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Abstract 

Data on the thermal properties of sedimentary rocks are necessary for 

thermohydrodynamic modelling of physical processes occurring within a reservoir 

during thermal enhanced oil recovery, basin and petroleum system modelling, 

temperature log data interpretation, and heat flow determination. The limitations of 

the existing techniques for in situ rock thermal property measurements and 

numerous cases with non-coring drilling determine the necessity for developing 

methods for rock thermal property determination based on well-logging data. 

Existing approaches for determining rock thermal properties from well-logging data 

are appropriate only for isotropic rocks and do not allow reliably determining rock 

volumetric heat capacity. Since many rock types exhibit a considerable degree of 

heterogeneity and anisotropy, advanced approaches for well log-based 

determination of rock thermal properties are highly desired. The implementation of 

the new thermal core logging technique, which provides continuous and high-

precision measurements of the principal components of the thermal conductivity 

tensor and volumetric heat capacity from core samples, enabled the development of 

a new framework for the indirect determination of rock thermal properties. An 

enhanced technique for the simultaneous determination of rock thermal conductivity 

and volumetric heat capacity from well-logging data accounting for thermal 

anisotropy, heterogeneity and in situ thermobaric conditions was developed and 

tested on vast representative experimental data from various hydrocarbon fields, 

including organic-rich shales and heavy oil field. This technique includes integration 

of thermal core logging and well logging data and application of theoretical models 

and regression analysis via machine learning. The implementation of the novel well-

log based technique for determining rock thermal properties within the geothermal 

investigations allowed obtaining new data on vertical variations of rock thermal 

properties and heat flow density that enhanced the quality of the subsequent studies 

of hydrocarbon fields. 

 

Massimo
Cross-Out

Massimo
Inserted Text
for basin

Massimo
Cross-Out

Massimo
Inserted Text
require the development of 

Massimo
Cross-Out

Massimo
Inserted Text
absence of core samples 

Massimo
Cross-Out

Massimo
Inserted Text
reliable determinations of

Massimo
Cross-Out

Massimo
Inserted Text
necessary.

Massimo
Cross-Out

Massimo
Inserted Text
a

Massimo
Pencil

Massimo
Cross-Out

Massimo
Inserted Text
dataset

Massimo
Cross-Out

Massimo
Inserted Text
the application

Massimo
Cross-Out

Massimo
Inserted Text
by means of 

Massimo
Cross-Out

Massimo
Inserted Text
learning techniques

Massimo
Cross-Out



4 

 

Publications and Patents 

Peer-Reviewed Articles in International Scientific Journals  

1. Shakirov, A., Chekhonin, E., Popov, Y., Popov, E., Spasennykh, M., 

Zagranovskaya D., Serkin M., 2021. Rock thermal properties from well-logging 

data accounting for thermal anisotropy. Geothermics 92(6), 102059. 

https://doi.org/ 10.1016/j.geothermics.2021.102059. 

2. Meshalkin, Y., Shakirov, A., Popov, E., Koroteev, D., Gurbatova, I., 2020. 

Robust well-log based determination of rock thermal conductivity through 

machine learning. Geophysical Journal International 222(2), 978-988. 

https://doi.org/10.1093/gji/ggaa209. 

3. Popov, E., Chekhonin, E., Safonov, S., Savel’ev, E., Gurbatova, S., Ursegov, S., 

Shakirov, A., 2020. Thermal core profiling as a novel and accurate method for 

efficient characterization of oil reservoirs. Journal of Petroleum Science and 

Engineering 193(3), 107384. https://doi.org/ 10.1016/j.petrol.2020.107384.  

4. Popov, Y., Spasennykh, M., Shakirov, A., Chekhonin, E., Romushkevich, E., 

Savelev, E., Gabova, A., Zagranovskaya, D., Valiullin, R., Yuarullin, R., 

Golovanova, I., Sal’manova, R., (2021). Investigations of geothermal 

parameters of oil field with unconventional reservoir in European part of Russia 

with advanced experimental basis. Submitted to Geosciences. 

Patent 

Popov Y., Chekhonin, E., Shakirov, A., 2019. Approach for determining thermal 

properties of organic-rich shales. Russian Patent, № RU 2704002 C1. 

 

 

 

 

Utente
Matita

Massimo
Pencil

Massimo
Sticky Note
cfr. the spelling in Bibliography



5 

 

Extended abstracts in conference proceedings (indexed in Scopus) 

1. Popov, Y., Spasennykh, M., Shakirov, A., Chekhonin, E., Romushkevich, R., 

Savelev, E., Zagranovskaya, D., 2021. New Data on Heat flow for Modeling 

Areas of Hydrocarbon Systems of The Bazhenov and Domanik Formations. 

EAGE/SPE Workshop on Shale Science. https://doi.org/ 10.3997/2214-

4609.202151027. 

2. Shakirov, A., Meshalkin, Y., Koroteev, D., Popov, Y., 2020. Vertical 

variations of rock thermal conductivity from well logging data using machine-

learning methods. EAGE, Data Science in Oil & Gas. https://doi.org/ 

10.1016/j.petrol.2020.107384.  

3. Shakirov, A., Chekhonin, E., Popov, E., Romushkevich, R., Popov, Yu., 

(2019). Determination of Thermal Conductivity Variations within Oil Shale 

Reservoirs Using Integration of Thermal Core Logging and Standard Well 

Logging Data. Sixth EAGE Shale Workshop. https://doi.org/10.3997/2214-

4609.201900294. 

4. Chekhonin, E., Shakirov, A., Popov, E., Romushkevich, R., Popov, Y., 

Bogdanovich, N., Rudakovskaya S., 2019. The Role of Thermophysical 

Profiling for Core Sampling for Laboratory Investigations of Source Rocks. 

EAGE/SPE Workshop on Shale Science. https://doi.org/10.3997/2214-

4609.201900478. 

5. Popov, Y., Spasennykh, M., Valiullin, R., Ramazanov, A., Zagranovskaya, 

D., Golovanova, I., Chekhonin, E., Savelev, E., Gabova, A., Popov, E., 

Shakirov, A., 2018. First Experience of Maintenance of Basin Modeling With 

Up-to-date Complex of Experimental Geothermic Investigations. EAGE 

Geomodel. https://doi.org/10.3997/2214-4609.201802427. 



6 

 

6. Chekhonin, E., Popov, E., Popov, Y., Romushkevich, R., Savelev, E., and 

Shakirov, A., 2018. Thermal Petrophysics: New Insight into Core Analysis 

and Characterization of Highly Heterogeneous Tight Oil Formations. 80th 

EAGE Conference and Exhibition. https://doi.org/10.3997/2214-

4609.201800788. 

 

  



7 

 

Acknowledgements 

My PhD journey would not have been possible without the support and help of 

numerous people to whom I am expressing my gratitude and respect. 

First, I am sincerely grateful to my scientific supervisor, Professor Yuri Popov, 

for enrolling me in a world-class scientific journey, constant helping and supporting 

me whenever needed. Many thanks for giving me the opportunity to obtain practical 

and theoretical skills, versatile knowledge and sharing with me not only professional 

but also life experience. 

I thank my co-supervisor Dr. Evgeny Chekhonin for his invaluable input to my 

research and for educating me as a thorough erudite specialist. 

I am very grateful to Raisa Romuchkevich for her support and fruitful 

discussions, comments and advice concerning geological aspects of my research.  

I express my gratitude to my lab colleagues – Dr. Evgeny Popov, Egor 

Savel’ev, Alexander Goncharov, Dmitry Ostrizhny and Sergey Pohilenko – for their 

hard laboratory work and conducting experimental measurements.  

I thank Professor Mikhail Spasennykh for his valuable recommendations and 

comments and for his constant support during organizing and conducting the 

research. 

Special thanks to all my colleagues and friends from the Skolkovo Institute of 

Science and Technology for motivating me and being wonderful.  

Finally, yet importantly, I am highly indebted to my family for always believing 

in me and caring about me during my PhD journey. Many thanks.   

  

Utente
Matita

Utente
Nota
 Savelev?



8 

 

Table of Contents 

Abstract .................................................................................................................... 3 

Publications and Patents .......................................................................................... 4 

Acknowledgements .................................................................................................. 7 

List of figures .........................................................................................................12 

List of tables ...........................................................................................................19 

Chapter 1. Existing well-log based approaches for determining rock thermal 

properties: current state-of-the art ..........................................................................21 

1.1 Applications of data on rock thermal properties .................................21 

1.2 Traditional approaches for determining thermal properties of 

sedimentary rock ..................................................................................22 

1.3 Possibilities and limitations of traditional approaches for well-log based 

determining rock thermal properties ...................................................27 

1.4 Importance of accounting for rock anisotropy and heterogeneity. ......33 

1.5 Integration of thermal core logging data with well-logging data – a new 

framework for the improvement of reliability of data on rock thermal 

properties inferred from well-logging data..........................................37 

1.6 Conclusions ..........................................................................................40 

Chapter 2. Determining thermal conductivity and volumetric heat capacity of 

anisotropic rocks based on regression analysis........................................................42 

2.1 Approach for determining thermal properties accounting for thermal 

anisotropy via sonic log data. ..............................................................42 

2.1.1 Workflow .................................................................................44 

2.1.2 Case study: well-log based determining thermal properties of 

organic-rich shales ...................................................................46 

2.1.2.1 Analysis and processing of the available input data .....46 

2.1.2.2 Thermal core logging results for highly anisotropic rocks 

of the Bazhenov Formation ...........................................47 

2.1.2.3 Regression analysis results and prediction of rock thermal 

properties .......................................................................49 

2.1.2.4 Corrections for in situ temperature and pressure ..........51 

2.1.3 Conclusions .............................................................................53 

2.2 Machine learning for determining rock thermal properties from well 

logging data. ........................................................................................54 



9 

 

2.2.1 Effectiveness of distinct machine learning algorithms for 

predicting rock thermal properties: case studies from 

conventional and unconventional hydrocarbon reservoirs ......55 

2.2.1.1 Geological settings and field data ...............................55 

2.2.1.2 Calibrating and testing of regression models ..............59 

2.2.2 Conclusions .............................................................................63 

2.3 Sensitivity study of regression models for predicting rock thermal 

properties .............................................................................................63 

2.3.1 Workflow of the input perturbation method ...........................65 

2.3.2 Sensitivity study of the gradient boosting regression model for 

predicting rock thermal properties ..........................................66 

2.3.3 Conclusions .............................................................................70 

Chapter 3. Determining thermal conductivity and volumetric heat capacity of 

anisotropic rocks based on theoretical modelling ....................................................72 

3.1. Approach for determining thermal properties accounting for thermal 

anisotropy via theoretical modelling ...................................................72 

3.1.1 Workflow .................................................................................73 

3.1.2 Case study: determining thermal properties of organic-rich 

shales of the Bazhenov Formation accounting for thermal 

anisotropy from well-logging data based on theoretical 

modelling .................................................................................75 

3.1.2.1 Theoretical models of thermal properties ...................75 

3.1.2.2 Calibrating theoretical models of thermal properties ..77 

3.1.2.3 Predicting rock thermal properties from well-logging 

data based on theoretical modelling ............................79 

3.1.3 Conclusions .............................................................................83 

3.2. Approach for assessing uncertainty in a correction factor of Krischer-

Esdorn model. ......................................................................................84 

3.2.1 Workflow .................................................................................85 

3.2.2 Case study: assessing the uncertainty in correction factor of 

Krischer-Esdorn model established for clayous rocks of the 

Tumen Formation ....................................................................86 

3.2.2.1 Geological setting and field data .................................87 

3.2.2.2 Thermal core logging results for the calyous rocks of the 

Tumen Formation ........................................................87 



10 

 

3.2.2.3 Results of predicting rock thermal conductivity from 

well-logging data based on Krischer-Esdorn model ...89 

3.2.2.4 Sensitivity study of Krischer-Esdorn model and 

assessment of uncertainty in correction factor ............91 

3.2.3 Conclusions. ............................................................................95 

Chapter 4. Well-log based technique (WLBT) for determining rock thermal 

properties accounting for thermal anisotropy at in situ pressure, temperature and 

saturation ..................................................................................................................96 

4.1. Workflow of WLBT for thermal property prediction .........................96 

4.2. Testing of WLBT for determining thermal properties of organic-rich 

shales of the Domanic Formation accounting for thermal anisotropy 

from well-logging data ......................................................................101 

4.2.1. Analysis and processing of the available input data .............102 

4.2.2. Thermal core logging results for highly heterogeneous rocks of 

the Domanic Formation .........................................................105 

4.2.3. Calibrating gradient boosting regression model ...................108 

4.2.4. Calibrating theoretical models of thermal properties ............111 

4.2.5. Predicting rock thermal properties from well logging data on a 

test dataset .............................................................................113 

4.2.6. Corrections for in situ temperature and pressure ..................115 

4.3. Comparison of the WBLT for determining rock thermal properties and 

Deming approach ...............................................................................116 

4.3.1. Workflow of the Deming correction approach .....................116 

4.3.2. Case study: predicting rock thermal conductivity accounting for 

thermal anisotropy based on the Deming approach and the novel 

WLBT for determining rock thermal properties ...................117 

4.3.2.1 Calibrating the Lichtenecker model via the Deming 

approach ....................................................................117 

4.3.2.2 Training gradient boosting regression models for 

determining rock thermal conductivity accounting for 

thermal anisotropy .....................................................119 

4.3.2.3 Predicting rock thermal conductivity based on the 

Deming approach and the gradient boosting regression 

models .......................................................................120 

4.4. Conclusions ........................................................................................123 



11 

 

Chapter 5. Results of implementing WLBT for determining rock thermal properties 

during investigations of oil fields ..........................................................................125 

5.1 Determining vertical variations of rock thermal properties and heat flow 

density along Bazhenovskaya 1 well .................................................125 

5.1.1. Object of study ......................................................................126 

5.1.2. Results of measuring rock thermal properties and temperature 

logging ...................................................................................127 

5.1.3. Results of application of WLBT for determining rock thermal 

conductivity within non-coring intervals ..............................130 

5.1.4. Determining vertical variations of heat flow density ............138 

5.2 Determining vertical variations of rock thermal properties and heat flow 

density along Baleikinskaya 10 well .................................................140 

5.2.1. Object of study ......................................................................140 

5.2.2. Results of measuring rock thermal properties and temperature 

logging ...................................................................................142 

5.2.3. Determining the equivalent thermal conductivity necessary for 

estimating the heat flow within non-coring intervals from 

standard well-logging data ....................................................148 

5.2.4. Determining vertical variations of heat flow density ............151 

5.3 Conclusion .........................................................................................158 

Summary and Conclusions ....................................................................................159 

Bibliography ...........................................................................................................162 

 

 

 

  



12 

 

List of figures 

Figure 1. Results of calculating CV for two organic-rich shales (left and central 

panel) and carbonate rocks of heavy oil field (right panel) within moving windows 

of 0.1 m (grey coloured line) and 0.5 m (blue) coloured line. Histograms plot relative 

difference between CV calculated within 0.5 m and CV calculated within 0.1 m. .36 

Figure 2. Thermal conductivity and volumetric heat capacity for rock-forming 

minerals and pore fluids. ..........................................................................................43 

Figure 3. Photograph of typical unsawed full-sized core samples of the Bazhenov 

Formation. ................................................................................................................47 

Figure 4. Results of rock thermal property measurements for wells A (left), B 

(middle), and C (right). λ stands for rock thermal conductivity; subscripts  and ⊥ 

stand for the thermal conductivity components in the directions parallel and 

perpendicular to the bedding plane, respectively; VHC stands for volumetric heat 

capacity; grey lines represent the original profiles of the rock thermal properties. 

Black, red and blue lines represent averaged thermal property profiles in a moving 

0.6 window. The first two digits for the depths are hidden for confidentiality here 

and elsewhere in the text. .........................................................................................48 

Figure 5. Results of correlation analysis between thermal conductivity and sonic 

velocity of rocks for parallel (left panel) and perpendicular (central panel) direction 

to the bedding plane and rock volumetric heat capacity and photoelectric factor (right 

panel). Dashed line represents the regression trend. ................................................50 

Figure 6. Results of prediction of thermal conductivity for parallel (left panel) and 

perpendicular (central panel) direction to the bedding plane from sonic velocity and 

rock volumetric heat capacity from photoelectric factor (right panel). ...................51 

Figure 7. Results of thermal core logging for wells D and E. λ stands for thermal 

conductivity, C stands for volumetric heat capacity and KT stands for coefficient of 

thermal anisotropy. 1 - pelitomorphic with irregular silicification and pyritized, 

weakly clayish limestones, 2 - argillaceous-terrigenous, pyritized, fissured 

formations, 3 - organogenic-detrital limestones, 4 – siliceous organogenic-detrital 

limestones, 5 - interbedding of organogenous-detrital, with silicification, clayish 

limestone and highly clayish dolomite, 6 - organogenous-detrital, irregularly 

dolomitized, highly clayish limestones, 7 - organogenous detrital, with silicification, 

clayish limestones.. Measurement results for each core sample are shown in grey; 

corresponding results modified to logging scale are shown in black. .....................57 

Massimo
Highlight

Massimo
Sticky Note
Please revise the figure and table captions according to the suggestions given in the text (see below)



13 

 

Figure 8. Results well logging for wells A (left panel) and E (right panel). ...........58 

Figure 9. Results of sensitivity study of regression models of gradient boosting for 

determining thermal conductivity (left panel) and volumetric heat capacity (right 

panel) of carbonate rocks of the heavy oil field. The input well-logs are presented in 

the right figure. ΔP stands for relative change of prediction precision. ΔLogs stands 

for input well-log with imposed uncertainty............................................................66 

Figure 10. Results of sensitivity study of regression models of gradient boosting for 

determining thermal conductivity parallel (left panel) and perpendicular (right panel) 

to bedding plane and volumetric heat capacity (bottom panel) of carbonate rocks of 

heavy oil field. ..........................................................................................................68 

Figure 11. Experimental data of the rock thermal properties compared to the thermal 

properties predicted from well-logging data of training datasets for the Bazhenov 

Formation. Black dots present results with the gradient boosting method, red dots 

results via theoretical model. The dashed black line (y=x) shows a perfect prediction.

 ..................................................................................................................................81 

Figure 12. Boxplots of the relative discrepancies between the measured and 

predicted values of rock thermal properties for the Bazhenov Formation. Above, 

predictions based on the theoretical models; below, predictions based on the gradient 

boosting algorithm. Histograms of thermal properties from the test dataset are also 

shown. ......................................................................................................................82 

Figure 13. Pie chart of average volume fractions of rock-forming components of the 

investigating rocks inferred from high definition spectroscopy and NMR log data.

 ..................................................................................................................................87 

Figure 14. Results of rock thermal property measurements for wells A (left) and C 

(right). λ stands for rock thermal conductivity; subscripts ‖ and ⊥ stand for the 

thermal conductivity components in the directions parallel and perpendicular to the 

bedding plane, respectively; grey lines represent the original profiles of the rock 

thermal properties; black, red and blue lines represent averaged thermal property 

profiles in a moving 0.5 window. ............................................................................88 

Figure 15. Histogram of thermal anisotropy coefficient inferred from thermal core 

logging for wells A and C. .......................................................................................89 



14 

 

Figure 16. Experimental data of the rock thermal conductivity compared to the 

predicted thermal conductivity from well-logging data on test datasets. The dashed 

black line (y=x) shows perfect prediction. N stands for number of points. ............90 

Figure 17. Results of assessing influence of uncertainty in thermal conductivity of 

rock matrix (red lines), porosity (green line), thermal conductivity of pore fluid (blue 

line), and correction factor (black line) on rock thermal conductivity for parallel (left 

panel) and perpendicular (right panel) directions to the bedding plane. .................94 

Figure 18. Workflow for well log-based determination of rock thermal properties 

accounting for rock thermal anisotropy (Shakirov et al., 2021). Red and blue arrows 

indicate cases when “core samples are available” and “core samples are absent”, 

respectively. λij is the thermal conductivity in the ij directions; C is the volumetric 

heat capacity. Vk is a volumetric fraction of the k-th rock-forming component, λk
ij is 

the thermal conductivity of the k-th component for the ij direction, and Ck is the 

volumetric heat capacity of the k-th component. a is a correction factor. P and T 

stand for pressure and temperature, respectively. ....................................................97 

Figure 19. Results of well-logging for well F. Log symbols were defined in the text 

above. .....................................................................................................................103 

Figure 20. Results of well-logging for well G. Log symbols were defined in the text 

above. .....................................................................................................................104 

Figure 21. Photographs of typical core samples of the Domanic Formation. .......105 

Figure 22. Results of rock thermal property measurements for wells F (left) and G 

(right). λ stands for rock thermal conductivity, subscripts  and ⊥ stand for the 

thermal conductivity components in the directions parallel and perpendicular to the 

bedding plane, respectively; grey lines represent the original profiles of the rock 

thermal properties. Black, red and blue lines represent averaged thermal property 

profiles in a moving 0.5 window. ..........................................................................107 

Figure 23. Well log importance during predicting rock thermal properties assessed 

via noise-based perturbation importance ranking method for the Domanic 

Formations. Black corresponds to thermal conductivity parallel to the bedding plane, 

red coloured diagram corresponds to thermal conductivity perpendicular to the 

bedding plane, and blue coloured diagram corresponds to rock volumetric heat 

capacity. .................................................................................................................109 



15 

 

Figure 24. Experimental data of the rock thermal properties compared to the thermal 

properties predicted from well-logging data of training datasets for the Domanic 

Formation. Black dots present results with the gradient boosting method, red dots 

results via theoretical model. The dashed black line (y=x) shows a perfect prediction.

 ................................................................................................................................113 

Figure 25. Boxplots of the relative discrepancies between the measured and 

predicted values of rock thermal properties for the Domanic Formation. Above, 

predictions based on the theoretical models; below, predictions based on the gradient 

boosting algorithm. Histograms of thermal properties from the test dataset are also 

shown. ....................................................................................................................114 

Figure 26. Cross-plots between thermal anisotropy coefficient and illite volume 

fraction (left panel) and thermal anisotropy coefficient and kaolinite volume fraction 

(right panel). The dashed lines represent the regression trend. .............................118 

Figure 27. Experimental data of the rock thermal conductivity compared to the 

thermal conductivity predicted from well-logging data of test datasets for the 

investigating clayous rocks. Black dots present results with the gradient boosting 

method, red dots results via the Deming approach. The dashed black line (y=x) 

shows perfect prediction. .......................................................................................121 

Figure 28. Boxplots of the relative discrepancies between the measured and 

predicted values of rock thermal conductivity for the investigating clayous rocks. 

The upper panel represents the boxplots for predictions that are made via the Deming 

correction approach. The lower panel represents the boxplots for predictions that are 

made via the gradient boosting regression models. Histograms of thermal 

conductivities for the test dataset are also shown. .................................................123 

Figure 29. Results of continuous thermal core logging for depth intervals of the 

Vikulov (upper panel) and Frolov formations (lower panel). Black coloured dots 

represents thermal conductivity parallel to the bedding plane, red coloured dots 

represent thermal conductivity perpendicular to the bedding plane, green colored 

dots represent volumetric heat capacity, blue coloured dots represent thermal 

heterogeneity factor, and purple coloured dots represent thermal anisotropy 

coefficient. Grey coloured dots represent high-resolution profiles (with 1-mm spatial 

resolution) of thermal conductivity and volumetric heat capacity. .......................128 

Figure 30. The dependency of relative increase of thermal conductivity after water 

saturation from porosity for the Vikulov and Frolov formations (left panel) and for 

the Abalak and Tyumen formations (right panel). Red colored dots and regression 



16 

 

trend represent data for thermal conductivity perpendicular to the bedding plane. 

Black colored dots and regression trend represent data for thermal conductivity 

parallel to the bedding plane. .................................................................................129 

Figure 31. The temperature and temperature gradient along the well. ..................130 

Figure 32. The histogram of thermal anisotropy coefficient for the Vikulov (black 

colour) and the Frolov (blue colour) formations. ..................................................131 

Figure 33. The histogram of the determined correction factors for parallel (black 

colour) and perpendicular (red colour) directions to the bedding plane and thermal 

conductivity of rock matrix (right panel). ..............................................................133 

Figure 34. The results of predicting the thermal conductivity of rocks and assessment 

of prediction quality for the Vikulov Formation. Black and red curves (left panel) 

represent measured values of thermal conductivity for parallel and perpendicular 

directions to the bedding plane, respectively. Green dots represent the predicted 

thermal conductivity. Prediction quality is reported for a 0.95 confidence level. .134 

Figure 35. The cross-plot of measured and predicted values of thermal conductivity 

parallel to the bedding plane. .................................................................................135 

Figure 36. The cross-plot of thermal anisotropy coefficient and thermal conductivity 

perpendicular to the bedding plane. .......................................................................136 

Figure 37. Results of well-log based prediction of rock thermal conductivity for 

parallel and perpendicular directions to the bedding plane at atmospheric conditions 

(Popov et al., 2021a). Green coloured dots represent experimental data and black 

coloured dots represent the predicted data on rock thermal conductivity. Lithology: 

1 – interbedding of argillites and siltstone, 2 – marl, 3 – sandstone, 4 – bituminous 

argillite, 5 – argillites, 6 – limy sandstone, 7 – metorhyolites, 8 – metoplagiogranite, 

9 – rhyolite, 10 – tuff, 11 – sandy gravelite, 12 – argillite with coals. ..................137 

Figure 38. Results of determining temperature gradient, equivalent thermal 

conductivity of rocks and the heat flow density within 14 depth intervals. Lithology 

legend was given in Figure 37 (Popov et al., 2021a). ............................................139 

Figure 39. Temperature (black curve) and temperature gradient (blue curve) 

distributions along the well (Popov et al., 2021b). Black dots on the left panel 

represent intervals of drilling with coring. Red dots on the right panel represent bad-

hole quality intervals (cavernous intervals; diameters of caverns exceed 10 cm). A 

dashed black line on the right panel represents the regression trend for temperature 



17 

 

gradient with depth (the correlation coefficient and the standard deviation are given 

below the regression equation). Lithology legend: 1 – sandstone, 2 – carbonate-rich 

sandstone, 3 – bituminous argillite, 4 – clayous sand-stone, 5 – silty argillite, 6 – 

limestone, 7 – dolomite, 8 – dolomite limestone, 9 – limy dolomite, 10 – anhydrite.

 ................................................................................................................................143 

Figure 40. Distribution histogram for the length of full-sized cores under study 

(Popov et al., 2021b). .............................................................................................143 

Figure 41. Results of continuous thermal core logging for depth intervals 1348.5-

1366.1 m (upper panel) and 2612.29-2629.2 m (lower panel) (Popov et al., 2021b). 

Black coloured dots represents thermal conductivity parallel to the bedding plane, 

red colored dots represent thermal conductivity perpendicular to the bedding plane, 

green coloured dots represent volumetric heat capacity, blue coloured dots represent 

thermal heterogeneity factor, and purple coloured dots represent thermal anisotropy 

coefficient. Grey coloured dots represent high-resolution profiles (with 1-mm spatial 

resolution) of thermal conductivity and volumetric heat capacity. .......................145 

Figure 42. The dependence of thermal conductivity variations from porosity of core 

samples after drying core samples (green-coloured line) and after water saturating 

(under vacuum) the dried core samples (blue-coloured line) (Popov et al., 2021b). 

The red-coloured line characterizes the thermal conductivity change from «as 

received» state to «water-saturated». .....................................................................147 

Figure 43. The results of predicting rock thermal conductivity within non-coring 

depth intervals from well-logging data via the established regression equations. 151 

Figure 44. The reasons causing anisotropy of rocks that were accounted during 

determining equivalent thermal conductivity required for calculating heat flow 

density. λeq. – macroanisotropy, λiꞱ - microanisotropy (Popov et al., 2021b). .....152 

Figure 45. Results of determining heat flow density for the investigating depth 

intervals and the previously published data on heat flow density for the area under 

study (Popov et al., 2021b). Blue line (left panel) presents the vertical variations of 

the temper-ature gradient (determined within 5 m moving window with a 10-cm 

step). Light-blue lines (central panel) present the lower estimate of the equivalent 

thermal conductivity within coring depth intervals. Blue lines (central panel) present 

the upper estimate of the equivalent thermal conductivity within coring depth 

intervals. Red lines present the average estimates of the equivalent thermal 

conductivity within the intervals with well-log based predictions of rock thermal 

conductivity. Light-blue and blue lines in the right panel of the figure represent the 



18 

 

lower and upper estimate of heat flow density within coring depth intervals. Red 

lines in the right panel repre-sent the average estimate of the heat flow density within 

the intervals with well-log based predictions of rock thermal conductivity. The 

empty black box on the right panel represent the previously published data on heat 

flow density (34.0 mW·m-2) for the are under study. Black vertical line on the right 

panel presents the regression trend of the increase of heat flow density (with average 

value of 72.6 mW·m-2 below 2000 m). Lithology legend was given in Figure 39.

 ................................................................................................................................156 

 

  



19 

 

List of tables 

Table 1. Lithological and petrophysical characteristics of the rocks in the case study 

based on XRD analysis results. ................................................................................46 

Table 2. Results of thermal property measurements of the studied core samples. ..47 

Table 3. Key specifications of the well-logging tools used. ....................................59 

Table 4. The tuned hyperparameters of the considered algorithms .........................61 

Table 5. The results of prediction thermal conductivity and volumetric heat capacity 

on a test dataset for carbonate rocks of heavy oil field. ...........................................61 

Table 6. The results of prediction thermal conductivity and volumetric heat capacity 

on a test dataset for organic-rich shales. ..................................................................62 

Table 7. The technical specifications of logging tools suggested by two producers.

