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Abstract

Many lines of evidence indicate that amino acid sites of protein-coding genes are

involved in tight networks of epistatic interactions. In the course of evolution, amino

acid preferences may change due to the coevolution in epistatically interacting sites or

due to global landscape changes that are external to the genome. In this thesis, we use

comparative genomics methods to study how the shape of the fitness landscape impacts

the patterns of genetic differences observed on various evolutionary scales.

To address the contribution of epistatic selection to patterns of within-population

genetic diversity, we study population genomics data of the fungus Schizophyllum

commune, the most polymorphic species known. Throughout its genome, we observe

the excess of short-range linkage disequilibrium between nonsynonymous

polymorphisms, caused by attraction of rare alleles. This effect is especially pronounced

for pairs of sites that are located within the same gene. Together with elevated LD

between pairs of sites that encode physically interacting amino acids, and a substantial

correlation between LDs between shared pairs of nonsynonymous polymorphisms in

two S. commune populations, these patterns indicate that selection in S. commune

involves positive epistasis due to coevolution between nonsynonymous alleles.

To find evidence of epistatic selection in the divergence of closely related species, we

examine the phylogenies of the Baikal Lake amphipods and of primates, which contain

very short internal edges. We detect six salient bursts of evolution of individual proteins

during such short time periods, each involving between 6 and 38 amino acid

substitutions and limited to phylogenetic edges < 0.001 dS. These bursts are extremely

unlikely to have occurred neutrally and are apparently caused by correlated positive

selection.

Using analytical modeling and simulations, we show that we can distinguish between

different factors of fitness landscapes changes by looking at the dynamics of the fitness

of the allele currently occupying the site: it tends to increase with the time since its

origin due to coevolution between epistatically interacting sites (“entrenchment”) and
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to decrease due to random environmental fluctuations (“senescence”). By comparing

the genomes of diverged species (vertebrates and insects), we show that the amino

acids originating at negatively selected sites experience strong entrenchment. By

contrast, the amino acids originating at positively selected sites experience senescence.

These findings are indicative of the complex structure of selective constraints shaping

the patterns of genetic variation within and between species.

3



Acknowledgments

First of all, I want to thank my co-authors for their contribution to the research projects

included in this thesis: Vasily Ptushenko for the theoretical framework on the decline of

the current allele fitness driven by random changes of the fitness landscape (Chapter 5);

Anna Fedotova for S. commune DNA library construction and sequencing (Chapter 3);

Elena Nabieva, Alexey Neverov, Anfisa Popova and Alexander Favorov for discussing the

projects and helping with methods and writing (Chapter 5). I would say a special thank

you to Tatiana Neretina and Elena Zvyagina for maintaining the collection of S. commune

samples and extracting genomic DNA, and to Timothy James, Anna Baikalova, and all

members of the Bazykin-Kondrashov group who participated in S. commune sampling

both in Russia and the US. I believe keeping this collection is particularly important and

will prove useful in future studies. I would also like to thank Shamil Sunyaev and the

members of his lab for useful comments on the draft of the S. commune paper. I am

grateful to the reviewers for providing comments and suggestions that helped to

improve the thesis text.

I am deeply grateful to my supervisors Georgii Bazykin and Alexey Kondrashov for their

guidance and support during my Ph.D. and for sharing their expertise and perspective

with me. Georgii encouraged me to try new things and provided me freedom of choosing

research topics and methods. I highly appreciate our regular discussions with Alexey,

which I find invaluable and insightful.

I want to thank my fellow students Aleksandra Bezmenova, Ksenia Safina, and Marina

Kalinina, with whom we did this journey together. All the colleagues from the

Bazykin-Kondrashov group and other labs from our bioinformatics community – with

many of them also being my close friends – for the unique atmosphere of support and

the opportunity to share and discuss ideas with you.

I want to thank Fyodor Kondrashov and the members of his lab for the opportunity to

implement my idea of yeast fitness experiment as part of my internship at IST Austria

and support during the complicated pandemic times, and Skoltech for making this

internship possible.

4



The completion of my thesis wouldn’t have been possible without the love and help of

my family – especially my mom Elena Stolyarova, who has always believed in me and

supported my choice of studying biology. Last but not least, I want to thank Ruslan

Soldatov for always being here, for understanding and encouragement, and for having

enough patience to listen about epistasis on a daily basis.

5



Publications

Papers

● AV Stolyarova, E Nabieva, VV Ptushenko, AV Favorov, AV Popova, AD Neverov,

GA Bazykin. Senescence and entrenchment in evolution of amino acid sites.

Nature Communications 2020; 14;11(1):4603.

doi: 10.1038/s41467-020-18366-z

● AV Stolyarova, GA Bazykin, TV Neretina, AS Kondrashov. Bursts of amino acid

replacements in protein evolution.

Royal Society Open Science 2019; 6(3):181095. doi: 10.1098/rsos.181095

Preprints

● AV Stolyarova, TV Neretina, EA Zvyagina, AV Fedotova, AS Kondrashov,

GA Bazykin. Complex fitness landscape shapes variation in a

hyperpolymorphic species.

bioRxiv 2021. doi.org/10.1101/2021.10.10.463656

6



Conference presentations

● Within-gene epistatic selection in genetically diverse populations.

MCCMB, Moscow 2021 (Oral presentation)

● Within-gene epistatic selection in genetically diverse populations.

EMBL: Predicting evolution 2021 (Poster presentation)

● Within-gene epistatic selection shapes polymorphism in natural populations of

the world’s most variable eukaryotic species.

EMBL: Molecular Mechanisms of Evolution & Ecology 2020 (Oral presentation)

● Prevalent epistatic interactions between amino acid sites in S. commune.

MCCMB, Moscow 2019 (Oral presentation)

● Prevalent epistatic interactions between amino acid sites in S. commune.

SMBE, Manchester UK, 2019 (Poster presentation)

● Bursts of nonsynonymous replacements in protein evolution.

SMBE, Yokohama 2018 (Poster presentation)

● Causes of single position fitness landscape changes.

SMBE, Austin 2017 (Poster presentation)

7



Contents

Abstract 2

Acknowledgments 4

Publications 6

Contents 8

List of abbreviations 11

Chapter 1: Introduction 12

Chapter 2: Literature review 14

Fitness landscapes 14

Epistasis 16

Models of fitness landscapes 20

Evolution on fitness landscapes 26

Populations on fitness landscapes 26

Valley crossing 28

Dynamics of adaptation 29

Mutational robustness 31

Predictability of evolution 32

Epistasis and recombination 37

Dynamic fitness landscapes 43

Environmental fluctuations 43

Frequency-dependent selection 45

Epistatic changes of allele’s fitness 46

Empirical fitness landscapes 49

Landscapes of homologous sequences 49

The complexity of the empirical landscapes 50

Empirical inference of historical evolution 53

8



Phylogenetic evidence of epistasis 56

Compensated pathogenic deviations 56

Patterns of divergent and convergent evolution 56

Correlated evolution of interacting sites 58

Phylogenetic clustering of interacting sites 59

Epistasis in within-population variation 61

Statistical epistasis 61

Epistasis-driven linkage disequilibrium 61

Chapter 3: Complex fitness landscape shapes variation in a hyperpolymorphic
species 64

Introduction 65

Materials and methods 67

S. commune sampling, sequencing and assembly 67

Data on H. sapiens and D. melanogaster populations 70

Estimation of LD 71

Haploblocks annotation 71

Estimation of LD between physically interacting amino acid sites 71

Simulations of epistasis 72

Results 74

Epistatic selection is more efficient in genetically diverse populations 74

Elevated LD between nonsynonymous polymorphisms 76

Physically interacting amino acid sites are under stronger LD 86

Excess of LDnonsyn is more pronounced in distinct regions of high LD 88

Excess of LDnonsyn requires stable polymorphism 92

Correlated LDs between shared SNPs in two populations 95

Discussion 99

Chapter 4: Correlated positive selection leads to bursts of amino acid
replacements 101

Introduction 102

Materials and methods 104

9



Phylogenies of closely related species 104

Inference of bursts of nonsynonymous substitutions 104

Filtering of candidate bursts 105

Results 107

Discussion 114

Chapter 5: Changes of single-position fitness landscapes affect evolution of amino
acid sites 119

Introduction 120

Materials and methods 122

Multiple alignments of protein-coding sequences 122

Simulations of amino acid evolution on dynamic landscapes 124

Substitution subtrees 125

Inference of senescence or entrenchment for groups of alleles 126

Summary statistics 128

ABC validation 128

Results 131

Environmental fluctuations decrease the fitness of the current allele 131

Senescence and entrenchment result in opposite substitution patterns 133

Senescence and entrenchment at single-allele resolution 137

Heterogeneity of alleles leads to an artifactual signal of entrenchment 139

Inferring senescence and entrenchment from phylogenetic distribution of
substitutions 142

Positively selected sites show strong senescence 142

Discussion 146

Chapter 6: Conclusions 148

References 151

Appendix A 170

10



Chapter 1: Introduction

List of abbreviations

ABC — approximate Bayesian computations

AOD — associative overdominance

BGS — background selection

CPD — compensated pathogenic deviations

DCA — direct-coupling analysis

DMS — deep mutational scanning

FDR — false discovery rate

GWAS — genome-wide association studies

HoC — house-of-cards model

HRI — Hill-Robertson interference

LD — linkage disequilibrium

LoF — loss-of-function mutation

LRLD — long-range linkage disequilibrium

LTEE — long-term evolution experiment

NFDS — negative frequency-dependent selection

OR — odds-ratio

SNP — single-nucleotide polymorphism

SPFL — single-position fitness landscape

WT — wild-type

11



Chapter 1: Introduction

Chapter 1: Introduction

The term “epistasis” was initially introduced by W. Bateson in 1909 to define the

phenomenon of under-representation of some phenotypic classes in dihybrid crosses,

which he explained by some mutations masking the impact of other ones. R. A. Fisher

later used the related term “epistacy” to denote any deviation from the independence of

effects of single mutations in different loci — the meaning generally used by this day

(Ronald Aylmer Fisher 1918). The term “epistasis” comprehends genetic interactions of

various nature: it can describe general laws of selection, features of adaptive paths, the

relation between genotype and phenotype, functional interactions between specific

genes, or susceptibility to complex diseases. From an evolutionary point of view,

epistasis is not a phenomenon but a general characteristic of the fitness landscape

underlying the process of adaptation.

Given the complexity and hierarchical structure of biological systems, the presence of

ubiquitous epistasis by itself is not surprising. However, the question is whether the

complex structure of fitness landscapes actually influences the evolution of natural

populations — and what we can conclude on the evolutionary mechanisms underlying

the observed patterns of evolutionary change. Describing evolution on epistatic fitness

landscapes may help to explain various aspects observed in the evolution of natural

populations, such as hybrid incompatibilities, evolutionary advantage of sex,

predictability and repeatability of adaptive paths, compensation of pathogenic variants,

historical contingency in evolution, etc.

Currently available genomic data make it possible to study the action of natural

selection without knowing the fitness or any other phenotype directly by analyzing the

accumulation of genetic differences on the microevolutionary scale (i.e. between

individuals comprising the same population) or on the macroevolutionary scale (i.e.

between individuals representing diverged species).

Since epistasis implies any kind of dependency between effects of mutations in different

loci, the potential evolutionary consequences of it may be various. Population genomics
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Chapter 1: Introduction

data provide a snapshot of the current population state, allowing the assessment and

interpretation of the deviations of the joint distribution of alleles within a population.

By comparing the genomes of different species and reconstructing their phylogenies, we

can trace the changes of natural selection acting on the substituted alleles and infer the

causes of these changes.

The goal of this thesis is to infer how epistasis affects the evolution of protein-coding

sequences in natural populations on different evolutionary scales.

The main objectives of this thesis are:

1. to assess the evidence of epistasis shaping the within-population variation based

on patterns of linkage disequilibrium between natural polymorphisms;

2. to detect bursts of adaptive evolution between recently diverged species,

presumably caused by correlated positive selection between multiple genomic

sites;

3. to estimate how selection acting on the allele currently occupying a genomic site

changes in the course of species divergence.

To achieve these objectives, we use comparative genomics methods to assess the

distribution of polymorphisms within populations or the patterns of substitutions

between diverged species. To examine patterns of standing genetic variation, we

consider population genomics data on populations of varying levels of genetic diversity:

from the widely studied, but less polymorphic populations of Homo sapiens and

Drosophila melanogaster to the most genetically variable eukaryotic species known

Schizophyllum commune. As for studying the adaptive evolution of closely related

species, we make use of dense phylogenies of Lake Baikal amphipods and of primates.

To infer changes of the current allele fitness on the macroevolutionary scale, we analyze

multiple alignments of orthologous genes of vertebrates and insects and mitochondrial

genes of Metazoa. In the first and second tasks, we focus on the short-range interactions

(e.g. within genes or between sites located in neighboring genes), while in the third task

we study genome-wide patterns of fitness landscape changes.
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Chapter 2: Literature review

Fitness landscapes

Fitness landscape, or adaptive landscape, is a key concept of evolutionary biology. It is

a function mapping the genotype space to fitness, i.e. the measure of the evolutionary

success, of an individual carrying the corresponding genotype. The genotype space

represents all possible combinations of alleles in a number of genetic loci and has the

size of KL, where K is the alphabet size (the number of permissible alleles) and L is the

number of loci.

a b

Figure 2.1. Representation of fitness landscapes (Wright 1932). (a) The full space
of possible genotypes of L loci (with L from 2 to 5) with K=2 possible alleles in each
locus are L-dimensional hypercubes. (b) Geometric representation of the fitness
landscape on the two-dimensional genotype space. Dotted lines connect genotypes
with equal fitness, “+” mark adaptive peaks, and “-” mark regions of low fitness.

The full landscape of L biallelic sites is a hypercube in a L-dimensional space of

genotypes (Figure 2.1a). The high dimensionality of the landscape makes it hard to

conceive its structure and to predict how its shape conducts the evolution of the
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Chapter 2: Literature review

genomic sequences. In empirical fitness landscape studies, while using experimental

methods to directly measure fitness of the genotypes, the dimensionality is usually

reduced by constraining the set of examined genotypes. Indirect studies of fitness

landscapes use comparative genomic methods to infer general features of the

landscapes or to describe the low-dimensional projections of the full landscape (a

classic example of a fitness landscape on the two-dimensional genotype space by

S. Wright is shown in Figure 2.1b). In order to study evolutionary dynamics of a

population on the fitness landscape, S. Wright also described it in terms of relation

between population mean fitness and genotype frequencies. Similarly, the landscape can

be defined on the space of a quantitative phenotype, allowing to estimate selection

acting on the distribution of the phenotype values (Lande 1976). In this thesis, we’ll

define the landscape only as the function relating genotypes to fitness (Provine 1989).
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Chapter 2: Literature review

Epistasis

If fitness effects of mutations in different genomic loci are independent, the effect of a

combination of mutations can be calculated as a sum of the effects of individual

mutations (or, in the multiplicative model, log fitness is assumed to be additive). In this

case, the fitness landscape is linear and has a single adaptive peak (Figure 2.2a, upper

left). Any deviation from this additivity means non-independence of mutation effects, or

epistasis between loci. Under epistasis, the effect of a mutation depends on the genetic

background — the allelic state of interacting sites. Therefore, the fitness of a

combination of mutations can’t be predicted from the additive compounds without

knowing the epistatic coefficients between the mutations.

Since epistasis is any form of non-additivity of fitness effects of single mutations, it can

be classified based on various criteria:

● Based on whether the sign of the fitness effect of a mutation depends on the

presence of other mutations, epistasis can be magnitude (monotonic) and sign;

in the case of monotonic epistasis, only the strength of a mutation can change but

not its sign. Under reciprocal sign epistasis between two mutations, each of them

can be both deleterious or beneficial depending on which allele occupies another

site (Figure 2.2a) (Weinreich, Watson, and Chao 2005).

● Considering the direction of the shift of fitness value of the combination of

mutation as compared to the additive expectation, epistasis can be negative (if

the fitness of a genotype carrying multiple mutations is lower than expected) and

positive (if it’s higher than expected). If all mutations have the same sign, it can

be redefined as synergistic (negative epistasis between deleterious mutations /

positive between beneficial mutations) and antagonistic (positive epistasis

between deleterious mutations / negative between beneficial) (Figure 2.2b).

Positive/negative epistasis is polarized in regard to alleles occupying the

interacting sites: for example, positive epistasis between mutations a → A and

b → B corresponds to negative epistasis between mutations A → a and b → B and

to positive epistasis between A → a and B → b.
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Chapter 2: Literature review

Figure 2.2. Classification of epistasis between mutations in two loci (Kogenaru,
de Vos, and Tans 2009). (a) Without epistasis, both mutations a → A and b → B are
beneficial. Magnitude epistasis changes the fitness of the double mutant, but both
mutations keep their sign whether a mutation in another locus is present or not.
Under sign epistasis, the sign of the effect of the mutation a → A depends on the state
of the second locus: it is beneficial in the presence of allele b and deleterious in the
presence of allele B. In the case of reciprocal sign epistasis, both mutations change
their effect sign depending on the genetic background. (b) Under synergistic epistasis,
the absolute value of the fitness effect of the double mutation is larger than expected
without epistasis; under antagonistic epistasis, it is less than expected without
epistasis. Since both mutations a → A and b → B are deleterious, synergistic
interactions between them correspond to negative epistasis, and antagonistic — to
positive epistasis.

● If the fitness of a genotype carrying a combination of mutations can be calculated

as a simple, usually monotonic, nonlinear function of the sum of the additive

effects of these mutations, epistasis is considered unidimensional (global).  The

assumption for the unidimensional epistasis is that fitness is defined by

nonlinear scaling of some hidden feature (fitness potential), which is by itself

additive. On the opposite, if fitness cannot be approximated with such function of

the fitness potential, epistasis is multidimensional (F. A. Kondrashov and

Kondrashov 2001a; de Visser, Cooper, and Elena 2011; Sailer and Harms 2017a)

(Figure 2.3).
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Chapter 2: Literature review

Figure 2.3. The dimensionality of epistasis (de Visser, Cooper, and Elena 2011).
(a) Unidimensional epistasis between deleterious mutations, with the number of
mutations in a genotype acting as the fitness potential function. Dashed line — no
epistasis, green — narrowing (antagonistic) epistasis, red — widening (synergistic)
epistasis. (b) Multidimensional epistasis between three biallelic sites. Arrows point
towards the more fit genotypes, the thickness of the arrows indicates the size of
fitness gain.

○ In the case of unidimensional epistasis, it can be distinguished as

narrowing and widening epistasis based on whether it reduces or

increases the variance of some quantitative trait (Figure 2.3a) (Shnol and

Kondrashov 1993).

○ Under multidimensional epistasis, the non-additivity of fitness effects

might be fully explained by pairwise interactions between considered

sites, assuming that the epistatic coefficient of a pair of mutations doesn’t

depend on the allelic state of other loci. If this is not the case, the

high-order epistatic terms should be considered while describing the

fitness landscape. The number of epistatic coefficients of order n

drastically grows with n as , so the high-order interactions are hard to
𝐿
𝑛( )

estimate and are often prone to overfitting (Hinkley et al. 2011; Zhou and

McCandlish 2020).

In many biological systems, epistasis can be in large part reduced to

unidimensional or low-order interactions; however, high-order epistasis is
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Chapter 2: Literature review

detectable in multiple experimental landscapes and may affect the accessibility of

evolutionary paths (G. Yang et al. 2019; Sailer and Harms 2017b; Weinreich et al.

2013; Sailer and Harms 2017a).
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Chapter 2: Literature review

Models of fitness landscapes

Since the full fitness landscape relates all possible genotypes to their fitness, it provides

full information on epistasis acting between the considered loci (and vice versa, the

landscape can be described by additive fitness effects of individual mutations and

epistasis between them). For example, reciprocal sign epistasis is necessary to create

rugged adaptive landscapes, i.e. the ones containing multiple local adaptive peaks

(Poelwijk et al. 2011; Weinreich, Watson, and Chao 2005). Ruggedness is an important

feature of a landscape, defining the accessibility of adaptive paths on the landscape and

the predictability of evolution (Maynard Smith 1970; Weinreich et al. 2006; Poelwijk et

al. 2007; Kvitek and Sherlock 2011; Ferretti et al. 2018).

Various modes and shapes of epistasis and selection can be implemented in different

theoretical models of fitness landscapes. The landscape models are useful to interpret

empirical datasets and to predict evolution under diverse regimes of selection (de

Visser, Cooper, and Elena 2011; Kryazhimskiy, Tkacik, and Plotkin 2009; de Visser and

Krug 2014; de Visser et al. 2018; Fragata et al. 2019; Bank et al. 2016). The

low-dimensional landscape models imply fitness as a function of some features of the

genotypes, which are assumed to be additive (e.g. FGM or power law landscapes), while

multidimensional landscapes describe epistatic interactions between specific loci (e.g.

HoC or NK landscapes) (Orr 2005). Here we will briefly describe some of them:

● In the house-of-cards (HoC) model, the fitness of each genotype is assumed to be

randomly drawn from some distribution without regard to the fitness of the

neighboring genotypes (Kingman 1978; S. Kauffman and Levin 1987). Therefore,

it is impossible to predict the effect of a mutation on some genetic background

knowing its effect on a different background. HoC model assumes extreme

epistasis and produces rugged landscapes with multiple sharp peaks

(Figure 2.4b) (Franke et al. 2011; Ferretti, Schmiegelt, and Weinreich 2016). The

rough Mount Fuji model (RMF) is the mixture of HoC and the additive landscape

and is used to achieve the adjustable degree of epistasis (Figure 2.4d) (Aita et al.

2000; Neidhart, Szendro, and Krug 2014).
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Chapter 2: Literature review

● NK model also allows adjusting the abundance of epistasis with a tunable

parameter (Figure 2.4c) (S. A. Kauffman and Weinberger 1989; Sergey Gavrilets

1999). It is defined by the number of considered sites N and the parameter K,

which implies the number of epistatic interactions per site. NK landscape with

K = 0 is additive; landscape with K =  N - 1 (the largest possible K) is equal to the

fully epistatic HoC landscape.

Figure 2.4. Rugged models of fitness landscapes (Ferretti, Schmiegelt, and
Weinreich 2016). (a) Non-epistatic (additive) landscape ensures the convergence of
all paths to the global maximum. (b) HoC model produces extremely rugged
landscapes with multiple local peaks. (c, d) NK and RMF models with a tunable degree
of epistasis can result in less or more rugged landscapes. Genotypes consisting of four
biallelic loci are shown with dots; genotypes differing by only one mutation are
connected.
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Chapter 2: Literature review

● In contrast to the rugged landscape models described above, the holey

landscape doesn’t contain adaptive peaks and therefore doesn’t imply adaptive

evolution, or fitness gain. It represents the connected network of equally fit

genotypes with holes, formed by lethal genotypes (Figure 2.5a) (S. Gavrilets

1997). Although the holey landscape is strongly epistatic (a mutation can be

either neutral or lethal dependent on the initial genotype), the evolutionary

process on such landscape is neutral. As a result of such evolution, diverging

populations can get separated by the holes, creating hybrid incompatibilities

without crossing adaptive valleys (T. Dobzhansky 1936; Orr 1995; A. S.

Kondrashov, Sunyaev, and Kondrashov 2002). An example of a holey landscape is

the Bateson-Dobzhansky-Muller (BDM) landscape model, that also assumes the

existence of ridges connecting equally fit genotypes and is often considered in

terms of incompatibilities and reproductive isolation (Figure 2.5b) (Theodosius

Dobzhansky 1937; Bateson 1909; H. Muller 1942).

a
b

Figure 2.5. Models of fitness landscapes containing ridges of equally fit
genotypes (S. Gavrilets 1997). (a) Holey landscape (b) BDM landscape on the space
of two biallelic sites in a diploid population.

22

https://paperpile.com/c/seL1nZ/Sbhgz
https://paperpile.com/c/seL1nZ/Sbhgz
https://paperpile.com/c/seL1nZ/ug4WZ+YH7qc+i9pAU
https://paperpile.com/c/seL1nZ/ug4WZ+YH7qc+i9pAU
https://paperpile.com/c/seL1nZ/vRZvC+ejkVM+00Cp0
https://paperpile.com/c/seL1nZ/vRZvC+ejkVM+00Cp0
https://paperpile.com/c/seL1nZ/Sbhgz
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● Fisher’s geometric model of the adaptive landscape (FGM) implies fitness as a

smooth function on a space of several quantitative phenotypic traits (Ronald A.

Fisher 1930; O. Tenaillon 2014). FGM assumes there is a single adaptive peak, so

that selection promotes evolution of the considered traits towards the optimum

(directional selection) and then restrains them to it (stabilizing selection)

(Figure 2.6a). Under FGM, the effect of a mutation and both direction and

strength of epistasis depend on the shape of the peak and the distance to it

(Figure 2.6b, (G. Martin, Elena, and Lenormand 2007; O. Tenaillon 2014)). Due to

the simplicity of the fitness function, FGM is widely used to describe adaptive

evolution, wherein a population is forced to move from some point far from the

global maximum towards it (Orr 1998; Bank et al. 2014; Gros, Le Nagard, and

Tenaillon 2009; Harmand et al. 2017).

a

b

Figure 2.6. Fisher’s geometric model of the fitness landscape (O. Tenaillon
2014). (a) Under selection, populations are driven towards the adaptive peak.
Evolutionary paths of a population with large (red) and small (blue) effective
population sizes are shown. (b) The fitness effect of a mutation (shown as arrows)
depends on the location of the background genotype in regard to the adaptive peak.
In the example, it’s nearly neutral when far from the peak slope (green) or beneficial
when close to the fitness maximum (blue).
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● Power law landscapes represent the class of landscapes without a fitness

maximum. Such landscapes imply infinite adaptation — the evolving population

can never approach the fitness peak so that new beneficial mutations are always

getting fixed (Wiser, Ribeck, and Lenski 2013; Passagem-Santos, Zacarias, and

Perfeito 2018). Such landscapes are unidimensional, and epistasis is defined by a

non-linear monotonically increasing function of fitness over some additive trait

(i.e. fitness potential). Usually, functions with a negative second derivative are

used, conducting negative (antagonistic) epistasis between beneficial mutations

(for example, power law function, Figure 2.7a). However, there is a class of

“stairway to heaven” landscapes, which assume positive (synergistic) epistasis

between beneficial mutations and therefore increasing rates of evolution

(Figure 2.7b) (Kryazhimskiy, Tkacik, and Plotkin 2009).

Figure 2.7. Models of fitness landscapes with infinite adaptation. (a) Power law
landscape with antagonistic epistasis between beneficial mutations
(Passagem-Santos, Zacarias, and Perfeito 2018) (b) Stairway to heaven landscape
with synergistic epistasis between beneficial mutations (Kryazhimskiy, Tkacik, and
Plotkin 2009).Φ1(y) – distribution of fitness obtained by single mutations in the
context of the initial genotype of low fitness (here, 1);Φ4(y) – of high fitness (here, 4).
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● There are multiple landscape models which are based on the assumptions on the

features of the considered biological system (Fragata et al. 2019). In such models,

epistasis is not defined explicitly but appears from these assumptions. For

example, biophysical models define fitness of a protein or RNA sequence as a

function of the corresponding structure, calculated expressed in terms of folding

energy, stability, or other biophysical properties of the structure (Bershtein,

Serohijos, and Shakhnovich 2017; Bertram and Masel 2020; Bershtein et al.

