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It was my pleasure to review the thesis of Mohammad Ebadi entitled, “Fluid transport in tight

rocks: multi-scale Al-driven characterisation paradigm”.

Mohammad’s research demonstrates a significant and original contribution to knowledge by
providing a coherent and novel digital rocks framework to study tight rocks that offers new
opportunities for the characterisation and modelling of unconventional resources. Traditional digital
rocks studies mostly deal with simple carbonate and sandstone samples of relativity high permeability,
and thus represent only ideal cases far from practical applications. Recent works have focused on
various methods to improve simulation accuracy and image quality for digital rock studies; however,
these developments are troubled with various issues related to inconsistencies across different image
processing workflows resulting in no convergence to any widely accepted workflows. Therefore,
measurements vary widely across different service provides, which is particularly the case for tight rock
samples. The methods developed by Mohammad facilitate a resolution to these issues by providing
various way of dealing with image noise, sub-resolution features, and modelling of transport in
unconventional rocks. The developed methods provide a practical path forward for consistent and

reliable digital rock studies.

The candidate engages with the literature and provides a clear rationale for their research.
Mohammad covers both recent and traditional works on digital rocks. The workflows and modelling
developed resulted in four peer-reviewed publications in high-quality journals. The research methods
used are cutting-edge and justified by an introduction chapter that contextualizes the published works

and provides a broader overview of the works.

The presented work sets the foundation for studying tight rocks using digital rock technology. The
developments are particularly important for digital rock simulations where residual saturations, relative
permeability, capillary pressure, porosity, permeability, and trapping are important parameters for
reservoir characterisation. However, there are various aspects of the published works that require some
further clarification. | think these issues could be resolved by addressing the following points within the

appropriate location of Chapter 1 where an overview of each published paper is provided.

e Chapter 3.
o No corrections.

e Chapter4.




o Itisunclear as to how a CNN can perform better than the training data used.
The rationale for this outcome should be discussed. Are the results better than
the training data or are they within the variable range of the CNN output?

o The CNNis trained with data denoised using various image filters. Why not just
use the image filters? | understand the need to remove user biases with
filtering, but these biases remain implicitly in the training of the network.
Overall, the rationale for the type of training data used and benefit of using CNN
could be discussed more.

e Chapter5.

o Can you provide some physical insight into why the tested simulators all provide
different results? This comment is in reference to Figure 4.

o InTable 4 there is no steady trend among the generated data. However, are
there any physical reasons based on the rock structure or pore sizes that could
explain the results?

e Chapter6.

o Does the down sampling approach mimic that which would occur if the sample
was imaged at a lower resolution? Since a theoretical resolution is used to
predict rock properties it would be good to explain how the procedure mimics
what would physically occur with imaging at different resolutions.

o Inreference to Figure 6, how is the experimental value found at resolution of
zero? e”0 = 1. So, at a theoretical resolution of zero the answer would always

be one. This needs to be clarified.

While there is mostly a clear and discernible lucidity in the presented research, arguments and

conclusions, there remains a few issues with the overall presentation of the thesis.

e An explicit list of thesis objectives provided at the beginning would help clarify the impact of the
work. The list should also be linked to the specific publications to help bring together the overall
flow of the thesis.

e Each published paper is proceeded by a summary, which is too focused on the specific work. A
broader perspective of the impact and how it links to the thesis objectives would help with
developing the overall arguments of the thesis.

e Afinal overall “conclusions and future works” section would help tie together the publications

and provide a clearer picture of the impact. A discussion on future works would also provide the




vision and oversight on aspects that should still be considered when applying digital rocks for

tight formations. This would really help with bringing together the main storyline.

Overall, | fully support the thesis after revisions based on the main bullet points above and a few minor
points provided in the attached annotated thesis. The work is high-quality and at an international

standard for Doctor of Philosophy.
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Abstract

Even during the period of energy transition, there is no doubt that unconventional oil
and gas resources will play a significant role in the future energy market. The energy transition
pushes the exploration and production of oil and gas to be more marginal and minimize the
carbon footprint. Marginality of production is having the maximum production plateau and the
minimum cost of the production operation. It requires to have accurate development and
management scenarios. Latter can be achieved by having an in-depth understanding of fluid

flow in tight porous media.

The deviation from Darcy’s law because of various storage and flow mechanism is the
most challenging aspect of modelling fluid flow in unconventional hydrocarbon resources.
Therefore, it is highly required to take the effects of Knudsen diffusion, slippage, adsorbed gas
and solute gas into account. However, it leads to form a second-order highly nonlinear partial
differential equation. Using the classic derivation-dependent approaches like Newton’s method
to solve the derived governing equation numerically is challenging due to the requirement of
making proper initial guesses, forming the Jacobian matrix and its inversion. As a result, the
current research has put forward great efforts to use soft computing techniques of metaheuristic
algorithms and machine learning approaches to solve the supposed equation easier and with

less computational cost.

Regarding the microscopic scale and applying pore-scale physics, having a large
portion of pores with a size less than the spatial resolution of micro X-ray computed
tomography images is the main obstacle required to practically come across. Accordingly, a
workflow digital image processing including deep learning algorithms and operators has been
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proposed. Typically, the supposed images are suffering from noises, and they are supposed to
be treated with various filters. But, the parameters of filters are usually expected to be adjusted
by experienced users. As a result, it has been tried to use deep learning to filter images with
minor troubles. Then, the clean images have been implemented with classic approaches of
digital rock physics to observe their credibility in case of being applied to the tight porous
media. After that, it has been tried to employ a deep learning operator to generate images with
various synthetic lower resolutions. Having the corresponding porosities versus their synthetic
resolution, it becomes possible to develop an exponential model capable of predicting the
porosity for the theoretical spatial resolution of O-micron meter per voxel. Finally, the

computed porosity has been taken to predict the permeability free of biases.

The research shows that using various fields of artificial intelligence can cause
generating accurate results of simulating fluid flow in unconventional porous media with less

computational cost and difficulties.
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1. Introduction

1.1 The Importance of Developing Unconventional Resources

Hydrocarbon resources are dwindling, while corpus research has recently indicated that
unconventional hydrocarbon reservoirs can supply great energy values with minimum adverse
effects on the environment [1]. Accordingly, providing more natural gas has become a priority
for authorities and a challenging hot topic for researchers [2]. Besides new technological
advances in both fields of hydraulic fracturing and horizontal well drilling, being faced up with
a fast decline in conventional reserves have caused attention to be drawn towards the
unconventional resources such as tight and ultra-tight plays [3], which have been playing a
progressively leading role in the energy market during very recent years [4]. For instance, it is
statistically reported that “The Shale Gas Revolution” caused shale gas to be taken as a reliable
energy source in the USA [5]. In fact, shale gas comprised just less than 2% of domestic outputs
within the early years of the current century [6]. Surprisingly, today it accounts for almost a
third. It has even been estimated that 46% of produced gas in the USA during 2035 will be

from shale gas plays [7].