 ..................................................................................................................................64 

Table 8. Literature data on the thermal properties of minerals and fluids (at 

atmospheric pressure and temperature). ..................................................................77 

Table 9. Calculated values of the thermal properties of the rock-forming components 

for the training dataset of the Bazhenov Formation. ...............................................80 

Table 10. Prediction results of the rock thermal properties on the test datasets. ....80 

Table 11. Calculated values of the thermal properties of the rock-forming 

components for the training dataset of the clayous rocks. .......................................90 

Table 12. Prediction results of the rock thermal properties on the test datasets 

(N=132, N = 53). ......................................................................................................90 

Table 13. Lithological and petrophysical characteristics of the rocks in the case 

study. ......................................................................................................................102 

Table 14. Results of thermal property measurements ащк the studied core samples.

 ................................................................................................................................106 

Table 15. Results of hyperparameter tuning for gradient boosting of the training 

datasets. ..................................................................................................................110 



20 

 

Table 16. Calculated values of thermal properties for rock-forming components for 

the training dataset of the Domanic Formation. ....................................................112 

Table 17. Prediction results of the rock thermal properties on the test dataset. ....113 

Table 18. Prediction results of the rock thermal properties on the train datasets. .119 

Table 19. Results of hyperparameter tuning for gradient boosting of the training 

datasets. ..................................................................................................................120 

Table 20. Prediction results of the rock thermal properties on the test dataset. ....121 

Table 21. Characteristics of the rocks from the investigating well based on the 

analysis of the recovered cores. .............................................................................126 

Table 22. Results of the gradient boosting regression model training and testing.

 ................................................................................................................................135 

Table 23. Characteristics of the rocks from the investigating well based on the 

analysis of the recovered cores. .............................................................................141 

Table 24. The results of training and testing regression models for determining rock 

thermal conductivity from well-logging. ...............................................................150 

Table 25. Results of determining equivalent thermal conductivity and heat flow 

density for coring depth intervals and intervals with well-log based predictions of 

rock thermal conductivity within non-coring intervals. ........................................155 

 

  



21 

 

Chapter 1. Existing well-log based approaches for determining rock 

thermal properties: current state-of-the art 

1.1  Applications of data on rock thermal properties 

Diversification of applied tasks at geological and geophysical investigations of 

hydrocarbon fields during 2000-2020 resulted in the increased necessity of 

representative and reliable data on rock thermal properties. The data on rock thermal 

properties are required for prospecting, exploration and development of hydrocarbon 

fields. 

An essential method for assessing hydrocarbon field potential in the 

prospecting stage is basin and petroleum system modelling (BPSM). The critical 

aspect of BPSM is a reconstruction of thermal basin history that is to a significant 

degree determined by rock thermal properties and heat flow density. Twenty per cent 

uncertainty in data on rock thermal properties or in data on heat flow density in some 

cases leads up to 100% over- or underestimation of hydrocarbon reserves (Hicks et 

al., 2012). 

In the exploration stage, the modern experimental base of thermal petrophysics 

(Popov et al., 2016; Popov E. et al., 2020a) provides an effective solution of the 

following applied tasks: 

1. Identification of peculiarities of geological setting via the data on basic 

physical properties of rocks – thermal conductivity and volumetric heat 

capacity (Popov E. et al., 2020b).  

2. Assessment of rock heterogeneity (Popov E. et al., 2019). 

3. Assessment of rock thermal anisotropy that is a distinguishing characteristic 

for many rock types including organic-rich shales (Popov et al., 2017). 
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4. Registering detailed profiles of total organic carbon content for organic-rich 

shales (Popov E. et al., 2020a). 

5. Interpretation of temperature logging data (Poulsen & Balling, 2012). 

6. Registering and interpreting vertical variations of heat flow density and 

terrestrial heat flow density (Emmermann et al., 1997; Popov et al., 1999; 

Kukkonen et al., 2011; etc.). 

In the development stage, the data on rock thermal properties are required for 

thermohydrodynamic modelling of physical properties that occur when thermal 

enhanced oil recovery (EOR) methods are utilized (Wang et al., 2017). Reliable data 

on rock thermal properties allow determining optimal parameters for EOR and 

avoiding significant errors in the assessment of the economic efficiency of the EOR 

technique.  

Moreover, reliable data on rock thermal properties is required for geothermal 

investigations and high-level radioactive waste disposal in deep underground sites.  

1.2  Traditional approaches for determining thermal properties of 

sedimentary rock 

The existing approaches for determining rock thermal properties can be 

grouped in the following way: 

1. Laboratory measurements on core samples. 

2. In situ thermal logging. 

3. Theoretical modelling. 

4. Use of databases. 

5. Well-log based approaches. 

There were numerous steady-state and transient techniques developed for 

measuring thermal conductivity and volumetric (or specific) heat capacity of rocks. 
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According to Blackwell et al. (1989) and Clauser et al. (2006), the most prominent 

methods for measuring thermal conductivity of rocks are considered divided-bar, 

needle-probe, and optical scanning. Today, the most commonly used divided-bar 

tools in laboratories base on the same working principle as the instrument described 

by Birch (1950). The most typical and convenient-line source method is a half-space 

line-source described by Huenges et al. (1990). The optical scanning method 

developed and suggested by Popov (1983) is currently universally recognized and 

included in the International Society of Rock Mechanics and Rock Engineering 

(ISRM) suggested methods for determining rock thermal properties (Popov et al., 

2016). Recently, there was also discovered a new opportunity for thermal 

conductivity evaluation on rock cuttings and nonconsolidated rocks by Popov et al. 

(2018). Among the various methods for direct measurements of rock 

volumetric/specific heat capacity, the most widely used methods are heat flux 

differential scanning (DCS) calorimeters and optical scanning. The data on rock 

thermal properties obtained with modern laboratory equipment is considered the 

most reliable to date. The critical problem of this approach for determining rock 

thermal properties is a limited amount of core material. Thus, data on rock thermal 

properties are often confined either to a few wells or to view formations. 

An ideal solution to the difficulties of sampling and measuring rock thermal 

properties in the laboratory on core samples could be in situ measurement of rock 

thermal properties. Much effort was made to develop such a particular technique 

(Beck et al., 1971; Burkhardt et al., 1995; Sanner et al., 2005; Kukkonen et al., 2007; 

Sauer et al., 2017; etc.). However, the suggested techniques are still not implemented 

within the geothermal investigations of wells due to the following reasons: 
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 Significant measurement errors. Sauer et al. (2017) recently described a new 

tool and reported that it provides precision and accuracy of 10% and 7%, 

respectively, that corresponds to an uncertainty of  >12%.  

 Long time required for measurements. E.g., application of the technique 

suggested by Sanner et al. (2005) in some cases requires several days.  

 Unstable conditions of measurements. Borehole washouts, mud cakes, 

induced convection of drilling fluid, and other technical reasons essentially 

affect and usually decrease measurement quality. In most cases, measurement 

results are unsatisfactory for practical use. 

 Impossibility to assess rock thermal anisotropy. 

Thus, whereas the concept seems sound and some suitable tools are available, those 

techniques require essential enhancement to be widely used. 

Another perspective approach for determining rock thermal properties is an 

application of theoretical modelling. There are currently more than thirty theoretical 

models of rock thermal conductivity available (see, e.g., Clauser et al., 2009; 

Abdulagatova et al., 2009; Bayuk et al., 2011; Fuchs et al., 2013). The application 

of theoretical modelling of thermal conductivity requires data on volumetric 

fractions of rock components (minerals and fluids), data on its thermal conductivity, 

and, for some models, data on correction factors. However, there are many cases 

when the application of theoretical modelling does not provide a satisfactory quality 

of data on rock thermal properties. E.g., the application of the most popular 

Lichtenecker model (Lichtenecker, 1924) in some cases results in modelling 

uncertainties that amounts to 40% (Chekhonin et al., 2019). Moreover, the 

application of advanced theoretical models, such as the Lichtenecker-Asaad model 

(Asaad, 1955), requires knowledge on the so-called correction factor that allows 

accounting for structural and textural peculiarities of rocks. However, reliable 
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determination of correction factor can be performed via special experimental 

investigations as described by Popov et al. (2003), and often the data on correction 

factor is not available. Some theoretical models based on effective medium theory 

concepts require data on pore geometry, the shape of cracks and mineral grains. It is 

a promising framework for reliable determination of thermal conductivity as 

described by Bayuk et al. (2011). However, the application of these models requires 

data on many additional parameters determined through calibration on experimental 

data on rock thermal properties, which is not always accessible.  

The weighted arithmetic mean model is used to determine rock volumetric heat 

capacity as it is a scalar property. However, very often, calculating volumetric heat 

capacity via weighted arithmetic mean model results in high errors. This is reasoned 

by uncertainties in data on volume fractions of rock components (minerals and 

fluids) and in data on volumetric heat capacity of rocks and rock components. There 

is limited available published data on rock volumetric heat capacity due to the lack 

of applications in the past. Analysis of these data shows that high uncertainties are 

not rare cases. E.g., assessment of volumetric heat capacity via data on rock thermal 

conductivity and thermal diffusivity presented by Eppelbaum (2014) yields 

volumetric heat capacity of 4.42 MJ·m-3·K-1, 5.15 MJ·m-3·K-1, 5.21 MJ·m-3·K-1 for 

shale, marlstone and chalkstone, respectively. At the same time, the volumetric heat 

capacity of water is 4.19 MJ·m-3·K-1. Such cases emphasize the necessity of 

accounting for the influence of porosity and pore-filling fluids on rocks' volumetric 

heat capacity.  

Simultaneously, many simulators for BPSM and hydrodynamic modelling use 

theoretical models (including the Lichtenecker model) for calculating both rock 

thermal properties. Results of such modelling in some cases are of questionable 
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quality. Therefore, theoretical modelling is a promising framework for determining 

the thermal properties of rocks although requiring enhancement.  

The application of published experimental data or databases (see, e.g. Bär et al., 

2019) on rock thermal properties is not a rare case in today’s geothermal 

investigations. Meanwhile, even small changes of mineral composition of rocks, its 

porosity, the geometry of pore-crack space, and pore-filling fluids can essentially 

change both rock thermal conductivity and volumetric heat capacity. The existing 

databases on rock thermal properties usually have the following prominent 

disadvantages:  

 poor data on rock volumetric heat capacity; 

 poor data on thermal anisotropy of rocks; 

 poor lithological description of investigated cores; 

 poor data on the influence of different fluid saturation on rock thermal 

properties; 

 poor data on thermal property dependence on porosity; 

 poor analysis of the effect of fracturing on rock thermal properties and 

thermal anisotropy. 

Thus, the application of published experimental data or databases can result in 

high uncertainties. Despite the availability of extensive previous data on rock 

thermal properties, laboratory measurements of rock thermal properties on cores are 

still highly relevant.  

One of the most robust and commonly used approaches for determining rock 

thermal properties are well-log based approaches. The following reasons condition 

this: 

1. Well-logging data is available almost for all industrial wells. It is not a rare 

case when well-logging is conducted from the top to the bottom of the well. 
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2. Well-logging tools provide registration of rock properties with a relatively 

high spatial resolution. 

3. Well-logging provides data on complex of petrophysical properties (porosity, 

shaliness, saturation, etc.). 

1.3 Possibilities and limitations of traditional approaches for well-log based 

determining rock thermal properties 

Analysis of literature data shows that a significant part of publications in 

geothermics that refer to well-log based determining rock thermal properties concern 

thermal conductivity. This is reasoned by the lack of applications of data on 

volumetric heat capacity in the past. Concurrently, the data on rock thermal 

conductivity were of a key importance for determining conductive heat flow density 

at geothermal investigations of the Earth crust.  

The main part of approaches for determining rock thermal conductivity from 

well-logging data is based on the analysis of interrelations between thermal and other 

physical properties of rocks. One of the first research results on interrelations 

between thermal conductivity and other physical properties were published in the 

1950s by Dahnov & Djakonov (1952) and Ziefuss & Vliet (1956).  

An urgent need for an effective well-log-based approach for determining rock 

thermal conductivity for the first time occurred in Germany for superdeep drilling 

well KTB (during 1990-1994). This need was principally conditioned by drilling 

without coring and the absence of reliable logging tools for in situ measurements. 

Moreover, one of the main objectives of the superdeep drilling project was 

determining vertical variations of heat flow density, which requires reliable data on 

rock thermal conductivity along the well. The accompanying increase in relevance 

of data on rock thermal conductivity for applied geothermics and petroleum 

engineering stimulated many researchers. It resulted in an increased number of 
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publications concerning well-log based approaches for determining rock thermal 

properties.  

Existing approaches for determining rock thermal properties from well-logging 

data can be classified into two main categories: (1) regression-based and (2) 

theoretical model-based. 

The regression model-based approach implies determining dependencies 

between the rock thermal properties and well-logging parameters using standard or 

advanced regression analysis methods. Numerous authors have demonstrated for 

different lithological types the interrelation between thermal conductivity and other 

rock properties (in most cases density or sonic velocity) via statistical analysis 

(Bullard & Day 1961; Cermak1967; Anand et al. 1973; Poulsen et al. 1981; Lovell 

1985; Beziat et al. 1992; Griffiths et al. 1992; Zamora et al. 1993; Sahlin & 

Middleton 1997; Kukkonen & Peltoniemi 1998; Sundberg et al. 2009; Popov et al. 

2011; Gegenhuber & Schon 2012). Researchers also applied multiple linear and 

nonlinear regression models to characterize interrelations between thermal 

conductivity and other rock physical properties inferred from well-logging data 

(Goss et al. 1975; Goss & Combs 1976; Evans 1977; Balling et al. 1981; Molnar & 

Hodge 1982; Vacquier et al. 1988; Doveton et al. 1997; Popov et al. 2003; 

Ozkahraman et al. 2004; Hartmann et al. 2005; Fuchs et al., 2014; Fuchs et al., 2015). 

Some studies use artificial neural networks for predicting thermal conductivity 

(Goutorbe et al. 2006; Singh et al. 2007; Khandelwal 2010; Singh et al. 2011; Gasior 

& Przelaskowska, 2014). For porous rocks, the high contrast between the physical 

properties of the pore-filling fluids and the rock matrix's physical properties is the 

primary control of the correlations between thermal properties and other physical 

properties (Popov et al., 2003). Therefore, the application of such an approach might 

be challenging in the case of low porosity and low contrast of physical properties in 
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the rock components. Moreover, the established regression equations between rock 

thermal properties and well-logging data are constrained by the deposition 

environment and can be applied only for the analogous rock with similar well-

logging data (Blackwell et al., 1989). 

Some of the mentioned disadvantages can be resolved via a theoretical 

approach. More than thirty theoretical models (or so-called mixing laws) have been 

developed to determine the effective thermal conductivity of rocks. Some studies are 

focused on determining appropriate mixing law to compute rock thermal 

conductivity from knowledge on mineral content (via XRD analysis) and porosity 

(e.g. Brigaud et al. 1990; Demongodin et al. 1991). Other researchers addressed 

approaches for determining rock thermal conductivity from either lithology or 

mineralogy of rocks inferred from well-logging data, data on rock porosity and 

available data on thermal properties of rock constituents (Merkel et al. 1976; 

Dove&Williams 1989; Vasseur et al. 1995; Midttømme et al. 1997; Hartmann et al. 

2005). The application of mixing laws requires data on the volumetric fractions of 

the rock-forming components, reliable data on their thermal properties, and, 

sometimes, a correction factor. Correction factor allows accounting for structural 

peculiarities of rocks. This approach is not restricted to a specific geological area. It 

can be applied for well log-based prediction of the thermal properties of low-porosity 

rocks, with uncertainties of less than 10% (e.g., Fuchs et al., 2018). However, a weak 

point of this approach is the essential frequent uncertainty of theoretical modelling. 

Calculating the effective thermal conductivity via different thermal conductivity 

models using the same rock matrix thermal conductivity and pore-filling fluid values 

results in considerable variance, sometimes up to 100% (e.g., Hartman et al., 2005).  

Literature review shows that there is a lack of studies concerning well-log based 

predictions of volumetric heat capacity. Fuchs et al. (2015) attempted to develop a 
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universally applicable approach for determining rock specific heat capacity. 

However, the reported results correspond to artificially created datasets, and its 

applicability should be tested on reliable experimental data. A common practice is 

calculating volumetric/specific heat capacity from the volume fractions of rock 

constituents or the relation between thermal conductivity, thermal diffusivity, and 

volumetric heat capacity (see, e.g. Goto & Matsubayashi 2008). 

The suggested solutions for well-log based determining rock thermal properties 

have the following principal disadvantages: 

1. Neglecting thermal anisotropy of rocks. However, thermal anisotropy is a 

distinguishing characteristic for many rock types, especially organic-rich shales 

and clay-rich rocks (Pribnow and Umsonst, 1993). Recent investigations have 

revealed that the thermal anisotropy coefficient of organic-rich shales is typically 

1.2-2 and can often exceed 2-3 (Popov et al., 2017). One of the few approaches 

to consider thermal anisotropy was suggested by Deming (1994) and implies 

analysis of an empirical relationship that relates the thermal conductivity 

anisotropy and thermal conductivity perpendicular to the bedding (based on 

measurements on 89 rock samples gleaned from the literature). However, testing 

the suggested approach with our experimental data showed high and 

unsatisfactory uncertainties in well log-based predictions of rock thermal 

conductivity via the Deming correction approach. Another approach presented 

by Pasquale et al. (2011) implies analysis of the effect of orientation of the clay 

and mica platelets during burial on the vertical component of thermal 

conductivity. However, this approach is not universally applicable, e.g. in case 

of organic-rich shales since thermal anisotropy of these rocks is conditioned not 

only by orientation of clay and mica platelets but also by the distribution of 

organic matter. 
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2. Neglecting influence of in situ pressure, temperature and saturation of rock 

thermal properties in case of thermal anisotropy. Some studies describe an 

opportunity to account for in situ thermobaric conditions and saturation (see, e.g., 

Hartamann et al., 2005), but this is applicable only for isotropic rocks. Wang et 

al. (2018) experimentally showed that in case of thermal anisotropy, distinct 

effects of temperature on principal components of thermal conductivity exist. 

Moreover, the effect of imposed fracturing on thermal anisotropy must be 

assessed in case of thermal anisotropy as described by Popov et al. (2017).  

3. Neglecting rock heterogeneity. There are many cases when spatial resolution of 

instruments used for measuring rock thermal properties differs from the spatial 

resolution of considered well-logging tools. It was not accounted during 

regression analysis or theoretical modelling. E.g., the commonly used divided bar 

technique requires core samples of 10-30 mm thick and the typical vertical 

resolution of standard well-logging tools is about 0.5 m. Obviously, that for such 

cases, the data on rock thermal properties cannot be directly related to well-

logging data. Thus, in the case of thin layering or high heterogeneity of rocks, 

special operations are required to account for the difference in spatial resolution 

before the regression analysis or theoretical modelling.  

4. Narrow implementation of machine learning techniques for problem solution. As 

previously mentioned, there are only a few publications related to the application 

of simple fully connected neural networks for determining rock thermal 

conductivity. However, accounting for modern advances in machine learning 

algorithms, a comparison study of different machine learning algorithms for 

predicting thermal conductivity and volumetric heat capacity is required. 

5. Lack of studies related to organic-rich shales. In the context of increasing demand 

on thermohydrodynamic modelling of thermal EOR, the data on lateral variations 
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of thermal properties of organic-rich shales is highly required. Therefore, well-

log based approach for determining rock thermal properties is an effective way 

for the problem solution. However, typical thermal anisotropy and thermal 

heterogeneity of organic-rich shales, as described by Popov et al. (2017), require 

the development of the advanced algorithms to be accounted for.  

6. Poor metrological testing of the suggested approaches. A common practice of 

existing publications is yielding mean average error (MAE) or root mean squared 

error (RMSE). Only in some rare cases, authors also provide standard deviation 

of MAE or RMSE. However, these data do not allow characterizing uncertainty 

of prediction results. Moreover, when characterizing the uncertainty of prediction 

results, the confidential probability level must be reported. Another reason for 

poor metrological testing of the suggesting approaches is conditioned by 

neglecting rock heterogeneity and differences in spatial resolution of instruments 

used to measure rock thermal properties, which differs from a spatial resolution 

of considered well-logging tools.  

7. Lack of sensitivity studies of the influence of uncertainties in well-logging data 

on results of well-log based determination of rock thermal properties. Sensitivity 

studies of either regression or theoretical models determine the necessary input 

data quality for predicting rock thermal properties with specified uncertainty. 

Moreover, the sensitivity study of the regression model provides information on 

each well-logs' importance and subsequently allows optimizing the number of 

well-logs.  

8. Lack of well-defined, reproducible workflows for determining rock thermal 

properties accounting for thermal anisotropy and in situ pressure, temperature 

and saturation. To ensure practical implementation of well-log based approaches 

for determining rock thermal properties, well-defined reproducible workflows 
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are required. Literature review shows that there are only view publications 

describing properly all the necessary operations for predicting thermal properties 

of isotropic rocks (see, e.g. Hartmann et al., 2005). However, advanced 

workflows are required for determining rock thermal conductivity and volumetric 

heat capacity accounting for in situ pressure, temperature, saturation, rock 

heterogeneity and thermal anisotropy. 

Therefore, mentioned above disadvantages to this date do not allow widely 

implementing well-log based approaches for rock thermal properties prediction at 

geothermal investigations of geological profiles.  

1.4  Importance of accounting for rock anisotropy and heterogeneity  

As it was mentioned, many rock types are more or less anisotropic (Pribnow 

and Umsonst, 1993; Popov et al., 2017; etc.). Therefore neglecting thermal 

anisotropy (that very often amounts to 2 and 3) obviously can negatively affect the 

results of subsequent modelling. For quantitative assessment of the possible effect, 

Popov et al. (2013) performed a comprehensive sensitivity analysis of the effect of 

uncertainty in reservoir thermal property data on heavy oil recovery performance. 

Four technologies (steam flooding, steam-assisted gravity drainage, toe-to-heel air 

injection, and hot water flooding) of thermal enhanced oil recovery were considered 

during sensitivity analysis. The sensitivity study revealed that real uncertainties in 

data on rock thermal property result in errors in cumulative oil production of about 

20 to 70 %. Therefore, the reliable data on rock thermal conductivity accounting for 

thermal anisotropy determine the economic efficiency of thermal enhanced oil 

recovery technologies. Moreover, as Chekhonin et al. (2019) showed, in the absence 

of reliable data on thermal conductivity and volumetric heat capacity, there are 

essentially distinct scenarios for organic matter maturation during basin and 
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petroleum system modelling that results in different results of the assessment of 

hydrocarbon potential of understudy region. 

Because of the limitations of traditional instruments for measuring rock thermal 

properties, a very common practice in the previous studies is a joint analysis of well-

logging data and incomparable in terms of spatial resolution data on rock thermal 

properties (Goss et al., 1975; Vacquier et al., 1988; Fuchs et al., 2014; etc.). 

Neglecting differences in the vertical resolution of analyzing data in case of 

heterogeneous rocks obviously leads to unreliable results. Hence, accounting for 

rock heterogeneity before the regression analysis or theoretical modelling is crucial 

for obtaining reliable models that can be used to predict thermal properties for 

similar rocks.  

To clearly demonstrate the problem, special calculations were performed. The 

data on rock thermal conductivity that were inferred from continuous thermal core 

logging (with a spatial resolution of 1 mm) was used to assess different scale rock 

heterogeneity. The data of two organic-rich shales and carbonate rocks of heavy oil 

field was used within the example. To assess rock heterogeneity, the coefficient of 

variation (ratio of the standard deviation to mean value; CV) of thermal conductivity 

is calculated. Knowing that the average vertical resolution of well logging tools is 

about 0.5 m and assuming an average length of full-sized core samples of 0.1 m, the 

coefficient of variation of thermal conductivity is calculated within moving windows 

of 0.5 m and 0.1 m. Figure 1 plots calculated coefficients of variation of thermal 

conductivity for two organic-rich formations and for carbonate rocks of the heavy 

oil field. As it may be seen from Figure 1, there is an essential difference between 

CV calculated on a well-logging scale and CV calculated on the scale of laboratory 

investigations both for organic-rich shales and for carbonate rocks of heavy oil field. 

This difference, in some cases, amounts to 100%. Therefore, the data inferred from 
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well-logging cannot be directly processed and analysed with data inferred from 

laboratory investigations of core samples. However, due to limitations of traditional 

instruments for measurements of rock thermal properties (special requirements to 

core sample geometry, a limited amount of core samples, etc.), in most cases, there 

was no possibility to consider and to account for rock heterogeneity of rocks before 

the regression analysis or theoretical modelling. Thus, the application of published 

regression equations or parameters of theoretical models for determining rock 

thermal properties from well-logging data should be carefully used.  
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Figure 1. Results of calculating CV for two organic-rich shales (left and central 

panel) and carbonate rocks of heavy oil field (right panel) within moving windows 

of 0.1 m (grey coloured line) and 0.5 m (blue) coloured line. Histograms plot relative 

difference between CV calculated within 0.5 m and CV calculated within 0.1 m. 
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1.5 Integration of thermal core logging data with well-logging data – a new 

framework for the improvement of reliability of data on rock thermal 

properties inferred from well-logging data 

Many of traditional instruments for measuring thermal conductivity and 

volumetric heat capacity were firstly developed for measurements on industrial 

materials. Compared to sedimentary rocks, these materials are: 

 mainly isotropic and homogeneous, 

 mechanically well treated when samples are prepared for measurements, 

 stable according to its physical properties, 

 sustainable to high pressure that occurs when measuring surface is put on 

samples. 

Moreover, there is no need for high productivity when measuring thermal properties 

of industrial materials. 

Mentioned above aspects of measuring thermal properties of industrial materials 

do not relate to sedimentary rocks, especially for highly porous, fractured, 

anisotropic, heterogeneous samples. As described by Popov E. et al. (2020a), the 

principal reasons for discordance between the required level of a measurement 

instrument for petroleum engineering and the abilities of the traditional instruments 

are the following: 

1. Traditional instruments cannot provide measurements on full-sized core samples 

without special mechanical preparation of core samples. This aspect excludes the 

possibility of massive measurements and registering different-scale spatial 

variations of rock thermal properties. 

2. Poor metrological quality of measurement results for highly porous and fractured 

core samples due to the significant influence of interfacial thermal resistance.  
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3. The traditional instruments are not appropriate for standard core plugs that are 

the basis for petrophysical laboratory investigations. 

4. Highly porous and fractured core samples are fragile and, in many cases, are 

easily crushed under high pressure that occurs when measuring surface is put on 

samples. Consequently, it excludes the possibility of repeated measurements of 

rock thermal properties at different fluid saturation.  

5. Absence of possibility for conducting simultaneous measurements of rock 

thermal conductivity and volumetric heat capacity on the same core samples. 

Moreover, the modern differential scanning calorimeters measure specific heat 

capacity on small rock samples, typically less than 1 cm3. Thus, the data on rock 

density is required to calculate volumetric heat capacity, and this small volume 

usually does not encompass rock heterogeneity. 

6. Absence of possibility for registering detailed vertical variations of thermal 

anisotropy coefficient.  

7. Absence of possibility for assessing thermal heterogeneity of rocks. 

8. Necessity in scrupulous mechanical treatment of flat surface to exclude the 

influence of interfacial thermal resistance on measurement results. 

Concurrently, the optical scanning method was designed especially for 

measurements of rock thermal properties by Popov (1983) and provided an 

opportunity for registering data on rock thermal properties on a qualitatively new 

level. After enhancing the practical and theoretical basis of the suggested method 

(see, e.g. Popov 1984, 1997; Popov et al. 1985) as described by Popov et al. (2016) 

and Popov et al. (2019), the modern thermal core logging technique has the 

following inaccessible previously features: 

1. Simultaneous determination of thermal conductivity and volumetric heat 

capacity during one experiment for the same core sample. 
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2. Measurements are conducted on full-sized, split, broken core samples, on core 

plugs and core cuttings without any additional mechanical treatment. 

3. Absence of contact between the instrument sensors and the rock sample. Thus, 

measurements are non-destructive. 

4. Determining both thermal conductivity and thermal diffusivity tensor 

components for every rock sample. 

5. High productivity of measurements due to high measurements speed and wide 

range of permissible lengths of core samples. 

6. The modern optical scanning technique provides measurements accuracy and 

precision for the thermal conductivity of ±1.5% and ±1.5% (confidential 

probability level 0.95), respectively, within the range of 0.2-45 W·m-1·K-1.  

7. The modern optical scanning technique provides measurements accuracy and 

precision for the volumetric heat capacity of ±2.0% and ±2.0% (confidential 

probability level 0.95), respectively, within the range of 0.8-4 MJ·m-3·K-1. 

8. The spatial resolution of thermal property profiling varies according to measuring 

regime parameters. Today, the minimal spatial resolution that can be provided 

with laser optical scanning instrument is 0.2 mm, although the typical spatial 

resolution is 1 mm. 