2006; Olson, Wu, and Sun 2014). Another class of models describes fitness on the

level of networks of interacting genes (Reddy and Desai 2021; Friedlander et

al. 2017; Yubero, Manrubia, and Aguirre 2017). Such models can be used to

reconstruct interactions between genes within metabolic networks or

interactions between amino acids within a single protein or between proteins.
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Evolution on fitness landscapes

Populations on fitness landscapes

Although a full fitness landscape relates each possible variant of the considered genomic

sequence to its fitness, only a subset of these variants is actually present in a real

evolving population at any time point. Since any population is not homogeneous, i.e.

individuals within it differ to some extent, it occupies a certain area of the adaptive

landscape — and most of the genotypes falling outside this area are never seen in the

evolution of this population (Figure 2.8). In the course of microevolution, the density

distribution of a population over the occupied region may vary as the frequency of

present alleles changes due to natural selection. Under selection only, the frequency of

highly fit genotypes will increase, and the frequency of low fit genotypes will decrease.

Under the simple models of selection, this results in the increase of the mean population

fitness and the population climbing onto a fitness peak (Figure 2.9a) (Ronald A. Fisher

1930; S. Kauffman and Levin 1987; Sergey Gavrilets 2004; Woodcock and Higgs 1996).

However, there are selection models (e.g. multiple forms of balancing selection)

preventing the population from converging to the fitness peak (R. A. Fisher 1941;

Deborah Charlesworth 2006).

Also, new genotype variants occur due to mutation, introducing new alleles. In sexual

populations, recombination also shuffles the present genotypes, composing new

combinations of alleles at different recombining loci. In mutation-selection equilibrium,

the size of the fitness landscape region occupied by a population depends on the

strength of these forces: the higher is the mutation rate or the weaker is the selection,

the larger will be the polymorphism level within the population (Figure 2.8) (Wright

1932; James Franklin Crow and Kimura 1970).
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Figure 2.8. Populations on fitness landscapes (Wright 1932). (a) Under
mutation-selection equilibrium, a highly polymorphic population occupies a large
area of the adaptive peak. (b) A less polymorphic population is limited to the small
area on the top of the peak. (c) After a sudden change of the landscape, selection
drives adaptive evolution, pushing the population to the novel adaptive peak. Dashed
regions show the subspace of the genotypes present in the population.

Figure 2.9. Evolutionary paths on epistatic landscapes (P. C. Phillips 2008). (a) In
the course of adaptation on the FGM landscape, the evolutionary path consists of
uphill steps of increasing fitness. (b) The path from one adaptive peak to another one
requires valley crossing, i.e. transition through the disadvantageous intermediate
genotypes. (c) Genetic drift allows random walks on the regions of nearly equal
fitness. On the rugged landscapes, such regions may look like ridges creating a bypass
between highly fit genotypes separated by a fitness valley.
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Valley crossing

On a rugged landscape, nearby adaptive peaks are separated by regions of low fitness, or

adaptive valleys. For a population to transit from one peak to another one, downhill

steps are needed to make the way through the intermediate states of low fitness — the

process called valley crossing or tunneling (Figure 2.9b) (Sergey Gavrilets 2004; P. C.

Phillips 2008). Generally, with natural selection preventing the fixation of

disadvantageous mutations, the population gets constrained to local maxima and can’t

move to the nearby peak even if it’s higher so that achieving it would be evolutionary

beneficial.

Shifting balance theory, introduced by S. Wright in 1931, describes the mechanism of

how a population can cross fitness valleys and occupy higher fitness peaks (Wright

1931; Coyne, Barton, and Turelli 1997). According to it, genetic drift allows the

population to spread and makes it possible to occasionally move to the slope of the

nearby fitness peak. Next, selection drives it to the top of the peak, leading to the

division of the population into sub-populations, followed by the sub-population

occupying the highest peak outcompeting another one. Genetic drift is stronger in small

populations; at the same time, in large populations, the high level of standing genetic

variation may lead to the appearance of genotypes with multiple mutations (Ochs and

Desai 2015; Weissman et al. 2009; Nelson and Grishin 2019; Weinreich and Chao 2005;

Meer et al. 2010). Complex mutation events or recombination (in sexual populations)

also can give the opportunity to leap over the valley at once, escaping the negative

selection acting against the survival of the intermediate states (Weissman, Feldman, and

Fisher 2010; Belinky et al. 2019).

Fitness landscapes can contain plateaus: connected regions with nearly equal fitness,

where selection is not effective and evolution proceeds mainly under genetic drift. On

the rugged epistatic landscapes, particularly multidimensional, such regions may look

like ridges and saddles, connecting points of high fitness which look like separate

adaptive peaks in some low-dimensional projections and making it possible to tunnel

between them (Figure 2.9c) (P. C. Phillips 2008; A. S. Kondrashov, Sunyaev, and

Kondrashov 2002; Bakhtin et al. 2021; Gokhale et al. 2009; Katsnelson, Wolf, and Koonin

2019). Another possibility to make the path to the nearby adaptive peak accessible are

28

https://paperpile.com/c/seL1nZ/WsvV9+oKJTR
https://paperpile.com/c/seL1nZ/WsvV9+oKJTR
https://paperpile.com/c/seL1nZ/wOfP+HKlL
https://paperpile.com/c/seL1nZ/wOfP+HKlL
https://paperpile.com/c/seL1nZ/QxJ0L+iifHm+VDZgc+mcrfK+QyPND
https://paperpile.com/c/seL1nZ/QxJ0L+iifHm+VDZgc+mcrfK+QyPND
https://paperpile.com/c/seL1nZ/QxJ0L+iifHm+VDZgc+mcrfK+QyPND
https://paperpile.com/c/seL1nZ/tXuFN+Vj7cI
https://paperpile.com/c/seL1nZ/tXuFN+Vj7cI
https://paperpile.com/c/seL1nZ/oKJTR+i9pAU+BJu9x+NlJuV+zbMlK
https://paperpile.com/c/seL1nZ/oKJTR+i9pAU+BJu9x+NlJuV+zbMlK
https://paperpile.com/c/seL1nZ/oKJTR+i9pAU+BJu9x+NlJuV+zbMlK


Chapter 2: Literature review

drastic changes of the landscapes, caused by environmental fluctuations which may

eliminate the valley of low fitness between the peaks (Dodson and Hallam 1977;

Steinberg and Ostermeier 2016).

Dynamics of adaptation

On various models of fitness landscapes, the dynamics of adaptation can be quite

diverse. The most direct way to trace the adaptive evolution of a real population is

evolution experiments. In the course of such experiments, a population is evolving in

laboratory conditions for a long time, accumulating mutations that are beneficial in the

new environment; moreover, the fitness of the combinations of obtained mutations may

be measured afterwards (de Visser, Cooper, and Elena 2011; Barrick and Lenski 2013).

Although evolutionary experiments can shed light on some aspects of adaptation or

mutation accumulation, the specificity of evolutionary conditions (e.g. starting from

genetically homogeneous populations) makes them not generally representative of

natural evolution.

The pioneering evolutionary experiment on the T4 bacteriophage demonstrated that

recombination increases the rate of adaptation, while epistasis is more efficient in clonal

populations (Malmberg 1977). The longest evolutionary experiment, providing unique

data on long-term adaptation, is Lenski’s long-term experiment on E. coli evolution

(LTEE). In this experiment, 12 lineages of E. coli (six of which acquired mutator

phenotype at some point) have evolved for over 80,000 generations (~32 years) (Good

et al. 2017; Richard E. Lenski et al. 1991).

Lenski’s experiment, as well as other long-term experiments on bacteria or eukaryotes,

reveal that the dynamics of fitness gain in the course of adaptation is non-linear: early

substitutions give a large increase of fitness, while later ones have a smaller effect

(Figure 2.10a) (Schoustra et al. 2016; Johnson et al. 2021; Good and Desai 2015; Good et

al. 2017; Wünsche et al. 2017; Wiser, Ribeck, and Lenski 2013). The decreasing rate of

adaptability is at least to some extent explained by diminishing returns epistasis

(antagonistic epistasis between beneficial mutations), confirmed by experiments on

measuring the fitness of a number of mutations in multiple genetic contexts: a mutation

that is advantageous on a low-fit background is less beneficial on a high-fit background

(Figure 2.10b-d) (Wei and Zhang 2019; Kryazhimskiy et al. 2014).
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Diminishing returns epistasis between beneficial mutations is predicted to emerge

under multiple fitness landscape models. On unidimensional landscapes, it can be

defined by the smooth shape of the adaptive peak, with smaller fitness effects near the

fitness maximum (Schoustra et al. 2016). In multidimensional models, diminishing

returns epistasis results from the appearance of multidimensional adaptive ridges,

forming curved but smooth epistatic paths of increasing fitness (Lyons et al. 2020).

Diminishing returns effects can also come from the modular structure of gene networks

due to fitness “saturation” within modules (Wei and Zhang 2019; Reddy and Desai

2021).

Figure 2.10. Diminishing returns and increasing cost epistasis affecting
adaptability in evolutionary experiments (Reddy and Desai 2021). (a) During the
E. coli LTEE experiment, the rate of the fitness gain declines with time (Wiser, Ribeck,
and Lenski 2013). (b) Similarly, the less fit strains of S. cerevisiae increase their fitness
faster than more fit strains (Kryazhimskiy et al. 2014). (c) Direct fitness
measurements in S. cerevisiae show that the decline of fitness gain is explained by
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diminishing returns epistasis (Kryazhimskiy et al. 2014). (d) Deleterious mutations
demonstrate the opposite trend of increasing cost epistasis (Johnson et al. 2019).

Mutational robustness

The opposite point of view on the adaptation process is how robust the adapted

genotype is to the emergence of deleterious mutations and whether the robustness

depends on the genotype’s fitness. Multiple studies consider the relationship between

robustness and adaptability in diverse epistasis models, presenting controversial results

(Draghi et al. 2010; de Visser et al. 2003; Masel and Trotter 2010; Wagner 2008). An

important phenomenon recently presented by mutational experiments in S. cerevisiae is

increasing cost epistasis — deleterious mutations have a larger effect on highly fit

genotypes and a smaller effect on less fit genotypes (Johnson et al. 2019) (Figure 2.10d).

This implies that genotypes become less robust to deleterious mutations while

increasing their fitness in the course of adaptation (Figure 2.11). The effects of

diminishing returns and increasing cost epistasis are at first sight inconsistent and

require specific landscape shape — so that adaptation makes the genotype both less

adaptable and less robust to deleterious changes (Johnson et al. 2019). However, both

evolutionary patterns are shown to emerge in multidimensional epistasis models (Lyons

et al. 2020; Reddy and Desai 2021).

Figure 2.11. The fitness landscape model with both diminishing returns and
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increasing cost epistasis (Miller 2019). Red arrows show the adaptive path
consisting of beneficial mutations under diminishing returns epistasis (the fitness
gain is smaller at highly fit genotypes). Black arrows show the effect of deleterious
mutations, which are under increasing cost epistasis (the fitness loss is larger at
highly fit genotypes).

Predictability of evolution

How unambiguously the path of adaptation can be defined by selection varies among

different landscape models. The predictability of adaptation is an important feature of

the fitness landscape, describing whether it is possible to predict the adaptive path

along the landscape knowing the fitness effects of individual mutations on a certain

background or the preceding evolutionary path (de Visser et al. 2018; de Visser and

Krug 2014).

Predictability strongly depends on the ruggedness of the landscape. The ruggedness

emerges under sign epistasis, which makes the direction of selection acting on a

mutation dependent on the genetic background, forming complex multidimensional

adaptive paths (Weinreich, Watson, and Chao 2005). Ruggedness constraints evolution,

limiting the number of available adaptive paths (de Visser et al. 2018; Ferretti,

Schmiegelt, and Weinreich 2016; D. A. Kondrashov and Kondrashov 2015). If there is

only one adaptive peak, the outcome of the adaptive evolution of a sequence on such a

landscape is predictable: under selection, it will achieve the global maximum

(Figure 2.12a). If the landscape is rugged, i.e. there are multiple local maxima,

population may get stranded on the nearest adaptive peak and never achieve the global

optimum (Figure 2.12b) (Fragata et al. 2019; D. A. Kondrashov and Kondrashov 2015;

Poelwijk et al. 2007; de Visser and Krug 2014; Van Cleve and Weissman 2015). In an

extreme case of a highly rugged HoC landscape, where there is no correlation between

fitness effects of mutations in different genetic contexts, every evolutionary step

changes the local landscape completely and makes it impossible to predict the

subsequent beneficial mutations. Real landscapes are shown to be somewhere

in-between, combining additive and rugged components (Figure 2.13) (de Visser and

Krug 2014; Sarkisyan et al. 2016; Weinreich et al. 2006; Bank et al. 2016; Poelwijk et al.

2007; Ferretti, Schmiegelt, and Weinreich 2016).
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In the terms of ruggedness and predictability, landscapes can be functionally

characterized by several measurable parameters, such as the number of local adaptive

peaks and valleys (sinks), the number of accessible adaptive paths, the amount of sign

epistasis or roughness/slope ratio (Figure 2.13c) (de Visser and Krug 2014; Ferretti et

al. 2018; Ferretti, Schmiegelt, and Weinreich 2016; Van Cleve and Weissman 2015;

Szendro, Schenk, et al. 2013).

Figure 2.12. Predictability of evolution on landscapes of different complexity
(Van Cleve and Weissman 2015). (a) Evolution of a genotype on a smooth landscape
with a single adaptive peak converges to the fitness maximum. (b) On the rugged
landscape with multiple peaks, evolutionary trajectories might end on different local
maxima. Circles show two evolutionary paths (green and red). The blue area shows a
small part of the rugged landscape, which contains a single adaptive peak and appears
smooth.
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Figure 2.13. The ruggedness of empirical fitness landscapes (Ferretti, Schmiegelt,
and Weinreich 2016). (a) The less rugged landscape of five biallelic sites in E. coli
β-lactamase (Weinreich et al. 2006) and the more rugged landscape of five deleterious
mutations in Aspergillus niger (de Visser, Hoekstra, and van den Ende 1997).
Genotypes corresponding to adaptive peaks are highlighted in green, genotypes
corresponding to sinks of fitness (or adaptive valleys) are highlighted in red. (b)
Epistasis between mutations in these fitness landscapes: blue — no epistasis,
white — non-sign epistasis, red — sign epistasis. (c) The measures of the ruggedness
of the landscapes (𝛾 — correlation of fitness effects of mutations in the neighboring
genotypes, 𝛾* — correlation of the signs of fitness effects of mutations in the
neighboring genotypes, r/s — roughness/slope ratio).

Evolution experiments make it possible to directly quantify the reproducibility and

contingency in evolution (de Visser and Krug 2014; Poelwijk et al. 2007). On the smooth

landscapes, all uphill adaptive paths converge to the same adaptive peak, independently

of the starting point. On the rugged landscapes, diverging populations may follow

distinct complex multidimensional trajectories, occupying different peaks and

appearing in reproductive isolation because of Dobzhansky-Muller incompatibilities

(Orr 1995; D. A. Kondrashov and Kondrashov 2015).
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The convergence of evolution can be addressed on the level of phenotypes, including

fitness, or genotypes. Paths of adaptation to similar environments often show

convergence on the phenotypic level or on the level of genes, but less commonly by

specific mutations (Figure 2.14) (Lässig, Mustonen, and Walczak 2017; Kryazhimskiy et

al. 2014; Lang, Botstein, and Desai 2011; Lang and Desai 2014).

The effect of epistasis on the predictability of evolution is different in terms of

convergence and repeatability of adaptive trajectories. On rugged landscapes, the

outcome of the adaptation strongly depends on the starting genotype and initial

evolutionary steps: the probability of several independently evolving populations

achieving the same adaptive peak is low (Salverda et al. 2011; D. A. Kondrashov and

Kondrashov 2015; Fragata et al. 2019). At the same time, epistasis reduces the set of

available evolutionary pathways and therefore specifies the accessible order of

mutations (de Visser et al. 2018; Weinreich et al. 2006; Franke et al. 2011; D. A.

Kondrashov and Kondrashov 2015). Therefore, epistasis constrains adaptation, forcing

the evolving populations to follow the same paths and increasing the repeatability of

adaptation. The reproducibility of specific evolutionary steps in the course of adaptation

is shown in multiple evolution experiments (usually not on the level of specific

nucleotide mutations, but single genes) (Olivier Tenaillon et al. 2012; Graves et al. 2017;

Woods et al. 2006). However, standing genetic variation may also facilitate access to the

distinct fitness peaks, decreasing the predictability of evolution (Zheng, Payne, and

Wagner 2019).

Clearly, only a small subset of theoretically accessible adaptive paths are actualized in

the evolution of real populations, both in nature or experimental evolution. Moreover,

there are additional factors affecting the predictability of evolution, such as weak or

strong mutation regimes, population size, and clonal interference in asexual populations

(Lässig, Mustonen, and Walczak 2017; de Visser and Krug 2014; Szendro, Franke, et al.

2013; Jain and Krug 2007). Therefore, empirical observations don’t make it possible to

reconstruct the full landscape — however, they can be used to describe the main

principles of its shape and structure (D. A. Kondrashov and Kondrashov 2015).

Moreover, the general ruggedness of the full landscape doesn’t necessarily affect the

sequence evolution on small scales, if it’s already constrained to one local adaptive peak

(Figure 2.12b) (Van Cleve and Weissman 2015).
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Figure 2.14. Predictability of evolution on the level of genotypes and
phenotypes (Lässig, Mustonen, and Walczak 2017). (a) Two populations starting
from the same initial genotype follow different adaptive paths, occupying distinct
adaptive peaks. (b) Despite the sequence divergence, the dynamics of a phenotype
trait in these populations is similar and converges to the same high fitness value.
Green — positively selected genotypes, red — negatively selected genotypes.
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Epistasis and recombination

In asexual populations, the only mechanism of accumulating genetic variability is the

emergence of new mutations. Under sexual reproduction (amphimixis), recombination

is a way to reshuffle the parental genotypes, resulting in new combinations of alleles.

The selective effect of a specific recombination event depends on the complexity of the

fitness landscape. On a fully additive landscape, reshuffling of the genotypes doesn’t

change fitness effects of the individual alleles constituting these genotypes. On an

epistatic landscape, the consequences of a crossing-over event are harder to predict:

selection coefficients of the present alleles may change in a newly established

combination, decreasing the heritability of fitness (Falconer and Falconer 1989; Zuk et

al. 2012). In the extreme case of HoC landscape, with no additive component of fitness,

reshuffling of the parental genotypes makes fitness of the offspring independent of the

parents’ fitness.

Without recombination, selection operates on entire linked genotypes, leading to clonal

competition (Figure 2.15a) (Ronald A. Fisher 1930; H. J. Muller 1932; Franklin and

Lewontin 1970; R. A. Neher and Shraiman 2009). In this case, fitness effect of a

particular mutation is defined only in the given genetic context. Recombination can

break combinations of alleles, leading to quasi linkage equilibrium between loci so that

selection is able to promote or eliminate specific alleles (Figure 2.15b) (Ronald A. Fisher

1930; M. Kimura 1965; Franklin and Lewontin 1970; N. H. Barton 1995). In the allele

selection regime, the dynamics of the allele frequency is less dependent on the

stochasticity of its appearance in a specific context and therefore is more predictable.

Whether selection acts on genotypes or individual alleles depends both on the

recombination rate and the strength and abundance of epistasis within the considered

genotypes (Figure 2.15c) (Franklin and Lewontin 1970; R. A. Neher and Shraiman

2009).
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Figure 2.15. Epistatic selection with or without recombination (R. A. Neher and
Shraiman 2009). (a) Under low recombination rate (r) and strong epistasis, selection
acts on the whole genotypes. (b) Under high recombination and weak epistasis, the
units of selection are individual alleles, which can be reshuffled by recombination. In
this model, the fitness variance of fitness (𝜎2) is fully explained by pairwise epistasis.
Colors correspond to different genotypes. (c) The transition point between genotype
and allele selection regimes depends on the recombination rate and the strength of
additive and epistatic selection. VI/𝜎2 — the proportion of fitness variance attributed
to epistasis.

While considering the evolution of populations, the effects of recombination may be

complex even in a non-epistatic case. One of the outcomes of linkage in adapting asexual

populations is clonal interference. In a large clonal population, multiple beneficial

mutations may arise and segregate simultaneously, competing with each other and

mimicking the effect of stochastic drift (Figure 2.16a) (Ronald A. Fisher 1930; H. J.

Muller 1932; Kim and Orr 2005; S.-C. Park and Krug 2007; Gerrish and Lenski 1998). In

sexual populations, recombination increases the probability for beneficial mutations to
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fix, because it unlinks beneficial mutations from their genetic background, allowing

them to fix faster and therefore facilitating adaptation (Figher-Müller hypothesis,

Figure 2.16b) (Ronald A. Fisher 1930; H. J. Muller 1932; Kim and Orr 2005; N. H. Barton

1995). The dynamics of allelic frequency of deleterious variants is also prone to clonal

selection: without the possibility to discriminate disadvantageous alleles from their

background, their elimination is less efficient (Müller’s ratchet) (H. J. Muller 1964; N. H.

Barton 2010).

Selection acting in a specific genomic locus can also affect the patterns of the genetic

variation in the entire linked region. For example, fast fixation of a positively selected

allele results in the associated fixation of the neutral variants present in the linked

genotype (genetic hitchhiking), leading to local reduction of genetic variation (selective

sweeps) (Maynard and Haigh 1974; Paquin and Adams 1983; N. H. Barton 1998). The

consequences of linked selection under mutation-selection equilibrium can be diverse

and depend on the sign and strength of selection. If some loci are under strong purifying

selection, linked neutral alleles will be also eliminated due to background selection

(BGS), reducing genetic diversity (B. Charlesworth, Morgan, and Charlesworth 1993; N.

H. Barton 2010). At the same time, the presence of recessive deleterious alleles is shown

to lead to the associative overdominance (AOD) in the linked neutral loci (Ohta 1971;

Zhao and Charlesworth 2016; Gilbert et al. 2020). This effect is akin to the selective

advantage of heterozygotes and is able to, on the contrary, increase the genetic

variability in the linked loci. Likewise, local genetic variation may be maintained due to

linkage to a locus under balancing selection, caused, for example, by

frequency-dependent selection or overdominance (Deborah Charlesworth 2006; James

F. Crow 1987; Ayala and Campbell 1974). Another outcome of linkage demonstrated in a

variety of evolutionary systems is Hill-Robertson interference: simultaneous

segregation of linked weakly selected alleles can impede the efficiency of selection

acting on them (W. G. Hill and Robertson 1966; Brian Charlesworth 2012; Comeron,

Williford, and Kliman 2008; Roze and Barton 2006).
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a

b

Figure 2.16. Adaptation in asexual and sexual populations (Barrick and Lenski
2013). (a) In asexual populations, the dynamics of genotypes’ frequences is clonal —
multiple positively selected mutations interfere, retarding adaptation. (b) In sexual
populations, beneficial mutations may be combined within a single genotype by
recombination, allowing them to fix simultaneously. Different colors represent
genotypes carrying different beneficial mutations.

The evolutionary consequences of recombination are even more complex in the context

of epistasis. Generally, random shuffling of the genotypes by recombination can reduce

the mean fitness of a population while at the same time increasing its variance and

therefore evolvability (Brian Charlesworth 1990; N. H. Barton and Charlesworth 1998).

Under multidimensional or unidimensional antagonistic epistasis, recombination

breaks the coadapted combinations of positively interacting alleles, having a deleterious

effect on fitness (Brian Charlesworth 1990; F. A. Kondrashov and Kondrashov 2001b; N.

H. Barton 2010).  Under synergistic epistasis between derived alleles, recombination

may be advantageous by preserving their repulsion (Brian Charlesworth 1990; N. H.

Barton 1995). However, these effects strongly depend on the regime of selection and on

the linkage between considered loci (S. P. Otto and Feldman 1997; S. P. Otto and Gerstein

2006; Desai, Weissman, and Feldman 2007; Kouyos, Otto, and Bonhoeffer 2006). Given
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these, the evolutionary advantage of sex and its abundance in natural populations

remains controversial (Figure 2.17) (A. S. Kondrashov 2018; N. H. Barton and

Charlesworth 1998; S. P. Otto and Gerstein 2006).

Figure 2.17. Evolutionary advantage of sexual reproduction under different
epistasis modes (S. P. Otto and Gerstein 2006). Recombination between two linked
loci is disadvantageous if mutations in these loci are positively interacting or are
under weak negative selection (white); it can be favorable in the case of weak negative
epistasis between strongly deleterious mutations (gray).

Linked selection is shown to strongly affect genetic diversity in natural populations. A

striking example is decrease of diversity in the genomic region linked to a beneficial

mutation fixed in the course of selective sweep. Naturally, linkage effects on diversity are

more pronounced and involve larger segments of the genome if recombination rate is

low (e.g. sex chromosomes, centromeres and telomeres) (Nordborg, Charlesworth, and

Charlesworth 1996; B. Charlesworth 1996; N. H. Barton 2010; Ellegren and Galtier

2016). Positive correlation between recombination rate and diversity level along the

genome was observed in multiple species, indicative of the action of background

selection (Campos et al. 2014; Corbett-Detig, Hartl, and Sackton 2015; Sella et al. 2009;

Hough et al. 2017). The decay of diversity caused by linkage effects competes with the

mutagenic effect of recombination, although the impact of the latter on genetic diversity

is not so high (Spencer et al. 2006; Hellmann et al. 2003; Arbeithuber et al. 2015).
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Tightly linked loci, associated with complex phenotypes, are shown to form supergenes,

maintained within populations by balancing selection, e.g. negative

frequency-dependent selection, overdominance or associative overdominance (Mather

1950; Joron et al. 2011; Thompson and Jiggins 2014; D. Charlesworth and Charlesworth

1975; Gutiérrez-Valencia et al. 2021; Ohta 1971). Overdominance may arise due to

epistatic interactions, resulting in the persistence of coadapted gene complexes (Brian

Charlesworth and Charlesworth 1973; Faria et al. 2019). The first example of such

coadapted gene complexes were inversions within D. melanogaster populations — large

inversions suppress recombination, so that they are evolving as a single unit (T.

Dobzhansky and Sturtevant 1938; Mather 1950).

