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Abstract

Machine learning has become ubiquitous. We can see extraordinary progress in many areas,

including computer vision, natural language processing, and speech recognition. However,

the high-dimensional and large-scale nature of the visual, language or audio data in modern

applications requires a tremendous amount of compute and parameters. While it continues to

succeed even further, there arises a need to tackle its ever-growing demand for computational

resources.

One way of doing so is to introduce frugal computational principles directly into the design

of data pipelines, parameter representation and transformations we use in machine learning

models. To ease the computational load, one would o�en introduce approximations that

trade performance o�. For example, kernel methods, previously deemed un�t for large-scale

datasets due to high computational complexity, have been extended to modern problem sizes

via approximate feature maps facilitating the use of linear classical machine learning algorithms

on nonlinear representations of data. In many cases, the quantities of interest are also simply

intractable, leaving us no other option than to search for accurate estimation techniques based

on Monte Carlo or quadrature rules.

In this thesis, we approach both these problems— approximation quality and computational

complexity, simultaneously. Accordingly, we develop methods that leverage advanced numerical

procedures to achieve state-of-the-art e�ciency in both approximation and complexity aspects

with derived theoretical guarantees in several settings. �e contributions of this thesis include

random sparse featuremaps for kernel approximation, novel intrinsicmeasure for data distributi-

on comparison, and practical means for graph summarisation.



Publications

�e four papers that constitute the body of this thesis has been published in the following venues.

* denotes equal contribution. Key contributions are in bold, marginal in light typeface.

Chapter 2 expands on:

• Marina Munkhoeva, Yermek Kapushev, Evgeny Burnaev, and Ivan Oseledets.

"Quadrature-based Features for Kernel Approximation."

Advances in Neural Information Processing Systems, pages 9147–9156, 2018.

Author’s contributions in the paper include:

– design

– implementation

– analysis

– experiments

– dra�

– revisions

Chapter 3 expands on:

• Anton Tsitsulin*, Marina Munkhoeva*, Davide Mottin, Panagiotis Karras, Alex Bronstein,

Ivan Oseledets, and Emmanuel Mueller.

"�e Shape of Data: Intrinsic Distance for Data Distributions."

International Conference on Learning Representations. 2020.

Author’s contributions in the paper include:

– conception and design

– implementation

– theoretical analysis

– experiments

– dra�

– revisions



v

Chapter 4 expands on:

• Anton Tsitsulin*, Marina Munkhoeva*, and Bryan Perozzi.

"Just SLaQWhen You Approximate: Accurate Spectral Distances for Web-Scale Graphs."

Proceedings of �e Web Conference, pages 2697–2703, 2020.

Author’s contributions in the paper include:

– design
– implementation
– theoretical analysis

– experiments

– dra�

Chapter 5 expands on:

• Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Ivan Oseledets,

and Emmanuel Müller.

"FREDE: Linear-Space Anytime Graph Embeddings."

accepted to International Conference on Very Large Data Bases. 2021.

Author’s contributions in the paper include:

– design

– implementation

– theoretical analysis

– experiments

– dra�

– revisions



Table of Contents

Abstract iii

Publications iv

List of Figures x

List of Tables xiii

Notation xv

Introduction 1
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Contributions, Novelty and Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Preliminaries 4
1.1 Common Notation and Symbols . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Matrix Decompositions and Algorithms . . . . . . . . . . . . . . . . . 6

1.2.2 Matrices in Kernel Methods . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Matrix Representations of Graphs . . . . . . . . . . . . . . . . . . . . 9

1.2.4 Matrix Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.5 Matrix Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Gaussian Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Structured Feature Maps for Kernel Approximation 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Quadrature Rules and Random Features . . . . . . . . . . . . . . . . . . . . . 16



Table of Contents vii

2.3.1 Spherical-Radial Rules of Degree (1,1) is RFF . . . . . . . . . . . . . . . 18

2.3.2 Spherical-Radial Rules of Degree (1,3) is ORF . . . . . . . . . . . . . . 18

2.3.3 Spherical-Radial Rules of Degree (3,3) . . . . . . . . . . . . . . . . . . 19

2.3.4 Generating Uniformly Random Orthogonal Matrices . . . . . . . . . . 20

2.4 Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Arc-cosine Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.2 Kernel Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.3 Classi�cation/Regression with New Features . . . . . . . . . . . . . . . 29

2.6.4 Walltime Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Intrinsic Geometry for Sample Comparison 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Generative Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Similarities of Neural Network Representations . . . . . . . . . . . . . 34

3.3 Multi-Scale Intrinsic Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Heat Kernels on Manifolds and Graphs . . . . . . . . . . . . . . . . . 35

3.3.2 Convergence to the Laplace-Beltrami Operator . . . . . . . . . . . . . 36

3.3.3 Spectral Gromov-Wasserstein Distance . . . . . . . . . . . . . . . . . . 37

3.3.4 Heat Trace Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.5 Trace Estimation Error Bounds . . . . . . . . . . . . . . . . . . . . . . 39

3.3.6 Variance Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.7 Putting IMD Together . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Graph Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.3 Comparing Unaligned Language Manifolds . . . . . . . . . . . . . . . 46

3.4.4 Optimizing Dimensionality of Word Embeddings . . . . . . . . . . . . 47

3.4.5 Tracking the Evolution of Image Manifolds . . . . . . . . . . . . . . . 48

3.4.6 Evaluating Generative Models . . . . . . . . . . . . . . . . . . . . . . 49

3.4.7 Interpreting IMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.8 Verifying Stability and Scalability of IMD . . . . . . . . . . . . . . . . 52

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



Table of Contents viii

4 Approximating Spectral Distances for Web-Scale Graphs 54
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Von Neumann Graph Entropy . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Network Laplacian Spectral Descriptors . . . . . . . . . . . . . . . . . 56

4.2.3 Approximation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.4 Taylor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.5 Spectral Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 SLaQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Approximation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 Bene�ts of Non-local Approximation . . . . . . . . . . . . . . . . . . . 62

4.4.3 Graph Classi�cation Performance . . . . . . . . . . . . . . . . . . . . 64

4.4.4 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Anytime Graph Embeddings 68
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Preliminaries and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2 Neural Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.3 Factorization-based Embeddings . . . . . . . . . . . . . . . . . . . . . 71

5.2.4 �e Neural-Factorization Connection . . . . . . . . . . . . . . . . . . 72

5.2.5 Synoptic Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.6 Matrix Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Anytime Graph Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 A Row-wise Computable Similarity Matrix . . . . . . . . . . . . . . . 76

5.3.2 FREDE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.3 Parallelization and Distribution . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Compared Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.4 Sketching Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.5 PPR Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.6 Node Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



Table of Contents ix

5.4.7 Link Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.8 Anytime Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Conclusion 87
Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

References 89

Appendix A Derivation of Bounds and Variances 105
A.1 Error Bounds and Variance for Quadrature Rules . . . . . . . . . . . . . . . . 105

A.1.1 Variance of the Degree (3, 3) Quadrature Rule . . . . . . . . . . . . . . 105

A.1.2 Error Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Appendix B Additional Implementation Details 110
B.1 Quadrature-based Features for Kernel Approximation . . . . . . . . . . . . . . 110

B.1.1 Remarks on Quadrature Rules . . . . . . . . . . . . . . . . . . . . . . 110

B.2 Intrinsic Multi-scale Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.2.1 GAN Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Appendix C Additional Experimental Results 115
C.1 FREDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



List of Figures

2.1 Visual representaion of butter�y orthogonal matrix factors for 𝑑 = 16 . . . . . 22

2.2 Sparsity pattern for 𝐁𝐏𝐁𝐏𝐁𝐏 (le�) and 𝐁 (right), 𝑑 = 15 . . . . . . . . . . . . 23

2.3 Kernel approximation error across three kernels and 6 datasets. Lower is better.

�e x-axis represents the factor to which we extend the original feature space,

𝑛 =
𝐷

2(𝑑+1)+1
, where 𝑑 is the dimensionality of the original feature space, 𝐷 is

the dimensionality of the new feature space. . . . . . . . . . . . . . . . . . . . 28

2.4 Accuracy/𝑅2 score using embeddings with three kernels on 3 datasets. Higher is

better. �e x-axis represents the factor to which we extend the original feature

space, 𝑛 =
𝐷

2(𝑑+1)+1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Time spent on explicit mapping. �e x-axis represents the 5 datasets with

increasing input number of features: LETTER, USPS, MNIST, CIFAR100 and

LEUKEMIA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Two distributions having the same �rst 3moments, meaning Fréchet Distance

and Kernel Distance (degree 3 polynomial kernel) scores are close to 0. . . . . . 32

3.2 Errors (solid) and error bounds (dotted) for the approximation ofmatrix exponential

action with varying temperature 𝑡. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Trace estimation errors (solid) and error bounds (dotted) for: (le�) the number
of Lanczos steps𝑚 with �xed number of random vectors 𝑛𝑣 = 100; (right) the
number of random vectors 𝑛𝑣 in Hutchinson estimator with �xed number of

Lanczos steps𝑚 = 10. Lines correspond to varying temperatures 𝑡. . . . . . . 42

3.4 Variance of the trace estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 CIFAR10 graph colored with true class labels. . . . . . . . . . . . . . . . . . . 45

3.6 Bad GAN produces samples inside the torus hole (red). FD and KD cannot

detect such behaviour as their con�dence intervals overlap, while IMD does not. 46

3.7 Distances from the simple English Wikipedia visualized for IMD, FD and KD. . 46



List of Figures xi

3.8 FD and KD are not able to capture language a�nity from unaligned word2vec

embeddings. Darker color indicates language closeness according to word

embedding sets fromWikipedia. . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Comparison of IMD and PIP loss on word embeddings of di�erent dimension.

IMD detects subtle changes in the dimensionality. . . . . . . . . . . . . . . . . 48

3.10 (le�) IMD score across convolutional layers of the VGG-16 network on CIFAR10
andCIFAR100datasets; (right) training progression in terms of accuracy (dotted)
and IMD(solid) onCIFAR10 andCIFAR100datasets forVGG-16 andResNet-20,

with respect to VGG-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.11 FID, KID and IMD on the CIFAR10 dataset with Gaussian blur. . . . . . . . . 49

3.12 MNIST samples (le�: WGAN, right: WGAN-GP) . . . . . . . . . . . . . . . . 51

3.13 FashionMNIST samples (le�: WGAN, right: WGAN-GP) . . . . . . . . . . . . 51

3.14 CIFAR10 samples (le�: WGAN, right: WGAN-GP) . . . . . . . . . . . . . . . 51

3.15 CelebA samples (le�: WGAN, right: WGAN-GP) . . . . . . . . . . . . . . . . 51

3.16 Plotting the normalized heat trace allows interpretation ofmedium- and global-scale

structure of datasets. Best viewed in color. . . . . . . . . . . . . . . . . . . . . 52

3.17 Stability and scalability experiment: (le�) stability of FID, KID and IMD wrt.
sample size on CIFAR10 and CIFAR100 dataset; (right) scalability of FID, KID
and IMD wrt. sample size on synthetic datasets. . . . . . . . . . . . . . . . . . 53

4.1 Spectral analysis provides valuable insights in the structure of graphs. Can we

scale it to billions of nodes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 SLaQ o�ers over 𝟐𝟎𝟎× reduction in average error for VNGE over techniques

proposed in [39] and over 𝟑𝟎× improvement over the linear approximation

from [211]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 SLaQ o�ers 𝟐𝟐× reduction in average error for NetLSD over [211] and 𝟐𝟓𝟎×

over Taylor expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Number of nodes and edges of random Erdős-Rényi graphs does not a�ect

SLaQ’s approximation accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 SLaQ approximation of NetLSD and VNGE for Wikipedia graphs

across time. Changes that are not explained by local edge di�erences highlighted

in gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Parameter sensitivity of SLaQ in terms of approximating NetLSD with (a)

di�erent number of starting vectors 𝑛𝑣 and (b) di�erent number of Lanczos

steps 𝑠. Error averaged across 73 graphs from the Network Repository. . . . . . 65



List of Figures xii

5.1 FREDE scalably produces an embedding at any time; at the black arrow, it
outperforms the SVD of a full PPR-like similarity matrix in 3% of the latter’s

runtime a�er processing 10% of matrix rows. (PPI data) . . . . . . . . . . . . . 69

5.2 Work�ow: FREDE iteratively samples transformed PPR rows, periodically

compresses the derived sketch and derives singular values by SVD, and returns

an embedding with error guarantees at any time. . . . . . . . . . . . . . . . . . 77

5.3 Covariance error vs. dimensionality 𝑑; FREDE approaches SVD, which yields

optimal covariance error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Classi�cation performance of sketching algorithms on PPI data wrt. number of

walks to compute PPR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Classi�cation performance of FREDE with varying percentage of the graph as

input on three datasets: PPI, Flickr and BlogCatalog. . . . . . . . . . . . . 82

C.1 Classi�cation performance (Macro-F1) of sketching algorithms on PPI dataset

vs number of nodes processed for sketching. Embedding dimensionality 𝑑 = 128. 115

C.2 Classi�cation performance (Macro-F1) of sketching algorithms on PPI dataset

vs number of randomwalks to generate PPR. Embedding dimensionality 𝑑 = 128. 116



List of Tables

1.1 Common notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Graph-related notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Experimental settings (# of objects𝑁, dimensionality 𝑑, # of samples and runs). 27

2.2 Computational complexity of di�erent kernel approximation algorithms. . . . . 27

3.1 IMD agrees with KID and FID across varying datasets for GAN evaluation. . . 50

4.1 Characteristics of large graphs used in this work: number of vertices |𝑉|, number

of edges |𝐸|; average node degree; density de�ned as |𝐸|∕
(
|𝑉|

2

)
. . . . . . . . . . 61

4.2 Characteristics of dynamic graphs: total number of vertices |𝑉|, total number

of edges |𝐸|; number of timestamps |𝑇|; average incoming edges per timestamp

|ℰ|∕|𝑇|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Properties of the graph classi�cation datasets used: number of graphs |𝐺|;

number of labels |𝑌|; minimum, average, and maximum number of nodes in

graph collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 1-Nearest neighbour graph classi�cation performance on 4 datasets with VNGE

and NetLSD. Exact computation results are in bold. Approximations that are

close to or better than the exact metric computation are highlighted in green. 65

4.5 Running time (in seconds) of di�erent approximation techniques and SLaQ for

VNGE on large graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Comparison of works in terms of ful�lled (4) and missing (8) desiderata;

complexities in terms of number of nodes 𝑛 and edges 𝑚, dimensionality 𝑑,

context size 𝑇, and number of negative samples 𝑏, assuming a sparse graph. . . 70

5.2 Embedding dimension 𝑑 required approximation error 𝜖 for sketching-based

embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Dataset characteristics: number of vertices |𝑉|, number of edges |𝐸|; number

of node labels |𝓛|; average node degree; density de�ned as |𝐸|∕
(
|𝑉|

2

)
. . . . . . 80



List of Tables xiv

5.4 Micro-F1 classi�cation, PPI data. . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Micro-F1 classi�cation, POS data. . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Micro-F1 classi�cation, BlogCatalog data. . . . . . . . . . . . . . . . . . . . 83

5.7 Micro-F1 classi�cation, CoCit data. . . . . . . . . . . . . . . . . . . . . . . . 84

5.8 Micro-F1 classi�cation, Flickr data. . . . . . . . . . . . . . . . . . . . . . . . 84

5.9 Micro-F1 classi�cation, YouTube data. . . . . . . . . . . . . . . . . . . . . . . 84

5.10 Edge embedding strategies for link prediction, nodes𝑢, 𝑣 ∈ 𝑉 and corresponding

embeddings 𝐚, 𝐛 ∈ ℝ𝑑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.11 Link prediction accuracy, CoAuthor data. . . . . . . . . . . . . . . . . . . . . 85

5.12 Link prediction accuracy, VK data. . . . . . . . . . . . . . . . . . . . . . . . . 85

C.1 Macro-F1 classi�cation results in PPI dataset. . . . . . . . . . . . . . . . . . . 116

C.2 Macro-F1 classi�cation results in POS dataset. . . . . . . . . . . . . . . . . . . 116

C.3 Macro-F1 classi�cation results in BlogCatalog dataset. . . . . . . . . . . . . 117

C.4 Macro-F1 classi�cation results in CoCit dataset. . . . . . . . . . . . . . . . . . 117

C.5 Macro-F1 classi�cation results in Flickr dataset. . . . . . . . . . . . . . . . . 117

C.6 Macro-F1 classi�cation results in YouTube dataset. . . . . . . . . . . . . . . . 118



Notation

Chapter 1

MVM Matrix-Vector Multiplication

PCA Principal Component Analysis

QR QR decomposition

SVM Support Vector Machine

Chapter 2

GQ Gaussian Quadrature

MC Monte Carlo

ORF Orthogonal Random Features

PNG Pointwise Nonlinear Gaussian (kernel)

QF Quadrature-based Features

QMC quasi-Monte Carlo

RBF Radial Basis Function

RFF Random Fourier Features

ROM Random Orthogonal Matrices

SR Spherical-radial rules

Chapter 3

FID Fréchet Inception Distance



Notation xvi

GAN Generative Adversarial Network

GILBO Generative Information Lower Bound

GS Geometry Score

HKT Heat Kernel Trace

IMD Intrinsic Multiscale Distance

IS Inception Score

KID Kernel Inception Distance

kNN k Nearest Neighbours

LBO Laplace-Beltrami Operator

MMD MaximumMean Discrepancy

PIP Pairwise Inner Product

SLQ Stochastic Lanczos Quadrature

WGAN Wasserstein Generative Adversarial Network

WGAN-GP Wasserstein Generative Adversarial Network with Gradient Penalty

Chapter 4

FINGER Fast Incremental von Neumann Graph Entropy

LAPACK Linear Algebra PACKage

NetLSD Network Laplacian Spectral Descriptor

VNGE Von Neumann Graph Entropy

Chapter 5

FD Frequent Directions

PPR Personalized PageRank

SVD Singular Value Decomposition



Introduction

Motivation
�e extent to which machine learning solutions succeed in modern world problems is largely

determined by the amount of compute one is ready to employ into training such systems.

�e progress in graphics processing units promoted a breakthrough in computer vision and

supervised learning research [125, 195] and still advances other areas in deep learning [172].

Although throwing as much compute as possible at the task given might be a useful exploration

and discovery strategy in some cases [121], in most applications it is not the preferred approach,

especially considering the energy challenges humankind is facing nowadays [74].

If we hope to expedite training and deployment of machine learning algorithms (without

harming the planet), it would be helpful to embed frugal computational principles into the

design of data pipelines, parameter representation and transformations we use inMLmodels [159,

139, 118]. Fortunately, as we will see later in this thesis, numerical linear algebra methods not

only permit such changes but also do come with additional advantages in the form of better

approximation error bounds and guarantees.

One of the challenges we address in this work is the time and space complexity connected

with an enormous amount of data, its high-dimensional nature, and computations. All of the

above requires e�cient work with matrices, be it data/parameter representation or (linear)

transformations. Modern image generation models increasingly work with high dimensional

pixel space [115, 120, 34]. While larger batch sizes no longer inhibit optimisation [196, 106], smart

parameter design also proves bene�cial in many settings, e.g. neural network compression[139],

learning latent permutations [55].

Another challenge we will look into is the approximation of quantities unattainable in closed

form; this as well should be accurate and fast. Very o�en these quantities involvematrix functions,

e.g. matrix exponential, log determinant. �ese usually appear in ideas closely connected or

coming from the �elds like partial di�erential equations [40] or statistical physics [3], where for

large-scale problems it is crucial to estimate some aggregate properties of the eigenstructure in

corresponding matrices.
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Numerical Linear Algebra providesmany powerful tools, both deterministic and randomised,

to tackle large-scale linear algebra problems, which are ubiquitous in machine learning [30,

183]. Matrix algorithms facilitate fast running times and low memory footprint along with

comprehensive statistical properties, thus o�ering scalability and other desirable features like

interpretability and robustness. �ey also o�er new perspectives on problems which previously

would be considered quixotic — Chapter 3 develops a novel algorithm to compute the distance

between data manifolds based on their intrinsic information, where without a specialised

numerical integration scheme it would be impractical to estimate such quantities.

In this thesis, we address problems where we simultaneously aim at high approximation

quality and low time/space complexity and achieve both with quality guarantees which we derive

as well. By interpreting some of the problems through the lens of numerical integration, we

can leverage the most successful concepts o�ered by NLA, e.g. sparsity and low-rank structure,

eigen and singular value decompositions.

Contributions, Novelty and Impact
�e contributions of this thesis are detailed below.

Chapter 2 delves into the random features for kernel approximation as we develop a novel

stochastic quadrature-based approach for obtaining structured unbiased feature maps that boast

better empirical and analytical accuracy in both kernel approximation quality and downstream

tasks. �e highlight of the method is the generalisation of the previous work in random features

for kernels, e.g. the celebrated Random Fourier Features is a special case of the proposed

quadrature-based features with low order quadrature. We develop sparse structured feature

maps that naturally lead to fast matrix-by-vector multiplication resulting in speed up and lower

memory requirements. �is work appeared as a spotlight at the Neural Information Processing

Systems (NeurIPS) conference in 2018 [154].

Chapter 3 attempts to answer perhaps one of the most challenging questions in machine

learning — how can we measure the distance between two sets of points coming from possibly

distinct high-dimensional manifolds? We attack this problem by approximating these samples

with graphs allowing us to draw on intrinsic information within data to quantify the di�erence

between data distributions such as sets of word vectors in di�erent languages with unaligned

vocabularies, training and generated samples in generativemodelling and intermediate represen-

tations in neural networks. �is work was previously published as [215] at the International

Conference on Learning Representations (ICLR) in 2020.

Chapter 4 studies the spectral distance approximation for Web-scale graphs. We leverage

recent advances in numerical linear algebra to develop an algorithm for linear time approximation
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of spectral descriptors used for graph comparison and classi�cation. �e method provides

state-of-the-art accuracy approximation for graphs with billions of nodes and edges on a single

machine in less than an hour. �is work appeared at the Web Conference (WWW) 2020 [217].

Chapter 5 proposes a linear-space algorithm for calculating graph embeddings. Our method

boasts quality guarantees along with anytime nature, i.e. the quality of the embeddings grows

with the number of processed rows of a speci�c graph similarity matrix but can be stopped

anytime to obtain embeddings. To the best of our knowledge, this is the �rst anytime algorithm

for node embeddings. �e work has been accepted to the international conference on Very

Large Data Bases (VLDB) 2021 [216].



Chapter 1

Preliminaries

In this chapter, we establish the necessary notions and de�nitions that are used in this thesis

and review the essential background. We discuss relevant matrix types and properties as well as

matrix decompositions and algorithms for computing either full matrix factorizations or their

most essential parts only. We explain some basic graph analysis and kernel methods as we will

encounter them later in the thesis. We also cover the basics of numerical integration as more

advanced methods will follow in the next chapters.

1.1 Common Notation and Symbols
�roughout the thesis, we use bold capital letters (𝐀,𝐌) formatrices, lowercase bold letters(𝐱, 𝐲)

for vectors, calligraphic letters (𝒳,𝒴) for vector spaces and manifolds, lowercase letters (𝑐, 𝑓, 𝑔)

for scalars and functions. Some of the notable symbols and exceptions to these rules are presented

in Table 1.1.

Notation Description

𝐈 an identity matrix, 𝐈𝑖𝑖 = 1 and 𝐈𝑖𝑗 = 0 for 𝑖 ≠ 𝑗

𝐃 a diagonal matrix,𝐃𝑖𝑗 = 0 if 𝑖 ≠ 𝑗

tr(𝐀) trace of a matrix 𝐀, tr(𝐀) =
∑

𝑖
𝐀𝑖𝑖

𝑓(𝐀) a function 𝑓 of a matrix 𝐀

𝐀 = 𝐐Λ𝐐−1 eigenvalue decomposition of a square matrix 𝐀, if 𝐀 is normal

𝐀 = 𝐔Σ𝐕⊤ singular value decomposition of a matrix 𝐀

𝔼𝑝(𝑥)𝑓(𝑥) expected value of a function 𝑓(𝑥) under a distribution density 𝑝(𝑥)

Table 1.1 Common notation
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1.2 Matrices
Webeginwithmatrices— themost popular representation tool inmost scienti�c �elds, especially

in data-intensive ones such as computer science, statistics, and machine learning. In this thesis,

we will encounter matrices as a way to describe:

• data—we store informationwith rows and columns representing objects and their features,

respectively.

• a graph — depending on an application, we may represent graphs with their adjacency,

Laplacian, or node similarity matrices (e.g., PageRank).

• a linear map — we represent linear transformation 𝐀 ∶ 𝒳 → 𝒴 from one vector space to

another with operator matrix 𝐀 via matrix-vector multiplication (MVM) 𝐮 = 𝐀𝐯.

• a bilinear map — we represent some function 𝐀 ∶ 𝒳 × 𝒴 → ℝ such that (𝐯, 𝐮) = 𝐯⊤𝐀𝐮.

�us, the universality of matrix representation is vital to employ the full potential of fast

numerical linear algebra methods in machine learning. We will brie�y remind a few concepts

from matrix calculations that will be relevant in the next chapters.

One of the primary considerations of this thesis is e�cient computation. When dealing with

repetitive matrix-vector multiplications (MVMs), a relevant notion is that of sparsity. Sparse
matrices are characterized by having very few nonzero elements. Scienti�c computing bene�ts

whenever sparsity is present as sparse matrices facilitate fast MVMs, e.g., an 𝑛 × 𝑛 matrix with

𝑛 nonzero elements admits matrix-vector multiplication costing a total of 𝑛 operations. In

contrast, a dense matrix of the same size requires 𝑛2 operations.

Spectral analysis tools, used in this thesis, require some exposition of notions connected

to eigenvalues and eigenvectors. �e eigenvalues of a square 𝑛 × 𝑛 matrix 𝐀 are the zeros of

the characteristic polynomial 𝑝(𝐯) = det(𝐀 − 𝐯𝐈). Every 𝑛 × 𝑛 matrix has 𝑛 eigenvalues.

If 𝜆 ∈ 𝜆(𝐀), i.e. 𝜆 belongs to the set of 𝐀’s eigenvalues, there exists a nonzero vector 𝐯 so

that 𝐀𝐯 = 𝜆𝐯, and 𝐯 is said to be an eigenvector associated with 𝜆. If 𝐀 has 𝑛 independent

eigenvectors 𝐯1, … , 𝐯𝑛 and 𝐀𝐯𝑖 = 𝜆𝑖𝐯𝑖 for 𝑖 = 1∶𝑛, then A is called diagonalizable.

Diagonalizablematrices are an important class of matrices that can also be de�ned through
their similarity with a diagonal matrix: 𝐀 is diagonalizable when there exists a nonsingular

matrix𝐔 such that𝐔−1𝐀𝐔 = 𝐃, where𝐃 is diagonal matrix, i.e. matrix with nonzero elements

only on its diagonal.

Normalmatrix𝐀 is a square complex matrix that commutes with its conjugate transpose𝐀∗:

𝐀𝐀∗ = 𝐀∗𝐀. Among normal matrices there are unitary and Hermitian matrices. In this thesis,

we mostly deal with their real counterparts — orthogonal and symmetric matrices.
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Orthogonal matrix 𝐐 is a square matrix with rows and columns being orthogonal unit
vectors: 𝐐𝐐⊤ = 𝐐⊤𝐐 = 𝐈. Orthogonal matrices are norm preserving, and they determine

unitary transformations, such as rotations and re�ections. In this thesis, we consider orthogonal

matrices acting as random rotators of the points on the surface of the unit 𝑑 dimensional sphere.

�e set of 𝑛 × 𝑛 orthogonal matrices forms a group, 𝑂(𝑛), known as the orthogonal group.

Symmetric matrix 𝐒 is a square matrix which is equal to its transpose: 𝐒 = 𝐒⊤. Since

symmetric matrices are Hermitian, all their eigenvalues are real. Symmetric property, found in

many graph-related matrices, empowers us with spectral analysis in Chapters 3 and 4.

1.2.1 Matrix Decompositions and Algorithms

We now give a brief overview of matrix decompositions and algorithms used in this thesis. A

thorough exposition of matrix computations algorithms is given in [87].

QR decomposition factorizes a rectangular 𝑚 × 𝑛 matrix 𝐀 into a product 𝐀 = 𝐐𝐑 of an

orthogonal matrix 𝐐 and an upper triangular matrix 𝐑. �is factorization is important in the

least squares and eigenvalue computations. Its e�cient computation relies on the two following

matrix types: Householder re�ectors and Givens rotators, as they facilitate the introduction of

zeros to form upper triangular matrix 𝐑.

Householder re�ection is described by thematrix𝐇 = 𝐈 − 𝛽𝐯𝐯⊤, where vector 𝐯 is a normal

vector to the re�ection hyperplane and 𝛽 =
2

𝐯⊤𝐯
. Givens rotation is determined by the chosen

coordinate axes (𝑘, 𝑙) and rotation angle 𝜃. �e Givens matrix has the following nonzero entries:

𝐺𝑖𝑖 = 1 if 𝑖 ≠ 𝑘, 𝑙, 𝐆𝑖𝑖 = cos(𝜃) if 𝑖 = 𝑘, 𝑙 and 𝐆𝑘,𝑙 = −𝐆𝑙,𝑘 = sin(𝜃).

QR decomposition can also be obtained with the Gram-Schmidt process and can be used to

obtain random orthogonal matrices. QR decomposition is also a basis for the QR algorithm

used in eigenvalue problems [169].

Eigendecomposition factorizes a square matrix 𝐀 into the product 𝐀 = 𝐐Λ𝐐−1, where

columns of matrix 𝐐 contain eigenvectors 𝐯 and diagonal matrix Λ = diag(𝜆𝑖) contains

eigenvalues 𝜆𝑖 of 𝐀, i.e. 𝐀𝐯𝑖 = 𝜆𝑖𝐯𝑖. Not all matrices can be diagonalized in this way, but,

important in this thesis, a symmetric matrix 𝐒 can be decomposed as 𝐒 = 𝐐Λ𝐐−1, where 𝐐

is orthogonal, i.e. the eigenvectors of 𝐒 are chosen to be orthonormal. Eigendecomposition

is a central tool for studying spectral properties of various matrices, e.g. the eigenvalues and

eigenvectors of Hessian matrix provide geometric information of a loss surface [90, 165, 185].