Before starting relevant discussions, it is critical to understand what an unconventional
reservoir is. The definition is highly reliable to conventional reservoirs, which are generally
defined as high permeability, high-quality reservoirs where all it has to be done is drilling a
vertical well and running a perforation operation at the productive interval that causes the well
to flow at profitable rates [8]. Conversely, unconventional resources are routinely characterized

as low-quality reservoirs that have to be stimulated to produce commercial flow rates and
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recover commercial volumes of hydrocarbon [9]. In more details, high viscosity oil and low
permeability are the main reasons to label a reservoir as a low-quality resource [10]. However,
the application of long horizontal well coupling with hydraulic fracturing in case of tight and
ultra-tight reservoirs and taking advantages of thermal methods to reduce the viscosity of heavy

oil can effectively stimulate the formations in most cases [8,11].

The unconventional oil and gas endowment is orders of magnitude greater than the
conventional resources that have been the principal objectives of production and exploration
for the past 120 years [12]. To picture the described concept, it is necessary to become familiar
with the “Hydrocarbon Resource Extraction Risk Triangle” idea shown in Figure 1. The shown
notion illustrates that the high-quality reservoirs are at the top of the triangle, while going
deeper into this triangle causes facing up with lower quality reservoirs [13,14]. The “risky”
undertaking may also be explained by the fact that we are currently on a steep learning curve
regarding the technologies necessary to create a gas hydrate production [15] financially.

Technically, unconventional deposits can be grouped into three general categories:

I.  Unconventional resources, which include ultra-tight sandstones and carbonates

and source rocks.

Il.  Unconventional oil and gas fluids, comprising sour/acid gases, bitumen, and

heavy oil.

I1l.  Hydrocarbons “locked in rocks” such as oil shale and methane hydrates (an

immature source rock)
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Unconventional
Reservoirs

New Technology Needed

Includes gas hydrates and the
poorest quality resources

Figure 1: Hydrocarbon Resource Extraction Risk Triangle

The Hydrocarbon Resource Extraction Risk Triangle shows that high-grade deposits
are small and difficult to find but easy to extract, and more enormous resources can be found
in deeper levels, but they do need higher product prices and improved technology to be
extracted [15]. Nevertheless, the world needs more energy under all developing scenarios,
leading to this issue that unconventional resources play an ever-increasing role in our energy
supply [16,17]. Due to this fact, the world’s emerging economies will require sustained oil and
gas use for the foreseeable future, which cannot be prepared with declining conventional oil
and gas reservoirs. As a result, it can be deduced that developing unconventional resources is
an inevitable topic, and it is a requirement to do research projects about unconventional

reservoir studies.

To put it another way, it can be concluded that tight hydrocarbon reservoirs are
statistically and practically known as potential options to guarantee a sustainable energy supply

into future markets [18,19]. The supposed potential can be turned into action only if the
15



technical risks of developing such unconventional oil and gas reservoirs be minimized

considerably.

It can be achieved by employing various reservoir management and simulation
scenarios. However, the inherent complexity and nonlinearity of tight and ultra-tight
hydrocarbon resources are the main obstacles that make it challenging to use classic approaches
[20]. Therefore, it is where using modern methods like machine learning techniques can be
implemented. The current research has made significant attempts to macroscopically and
microscopically examine how it is possible to take advantage of various machine-learning
approaches to obtain more accurate and practical characterizations of tight and ultra-tight
porous media. A second-order nonlinear partial differential equation describing fluid flow in a
shale gas reservoir has first been developed regarding the macroscopic scale. Then it has been
tried to solve the equation with soft computing approaches than classic ones. A tight sandstone
sample taken from the Achimovskiy formation has been studied based on the classic

approaches of digital rock physics and machine learning methods on the microscopic scale.

1.2 Macroscopic Scale

Fluid flow in porous media can be described by the following transport mechanisms:
molecular diffusion, Knudsen diffusion, surface diffusion, and viscous flow [21]. The fluid
transport mechanism in the typical oil and gas reservoir with large pore sizes is the viscous
flow described by Darcy’s law [22]. Darcy’s law is a phenomenological resulting constitutive
equation that addresses the fluid flow in porous media [23]. Darcy’s law has been developed

under certain conditions. The most limiting assumption of Darcy’s law s its development based
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on the laminar flow governed by viscous forces [24]. However, the fluid flow with high
velocities in porous media where the inertial forces are more significant than the viscous forces,
the flow is turbulent [25]. It can be corrected by adding an inertial term to Darcy’s equation,
known as the Forchheimer term [2]. A series of previous experimental and field research has
indicated that fluid flow in ultra-tight and tight porous media noticeably deviates from the
results generated by the implementation of Darcy’s law [26]. It is due to a couple of reasons,
such as nanoscale pores or even mature or immature organic contents in the main body of the
studying porous media [27]. The following two sections discuss the phenomena mentioned

above and how their effects can be taken into account in the form of a governing equation.

1.2.1 Fluid Flow and Storage Mechanisms in Shale Gas Plays

The significant differences between shale gas reserves and conventional hydrocarbon
resources related to natural nanoscale pores and organic content have been briefly examined
[28]. Darcy’s law and standard continuous flow equations generally underestimate the flow
rate when applied to the tight and ultra-tight porous medium of shale gas deposits [29]. It is
mainly related to the zero-velocity boundary condition, which is the deriving assumption. The
Knudsen number (Kn) is commonly used as an explanatory indicator when attempting to
understand the notion of multi-mechanism flow in ultra-tight porous media [30,31]. The

different flow regimes could be recognized by:

2
Kn = 1)

where 4 is technically specified in shale gas reservoirs as the mean distance travelled

by a gas molecule before the interaction with the other molecule that modifies its track, energy
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or other features. Also, d stands for the pore diameter. The categorization of flow types based

on K has been introduced in Table 1.

Table 1: Different flow regimes as a function of Ky

Kn Flow Type
Kn< 103 Continuum Flow
103 <K, < 10? Slip Flow
101< Kn< 10 Transition Flow
103 < K, Free Molecular Flow

According to detailed investigations on the morphology and pore size distribution of
shale gas reservoirs, pore diameters in shale gas resources vary from 1 to 200 nm, leading with
Kn relaying values ranging from 0.0002 to 6, respectively [32]. Overall, flow in shale gas
reservoirs is a multi-mechanism phenomenon that includes transition flow, slip flow and
continuum flow [33]. Generally, an apparent permeability (kapp) model taking the effects of all
the flow regimes into account is usually employed to facilitate the simulation procedure more

effectively.