The effective and vast implementation of the developed experimental basis 

within joint industrial projects of Skoltech and leading Russian oil and gas 

companies during 2015-2021 allowed us collecting extensive experimental database 

on rock thermal properties and well-logging data. It enabled a qualitatively new 

framework for developing an advanced technique for well-log based determining 

rock thermal properties.  

The unique metrological characteristics of optical scanning instruments allowed 

us obtaining reliable experimental data on rocks' thermal properties, including 
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organic-rich shales and heavy oil reservoirs. Since the optical scanning instrument 

has a high spatial resolution, the possibilities for considering rock heterogeneity and 

accounting for spatial resolution of other logging tools were also enabled. Moreover, 

due to registering coefficient of thermal anisotropy for every core sample, the 

thermal anisotropy of rocks became accessible for thorough analysis. An equally 

important result of the vast implementation is the extensive database on rock thermal 

properties and well-logging data. Thus, qualitatively new possibilities opened up for 

the development of the technique for well-log based determining rock thermal 

properties accounting for thermal anisotropy, heterogeneity, and in situ pressure, 

temperature and saturation via integrating thermal core logging technique with well-

logging data.  

1.6  Conclusions 

1. Enhancement of BPSM, EOR modelling, techniques of terrestrial heat flow 

density determination and geothermal prospecting requires advancement in well-

log based approaches for determining rock thermal properties via integrating 

thermal core logging data and well-logging data. 

2. To satisfy the present-day needs of petroleum engineering and geothermal 

investigations, the advanced technique for well-log based determining rock 

thermal properties should provide reliable data on both thermal conductivity and 

volumetric heat capacity of rocks. 

3. The advanced well-log based technique for determining rock thermal properties 

accounting for thermal anisotropy and rock heterogeneity is highly required.  

4. The advanced well-log based technique for determining rock thermal properties 

accounting for in situ pressure, temperature and saturation in case of thermal 

anisotropy is required. 
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5. A well-defined and reproducible workflow of application of an advanced 

technique for well-log based determining rock thermal properties accounting for 

thermal anisotropy, heterogeneity and in situ pressure, temperature and saturation 

is required. 

6. Extensive testing and implementation of the advanced technique for determining 

rock thermal properties is a primary concern for enhancing the quality of data on 

rock thermal properties and terrestrial heat flow density for improvement of basin 

and petroleum system modelling and thermal EOR modelling in oil&gas science 

and industry. 
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Chapter 2. Determining thermal conductivity and volumetric heat 

capacity of anisotropic rocks based on regression analysis 

Literature review (presented in Chapter 1) showed that there were many studies 

performed concerning interrelations between thermal properties and other physical 

properties. However, the gained results showed that there are no unique correlation 

trends for sedimentary rocks or other rock types. Therefore, an important conclusion 

that can be inferred from previous studies is that many factors are determining both 

rock thermal conductivity and volumetric heat capacity. These factors are mineral 

composition, porosity, the geometry of pore-crack space, type of saturating fluid, 

degree of compaction, and characteristics of intergranular contacts. Hence, there are 

no universally valid correlations that can be used for predicting rock thermal 

properties. 

Considering the complex nature of interrelations between rock thermal 

properties and other physical properties, the studies related to correlation analysis of 

rock thermal properties and other physical properties are still highly relevant. 

Moreover, accounting for possibilities of modern experimental basis of thermal 

petrophysics, these studies should be performed accounting for thermal anisotropy 

and heterogeneity.  

2.1 Approach for determining thermal properties accounting for thermal 

anisotropy via sonic log data 

For porous rocks, in major cases, the relation between thermal conductivity and 

other physical properties of rocks (that can be inferred from well-logging data) is 

principally conditioned by the essential contrast of thermal conductivity of rock 

matrix and pore-filling fluid. Very often, this contrast amounts to more than ten 

times, as it may be seen from Figure 2 (upper panel). For low-porous organic-rich 

shales, the correlations are principally conditioned by low thermal conductivity and 
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high organic matter content, as described by Popov et al. (2017). As well as there is 

a high contrast of thermal conductivity of rock matrix and pore-filling fluid, there is 

a high contrast of volumetric heat capacity of the rock matrix and pore-filling fluid 

/ organic matter (Figure 2, bottom panel). 

 

Figure 2. Thermal conductivity and volumetric heat capacity for rock-forming 

minerals and pore fluids. 

The anisotropy of sedimentary rocks can be conditioned by directional 

alignment of clay particles, microcracks, kerogen inclusions, low-aspect ratio pores 

and layering as reported by Sayers (2013). Chekhonin et al. (2018) showed that there 

is a statistically significant correlation between thermal anisotropy coefficient and 

Young’s modulus anisotropy for organic-rich shales due to high content of organic 

matter and the contrast between properties of rock matrix and organic matter. 

Moreover, Kim et al. (2012) performed a set of laboratory experiments and showed 

for three types of anisotropic rocks (gneiss, shale, and schist) that principal axes of 

thermal conductivity, elastic moduli, and p-wave velocity coincide and have the 

same directions. Thus, assuming structural nature of thermal anisotropy we can 

conclude that the possibility for determining rock thermal conductivity accounting 

for thermal anisotropy from well-logging data exists. 
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2.1.1 Workflow 

A novel well-log based approach for determining rock thermal conductivity and 

volumetric heat capacity of sedimentary rocks accounting for thermal anisotropy, 

heterogeneity, in situ pressure, temperature and saturation is suggested. The 

developed approach consists of several principal steps.  

In the first step, lithological differentiation of geological profile is performed 

using, e.g. well-logging data by constructing a rock's volumetric mineralogical 

model. A rock's volumetric mineralogical model can be obtained via inversion o 

standard logs or via pulsed neutron gamma-ray logging (Serra, 1986). Geological 

differentiation of intervals where core samples are available can be performed by 

geologist or based on laboratory petrophysical investigations.  

In the second step, for each lithological type the directions of principal axes of 

thermal conductivity are determined. This step is of special significance since 

directions of principal axes of thermal conductivity not always coincide with parallel 

and perpendicular directions to the bedding plane that can be determined via visual 

analysis of core samples. The directions of principal axes of thermal conductivity 

can be inferred from results of thermal core logging along several distinct scanning 

lines as described by Popov et al. (2016). Moreover, these directions can be 

determined through a set of geomechanical tests of standard core plugs as it was 

reported by Kim et al. (2012).  

In the third step, measurements of rock thermal conductivity along directions 

of principal axes for each lithological type are performed with optical scanning 

technique at atmospheric pressure and temperature. Simultaneously, measurements 

of rock volumetric heat capacity are conducted. Additionally, sonic velocities along 

these directions are determined from sonic log data. Sonic velocities can be 

determined on core samples also.  
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In the fourth step, the dependencies of rock thermal conductivity and 

volumetric heat capacity from porosity, saturation, pressure and temperature are 

determined. It can be performed through laboratory investigations, or some of these 

dependencies can be inferred from literature data. 

Additionally, the regression analysis of “rock thermal conductivity – sonic 

velocity” and “volumetric heat capacity – sonic velocity” is performed for 

corresponding directions of principal axes of thermal conductivity and accounting 

for rock heterogeneity (in other words, accounting for the difference in spatial 

resolution of optical scanning instrument and, e.g. sonic log tool). For some rocks, 

there are no statistically significant dependencies between volumetric heat capacity 

and sonic velocity. For such cases, another well log data can be involved within the 

workflow for predicting rock volumetric heat capacity. After that, for each 

lithological type, rock thermal properties are determined within non-coring intervals 

from sonic log data at atmospheric pressure and temperature using the established 

regression equations.  

In the fifth step, the predicted thermal property data are corrected for in situ 

temperature, pressure and saturation using the established in the fourth step 

dependencies. The data on in situ temperature can be inferred from temperature 

logging and data on in situ pressure can be inferred from results of the formation 

test. Wang et al. (2018) showed experimentally that there are different dependencies 

of thermal conductivity components from temperature and pressure for parallel and 

perpendicular to the bedding plane directions. Thus, these corrections should be 

distinct for each principal axes of thermal conductivity.  
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2.1.2 Case study: well-log based determining thermal properties of organic-rich 

shales  

The suggested approach for the sonic log-based determination of rock thermal 

properties was tested on data from three wells (A, B, C) drilled through the Bazhenov 

Formation (West Siberia Basin, Asian part of Russia). 

2.1.2.1 Analysis and processing of the available input data 

The lithological and petrophysical characteristics of the rocks in the case study 

are given in Table 1. The Bazhenov Formation was formed under coastal-marine 

conditions. More detailed information about the geological peculiarities of the 

Bazhenov Formation was provided by Balushkina et al. (2014). The lithological 

differentiating of the Bazhenov Formation profiles was performed based on high-

definition spectroscopy.  

Table 1. Lithological and petrophysical characteristics of the rocks in the case study 

based on XRD analysis results. 

Wells 

Dominant mineral composition Organic matter Reservoir properties 

Mineral 
Mean mass content, 

% (SD) 

Kerogen 

type 

Mean TOC, % 

(SD) 

Porosity, % 

(SD) 

ln(Permeability), 

mD (SD) 

A, B, C 

(Bazhenov 

Formation) 

Silicate minerals 

(SiO2) 
55.1 (22.3) 

II 16.5 (7.0) 1.1 (0.6) -2.8 (2.3) 

Pyrite 4.3 (4.0) 

Albite 7.2 (3.4) 

Illite 9.4 (7.2) 

Calcite 10.1 (15.6) 

Carbonate minerals 78.1 (25.8) 

Clay minerals 1.4 (2.7) 

*SD stands for standard deviation, TOC stands for total organic carbon. Kerogen typing was performed 

according to Tissot and Welte (1984). ln stands for natural logarithm. For specific depth points, the sum of 

mineral content, organic matter and porosity yields 100%. 

 According to Chekhonin et al. (2018) the Bazhenov Formation in the 

investigating region is characterized by negligible azimuthal thermal anisotropy 

(that was assessed on flat ends of full-size core samples) and can, therefore, be 

treated as a transversely isotropic medium with the vertical axis of symmetry. 
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2.1.2.2 Thermal core logging results for highly anisotropic rocks of the Bazhenov 

Formation 

 Continuous thermal core logging was conducted on 1062 full-sized core 

samples from three wells (42 m in total). Figure 3 plots typical full-sized core 

samples of the Bazhenov Formation.  

 

Figure 3. Photograph of typical unsawed full-sized core samples of the Bazhenov 

Formation. 

Since the principal axes of the thermal conductivity tensor are parallel and 

perpendicular to the bedding plane, scanning lines were chosen parallel and 

perpendicular to the bedding plane on the flat surfaces of the sawed core samples.  

Continuous profiles of the thermal conductivity components parallel and 

perpendicular to the bedding plane directions and the volumetric heat capacity for 

full-diameter core samples of the Bazhenov Formation recovered from three wells 

are plotted in Figure 4. Statistical assessments of the variations in rock thermal 

conductivity parallel and perpendicular to the bedding plane, coefficient of thermal 

anisotropy (KT = λ||·λꞱ
-1), and coefficient of thermal heterogeneity (β = (λmax-λmin) 

·λavr
-1) are summarized in Table 2. 

Table 2. Results of thermal property measurements of the studied core samples. 

Formation Well 

λ||, 

W·m-1·K-1 

Mean (SD) 

(min – max) 

λꞱ, 

W·m-1·K-1 

Mean (SD) 

(min – max) 

KT 

Mean (SD) 
(min – max) 

β 
Mean (SD) 
(min – max) 

C, 

MJ·m-3·K-1 

Mean (SD) 

(min – max) 

Number 

of core 

samples 

The total length 

of core samples 

under study (m) 

Bazhenov 

Formation 

A 
1.80 (0.44) 

(0.75-4.80) 

1.28 (0.47) 

(0.20-4.78) 

1.50 (0.36) 

(1.00-3.12) 

0.18 (0.20) 

(0.03-2.61) 

2.00 (0.16) 

(1.75-2.70) 
549 19 

B 
1.85 (0.39) 

(0.82-4.46) 

1.36 (0.49) 

(0.37-2.94) 

1.49 (0.36) 

(1.00-3.01 

0.20 (0.15) 

(0.04-2.28) 

1.90 (0.11) 

(1.65-2.31) 
374 17 

C 
1.98 (0.43) 

(1.28-3.26) 

1.55 (0.68) 

(0.71-3.12) 

1.39 (0.28) 

(1.00-2.78) 

0.17 (0.13) 

(0.03-0.78) 

1.95 (0.08) 

(1.77-2.22) 
139 6 
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Systematic thermal anisotropy of the Bazhenov Formation rocks is principally 

conditioned by a specific distribution of organic matter. The distribution of kerogen 

is uniform, and areas with accumulations of kerogen within rock samples have 

elliptical, spotted, and layered-plane horizontal-lenticular fibre forms.  

 

Figure 4. Results of rock thermal property measurements for wells A (left), B 

(middle), and C (right). λ stands for rock thermal conductivity; subscripts  and ⊥ 

stand for the thermal conductivity components in the directions parallel and 

perpendicular to the bedding plane, respectively; VHC stands for volumetric heat 

capacity; grey lines represent the original profiles of the rock thermal properties. 

Black, red and blue lines represent averaged thermal property profiles in a moving 

0.6 window. The first two digits for the depths are hidden for confidentiality here 

and elsewhere in the text. 
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2.1.2.3 Regression analysis results and prediction of rock thermal properties 

For the investigating wells, the results of cross-dipole sonic logging were 

available. From that results, sonic velocities for parallel and perpendicular to the 

bedding plane directions were inferred. The vertical resolution of the sonic scanner 

was 0.6 m. Thus, before the regression analysis, the results of thermal core logging 

were upscaled (averaged within 0.6 m moving window) to account for rock 

heterogeneity.  

Regression analysis of the data revealed, that the dependency between rock 

thermal conductivity and sonic velocity is the same for all lithological types of the 

Bazhenov Formation. It may be reasoned by the relatively stable elastic properties 

of the rock matrix. Therefore, the considering data was not subdivided into smaller 

datasets according to the results of lithological differentiation. During correlation 

analysis, a simple linear regression model was used. The available data were 

subdivided into two random datasets: (1) a training dataset (comprising 67% of all 

the data) and (2) a test dataset (comprising 37% of all the data). The training dataset 

was used to fit the regression model to experimental data, while the test dataset was 

used to provide and unbiased evaluation of the regression model fit on the training 

dataset (terms train and test dataset in a more detailed way are described, e.g, by 

Goodfellow et al., 2016). The regression analysis of data on rock volumetric heat 

capacity and sonic velocity revealed no statistically significant dependencies for the 

considering rocks. Nevertheless, statistically significant dependency was observed 

between the rock volumetric heat capacity and the photoelectric factor of rocks 

(PEF). Therefore, subsequent predictions of rock volumetric heat capacity are 

performed via the data on rock photoelectric factor. The results of correlation 

analysis of rock thermal conductivity and sonic velocity accounting for thermal 
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anisotropy and rock volumetric heat capacity and photoelectric factor of rocks for 

training data are plotted in Figure 5. 

 

Figure 5. Results of correlation analysis between thermal conductivity and sonic 

velocity of rocks for parallel (left panel) and perpendicular (central panel) direction 

to the bedding plane and rock volumetric heat capacity and photoelectric factor (right 

panel). Dashed line represents the regression trend.  

The presented correlations coefficients (square root from the determination 

coefficient in case of linear regression model) in Figure 5 are statistically significant 

for 0.95 confidential probability level.   

 The established regression equations were used to predict thermal properties 

on a train dataset. There are different ways of evaluating the quality of the 

performance of the proposed approach. To provide a comprehensive evaluation, the 

following set of statistical parameters were used: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑚𝑒𝑎𝑠

𝑖 −𝑋𝑝𝑟𝑒𝑑
𝑖 )

2
𝑁
𝑖=1

𝑁
          (1) 

𝑃 = 𝜎[𝛥] = √
∑ (𝛥𝑖−𝛥̅)

2𝑁
𝑖=1

𝑁−1
                           (2) 

𝐴 =
1

𝑁
∑ (𝑋𝑚𝑒𝑎𝑠

𝑖 − 𝑋𝑝𝑟𝑒𝑑
𝑖 )𝑁

𝑖=1               (3) 

where RMSE is the root mean squared error; P represents the precision; A represents 

the accuracy; Xmeas is a measured value, Xpred is a predicted value; N is the number 
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of points; Δ is the relative divergence between the measured and predicted values; 

and 𝛥̅ is the mean relative divergence between the measured and predicted values; σ 

is the standard deviation. In addition, the coefficient of determination (R2) between 

predicted and measured values was calculated. The results of prediction of thermal 

conductivity and volumetric heat capacity on a test dataset are plotted in Figure 6. 

 

Figure 6. Results of prediction of thermal conductivity for parallel (left panel) and 

perpendicular (central panel) direction to the bedding plane from sonic velocity and 

rock volumetric heat capacity from photoelectric factor (right panel).  

2.1.2.4 Corrections for in situ temperature and pressure 

Based on the hydrodynamic well tests results for well A, the approximate 

average formation pressure and temperature for the Bazhenov Formation are 36 MPa 

and 100 °C, respectively. Accurate assessment of in situ saturation for the 

investigated formation is complicated because it exhibits low permeability and 

porosity (Table 1). Moreover, the formation exhibit a high degree of anisotropy. 

Hence, we considered that investigated rocks of the Bazhenov Formation are 

saturated only by oil. 

Following the mentioned above workflow, the predicted rock thermal 

properties require correction for in situ temperature and pressure. As we did not 

conduct measurements of rock thermal properties at elevated temperature and 

Massimo
Cross-Out

Massimo
Cross-Out

Massimo
Inserted Text
foregoing

Massimo
Cross-Out

Massimo
Inserted Text
measured

Massimo
Cross-Out

Massimo
Cross-Out

Massimo
Inserted Text
high



52 

 

pressure for the studied core samples, we use data available in the literature to 

account for in situ conditions. 

Recent investigations of rock samples from the Bazhenov Formation performed 

by Gabova et al. (2020) have revealed that the average decrease in thermal 

conductivity (λ‖) for Bazhenov Formation rocks at 100 °C is ~2%. However, there 

are still no reliable experimental data in the literature on the dependencies of thermal 

conductivity on temperature accounting for the thermal anisotropy of the rocks of 

the Bazhenov Formation. Thus, we consider that for the directions both parallel and 

perpendicular to the bedding planes, the necessary temperature corrections for the 

thermal conductivity of core samples from the Bazhenov amounts to 2%. 

There is a lack of reliable experimental data on the dependencies of thermal 

conductivity of organic-rich shales on pressure. For oil shale samples from the Green 

River formation, an increase of 2% in thermal conductivity was observed at 12 MPa 

(Prats and O’Brien, 1975). However, for the Bazhenov Formation, the approximate 

in situ pressure exceeds 30 MPa. Research results reported by DuBow et al. (1976) 

show that the pressure effect on the thermal conductivity of oil shales becomes 

significant only at high temperatures (400-600 °C). Thus, we can assume that the 

necessary pressure correction for thermal conductivity is less than 5%. 

Waples D. and Waples S. (2004) noted that pressure effects on volumetric heat 

capcity are negligible because the changes in the specific heat capacity and density 

of rocks are minor (for the in situ pressure of the Bazhenov Formation, the increase 

in pressure is less than approximately 1%). Thus, the effects of pressure on 

volumetric heat capacity are not considered in our research. The temperature 

correction for rock volumetric heat capacity can be inferred from the research results 

presented by Savest and Oja (2013). According to the given experimental data, the 
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increases in volumetric heat capacity for oil shales at temperature 104 °C is 

approximately 10%. 

2.1.3 Conclusions 

An approach for determining the thermal properties of rocks accounting for 

thermal anisotropy from sonic log data was suggested and tested. The approach 

enables simultaneous determination of the rock thermal conductivity and volumetric 

heat capacity. Moreover, this approach accounts for the influence of in situ 

thermobaric conditions on thermal properties with differentiation of the effect on 

distinct thermal conductivity tensor components. Within the case study, it was 

shown that the approach could be successfully applied based on thermal core 

logging.  

The experimental dataset of rock thermal properties inferred from continuous 

thermal core logging and reliable sonic-logging data from three wells drilled through 

anisotropic organic-rich shales were the basis for the approach development. The 

results obtained during the case study show that rock thermal conductivity 

components can be predicted from well-logging data with uncertainties of less than 

±16 % for thermal conductivity parallel to the bedding plane and less than ±17 % 

for thermal conductivity perpendicular to the bedding plane (for a 0.95 confidence 

level). Volumetric heat capacity can be predicted from well-logging data with an 

uncertainty of less than ±10 % (for a 0.95 confidence level). 

The effectiveness of the new approach is  supported by: 

 determination of principal axes of thermal conductivity,  

 determination of key components of thermal conductivity along its principal 

axes, 

 accounting for rock heterogeneity, 
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 regression analysis applied to the components of the thermal conductivity. 

2.2 Machine learning for determining rock thermal properties from well 

logging data 

Many studies related to well-log based predictions of rock thermal properties 

were focused on multiple regression analysis and establishing regression equations 

that will provide the most precise predictions of rock thermal properties. Some of 

them used linear regression models (Goss et al., 1975; Goss and Combs, 1976; 

Hartmann et al., 2005; etc.) when others concentrated on non-linear dependencies 

(Evans, 1977; Vacquier, et al., 1988; etc.).  

However, considering traditional theoretical models of rock thermal 

conductivity (see, e.g. Clauser 2009) we can conclude that there are non-linear and 

implicit dependencies between rock thermal properties and other physical properties 

in high-dimensional space. Accounting for recent advances in machine-learning 

methods, the application of machine learning is a promising framework for well-log 

based determination of rock thermal properties. 

As it was mentioned previously, there were only several attempts to apply 

neural network algorithms for predicting rock thermal conductivity (Goutorbe et al. 

2006; Gasior and Przelaskowska 2014). Therefore, the applicability of diverse 

machine learning methods for well-log based determination of rock thermal 

conductivity should be assessed. 

Extending the previously described approach (in Section 2.1.1) for predicting 

rock thermal properties from sonic log data to involving additional logs and multiple 

regression analysis, the assessment of the effectiveness of diverse machine learning 

methods for determining rock thermal properties was performed. The objects of 

investigations are (1) conventional reservoir of heavy oil field that mainly consists 
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of carbonate rocks and (2) unconventional hydrocarbon reservoir consisting of 

organic rich shales described in Section 2.1.2. 

2.2.1 Effectiveness of distinct machine learning algorithms for predicting rock 

thermal properties: case studies from conventional and unconventional 

hydrocarbon reservoirs 

For the task at hand, supervised machine learning algorithms were considered 

to reconstruct thermal properties from well-logging data. Well-logging data were 

used as input data, while experimental data on rock thermal properties were used as 

an output. The following set of algorithms conceptually distinct from each other 

were tested for the indirect determination of rock thermal properties: k-Nearest 

Neighbours (Larose 2014), Neural Network (Hinton 1989), Gaussian Process 

(Rasmussen & Williams 2006), Random Forest (Breiman 2001), AdaBoost (Freund 

& Schapire 1997), Gradient Boosting (Friedman 1999), Extra Trees (Pierre et al. 

2006) and support vector regression (Platt 1999). 

2.2.1.1 Geological settings and field data 

The first research object is the heavy oil field located in the Timan- Pechora 

Basin (the northeastern part of the East European Craton). Target intervals are 

mainly composed of limestones referred to Carboniferous-Lower Permian age. 

According to petrophysical data, rock porosity within the target interval varies from 

0.7 to 26.5 per cent; mean rock porosity is 10.1 per cent (the standard deviation is 

7.6 per cent), rock permeability varies from 0.01 up to 1151.18 mD, mean rock 

permeability is 33.7 mD (standard deviation is 127.96 mD). Pore space is composed 

of fractures and intergranular space. Reservoir oil is highly viscous (mean value of 

oil viscosity is 710 mPa·s). Experimental data from the two wells (D and E) were 
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involved in our research. The total length of the investigated interval is 307 and 134 

m for wells D and E, respectively. 

The thermal properties of rocks were measured using the thermal core logging 

technique. The total measurement uncertainty was not more than ±2.5 per cent (for 

0.95 confidence level). The results of thermal core logging for considering wells D 

and E are plotted in Figure 7.  

According to results of thermal core logging, we can conclude that 

investigating carbonate rocks are characterized by negligible thermal anisotropy and, 

therefore, can be treated as isotropic rocks. 

The second research object was in detail described in Section 2.1.2 (see Tables 

1 and 2). The results of thermal core logging were presented in Figure 4. As well as 

in Section 2.1.2 wells A, B and C are considered within this Section. 

For wells D and E the following set of well-logging methods was available: 

spectral gamma-ray log, density log, sonic log, induction log, calliper and 

compensated neutron porosity log. Well logging data available for wells A, B and C 

include the same set of logs and, additionally, cross-dipole sonic log and nuclear 

magnetic resonance log data. The vertical resolution and depth of investigation 

depends on the measurement method (see, e.g., Flaum and Theys, 1991), tool 

specifications, logging speed, etc. Nevertheless, in Table 3, some specifications of 

the logging tools are summarized to underline (1) the difference in the vertical 

resolution of thermal core-logging and well-logging data (and the necessity of 

thermal property upscaling before a joint analysis of the input data in reference 

intervals) and (2) the vertical resolution of the results obtained via the suggested 

approach for determining the rock thermal properties from the well-logging data. 

Well logging data for wells A and E are presented in Figure 8.  
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Figure 7. Results of thermal core logging for wells D and E. λ stands for thermal 

conductivity, C stands for volumetric heat capacity and KT stands for coefficient of 

thermal anisotropy. 1 - pelitomorphic with irregular silicification and pyritized, 

weakly clayish limestones, 2 - argillaceous-terrigenous, pyritized, fissured 

formations, 3 - organogenic-detrital limestones, 4 – siliceous organogenic-detrital 

limestones, 5 - interbedding of organogenous-detrital, with silicification, clayish 

limestone and highly clayish dolomite, 6 - organogenous-detrital, irregularly 

dolomitized, highly clayish limestones, 7 - organogenous detrital, with silicification, 
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clayish limestones.. Measurement results for each core sample are shown in grey; 

corresponding results modified to logging scale are shown in black. 

 

Figure 8. Results well logging for wells A (left panel) and E (right panel).  
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Table 3. Key specifications of the well-logging tools used. 

Parameters Well-logging tool 
Vertical 

resolution, cm 

Depth of 

investigation, cm 
Precision* 

Natural radioactivity 

(γ) 

Gamma-ray spectrometry 

(NGS) 
30 25 ±2% 

Neutron porosity 

(NPHI) 

Compensated neutron 

logging (CNL) tool 
30 23 ±6% 

Bulk density (ρ) 
Three-Detector Lithology 

Density (TLD) tool 
45 12 

±0.01 g·cm-3 

Photoelectric factor 

(PEF) 
±0.8 b/e 

Sonic velocity** 

(VP and VS) 
Sonic scanner 60 7 borehole radii ±2% 

Elemental fractions LithoScanner 45 20 
Depends on logging speed 

(usually ±2%) 

Total porosity, volume 

of bound water 
MR Scanner 45 3-10 

Total porosity: ±1%; 

free fluid porosity: ±0.5%. 

Electrical resistivity 
Array induction tool 

(AT10, AT90) 
0.3-1.22 25-228 ±2% 

*Precision of the used tools are given according to the tool documentation and can vary depending on logging speed, 

absolute values of the physical properties, borehole size, etc. 

**For estimation of the Thomsen’s anisotropy parameters, the data from a full set of receivers are usually used, so the 

vertical resolution becomes worse. 
 

2.2.1.2 Calibrating and testing of regression models 

The available data both for wells A, B, C and for wells E and D were subdivided 

into two subsets: (1) a training dataset (comprising 67% of all the data) and (2) a test 

dataset (comprising 33% of all the data). The training dataset was used to fit the 

regression model to experimental data, while the test dataset was used to provide an 

unbiased evaluation of the regression model fit on the training dataset.  

For carbonate rocks of heavy oil field, we used all well logs for input. For 

organic-rich shales of the Bazhenov Formation the following set of input parameters 

was used: neutron porosity (NPHI), bulk density (ρ), photoelectric factor (PEF), 

radioactivity inferred from gamma-ray logging (GR), total porosity inferred from 

NMR logging (PHINMR), sonic velocities parallel and perpendicular to the bedding 

plane directions (VP
‖, VP

Ʇ, VS
‖, and VS

Ʇ), P- and S-wave acoustic impedances (VP
Ʇ·ρ 

and VS
Ʇ·ρ), and electrical resistivity inferred from array induction tool application 

(RT
AT10 and RT

AT90). The sonic velocities parallel and perpendicular to the bedding 
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plane directions were inferred from the standard interpretation of the cross-dipole 

sonic log data. The available electrical log data did not allow assessing the in situ 

electrical resistivity while accounting for anisotropy. 

In our research, we have tuned hyperparameters of regression models using k-

fold cross-validation method (Stone, 1974) on a train data set. The cross-validation 

was performed over the predefined grid of parameters. Cross-validation principally 

consists of the following steps: 

 On the first step, we specify the grid of hyperparameters for regression 

models. Simultaneously, the configuration of k-folds is specified. We 

subdivided our train data into three k-folds. 

 On the second step, on k–1 folds, optimal hyperparameters are found within 

the predefined ranges and intervals (grid-search) to fit the regression model. 