42

https://paperpile.com/c/seL1nZ/tUdm9+GWcpe+liyx+Fg3H+AU1l+m0FEe
https://paperpile.com/c/seL1nZ/tUdm9+GWcpe+liyx+Fg3H+AU1l+m0FEe
https://paperpile.com/c/seL1nZ/tUdm9+GWcpe+liyx+Fg3H+AU1l+m0FEe
https://paperpile.com/c/seL1nZ/A7cRJ+CYf2
https://paperpile.com/c/seL1nZ/A7cRJ+CYf2
https://paperpile.com/c/seL1nZ/ujNe+tUdm9
https://paperpile.com/c/seL1nZ/ujNe+tUdm9


Chapter 2: Literature review

Dynamic fitness landscapes

Fitness landscapes are usually described as static, or time-independent. However,

fitness of a genotype can change due to external or internal factors. The landscape

changes can alter the strength or even the sign of selection, promoting or restraining

adaptive evolution.

Environmental fluctuations

Fitness of a certain genotype is defined in the context of environmental and ecological

conditions. If they change, a genotype highly fit under previous conditions may appear

less adapted to the new environment. On a static landscape, the population eventually

comes to mutation-selection equilibrium, when the mean fitness value of a population is

constant. Sudden random change of the landscape can lead to disappearance or

displacement of the currently occupied fitness peak, disrupting the equilibrium and

driving adaptation to the newly established optimum (Figure 2.8c) (Wright 1932; V.

Mustonen and Lässig 2007; Ronald A. Fisher 1930; John H. Gillespie 1991).

The studies on deformability of landscapes in changing environments also focus on the

questions on pleiotropy and on the predictability of evolution in a new environment:

what proportion of mutations are susceptible to environmental changes, what are the

general patterns of the genotype-environment interactions, and whether a mutation

neutral or deleterious under some conditions can be maintained cause it is beneficial in

an alternative environment (C. Li and Zhang 2018; Fragata et al. 2018; Bajić et al. 2018;

Ho and Zhang 2018; Hermsen, Deris, and Hwa 2012; Masel 2006; de Vos et al. 2013;

Bergland et al. 2014; Hietpas et al. 2013; S. Wang and Dai 2019). Understanding

patterns of adaptation under fluctuating conditions is necessary to predict the evolution

of pathogens, such as the development of antibiotic resistance in bacteria or dynamics of

virus-host co-evolution (Schrag, Perrot, and Levin 1997; R. E. Lenski 1998; Hegreness et

al. 2008; Bhatt, Holmes, and Pybus 2011; R. A. Neher and Leitner 2010; Pennings,

Kryazhimskiy, and Wakeley 2014).
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Figure 2.18. Macro- and microevolutionary fitness seascapes (Ville Mustonen and
Lässig 2009). (a, b) On the static landscape, the population reaches an equilibrium
state. (c, d) Rare changes of the landscape lead to non-equilibrium population
dynamics and sustained positive selection. (e, f) Frequent landscape changes
/smooth/ the action of selection, resulting in a quasi-neutral regime of evolution.
𝛺(𝜎) – distribution of selection coefficients of mutations, 𝛷 – fitness flux (a measure of
fitness gain during adaptation, defined in (Ville Mustonen and Lässig 2009), with 𝛷>0
corresponding to the action of positive selection).

If the rate of environmental fluctuations is comparable with the evolution rate, they

cause the non-equilibrium dynamics of evolution, driving adaptation. However, if the

landscape changes too frequently, i.e. fitness landscape changes faster than the allelic

44

https://paperpile.com/c/seL1nZ/VAgCX
https://paperpile.com/c/seL1nZ/VAgCX
https://paperpile.com/c/seL1nZ/VAgCX


Chapter 2: Literature review

composition of a population can adjust to the newly established selection regime, the

efficacy of selection reduces (M. Lynch 1987; Ville Mustonen and Lässig 2009; V.

Mustonen and Lässig 2007, 2010; Trubenová et al. 2019). The population fails to adapt

to new conditions before they change, so that evolution becomes “quasi-neutral”

(Figure 2.18).  Such a dynamic fitness landscape is called “seascape”, reflecting its

variability (Ville Mustonen and Lässig 2009).

Frequency-dependent selection

The shape of the fitness landscape can be dependent on the current state of the

population composition. Under frequency-dependent selection, the fitness of an allele is

defined by the fraction or by the absolute number of individuals carrying this allele

(Ronald A. Fisher 1930; Ayala and Campbell 1974). In the case of negative

frequency-dependent selection (NFDS), fitness and frequency are negatively correlated,

so that rare alleles are under positive selection and common alleles are under negative

selection. As a consequence, NFDS maintains persistence of multiple alleles within a

locus, being the form of balancing selection (Takahata and Nei 1990). The long-term

effect of NFDS is elevated genetic diversity in the linked genomic region (Deborah

Charlesworth 2006).

NFDS can arise due to multiple aspects of the species' biology, for example, because of

specific patterns of sexual reproduction (e.g. assortative mating or self-incompatibility)

(Gigord, Macnair, and Smithson 2001; Sarah P. Otto, Servedio, and Nuismer 2008;

Conover and Van Voorhees 1990; Delph and Kelly 2014). Frequency-dependent

selection can be also caused by ecological interactions, e.g. co-evolution with another

species or pathogens (Borghans, Beltman, and De Boer 2004; Barrett et al. 1988; Tellier

and Brown 2011; Carius, Little, and Ebert 2001). However, it differs drastically from

random environment-driven changes of the landscape, which aren’t associated with the

allelic composition of the population.

Another form of selection maintaining genetic diversity in the locus is overdominance,

i.e. selection advantage of heterozygotes (Ronald Aylmer Fisher 1922; T. Dobzhansky

1950; Hedrick 2012; James F. Crow 1987; Takahata and Nei 1990). A similar effect can

be produced by segregation of linked recessive alleles under weak negative selection,

due to drift effects in finite populations (Ohta 1971; Zhao and Charlesworth 2016).
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Epistatic changes of allele’s fitness

Full fitness landscapes are extremely high-dimensional. To characterize general

principles of evolutionary dynamics on such landscapes, it can be to some extent

reduced to the changes of properties of individual genomic loci. The fitness landscape at

one locus (single-position fitness landscape, or SPFL) is a one-dimensional cross-section

of the full landscape and can be represented with a vector of size K, where K is the

number of possible alleles (e.g. K = 20 if we consider single amino acid site)

(Figure 2.19) (Bazykin 2015). The location of this cross-section is defined by the current

state of the genetic background. Without epistasis, the shape of SPFL and therefore

fitness effect of a mutation in the considered site doesn’t depend on the genetic context.

On epistatic landscapes, it may change with time even if the full fitness landscape

remains static, due to substitutions in epistatically interacting sites (Figure 2.20a)

(Bazykin 2015; Starr and Thornton 2016; David D. Pollock, Thiltgen, and Goldstein

2012; D. A. Kondrashov and Kondrashov 2015; Van Cleve and Weissman 2015). In this

case, replacements in the background part of the genome are “external”,  meaning that

we can detect them only implicitly by their epistatic effect on the fitness of alleles in the

considered locus, which can be inferred by changes of allelic frequencies or pattern of

substitutions. Understanding the patterns of such changes may be used to infer epistasis

in sequence divergence between species (Povolotskaya and Kondrashov 2010; A. S.

Kondrashov et al. 2010; A. S. Kondrashov, Sunyaev, and Kondrashov 2002; Goldstein and

Pollock 2017).
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Figure 2.19. Single-position fitness landscape (Bazykin 2015; Storz 2016). (a)
Single mutation fitness landscape of a protein sequence of length 15. Colors indicate
the fitness of the allele, the currently present variants are outlined. (b) The fitness
vector of all possible alleles for a specific position represents a single position fitness
landscape. (c) Allelic preferences in a chosen position can change with time, resulting
in the replacement of the currently present allele.

a                                                           b

c

Figure 2.20. Changes of allele fitness due to substitutions in epistatically
interacting sites (David D. Pollock, Thiltgen, and Goldstein 2012). (a) In simulations
of evolution on a purple acid phosphatase structure, propensities of amino acid alleles
at site 168 (𝛱168) change due to substitutions in epistatically interacting sites. Amino
acid propensities are calculated as equilibrium frequencies in the current genomic
background. Black lines show amino acid replacements in the considered site. (b) The
correlation between initial and current propensities vector at a site declines with the
accumulation of replacements in other genomic positions. Green and lime – amino
acid sites buried in the protein structure; orange and red – partially exposed sites;
blue and cyan – exposed sites. (c) The fitness of the allele currently occupying an
amino acid site (here, aspartic acid D at site 111) increases with time due to epistasis,
demonstrating entrenchment. Position 168 is the example of a site exposed in the
protein structure, while position 111 is the example of spatially buried sites.
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In multiple models of epistasis, the magnitude of fitness changes increases with the

number of substitutions in the genetic background (Figure 2.20b). The characteristic

lifespan of the correlation between the initial and the subsequent SPFLs is indicative of

the strength and abundance of epistasis and of the predictability of evolution on the

studied landscape (David D. Pollock, Thiltgen, and Goldstein 2012; Ferretti, Schmiegelt,

and Weinreich 2016; Sarkisyan et al. 2016; Pokusaeva et al. 2019).

If the background substitutions are not accumulated randomly, but are fixed according

to their selection coefficients (i.e. form an adaptive path), epistatic selection will advance

the coexistence of combinations of positively interacting alleles. Due to such

co-evolution, the fitness of the variant currently occupying a genomic site will on

average increase, experiencing entrenchment, or evolutionary Stokes shift

(Figure 2.20c) (David D. Pollock, Thiltgen, and Goldstein 2012; Flynn et al. 2017;

Goldstein and Pollock 2017; Starr et al. 2018; Shah, McCandlish, and Plotkin 2015).

Under entrenchment, climbing onto an adaptive peak will be coupled with the decline of

robustness to deleterious mutations, making it related to increasing-costs epistasis

(Lyons et al. 2020; Reddy and Desai 2021).
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Empirical fitness landscapes

Landscapes of homologous sequences

Deep mutational scanning (DMS) is a high-throughput method of measuring fitness

values of a set of genotypes (Fowler and Fields 2014). The DMS experiment consists of

three steps: generation of the library of mutant genotypes, selection and fitness

estimation. Estimation of fitness is performed by sequencing the genotype pool before

and after selection and inferring changes of genotype frequencies in the course of

selection. In DMS, it may be challenging or impossible to explicitly define the fitness of a

mutated organism, so other quantitative traits are used as a proxy of fitness, such as

protein stability, ligand binding affinity, fluorescence intensity, etc.

Usually, the mutant library for DMS contains all genotypes which can be obtained by a

single mutation in a wild-type sequence (Figure 2.21a). Such data describe a small

neighborhood of the fitness landscape and don’t provide information on epistasis

between these mutations or how the revealed fitness landscape shape affects the

evolution of the sequence. One way to link single-mutation DMS data to evolutionary

data is to compare mutational scans of two diverged homologous sequences

(Figure 2.21bc) (Doud, Ashenberg, and Bloom 2015; Haddox et al. 2018; Chan et al.

2017; Lee et al. 2018). By comparing the SPFLs for the same site on different genetic

backgrounds we can conclude to which extent the SPFLs are conserved among the

homologs and whether the changes of alleles preferences between species are the

response to environmental changes or is mediated by epistatic interactions (Chan et al.

2017; Lee et al. 2018). Such experiments show that the changes of the favorable allele

generally resemble substitutions patterns (Doud, Ashenberg, and Bloom 2015), but not

always; even strong SPFL shifts aren’t necessarily followed by allelic replacements

(Haddox et al. 2018).
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Figure 2.21. Example of using deep mutational scanning to detect evolutionary
changes of allele preferences. (a) Hypothetical DMS of a 25 amino acid long protein
sequence: the colors show the value of some functional score for any possible
genotype differing from the initial sequence by no more than one mutation (Fowler
and Fields 2014). (b-c) Changes of SPFL inferred by DMS of the envelope protein of
two HIV strains (BG505 and BF520) (Haddox et al. 2018). (b) The distribution of SPFL
shifts between pairs of sequences, measured as RMSD between SPFLs of the same
position in these two sequences corrected for the experimental noise. The
distribution of RMSDcorrected in envelope protein of BG505 and BF520 (orange) is
biased as compared to the randomized expectation (blue). The distribution of
RMSDcorrecte between the non-homologous sequences (here, influenza hemagglutinin
protein HA) is shown in green. (c) The examples of sites with significantly shifted
SPFLs. Logos show amino acid preference in two strains, black letters indicate the
wild-type allele.

The complexity of the empirical landscapes

DMS experiments may cover not only single-position mutants but also genotypes

carrying combinations of two or more mutations as compared to the wild-type

genotype. By limiting the number of considered sites and/or alleles in these sites, it’s
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possible to measure all possible combinations of the considered alleles — the full

landscape on the space of these sites.

The empirical landscapes are highly epistatic. Multiple studies show that a large part of

detected epistatic interactions can be attributed to unidimensional epistasis, with the

additive fitness potential function representing the influence of mutations on some

sequence trait (e.g. protein stability) (Figure 2.22a,b) (Sarkisyan et al. 2016; Jacquier et

al. 2013; Kryazhimskiy et al. 2014; Otwinowski, McCandlish, and Plotkin 2018; Diss and

Lehner 2018). The shape of the unidimensional epistasis informs on the evolvability of

the protein: negative epistasis detected in some empirical landscapes prevents

accumulation of combinations of deleterious mutations, reducing mutational load and

constraining evolution as compared to the non-epistatic case (Figure 2.22a) (M. Kimura

and Maruyama 1966; Otwinowski, McCandlish, and Plotkin 2018; Sarkisyan et al. 2016).

However, not all patterns of fitness variability can be reduced to unidimensional

epistasis. Empirical landscapes reveal the presence of pairwise and high-order

interactions that configure the rugged structure of protein landscapes and restrict the

accessibility of evolutionary paths (Wu et al. 2016; Zhou and McCandlish 2020; Sailer

and Harms 2017b; Lunzer, Golding, and Dean 2010). The pairwise epistasis is shown to

originate from physical interaction between sites (Diss and Lehner 2018; Podgornaia

2014; Rollins et al. 2019; Stiffler et al. 2020). The landscapes can combine multi- and

unidimensional effects: for example, reciprocal sign epistasis is shown to create distinct

isolated fitness peaks, while unidimensional epistasis shapes the generally smooth

surface of the peaks (Figure 2.22c) (Zhou and McCandlish 2020). Different regimes of

epistasis may affect patterns of evolution on micro- and macroscale differently,

decreasing the predictability of evolution.
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a                                                      b

c

Figure 2.22. Uni- and multidimensional epistasis in empirical fitness
landscapes. (a-b) Unidimensional epistasis between deleterious mutations shapes
the fitness landscape of GFP (Sarkisyan et al. 2016). (a) The fraction of fit genotypes
carrying multiple deleterious mutations (purple) is less than expected under
non-epistatic expectations (blue). (b) Protein stability (measured as ΔΔG) is shown to
be a good proxy of the fitness potential in GFP. (c) Reciprocal sign epistasis shapes the
rugged landscape of four sites of GB1 protein (Zhou and McCandlish 2020; Wu et al.
2016). Gray lines connect genotypes differing by one mutation. The landscape is
visualized with the dimensionality reduction method (McCandlish 2011). The corners
of the triangle (regions 1-3) represent three adaptive peaks. Within peaks, epistasis is
mostly unidimensional and can be approximated with a sigmoid function.
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Empirical inference of historical evolution

As was discussed above, only a small part of the full fitness landscape is actually

engaged in the evolution of real populations. Although DMS experiments reveal

abundant epistasis between sampled mutations, they don’t provide insight on whether

epistatic selection influences the fixation of mutations in the course of adaptation. The

complexity of the historical evolutionary paths can be addressed by combining

experimental approaches with comparative genomics methods to reconstruct the

substitutions which occurred in the evolution of the examined sequence (Poelwijk et al.

2007; de Visser and Krug 2014; Bloom 2014).

One way to construct a set of potentially interesting genotypes is to focus on the alleles

present in the orthologous sequences of several related species, and the combinations of

such alleles. Experiments on measuring the fitness of the corresponding genotypes

reveal epistasis-driven incompatibilities between the diverged genotypes: the

evolutionary pathways between highly fit orthologous sequences are not neutral, but

rather shaped by abundant pairwise and high-order epistasis (Figure 2.23a-c)

(Pokusaeva et al. 2019; Domingo, Diss, and Lehner 2018; Poelwijk, Socolich, and

Ranganathan, n.d.). Additionally, phylogenetic methods can be used to reconstruct the

evolution of the sequence. In this case, it’s possible to directly trace the adaptive paths

by measuring the fitness of the ancestral and derived alleles in the context of present

and reconstructed genotypes (Figure 2.23d) (Starr et al. 2018; Bridgham, Ortlund, and

Thornton 2009; Gong, Suchard, and Bloom 2013; A. M. Phillips et al. 2021; Pillai et al.

2020).

Such studies show that the historical substitutions are not independent. The

evolutionary paths are to large extent constrained by epistatic selection: many of the

observed substitutions are not generally advantageous, but become such by preceding

permissive substitutions at epistatically interacting sites (Figure 2.23e,g) (Starr et al.

2018; Bloom, Gong, and Baltimore 2010; Natarajan et al. 2016; Gong, Suchard, and

Bloom 2013). The fixed allele then becomes entrenched due to co-evolution in the

epistatically interacting sites. Entrenchment makes the currently present allele more fit,

and the reversion to the ancestral variant more deleterious with time (Figure 2.23f,g)

(Starr and Thornton 2016; Bridgham, Ortlund, and Thornton 2009; Wu et al. 2020).

53

https://paperpile.com/c/seL1nZ/E5Pm+D1Af+ThVb
https://paperpile.com/c/seL1nZ/E5Pm+D1Af+ThVb
https://paperpile.com/c/seL1nZ/rJyGt+ZYhdX+qfuO
https://paperpile.com/c/seL1nZ/rJyGt+ZYhdX+qfuO
https://paperpile.com/c/seL1nZ/2G81l+YEJca+XxS0p+cNDne+XqP9W
https://paperpile.com/c/seL1nZ/2G81l+YEJca+XxS0p+cNDne+XqP9W
https://paperpile.com/c/seL1nZ/2G81l+YEJca+XxS0p+cNDne+XqP9W
https://paperpile.com/c/seL1nZ/2G81l+wrruU+2XR0s+XxS0p
https://paperpile.com/c/seL1nZ/2G81l+wrruU+2XR0s+XxS0p
https://paperpile.com/c/seL1nZ/2G81l+wrruU+2XR0s+XxS0p
https://paperpile.com/c/seL1nZ/8V4FG+YEJca+czNBu


Chapter 2: Literature review

Such retrospective analysis allows concluding that epistasis carves long and curved

evolutionary pathways with strict constraints on the accessible order of substitutions.

Permissive substitutions open new adaptive paths, previously hidden due to the

ruggedness of the landscape, while the latter co-adaptation entrenches the newly fixed

alleles, making the evolution non-reversible (Bridgham, Ortlund, and Thornton 2009; de

Visser and Krug 2014).

b                        c

a
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Figure 2.23. Epistatic constraints shaping the historical adaptive paths. (a-c)
epistatic interactions between mutations fixed in the evolution of the yeast arginine-CCU
tRNA (Domingo, Diss, and Lehner 2018). (a) Secondary structure of the tRNA, with
positions differing between the orthologous sequences shown in red. (b) Fitness effects
of the corresponding mutations in the context of tRNA of different species. (c) Fitness
effects of mutations across all measured genetic backgrounds. (d-g) Epistasis in the
evolution of Hsp90 (Starr et al. 2018). (d) The phylogeny of the Hsp90; the
reconstructed ancestral sequences of the common ancestor of Ascomycota and
Amorphea are shown in black. (e-f) Fitness of the ancestral and intermediate genotypes
as predicted from fitness effects of individual mutations on the background of the extant
genotype (e) and the ancestral genotype (f). (g) Experimental measurements show that
ancestral genotypes are as fit as the extant genotype, demonstrating the effects of
permissive mutations and entrenchment.
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Phylogenetic evidence of epistasis

Compensated pathogenic deviations

In the human population, some individuals carry strongly deleterious genomic variants

shown to be causal on known diseases. Pathogenic variants may segregate in the human

population, but can’t achieve high frequency due to the associated fitness loss. A striking

example of compensatory evolution is the fixation of disease-causing variants in the

related species (compensated pathogenic deviations, or CPD) (Figure 2.24a) (A. S.

Kondrashov, Sunyaev, and Kondrashov 2002; Kulathinal, Bettencourt, and Hartl 2004;

Jordan et al. 2015). In this case, pathogenic allele becomes neutral due to substitutions

in other genomic sites — usually, a single permissive substitution in the same gene is

shown to be sufficient for the compensation (Jordan et al. 2015; Kern and Kondrashov

2004). In terms of fitness landscapes, compensation of deleterious alleles comprises

evolutionary trajectories that go along the fitness ridges, resulting in the accumulation

of genetic incompatibilities between the diverged genotypes (A. S. Kondrashov, Sunyaev,

and Kondrashov 2002).

Patterns of divergent and convergent evolution

While comparing homologous protein sequences from distant species, it’s possible to

infer changes of alleles’ fitness between these species. If SPFL of a specific genomic site

changed in the course of divergence of the lineages, distant sub-clades of the

corresponding phylogenetic tree are expected to be enriched by different sets of alleles

in this site (Figure 2.24b), as compared to the accumulation of amino acid changes in the

neutral sites (Starr and Thornton 2016; Bazykin 2015). The dynamics of accumulation

of genetic differences along the phylogenies is shown to be inconsistent with evolution

under constant selection, but explainable by the rugged structure of the underlying

fitness landscape (Povolotskaya and Kondrashov 2010; A. S. Kondrashov et al. 2010;

Breen et al. 2012; McCandlish et al. 2013; Usmanova et al. 2015; Biswas et al. 2019).

Complex networks of epistatic interactions, including compensatory and sign epistasis,

elongate the adaptive evolution and slow the rate of fitness gain by constantly pushing

the limits of the species divergence: epistasis constrains the number of accessible

evolutionary paths at any given time point. Allelic substitutions in one genomic site
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change the allelic preferences at other sites, opening new adaptive paths so that

evolutionary trajectories go through curved fitness ridges (Povolotskaya and

Kondrashov 2010; D. A. Kondrashov and Kondrashov 2015).

Figure 2.24. Patterns of between-species variation evident of epistasis (Starr and
Thornton 2016). (a) Compensation of a disease-associated variant, (b) changes of the
alleles usage between clades, (c) higher rate of convergent evolution in closely related
species, (d) correlated evolution of physically interacting sites.

The divergence of alleles preferences along the phylogeny is also associated with

specific dynamics of reversions (i.e. substitutions restoring the ancestral state) and

convergent substitutions (i.e. recurrent substitution of the same allele in separate

lineages) (Figure 2.24c). The dynamics of the rate of reversions to the ancestral allele
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after substitution is indicative of the epistasis-driven changes of fitness of the alleles in

the considered site (Starr and Thornton 2016; Storz 2016; Zou and Zhang 2015). Due to

co-adaptation of the epistatically interacting sites, the newly established variant

becomes entrenched, while the fitness of the initially beneficial allele that occupied the

genomic site before the replacement declines with time (McCandlish, Shah, and Plotkin

2016). Shifts of the allelic preferences, including the loss of the epistatic “memory” of

the ancestral allele, lead to the increase of the ratio of the rates of convergent and

divergent evolution with time (Goldstein et al. 2015; Povolotskaya and Kondrashov

2010; Naumenko, Kondrashov, and Bazykin 2012). Shared allelic constraints increase

the repeatability of evolution between closely related species, resulting in the negative

correlation between the rate of convergent or parallel substitutions and evolutionary

distance (Starr and Thornton 2016; Klink and Bazykin 2017; Soylemez and Kondrashov

2012).

Correlated evolution of interacting sites

Empirical studies of fitness landscapes reveal abundant pairwise epistasis between

amino acid sites physically interacting in the protein structure (Rollins et al. 2019; Diss

and Lehner 2018; Salinas and Ranganathan 2018; Olson, Wu, and Sun 2014).

Comparative genomics studies on large phylogenies of distant species show that

interacting sites tend to co-evolve, appearing as significant covariation between their

evolution between species (Figure 2.24d) (Göbel et al. 1994; E. Neher 1994; Altschuh et

al. 1987; Kamisetty and Ovchinnikov 2013). However, the inference of truly epistatic

pairs of sites is impeded by abundant indirect correlations, which are hard to

distinguish from the direct epistasis-driven correlations. This can be solved using

direct-coupling analysis (DCA) — a group of statistical methods able to extract direct

correlations and shown to be able to infer pairwise epistatic interactions based on thick

between-species alignments or data on bacterial or viral divergence (Weigt et al. 2009;

Morcos et al. 2011; J. P. Barton et al. 2016; Burger and van Nimwegen 2010; Puranen et

al. 2018; Figliuzzi et al. 2016). Coupling analysis is successfully leveraged to reconstruct

protein and RNA structures and protein-protein interactions based on epistatic

constraints between physically interacting sites (Ovchinnikov, Kamisetty, and Baker
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2014; Marks et al. 2011; Morcos et al. 2011; Sjodt et al. 2018; De Leonardis et al. 2015;

Ovchinnikov et al. 2015, 2017).

Phylogenetic clustering of interacting sites

Co-evolution of epistatically interacting sites between species means that substitutions

in these sites tend to occur simultaneously or within a short time. By reconstructing the

evolutionary history of the sequence, it’s possible to analyze joined phylogenetic

distribution of substitutions in presumedly interacting pairs of sites. Under epistasis, a

substitution occurring in one site can drive co-adaptation in another site, causing the

temporal clustering of allelic replacements along the phylogeny (Figure 2.25a,b)

(Shapiro et al. 2006; Neverov et al. 2021, 2014; Bazykin 2015). The extent of clustering,

which can be estimated by the lifespan of the intermediate states, characterizes the

mode and strength of epistatic selection: whether the evolutionary path consisting of

two subsequent substitutions goes along the adaptive ridge or crosses an adaptive

valley (Figure 2.25c-f) (Meer et al. 2010; Gong, Suchard, and Bloom 2013; Nasrallah and

Huelsenbeck 2013).
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Figure 2.25. Phylogenetic clustering of epistatically interacting substitutions.
(a-b) Distribution of compensatory (a) and independent (b) substitutions along the
phylogeny (Shapiro et al. 2006). (c-f) Possible landscape models underlying the fast
two-step transition from AU pair to GC in mitochondrial tRNAs (Meer et al. 2010): (c)
flat fitness ridge, (d) ascending fitness ridge, (e) equal fitness peaks isolated by fitness
valleys, (f) fitness peaks of different height isolated by intermediate states of different
fitness.
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Epistasis in within-population variation

Statistical epistasis

Despite the abundant epistasis between substitutions observed on the

macroevolutionary level, it’s hard to detect between polymorphisms segregating within

natural populations. Epistatic component of the variation of some complex trait can be

the cause of missing heritability of the trait — however, there is no evidence of epistasis

having large contribution to the trait variation, and to what extent missing heritability in

natural populations is indeed explained by epistasis remains controversial (Hayman and

Mather 1955; Falconer and Falconer 1989; Cheverud and Routman 1995; Hivert et al.