The economics of shale gas plays is technically the critical factor in evaluating the
quality of shale gas resources. The storage mechanisms in shale gas plays are the free
compressed gas and the adsorbed layer on the surface of kerogens already full of solute gas

[34]. The mode of gas storage is influenced by surface area and the size of pores. Typically,
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because the macropores do not play a leading role in surface area, they are assumed to be the
main path for the transportation of free compressed gas [35]. Following the same logic,
mesopores and micropores are the essential sites for gas adsorption. Moreover, geological
conditions like reservoir temperature, temperature, moisture content and reservoir pressure

could impact the amount of free, adsorbed, and dissolved gas [36].

In other words, not taking the adsorbed gas that has a semi-liquid physical state with a
greater density than the free compressed gas into account leads to some significant
underestimation [37]. The impacts of adsorbed gas could become more prominent when
combined with a substantial quantity of surface area in shale gas reservoirs that is tenfold more
than in conventional reservoirs. The standard Langmuir isotherm is the most often used
adsorption isotherm because it considers a dynamic instantaneous equilibrium at constant
temperature and pressure between adsorbed and non-adsorbed gas [38]. Furthermore, the
adsorbed layer, which consists of gas molecules that adhere to pore surfaces, limits the possible
conductance for the passage of free and previously desorbed gas [39]. As a result, because the
methane molecule radius is similar to the pore diameters, the adsorbed gas has a detrimental
influence on permeability. However, below a threshold pressure, the adsorbed molecules begin
to be desorbed. The gas molecule desorption caused by pressure reduction reduces the

thickness of the adsorbed layer, increasing permeability [40].

Regarding the organic contents in the shale plays, kerogen is an organic substance
similar to bitumen in that it may store hydrocarbons in a dissolved form [41]. Recent theoretical
and practical studies have revealed that a significant portion of the gas-in-place in shale

reservoirs is in the form of a solute contained in the kerogen [42]. Furthermore, it has been

19



demonstrated that gas generation from kerogen is a slow process, with Fickian flow serving as
the primary transport mechanism [43]. Therefore, it is advised to use Fick’s second law in

Cartesian coordinates and the z-direction.

1.2.2 Modelling and Simulation

Based on the previous discussion, it can be concluded that the flow and storage in shale
gas resources, as one of the essential types of unconventional resources, are following multi-
mechanism regimes. As a result, it is much-needed to implement numerical methods with
maximum accuracy, which means minimum mass loss. Also, the model should have the
capability to be tuned with all the required storage and flow mechanisms occurring in shale gas
resources. Technically, it is possible to have a sequential logic for the production scenario. It
starts with pressure reduction due to the production of free compressed gas molecules. It results
in the disjoining of stuck gas molecules (adsorbed gas) from the surface of kerogens. The
desorption causes thermodynamical disturbances on the surfaces of kerogens generating
concentration gradients between bodies of kerogens and their surfaces. That is the primary

reason why solute gas is transferred from the bulk of kerogen to its surfaces.

A one-dimensional (1D) model for a conventional porous media can be developed

based on mass conservational as below [44]:

—((ova) ., , 8¢ = (orv4) At) = Vo (o), — (05),) 2)

where
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v = —(5.615)(0.001127)——p 3)
Uox

The insertion of Equation 3 into Equation 2 results in:

0 ps dp ]
=— 4
o (0 00633kA— ax) Ax atvb(pfcp) (4)

where k is permeability (md), A is the surface area (ft?), u is viscosity (cp), pr is the density of
free or compressed gas (Ib,,/ft3), ¢ is porosity, Vp is the bulk volume (ft%), and Ax is the

length of each grid (ft) after the discretization.

As mentioned earlier, the fluid flow in a shale gas play is a multi-mechanism
phenomenon. To have the effects of all the mechanisms as a single parameter, substituting the
k with kapp in Equation 4 can make the model representing the complexity of a multi-
mechanism flow more accurately and adequately. The next step to make Equation 4
representing the shale gas plays more practically is the effects of adsorbed gas into account. It

becomes possible by adjusting the accumulation term as:

pr Op

G
— <0 00633kappA =5

%) ax = 2 Vo o + (1~ $)p) ©

where p, represents the mass of adsorbed gas per volume of solid rock. Having the definition
for the concepts of gas compressibility (Cg), Langmuir isotherm and chain rule, it is possible
to reformulate Equation 5 as:

0 oP
Pr P) Ax

]
— (0 00633k qppA— ) 2% = 5p CopsV (¢ + (1 — P)K) (6)
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where K, = dp,/dps. The solute gas and its quantity in kerogen can be calculated with the
help of Henry’s law, where the solute gas in kerogen is proportional to the pressure. The effects
of solute gas can be added to Equation 6 as a source term. The idea has been taken from the
concepts implemented in fractured reservoirs [45]. It leads to the development of a second-
order nonlinear partial differential equation governing the multi-mechanism flow and storage

in shale gas plays as:

d pfap dP
—1o0. A——]|A y = — 1—-¢)K 7
a36(0006331%,0 p ax) x +qic = 5 CoprVp (@ + (1 - $)Ka) (7)

where g, is the mass flux from kerogen to matrix (Ib,,/day), and it is represented as:

* =D, A, — 8
qx Kk 5 (8)

The kerogen diffusion coefficient is represented as D« (ft2/day) and Ax is the kerogen surface

area (ft?). Also, the concentration gradient in the z-direction is represented as dc/0z.

1.2.3 Solvers

The discretization based on the finite difference method is supposed to be employed to

solve Equation 7 numerically. The result is a set of simultaneous algebraic equations stated as:

C,Y+C,=0 )

Y represents the vectors of unknowns (pressures), and C1 and C2 represent the matrixes of
coefficients and dependencies, respectively [46]. Going through the compressibility of gases

and their dependency on the pressure, the subsequence of discretization (Equation 9) results

22


ryan
Highlight
What equation of state do you use?


in a set of nonlinear simultaneous algebraic equations [1]. Thus, finding a suit of pressures that

satisfies Equation 9 at each time step is the main target of applying nonlinear solvers.