The resulting model is validated on the remaining k fold. After that, other set 

of k–1 folds is used for regression model training. This procedure cyclically 

repeats k times. Mean squared error (MSE) was used as a performance 

measure to evaluate the model fit. On every iteration, found hyperparameters 

and evaluation score are retained.  

 The obtained results are summarized on the third step, and the retained 

hyperparameters are averaged to select the most optimal regression model. 

The tuned hyperparameters for considering machine-learning algorithms are 

summarized in Table 4. 

The determined optimal hyperparameters for regression models on the train 

data set were used for well-log based determination of rock thermal properties on 

the test dataset. As well as in Section 2.1.2.3, the performance of each algorithm was 

assessed via accuracy, precision, RMSE and R2 between measured and predicted 
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values on a test dataset. Accuracy and precision are reported for 0.95 confidential 

probability level. 

Table 4. The tuned hyperparameters of the considered algorithms 

Machine learning algorithm Tuned hyperparameters 

K-Nearest Neighbours N – neighbors, metric, p order. 

Fully-connected neural 

network 
Hidden layer size, activation, learning rate, solver, alpha. 

Gaussian Precess Regressor Alpha, length scale, variance. 

Random Forest Max depth, n estimators, min samples split, min samples leaf. 

AdaBoost learning rate, n estimators, max depth. 

Gradient Boosting 
learning rate, n estimators, max depth, max features, min samples 

split, min samples leaf 

Support vector regression kernel, gamma, epsilon 

Extra trees 
max features, n estimators, max depth, min samples split, min 

samples leaf 

 

The results of predicting rock thermal conductivity and volumetric heat 

capacity from well logging data for carbonate rocks of heavy oil field are 

summarized in Table 5. The results of predicting rock thermal conductivity for 

parallel and perpendicular directions to the bedding plane and volumetric heat 

capacity of organic-rich shales are presented in Table 6. 

Table 5. The results of prediction thermal conductivity and volumetric heat capacity 
on a test dataset for carbonate rocks of heavy oil field. 

Machine learning algorithm 

λ C 

R2 
RMSE P A 

R2 
RMSE P A 

W·m-1·K-1 % % MJ·m-3·K-1 % % 

Random Forest 0.88 0.12 9.6 0.5 0.29 0.09 8.5 -0.3 

Gradient Boosting 0.86 0.12 10.4 0.6 0.30 0.08 8.1 -0.1 

Extra trees 0.85 0.12 10.7 0.7 0.28 0.10 8.6 -0.5 

Support vector regression 0.84 0.13 10.9 0.3 0.26 0.11 9.1 -0.1 

Gaussian Precess Regressor 0.78 0.14 11.5 0.0 0.25 0.12 9.8 0.1 

Fully-connected neural network 0.77 0.14 12.8 -0.1 0.25 0.12 9.7 0.0 

AdaBoost 0.66 0.18 12.4 -0.9 0.24 0.13 10.2 0.1 

K-Nearest Neighbours 0.62 0.19 12.9 -1.0 0.25 0.12 10.1 0.6 
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Table 6. The results of prediction thermal conductivity and volumetric heat capacity 
on a test dataset for organic-rich shales. 

Machine learning 

algorithm 

λ|| λꞱ C 

R2 
RMSE P A 

R2 
RMSE P A 

R2 
RMSE P A 

W·m-1·K-1 % % W·m-1·K-1 % % MJ·m-3·K-1 % % 

Gradient Boosting 0.81 0.12 7.7 0.0 0.75 0.19 15.4 0.1 0.51 0.09 8.8 0.2 

Random Forest 0.80 0.13 7.8 -0.1 0.74 0.20 15.8 0.6 0.54 0.08 8.4 0.1 

Extra trees 0.80 0.13 7.9 -0.1 0.73 0.20 15.7 0.5 0.49 0.11 8.9 -0.2 

Support vector 

regression 
0.74 0.13 8.7 -0.1 0.69 0.21 16.2 0.8 0.48 0.12 9.0 -0.3 

K-Nearest Neighbours 0.73 0.14 8.8 0.0 0.65 0.22 16.9 0.6 0.44 0.13 9.6 0.4 

Fully-connected neural 

network 
0.68 0.15 8.9 -0.2 0.70 0.20 16.0 0.4 0.49 0.15 8.9 0.1 

Gaussian Precess 

Regressor 
0.61 0.18 9.0 0.1 0.61 0.23 16.9 0.3 0.40 0.18 10.2 0.6 

AdaBoost 0.58 0.22 10.1 -0.2 0.55 0.25 17.5 0.2 0.42 0.15 9.9 0.1 

 

The presented results in Tables 5 and 6 show that among considered machine 

learning algorithms the ensemble tree-based algorithms provided lowest values on 

uncertainties when predicting thermal conductivity and volumetric heat capacity of 

rocks. AdaBoost and K-Nearest Neighbors algorithms in most cases yielded the 

lowest performance according to calculated metrics.  

Tables 6 demonstrates that thermal conductivity parallel to the bedding plane 

can be predicted with precision of 7.7 % that is approximately twice less than 

prediction precision for thermal conductivity perpendicular to the bedding plane. 

This can be due to the more significant influence on the thermal properties 

perpendicular to the bedding plane of micro-cracking from core unloading.  

The fully connected neural network architecture compared to ensemble tree-

based algorithms provided higher uncertainties on a test dataset for carbonates and 

organic-rich shales. Therefore, the application of ensemble tree-based algorithms 

seems preferable for the task at hand. However, other neural networks architectures 

(such as convolutional or recurrent neural networks) should also be considered.  
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2.2.2 Conclusions 

Extending the novel approach that was described in Section 2.1.1 for predicting 

rock thermal properties from sonic log data to involving additional logs and multiple 

regression analysis, the assessment of the effectiveness of diverse machine learning 

methods for determining rock thermal properties was performed. The vast 

experimental data from five wells from conventional and unconventional 

hydrocarbon reservoirs were considered within the cases study.  

Testing diverse machine learning algorithms for predicting rock thermal 

properties revealed that ensemble tree-based algorithms tend to yield lower accuracy 

and precision values when predicting both rock thermal conductivity and volumetric 

heat capacity. From a comparison of thermal property profiles predicted from well-

logging data with experimental data, it can be concluded that volumetric heat 

capacity, thermal conductivity parallel and perpendicular to the bedding plane can 

be predicted with uncertainties of less than 9 %, 10 % and 16 %, respectively. Thus, 

the application of ensemble tree-based algorithms for predicting rock thermal 

properties accounting for thermal anisotropy is preferable. 

2.3 Sensitivity study of regression models for predicting rock thermal 

properties 

The sensitivity analysis of a regression model allow describing the severity of 

change of the model’s output caused by the change of a given input. It is a highly 

effective instrument for analyzing interrelations between model parameters and 

model outputs. Moreover, sensitivity analysis is necessary to understand the 

tolerance of a given model to noise and the acceptable quality of input data.  

The regression models established for well-log based determining rock thermal 

properties are constrained by the deposition environment and can be applied only 
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for the analogous rock with similar well-logging data (Blackwell et al., 1989). A key 

aspect of predicting rock thermal properties is assessing prediction quality. 

However, there are many cases when the same well-logging was conducted with 

different logging tools that provide distinct measurement quality. E.g., in Table 7 are 

summarized technical specifications of four logging tools made by different 

producers (names of producers are not reported for ethical reasons).  

Table 7. The technical specifications of logging tools suggested by two producers. 

Logging method Producer Precision* Measurement range 

Gamma ray logging  

 

Schlumberger 

 

 

 

±5% 0 – 2000 API 

Density logging ±0.01 g·cm-3 1.04-3.05g·cm-3 

Neutron porosity 

logging 

0-20 p.u.: ±1 p.u. 

30 p.u.: ±2 p.u. 

45 p.u.: ±6 p.u. 

0-60 p.u. 

Sonic velocity logging ±6.6 us/m 131.0 – 1312.0 us/m 

Gamma ray logging 

NefteGasGeophysica 

±15% 0-2500 API 

Density logging ±0.03 g·cm-3 1.7 – 3.0 g·cm-3 

Neutron porosity 

logging 
±4 p.u. 0 – 40 pu 

Sonic velocity logging ±15.0 us/m 120.0 – 500.0 us/m 

*Confidential probability level was not given within the technical specifications and therefore 

is not reported here. The data on metrological characteristics of tools were inferred from 

service catalogs of the corresponding producer. 

 

As it can be seen from Table 7, there are cases when measurement precision is two 

(or even three) times lower for specific logging methods when different logging tolls 

are used. Evidently, when the quality of logging data varies, the quality of well-log 

based predictions of rock thermal properties also varies. Therefore, the assessment 

of the quality of predicting thermal properties should consider the variations in the 

quality of well-logging data. Thus, the sensitivity analysis of regression models 

Massimo
Cross-Out

Massimo
Cross-Out

Massimo
Cross-Out

Massimo
Inserted Text
s

Massimo
Highlight

Massimo
Sticky Note
Actually, it seems that two producer names are listed in the table.

Massimo
Highlight

Massimo
Highlight

Massimo
Cross-Out

Massimo
Cross-Out

Massimo
Inserted Text
tools



65 

 

should be performed to understand the model’s behaviour when the quality of input 

data changes. 

 Due to the high predictive advantages of the neural network, a major part of 

publications related to sensitivity study of regression models developed using 

machine learning methods concern neural network models (Maosen et al., 2016). 

Among the variety of suggested methods, the partial derivative (Dimopoulos et al., 

1995) and the input perturbation (Zeng and Yeung, 2003) algorithms have superior 

effectiveness compared to other methods of sensitivity analysis. However, the partial 

derivative method of sensitivity study can be applied to neural network-based 

models, whereas input perturbation method is universally applicable. Moreover, the 

input perturbation method technically models the actual situation that we can face 

when predicting rock thermal properties from well-logging data. 

2.3.1 Workflow of the input perturbation method 

The input perturbation method principally models the effect of random error on 

model behaviour. The workflow of the input perturbation method that was applied 

for sensitivity analysis of regression models used for determining rock thermal 

properties (Section 2.2.1) consisted of several steps. 

In the first step, we assume that the regression model is already trained, and the 

prediction uncertainty was assessed on a test data. The sensitivity study is performed 

on the test dataset. Therefore, in the first step we specify the value of imposed 

uncertainty on our input data.  

In the second step, we select one input feature and add to it so-called “white” 

random noise. All the rest input features are fixed. The absolute value of random 

noise is constrained by the specified in the first step uncertainty. The variance of the 

selected input feature can be represented as xi = xi+Δxi, where xi is the currently 

selected input variable, and Δxi is the perturbation. 
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In the third step, we perform the prediction of rock thermal property using the 

perturbated input data and assess the change of prediction quality via selected 

metrics. Within the case study, we assessed changes in prediction precision. 

Steps two and three are cyclically repeated for all input features. The imposed 

uncertainty varied from 0 to 15% by 1% step. 

2.3.2 Sensitivity study of the gradient boosting regression model for predicting 

rock thermal properties 

To understand the tolerance of regression models of the gradient boosting 

algorithm established within Section 2.2.1 to a noise and the acceptable quality of 

input well-log data sensitivity study was performed based on the input perturbation 

method.  

The results of the sensitivity study of regression models of gradient boosting 

for determining thermal conductivity and volumetric heat capacity of carbonate 

rocks of a heavy oil field are presented in Figure 9.  

 

Figure 9. Results of sensitivity study of regression models of gradient boosting for 

determining thermal conductivity (left panel) and volumetric heat capacity (right 

panel) of carbonate rocks of the heavy oil field. The input well-logs are presented in 

the right figure. ΔP stands for relative change of prediction precision. ΔLogs stands 

for input well-log with imposed uncertainty. 
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As it may be seen from Figure 9, the perturbations in sonic and density logs cause 

the greatest relative changes in accuracy when predicting both thermal conductivity 

and volumetric heat capacity of carbonate rocks. Increase of uncertainty in sonic and 

density log data by 20% results in a relative change of prediction accuracy by more 

than 40% for thermal conductivity. Whereas for volumetric heat capacity, an 

increase of uncertainty in sonic velocity data by 20% leads to an increase of 

prediction accuracy by 12%. The perturbations in data on photoelectric factor, 

gamma-ray, neutron porosity and electrical resistivity do not drastically affect 

prediction accuracy both for thermal conductivity and volumetric heat capacity. 

 Assuming that the acceptable prediction accuracy for thermal conductivity is 

12% and for volumetric heat capacity is 10%, we can determine the acceptable 

quality of input well-logging data. As reported in Table 5, the prediction accuracy 

on the test dataset for rock thermal conductivity and volumetric heat capacity were 

10.4% and 8.1%, respectively. Thus, the limits for relative change of prediction 

accuracy for thermal conductivity and volumetric heat capacity are 15% 

(1.6/10.4·100% ≈ 15%) and 23% (1.9/8.1·100% ≈ 23%), respectively. Therefore, 

when predicting rocks' thermal conductivity, the admissible imposed uncertainty in 

sonic and density log data is about 12%. When predicting rock volumetric heat 

capacity, the acceptable imposed uncertainty in the density log is about 13%. 

 Another benefit of sensitivity analysis is understanding the importance of 

input features for determining rock thermal properties. The degree of effect from 

perturbation of input logs reflects it’s importance for determining rock thermal 

properties. Thus, the higher the relative change in prediction precision, the higher is 

the input feature's importance. The obtained results prove that the main factor 

conditioning dependencies between well-logging data and rock thermal properties is 

porosity. High contrast in the physical properties of the rock matrix and pore-filling 
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fluids significantly changes the density, neutron and sonic log responses, and rock 

thermal conductivity (Popov et al. 2003). For this reason, density and sonic logs are 

the most important features at well-log based determination of rock thermal 

properties. 

The results of sensitivity study of regression models of gradient boosting for 

determining thermal conductivity and volumetric heat capacity of organic-rich 

shales are presented in Figure 10.  

 

 

Figure 10. Results of sensitivity study of regression models of gradient boosting for 

determining thermal conductivity parallel (left panel) and perpendicular (right panel) 

to bedding plane and volumetric heat capacity (bottom panel) of carbonate rocks of 

heavy oil field. 
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As it may be seen from Figure 10, the perturbations in the sonic log and data on the 

acoustic impedance of rocks cause the greatest relative changes in precision when 

predicting thermal conductivity for parallel and perpendicular directions to the 

bedding plane. For volumetric heat capacity of organic-rich shales, the greatest 

changes of prediction precision are observed when sonic and density log data are 

perturbated. The lowest effects on prediction precision are observed when 

perturbations are made in electrical log data and photoelectric factor both for thermal 

conductivity and volumetric heat capacity. According to the obtained results in 

Figure 10, it can be concluded that the perturbations of neutron porosity and nuclear 

magnetic resonance porosity do not highly affect prediction precision for thermal 

properties. It may be reasoned by the collinearity of these logs with sonic and density 

log data.  

Increase of uncertainty in sonic log data and data on the acoustic impedance of 

rocks data by 20% results in a relative change of prediction precision by more than 

60% for thermal conductivity parallel to the bedding plane. For thermal conductivity 

perpendicular to the bedding plane, a relative change of prediction precision by more 

than 60% is observed when uncertainty in sonic and density log data is about 7%. If 

uncertainty in sonic and density log data reaches 20% the relative change of 

prediction precision is two times higher compared to the original one presented in 

Table 6. Therefore, for thermal conductivity perpendicular to the bedding plane 

essentially higher effect of input data perturbation on prediction precision is 

observed. For volumetric heat capacity, the increase of uncertainty in data on the 

acoustic impedance of rocks and sonic log data results in a relative change of 

prediction precision by more than 100%. 
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Following the same workflow for calculating the acceptable quality of 

predictions of thermal properties that was demonstrated for carbonate rocks, we 

could determine the limit values of uncertainty in input features.  

The obtained results show that the acoustic impedance, density and sonic 

velocities have the highest values of relative importance. The main reason for the 

strong correlation between the rock thermal properties and so-called porosity log 

data (neutron, sonic, and density logs) is a high contrast (exceeding 10:1 in some 

cases) between the corresponding physical properties of the rock matrix and organic 

matter, similar to the contrast in porous rocks between physical properties of the 

rock matrix and pore-filling fluid.  

2.3.3 Conclusions 

The sensitivity study of regression models of gradient boosting algorithm for 

predicting rock thermal properties was conducted using the input perturbations 

method. The obtained results revealed that the highest changes in prediction 

precision are observed when so-called porosity log data (sonic, density and neutron 

log) are perturbated. Based on that, these logs can be considered as the most 

important for predicting rock thermal properties.  

For organic-rich shales, an essentially higher effect of input data perturbation 

on prediction precision is observed for thermal conductivity perpendicular to the 

bedding plane compared to thermal conductivity parallel to the bedding plane. 

Increase of uncertainty in sonic and density log by 20 % results in doubled prediction 

precision (30.8%) for thermal conductivity perpendicular to the bedding plane.  

Increase of uncertainty in sonic log data and data on the acoustic impedance of rocks 

data by 20% results in a relative change of prediction precision by more than 60% 

(which is about 12.3%) for thermal conductivity parallel to the bedding plane. 
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The obtained results are the basis for determining the acceptable quality of 

logging data for predicting rock thermal properties. The admissible prediction 

precision can vary depending on the applications and, therefore, imaginary threshold 

values for prediction uncertainties were specified, and corresponding calculations 

were performed to assess the acceptable quality of logging data. 

  

Massimo
Pencil



72 

 

Chapter 3. Determining thermal conductivity and volumetric heat 

capacity of anisotropic rocks based on theoretical modelling 

 The regression dependencies between rock thermal properties and well-

logging data in most cases are applicable only for the analogous rock with similar 

well-logging data. To overcome this disadvantage, the theoretical model-based 

approach was implemented for predicting rock thermal properties from well-logging 

data. As it was mentioned in Chapter 1, for conventional theoretical models of 

thermal conductivity, the data on volumetric fractions of rock-forming components 

and it’s thermal conductivities are required to calculate rock thermal conductivity. 

Concurrently, the well-logging suite used for constructing volumetric mineralogical 

models of rocks can vary from well to well. Another benefit of the theoretical model-

based approach is the ability to reconstruct rock thermal properties with different 

saturation.  

Accounting for many essential disadvantages of the previous theoretical model-

based approaches for determining rock thermal properties that were described in 

Section 1.3 and enabled qualitatively new framework due to implementation of 

continuous non-destructive thermal core logging technique, a novel approach for 

predicting rock thermal properties from well logging data based on theoretical 

modelling is suggested.  

3.1. Approach for determining thermal properties accounting for thermal 

anisotropy via theoretical modelling  

To account for the effect of the rock structure on rock thermal conductivity, 

some theoretical models include specific parameters that are also known as a 

correction factor (see, e.g. Asaad, 1955). It was shown that the absolute values of 

the correction factor could depend on the degree of compactness and cementation of 

rocks (see, e.g., Schoen 2015). Thus, assuming that thermal anisotropy of rocks has 

Massimo
Cross-Out

Massimo
Inserted Text
methods described in Section 2

Massimo
Cross-Out

Massimo
Inserted Text

Massimo
Cross-Out

Massimo
Inserted Text
lithological features and 

Massimo
Cross-Out

Massimo
Inserted Text
limitation

Massimo
Cross-Out

Massimo
Inserted Text
a

Massimo
Cross-Out

Massimo
Cross-Out

Massimo
Cross-Out

Massimo
Cross-Out

Massimo
Inserted Text
their

Massimo
Cross-Out

Massimo
Inserted Text
thermal properties.

Massimo
Cross-Out

Massimo
Inserted Text
possibility

Massimo
Inserted Text
degrees

Massimo
Highlight

Massimo
Sticky Note
Too long sentence. I suggest shortening, e.g. " In this Chapter, I will describe a novel approach to predict thermal properties by combining well logging data and theoretical modeling.

Massimo
Cross-Out

Massimo
Inserted Text
if



73 

 

a structural nature, we imply that the correction factor can encompass the effect of 

rock structure along directions of principal axes of thermal conductivity and, 

therefore, predictions of thermal conductivity accounting for thermal anisotropy 

from well-logging data based on theoretical modelling are accessible.  

3.1.1 Workflow 

A novel approach for determining rock thermal conductivity and volumetric 

heat capacity of sedimentary rocks accounting for thermal anisotropy, heterogeneity, 

in situ pressure, temperature and saturation on the basis of theoretical modelling is 

suggested. The developed approach consists of several principal steps.  

In the first step, lithological differentiation of geological profile and volumetric 

mineralogical model of rocks within the reference (interval where core samples are 

available) and target (interval where rock samples are not available and rock thermal 

properties are inferred from well-logging data) intervals  is constructed. Volumetric 

mineralogical model of a rock can be obtained via inversion o standard logs or via 

pulsed neutron gamma-ray logging (Serra, 1986).  

In the second step, for each lithological type of rocks the directions of principal 

axes of thermal conductivity are determined. As well as it was described in Section 

2.1.1, the directions of principal axes of thermal conductivity can be inferred from 

results of thermal core logging along several distinct scanning lines as described by 

Popov et al. (2016). Moreover, these directions can be determined through a set of 

geomechanical tests of standard core plugs as it was reported by Kim et al. (2012).  

In the third step, measurements of rock thermal conductivity along directions 

of principal axes for each lithological type are performed with optical scanning 

technique at atmospheric pressure and temperature. Simultaneously, measurements 

of rock volumetric heat capacity are conducted.  
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In the fourth step, the rock-forming components' thermal conductivity and 

correction factors for the appropriate theoretical model are determined via 

minimization of the divergence between the measured and predicted rock thermal 

conductivity. The theoretical thermal conductivity model is calibrated separately for 

each lithological type and principal axes direction of thermal conductivity. 

Additionally, the volumetric heat capacity of rock-forming components are 

determined via minimization of the divergence between the measured and predicted 

volumetric heat capacity. 

After that, rock thermal properties are determined within non-coring intervals 

using the volumetric mineralogical model of a target interval, established correction 

factors along directions of principal axes of thermal conductivity and data on thermal 

properties of rock-forming components.  

Additionally, the dependencies of rock thermal conductivity and volumetric 

heat capacity pressure and temperature are determined. It can be performed through 

a set of laboratory investigations, or some of these dependencies can be inferred 

from literature data. 

In the fifth step, thermal property predictions are corrected for in situ 

temperature and pressure using the established in the fourth step dependencies. The 

data on in situ temperature can be inferred from temperature logging, and data on in 

situ pressure can be inferred from the results of the formation test. As well as in 

Section 2.1, these corrections are distinct for each principal axes of thermal 

conductivity. 
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3.1.2 Case study: determining thermal properties of organic-rich shales of the 

Bazhenov Formation accounting for thermal anisotropy from well-logging 

data based on theoretical modelling 

The suggested approach for determining rock thermal properties on the basis 

of theoretical modelling was tested on data from three wells (A, B, C) drilled through 

the Bazhenov Formation that were described in Chapter 2. The volumetric 

mineralogical model for the investigating wells was inferred from high-definition 

spectroscopy and nuclear magnetic resonance log data. The Bazhenov Formation 

rocks include nine rock-forming components: illite, kaolinite, bound water, 

chalcedony, albite, calcite, dolomite, kerogen, and oil. 

3.1.2.1 Theoretical models of thermal properties  

As it was mentioned, the suggested approach implies the use of theoretical 

models that contain so-called correction factors and, therefore, enable the 

determination of the rock thermal conductivity while accounting for structural 

thermal anisotropy. We investigated three theoretical models of effective thermal 

conductivity for specific to organic-rich shales: 

1. The Lichtenecker-Asaad model (Asaad, 1955), which was adopted in our 

research for organic-rich shales: 

λeff = λm
1−f∙(VKer+Vfl) ∙ (λKer

VKer ∙ λfl
Vfl)

f
           (4) 

2. The Krischer and Esdorn model (Krischer and Esdorn, 1956): 

𝜆𝑒𝑓𝑓 = (
1−𝑏

∑ 𝑉𝑖𝜆𝑖
𝑁
𝑖=1

+
𝑏

(∑
𝑉𝑖
𝜆𝑖

𝑁
𝑖=1 )−1

)

−1

            (5) 

3. The Lichtenecker-Rother model (Lichtenecker and Rother, 1931): 

𝜆𝑒𝑓𝑓 = (∑ 𝑉𝑖𝜆𝑖
𝛼𝑁

𝑖=1 )
1

𝛼              (6) 

Massimo
Cross-Out

Massimo
Cross-Out

Massimo
Inserted Text
and

Massimo
Cross-Out

Massimo
Pencil

Massimo
Cross-Out

Massimo
Inserted Text
this study



76 

 

where λeff, ker, fl, and s represent the effective rock thermal conductivity, kerogen 

thermal conductivity, fluid thermal conductivity, and rock matrix thermal 

conductivity, respectively; Vker, Vfl, and Vi represent the kerogen volume fraction, 

fluid volume fraction, and volume fraction of the ith component, respectively; and 

f, b (varies from 0 to 1), and α (varies from -1 to 1) are correction factors in the 

corresponding theoretical models. The thermal conductivity of fluid is calculated via 

the weighted geometric mean model. 

It is worth noting that the abovementioned models with different values of the 

correction factors can cover a wide range of theoretical models of thermal 

conductivity. For instance, the Lichtenecker-Asaad model transforms into the 

weighted geometric-mean model if the correction factor “f” equals 1. The 

Lichtenecker-Rother model transforms into the weighted geometric-mean model if 

“α” equals 0. The Lichtenecker-Rother model and the Krischer-Esdorn model turn 

into the weighted arithmetic mean model when the correction factors equal 1. The 

Lichtenecker-Rother and Krisher-Esdorn models can also turn into harmonic mean 

models (if b = 0 and α = -1). When “α” equals 0.5, the Lichtenecker-Rother model 

transforms into a root mean square (Roy et al., 1981). In the study, we do not fix a 

correction factor in advance; it is an unknown variable that is defined during the 

calibration stage. 

Since volumetric heat capacity is a scalar physical property, the weighted 

arithmetic mean model is applied to determine the volumetric heat capacity from 

well-logging data: 

𝐶 =  ∑ 𝑉𝑖𝐶𝑖
𝑁
𝑖=1                 (5) 

where C is the rock volumetric heat capacity, Vi is the volume fraction of component 

i, and Ci is the volumetric heat capacity of component i. 
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3.1.2.2 Calibrating theoretical models of thermal properties 

The available data were subdivided into two random datasets: (1) a training 

dataset (comprising 66% of all the data) and (2) a test dataset (comprising 34% of 

all the data). Theoretical model calibration requires data on rock thermal properties, 

volumetric fractions of rock-forming mineralogical components, and thermal 

properties of rock-forming mineralogical components. The data on the rock thermal 

properties were inferred from the results of thermal core logging, and the data on the 

volumetric fractions were inferred from the well-logging data. The data on the 

thermal properties of rock-forming minerals are inferred from data available in the 

literature. Table 8 summarizes the available data on the thermal properties of 

minerals and fluids used in the volumetric models of rocks. 

Table 8. Literature data on the thermal properties of minerals and fluids (at 

atmospheric pressure and temperature). 

Mineral/fluid eff, W·m-1·K-1 ρ, g·cm-3 c, kJ·kg-1·K-1 
C, MJ·m-3·K-1 

min max 

Calcite 3.13a, 3.59b 
2.71d, 2.72b, 

2.72-2.94e 

0.815 b 

0.79f 
2.14 2.44 

Dolomite 
5.66-6.28a, 

5.51b 

2.87d, 2.86b, 

2.86-2.93e 

0.870 b 

0.93f 
2.46 2.72 

Chalcedony 3.17a, 3.25b 2.65d 
0.735 b 

0.94 
1.85 1.98 

Albite 
1.63-2.32a, 

1.94-2.35b 

2.62 d, 2.61b, 

2.63e 

0.70 b 

0.71f 
1.83 1.87 

Illite 1.80c 
2.90 d 

2.60-2.90e 
0.79h 2.05 2.29 

Kaolinite 2.69c 
2.66 d 

2.61-2.68e 
0.97i 2.53 2.60 

Oil 0.11-0.15g 0.88-0.97j 1.73-1.81 j 1.52 1.75 

Water 0.59-0.61j 1.00j 4.19j 4.19 4.19 
aPopov et al. 1987; bHorai, 1971; cBrigaud and Vasseur (1989); dDeer et al., 1992; eFertl and Frost, 1980; f Cermak and 

Rybach, 1982; gSchoen, 2015; h
Skauge et al. (1983); iWaples and Waples (2004); jClauser (2006). Rock volumetric 

heat capacity was calculated as a product of density and specific heat capacity. 

 

The model calibration implies the (1) application of reliable data to the thermal 

properties of rock-forming mineral components, (2) determination of correction 

factors for theoretical models in the directions parallel and perpendicular to the 
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bedding plane, and (3) minimization of the mean relative discrepancy between 

measured and calculated rock thermal properties. Unfortunately, experimental data 

on the thermal properties of kerogen vary with kerogen porosity and differ for 

different oil fields. Therefore, the thermal properties of the kerogen were determined 

by optimization and not experimentally. To solve this problem we applied a 

constrained genetic minimization algorithm (Storn and Price, 1997). Since 

volumetric fractions of minerals were available for the Bazhenov Formation, the 

possible range of mineral thermal properties was taken directly from Table 8. 