2021; Zuk et al. 2012; Visscher et al. 2007; Sackton and Hartl 2016). In genome-wide

association studies (GWAS) phenotypic variation within populations is explained by

genome content. The effects of polymorphisms associated with human polygenic

phenotypes are shown to be generally additive: phenotypic variance attributed to

epistasis between polymorphisms segregating within a population (statistical epistasis)

is negligible (Cheverud and Routman 1995; James F. Crow 2010; Mackay and Moore

2014; William G. Hill, Goddard, and Visscher 2008). Complex linkage effects can also

result in artificial signals of epistasis, impeding its inference in GWAS (Wood et al. 2014;

Hemani et al. 2021).

Epistasis-driven linkage disequilibrium

Epistasis can maintain favorable combinations of alleles at interacting sites, increasing

linkage disequilibrium (LD) between them (Ronald A. Fisher 1930; Lewontin and

Kojima 1960; N. H. Barton 2010; Takahasi and Tajima 2005; Kouyos, Silander, and

Bonhoeffer 2007; Pedruzzi, Barlukova, and Rouzine 2018; Boyrie et al. 2021). In the

absence of population structure, genomic admixtures or recent changes of population

size, unlinked polymorphisms (e.g. located on different chromosomes or separated by

large genomic distances within the same chromosome) are expected to segregate

independently (Nei and Li 1973; Schaper et al. 2012; Lewontin and Kojima 1960; Rohlfs,

Swanson, and Weir 2010).
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Figure 2.26. Repulsion LD between loss-of-function polymorphisms in human
and fruit fly populations (Sohail et al. 2017). (a) The number of deleterious alleles
per genotype in the absence of epistasis is expected to be Poisson-distributed so that
its variance (𝜎2) is equal to the mean (additive variance VA) (gray). Under antagonistic
epistasis, deleterious alleles are overdispersed (blue), while under synergistic
epistasis they are underdispersed (red). (b) Underdispersion of LoF alleles (red) in
human (Netherlands GoNL, European ancestry ADNI and Dutch MinE datasets) and
fruit fly (Zambian DPGP3 dataset) populations.

Epistasis between distant polymorphisms may keep them long-range linkage

disequilibrium (LRLD), which can be detected by analyzing population genomic datasets

(Koch, Ristroph, and Kirkpatrick 2013; L. Park 2019). An example of unidimensional

epistasis creating LRLD is synergistic epistasis between loss-of-function (LoF)
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polymorphisms within populations of H. sapiens and D. melanogaster (Sohail et al.

2017). The decreased variance of the number of LoF alleles per genome as compared to

the Poisson distribution indicates their repulsion, or negative, LD: the probability of a

genotype to contain several LoF alleles is reduced to what is expected if they segregate

independently (Figure 2.26).

In sexual populations, recombination competes with epistasis, disrupting coupling LD

between distant interacting sites (Ronald A. Fisher 1930; H. J. Muller 1932; Franklin and

Lewontin 1970; R. A. Neher and Shraiman 2009; Pedruzzi and Rouzine 2019).

Nevertheless, within a single gene, physical proximity may suffice to limit

recombination, so sets of coadapted variants may evolve (Lewontin and Kojima 1960; T.

Dobzhansky 1950). However, population structure and complex effects of genetic drift

and linkage impedes detection of short-range epistatic interactions (Ragsdale 2021;

Good 2020). Despite these difficulties, recent studies describe repulsion between

nonsynonymous and LoF polymorphisms within populations, which may be explained

by negative epistasis acting on them (Garcia and Lohmueller 2021; Sandler, Wright, and

Agrawal 2021). The opposite phenomenon of coupling LD between derived

nonsynonymous variants was detected in bacterial populations (Arnold et al. 2020). The

effect was largely restricted to regions of high genetic diversity, presumably generated

by ongoing positive or balancing selection.
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Chapter 3: Complex fitness landscape shapes

variation in a hyperpolymorphic species

It is natural to assume that patterns of genetic variation in hyperpolymorphic species

can reveal large-scale properties of the fitness landscape that are hard to detect by

studying species with ordinary levels of genetic variation. Here, we study such patterns

in a fungus Schizophyllum commune, the most polymorphic species known. Throughout

the genome, short-range linkage disequilibrium caused by attraction of rare alleles is

higher between pairs of nonsynonymous than of synonymous sites. This effect is more

pronounced if both sites are located within the same gene, especially if a large fraction of

the gene is covered by haploblocks, genome segments where the gene pool consists of

two highly divergent haplotypes, which is a signature of balancing selection.

Haploblocks are usually shorter than 1000 nucleotides, and collectively cover about

10% of the S. commune genome. LD tends to be substantially higher for pairs of

nonsynonymous sites encoding amino acids that interact within the protein. There is a

substantial correlation between LDs at the same pairs of nonsynonymous sites in the

USA and the Russian populations. These patterns indicate that selection in S. commune

involves positive epistasis due to compensatory interactions between nonsynonymous

alleles. When less polymorphic species are studied, analogous patterns can be detected

only through interspecific comparisons.
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Introduction

Alleles do not affect fitness and other phenotypic traits independently and, instead, often

engage in epistatic interactions (Maynard Smith 1970; Wright 1932; Fenster, Galloway,

and Chao 1997; John H. Gillespie 1994; Povolotskaya and Kondrashov 2010; de Visser,

Cooper, and Elena 2011; McCandlish et al. 2013; de Visser and Krug 2014; Good and

Desai 2015; Kryazhimskiy et al. 2011). Epistasis is pervasive at the scale of

between-species differences, where it is saliently manifested by Dobzhansky-Muller

incompatibilities and results in low fitness of interspecific hybrids (T. Dobzhansky 1936;

Orr 1995; A. S. Kondrashov, Sunyaev, and Kondrashov 2002). By contrast, at the scale of

within-population variation, the importance of epistasis remains controversial (Ronald

A. Fisher 1930; H. J. Muller 1932; Franklin and Lewontin 1970; R. A. Neher and Shraiman

2009; Sackton and Hartl 2016; James F. Crow 2010; Mäki-Tanila and Hill 2014; William

G. Hill, Goddard, and Visscher 2008; Hivert et al. 2021). This may look like a paradox,

because such variation provides an opportunity to detect epistasis through linkage

disequilibrium (LD), non-random associations between alleles at different loci (Ronald

A. Fisher 1930; H. J. Muller 1932; Franklin and Lewontin 1970; N. H. Barton 2010;

Takahasi and Tajima 2005; Kouyos, Silander, and Bonhoeffer 2007; Pedruzzi, Barlukova,

and Rouzine 2018; Boyrie et al. 2021). Indeed, epistatic selection generates LD which

can be detected (M.-C. Wang et al. 2012; Beissinger et al. 2016; Zan, Forsberg, and

Carlborg 2018; Garcia and Lohmueller 2021; Boyrie et al. 2021). Perhaps, the fitness

landscape is complex macroscopically (between diverged species) but is more smooth

microscopically (within populations)  or, in other words, epistasis is genuinely more

pronounced at a macroscopic scale (Ochs and Desai 2015). If so, studying epistasis in

hyperpolymorphic populations, where differences between genotypes can be as high as

those between genomes of species from different genera or even families, holds a great

promise because variation within such a population can cover multiple fitness peaks or

a sizeable chunk of a curved ridge of high fitness (Theodosius Dobzhansky 1937;

Bateson 1909; H. Muller 1942; S. Gavrilets 1997; A. S. Kondrashov, Sunyaev, and

Kondrashov 2002).
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The basidiomycete fungus Schizophyllum commune possesses the highest genetic

diversity among the studied eukaryotic species, with up to 20% of neutral sites differing

between any two individuals within a population. High genetic diversity is at least

partially caused by high mutation rates in S. commune: although the per-generation

mutation rate measured in the laboratory conditions is not extremely high (2e-8

mutations per nucleotide per generation), the fungus is shown to accumulate mutations

while the mycelium grows, so that the per-generation mutation rate in nature can be

substantially higher (Baranova et al. 2015; Bezmenova et al. 2020). Another cause of

such a high level of polymorphism may be large effective population size (Baranova et al.

2015). S. commune possesses relatively small genome (38.5 Mb, 11 chromosomes), with

approximately half of the genome carrying protein-coding sequences (Ohm et al. 2010).

Its genes have introns (on average four per gene), although relatively short (typically <

100 nt). It has more than 20,000 mating types, encoded by two mating-type loci (Kothe

1999).

Recent study on the distribution of the crossing-over events in F1 hybrids of a pair of

individuals sampled from USA and Russia showed that they are more frequent in

genomic regions where parental genotypes are similar to each other, including exons,

where relatively low genetic diversity is maintained by negative selection (Seplyarskiy et

al. 2014). S. commune has a haploid life stage and can be cultivated in laboratory

conditions, making it a promising object for population genetics studies.

Here, we study the LD patterns in 55 complete genomes of S. commune from North

America and Europe.
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Materials and methods

S. commune sampling, sequencing and assembly

Haploid cultures of 24 isolates, each originated from a single haplospore, were obtained

from fruit bodies collected in Ann Arbor, MI, USA by T. James and A. Kondrashov (17

samples) and in Moscow and Kostroma regions, Russia by A. Kondrashov, A. Baykalova

and T. Neretina (7 samples) in 2009–2015. Specimen vouchers are stored in the White

Sea Branch of Zoological Museum of Moscow State University (WS). To obtain isolates,

wild fruit bodies were hung on the top lid of a 10 cm petri dish with agar medium. Petri

dish was set at an angle of 60-70 degrees to the horizontal surface for 32 hours. A

germinated spore was excised together with a square-shaped fragment (approximately

0.7x0.7 mm) of the medium from the maximally rarefied area of the obtained spore print

under a stereomicroscope with 100x magnification. The obtained isolates were cultured

in Petri dishes on 2% malt extract agar for a week. For storage, cultures were

subcultured into 1.5 ml microcentrifuge tubes with 2% malt extract agar. To obtain

sufficient biomass for DNA isolation, isolates were cultured in 20 ml 0.5% malt extract

liquid medium in 50 ml microcentrifuge tubes in a horizontal position on a shaker at

100 rpm in daylight for 5 to 10 days. The tubes with the cultures were then centrifuged

at 4000 rpm, and the supernatant was decanted. The resulting mycelium was

lyophilized. DNA was extracted using Diamond DNA kit according to the manufacturer's

recommendations.

DNA libraries were constructed using the NEBNext Ultra II DNA Library Prep Kit kit by

New England Biolabs (NEB) and the NEBNext Multiplex Oligos for Illumina (Index

Primers Set 1) by NEB following the manufacturer’s protocol. The samples were

amplified using 10 cycles of PCR. The constructed libraries were sequenced on Illumina

NextSeq500 with paired-end read length of 151. The genomes were assembled de novo

using SPAdes (v3.6.0) (Bankevich et al. 2012); possible contaminations were removed

using blobology (Sujai Kumar et al. 2013). Average N50 was ~165kb for USA samples

and ~70kb for Russian samples (assembly statistics shown in Table A1).
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Together with the 30 samples sequenced previously (Baranova et al. 2015; Bezmenova

et al. 2020), the obtained haploid genomes were aligned with TBA and multiz

(Blanchette et al. 2004) and projected onto the reference scaffolds (Ohm et al. 2010).

Ortholog sequences were extracted based on the reference genome annotation (Ohm et

al. 2010) and realigned using macse codon-based aligner (Ranwez et al. 2011). Only the

gap-free columns of the whole-genome alignment and the orthologs that were found in

all 55 genomes were used for analysis. The total number of detected SNPs was 5.8

million for the USA population (82% of them biallelic) and 2.7 million for the Russian

population (93% biallelic). 25% of the USA SNPs were shared with the Russian

population (11% with the same major and minor alleles), and 53% of the Russian SNPs

were shared with the USA population (23% with the same major and minor alleles,

Figure 3.1).

To represent the genomic distances between populations and the within-population

structure, we reconstructed the whole-genome phylogeny of the sequenced genomes

with RAxML (Stamatakis 2014) (Figure 3.2). Nucleotide diversity (π) was estimated as

the average frequency of pairwise nucleotide differences; π for different classes of sites

is shown in Figure 3.1. Here, the number of synonymous and nonsynonymous sites was

calculated using the method described in (Nei and Gojobori 1986). The value of πsyn

calculated with this method was ~10% lower than the value obtained using only the

fourfold-degenerate sites.  pn/ps for single genes was calculated as the ratio of the

average number of synonymous and nonsynonymous differences between a pair of

genomes divided by the number of corresponding sites, estimated the same way as π.

Two samples from Florida (USA population; samples FL and s1514) represent a separate

sub-population external to other USA samples (Figure 3.2, Fst = 0.11), so they were

excluded from the further analysis to minimize the possible effect of population

structure.

Genome sequence data are deposited at DDBJ/ENA/GenBank under accession numbers

JAGVRL000000000-JAGVSI000000000, BioProject PRJNA720428. Sequencing data are

deposited at SRA with accession numbers SRR14467839-SRR14467862.
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a b

c

Figure 3.1. Patterns of nucleotide diversity in S. commune. (a) The fraction of
private and shared biallelic SNPs. (b) Within-population nucleotide diversity at
different classes of sites. (c) The number of monomorphic and polymorphic sites in the
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multiple whole-genome alignments of S. commune genomes. The USA dataset consists
of 34 sequenced genomes, and the Russian dataset consists of 21 samples.

Figure 3.2. The reconstructed phylogeny of S. commune. USA and Russian
populations of S. commune are highly divergent while having almost no
within-population structure. Genetic distance is measured in nucleotide differences,
the phylogeny is reconstructed based on the multiple whole-genome alignment. π
between populations is approximately 0.34, Fst = 0.58.

Data on H. sapiens and D. melanogaster populations

We used polymorphism data from 1,296 phased human genomes from African and

European super-populations sequenced as part of the 1000 Genomes project (1000

Genomes Project Consortium et al. 2015). If several individuals from the same family

were sequenced, we included only one of them. As a D. melanogaster dataset, we used

197 haploid genomes from the Zambia population (Lack et al. 2015). Only autosomes

were analyzed in both datasets.
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Estimation of LD

As a measure of linkage disequilibrium between two biallelic sites, we used r2, calculated

as follows:

, where p(A) and p(B) are the minor allele frequencies at𝑟2 =  (𝑝(𝐴𝐵) − 𝑝(𝐴)𝑝(𝐵)) 2

𝑝(𝐴)(1−𝑝(𝐴)) 𝑝(𝐵)(1−𝑝(𝐵))

these sites and p(AB) is the frequency of the genotype carrying both minor alleles.

Multiallelic sites (4.9% of polymorphic sites in the USA population and 0.9% in the

Russian populations, and singletons (sites with minor allele present only in one

genotype) were excluded from the analysis.

Haploblocks annotation

In order to annotate the haploblocks, we calculated LD along the S. commune genome in

a sliding window of 250 nucleotides with a step of 20 nucleotides (only non-singleton

SNPs are analyzed; the windows with less than 10 SNPs were excluded). Any continuous

sequence of overlapping windows with LD (r2) larger than the threshold value was

merged together in a haploblock. The LD threshold value was defined independently for

each S. commune population as the heavy tail of the within-window LD distribution, as

compared with the lognormal distribution with the same mean and variance as in the

data.

Estimation of LD between physically interacting amino acid sites

Of 16,319 annotated protein-coding genes of S. commune (Ohm et al. 2010) 9,941 were

found in all 55 aligned genomes. We blasted the protein sequences of these orthologous

groups against the PDB database of protein structures. About 52% of them (5,188) had a

match (e-value threshold = 1e-5) amongst the proteins with the known structure. We

realigned the sequences of S. commune protein and the matching PDB protein with

clustal and calculated within-population LD and physical distance (Å) for each pair of

aligned positions in the corresponding three-dimensional structure. A pair of amino acid
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sites was considered physically adjacent if they were located within 10 Å from each

other.

To compare LD between pairs of physically close and distant sites, we used the

controlled permutation test: for each pair of physically close amino acid sites (within

10Å) we sampled a pair of physically distant amino acids on the same nucleotide

distance (measured in aa). Pairs of sites closer than 5 aa were excluded from the

analysis.

To examine LD patterns within individual protein structures, we calculated contingency

tables of pairs of SNPs being located in codons encoding physically close amino acids

and having high LD (no less than 90% quantile for a given gene). Pairs of amino acid

sites located closer than 30 aa or more distant than 100 aa from each other were

excluded; genes with less than 5 pairs of physically close sites under high or low LD

were also excluded. From these contingency tables, we calculated the odds ratio (OR)

and chi-square test p-value for each gene. p-values were adjusted using BH correction

(Benjamini and Hochberg 1995).

Simulations of epistasis

To simulate evolution of populations with or without epistasis and balancing selection,

we used an individual-based model implemented by SLiM (Haller and Messer 2019).

Simulations are performed with diploid population size N=1000 and recombination rate

0. To achieve the level of genetic diversity π similar to S. commune, mutation rate μ is

scaled as μ=π/2N=5e-5, recurrent/reverse mutations at the same genetic site are

allowed. The length of the simulated sequence is 100 bp. Each simulation starts with a

monomorphic population and proceeds for 100N generations. For calculations of

synonymous and nonsynonymous LD, random 100 haploid genotypes are sampled from

the population. Only SNPs with minor allele frequency > 5% in the sample are analyzed.

We model two types of sites, depending on whether mutations in them are neutral (with

selection coefficient ssyn = 0) or weakly deleterious (snonsyn ≤ 0), representing

synonymous and nonsynonymous sites correspondingly. There are twice as many
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nonsynonymous as synonymous sites. Under the non-epistatic model, s is independent

of the genetic background. We assume snonsyn=-0.01 with the dominance coefficient h of

0.5.

Under the pairwise positive epistasis model, we assume that a mutation at one

nonsynonymous site can be partially or fully compensated by a mutation at another site.

In this model, all nonsynonymous sites are split into pairs. Each mutation of a pair

individually occurring within a genotype is assumed to be deleterious, with selection

coefficient snonsyn=-0.01; however, the fitness of the double mutant is larger than

expected under the additive (non-epistatic) model. We use multiple epistasis models,

which vary on the epistasis strength and landscape shape.

In the NFDS model of balancing selection, a single mutation at a random position is

subjected to frequency-dependent selection (so that it is positively selected at

frequencies below 0.5, and negatively selected at frequencies above 0.5). In the AOD

model, mutations in 10 random positions are fully recessive (h=0) and weakly

deleterious (s=-0.0025).

To simulate evolution of populations with different levels of genetic diversity under

epistasis, we use FFPopSim (Zanini and Neher 2012) (the simulation results obtained

with FFPopSim and SLiM were checked to be similar for π=0.2 as in S. commune, but

FFPopSim calculation time was substantially shorter; unfortunately, it doesn’t allow to

simulate evolution of diploid population and therefore couldn’t be used to simulate

overdominance). To achieve different levels of genetic diversity π, mutation rate μ is

scaled as μ=π/2N (we checked that this approach gives the same results as scaling of N

instead of μ, as long as we scale s and recombination rate ⍴ to maintain Ns and ⍴N

constant). The calculations are performed the same way as in SLiM, but In this case, we

use haploid population size N=2000, population-scaled recombination rate 0.01 and the

simulated sequence length of 300 nucleotides.
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Results

Epistatic selection is more efficient in genetically diverse populations

Genetic interactions affect operation of selection only affect patterns of variation if

sufficient variation is maintained. The potency of any kind of selection acting on the

variants segregating within a population increases with the amount of variation. If the

neutral level of genetic variation is low, the efficiency of selection will also be low since it

won’t be able to eliminate deleterious variants and promote beneficial variants if they

are absent. For epistatic selection, however, this increase is expected to be faster than

linear, because it depends on the number of possible allele combinations. In a highly

polymorphic population, a particular allele is more likely to co-occur in the same

haplotype with an interacting, e.g., compensatory, allele, which should increase the

impact of epistasis on linkage disequilibrium (Figure 3.3a).

To illustrate this point, we modelled the evolution of a genome region in the presence

and in the absence of positive epistasis in a panmictic population. We assumed that all

mutations at a set of sites are individually deleterious, and that all these sites are

involved in pairwise positive (i.e., antagonistic) sign epistasis; specifically, each

deleterious mutation can be fully compensated by another mutation at exactly one site

elsewhere in the genome, which is also deleterious when present alone. In the

non-epistatic simulations, the effects of mutations were independent; however, at the

end of the simulation we randomly assigned the “interacting” pairs of sites to account

for the random coincidence of deleterious alleles. We found that in this model a higher

polymorphism increases the probability that a deleterious mutation is compensated

before being eliminated by selection (Figure 3.3b). This probability increases with

genetic diversity even for the non-epistatic simulations, because increased diversity

elevates the likelihood of randomly encountering a compensating allele in the same

haplotype. For epistatic simulations, however, this increase is more radical, reflecting the

effect of epistatic selection favoring compensated haplotypes. Despite the fact that a

fraction of deleterious alleles are compensated in a fraction of genotypes, the average

population fitness is higher in the non-epistatic simulations, consistent with positive

epistasis increasing mutational load (Brian Charlesworth 1990).
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After the mutation-selection equilibrium was reached, we measured the strength of

epistatic selection between all segregating polymorphisms, asking to what extent the

mutational load is reduced by epistasis maintaining combinations of compensatory

mutations. As shown in Figure 3.3c, the ability of epistatic selection to reduce the

mutation load (i. e., to increase the mean fitness) strongly depends on π. In less variable

populations (π < 0.01), epistasis is practically inefficient and doesn’t affect LD (Wilcoxon

test p-values > 0.33); this is because the probability of occurrence of the favorable

combination of alleles in the population for selection to act upon is low. In more diverse

populations, however, such combinations may arise and be favored by epistatic

selection, which increases LD between them (Wilcoxon test p-value < 0.01 for π ≥ 0.01).

Figure 3.3. The efficiency of epistasis in populations with different levels of
genetic diversity. (a) Under low genetic diversity, deleterious mutations (red dots) are
unlikely to be compensated. If genetic diversity is high, epistatic selection maintains LD
between SNPs in interacting sites (blue dots). (b) The probability that a deleterious
variant is compensated by another variant within the same individual at the end of the
simulation. (c) Increase in mean fitness of a population caused by epistatic selection
maintaining LD between favorable allele combinations. The fitness is plotted relative to
that of a population consisting of individuals with uncorrelated alleles at different sites,
obtained by permuting alleles among individuals. The efficiency of epistatic selection in
maintaining linkage is much higher in genetically variable populations. Asterisks in (c)
indicate significant deviation from 0 (Wilcoxon paired test p-value < 0.01). Each
simulation was repeated for 100-10,000 times depending on genetic diversity.
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Elevated LD between nonsynonymous polymorphisms

In a vast majority of species, nucleotide diversity π, the evolutionary distance between a

pair of randomly chosen genotypes, is, at selectively neutral sites, of the order of 0.001

(as in Homo sapiens) or 0.01 (as in Drosophila melanogaster) (Leffler et al. 2012; Cutter,

Jovelin, and Dey 2013). Still, a few hyperpolymorphic species with π > 0.1 are known, of

which the wood-decaying fungus Schizophyllum commune is the most extreme, where π

= 0.20 or 0.13 in the USA or the Russian populations, respectively (Baranova et al. 2015).

We studied 34 haploid genotypes from the USA and 21 from Russia and compared the

LD between nonsynonymous SNPs (LDnonsyn) to that between synonymous SNPs (LDsyn).

At sites with minor allele frequency (MAF) > 0.05, in both S. commune populations

LDnonsyn is much higher than LDsyn at the same nucleotide distance (Figure. 3.4a; for

S. commune populations, the MAF > 0.05 corresponds to excluding singletons only). This

excess of LDnonsyn is much stronger for pairs of SNPs located within the same gene,

compared to pairs of SNPs from adjacent genes at the same distance. By contrast, the

excess of LDnonsyn is independent of whether the two SNPs are located within the same or

in different exons of a gene (Figure. 3.6). In S. commune, the recombination rate is higher

within exons (Seplyarskiy et al. 2014), which may affect the patterns of LD; however, this

factor could only reduce within-gene LD, and in any case cannot explain the difference

between LDnonsyn and LDsyn. A much weaker excess of LDnonsyn over LDsyn for MAF > 0.05 is

also observed in the less genetically diverse D. melanogaster population (Figure. 3.4b). In

the still less polymorphic human populations, LDnonsyn is indistinguishable from LDsyn at

the same distances (Figure. 3.4c). The results are reproduced in the Russian population

of S. commune and in the European ancestry super-population of human (Figure 3.5).
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Figure 3.4. The efficiency of epistatic selection in populations with different levels
of genetic diversity. (a-c) LD in natural populations for SNPs with MAF > 0.05. (a) USA
population of S. commune, (b) Zambian population of D. melanogaster, (c) African
superpopulation of H. sapiens. Filled areas in (a)-(c) indicate SE of LD calculated for each
chromosome or scaffold separately. (d-f) A hyperpolymorphic population (d) may
occupy a sizeable chunk of a complex fitness landscape, leading to pervasive positive
epistasis, while variation within less polymorphic populations (e and f) is confined to
smaller, and approximately linear, portions of the landscape, so that no strong epistasis
and LD can emerge. The area of the landscape covered by the population is shown in
green.
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a
S. commune (RUS)

b
H. sapiens (EUR)

Figure 3.5. Linkage disequilibrium in the Russian population of S. commune and
EUR super-population of H. sapiens. LD between nonsynonymous SNPs is shown in
orange, and LD between synonymous SNPs is shown in blue. (a) Russian population of
S. commune, (b) European super-population of H. sapiens. Solid lines indicate LD
between pairs of SNPs located within the same gene; dashed lines correspond to pairs
of SNPs located in different genes. Only SNPs with minor allele frequency > 0.05 are
analysed. Filled areas indicate SE of LD calculated for each chromosome (for human)
or scaffold (for S. commune) separately.

a
S. commune (USA)

b
S. commune (RUS)

Figure 3.6. Linkage disequilibrium within and between exons in S. commune. LD
between nonsynonymous SNPs is shown in orange, and LD between synonymous SNPs
is shown in blue. Solid lines indicate LD between pairs of SNPs located within the same
exon of the gene; dashed lines correspond to pairs of SNPs located in different exons of
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the gene. (a) USA population of S. commune, (b) RUS population of S. commune. Only
SNPs with minor allele frequency > 0.05 are analysed. Filled areas indicate SE of LD
calculated for each scaffold separately.

a S. commune (USA) - all MAFs b S. commune (RUS) - all MAFs

c S. commune (USA)

d
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e S. commune (RUS)

f

Figure 3.7. LD between SNPs with different MAF in S. commune. LD between
nonsynonymous SNPs is shown in orange, and LD between synonymous SNPs is
shown in blue. Filled areas indicate SE of LD calculated for each scaffold separately. (a,
b) LD between all pairs of SNPs pooled together. Solid lines indicate LD between pairs
of SNPs located within the same gene; dashed lines correspond to pairs of SNPs
located in different genes. (c-f) LD for pairs of SNPs split by MAF. (c, e) LD measured
as r2, (d, f) LD measured as r.
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a D. melanogaster b

c

Figure 3.8. LD between SNPs with different MAF in D. melanogaster. LD between
nonsynonymous SNPs is shown in orange, and LD between synonymous SNPs is
shown in blue. Filled areas indicate SE of LD calculated for each chromosome
separately. (a) LD between all pairs of SNPs pooled together. Solid lines indicate LD
between pairs of SNPs located within the same gene; dashed lines correspond to pairs
of SNPs located in different genes. (b) Pairs of SNPs with MAF < 0.05 (large scale). (c)
Pairs of SNPs split by MAF.
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a H. sapiens b

c

Figure 3.9. LD between SNPs with different MAF in H. sapiens. LD between
nonsynonymous SNPs is shown in orange, and LD between synonymous SNPs is
shown in blue. Filled areas indicate SE of LD calculated for each chromosome
separately. (a) LD between all pairs of SNPs pooled together. Solid lines indicate LD
between pairs of SNPs located within the same gene; dashed lines correspond to pairs
of SNPs located in different genes. (b) Pairs of SNPs with MAF < 0.05 (large scale). (c)
Pairs of SNPs split by MAF.
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Although we report LD between pairs of polymorphic sites as r2, which is symmetric

regarding the major or minor variants, the observed high values of r2 correspond to

positive LD between minor alleles for both synonymous and nonsynonymous SNPs

(Figure 3.7d,f). Thus, LDnonsyn > LDsyn means that attraction between minor

nonsynonymous alleles is stronger than between minor synonymous alleles. This

pattern may seem to be surprising, because there are three factors that work in the

opposite direction.