�e matrix spectrum contains valuable information and �nds a wide range of applications

in many scienti�c areas, such as statistics, graph analysis, and optimization. As we will see
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later, whenever matrix admits an eigendecomposition, it facilitates the computations involving

functions of matrices, de�ned on the spectrum of matrices (e.g., exp(𝐀), log(𝐀)).

Singular Value Decomposition factorizes any real rectangular 𝑛×𝑚matrix𝐀 into a product

𝐀 = 𝐔𝚺𝐕⊤ of orthogonal matrices𝐔,𝐕 containing le� and right singular vectors respectively,

and a diagonal matrix 𝚺 = diag(𝜎𝑖) containing singular values 𝜎𝑖 of 𝐀. �e rank of 𝐀 is then

equal to the number of its nonzero singular values. SVD is another important decomposition

extensively used in matrix approximation problems. �e best rank-𝑘 approximation of some

matrix 𝐀 can be obtained with truncated SVD 𝐀𝑘 =
∑𝑘

𝑖
𝜆𝑖𝐮𝑖𝐯

⊤

𝑖
— a sum of rank-1matrices

of the �rst 𝑘 eigenvectors and eigenvalues. �anks to Eckart-Young-Mirsky theorem [64], this

can be analytically derived and we can quantify the approximation error in terms of singular

values 𝜎𝑖:

min
𝑟𝑎𝑛𝑘(𝐁)=𝑘

‖𝐀 − 𝐁‖2 = 𝜎𝑘+1, min
𝑟𝑎𝑛𝑘(𝐁)=𝑘

‖𝐀 − 𝐁‖𝐹 =

√
√
√
√√

min(𝑚,𝑛)∑

𝑖>𝑘

𝜎2
𝑖
. (1.1)

LanczosAlgorithm is o�enused to compute a fewmost important eigenvalues and eigenvalues

of sparse symmetric matrices [87]. �e algorithm performs tridiagonalization and outputs an

𝑛×𝑚matrix𝐕 with orthonormal columns and a tridiagonal real symmetric matrix𝐓 = 𝐕⊤𝐀𝐕

of size𝑚×𝑚. Lanczos algorithm is primarily used to reduce the dimensionality of the problem

under the assumption of the low-rank structure of the input matrix 𝐀 as 𝐓 is much easier

to work with when 𝑚 is small. When matrix 𝐀 is large and sparse, the Lanczos process is

especially advantageous since it relies on matrix-vector multiplications and does not even

require access to explicit matrix. �e algorithm has an iterative nature and can be seen as an

improved powermethod that computes the orthogonal basis in theKrylov subspace𝐾(𝐀, 𝐪, 𝑘) =

span{𝐪,𝐀𝐪,… ,𝐀𝑘−1𝐪}. Lanczos algorithm is sensitive to numerical instability resulting in a loss

of orthogonality among the Lanczos vectors 𝐯𝑘 — columns of 𝐕, which is typically overcome

with reorthogonalization techniques.

1.2.2 Matrices in Kernel Methods

We refer to [188, 153] for a thorough introduction to the kernel methods. Below, we cover some

of the basic notions used in the later chapters.

Many classical algorithms, such as Support VectorMachine (SVM) [53], principal component

analysis (PCA) [166, 108], employ training points 𝐱, 𝐲 ∈ 𝒳 only through their inner product

⟨𝐱, 𝐲⟩, which can be thought of a similarity measure or distance between these points. However,
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the linear functions induced by the inner product are o�en not su�ciently expressive for many

realistic learning tasks. Kernel methods solve this problem by replacing the inner product

⟨𝐱, 𝐲⟩ in𝒳 by some other nonlinear similarity measure, an inner product in some other feature

spaceℋ.

Extending the inner product in the original space into high-dimensional Hilbert spaceℋ

can be done by means of a feature map 𝜓:

𝜓 ∶ 𝒳 → ℋ,

𝐱 → 𝜓(𝐱).

�e inner product inℋ can now be written as:

𝑘(𝐱, 𝐲) = ⟨𝜓(𝐱), 𝜓(𝐲)⟩ℋ, (1.2)

we refer to function 𝑘 as kernel function. For example, consider a polynomial feature map
𝜓(𝐱) = (𝐱2

1
, 𝐱2

2
,
√
2𝐱1𝐱2) for 𝐱 ∈ ℝ2. �e corresponding kernel

⟨𝜓(𝐱), 𝜓(𝐲)⟩ℋ = 𝐱2
1
𝐲2
1
+ 𝐱2

2
𝐲2
2
+ 2𝐱1𝐱2𝐲1𝐲2 = ⟨𝐱, 𝐲⟩2,

yields the square of the inner product in the original space.

�us, by substituting ⟨𝐱, 𝐲⟩ with ⟨𝜓(𝐱), 𝜓(𝐲)⟩ℋ , we nonlinearly extend classical algorithms,

relying only on the inner product between examples. However, the direct application of the map

is o�en computationally restrictive and in some cases impossible due to in�nite dimensionality

of the target feature space. We thus rely on the kernel trick — there are alternative ways to
evaluate ⟨𝜓(𝐱), 𝜓(𝐲)⟩ℋ whenever the kernel is positive de�nite. �e kernel is said to be positive

de�nite when it is symmetric 𝑘(𝐱, 𝐲) = 𝑘(𝐲, 𝐱) and its Gram matrix is positive de�nite

𝑛∑

𝑖,𝑗=1

𝑐𝑖𝑐𝑗𝑘(𝐱𝑖, 𝐱𝑗) ≥ 0,

for any 𝑛 ∈ ℕ, any 𝐱1, … , 𝐱𝑛 ∈ 𝒳 and any coe�cients 𝑐𝑖, 𝑐𝑗 ∈ ℝ. �e Gram matrix of all data

points in the new feature space is called the kernel matrix and is de�ned as𝐊𝑖𝑗 = 𝑘(𝐱𝑖, 𝐱𝑗). �e

kernel trick has been an e�cient technique when dataset sizes did not exceed several thousand

points, today, they are generally considered limited for large-scale learning due to demanding

time and space requirements, e.g., it is o�en required to invert the kernel matrix, which is cubic

in time.

�e most celebrated technique addressing scalability of kernel methods by reverting the
kernel trick is called Random Fourier Features (RFF) [174]. In short, it can be described as a
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feature map construction 𝜓̂ ∶ ℝ𝐷 → ℝ𝑑. �is randomised map should approximate the inner

product in (1.2):

𝑘(𝐱, 𝐲) = ⟨𝜓(𝐱), 𝜓(𝐲)⟩ℋ ≈ 𝜓̂(𝐱)⊤𝜓̂(𝐱),

�is technique is possible for shi�-invariant kernels thanks to Bochner’s theorem, which we

will encounter later in the thesis. Kernel function is called shi�-invariant if 𝑘(𝐱, 𝐲) = 𝑘(𝐱 − 𝐲)

holds. Many popular kernels are shi�-invariant, e.g., Gaussian, Laplace, Cauchy. �e widely

used Gaussian (or radial basis function) kernel is:

𝑘(𝐱, 𝐲) = exp
(
−
‖𝐱 − 𝐲‖2

2𝜎2

)
,

where 𝜎 is a parameter. �e RFF mapping most o�en consists of some nonlinear function

(e.g., sine and cosine for the Gaussian kernel) applied to a linear transformation de�ned by

some rectangular matrix𝐖, i.e., 𝜓̂(𝐱) = [cos(𝐖𝐱), sin(𝐖𝐱)]. A�er applying such nonlinear

approximate map to the data, we can use this new representation in linear algorithms, such as

ridge regression. In this thesis, we will encounter several RFF extensions for scaling up kernel

methods and their generalisation through the use of numerical integration.

1.2.3 Matrix Representations of Graphs

Graphs are an essential representation tool for various data. In turn, a graph can be represented

with associated matrices such as adjacency matrix or graph Laplacian. We will brie�y review

basic graph notation and facts relevant to the problems in this thesis.

Let 𝐺 = (𝑉, 𝐸) be an undirected graph, represented with a set of vertices 𝑉 = (𝑣1, … , 𝑣𝑛),

|𝑉| = 𝑛 and a set of edges 𝐸 ⊆ 𝑉 × 𝑉, |𝐸| = 𝑚. �e adjacency matrix 𝐀 is an 𝑛 × 𝑛 matrix

having a positive weight (1 if the graph is unweighted)𝐀𝑖𝑗 > 0 associated with each edge (𝑣𝑖, 𝑣𝑗)

and 0 otherwise.

In this thesis, we work a lot with graph Laplacian, an analogue of divergence of the gradient
of a function in vector spaces when considering scalar-valued functions on vertices and edges

of the graph. We refer to [101] for a detailed exposition of the topic. �ere are two formulations

of graph Laplacian we use in this work. �e �rst is an unnormalized Laplacian, de�ned as
𝐋 = 𝐃−𝐀. However, we focus more on the normalized Laplacian matrix𝓛 = 𝐈 − 𝐃

−1∕2𝐀𝐃
−1∕2,

where 𝐃 is the diagonal matrix with node degrees on the diagonal 𝐃 = diag(deg(𝑣𝑖)), i.e.

𝐃𝑖𝑖 =
∑𝑛

𝑗=1
𝐀𝑖𝑗 and 𝐈 is the identity matrix. Where applicable, we use the notation for graphs

and corresponding matrices as de�ned in Table 1.2.
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Notation Description

𝑉 a set of nodes, 𝑉 = (𝑣1, … , 𝑣𝑛), |𝑉| = 𝑛

𝐸 a set of edges, 𝐸 ⊆ (𝑉 × 𝑉), |𝐸| = 𝑚

𝐺 a graph 𝐺 = (𝑉, 𝐸)

𝑁(𝑣) set of neighbours of node 𝑣

deg(𝑣) degree of node 𝑣

𝐀 an 𝑛 × 𝑛 adjacency matrix, 𝐀𝑖𝑗 ∈ ℝ

𝐃 an 𝑛 × 𝑛 degree matrix,𝐃𝑖𝑖 =
∑

𝑗
𝐀𝑖𝑗

𝐋 an 𝑛 × 𝑛 Laplacian matrix, 𝐋 = 𝐃 − 𝐀

𝓛 an 𝑛 × 𝑛 normalized Laplacian matrix,𝓛 = 𝐈 − 𝐃−1∕2𝐀𝐃−1∕2

Table 1.2 Graph-related notation

1.2.4 Matrix Sketching

In large-scale settings, we are o�enmore restricted in time and space so that it is no longer feasible

to use most matrix approximation and decomposition methods. With heavier restrictions on

computational complexity, there are also relaxed precision requirements. Matrix sketching

allows us to e�ciently approximate input matrix 𝐌 by a low-dimensional sketch matrix 𝐒

retaining most of the information in𝐌 with some theoretical guarantees on approximation

error. �ese algorithms work in a streaming setting, i.e., rows/columns arrive one a�er another,

thus alleviating the need to store and manipulate the full matrix when dealing with matrix

factorization algorithms. We refer to [232] for a detailed exposition of the topic. We will cover

relevant sketching algorithms and their minimization objectives later in Chapter 5.

1.2.5 Matrix Functions

As we will consider estimating aggregate quantities of matrix functions in Chapters 3 and 4, we

also need to cover some background on functions of matrices. We refer to [104] for an extensive

introduction to the topic.

In this thesis, we encounter several types of matrix functions — elementwise operations on

matrices such as sin(𝐀) = (sin 𝑎𝑖𝑗), functions with scalar output such as det(𝐀), tr(𝐀), matrix

factorizations and mappings like 𝐴⊤. However, in this section we are interested in matrix

function viewed as a generalisation of scalar function 𝑓(𝑥), where 𝑥 ∈ ℝ. Two examples of

such matrix functions are matrix logarithm and exponential, whose scalar counterparts admit

power series representations:

log(1 + 𝑥) = 𝑥 −
𝑥2

2
+
𝑥3

3
− … ,
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with |𝑥| < 1, and

exp(𝑥) = 1 + 𝑥 +
𝑥2

2
+ … .

We can substitute 𝑥 with 𝐀 to obtain matrix function

log(𝐈 + 𝐀) = 𝐀 −
𝐀2

2
+
𝐀3

3
− … , exp(𝐀) = 𝐈 + 𝐀 +

𝐀2

2
+ … ,

with spectral radius 𝜌(𝐀) < 1 to ensure convergence of the series in the logarithm case.

�ere are several equivalent ways to formally de�ne matrix functions to ensure consistency

and applicability to arbitrary functions 𝑓. Perhaps the most simple is to use Jordan Canonical

Form 𝐀 = 𝐙𝐉𝐙−1 with nonsingular 𝐙, where 𝐉 consists of bidiagonal blocks on the diagonal

corresponding to each eigenvalue of𝐀, each block has 1s on the superdiagonal and corresponding

𝜆𝑖 on the main diagonal. �e function is then applied to the Jordan block-diagonal matrix only.

In this thesis, we treat diagonalizable matrices that permit even simpler form as JCF reduces to

eigendecomposition, and thus 𝑓(𝐀) = 𝐐𝑓(𝚲)𝐐−1.

We will treat two functions in the next chapters — exponential exp(𝑥) and 𝑥 log(𝑥) that

can be de�ned on the spectrum of 𝐀. Although we will not explicitly compute their values as

matrix functions, we will need this exposition for the theoretical derivation of the aggregate

quantities of interest that depend on these functions.

1.3 Numerical Integration
Integrals are ubiquitous in machine learning. Most problems are de�ned as an expected value of

some function 𝑓(𝑥) over data distribution 𝑝(𝑥), 𝔼𝑝(𝑥)𝑓(𝑥). Usually, such integrals in realistic

high-dimensional settings are rarely analytically tractable (with some exceptions requiring

restrictive assumptions on the model). �us, it is common to use empirical estimates for such

quantities with a �nite data sample.

In this thesis, we adopt a di�erent perspective and �nd integrals in o�beat settings. We rewrite

kernels (Chapter 2) and bilinear forms (Chapters 3 and 4) as integrals and apply quadrature

rules to obtain their accurate estimates. To this end, we will brie�y review here the basics of

numerical integration — a family of methods to estimate a numerical value of a de�nite integral.

1.3.1 Gaussian Quadrature

Historically the term quadrature stands for calculating area. Today, a quadrature rule is an
approximation of the de�nite integral of a function, commonly represented as a weighted sum
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of integrand values at given points inside the domain of integration. A particular instantiation

of integration points and their weights depend on the method used and the accuracy required

from the estimator.

Gauss quadrature rule is a 𝑛-point quadrature devised to yield exact value for polynomials

of degree 𝑑 ≤ 2𝑛 − 1. �e most common example is the Gauss-Legendre rule for integration

region [−1, 1]:

∫

1

−1

𝑓(𝑥)𝑑𝑥 ≈

𝑛∑

𝑖=1

𝑤𝑖𝑓(𝑥𝑖), (1.3)

where the choice of points 𝑥𝑖 and weights𝑤𝑖 is dictated by the roots of the orthogonal polynomial

associated with the quadrature. For di�erent integration regions and integrand end-point

behaviour, many other quadrature rules with the corresponding orthogonal polynomials (Gauss-

Hermite, Chebyshev-Gauss, etc.) exist. For an extensive introduction to the topic, we refer

to [200].

In the following chapters, we will see quadrature rules when the integration region is an

in�nite range or a surface of 𝑑-dimensional sphere. We will also appreciate the connection

between the Lanczos process and orthogonal polynomials associated with a bilinear form 𝐯⊤𝐀𝐯

in Chapter 3, where we will estimate the trace of matrix exponential tr(exp(𝐀)).



Chapter 2

Structured Feature Maps for Kernel
Approximation

In this chapter, we apply numerical integration to kernel approximation. We start by describing

how scalability of kernel methods is addressed through random feature maps by interpreting

the kernel as an integral and discuss relevant methods. We then de�ne spherical and radial

quadratures and show how they generalise existing methods. For space and time e�ciency we

also use sparsity in the factors in the proposed quadrature-based feature maps.

2.1 Introduction
Kernel methods proved to be an e�cient technique in numerous real-world problems. �e core

idea of kernel methods is the kernel trick – compute an inner product in a high-dimensional (or

even in�nite-dimensional) feature space by means of a kernel function 𝑘:

𝑘(𝐱, 𝐲) = ⟨𝜓(𝐱), 𝜓(𝐲)⟩, (2.1)

where 𝜓 ∶ 𝒳 → ℋ is a non-linear feature map transporting elements of input space 𝒳 into

a feature space ℋ. It means that kernel methods implicitly perform the high-dimensional

non-linear transformation 𝜓 of input variables. �e kernel function provides a distance measure

in the feature space ℋ of this nonlinear transform without the actual transformation, thus

allowing nonlinear nonparametric learning, e.g., through Gaussian Processes or kernel-based

Support Vector Machines. Despite enjoying excellent theoretical guarantees, the kernel methods

are o�en considered to be limited in large-scale learning applications due to their demanding

computational complexity.
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Today, it is a common knowledge that, at least in their basic form, kernel methods incur space

and time complexity infeasible to be used with large-scale datasets directly. For example, kernel

regression has𝒪(𝑁3 +𝑁𝑑2) training time,𝒪(𝑁2)memory,𝒪(𝑁𝑑) prediction time complexity

for𝑁 data points in original 𝑑-dimensional space𝒳.

One of the most successful techniques to handle this problem, known as Random Fourier

Features (RFF) proposed by [174], introduces a low-dimensional randomized approximation to

feature maps:

𝑘(𝐱, 𝐲) ≈ Ψ̂(𝐱)⊤Ψ̂(𝐲). (2.2)

�is is essentially carried out by using Monte-Carlo sampling to approximate scalar product in

Equation (2.1). A randomized 𝐷-dimensional mapping Ψ̂(⋅) applied to the original data input

allows employing standard linear methods, i.e. reverting the kernel trick. In doing so, one

reduces the complexity to that of linear methods, e.g. 𝐷-dimensional approximation admits

𝒪(𝑁𝐷2) training time, 𝒪(𝑁𝐷)memory and 𝒪(𝑁) prediction time.

It is well known that as 𝐷 → ∞, the inner product in Equation (2.2) converges to the exact

kernel 𝑘(𝐱, 𝐲). Since smaller dimension size 𝐷 leads to an increased approximation error and a

subsequent downstream performance decrease, recent research [236, 71, 43] aims to improve

the convergence of approximation, which pursue distinct improvement techniques such as

quasi-Monte Carlo points, orthogonality and structure in mapping matrices of Ψ̂. We propose

a unifying perspective towards all of the existing methods in regard to kernel approximation

through quadrature rules.
Most attention in the �eld has been drawn to the kernels that allow the following integral

representation:

𝑘(𝐱, 𝐲) = 𝔼𝑝(𝐰)𝑓𝐱𝐲(𝐰) = 𝐼(𝑓𝐱𝐲),

𝑝(𝐰) =
1

(2𝜋)𝑑∕2
𝑒
−
‖𝐰‖2

2 ,

𝑓𝐱𝐲(𝐰) = 𝜙(𝐰⊤𝐱)⊤𝜙(𝐰⊤𝐲).

(2.3)

For example, the Gaussian kernel admits such representation with 𝜙(⋅) =
[
cos(⋅) sin(⋅)

]⊤
.

Generally, the class of kernels admitting the form in Equation (2.3) covers shi�-invariant kernels

(e.g. radial basis function (RBF) kernels) and Pointwise Nonlinear Gaussian (PNG) kernels.

�ey are widely used in practice and have interesting connections with neural networks [42, 229].

�emain challenge for the construction of low-dimensional featuremaps is the approximation

of the expectation in Equation (2.3) which is 𝑑-dimensional integral with Gaussian weight.

Unlike other research studies we refrain from using simple Monte Carlo estimate of the integral,

instead, we propose to use speci�c quadrature rules.
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We summarize the contributions of this Chapter as follows:

1. We propose to use spherical-radial quadrature rules to improve kernel approximation

accuracy and generalise the RFF-based techniques.

2. We use structured orthogonal matrices (so-called butter�y matrices) when designing
quadrature rule that allow fast matrix by vector multiplications. As a result, we speed up

the approximation of the kernel function and reduce memory requirements.

3. We carry out an extensive empirical study comparing ourmethodswith the state-of-the-art

ones on a set of di�erent kernels in terms of both kernel approximation error and

downstream tasks performance. �e study supports our hypothesis on the exceeding

accuracy of the method.

2.2 RelatedWork
�emost popular methods for scaling up kernel methods are based on a low-rank approximation

of the kernel using either data-dependent or independent basis functions. For example, in

Random Fourier Features, the basis functions (i.e., sine and cosine functions) are sampled from

a distribution independent of the training data, meanwhile, Nyström method samples basis

functions from training examples, rendering the method data-dependent.

Data-dependent approach

�e �rst one includes Nyström method [63], greedy basis selection techniques [197], incomplete

Cholesky decomposition [72], a combination of stochastic subsampling, iterative solvers and

preconditioning for approximating kernel ridge regression [183]. �e construction of basis

functions in these techniques utilizes the given training set making them more attractive for

some problems compared to Random Fourier Features approach. In general, data-dependent

approaches perform better than data-independent approaches when there is a gap in the

eigen-spectrum of the kernel matrix. �e rigorous study of generalisation performance of

both approaches can be found in [238].

Data-independent approach

In data-independent techniques, the kernel function is approximated directly. Most of the

methods (including the proposed approach) that follow this idea are based on Random Fourier

Features [174]. �ey require so-called weight matrix that can be generated in a number of ways.
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[126] form the weight matrix as a product of structured matrices. It enables fast computation of

matrix-vector products and speeds up generation of random features.

Another work [71] orthogonalizes the features by means of orthogonal weight matrix. �is

leads to less correlated and more informative features increasing the quality of approximation.

�ey support this result both analytically and empirically. �e authors also introduce matrices

with some special structure for fast computations. [44] propose a generalisation of the ideas

from [126] and [71], delivering an analytical estimate for the mean squared error (MSE) of

approximation.

All these works use simple Monte Carlo sampling. However, the convergence can be

improved by changing Monte Carlo sampling to quasi-Monte Carlo sampling. Following this

idea [236] apply quasi-Monte Carlo to Random Fourier Features. In [242] the authors make

attempt to improve quality of the approximation of Random Fourier Features by optimizing

sequences conditioning on a given dataset.

Among the recent papers there are works that, similar to our approach, use the numerical

integration methods to approximate kernels. While [18] carefully inspects the connection

between random features and quadratures, they did not provide any practically useful explicit

mappings for kernels. Leveraging the connection [54] propose several methods with Gaussian

quadratures. Among them three schemes are data-independent and one is data-dependent. �e

authors do not compare them with the approaches for random feature generation other than

random Fourier features. �e data-dependent scheme optimizes the weights for the quadrature

points to yield better performance. A closely related work [138] constructs features for kernel

approximation by approximating spherical-radial integral and designs QMC points to speed up

approximation and reduce memory.

2.3 Quadrature Rules and Random Features
We start with rewriting the expectation in Equation (2.3) as integral of 𝑓𝐱𝐲 with respect to 𝑝(𝐖):

𝐼(𝑓𝐱𝐲) = (2𝜋)
−
𝑑

2 ∫

∞

−∞

⋯∫

∞

−∞

𝑒
−
𝐖⊤𝐖

2 𝑓𝐱𝐲(𝐖)𝑑𝐖.

Integration can be performed by means of quadrature rules. �e rules usually take a form of

interpolating function that is easy to integrate. Given such a rule, one may sample points from

the domain of integration and calculate the value of the rule at these points. �en, the sample

average of the rule values would yield the approximation of the integral.

�e connection between integral approximation and mapping 𝜓 is straightforward. In what

follows we show a brief derivation of the quadrature rules that allow for an explicit mapping of
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the form:

𝜓(𝐱) = [ 𝑎0𝜙(0) 𝑎1𝜙(𝐖
⊤
1
𝐱) … 𝑎𝐷𝜙(𝐖

⊤
𝐷
𝐱) ], (2.4)

where the choice of the weights 𝑎𝑖 and the points𝐖𝑖 is dictated by the quadrature.

We use the average of sampled quadrature rules developed by [77] to yield unbiased estimates

of 𝐼(𝑓𝐱𝐲). A change of coordinates is the �rst step to facilitate stochastic spherical-radial rules.

Now, let𝐖 = 𝑟𝐳, with 𝐳⊤𝐳 = 1, so that𝐖⊤𝐖 = 𝑟2 for 𝑟 ∈ [0,∞], leaving us with (to ease the

notation we substitute 𝑓𝐱𝐲 with 𝑓)

𝐼(𝑓) = (2𝜋)
−
𝑑

2 ∫
𝑈𝑑

∫

∞

0

𝑒
−
𝑟2

2 𝑟𝑑−1𝑓(𝑟𝐳)𝑑𝑟𝑑𝐳 =
(2𝜋)

−
𝑑

2

2
∫
𝑈𝑑

∫

∞

−∞

𝑒
−
𝑟2

2 |𝑟|𝑑−1𝑓(𝑟𝐳)𝑑𝑟𝑑𝐳, (2.5)

𝐼(𝑓) is now a double integral over the unit 𝑑-sphere𝑈𝑑 = {𝐳 ∶ 𝐳⊤𝐳 = 1, 𝐳 ∈ ℝ𝑑} and over the

radius. To account for both integration regions we apply a combination of spherical (𝑆) and

radial (𝑅) rules known as spherical-radial (𝑆𝑅) rules. To provide an intuition how the rules

work, here we brie�y state and discuss their form1.

Stochastic radial rules of degree 2𝑙 + 1 have the form of the weighted symmetric sums

𝑅(ℎ) =

𝑙∑

𝑖=0

𝑤̂𝑖

ℎ(𝜌𝑖)+ℎ(−𝜌𝑖)

2
and approximate the in�nite range integral

𝑇(ℎ) = ∫

∞

−∞

𝑒
−
𝑟2

2 |𝑟|𝑑−1ℎ(𝑟)𝑑𝑟. (2.6)

Note that when ℎ is set to the function 𝑓 of interest, 𝑇(𝑓) corresponds to the inner integral

in Equation (2.5). To get an unbiased estimate for 𝑇(ℎ), points 𝜌𝑖 are sampled from speci�c

distributions. �e weights 𝑤̂𝑖 are derived so that the rule is exact for polynomials of degree

2𝑙 + 1 and give unbiased estimate for other functions.

Stochastic spherical rules have a form of a weighted sum 𝑆𝐐(𝑠) =

𝑝∑

𝑗=1

𝑤𝑗𝑠(𝐐𝐳𝑗), where 𝐐

is a random orthogonal matrix, approximate an integral of a function 𝑠(𝐳) over the surface of

unit 𝑑-sphere𝑈𝑑 and 𝐳𝑗 are points on𝑈𝑑, i.e. 𝐳
⊤

𝑗
𝐳𝑗 = 1. Remember that the outer integral in

Equation (2.5) has𝑈𝑑 as its integration region. �e weights 𝑤𝑗 are stochastic with distribution

such that the rule is exact for polynomials of degree 𝑝 and gives unbiased estimate for other

functions.

1Please see [77] for detailed derivation of the stochastic radial (section 2), spherical (section 3) and spherical

radial rules (section 4)
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Stochastic spherical-radial rules𝑆𝑅 of degree (2𝑙+1, 𝑝) are given by the following expression

𝑆𝑅
(2𝑙+2,𝑝)

𝐐,𝜌
=

𝑝∑

𝑗=1

𝑤𝑗

𝑙∑

𝑖=1

𝑤̂𝑖

𝑓(𝜌𝐐𝐳𝑖) + 𝑓(−𝜌𝐐𝐳𝑖)

2
,

where the distributions of weights are such that if degrees of radial rules and spherical rules

coincide, i.e. 2𝑙 + 1 = 𝑝, then the rule is exact for polynomials of degree 2𝑙 + 1 and gives

unbiased estimate of the integral for other functions.

2.3.1 Spherical-Radial Rules of Degree (1,1) is RFF

If we take radial rule of degree 1 and spherical rule of degree 1, we arrive at the following rule

𝑆𝑅
(1,1)

𝐐,𝜌
=
𝑓(𝜌𝐐𝐳) + 𝑓(−𝜌𝐐𝐳)

2
,

where 𝜌 ∼ 𝜒(𝑑). It is easy to see that 𝜌𝐐𝐳 ∼ 𝒩(0, 𝐈). For shi� invariant kernel𝑓(𝐖) = 𝑓(−𝐖),

thus, the rule reduces to 𝑆𝑅
(1,1)

𝐐,𝜌
= 𝑓(𝐖), where𝐖 ∼ 𝒩(0, 𝐈).

Now, RFF [174] makes approximation of the RBF kernel in exactly the same way: it generates

random vector from Gaussian distribution and calculates the corresponding feature map.

Proposition 2.3.1. Random Fourier Features for RBF kernel are SR rules of degree (1, 1).

2.3.2 Spherical-Radial Rules of Degree (1,3) is ORF

Now, let’s take radial rule of degree 1 and spherical rule of degree 3. In this case we get the

following spherical-radial rule

𝑆𝑅
1,3

𝐐,𝜌
=

𝑑∑

𝑖=1

𝑓(𝜌𝐐𝐞𝑖) + 𝑓(−𝜌𝐐𝐞𝑖)

2
,

where 𝜌 ∼ 𝜒(𝑑), 𝐐 is a random orthogonal matrix, 𝐞𝑖 = (0, … , 0, 1, 0, … , 0)⊤ is an 𝑖-th column

of the identity matrix.

Let us compare SR
1,3
rules with Orthogonal Random Features [71] for the RBF kernel. In

the ORF approach, the weight matrix𝐖 = 𝐒𝐐 is generated, where 𝐒 is a diagonal matrix with

the entries drawn independently from 𝜒(𝑑) distribution and 𝐐 is a random orthogonal matrix.

�e approximation of the kernel is then given by 𝑘ORF(𝐱, 𝐲) =
∑𝑑

𝑖=1
𝑓(𝐖𝑖), where𝐖𝑖 is the

𝑖-th row of the matrix𝐖. As the rows of 𝐐 are orthonormal, they can be represented as 𝐐𝐞𝑖.