The results of the theoretical models calibration accounting for thermal 

anisotropy (Table 9) indicated that: 

 For the Bazhenov Formation, the rock thermal conductivity component 

parallel to the bedding plane can be predicted via the theoretical model more 

accurately than the component perpendicular to the bedding plane. This can 

be due to the more significant influence on the thermal properties 

perpendicular to the bedding plane of micro-cracking from core unloading. 

 Among the considered theoretical models of rock thermal conductivity, the 

Lichtenecker-Rother model yields the lowest prediction uncertainty and the 

highest values of R2 between measured and predicted values. 

 The Lichtenecker-Rother model yields the most physically adequate values 

of thermal properties of the rock components (especially for kerogen and 

lithological components of the Domanic Formation). For example, through 

optimization of the Lichtenecker-Asaad and Krischer and Esdorn models 

with Bazhenov Formation data, we obtained kerogen thermal conductivities 

of 0.13 and 0.14, respectively, which are more typical for movable oil than 

that suggested by the Lichtenecker-Rother model. 
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Based on these points, we can conclude that the Lichtenecker-Rother model for 

predicting rock thermal conductivity from the well-logging data is preferable. 

3.1.2.3 Predicting rock thermal properties from well-logging data based on 

theoretical modelling 

Rock thermal properties were predicted on a test dataset via Lichtenecker-

Rother model, the established values of the correction factor for parallel and 

perpendicular direction to the bedding plane and thermal properties of rock-forming 

components (Table 10).   For comparison, the predictions of thermal properties using 

the gradient boosting method are also included and analyzed within this Section.  
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Table 9. Calculated values of the thermal properties of the rock-forming components for the training dataset of the 
Bazhenov Formation. 

Theoretical model 

Thermal conductivity of minerals/fluids parallel to the bedding plane (N = 326), W·m-1·K-1 

Calcite Dolomite Kerogen Chalcedony Illite Kaolinite Albite Oil Correction factor R2 
RMSE, 

W·m-1·K-1 
P,% A,% 

Lichtenecker-Asaad 3.13 5.51 0.13 3.25 1.80 2.65 2.2 0.11 0.17 0.62 0.23 12.8 -4.1 

Lichtenecker-Rother 3.13 5.51 0.29 3.25 1.80 2.65 2.2 0.14 0.39 0.59 0.24 12.7 -0.6 

Krischer and Esdorn 3.13 5.51 0.14 3.25 1.80 2.65 2.2 0.11 0.95 0.56 0.25 13.1 -0.8 

 Thermal conductivity of minerals/fluids perpendicular to the bedding plane (N = 296), W·m-1·K-1 

Lichtenecker-Asaad 3.13 5.51 0.13 3.25 1.80 2.65 2.2 0.11 0.44 0.57 0.29 21.7 -4.1 

Lichtenecker-Rother 3.13 5.51 0.29 3.25 1.80 2.65 2.2 0.14 -0.27 0.58 0.27 19.1 -0.4 

Krischer and Esdorn 3.13 5.51 0.14 3.25 1.80 2.65 2.2 0.11 0.79 0.55 0.28 19.9 0.05 

 Volumetric heat capacity of minerals/fluids (N = 326), MJ·m-3·K-1 

Weighted arithmetic 

mean 
2.40 2.46 1.61 1.85 2.01 2.20 1.83 1.52 - 0.05 0.13 12.3 1.6 

 

 
Table 10. Prediction results of the rock thermal properties on the test datasets. 

Thermal conductivity 
Volumetric heat capacity 

Model* 

λ|| λꞱ 

R2 
RMSE P A 

R2 
RMSE P A 

Model R2 
RMSE P A 

W·m-1·K-1 % % W·m-1·K-1 % % MJ·m-3·K-1 % % 

GB 
0.7

9 
0.14 7. 7 0.8 0.79 0.19 15.4 1.1 GB 0.52 0.09 8.8 0.2 

LR 
0.6

2 
0.18 10.4 0.1 0.50 0.30 19.9 1.5 AM 0.10 0.13 11.4 2.3 

*GB stands for the gradient boosting method, LR stands for the Lichtenecker-Rother model, AM stands for the weighted arithmetic 

mean model. 
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Figure 11 plots the thermal property predictions and experimental values of the 

rock thermal properties for the test datasets. 

 

Figure 11. Experimental data of the rock thermal properties compared to the thermal 

properties predicted from well-logging data of training datasets for the Bazhenov 

Formation. Black dots present results with the gradient boosting method, red dots 

results via theoretical model. The dashed black line (y=x) shows a perfect prediction. 

The results obtained for the case studies show that for organic-rich shales, 

theoretical models provide a less accurate prediction of rock thermal properties from 

well-logging data compared to the machine-learning algorithm. There are several 

sources of uncertainties that cause relatively high errors when dealing with 

theoretical models of rock thermal properties. First, the volumetric mineralogical 

models resulting from the initial geophysical data processing are constructed within 

a set of assumptions, such as vertical and lateral continuity, a constant ratio of bound 

water to dry clay, etc. Moreover, the models are interpretative implying their 

subjective nature. Consequently, volumetric mineralogical models increase the 

uncertainties of the data on the volume fractions of rock-forming components that 

are used for predicting thermal properties based on the theoretical model of thermal 

properties. 

Another aspect refers to the imperfections of theoretical models of thermal 

conductivity. As already mentioned, the rocks thermal conductivity depends on 

many factors, such as mineralogical composition, porosity, saturation, intergranular 

contacts, and the shape of minerals. Therefore, the implementation of only one, so-
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called correction factor can be, at least in some cases, insufficient. Thus, the 

improvement in theoretical models of thermal conductivity is important. 

For a detailed uncertainty analysis, boxplots of the relative discrepancies 

between the measured and predicted values are plotted in Figure 12. 

 

Figure 12. Boxplots of the relative discrepancies between the measured and 

predicted values of rock thermal properties for the Bazhenov Formation. Above, 

predictions based on the theoretical models; below, predictions based on the gradient 

boosting algorithm. Histograms of thermal properties from the test dataset are also 

shown. 

It may be deduced that systematic underestimation is observed when predicting 

rock thermal conductivity on the basis of a theoretical model for low thermal 

conductivities (0.8-1.2 W·m-1·K-1) for the Bazhenov Formation. In most cases, the 

gradient boosting algorithm provides less biased predictions of thermal properties 
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compared to the predictions on the basis of the theoretical models. There is a 

systematic overestimation in the prediction of thermal conductivity for the Bazhenov 

Formation for high thermal conductivities (2.4–2.8 W·m-1·K-1 for the parallel 

thermal conductivity component and 2.0–2.4 W·m-1·K-1 for the perpendicular 

thermal conductivity component). Analysis of the data showed that this bias is 

caused by the silicification of some intervals resulting in the occurrence of highly 

high-conductive quartz.  

Based on results presented in Figs. 11 and 12, we can conclude that the gradient 

boosting method is more effective for predicting rock thermal properties than the 

theoretical models because of its high sensitivity to the non-linear and implicit 

dependencies between the rock thermal properties and well-logging data. 

Nevertheless, the application of gradient boosting requires training datasets, which 

are not always available. Therefore, for cases when core samples are absent and only 

well-logging data are available, predictions of rock thermal properties can be 

performed with sufficient precision based on theoretical models. Considered 

theoretical models of thermal conductivity contain correction factor that is 

considered to encompass the effect of structural peculiarities on rock thermal 

conductivity. The possible way to enhance theoretical models in application to 

organic-rich shales includes an arrangement of comprehensive experimental study 

and analysis of results to understand how the correction factor depends on geological 

features of source rocks and the implementation of additional correction parameter 

that will account for textural peculiarities. 

3.1.3 Conclusions 

An approach for determining the thermal properties of rocks accounting for 

thermal anisotropy via theoretical modelling was suggested and tested. The approach 

provides simultaneous determination of the rock thermal conductivity and 

volumetric heat capacity. Predictions of thermal conductivity accounting for thermal 
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anisotropy are accessible due to applications of theoretical models of thermal 

conductivity that contain correction factors encompassing the effect of rock 

structure. As well as the approach suggested within Section 2.1, this approach also 

accounts for the influence of in situ thermobaric conditions on thermal properties 

with differentiation of the effect on distinct thermal conductivity tensor components.  

Within the case study the experimental dataset on rock thermal properties 

inferred from continuous thermal core logging and volumetric mineralogical models 

inferred from high definition spectroscopy and nuclear magnetic resonance log  from 

three wells drilled through anisotropic organic-rich shales were the basis for the 

approach development and testing. The results obtained during the case study show 

that rock thermal conductivity components can be predicted from well-logging data 

with uncertainties of less than ±11% for thermal conductivity parallel to the bedding 

plane and less than ±20% for thermal conductivity perpendicular to the bedding 

plane (for a 0.95 confidence level). Volumetric heat capacity can be predicted from 

well-logging data with an uncertainty of less than ±12% (for a 0.95 confidence 

level). 

 From comparison study of prediction results obtained with gradient boosting 

method and Lichtenecker-Rother model it can be concluded that the gradient 

boosting method is more effective for predicting rock thermal properties than the 

theoretical models because of its high sensitivity to the non-linear and implicit 

dependencies between the rock thermal properties and well-logging data. 

3.2.  Approach for assessing uncertainty in a correction factor of Krischer-

Esdorn model 

An essential aspect of theoretical modelling of rock thermal conductivity is 

assessing the prediction quality of a model. The prediction quality of the theoretical 

model is principally determined by uncertainties in input parameters (thermal 

conductivity of rock matrix and pore fluid, structural parameters, and volume 
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fraction of rock-forming components). One of the most commonly used ways to 

assess the theoretical model's prediction quality is a comparison of measured and 

predicted values of rock thermal conductivity. However, the assessment results are 

true only for considered data (that have certain uncertainties) and can vary if 

uncertainties in input parameters change.  

Therefore, when predicting rock thermal conductivity from well-logging data 

on the basis of theoretical modelling, particular calculations are required to assess 

the prediction quality accounting for uncertainties in input parameters. A key for the 

problem solution is the sensitivity study of the theoretical model. It allows 

understanding the influence of uncertainties in input parameters on prediction 

uncertainty. However, very often, there is a lack of data (or the data is absent) on 

uncertainty in the correction factor of the theoretical model of rock thermal 

conductivity. The uncertainty in correction factor can be determined via special 

experimental investigations on the collection of core samples provided the 

uncertainty in thermal conductivity of rock matrix and pore fluid, and in rock 

porosity are known as described by Stolyarov et al. (2007). Concurrently, not always 

there is an opportunity to conduct such an investigations and, thus, an effective 

approach for assessing uncertainties in data on correction factor is required. 

A new effective approach was developed and suggested to assess the 

uncertainty in a correction factor of theoretical models of thermal conductivity by 

the example of Krischer-Esdorn model. 

3.2.1  Workflow 

The workflow of the developed approach implies that thermal conductivity of 

rock-forming components and correction factor are known. The developed approach 

consists of several principal steps.  

In the first step, the assessment of prediction uncertainty of the theoretical 

model of thermal conductivity is performed via a comparison of predicted and 
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measured values of thermal conductivity. Prediction accuracy and precision are 

calculated (using formulas 2 and 3, Section 2.1.2) to evaluate the prediction 

uncertainty. 

In the second step, based on the partial derivative method, the sensitivity study 

of the theoretical model is performed. The result of the sensitivity study are 

determined sensitivity coefficients of dependency of prediction uncertainty from 

uncertainties in input parameters. 

In the third step, using the evaluated in the first step prediction uncertainty and 

evaluated coefficients of dependency of prediction uncertainty from uncertainties in 

input parameters, the uncertainty in correction factor is determined the following 

way: 

𝛿𝜆𝑒𝑓𝑓 = 𝐾1 · 𝛿𝜆𝑚𝑎𝑡𝑟𝑖𝑥 + 𝐾2 · 𝛿𝜆𝑓𝑙𝑢𝑖𝑑 + 𝐾3 · 𝛿𝜙 + 𝐾4 · 𝛿𝑎    (7) 

𝛿𝑎 =  
𝛿𝜆𝑒𝑓𝑓−𝐾1·𝛿𝜆𝑚𝑎𝑡𝑟𝑖𝑥−𝐾2·𝛿𝜆𝑓𝑙𝑢𝑖𝑑−𝐾3·𝛿𝜙

𝐾4
     (8) 

where 𝛿λeff is prediction uncertainty that is calculated in the first step; K1, K2, K3, K4 

are coefficients of dependency of prediction uncertainty from uncertainties in 

corresponding input parameters that are inferred from sensitivity study of a model; 

𝛿λmatrix is uncertainty in data on thermal conductivity of rock matrix; 𝛿λfluid is 

uncertainty in data on thermal conductivity of pore-filling fluid; 𝛿𝜙 is uncertainty in 

porosity; 𝛿a is uncertainty in correction factor.  

3.2.2 Case study: assessing the uncertainty in correction factor of Krischer-

Esdorn model established for clayous rocks of the Tumen Formation 

The suggested approach for assessing the uncertainty in correction factor of 

theoretical model of thermal conductivity suggested by Krisher and Esdorn 

(Krischer and Esdorn, 1956) was tested on data from two wells that were considered 

in Section 2.1.2, especially wells A and C. 
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3.2.2.1 Geological setting and field data 

The Tumen Formation is referred to Jurassic system and was formed under 

coastal-marine conditions. From high-definition spectroscopy data and NMR data, 

the investigating clayous rocks of the tumen formation are principally composed of 

illite, kaolinite, albite, orthoclase, siderite, siliceous minerals (mainly chalcedony), 

bound and free water (Figure 13).  

 

Figure 13. Pie chart of average volume fractions of rock-forming components of the 

investigating rocks inferred from high definition spectroscopy and NMR log data.  

According to NMR log data, the porosity varies from 1% to 10% with mean 

value of 4.5% and a standard deviation of 3%. The clayous minerals due to oriented 

alignment condition the stratified structure. Thus, the considering clayous rocks can 

be treated as transversely isotropic medium with the vertical axis of symmetry. 

3.2.2.2 Thermal core logging results for the calyous rocks of the Tumen 

Formation 

The continuous thermal core logging was conducted on 507 full-sized core 

samples from wells A and C (57 m in total). Scanning lines were chosen parallel and 

perpendicular to the bedding plane on the flat surfaces of the sawed core samples. 

The continuous profiles of the thermal conductivity components parallel and 

perpendicular to the bedding plane directions are plotted in Figure 14. 
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Figure 14. Results of rock thermal property measurements for wells A (left) and C 

(right). λ stands for rock thermal conductivity; subscripts ‖ and ⊥ stand for the 

thermal conductivity components in the directions parallel and perpendicular to the 

bedding plane, respectively; grey lines represent the original profiles of the rock 

thermal properties; black, red and blue lines represent averaged thermal property 

profiles in a moving 0.5 window. 

High content of clayous minerals (especially illite) conditions a systematic 

thermal anisotropy of the investigating rocks (Figure 15). 
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Figure 15. Histogram of thermal anisotropy coefficient inferred from thermal core 

logging for wells A and C.  

3.2.2.3 Results of predicting rock thermal conductivity from well-logging data 

based on Krischer-Esdorn model 

The available data on rock thermal properties and volumetric fractions of rock-

forming components were subdivided into two random datasets: (1) a training 

dataset (comprising 66% of all the data) and (2) a test dataset (comprising 34% of 

all the data). Following the workflow described in Section 3.1.1 for determining rock 

thermal conductivity from well-logging data based on theoretical modelling, we 

performed calibration of the Krischer-Esdorn model on the train dataset and 

predicted rock thermal conductivity on the test dataset. During model calibration, 

the data on thermal conductivity of rock minerals were inferred from Table 8. 

Additionally, the data on thermal conductivity of orthoclase and siderite were 

inferred from Popov et al. (1987). Since investigating rocks exhibit a high degree of 

thermal anisotropy (Figure 15), the correction factor of the Krischer-Esdorn model 

was determined both for parallel and perpendicular directions to the bedding plane. 

According to laboratory investigations, the considering clayous rocks are 

characterized by negligible permeability and, thus, during model calibrating 100% 

water saturation of pore space was implied.  

The results of model calibration for parallel and perpendicular directions to the 

bedding plane are presented in Table 9. The results of predicting thermal 

conductivity on the test dataset are presented in Table 10. 
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Table 11. Calculated values of the thermal properties of the rock-forming 
components for the training dataset of the clayous rocks. 

Thermal conductivity of minerals/fluids parallel to the bedding plane (N = 110), W·m-1·K-1 

Siderite Orthoclase Chalcedony Illite Kaolinite Albite 
Correction 

factor 
R2 

RMSE, 

W·m-1·K-1 
P,% A,% 

3.08 2.17 3.25 1.80 2.65 2.2 0.38 0.78 0.09 7.4 0.2 

Thermal conductivity of minerals/fluids perpendicular to the bedding plane (N = 79), W·m-1·K-1 

3.08 2.17 3.25 1.80 2.65 2.2 0.66 0.68 0.13 14.2 0.9 

 

Table 12. Prediction results of the rock thermal properties on the test datasets. 

λ||, (N = 132) λꞱ, (N = 53) 

R2 RMSE, W·m-1·K-1 A, % P, % R2 RMSE, W·m-1·K-1 P, % A, % 

0.73 0.09 8.0 0.0 0.64 0.15 15.0 1.2 

 

The prediction uncertainty is assessed for 0.95 confidential probability level. 

Figure 16 plots the experimental data on rock thermal conductivity and predicted 

thermal conductivities for the test dataset.  

 

Figure 16. Experimental data of the rock thermal conductivity compared to the 

predicted thermal conductivity from well-logging data on test datasets. The dashed 

black line (y=x) shows perfect prediction. N stands for number of points. 
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3.2.2.4 Sensitivity study of Krischer-Esdorn model and assessment of 

uncertainty in correction factor 

The partial derivative method of the sensitivity analysis uses the Taylor 

expansion to approximate the uncertainty of the function output with respect to the 

uncertainties in input parameters. The Taylor expansion for input perturbations of a 

function can be written the following way: 

𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥) =  
𝜕𝑓(𝑥)

𝜕𝑥
𝛥𝑥 +

1

2
·
𝜕2𝑓(𝑥)

𝜕𝑥2
(𝛥𝑥)2 +

1

6
·
𝜕3𝑓(𝑥)

𝜕𝑥3
(𝛥𝑥)3 +⋯ ≈

𝜕𝑓(𝑥)

𝜕𝑥
𝛥𝑥  (9) 

where Δx is a very small non-zero positive number. Because the Δx is very small, 

the second and subsequent terms vanish quickly and as a result, the uncertainty of 

the function's output is approximated by the first term of the Taylor expansion.  

To assess the influence of relative uncertainties in input parameters on relative 

uncertainty of the output, the equation 9 is rewritten the following way: 

𝛿𝑓 =  
𝛥𝑓(𝑥)

𝑓(𝑥)
=

𝜕𝑓(𝑥)

𝜕𝑥
 ·

1

𝑓(𝑥)
 ·
1

𝑥
· 𝛿𝑥      (10) 

where 𝛿f is relative uncertainty in the output of the function, Δf stands for f(x+Δx) – 

f(x), 𝛿x is relative uncertainty in the input parameter. The ratio of derivative of 

the function with respect to the input parameter to the product of x and 

function output f(x) is denoted as a sensitivity coefficient.  

The Krischer-Esdron model for a two-component system is written the 

following way: 

𝜆𝑒𝑓𝑓 = (
1−𝑎

(1−𝑝ℎ𝑖)·𝜆𝑚𝑎𝑡𝑟𝑖𝑥+𝑝ℎ𝑖·𝜆𝑓𝑙𝑢𝑖𝑑
+

𝑎

(
1−𝑝ℎ𝑖

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
+

𝑝ℎ𝑖

𝜆𝑓𝑙𝑢𝑖𝑑
)

−1)

−1

   (11) 

where phi is porosity, λ stands for thermal conductivity, a is a correction factor. 

Partial derivatives of the Krisher-Esdorn model with respect to the thermal 

conductivity of rock matrix, pore-filling fluid, porosity and correction factor a are 

the following: 
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𝜕𝜆𝑒𝑓𝑓

𝜕𝜆𝑚𝑎𝑡𝑟𝑖𝑥
= −

(1−𝑎)·(1−𝜙)

(𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙))
2+

𝑎·(1−𝜙)

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
2

(
1−𝑎

𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙)
+𝑎·(

𝜙

𝜆𝑓𝑙𝑢𝑖𝑑
+

1−𝜙

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
))

2    (12) 

𝜕𝜆𝑒𝑓𝑓

𝜕𝜆𝑓𝑙𝑢𝑖𝑑
= −

𝑎·𝜙

(𝜆𝑓𝑙𝑢𝑖𝑑)
2+

𝜙·(1−𝑎)

(𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙))
2

(
1−𝑎

𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙)
+𝑎·(

𝜙

𝜆𝑓𝑙𝑢𝑖𝑑
+

1−𝜙

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
))

2    (13) 

𝜕𝜆𝑒𝑓𝑓

𝜕𝜙
= −

𝑎·(
1

𝜆𝑓𝑙𝑢𝑖𝑑
−

1

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
)−

(1−𝑎)·(𝜆𝑓𝑙𝑢𝑖𝑑−𝜆𝑚𝑎𝑡𝑟𝑖𝑥)

(𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙))
2

(
1−𝑎

𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙)
+𝑎·(

𝜙

𝜆𝑓𝑙𝑢𝑖𝑑
+

1−𝜙

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
))

2    (14) 

𝜕𝜆𝑒𝑓𝑓

𝜕𝑎
= −

−
1

𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙) 
+

𝜙

 𝜆𝑓𝑙𝑢𝑖𝑑
 + 

1−𝜙

𝜆𝑚𝑎𝑡𝑟𝑖𝑥

(
1−𝑎

𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙)
+𝑎·(

𝜙

𝜆𝑓𝑙𝑢𝑖𝑑
+

1−𝜙

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
))

2    (15) 

According to research findings of Chorpa et al. (2018) and Fuchs et al. (2018), 

high effectiveness of the Lichtenecker model is observed during the calculation of 

effective thermal conductivity of low-porous rocks that are composed of minerals, 

which have low contrast thermal conductivities. Thus, the thermal conductivity of 

rock matrix for the investigating clayous rocks is calculated using the Lichtenecker 

model using data on average volumetric composition that were inferred from high-

definition spectroscopy (Figure 13) and thermal conductivities of minerals. The 

Lichtenecker model is written as follows: 

𝜆𝑒𝑓𝑓 = ∏ 𝜆𝑖
𝑉𝑖𝑁

𝑖=1       (16) 

where λi is thermal conductivity of i-th component and Vi is volume fraction of the 

i-th component.  

To assess the uncertainty of the determined correction coefficients for parallel 

and perpendicular directions to the bedding plane, the data on uncertainty in thermal 

conductivity of rock matrix, thermal conductivity of pore-filling fluid, and porosity 

are required.  
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The uncertainty in data on porosity and pore-filling fluid are taken from 

technical specifications of the utilized measurement tools. The data on porosity is 

inferred from nuclear magnetic resonance log data, and according to technical 

specifications of the applied logging tool, the uncertainty in porosity is ±2.0%. The 

uncertainty in data on thermal conductivity of water is ±2.5%.  

To assess the uncertainty in the thermal conductivity of the rock matrix, the 

sensitivity study of the Lichtenecker model was performed. The partial derivatives 

of the Lichtenecker model with respect to the thermal conductivity of i-th component 

and its volume fractions are calculated the following way: 

𝜕𝜆𝑒𝑓𝑓

𝜕𝜆𝑖
= 𝑉𝑖 · 𝜆𝑖

𝑉𝑖−1 · ∏ 𝜆
𝑗

𝑉𝑗  (𝑖 ≠ 𝑗)𝑁
𝑗=1      (17) 

𝜕𝜆𝑒𝑓𝑓

𝜕𝑉𝑖
=  𝑙𝑛(𝑉𝑖) · ∏ 𝜆𝑖

𝑉𝑖𝑁
𝑖=1       (18) 

As reported by Popov et al. (1987), the uncertainty in data on rock-forming 

minerals that were involved within the case study was ±2.5%. According to technical 

specifications of the high-definition spectroscopy tool, the uncertainty in data on 

volume fractions of minerals is ±3.0%. The uncertainty in thermal conductivity of 

rock matrix is calculated the following way: 

𝛿𝜆𝑚𝑎𝑡𝑟𝑖𝑥 = 𝐾𝜆𝐼𝑙𝑙𝑖𝑡𝑒 · 𝛿𝜆𝐼𝑙𝑙𝑖𝑡𝑒 + 𝐾𝜆𝑂𝑟𝑡ℎ𝑜𝑐𝑙𝑎𝑠𝑒 · 𝛿𝜆𝑂𝑟𝑡ℎ𝑜𝑐𝑙𝑎𝑠𝑒 + 𝐾𝜆𝐾𝑎𝑜𝑙𝑖𝑛𝑖𝑡𝑒 · 𝛿𝜆𝐾𝑎𝑜𝑙𝑖𝑛𝑖𝑡𝑒 +

 𝐾𝜆𝐴𝑙𝑏𝑖𝑡𝑒 · 𝛿𝜆𝐴𝑙𝑏𝑖𝑡𝑒 + 𝐾𝜆𝐶ℎ𝑎𝑙𝑐𝑒𝑑𝑜𝑛𝑦 · 𝛿𝜆𝐶ℎ𝑎𝑙𝑐𝑒𝑑𝑜𝑛𝑦 + 𝐾𝜆𝑆𝑖𝑑𝑒𝑟𝑖𝑡𝑒 · 𝛿𝜆𝑆𝑖𝑑𝑒𝑟𝑖𝑡𝑒 + 𝐾𝑉𝐼𝑙𝑙𝑖𝑡𝑒 · 𝛿𝑉𝐼𝑙𝑙𝑖𝑡𝑒 +

𝐾𝑉𝑂𝑟𝑡ℎ𝑜𝑐𝑙𝑎𝑠𝑒 · 𝛿𝑉𝑂𝑟𝑡ℎ𝑜𝑐𝑙𝑎𝑠𝑒 + 𝐾𝑉𝐾𝑎𝑜𝑙𝑖𝑛𝑖𝑡𝑒 · 𝛿𝑉𝐾𝑎𝑜𝑙𝑖𝑛𝑖𝑡𝑒 + 𝐾𝑉𝐴𝑙𝑏𝑖𝑡𝑒 · 𝛿𝑉𝐴𝑙𝑏𝑖𝑡𝑒 + 𝐾𝑉𝐶ℎ𝑎𝑙𝑐𝑒𝑑𝑜𝑛𝑦 ·

𝛿𝑉𝐶ℎ𝑎𝑙𝑐𝑒𝑑𝑜𝑛𝑦 + 𝐾𝑉𝑆𝑖𝑑𝑒𝑟𝑖𝑡𝑒 · 𝛿𝑉𝑆𝑖𝑑𝑒𝑟𝑖𝑡𝑒         (19) 

where K stands for sensitivity coefficient for the corresponding input parameter of 

the Lichtenecker model. The calculated uncertainty in data on matrix thermal 

conductivity via equation 19 for investigating clayous rocks is 6.1% for a 0.95 

confidential probability level.  

 During calculating sensitivity coefficients, the average values of rock porosity 

and thermal conductivity of rock matrix in equations 12 – 15 are assigned within the 

case study. Correction factors were determined in Section 3.2.2.3 and are taken from 
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Table 9.  Figure 17 plots the influence of uncertainties in input parameters of the 

Krisher-Esdorn model on thermal conductivity components for parallel and 

perpendicular directions to the bedding plane.  

 

Figure 17. Results of assessing influence of uncertainty in thermal conductivity of 

rock matrix (red lines), porosity (green line), thermal conductivity of pore fluid (blue 

line), and correction factor (black line) on rock thermal conductivity for parallel (left 

panel) and perpendicular (right panel) directions to the bedding plane. 

As it may be deduced from Figure 17 the importance of input parameters within 

the case study is ranked both for parallel and perpendicular directions to the bedding 

plane the following way: (1) thermal conductivity of rock matrix, (2) porosity, (3) 

thermal conductivity of pore fluid, and (4) correction factor.  

Following the workflow (Section 3.2.1), the assessment of uncertainty in data 

on correction factors for parallel and perpendicular directions to the bedding plane 

were performed via equation 8. For assessment of uncertainty in data on correction 

factor were involved (1) the sensitivity coefficients for each input parameter 

obtained during sensitivity study of Krisher-Esdorn model, (2) the data on 

uncertainty in thermal conductivity of rock matrix, porosity, the thermal 

conductivity of pore fluid, and (3) the prediction uncertainty of Krischer-Esdorn 

model (Tables 9 and 10). The calculated uncertainties in correction factors (via 
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equation 8) for parallel and perpendicular directions to the bedding plane are 15% 

and 37%, respectively.  

3.2.3 Conclusions. 

A new approach for assessing uncertainty in the correction factor of the 

Krischer-Esdorn model was suggested and tested. The approach bases on the 

application of the partial-derivative method. The approach requires integrating 

results of predicting rock thermal conductivity from well-logging data on the basis 

of theoretical modelling of thermal conductivity.  