1.2.3.1 Classic Approach
Using a classic approach like Newton’s method that takes the advantages of the
Jacobian matrix is traditionally recommended to solve nonlinear simultaneous algebraic

equations [47]. Technically, Newton’s method is stated as:

[Prew] = [Poial _]_1[f(pold)] (10)

within each time step, p,;4 Shows the pressures of the last iteration, =1 represents the inversion
of the Jacobian matrix, and f(p,;q) indicates the outputs of nonlinear simultaneous algebraic
equations. Equation 10 generates p,,.,, Which is expected to be inserted into Equation 9 and
causes the generation of outputs with a magnitude of error less than what has been produced
by poiq- The Jacobian matrix is developed based on all first-order partial derivation of a vector-

valued function. Technically, the Jacobian matrix is defined as:

(24 . 94
_df_qof o ofy_|%n O (12)
dx lox; 0xy [6 i 5 fmJ

ox,  oxy

Using Newton’s method can have real challenges and difficulties. For instance, the
quality of convergence in Newton’s method is strongly dependent on the quality of initial
guesses [48]. Also, for some problems, the arrangement of the Jacobian matrix is somehow
unmanageable. Moreover, forming all the arrays based on derivations can be time-consuming

and difficult. Finally, it is necessary to add this point that the computational cost of Newton’s
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method is notably high because of making an inversion of the Jacobian matrix for a certain

number of iterations [49].

1.2.3.2 Particle Swarm Optimization (PSO)

In order to overcome the addressed challenges of making proper initial guesses and
forming the Jacobian matrix, the application of Particle Swarm Optimization (PSO) is
recommended. PSO is a free-derivation optimization method [50]. It does not need proper
initial guesses to find the most optimized suite of pressures that their production by C; in
Equation 9 results in a close-to-zero matrix. Inspired by social systems among organisms such
as fish schooling and birds flocking, PSO has been represented as a stochastic optimization
technique [51]. PSO is a metaheuristic optimization algorithm that can practically be employed

to solve multidimensional optimization problems.

Beginning with an arbitrary collection of particles or prospective solutions containing
pressure numbers, the workflow tries to enhance solutions depending on their properties,
hopefully generating a certain quantity of zeros. The main target of PSO is to reach the
supposed goal iteratively [52]. Accordingly, the velocity of particles is changed by means of

velocity vectors that are functions of random factors.

xSt = x5+ vt (12)

i,j i,j

where

k+1 _ ..k k k k k
v = vl o (Khese o — xI5) + c2r2 (X ipese 1 — xE5) (13)
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During the kth iteration, x{fj and vi’fj are the position and velocity of the jth element of
the ith particle. Also, r; and r, are two numbers uniformly and randomly distributed with the
range of 0 and 1. The xgpes and xypq¢ indicate the best positions experienced so far by the
whole population and the ith particle. Furthermore, the confidence of each particle in itself and
the population are represented by c; and c,, respectively. Regarding a 1D geological model,
the comparison between using Newton’s method and the PSO approach has been shown in
Figure 2. The results indicate that the PSO can generate results as accurate as using Newton’s
method but with fewer challenges. It must be highlighted that the implemented approach is

slightly faster than the usage of Newton’s method when the number of grids is increased.
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Figure 2: (a) The validation of Newton’s method and PSO approach versus the analytical
solution for 300 grids (b) Performance of the PSO versus Newton’s method to solve

corresponding simultaneous equations

26



1.2.3.3 Adaptive Neural Network (AdNN)

Using various machine learning approaches like Artificial Neural Networks (ANNS) to
solve partial differential equations has been a topic of various outstanding research. However,
going through the literature shows that using ANNSs to solve partial differential equations is
either with the help of already gathered data or by the use of various simulation outputs.
Therefore, it can be deduced that although using ANNSs can solve problems like Equation 9
easier without the traditional difficulties of using Newton’s method, there is still a data

collection problem.

Adaptive Neural Network (AdNN) is technically recognized as a subset of machine
learning methods that can adjust its randomly distributed weights and minimize its loss function
with no help of previously collected data [52]. Regarding Equation 9, an AdNN tries to find a
suite of pressures that their employment generates a matrix of relative zeros. Figure 3 shows
the proposed algorithm based on the papers presented in 3. The proposed workflow takes
advantages of adaptive laws to modify the weights of AANN, which is supposed to generate
the corrections to the initial set of pressures [53]. Then, the corrected pressures are inserted into
the nonlinear simultaneous algebraic equations [54]. Eventually, comparing the output matrix
of answers with the preset criteria determines if the procedure should keep iterating until

finding the most proper set of pressures or stop the computations.
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Figure 3: The proposed nonlinear solver based on using AANN

The success of the implemented algorithm has been illustrated in Figure 4. It is

shown that the produced outputs are as close as possible to those generated by Newton’s

method.
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Figure 4: The results of using AANN versus results of applying Newton’s method

One of the most important aspects of using such a methodology is its computational
efficiency. The examination of computational efficiency can be done based on the observations
of RAM usage and CPU Time. The results of the analysis have been indicated in Figure 5.
Because the proposed workflow is a derivation-free method, the RAM usage is less than
Newton’s method. It becomes even more important for the larger number of grids. The CPU
Time measurement shows that using the represented workflow has almost the same
performance as Newton’s method although it is observed that Newton’s method is faster for

the larger number of grids.
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Figure 5: The computational efficiency of the ADNN-solver
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1.3 Microscopic Scale

The production from unconventional resources like tight and ultratight hydrocarbon
reservoirs can be guaranteed if the prior reservoir studies are undertaken precisely [55]. As a
result, carrying out experimental investigations such as Routine Core AnaLysis (RCAL) and
Special Core AnaLysis (SCAL) to reveal the petrophysical parameters as accurate as possible
has always been recommended as the most promising plan. However, using classic laboratory
methods to determine the parameters like the permeability of tight porous media is time-
consuming, expensive and inaccurate [56]. Therefore, having a detailed experimental plan for

a large number of samples taken from an unconventional resource is impractical.

Accordingly, Digital Rock Physics (DRP) has been introduced as a state-of-the-art
technology that takes advantage of microtomographic imaging and advanced numerical
simulations to complement laboratory investigations to understand relevant physical processes
[57]. It is evident that in recent years, pore-scale modelling has been recognized as a standard
and precious approach to estimate and predict the properties of porous media. Pore-scale
modelling can effectively be employed to study flow simulation in porous media by modelling
the void spaces and pore throats. Also, it results in the observation and understanding of various
phenomena at the microscopic scale to accurately determine favourite properties, such as

permeability, capillary pressure, and relative permeability curves [58].

Micro x-ray Computed Tomography (uxCT) is the most widely accessible and non-
destructive method among various imaging techniques [59]. Technically, the object is placed
between the stationary source and the detector of the uxCT setup, and by its rotation, images

are collected from different angles [60]. After generating sinograms applied by back-
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projection, 2D cross-sections are created using superimposition [61]. Routinely, xxCT images
suffer from noises and artifacts such as roundoff errors, electronic, statistical, and random
noises [62]. After filtering, the images need to be binarized. Following the thresholding
method, the black voxels are labelled to void space, and white ones to grains lead to

reconstructing the 3D sample used in further flow simulations [63].