Proposition 2.3.2. Orthogonal Random Features for RBF kernel are SR rules of degree (1, 3).
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2.3.3 Spherical-Radial Rules of Degree (3,3)

We go further and take both spherical and radial rules of degree 3, where we use original and

re�ected vertices 𝐯𝑗 of randomly rotated unit vertex regular 𝑑-simplex 𝐯 as the points on the

unit sphere

𝑆𝑅
3,3

𝐐,𝜌
(𝑓) = (1 −

𝑑

𝜌2
) 𝑓(𝟎) +

𝑑

𝑑 + 1

𝑑+1∑

𝑗=1

[
𝑓(−𝜌𝐐𝐯𝑗) + 𝑓(𝜌𝐐𝐯𝑗)

2𝜌2
] , (2.7)

where 𝜌 ∼ 𝜒(𝑑 + 2). We apply quadrature in Equation (2.7) to the approximation of the integral

in Equation (2.5) by averaging the samples of 𝑆𝑅
3,3

𝐐,𝜌
:

𝐼(𝑓) = 𝔼𝐐,𝜌[𝑆𝑅
3,3

𝐐,𝜌
(𝑓)] ≈ 𝐼(𝑓) =

1

𝑛

𝑛∑

𝑖=1

𝑆𝑅
3,3

𝐐𝑖 ,𝜌𝑖
(𝑓), (2.8)

where 𝑛 is the number of sampled 𝑆𝑅 rules. Speaking in terms of the approximate feature maps,

the new feature dimension𝐷 in case of the quadrature based approximation equals 2𝑛(𝑑+1)+1

as we sample 𝑛 rules and evaluate each of them at 2(𝑑 + 1) random points and 1 zero point.

We propose to modify the quadrature by generating 𝜌𝑗 ∼ 𝜒(𝑑 + 2) for each 𝐯𝑗:

𝑆𝑅
3,3

𝐐,𝜌
(𝑓) =

⎛

⎜

⎝

1 −

𝑑+1∑

𝑗=1

𝑑

(𝑑 + 1)𝜌2
𝑗

⎞

⎟

⎠

𝑓(𝟎) +
𝑑

𝑑 + 1

𝑑+1∑

𝑗=1

[
𝑓(−𝜌𝑗𝐐𝐯𝑗) + 𝑓(𝜌𝑗𝐐𝐯𝑗)

2𝜌2
𝑗

] . (2.9)

While the formulation in Equation (2.9) does not a�ect the quality of approximation, it does

simplify an analysis of the quadrature-based random features.

Explicit Mapping We �nally arrive at the map

𝜓(𝐱) = [ 𝑎0𝜙(0) 𝑎1𝜙(𝐖
⊤
1
𝐱) … 𝑎𝐷𝜙(𝐖

⊤
𝐷
𝐱) ], (2.10)

where

𝑎0 =

√
√
√
√√1−

𝑗=1∑

𝑑+1

𝑑

𝜌2
2, 𝑎𝑗 =

1

𝜌𝑗

√

𝑑

2(𝑑 + 1)
,

2To get 𝑎2
0
≥ 0, you need to sample 𝜌𝑗 two times on average (see Supplementary Materials for details).
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and𝐖𝑗 is the 𝑗-th row in the matrix𝐖 = 𝜌 ⊗
[

(𝐐𝐯)⊤

− (𝐐𝐯)⊤

]
, 𝜌 = [𝜌1…𝜌𝐷]

⊤. To get 𝐷 features

one simply stacks 𝑛 = 𝐷∕2(𝑑+1)+1matrices

𝐖𝑘 = 𝜌𝑘 [
(𝐐𝑘𝐯)⊤

− (𝐐𝑘𝐯)⊤
] , (2.11)

to get𝐖 ∈ ℝ𝐷×𝑑, where only 𝐐𝑘 ∈ ℝ𝑑×𝑑 and 𝜌𝑘 are generated randomly (𝑘 = 1,… , 𝑛). For

Gaussian kernel, 𝜙(⋅) =
[
cos(⋅) sin(⋅)

]⊤
. For the 0-order arc-cosine kernel, 𝜙(⋅) = Θ(⋅), where

Θ(⋅) is the Heaviside function. For the 1-order arc-cosine kernel, 𝜙(⋅) = max(0, ⋅). We call

this novel feature map method Quadrature-based Features (QF). Below is the pseudo code for

explicit mapping with QF.

Algorithm 1Quadrature-based Features Explicit Mapping Algorithm.
function QF(𝐗, 𝑑, 𝑛)

𝐕 ← simplex(𝑑)

𝜌s← sample(𝜒(𝑑 + 2), 𝑛)

𝐐s← random_orthogonal_matrix(𝑑, 𝑛) ⊳ see Section 2.3.4

𝐖← weight_matrix(𝐕, 𝜌s, 𝐐s) ⊳ from Equation (2.11)

return 𝜓(𝐗, 𝜌s,𝐖) ⊳ from Equation (2.10)

2.3.4 Generating Uniformly RandomOrthogonal Matrices

�e SR rules require a random orthogonal matrix𝐐. If𝐐 follows Haar distribution, the averaged

samples of 𝑆𝑅
3,3

𝐐,𝜌
rules provide an unbiased estimate for the integral in Equation (2.5). Essentially,

Haar distributionmeans that all orthogonalmatrices in the group are equiprobable, i.e. uniformly

random. Methods for sampling such matrices vary in their complexity of generation and

multiplication. Below, we review them in generality.

Gram-Schmidt process. QR decomposition with a little tweak [144] on the randommatrix

with entries {𝑥𝑖𝑗} ∼ 𝒩(0, 1) is the most straight forward way to obtain the required matrix,

however its complexity is cubic in 𝑑 and the resulting matrix has no special structure to allow

fast matrix by vector multiplication.

Sequence of re�ectors. A sequence of random re�ectors [199] or rotations [10] is a way to

get uniformly random 𝐐 from the orthogonal group O(𝑑). �e method has a better generation

complexity — quadratic in 𝑑— in the form of a product of transformations, e.g. re�ections:
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𝐐 = 𝐇1…𝐇𝑛−1𝐃, where 𝐇𝑖 is a random Householder matrix 𝐼 − 2
𝐱𝑖𝐱

⊤
𝑖

‖𝐱𝑖‖
2
with Householder

vectors 𝐱𝑖 ∼ 𝒩(0, 𝐈) sampled from standard Gaussian distribution, and diagonal matrix𝐃 with

entries 𝑑𝑖𝑖 sampled from Rademacher distribution, i.e. ℙ(𝑑𝑖𝑖 = ±1) = 1∕2, but it implicates no

fast matrix multiplication. We test the method with Householder re�ections, denoted 𝐇 in

Section 2.6.

Sparse and diagonal blocks product. Random orthogonal matrices (ROM) [44] generalise

the idea of using a product of diagonal and structured orthogonalmatrices to reduce computational

complexity and approximation error: 𝐐 =
√
𝑑

3∏

𝑖=1

𝐒𝐃𝑖, where matrix 𝐃 is a diagonal matrix

with i.i.d. Rademacher random variables on the diagonal (same as above). An instantiation of

structured orthogonal matrix 𝐒 is a normalized Hadamard matrix𝐇𝑑, de�ned recursively with

the base case𝐇1 = 1:

𝐇𝑖 =
1
√
2
[
𝐇𝑖−1 𝐇𝑖−1

𝐇𝑖−1 −𝐇𝑖−1

] .

�anks to the structured nature of their factors, ROM enable fast matrix by vector products.

Unfortunately, they are not guaranteed to follow the Haar distribution.

Orthogonal matrices in Quadrature-based Features.
For QF, we test two algorithms for obtaining 𝐐. �e �rst uses a QR decomposition of a

randommatrix to obtain a product of a sequence of re�ectors/rotators𝐐 = 𝐇1…𝐇𝑛−1𝐃, where

𝐇𝑖 is a random Householder/Givens matrix and a diagonal matrix 𝐃 has entries such that

ℙ(𝑑𝑖𝑖 = ±1) = 1∕2. It implicates no fast matrix multiplication. We test both methods for random

orthogonal matrix generation and, since their performance coincides, we leave this one out for

cleaner �gures in the Section 2.6.

�e other choice for 𝐐 are so-called butter�y matrices [76]. An example for 𝑑 = 4:

𝐁(4) =

⎡
⎢
⎢
⎢
⎢

⎣

𝑐1 −𝑠1 0 0

𝑠1 𝑐1 0 0

0 0 𝑐3 −𝑠3

0 0 𝑠3 𝑐3

⎤
⎥
⎥
⎥
⎥

⎦

⎡
⎢
⎢
⎢
⎢

⎣

𝑐2 0 −𝑠2 0

0 𝑐2 0 −𝑠2

𝑠2 0 𝑐2 0

0 𝑠2 0 𝑐2

⎤
⎥
⎥
⎥
⎥

⎦

=

⎡
⎢
⎢
⎢
⎢

⎣

𝑐1𝑐2 −𝑠1𝑐2 −𝑐1𝑠2 𝑠1𝑠2

𝑠1𝑐2 𝑐1𝑐2 −𝑠1𝑠2 −𝑐1𝑠2

𝑐3𝑠2 −𝑠3𝑠2 𝑐3𝑐2 −𝑠3𝑐2

𝑠3𝑠2 𝑐3𝑠2 𝑠3𝑐2 𝑐3𝑐2

⎤
⎥
⎥
⎥
⎥

⎦

,

where 𝑠𝑖, 𝑐𝑖 is sine and cosine, respectively, of some angle 𝜃𝑖, 𝑖 = 1, … , 𝑑 − 1. A thorough

de�nition is given below.
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De�nition 1. Let 𝑐𝑖 = cos 𝜃𝑖, 𝑠𝑖 = sin 𝜃𝑖 for 𝑖 = 1, … , 𝑑 −1 be given. Assume 𝑑 = 2𝑘 with 𝑘 > 0.
�en an orthogonal matrix 𝐁(𝑑) ∈ ℝ𝑑×𝑑 is de�ned recursively as follows

𝐁(2𝑑) = [
𝐁(𝑑)𝑐𝑑 −𝐁(𝑑)𝑠𝑑

𝐁̂(𝑑)𝑠𝑑 𝐁̂(𝑑)𝑐𝑑
] , 𝐁(1) = 1,

where 𝐁̂(𝑑) is the same as 𝐁(𝑑) with indexes 𝑖 shi�ed by 𝑑, e.g.

𝐁(2) = [
𝑐1 −𝑠1

𝑠1 𝑐1
] , 𝐁̂(2) = [

𝑐3 −𝑠3

𝑠3 𝑐3
] .

�e factors of 𝐁(𝑑) are structured and allow fast matrix multiplication. Speci�cally, matrix

by vector products with 𝐁(𝑑) have computational complexity 𝑂(𝑑 log 𝑑) since 𝐁(𝑑) has ⌈log 𝑑⌉

factors and each factor requires 𝑂(𝑑) operations. Another advantage is space complexity: 𝐁(𝑑)

is fully determined by 𝑑 − 1 angles 𝜃𝑖, yielding 𝑂(𝑑)memory requirement.

Fig. 2.1 Visual representaion of butter�y orthogonal matrix factors for 𝑑 = 16

�e randomization is based on the sampling of angles 𝜃. We follow the generation algorithm

in [70] that �rst computes a uniform random point 𝐮 from𝑈𝑑. It then calculates the angles by

taking the ratios of the appropriate 𝐮 coordinates 𝜃𝑖 =
𝑢𝑖

𝑢𝑖+1

, followed by computing cosines and

sines of the 𝜃’s. One can easily de�ne butter�y matrix 𝐁(𝑑) for the cases when 𝑑 is not a power

of 2.

Let the number of butter�y factors 𝑘 = ⌈log 𝑑⌉. �en 𝐁(𝑑) is constructed as a product of 𝑘

factor matrices of size 𝑑 ×𝑑 obtained from 𝑘matrices used for generating 𝐁(2𝑘). For each matrix

in the product for 𝐁(2𝑘), we delete the last 2𝑘 − 𝑑 rows and columns. We then replace with 1

every 𝑐𝑖 in the remaining 𝑑 × 𝑑 matrix that is in the same column as deleted 𝑠𝑖.
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When 𝑑 is not a power of two, the resulting 𝐁 has de�cient columns with zeros (Figure 2.2,

right), which introduces a bias to the integral estimate. To correct for this bias one may apply

additional randomization by using a product 𝐁𝐏, where 𝐏 ∈ {0, 1}𝑑×𝑑 is a permutation matrix.

Even better, use a product of several 𝐁𝐏’s: 𝐁̃ = (𝐁𝐏)1(𝐁𝐏)2… (𝐁𝐏)𝑡. We set 𝑡 = 3 in the

experiments. �e method using butter�y matrices is denoted by 𝐁 in the Section 2.6.

Fig. 2.2 Sparsity pattern for 𝐁𝐏𝐁𝐏𝐁𝐏 (le�) and 𝐁 (right), 𝑑 = 15

2.4 Error Bounds
For the completeness of the exposition of the method, below we discuss the error bounds on

the kernel approximation error with Quadrature-based Features followed by a bound on a

downstream error in kernel ridge regression.

Proposition 2.4.1. Let 𝑙 be a diameter of the compact set 𝒳 and 𝑝(𝐰) = 𝒩(0, 𝜎2𝑝𝐈) be the
probability density corresponding to the kernel. Let us suppose that |𝜙(𝐰⊤𝐱)| ≤ 𝜅, |𝜙′(𝐰⊤𝐱)| ≤ 𝜇

for all 𝐰 ∈ Ω, 𝐱 ∈ 𝒳 and
||||||

1−𝑓𝐱𝐲(𝜌𝐳)

𝜌2

||||||
≤ 𝑀 for all 𝜌 ∈ [0,∞), where 𝐳⊤𝐳 = 1. �en for

Quadrature-based Features approximation 𝑘̂(𝐱, 𝐲) of the kernel function 𝑘(𝐱, 𝐲) and any 𝜀 > 0 it
holds

ℙ( sup
𝐱,𝐲∈𝒳

|𝑘̂(𝐱, 𝐲) − 𝑘(𝐱, 𝐲)| ≥ 𝜀) ≤ 𝛽𝑑 (
𝜎𝑝𝑙𝜅𝜇

𝜀
)

2𝑑

𝑑+1

exp (−
𝐷𝜀2

8𝑀2(𝑑 + 1)
) ,
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where 𝛽𝑑 = (𝑑
−𝑑

𝑑+1 + 𝑑
1

𝑑+1) 2
6𝑑+1

𝑑+1

(
𝑑

𝑑+1

) 𝑑

𝑑+1 . �us we can construct approximation with error no

more than 𝜀 with probability at least 1 − 𝛿 as long as the number of features

𝐷 ≥
8𝑀2(𝑑 + 1)

𝜀2

⎡
⎢
⎢

⎣

2

1 +
1

𝑑

log
𝜎𝑝𝑙𝜅𝜇

𝜀
+ log

𝛽𝑑

𝛿

⎤
⎥
⎥

⎦

.

�eproof of this proposition closely follows [203], we defer the derivations to theAppendixA.1.

Term 𝛽𝑑 depends on dimension 𝑑, its maximum is 𝛽86 ≈ 64.7 < 65, and lim𝑑→∞ 𝛽𝑑 = 64,

though it is lower for small 𝑑. Let us compare this probability bound with the similar result for

RFF in [203]. Under the same conditions the required number of samples to achieve error no

more than 𝜀 with probability at least 1 − 𝛿 for RFF is the following

𝐷 ≥
8(𝑑 + 1)

𝜀2

⎡
⎢
⎢

⎣

2

1 +
1

𝑑

log
𝜎𝑝𝑙

𝜀
+ log

𝛽𝑑

𝛿
+

𝑑

𝑑 + 1
log

3𝑑 + 3

2𝑑

⎤
⎥
⎥

⎦

.

QF for RBF kernel𝑀 =
1

2
, 𝜅 = 𝜇 = 1, therefore, we obtain

𝐷 ≥
2(𝑑 + 1)

𝜀2

⎡
⎢
⎢

⎣

2

1 +
1

𝑑

log
𝜎𝑝𝑙

𝜀
+ log

𝛽𝑑

𝛿

⎤
⎥
⎥

⎦

.

�e asymptotics are the same, however, the constants are smaller for our approach. See

Section 2.6 for empirical justi�cation of the obtained result.

We now look at the error in terms of a downstream task of kernel ridge regression leveraging

a known result from [203].

Proposition 2.4.2 ([203]). Given a training set {(𝐱𝑖, 𝑦𝑖)}𝑛𝑖=1, with 𝐱𝑖 ∈ ℝ𝑑 and 𝑦𝑖 ∈ ℝ, let ℎ(𝐱)
denote the result of kernel ridge regression using the positive semi-de�nite training kernel matrix
𝐊, test kernel values 𝐤𝐱 and regularization parameter 𝜆. Let ℎ̂(𝐱) be the same using a PSD
approximation to the training kernel matrix 𝐊̂ and test kernel values 𝐤̂𝐱. Further, assume that the
training labels are centered,

∑𝑛

𝑖=1
𝑦𝑖 = 0, and let 𝜎2𝑦 =

1

𝑛

∑𝑛

𝑖=1
𝑦2
𝑖
. Also suppose ‖𝐤𝐱‖∞ ≤ 𝜅. �en

|ℎ̂(𝐱) − ℎ(𝐱)| ≤
𝜎𝑦
√
𝑛

𝜆
‖𝐤̂𝐱 − 𝐤𝐱‖2 +

𝜅𝜎𝑦𝑛

𝜆2
‖𝐊̂ − 𝐊‖2.
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Suppose that sup |𝑘(𝐱, 𝐱′) − 𝑘̂(𝐱, 𝐱′)| ≤ 𝜀 for all 𝐱, 𝐱′ ∈ ℝ𝑑. �en ‖𝐤̂𝐱 − 𝐤𝐱‖2 ≤
√
𝑛𝜀 and

‖𝐊̂ − 𝐊‖2 ≤ ‖𝐊̂ − 𝐊‖𝐹 ≤ 𝑛𝜀. By denoting 𝜆 = 𝑛𝜆0 we obtain |ℎ̂(𝐱) − ℎ(𝐱)| ≤
𝜆0+1

𝜆2
0

𝜎𝑦𝜀.

�erefore,

ℙ
(
|ℎ̂(𝐱) − ℎ(𝐱)| ≥ 𝜀

)
≤ ℙ(‖𝑘̂(𝐱, 𝐱′) − 𝑘(𝐱, 𝐱′)‖∞ ≥

𝜆2
0
𝜀

𝜎𝑦(𝜆0 + 1)
) .

So, for the quadrature rules we can guarantee |ℎ̂(𝐱) − ℎ(𝐱)| ≤ 𝜀 with probability at least 1 − 𝛿

as long as the feature dimension

𝐷 ≥ 8𝑀2(𝑑 + 1)𝜎2𝑦 (
𝜆0 + 1

𝜆2
0
𝜀
)

2 ⎡
⎢
⎢

⎣

2

1 +
1

𝑑

log
𝜎𝑦𝜎𝑝𝑙𝜅𝜇(𝜆0 + 1)

𝜆2
0
𝜀

+ log
𝛽𝑑

𝛿

⎤
⎥
⎥

⎦

.

2.5 Arc-cosine Kernels
In this section, we extend ourmethod to another class of kernels which have a particularly simple

approximation form via Spherical-Radial rules. Arc-cosine kernels were originally introduced

by [42] upon studying the connections between deep learning and kernel methods. �e integral

representation of the 𝑏𝑡ℎ-order arc-cosine kernel is

𝑘𝑏(𝐱, 𝐲) = 2 ∫
ℝ𝑛

Θ(𝐖⊤𝐱)Θ(𝐖⊤𝐲)(𝐖⊤𝐱)𝑏(𝐖⊤𝐲)𝑏𝑝(𝐖)𝑑𝐖,

𝑘𝑏(𝐱, 𝐲) = 2 ∫
ℝ𝑑

𝜙𝑏(𝐖
⊤𝐱)𝜙𝑏(𝐖

⊤𝐲)𝑝(𝐖)𝑑𝐖,

where 𝜙𝑏(𝐖
⊤𝐱) = Θ(𝐖⊤𝐱)(𝐖⊤𝐱)𝑏, Θ(⋅) is the Heaviside function and 𝑝 is the density of

the standard Gaussian distribution. Such kernels can be seen as an inner product between the

representation produced by in�nitely wide single layer neural network with random Gaussian

weights. �ey have closed form expressions in terms of the angle 𝜃 = cos−1 (
𝐱⊤𝐲

‖𝐱‖‖𝐲‖
) between 𝐱

and 𝐲.

Arc-cosine kernel of 0𝑡ℎ-order shares the property ofmapping the input on the unit hypersphere

with RBF kernels, while order 1 arc-cosine kernel preserves the norm as linear kernel (Gram

matrix on original features):

�ese expressions for 0𝑡ℎ-order and 1𝑠𝑡-order arc-cosine kernels are given by

𝑘0(𝐱, 𝐲) = 1 −
𝜃

𝜋
, 𝑘1(𝐱, 𝐲) =

‖𝐱‖‖𝐲‖

𝜋
(sin 𝜃 + (𝜋 − 𝜃) cos 𝜃).
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�e 0-order arc-cosine kernel is given by 𝑘0(𝐱, 𝐲) = 1 −
𝜃

𝜋
, the 1-order kernel is given by

𝑘1(𝐱, 𝐲) =
‖𝐱‖‖𝐲‖

𝜋
(sin 𝜃 + (𝜋 − 𝜃) cos 𝜃).

Let 𝜙0(𝐖
⊤𝐱) = Θ(𝐖⊤𝐱) and 𝜙1(𝐖

⊤𝐱) = max(0,𝐖⊤𝐱). We now can rewrite the integral

representation as follows:

𝑘𝑏(𝐱, 𝐲) = 2 ∫

ℝ𝑑

𝜙𝑏(𝐖
⊤𝐱)𝜙𝑏(𝐖

⊤𝐲)𝑝(𝐖)𝑑𝐖 ≈
2

𝑛

𝑛∑

𝑖=1

𝑆𝑅
3,3

𝐐𝑖 ,𝜌𝑖
.

For arc-cosine kernel of order 0 the value of the function 𝜙0(0) = Θ(0) = 0.5 results in

𝑆𝑅
3,3

𝐐,𝜌
(𝑓) =0.25

⎛

⎜

⎝

1 −

𝑑+1∑

𝑗=1

𝑑

(𝑑 + 1)𝜌2
𝑗

⎞

⎟

⎠

+
𝑑

𝑑 + 1

𝑑+1∑

𝑗=1

𝑓(𝜌𝑗𝐐𝐯𝑗) + 𝑓(−𝜌𝑗𝐐𝐯𝑗)

2𝜌2
.

In the case of arc-cosine kernel of order 1, the value of 𝜙1(0) is 0 and the 𝑆𝑅
3,3 rule reduces to

𝑆𝑅
3,3

𝐐,𝜌
(𝑓) =

𝑑

𝑑 + 1

𝑑+1∑

𝑗=1

𝑓(|𝜌𝐐𝐯𝑗|)

2𝜌2
𝑗

.

2.6 Experiments
We extensively study the proposed method on several established benchmarking datasets:

Powerplant, LETTER, USPS, MNIST, CIFAR100 [124], LEUKEMIA [88]. In Section 2.6.2

we show kernel approximation error across di�erent kernels and number of features. We also

report the quality of SVMmodels with approximate kernels on the same data sets in Section

2.6.3.

2.6.1 Methods

We present a comparison of QF (denoted 𝐁 in experiments) with estimators based on a simple

Monte Carlo, quasi-Monte Carlo [236] and Gaussian quadratures [54]. �e Monte Carlo

approach has a variety of ways to generate samples: unstructured Gaussian [174], structured

Gaussian [71], random orthogonal matrices (ROM) [44].

Monte Carlo integration (G, Gort, ROM)
�e kernel is estimated as 𝑘̂(𝐱, 𝐲) =

1

𝐷
𝜙(𝐌𝐱)𝜙(𝐌𝐲), where𝐌 ∈ ℝ𝐷×𝑑 is a random weight

matrix. For unstructured Gaussian based approximation 𝐌 = 𝐆, where 𝐆𝑖𝑗 ∼ 𝒩(0, 1).

Structured Gaussian has𝐌 = 𝐆ort, where 𝐆ort = 𝐃𝐐, 𝐐 is obtained from RQ decomposition

of 𝐆, 𝐃 is a diagonal matrix with diagonal elements sampled from the 𝜒(𝑑) distribution.
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Dataset 𝑁 𝑑 #samples #runs
Powerplant 9568 4 550 500

LETTER 20000 16 550 500

USPS 9298 256 550 500

MNIST 70000 784 550 100

CIFAR100 60000 3072 50 50

LEUKEMIA 72 7129 10 10

Table 2.1 Experimental settings (# of objects𝑁, dimensionality 𝑑, # of samples and runs).

In compliance with the previous work on ROM we use 𝐒-Rademacher with three blocks:

𝐌 =
√
𝑑

3∏

𝑖=1

𝐒𝐃𝑖, where 𝐒 is a normalized Hadamard matrix and ℙ(𝐃𝑖𝑖 = ±1) = 1∕2.

Quasi-Monte Carlo integration (QMC)
Quasi-Monte Carlo integration boasts improved rate of convergence 1∕𝐷 compared to 1∕

√
𝐷 of

Monte Carlo, however, as empirical results illustrate its performance is poorer than that of

orthogonal random features [71]. It has larger constant factor hidden under 𝒪 notation in

computational complexity. For QMC the weight matrix𝐌 is generated as a transformation of

quasi-random sequences. We run our experiments with Halton sequences in compliance with

the previous work.

Gaussian quadratures (GQ)
We included subsampled dense grid method from [54] into our comparison as it is the only

data-independent approach from the paper that is shown to work well. We reimplemented code

for the paper to the best of our knowledge as it is not open sourced.

Method Space Time
ORF 𝒪(𝐷𝑑) 𝒪(𝐷𝑑)

QMC 𝒪(𝐷𝑑) 𝒪(𝐷𝑑)

ROM 𝒪(𝑑) 𝒪(𝑑 log 𝑑)

QF 𝒪(𝑑) 𝒪(𝑑 log 𝑑)

Table 2.2 Computational complexity of di�erent kernel approximation algorithms.
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Fig. 2.3 Kernel approximation error across three kernels and 6 datasets. Lower is better. �e

x-axis represents the factor to which we extend the original feature space, 𝑛 =
𝐷

2(𝑑+1)+1
, where 𝑑

is the dimensionality of the original feature space, 𝐷 is the dimensionality of the new feature

space.

2.6.2 Kernel Approximation

Tomeasure kernel approximation quality we use relative error in Frobenius norm
‖𝐊−𝐊̂‖𝐹

‖𝐊‖𝐹

, where

𝐊 and 𝐊̂ denote exact kernel matrix and its approximation. In line with previous work we run

experiments for the kernel approximation on a random subset of a dataset. Table 2.1 displays

the settings for the experiments across the datasets.

Approximation was constructed for di�erent number of 𝑆𝑅 samples 𝑛 =
𝐷

2(𝑑+1)+1
, where 𝑑

is an original feature space dimensionality and 𝐷 is the new one. For the Gaussian kernel we set

hyperparameter 𝛾 =
1

2𝜎2
to the default value of

1

𝑑
for all the approximants, while the arc-cosine

kernels have no hyperparameters.

We run experiments for each [kernel, dataset, 𝑛] tuple and plot 95% con�dence interval

around the mean value line. Figure 2.3 shows the results for kernel approximation error on

LETTER, MNIST, CIFAR100 and LEUKEMIA datasets.

QMCmethod almost always coincides with RFF except for arc-cosine 0 kernel. It particularly

enjoys Powerplant dataset with 𝑑 = 4, i.e. small number of features. Possible explanation for

such behaviour can be due to the connection with QMC quadratures. �e worst case error for

QMC quadratures scales with 𝑛−1(log 𝑛)𝑑, where 𝑑 is the dimensionality and 𝑛 is the number

of sample points [162]. It is worth mentioning that for large 𝑑 it is also a problem to construct a

proper QMC point set. �us, in higher dimensions QMCmay bring little practical advantage

over MC. While recent randomized QMC techniques indeed in some cases have no dependence
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Fig. 2.4 Accuracy/𝑅2 score using embeddings with three kernels on 3 datasets. Higher is better.

�e x-axis represents the factor to which we extend the original feature space, 𝑛 =
𝐷

2(𝑑+1)+1
.

on 𝑑, our approach is still computationally more e�cient thanks to the structured matrices. GQ

method as well matches the performance of RFF. We omit both QMC and GQ from experiments

on datasets with large 𝑑 = [3072, 7129] (CIFAR100, LEUKEMIA).

�e empirical results in Figure 2.3 support our hypothesis about the advantages of 𝐒𝐑

quadratures applied to kernel approximation compared to SOTA methods. With an exception

of a couple of cases: (arc-cosine 0, Powerplant) and (Gaussian, USPS), our method displays clear

exceeding performance.

2.6.3 Classi�cation/Regression with New Features

We report accuracy and 𝑅2 scores for the classi�cation/regression tasks on some of the datasets

(Figure 2.4). We examine the performance with the same setting as in experiments for kernel

approximation error, except now we map the whole dataset. We use Support Vector Machines

to obtain predictions.

Kernel approximation error does not fully de�ne the �nal prediction accuracy — the best

performing kernel matrix approximant not necessarily yields the best accuracy or 𝑅2 score.

However, the empirical results illustrate that our method delivers comparable and o�en superior

quality on the downstream tasks.
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2.6.4 Walltime Experiment

Wemeasure time spent on explicit mapping of features by running each experiment 50 times

and averaging the measurements. Indeed, Figure 2.5 demonstrates that the method scales as

theoretically predicted with larger dimensions thanks to the structured nature of the mapping.
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Fig. 2.5 Time spent on explicit mapping. �e x-axis represents the 5 datasets with increasing

input number of features: LETTER, USPS, MNIST, CIFAR100 and LEUKEMIA.

2.7 Summary and Future Work
Wepropose an approach for the random featuresmethods for kernel approximation, Quadrature-

based Features, revealing a new interpretation of RFF and ORF.�e latter are special cases of the

spherical-radial quadrature rules with degrees (1,1) and (1,3) respectively. We take this further

and develop a more accurate technique for the random features preserving the time and space

complexity of the random orthogonal embeddings.