The approach was tested on data from the Tumen Formation that is composed 

of clayous rocks within the case study. From the sensitivity study of the Krischer-

Esdorn, it can be concluded that for investigating rocks the uncertainty in correction 

factor has the lowest influence on uncertainty in effective thermal conductivity 

compared to the influence of uncertainties in other input parameters (thermal 

conductivity of rock matrix, porosity, thermal conductivity of pore-fluid). For 

investigating rocks, the calculated uncertainties in correction factors via the 

suggested approach for parallel and perpendicular directions to the bedding plane 

are 15% and 37%, respectively. The obtained results enable accounting for 

variations in the quality of input data from well to well during assessing the quality 

of predicting rock thermal conductivity from well-logging data. 

The developed approach is not constrained only to the Krischer-Esdorn model. 

It can be applied for assessing uncertainty in correction factors of Lichtenecker-

Rother and Lichtenecker-Asaad models.  
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Chapter 4. Well-log based technique (WLBT) for determining rock 

thermal properties accounting for thermal anisotropy at in situ 

pressure, temperature and saturation 

An important aspect of well-log based predictions of rock thermal properties 

accounting for thermal anisotropy is the development of a well-defined and clear 

workflow that could encompass a variety of conditions. Moreover, the integration of 

opportunities that were disclosed due to implementation of modern experimental 

bases for problem solution is very often not a trivial task. 

Therefore, integrating regression and theoretical model-based approaches that 

were described in Chapters 2 and 3, an enhanced technique for the well log-based 

determination of rock thermal properties accounting for rock thermal anisotropy is 

proposed within one unified workflow. The technique's novelty is supported and 

evidenced by a Russian patent (Popov et al., 2019a). 

4.1. Workflow of WLBT for thermal property prediction 

The developed enhanced technique for determining rock thermal properties 

accounting for thermal anisotropy from well-logging data consists of the following 

principal steps: 

1. Analysing and processing of the available input data. 

2. Determining directions ij of the principal axes of anisotropy (2D 

anisotropy is considered for sedimentary rocks). 

3. Selecting regression or theoretical models of the rock thermal properties 

and determining model parameters. 

4. Determining the rock thermal properties in a target depth interval from 

well-logging data at atmospheric pressure and temperature. 

5. Determining the rock thermal properties in the target depth interval at in 

situ temperature and pressure. 

The detailed schema of the proposed algorithm is presented in Figure 18. 
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Figure 18. Workflow for well log-based determination of rock thermal properties 

accounting for rock thermal anisotropy (Shakirov et al., 2021). Red and blue arrows 

indicate cases when “core samples are available” and “core samples are absent”, 

respectively. λij is the thermal conductivity in the ij directions; C is the volumetric 

heat capacity. Vk is a volumetric fraction of the k-th rock-forming component, λk
ij is 

the thermal conductivity of the k-th component for the ij direction, and Ck is the 

volumetric heat capacity of the k-th component. a is a correction factor. P and T 

stand for pressure and temperature, respectively. 
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Before step I, target intervals for predicting rock thermal properties are defined. 

In step I, the available geological and geophysical data are analysed. The main 

characteristics of the target intervals to be evaluated are the (1) lithological 

composition of the rocks composing the target interval, (2) formation peculiarities 

(porosity type, shaliness type, physical properties of the rock-forming mineral, 

cementation degree, etc.), (3) in situ pressure and temperature, (4) in situ saturation, 

and (5) quality of the available well-logging data. If there are reference intervals for 

predicting the rock thermal properties, the same characteristics of the reference 

intervals are evaluated from the geological and geophysical data. Requirements for 

the “reference interval” are as follows: (1) drilled with coring, (2) composed of 

similar (to the target interval) rocks, and (3) is investigated with the same well log 

suite. 

In step II, the directions ij of the principal axes of the rock thermal conductivity 

are determined. If core samples of the reference interval are available and the 

orientation of these samples are known relative to in-situ formations (Figure 18, step 

II, red arrow), the directions ij are determined experimentally via a special 

procedure: the optical scanning measurements are performed on selected core 

samples with sequential rotation of scanning line directions, as described by Popov 

et al. (2016). Since the directions ij are considered to be the same for the thermal 

conductivity, sonic velocity and geomechanical characteristics of the same rocks 

(Kim et al., 2012), the ij directions can be determined via a set of geomechanical 

tests. If core samples are not available (Figure 18, step II, blue arrow), the directions 

ij are determined via analysis of sonic log data (see, e.g., Hornby et al., 2003) or 

electric log data (Faivre et al., 2002; via a high-definition resistivity formation micro 

imager). The directions ij are determined for each lithology presented in the target 

interval. 
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After that, when core samples are available, continuous thermal logging of core 

samples extracted from the reference interval is performed to obtain the principal 

components of thermal conductivity and volumetric heat capacity in the ij directions. 

There are two possible variants of step III. If the available geological and 

geophysical data allow constructing a volumetric mineralogical model (VMM) of 

both the reference and the target intervals, then the enhanced theoretical model-

based approach can be realized. Otherwise, the enhanced regression model-based 

approach can be utilized. The adopted variant depends on the available data and 

prediction precision, which vary in each case. Moreover, these approaches can be 

combined: for some part of the target interval, the rock thermal properties are 

determined via a theoretical model-based approach, while those of the other part are 

determined via a regression model-based approach. 

The approach based on the regression model starts by evaluating the transport 

physical properties (sonic velocity and electrical resistivity) inferred from well-

logging data along the principal axis directions ij of thermal conductivity (Figure 18, 

step III, block A1). After that, the regression models, their parameters for the ij 

directions and the corresponding fluid saturation of rocks are determined. If core 

samples recovered from the reference interval were available in the previous steps 

and continuous thermal core logging was conducted, then a regression models and 

their parameters are determined using experimental data via minimization of the 

misfit between the measured and calculated rock thermal properties (Figure 18, step 

III, A2). If core samples were not available, then the regression model and its 

parameters are selected from the database (Figure 18, step III, A2*). For database, 

we imply local or published representative databases that contain among other things 

information for assessing the similarity of being investigated and previously 

investigated rocks (such as mineralogical composition, petrophysical characteristics, 

pore fluid, anisotropy, etc.), data on rock thermal properties, other rock properties 

and/or well-logging data, and regression models (regression equations, machine 
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learning models, etc.) between thermal properties and well-logging data. The 

regression models for predicting rock thermal properties are developed on an 

individual basis within stratigraphic units and / or for each rock type. The regression 

models can be both simple (linear or multiple regressions) and advanced (decision 

tree-based, neural network-based, etc.). 

The approach based on the theoretical model starts with constructing a VMM 

that can be inferred from special well-logging methods (such as high-definition 

spectroscopy) or standard well-logging data (Serra, 1986). If core samples and core 

logging were available from the previous steps, then a VMM of the reference interval 

is also constructed. After that, a theoretical model (selection of the theoretical model 

of thermal conductivity is discussed in Section 2.2) of the rock thermal conductivity 

is selected, and its parameters are determined. Also, the volumetric heat capacity of 

the rock-forming components (pore fluids, minerals, etc.) is determined. If core 

samples extracted from the reference interval and thermal core logging were 

available, then the theoretical model of the rock thermal conductivity, thermal 

properties of the rock-forming components, and correction factors are determined 

via minimization of the divergence between the measured and predicted rock 

thermal properties (Figure 18, step III, B2). The theoretical model of thermal 

conductivity is calibrated separately for each principal axis direction ij of thermal 

conductivity. If core samples were not available, the theoretical model of thermal 

conductivity, thermal properties of the rock-forming components and correction 

factors are selected from the database (Figure 18, step III, B2*). 

In step IV, the rock thermal properties are determined by accounting for the in 

situ saturation without corrections of the pressure and temperature from well-logging 

data (Figure 18) using established parameters of the regression or theoretical model 

for the predetermined directions ij. 

In step V (Figure 18), the thermal properties of the rocks composing the target 

interval are determined at in situ pressure and pressure using data on the formation 
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conditions and the dependencies of rock thermal properties on temperature and 

pressure. If core samples recovered from the reference interval are available, the 

pressure and temperature dependencies can be determined experimentally by taking 

into account the principal axis directions ij of thermal conductivity (Popov et al., 

2012; Wang et al., 2018). Otherwise, the dependencies of the rock thermal properties 

on the temperature and pressure can be inferred from data available in the literature. 

As the basis of the developed WLBT for determining rock thermal properties 

from well-logging data, is suggested the high effective thermal core logging 

technique that is based on the application of an optical scanning instrument (Popov 

Е. et al., 2019), providing continuous non-contact non-destructive profiling of 

thermal conductivity (principal components of thermal conductivity) and volumetric 

heat capacity on full-diameter cores, core plugs, and broken cores. The optical 

scanning instrument provides measurement accuracy and precision of ±1.5% and 

±1.5% for a 0.95 confidence level, respectively. The measurement accuracy and 

precision for the volumetric heat capacity are ±3% and ±2.5% for a 0.95 confidence 

level, respectively. A comprehensive description of the theoretical background, the 

specimen requirements and the measurement procedure were given by Popov et al. 

(2016). 

4.2. Testing of WLBT for determining thermal properties of organic-rich shales 

of the Domanic Formation accounting for thermal anisotropy from well-

logging data  

To provide evidence that the developed technique can be universally applied 

for predicting thermal properties of sedimentary rocks from well-logging data 

accounting for thermal anisotropy, the testing of the suggested technique was 

performed on data from organic-rich shales of the Domanic formation. 
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4.2.1. Analysis and processing of the available input data 

The suggested technique for the well log-based determination of rock thermal 

properties was tested on data from two wells (F and G) drilled through the Domanic 

formation. The lithological and petrophysical characteristics of the rocks in the case 

study are given in Table 13. The Domanic Formation sedimented under relatively 

deep shelf conditions. More detailed information about the geological peculiarities 

of the Domanic Formations was given Liang et al. (2015). 

Table 13. Lithological and petrophysical characteristics of the rocks in the case 

study. 

Dominant mineral composition Organic matter Reservoir properties 

Mineral 
Mean mass 

content, % (SD) 

Kerogen 

type 

Mean TOC, % 

(SD) 

Porosity, % 

(SD) 

ln(Permeability), 

mD (SD) 

Silicate minerals (SiO2) 16.4 (22.1) 

II-III 7.5 (3.4) 1.5 (0.6) -3.1 (2.4) Carbonate minerals 78.1 (25.8) 

Clay minerals 1.4 (2.7) 

*SD stands for standard deviation, TOC stands for total organic carbon. Kerogen typing was 
performed according to Tissot and Welte (1984). ln stands for natural logarithm. For specific depth 
points, sum of mineral content, organic matter and porosity yields 100%.  
 

For the investigating wells only standard well logging suite was available that 

includes data on bulk density (ρ), neutron porosity (NPHI), P- and S-wave velocities, 

photoelectric factor (PEF), and spectral gamma-ray data (Uranium, Thorium, and 

Potassium). Figures 19 and 20 plot results of well-logging for wells F and G.  
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Figure 19. Results of well-logging for well F. Log symbols were defined in the text 

above.  
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Figure 20. Results of well-logging for well G. Log symbols were defined in the text 

above. 

The presented volumetric-mineralogical models in Figures 19 and 20 were 

inferred from standard well-logging data via inversion (Serra, 1986). There were no 

available hydrodynamic well tests for wells F and G. Therefore, we consider 

approximate in situ pressure and temperature conditions for the Domanic Formation 

within the investigated area. According to data from neighbouring wells, we can 
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assume that the approximate average in situ pressure and temperature of the 

Domanic Formation are 32 MPa and 60 °C, respectively. Accurate assessment of in 

situ saturation for the investigated formation is complicated because it exhibits low 

permeability and porosity (Table 13). Hence, we considered that the Domanic 

Formation is fully saturated by oil. 

A set of editing steps was applied before using the well-logging data. Logging 

data from different tools were shifted to common depth points, the data from 

cavernous intervals were eliminated, and environmental corrections were applied. 

The core depths were shifted to the logging depths. 

4.2.2. Thermal core logging results for highly heterogeneous rocks of the 

Domanic Formation 

Thermal core logging was conducted on full-sized core samples recovered from 

both investigated wells. Figure 21 plots the typical full-sized core samples of the 

Domanic Formation.  

 

Figure 21. Photographs of typical core samples of the Domanic Formation.  

The total lengths of the core samples under study were 61 m. Due to the stratified 

structure of core samples of the Domanic Formation, scanning lines were chosen 

parallel and perpendicular to the bedding plane on the flat surfaces of the sawed core 

samples (Figure 21). 

The full-sized core samples from well G were not sawed and, therefore, only 

the parallel component of thermal conductivity was measured. Statistical 

assessments of the variations in rock thermal conductivity for parallel and 

perpendicular to the bedding plane directions, coefficient of thermal anisotropy (KT 

= λ||·λꞱ
-1), and coefficient of thermal heterogeneity (β = (λmax-λmin) ·λavr

-1) are 

summarized in Table 14. 
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Table 14. Results of thermal property measurements ащк the studied core samples. 

Well 

λ||, 
W·m-1·K-1 

Mean (SD) 

(min – max) 

λꞱ, 
W·m-1·K-1 

Mean (SD) 

(min – max) 

KT 

Mean (SD) 

(min – max) 

β 
Mean (SD) 

(min – max) 

C, 

MJ·m-3·K-1 

Mean (SD) 

(min – max) 

Number 

of core 

samples 

The total length 

of core samples 

under study (m) 

F 
2.17 (0.39) 

(0.83-4.49) 

1.90 (0.39) 

(0.34-3.64) 

1.29 (0.58) 

(0.61-5.62) 

0.38 (0.27) 

(0.06-2.04) 

2.01 (0.11) 

(1.76-2.33) 
266 24 

G 
2.30 (0.37) 

(1.17-3.57) - - 
0.51 (0.36) 

(0.06-1.82) 

1.94 (0.12) 

(1.65-2.25) 
302 37 

Table 14 shows that the Domanic Formation rocks exhibit a high degree of 

thermal anisotropy and heterogeneity. For the Domanic Formation, the kerogen 

distribution is not uniform, with patches of thin kerogen layers. 

Continuous profiles of the thermal conductivity components parallel and 

perpendicular to the bedding plane directions and the volumetric heat capacity for 

the Domanic Formation full-diameter core samples recovered from two wells are 

presented in Figure 22. For general trend analysis, the original profiles of thermal 

properties were averaged in a 0.5 m moving window to obtain a vertical resolution 

comparable with the vertical resolution of the well-logging tools. 
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Figure 22. Results of rock thermal property measurements for wells F (left) and G 

(right). λ stands for rock thermal conductivity, subscripts  and ⊥ stand for the 

thermal conductivity components in the directions parallel and perpendicular to the 

bedding plane, respectively; grey lines represent the original profiles of the rock 

thermal properties. Black, red and blue lines represent averaged thermal property 

profiles in a moving 0.5 window.  

Thin layering is a distinguishing characteristic of the Domanic Formation, 

which results in significant vertical variations of rock thermal conductivity. For this 

reason, the implementation of the thermal core logging technique is the best way to 

develop a well log-based technique for predicting the thermal properties of highly 

anisotropic and heterogeneous rocks because it can detect the detailed variations in 

rock thermal properties. We consider the determination of rock thermal properties 
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from well-logging data based on regression analysis and theoretical modelling for 

the investigated geological formation. 

4.2.3. Calibrating gradient boosting regression model 

The well-logging data were used as input data, while the rock thermal 

properties were used as the variables to predict. For the multiple regression analysis, 

we used a gradient boosting method (Friedman, 1999). The available data were 

subdivided into two random datasets: (1) a training dataset (comprising 66% of all 

the data) and (2) a test dataset (comprising 34% of all the data). The training dataset 

was used to fit a regression model to experimental data, while the test dataset was 

used to provide an unbiased evaluation of the regression model fit on the training 

dataset (terms train and test dataset in a more detailed way are described, e.g., by 

Goodfellow et al., 2016). 

The input parameters were the neutron porosity (NPHI), bulk density (ρ), 

photoelectric factor (PEF), P- and S-wave sonic velocities (VP and VS), gamma-ray 

spectra inferred from K, Th, and U, and P and S-wave acoustic impedances (VP·ρ 

and VS·ρ). 

Before gradient boosting training, we performed an assessment of well log 

importance for predicting rock thermal properties on the training data via the 

importance ranking method proposed by Chen et al. (2007), known as the noise-

based perturbation. The results of the noise-based perturbation importance ranking 

for the Domanic Formation are presented in Figure 23. 
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Figure 23. Well log importance during predicting rock thermal properties assessed 

via noise-based perturbation importance ranking method for the Domanic 

Formations. Black corresponds to thermal conductivity parallel to the bedding plane, 

red coloured diagram corresponds to thermal conductivity perpendicular to the 

bedding plane, and blue coloured diagram corresponds to rock volumetric heat 

capacity. 

The obtained results show that the neutron porosity, acoustic impedance, and 

sonic velocities have the highest relative importance values. The main reason for the 

strong correlation between the rock thermal properties and so-called porosity log 

data (neutron, sonic, and density logs) is a high contrast (exceeding 10:1 in some 

cases) between the corresponding physical properties of the rock matrix and organic 

matter, similar to the contrast in porous rocks between physical properties of the 

rock matrix and pore-filling fluid. The relation between thermal properties and 

photoelectric factor is weak in most cases because the photoelectric factor of rocks 

is mainly determined by mineralogical composition. The relation between thermal 

properties and natural radioactivity is generally indirect. Uranium is adsorbed by 

kerogen (Balushkina et al., 2014), and many factors control the quantitative 

accumulation of uranium in organic-rich shales (e.g., Khaustova et al., 2019). 

Considering the importance of the well-logging parameters for predicting rock 

thermal properties, we performed a regression analysis between the thermal 
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properties and well-logging data using the gradient boosting method. We performed 

several iterations of regression model training, eliminating the worst (according to 

relative feature importance) input parameter on each iteration. Assessing the results 

of thermal property prediction on the training dataset, we established that for the 

Domanic Formations, an optimal threshold limit value for relative feature 

importance is 5%. Thus, the final sets of input parameters for predicting thermal 

properties from well-logging data include well logs with relative importance higher 

than 5%. 

The gradient boosting algorithm was trained using the k-fold cross-validation 

method (Stone 1974). We used five k-folds. During regression model training, we 

tuned the following set of hyperparameters: (1) learning rate, (2) number of boosting 

stages (number of estimators), and (3) maximum depth of the individual regression 

estimators (max depth). The cross-validation was performed over the predefined grid 

of hyperparameters. A mean squared error was used to evaluate the model fit. The 

results of the hyperparameter tuning for gradient boosting of the training datasets of 

the Bazhenov and Domanic Formations are presented in Table 15. 

Table 15. Results of hyperparameter tuning for gradient boosting of the training 
datasets. 

Thermal property Optimal parameters RMSE R2 P,% A,% N 

λ||, W·m-1·K-1 

learning rate = 0.17 

number of estimators = 115 

max depth = 6 

0.10 0.80 -0.1 5.1 313 

λꞱ, W·m-1·K-1 

learning rate = 0.15 

number of estimators = 109 

max depth = 3 

0.19 0.56 2.1 10.9 137 

C, MJ·m-3·K-1 

learning rate = 0.17 

number of estimators = 105 

max depth = 5 

0.06 0.78 -0.5 2.9 313 

 

The obtained correlation coefficients (r = (R2)0.5) between the measured and 

predicted values of the rock thermal properties are statistically significant according 

to Student’s t-test for the 0.95 confidence level (rcritical = 0.16 for N = 137, rcritical = 
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0.13 for N = 296, rcritical = 0.12 for N = 313, and rcritical = 0.11 for N = 326). For test 

data, statistically significant correlation coefficients are the indicator of the 

satisfactory quality of model fit.  

4.2.4. Calibrating theoretical models of thermal properties 

The same training and testing datasets were used for calibrating and assessing 

theoretical models of rock thermal properties. As well as for the Bazhenov 

Formation considered within Section 3.1.2, we investigated the effectiveness of 

three theoretical models for predicting thermal conductivity of the Domanic 

Formation: (1) Lichtenecker-Asaad model (equation 4), (2) Krischer-Esdorn model 

(equation 5), and (3) Lichtenecker-Rother model (equation 6).  

The Domanic Formation is comprised of six components: shale, siliceous rock, 

limestone, dolostone, kerogen, and oil. For lithological components, we imply rock 

components that (1) consist of one dominant and other minerals and (2) has physical 

properties which are mainly determined by the physical properties of the dominant 

mineral. The dominant mineral in shale, siliceous rock, limestone and dolostone are 

illite, silicates (mainly chalcedony), calcite and dolomite, respectively. 

Theoretical model calibration requires data on rock thermal properties, 

volumetric fractions of rock-forming mineralogical components, and thermal 

properties of rock-forming mineralogical components. The data on the rock thermal 

properties were inferred from the results of thermal core logging, and the data on the 

volumetric fractions were inferred from the well-logging data. The data on the 

thermal properties of rock-forming minerals are inferred from Table 8. 

The model calibration implies the (1) application of reliable data to the thermal 

properties of rock-forming mineral components, (2) determination of correction 

factors for theoretical models in the directions parallel and perpendicular to the 

bedding plane, and (3) minimization of the mean relative discrepancy between 

measured and calculated rock thermal properties. 
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For the Domanic Formation rocks, the data on the volumetric fractions of the 

lithological rock-forming components were available. Thus, we assigned the upper 

constraint of the possible range for a given thermal property that was assumed equal 

to the value of the dominant mineral. The results of model calibrating accounting for 

thermal anisotropy are presented in Table 16. 

Table 16. Calculated values of thermal properties for rock-forming components for 

the training dataset of the Domanic Formation. 

Theoretical model 

Thermal conductivity of lithological components parallel to the bedding plane (N = 313), W·m-1·K-1 

Limestone Dolostone 
Organic 

matter 

Siliceous rock 

component 
Shale Oil 

Correction 

factor 
R2 

RMSE, 

W·m-1·K-1 
P,% A,% 

Lichtenecker-Asaad 2.42 2.58 0.60 2.43 1.90 0.13 0.05 0.54 0.16 8.1 -0.3 

Lichtenecker-Rother 2.44 3.33 0.53 3.08 1.80 0.14 0.48 0.64 0.14 6.9 0.3 

Krischer-Esdorn 2.49 3.50 0.31 3.22 1.87 0.11 0.95 0.61 0.14 6.9 0.1 

 Thermal conductivity of minerals/fluids perpendicular to the bedding plane (N = 137), W·m-1·K-1 

Lichtenecker-Asaad 2.09 2.58 0.15 2.38 1.51 0.13 0.36 0.26 0.25 12.9 0.6 

Lichtenecker-Rother 2.06 3.25 0.18 2.37 1.46 0.13 0.35 0.31 0.24 12.3 0.2 

Krischer-Esdorn 2.07 3.15 0.10 2.53 1.10 0.11 0.90 0.33 0.23 12.1 0.3 

  Volumetric heat capacity of lithological components (N = 313), MJ·m-3·K-1 

Weighted arithmetic 

mean 
2.09 2.20 1.64 1.98 1.80 1.53 - 0.42 0.09 4.4 -1.2 

 

The results of the theoretical model calibration accounting for thermal 

anisotropy (Table 16) revealed the following: 

 For the Domanic Formations, the rock thermal conductivity parallel to the 

bedding plane can be predicted via the theoretical models more accurately 

than thermal conductivity perpendicular to the bedding plane.  

 Among the considered theoretical models of rock thermal conductivity, the 

Lichtenecker-Rother model yields the lowest prediction uncertainty and the 

highest values of R2 between measured and predicted values. 

 For the Domanic Formation, the rock components have different values of 

thermal conductivity along distinct directions. This can be observed from the 

lithological scale. 
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The obtained results coincide with results that were obtained for the Bazhenov 

formation (within Section 3.1.2). Based on these points, the Lichtenecker-Rother 

model was used for predicting rock thermal conductivity from well-logging data. 

4.2.5. Predicting rock thermal properties from well logging data on a test dataset 

Rock thermal properties were predicted on a test dataset with both the gradient 

boosting and theoretical models of rock thermal properties. We assessed the 

prediction uncertainty from the comparison of predicted values and experimental 

data of the rock thermal properties (Table 17). Figure 24 plots the thermal property 

predictions and experimental values of the rock thermal properties for the test 

datasets. 

Table 17. Prediction results of the rock thermal properties on the test dataset. 

Thermal conductivity 
Volumetric heat capacity 

Model* 

λ|| λꞱ 

R2 
RMSE P A 

R2 
RMSE P A 

Model R2 
RMSE P A 

W·m-1·K-1 % % W·m-1·K-1 % % MJ·m-3·K-1 % % 

GB 0.80 0.10 5.1 0.1 0.56 0.19 10.9 2.1 GB 0.78 0.06 2.9 0.5 

LR 0.59 0.15 6.6 1.8 0.25 0.24 12.8 0.7 AM 0.44 0.10 4.8 0.6 

*GB stands for the gradient boosting method, LR stands for the Lichtenecker-Rother model, AM 

stands for the weighted arithmetic mean model. 

 

 

Figure 24. Experimental data of the rock thermal properties compared to the thermal 

properties predicted from well-logging data of training datasets for the Domanic 

Formation. Black dots present results with the gradient boosting method, red dots 

results via theoretical model. The dashed black line (y=x) shows a perfect prediction. 
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The gradient boosting algorithm, compared to theoretical models, provides 

more precise predictions of thermal conductivity and volumetric heat capacity from 

well-logging data. This is evidenced by the higher values of R2 between the 

measured and predicted values and lower values of RMSE and P. 

As well as for the Bazhenov Formation, the results presented in Table 17 and 

Figure 24 revealed that for organic-rich shales, theoretical models of thermal 

properties provide less accurate predictions from well-logging data than the gradient 

boosting algorithm.  

For a detailed uncertainty analysis, boxplots of the relative discrepancies 

between the measured and predicted values are plotted in Figure 25. 

 

Figure 25. Boxplots of the relative discrepancies between the measured and 

predicted values of rock thermal properties for the Domanic Formation. Above, 

predictions based on the theoretical models; below, predictions based on the gradient 

boosting algorithm. Histograms of thermal properties from the test dataset are also 

shown. 



115 

 

As well as for the Bazhenov Formation, there is a systematic underestimation of rock 

thermal conductivity when predicting via the Lichtenecker-Rother model for within 

the range of low thermal conductivities (1.4-1.6 W·m-1·K-1) of the Domanic 

Formation rocks. In general, the gradient boosting algorithm yields less biased 

predictions of thermal properties compared to the theoretical models of thermal 

properties. A high level of bias is observed in the prediction of the thermal 

conductivity perpendicular to the bedding plane with both the Lichtenecker-Rother 

model and the gradient boosting algorithm. This bias can be conditioned by the effect 

of the imposed fracturing that occurred due to the unloading of core samples.  

4.2.6. Corrections for in situ temperature and pressure 

Following the workflow (Figure 18), the predicted rock thermal properties 

require correction for in situ temperature and pressure. As we did not conduct 

measurements of rock thermal properties at elevated temperature and pressure for 

the studied core samples, we use data available in the literature to account for in situ 

conditions. 

Recent investigations of rock samples from the Domanic Formations (Gabova 

et al., 2020) have revealed that the average decrease in thermal conductivity (λ‖) for 

Domanic Formation rocks at 60 °C is ~4%. 

Temperature corrections for thermal conductivity should be performed to 

account for thermal anisotropy since there are different dependencies of thermal 

conductivity on pressure and temperature for components parallel and perpendicular 

to the bedding plane directions (as shown by Wang et al., 2018). In literature, there 

are still no reliable experimental data on the dependencies of thermal conductivity 

on temperature accounting for the thermal anisotropy of the rocks from the Domanic 

Formation. Thus, we imply that the necessary temperature corrections for thermal 

conductivity parallel and perpendicular to the bedding plane are equal and amount 

to 4%. 
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There is no data in the literature on dependencies of thermal conductivity of the 

Domanic Formation rocks from pressure. Therefore, we can only assume that for 

Domanic Formation rocks, as well as for the Bazhenov Formation rocks (Section 

2.1.2.4), the necessary pressure correction do not exceed 5%.  

Following Waples D. and Waples S. (2004) research results, we imply a 

negligible effect of pressure volumetric heat capacity (for the in situ pressure of the 

Domanic Formations, the increase in pressure is less than approximately 1%). The 

temperature effect on volumetric heat capacity can be inferred from Savest and Oja 

(2013). According to their results, the correction to volumetric heat capacity for oil 

shales at temperature 60 °C amounts approximately to 5%. 

4.3. Comparison of the WBLT for determining rock thermal properties and 

Deming approach 

As it was previously mentioned, there is lack of approaches that focus on 

predicting rock thermal conductivity from well-logging data accounting for thermal 

anisotropy. One of the most commonly used approaches to account for thermal 

anisotropy was suggested by Deming (1994). There are many studies that apply this 

approach during the investigation of basin thermal structures and variations of heat 

flow density (see, e.g.  Tanikawa et al., 2016; Corry and Brown, 1998). Hence, the 

comparison study of the novel technique for predicting rock thermal properties 

accounting for thermal anisotropy and the Deming correction approach was 

performed to assess their effectiveness. 