Accordingly, the general procedure of Digital Image Processing (DIP)can be illustrated
in Figure 6. It starts with imaging the rock sample. Then, the generated sinograms are
undertaken with the computed tomography to create the supposed xxCT images. As mentioned
before, image filters are employed to reduce noise levels and increase the quality of images.
The procedure continues with the application of the segmentation algorithm. The resultant

binary cube is subjected to the various Pore-Scale Simulation (PSS) methods.

Pores

Artefacts and noises
removed

Region of Shooting X-
Interest (ROI) ray beams nzCT

Applying Filters Segmentation Digital Rock

() () 1P} 1175 ] () 1P} ) >

Figure 6: The primary trend of DIP

Direct Numerical Simulation (DNS) and Pore Network Modeling (PNM) are two
general PSS methods that simultaneously find the pressure and velocity profile [64]. Although
the PNM is a suitable method for modelling multiphase flow, its application causes losing
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details of pore structures [65]. It leads to the increasing of numerical errors due to the imposed
idealization of porous spaces. In contrast, the DNS method is typically recommended as an
appropriate method for modelling single-phase flow because of its better computational
efficiency [66]. The DNS method is implemented directly on the captured images so that the
void spaces are detected, discretized, and then the relevant fluid flow equations are solved. The
basis of DNS is solving Navier-Stokes Equations (NSE) on grids directly coming from uxCT
images. It causes studying the effects of pores structure and their effects on flow simulation.
Following the Computational Fluid Dynamics (CFD), finite-volume, finite-difference, and
finite-element are well-known methods that can be employed to solve the NSE with high
computational power [67]. In more detail, the CFD method is a top-to-bottom solution method
in which the first step is considering NSE. The second one is constructing a computational
domain then meshing it. After that, in various calculations such as pressure gradients, accuracy
is determined, and finally, the boundary conditions are applied, and the equations are solved.
The main dynamic parameter of single-phase flow is permeability, which highly depends on

the structures and connectivities among pores.

Although «xCT images can be generated at different resolutions and Fields of View
(FOV), there are restrictions in choosing the resolution [68]. When the resolution is low, parts
of pores with minimal dimensions are not recognizable and lead to porosity calculation errors.
It is also impossible to properly segment throats by Digital Image Processing (DIP). As a result,
the permeability calculations are severely suffering from a high level of uncertainty. On the
other hand, more details about pore structures can be obtained at higher resolutions even though
it equals a narrow FOV and a failure to achieve a representative physical volume where the

porosity changes are negligible [69]. In other words, the major challenge restricting the
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accuracy of rock properties calculations is the appropriate choice of resolution and the FOV. It
is due to the fact that there is an inverse relationship between them so that with increasing

resolution, FOV decreases and vice versa.

The discussed trade-off can become even more challenging when DRP technology is
supposed to be implemented in a tight and ultra-tight rock sample. To picture the situation more
understandable, it is highly required to consider the two concepts of spatial image resolution
and Pore Size Distribution (PSD) [70]. The value of spatial resolution indicates the physical
dimension that represents a voxel of the image. For instance, the spatial resolution of 1.2
micrometres per voxel (1.2 um/vox) reveals the fact that the elements of the object with a size
less than 1.2 um/vox cannot be seen in the reconstructed cross-sections. On the other hand, one
of the most important petrophysical characteristics for each core sample is its PSD.
Technically, the PSD is a histogram that represents information about the relative abundance

of each pore sizes in a represented core sample [71].

In the case of overlapping the PSD with the spatial resolution of xxCT images taken
from a tight sandstone sample from Achimovskiy formation, a large portion of pores cannot be
seen in the reconstructed images (Figure 7). Consequently, the computation results of PSS can
be questionable. It must be reminded that increasing the spatial resolution of uxCT images is
not a practical solution because of losing the representativeness of the images [72]. Therefore,
the question that needs to be answered is how to take the effects of “sub-resolved” pores into

account [73].
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Figure 7: Comparing the results of PSD and the spatial resolution of xxCT images

To answer the raised question, a series of samples have firstly been taken from the
Achimovskiy formation. Then, they have first been undertaken with the DIP tuned with the
deep learning method. After having all the quality-increased images of DRP, it has been tried
to check how much the classic approaches can be employed. Next, with the help of DIP and an
operator named downsampling mainly used in deep learning, the effects of sub-resolved pores

have implicitly been taken into account for the porosity and permeability calculations.
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1.3.1 Digital Image Processing

As depicted in Figure 6, noise suppression is among the most vital elements of DIP.
Typically, image denoising is defined as finding a clean image from a noisy image. In other
words, a noisy image is the summation of a noise component and an original image. The most
important step of noise reduction is the minimization of feature loss in the cleaned image. The
various image filters can be classified into two main types of spatial and transform domain
filters. Within the spatial domain filters, the relevant mathematical operations are directly

applied to original noisy images [74].

On the contrary, transform domain filters are those in which the target image is first
supposed to be decomposed into different frequency components. Then, the treatment is done
on the resultant components, and the outcomes finally form a clean image. Regarding all the
types of filters and their corresponding domains, the trial-and-error attempts have shown that
the sequential implementation of the bandpass and bilateral can noticeably improve the quality
of images without much amount of feature loss. The bandpass filter removes the background
variations and the noise. It attenuates very high and very low frequencies but keeps the
midrange ones. In other words, the bandpass filter can simultaneously enhance edges and

reduce the noises [62].

Also, the bilateral filter has been used because of its edge-preservation, nonlinearity
and smoothness. However, the usage of classic DIP needs to know about the optimum values
of filter parameters which can only be obtained by testing various sets of numbers. Also, the

implementation of both filters on more than 1400 sequential images is time-consuming and
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computationally expensive [75]. They have been taken as the main incentive to use deep

learning for image denoising.

1.3.1.1 Deep Learning for Noise Reduction
After finishing the images acquisition, the tomographically computed images have been
stacked on each other. Then, a cube with the size of 1400° has been cropped from the central
part of the stacked images. As described earlier, the cropped cube has been undertaken with

the bandpass and bilateral filters to generate clean images, Figure 8.

(a) (b)

Figure 8: The effects of the implemented DIP (a) The original image (b) The clean image

The noisy images and the clean ones have been used as the training data for a supervised
image denoising method based on deep learning. In more details, a Residual Encoder-Decoder
Net (RED-Net) has been employed. The applied RED-Net is formed based on a stack of
convolutional layers (encoder) and deconvolutional layers (decoder) [76]. The employed RED-
Net has schematically been shown in Figure 9. All the used convolutional and deconvolutional

layers have 64 kernels with the size of 3 by 3. Also, the padding is one, and the implemented
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activation function is ReLU. The results <o wn that the applied noise reduction method has

successfully generated clean images and has been performed faster than the classic approaches.