First, random drift, which affects nearly-neutral synonymous sites more than

nonsynonymous sites which are mostly under negative selection, leads to attraction

between minor alleles(Sandler, Wright, and Agrawal 2021). Second, negative selection at

nonsynonymous sites causes repulsion between rare, deleterious alleles, due to

Hill-Robertson interference, even if this selection does not involve any epistasis(W. G.

Hill and Robertson 1966; Comeron, Williford, and Kliman 2008; Garcia and Lohmueller

2021). Third, there are data on negative epistasis in this selection, which also should

lead to repulsion of deleterious alleles and, thus, negative LD between rare

nonsynonymous alleles(Sohail et al. 2017; Garcia and Lohmueller 2021; Sandler, Wright,

and Agrawal 2021). The first and the second factors are weak and can produce

noticeable LD only between tightly linked loci, while the third factor may generate even

long-range LD. By contrast, LDnonsyn > LDsyn can be explained only by positive epistasis in

selection at nonsynonymous sites.

Although negative selection generally results in LDnonsyn < LDsyn, our simulations

demonstrated that Hill-Robertson interference without epistasis can produce attraction

between minor alleles under a rather restrictive set of conditions. In these simulations,

weakly deleterious polymorphisms can achieve high frequency only in regions of low

recombination, leading to LDnonsyn > LDsyn for extremely high MAF (Figure 3.10a).

However, this effect doesn’t hold if assuming unequal fitness effects of deleterious

mutations or while merging SNPs of different frequencies together (Figure 3.10b-d).

This attraction can only appear due to positive epistasis between such alleles —

higher-than-expected fitness of their combinations. Positive epistasis can be expected to

cause stronger LD in more polymorphic populations (Figure 3.4d-f) and must be more
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common for pairs of sites located within the same gene, which are more likely to interact

with each other.

For S. commune, the excess LDnonsyn holds under different minor allele frequency

thresholds (Figure 3.7) However, in D. melanogaster and H. sapiens, rare nonsynonymous

SNPs (with MAF < 0.05) taken alone show the opposite trend: the LD between such SNPs

is reduced compared to synonymous SNPs at the same nucleotide distance (Figures 3.8,

3.9). In human populations, the vast majority of SNPs are rare, leading to LDnonsyn < LDsyn

when all allele frequencies are considered (Figure 3.9), in line with recently published

results (Garcia and Lohmueller 2021).

Decreased LD between negatively selected polymorphisms is expected due to

Hill-Robertson interference between deleterious alleles (W. G. Hill and Robertson 1966;

Roze and Barton 2006); this effect has been described previously for H. sapiens (Garcia

and Lohmueller 2021) and D. melanogaster (Sandler, Wright, and Agrawal 2021) and is

observed in our simulations (Figure 3.14). In addition, both allele frequencies and

LDnonsyn can be reduced by negative epistasis between deleterious alleles (Garcia and

Lohmueller 2021), similarly to the negative LD detected among loss-of-function

polymorphisms in humans, flies and plants (Sohail et al. 2017; Sandler, Wright, and

Agrawal 2021).
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Figure 3.10. Patterns of LD in simulations under negative selection. (a) LD
between nonsynonymous and synonymous pairs of SNPs split by MAF. (b) LD
between all pairs of nonsynonymous and synonymous SNPs pooled together. (a-b)
Haploid population size N = 2000, sequence length L = 1000 bp. Top panels - selection
coefficients of all nonsynonymous mutations are equal to -0.005; bottom panels -
selection coefficients of nonsynonymous mutations are gamma-distributed with
parameters rate=1, scale=0.005. (c) LD and nucleotide diversity within genes of the
USA population of S. commune (each point represents one gene). (d) LD and
nucleotide diversity obtained in simulations.

Physically interacting amino acid sites are under stronger LD

Natural selection acting on physically interacting amino acids that are located close to

each other within the three-dimensional structure of a protein is characterized by strong

epistasis which leads to their coevolution at the level of between-species differences

(Ovchinnikov, Kamisetty, and Baker 2014; Marks et al. 2011; Sjodt et al. 2018). The

Extraordinary diversity of S. commune makes it possible to observe an analogous

phenomenon at the level of within-population variation. In both S. commune

populations, pairs of nonsynonymous SNPs are in stronger LD when they are located at

codons encoding physically close (within 10Å) than distant amino acids (Figure 3.11a;

permutation test p-value < 1e-3). This is not the case for pairs of synonymous SNPs

(Figure 3.11a; permutation test p-value = 0.58).

Hyperpolymorphism of S. commune allows us to identify individual proteins with

significant associations between the patterns of LD and of physical interactions between

sites. We identified 22 genes with pairs of adjacent sites having significantly higher LD in

the USA population (out of 1,286 eligible genes in total), and 87 genes in the Russian

population (out of 967) at a 5% FDR (Table A2); three examples are shown in

Figure 3.11b-d. The alignment of ADAT2 protein contains two segments (Figure 3.11b,

teal and red colors), characterized by high within-segment LD. The boundaries of these

segments match that of structural units of the protein, but not the exon structure of its

gene. In RadB protein, a similar pattern is observed, and LD is also elevated between

pairs of SNPs from different segments on the interface of the corresponding structural

units (Figure 3.11c). The alignment of 4CL protein can be naturally split into four

high-LD segments, which also match its structure (Figure 3.11d).
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Figure 3.11. Excessive LD between physically interacting protein sites. (a) Within
pairs of SNPs that correspond to pairs of amino acids that are colocalized within 10 Å in
the protein structure, the LD is elevated between nonsynonymous, but not between
synonymous, sites. Dashed lines show the average LD. Permutations were performed by
randomly sampling pairs of non-interacting SNPs while controlling for genetic distance
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between them, measured in amino acids; pairs of SNPs closer than 5 aa were excluded.
(b-d) Examples of proteins with LD patterns matching their three-dimensional
structures. The axis correspond to genomic positions, so that the diagonal corresponds
to the nearest polymorphic sites; the heatmaps show the physical distance between each
pair of polymorphic sites in the protein structure. Black dots correspond to pairs of sites
with high LD (> 0.9 quantile for the gene). Dashed lines show high LD between
physically close SNPs from different segments of high LD. In these examples, LD is
calculated in the Russian population of S. commune.

Excess of LDnonsyn is more pronounced in distinct regions of high LD

The magnitude of LD varies widely along the S. commune genome. Visual inspection of

the data shows a salient pattern of regions of relatively low LD, alternating with mostly

short regions of high LD (haploblocks, Figure 3.12). We calculated LD along the genome

in a sliding window of 250 nucleotides and regarded as a haploblock any continuous

genomic region with LD values that belong to the heavy tail of its distribution.

In the USA population, 8.4% of the genome is occupied by 5,316 such haploblocks, 56%

consist of regions with background LD level, and the rest cannot be analyzed due to poor

alignment quality or low SNP density. 88% of the haploblocks are shorter than 1,000

nucleotides, although the longest haploblocks spread for several thousands of

nucleotides. In the Russian population, there are 10,694 haploblocks, occupying 15.9%

of the genome, and regions of background LD cover 39% of it. There is only a modest

correlation between the USA and Russian haploblocks: the probability that a genomic

position belongs to a haploblock in both populations is 2.3% instead of the expected

1.3%, indicating their relatively short persistence time in the populations.
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USA

scaffold4:​​3097116-3098822

RUS

scaffold2:2017262-2019256

Figure 3.12. Examples of haploblocks in two populations of S. commune.
The heatmaps show LD between polymorphic SNPs in the same genomic regions in
the USA and RUS populations of S. commune. Only biallelic polymorphic sites with
minor allele frequency > 1 are shown, the number of such can vary between
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populations. The coordinates of the haploblocks are shown in the titles (the length is
~2000 nt); the number of SNPs in these regions differs between the populations.

LD within a haploblock is usually so high that most genotypes can be attributed to one of

only two distinct haplotypes, which carry different sets of alleles. This results in a

bimodal distribution of the fraction of minor alleles in a genotype within a haploblock,

because some genotypes belong to the major haplotype and, thus, carry only a small

fraction of minor alleles, and other genotypes belong to the minor haplotype and, thus,

possess a high fraction of minor alleles (Figure 3.13a). Polymorphic sites within

haploblocks are characterized by higher MAF than that at sites that reside in

non-haploblock regions (t-test p-value < 2e-16 for both populations), and in the USA

population MAFs within a haploblock are positively correlated with its strength of LD

(Figure 3.13b, Pearson correlation estimate = 0.07, p-value < 2e-6).

There is no one-to-one correspondence between haploblocks and genes, which are, on

average, longer. Still, different genes are covered by haploblocks to different extent,

which leads to wide variation in the strength of LD and other characteristics among

them. The excess of LDnonsyn over LDsyn is also largely restricted to the genes with high LD,

e.g. containing haploblocks (Figure 3.13c). As a result, because both haplotypes tend to

be common in a haploblock (Figure 3.13), this excess is much stronger for loci with MAF

> 0.05.

LD between alleles of all kinds is higher within genes with large pn/ps (Spearman

correlation p-value < 2e-16, Figure 3.13d). The same is true for the excess of LDnonsyn over

LDsyn (Figure 3.13e, Spearman correlation p-value = 4.4e-17). Although positive

correlation between pn/ps and LD is expected under Hill-Robertson interference, positive

correlation between pn/ps and the excess of LDnonsyn may be indicative of positive

epistasis weakening negative selection acting on the nonsynonymous polymorphisms.
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Figure 3.13. Patterns of linkage disequilibrium in the USA population of
S. commune. (a) Distribution of the fraction of polymorphic sites that carry minor
alleles in a genotype within haploblocks. Black line shows the distribution of fraction of
minor alleles in genotypes in non-haploblock regions. In haploblocks (orange), the
majority of genotypes carry either small or large number of minor alleles, since they
represent one of the persisting haplotypes. (b) Distributions of the average MAF within
a haploblock for haploblocks with different average values of LD. The average MAF in
non-haploblock regions is shown as a horizontal black line for comparison; the average
MAF expected under neutrality after exclusion of singletons is 0.17. (c) LD between
nonsynonymous and synonymous SNPs within individual genes. Linear regression of
LDnonsyn on LDnsyn is shown as the red line. To control for the gene length, only SNPs
within 300 nucleotides from each other were analyzed. Genes with fewer than 100 such
pairs of SNPs were excluded. (d,e) The positive correlation between pn/ps of the gene
and its average LD (d) or the difference between LDnonsyn and LDsyn (e). Here, the data on
the USA population of S. commune are shown.
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Excess of LDnonsyn requires stable polymorphism

Our simulations show that positive epistasis alone cannot lead to an observed large

excess LDnonsyn over LDsyn, for which two extra conditions need to be satisfied

(Figure 3.14). The general reason for this is simple: in order for a substantial LD

between not-too-rare alleles to appear, these alleles must persist in the population for a

long enough time.

First, positive epistasis must lead to a full compensation of deleterious effects of

individual alleles or, in other words, at least two genotypes that are present in the

population at substantial frequencies must have (nearly) the same highest fitness

(Figure 3.14). If this is not the case, selection favoring the only most-fit genotype leads to

a too low level of genetic variation, which persists only due to recurrent mutation. The

high-fitness genotypes can correspond either to isolated fitness peaks of equal heights

or to a flat, curved ridge of high fitness. The available data are insufficient to distinguish

these two options, although it is natural to assume that two major haplotypes that are

common within a haploblock correspond to high-fitness genotypes. Of course, with

complete selective neutrality there is no reason for LDnonsyn > LDsyn, so that at least some

mixed genotypes, carrying alleles from different high-fitness genotypes, must be

maladapted.

Second, there must be some kind of balancing selection that specifically works to

maintain variation, because otherwise random drift does not allow genetic variation to

persist for a long enough time even if some, or even all, genotypes are equally fit

(Figure 3.14). Here, there are at least two options. On the one hand, a bona fide negative

frequency-dependent selection (NFDS) can act either directly at loci that display high LD

or at some other tightly linked loci. On the other hand, variation can be maintained due

to associative overdominance (AOD), resulting from selection against recurrent

deleterious mutations at linked loci (Ohta 1971; Zhao and Charlesworth 2016; Gilbert et

al. 2020).
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c

Figure 3.14. The excess of LDnonsyn under pairwise epistasis and balancing
selection. (a) Five models of selection (additive selection and four types of pairwise
epistasis) are simulated without balancing selection, under NFDS and AOD. The height
of columns shows log fitness of the corresponding genotypes. (+) indicate simulations
with LDnonsyn > LDsyn; (-) indicate simulations with LDnonsyn < LDsyn. (b) The difference
between LDnonsyn and LDsyn in simulations under epistasis and balancing selection. (c)
Average LD in the same simulations. Error bars in (b, c) indicate SE calculated based
on 100 simulations.

Balancing selection is also a sine qua non for the presence of haploblocks, because a

pair of divergent haplotypes can evolve only if they coexist for a considerable time.

Although the simultaneous existence of two haplotypes may emerge in a finite

population under neutrality, simulations without balancing selection didn’t reproduce

the abundant haploblocks with high LD similar to the ones observed in the data

(Figure 3.14c). However, a single locus under NFDS is enough to maintain a

haploblock comprising the region of the genome around it. If variation is maintained

by AOD, it is more likely that selection against recessive mutations occurs at a number

of tightly linked loci. Long coexistence of diverged haplotypes that comprise a

haploblock enables accumulation of co-adapted combinations of alleles within them.
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So it is not surprising that a pronounced excess of LDnonsyn over LDsyn in S. commune is

observed primarily within haploblocks.

Correlated LDs between shared SNPs in two populations

Although a high excess of LDnonsyn is observed only within haploblocks, a signature of

epistasis can also be seen outside of them in the form of a correlation between LDs in

the two populations. This correlation can be high even if LDs per se are low.

The USA and the Russian populations share a large proportion of their SNPs. Given the

high divergence between the two populations, few such shared SNPs are expected to

have common origin in the ancestral population, and instead they are likely to have

arisen from recurrent mutation. The high prevalence of coincident SNPs is not

surprising because SNPs comprise 0.28 and 0.13 of all the aligned nucleotide sites in the

USA and Russian populations, respectively (Baranova et al. 2015), Figure 3.1). We

identified pairs of shared biallelic SNPs located within 2kb from one another and

calculated the LD between them in both populations. To avoid the effects of strong

within-population linkage and the occasional co-ocсurrence of haploblocks between

populations, we excluded SNPs located within haploblocks or within genes under high

LD (> 0.8 LD quantile for the corresponding population) in either population.

Values of LD in the two populations are strongly correlated only for pairs of

nonsynonymous SNPs located within the same gene, and only if both populations carry

the same pairs of alleles in the same sites (Figure 3.15). Correlation of LDs is the

strongest if shared SNPs carry the same pairs of nucleotides, but is also observed if they

encode the same amino acids by different nucleotides (Figure. 3.16). The contrast

between correlations within pairs of sites that reside in the same vs. different genes

cannot be explained by inheritance of LD from the common ancestral population.

Moreover, synonymous SNPs are expected to be on average older than nonsynonymous

ones, so that this mechanism should lead to a higher correlation of LDs for pairs of

synonymous sites. Thus, the observed pattern can be explained only by epistatic

selection shared between the two populations.

95

https://paperpile.com/c/seL1nZ/ZT4D


Chapter 3: Complex fitness landscape shapes variation in a hyperpolymorphic species

Correlation of LDs between SNPs located within haploblocks in both populations is high

regardless of whether they reside in the same or different genes, apparently because of

occasional coincidence of haploblocks between populations (Figure 3.17).

Figure 3.15. Correlation of LD values between pairs of shared SNPs in the two
S. commune populations. (a) Pairs of SNPs with the same alleles in both sites, (b) pairs
of SNPs differing by at least one allele. Asterisks indicate Spearman correlation
p-values < 0.001.
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a

b

Figure 3.16. Association of LD values between pairs of shared nonsynonymous
SNPs encoding the same amino acids in the two S. commune populations. (a) All
pairs of SNPs pooled together. Pair of SNPs is considered to carry different alleles if at
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least one allele differs in at least one site. (b) Pairs of SNPs stratified by distance
between them. Asterisks indicate Spearman correlation p-values < 0.01.

a

b

Figure 3.17. Association of LD values between pairs of shared SNPs within
haploblocks in the two S. commune populations. (a) Pairs of SNPs with the same
major and minor alleles in both sites, (b) pairs of SNPs differing by at least one allele.
Asterisks indicate Spearman correlation p-values < 0.001.
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Discussion

On top of its most salient property, an exceptionally high π, genetic variation within

S. commune possesses two other pervasive features. The first is a high prevalence of

mostly short haploblocks, genome segments comprising two or occasionally three

distinct haplotypes, which is a signature of balancing selection (DeGiorgio, Lohmueller,

and Nielsen 2014; Leffler et al. 2013; Rasmussen et al. 2014). The overall fraction of the

genome covered by haploblocks is ~10%, which is about an order of magnitude higher

than the fraction covered by detectable signatures of BS in genomes of other species.

The second feature is excessive attraction between rare nonsynonymous alleles

polarized by frequency. This pattern is much stronger within haploblocks, indicating

that they were shaped by both balancing and epistatic selection, so that amino acids

common within a haplotype together confer a higher fitness. Polymorphisms that

involve haplotypes that comprise many interacting genes, such as inversions

(Theodosius Dobzhansky and Pavlovsky 1957; Brian Charlesworth and Charlesworth

1973; Singh 2008; Sturtevant and Mather 1938) and supergenes (Mather 1950; Joron et

al. 2011; Kunte et al. 2014), are known from the dawn of population genetics, but here

we are dealing with an analogous phenomenon at a much finer scale, because

haploblocks are typically shorter than genes. Thus, instead of coadapted gene complexes

(Theodosius Dobzhansky and Pavlovsky 1957), haplotypes represent coadaptive site

complexes within genes.

In our simulations, equally high fitnesses of two or more genotypes was a necessary

condition for a large excess of LDnonsyn, because otherwise the polymorphism did not live

long enough for any substantial LD to evolve. However, epistasis between loci

responsible for real or apparent balancing selection and those involved in compensatory

interactions probably abolished the need for this fine-tuning of fitnesses. For example, if

each haploblock carries its own complement of partially recessive deleterious

mutations, together with alleles engaged in compensatory interactions with each other

which also make these recessive mutations less deleterious, AOD can be expected to

cause stable coexistence of these alleles.
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Why are haploblocks and positive LD between rare nonsynonymous alleles so common

in S. commune, but not in other, less polymorphic, species? There may be several, not

mutually exclusive, reasons for this. Regarding haploblocks, real or apparent balancing

selection may be more common in S. commune due to its higher polymorphism. Also, the

same balancing selection may protect polymorphism in a huge population of

S. commune, but not in populations with lower Ne. Finally, an excess of haploblocks in

S. commune may be at least due to better detection of signatures of balancing selection

in a species with an extraordinary density of SNPs. The haploblocks are likely to be

maintained in genomic regions with low recombination rate, however, low

recombination alone can’t explain the existence of the haploblocks of such strength and

abundance like the ones we observe in S. commune. In the simulations in the absence of

epistasis and balancing selection, we weren’t able to reproduce high values of LD

observed within haploblocks even if the recombination rate is low (and even zero) — it

was possible only in simulations under balancing selection.

Excessive LDnonsyn in S. commune is also likely to be due to its hyperpolymorphism which

increases the probability that mutually compensating alleles at a pair of interacting sites

achieve high frequency and encounter each other in the same haplotype before being

eliminated by selection. In other words, even if the fitness landscape remains the same,

it results in more epistatic selection and, thus, in stronger LD in a species whose genetic

variation covers a larger chunk of this landscape (Figures 3.3, 3.4).

In a vast majority of species, π is a small parameter << 1. This imposes a severe

constraint on operation of selection and obscures signatures of its particular modes.

Thus, hyperpolymorphic species where π is ~1 provide a unique opportunity to probe

midrange properties of the fitness landscape.
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Chapter 4: Correlated positive selection leads to

bursts of amino acid replacements

Evolution can occur both gradually and through alternating episodes of stasis and rapid

changes. However, the prevalence and magnitude of fluctuations of the rate of evolution

remain obscure. Detecting a rapid burst of changes requires a detailed record of past

evolution, so that events that occurred within a short time interval can be identified.

Here, we use the phylogenies of the Baikal Lake amphipods and of Catarrhini, which

contain very short internal edges which make this task feasible. We detect six bursts of

nonsynonymous substitutions in individual proteins during such short time periods,

each involving between six and 39 substitutions. On average, in the course of a time

interval required for one synonymous substitution per site, a protein undergoes a strong

burst of rapid evolution with probability at least approximately 0.01.
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Introduction

(Non)uniformity of the rate of evolution is one of the oldest and most contentious issues

in evolutionary biology. On the one hand, at both molecular and morphological levels

evolution often occurs gradually, so that evolution of a trait doesn’t experience drastical

bursts of changes (A. P. Martin and Palumbi 1993; Sudhir Kumar and Blair Hedges 1998;

dos Reis et al. 2012; Tamura et al. 2012; O’Meara et al. 2006). In particular, this is the

case for selectively neutral segments of genomes, which evolve at rates equal to the

corresponding mutation rates (“molecular clock”, (Zuckerkandl and Pauling 1965; M.

Kimura and Ohta 1974). Instances of gradual adaptive evolution are also known

(Barrick et al. 2009; Mahler et al. 2010).

On the other hand, evolution may also occur mostly through short bursts of changes

alternating with long periods of stasis (“punctuated gradualism” or “punctuated

equilibrium”, (Gould and Eldredge 1993; Stanley 1998). Examples of punctuated

equilibrium are provided by the evolution of mammalian body weight (Mattila and

Bokma 2008), hominoid body size (Bokma 2002), several morphological traits of

rockfish (Ingram 2011),  intersexual signalling of cranes (Mooers et al. 1999), and many

other data (Wolf et al. 2006; Hunt 2007, 2008; Strotz and Allen 2013; Bedford et al.

2014; Hunt, Hopkins, and Lidgard 2015; Voje 2016). Clearly, both gradual and burst-like

evolution does happen, but their relative importance remains controversial (John H.

Gillespie 1991; Pagel, Venditti, and Meade 2006; Venditti and Pagel 2008; Pennell,

Harmon, and Uyeda 2014). Of course, there can be many causes for alternating episodes

of stasis and evolution and of punctuation in molecular and morphological evolution.

There are several models of selection able to produce punctuated dynamics of adaptive

evolution. One explanation is occasional drastic changes of the fitness landscape caused

by ecological or environmental factors, disarranging the mutation-selection equilibrium

and provoking positive selection (Wright 1932; Ville Mustonen and Lässig 2009; V.

Mustonen and Lässig 2010). However, even on the static but rugged landscape, a

population may experience long periods of stasis near the saddle points, punctuated by

short episodes of selection (Bakhtin et al. 2021). Sampling from phylogenies of related

species can also cause bias from the constant rate of accumulating of genetic differences
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(J. H. Gillespie and Langley 1979). Correlated substitutions at multiple genomic sites can

be caused by epistasis between positively selected mutations (Neverov et al. 2021,

2014; Schlosser and Wagner 2008).

In order to detect short bursts of changes, one needs to be able to identify evolutionary

events that occurred during a short interval of time before they got averaged by periods

of stasis or gradual changes. This is easy to accomplish if a very detailed paleontological

record is available, such as those that exist for some marine invertebrates, e. g.,

Foraminifera (Malmgren, Berggren, and Lohmann 1983). However, such records are

exceptions rather than the rule. Furthermore, paleontological data usually shed light

only on the morphology of organisms and, thus, cannot reveal bursts of changes at the

level of genomes. Fortunately, it may be possible to identify such bursts indirectly,

through comparison of genomes of extant species, as long as their phylogenetic tree

contains very short internal edges. Unfortunately, despite an avalanche of genomic data,

the vast majority of the currently available phylogenetic trees do not satisfy this

requirement. Still, we took advantage of two phylogenetic trees that contain such edges,

those of the Lake Baikal amphipods (Naumenko et al. 2017) and of Catarrhini

(Rosenbloom et al. 2015), UCSC 100 vertebrates multiple alignment), and investigated

short bursts in the evolution of their proteins.
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Materials and methods

Phylogenies of closely related species

In this work, we use two datasets representing multiple alignments of protein-coding

sequences of closely related species. First, we consider transcriptomes-based clusters of

orthologous genes (COGs) with exactly one ortholog represented in each species for five

clades of the Lake Baikal amphipods (gammarids) (64 species and 3399 COGs in total),

and the phylogeny based on them (Naumenko et al. 2017). The size of a clade varies

from 6 to 24 species (Figure 4.1a).  The search for bursts is performed for each clade

separately.

Second, we consider a multiple alignment of protein-coding genes from 11 primate

species obtained from the 100 vertebrates’ genomes alignment of the UCSC Genome

Browser together with the corresponding reconstructed phylogenetic tree (Rosenbloom

et al. 2015) (Figure 4.1b). In total, there are 17,755 alignments of protein-coding genes

of primates containing columns without gaps.

Only internal edges, i.e. segments of the phylogenetic tree ancestral to more than one

species, are used in our analysis. For both datasets, we only consider internal edges of

length < 0.005 dS units to focus on short bursts of evolution limited to these internal

edges. We use codeml program of the PAML package (Ziheng Yang 2007) to reconstruct

substitution histories of sequences and to estimate gene-specific dN/dS values. Only

gapless alignment columns are considered.