4.3.1. Workflow of the Deming correction approach 

The Deming approach bases on application of theoretical model of 

Lichtenecker. The thermal anisotropy of a certain component is assumed as a main 

factor resulting in thermal anisotropy of a rock. For two-component porous rock 
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thermal conductivity for parallel and perpendicular directions to the bedding plane 

are determined the following way: 

𝜆‖ = 𝜆𝑚𝑎𝑡𝑟𝑖𝑥 ‖
1−𝜙

· 𝜆𝑓𝑙𝑢𝑖𝑑
𝜙

     (20) 

𝜆⊥ = 𝜆𝑚𝑎𝑡𝑟𝑖𝑥 ⊥
1−𝜙

· 𝜆𝑓𝑙𝑢𝑖𝑑
𝜙

     (21) 

where λ|| is effective thermal conductivity of a rock for parallel direction to the 

bedding plane, λꞱ is effective thermal conductivity of a rock for perpendicular 

direction to the bedding plane, λmatrix|| and λmatrixꞱ  are thermal conductivity of a rock 

matrix for parallel and perpendicular directions, respectively, λfluid is thermal 

conductivity of a fluid and 𝜙 stands for porosity.  

Thermal conductivity of rock matrix for parallel and perpendicular directions 

can be determined from minimization of the discrepancy between measured and 

predicted thermal conductivity for corresponding directions.  

4.3.2. Case study: predicting rock thermal conductivity accounting for thermal 

anisotropy based on the Deming approach and the novel WLBT for 

determining rock thermal properties 

The object of investigation is the same that was described within Section 3.2. 

The data for clayous rocks is considered within the case study. The results of 

determining rock thermal conductivity on the basis of the Krischer-Esdorn model 

are presented within Section 3.2.2.3.  

4.3.2.1 Calibrating the Lichtenecker model via the Deming approach 

From correlation analysis of high-definition spectroscopy data and thermal 

anisotropy coefficient data that were inferred from thermal core logging, it was 

established that there are statistically significant correlations between the coefficient 

of thermal anisotropy and volume fraction of illite and kaolinite (Figure 26). 
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Figure 26. Cross-plots between thermal anisotropy coefficient and illite volume 

fraction (left panel) and thermal anisotropy coefficient and kaolinite volume fraction 

(right panel). The dashed lines represent the regression trend. 

Thus, we implied three-component media composed of isotropic rock matrix, 

anisotropic clayous minerals and pore-filling fluid. The rock matrix is composed of 

orthoclase, albite, siliceous minerals, and siderite. Thermal conductivity of rock 

matrix was calculated using data on volume fractions of minerals (inferred from 

high-definition spectroscopy) and data on thermal conductivity of those minerals 

(Section 3.1.2.2, Table 8) via the Lichtenecker model. Due to extremely low 

permeability, the pore space of the investigating rocks was considered fully water-

saturated. The Lichtenecker model that was utilized within the case study can be 

written the following way: 

𝜆‖ = 𝜆𝑚𝑎𝑡𝑟𝑖𝑥 
𝑉𝑚𝑎𝑡𝑟𝑖𝑥 · 𝜆

𝑐𝑙𝑎𝑦‖ 

𝑉𝑐𝑙𝑎𝑦 · 𝜆𝑓𝑙𝑢𝑖𝑑
𝜙

     (22) 

𝜆Ʇ = 𝜆𝑚𝑎𝑡𝑟𝑖𝑥 
1−𝜙

· 𝜆
𝑐𝑙𝑎𝑦Ʇ 

𝑉𝑐𝑙𝑎𝑦 · 𝜆𝑓𝑙𝑢𝑖𝑑
𝜙

     (23) 

To determine the thermal conductivity of clayous component, the constrained 

genetic minimization algorithm (Storn and Price, 1997) was applied. The available 

data were subdivided into the same random train (66% of all data) and test datasets 
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(34% of all dataset) that were presented in Section 3.2. From minimization of  the 

discrepancy between predicted and measured values of thermal conductivity on a 

train dataset it was established that thermal conductivity of clay component for 

parallel and perpendicular directions to the bedding plane is 2.57 W·m-1·K-1 and 1.21 

W·m-1·K-1, respectively. The calculated values of R2, RMSE, accuracy and 

precision for the train dataset are summarized in Table 18. 

Table 18. Prediction results of the rock thermal properties on the train datasets. 

λ|| λꞱ 

R2 RMSE, W·m-1·K-1 P, % A,% R2 RMSE, W·m-1·K-1 P, % A, % 

0.25 0.15 12.4 0.9 0.56 0.18 20.1 -0.1 

4.3.2.2 Training gradient boosting regression models for determining rock 

thermal conductivity accounting for thermal anisotropy 

The well-logging data were used as input data, while the data on rock thermal 

conductivity for parallel and perpendicular directions to the bedding plane were used 

as the variables to predict. The available well-logging data include radioactivity, 

density, photoelectric factor, neutron porosity, P-wave and S-wave velocities for 

parallel and perpendicular directions to the bedding plane (that were inferred from 

cross-dipole sonic log data). Additionally, as input data, the calculated acoustic 

impedances (VP·ρ, VS·ρ) were used. The initial dataset was subdivided the same way 

(exactly the same depth points) as it was done in the previous Section. 

 For the multiple regression analysis, we used a gradient boosting method 

(Friedman, 1999). The training dataset was used to fit the regression model to 

experimental data, while the test dataset was used to provide an unbiased evaluation 

of the regression model fit on the training dataset. 

The gradient boosting algorithm was trained using the k-fold cross-validation 

method (Stone 1974). We used three k-folds. During regression model training, we 

tuned the following set of hyperparameters: (1) learning rate, (2) number of boosting 
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stages (number of estimators), (3) maximum depth of the individual regression 

estimators (max depth), and the fraction of samples to be used for fitting the 

individual base learners (subsample). The cross-validation was performed over the 

predefined grid of hyperparameters. A mean squared error was used to evaluate the 

model fit. The results of the hyperparameter tuning for gradient boosting on the 

training datasets are presented in Table 19. 

Table 19. Results of hyperparameter tuning for gradient boosting of the training 
datasets. 

Thermal conductivity Optimal parameters RMSE R2 P,% A,% N 

λ||, W·m-1·K-1 

learning rate = 0.1 

number of estimators = 60 

max depth = 3 

subsample = 0.2 

0.04 0.92 5.1 0.1 128 

λꞱ, W·m-1·K-1 

learning rate = 0.13 

number of estimators = 30 

max depth = 3 

subsample =5 

0.06 0.96 11.6 0.1 92 

 

The obtained correlation coefficients (r = (R2)0.5) between the measured and 

predicted values of the rock thermal properties are statistically significant according 

to Student’s t-test for the 0.95 confidence level (rcritical = 0.17 for N = 128, rcritical = 

0.21 for N = 92).  

4.3.2.3 Predicting rock thermal conductivity based on the Deming approach 

and the gradient boosting regression models 

The determined values of thermal conductivity of clayous component for 

parallel and perpendicular directions to the bedding plane were used to predict rock 

thermal conductivity on a test dataset. As well as for the training dataset, the matrix 

thermal conductivity for the test dataset was calculated using data on volume 

fractions of minerals (inferred from high-definition spectroscopy) and data on 

thermal conductivity of that minerals via the Lichtenecker model (equations 22 and 

23). The trained gradient boosting regression models were used for predicting 
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thermal conductivity for parallel and perpendicular directions to the bedding plane 

on a test dataset. The results of thermal conductivity predictions based on the 

Deming approach and the novel WLBT technique are presented in Table 17.  

Table 20. Prediction results of the rock thermal properties on the test dataset. 

Model* 

λ|| λꞱ 

R2 
RMSE P A 

R2 
RMSE P A 

W·m-1·K-1 % % W·m-1·K-1 % % 

Deming 0.1 0.15 12.7 -0.9 0.56 0.18 20.8 0.1 

GB 0.93 0.07 6.06 0.2 0.73 0.14 15.4 0.3 

*GB stands for the gradient boosting method; Deming stands for predictions that are based on the Deming approach. 

 Figure 27 plots measured and predicted values of rock thermal conductivity 

for parallel and perpendicular directions to the bedding plane.  

 

Figure 27. Experimental data of the rock thermal conductivity compared to the 

thermal conductivity predicted from well-logging data of test datasets for the 

investigating clayous rocks. Black dots present results with the gradient boosting 

method, red dots results via the Deming approach. The dashed black line (y=x) 

shows perfect prediction. 

The Deming correction approach provided less precise predictions of rock 

thermal conductivity both for parallel and perpendicular directions to the bedding 

plane. The novel WBLT for determining rock thermal properties provided 

essentially more accurate predictions based on both theoretical model-based 

approach (see Table 10) and regression model-based approach (the gradient boosting 
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regression models in our case) according to higher values of R2 between the 

measured and predicted values and lower values of RMSE and precision. 

Concurrently, comparing Table 10 and Table 17 it can be concluded that, thermal 

conductivity predictions for both parallel and perpendicular directions to the bedding 

plane that were made based on the Krischer-Esdorn model and the gradient boosting 

regression models are of a relatively similar quality (according to the obtained 

metrics).  

For a detailed uncertainty analysis, the boxplot of the relative discrepancies 

between the measured and predicted values is plotted in Figure 28. From the analysis 

of the obtained boxplots it can be concluded that the Deming correction approach 

yields systematic errors for low and high thermal conductivities both for parallel and 

perpendicular directions to the bedding plane. The gradient boosting regression 

models yield systematic errors within the range of 2-2.2 W·m-1·K-1 for thermal 

conductivity parallel to the bedding plane and within the range of 1.2-1.6 W·m-1·K-

1 for thermal conductivity perpendicular to the bedding plane. 

The obtained results demonstrate that the novel WBLT for predicting rock 

thermal properties accounting for thermal anisotropy is essentially more effective 

compared to the approach suggested by Deming. The higher effectiveness of the 

WLBT is conditioned by applying enhanced theoretical models of thermal 

conductivity, advanced machine-learning techniques, and integration of thermal 

core logging data.  
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Figure 28. Boxplots of the relative discrepancies between the measured and 

predicted values of rock thermal conductivity for the investigating clayous rocks. 

The upper panel represents the boxplots for predictions that are made via the Deming 

correction approach. The lower panel represents the boxplots for predictions that are 

made via the gradient boosting regression models. Histograms of thermal 

conductivities for the test dataset are also shown. 

4.4. Conclusions 

The developed approaches (in Chapters 2 and 3) for predicting rock thermal 

properties accounting for thermal anisotropy, rock heterogeneity and in situ 
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thermobaric conditions were unified and presented within the novel well-defined 

workflow. The developed workflow basis on application of advanced thermal core 

logging technique that provides continuous non-contact non-destructive profiling of 

thermal conductivity (principal components of thermal conductivity) and volumetric 

heat capacity on full-diameter cores, core plugs, and broken cores. The novel WLBT 

for predicting rock thermal properties implies the application of advanced machine-

learning techniques or enhanced theoretical modelling depending on the available 

input data.  

The novel WLBT was tested for organic-rich shales of the Domanic Formation. 

From the comparison of the experimental and predicted data on rock thermal 

properties, it can be concluded that novel WLBT provided uncertainties in data on 

thermal conductivity for parallel direction less than 7%, for perpendicular direction 

– less than 13% and uncertainties in data on volumetric heat capacity is less than 

5%.  

The comparison study of the effectiveness of the novel WLBT and the 

commonly used Deming approach at predicting thermal conductivity accounting for 

thermal anisotropy was conducted within the case study. The object of investigation 

was clayous rock of the Tumen Formation. The prediction results revealed that the 

novel WLBT provides more precise predictions of thermal conductivity for both 

parallel and perpendicular directions to the bedding plane essentially. The higher 

effectiveness of the WLBT is conditioned by application of enhanced theoretical 

models of thermal conductivity, of advanced machine-learning techniques and 

integration of the thermal core logging data.  

Thus, testing of the WLBT technique for principally distinct sedimentary rocks 

and high-quality results demonstrated its universal applicability. 
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Chapter 5. Results of implementing WLBT for determining rock 

thermal properties during investigations of oil fields 

Information about the actual heat flow and rock thermal properties is necessary 

for modelling sedimentary basins and oil- and gas-bearing systems (Hantschel and 

Kauerauf, 2009). The reliability of the modelling results depends on the reliability 

of these data. It was shown that uncertainties in these data lead to a severe reduction 

of the reliability of basin and petroleum system modelling (Chekhonin et al., 2020) 

conducted on areas of the Earth's crust with the occurrence of unconventional 

reservoirs. There are many imperfections of the previously used methods of 

geothermal investigations that lead to unreliable data on heat flow density (Popov 

Y. et al., 2019b).  

However, due to the implementation of the novel experimental basis of 

geothermal investigations, the qualitatively new framework was enabled for reliable 

determining data on rock thermal properties and heat flow density (Popov E. et al., 

2019). All of this prompted conducting unique geothermal investigations of 

prospecting and appraisal wells located in Russia. Accounting for scope of work, 

complex character of investigations, application of the novel experimental and 

methodological framework of the geothermics, and joint efforts of scientific and 

industrial organizations, it is fair to assume that such investigations were performed 

for the first time in the practice of global petroleum geophysics. Moreover, the 

performed geothermal investigations demonstrated that the WLBT for determining 

rock thermal properties is a critical component for reliable determining vertical 

variations of heat flow density. 

5.1 Determining vertical variations of rock thermal properties and heat flow 

density along Bazhenovskaya 1 well 

In this Section are described results of implementing the developed WLBT for 

predicting rock thermal conductivity during geothermal study of southwest part of 

Lyaminsk oil and gas region of the West Siberian basin. 
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5.1.1. Object of study 

The investigating well is located in the southwest part of the Lyaminsk oil and 

gas region of the West Siberian basin near the Khanty-Mansyisk city, Russia. The 

area understudy is referred to Elisarov downfold. According to the results of 

structural-facial zoning, the investigating area is classified as a transitional area of 

the Bazhenov Formation into the Tutleim Formation. 

Well drilling was started and completed in 2018. The well is almost vertical. 

The maximum well inclination does not exceed 1⁰ 80'.  The final depth of the well 

is 3202.8 m. The geological profile of the investigating well includes the Vikulov, 

Frolov, Tutleim, Abalak, and Tymen formations as well as pre-Jurassic deposits 

(Table 21). The total length of cored intervals is 643.8 m with 89.3 core recovery 

(574.98 m). 

Table 21. Characteristics of the rocks from the investigating well based on the 
analysis of the recovered cores.  

№ Rock type Age Logging depth, m N* 

1 Interbedding of siltstones, argillites and quartz sandstones. K1vk 1735-1786.9 310 

2 Argillites with rare thin layers of marl. K1fr 

2131.6-2196.6 626 

2416.6-2462.6 247 

2720.1-2770 376 

3 

Bituminous argillites with pyritization and fractures in the upper 

part. Bituminous clayous rocks with pyritization in the lower part. 
K1tt2 2770-2791.33 147 

Bituminous clayous carbonate thin bedded rocks with pyritization. 

In some cases with siliceous components. 
J3 - K1tt1 2802.12-2827.92 157 

4 

In the upper part – thin bedded argillites with rare layers lenses of 

sandstone and siltstone. In the lower part – interbedding of siltstone 

and argillite. 

J2-3ab 2828-2846.6 147 

6 

Inhomogeneous interbedding of argillite and siltstone with rare 

layers of coal and sandstones in the upper part. Inhomogeneous 

interbedding of argillite, siltstone and sandstone with thin layers of 

coal and marl in the middle part. In the lower part – interbedding 

of sandstone, conglomerate and sandy gravelstone with thin layers 

of argillite and coal. 

J2tm 2847-3030 1324 

7 

3030-3032.5 – crust of weathering composed of gravelstone, 

argillite, coal and siliceous-clayous rocks. 3032.5-3202.8 – pre-

Jurassic formation composed of (1) in the upper part - rhyolite, 

rhyolite-rhyodacite tuffs, (2) in the middle part – siltstone, argillite, 

P-T 3030-3202.8 768 
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and sandstone, and (3) in the lower part – rhyolite and rhyolite-

rhyodacite tuffs. 

*N – number of recovered core samples.  
 

5.1.2. Results of measuring rock thermal properties and temperature logging 

To obtain the data on rock thermal properties, the following set of experimental 

investigations was conducted: 

• The continuous thermal core logging with optical scanning technique of all 

recovered full-sized cores. 

• Additional measurements of rock thermal properties on a representative 

collection of standard core plug at different saturations with the optical 

scanning laser setup (Popov E. et al., 2019). 

• Measurements of rock thermal properties at elevated temperatures on a 

representative collection of standard plugs with the optical scanning laser 

device, DTC-300 devise and DCS 214 Polyma (NETZSCH). 

Representative collections of core samples for additional measurements are 

selected based on results of the continuous thermal core logging of full-sized cores 

and its lithological description. 

During thermal core logging, the total relative measurement uncertainty did not 

exceed ±2.5% for thermal conductivity (with measurement precision not exceeding 

±1.5%), ±4% for thermal diffusivity, and ±5% for the volumetric heat capacity 

(measurement uncertainties are reported for 0.95 confidence level). Figures 29 and 

30 plot the distributions of the average rock thermal conductivity components for 

parallel and perpendicular directions to the bedding plane, rock volumetric heat 

capacity, thermal anisotropy coefficient, and heterogeneity factor for the 

investigated depth intervals of the Vikulov Formation and the Frolov Formaiton. 
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Figure 29. Results of continuous thermal core logging for depth intervals of the 

Vikulov (upper panel) and Frolov formations (lower panel). Black coloured dots 

represents thermal conductivity parallel to the bedding plane, red coloured dots 

represent thermal conductivity perpendicular to the bedding plane, green colored 

dots represent volumetric heat capacity, blue coloured dots represent thermal 

heterogeneity factor, and purple coloured dots represent thermal anisotropy 

coefficient. Grey coloured dots represent high-resolution profiles (with 1-mm spatial 

resolution) of thermal conductivity and volumetric heat capacity. 
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To correct results of the continuous thermal core logging for in situ saturation, 

measurements of rock thermal properties (with the optical scanning laser setup) and 

porosity on 40 core plugs were conducted. Measurements on standard core plugs 

were conducted at “as received” dried and saturated states. These measurements 

enabled establishing the dependency of the relative increase of thermal properties 

after full water saturation from rock porosity. The example of the assessment of 

relative increase of thermal conductivity after saturating core samples is presented 

in Figure 30.  

 

Figure 30. The dependency of relative increase of thermal conductivity after water 

saturation from porosity for the Vikulov and Frolov formations (left panel) and for 

the Abalak and Tyumen formations (right panel). Red colored dots and regression 

trend represent data for thermal conductivity perpendicular to the bedding plane. 

Black colored dots and regression trend represent data for thermal conductivity 

parallel to the bedding plane.   

 

The results of temperature logging are given in Figure 31. The well was 

suspended for at least six months and, thus, the registered temperature gradient can 

be treated as equilibrium. For the general characterization of vertical variations of 

the temperature gradient, Figure 31 (right panel) plots the results of the temperature 

gradient calculations for each 50 m depth interval with a 10 cm step. 
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Figure 31. The temperature and temperature gradient along the well.   

5.1.3. Results of application of WLBT for determining rock thermal conductivity 

within non-coring intervals 

The target intervals for predicting rock thermal properties from well-logging 

data within non-coring intervals were the Vikulov and Frolov formations. These 

formations exhibit a considerable degree of thermal anisotropy according to the 

results of thermal core logging (Figure 32). 
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Figure 32. The histogram of thermal anisotropy coefficient for the Vikulov (black 

colour) and the Frolov (blue colour) formations.  

 

The oriented bedded texture of argillites in the Frolov formation condition higher 

degree of thermal anisotropy than the Vikulov formation rocks. The rocks from the 

Vikulov and Frolov formations at in situ conditions are water-saturated according to 

results of interpreting well-logging data and analysis of recovered core samples. The 

directions of principal axes of thermal conductivity tensor for the investigating rocks 

coincide with parallel and perpendicular directions to the bedding plane according 

to results of thermal core logging of full-sized cores and standard core plugs. Hence, 

during thermal core logging, the scanning lines were parallel and perpendicular to 

the bedding plane.  

The rock thermal properties for the Vikulov formation were determined using 

theoretical modelling.  

The Lichtenecker-Rother model was the basis for predicting rock thermal 

conductivity. The two-component medium (rock matrix and pore-filling fluid) was 

considered for the Vikulov Formation rocks. The application of the Lichtenecker-

Rother model requires data on thermal conductivity of rock matrix, thermal 

conductivity of the pore-filling fluid, porosity, and the correction factor “α” (see 

formula 6, Seciton 3.2.2.). The thermal conductivity of water is 0.6 W·m-1·K-1 and 

data on rock porosity was inferred via standard processing and interpreting the 
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density log data. The data on thermal conductivity of matrix and the correction factor 

were inferred the following way. 

In the first step, we used the results of measurements of rock thermal properties 

on standard core plugs. Since results of measurements were available for dried and 

water-saturated states, the following system of equations was solved for each core 

sample: 

{
𝜆𝑒𝑓𝑓
𝑑𝑟𝑦

= ((1 − 𝜙) · 𝜆𝑚𝑎𝑡𝑟𝑖𝑥
𝛼 + 𝜙 · 𝜆𝑎𝑖𝑟

𝛼 )
1

𝛼

𝜆𝑒𝑓𝑓
𝑤𝑎𝑡𝑒𝑟 = ((1 − 𝜙) · 𝜆𝑚𝑎𝑡𝑟𝑖𝑥

𝛼 + 𝜙 · 𝜆𝑤𝑎𝑡𝑒𝑟
𝛼 )

1

𝛼

   (24) 

where λeff 
dry is effective thermal conductivity for dried core plug, λeff 

water is effective 

thermal conductivity for water-saturated core plug, 𝜙 is porosity, λmatrix is the thermal 

conductivity of rock matrix, λair is the thermal conductivity of air, λwater is thermal 

conductivity of water and α is a correction factor. The modelling implies several 

assumptions: 

 rock matrix is isotropic; 

 anisotropy of rocks is conditioned by the oriented laminated texture of rocks 

(structural nature of anisotropy). 

 the correction factor α encompasses the effect structural and textural 

peculiarities of rocks on rock thermal conductivity; 

 the correction factor α does not depend on saturation type. 

Firstly, this system of equations was solved for the parallel component of thermal 

conductivity. Secondly, this system of equations was solved for the perpendicular 

component of thermal conductivity but with already known values of matrix thermal 

conductivity. This is reasoned by the more significant influence of micro fracturing 

of rocks on the perpendicular component of thermal conductivity. Figure 33 plots 

the results of determining matrix thermal conductivity and correction factor for 

parallel and perpendicular directions to the bedding plane. 
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Figure 33. The histogram of the determined correction factors for parallel (black 

colour) and perpendicular (red colour) directions to the bedding plane and thermal 

conductivity of rock matrix (right panel). 

 

As a result, the possible ranges for matrix thermal conductivity and the correction 

factors (for parallel and perpendicular directions to the bedding plane) were 

established.  

In the second step, the average values of matrix thermal conductivity and 

correction factors are determined for the investigating rocks via solving the 

following system of equations: 

{
 
 

 
 
λ‖ = ((1 − 𝜙)𝜆𝑚𝑎𝑡𝑟𝑖𝑥

α‖ + 𝜙𝜆
𝑓𝑙𝑢𝑖𝑑

α‖
)

1

α‖

λ⊥ = ((1 − 𝜙)𝜆𝑚𝑎𝑡𝑟𝑖𝑥
α⊥ + 𝜙𝜆𝑓𝑙𝑢𝑖𝑑

α⊥ )

1

α⊥

    (25) 

where λ|| and λ⊥ are thermal conductivity parallel and perpendicular to the bedding 

plane, respectively, that were inferred from continuous thermal core logging. The 

matrix thermal conductivity and correction factors are determined via constrained 

minimization of the mean discrepancy between measured and predicted thermal 

conductivity values simultaneously for parallel and perpendicular directions to the 

bedding plane. The constraints for matrix thermal conductivity and correction 

factors (for parallel and perpendicular directions to the bedding plane) are taken from 

the previous step (see Figure 33). The possible range for thermal conductivity of 

pore-filling fluid was set from 0.0024 to 0.6 W·m-1·K-1 since at the time of thermal 
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core logging of full-sized cores, the pore-filling fluid was a mixture of air and water. 

According to minimization results, the average matrix thermal conductivity is 3.11 

W·m-1·K-1, the average values of α|| and α⊥ are 0.08 and -0.06, respectively, and 

thermal conductivity of pore-filling fluid is 0.12 W·m-1·K-1. The results of 

predicting the thermal conductivity of rocks within the reference interval and 

assessment of prediction quality are presented in Figure 34. 

 

Figure 34. The results of predicting the thermal conductivity of rocks and 

assessment of prediction quality for the Vikulov Formation. Black and red curves 

(left panel) represent measured values of thermal conductivity for parallel and 

perpendicular directions to the bedding plane, respectively. Green dots represent the 

predicted thermal conductivity. Prediction quality is reported for a 0.95 confidence 

level. 

 

The rock thermal properties for the Frolov formation were determined using 

gradient boosting. The density and gamma-ray logs were used to predict thermal 

conductivity within non-coring intervals.  
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In the first step, the initial 1-mm profiles of thermal conductivity were averaged 

within a 0.5 m moving shift window to obtain a vertical resolution comparable with 

the vertical resolution of the logging tools. In addition, the core depths were matched 

with logging depths using the results of gamma-spectrometry. The available dataset 

(that is composed of data on rock thermal conductivity and well-logging data) was 

subdivided into the random train (80% of the whole dataset) and test subsets (20% 

of the entire dataset). The train subset was used to train the gradient boosting 

regression model, whereas the test subset was used for unbiased evaluation of the 

regression model fit on the training dataset. The optimal hyperparameters of the 

gradient boosting regression model were determined via the cross-validation method 

(three folds were used). The results of the assessment of prediction quality for 

thermal conductivity parallel to the bedding plane are summarized in Table 22.  

Table 22. Results of the gradient boosting regression model training and testing. 

Subset R2 P, % A, % 

train 0.25 6.7 0.7 

test 0.4 6.5 0.2 

 

Figure 35 plots predicted and measured values of thermal conductivity for train and 

test subsets. 

 

Figure 35. The cross-plot of measured and predicted values of thermal conductivity 

parallel to the bedding plane.  
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Due to the fracturing of core samples from the Frolov Formation, did not allow 

to correctly upscale the initial data on thermal conductivity perpendicular to the 

bedding plane to logging scale. Because of that, the relation between thermal 

conductivity parallel to the bedding plane and perpendicular to the bedding plane 

was analyzed. Figure 36 plots the dependency of thermal anisotropy coefficient from 

thermal conductivity perpendicular to the bedding plane. 

 

Figure 36. The cross-plot of thermal anisotropy coefficient and thermal conductivity 

perpendicular to the bedding plane.  

The obtained determination coefficient for the regression equation in Figure 36 is 

statistically significant (at 0.95 confidence level) and, therefore, can be used to 

determine thermal conductivity perpendicular to the bedding plane from data on 

thermal conductivity parallel to the bedding plane.  

Figure 37 plots the results of well-log based prediction of rock thermal 

conductivity for parallel and perpendicular directions to the bedding plane at 

atmospheric conditions. 
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Figure 37. Results of well-log based prediction of rock thermal conductivity for 

parallel and perpendicular directions to the bedding plane at atmospheric conditions 

(Popov et al., 2021a). Green coloured dots represent experimental data and black 

coloured dots represent the predicted data on rock thermal conductivity. Lithology: 

1 – interbedding of argillites and siltstone, 2 – marl, 3 – sandstone, 4 – bituminous 

argillite, 5 – argillites, 6 – limy sandstone, 7 – metorhyolites, 8 – metoplagiogranite, 

9 – rhyolite, 10 – tuff, 11 – sandy gravelite, 12 – argillite with coals.  

 

 

Massimo
Cross-Out

Massimo
Inserted Text
meta

Massimo
Cross-Out

Massimo
Inserted Text
meta

Massimo
Cross-Out

Massimo
Cross-Out



138 

 

5.1.4. Determining vertical variations of heat flow density 

Determining the conductive component of the heat flow density via the Fourier 

equation requires data on equivalent thermal conductivity of rocks along 

perpendicular direction to the bedding plane, assuming that the vertical component 

of temperature gradient was registered (Popov and Mandel, 1998). 

The equivalent thermal conductivity of rocks was determined accounting for 

the following factors: 

• results of thermal core logging measurements of thermal conductivity 

components for parallel and perpendicular to the bedding plane directions 

for 4102 full-sized core samples; 

• results of additional measurements of the rock thermal properties on 40 

standard core plugs drilled out full-size core samples and selected using the 

results of thermal core logging; 

• results of well-log based predictions of rock thermal conductivity; 

• experimental data on micro- and macro-anisotropy of rocks obtained from 

the thermal property measurements on 4102 full-size core samples and 40 

core plugs; 

• results of thermal property measurements on selected full-sized core 

samples and core plugs saturated with formation fluid model; 

• aging of core samples during core storage due to decompression effect; 

• effects of in situ temperature and pressure separately for thermal 

conductivity tensor components. 

Figure 38 plots the results of determining temperature gradient, equivalent 

thermal conductivity of rocks and the heat flow density within 14 depth intervals 

that were distinguished according to the analysis of vertical variations of thermal 

conductivity and the temperature gradient. 
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Figure 38. Results of determining temperature gradient, equivalent thermal 

conductivity of rocks and the heat flow density within 14 depth intervals. Lithology 

legend was given in Figure 37 (Popov et al., 2021a). 