Figure 9: The schematic of the implemented RED-Net

1.3.2 Pore-Scale Simulation

The most important parameters that are expected to be computed correctly based on
DRP are porosity (¢) and permeability (k). According to the generated black and white model,
due to the implementation of a segmentation algorithm, the total porosity can be known as the
ratio of black voxels over all voxels [77]. However, there are several methods for k

computation. Basically, k is defined as:

K= (14)

where AL—p is the pressure gradient, u is viscosity and U shows the average flow velocity in the

entire flow domain. Computation of U is the leading interest for various researches. It can be

computed based on one of the following methods:

e Direct Simulation

e Lattice Boltzmann Method
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e Pore Network Modelling

Regarding the tight formations, the basic idea is that how much using these methods is
reliable when a large portion of pores cannot literally be seen in the images. The idea has wholly
been discussed in the next part. Also, it has been figured out that how it is possible to use the

classic approaches to consider the effects of sub-resolved pores.

1.3.2.1 Implementation of the Classic Approaches

As discussed earlier, the most important concern of applying DRP methods to tight
formation is that a large portion of pores cannot be seen in the uxCT images. As a result, using
classic DRP methods is questionable. In terms of DIP, the filtered images are supposed to be
binarized in order to form a digital rock sample. In spite of using many conventional global
segmentation algorithms, it has been observed that implementing a double-threshold method
like Random Walker (RW) algorithm can generate segmented images that their post-processing
with some morphological operators results in a binary model with the minimum loss of

information, Figure 10.
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Figure 10: The implemented DIP in a glance

The next step is the employment of the already mentioned PSS methods. Accordingly,

the permeability of 5 samples has been computed based on what has been described in Pore-
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Scale Simulation. Based on the generated results illustrated in Figure 11, it can be interpreted

that there are no steady trends among the generated results.
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Figure 11: The results of permeability computations based on the variety of methods

Next, the dependency of the overall procedure to the implemented DIP has been
observed. It needs to be highlighted that the supposed sensitivity analysis has been done based
on the method of the Direct Simulation method. The Manual DIP is the first workflow
implemented for all the gathered images. The method is based on using a typical Personal
Computer (PC). Therefore, the resultant binarized cubes have the size of 400° after running
Otsu’s algorithm. After that, the same procedure of PSS has been repeated for the 6003 cubes
generated by Schlumberger through carrying the Cross-Laboratory Control DIP out.
Eventually, the third type of DIP has been employed by taking advantage of a High-
Performance Computer (HPC) unit. The implemented Automated DIP can produce not only a

binary cube with the size of 14002 but also uses the RW algorithm, which is remarked as an

41



advanced double-threshold algorithm. The anisotropic permeability analysis of using various

DIP has been indicated in Figure 12.
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Figure 12: Effects of image processing on the permeability anisotropy analysis
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In conclusion, it is believed that the complexity of pore geometry existing in tight
sandstones is the main reason that why there is a kind of deviation in calculated permeability

values.

1.3.2.2 Effects of Sub-Resolved Pores
The image-based computations of petrophysical properties are typically suffering from
biases. In other words, there are several important considerations when comparing DRP results
with lab measurements. One of the most significant factors that affect the quality of DRP results
is the degree of resolved rock components. Moreover, the DRP results are impacted by each
step shown in Figure 10. Besides, it should be considered that the computed results are based

on a micron-scale while the measurements have been made at the core scale.

Consequently, the biases are created in the computed results, even for those perfectly
homogeneous samples. To put it in another way, a systematic offset has been observed when
comparing the computed porosity and permeability with those coming from the laboratory
measurements. In some details, it has been noticed that the image-based porosities are 50% less
than the expected values [78], and also, the computed permeabilities are 10-times greater than
the experimental values [61]. Further analyses show that applying a deep-learning operator
known as downsampling can synthetically reduce the spatial while not changing the physical
size. Running the downsampling allows the researchers to have a set of computed porosities
versus the synthetic spatial resolution. For instance, the images of the sample can have a spatial
resolution of 1.2 um/vox. The sequential applying of the downsampling operator can generate

the synthetic resolution of 2.4, 4.8, 9.6 and 19.2 um/vox.
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Then, there is a possibility of computing the porosity for each one of the mentioned
resolutions. The analyses made to the Achimovskiy formation show that the scatter can
accurately be modelled with an exponential trendline. The generated model provides the
opportunity to estimate the porosity for the spatial resolution of 0 um/vox, which is
theoretically possible but physically not. The procedure has graphically been illustrated in
Figure 13. The implementation of the method to 5 samples taken from Achimovskiy formation

has been performed in Figure 14.
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Figure 13: The effect of downsampling on the measured porosities.
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where S shows the bias. Then, S can be employed to compute the Actual permeability (ka)

based on Image permeability (ki) as:
ki
= 16
L =F (16)
It has been observed that using the discussed procedure to find the ka has been

successful enough so that the ratios of ka over the experimental permeability values are closer

to unity than other approaches, Figure 15.
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Figure 15: Estimation of ka with the help of computed j
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2. A novel approach for solving nonlinear flow equations: The

next step towards an accurate assessment of shale gas resources

Summary: Fluid flow in shale gas plays is a complex multi-mechanism phenomenon.
The governing equation is a second-order nonlinear partial differential equation. The derived
equation can numerically be solved by means of Newton’s method. However, using Newton’s
method needs making proper initial guesses. Also, it is supposed to form the Jacobian matrix
and its inversion, which are computationally expensive. The paper put forward a new
application of PSO as a nonlinear solver. The results indicate that the implementation of PSO
not only causes the generation of results as accurate as using Newton’s method but also it is

much easier to apply.
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ARTICLE INFO ABSTRACT

As ultra-tight porous media that include organic contents, shale gas resources are technically known as complex
systems having various mechanisms that impact storage and flow. The slippage, Knudsen diffusion, the process
of desorption, an adsorbed layer that affects apparent permeability, and solute gas in kerogen are recognized to
be the most important ones. However, simultaneous effects of multi-mechanism flow and storage, and influences
of scattered organic contents on shale gas flow behaviour are not well-understood yet.