Our experimental study con�rms that for many kernels on the most datasets the proposed

Quadrature-based Features deliver the best kernel approximation.

Additionally, the results showed that the quality of the downstream task (classi�cation and

regression) is also superior or comparable to the state-of-the-art baselines. Although there is not

yet a clear established dependency between kernel approximation error and the downstream

performance, QF shows favourable performance for a range of problems. �is connection is le�

for a future work as it is not clear whether optimal methods in terms of approximation may lead

to noise �ltering for each particular task.

Since thiswork has been published there has been several papers leveraging their advantageous

properties in other settings, e.g., in neural network design [168] and in data augmentation [55].



Chapter 3

Intrinsic Geometry for Sample
Comparison

In the previous chapter, we demonstrated the utility of quadrature rules for the unifying

perspective on kernel approximation methods, based on Random Fourier Features, and develo-

ped a practical algorithm for the sparse and fast feature mapping. In this chapter, we demonstrate

how the other type of quadrature facilitates calculation of a lower bound on the distance between

two data manifolds, based on intrinsic geometry of the data provided.

We start by noting some drawbacks of the existing methods for sample comparison, such

as Fréchet Inception Distance [103], and discussing some of its applications, e.g., comparison

of generative models, representations, tracking model evolution. We then establish theoretical

background and develop a practical algorithm for Intrinsic Multi-scale Distance, which is based

on the algorithms for symmetric eigenvalue problems and stochastic estimation.

3.1 Introduction
Machine learning models deal with various types of data, and generate even more data for their

subsequent analysis. For example, when learning generative models, we might use their samples

to choose the best model or decide when to stop training. Another example is representation

comparison — we may need ways to compare representations that should be performant and

generic enough for the downstream tasks. We might also study the changes of the models in

training, to understand if there are any similarities or interesting behaviour. O�entimes, we

wish to compare data lying in entirely di�erent spaces, for example to track model evolution or

compare models having di�erent representation space.



3.1 Introduction 32

Fig. 3.1 Two distributions having the same �rst 3moments, meaning Fréchet Distance and Kernel

Distance (degree 3 polynomial kernel) scores are close to 0.

To enable the comparison of various learning artifacts (e.g., samples from generative models),

we need an appropriate measure to quantify their distance or similarity. �is problem has gained

a lot of attention recently, especially in generative modelling. As generative models aim to

reproduce the true data distribution ℙ𝑑 by means of the model distribution ℙ𝑔(𝐳; Θ), delicate

evaluation procedures are required.

In order to evaluate the performance of generativemodels, past research has proposed several

extrinsic evaluationmeasures, most notably the Fréchet [103] andKernel [27] InceptionDistances
(FID and KID). �ese measures only re�ect the �rst two or three moments of distributions,

meaning they can be insensitive to global structural problems. We showcase this inadvertence

in Figure 3.1: here FID and KID are insensitive to the global structure of the data distribution.

Besides, as FID and KID are based only on extrinsic properties they are unable to compare
unaligned data manifolds.
In this chapter, we aim to approach the problem from the geometric point of view, leveraging

the intrinsic geometry of the data. �e geometric properties of neural networks already provide

insights about their internals [151, 225] and help researchers in the design of more robust

models [12, 27]. We start out from the observation that models capturing themulti-scale nature of
the data manifold by utilizing higher distribution moment matching, such as MMD-GAN [132]

and Sphere-GAN [164], perform consistently better than their single-scale counterparts. On the

other hand, using extrinsic information can be misleading, as it is dependent on factors external
to the data, such as representation.

We summarize the contributions of this Chapter as follows:

1. To address the above-mentioned drawback, we propose IMD, an Intrinsic Multi-scale

Distance, that is able to compare distributions using only intrinsic information about the
data.
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2. We provide an e�cient approximation thereof that renders computational complexity

nearly linear, including error bound analysis and variance reduction scheme.

3. We demonstrate that IMD e�ectively quanti�es di�erence in data distributions in three

distinct application scenarios: comparing word vectors in languages with unaligned
vocabularies, tracking dynamics of intermediate neural network representations, and

evaluating generative models.

3.2 RelatedWork
�e geometric perspective on data is ubiquitous in machine learning. Geometric techniques

enhance unsupervised and semi-supervised learning, generative and discriminative models [24,

12, 142]. We outline the applications of the proposed manifold comparison technique and

highlight the geometric intuition along the way.

3.2.1 Generative Model Evaluation

Past research has explored many di�erent directions for the evaluation of generative models.

Setting aside models that ignore the true data distribution, such as the Inception Score [186]

and GILBO [8], we discuss most relevant geometric ideas below; we refer the reader to Borji

[29] for a comprehensive survey.

Critic model-based metrics. Classi�er two-sample tests (C2ST) [136] aim to assess whether
two samples came from the same distribution by means of an auxiliary classi�er. �is idea

is reminiscent of the GAN discriminator network [89]: if it is possible to train a model that

distinguishes between samples from the model and the data distributions, it follows that these

distributions are not entirely similar. �e convergence process of the GAN-like discriminator [12,

27] lends itself to creating a family of metrics based on training a discriminative classi�er [113].

Still, training a separate critic model is o�en computationally prohibitive and requires careful

speci�cation. Besides, if the critic model is a neural network, the resulting metric falls short of

interpretability and training stability.

Many advanced GAN models such as Wasserstein, MMD, Sobolev and Spherical GANs

impose di�erent constraints on the function class so as to stabilize training [12, 27, 152, 164].

Higher-order moment matching [27, 164] enhances GAN performance, enabling GANs to

capture multi-scale data properties, while multi-scale noise ameliorates GAN convergence

problems [114]. Still, no feasible multi-scale GAN evaluation metric has been proposed to date.
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Positional distribution comparison. In certain settings, it is acceptable to assign zero probability
mass to the real data points [160]. In e�ect, metrics that estimate a distribution’s location and

dispersion provide useful input for generative model evaluations. For instance, the Fréchet

Inception Distance (FID) [103] computes the Wasserstein-2 (i.e., Fréchet) distance between

distributions approximated with Gaussians, using only the estimated mean and covariance

matrices; the Kernel Inception Distance (KID) [27] computes a polynomial kernel k(𝑥, 𝑦) =

(
1

𝑑
𝑥⊤𝑦 + 1)3 and measures the associated Kernel MaximumMean Discrepancy (kernel MMD).

Unlike FID, KID has an unbiased estimator [91, 27]. However, even while such methods, based

on a limited number of moments, may be computationally inexpensive, they only provide a

rudimentary characterization of distributions from a geometric viewpoint.

Intrinsic geometric measures. �e Geometry Score [117] characterizes distributions in terms
of their estimated persistent homology, which roughly corresponds to the number of holes

in a manifold. Still, the Geometry Score assesses distributions merely in terms of their global
geometry. In this work, we aim to provide amulti-scale geometric assessment.

3.2.2 Similarities of Neural Network Representations

Learning how representations evolve during training or across initializations provides a pathway

to the interpretability of neural networks [173]. Still, state-of-the-art methods for comparing

representations of neural networks [122, 151, 225] consider only linear projections. �e intrinsic

nature of IMD renders it appropriate for the task of comparing neural network representations,

which can only rely on intrinsic information.

Yin and Shen [240] introduced the Pairwise Inner Product (PIP) loss, an unnormalized

covariance error between sets, as a dissimilarity metric between word2vec embedding spaces

with common vocabulary. We show in Section 3.4.4 how IMD is applicable to this comparison

task too.

3.3 Multi-Scale Intrinsic Distance
At the core of deep learning lies themanifold hypothesis, which states that high-dimensional
data, such as images or text, lie on a low-dimensional manifold [156, 24, 25]. We aim to provide

a theoretically motivated comparison of data manifolds based on rich intrinsic information.

Our target measure should have the following properties:

intrinsic – it is invariant to isometric transformations of the manifold, e.g. translations or
rotations.

multi-scale – it captures both local and global information.
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We expose our method starting out with heat kernels, which admit a notion of manifold

metric and can be used to lower-bound the distance between manifolds.

3.3.1 Heat Kernels on Manifolds and Graphs

Based on the heat equation, the heat kernel captures all the information about a manifold’s
intrinsic geometry [202]. Given the Laplace-Beltrami operator (LBO) ∆𝒳 on a manifold𝒳, the

heat equation is 𝜕𝑢
𝜕𝑡
= ∆𝒳𝑢 for 𝑢 ∶ ℝ

+×𝒳 → ℝ+. A smooth function 𝑢 is a fundamental solution
of the heat equation at point 𝑥 ∈ 𝒳 if 𝑢 satis�es both the heat equation and the Dirac condition

𝑢(𝑡, 𝑥′) → 𝛿(𝑥′− 𝑥) as 𝑡 → 0+. We assume the Dirichlet boundary condition 𝑢(𝑡, 𝑥) = 0 for

all 𝑡 and 𝑥 ∈ 𝜕𝒳. �e heat kernel k𝒳∶ 𝒳×𝒳× ℝ+→ ℝ+

0
is the unique solution of the heat

equation; while heat kernels can be de�ned on hyperbolic spaces and other exotic geometries,

we restrict our exposition to Euclidean spaces𝒳 = ℝ𝑑, on which the heat kernel is de�ned as:

kℝ𝑑(𝑥, 𝑥′, 𝑡) =
1

(4𝜋𝑡)𝑑∕2
exp (−

‖𝑥 − 𝑥′‖2

4𝑡
) . (3.1)

For a compact𝒳 including submanifolds ofℝ𝑑, the heat kernel admits the expansion

k𝒳(𝑥, 𝑥
′, 𝑡) =

∞∑

𝑖=0

𝑒−𝜆𝑖𝑡𝜙𝑖(𝑥)𝜙𝑖(𝑥
′), (3.2)

where𝜆𝑖 and𝜙𝑖 are the 𝑖-th eigenvalue and eigenvector of∆𝒳 . For 𝑡 ≃ 0+, according toVaradhan’s

lemma, the heat kernel approximates geodesic distances. Importantly for our purposes, the

Heat kernel ismulti-scale: for a local domain𝒟 with Dirichlet condition, the localized heat kernel
k𝒟(𝑥, 𝑥

′, 𝑡) is a good approximation of k𝒳(𝑥, 𝑥′, 𝑡) if either (i)𝒟 is arbitrarily small and 𝑡 is small
enough, or (ii) 𝑡 is for arbitrarily large and𝒟 is big enough. Formally,

De�nition 2. Multi-scale property [92, 202] (i) For any smooth and relatively compact domain
𝒟 ⊆ 𝒳, lim𝑡→0 k𝒟(𝑥, 𝑥

′, 𝑡) = lim𝑡→0 k𝒳(𝑥, 𝑥
′, 𝑡) (ii) For any 𝑡 ∈ ℝ+ and any𝑥, 𝑥′∈ 𝒟1 localized

heat kernel k𝒟1
(𝑥, 𝑥′, 𝑡) ≤ k𝒟2

(𝑥, 𝑥′, 𝑡) if 𝒟1 ⊆ 𝒟2. Moreover, if {𝒟𝑛} is an expanding and
exhausting sequence

⋃∞

𝑖=1
𝒟𝑖 = 𝒳 and 𝒟𝑖−1 ⊆ 𝒟𝑖, then lim𝑖→∞ k𝒟𝑖

(𝑥, 𝑥′, 𝑡) = k𝒳(𝑥, 𝑥
′, 𝑡) for

any 𝑡.

Heat kernels are also de�ned for graphs in terms of their Laplacian matrices. Since the

Laplacian matrix is symmetric, its eigenvectors 𝜙1, … , 𝜙𝑛, are real and orthonormal. �us, it is

factorized as𝓛 = Φ𝚲Φ⊤, where𝚲 is a diagonalmatrix with the sorted eigenvalues 𝜆1 ≤ … ≤ 𝜆𝑛,

and Φ is the orthonormal matrix Φ = (𝜙1, … , 𝜙𝑛) having the eigenvectors of𝓛 as its columns.
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�e heat kernel on a graph is also given by the solution to the heat equation on a graph, which

requires an eigendecomposition of its Laplacian: 𝐇𝑡 = 𝑒−𝑡𝓛 = Φ𝑒−𝑡𝚲Φ⊤ =
∑

𝑖
𝑒−𝑡𝜆𝑖𝜙𝑖𝜙

⊤

𝑖
.

A useful invariant of the heat kernel is the heat kernel trace hkt𝒳 ∶ 𝒳×ℝ+

0
→ ℝ+

0
, de�ned by

a diagonal restriction as

hkt𝒳(𝑡) = ∫
𝒳

k𝒳(𝑥, 𝑥, 𝑡)𝑑𝑥 =

∞∑

𝑖=0

𝑒−𝜆𝑖𝑡, (3.3)

or, in the discrete case,

hkt𝓛(𝑡) = tr(𝐇𝑡) =
∑

𝑖

𝑒−𝑡𝜆𝑖 . (3.4)

Heat kernels traces (HKTs) have been successfully applied to the analysis of 3D shapes [202]

and graphs [210]. �e HKT contains all the information in the graph’s spectrum, both local and
global, as the eigenvalues 𝜆𝑖 can be inferred therefrom [142, Remark 4.8]. For example, if there

are 𝑐 connected components in the graph, then lim𝑡→∞ hkt𝓛(𝑡) = 𝑐.

3.3.2 Convergence to the Laplace-Beltrami Operator

An important property of graph Laplacians is that it is possible to construct a graph among points

sampled from a manifold𝒳 such that the spectral properties of its Laplacian resemble those

of the Laplace-Beltrami operator on𝒳. Belkin and Niyogi [24] proposed such a construction,

the point cloud Laplacian, which is used for dimensionality reduction in a technique called

Laplacian eigenmaps. Convergence to the LBO has been proven for various de�nitions of the

graph Laplacian, including the one we use [25, 101, 51, 209]. We recite the convergence results

for the point cloud Laplacian from Belkin and Niyogi [25]:

�eorem 1. Let 𝜆𝑡𝑛
𝑛,𝑖

and 𝜙𝑡𝑛
𝑛,𝑖

be the 𝑖𝗍𝗁 eigenvalue and eigenvector, respectively, of the point cloud
Laplacian𝓛𝑡𝑛 ; let 𝜆𝑖 and 𝜙𝑖 be the 𝑖𝗍𝗁 eigenvalue and eigenvector of the LBO ∆. �en, there exists
𝑡𝑛 → 0 such that

lim
𝑛→∞

𝜆
𝑡𝑛

𝑛,𝑖
= 𝜆𝑖,

lim
𝑛→∞

‖‖‖‖𝜙
𝑡𝑛

𝑛,𝑖
− 𝜙𝑖

‖‖‖‖2
= 0.

Still, the point cloud Laplacian involves the creation of an 𝒪(𝑛2) matrix; for the sake of

scalability, we use the 𝑘-nearest-neighbours (𝑘NN) graph by OR-construction (i.e., based on

bidirectional 𝑘NN relationships among points), whose Laplacian converges to the LBO for data

with su�ciently high intrinsic dimension [209]. As for the choice of 𝑘, a random geometric
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𝑘NN graph is connected when 𝑘 ≥ log 𝑛∕log 7 ≈ 0.5139 log 𝑛 [21]; 𝑘 = 5 yields connected graphs

for all sample sizes we tested.

3.3.3 Spectral Gromov-Wasserstein Distance

Even while it is a multi-scale metric onmanifolds, the heat kernel can be spectrally approximated
by �nite graphs constructed from points sampled from these manifolds. In order to construct a

metric betweenmanifolds, Mémoli [142] suggests an optimal-transport-based “meta-distance”:
a spectral de�nition of the Gromov-Wasserstein distance between Riemannian manifolds based

on matching the heat kernels at all scales. �e cost of matching a pair of points (𝑥, 𝑥′) on

manifoldℳ to a pair of points (𝑦, 𝑦′) on manifold𝒩 at scale 𝑡 is given by their heat kernels

kℳ , k𝒩 :

Γ(𝑥, 𝑦, 𝑥′, 𝑦′, 𝑡) = |||kℳ(𝑥, 𝑥
′, 𝑡) − k𝒩(𝑦, 𝑦

′, 𝑡)||| .

�e distance between the manifolds is then de�ned in terms of the in�mal measure coupling

𝑑GW(ℳ,𝒩) = inf
𝜇
sup
𝑡>0

𝑒−2(𝑡+𝑡
−1) ‖Γ‖𝐿2(𝜇×𝜇),

where the in�mum is sought over all measures 𝜇 onℳ ×𝒩 marginalizing to the standard

measures onℳ and 𝒩. For �nite spaces, 𝜇 is a doubly-stochastic matrix. �is distance is

lower-bounded [142] in terms of the respective heat kernel traces as:

𝑑GW(ℳ,𝒩) ≥ sup
𝑡>0

𝑒−2(𝑡+𝑡
−1) |||hktℳ(𝑡) − hkt𝒩(𝑡)

||| . (3.5)

�is lower bound is the scaled 𝐿∞ distance between the heat trace signatures hktℳ and hkt𝒩 .
�e scaling factor 𝑒−2(𝑡+𝑡

−1) favors medium-scale di�erences, meaning that this lower bound is

not sensitive to local perturbations. �e maximum of the scaling factor occurs at 𝑡 = 1, and

more than 1 − 10−8; of the function mass lies between 𝑡 = 0.1 and 𝑡 = 10.

3.3.4 Heat Trace Estimation

Calculating the heat trace signature e�ciently and accurately is a challenge on a large graph as it

involves computing a trace of a large matrix exponential, i.e. tr(𝑒−𝑡𝓛). A naive approach would

be to use an eigendecomposition exp(−𝑡𝓛) = Φexp(−𝑡Λ)Φ⊤, which is infeasible for large 𝑛.

Recent work [210] suggested using either truncated Taylor expansion or linear interpolation of

the interloping eigenvalues, however, both techniques are quite coarse. To combine accuracy

and speed, we use the Stochastic Lanczos Quadrature (SLQ) [219, 83]. �is method combines

the Hutchinson trace estimator [112, 3] and the Lanczos algorithm for eigenvalues. We aim to
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estimate the trace of a matrix function with a Hutchinson estimator:

tr(𝑓(𝓛)) = 𝔼𝑝(𝐯)(𝐯
⊤𝑓(𝓛)𝐯) ≈

𝑛

𝑛𝑣

𝑛𝑣∑

𝑖=1

𝐯⊤
𝑖
𝑓(𝓛)𝐯𝑖, (3.6)

where the function of interest 𝑓(⋅) = exp(⋅) and 𝐯𝑖 are 𝑛𝑣 random vectors drawn from a

distribution 𝑝(𝐯) with zero mean and unit variance. A typical choice for 𝑝(𝐯) is Rademacher

or a standard normal distribution. In practice, there is little di�erence, although in theory

Rademacher has less variance, but Gaussian requires less random vectors [16].

To estimate the quadratic form 𝐯⊤
𝑖
𝑓(𝓛)𝐯𝑖 in Equation (3.6) with a symmetric real-valued

matrix𝓛 and a smooth function 𝑓, we plug in the eigendecomposition𝓛 = ΦΛΦ⊤, rewrite

the outcome as a Riemann-Stieltjes integral and apply the𝑚-point Gauss quadrature rule [85]:

𝐯⊤
𝑖
𝑓(𝓛)𝐯𝑖 = 𝐯⊤

𝑖
Φ𝑓(Λ)Φ⊤𝐯𝑖 =

𝑛∑

𝑗=1

𝑓(𝜆𝑗)𝜇
2

𝑗
= ∫

𝑏

𝑎

𝑓(𝑡)𝑑𝜇(𝑡) ≈

𝑚∑

𝑘=1

𝜔𝑘𝑓(𝜃𝑘), (3.7)

where 𝜇𝑗 = [Φ⊤𝐯𝑖]𝑗 and 𝜇(𝑡) is a piecewise constant function de�ned as follows

𝜇(𝑡) =

⎧
⎪

⎨
⎪

⎩

0, if 𝑡 < 𝑎 = 𝜆𝑛,
∑𝑖

𝑗=1
𝜇2
𝑗
, if 𝜆𝑖 ≤ 𝑡 < 𝜆𝑖−1,

∑𝑛

𝑗=1
𝜇2
𝑗
, if 𝑏 = 𝜆1 ≤ 𝑡,

and 𝜃𝑘 are the quadrature’s nodes and 𝜔𝑘 are the corresponding weights. We obtain 𝜔𝑘 and 𝜃𝑘

with the𝑚-step Lanczos algorithm [83]. �e Lanczos process is connected to the orthogonal

polynomials associated with the quadrature. Below, we describe this link succinctly.

Given the symmetric matrix𝓛 and an arbitrary starting unit-vector 𝐪0, the𝑚-step Lanczos
algorithm computes an 𝑛 × 𝑚matrix 𝐐 = [𝐪0, 𝐪1, … , 𝐪𝑚−1] with orthogonal columns and an

𝑚 ×𝑚 tridiagonal symmetric matrix 𝐓, such that𝐐⊤𝓛𝐐 = 𝐓. �e columns of𝐐 constitute an

orthonormal basis for the Krylov subspace𝒦 that spans vectors {𝐪0,𝓛𝐪0, … ,𝓛
𝑚−1𝐪0}; each

𝐪𝑖 vector is given as a polynomial in𝓛 applied to the initial vector 𝐪0: 𝐪𝑖 = 𝑝𝑖(𝓛)𝐪0. �ese

Lanczos polynomials are orthogonal with respect to the integral measure 𝜇(𝑡). As orthogonal

polynomials satisfy the three term recurrence relation, we obtain 𝑝𝑘+1 as a combination of 𝑝𝑘

and 𝑝𝑘−1. �e tridiagonal matrix storing the coe�cients of such combinations, called the Jacobi

matrix 𝐉, is exactly the tridiagonal symmetric matrix 𝐓. A classic result tells us that the nodes

𝜃𝑘 and the weights 𝜔𝑘 of the Gauss quadrature are the eigenvalues of 𝐓, 𝜆𝑘, and the squared �rst

components of its normalized eigenvectors, 𝜏2
𝑘
, respectively (see Golub and Welsch [85], Wilf

[228], Golub and Meurant [83]). �ereby, setting 𝐪0 = 𝐯𝑖, the estimate for the quadratic form



3.3 Multi-Scale Intrinsic Distance 39

becomes:

𝐯⊤
𝑖
𝑓(𝓛)𝐯𝑖 ≈

𝑚∑

𝑘=1

𝜏2
𝑘
𝑓(𝜆𝑘), 𝜏𝑘 = 𝐔0,𝑘 = 𝐞⊤

1
𝐮𝑘, 𝜆𝑘 = Λ𝑘,𝑘 𝐓 = 𝐔Λ𝐔⊤, (3.8)

Applying (3.8) over 𝑛𝑣 random vectors in the Hutchinson trace estimator (3.6) yields the SLQ

estimate:

tr(𝑓(𝓛)) ≈
𝑛

𝑛𝑣

𝑛𝑣∑

𝑖=1

(

𝑚∑

𝑘=0

(
𝜏𝑖
𝑘

)2
𝑓
(
𝜆𝑖
𝑘

)
) = Γ. (3.9)

We derive error bounds for the estimator based on the Lanczos approximation of the matrix

exponential, and show that even a few Lanczos steps, i.e.,𝑚 = 10, are su�cient for an accurate

approximation of the quadratic form. However, the trace estimation error is theoretically

dominated by the error of the Hutchinson estimator, e.g. for Gaussian 𝑝(𝐯) the bound on

the number of samples to guarantee that the probability of the relative error exceeding 𝜖 is at

most 𝛿 is 8𝜖−2 ln(2∕𝛿) [179]. Although, in practice, we observe performance much better than

the bound suggests. Hutchinson error implies nearing accuracy roughly 10−2 with 𝑛𝑣 ≥ 10k

random vectors, however, with as much as 𝑛𝑣 = 100 the error is already 10−3. �us, we use

default values of𝑚 = 10 and 𝑛𝑣 = 100 in all experiments in Section 3.4.

3.3.5 Trace Estimation Error Bounds

We will use the error of the Lanczos approximation of the action of the matrix exponential

𝑓(𝓛)𝐯 = exp(−𝑡𝓛)𝐯 to estimate the error of the trace. We �rst rewrite quadratic form under

summation in the trace approximation to a convenient form,

𝐯⊤𝑓(𝓛)𝐯 ≈

𝑚∑

𝑘=0

𝜏2
𝑘
𝑓(𝜆𝑘) =

𝑚∑

𝑘=0

[𝐞⊤
1
𝐮𝑘]

2𝑓(𝜆𝑘) = 𝐞⊤
1
𝐔𝑓(Λ)𝐔⊤𝐞1 = 𝐞⊤

1
𝑓(𝐓)𝐞1. (3.10)

Because the Krylov subspace𝒦𝑚(𝓛, 𝐯) is built on top of vector 𝐯 with𝐐 as an orthogonal basis

of𝒦𝑚(𝓛, 𝐯), i.e. 𝐪0 = 𝐯 and 𝐯 ⟂ 𝐪𝑖 for 𝑖 ∈ (1, … ,𝑚 − 1), the following holds

𝐯⊤𝑓(𝓛)𝐯 ≈ 𝐯⊤𝐐𝑓(𝐓)𝐞1 = 𝐞⊤
1
𝑓(𝐓)𝐞1. (3.11)

�us, the error in quadratic form estimate𝐯⊤𝑓(𝓛)𝐯 is exactly the error of Lanczos approximation

𝑓(𝓛)𝐯 ≈ 𝐐𝑓(𝐓)𝐞1. To obtain the error bounds, we use the �eorem 2 in Hochbruck and

Lubich [105], which we recite below.
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�eorem 2. Let 𝓛 be a real symmetric positive semi-de�nite matrix with eigenvalues in the
interval [0, 4𝜌]. �en the error in the𝑚-step Lanczos approximation of exp(−𝑡𝓛)𝐯:

𝜖𝑚 = ‖ exp(−𝑡𝓛)𝐯 − 𝐐𝑚 exp(−𝑡𝐓𝑚)𝐞1‖, (3.12)

is bounded in the following ways:

𝜖𝑚 ≤

⎧

⎨

⎩

10𝑒−𝑚
2∕(5𝜌𝑡), if

√
4𝜌𝑡 ≤ 𝑚 ≤ 2𝜌𝑡,

10(𝜌𝑡)−1𝑒−𝜌𝑡
(
𝑒𝜌𝑡

𝑚

)𝑚
, if𝑚 ≥ 2𝜌𝑡.

(3.13)

Since 𝐯 is a unit vector, thanks to Cauchy-Bunyakovsky-Schwarz inequality, we can upper

bound the error of the quadratic formapproximation by the error of the exp(−𝑡𝓛)𝐯 approximation,

i.e. |𝐯⊤𝑓(𝓛)𝐯 − 𝐞⊤
1
𝐔𝑓(Λ)𝐔⊤𝐞1| ≤ ‖ exp(−𝑡𝓛)𝐯 − 𝐐𝑚 exp(−𝑡𝐓𝑚)𝐞1‖ = 𝜖𝑚.

Following the argumentation in Ubaru et al. [219], we obtain a condition on the number

of Lanczos steps 𝑚 by setting 𝜖𝑚 ≤ 𝜖∕2𝑓𝑚𝑖𝑛(𝜆), where 𝑓𝑚𝑖𝑛(𝜆) is the minimum value of 𝑓 on

[𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥]. We now derive the absolute error between the Hutchinson estimate of Equation (3)

and the SLQ of Equation (6):

|||||
tr𝑛𝑣(𝑓(𝓛)) − Γ

|||||
=

𝑛

𝑛𝑣

|||||||||

𝑛𝑣∑

𝑖=1

𝐯⊤
𝑖
𝑓(𝓛)𝐯𝑖 −

𝑛𝑣∑

𝑖=1

𝐞⊤
1
𝑓(𝐓(𝑖))𝐞1

|||||||||

≤
𝑛

𝑛𝑣

𝑛𝑣∑

𝑖=1

|||||||||

𝐯⊤
𝑖
𝑓(𝓛)𝐯𝑖 − 𝐞⊤

1
𝑓(𝐓(𝑖))𝐞1

|||||||||

≤
𝑛

𝑛𝑣

𝑛𝑣∑

𝑖=1

𝜖𝑚 = 𝑛𝜖𝑚,

where 𝐓(𝑖) is the tridiagonal matrix obtained with Lanczos algorithm with starting vector 𝐯𝑖.

|||||
tr𝑛𝑣 𝑓(𝓛) − Γ

|||||
≤ 𝑛𝜖𝑚 ≤

𝑛𝜖

2
𝑓𝑚𝑖𝑛(𝜆) ≤

𝜖

2
tr(𝑓(𝓛)), (3.14)

Finally, we formulate SLQ as an (𝜖, 𝛿) estimator,
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Fig. 3.2 Errors (solid) and error bounds (dotted) for the approximation of matrix exponential

action with varying temperature 𝑡.

1 − 𝛿 ≤ Pr [
|||||
tr(𝑓(𝓛)) − tr𝑛𝑣(𝑓(𝓛))

|||||
≤
𝜖

2

|||||
tr(𝑓(𝓛))

|||||
]

≤ Pr [
|||||
tr(𝑓(𝓛)) − tr𝑛𝑣(𝑓(𝓛))

|||||
+
|||||
tr𝑛𝑣(𝑓(𝓛)) − Γ

|||||
≤
𝜖

2

|||||
tr(𝑓(𝓛))

|||||
+
𝜖

2

|||||
tr(𝑓(𝓛))

|||||
]

≤ Pr [
|||||
tr(𝑓(𝓛)) − Γ

|||||
≤ 𝜖

|||||
tr(𝑓(𝓛))

|||||
],

For the normalized Laplacian 𝓛, the minimum eigenvalue is 0 and 𝑓min(0) = exp(0) = 1,

hence 𝜖𝑚 ≤
𝜖

2
, and the eigenvalue interval has 𝜌 = 0.5. We can thus derive the appropriate

number of Lanczos steps𝑚 to achieve error 𝜖,

𝜖 ≤

⎧

⎨

⎩

20𝑒−𝑚
2∕(2.5𝑡), if

√
2𝑡 ≤ 𝑚 ≤ 𝑡,

40𝑡−1𝑒−0.5𝑡
(
0.5𝑒𝑡

𝑚

)𝑚
, if𝑚 ≥ 𝑡.