Presumptive functions of amphipod genes are inferred from blast2GO predictions

(Naumenko et al. 2017) and from the genome annotation of a related species Hyalella

azteca (Poynton et al. 2018); functions of primate genes are inferred from the human

genome annotation (hg38).

Inference of bursts of nonsynonymous substitutions

A classic approach to infer selection acting on the protein-coding sites is to compare the

rate of nonsynonymous substitutions (the ones leading to the amino acid replacement)

dN to the rate to synonymous substitutions (not leading to the change of amino acid) dS,
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which are assumed to be neutral. Positive selection accelerates accumulation of

nonsynonymous substitutions, resulting in dN/dS > 1, while negative selection in the

absence of mutational biases restricts amino acid changes, reducing dN/dS (M. Kimura

1977; Z. Yang and Bielawski 2000; W. H. Li, Wu, and Luo 1985; Lawrie, Petrov, and Messer

2011).

In this work, we use the neutral null model, that assumes the rate of nonsynonymous

substitutions equal to the rate of synonymous substitutions (dN = dS). This approach

isn’t adjusted to the negative selection generally acting on the nonsynonymous

mutations and leading to dN < dS, so it allows to detect only the strongest and the fastest

bursts capable to overcome the effects of negative selection. We relate dN of each gene

on a particular edge of the phylogenetic tree to the length of this edge, measured in the

units of dS on the basis of all the available genes. We use this approach, instead of

considering the dS value of only the gene that underwent a burst, because it is

impossible to estimate the dS for an individual gene on a short edge with precision. For

example, the expected number of synonymous substitutions in a gene encoding a 200

amino acid long protein on the edge of length 0.005 dS is only ~1. The genes having dN

significantly larger than dS within a particular edge are selected as candidate genes that

experienced a short and strong burst of adaptive evolution. The p-values are calculated

as the probability of observing this many or more nonsynonymous substitutions in a

Poisson distribution with the parameter equal to the edge length (dS) (or, for bursts

spanning multiple edges in a row, the sum of their lengths) multiplied by the number of

nonsynonymous sites in the gene (estimated according to (Nei and Gojobori 1986). The

bursts with Benjamini-Hochberg adjusted p-values < 0.05 compose the primary set of

putative bursts.

As a control, we also searched for statistically significant bursts of synonymous

substitutions on the same set of short edges using an analogous approach.

Filtering of candidate bursts

In order to eliminate the false positives and to compile a list of genes that experienced

bursts of nonsynonymous substitutions, we use stringent filter criteria for the candidate

genes.
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First, alignments containing >50% of columns with gaps are excluded. Second, to ensure

the precise phylogenetic positioning of all substitutions that constituted a burst, we

exclude sites with codeml posterior probabilities for the reconstructed ancestral variant

< 0.8 (which will be the case for discordant genes, e.g. caused by incomplete lineage

sorting) and recalculate the statistics for the gene.

Third, to safeguard against contribution of anciently divergent paralogs or pseudogenes

rather than orthologs to our findings, we apply additional filtering. We require that the

dS value that characterized the edge of the putative burst obtained using the considered

gene isn’t higher than the dS value for this edge obtained using all genes (adjusted

p-value > 0.001). Genes with substitutions in multiple repeated domains are excluded.

Next, we require the absence of evidence for paralogs or duplications of the considered

gene as follows. For each gene, we determine the pre-burst sequence as the sequence of

the phylogenetic node immediately ancestral to the burst-carrying edge(s)

reconstructed with codeml, and the post-burst sequence as the reconstructed sequence

of the phylogenetic node immediately descendant to it. For gammarids, we map raw

transcriptomic reads of the considered gene from all gammarid species from the same

clade onto the pre-burst and post-burst sequences. If any reads from any of the species

descendant to the edge of the provisional burst support the pre-burst variant, or if any

reads from any of the species not descendant to the edge of the provisional burst

support the post-burst variant, this gene is discarded. For primates, we align the

pre-burst and post-burst sequences of this gene onto the assembled genomes from all

species, and proceed analogously.

Finally, the burst-containing alignments that survive these filters are curated manually

for any evidence for alignment errors, low complexity and unexpected patterns in

substitutions. If most substitutions constituting a burst fall into regions of poor

alignment or are located in the very beginning or the very end of the gene, the

corresponding putative burst is discarded.

106



Chapter 4: Correlated positive selection leads to bursts of amino acid replacements

Results

We search for bursts of amino acid substitutions (“bursts”) within internal edges of

phylogenetic trees that are shorter than 0.005 dS. Suitable edges are present in 5 clades

of the phylogenetic tree of  gammarids from the Lake Baikal (Naumenko et al. 2017):

Eulimnogammarus and related genera (18 edges), Pallasea and related genera (10),

Hyallelopsis (3), Acanthogammaridae s. str. (7), and Micruropidae (4); as well as within

the Catarrhini clade (3 edges) of the tree of vertebrates (Figure 4.1) (Rosenbloom et al.

2015). A burst consists of several amino acid substitutions which occurred in a protein

within such an edge or, perhaps, within several successive edges of combined length

below 0.005 dS.

In gammarids, we identified 5 statistically significant bursts that occurred in 5 proteins

within 2 clades. 3 of them occurred over the time period corresponding to a short

individual edge of the phylogeny, while the remaining 2 spanned two very short

adjacent edges. In Catarrhini, there is 1 significant burst satisfying the filtering criteria

(Table 4.1). Each burst consists of between 6 and 38 amino acid substitutions, or

between 6 and 39 nonsynonymous substitutions (as some amino acid sites underwent

multiple nonsynonymous substitutions), scattered throughout the protein (example

shown in Figure 4.2). All edges that harbor bursts have 100% bootstrap support.

Unfortunately there is no accepted dating for amphipods diversification, so we can’t

estimate the time of the corresponding bursts with precision; all that we know is that

they have occurred after Baikal has originated in the Miocene, i.e., < 30 Ma years ago.

Genes that harbor bursts are enriched in proteins located in mitochondria: they

constitute 3 of the 5 such genes, although only 14% of the initial set of COGs are

annotated as components of mitochondria (binomial test, p-value = 0.02) (Naumenko et

al. 2017). No significant bursts of synonymous substitutions at short internal edges are

observed.
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A

Figure 4.1. Short internal edges on the reconstructed phylogenies of closely
related species. Internal edges shorter than 0.005 dS are in bold and edges that
harbor bursts of evolution (Table 4.1) are in red and numbered. Bootstrap values
lower than 100 are shown, branch lengths are measured in units of dS. (a) Five Baikal
gammarids clades (Naumenko et al. 2017). (b) Catarrhini (Rosenbloom et al. 2015).
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clade edge
number

edge
length
(dS)

gene
name

description of
the protein

overall
dN/dS for
the gene
(excluding
the edge
with the
burst)

substitutions
during burst

adjusted
p-value

nonsyn syn

Pallasea
and related
genera

1 0.0040 DNAJC11 DnaJ-like
protein
subfamily c
member 11

0.41 39 1 1.01e-25

1 0.0040 MRPL22 mitochondrial
ribosomal
protein L22

0.55 10 1 0.012

2+3 0.0007
+
0.0008

NOP16 nucleolar
protein 16-like

0.35 6 2 0.046

Eulimnoga
mmarus
and related
genera

4 0.0011 MRPS25 mitochondrial
ribosomal
protein S25

0.31 6.5 0.5 0.0011

5+6 0.0024
+
0.0010

AKR1 aldo-keto
reductase

0.57 10 1 0.032

primates 7 0.0043 PKR interferon-
induced protein
kinase R

1.27 18 2 0.0010

Table 4.1. Bursts of amino acid substitutions in evolution of proteins of the Baikal
gammarids and Catarrhini.
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The most remarkable burst involving 39 nonsynonymous substitutions occurred in the

mitochondrial chaperone gene (DNAJC11) on an edge of length 0.004 dS in the Pallasea

clade (Figure. 4.2). This edge also harbored another burst in a protein located in

mitochondria (L22 ribosome protein) (Table 4.1).

Figure 4.2. A fragment of the alignment of orthologous DNAJC11 genes of
Pallasea gammarids. Alleles derived in the adaptive burst are shown in bold,
sequences originated from the bursts are shown in grey. Total length of the alignment
is 1677 nucleotides, or 1515 nucleotides without gaps.

Bursts that are confined to one edge of the phylogenetic tree do not extend to preceding

and/or successive edges (p-values for such edges > 0.27) (Figure 4.3). Hence, the

characteristic duration of a burst is short, ~10-3 dS. The overall rate of evolution of some

burst-carrying genes was somewhat higher than the average (Table 4.1, Figure. 4.4).

Still, after multiple testing correction, there remains no genes with more than one

statistically significant burst (p-values > 0.018, adjusted p-values = 1).
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Figure 4.3. dN/dS values for genes containing adaptive bursts on phylogenetic
trees. Numbers and colors correspond to the edge-specific, gene-specific dN divided
by the length of the edge measured in dS. Burst-carrying edges are in bold. (a) Bursts
detected in Pallasea and related genera, (b) Bursts detected in Eulimnogammarus and
related genera.
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Figure 4.4. Distribution of dN/dS in genes of Baikal Amphipods in the clades
carrying bursts. Genes with confirmed bursts are shown with dashed lines.

Phylogenetic tree of 11 species of Catarrhini has only three internal edges shorter than

0.005 dS (Figure 4.1b), and only one statistical significant burst has been detected. This

small number may be due to several reasons: Catarrhini species are more distant from

each other than gammarids, which results in longer phylogenetic edges and less

confident ancestral state reconstruction; moreover, a larger initial dataset leads to a

more substantial multiple testing correction.

The detected burst occurred on the internal edge ancestral to two macaque species.

Based on the divergence time estimates we assume that the burst occurred

approximately 8-3 Ma years ago (Perelman et al. 2011). The gene with the burst

encodes the PKR protein (also known as EIF2AK), which is the eukaryotic translation

initiation factor 2 kinase activated during viral infection. As in gammarids, the

substitutions are scattered along the sequence (Figure. 4.5). Primate PKR contains two

dsRNA binding motifs (DRBMs 1 and 2) and C-terminal catalytic kinase domain. The

kinase domain carries 14 amino acid substitutions on the selected edge, and DRBM1 the

remaining 4. Most substitutions lie in αD, αG and αH helices or nearby, which have been

shown to be enriched in positively selected sites (Rothenburg et al. 2009). αG helix and

specifically positions with amino acid substitutions on the selected edge are involved in
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PKR interaction with eIF2α (Krishna, Vadlamudi, and Kumar 2016); however, there is no

evidence of bursts of evolution in eIF2α gene on the same edge.

Figure 4.5. Alignment of PKR genes of Catarrhini (fragments) containing 18
non-synonymous substitutions on the internal edge ancestral to Macaca mulatta
and Macaca fascicularis. The majority of substitutions (14) occurred in the kinase
domain of the protein, the others fall in the dsRNA binding motif (DRBM1). Alleles
derived in the adaptive burst are shown in bold, sequences originated from the bursts
are shown in grey.
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Discussion

Allele replacements driven by positive selection are the fundamental genetic mechanism

of adaptive evolution. These replacements can occur independently of each other or be

correlated (Bazykin et al. 2004; Neverov et al. 2014, 2021; Bakhtin et al. 2021). A priori,

there is a continuum of possibilities, from fully independent individual substitutions to

bursts of adaptive evolution, each consisting of multiple substitutions that occurred

over a short period of time. We searched for such bursts within individual proteins,

taking advantage of two phylogenetic trees, of the lake Baikal gammarids (Naumenko et

al. 2017) and of Catarrhini (Rosenbloom et al. 2015).

Using only internal edges is essential because in this case the derived sequence is

observed in more than one species, so that rare sequencing and alignment errors would

not lead to false discovery of bursts. Our criteria for detection of bursts were rather

stringent: conservative filtering of alignments, a neutral null model (dN = dS), and

multiple testing correction. Unfortunately, it is hard to define the correct null model

which takes into account all possible features of protein evolution, for example, those

resulting from non-uniformity of the mutation rate along the genomes. Thus, our

p-values should be viewed with caution. Even neutrally evolving sequences can carry an

increased number of substitutions because of variation in the evolution rate over large

time scales (overdispersed molecular clock, (Ohta and Kimura 1971; J. H. Gillespie 1984;

Cutler 2000). However, the aim of our work was not to identify consistent deviations

from the Poisson expectation, but to find the most radical outliers. The 6 bursts that we

have found are likely to be “real”, in the sense of being caused by simultaneous or

near-simultaneous action of positive selection at multiple sites within a protein.

Multiple studies have used methods similar to ours to find episodes of accelerated

evolution which could have non-adaptive explanations, such as biased gene conversion

(Berglund, Pollard, and Webster 2009; Galtier et al. 2009; Pollard et al. 2006; Brand,

Wright, and Presgraves 2019). In contrast, we used stringent criteria for detection of

bursts, and those that we found are likely to occur due to positive selection. In particular,

the most radical bursts in Galtier et al. involve both synonymous and nonsynonymous

substitutions; while the bursts described in our paper, in particular in the novel
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amphipod dataset, are limited to nonsynonymous sites. Unlike Galtier and Berglund, we

see no GC bias in the bursts-composing substitutions: e.g., the number of AT->GC and

GC->AT substitutions in the strongest burst are 14 and 21, correspondingly. This is

inconsistent with gene conversion, and instead further supports the adaptive

explanation.

Mutations that initiated amino acid substitutions that together constitute a burst are

extremely unlikely to appear simultaneously as parts of one complex mutational event.

Thus, a burst is likely to involve substitutions that were not precisely synchronous. In

other words, a burst lasts longer than a substitution. Still, the bursts that we detected

are quite short at the evolutionary time scale. Indeed, four bursts were confined to just

one internal edge shorter than 0.005 dS. The remaining two bursts, involving 6 and 9

amino acid substitutions, each occurred on two successive internal edges, of lengths

0.0007 and 0.0008, and 0.0024 and 0.0010 dS, suggesting that ~3-4 nonsynonymous

substitutions occurred per 0.001 dS of evolutionary time. Among the substitutions

involved in such composite bursts, neither occurred on both edges after a cladogenesis

(multiple non-synonymous substitutions did not occur on edges leading to

Eulimnogammarus testaceus or Pallasea cancellus).

Of course, the two phylogenetic trees which we studied almost certainly contained other

bursts of positive selection-driven amino acid substitutions which we could not detect

with certainty. This would be the case for any burst that occurred within an external

edge of a tree, or within an internal edge that is not short enough, or even within a short

internal edge as long as the burst itself involved only a small number of substitutions.

Unfortunately, we cannot estimate the number of such real but not confidently

detectable bursts.

Obviously, our ability to detect a burst depends on the length of the internal edge.

Roughly speaking, all bursts that involve at least ~8 amino acid substitutions within a

protein of <300 amino acids can be detected within internal edges of length below 0.005

dS. Because we investigated 3411 proteins and the total length of all such edges in the

gammarid tree was 0.15 dS, 5 bursts that we found in them imply that during an interval

of time required  for 1 synonymous substitution to occur per site, a protein undergoes a
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strong burst of adaptive evolution with probability ~0.01 (the estimate derived from

primates is similar). If so, such bursts are not uncommon.

What can we say about the genes that underwent bursts? Not much: they evolve faster

than an average gene, but only marginally so. Unexpectedly, 3 out of 5 genes encode

proteins that are located in mitochondria: a mitochondrial chaperone and two

mitochondrial ribosome proteins. This observation is hard to explain. Mitochondrial

genomes of Baikal Lake gammarids have been shown to undergo intensive

rearrangement, which in combination with mito-nuclear discordance and epistatic

interactions between mitochondrial proteins coded in nuclear and mitochondrial

genomes might lead to this phenomenon (Romanova et al. 2016).

Because multiple nucleotide substitutions that constitute a burst occur very close to

each other, making recombination between them negligible, Hill-Robertson interference

(W. G. Hill and Robertson 1966) can be expected to impede their fixations. Let us

consider the most extreme burst comprising 39 nonsynonymous substitutions on the

internal edge of length 0.004 dS. Assuming the per nucleotide per generation mutation

rate 𝜇 ~10-8, as in a number of animals (Michael Lynch 2010), this edge corresponds to

~400,000 generations, leaving ~10,000 generations per each substitution, if they

occurred without overlaps. Is this feasible? Every generation, 2N𝜇 mutations occur at a

site, where N is the census population size an 𝜇 is the mutation rate. An advantageous

mutation will eventually reach fixation with probability 2sNe/N, where Ne is the effective

population size and s and selection advantage of a heterozygous mutation (Ferrière,

Dieckmann, and Couvet 2004; Motoo Kimura 1983). Thus, the per generation

probability of fixation of a particular advantageous mutation is 4Ne𝜇s. Under

assumptions of Ne = 105 (limited data indicate nucleotide diversity ~0.01 in several lake

Baikal amphipods), 𝜇 = 10-8, and s = 10-2, this probability becomes 4x10-5, which is not

very different from 10-4. Thus, successive accumulation of substitutions that constitute a

burst, which makes them immune to the Hill-Robertson interference, cannot be ruled

out. This would be especially the case if during the whole course of a burst selection

favors mutations at all the 39 sites that constitute it, or, in other words, the order in

which the substitutions occur is not prescribed (F. A. Kondrashov and Kondrashov

2001b). If so, the target for advantageous mutation at a particular moment of time
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consists of all sites where substitutions did not yet occur, and their order depends on

the order in which mutations appear.

Figure 4.6. Possible scenarios of fitness landscape changes driving bursts of
adaptive evolution. (a) Drastic changes of the landscape may cause the extinction of
current adaptive peaks and emergence of new peaks. (b) Smooth changes of the
landscape (the elimination of the intervening local minimum) may make the path to
the nearby adaptive peak accessible.

Correlated positive selection at multiple sites that leads to a burst may emerge due to a

variety of mechanisms. One possibility, of course, is a sudden, drastic change of the

adaptive landscape of a protein, driving the adaptation of the population towards the

newly established adaptive peak (Figure 4.6a). However, a burst can also occur as a

result of only a small change of the landscape, if it is caused by a fold bifurcation which

eliminates a fitness peak initially occupied by a protein and makes it possible to cross

the former adaptive valley (Dodson and Hallam 1977; Steinberg and Ostermeier 2016)

(Figure 4.6b). This mechanism is compatible with the fact that all genes with bursts in

gammarids show a low overall dN/dS ratio on the entire phylogenetic tree (<0.57),

implying that these bursts of evolution affected genes that usually evolve slowly. By

contrast, the PKR gene of primates possessed a high dN/dS ratio (>1), implying that the
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burst in this gene involved an episode of additional acceleration of evolution which was

generally fast. Hopefully, the number of available dense phylogenetic trees will soon

become much larger, which will make it possible to study bursts of rapid evolution in

more detail.
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Chapter 5: Changes of single-position fitness

landscapes affect evolution of amino acid sites

Amino acid propensities at a site change in the course of protein evolution. This may

happen for two reasons. Changes may be triggered by substitutions at epistatically

interacting sites elsewhere in the genome. Alternatively, they may arise due to

environmental changes that are external to the genome. Here, we design a framework

for distinguishing between these alternatives. We show that they cause opposite

dynamics of the fitness of the allele currently occupying the site. Epistasis leads to the

entrenchment of the current allele (the increase of its fitness with time since its origin),

while random landscape changes cause its senescence (the decrease its fitness). Using

large phylogenies of mitochondrial proteins, we identify 21 significantly entrenched and

28 senescing alleles. By analysing phylogenetic distribution of substitutions in the

genomes of vertebrates and insects, we show that the amino acids originating at

negatively selected sites experience strong entrenchment, while the amino acids

originating at positively selected sites experience senescence.
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Introduction

The description of the shape of fitness landscapes is necessary to fully understand

adaptive evolution and speciation (Wright 1932; Maynard Smith 1970; Pál and Papp

2017; Fragata et al. 2019). Unfortunately, the large dimensionality of even the

landscapes of individual proteins makes them impossible to measure comprehensively

in a direct experiment (Sergey Gavrilets 2004; de Visser and Krug 2014). Still, methods

of comparative genomics can be used to assess the integral features of fitness

landscapes. The simplest informative unit of landscape structure is the single-position

fitness landscape (SPFL) (Bazykin 2015), i.e., a vector of fitness values of all possible

alleles at an individual genomic position. SPFLs change with time (Rogozin et al. 2008;

Povolotskaya and Kondrashov 2010; A. S. Kondrashov et al. 2010; Usmanova et al. 2015;

Goldstein et al. 2015; Zou and Zhang 2015; Klink and Bazykin 2017; Klink, Golovin, and

Bazykin 2017); this may affect the optimality of the allele that is currently prevalent at

this site, influencing subsequent evolution.

One factor causing changes of SPFL is substitutions at other sites of the genome. For this

to be the case, these substitutions need to affect the relative fitness of different variants

at the considered site, i.e., these sites have to be involved in epistatic interactions.

Epistasis has been postulated to be a prevalent factor of protein evolution and

divergence across species (Maynard Smith 1970; D. D. Pollock, Taylor, and Goldman

1999; A. S. Kondrashov, Sunyaev, and Kondrashov 2002; Dimmic et al. 2005;

Povolotskaya and Kondrashov 2010; Kryazhimskiy et al. 2011; de Visser, Cooper, and

Elena 2011; Breen et al. 2012; McCandlish et al. 2013; de Visser and Krug 2014; Neverov

et al. 2014; John H. Gillespie 1991). One expected manifestation of genome-wide

epistasis is entrenchment, or the evolutionary Stokes shift (David D. Pollock, Thiltgen,

and Goldstein 2012; Goldstein et al. 2015; Shah, McCandlish, and Plotkin 2015) — a

phenomenon whereby the relative fitness of the allele currently prevalent at the site

increases as substitutions at interacting sites accumulate. The reason for this increase is

the constraint imposed by the site in consideration onto epistatically interacting sites.

The evolution of the remaining sequence is constrained to preserve the high fitness of

the resident allele, and may even increase it; at the same time, this sequence is free to
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evolve to become less compatible with other variants not currently present at the site.

Over time, this leads to an increase in the fitness of the current allele relative to other

alleles, including those that resided at this site earlier.

Entrenchment was demonstrated both in simulated protein evolution (David D. Pollock,

Thiltgen, and Goldstein 2012; Goldstein et al. 2015; Shah, McCandlish, and Plotkin 2015)

and in evolution of real-life proteins. For example, it was shown that reversals of past

substitutions follow the phylogenetic distribution indicative of entrenchment: their rate

declines with time, indicating that they become more deleterious, i.e., that the current

allele becomes more preferable compared to the previous one (Soylemez and

Kondrashov 2012; Naumenko, Kondrashov, and Bazykin 2012; Risso et al. 2015;

Goldstein and Pollock 2017). The decline in the rate of reversals is caused both by the

increase in the fitness of the current allele and the decrease in the fitness of the replaced

allele (Naumenko, Kondrashov, and Bazykin 2012).

However, the SPFL may change due to environmental changes even in the absence of

epistasis. If such changes are recurrent, the fitness landscape becomes a

time-dependent “seascape” (J. Gillespie 1973; Takahata, Ishii, and Matsuda 1975;

Huerta-Sanchez, Durrett, and Bustamante 2008; Ville Mustonen and Lässig 2008, 2009;

V. Mustonen and Lässig 2010; John H. Gillespie 1991). This leads to recurrent positive

selection (fluctuating selection) in favor of the newly beneficial alleles and to adaptive

evolution (V. Mustonen and Lässig 2007; Ville Mustonen and Lässig 2009; Eyre-Walker

and Keightley 2009; Benger and Sella 2013; Cvijovic et al. 2015). Nowadays, the way

fluctuating selection shapes the dynamics of the relative fitness of the current allele

remains poorly studied. Here, we characterize the effects of epistasis and of fluctuating

selection on SPFL changes and estimate the contribution of these forces in past

evolution.
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Materials and methods

Multiple alignments of protein-coding sequences

We use multiple alignments of exons of vertebrates and insects from the UCSC Genome

Browser database together with the corresponding phylogenies (Figure 5.1)

(Rosenbloom et al. 2015). Columns with gaps are excluded. From these alignments, we

reconstruct the alleles in the internal nodes of phylogenetic trees with codeml (Ziheng

Yang 2007). We re-estimate the lengths of individual branches as the average frequency

of amino acid substitutions per site on this branch. Based on site-specific dN/dS (ω)

values we classify codon sites as negatively selected (ω < 1), neutral (ω = 1) or positively

selected (ω > 1) using Bayes empirical Bayes (BEB) method as implemented in the PAML

package (Ziheng Yang, Wong, and Nielsen 2005), and use the estimate of ω to classify all

sites based on the substitution rate. The size of the datasets and the number of sites and

substitution subtrees in each bin are shown in Table 5.1. The mitochondrial dataset

consists of the amino acid alignment of five proteins for several thousand metazoan

species (Klink and Bazykin 2017).
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Figure 5.1. The phylogenies used for the inference of current allele fitness
change. The phylogenies of 53 species of vertebrates (a) and of 24 species of insects
(b) from UCSC Genome Browser database. The branch lengths are given in dS.
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Simulations of amino acid evolution on dynamic landscapes

To perform simulations of amino acid sequence evolution we use the SELVa simulator

(Nabieva and Bazykin 2019). SELVa is a forward-time Markov chain simulator that

allows the user to model sequence evolution along a predefined phylogenetic tree on

static or dynamic SPFLs. The user can specify both the shape of SPFL (i.e., the vector of

allele fitnesses for a single position in the genome) and the rule for its change. In this

work, we use three types of SPFLs for amino acid sites with 20 possible alleles (SELVa

doesn’t support codon models): flat SPFL corresponding to neutral sites (no substitution

leads to change of fitness, log fitness vector is (0, 0, …, 0)); rugged SPFL (one allele is

highly preferable over the other ones, log fitness vector is (10, 0, …, 0)) and

gamma-distributed SPFL, where the log fitness values for alleles are randomly chosen

from the gamma distribution with user-defined parameter (shape = rate = alpha);

fitnesses used by SELVa are relative: since they are defined as log fitness, simulation

results remain the same if we add any number to vector element; the vector (0, 0, …, 0)

is equal to (x, x, …, x) for any x.

We use two modes of SPFL change. In the random change mode, the SPFL changes are a

Poisson process with a user-defined rate. In this case, fitness values are either reshuffled

between alleles (for the flat or rugged SPFL) or redrawn from the same distribution (for

gamma-distributed fitnesses). In the current allele-dependent mode, the log fitness of

the current allele increases or decreases linearly with time. The user can define the rate

of this change (k) and the length of the time interval between changes (𝛥t). The log

fitness of the current allele B at time t + 𝛥t is then set to

fB(t + 𝛥t) = fB(t)  + k * 𝛥t.