According to the mass conservation law, a basic mathematical model has been developed to investigate, step-
by-step, the effects of different changes that are introduced, and examine whether patterns of how kerogen is
distributed affect the production plateaus. The discretization of the second-order nonlinear Partial Differential
Equation (PDE) that is evolved results in a certain number of nonlinear simultaneous algebraic equations, which
are conventionally solved with the application of Newton'’s method. To overcome the inherent difficulties of the
initial guess, the derivations, and the inversion of the Jacobian matrix, a new application of Particle Swarm
Optimization (PSO) as a nonlinear solver was applied to extract the anticipated pressure profile for each step in
time outside the bounds of the reference equations.

The results show that not only can the PSO effectively meet the required criteria, but also it performed faster
than conventional techniques, especially in cases with a larger number of grids that encompass more phe-
nomena. It was further revealed that the insertion of a multi-mechanism apparent permeability model in which
the pore radius is also a pressure-dependent parameter causes the lower rate of production. A higher level of
production has been recorded after including storage terms of adsorption and solute gas in kerogens. Although
different patterns of kerogen distribution have finally overlapped, the different taken trend of each production
profile underlines the impact of kerogen distribution as an important parameter within the procedure of history
matching.

Keywords:

Shale gas reservoirs
Apparent permeability
Adsorbed gas

Kerogen distribution
Newton’s method

Particle swarm optimization

1. Introduction the potential to be regarded not only as sources containing typical oil

and gas, but also as reservoirs to be produced [2].

Shale gas resources, which are discussed on a daily basis, have
drawn many researchers’ attentions towards the new wonder of “The
Shale Gas Revolution”. This slowly growing movement started the
century by compromising just less than 2 percent of domestic outputs.
Surprisingly, today it accounts for nearly one-third, and the projection
is that by 2030s is a half of the gas produced in the USA and China will
be from shale gas resources [1]. Recent industrial and scientific ad-
vances have caused experts to conclude that organie-rich shales have

* Corresponding author.
E-mail address: Mohammad.Ebadi@Skoltech.ru (M. Ebadi).

https://doi.org/10.1016/j.fuel.2018.08.157

Applying modern methods like high pressure mercury injection (up
to 60,000 psi) and novel photo techniques have proved the existences of
nano scale pores and throats in organic-rich shale gas resources [3,4].
Nano scale pores have strong effects on the storage and flow in shale gas
resources. First, they provide large exposed surface areas known to hold
the potential for a considerable amount of adsorbed gas. Also, Darcy’s
law is not applicable to shale gas resources because it has originally
been developed for micro scale pores [3-10]. Moreover, the trapped
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Nomenclature

Ax length of each grid; ft

A surface area; ft

Ax kerogen surface area; ﬁz

C net heat of adsorption; Dimensionless

c concentration; Ib,,/ft’

Ce gas compressibility; psi !

d pore diameter; ft

D kerogen diffusivity coefficient; ft*/Day

Dy surface roughness; Dimensionless

dpn normalized molecular size; ft

E; heat of adsorption for the first layer; Dimensionless

E; heat of higher layers; Dimensionless

k absolute permeability; md

K, differential  equilibrium  partitioning  coefficient;
Dimensionless

Kapp apparent permeability; md

kg Henry's constant; lb/(psi-ft’)

K, Knudsen number; Dimensionless

M molecular weight; ib,,

n number of gas moles; lb mol

P pressure; psi

P constant pressure; psi

P, initial pressure; psi

Py Langmuir pressure; psi

P, saturation pressure of the gas; psi

Psr standard pressure; psi

q; mass flux from kerogen to matrix (kerogen mass flux); lb,,
/ day

R gas constant; (psi.ft’)/(tb mol .'R)

r pore radius; ft

Tefr effective pore radius; ft
Finol radius of gas molecules; ft
T temperature; “F

t time; day

Lads thickness of the adsorbed layer; ft

Tsr standard temperature; °F

v gas volume of adsorption; frgmm

Vi bulk volume; ft’

\7 Langmuir volume; ft3 /by,

Vin maximum volume of adsorbed gas for a single molecular
layer; ft/lbn,

Z compressibility factor; Dimensionless

z height; ft

Greek letters

a adsorbed layer fitting slope; ft/psi

& size ratio; Dimensionless

I'e tangential momentum accommodation coefficient;
Dimensionless

A mean free path; ft

n viscosity; cp

Pa density of adsorbed gas; Ib,/ft’

Parg averaged density; lby/ft’

Ph bulk density; Ib,/ft’

pr density of free or compressed gas; lby/ft*

ps density of solute gas; Ib,,/ft’

T tortuosity; Dimensionless

] Darcy’s velocity; (ft/day)

@ porosity; Dimensionless

organic content, kerogen, is also one of the other most special and
unique characteristics of shale gas resources that has an impact on the
storage and flow of gas [4,11,12].

Last relevant research has discovered that the organic constituents
cover part of the bulk rock, and are irregularly distributed in the shale
gas media. Dispersed organic materials within the shales can affect flow
and storage mechanisms [5,12-15]. Specifically, gas is typically stored
in pores, and adsorbed on the oil-wet surface of nano scale pores on
organic contents that can also have noticeable effects on the non-
Darcy’s flow [16-19]. On the contrary, the water-wet nature of clays
caused the provided empty sites to be filled with water. Therefore, it
has been concluded that a notable fraction of the adsorbed gas is stored
in the kerogen pores [12,20,21]. Besides that, more research has in-
dicated that a portion of gas molecules remain in the solid part of the
organic matter in the form of solute gas [4,22,23]. Indeed, the scat-
tering of the kerogen is the substantial parameter that has a great im-
pact on the modelling and simulation of storage and flow in the shale
gas resources [5,12-15].

To describe the fluid flow of gas as a compressible fluid in con-
ventional porous media, the benefits of Darcy’s equation have been
combined with the continuity equation. The strong functionality of gas
parameters such as density, viscosity, and Z-factor on the pressure is the
main reason why the supposed governing equation is presumed to be a
nonlinear partial differential equation (PDE). In addition, the inclusion
of other pressure-dependent phenomena with shale gas resources like
apparent permeability, adsorption, and the release of gas from kerogen
bodies lead the supposed second-order PDE towards a higher level of
nonlinearity [24]. Undoubtedly, handling the nonlinear equations is
one of the most challenging problems in numerical computations. Al-
though there are possibilities of applying linearization techniques, the
generation of results which are not satisfyingly accurate enough is the
main reason to use methods which can directly solve the supposed
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nonlinearity. Among the different conventional techniques that have
ever been proposed to solve the equations referred to, Newton’s method
is undoubtedly the one that is the most extensively used [25].