(3.15)

Figure 3.2 shows the tightness of the bound for the approximation of the matrix exponential

action on vector 𝐯, 𝜖𝑚 = ‖𝑒−𝑡𝓛 − 𝐐𝑚𝑒
−𝑡𝐓𝑚𝐞1‖. We can see that for most of the temperatures 𝑡,

very few Lanczos steps𝑚 are su�cient, i.e. we can set𝑚 = 10. However, the error from the

Hutchinson estimator dominates the overall error. Figure 3.3 shows the error of trace estimation

does not change with 𝑚 and for 𝑡 = 0.1 is around 10−3. In case of a Rademacher 𝑝(𝐯), the

bound on the number of random samples is 𝑛𝑣 ≥
6

𝜖2
log(2∕𝛿) [179]. Employing 10k vectors
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results in the error bound of roughly 10−2. In practice, we observe the performance much better

than given by the bound, see Figure 3.3.

One particular bene�t of small𝑚 value is thatwe donot have toworry about the orthogonality

loss in the Lanczos algorithm which o�en undermines its convergence. Since we do only a

few Lanczos iterations, the rounding errors hardly accumulate causing little burden in terms of

orthogonality loss between the basis vectors of the Krylov subspace.
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Fig. 3.3 Trace estimation errors (solid) and error bounds (dotted) for: (le�) the number of Lanczos
steps𝑚 with �xed number of random vectors 𝑛𝑣 = 100; (right) the number of random vectors
𝑛𝑣 in Hutchinson estimator with �xed number of Lanczos steps𝑚 = 10. Lines correspond to

varying temperatures 𝑡.

3.3.6 Variance Reduction

We reduce variance of the randomized estimator through control variates. �e idea is to use

Taylor expansion to substitute a part of the trace estimate with its easily computed precise value,

tr(𝑒−𝑡𝓛) = slq
[
𝑒−𝑡𝓛 − (𝐈 − 𝑡𝓛+

𝑡2𝓛2

2
)
]
+ tr(𝐈 − 𝑡𝓛 +

𝑡2𝓛2

2
) (3.16)

= slq
[
𝑒−𝑡𝓛 − (𝐈 − 𝑡𝓛+

𝑡2𝓛2

2
)
]
+ 𝑛 + tr(−𝑡𝓛) +

𝑡2‖𝓛‖2
𝐹

2
(3.17)

= slq
[
𝑒−𝑡𝓛

]
+ slq

[
𝑡𝓛

]
− slq

[𝑡2𝓛2

2

]
− 𝑡𝑛 +

𝑡2‖𝓛‖2
𝐹

2
, (3.18)
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where slq
[
⋅
]
denotes an SLQ estimate of the trace of ⋅, we use the fact that ‖𝓛‖𝐹 =

√
tr(𝓛⊤𝓛)

and that the trace of normalized Laplacian is equal to 𝑛. It does reduce the variance of the trace

estimate for smaller temperatures 𝑡 ≤ 1.

To obtain this advantage over the whole range of 𝑡, we utilize the following variance reduction

form:

tr(𝑒−𝑡𝓛) = slq
[
𝑒−𝑡𝓛 − (𝐈 − 𝛼𝑡𝓛)

]
+ 𝑛(1 − 𝛼𝑡), (3.19)

where there exists an alpha that is optimal for every 𝑡, namely setting 𝛼 = 1∕ exp(𝑡). We can

see the variance reduction that comes from this procedure in the Figure 3.4.
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Fig. 3.4 Variance of the trace estimate.

3.3.7 Putting IMD Together

We employ the heretofore described advances in di�erential geometry and numerical linear

algebra to create IMD (Multi-Scale Intrinsic Distance), a fast, intrinsic method to lower-bound
the spectral Gromov-Wasserstein distance between manifolds.

We describe the overall computation of IMD in Algorithm 4. Given data samples in ℝ𝑑,

we build a 𝑘NN graph 𝐺 by OR-construction such that its Laplacian spectrum approximates

the one of the Laplace-Beltrami operator of the underlying manifold [209], and then compute

hkt𝐺(𝑡) =
∑

𝑖
𝑒−𝜆𝑖𝑡 ≈ Γ. We compare heat traces in the spirit of Equation (3.5), i.e., we compute

the distance
||||hkt𝐺1(𝑡) − hkt𝐺2(𝑡)

|||| between heat kernel traces for 𝑡 ∈ (0.1, 10) sampled from a

logarithmically spaced grid.

Constructing exact 𝑘NN graphs is an𝒪(𝑑𝑛2) operation; however, approximation algorithms

take near-linear time 𝒪(𝑑𝑛1+𝜔) [61, 14]. In practice, approximate 𝑘NN graph construction [61]

yields low computational timewhile still preserving variance similar to the exact case. �e𝑚-step
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Algorithm 2 IMD algorithm.
function IMDesc(𝑋)

𝐺 ← 𝚔𝙽𝙽(𝑋)

𝓛 ← 𝙻𝚊𝚙𝚕𝚊𝚌𝚒𝚊𝚗(𝐺)

return Γ = 𝚜𝚕𝚚(𝓛, 𝑠, 𝑛𝑣)

function IMDist(𝑋,𝑌)
hkt𝑋 ← 𝙸𝙼𝙳𝚎𝚜𝚌(𝑋)

hkt𝑌 ← 𝙸𝙼𝙳𝚎𝚜𝚌(𝑌)

return sup 𝑒−2(𝑡+𝑡−1)|hkt𝑋 − hkt𝑌|

Lanczos algorithm on a sparse 𝑛 × 𝑛 𝑘NN Laplacian𝓛 with one starting vector has 𝒪(𝑘𝑛𝑚)

complexity, where 𝑘𝑛 is the number of nonzero elements in𝓛. �e eigendecomposition of the

symmetric tridiagonal matrix 𝐓 incurs an additional 𝒪(𝑚 log𝑚) [49]. We apply this algorithm

over 𝑛𝑣 starting vectors, yielding a complexity of 𝒪(𝑛𝑣(𝑚 log𝑚 + 𝑘𝑚𝑛)), with constant 𝑘 = 5

and𝑚 = 10 by default. In e�ect, IMD’s time complexity stands between those of two common

GAN evaluation methods: KID, which is 𝒪(𝑑𝑛2) and FID, which is 𝒪(𝑑3 + 𝑑𝑛). �e time

complexity of Geometry Score is unspeci�ed in [117], yet in Section 3.4.8 we show that its

runtime grows exponentially in sample size.

3.4 Experiments
We evaluate IMD on the ability to compare intermediate representations of machine learning

models. For instance, in a recommender system we could detect whether a problem is related

to the representation or the the classi�er in the end of a pipeline. In this section, we show the

e�ectiveness of our intrinsic measure on multiple tasks and show how our intrinsic distance can

provide insights beyond previously proposed extrinsic measures.

Summary of experiments. We examine the ability of IMD1 to measure several aspects of
di�erence among datamanifolds. We �rst consider a task fromunsupervisedmachine translation

with unaligned word embeddings and show that IMD captures correlations among language

kinship (a�nity or genealogical relationships). Second, we showcase how IMD handles data

coming from data sources of unequal dimensionalities. �ird, we study how IMD highlights

di�erences among image data representations across initializations and through training process

of neural networks.

1Our code is available open-source: https://github.com/xgfs/imd.

https://github.com/xgfs/imd
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Fig. 3.5 CIFAR10 graph colored with true class labels.

3.4.1 Graph Example

Figure 3.5 provides visual evidence that the 5NN graph re�ects the underlyingmanifold structure

of the CIFAR10 dataset. Clusters in the graph exactly correspond to CIFAR10 classes.

3.4.2 Experimental Settings

We train all our models on a single server with NVIDIA V100 GPU with 16Gb memory and

2× 20 core Intel E5-2698 v4CPU. For the experiment summarized inTable 3.1 in the Section 3.4.6

we train WGAN and WGAN-GP models on 4 datasets: MNIST, FashionMNIST, CIFAR10 and

CelebA and sample 10k samples, 𝐘, from each of the GANs. We uniformly subsample 10k

images from the original datasets, 𝐗, and compute the IMD, KID and FID scores between 𝐗

and 𝐘. FID and KID are substituted with Fréchet Distance and Kernel Distance (via a degree

3 polynomial kernel) where representations are not obtained through Inception network, e.g.

word embeddings. We report the mean as well as the 99% con�dence interval across 100 runs.

We report the architectures, hyperparameters in Appendix B.2.1. We train each of the GANs

for 200 epochs on MNIST, FMNIST and CIFAR10, and for 50 epochs on CelebA dataset. For

WGANwe use RMSprop optimizer with learning rate of 5×10−5. ForWGAN-GP we use Adam

optimizer with learning rate of 10−4, 𝛽1 = 0.9, 𝛽2 = 0.999.

Vanilla GAN on Torus

We �rst test IMD via a very simple experiment clearly showing the case where IMD is superior

to its main competitors, Fréchet Distance (FD) and Kernel Distance (KD). We train two vanilla

GANs on the points of a 3D torus. �e bad GAN fails to learn the topology of the dataset it tries

to mimic generating points in the hole, yet previous metrics cannot detect this fact. IMD, on

the contrary, can tell the di�erence. Figure 3.6 shows the points sampled from the GAN with

some of the points inside the hole. KID and FID con�dence intervals overlap for good and bad

GANs, meanwhile IMD scores are clearly distinct from each other.
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metric good GAN bad GAN

FD×103 5.29 ± 0.70 6.27 ± 0.76

KD×103 1.72 ± 0.73 2.59 ± 0.77

IMD 9.02 ± 1.52 𝟏𝟒.𝟎𝟕 ± 2.17

Fig. 3.6 Bad GAN produces samples inside the torus hole (red). FD and KD cannot detect such

behaviour as their con�dence intervals overlap, while IMD does not.
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Fig. 3.7 Distances from the simple English Wikipedia visualized for IMD, FD and KD.

3.4.3 Comparing Unaligned Language Manifolds

�eproblem of unaligned representations is particularly severe in the domain of natural language

processing as the vocabulary is rarely comparable across di�erent languages or even di�erent

documents.

We employ IMD to measure the relative closeness of pairs of languages based on the word

embeddings with di�erent vocabularies. Figure 3.8 shows a heatmap of pairwise Fréchet Distance

(FD), Kernel Distance (KD) and IMD scores. IMD detects similar languages (Slavic, Semitic,

Romanic, etc.) despite the lack of ground truth vocabulary alignment. FD and KD can not

�nd meaningful structure in the data in the same way as IMD as they rely on extrinsic data

properties.
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Fig. 3.8 FD and KD are not able to capture language a�nity from unaligned word2vec

embeddings. Darker color indicates language closeness according to word embedding sets

fromWikipedia.

Word Embedding Experiment Details.

We use gensim [175] to learn word vectors on the latest Wikipedia corpus snapshot on 16

languages: Polish, Russian, Greek, Hungarian, Turkish, Arabic, Hebrew, English, Simple English,

Swedish, German, Spanish, Dutch, Portugese, Vietnamese, and Waray-Waray. We then compute

FD, KD and IMD scores on all the pairs, we average 100 runs for the heatmap Figure 3.9.

For the di�erent dimensionality experiment, we learn vectors on the English Wikipedia of

sizes equal to the powers of 2 from 4 to 512. A�er that we compute IMD and covariance error,

i.e. normalized PIP loss, between the pairs of sizes to generate the heatmap Figure 3.9.

3.4.4 Optimizing Dimensionality of Word Embeddings

Comparing data having di�erent dimensionality is cumbersome, even when representations

are aligned. We juxtapose IMD by PIP loss [240] which allows the comparison of aligned
representations for word embeddings.

To this end, we measure IMD distance between English embeddings of varying dimensions.

Figure 3.9 shows the heatmap of the IMD and PIP scores between sets of word vectors of di�erent

dimensionalities. Closer dimensionalities have lower distance scores for both metrics. However,

IMD better highlights gradual change of the size of word vectors, e.g. word vectors of size 4 and

8 are clearly closer to each other than embeddings of size 4 and 16 in terms of IMD, which is

not true for PIP.
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Fig. 3.9 Comparison of IMD and PIP loss on word embeddings of di�erent dimension. IMD

detects subtle changes in the dimensionality.

3.4.5 Tracking the Evolution of Image Manifolds

Next, we employ IMD to inspect the internal dynamics of neural networks. We investigate the

stability of output layer manifolds across random initializations. We train 10 instances of the

VGG-16 [195] network using di�erent weight initializations on the CIFAR10 and CIFAR100

datasets. We compare the average IMD scores across representations in each network layer

relative to the last layer. As Figure 3.10 (le�) shows, for both CIFAR10 and CIFAR100, the

convolutional layers exhibit similar behavior; According to IMD, consequent layers do not

monotonically contribute to the separation of image representations, but start to do so a�er

initial feature extraction stage comprised of 4 convolutional blocks. A low variance across the

10 networks trained from di�erent random initializations indicates stability in the network

structure.
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Fig. 3.10 (le�) IMD score across convolutional layers of the VGG-16 network on CIFAR10 and
CIFAR100 datasets; (right) training progression in terms of accuracy (dotted) and IMD (solid)
on CIFAR10 and CIFAR100 datasets for VGG-16 and ResNet-20, with respect to VGG-16.
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We now examine the last network layers during training from di�erent initializations.

Figure 3.10 (right) plots the VGG-16 validation errors and IMD scores relative to the �nal layer

representations of two pretrained networks, VGG-16 itself with last layer dimension 𝑑 = 512

and ResNet-20 with 𝑑 = 64 and ∼50 times less parameters. We observe that even in such

unaligned spaces, IMD correctly identi�es the convergence point of the networks. Surprisingly,

we �nd that, in terms of IMD, VGG-16 representations progress towards not only the VGG-16

�nal layer, but the ResNet-20 �nal layer representation as well; this result suggests that these

networks of distinct architectures share similar �nal structures.
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Fig. 3.11 FID, KID and IMD on the CIFAR10 dataset with Gaussian blur.

3.4.6 Evaluating Generative Models

We now move on to apply IMD to evaluation of generative models. First, we evaluate the

sensitivity of IMD, FID, and KID to simple image transformations as a proxy to more intricate

artifacts ofmodern generativemodels. We progressively blur images from the CIFAR10 training

set, and measure the distance to the original data manifold, averaging outcomes over 100

subsamples of 10k images each. To enable comparison across methods, we normalize each

distance measure such that the distance between CIFAR10 and MNIST is 1. Figure 3.11 reports

the results at di�erent levels 𝜎 of Gaussian blur. We additionally report the normalized distance

to the CIFAR100 training set (dashed lines ).
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MNIST FashionMNIST CIFAR10 CelebA
Metric WGAN WGAN-GP WGAN WGAN-GP WGAN WGAN-GP WGAN WGAN-GP

IMD 𝟓𝟕.𝟕𝟒 ±

0.47

𝟏𝟎.𝟕𝟕 ±

0.42

𝟏𝟏𝟖.𝟏𝟒 ±

0.52

𝟏𝟑.𝟒𝟓 ±

0.54

𝟏𝟖.𝟏𝟎 ±

0.36

𝟏𝟎.𝟖𝟒 ±

0.42

𝟏𝟎.𝟏𝟏 ±

0.33

𝟐.𝟖𝟒 ±

0.31

KID×103 𝟒𝟕.𝟐𝟔 ±

0.07

𝟓.𝟓𝟑 ±

0.03

𝟏𝟏𝟗.𝟗𝟑 ±

0.14

𝟐𝟓.𝟒𝟗 ±

0.07

𝟗𝟑.𝟖𝟗 ±

0.09

𝟓𝟗.𝟓𝟗 ±

0.09

𝟐𝟏𝟕.𝟐𝟖 ±

0.14

𝟗𝟐.𝟕𝟏 ±

0.08

FID 𝟑𝟏.𝟕𝟓 ±

0.07

𝟖.𝟗𝟓 ±

0.03

𝟏𝟓𝟐.𝟒𝟒 ±

0.12

𝟑𝟓.𝟑𝟏 ±

0.07

𝟏𝟎𝟏.𝟒𝟑 ±

0.09

𝟖𝟎.𝟔𝟓 ±

0.09

𝟐𝟎𝟓.𝟔𝟑 ±

0.09

𝟖𝟓.𝟓𝟓 ±

0.08

Table 3.1 IMD agrees with KID and FID across varying datasets for GAN evaluation.

FID and KID quickly dri� away from the original distribution and match MNIST, a dataset

of a completely di�erent nature. Contrariwise, IMD is more robust to noise and follows the

datasets structure, as the relationships between objects remain mostly una�ected on low blur

levels. Moreover, with both FID and KID, low noise (𝜎 = 1) applied to CIFAR10 su�ces to

exceed the distance of CIFAR100, which is similar to CIFAR10. IMD is much more robust,

exceeding that distance only with 𝜎 = 2.

Next, we turn our attention to the sample-based evaluation of generative models. We then

train the WGAN [12] and WGAN-GP [94] models on four datasets: MNIST, FashionMNIST,

CIFAR10 and CelebA. Below we also show generated samples of the models used for the

experiments in Figures 3.12–3.15. We sample 10k samples,𝐘, from each GAN.We then uniformly

subsample 10𝑘 images from the corresponding original dataset, 𝐗, and compute the IMD, KID

and FID scores between 𝐗 and 𝐘. Table 3.1 reports the average measure and its 99% con�dence

interval across 100 runs. IMD, as well as both FID and KID, re�ect the fact that WGAN-GP is a

more expressive model.

3.4.7 Interpreting IMD

To understand how IMD operates, we investigate the behavior of heat kernel traces of di�erent

datasets that are normalized by a null model. Tsitsulin et al. [210] proposed a normalization by

the heat kernel trace of an empty graph, which amounts to taking the average, rather than the

sum, of the original heat kernel diagonal. However, this normalization is not an appropriate null

model as it ignores graph connectivity. We propose a heat kernel normalization by the expected
heat kernel of an Erdős-Rényi graph.

For the purpose of normalizing IMD, we need to approximate that graph’s eigenvalues.

Coja-Oghlan [52] proved that 𝜆1 ≤ 1 − 𝑐𝑑
−1∕2 ≤ 𝜆2 ≤ 𝜆𝑛 ≤ 1 + 𝑐𝑑

−1∕2 for the core of the graph

for some constant 𝑐. We have empirically found that 𝑐 = 2 provides a tight approximation

for random graphs. �at coincides with the analysis of Chung et al. [45], who proved that
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Fig. 3.12 MNIST samples (le�: WGAN, right: WGAN-GP)

Fig. 3.13 FashionMNIST samples (le�: WGAN, right: WGAN-GP)

Fig. 3.14 CIFAR10 samples (le�: WGAN, right: WGAN-GP)

Fig. 3.15 CelebA samples (le�: WGAN, right: WGAN-GP)
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Fig. 3.16 Plotting the normalized heat trace allows interpretation of medium- and global-scale

structure of datasets. Best viewed in color.

𝜆𝑛 = (1 + 𝑜(1))2𝑑
−1∕2 if 𝑑min ≫

√
𝑑 log

3
𝑛 even though in our case 𝑑min = 𝑑 = 𝑘. We thus

estimate the spectrumof a randomErdős-Rényi graph as growing linearly between𝜆1 = 1 − 2𝑑
−1∕2

and𝜆𝑛 = 1 + 2𝑑
−1∕2, which corresponds to the underlyingmanifold being two-dimensional [210].

Figure 3.16 depicts the obtained normalized hkt𝑔 for all datasets we work with. We average

results over 100 subsamples of 10𝑘 images each. For 𝑡 = 10, i.e., at a medium scale, CelebA

is most di�erent from the random graph, while for large-scale 𝑡 values, which capture global

community structure,
dhkt𝑔(𝑡)

d𝑡
re�ects the approximate number of clusters in the data. Surprisingly,

CIFAR100 comes close to CIFAR10 for large 𝑡 values; we have found that this is due to the fact

that the pre-trained Inception network does not separate the CIFAR100 data classes well enough.

We conclude that the heat kernel trace is interpretable if we normalize it with an appropriate

null model.

3.4.8 Verifying Stability and Scalability of IMD

In terms of scalability, Figure 3.17 (right) shows that the theoretical complexity is supported

in practice. Using approximate 𝑘NN, we break the 𝒪(𝑛2) performance of KID. FID’s time

complexity appears constant, as its runtime is dominated by the 𝒪(𝑑3) matrix square root

operation. Geometry score (GS) fails to perform scalably, as its runtime grows exponentially.

Due to this prohibitive computational cost, we eschew other comparison with GS. Furthermore,

as IMD distance is computed through a low-dimensional heat trace representation of the

manifold, we can store HKT for future comparisons, thereby enhancing performance in the case

of many-to-many comparisons.
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Fig. 3.17 Stability and scalability experiment: (le�) stability of FID, KID and IMD wrt. sample
size on CIFAR10 and CIFAR100 dataset; (right) scalability of FID, KID and IMD wrt. sample
size on synthetic datasets.

3.5 Summary
We introduced IMD, a geometry-grounded, �rst-of-its-kind intrinsic multi-scale method for

comparing unaligned manifolds, which we approximate e�ciently with guarantees, utilizing the

Stochastic Lanczos Quadrature. We have shown the expressiveness of IMD in quantifying the

change of data representations in NLP and image processing, evaluating generative models, and

in the study of neural network representations. Since IMD allows comparing diverse manifolds,

its applicability is not limited to the tasks we have evaluated, while it paves the way to the

development of even more expressive techniques founded on geometric insights.



Chapter 4

Approximating Spectral Distances for
Web-Scale Graphs

In the previous chapter, we applied Stochastic Lanczos Quadrature for calculating the proposed

distance for sample comparison. In this chapter, we develop a practical algorithm for fast

computation of spectral graph descriptors, based on the e�cient computation provided by SLQ.

We start by describing spectral analysis tools applied in graph comparison. As their exact

computation is infeasible in most large-scale settings, we discuss their approximate computation

techniques, such as spectrum interpolation and Taylor expansion of the matrix functions. We

then present a SLaQ algorithm and verify its e�ciency for huge graphs.

4.1 Introduction
Many complex systems, including social and biological, and interactions on the Web can be

concisely modeled as graphs. Solving data mining tasks such as classi�cation or anomaly

detection on graphs requires sophisticated techniques. However, if one has a meaningful notion

of similarity between two graphs, classic data mining techniques can be e�ortlessly applied to

graphs. As many real-world graphs are huge (millions of nodes and edges), recent research [123,

211, 39] has focused on providing scalable graph distances.
Spectral analysis provides powerful tools for graph clustering [223, 35, 157], alignment [158,

99], comparison [211, 39], and characterization of graphs [67, 97, 96, 213, 39]. In practice, however,

the applicability of these methods is o�en limited by the scalability of eigendecomposition itself:

it takes cubic time to compute all eigenvalues and eigenvectors of a given graph. Several graph

comparison methods such as Von Neumann Graph Entropy (VNGE) [33, 39] and Network

Laplacian Spectral Descriptor (NetLSD) [211] require only information derived from a graph’s
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eigenvalues – not the full decomposition. Although they depend on less information, naïve

computation of such metrics is just as expensive as a full eigendecomposition. To scale up for

large graphs, these methods resort to low-order (two terms) Taylor expansion having loose

bounds and poor empirical approximation performance. Few works discuss approximation

accuracy or experiment on how it a�ects performance on downstream tasks.

(a) Dolphin and karate graphs
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Dolphins VNGE = 3.846
Karate VNGE = 3.154

(b) Spectral descriptors

Fig. 4.1 Spectral analysis provides valuable insights in the structure of graphs. Can we scale it to

billions of nodes?

In this chapter, we propose SLaQ, an approximation algorithm for computing spectral

distances for very large graphs. By leveraging recent advances in numerical linear algebra [219,

3, 50, 60], we achieve state-of-the-art approximation accuracy in time linear in the number of

graphs’ edges.

We summarize the contributions of this Chapter as follows:

1. We introduce SLaQ, an e�cient approximation technique for two spectral graph distances,

VNGE and NetLSD.

2. We derive corresponding approximation error bounds and experimentally observe an

average reduction in the approximation error of 𝟑𝟎×−𝟐𝟎𝟎× over a diverse set of real-world

graphs.

3. We demonstrate that faithful approximation is necessary for accurate graph comparison
and current approximation techniques are un�t for accurate yet fast approximation.

4. We show that accurate computation of VNGE and NetLSD is possible for a graph with

billions of nodes and edges on a single machine in less than an hour.
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4.2 Preliminaries
Below, we review two techniques, NetLSD [211] and VNGE [33, 39], as spectral descriptors

operating on two graph Laplacians, namely the Laplacianmatrix 𝐋 = 𝐃−𝐀 and the normalized
Laplacianmatrix𝓛 = 𝐈 − 𝐃

−1∕2𝐀𝐃
−1∕2, where𝐃 is the diagonal matrix with the degree of the

node 𝑖 as entry𝐃𝑖𝑖. Both graph descriptors rely on the spectrum {𝜆1, … , 𝜆𝑛} of the Laplacians,

thus we will need their spectral factorization𝓛 = Φ𝚲Φ⊤, where Φ = [𝜙1𝜙2…𝜙𝑛] contains

eigenvectors 𝜙𝑖 and 𝚲 is diagonal with the sorted eigenvalues 𝜆1 ≤ … ≤ 𝜆𝑛. We note that

although NetLSD and VNGE operate on di�erent Laplacian matrices, for convenience’s sake we

will refer to the spectrum of both matrices (𝓛, 𝐋) as 𝜆𝑖.

Spectrum of the Normalized Laplacian 𝓛 is bounded to [0; 2], for the unnormalized

counterpart 𝐋 it is [0; 2max𝑖 𝐃𝑖𝑖] as per the Gershgorin circle theorem [79, 83]. �e two

Laplacians each re�ect di�erent properties of a graph. For example, the normalized Laplacian

can not distinguish number of edges [46] (as it operates on local densities), however its second

eigenvector can be used to optimize normalized cut size [192].

4.2.1 Von Neumann Graph Entropy

In the StandardQuantumMechanicsmodel, the state of a quantummechanical system associated

with the 𝑛-dimensional Hilbert space is identi�ed with a 𝑛 × 𝑛 positive semide�nite, trace-one,

Hermitian density matrix. Von Neumann entropy [224] is a quantitative measure of mixedness
of this density matrix, and is de�ned as follows:

De�nition 3. Von Neumann Graph Entropy ℋ is de�ned as ℋ = −
∑

𝑖
𝜆𝑖 ln 𝜆𝑖. VNGE is

completely determined by the spectrum.

By convention, 0 log 0 = 0. Braunstein et al. [33] reinterprets the graph Laplacian matrix𝓛 as a

quantum mechanical system and introduces Von Neumann Graph Entropy (VNGE) by scaling

graph Laplacian𝓛 by its trace to get the density matrix 𝐏 =
1

tr(𝓛)
𝓛. Scaling the Laplacian does

not a�ect the shape of its spectrum, as each eigenvalue is simply multiplied by
1

tr(𝓛)
.

VNGE is related to the centralization of graphs [194], yet, general structural interpretation

of this measure is unknown mainly due to the lack of accurate scalable approximation [97, 146].

4.2.2 Network Laplacian Spectral Descriptors

Tsitsulin et al. [211] introduced NetLSD as a spectral distance between graphs grounded in

di�erential geometry. Instead of directly operating on the Laplacian matrix, NetLSD is de�ned
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in terms of the heat kernel of a graph. �e heat equation associated with the Laplacian is:

𝜕𝐮𝑡

𝜕𝑡
= −𝓛𝐮𝑡, (4.1)

where 𝐮𝑡 ∈ ℝ𝑛 is a vector representing the heat of each vertex at time 𝑡. �e solution to the heat

equation provides the heat at each vertex at time 𝑡, when the initial heat 𝐮0 is initialized with the

same value on all vertices. Its closed-form solution is given by the heat kernelmatrix𝐇𝑡 ∈ ℝ𝑛×𝑛

that can be computed by directly exponentiating the Laplacian in the spectral domain [46]:

𝐇𝑡 = 𝑒−𝑡𝓛 = Φ𝑒−𝑡𝚲Φ⊤ =

𝑛∑

𝑖=1

𝑒−𝑡𝜆𝑖𝜙𝑖𝜙
⊤

𝑖
, (4.2)

where𝐇𝑖𝑗 represents the amount of heat transferred from vertex 𝑣𝑖 to vertex 𝑣𝑗 at time 𝑡.

�e trace of the heat kernel matrix provides a useful lower bound on the Gromov-Wasserstein
distance between the underlying manifolds [142]:

𝐡𝑡 = tr(𝐇) =
∑

𝑖

𝑒−𝑡𝜆𝑖 . (4.3)

�en the NetLSD representation is a heat trace signature of graph 𝐺, i.e., a collection of heat
traces at di�erent time scales, 𝐡(𝐺) = {𝐡𝑡}𝑡>0. In practice, 𝑡 is sampled on a logarithmically

spaced grid, so 𝐡(𝐺) ∈ ℝ𝑑 is a vector of some small �xed dimensionality 𝑑.

4.2.3 Approximation Methods

Both VNGE and NetLSD can be represented as a function tr 𝑓(𝚲) of Laplacian eigenvalues. A

naïve approachwould be to compute the exact eigenvalues and compute that function as
∑

𝑖
𝑓(𝜆𝑖),

however, as we mentioned before, the computational complexity of full eigendecomposition is

𝒪(𝑛3), which is infeasible for large 𝑛.

Below we review approximation techniques which have been proposed in the literature [97,

39, 211]. We empirically evaluate their approximation performance in Section 4.4.1.

4.2.4 Taylor Expansion

A natural impulse for dealing with complex matrix functions is to approximate the function

with �rst few terms of its Taylor expansion. Even though it is known that Taylor expansion

provides an unreliable approximation of matrix functions [149], both NetLSD and VNGE rely

on this approximation [211, 39, 97, 146], as the �rst two Taylor terms can be computed in 𝒪(𝑚).
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NetLSD’s expansion depends on the parameter 𝑡, and its approximation is reasonable for

only small 𝑡 values [211]:

ℎ𝑡 =
∑

𝑖

𝑒−𝑡𝜆𝑖 =

∞∑

𝑘=0

tr((−𝑡𝓛)
𝑘
)

𝑘!
≈ 𝑛 − 𝑡 tr(𝓛) +

𝑡2

2
tr𝓛2. (4.4)

�e expansion used in VNGE is slightly di�erent [39, 97, 146]:

ℋ =
∑

𝑖

𝜆𝑖 ln 𝜆𝑖 ≈ 1 −
1

tr(𝓛)2
(tr(𝓛) + 2 tr(𝓛2)). (4.5)

�ese �rst two terms are easily computed, even for very large graphs, as tr(𝓛) = 𝑛 and

tr
(
𝓛2

)
=
∑

𝑖𝑗
𝓛𝑖𝑗

2
since𝓛 is self-adjoint, and the error rate of the Taylor expansion of the

matrix exponential depends on the largest eigenvalue of the matrix [149].

