𝜔 = 𝑝in

𝑡,𝜔 − 𝑝out
𝑡,𝜔 , ∀𝑡, 𝜔 (B.32)

𝑝out
𝑡,𝜔 =

∑︁

𝑗

̂︀𝑃 out
𝑗 𝑥𝑗,𝑡,𝜔, ∀𝑡, 𝜔 (B.33)

𝑝dis
𝑡,𝜔 =

∑︁

𝑗

̂︀𝑃 dis
𝑗 𝑥𝑗,𝑡,𝜔, ∀𝑡, 𝜔 (B.34)

𝑝in
𝑡,𝜔 =

∑︁

𝑘

̂︀𝑃 in
𝑘 𝑦𝑘,𝑡,𝜔, ∀𝑡, 𝜔 (B.35)

𝑝cha
𝑡,𝜔 =

∑︁

𝑘

̂︀𝑃 cha
𝑘 𝑦𝑘,𝑡,𝜔, ∀𝑡, 𝜔 (B.36)

𝑆𝑂𝐶𝑡,𝜔 =
∑︁

𝑗

𝑆𝑂𝐶𝑗𝑥𝑗,𝑡,𝜔 +
∑︁

𝑘

𝑆𝑂𝐶𝑘𝑦𝑘,𝑡,𝜔, ∀𝑡, 𝜔 (B.37)

𝑆𝑂𝐶𝑡,𝜔 = 𝑒𝑡,𝜔/𝐸, ∀𝑡, 𝜔 (B.38)

1 =
∑︁

𝑗

𝑥𝑗,𝑡,𝜔, ∀𝑡, 𝜔 (B.39)

1 =
∑︁

𝑘

𝑦𝑘,𝑡,𝜔, ∀𝑡, 𝜔 (B.40)

0 ≤ 𝑥𝑗,𝑡,𝜔, ∀𝑗, 𝑡, 𝜔 (B.41)
0 ≤ 𝑦𝑘,𝑡,𝜔, ∀𝑘, 𝑡, 𝜔. (B.42)
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Appendix C

Expected Cost Derivation:

Asymmetric Node-to-Node

Balancing

This appendix presents the derivation of the expected generation costs under the

asymmetric node-to-node balancing policy presented in Chapter 4. Generator 𝑖’s

cost can be expressed in terms of nodal directional imbalances by

𝑐𝑖(𝑝𝑖) = 𝑐2,𝑖(𝑝𝑖)
2+𝑐1,𝑖(𝑝𝑖)+𝑐0,𝑖, ∀𝑖 (C.1)

where

𝑝𝑖 = 𝑝𝑖−
∑︁

𝑢

(︀
𝛼−
𝑖𝑢𝜔

−
𝑢 +𝛼+

𝑖𝑢𝜔
+
𝑢

)︀
, ∀𝑖. (C.1a)

Let the vectors 𝐴𝑖=
[︁
𝛼−
𝑖1, ..., 𝛼

−
𝑖|𝑈 |, 𝛼

+
𝑖1, ..., 𝛼

+
𝑖|𝑈 |

]︁⊤
, Ω=

[︁
𝜔−

1 , ...,𝜔
−
|𝑈 |,𝜔

+
1 , ...,𝜔

+
|𝑈 |

]︁
, then

the expected generation costs can be calculated as:

E[𝑐𝑖(𝑝𝑖)] = E[𝑐𝑖(𝑝𝑖−Ω · 𝐴𝑖)]

= 𝑐𝑖(𝑝𝑖) + E[𝑌 1,𝑖] + E[𝑌 2,𝑖], ∀𝑖 (C.2)

where

𝑌 1,𝑖 = −(2𝑐2,𝑖𝑝𝑖+𝑐1,𝑖)𝑋 𝑖, ∀𝑖 (C.2a)

𝑌 2,𝑖 = 𝑐2,𝑖(𝑋 𝑖)
2, ∀𝑖 (C.2b)
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Appendix C. Expected Cost Derivation: Asymmetric Node-to-Node Balancing

𝑋 𝑖 = Ω · 𝐴𝑖, ∀𝑖. (C.2c)

Let E[Ω]=𝑀 , and since for a random variable 𝑍, E
[︀
𝑍2
]︀
=Var(𝑍) + E[𝑍]2:

E[𝑌 1,𝑖] = −(2𝑐2,𝑖𝑝𝑖 + 𝑐1,𝑖)(𝑀 · 𝐴𝑖), ∀𝑖 (C.3a)

E[𝑌 2,𝑖] = 𝑐2,𝑖
(︀
(𝑀 · 𝐴𝑖)

2+var[Ω · 𝐴𝑖]
)︀
, ∀𝑖. (C.3b)

The variance of a linear combination can be calculated by

var

[︃∑︁

𝑛

(𝑏𝑛𝑍𝑛)

]︃
=

𝑁∑︁

𝑛,𝑚

[𝑏𝑛𝑏𝑚cov(𝑍𝑛𝑍𝑚)], (C.4)

where 𝑏𝑛 is a scalar and 𝑍𝑛 a random variable.

Let Σ=Var[Ω] be the non-trivial covariance matrix of the forecast errors, we can

then rewrite (C.3b) using (C.4) as

E[𝑌 2,𝑖] = 𝑐2,𝑖

[︁
(𝑀 · 𝐴𝑖)

2+
⃦⃦
𝐴𝑖Σ

1/2
⃦⃦2
2

]︁
, ∀𝑖. (C.5)

Finally, by using expression (C.2) the expected costs are

E[𝑐𝑖(𝑝𝑖)] = 𝑐𝑖(𝑝𝑖) − (2𝑐2,𝑖𝑝𝑖+𝑐1,𝑖)(𝑀 · 𝐴𝑖) + 𝑐2,𝑖

[︁
(𝑀 ·𝐴𝑖)

2+
⃦⃦
𝐴𝑖Σ

1/2
⃦⃦2
2

]︁
, ∀𝑖. (C.6)
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