The fitness values for other alleles remain unchanged. Positive values of k correspond to

entrenchment of the current allele, which means its fitness increases with time, and

negative ones, to senescence, so that its fitness decreases. When a substitution occurs,

i.e. the current allele is replaced with another one, the fitness of the replaced allele stops

changing, and the fitness of the new allele starts to change at rate k. In this work, we

used 𝛥t = 0.01 dS, where dS is the length of time required for a single substitution at a

neutral site; this is small enough to simulate the gradual change of allele fitness.
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Individual sites are simulated independently, and interactions between them are not

modeled directly. We also do not explicitly model the heterogeneity in substitution rates

between alleles, although such heterogeneity arises from the differences in the fitness

values of individual alleles drawn from the underlying distribution.

For ABC-based inference of the dynamics of the current allele fitness in the evolution of

real-life protein sequences, we used the corresponding phylogenies of vertebrates and

insects (Figure 5.1).

Substitution subtrees

For every replacement A → B on any internal branch of the phylogeny, we can define the

corresponding substitution subtree, namely,  the contiguous segment of the phylogeny

where every internal node carries the derived variant B (Figure 5.2). Within a

substitution subtree, the current allele B can be replaced by the ancestral variant A or

some other variant C in the course of allele loss(es).

Figure 5.2. Substitution subtrees. For every individual amino acid site, ancestral
state reconstruction can be used to infer allele substitution history at this site. For
every replacement A → B (orange) on any internal branch of the phylogeny, we can
define the corresponding substitution subtree — the contiguous segment of the
phylogeny where every internal node carries the derived variant B. It can be replaced
by the ancestral variant A or some other variant C in the course of allele losses (blue).
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For such subtree, A is the ancestral allele and B is the current allele.

A genomic position can carry no substitution subtrees if it is fully conservative, or carry

one or more substitution subtrees; the number of substitution subtrees equals the

number of substitutions on the internal phylogenetic branches in this position. This

means that rapidly evolving sites carry more substitution subtrees than conservative

ones.

We define a statistic sbranch — the frequency at which the allele B that has occupied the

considered genomic position at the origin of a specific branch has been replaced at this

branch. If a single site is analyzed (as in the analysis of mitochondrial genes), sbranch can

take the values of 0 or 1; if multiple sites are pooled, sbranch for different substitution

subtrees are considered separately, and sbranch can also take values between 0 and 1. sbranch

is determined by the SPFL and the overall substitution rate of allele B. If the mutation

rate is assumed to be constant, changes in sbranch with time since the origin of B within

the substitution subtree can be used to detect changes in SPFL. We estimate the rate of

replacement of B (sbranch) as a function of its age, i.e. the evolutionary time since it was

gained.

Inference of senescence or entrenchment for groups of alleles

An individual substitution subtree usually does not provide enough data to infer SPFL

changes. To identify such changes with confidence, we have to pool data across subtrees

and sites. However, pooling data on different subtrees creates a spurious signal of

entrenchment due to heterogeneity of evolution rate and unevenness of SPFLs (see

Results) (Naumenko, Kondrashov, and Bazykin 2012; McCandlish, Shah, and Plotkin

2016). One approach to adjust for these confounding factors is to estimate the mean

substitution rate of a subtree, which combines the mutation rate of the site and the

fitness of the current allele and to use this value for model fitting, e.g. in the maximum

likelihood (ML) framework. However, our phylogenies are not deep enough to perform

ML estimates: the number of substitutions per subtree is too low, while the variance of

branch lengths is too large. Instead, to account for confounding effects, we use the

approximate Bayesian computation approach (ABC).
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The age-dependent patterns of substitutions are sensitive to data heterogeneity and the

shape of SPFLs (for details, see Results), so we can’t directly measure the rate at which

the fitness of the current allele changes. To estimate the strength and abundance of

senescence and entrenchment in the evolution of protein sequences, we use rejection

ABC with ridge regression adjustment as implemented in the abc package for R (Csilléry,

François, and Blum 2012). ABC is a popular method used for parameter inference if the

likelihood function is not known, using simulations to infer the posterior distributions

of estimated parameters (Csilléry et al. 2010).

To produce the simulations for ABC prior we also use SELVa. Importantly, rather than

simulating the full phylogenetic trees, we simulate individual substitution subtrees. For

each dataset of interest, we extract the list of subtrees generated by substitutions (allele

gain events) in this dataset. For each substitution subtree, we then run SELVa with the

given parameters, assuming that the number of sites in the simulation equaled the

number of cases when this subtree appeared in the data. The results are pooled across

subtrees, and summary statistics were calculated. This approach has two advantages in

comparison to simulations based on full phylogenetic trees. First, our summary

statistics are based on subtrees only, and using the list of substitution subtrees from the

data is more informative than simply the number of sites: this way, we don’t have to wait

until the ancestral substitution occurs in a simulation, but can start the simulation at the

moment we know it has occurred in the data. Second, since the subtrees are smaller, the

simulations run faster.

We use two model functions for ABC. The first one is based on the assumption that all

sites in the dataset are susceptible to senescence or entrenchment of the same strength

(two-parameter model). It requires two parameters: alpha rate parameter for the

gamma distribution of alleles’ fitness values (as described above) and the rate of change

of the fitness of the current allele k.

The second model represents a mixture of two categories of sites: those with a static

SPFL (k = 0) and those under senescence (k < 0) or entrenchment (k > 0). It takes three

parameters as input: in addition to alpha and k, it uses the fraction of substitution

subtrees (which corresponds to the fraction of alleles) under senescence or

entrenchment with rate k. The simulated values for k were distributed uniformly from
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-100 to 100; the fraction of alleles under senescence or entrenchment was also

distributed uniformly from 0% to 100%; and alpha was distributed log-uniformly from

-1.5 to 1.

The number of amino acid sites in the datasets with different site-specific ω values, and

the number of substitution subtrees at these sites, vary between 103 and 106 (Table 5.1).

To account for the variance in summary statistics for smaller datasets, the ABC model

function takes a list of subtrees and their counts in the given dataset as input and

generates simulations of the same size (but not larger than 100 000 substitution

subtrees due to runtime restrictions). For all datasets, we use ridge regression

algorithm for parameter estimation as implemented in the abc package.

Summary statistics

After evaluating a range of possible summary statistics for ABC, we ended up using two

statistics based on the dynamics of allele replacement. All branches across all subtrees

in the simulation are pooled together and used to calculate the following linear

regression:

sbranch = a*lengthbranch + b*agebranch + c ,

where sbranch is the frequency at which the current allele is lost lost on the given branch,

lengthbranch is the average length of this branch across all substitution subtrees, and

agebranch is the age of the current allele, i.e. the distance from the root of the substitution

subtree to the branch. As summary statistics, we use the values of a and b.

ABC validation

We validated the ABC pipeline for parameter inference using SELVa simulations based

on the reconstructed phylogeny of 53 vertebrates and the abc package for R (Csilléry,

François, and Blum 2012). To cross-validate ABC performance under different tolerance

rates and to evaluate the accuracy of parameter estimation for both two-parameter and

three-parameter models, we calculated prediction error for parameters based on 100

randomly chosen simulations with the cross-validation function of the abc package. The

prior size is 104 simulations for both models. Cross-validation tests for parameter
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inference with our ABC pipeline showed that we can accurately estimate the parameters

of both models using the selected set of summary statistics. Based on their results, we

selected the tolerance level of 0.01 for both models.

Next, we asked whether our method is sensitive to changes in the overall rate of

evolution. For each model, we generated the testing set of 100 simulations with

randomly chosen parameters with normal and twofold increased substitution rate and

then used ABC to infer the parameters. We demonstrate that, although the magnitude of

k was overestimated for simulations with accelerated evolution rate, the estimates were

not biased in any direction (t-test p-value = 0.53). While the fraction of senescing or

entrenched alleles in the three-parameter model was overestimated for simulations

with accelerated evolution rate, the magnitude of the bias was not large (on average

0.10, t-test p-value = 3e-10).

We also checked whether our method allows us to confidently distinguish between

senescence and entrenchment. Applying the method to the same testing set of

simulations shows that the frequency of misclassification is 0% for the two-parameter

model and 1% for the three-parameter model, and cases of misclassification were only

observed in simulations with low k (< 1). Furthermore, in the few erroneously classified

cases, the 95% probability interval for k overlapped with zero.

SELVa stores the sequences of internal nodes of the phylogenetic tree (the ancestral

sequences) so that the history of simulated amino acid replacements is known exactly.

However, for real data, we use codeml to reconstruct the ancestral sequences, and this

reconstruction can be erroneous. To make sure that the ancestral state reconstruction

does not affect the accuracy of parameter estimation, we reconstructed the ancestral

sequences generated by SELVa on the basis of the sequences of terminal nodes in the

same way as it was done for the actual data, and used ABC to estimate the parameters

using the same procedure as above. We found that ancestral states reconstruction

slightly biased both k (the difference between the true and estimated values ~3.8, t-test

p-value = 6e-4) and the fraction of alleles with changing fitness (by ~0.08, t-test

p-value < 2e-16) upwards, but the confusion frequency remained low (0% for the

two-parameter model, 0.5% for the three-parameter model), and the only erroneously

classified simulation had a low fraction of entrenched alleles (0.09).
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We also used evolver to simulate datasets under different modes of selection to test

whether the artifactual signal of senescence or entrenchment can occur in the stationary

model of evolution (Ziheng Yang 2007) (Figure 5.8a,c).

The simulated prior distributions used in the current study, the summary statistics

calculated from the genomic datasets of vertebrates and insects and source code for the

analysis are available at https://github.com/astolyarova/senescence-ABC.
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Results

Environmental fluctuations decrease the fitness of the current allele

First, we ask how fluctuating selection affects the relative fitness of different alleles at a

site. If changes of the SPFL are random with regard to the identity of the allele currently

residing at the site, we expect that they, on average, will reduce its relative fitness. This

is because, in mutation-selection equilibrium, the relative fitness conferred by the

current variant is, on average, higher than that of a random variant at this site. An

episode of positive selection triggered by this change may then cause the spread of a

novel variant which would confer high fitness till the next SPFL change.

To illustrate this, we simulate amino acid evolution on a randomly changing fitness

landscape. In this simulation, the fitness values for each of the 20 possible amino acids

are drawn from a predefined distribution, and the amino acid substitutions occur with

probabilities determined by the corresponding selection coefficients. At random

moments of time, fitness values are redrawn from the same distribution (Figure. 5.3a-c).

As a result of selection, the fitness of the current allele is on average higher than that of

other alleles (Figure 5.3b-c); in particular, if selection is strong, the site is typically

occupied by the best-possible allele (Figure. 5.3b). However, as the landscape changes

randomly, the fitness of this original allele, on average, decreases with time, gradually

approaching the mean fitness across all possible variants (Figure. 5.3e,f). We call this

process senescence of the current allele (Popova et al. 2019). This effect is more

pronounced for the rugged landscape, when one allele is highly more beneficial than

others (Figure. 5.3e), and less pronounced when selection is weaker (Figure. 5.3f).

The decline in fitness of the current allele due to fluctuating selection leads to an

increase in the rate at which it is lost (Figure. 5.3h,i), in line with the quenched theory of

fluctuating selection (V. Mustonen and Lässig 2007; Ville Mustonen and Lässig 2008).

We assume that most fluctuation-induced substitutions occur when the SPFL change

frequency is lower than the rate of evolution or comparable to it, so our model is still

suitable to study evolution under fluctuating selection: if the fluctuations in the SPFL are

very rapid, the resulting landscape will be “quasi-neutral”. In this case, the substitution
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rate will be reduced, and not increased, by further increase in the fluctuation rate,

ultimately reaching the neutral value (J. Gillespie 1973; M. Kimura 1954; Takahata, Ishii,

and Matsuda 1975; V. Mustonen and Lässig 2007).

Figure 5.3. Random changes of SPFL reduce the fitness of the current allele.
(a–c) Examples of how simulated random changes in SPFLs of different shapes
provoke allele substitutions. Each of the nine plots shows the history of one simulated
amino acid site; red lines represent the current allele at the site, with vertical red lines
indicating substitutions. SPFL changes randomly at the average rate of one change per
time required for one neutral substitution (1 dS). (a) All 20 possible alleles have the
same fitness (flat SPFL), so that all substitutions are neutral. (b) One allele is
substantially more beneficial than others (rugged SPFL); most of the observed
substitutions are positively selected. (c) Log fitness values are drawn from a gamma
distribution. (d–f) Changes in the average fitness of the current allele with
evolutionary time under random SPFL changes. The mean fitness across all possible
alleles is shown with a dashed line. (g–i) The fraction of surviving ancestral alleles as
a function of time since the beginning of the simulation. (d,g) flat SPFL, (e,h) rugged
SPFL, (f,i) gamma-distributed SPFL. For d–i, 95% confidence bands based on ten
repeats are plotted (but too narrow to be seen).
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Senescence and entrenchment result in opposite substitution patterns

Therefore, the two different modes of change of the SPFL are expected to produce the

opposite dynamics of the fitness of the allele that currently occupies the site. If the

current allele is favored by epistatic interactions with other sites, it will be entrenched,

i.e. its fitness, compared to that of other alleles at this site, is expected to increase with

time. By contrast, random SPFL changes that occur without regard to the identity of the

allele currently occupying the site are expected to decrease its fitness, leading to

senescence.

We propose that this dichotomy can be used to distinguish between these two modes of

SPFL changes. To infer the changes in the relative fitness of an allele with time, we study

the differences in the rate at which it is lost in the course of evolution. Indeed, the

relative fitness of an allele specifies the probability that it is substituted by another

allele per unit time (Motoo Kimura 1983).

Let us assume that a substitution of an ancestral variant A for another variant B (allele

gain) has occurred at some internal branch of the phylogenetic tree, and this current

allele B has been preserved in several extant species (Figure 5.4a). In other species, it

could be lost, for example, as a result of a reversal to A or a substitution for some other

allele C. If the SPFL for this site has remained static (the fitness of the current allele B

has not changed, ΔfB = 0), the probability of replacement of B per unit time is

independent of the time elapsed since its gain.

Under senescence, the fitness conferred by B decreases with its age (ΔfB < 0), and the

probability of its replacement increases with it. In this case, we will observe a higher

rate of substitutions on the branches originating much later than the allele gain,

compared to the branches leading to close descendants (Figure 5.4a, left). By contrast,

under entrenchment, the fitness of the current allele increases (ΔfB > 0), so the rate at

which B is lost declines with its age (Figure 5.4a, right).

To test the validity of this approach, we simulate molecular evolution at individual sites

assuming that the fitness of the allele currently residing at the site changes with time.

Specifically, we assume that the log fitness of the current allele is initially drawn from a

predefined distribution, and then changes with time linearly with rate k. Positive values
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of k correspond to an increase in the fitness of the current allele, i.e., entrenchment,

while negative values correspond to a decrease in its fitness, i.e.,  senescence. As

expected, entrenchment (k > 0) results in a high rate of substitutions immediately after

the ancestral substitution, but a reduced rate later on. By contrast, under senescence

(k < 0), the rate of substitutions increases with time since the allele gain (Figure 5.4b).

An alternative mode of simulation of senescence, whereby random changes in SPFL and

the molecular evolution caused by them are modeled explicitly, gives the same results

(Figure. 5.5).

Besides the phylogenetic distribution of substitutions, the mode and rate of SPFL change

also affect the overall rate of molecular evolution (Figure 5.4c). Compared to a static

landscape of the same shape, entrenchment reduces the substitution rate, as the

time-averaged fitness of the current allele is higher, and therefore it is replaced less

frequently. Conversely, under senescence, many of the substitutions of the current allele

are advantageous, increasing the overall rate of evolution. Importantly, senescence

doesn’t necessarily result in an overall evolution rate exceeding the neutral rate, which

is a hallmark of positive selection. Indeed, if an allele is strongly preferred, a drop in its

fitness over the course of senescence may still leave it the optimal one, so that negative

selection will still maintain it (as observed for the rugged SPFL, Figure 5.4c right).
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Figure 5.4. Replacement patterns of the current allele reflect changes in its
fitness. (a) On the static landscape, the probability that B is replaced per unit time
does not depend on the time since its gain A → B. Under entrenchment, B becomes
more favorable with time (ΔfB > 0); therefore, the A → B substitution rate declines and
there are fewer substitutions observed on “late” branches of the phylogeny. Under
senescence, the fitness of B decreases (ΔfB < 0), leading to an increase in the rate of its
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loss with time. (b, c) In simulated evolution, changes in fitness of the current allele
affect the dynamics of its replacements (calculated as the ratio between B substitution
rate at the terminal branch of the substitution subtree to B substitution rate on the
root branch, b) and the overall substitution rate on the whole tree (c). Simulations
were started with SPFLs of different shapes: flat SPFL, rugged SPFL and
gamma-distributed SPFL. Over the course of simulation, the log fitness of the current
allele was linearly changing with time at rate k. For b, c, mean values and 95%
confidence bands based on ten repeats are shown.

Figure 5.5. Growth of the rate of the current allele replacements since its origin
driven by random SPFL changes. For the static SPFLs of different shapes, i.e. if initial
fitness values don’t change with time, the frequency of the replacements of the
current allele remain the same for ”early” and ”late” branches. If fitness values are
redrawn from the same distribution with some frequency comparable with the
evolution rate (i. e. SPFL changes randomly with time), the rate of current allele
replacements on the ”late” branch increases. The mean values and 95% confidence
bands obtained in 10 simulation repeats are shown.
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Senescence and entrenchment at single-allele resolution

Large phylogenies allow detecting changes in substitution frequencies for individual

alleles. Each originating allele, e.g. an amino acid arising at a specific site from an

ancestral amino acid substitution, can be inherited by multiple descendant lineages

leading to different extant species. Ancestral state reconstruction can then be used to

infer the lineages at which this allele has been lost due to a reversion or substitution to a

different amino acid. If enough such lineages are available, this allows us to trace the

decline or increase in the rate of allele substitution since its origin, i.e., entrenchment or

senescence.

We apply binomial logistic regression to detect changes in substitution frequencies with

the age of the current allele along the phylogeny for five mitochondrial genes of Metazoa

(Klink and Bazykin 2017). The regression is performed separately for each allele B with

a known time of origin (corresponding to allele gain A → B) at each site. Among the

42,637 such alleles, we identified 28 alleles for which the frequency of replacement

significantly increased with time since their origin (i.e. senescing alleles), and 21 alleles

where it decreased (i. e. entrenched alleles) at 5% false discovery rate (Figure 5.6a,

Table A3). The examples of phylogenies indicating allele replacements at senescing and

entrenched alleles are shown in Figure 5.6b-c. Despite the opposite time-dependent

dynamics of the substitution rate in the sites containing entrenched and senescing

alleles, the overall number of substitutions occurring along the phylogeny is similar

between them (sign test p-value = 0.84), indicating that the overall substitution rate is

insufficient for distinguishing between these scenarios.
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Figure 5.6. Senescence and entrenchment of individual alleles in the
mitochondrial genes of Metazoa. (a) Manhattan plot of senescing and entrenched
alleles. Only the alleles with a known phylogenetic position of origin, i.e., those that
were not yet present in the tree root, were analyzed; a single genomic site can contain
zero, one or several alleles. P-values are calculated using binomial logistic regression.
The alleles demonstrating significant senescence under 5% FDR are shown in red; the
alleles demonstrating entrenchment are shown in green. No amino acid sites
contained more than one significantly senescing or entrenched alleles. (b) Examples
of senescing (COX2 position 56, red) and entrenched (ATP6 position 71, blue) alleles.
The contiguous segment of the phylogeny carrying the derived allele is shown in color.
(c) Distribution of substitutions along the lifetime of alleles shown in (b). For the
senescing allele, the phylogenetic branches corresponding to allele replacements
(red) originate later than the branches without replacements (gray). Conversely, the
entrenched allele is more frequently replaced soon after its origin (green).

Heterogeneity of alleles leads to an artifactual signal of entrenchment

While phylogenies spanning hundreds and thousands of species, like those available for

mitochondrial proteins, allow us to measure the changes in the substitution rate for

individual alleles, in smaller phylogenies, the number of substitutions experienced by an

allele can be insufficient for such an analysis. Still, it may be possible to identify the

prevailing patterns of substitutions by pooling alleles together. However, such pooling

can be problematic: even in the absence of SPFL changes, the rate of substitution can

appear to change with time since allele origin if the pooled alleles have different

time-invariant substitution rates, confounding inference of SPFL changes.

Indeed, consider a set of alleles, each characterized by its own substitution rate that is

stationary (constant in time) but differs between alleles. While the replacement rate

may be constant for each allele, so that the time to replacement is characterized by an

exponential distribution, it will not, in general, be exponentially distributed in the

resulting heterogeneous dataset. Instead, the frequency of substitution will appear to

decline with time (Figure 5.7a), making it non-stationary and mimicking entrenchment

of the current allele. The problem of data heterogeneity leading to decreasing hazard

function is well known in demographic inference (Proschan 1963; Vaupel, Manton, and

Stallard 1979) , and has been previously appreciated in the inference of substitution

rates dynamics in molecular evolution (Naumenko, Kondrashov, and Bazykin 2012;
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McCandlish, Shah, and Plotkin 2016). Notably, no mixture of stationary processes can

give rise to an increase in the substitution rate, i.e., senescence (Proschan 1963).

It is obvious that heterogeneity of substitution rates arises from pooling of different

amino acid sites with varying substitution rates. More subtly, it also arises within

individual sites as a result of differences between rates of substitution of different

alleles. Substitution rate is the product of mutation rate and fixation probability, and this

heterogeneity will arise due to any differences in either of these factors between alleles.

For example, consider a single site which is non-neutral, i.e., such that different alleles

confer different fitness. Such alleles will be characterized by different replacement rates

(lower for high-fitness alleles, and higher for low-fitness alleles), and pooling over

different alleles over the course of evolution of this site (or, identically, over different

independent and identically distributed sites) would lead to heterogeneity of

substitution rates and to an apparent decline in substitution rates with time since allele

origin.

To show this, we simulate molecular evolution on static SPFLs of different shapes. If all

alleles have the same fitness, i.e., if all substitutions are neutral (“flat” landscape), the

substitution rate is independent of time since allele origin (Figure 5.7b). By contrast, if

the fitness values of alleles are drawn from a gamma distribution, so that different

alleles have different fitness, the substitution frequency decreases with the age of the

current allele, even though the SPFL doesn’t change (Figure 5.7c). On a more rugged

SPFL, when one allele is much more fit than all others, this decline is even sharper

(Figure 5.7d).
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Figure 5.7. Heterogeneity of substitution rates among alleles on static SPFLs
imitates entrenchment. (a) Consider three classes of alleles, characterized by
different constant substitution rates: fast (red), moderate (green), and slow (blue)
alleles. For each allele, we can calculate the substitution frequency on the
phylogenetic branches located at different evolutionary distances from the gain of that
allele. If the dynamics of replacement of these alleles are analyzed separately for each
substitution-rate class, no spurious signal of entrenchment or senescence is observed
(left). However, if alleles from different classes are pooled together, the substitution
frequency appears to decrease with time, mimicking the signal of entrenchment
(right). (b) No artifactual signal of entrenchment is observed on a static flat SPFL. (c)
On a gamma-distributed SPFL, the heterogeneity of fitness of the alleles produces
entrenchment-like decline of replacement rate of the current allele with time,
although the SPFL remains static. The effect is even more pronounced on a more
rugged SPFL (d). The p-values are obtained with linear regression.
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Inferring senescence and entrenchment from phylogenetic

distribution of substitutions

To address the problem of heterogeneity of alleles, we account for differences between

alleles in mutation rates and “baseline” selection while inferring the SPFL dynamics for

pooled datasets. In the absence of prior information about the distribution of these

characteristics, it is impossible to reconstruct the explicit likelihood function for the

substitution rates. Instead, we used the approximate Bayesian computation (ABC)

(Pritchard et al. 1999) approach to obtain the posterior distribution of the rate of

current allele fitness change per unit time k (positive values of k corresponding to

entrenchment, and negative to senescence). ABC depends on a set of summary statistics

to evaluate the difference between the simulation results and the data. We use two

summary statistics, each aggregating over all individual alleles, which reflect the

age-dependent dynamics of substitution rates (see Methods).

We use two models for parameter inference. Under the two-parameter model, we

assume that log fitness values for individual alleles were drawn from a gamma

distribution with rate and shape parameters denoted by alpha, and the log fitness of the

current allele at all sites changed linearly with rate k. Under the three-parameter model,

the fitness changed linearly only for a fraction of alleles, while the fitness of the

remaining alleles was invariant.

Simulations show that both models perform well in identifying senescence and

entrenchment under a broad range of parameters, and are robust to overall substitution

rate, phylogeny shape, pooling of sites with diverse characteristics and errors in

ancestral state reconstruction (see Methods for details).

Positively selected sites show strong senescence

We apply the developed ABC approach to protein sequences of vertebrates and insects

(Figure 5.1). To understand how the direction of fitness change depends on the overall

conservation of an amino acid site, in both datasets, we roughly classify all codon sites

by the type of selection acting at them, on the basis of the ratio of nonsynonymous and

synonymous substitutions per site (dN/dS, or ω): negatively selected (ω < 1), neutral
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(ω = 1) or positively selected (ω > 1) sites, and analyze them independently (Table 5.1).

The three-parameter model provides a better fit to the data than the two-parameter

model (posterior probability of the three-parameter model > 0.74 for all datasets except

sites with ω < 1 in insects with posterior probability of 0.46), so we use the former for

the analysis.

# of sites # of alleles k

fraction of

senescing or

entrenched alleles

Vertebrates

ω < 1 2 598 701 (87.8%) 574 137 (36.4%) 62.3 (25.1, 100.0) 0.99 (0.95, 1.00)

ω = 1 348 047 (11.8%) 917 340 (58.1%) 45.3 (-36.8, 98.9) 0.42 (0.15, 0.90)

ω > 1 13 189 (0.4%) 86 852 (5.5%) -23.3 (-94.7, -3.5) 0.18 (0.0, 0.86)

Total 2 959 937 (100%) 1 578 329 (100%)

Insects

ω < 1 2 699 432 (93.2%) 429 800 (48.8%) 47.8 (-1.1, 87.9) 0.81 (0.47, 1.00)

ω = 1 185 829 (6.4%) 413 101 (46.8%) 9.4 (-80.2, 91.4) 0.16 (0.01, 0.92)

ω > 1 9 698 (4.4%) 38 577 (4.4%) -22.6 (-88.7, 52.0) 0.25 (0.03, 0.92)

Total 2 894 959 (100%) 881 478 (100%)

Table 5.1. The analyzed datasets, the corresponding estimates of the rate of
entrenchment (k > 0) or senescence (k < 0) and the fraction of alleles that
experience these processes. The values show the median of the ABC posterior
distribution of parameter values; numbers in parentheses represent the 95% posterior
probability intervals.