Chen et al. [39] introduce two approximation algorithms for VNGE based on a two-term

Taylor expansion, FINGER-ℋ and FINGER-ℋ̂:

𝒬 = 1 −
1

tr(𝓛)2
(tr(𝐃)2 + 2 tr(𝓛2)),

FINGER−ℋ = −𝑄 ln (
2max 𝐃

tr(𝓛)2
) , FINGER−ℋ̂ = −𝑄 ln (𝜆max) .

4.2.5 Spectral Interpolation

We conclude by noting that the Taylor expansion is useful on very large graphs, on which

computing any part of the spectrum is prohibitive. For manageable graph sizes, NetLSD adopts

a more accurate strategy based on approximating the eigenvalue growth rate, adapted from [221].

It takes 𝒪(𝑘𝑚 + 𝑘2𝑛) to compute 𝑘 extremal eigenvalues of a graph [83], thus it is possible to

compute 𝑘 eigenvalues on both ends of the spectrum, and interpolate a linear growth of the
interior eigenvalues.

While Tsitsulin et al. [211] do not provide approximation guarantees of their method, it is

easy to see that the worst-case scenario is the graph with exactly 𝑘 isolated nodes and a fully

connected component having 𝑛 − 𝑘 nodes, meaning 𝜆∶𝑘 = 0 and 𝜆𝑘∶ = 2. �en, absolute error

in the approximation of ℎ𝑡 becomes ‖𝑛 − 2𝑘 −
∑𝑛−2𝑘

𝑖=0

2(𝑖−𝑘)

𝑛−2𝑘
‖. �is bound is very loose; we

further verify that the approximation accuracy of the linear interpolation strategy is poor in the

Section 4.4.1 and that it does not scale to very large graphs in the Section 4.4.5.
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4.3 SLaQ
As noted above, the main approximation techniques that have been proposed for VNGE and

NetLSD have limited guarantees on their approximation quality, and these weak guarantees

have not been fully explored in the literature. In this section, we address these de�ciencies and

propose our method for improved approximation of spectral distances between graphs.

Setting aside computational infeasibility of the naïve eigenvalues calculation, loose Taylor

expansion error bounds and linear interpolation heuristics, we attain theoretically guaranteed

accuracy and speed by means of Stochastic Lanczos Quadrature (SLQ) [219] described in detail

in Section 3.3.4. As both spectral distances in question are essentially functions of matrices, we

use 𝑓 to denote the trace of matrix exponential 𝑓(𝓛) = exp(−𝑡𝓛) for NetLSD or the matrix

logarithm 𝑓(𝓛) = −𝓛log𝓛 for VNGE. We now give a brief reminder of SLQ computation,

which falls into two parts. First goes a randomized trace estimation:

tr(𝑓(𝓛)) = 𝔼𝑝(𝐯)(𝐯
⊤𝑓(𝓛)𝐯) ≈

𝑛

𝑛𝑣

𝑛𝑣∑

𝑖=1

𝐯⊤
𝑖
𝑓(𝓛)𝐯𝑖,

Second — an analogue of Gaussian Quadrature with nodes 𝜔𝑘 and weights 𝜃𝑘 computed by

Lanczos algorithm:

𝐯⊤
𝑖
𝑓(𝓛)𝐯𝑖 = 𝐯⊤

𝑖
Φ𝑓(𝚲)Φ⊤𝐯𝑖 =

𝑛∑

𝑗=1

𝑓(𝜆𝑗)𝜇
2

𝑗
= ∫

𝑏

𝑎

𝑓(𝑡)𝑑𝜇(𝑡) ≈

𝑚∑

𝑘=1

𝜔𝑘𝑓(𝜃𝑘),

For the matrix exponential used in NetLSD, bounds in (3.15) suggest that we do not need

many Lanczos steps 𝑠 to achieve error 𝜖. Another source of error lies in the Monte Carlo

estimation of the trace as a mean of the quadratic forms 𝐯⊤𝑓(𝓛)𝐯. To reduce the variance of

the estimate, we apply the 2-term polynomial variance reduction technique (see Section 3.3.6).

Although matrix-vector product approximation bounds for the matrix exponential have been

well studied [105], analogous error estimates for the von Neumann entropy remain an open

problem in numerical linear algebra. We summarize the overall SLaQ method in Algorithm 4

for both LSD and VNGE.

4.4 Experiments
We evaluate SLaQ against all approximation methods proposed in [39, 211], in addition to

the exact computation of the spectrum (where allowed by the graph size). We perform our

experiments on the Google Cloud’s c2-standard-60 virtual machine with 60 virtual cores and
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Algorithm 3 SLaQ algorithm
1: function SLaQ _LSD(𝐺, 𝑠, 𝑛𝑣)
2: 𝓛← 𝙻𝚊𝚙𝚕𝚊𝚌𝚒𝚊𝚗(𝐺)

3: 𝚍𝚎𝚜𝚌𝚛𝚒𝚙𝚝𝚘𝚛 ← 𝚜𝚕𝚚(𝓛, 𝑠, 𝑛𝑣, exp(𝚡))

4: return 𝚍𝚎𝚜𝚌𝚛𝚒𝚙𝚝𝚘𝚛
5: function SLaQ _VNGE(𝐺, 𝑠, 𝑛𝑣)
6: 𝐏 ← 𝙳𝚎𝚗𝚜𝚒𝚝𝚢𝙼𝚊𝚝𝚛𝚒𝚡(𝐺)

7: 𝚍𝚎𝚜𝚌𝚛𝚒𝚙𝚝𝚘𝚛 ← 𝚜𝚕𝚚(𝐏, 𝑠, 𝑛𝑣, 𝚡 ln(𝚡))

8: return 𝚍𝚎𝚜𝚌𝚛𝚒𝚙𝚝𝚘𝚛
9: function 𝚜𝚕𝚚(𝓛, 𝑠, 𝑛𝑣, 𝚏𝚞𝚗)

10: 𝐓 = 𝚕𝚊𝚗𝚌𝚣𝚘𝚜(𝓛, 𝑠, 𝑛𝑣) ⊳ 𝐓 ∈ R𝑛𝑣×𝑚×𝑚

11: 𝚲,𝐔 ← 𝚎𝚒𝚐𝚑(𝐓) ⊳ 𝚎𝚒𝚐𝚎𝚗𝚍𝚎𝚌𝚘𝚖𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗(𝐓)

12: return 1

𝑛𝑣

𝑛𝑣∑

𝑖

( 𝑠∑

𝑘

(𝚏𝚞𝚗(𝜆𝑖
𝑘
)[𝐮𝑖

𝑘,0
]2)
)

240GBRAM, averaging 10 times for all experiments unless stated otherwise. We use LAPACK [9]

as the linear algebra library of choice. We open-source the implementation1.

Parameter settings. Unless otherwise mentioned, we evaluate SLaQ using 𝑛𝑣 = 100 starting

vectors and 𝑠 = 10 Lanczos iterations. We provide an additional experimental investigation

into parameter settings of SLaQ in Section 4.4.4. For the linear approximation of [211], we use

the default (𝑘 = 300) eigenvalues from each end of the spectrum, following the notation of the

original paper. Taylor series-based approximation techniques do not depend on any additional

parameters.

Datasets.We use four types of graph collections tomeasure e�ciency and e�ectiveness of SLaQ.
First, we consider the accuracy of the method compared to other approximation techniques on

the two subsets of graphs: synthetically generated Erdos-Renyi graphs and 73 graphs from the

Network Repository2 [180] with a number of nodes from 2500 up to 25000. In total, we use 27

biological, 12 interaction, 10 technological networks, 5 small web graphs, and 19 uncategorized

networks (mostly, optimization problem graphs).

We follow up with large graphs to test ability of SLaQ to e�ciently compute descriptors of

Web-scale graphs. For that, we use �ve datasets3:

• DBLP [235] is a co-authorship network constructed from DBLP, a major online computer

science bibliography resource.

• SNAP-Orkut [235] was an online social network.

1github.com/google-research/google-research/tree/master/graph_embedding/slaq
2networkrepository.com
3All but ClueWeb09 are from SNAP network collection, available at snap.stanford.edu

github.com/google-research/google-research/tree/master/graph_embedding/slaq
networkrepository.com
snap.stanford.edu
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• LiveJournal [235] is an online blogging community where users can form friendships

with each other.

• Friendster [235] was an online social network.

• ClueWeb09 [47, 180] is a web crawl from 2009.

Size Statistics
dataset |𝑉| |𝐸| Avg. deg. Density

DBLP 317k 1.05M 6.62 2.08 × 10−5

SNAP-Orkut 3.07M 117.2M 76.28 2.48 × 10−5

LiveJournal 4M 34.7M 17.35 4.34 × 10−6

Friendster 65.6M 1.8B 55.06 8.39 × 10−7

ClueWeb09 4.8B 7.81B 3.27 6.83 × 10−10

Table 4.1 Characteristics of large graphs used in this work: number of vertices |𝑉|, number of

edges |𝐸|; average node degree; density de�ned as |𝐸|∕
(
|𝑉|

2

)
.

Size Temporal statistics
dataset |𝑉| |𝐸| |𝑇| |ℰ|∕|𝑇|

Wiki-nl 1M 20M 95 148337

Wiki-pl 1M 25M 95 182959

Wiki-it 1.2M 35M 95 250633

Wiki-de 2.1M 86M 95 553257

Table 4.2 Characteristics of dynamic graphs: total number of vertices |𝑉|, total number of edges

|𝐸|; number of timestamps |𝑇|; average incoming edges per timestamp |ℰ|∕|𝑇|.

Next, we investigate bene�ts of using SLaQ on dynamicWikipedia link datasets in 4 di�erent

languages: Dutch (nl), Polish (pl), Italian (it), German (de). We obtained datasets from [47]4

and generated |𝑇| snapshots for every month in the original dataset.

Last, we verify that SLaQ’s improvements in approximation enhance downstream task

performance. We use three social network datasets and one from the �eld of bioinformatics5:

• D&D [59, 191, 116] is a dataset of protein structures. Each protein is represented by a graph

of amino acids that are connected by an edge if they are less than 6 Ångstroms apart. �e

prediction task is to classify the protein structures into enzymes and non-enzymes.

4We used preprocessed version from KONECT repository, available at konect.uni-koblenz.de/networks/
5We obtained them at the graph kernel benchmark collection, available at ls11-www.cs.tu-dortmund.de/

sta�/morris/graphkerneldatasets

konect.uni-koblenz.de/networks/
ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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• COLLAB [234, 129, 116] is a collection of collaboration ego-networks of di�erent researchers

derived in [234] from three datasets introduced in [129]. �e task is to determine whether

the ego-collaboration graph of a researcher belongs to High Energy, Condensed Matter or

Astrophysics �eld.

• Reddit-5k, Reddit-12k [234, 116] are datasets derived fromReddit, an online aggregation

anddiscussionwebsite. Discussions onReddit are organized into di�erent subcommunities;

the task is to determine the community given the structure of the discussion graph.

Vertices |𝑉|
dataset |𝐺| |𝑌| Min. Avg. Max.

D&D 1178 2 30 284.32 5748

COLLAB 5000 3 32 74.49 492

Reddit-5k 4999 5 22 508.52 3648

Reddit-12k 22939 11 2 391.41 3782

Table 4.3 Properties of the graph classi�cation datasets used: number of graphs |𝐺|; number of

labels |𝑌|; minimum, average, and maximum number of nodes in graph collection.

4.4.1 Approximation Accuracy

We proceed with evaluation of SLaQ capacity to approximate matrix functions for graph

comparison. We compute full spectrum of 73 small graphs and true values of NetLSD and

VNGE and report the relative 𝑙2 approximation error with respect to the true graph descriptor.

Figure 4.2 demonstrates that SLaQ o�ers over 200× reduction in the average relative error for

VNGE over FINGER techniques [39] and over 30× improvements over the linear interpolation

technique from [211]. Figure 4.3 shows that SLaQo�ers 250× reduction over the Taylor expansion

and over 22× improvement over the linear interpolation [211].

We also compare how the approximation accuracy changes for NetLSD on the random

Erdős-Rényi graphs. We generate random graphs of size 1000 with varying graph density

(number of expected edges) 𝑝 and random graphs of size 100 − 10000 with the average degree

𝑚∕𝑛 = 10. We report the results in the Figure 4.4. We observe that SLaQ’s approximation

accuracy is stable across the graph size both in terms of number of the nodes and graph density.

4.4.2 Bene�ts of Non-local Approximation

We verify that our method has a global view of the graph, i.e. is not dominated by only local

information. In order to do that, we compute graph descriptors (NetLSD andVNGE) formonthly
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Fig. 4.2 SLaQ o�ers over 𝟐𝟎𝟎× reduction in average error for VNGE over techniques proposed

in [39] and over 𝟑𝟎× improvement over the linear approximation from [211].
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Fig. 4.3 SLaQ o�ers 𝟐𝟐× reduction in average error for NetLSD over [211] and 𝟐𝟓𝟎× over Taylor

expansion.
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Fig. 4.4 Number of nodes and edges of random Erdős-Rényi graphs does not a�ect SLaQ’s

approximation accuracy.
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Fig. 4.5 SLaQ approximation of NetLSD and VNGE for Wikipedia graphs across time.

Changes that are not explained by local edge di�erences highlighted in gray.

snapshots of dynamic Wikipedia link datasets from January 2003 to December 2010 (a total of

|𝑇| = 96 snapshots) and report their change as well as the number of edges added/removed

each month.

We plot the proportion of cumulative edge additions/deletions and distances between

descriptor pairs of snapshots (0, 𝑖), where 𝑖 ∈ 1, … , |𝑇|. Figure 4.5 reports the distance values

for each language as well as the relative number of incoming and outgoing edges per snapshot.

We mark exmaples of anomalous spikes in NetLSD and VNGE that can not be explained simply

by the edge additions and deletions. In these cases, simple approximations like 2-term Taylor

expansion would fail to capture such changes.

4.4.3 Graph Classi�cation Performance

We test our method in the supervised downstream task, by classify graphs in binary and

multi-class settings. We compute NetLSD and VNGE descriptors for each of the graphs and use

them as feature vectors in classi�cation. Since these graph classi�cation datasets allow direct

calculation of the descriptor (maximum number of nodes reported in the Table 4.3 is 5748), we

can analyze how approximation a�ects the downstream accuracy.

Weuse a non-parametric 1-NearestNeighbor classi�cation algorithmand repeat classi�cation

task using 80∕20 training/testing split 1000 times to minimize the biases introduced by the

random splitting and the learning algorithm. We report the classi�cation accuracy in the

Table 4.4. We believe that this relates to the issues with these datasets pointed out by [189, 36]:
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VNGE NetLSD
dataset FINGER-ℋ FINGER-ℋ̂ Linear SLaQ Exact Taylor Linear SLaQ Exact
D&D 63.01 66.38 68.13 65.53 66.40 67.01 67.98 66.77 67.24
COLLAB 64.95 65.10 55.90 49.04 58.03 61.81 65.17 58.76 63.48
Reddit-5k 30.87 29.85 31.31 31.77 31.43 33.67 32.01 35.48 35.63
Reddit-12k 16.53 16.20 17.18 17.04 16.79 22.67 21.30 25.31 25.52

Table 4.4 1-Nearest neighbour graph classi�cation performance on 4 datasets with VNGE and

NetLSD. Exact computation results are in bold. Approximations that are close to or better than

the exact metric computation are highlighted in green.
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Fig. 4.6 Parameter sensitivity of SLaQ in terms of approximating NetLSD with (a) di�erent

number of starting vectors 𝑛𝑣 and (b) di�erent number of Lanczos steps 𝑠. Error averaged across

73 graphs from the Network Repository.

simple local graph features achieve almost state-of-the-art performance [7]. However, for the

Reddit datasets the improvement given by more accurate approximation is as expected due to

the task being more sensitive to global structural information rather than simple node-level

statistics.

4.4.4 Parameter Sensitivity

We investigate the approximation accuracy of SLaQwith respect to its hyperparameters: number

of random starting vectors 𝑛𝑣 and the number of Lanczos iterations 𝑠. Recall that the error

bounds in the Section 4.3 tells us that there are two sources of error in SLaQ: one of the Monte

Carlo estimation of the quadratic form and one of the Lanczos process. We measure the relative

error ratio on the same 73medium-sized graphs used in the Section 4.4.1 with respect to the

number of random starting vectors 𝑛𝑣 and the number of Lanczos iterations 𝑠 and report the

results in the Figure 4.6.
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As expected, given enough starting random vectors SLaQ only needs few Lanczos iterations;

the default setting of 𝑠 = 10 gives an average error of 6.7 × 10−4. As for the number of

random vectors 𝑛𝑣, we do observe that increasing the number improves performance, but the

improvement given by increasing 𝑛𝑣 is much slower.

4.4.5 Scalability

Wemeasure the runtime of all approximation techniques on huge graphs with millions of nodes

and billions of edges and show that SLaQ is able to process very large graphs on a single machine

within reasonable time while o�ering orders of magnitude better approximation, as measured

in the Section 4.4.1. Table 4.5 only reports the results for VNGE, as the results for NetLSD for

Linear interpolation and SLaQ approximation are similar to VNGE counterparts, while Taylor

approximation works in the same time as FINGER-ℋ. As FINGER-ℋ only sums the weights of

dataset FINGER-ℋ FINGER-ℋ̂ Linear SLaQ

DBLP 0.06 0.65 394 28.4

SNAP-Orkut 1.68 70 8863 899

LiveJournal 0.97 15.6 4727 476

Friendster 1.67 71 OOM 900

ClueWeb09 902 OOM OOM 3447

Table 4.5 Running time (in seconds) of di�erent approximation techniques and SLaQ for VNGE

on large graphs.

graphs’ edges, it serves as a baseline on how much time it takes to scan the edges of a graph. A

more useful comparison is FINGER-ℋ̂, as it re�ects the time to compute a single eigenvalue
of a graph. SLaQ approximates the whole spectrum at the cost of increased time complexity,
however, the largest dataset with almost 5 billion nodes is processed in less than an hour.

4.5 Summary
We propose SLaQ, an approximation technique for fast computation of spectral graph distances,

VNGE and NetLSD, leveraging state-of-the-art linear algebra methods. We show that faithful

approximation of the graph distance is critical for good downstream task performance and those

approximation methods previously introduced in the literature do not o�er good approximation

quality. SLaQ improves approximation errors of such baseline solutions by at least an order

of magnitude averaged across 73 real-world graphs. As SLaQ’s computation is linear in the

number of edges of graphs, scalability of our method is on par with approximation techniques
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introduced for VNGE and NetLSD. To our knowledge, this is the �rst work that allows accurate

comparison of billion-size graphs on a single machine in less than an hour.



Chapter 5

Anytime Graph Embeddings

In the previous chapters, we used quadratures and numerical linear algebra algorithms for

eigenvalue problems to estimate quantities useful across machine learning. In this chapter, we

usematrix sketching, another e�cient numerical linear algebra tool for compressing information

stored in large matrices, for low-dimensional representations of graph’s nodes.

We start by describing existing approaches and the trade o� between optimality and scalability

of node embeddings, establishing their desirable properties. We then argue that matrix sketching

algorithms, anytime in nature, are more apt for node embeddings and justify this claim by
analysing implicit objectives for node embeddings and computational setting typically encounte-

red in graph summarization problems, e.g., streaming data, parallelization and distribution.

5.1 Introduction
Low-dimensional representations, or embeddings, of graph’s nodes provide a multi-purpose
tool for performing data science tasks such as community detection, link prediction, and node

classi�cation. Neural embeddings [167, 93, 205, 212], computed by unsupervised representation

learning over nonlinear transformations, outperform their linear counterparts [161, 245] in task
performance, and achieve scalability via sampling a node similarity matrix, such as Personalized

PageRank (PPR); however, such neural methods lack theoretically grounded error guarantees

with respect to their objectives. �e theoretically most well-grounded state-of-the-art method,

NetMF [170], performs Singular Value Decomposition (SVD) on a dense matrix of nonlinear

node similarities, and achieves the global optimum of its objective by virtue of the properties of

SVD.

However, this optimality comes to the detriment of scalability, asNetMFneeds to precompute
the similarity matrix and store it in memory at cost quadratic in the number of nodes. An ideal

method should achieve both quality and scalability.
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Fig. 5.1 FREDE scalably produces an embedding at any time; at the black arrow, it outperforms
the SVD of a full PPR-like similarity matrix in 3% of the latter’s runtime a�er processing 10% of

matrix rows. (PPI data)

In this chapter, we propose FREDE, the �rst, to our knowledge, linear-space algorithm

that produces embeddings with quality guarantees from a nonlinear transform. We observe
that factorization-based embeddings e�ectively strive to preserve the covariance of a similarity

matrix, and that a few nodes acting as oracles approximate the distances among all nodes with

guarantees [208]. Given these observations, we adapt a covariance-preserving matrix sketching

algorithm, Frequent Directions (FD) [135, 82], to produce a graph embedding by factorizing, on
a per-row basis, a PPR-like node similarity matrix derived by interpreting a state-the-art neural

embedding, VERSE [212], as matrix factorization. FREDE can be distributed, as it inherits the

mergeability property of FD: two embeddings can be computed independently on di�erent node
sets and merged to a single embedding, with quality guarantees that hold anytime [248], even
a�er accessing a subset of similarity matrix rows. Figure 5.1 shows that FREDE outperforms

SVD in a node classi�cation task a�er processing 10% of nodes represented as similarity matrix

rows.

We summarize contributions of this Chapter as follows:

1. We interpret a state-of-the-art graph embeddingmethod, VERSE, as factorizing a transfor-

med PPR similarity matrix;

2. We propose FREDE, an anytime graph embedding algorithm that minimizes covariance
error on that PPR-like matrix via sketching, with space complexity linear in the number of
nodes and time linear in the number of processed rows;

3. In a thorough experimental evaluation with real graphs we con�rm that FREDE is

competitive against the state of the art and scales to large networks.
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5.2 Preliminaries and RelatedWork
Our work builds on the know-how of matrix sketching to derive scalable, anytime graph

embeddings for practical data science tasks. Here, we outline previouswork on graph embeddings

and the fundamentals of matrix sketching.

5.2.1 Problem Setting

�e algorithms for local node embeddings rely on the adjacency matrices rather than Laplacians,

which we considered in previous chapters for global graph embeddings. Let us �rst remind some

notation. A graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices 𝑉 = (𝑣1, … , 𝑣𝑛), |𝑉| = 𝑛, and edges 𝐸 ⊆ 𝑉 × 𝑉,

|𝐸| = 𝑚, is represented by an adjacency matrix A for which A𝑖𝑗 = 1 if (𝑖, 𝑗) ∈ 𝐸 is an edge

between node 𝑖 and node 𝑗, otherwise A𝑖𝑗 = 0. D is the diagonal matrix with the degree of

node 𝑖 as entry D𝑖𝑖 =
∑𝑛

𝑗=1
A𝑖𝑗. �e normalized adjacency matrix, P = D−1A, represents the

transition probability from a node to any of its neighbors. We represent interactions among

nodes with a similarity matrix S ∈ ℝ𝑛×𝑛 [212, 161, 245]. �e row 𝑖 of A is denoted as A𝑖. �e

embedding problem is to �nd an 𝑛×𝑑 matrixW that retains most information in S. �e formal

criteria for this unsupervised representation learning problem vary from method to method. In

what follows we group these methods by their objectives.

Solution Computation Complexity
method Nonlinear Closed-form Error-bounded Versatile Frugal Anytime Mergeable Space Time

DeepWalk
4 8 8 8

4
8 8

𝒪(𝑑𝑛) 𝒪(𝑑𝑛 log 𝑛)

Node2vec 8 𝒪(𝑛3) 𝒪(𝑑𝑛𝑏)

LINE 4 8 8 8 4 8 8 𝒪(𝑑𝑛) 𝒪(𝑑𝑛𝑏)

HOPE 8 4 4 4 4 8 8 𝒪(𝑑𝑛) 𝒪(𝑑2𝑚)

AROPE 8 4 8 4 4 8 8 𝒪(𝑑𝑛) 𝒪(𝑑𝑚+𝑑2𝑛)

VERSE 4 8 8 4 4 8 8 𝒪(𝑑𝑛) 𝒪(𝑑𝑛𝑏)

ApproxPPR
8

4
8 8 4 8 8 𝒪(𝑑𝑛) 𝒪((𝑑𝑚 + 𝑑2𝑛) log 𝑛)

NRP 8

NetMF 4 4 4 4 8 8 8 𝒪(𝑛2) 𝒪(𝑑𝑛2)

NetSMF 4 4 8 4 8 8 8 𝒪(𝑇𝑚 log 𝑛) 𝒪(𝑑𝑇𝑚 log 𝑛)

FREDE (ours) 4 4 4 4 4 4 4 𝒪(𝑑𝑛) 𝒪(𝑑𝑛2)

Table 5.1 Comparison of works in terms of ful�lled (4) and missing (8) desiderata; complexities

in terms of number of nodes 𝑛 and edges𝑚, dimensionality 𝑑, context size 𝑇, and number of

negative samples 𝑏, assuming a sparse graph.

5.2.2 Neural Embeddings

Initial works on graph embeddings relied on training a neural network to produce vector

representations of a graph’s nodes; DeepWalk [167] transferred such methods from words [145,

130] to graphs, utilizing a corpus of randomwalks. LINE [205] extended DeepWalk by exploiting



5.2 Preliminaries and Related Work 71

graph edges rather than walks; Node2vec [93] customized random walk generation; and

VERSE [212] generalised this approach to a method that preserves any similarity measure

among nodes, with Personalized PageRank (PPR) [163] as the default option. Such neural

embeddings leverage paths around a node, reach scalability via sampling, and provide no

closed-form solution and no quality guarantees; we call them positional embeddings. In another
neural approach, structural embeddings [5, 176, 181] leverage complex graph structural patterns
to improve quality at the expense of scalability; however, positional embeddings outperform

their structural counterparts in both quality and scalability. For these reasons, we exclude

structural embeddings from our discussion.

5.2.3 Factorization-based Embeddings

Other works cast the problem of embedding a graph’s nodes as one of exact or approximate

factorization of the node similarity matrix, which is meant to minimize the reconstruction
error [170]:

De�nition 4 (Reconstruction error). �e reconstruction error between matrices S and S̃ is the
Frobenius norm of the di�erence among the S and S̃, i.e., ‖S − S̃‖2

𝐹
=

√
∑𝑛

𝑖=1

∑𝑛

𝑗=1
(S𝑖𝑗 − S̃𝑖𝑗)

2.

In the case of symmetric S, there exists an eigendecomposition S = UΛU⊤, and the optimal

rank-𝑘 approximation of S is [S]𝑘 = WW⊤, where the matrix W = U𝑘

√
Λ𝑘 is the product

between the matrix of the �rst 𝑘 eigenvectors, U𝑘, and a diagonal matrix of the square roots

of the �rst 𝑘 eigenvalues, Λ𝑘. On the other hand, in case S is asymmetric, the best rank-𝑘
approximation is obtained by the �rst 𝑘 singular vectors and values of the Singular Value

Decomposition (SVD) S = 𝑈Σ𝑉⊤, i.e., [S]𝑘 = U𝑘Σ𝑘V
⊤

𝑘
, where U𝑘 and V𝑘 denotes the �rst 𝑘

columns of U and V, respectively.

GraRep [37] applies SVD to factorize a concatenation of dense log-transformed DeepWalk

transition probability matrices over di�erent numbers of steps; yet it is neither scalable, nor

provides quality guarantees. HOPE [161] overcomes the scalability drawback using a generalised

form of SVD on special similarity matrices in the form 𝐴𝐵−1; it achieves optimality due to the

guarantees of the Eckart–Young–Mirsky theorem, but its overall performance is hindered by the

linearity of the underlying transform [212]. AROPE [245] applies spectral �ltering on symmetric

similarity matrices, forfeiting any guarantees. ApproxPPR [237] applies the randomized block

Krylov SVD algorithm [155] on a truncated PPR matrix; NRP [237] iteratively reweights the

resulting embedding vectors by coordinate descent; this post-hoc re�nement boosts ApproxPPR

embeddings [237] performance.
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5.2.4 �e Neural-Factorization Connection

Recent work has established a connection between neural and factorization-based embeddings.

In NetMF [170], Qiu et al. extended an analysis of word embeddings [130] to connect matrix

factorization and neural embeddings: under certain probability independence assumptions,

DeepWalk, LINE, and Node2vec implicitly apply SVD on dense log-transformed similarity

matrices. NetMF proposes novel closed-form solutions to compute such matrices with optimal

error guarantees. For example, DeepWalk’s objective is equivalent to SVDon the dense similarity

matrix

S = log (
𝑚

𝑏𝑇

(
𝑇∑

𝑟=1

P𝑟
)
D−1) , (5.1)

where 𝑚 is the number of edges, 𝑇 is the random walk window size and 𝑏 is the number of

negative samples [170]. �e 𝑑-dimensional DeepWalk embedding is obtained as U𝑑

√
Σ𝑑, where

U𝑑 contains the 𝑑 le� singular vectors and Σ𝑑 the �rst 𝑑 singular values. However, this NetMF

approach requires 𝒪(𝑛2) space to store S, a prohibitive complexity that hinders its application

to graphs with more than 100 000 nodes. In another attempt, NetSMF [171], Qiu et al. sought

to mitigate NetMF’s scalability drawback by sparsifying the similarity matrix; however, matrix

sparsi�cation forfeits optimality guarantees, causing performance deterioration for e�ectual

sparsity levels [171]; besides, the sparsi�ed matrix has𝒪(𝑇𝑚 log 𝑛) nonzeros, hence it still yields

quadratic growth.