 

The obtained results manifest the significant vertical variations of heat flow 

density along the investigated well. Within the 1736-2821 m interval, the average 

heat flow density is 56.3 mW·m-2, and within 2828-3121 m interval, the average heat 

flow density is 87.1 mW·m-2, i.e. increases by 55% (Popov et al., 2021a).  

The data of terrestrial heat flow that was registered in the investigating well are 

in agreement with the data on terrestrial heat flow that was determined during the 

investigation of nearly located super-deep well SG6 and En-Yahinskaya super-deep 
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well SG-7 (Popov et al., 2008, 2012). Based on the comparison of the previous data 

on heat flow density in the investigating are (Duchkov et al., 1987; Kurchikov et al., 

1987) with the new data on heat flow density, the relative difference amounts to 45% 

(previously the heat flow density was 55-65 mW·m-2).  

5.2 Determining vertical variations of rock thermal properties and heat flow 

density along Baleikinskaya 10 well 

In this Section are described results of implementing the developed WLBT for 

predicting rock thermal conductivity during geothermal study of the Baleikinskoye 

oil field. 

5.2.1. Object of study 

The studied well belongs to the group of wells drilled in the framework of the 

development of the unconventional Domanik resources in the Volga-Urals region 

(Peterson et al., 1983; Bazhenova, 2017; Ulimshek, 2003; Vashkevich et al., 2018). 

The well was drilled on the territory of the Baleikinskoye field that had been 

discovered in 2006 in the Orenburg region of the Russian Federation. Drilling was 

started on 6 December 2013 and finished on 22 April 2014. The drilling depth was 

3827 m. The maximum tilt angle of the well is 1⁰ 80' at a depth of 1360 m. The 

structural casing, the conductor, and the production strings are cemented up to the 

wellhead, eliminating the possibility of vertical inter-string flows that can distort the 

temperature field of rocks. 

The borehole was drilled through the Quaternary, Paleozoic, and Upper 

Proterozoic sediments (Table 23). The Quaternary sediments are represented by 

clays, argillaceous sand grounds, and conglomerates. The Paleozoic group is 

represented by the deposits of Permian, Carbonous, and Devonian systems, the 

Upper Proterozoic one by the Vendian-Riphean formations. The Upper-Middle 

Perm sedimentary rocks are characterized by alternating shales, siltstone, and 
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sandstones with subordinate interlayers of carbonate rocks. The Lower Permian and 

Carboniferous formations are represented by carbonate rocks (unevenly sulfated 

dolomite and limestone). There is a powerful sulfate-halogen formation in the upper 

part of the Lower Permian sediments (743.0-1192.0 m), which forms a regional seal. 

Limestones prevail in the Upper-Middle Devonian series. Sandstones and 

gravelstone represent the Lower Devonian series of the Paleozoic group and the 

Upper Proterozoic sediments. In the depth interval of 3371.9 to 3452.0 m, the 

borehole crossed the Domanik Formation. 

Table 23. Characteristics of the rocks from the investigating well based on the 
analysis of the recovered cores.  

№  Rock type Age Logging depth, m                    N* 

1 In the upper part anhydrite-dolomite rock, in the 

middle and lower parts - limestone 

Р1ar 1348.50 - 1366.10 135 

2 Biclastic limestones with rare inclusions of 

anhydrite and porous intervals  

С1t 

 

2612.29 - 2629.20 145 

2657.00 - 2665.74 73 

3 Biclastic limestones that are (1) with rare 

dolomitized intervals, (2) porous, (3) cavernous, (4) 

oil-saturated in some intervals, (5) with a rare 

interbedding of argillites. 

D3zv 

 

2737.30 - 2746.02 78 

2754.90 - 2763.60 65 

2794.90 - 2812.50 143 

4 Biclastic limestones that are porous, fractured, with 

rare interbedding of argillites. 

D3fm 2916.90 - 2934.34 143 

6 In the upper part – quartz sandstones and argillites; 

in the middle part – limestones and argillites; and in 

the lower part – marlstones. 

D3p-D2ml 3506.40 - 3539.30 272 

7 Interbedding of quartz sandstones and shally 

siltstone. 

D2ar 3585.38 - 3597.40 92 

8 Biclastic limestones with oil saturated intervals and 

thin layers of sandstones.  

D2vb-D2af 3619.20 - 3630.68 89 

9 Biclastic limestones that are unevenly oil-saturated. D2af 3650.00 - 3667.08 93 

10 In the upper part – organogenic limestone; in the 

middle and lower parts – quartz sandstones and 

argillites.  

D2bs-D1kv 3756.70 - 3776.31 148 

11 Argillites, sandstones and gravelites.  V-R 3782.64 - 3812.12 223 
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5.2.2. Results of measuring rock thermal properties and temperature logging 

The temperature logging was conducted in December 2017. Before the 

temperature logging, the well was suspended for 12.5 months after the last 

operations in it. At the time of temperature logging, the current well bottom was 

3610 m. The sampling rate during temperature measurements was 0.1 m. There was 

a cement plug below the current bottom at a depth of 3610 m, thus being unavailable 

for the survey. The quality of the temperature logs throughout the investigating well 

can be evaluated as good. 

The results of temperature logging are given in Figure 39. The results of 

temperature logging merge in one curve for three different measurements. For the 

general characterization of vertical variations of the temperature gradient, Figure 39 

(right panel) plots the results of the temperature gradient calculations for each 50 m 

depth interval with a 10 cm step. 
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Figure 39. Temperature (black curve) and temperature gradient (blue curve) 

distributions along the well (Popov et al., 2021b). Black dots on the left panel 

represent intervals of drilling with coring. Red dots on the right panel represent bad-

hole quality intervals (cavernous intervals; diameters of caverns exceed 10 cm). A 

dashed black line on the right panel represents the regression trend for temperature 

gradient with depth (the correlation coefficient and the standard deviation are given 

below the regression equation). Lithology legend: 1 – sandstone, 2 – carbonate-rich 

sandstone, 3 – bituminous argillite, 4 – clayous sand-stone, 5 – silty argillite, 6 – 

limestone, 7 – dolomite, 8 – dolomite limestone, 9 – limy dolomite, 10 – anhydrite. 

Measurements of rock thermal properties on full-sized cores, sawed along its 

vertical axis, were conducted using a field lamp device of optical scanning (Popov 

et al., 2016). The total relative measurement uncertainty did not exceed ±2.5% for 

the thermal conductivity (with a measurement precision not exceeding 1.5%), ±4% 

for the thermal diffusivity, ±5% for the volumetric heat capacity (measurement 

uncertainties are reported for 0.95 confidence level). 

For each of 1699 full-sized core samples recovered from well during drilling, a 

series of measurements of the thermal properties were conducted in the core storage 

via the continuous thermal core logging with the combination of scanning for two 

mutually perpendicular directions (Popov E. et al., 2020). The core sample lengths 

ranged from 31 to 404 mm with an average length of 99 mm (Figure  40). 

 

Figure 40. Distribution histogram for the length of full-sized cores under study 

(Popov et al., 2021b). 
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The measurements were performed on a flat surface of core samples, sawed 

along their vertical axis (volumetric ratio of the sawed parts was 1:2). The core 

samples were stored at atmospheric conditions for about a year after being recovered 

from the borehole. Figure 41, by way of example, plots the distributions of the 

average rock thermal conductivity components for parallel and perpendicular 

directions to the bedding plane, rock volumetric heat capacity, thermal anisotropy 

coefficient, and heterogeneity factor for the investigated depth intervals. 
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Figure 41. Results of continuous thermal core logging for depth intervals 1348.5-

1366.1 m (upper panel) and 2612.29-2629.2 m (lower panel) (Popov et al., 2021b). 

Black coloured dots represents thermal conductivity parallel to the bedding plane, 

red colored dots represent thermal conductivity perpendicular to the bedding plane, 

green coloured dots represent volumetric heat capacity, blue coloured dots represent 

thermal heterogeneity factor, and purple coloured dots represent thermal anisotropy 

coefficient. Grey coloured dots represent high-resolution profiles (with 1-mm spatial 

resolution) of thermal conductivity and volumetric heat capacity. 
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Additional measurements of thermal properties that were conducted on 19 

cylindrical core plugs having the size of 30x30 mm at different saturations ("as 

received", dry and water-saturated) included the following stages: 

• measurements on core samples at atmospheric conditions immediately after 

drilling them out of the full-sized core samples; 

• drying samples following the standard procedure in the drying box; 

• measurements on the dried core samples at atmospheric conditions; 

• vacuum saturating of core samples with mineralized water following the 

standard procedure; 

• measurements on the water-saturated samples at atmospheric conditions; 

• measurements of rock thermal conductivity, volumetric heat capacity, and 

thermal anisotropy coefficient on water-saturated samples at in situ 

temperature (the temperature of measurements corresponds to the in situ 

temperature of the corresponding core sample). 

Figure 41 plots the estimates of the relative variations of thermal conductivity 

(1) after drying and (2) after the saturation with synthetic brine under vacuum. 

Measurement results in Figure 41 show the following: 

• The degree of thermal conductivity change after both drying and water 

saturation depends on the core sample porosity. 

• Drying of the obtained samples resulted in a very small thermal conductivity 

decrease. The degree of thermal conductivity reduction depends on the 

porosity and does not exceed 13%. 

• After water saturation of the dried core samples, a substantial thermal 

conductivity increase is observed (from 7 to 62%). 

There was no dependence established of the anisotropy degree of core samples from 

thermal conductivity variations during the change of pore-filling fluid. 
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Figure 42. The dependence of thermal conductivity variations from porosity of core 

samples after drying core samples (green-coloured line) and after water saturating 

(under vacuum) the dried core samples (blue-coloured line) (Popov et al., 2021b). 

The red-coloured line characterizes the thermal conductivity change from «as 

received» state to «water-saturated». 

 

Data in Figure 41 allow concluding that by the time of thermal core logging in 

the core storage, the samples were dried substantially and lost the majority of their 

pore fluid. Therefore, to correct the data on rock thermal conductivity for in situ 

saturation, it was necessary to adjust the results of thermal core logging depending 

on rock porosity via the regression trend that is presented by the red-colored curve 

in Figure 41. 

Variations of the rock thermal conductivity perpendicular to the bedding plane 

depending on porosity during changes of the sample saturation are described by 

regression equations that are similar to those for the thermal conductivity parallel to 

the bedding plane and are the following:  

• from "as received" state to dried: 𝛿λ = −3.5·ln(𝜙)−4.4 with R² = 0.79,  

• from dried to water-saturated state: 𝛿λ = 19.2·𝜙 0.53 with R² = 0.88,  
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• from "as received" state to the water-saturated: 𝛿λ = 16.7·𝜙 0.34 with R² = 

0.85. 

Using the data within coring intervals on rock porosity, that was obtained via 

interpreting density log data and results of laboratory investigations of core plugs, 

for each depth interval and specific depth intervals that have significant porosity 

variations, using the regression equation corresponding to the red curve in Figure 

41, the corrections for data on rock thermal conductivity (inferred from the 

continuous thermal core logging) were determined. 

The thermal conductivity at the formation temperature was measured on 10 

cylindrical 50x20 mm core samples that were saturated with synthetic brine under 

vacuum and selected based on results of continuous thermal core logging of full-

sized cores. Thermal conductivity measurements on water-saturated samples were 

conducted at the temperature corresponding to the temperature of the corresponding 

depth interval. Pressure corrections for thermal conductivity were inferred from the 

literature data (Yakovlev, 1996; Kurbanov, 2007) for the rocks similar to those 

presented in the investigating geological profile.  

5.2.3. Determining the equivalent thermal conductivity necessary for estimating 

the heat flow within non-coring intervals from standard well-logging data 

Rock thermal conductivity was determined from well-logging data for the 

limestones in depth intervals of 1992.4–2090.1 m, 2629.16–2720.9 m, 2721.16–

2916.36 m, and 2935.16–3249.36 m via the WLBT for determining rock thermal 

properties. In addition to that, the rock thermal conductivity was determined for 

dolomites in the 2145.36–2359.56 m depth interval based on the results of regression 

analysis of well-logging data and data on thermal conductivity from the adjacent 

well that has a similar geological profile.  

Before regression analysis between well-logging data and rocks thermal 

conductivity data, the data preprocessing was conducted. The data preprocessing 
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included (1) matching depths of logging curves, (2) eliminating data from cavernous 

intervals, (3) averaging the continuous thermal conductivity profile in 0.5 m moving 

window (window size is equal to the average vertical resolution of well-logging 

tools), and (4) shifting core depth to match well-logging data using results of core 

gamma spectrometry. In addition to that, the Z-scaling (dividing the difference 

between a variable and its average value by its standard deviation) of neutron gamma 

logging and gamma-ray log data was performed to account for differences in 

technical conditions of well-logging (drilling agent properties, well diameter, etc.) 

and logging tools when predicting thermal conductivity of the dolomites in 2145.36–

2359.56 m depth interval. 

The well-logging suite used to predict rock thermal conductivity includes 

gamma-ray log, neutron gamma log, gamma-gamma density log, and sonic log. 

Rock thermal conductivity was determined within non-coring intervals based on 

multiple regression analysis of well-logging data and data on rock thermal 

conductivity. During the regression analysis, an outlier-resistant linear regression 

model (also known as Huber regression) offered by Huber et al. (2009) was used. 

The initial dataset of rocks thermal conductivity data and wells logging data was 

divided into the training dataset (67% of the entire data set) and the test dataset (33% 

of the data set) to estimate the generalization ability of the deter-mined regression 

equations. Optimal hyper-parameters of regression models were selected via the 

cross-validation method. 

The results of training and testing regression models for determining rock 

thermal conductivity from well-logging data are presented in Table 24. 
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Table 24. The results of training and testing regression models for determining rock 
thermal conductivity from well-logging. 

Lithology 

(depth interval) 
Regression equation* 

Quality of prediction results 

on the test dataset 

R2 
RMSE,  

W·m-1·K-1 
P,% A,% N 

Limestones 

(2611.76-2665.76) 

λ = -2.6·10-4·ΔtP+0.25·ρ+0.26·γ+ 

+0.34·NGR+0.08 
0.70 0.10 9.48 -0.2 43 

Limestones 

 (2736.96-2812.16) 

λ = -3.7·10-4·ΔtP+0.12·ρ+0.05·γ+ 

+0.21·NGR+2.15 
0.19 0.10 8.06 -0.4 67 

Limestones 

 (2916.56-2934.16) 

λ = -1.8·10-4·ΔtP-0.25·γ+ 

+0.32·NGR+2.44 
0.64 0.10 8.74 0.5 29 

Dolomites 

(regression 

equation from the 

adjacent well) 

λ = -0.004·γnormilized+ 

+0.42·NGRnormilized+4.34 
0.87 0.17 8.18 0.2 133 

 

Figure 42 plots the predicted rock thermal conductivity within non-coring 

intervals from well-logging data. Based on Table 24 it can be concluded that the 

established regression equations between well-logging data and data on rock thermal 

conductivity provide the predictions of rock thermal conductivity with total 

uncertainty less than 10% for a 0.95 confidence level. 
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Figure 43. The results of predicting rock thermal conductivity within non-coring 

depth intervals from well-logging data via the established regression equations. 

The total length of the intervals with predictions of rock thermal conductivity 

from well-logging data is 860 m. 

5.2.4. Determining vertical variations of heat flow density 

To calculate the heat flow density for a vertical well using data on the 

temperature gradient and the thermal conductivity, the data on equivalent thermal 

conductivity for the vertical direction are required. Concurrently, it requires 

accounting for the textural anisotropy caused by the layered texture of rocks and the 

micro-anisotropy, which may be due to oriented cracks (technogenic or natural) or 

crystals or flakes of minerals that can be anisotropic themselves. 
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The results of experimental instigations of rock thermal conductivity have 

revealed that, with substantial rock thermal conductivity variations along the well 

and significant anisotropy of core samples, two factors causing thermal anisotropy 

have to be accounted for: 

• presence of thermal macro-anisotropy due to the ordered heterogeneity of 

rocks on core sample scale (Figure 44) - a layered texture at the whole profile 

scale conditioned by the alternation of subparallel layers with various thermal 

conductivity; 

• presence of micro-anisotropy inherent even for homogeneous rocks and 

caused either by oriented anisotropic mineral grains or oriented microcracks. 

 

Figure 44. The reasons causing anisotropy of rocks that were accounted during 

determining equivalent thermal conductivity required for calculating heat flow 

density. λeq. – macroanisotropy, λiꞱ - microanisotropy (Popov et al., 2021b). 

Analysis of the micro-anisotropy evaluation results for investigating rocks 

based on continuous thermal core logging data reveals the absence of significant 

anisotropy of limestones and dolomites from the investigated stratigraphic units. 
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Since the well understudy was drilled almost vertically, and stratigraphic 

borders may be considered horizontal, the principal axes of thermal conductivity are 

oriented parallel and perpendicular to the bedding plane, and temperature gradient 

is oriented along the well. It makes determining heat flow density less complicated. 

In this case, the equivalent thermal conductivity (λequiv) shall be determined as the 

vertical component of the rock's thermal conductivity tensor since vectors of the heat 

flow density and the temperature gradient are codirectional (vertical). 

If the micro-anisotropy is due to natural factors (oriented anisotropic grains of 

minerals, or oriented natural microcracks) and has to be considered jointly with 

macro-anisotropy (textural or transversal anisotropy) of rocks, the following 

equation shall be used to determine the equivalent thermal conductivity (necessary 

for calculating the heat flow density): 

equiv2 = 𝑁(∑ 𝑖
−1𝑁

𝑖=1 )
−1

     (26) 

where N is the number of core samples in considering depth interval, λi⊥ is the 

thermal conductivity component perpendicular to the bedding plane for the i-th core 

sample accounting thermal micro-anisotropy coefficient that was registered during 

thermal core logging of full-sized cores.  

In the presence of a technogenic induced micro-anisotropy (due to possible 

micro-cracks along the parallel direction to the bedding plane), and in the absence 

of a natural micro-anisotropy, the equivalent thermal conductivity should be 

determined excluding the effect of rocks' technogenic anisotropy and accounting 

only for macro-anisotropy (textural anisotropy). In this case, it is implied that the 

thermal conductivity parallel to the bedding plane (λ||) for each core sample 

characterizes the thermal conductivity of undisturbed rocks. Therefore, the 

equivalent thermal conductivity for the heat flow calculation shall only account for 

rocks macro-anisotropy and be determined as follows: 

equiv1 =𝑁 (∑ 𝑖||
−1𝑁

𝑖=1 )
−1

     (27) 
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where λi|| is the thermal conductivity component for parallel direction to the bedding 

plane for the i-th core sample. 

Due to the lack of reliable information about the presence or absence of the 

induced technogenic anisotropy for the investigated core samples (which is a 

common cause of anisotropy), two cases were considered:  

1. The equivalent thermal conductivity λequiv.max was determined according to the 

formula (27), assuming that the micro-anisotropy was caused by technogenic 

fractures and has to be excluded from estimating the in situ thermal 

conductivity of rock mass and because of that thermal conductivity parallel to 

the bedding plane (λ||) is more objective and unbiased characteristic of the core 

sample compared to the thermal conductivity perpendicular to the bedding 

plane (λ⊥). For that reason, an upper-bound estimate of rocks' thermal 

conductivity was made. 

2. The equivalent thermal conductivity λequiv.min was determined via the formula 

(26), assuming that the micro-anisotropy is typical for core samples at in situ 

conditions, i.e. is caused by natural factors and corresponds to undisturbed 

rocks. For that reason, a lower-bound estimate of thermal conductivity was 

made. 

Equivalent thermal conductivity for the heat flow calculation was determined, 

accounting for multiscale rock heterogeneity (starting from each core sample), in 

situ saturation, the effect of core changes in core storage, textural anisotropy, micro-

anisotropy, and in situ pressure and temperature. Table 25 provides the results of 

determining equivalent thermal conductivity at in situ conditions, temperature 

gradient, and the heat flow density for coring depth intervals and depth intervals with 

well-log based predictions. 
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Table 25. Results of determining equivalent thermal conductivity and heat flow 
density for coring depth intervals and intervals with well-log based predictions of 
rock thermal conductivity within non-coring intervals. 

Depth interval, m Estimation of equivalent 

thermal conductivity,  

Wm-1К-1 

Temperature 

gradient, 

mKm-1 

Heat flow estimate, 

mWm-2 

lower upper lower upper average 

From results of continuous thermal core logging 

1348.50-1366.10 3.21 3.42 18.05 58.0 61.7 59.8 

2612.29-2629.20 2.80 2.93 28.30 79.3 82.8 81.1 

2657.00-2665.74 3.07 3.17 23.93 73.5 75.8 74.6 

2737.30-2746.02 3.04 3.28 22.72 69.1 74.5 71.8 

2754.90-2763.60 3.11 3.22 24.68 76.8 79.5 78.1 

2794.90-2812.50 3.08 3.23 22.08 68.1 71.3 69.7 

2916.90-2934.34 3.33 3.44 23.00 76.7 79.2 78.0 

3506.40-3539.30 2.57 2.87 27.56 70.8 79.0 74.9 

From results of well-log based predictions of rock thermal conductivity within non-coring 

intervals (average values of thermal conductivity and heat flow) 

1991 - 2091 3.23 22.96 74.1 

2144 - 2361 5.54 13.51 74.8 

2628 - 2658 2.74 24.63 67.4 

2666 - 2737 3.02 22.76 68.7 

2764 - 2794 3.13 23.62 73.9 

2813 - 2915 2.99 22.98 68.6 

2935 - 3100 3.08 22.75 70.1 

 

The vertical variations of the heat flow density presented in Table 25 are plotted 

in Figure 44 together with the previously published data on average heat flow 

estimate that were inferred from (Golovanova, 2005; Hodyreva et al., 1985; 

Gordienko et al., 1987).  
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Figure 45. Results of determining heat flow density for the investigating depth 

intervals and the previously published data on heat flow density for the area under 

study (Popov et al., 2021b). Blue line (left panel) presents the vertical variations of 

the temper-ature gradient (determined within 5 m moving window with a 10-cm 

step). Light-blue lines (central panel) present the lower estimate of the equivalent 

thermal conductivity within coring depth intervals. Blue lines (central panel) present 

the upper estimate of the equivalent thermal conductivity within coring depth 

intervals. Red lines present the average estimates of the equivalent thermal 

conductivity within the intervals with well-log based predictions of rock thermal 

conductivity. Light-blue and blue lines in the right panel of the figure represent the 

lower and upper estimate of heat flow density within coring depth intervals. Red 

lines in the right panel repre-sent the average estimate of the heat flow density within 

the intervals with well-log based predictions of rock thermal conductivity. The 

empty black box on the right panel represent the previously published data on heat 

flow density (34.0 mW·m-2) for the are under study. Black vertical line on the right 

panel presents the regression trend of the increase of heat flow density (with average 

value of 72.6 mW·m-2 below 2000 m). Lithology legend was given in Figure 39.   
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Figure 44 demonstrates that all newly obtained data on heat flow density are 

significantly higher than the average value of previously published data. The heat 

flow density for the 1348.50–1366.10 m depth interval varies from 58.0 to 61.7 

mW·m-2 with the average value of 59.8 mW·m-2, which is essentially lower than the 

heat flow density for the deeper horizons (starting from 1991 m and below). This is 

coherent with the previously determined tendency suggesting that the heat flow 

density for depth less than 2000 m is in most cases smaller than the heat flow density 

for the deeper depths due to the combined impact of paleoclimate and migration of 

fluids in rock masses (Clauser et al., 1997; Emmermann et al., 1997; Popov et al., 

1999; Kukkonen et al., 2011; Popov et al., 2012; Popov et al., 2018; Kukkonen et 

al., 1997;  Popov et al., 1988; Mottaghy et al., 2005).   

The average heat flow density for 13 depth intervals that are between 2144 and 

3539.30 m (Table 25) is 72.6 mW·m-2 with the standard deviation of 3.6 mW·m-2. 

For 13 sampling elements and the corresponding Student's coefficient of 2.16 at the 

0.95 confidence level, the absolute uncertainty of estimate of the average heat flow 

density is 2.2 mW·m-2, whereas the relative uncertainty of estimate of the average 

heat flow density is 3.0%. 

The published data contains geothermal information for seven wells in the 

drilling area: Orenburg, (Hodyreva et al., 1985), two unnamed wells (Gordienko et 

al., 1987), Goncharovskaya-16, Denisovskaya-1, Denisovskaya-3, and 

Yakshimbetovskaya-157 (Golovanova, 2005). These wells are 118, 87, 38, 118, 130, 

103, and 113 km away from the studied well, respectively. The published heat flow 

estimates for these wells are 48, 38, 26 32, 33, 31, and 30 mW·m-2, respectively, 

with the average heat flow density of 34.0 mW·m-2. Thus, the obtained average heat 

flow value is greater than the previous heat flow average value for this territory by 

114% (34.0 mW·m-2). 
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5.3 Conclusion 

The new techniques, including continuous thermal core logging, new laser 

optical scanning instrument in combination with rock thermal property 

measurements at elevated temperatures and on core samples saturated under vacuum 

with brine (Popov E. et al., 2019), provided investigations of more than 5200 rock 

samples and representative experimental data on rock thermal properties including 

thermal conductivity components along and perpendicular to the rock bedding plane, 

volumetric heat capacity and anisotropy coefficient for determining heat flow 

density in two wells. Application of WLBT for predicting rock thermal properties 

during geothermal investigations allowed registering detailed vertical variations of 

heat flow density within non-coring intervals.  

The registered terrestrial heat flow density for the Bazhenovskaya 1 well is 87.1 

mW·m-2 and for the Balyikinskaya 10 well is 72.6 mW·m-2. The determined values 

of the heat flow density essentially exceed the previously published data for this area 

(by 45% and 114% for the Bazhenovskaya 1 Balyikinskaya 10 wells, respectively).  

As well as the results of experimental geothermal investigations in deep and 

super-deep wells conducted between 1990 and 2010 (Popov Y. et al., 2019b), the 

obtained data on heat flow and rock thermal properties demonstrated the necessity 

in a new special experimental estimations of the heat flow density and rock thermal 

properties when studying hydrocarbon fields at any stage that includes regional basin 

and petroleum system modelling to avoid serious errors in geothermal data (almost 

unavoidable otherwise). 
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Summary and Conclusions 

The principal results of the conducted research are the following: 

1. The approach for predicting rock thermal properties from sonic log data 

accounting for thermal anisotropy, rock heterogeneity, in situ temperature, 

pressure, and saturation via the regression analysis was developed and 

tested for organic-rich shales of the Bazhenov Formation. 

2. The developed approach was extended via the application of advanced 

machine learning algorithms, involving additional well-log data and 

integrating the data on rock thermal properties inferred from continuous 

thermal core logging. The extended version of the approach was tested on 

representative experimental data from the heavy-oil field and yielded high 

performance. 

3. The sensitivity study of the regression models for predicting rock thermal 

properties of gradient boosting revealed that the sonic, neutron and density 

logs are the most important when predicting both thermal conductivity and 

volumetric heat capacity. 

4.  The approach for predicting rock thermal properties accounting for thermal 

anisotropy, rock heterogeneity, in situ temperature, pressure, and saturation 

via the advanced theoretical modelling was developed  and also tested for 

organic-rich shales of the Bazhenov Formation. 

5. The approach for assessing uncertainty in the correction factor of the 

Krischer-Esdorn model of thermal conductivity was suggested and tested. 

The approach basis on the application of the partial-derivative method. The 

developed approach is not constrained only to the Krischer-Esdorn model. 

It can be applied for assessing uncertainty in correction factors of 

Lichtenecker-Rother and Lichtenecker-Asaad models. 
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6. The developed approaches (regression and theoretical modelling based) 

were unified and presented within the novel well-defined well-log based 

technique for determining rock thermal properties. The developed 

workflow bases on application of advanced thermal core logging technique 

that provides continuous non-contact non-destructive profiling of thermal 

conductivity (principal components of thermal conductivity) and 

volumetric heat capacity on full-diameter cores, core plugs, and broken 

cores. The comparison study of the effectiveness of the novel WLBT and 

commonly used Deming approach at predicting thermal conductivity 

accounting for thermal anisotropy revealed that the novel WLBT provides 

essentially more precise predictions of thermal conductivity components 

for both parallel and perpendicular directions to the bedding plane. 

7. The developed WLBT for determining rock thermal properties was 

implemented within the geothermal investigations of two prospecting wells 

and allowed us registering detailed vertical variations of formation thermal 

properties and heat flow density within non-coring intervals and obtaining 

vast rock thermal properties and heat flow density data for regional basin 

and petroleum system modelling. 

The research findings disclosed qualitatively new framework for well-log based 

determination of rock thermal properties accounting for thermal anisotropy, 

heterogeneity, in situ saturation, temperature and pressure within the well-defined 

technique. The developed WLBT for determining rock thermal properties grounded 

on the application of an advanced experimental basis. The testing on representative 

experimental data from various hydrocarbon field, including organic-rich shales and 

heavy-oil field evidence the effectiveness of the developed WLBT for determining 

rock thermal properties. The implementation of the novel WLBT for determining 

rock thermal properties within the geothermal investigations allowed us obtaining 
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new data on vertical variations of heat flow density and formation thermal properties 

and enhancing the quality of the subsequent studies of hydrocarbon fields in the 

understudy areas.  
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