143



Chapter 5: Changes of single-position fitness landscapes affect evolution of amino acid sites

In vertebrates, both the fraction of senescing or entrenched alleles and the value of k for

them depend on the mode of selection acting at the site. The 36% of alleles originating

at negatively selected (ω < 1) sites demonstrate strong evidence for entrenchment: we

estimate that all of them are entrenched, indicating that the fitness of the current

variant increases with time since its origin (Figure 5.8c left panel; Table 5.1). By

contrast, of the 6% of alleles arising at positively selected sites (ω > 1), 18% experience

senescence (Figure 5.8c right panel), indicating a decrease in the fitness of the current

allele. While we are unable to distinguish robustly between a low fraction of alleles

undergoing strong senescence and a high fraction of alleles undergoing weak

senescence, the 95% posterior probability interval does not include k = 0, rejecting

stationarity. The neutral sites demonstrate an intermediate signal with little evidence

for entrenchment or senescence (Figure 5.8c middle panel). A similar pattern is

observed in phylogenies of insects (Figure 5.8d).

While senescence is observed at sites that undergo rapid substitution (ω > 1), it is

distinct from an increase in the overall substitution rate. Similarly, while entrenchment

is observed at constrained sites  (ω < 1), it is distinct from a reduction in substitution

rate. To illustrate this, we simulate evolution under different substitution rates but

constant SPFL on the phylogenies of vertebrates and insects, using the same distribution

of ω values as in the real data, and estimated k using the ABC pipeline (Figure 5.8a,c). No

senescence or entrenchment is detected for the datasets simulated using the stationary

model under ω = 1 or ω > 1. A weak spurious signal of entrenchment is detected for the

simulated datasets with ω < 1, resulting from the high heterogeneity in evolution rates;

however, it is much weaker than that observed in the data for this category of sites.
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Figure 5.8. Senescence and entrenchment in protein sequences of vertebrates
and insects. Plots provide ABC estimates of the rate of senescence or entrenchment k
and the fraction of alleles with changing fitness for protein sequences of vertebrates
and insects. For each dataset, the posterior distribution of parameters under 1%
acceptance threshold after local ridge regression adjustment is shown. (a, b)
Simulated data under the stationary model using the vertebrate (a) or insect (b)
phylogeny and distribution of ω values. (c, d) In real genomic data of vertebrates (c)
or insects (d), sites under negative selection show strong entrenchment, neutral sites
demonstrate the intermediate signal, and positively selected sites are senescing.
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Discussion

While the direction of changes in fitness in the course of evolution is unpredictable for

an individual allele, there are certain statistical regularities. Previous works have shown

that, at a site involved in epistatic interactions with other sites, the relative fitness

conferred by the incumbent allele as compared to other alleles possible in this site  is

expected to increase with time since its origin (A. S. Kondrashov, Sunyaev, and

Kondrashov 2002; Povolotskaya and Kondrashov 2010; Breen et al. 2012; McCandlish et

al. 2013). Acting alone, i.e., if the overall fitness landscape is static, this process of

entrenchment should make the propensities existing at individual sites more

pronounced. This, in turn, should limit the level of divergence between highly divergent

sequences, although reaching this level may take a very long time (F. A. Kondrashov and

Kondrashov 2001b; Weinreich, Watson, and Chao 2005; Weinreich et al. 2006;

Povolotskaya and Kondrashov 2010; A. S. Kondrashov et al. 2010; Ferretti et al. 2018).

Here, we consider the dynamics of allele fitness due to changes in the overall fitness

landscape itself. We show that, if the direction of these changes is independent of the

current position of the population in the genotype space, the expected mean dynamics

— senescence — is opposite to that of entrenchment. We design a method to distinguish

the two patterns from the phylogenetic distribution of substitutions and find that

entrenchment is ubiquitous at negatively selected sites, while senescence is prevalent at

sites undergoing adaptive evolution under positive selection.

While senescence underlies positive selection in evolution of vertebrates and insects

(Figure 5.8), these phenomena are distinct. Indeed, firstly, weak senescence of a highly

beneficial allele currently occupying an amino acid site can result in weakening of the

negative selection restricting the fixation of other alleles; however, if this allele remains

the optimal one, the direction of selection remains the same, and no positive selection in

favor of a different allele starts to act (see examples in Figure 5.4b and c, right panel).

Secondly, there are models of positive selection that don’t imply senescence, including

variations of “stairway to heaven” (STH) landscapes without the finite fitness peak

(Gerrish and Lenski 1998; Desai and Fisher 2007; Kryazhimskiy, Tkacik, and Plotkin

2009). Importantly, the existing models of positive selection do not imply senescence,
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and senescence is not observed in them, as evidenced by the simulated datasets with

positive selection and no senescence (Figure 5.8a,c). However, the observed

concordance between the direction of non-stationarity and selection mode imply that

these phenomena are closely related, and that the ongoing decrease of the fitness of the

current allele causes many of the adaptive substitutions.

What causes allele senescence? Firstly, it can sometimes result from negative epistasis

with an allele arising at an interacting site. While this could result in senescence

occasionally, on average epistasis results in entrenchment (David D. Pollock, Thiltgen,

and Goldstein 2012; Shah, McCandlish, and Plotkin 2015). Secondly, senescence could

result from changes in selection pressure external to the genome. Previously, the

acceleration of substitutions over the course of allele lifetime in the evolution of

influenza A virus was described (Popova et al. 2019). This pattern has been mainly

observed at sites associated with avoidance of the host immune system pressure, and

was interpreted as evidence for negative frequency-dependent selection actively

disfavoring the current allele (Popova et al. 2019). Here, we show that this type of

selection is not a prerequisite for senescence. Instead, senescence is expected whenever

selection changes without regard to the identity of the current allele.  How much of

senescence, and positive selection resulting from it, is due to random changes of the

fitness landscape, and how much is due to systematic selection against the current allele

or negative epistatic interactions, can be a subject of further research.
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Chapter 6: Conclusions

In this work, we used comparative genomics methods to analyze patterns of

within-population variation and between-species divergence evident on epistasis and

fitness landscape changes:

● excess of linkage disequilibrium between rare nonsynonymous alleles within

hyperpolymorphic populations of S. commune, possibly indicative of epistatic

selection maintaining coadapted combinations of alleles;

● short bursts of nonsynonymous replacements between closely related species,

caused by correlated positive selection;

● time-dependent changes of the substitution rate in the course of species

divergence, which are evidence for epistasis-driven entrenchment of negatively

selected alleles and environment-driven senescence of positively selected alleles.

While in almost all species nucleotide diversity is a small parameter << 1, this is not the

case for S. commune with two randomly sampled genotypes differing by about 20% at

silent sites. As a result, patterns of genetic variation in S. commune reveal properties of

natural selection, not accessible through data on other species, making it a promising

model for population genomics studies. In this work we observe pervasive signatures of

positive epistasis due to mutual compensation of deleterious effects of individual alleles,

particularly pronounced in genomic regions where nucleotide diversity is maintained by

balancing selection (Chapter 3). We believe that this is the first evidence of abundant

epistasis affecting polymorphism within natural variation.

The totality of patterns observed in the populations of S. commune (the excess LDnonsyn

within genes, correlated LD between shared polymorphisms in two divergent

populations, and the increased LD between physically interacting sites) is indicative of

positive epistasis favoring combinations of coadapted alleles segregating within this

species. In the presence of epistasis, disruption of co-evolved combinations of alleles by

recombination is expected to be disadvantageous. Indeed, the patterns evident of
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epistasis which we observed in S. commune are limited to the short-range interactions

(i.e. between sites located within the same gene or to a lesser extent between

neighboring genes). Similarly, the high density of polymorphisms in S. commune makes

it possible to detect short haploblocks — signatures of balancing selection maintaining

the co-existence of diverged haplotypes in the linked genomic region, covering ~10% of

the S. commune genome.

While studying within-population variation, we examine a small part of the full fitness

landscape covered by a population. By comparing the genomes of diverged species, we

address a much larger region of the landscape; moreover, the landscapes by themselves

can differ between species due to environmental or ecological changes. Patterns of

interspecific differences can reflect the impact of strong selection, which cannot be

observed within standing variation. By analyzing the dynamics of  genetic differences

accumulated in the course of species divergence, we show that selective constraints

shaping these differences are not static. Changes of selection can promote adaptive

evolution, resulting in faster evolution rates, as well as conserving the current genomic

state, slowing the rate of divergence.

Looking at the genomic data of recently diverged species, we conclude that interspecific

differences can accumulate non-linearly on short evolutionary scales (Chapter 4). The

observed bursts of nonsynonymous replacements found in the phylogenies of Lake

Baikal amphipods and primates are evidence of the impact of sudden positive selection.

Moreover, fast fixation of such a high number of nonsynonymous mutations under such

a short time is not expected if they are selected independently and can be explained by

correlated positive selection. The burst-like accumulation of nonsynonymous

differences within proteins can be caused by the opening of a new highly epistatic

adaptive path which was inaccessible before the landscape change.

By comparing evolutionarily distant species, we can infer the long-term changes in

selection guiding the accumulation of genetic differences (Chapter 5). We observe two

opposite trends in the evolution of nuclear genomes of vertebrates and insects and in

the mitochondrial genomes of Metazoa. The majority of fixed alleles get entrenched, i.e.

become more favorable with time, while other alleles demonstrate senescence, i.e. their

fitness declines with time. The oppositely directed dynamics of substitutions allow us to
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distinguish between two possible causes of fitness change. Entrenchment is expected to

arise as a consequence of coevolution of epistatically interacting sites. On the contrary,

senescence may result from random changes of the landscape, i.e. environmental

fluctuations, or from selection negatively correlated with the current genome content,

e.g. ecological interactions with other species.

In contrast to the commonly used methods of inferring selection based on the

estimation of the overall substitution rates, our method utilizes the its derivative by

addressing the time-dependent patterns of substitution rate. However, we found that

negatively selected sites more often demonstrate entrenchment of the current allele,

while alleles under positive selection are senescing. Therefore, we link the mode of

selection acting on the site at some moment to the ongoing process of fitness change

and thereby to the evolutionary mechanisms of such change.

Based on these observations, we conclude that patterns of genomic differences show the

imprint of epistasis on various evolutionary scales. The non-independent evolution of

genomic sites reflects the high complexity of fitness landscapes. Given the complexity

and instability of the fitness landscapes, it’s practically impossible to describe them

comprehensively. Moreover, the way the structure of the fitness landscape defines the

evolutionary paths in natural populations is non-trivial and is by itself a matter of study.

In this work, we look for indirect evidence of epistasis and fitness landscape changes,

using methods relying on the average statistics of the patterns of variation. The power of

these methods is insufficient to identify specific epistatic interactions between

co-evolving sites or draw conclusions about the molecular mechanisms underlying the

revealed features of the fitness landscapes. Nevertheless, the genome-wide patterns of

variation within natural populations and between species can be used to uncover

general properties of fitness landscapes.
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Appendix A

​​Table A1. S. commune genomes assembly statistics.

Sample id
Specimen
voucher

Origin
#

contigs
total

length (bp)
GC % N50 coverage

s1401 WS-M161 USA; Ann Arbor 2,462 37,201,238 57.5 153,743 113.2

s14101 WS-M180 USA; Ann Arbor 2,161 36,629,295 57.6 208,079 74.2

s14102 WS-M181 USA; Ann Arbor 2,895 37,669,799 57.6 146,599 67.8

s14104 WS-M183 USA; Ann Arbor 2,750 37,829,033 57.6 151,136 75.8

s14112 WS-M191 USA; Ann Arbor 2,577 37,171,981 57.6 173,824 124.5

s1411 WS-M188 USA; Ann Arbor 2,634 37,679,657 57.6 158,664 64.0

s1425 WS-M206 USA; Ann Arbor 2,762 38,042,099 57.6 160,044 93.8

s1429 WS-M210 USA; Ann Arbor 2,665 37,691,449 57.5 158,777 95.9

s1431 WS-M212 USA; Ann Arbor 2,453 37,348,833 57.5 161,384 100.0

s1432 WS-M213 USA; Ann Arbor 2,923 37,685,895 57.6 145,350 62.9

s1434 WS-M215 USA; Ann Arbor 2,455 37,403,482 57.5 185,879 89.2

s1467 WS-M247 USA; Ann Arbor 2,900 37,778,589 57.6 195,995 70.8

s1470 WS-M247 USA; Ann Arbor 2,809 37,546,616 57.6 154,362 91.4

s1485 WS-M265 USA; Ann Arbor 2,347 37,174,196 57.6 176,501 45.3

s1489 WS-M269 USA; Ann Arbor 2,352 37,218,933 57.6 177,695 111.6

s1490 WS-M270 USA; Ann Arbor 2,957 37,322,559 57.6 139,455 110.3

s1514 WS-M292 USA; Florida 2,460 37,328,560 57.6 157,189 71.5

X12 WS-M12 Russia; Moscow 3,879 38,221,043 57.6 75,624 117.4

X17 WS-M18 Russia; Moscow 3,738 37,604,751 57.6 71,000 105.9

X21 WS-M22 Russia; Moscow 5,012 39,204,396 57.6 63,280 77.3

X27 WS-M28 Russia; Moscow 3,571 37,399,774 57.6 71,903 78.2

X30 WS-M31 Russia; Moscow 4,487 38,310,778 57.6 66,442 84.7

X69 WS-M70 Russia; Moscow 3,965 38,348,248 57.6 70,802 76.7

X9 WS-M9 Russia; Moscow 4,590 38,741,959 57.6 67,770 74.8
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Table A2. List of genes with pairs of physically adjacent protein sites being under

higher LD than pairs of distant sites in S. commune. P-values are calculated using

chi-square test and adjusted using Benjamini-Hochberg multiple testing correction.

rna
# distant

& high
LD

# close
& high

LD

# distant
& low LD

# close
& low

LD
OR p-value q-value

aligned
PDB ID

RUS population

10789 6 6 85 8 10.63 4.3E-04 8.4E-03 4N6Q A

7636 40 16 263 11 9.56 5.2E-09 5.5E-07 4FQG A

11223 7 9 87 12 9.32 1.0E-04 2.8E-03 1S3S G

9853 21 22 261 32 8.54 8.7E-11 1.7E-08 4X00 A

17085 16 6 183 11 6.24 1.6E-03 2.1E-02 1NLT A

12357 56 30 245 24 5.47 1.5E-08 1.4E-06 2GUY A

1037 26 13 113 11 5.14 4.6E-04 8.8E-03 1K8F A

6153 39 14 126 9 5.03 5.2E-04 9.7E-03 5GVH A

14273 22 9 244 21 4.75 7.5E-04 1.3E-02 3LCC A

5725 26 15 312 38 4.74 1.6E-05 6.3E-04 1TA3 B

18561 69 32 558 55 4.71 3.0E-10 4.8E-08 1KSG A

3052 91 25 222 13 4.69 1.3E-05 5.4E-04 4U9V B

3876 38 22 373 47 4.59 4.1E-07 3.0E-05 1W63 A

4779 80 26 873 63 4.50 1.6E-09 2.1E-07 2GJL A

16912 172 54 1383 99 4.39 9.1E-17 8.8E-14 1WKR A

14670 25 8 273 20 4.37 2.2E-03 2.6E-02 6C6N A

14338 110 28 150 9 4.24 2.8E-04 6.6E-03 6J3E A

8942 35 10 279 19 4.20 1.1E-03 1.6E-02 3DH1 A

3214 37 9 189 11 4.18 4.4E-03 4.2E-02 1SZN A

1413 78 24 253 19 4.10 1.8E-05 6.8E-04 5L3Q B

7650 75 29 201 19 4.09 1.2E-05 5.1E-04 5EBE B

1071 178 54 1002 75 4.05 1.0E-13 2.4E-11 1SXJ D

18096 42 16 462 45 3.91 3.7E-05 1.2E-03 1WPX A

13142 57 9 562 23 3.86 1.6E-03 2.1E-02 5GHE A

16593 118 34 954 72 3.82 1.7E-09 2.1E-07 3WDO A

14325 133 28 621 36 3.63 1.1E-06 6.8E-05 5U03 A

10827 25 11 286 35 3.60 2.1E-03 2.5E-02 2IHO A

10077 38 11 397 32 3.59 1.3E-03 2.0E-02 3AKF A
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9626 47 9 468 25 3.58 3.2E-03 3.4E-02 2CVF A

10648 59 20 587 56 3.55 1.4E-05 5.6E-04 3I83 A

8095 192 60 1686 151 3.49 3.2E-14 1.0E-11 2YMU A

5372 88 33 914 99 3.46 3.3E-08 2.9E-06 1RGI G

14269 105 23 426 27 3.46 4.1E-05 1.3E-03 5UJ8 E

14404 54 16 374 33 3.36 4.0E-04 8.0E-03 4IDA A

17420 32 12 340 39 3.27 2.4E-03 2.8E-02 1W9P A

6507 63 13 620 40 3.20 9.9E-04 1.6E-02 1AUA A

9423 60 11 401 23 3.20 4.4E-03 4.2E-02 4Y42 A

7878 41 17 446 58 3.19 3.5E-04 8.0E-03 4TYW A

3307 87 17 720 45 3.13 2.3E-04 5.8E-03 6DVH A

6285 55 13 565 43 3.11 1.4E-03 2.1E-02 2VWS A

10049 68 16 668 51 3.08 4.0E-04 8.0E-03 1KH4 A

6148 628 131 1361 93 3.05 1.6E-15 7.7E-13 4CHT A

14511 42 13 414 44 2.91 3.7E-03 3.7E-02 3HG7 A

2522 46 16 492 60 2.85 1.5E-03 2.1E-02 5L0R A

5375 45 18 448 63 2.84 9.6E-04 1.5E-02 2WZO A

73 68 20 715 74 2.84 2.5E-04 6.2E-03 1WPX A

12131 210 35 816 48 2.83 8.7E-06 4.0E-04 6GKV A

1097 63 17 534 51 2.83 1.1E-03 1.6E-02 2IW0 A

18360 174 35 924 66 2.82 3.6E-06 2.0E-04 1ULT A

5930 57 16 594 60 2.78 1.5E-03 2.1E-02 2PXX A

8261 112 42 930 129 2.70 9.4E-07 6.5E-05 4QNW A

18092 83 22 794 78 2.70 2.5E-04 6.1E-03 4QJY A

1060 65 16 533 50 2.62 3.2E-03 3.3E-02 3WXB A

17037 95 19 918 70 2.62 7.4E-04 1.3E-02 5YHP A

15353 109 26 944 86 2.62 1.0E-04 2.8E-03 3WNV A

7784 120 15 929 45 2.58 3.5E-03 3.5E-02 3L4G B

10236 182 35 1810 135 2.58 3.5E-06 2.0E-04 1Q6X A

2011 390 17 889 67 2.51 2.4E-03 2.7E-02 3A1K A

8572 167 32 976 76 2.46 8.1E-05 2.4E-03 4AH6 A

14282 153 18 1251 60 2.45 2.0E-03 2.4E-02 3QM4 A

7836 83 17 685 58 2.42 4.4E-03 4.2E-02 1DQW A

3610 196 45 1946 185 2.42 1.2E-06 7.3E-05 4BKX B

8725 71 18 669 71 2.39 4.0E-03 4.0E-02 6G6M A

11096 64 20 657 87 2.36 3.0E-03 3.2E-02 3AKF A
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6520 86 28 599 84 2.32 8.3E-04 1.4E-02 4K3A A

12399 610 107 994 76 2.29 1.4E-07 1.1E-05 1JZQ A

8945 147 32 558 53 2.29 7.9E-04 1.3E-02 3E5M A

1744 148 45 616 83 2.26 9.7E-05 2.8E-03 1C7J A

16360 134 34 1297 149 2.21 2.0E-04 5.3E-03 3WTC A

12853 168 31 1634 139 2.17 3.8E-04 8.0E-03 6H7D A

14137 118 27 1175 127 2.12 1.7E-03 2.1E-02 6C5B A

7106 124 22 1167 98 2.11 4.4E-03 4.2E-02 5K8E A

1523 77 29 402 72 2.10 4.4E-03 4.2E-02 5Y1B A

2779 127 27 1155 120 2.05 2.8E-03 3.0E-02 1SXJ B

4275 555 87 957 74 2.03 2.5E-05 8.4E-04 5VC7 A

17782 184 53 581 83 2.02 4.1E-04 8.0E-03 4QNW A

4829 350 62 504 46 1.94 1.7E-03 2.1E-02 5MXC A

9827 237 42 2273 209 1.93 3.9E-04 8.0E-03 2VJY A

1520 153 32 1498 163 1.92 2.6E-03 2.9E-02 3PQV A

4468 238 48 1409 148 1.92 3.6E-04 8.0E-03 1V9L A

8360 852 74 884 40 1.92 1.5E-03 2.1E-02 5YLW A

16987 154 34 1482 174 1.88 2.8E-03 3.0E-02 3LWT X

935 104 38 1036 203 1.86 3.0E-03 3.2E-02 3FGA A

11732 118 40 1076 196 1.86 2.3E-03 2.7E-02 4C2L A

15295 152 41 1326 193 1.85 1.7E-03 2.1E-02 4A69 A

6753 246 36 1868 151 1.81 3.4E-03 3.5E-02 1SXJ C

13863 319 86 414 62 1.80 1.6E-03 2.1E-02 6F43 A

USA population

14970 13 6 160 8 9.23 1.8E-04 1.3E-02 2VFR A

1536 12 13 184 23 8.67 4.6E-07 2.0E-04 6AHR E

3618 9 10 139 24 6.44 2.1E-04 1.4E-02 5LCL B

18366 44 15 486 41 4.04 3.5E-05 4.5E-03 1UPU D

8253 44 12 467 35 3.64 5.8E-04 3.4E-02 6F87 A

9241 56 23 624 81 3.16 2.6E-05 4.2E-03 1YCD A

1743 49 19 510 64 3.09 2.1E-04 1.4E-02 4PEH A

64 85 27 905 101 2.85 1.9E-05 3.6E-03 2B4Q A

14128 77 28 804 103 2.84 1.9E-05 3.6E-03 2X8R A

10841 120 20 1166 69 2.82 1.5E-04 1.2E-02 3TIK A

17174 96 27 679 73 2.62 1.4E-04 1.2E-02 5EY6 A

173



5725 73 30 799 126 2.61 5.9E-05 6.9E-03 1TA3 B

10834 90 31 936 124 2.60 3.3E-05 4.5E-03 2QB6 A

1267 117 29 1150 116 2.46 1.0E-04 1.0E-02 4CPD A

9614 149 44 1550 187 2.45 1.9E-06 6.0E-04 2VGL B

6148 487 75 4438 284 2.41 1.2E-10 1.5E-07 4CHT A

161 227 52 2206 210 2.41 2.0E-07 1.3E-04 5DNC A

621 105 35 1060 152 2.32 9.1E-05 9.7E-03 3WG6 A

14368 124 26 1008 92 2.30 7.4E-04 4.1E-02 2X1C A

9215 161 56 1546 243 2.21 3.0E-06 7.6E-04 4QNW A

13117 140 44 1401 226 1.95 4.5E-04 2.8E-02 1W9P A

3876 232 51 2244 259 1.90 1.5E-04 1.2E-02 1W63 A

Table A3. Senescence and entrenchment in mitochondrial genes of Metazoa. The

table shows mitochondrial sites which show statistically significant entrenchment

(regression coefficient < 0) or senescence (regression coefficient > 0). Regression

coefficients are calculated using binomial logistic regression (for more details, see main

text).

AC (human)
protein
name

position p-value
regression
coefficient

q-value

P00846.1 ATP6 5 9.25E-07 -29.13 5.91E-04

P00846.1 ATP6 10 8.40E-07 11.30 5.75E-04

P00846.1 ATP6 26 3.86E-07 -10.14 3.08E-04

P00846.1 ATP6 69 1.25E-04 -37.11 3.14E-02

P00846.1 ATP6 70 6.59E-05 -16.23 1.97E-02

P00846.1 ATP6 71 4.45E-14 -9.02 2.13E-10

P00846.1 ATP6 80 2.44E-08 7.34 3.34E-05

P00846.1 ATP6 105 5.21E-06 9.09 2.27E-03

P00846.1 ATP6 111 4.72E-08 7.73 5.65E-05

P00846.1 ATP6 116 2.09E-04 -8.38 4.17E-02

P00846.1 ATP6 125 1.46E-08 6.34 2.81E-05

P00846.1 ATP6 141 1.86E-08 5.95 2.98E-05
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P00846.1 ATP6 178 1.47E-04 -7.60 3.61E-02

P00846.1 ATP6 179 1.72E-09 4.23 5.49E-06

P00846.1 ATP6 224 1.89E-04 -10.28 3.97E-02

P00395.1 COX1 52 6.69E-06 6.37 2.71E-03

P00395.1 COX1 132 2.30E-06 -8.60 1.22E-03

P00395.1 COX1 185 1.88E-05 -16.80 6.44E-03

P00395.1 COX1 256 2.10E-05 -30.61 6.93E-03

P00395.1 COX1 336 6.79E-06 -13.88 2.71E-03

P00395.1 COX1 389 1.07E-04 -12.40 2.86E-02

P00395.1 COX1 399 1.71E-06 -30.26 9.61E-04

P00395.1 COX1 414 3.58E-06 -8.05 1.63E-03

P00395.1 COX1 415 2.58E-06 -9.15 1.30E-03

P00395.1 COX1 448 7.98E-05 -14.43 2.25E-02

P00395.1 COX1 491 1.92E-04 -37.47 3.97E-02

P00403.1 COX2 21 1.75E-04 41.65 3.97E-02

P00403.1 COX2 37 1.03E-07 6.56 1.10E-04

P00403.1 COX2 51 2.74E-05 30.72 8.48E-03

P00403.1 COX2 56 3.91E-18 12.63 3.74E-14

P00403.1 COX2 57 1.85E-05 -28.14 6.44E-03

P00403.1 COX2 112 2.28E-04 35.40 4.47E-02

P00403.1 COX2 217 2.40E-09 6.28 5.75E-06

P00414.2 COX3 47 1.52E-04 10.36 3.64E-02

P00414.2 COX3 60 1.18E-04 3.37 3.05E-02

P00414.2 COX3 166 7.85E-07 -9.71 5.75E-04

P00156.2 CYTB 4 3.42E-06 -4.17 1.63E-03

P00156.2 CYTB 10 1.93E-04 -51.60 3.97E-02

P00156.2 CYTB 38 1.95E-04 16.61 3.97E-02

P00156.2 CYTB 81 1.10E-05 -59.64 4.21E-03

P00156.2 CYTB 93 1.90E-04 -17.48 3.97E-02

P00156.2 CYTB 121 2.17E-07 28.84 1.89E-04

P00156.2 CYTB 180 1.35E-06 8.57 8.07E-04

P00156.2 CYTB 183 7.39E-05 14.84 2.15E-02

P00156.2 CYTB 218 1.83E-05 -23.65 6.44E-03

P00156.2 CYTB 225 8.90E-05 9.37 2.44E-02

P00156.2 CYTB 235 1.70E-07 -42.63 1.63E-04

P00156.2 CYTB 337 1.89E-04 -20.53 3.97E-02
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P00156.2 CYTB 346 2.65E-05 -4.01 8.47E-03
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