5.2.5 Synoptic Overview

Below, we establish desiderata of the solution, its computation, and time/space complexity for
graph embeddings, used to compare previous methods in Table 5.1.

• nonlinear: using nonlinear transforms; HOPE, AROPE, and ApproxPPR/NRP use linear
transforms; nonlinearity is desirable, as linear dimensionality reduction methods fail to

confer the advantages of their nonlinear counterparts in general [127, 212].

• closed-form: deriving the solution via an explicit formula without relying on heuristic
learning components; only NetMF and NetSMF are both closed-form and nonlinear;

NRP loses the closed-form character of ApproxPPR due to its performance-boosting

post-hoc heuristic reweighting; such reweighting may augment any embedding with

additional node degree information, yet it was only applied on ApproxPPR in [237].

• error-bounded: a�ording nontrivial, end-to-end error guarantees with respect to their
objective; in principle, error-bounded methods, like HOPE and NetMF, are closed-form;
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the reverse is not always the case, as some closed-form methods abandon guarantees for

sake of scalability: AROPE by spectral �ltering, ApproxPPR by truncating, and NetSMF

by sparsifying the similarity matrix.

• versatile: accommodating diverse similarity measures; DeepWalk, LINE, Node2vec,
and ApproxPPR/NRP lack versatility.

• frugal (space-e�cient): having worst-case space complexity subquadratic in the number
of nodes.

• anytime: allowing the computation of a partial embedding whose quality improves as
more nodes are processed.

• mergeable: allowing for a combination of embeddings on two node subsets that retains
guarantees, hence enabling distributed computation [4].

5.2.6 Matrix Sketching

An alternative to SVD,matrix sketching, �nds a low-dimensional matrix, or sketch,W ∈ ℝ𝑑×𝑡

of a matrix M ∈ ℝ𝑠×𝑡 (𝑠 elements, 𝑡 features) that retains most of the information in M

without striving for matrix reconstruction. Sketching methods operate in streaming fashion,

guaranteeing quality when rows arrive one a�er another. A popular sketch objective [31, 32, 135,

231] is to preserve the column covarianceM⊤M ofM, i.e., minimize covariance error:

De�nition 5 (Covariance error). �e column covariance error is the normalized di�erence
between the covariance matrices:

𝚌𝚎𝑘(M,W) =
‖M⊤M−W⊤W‖2

‖M − [M]𝑘‖
2
𝐹

≥
‖M⊤M−W⊤W‖2

‖M‖2
𝐹

= 𝚌𝚎(M,W).

�e covariance error accounts for variance loss in each dimension. We use the lower

bound 𝚌𝚎(M,W) in lieu of 𝚌𝚎𝑘(M,W) to avoid uneccessary parameter. When minimizing

reconstruction error by SVD, with [M]𝑘 = U𝑘Σ𝑘V
⊤

𝑘
, we may also optimal covariance error,

which depends on the singular value decay of M, by setting W = Σ𝑘V
⊤

𝑘
. Since SVD is

o�en computationally heavy, sketching algorithms typically provide error guarantees on 𝚌𝚎 by

row-wise processing ofM.
A desirable sketch property ismergeability:

De�nition 6. Mergeability. A sketching algorithm 𝚜𝚔𝚎𝚝𝚌𝚑 is mergeable if there exists an
algorithm 𝚖𝚎𝚛𝚐𝚎 that, applied on the 𝑑×𝑡 sketches,W1 = 𝚜𝚔𝚎𝚝𝚌𝚑(M1) andW2 = 𝚜𝚔𝚎𝚝𝚌𝚑(M2),
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of two 𝑠

2
× 𝑡 matrices, M1, M2, with 𝚌𝚎(M1,W1) ≤ 𝜖 and 𝚌𝚎(M2,W2) ≤ 𝜖, produces a 𝑑 × 𝑡

sketchW of the concatenated matrixM = [M1;M2],W = 𝚖𝚎𝚛𝚐𝚎(W1,W2) = 𝚜𝚔𝚎𝚝𝚌𝚑(M), that
preserves the covariance error bound 𝜖, i.e., 𝚌𝚎(M,W) ≤ 𝜖.

We now discuss some representative sketching algorithms.

Hashing. We construct a 2-universal hash function ℎ ∶ [𝑠] → [𝑑] and a 4-universal hash

function 𝑔 ∶ [𝑠] → {−1,+1}. Starting with a zero-valued sketch matrix W, each row M𝑖 is

added to the ℎ(𝑖)-th sketch matrix row with sign 𝑔(𝑖): Wℎ(𝑖) = 𝑔(𝑖) ∗ M𝑖, with complexity

linear in matrix size, 𝒪(𝑠𝑡). In practice, random assignment of rows is used instead of a hash

function. Setting 𝑑 = 𝒪(𝑡
2
∕𝜖2), hashing achieves 𝚌𝚎 ≤ 𝜖 [231]. �is sketch is trivially mergeable:

𝚖𝚎𝚛𝚐𝚎(W1,W2) = W1 +W2.

Random Projections are a fundamental data analysis tool [231]. [32] propose a row-streaming
matrix sketching algorithm that randomly combines rows of the input matrix. In matrix form,

M̃ = RM, where the elementsR𝑖𝑗 of the 𝑑×𝑠matrixR are uniformly from {−1∕
√
𝑑, 1∕

√
𝑑}. For

each rowM𝑖, the algorithm samples a random vector 𝐫𝑖 ∈ ℝ𝑑 with entries in {−1∕
√
𝑑, 1∕

√
𝑑}

and updatesW = W + 𝐫𝑖M
⊤

𝑖
. �is sketch achieves 𝚌𝚎 ≤ 𝜖 with 𝑑 = 𝒪(𝑡∕𝜖2), with practical

performance exceeding the guarantee [133], and is mergeable with 𝚖𝚎𝚛𝚐𝚎(W1,W2) = W1 +W2.

Sampling. �e Column Subset Selection Problem (CSSP) [31] is to select a small column subset
of an entire matrix. In the row-update model, a solution is found by sampling scaled rows

M𝑖∕
√
𝑑𝑝𝑖 with probability 𝑝𝑖 = ‖M𝑖‖

2∕‖M‖2
𝐹
. While the norm ‖M‖2

𝐹
is usually unknown in

advance, the method can work with 𝑑 reservoir samplers, where 𝑑 is the sketch size. �is sketch

achieves 𝚌𝚎 ≤ 𝜖 with 𝑑 = 𝒪(𝑡∕𝜖2), yet the cost of maintaining reservoir samples is non-negligible.

�e sketch is mergeable if we use distributed reservoir sampling.

FrequentDirections (FD) [135], the current state of the art in sketching, extends theMisra-Gries
algorithm [148] from frequent items to matrices and outperforms other methods [48, 31, 32] in

quality. FD sketches a matrix by iteratively �lling the sketch with incoming rows, performing

SVD on it when it cannot addmore rows, and shrinking the accumulated vectors with a low-rank

SVD approximation. �e complexity is 𝒪(𝑑𝑡𝑠), due to 𝑠∕𝑑 iterations of computing the 𝒪(𝑑2𝑡)

SVD decomposition of a 2𝑑 × 𝑡 matrix W with 𝑑 ≪ 𝑡. �is sketch achieves 𝚌𝚎≤𝜖 when

𝑑 = 𝒪(𝑡∕𝜖) and is mergeable with

𝚖𝚎𝚛𝚐𝚎(W1,W2) = 𝙵𝙳(𝚌𝚘𝚗𝚌𝚊𝚝𝚎𝚗𝚊𝚝𝚎(W1,W2)). (5.2)

�e table below lists the embedding dimension 𝑑 required to attain error bound 𝚌𝚎 ≤ 𝜖 ≤ 1

for di�erent algorithms.

We observe that, by putting the node similarity matrix S in the role of the sketched matrix

M, we can e�ectively turn a sketching technique to an embedding method. Indeed, recent
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Algorithm Hashing RP Sampling FD

Dimension 𝑑 𝒪(𝑡2∕𝜖2) 𝒪(𝑡∕𝜖2) 𝒪(𝑡∕𝜖2) 𝒪(𝑡∕𝜖)

Table 5.2 Embedding dimension 𝑑 required approximation error 𝜖 for sketching-based

embeddings.

work [244] has adapted a sketching algorithm [222, 32] to graph embeddings, yet forfeited1 its

error guarantees. We apply the know-how of state-of-the-art matrix sketching to serve graph

embedding purposes, leading to anytime graph embeddings with error guarantees.

5.3 Anytime Graph Embeddings
We observe that SVD-based graph embeddings, such as HOPE and NetMF, use only one of

the two unitary matrices SVD produces, U and V. For example, NetMF returnsW = U∶𝑑

√
Σ
∶𝑑
,

with Σ truncated to 𝑑 singular values. �erefore, such methods cannot reconstruct matrix S;

SVD products U and Σ may only reconstruct the row covariance matrix SS⊤ = UΣ2U⊤, as

WW⊤ = UΣ2U⊤, where W = UΣ; thus, such methods are better understood as implicitly

minimizing the covariance error, rather than the reconstruction error [170], in relation to a

similarity matrix among graph nodes.

Serendipitously, sketching algorithms aim to reconstruct the column covariance S⊤S = VΣ2V⊤.

Given this relationship, we apply a state-of-the-artmatrix sketching algorithm in lieu of SVD to
construct a graph embedding in anytime fashion, by row updates of any partially materializable
similarity matrix S. Unfortunately, the matrix form of DeepWalk (Eq. 5.1) cannot be partially

materialized. Next, we propose a partially materializable matrix based on Personalized PageRank

(PPR), inspired from the VERSE [212] similarity-based embeddings. �is choice attains good

quality and time performance veri�ed in the experiments. However, our method carries no

prejudice with regard to the partially materializable matrix used; other choices are possible,

such as, for example, the Node-Reweighted PageRank (NRP) [237]. Our aim is to illustrate the

advantageous application of sketching for embedding purposes, while our framework supports

any way of deriving the primary input matrix.

1In our experiments, we use a variant of [244] with error guarantees as a baseline.
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5.3.1 A Row-wise Computable Similarity Matrix

VERSE [212] is the �rst similarity-based embedding method that does not require the entire
matrix as input, as it allows for e�cient row-wise computation; in its default version, it uses the

PPR similarity measure:

De�nition 7. Given a starting node distribution 𝑠, damping factor 𝛼, and the transition probability
matrix P, the PPR vector PPR𝑖⋅ is de�ned by the recursive equation:

PPR𝑖 = 𝛼𝑠 + (1 − 𝛼)PPR
⊤

𝑖 P. (5.3)

To compute PPR𝑖, we leverage the fact that the probability distribution of a random walk

with restart converges to PPR𝑖 vector [163, 19]. Following [130, 170] we show that, under mild

assumptions, VERSE with PPR similarity virtually factorizes the log(PPR) matrix up to an

additive constant.

�eorem 3. Let X be the matrix of VERSE embeddings. If the terms 𝑧𝑖𝑗 = 𝐱⊤
𝑖
𝐱
𝑗
are independent,

then VERSE factorizes the matrix Y = log(PPR) + log 𝑛 − log 𝑏 = XX⊤.

Proof. Consider the VERSE objective function for the uniform sampling distribution and PPR
similarity:

𝓛 =

𝑛∑

𝑖=1

𝑛∑

𝑗=1

[
PPR𝑖𝑗 log 𝜎(𝐱

⊤

𝑖
𝐱
𝑗
) + 𝑏𝔼𝑗′∼𝒬𝑖 log 𝜎(−𝐱

⊤

𝑖
𝐱
𝑗′
)
]
,

where 𝜎(𝑥) = (1 + 𝑒−𝑥)−1 is the sigmoid, 𝒬𝑖 is the noise sample distribution, and 𝑏 the number

of noise samples. Since PPR is right-stochastic and 𝒬𝑖 is uniform, i.e., Pr(𝒬𝑖 = 𝑗) =
1

𝑛
, we can

separate the two terms as follows:

𝓛 =

𝑛∑

𝑖=1

𝑛∑

𝑗=1

PPR𝑖𝑗 log 𝜎(𝐱
⊤

𝑖
𝐱
𝑗
) +

𝑏

𝑛

𝑛∑

𝑖=1

𝑛∑

𝑗′=1

log 𝜎(−𝐱⊤
𝑖
𝐱
𝑗′
).

�en the individual loss term for vertices 𝑖 and 𝑗 is:

𝓛𝑖𝑗 = PPR𝑖𝑗 log 𝜎(𝐱
⊤

𝑖
𝐱
𝑗
) +

𝑏

𝑛
log 𝜎(−𝐱⊤

𝑖
𝐱
𝑗
).

We substitute 𝑧𝑖𝑗 = 𝐱⊤
𝑖
𝐱
𝑗
, using our independence assumption, and solving for

𝜕𝓛𝑖𝑗

𝜕𝑧𝑖𝑗
= PPR𝑖𝑗𝜎(−𝑧𝑖𝑗) −

𝑏

𝑛
𝜎(𝑧𝑖𝑗) = 0, (5.4)

we get 𝑧𝑖𝑗 = log
𝑛⋅PPR𝑖𝑗

𝑏
, hence XX⊤ = log(PPR) + log 𝑛 − log 𝑏 = Y.
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Insert PPR(𝑣, ⋅) intoW

𝑣

CompressW, update Σ̂

,
anytim

e

Fig. 5.2 Work�ow: FREDE iteratively samples transformed PPR rows, periodically compresses

the derived sketch and derives singular values by SVD, and returns an embedding with error

guarantees at any time.

Even though this solution is algebraically impossible as it implies approximation of a

non-symmetric matrix by a symmetric one, it provides a matrix whose covariance we can

sketch.

5.3.2 FREDE Algorithm

Since the matrix Y = XX⊤ has equal row and column ranks, we rewrite the decomposition

commutatively, as Y = log(PPR) + log 𝑛 − log 𝑏 = X⊤X. We keep the bias parameter 𝑏 equal

to 1, as in NetMF, and apply Frequent Directions (Section 5.2.6) to obtain a 𝑑 × 𝑛 sketch-based

embeddingW by processing rows ofY. Algorithm 4 presents the details of FREDE and Figure 5.2

shows its work�ow; it computes rows of the PPR matrix, and hence of the transformed Y, by

sampling, applies the SVD-based Frequent Directions sketching process periodically with each

𝑑 rows it processes (Lines 8–12), and returns embeddings with guarantees at any time (Lines

14–15). We keep track of singular values in Σ̂ alongside the sketch so as to avoid performing

SVD upon a request for output; as in [170], we multiply by

√
Σ̂ at output time (Line 15), whereas

a covariance-oriented sketcher would use Σ̂. �e time to process all 𝑛 nodes with 𝒪(𝑛∕𝑑) SVD
iterations costing 𝒪(𝑑2𝑛) is 𝒪(𝑑𝑛2).

Sketch-based embeddings inherit the covariance error bounds of sketching (Section 5.2.6),
which hold anytime, even a�er processing only an arbitrary subset of rows. �us, FREDE
embeddings inherit the anytime error guarantees of Frequent Directions, which are valid a�er
materializing only part of the similarity matrix, and superior to those of other sketch-based

embeddings; it achieves 𝚌𝚎 ≤ 𝜖 on the submatrix S[𝑠] built from any size-𝑠 subset of processed

rows (nodes) when 𝑑 = 𝒪(𝑛∕𝜖) [82], independently of 𝑠. In Section 5.4.8 we show that FREDE

outperforms other sketch-based embeddings in anytime node classi�cation.
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Algorithm 4 FREDE algorithm
1: function FREDE(𝐺, 𝑛, 𝑑)
2: W← zeros(2𝑑, 𝑛) ⊳ all zeros matrixW ∈ R2𝑑×𝑛

3: Σ̂ ← I(2𝑑) ⊳ diagonal identity matrix Σ̂ ∈ R2𝑑×2𝑑

4: for 𝑣 ∈ 𝑉 do
5: 𝑥 ← 𝙿𝚎𝚛𝚜𝚘𝚗𝚊𝚕𝚒𝚣𝚎𝚍𝙿𝚊𝚐𝚎𝚁𝚊𝚗𝚔(𝑣)

6: 𝑦 ← log 𝑥 + log 𝑛 ⊳ PPR-like similarity row

7: Insert 𝑦 into the last zero valued row ofW

8: if W has no zero valued rows then
9: U, Σ, V⊤ ← 𝚂𝚅𝙳(Σ̂W), 𝜎 ← Σ𝑑,𝑑

10: Σ̂∶𝑑 ←

√

max(Σ2
∶𝑑
− 𝜎2I𝑑, 0) ⊳ set 𝑑th row of Σ̂ to 0

11: Σ̂𝑑∶ ← I𝑑 ⊳ set last 𝑑 entries of Σ̂ to 1

12: W∶𝑑 ← V⊤

∶𝑑
,W𝑑∶ ← 𝟎𝑑×𝑛 ⊳ zero last 𝑑 rows ofW

13: return Σ̂,W∶𝑑

14: function GetEmbedding(𝑘 ≤ 𝑑) ⊳ Anytime

15: return
√
Σ̂W∶𝑘 ⊳ �rst 𝑘 rows

5.3.3 Parallelization and Distribution

�esteps ofAlgorithm4may be easily parallelized. In particular, Line 5 could employ approximate

PPR [241, 237], and Line 9 e�cient SVD calculations [107]. Such speedups trade quality for

scalability. Furthermore, FREDE can be e�ciently distributed across machines for the sake
of scalability, with very small communication overhead and preserving its quality guarantees.
�is appealing characteristic, unique among related works on embeddings, follows from the

mergeability property that FREDE inherits from Frequent Directions. In each machine𝑚, we

may create a partial embedding matrix𝑊 based on the subset of the nodes available to𝑚, and

then merge partial embeddings from 𝑡 servers, i.e., iteratively sketch their concatenations by

Equation 5.2 in hierarchical fashion, incurring a log
2
𝑡 time complexity factor.

5.4 Experiments
�e primary advantage of FREDE is its anytime character, i.e., its ability to derive embeddings
by processing only a fraction of similarity matrix rows. On that front, it may only be compared

against other sketch-based emebeddings. Here, we also test FREDE for qualitative performance

in data science tasks against other graph embeddings to corroborate its practical impact.
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5.4.1 Compared Methods

As previous work [212] has established that nonlinear embeddings outperform those based

on linear-transforms, we evaluate FREDE against three representative state-of-the-art graph

embeddings based on nonlinear transforms, the classic DeepWalk, factorization-based NetMF,

and neural VERSE, three sketching baselines, and exact matrix factorization by SVD:

• DeepWalk2 [167] learns an embedding by sampling �xed-length randomwalks from each

node and applying word2vec-based learning on those walks; despite intensive research on

graph embeddings, DeepWalk remains competitive when used with time-tested default

parameters [212]: walk length 𝑡=80, number of walks per node 𝛾=80, and window size

𝑇=10; we use these values.

• VERSE3 [212] trains a single-layer neural network to learn the PPR similarity measure via

sampling, with default parameters 𝛼 = 0.85 and nsamples = 106.

• NetMF [170] performs SVD on the closed-form DeepWalk matrix. We use the optimal

method, NetMF-small; as it is not scalable, we evaluate it on our three smallest datasets,

using the same parameters as in DeepWalk, and bias 𝑏 = 1 as in the original paper;

NetMF su�ces for a quality comparison with NetSMF [171], as the former represents

the full version of the latter.

Sketching baselines
Weadditionally comparewith three high-performance baseline sketchingmethods (Section 5.2.6),

namely Hashing, Random Projections and Sampling— computing the sketch and �ltering
singular value as in FREDE. Our Random Projections baseline is a re�ned variant of [244],
substituting a crude higher-ordermatrix approximationwith the row-update randomprojections

sketching algorithm applied on the transformed PPR matrix.

SVD
On the three smallest datasets, we were able to compare against the exact SVD decomposition
of the nonlinearly tranformed PPR matrix Y with the same parameters as in FREDE.

5.4.2 Parameter Settings

We set embedding dimension 𝑑 = 128 unless indicated otherwise. For SVD, we use the gesdd
routine in the Intel MKL library. For classi�cation we use LIBLINEAR [69]. We repeat each

experiment 10 times and evaluate each embedding 10 times.

2https://github.com/xgfs/deepwalk-c
3https://github.com/xgfs/verse

https://github.com/xgfs/deepwalk-c
https://github.com/xgfs/verse


5.4 Experiments 80

Size Statistics
dataset |𝑉| |𝐸| |𝓛| Avg. deg. Density

PPI 4k 77k 50 19.9 5.1 × 10−3

POS 5k 185k 40 38.7 8.1 × 10−3

BlogCatalog 10k 334k 39 64.8 6.3 × 10−3

CoCit 44k 195k 15 8.86 2.0 × 10−4

CoAuthor 52k 178k — 6.94 1.3 × 10−4

VK 79k 2.7M — 34.1 8.7 × 10−4

Flickr 80k 12M 195 146.55 1.8 × 10−3

YouTube 1.1M 3M 47 5.25 9.2 × 10−6

Table 5.3 Dataset characteristics: number of vertices |𝑉|, number of edges |𝐸|; number of node

labels |𝓛|; average node degree; density de�ned as |𝐸|∕
(
|𝑉|

2

)
.

5.4.3 Datasets

We experiment on 8 publicly available real4,5 datasets.

• PPI [198, 93]: a protein-protein interaction dataset, where labels represent hallmark gene

sets of speci�c biological states.

• POS [140, 93]: a word co-occurrence network built fromWikipedia data. Labels tag parts

of speech induced by Stanford NLP parser.

• BlogCatalog [243, 206]: a social network of bloggers from the blogcatalog website.

Labels represent self-identi�ed topics of blogs.

• CoCit [1, 212]: a paper citation graph generated from the Microso� Academic graph,

featuring papers published in 15 major data mining conferences. We use conference

identi�ers as labels.

• CoAuthor [1, 212]: a coauthorsip graph generated from the Microso� Academic graph.

We use snapshots from 2014 and 2016 for link prediction.

• VK [212]: a Russian all-encompassing social network. Labels represent user genders. We

use snapshots from November 2016 and May 2017 for link prediction.

• Flickr [243, 206]: a photo-sharing social network, where labels represent user interests,

and edges messages between users.

4https://github.com/xgfs/verse/tree/master/data
5http://leitang.net/code/social-dimension/data/�ickr.mat

https://github.com/xgfs/verse/tree/master/data
http://leitang.net/code/social-dimension/data/flickr.mat
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• YouTube [243, 206]: a video-based social network; labels indicate genre interests.

Table 5.3 summarises the data characteristics. All algorithms are implemented in Python6

and ran on a 2×20-core Intel E5-2698 v4 CPU machine with 384Gb RAM and a 64Gb memory

constraint.

101 102 103

10−6

10−3

100

𝑑

𝚌
𝚎

Covariance error

FREDE SVD Sampling

Rand. Proj. Hashing

Fig. 5.3 Covariance error vs. dimensionality 𝑑; FREDE approaches SVD, which yields optimal

covariance error.

5.4.4 Sketching Quality

As a preliminary test, we assess our choice of sketching backbone against other sketching

algorithms and the optimal rank-𝑘 covariance approximation obtained by SVD on the full

similarity matrix, S̃⊤S̃ = V𝑑Σ
2

𝑑
V⊤

𝑑
. Figure 5.3 reports the covariance error 𝚌𝚎 on PPI data, vs. the

dimensionality 𝑑. FREDE outperforms the other sketching algorithms (Section 5.2.6) by at least

2 orders of magnitude and, as 𝑑 grows, it converges to the optimal SVD solution. �is result

recon�rms that the advantages of Frequent Directions versus other sketching methods transfer

well to the domain of graph embeddings. For the sake of completeness, we keep comparing to

other sketching methods in the rest of our study, as performance may vary depending on the

downstream data science task.

5.4.5 PPR Approximation

Figure 5.4 shows the performance of sketching algorithms on anode classi�cation task (predicting

correct labels) vs. the number of random walks for PPR approximation. FREDE consistently

outperforms sketching baselines and reaches the exact-PPR solution with 106 walks. �is result

6FREDE code repository

https://github.com/xgfs/frede
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Fig. 5.4 Classi�cation performance of sketching algorithms on PPI data wrt. number of walks to

compute PPR.

indicates that we can achieve performance obtained using the exact PPR values in downstream

tasks even without computing such PPR values with high precision.
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Fig. 5.5 Classi�cation performance of FREDE with varying percentage of the graph as input on

three datasets: PPI, Flickr and BlogCatalog.

5.4.6 Node Classi�cation

Tables 5.4 – 5.9 report classi�cation results in terms of the Micro-F1measure as it is common in

the literature [167, 205]; Macro-F1 results are similar and we report them in the Appendix C.1.

SVD is featured where it runs within 64Gb. For each dataset, we repeat the experiment 10 times

and report the average. Surprisingly, on PPI and POS, FREDE outperforms its exact counterpart,

SVD, and consistently supersedes its sketching counterparts across all datasets.
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labelled nodes, %
method 10% 30% 50% 70% 90%

DeepWalk 16.33 19.74 21.34 22.39 23.38

NetMF 18.58 22.01 23.87 24.65 25.30

VERSE 16.45 19.89 21.64 23.08 23.84

FREDE 19.56 23.11 24.38 25.11 25.52

SVD 18.31 22.12 23.66 25.03 25.78

Rand. Proj. 16.80 19.99 21.45 22.38 23.14

Sampling 16.25 19.55 20.93 21.85 22.68

Hashing 16.73 19.97 21.51 22.43 23.44

Table 5.4 Micro-F1 classi�cation, PPI data.

labelled nodes, %
method 10% 30% 50% 70% 90%

DeepWalk 43.42 47.12 48.96 49.86 50.18

NetMF 43.42 46.98 48.52 49.23 49.72

VERSE 40.80 44.70 46.60 47.65 48.24

FREDE 46.59 49.23 50.45 51.02 51.30

SVD 44.69 48.86 50.57 51.53 52.20

Rand. Proj. 40.24 43.87 45.65 46.43 47.18

Sampling 40.35 43.80 45.39 46.30 46.69

Hashing 40.17 43.88 45.44 46.35 46.79

Table 5.5 Micro-F1 classi�cation, POS data.

labelled nodes, %
method 10% 30% 50% 70% 90%

DeepWalk 36.22 39.84 41.22 42.06 42.53

NetMF 36.62 39.80 41.05 41.70 42.17

VERSE 35.82 40.06 41.63 42.63 43.14

FREDE 35.69 38.88 39.98 40.54 40.75

SVD 37.60 40.99 42.10 42.66 43.47

Rand. Proj. 30.82 34.43 35.81 36.52 37.16

Sampling 29.44 32.32 33.41 34.04 34.29

Hashing 30.81 34.36 35.82 36.65 37.28

Table 5.6 Micro-F1 classi�cation, BlogCatalog data.

5.4.7 Link Prediction

Link prediction is the task of predicting the appearance of a link between pairs of nodes in a

graph. Tables 5.11 and 5.12 report link prediction accuracy (predicting the appearance of a link)
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labelled nodes, %
method 1% 3% 5% 7% 9%

DeepWalk 37.22 40.34 41.72 42.59 43.16

VERSE 38.95 41.20 42.55 43.41 44.01

FREDE 42.46 44.56 45.39 45.84 46.17

Rand. Proj. 40.89 42.63 43.63 44.32 44.78

Sampling 40.84 42.97 43.93 44.49 44.91

Hashing 40.86 42.66 43.65 44.29 44.83

Table 5.7 Micro-F1 classi�cation, CoCit data.

labelled nodes, %
method 1% 3% 5% 7% 9%

DeepWalk 32.39 36.02 37.41 38.15 38.70

VERSE 30.08 34.22 36.06 37.11 37.83

FREDE 30.90 32.98 33.86 34.48 34.88

Rand. Proj. 28.92 32.21 33.82 34.76 35.49

Sampling 28.46 30.97 32.08 32.75 33.24

Hashing 29.07 32.23 33.77 34.75 35.48

Table 5.8 Micro-F1 classi�cation, Flickr data.

labelled nodes, %
method 1% 3% 5% 7% 9%

DeepWalk 37.96 40.54 41.75 42.60 43.37

VERSE 38.04 40.50 41.72 42.59 43.33

FREDE 34.51 37.37 38.78 39.40 39.95

Rand. Proj. 33.88 36.10 37.23 37.94 38.38

Sampling 33.97 35.66 36.37 37.19 37.71

Hashing 32.64 35.64 36.92 37.46 38.13

Table 5.9 Micro-F1 classi�cation, YouTube data.

on CoCit and VK by a logistic regression classi�er on features derived from embeddings by the

rules in Table 5.10. As a baseline, we use common link prediction features (node degree, number

of common neighbors, Adamic-Adar index, Jaccard coe�cient, and preferential attachment).

We represent absent links in the training data by negative sampling, and use 50% of links for

training and remaining 50% for testing. FREDE outperforms all methods on CoCit, and all

sketching baselines on VK. Surprisingly, sketching baselines perform better than state-of-the-art

graph embeddings on CoCit.
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Operator Result

Average (𝐚 + 𝐛)∕2

Concat [𝐚1, … , 𝐚𝑑, 𝐛1, … , 𝐛𝑑]

Hadamard [𝐚1 ∗ 𝐛1, … , 𝐚𝑑 ∗ 𝐛𝑑]

Weighted L1 [|𝐚1 − 𝐛1|, … , |𝐚𝑑 − 𝐛𝑑|]

Weighted L2 [(𝐚1 − 𝐛1)
2
, … , (𝐚𝑑 − 𝐛𝑑)

2
]

Table 5.10 Edge embedding strategies for link prediction, nodes 𝑢, 𝑣 ∈ 𝑉 and corresponding

embeddings 𝐚, 𝐛 ∈ ℝ𝑑.

method Average Concat Hadamard L1 L2
DeepWalk 68.97 68.43 66.61 78.80 77.89

VERSE 79.62 79.25 86.27 75.15 75.32

FREDE 81.28 80.95 86.83 81.70 82.37

Rand. Proj. 80.81 80.54 86.73 80.79 81.42

Sampling 80.98 80.74 86.45 79.53 79.51

Hashling 80.84 80.48 86.66 80.59 81.33

Baseline 77.53

Table 5.11 Link prediction accuracy, CoAuthor data.

method Average Concat Hadamard L1 L2
DeepWalk 69.98 69.83 69.56 78.42 77.42

VERSE 74.56 74.42 80.94 77.16 77.47

FREDE 74.68 74.59 77.63 74.25 73.60

Rand. Proj. 74.41 74.27 77.01 74.33 74.56

Sampling 74.38 74.27 76.82 72.26 71.95

Hashing 74.36 74.27 76.86 74.30 74.56

Baseline 78.84

Table 5.12 Link prediction accuracy, VK data.

5.4.8 Anytime Classi�cation

We study anytime operation (Section 5.3.2) on node classi�cation using 50% of nodes for training

and processing PPR rows in random order. Figure 5.5 presents results for PPR-based methods

on three datasets. FREDE outperforms both VERSE and SVD on PPI, as in Table 5.4, a�er

processing only 10% of similarities; its downstream performance grows with the number of

nodes visited on all datasets, while tht of other sketching baselines drops on PPI data; FREDE

also performs competitively on Flickr (we examine up to 10% of nodes, as Random Projections
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was ine�cient; SVD did not run within 64Gb) and BlogCatalog, as in Tables 5.6 and 5.8.

�e rightmost plot in Figure 5.5 shows runtime on BlogCatalog; remarkably, while sketchers’

runtime grows linearly, those of one-o� methods stand apart. �ese results also illustrate that

embedding merging preserves the downstream embedding quality; as Equation 5.2 shows,

merging two embeddings amounts to sketching their concatenation; therefore, the sketch

operation Algorithm 4 periodically performs with each new 𝑑 similarity matrix rows it processes

can also be viewed as a merge operation.

5.5 Summary
Weobserved that, since graph embeddings aim to preserve similaritymatrix covariance, row-wise

sketching techniques are naturally suited to that end. We applied a state-of-the-art sketcher,

Frequent Directions, on a matrix factorization interpretation of a state-of-the-art nonlinear

transform embedding, VERSE, to cra� FREDE: a linear-space graph embedding that allows for

scalable data science operations on graph data, as well as for anytime and distributed computation

with error guarantees. Besides its anytime character, FREDE achieves almost as low covariance
error as the exact SVD solution and stands its ground against previous graph embeddings

even a�er processing as little as 10% of similarity matrix rows; therefore, it promises signi�cant

practical impact. In the future, we plan to augment FREDE in terms of quality by reweighing

the resulting embedding vectors, in the spirit of NRP [237], and in terms of e�ciency by using

recent enhancements on Frequent Directions [110].



Conclusion and Future Work

Summary of Contributions
In this thesis, we considered e�cient numerical linear algebra methods for boosting machine

learning algorithms. We will now provide a summary of contributions seasoned with possible

future directions for research.

In Chapter 2, we introduced quadrature-based random feature maps and showed that they

generalise previous work in random features for kernel approximation. Both widely used

random Fourier features and orthogonal random features are special cases of the proposed

spherical-radial quadrature rules with degrees (1,1) and (1,3) respectively. We provided error

analysis and empirical support for its superiority in both accuracy of kernel approximation

and downstream tasks. As we aimed at time and space e�cient algorithms, we improved

computational complexity by introducing butter�y structure into these feature maps.

In Chapter 3, we proposed a new distance measure, IMD, between unaligned data manifolds

by leveraging intrinsic information and stochastic numerical integration technique, namely

Stochastic Lanczos Quadrature. SLQ allowed e�cient approximation of the spectral descriptor

used in the distance computation along with theoretical guarantees that we derived for IMD.

We validated the introduced distance on a range of tasks, e.g. quantifying the change of data

representations in natural language processing and image processing, evaluation of generative

models, and others. Given the ability of IMD to compare diverse manifolds (even with di�erent

dimensionality), we hope that our work will pave the way for even more expressive techniques

based on geometric insights.

Chapter 4 covers spectral graph distances and their e�cient computation for Web-scale

graphs. We improved approximation errors of baseline solutions by at least an order ofmagnitude

across a comprehensive collection of real-world graphs. We showed that our method, being

linear in the number of edges of graphs, provides an accurate comparison of graphs with billion

nodes on a single machine in less than an hour.

In Chapter 5, we interpreted a state-of-the-art nonlinear transform embedding algorithm

VERSE as a matrix-factorization problem on a Personalised PageRank similarity matrix and
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developed an algorithm for graph embeddings. �e algorithm can be characterised as anytime

and optimal, i.e. it can be stopped anytime to produce embeddings with theoretical error

guarantees. Even a�er processing a fraction of graph similarity matrix rows, it achieves superior

or comparable quality with state-of-the-art algorithms that lack FREDE’s anytime nature.

All in all, we found that quadrature approximation and fast NLA methods are useful for

overcoming computational obstacles and sometimes become a key ingredient in scaling up

machine learning to high dimensional spaces and web-scale graphs.

Future work
We hope that our work inspires more application of structured matrices in deep learning, such

as the use of butter�y matrices [55]. We also hope that a broader application of numerical

methods may open up development of more expressive techniques based on geometric insights.

Especially, with recent hardware and so�ware advancements, it should be straightforward to

implement methods of this thesis on GPU as they essentially consist of matrix-by-matrix and

matrix-by-vector multiplications, e.g. using JAX [17].

�is thesis has also le�many interesting open questions, whichwe are excited to explore in the

future. Among them, more technical one concerns the error bounds of SLaQ for approximating

VNGE graph descriptor. Looking towards unsupervised learning, another direction we may

explore is in the adoption of IMD as a loss function in generative models such as generative

adversarial networks.
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Appendix A

Derivation of Bounds and Variances

A.1 Error Bounds and Variance for Quadrature Rules
Below is the derivation of the error bounds and variances for the Quadrature-based Features,

introduced in Chapter 2.

A.1.1 Variance of the Degree (3, 3)Quadrature Rule

Let us denote 𝐪 = (
𝐱

𝐲
) ∈ 𝒳2, 𝑘(𝐪) = 𝑘(𝐱, 𝐲), ℎ𝑗(𝐪) = 𝑑

𝑓𝐱𝐲(−𝜌𝑗𝐐𝐯𝑗)+𝑓𝐱𝐲(𝜌𝑗𝐐𝐯𝑗)

2𝜌2
𝑗

− 𝑘(𝐪) =

𝑠𝑗(𝐪) − 𝑘(𝐪). �en it is easy to see that 𝔼ℎ𝑗(𝐪) = 0.

Let us denote 𝐼(𝐪) = 𝑆𝑅
3,3

𝐐1,𝜌1
(𝑓𝐱𝐲), 𝑔(𝐪) = 𝐼(𝐪) − 𝑘(𝐱, 𝐲). Using the above de�nitions we

obtain

𝕍𝑔(𝐪) = 𝕍
⎛

⎜

⎝

1 −

𝑑+1∑

𝑗=1

𝑑

(𝑑 + 1)𝜌2
𝑗

⎞

⎟

⎠

+ 𝔼
⎛

⎜

⎝

1

𝑑 + 1

𝑑+1∑

𝑖=1

ℎ𝑖(𝐪)
⎞

⎟

⎠

2

+2𝑐𝑜𝑣
⎛

⎜

⎝

1 −

𝑑+1∑

𝑗=1

𝑑

(𝑑 + 1)𝜌2
𝑗

,
1

𝑑 + 1

𝑑+1∑

𝑖=1

ℎ𝑖(𝐪)
⎞

⎟

⎠

.

(A.1)
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Variance of the �rst term

𝕍
⎛

⎜

⎝

1 −

𝑑+1∑

𝑗=1

𝑑

(𝑑 + 1)𝜌2
𝑗
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⎠
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⎝
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(𝑑 + 1)𝜌2
𝑗
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⎟

⎠

2

= 𝔼
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⎜

⎝

1 −

𝑑+1∑
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2𝑑

(𝑑 + 1)𝜌2
𝑗
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⎛

⎜

⎝
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𝑗=1

𝑑

(𝑑 + 1)𝜌2
𝑗

⎞

⎟

⎠

2⎞

⎟
⎟

⎠

= 1 − 2 +
𝑑

(𝑑 + 1)(𝑑 − 2)
+

𝑑

𝑑 + 1
=

2

(𝑑 + 1)(𝑑 − 2)
. (A.2)

Variance of the second term (using independence of ℎ𝑖(𝐪) and ℎ𝑗(𝐪) for 𝑖 ≠ 𝑗)

𝔼
⎛

⎜

⎝

1

𝑑 + 1

𝑑+1∑

𝑖=1

ℎ𝑖(𝐪)
⎞

⎟

⎠

2

= 𝔼
⎛

⎜

⎝

1

(𝑑 + 1)2

𝑑+1∑

𝑖,𝑗=1

ℎ𝑖(𝐪)ℎ𝑗(𝐪)
⎞

⎟

⎠

=
1

(𝑑 + 1)2
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𝑖=1

𝐄ℎ𝑖(𝐪)
2 =

𝐄ℎ1(𝐪)
2

𝑑 + 1
.

(A.3)

Variance of the last term (using Cauchy-Schwarz inequality)
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⎜
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1 −
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𝑑
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𝑗
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𝑖=1
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𝑖,𝑗=1

ℎ𝑖(𝐪)

𝜌2
𝑗
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1

𝑑 + 1

𝑑+1∑

𝑖=1

√

𝔼
1

𝜌4
𝑖

√

𝔼ℎ𝑖(𝐪)
2

=

√
𝔼ℎ1(𝐪)

2

𝑑(𝑑 − 2)
. (A.4)

Now, let us upper bound term 𝔼ℎ1(𝐪)
2

𝔼ℎ1(𝐪)
2 = 𝔼(

𝑑𝜙(𝐰⊤𝐱)𝜙(𝐰⊤𝐲)

𝜌2
)

2

− 𝑘(𝐪)2 ≤
𝑑𝜅4

𝑑 − 2
.
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Using this expression and plugging (A.2), (A.3), (A.4) into (A.1) we obtain

𝕍[
1

𝑛

𝑛∑

𝑖=1

𝑆𝑅
3,3

𝐐𝑖 ,𝜌𝑖
(𝑓𝐱𝐲)] ≤

2

𝑛(𝑑 + 1)(𝑑 − 2)
+

𝑑𝜅4

𝑛(𝑑 + 1)(𝑑 − 2)
+
1

𝑛

√

𝑑𝜅4

𝑑(𝑑 − 2)2
≤

≤
2

𝑛(𝑑 + 1)(𝑑 − 2)
+

𝑑𝜅4

𝑛(𝑑 + 1)(𝑑 − 2)
+

𝜅2

𝑛(𝑑 − 2)
≤
2 + 𝜅4 + 𝜅2

𝑛(𝑑 − 2)
.

(A.5)

and it concludes the proof.

A.1.2 Error Probability

�e proof strategy closely follows that of [203]; we just use Chebyshev-Cantelli ineqaulity instead

of Hoe�ding’s and Bernstein inequalities and all the expectations are calculated according to

our quadrature rules.

Let 𝐪 = (
𝐱

𝐲
) ∈ 𝒳2,𝒳2 is compact set inℝ2𝑑 with diameter

√
2𝑙, so we can cover it with an

𝜀-net using at most 𝑇 = (2
√
2𝑙∕𝑟)2𝑑 balls of radius 𝑟. Let {𝐪𝑖}

𝑇

𝑖=1
denote their centers, and 𝐿𝑔

be the Lipschitz constant of 𝑔(𝐪) ∶ ℝ2𝑑 → ℝ. If |𝑔(𝐪𝑖)| < 𝜀∕2 for all 𝑖 and 𝐿𝑔 < 𝜀∕(2𝑟), then

𝑔(𝐪) < 𝜀 for all 𝐪 ∈ 𝒳2.

Regularity Condition

Similarly to [203] (regularity condition section in appendix) it can be proven that 𝔼∇𝑔(𝐪) =

∇𝔼𝑔(𝐪).
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Lipschitz Constant

Since 𝑔 is di�erentiable, 𝐿𝑔 = ‖∇𝑔(𝐪∗)‖, where 𝐪∗ = argmax𝐪∈𝒳2 ‖∇𝑔(𝐪)‖. Via Jensen’s

inequality 𝔼‖∇ℎ(𝐪)‖ ≥ ‖𝔼∇ℎ(𝐪)‖. �en using independence of ℎ𝑖(𝐪) and ℎ𝑗(𝐪) for 𝑖 ≠ 𝑗

𝔼[𝐿𝑔]
2 = 𝔼

[
‖∇𝐼(𝐪∗) − 𝑘(𝐪∗)‖2

]
= 𝔼

⎡
⎢
⎢

⎣

‖‖‖‖‖‖‖‖‖‖

1

𝑑 + 1

𝑑+1∑

𝑖=1

∇ℎ𝑖(𝐪
∗)

‖‖‖‖‖‖‖‖‖‖

2
⎤
⎥
⎥

⎦

= 𝔼 [
1

𝑑 + 1
‖∇ℎ1(𝐪

∗)‖2] =

=
1

𝑑 + 1
𝔼𝐪∗

[
𝔼‖∇𝑠1(𝐪

∗)‖2 − 2‖∇𝑘(𝐪∗)‖𝔼‖∇𝑠1(𝐪
∗)‖ + ‖∇𝑘(𝐪∗)‖2

]
≤

≤
1

𝑑 + 1
𝔼
[
‖∇𝑠1(𝐪

∗)‖2 − ‖∇𝑘(𝐪∗)‖2
]
≤

1

𝑑 + 1
𝔼‖∇𝑠1(𝐪

∗)‖2 =

=
1

𝑑 + 1
𝔼
[
‖∇𝐱∗𝑠1(𝐪

∗)‖2 + ‖∇𝐲∗𝑠1(𝐪
∗)‖2

]
≤
2𝑑2𝜅2𝜇2𝜎2𝑝

𝑑 + 1
𝔼
1

𝜌2
1

=
2𝑑𝜅2𝜇2𝜎2𝑝

𝑑 + 1
,

where |𝜙′(⋅)| ≤ 𝜇. �en using Markov’s inequality we obtain

ℙ(𝐿𝑔 ≥
𝜀

2𝑟
) ≤ 8

𝑑

𝑑 + 1
(
𝜎𝑝𝑟𝜅𝜇

𝜀
)

2

.

Anchor Points

Let us upper bound the following probability

ℙ
⎛

⎜

⎝

𝑇⋃

𝑖=1

|𝑔(𝐪𝑖)| ≥
1

2
𝜀
⎞

⎟

⎠

≤ 𝑇ℙ(|𝑔(𝐪𝑖)| ≥
1

2
𝜀) .

Let us rewrite the function 𝑔(𝐪)

𝑔(𝐪) = 1−
1

𝑑 + 1

𝑑+1∑

𝑖=1

𝑑

𝜌2
𝑖

+
1

𝑑 + 1

𝑑+1∑

𝑖=1

𝑑𝜙𝐪(𝜌𝑖𝐳𝑖)

𝜌2
𝑖

−𝑘(𝐪) =
1

𝑑 + 1

𝑑+1∑

𝑖=1

(
𝑑(1 − 𝜙𝐪(𝜌𝑖𝐳𝑖))

𝜌2
𝑖

+ 1 − 𝑘(𝐪)) ,

where 𝜙𝐪(𝜌𝑖𝐳𝑖) =
𝑓𝐱𝐲(−𝜌𝑗𝐐𝐯𝑗)+𝑓𝐱𝐲(𝜌𝑗𝐐𝐯𝑗)

2𝜌2
𝑗

. Let us suppose that
||||||

1−𝜙𝐪(𝜌𝐳)

𝜌2

||||||
≤ 𝑀. �en we can apply

Hoe�ding’s inequality

ℙ(|𝑔(𝐪)| ≥
1

2
𝜀) ≤ 2 exp

⎛

⎜

⎝

−

2𝐷
1

4
𝜀2

(𝑀 − (−𝑀))2

⎞

⎟

⎠

= 2 exp (−
𝐷𝜀2

8𝑀2
)
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.

Optimizing over 𝑟

Now the probability of sup
𝐪∈𝒳2 |𝑔(𝐪)| ≤ 𝜀 takes the form

𝑝 = ℙ(sup
𝐪∈𝒳2

|𝑔(𝐪)| ≤ 𝜀) ≥ 1 − 𝜅1𝑟
−2𝑑 − 𝜅2𝑟

2,

where 𝜅1 = 2
(
2
√
2𝑙
)2𝑑

exp
(
−

𝐷𝜀2

8𝑀2

)
, 𝜅2 =

8𝑑

𝑑+1

(
𝜅𝜇𝜎𝑝

𝜀

)2
. Maximizing this probability over 𝑟 gives

us the following bound

ℙ(sup
𝐪∈𝒳2

|𝑔(𝐪)| ≥ 𝜀) ≤ (𝑑
−𝑑

𝑑+1 + 𝑑
1

𝑑+1) 2
6𝑑+1

𝑑+1 (
𝑑

𝑑 + 1
)

𝑑

𝑑+1

(
𝜎𝑝𝑙𝜅𝜇

𝜀
)

2𝑑

𝑑+1

exp (−
𝐷𝜀2

8𝑀2(𝑑 + 1)
) .

For RBF kernel 𝜅 = 𝜇 = 1,𝑀 =
1

2
, so we obtain the following bound

ℙ(sup
𝐪∈𝒳2

|𝑔(𝐪)| ≥ 𝜀) ≤ (𝑑
−𝑑

𝑑+1 + 𝑑
1

𝑑+1) 2
6𝑑+1

𝑑+1 (
𝑑

𝑑 + 1
)

𝑑

𝑑+1
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Let us compare it with the bound for RFF
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Appendix B

Additional Implementation Details

Below, we discuss implementation details of algorithms in this thesis.

B.1 Quadrature-based Features for Kernel Approximation

B.1.1 Remarks on Quadrature Rules

Even functions. We note here that for speci�c functions 𝑓𝐱𝐲(𝐰) we can derive better versions

of 𝑆𝑅 rule by taking on advantage of the knowledge about the integrand. For example, the

Gaussian kernel has 𝑓𝐱𝐲(𝐰) = cos(𝐰⊤(𝐱 − 𝐲)). Note that 𝑓 is even, so we can discard an

excessive term in the summation in degree (3, 3) rule since 𝑓(𝐰) = 𝑓(−𝐰), i.e 𝑆𝑅3,3 rule

reduces to

𝑆𝑅
3,3

𝐐,𝜌
(𝑓) =

⎛

⎜

⎝

1 −

𝑑+1∑

𝑗=1

𝑑

(𝑑 + 1)𝜌2
𝑗

⎞

⎟

⎠

𝑓(𝟎) +
𝑑

𝑑 + 1

𝑑+1∑

𝑗=1

𝑓(𝜌𝑗𝐐𝐯𝑗)

𝜌2
𝑗

. (B.1)

Obtaining a proper 𝜌. It may be the case when sampling 𝜌 that 1 −
∑𝑑+1

𝑗=1

𝑑

(𝑑+1)𝜌2
𝑗

< 0 which

results in complex 𝑎0 term. Simple solution is just to resample 𝜌𝑗 to satisfy the non-negativity

of the expression. According to central limit theorem
∑𝑑+1

𝑗=1

𝑑

(𝑑+1)𝜌2
𝑗

tends to normal random

variable with mean 1 and variance
1

𝑑+1

2

𝑑−2
. �e probability that this values is non-negative equals

𝑝 = ℙ(1 −
∑

𝑗=1

𝑑

(𝑑+1)𝜌2
≥ 0) ⇝

1

2
. �e expectation of number of resamples needed to satisfy

non-negativity constraint is
1

𝑝
tends to 2.
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B.2 Intrinsic Multi-scale Distance

B.2.1 GAN Details

Below, we enlist GAN architectures used in experiments in Chapter 3.

MNISTWGAN
ConvGenerator(

(latent_to_features ): Sequential(
(0): Linear(in_features =100, out_features =512, bias=True)
(1): ReLU()

)
(features_to_image ): Sequential(

(0): ConvTranspose2d (128, 64, kernel_size =(4, 4),
stride =(2, 2), padding =(1, 1))

(1): ReLU()
(2): BatchNorm2d (64, eps=1e-05, momentum =0.1, affine=True)
(3): ConvTranspose2d (64, 32, kernel_size =(4, 4),

stride =(2, 2), padding =(1, 1))
(4): ReLU()
(5): BatchNorm2d (32, eps=1e-05, momentum =0.1, affine=True)
(6): ConvTranspose2d (32, 16, kernel_size =(4, 4),

stride =(2, 2), padding =(1, 1))
(7): ReLU()
(8): BatchNorm2d (16, eps=1e-05, momentum =0.1, affine=True)
(9): ConvTranspose2d (16, 1, kernel_size =(4, 4),

stride =(2, 2), padding =(1, 1))
(10): Sigmoid ()

)
)
ConvDiscriminator(

(image_to_features ): Sequential(
(0): Conv2d(1, 16, kernel_size =(4, 4), stride =(2, 2), padding =(1, 1))
(1): LeakyReLU(negative_slope =0.2)
(2): Conv2d (16, 32, kernel_size =(4, 4), stride =(2, 2), padding =(1, 1))
(3): LeakyReLU(negative_slope =0.2)
(4): Conv2d (32, 64, kernel_size =(4, 4), stride =(2, 2), padding =(1, 1))
(5): LeakyReLU(negative_slope =0.2)
(6): Conv2d (64, 128, kernel_size =(4, 4), stride =(2, 2), padding =(1, 1))
(7): Sigmoid ()

)
(features_to_prob ): Sequential(

(0): Linear(in_features =512, out_features =1, bias=True)
(1): Sigmoid ()

)
)
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MNISTWGAN-GP, FMNIST (WGAN,WGAN-GP)
MNISTGenerator(

(block1 ): Sequential(
(0): ConvTranspose2d (256, 128, kernel_size =(5, 5), stride =(1, 1))
(1): ReLU(inplace)

)
(block2 ): Sequential(

(0): ConvTranspose2d (128, 64, kernel_size =(5, 5), stride =(1, 1))
(1): ReLU(inplace)

)
(deconv_out ): ConvTranspose2d (64, 1, kernel_size =(8, 8), stride =(2, 2))
(preprocess ): Sequential(

(0): Linear(in_features =128, out_features =4096, bias=True)
(1): ReLU(inplace)

)
(sigmoid ): Sigmoid ()

)

MNISTDiscriminator(
(main): Sequential(

(0): Conv2d(1, 64, kernel_size =(5, 5), stride =(2, 2), padding =(2, 2))
(1): ReLU(inplace)
(2): Conv2d (64, 128, kernel_size =(5, 5), stride =(2, 2), padding =(2, 2))
(3): ReLU(inplace)
(4): Conv2d (128, 256, kernel_size =(5, 5), stride =(2, 2), padding =(2, 2))
(5): ReLU(inplace)

)
(output ): Linear(in_features =4096, out_features =1, bias=True)

)
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CIFAR-10 (WGAN,WGAN-GP)
CIFARGenerator(

(preprocess ): Sequential(
(0): Linear(in_features =128, out_features =4096, bias=True)
(1): BatchNorm1d (4096, eps=1e-05, momentum =0.1, affine=True)
(2): ReLU(inplace)

)
(block1 ): Sequential(

(0): ConvTranspose2d (256, 128, kernel_size =(2, 2), stride =(2, 2))
(1): BatchNorm2d (128, eps=1e-05, momentum =0.1, affine=True)
(2): ReLU(inplace)

)
(block2 ): Sequential(

(0): ConvTranspose2d (128, 64, kernel_size =(2, 2), stride =(2, 2))
(1): BatchNorm2d (64, eps=1e-05, momentum =0.1, affine=True)
(2): ReLU(inplace)

)
(deconv_out ): ConvTranspose2d (64, 3, kernel_size =(2, 2), stride =(2, 2))
(tanh): Tanh()

)

CIFARDiscriminator(
(main): Sequential(

(0): Conv2d(3, 64, kernel_size =(3, 3), stride =(2, 2), padding =(1, 1))
(1): LeakyReLU(negative_slope =0.01)
(2): Conv2d (64, 128, kernel_size =(3, 3), stride =(2, 2), padding =(1, 1))
(3): LeakyReLU(negative_slope =0.01)
(4): Conv2d (128, 256, kernel_size =(3, 3), stride =(2, 2), padding =(1, 1))
(5): LeakyReLU(negative_slope =0.01)

)
(linear ): Linear(in_features =4096, out_features =1, bias=True)

)
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CelebA (WGAN,WGAN-GP)
CelebaGenerator(

(preprocess ): Sequential(
(0): Linear(in_features =128, out_features =8192, bias=True)
(1): BatchNorm1d (8192, eps=1e-05, momentum =0.1, affine=True)
(2): ReLU(inplace)

)
(block1 ): Sequential(

(0): ConvTranspose2d (512, 256, kernel_size =(5, 5), stride =(2, 2),
padding =(2, 2), output_padding =(1, 1), bias=False)

(1): BatchNorm2d (256, eps=1e-05, momentum =0.1, affine=True)
(2): ReLU(inplace)

)
(block2 ): Sequential(

(0): ConvTranspose2d (256, 128, kernel_size =(5, 5), stride =(2, 2),
padding =(2, 2), output_padding =(1, 1), bias=False)

(1): BatchNorm2d (128, eps=1e-05, momentum =0.1, affine=True)
(2): ReLU(inplace)

)
(block3 ): Sequential(

(0): ConvTranspose2d (128, 64, kernel_size =(5, 5), stride =(2, 2),
padding =(2, 2), output_padding =(1, 1), bias=False)

(1): BatchNorm2d (64, eps=1e-05, momentum =0.1, affine=True)
(2): ReLU(inplace)

)
(deconv_out ): ConvTranspose2d (64, 3, kernel_size =(5, 5), stride =(2, 2),

padding =(2, 2), output_padding =(1, 1))
(tanh): Tanh()

)

CelebaDiscriminator(
(main): Sequential(

(0): Conv2d(3, 64, kernel_size =(5, 5), stride =(2, 2), padding =(2, 2))
(1): LeakyReLU(negative_slope =0.01)
(2): Conv2d (64, 128, kernel_size =(5, 5), stride =(2, 2), padding =(2, 2))
(3): LeakyReLU(negative_slope =0.01)
(4): Conv2d (128, 256, kernel_size =(5, 5), stride =(2, 2), padding =(2, 2))
(5): LeakyReLU(negative_slope =0.01)
(6): Conv2d (256, 512, kernel_size =(5, 5), stride =(2, 2), padding =(2, 2))
(7): LeakyReLU(negative_slope =0.01)
(8): Conv2d (512, 1, kernel_size =(4, 4), stride =(1, 1))

)
)



Appendix C

Additional Experimental Results

Below, we report some additional experimental results.

C.1 FREDE
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Fig. C.1 Classi�cation performance (Macro-F1) of sketching algorithms on PPI dataset vs number

of nodes processed for sketching. Embedding dimensionality 𝑑 = 128.
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Fig. C.2 Classi�cation performance (Macro-F1) of sketching algorithms on PPI dataset vs

number of random walks to generate PPR. Embedding dimensionality 𝑑 = 128.

labelled nodes, %
method 10% 30% 50% 70% 90%

DeepWalk — — — — —

NetMF 14.23 18.39 19.95 20.94 20.54

VERSE — — — — —

FREDE 14.97 19.08 20.42 21.02 20.89

SVD 14.50 18.13 19.49 20.66 21.64

Rand. Proj. 13.32 17.02 18.56 19.30 19.41

Sampling 12.46 15.93 17.25 18.07 18.19

Hashing 13.39 17.15 18.63 19.40 19.61

Table C.1 Macro-F1 classi�cation results in PPI dataset.

labelled nodes, %
method 10% 30% 50% 70% 90%

DeepWalk 7.85 9.18 9.90 10.28 10.30

NetMF 6.65 8.07 8.86 9.42 9.25

VERSE 7.27 8.60 9.23 9.62 9.56

FREDE 7.33 8.42 8.79 9.12 9.18

SVD 8.54 10.03 10.72 11.05 10.86

Rand. Proj. 7.31 8.46 8.96 9.16 9.13

Sampling 7.37 8.32 8.73 9.15 9.02

Hashing 7.33 8.42 8.79 9.12 9.18

Table C.2 Macro-F1 classi�cation results in POS dataset.
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labelled nodes, %
method 10% 30% 50% 70% 90%

DeepWalk — — — — —

NetMF 20.17 23.89 25.49 26.18 26.31

VERSE — — — — —

FREDE 16.84 20.94 22.55 23.36 23.76

SVD 21.14 25.21 26.30 27.19 27.70

Rand. Proj. 16.52 20.53 22.21 23.00 23.50

Sampling 14.88 17.56 18.46 19.04 19.03

Hashing 16.23 20.26 21.87 22.86 23.44

Table C.3 Macro-F1 classi�cation results in BlogCatalog dataset.

labelled nodes, %
method 1% 3% 5% 7% 9%

DeepWalk 26.75 29.31 30.30 30.92 31.24

VERSE 27.99 30.06 31.20 31.89 32.28

FREDE 30.29 31.97 32.67 32.95 33.26

Rand. Proj. 29.40 31.02 31.91 32.47 32.83

Sampling 29.14 30.99 31.70 32.10 32.37

Hashing 29.41 31.01 31.95 32.43 32.86

Table C.4 Macro-F1 classi�cation results in CoCit dataset.

labelled nodes, %
method 1% 3% 5% 7% 9%

DeepWalk 13.92 19.65 22.27 23.66 24.76

VERSE 11.72 18.17 21.56 23.49 24.76

FREDE 7.42 9.48 10.81 11.93 12.67

Rand. Proj. 9.00 13.53 16.43 18.35 19.75

Sampling 8.49 11.43 13.06 14.08 14.92

Hashing 9.13 13.64 16.39 18.32 19.77

Table C.5 Macro-F1 classi�cation results in Flickr dataset.
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labelled nodes, %
method 1% 3% 5% 7% 9%

DeepWalk 29.57 33.81 35.28 36.05 36.75

VERSE 29.55 33.95 35.25 36.06 36.72

FREDE 19.12 23.58 25.68 26.81 27.78

Rand. Proj. 22.05 26.95 28.56 29.48 29.94

Sampling 22.85 26.54 27.72 28.46 29.14

Hashing 20.96 26.42 28.09 29.23 29.75

Table C.6 Macro-F1 classi�cation results in YouTube dataset.
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