However, performance and convergence for Newton’s algorithm are
strongly dependent on the proper initial guess. Also, the heavily deri-
vation-dependent, high computational cost of Jacobian matrix, and lack
of ability to deal with ill-conditioned matrixes are known to be other
disadvantages [25,26]. Therefore, researchers’ attentions have been
drawn towards proposing more advanced methods that meet the re-
quired level of accuracy, and with the less computational cost for sol-
ving the nonlinear problems [27-29]. Particle swarm optimization
(PSO) as an evolutionary and modern optimizer, which can find the
optimal solution in the space that is being searched, has recently been
proposed to deal with the nonlinearity of different engineering pro-
blems [30,31]. Although there is some couple of research in which the
PSO has been applied to solve nonlinear equations, the current research
has taken advantages of PSO to solve a certain number of nonlinear
simultaneous algebraic equations generated after the discretization of
the supposed PDE.

In more details, a basic conventional Darcy’s law has been modified
to account for the effect of slippage, Knudsen diffusion, and impacts of
the adsorbed layer on the apparent permeability. Moreover, gas deso-
rption from the pore walls and effects of solute gas in bulks of kerogens
are considered to correct the accumulation term. While the generated
nonlinear simultaneous algebraic equations generated have been con-
ventionally solved, the applicability of PSO as a free-derivation solver
has also been investigated. At the final step, the positions of organic
matters and their distribution effects on the fluid flow behaviour were
investigated numerically.
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2. Relevant phenomena to shale gas

The considerable dissimilarities among shale gas reservoirs with
conventional oil and gas resources due to the existence of organic
contents and natural nano scale pores, have been analysed in brief.

2.1. Multi-mechanism flow and apparent permeability

Generally, using conventional continuum flow equations and
Darcy’s law underestimate the flow rate when used for the ultra-tight
porous media of shale gas resources. That is due to the assumption of
zero-velocity boundary condition [8,32-36]. To figure out the concept
of multi-mechanism flow in ultra-tight porous media, the Knudsen
number (K,) is normally considered to be a clarifying index [3]. The
various flow regimes can be identified as:

1

where A in shale gas reservoirs is physically defined as the average
distance travelled by a gas molecule before colliding with another
molecule that changes its energy, track, or other properties [37].
Classifications of flow regimes based on K,,, and the relevant informa-
tion and highlights have been reported in Table 1.

Detailed studies about the morphology and pore size distribution of
shale gas reservoirs show that the pore sizes in the shales under study
ranges from 1 to 200 nm, resulting in the generation of K, relaying
between 0.0002 and 6, respectively [41-43]. Altogether, it can be de-
duced that flow in shale gas reservoirs is a multi-mechanism phe-
nomena including continuum flow, slip flow, and transition flow
[34,40]. The topic under discussion about flow in shale gas reservoirs,
and relevant complexities has been graphically depicted in Fig. 1.

There is an enlarged thin section of shale gas matrixes including
different ranges of pore sizes leading to the generation of various K,
and their corresponding flow regimes as well.

According to previous studies on characterizing of flow in ultra-tight
porous materials, the first classic apparent permeability model specific
for shale gas resources was proposed by Javadpour [4]. This model
describes the multi-mechanism flow in the bundle of nano tubes based
on pressure forces and Knudsen diffusion. More details are described in
Table 2. The opportunity for advancements in order to make the former
model more suitable for porous media was taken by Darabi et al. [8].
Porosity, permeability and tortuosity as the main characteristic of a
typical porous media were incorporated into the previous model. The
new model accounts for some complexities in gas flow through ultra-
tight natural porous media. For example, local heterogeneity is one of
the main factors which is routinely ignored in previous models, but it
was inserted into the new model, with satisfying results.

2.2, Adsorbed gas

Calculations of gas-in-place in shale gas reservoirs have repeatedly

Table 1
Different flow regimes as a function of Knudsen number (K,,) [8,37-40].
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Fig. 1. Multi-mechanism flow in a thin section of a shale gas reservoir as a
function of K.

been reported as a challenging issue. That is due to the fact that the
final volume is not only a function of compacted free gas but is also
intensively influenced by what is adsorbed on the surface of kerogens
[5,16], Fig. 2,

In other words, disregarding the adsorbed gas having a semi-liquid
physical state with greater density than the free compressed gas leads to
some remarkable underestimation. The effects of the adsorbed gas can
become more pronounced when they accompany with the noticeable
amount of surface area in shale gas reservoirs that is exponentially
larger than what it is in conventional reservoirs [5,7,44,45]. Specifi-
cally, the pore structure and TOC are the most important parameters
affecting adsorption, although other factors like depth, temperature,
moisture, and pressure can have their own importance [45-47].
Through consideration of a dynamic instantaneous equilibrium at a
constant pressure and temperature between non-adsorbed and adsorbed
gas, the classic Langmuir isotherm is the most common adsorption
isotherm that is routinely used [44-46]. More details can be found in
Table 3. Some challenges such as the simplicity of the monolayer ad-
sorption assumption of gas molecules at high pressures have also been
taken as excuses to apply other models like BET [48].

Also, the gas molecules which stick to pore surfaces, known as the
adsorbed layer, limit the available conductance for the flow of free and
already desorbed gas. Subsequently, the adsorbed gas has a negative
effect on permeability, since the methane molecule radius is compar-
able to the pore sizes.

On the other hand, below a certain critical pressure, the adsorbed
molecules begin to be desorbed. In fact, gas molecule desorption oc-
curring due to the pressure reduction decreases the thickness of the
adsorbed layer, which results in an improvement in permeability. The
significance of the adsorbed layer on the flow path properties has led
recent research to predict the thickness of adsorbed gas molecule ac-
cording to alteration in pressure [9,49-51]. Some couple of relevant
research is shown brief in Table 4.

Knudsen Number (K,) Flow Regimes Remarks

Kn <1072 Continuum Flow (C)

® Darcy’s law is applicable

® Surface velocity of gas molecule at pore wall is zero

® The A of gas molecules has a negligible value in comparison with the pore radius

107° < K, < 107} Slip Flow (S)

® The theory of continuum flow breaks down

® The frequency of molecules’ collisions with pore wall is not insignificant anymore

107! < K, <10 Transition Flow (T)

® Molecules strike against the pore walls and lean towards slipping on pore walls instead of having zero velocity

® 3. is in the comparable magnitude of order with pore sizes

10 < Ky < @ Free-Molecular Flow (F)

® Molecules travel more autonomously from each other

® (Collisions of gas molecules with flow boundaries occur more repeatedly in comparison with the inter-molecule collisions
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Table 2
Analytical reviews of multi-mechanism apparent permeability models.
Model Correlation Remarks
Javadpour [4] M (105 r — Fis known as the slip coefficient
app = 1952 (LY 4 708 : ‘
Pavg T Pavg — L is a function of pressure, temperature, gas type and wall surface smoothness

F=1+ 1.5&(%)“j

A (2
()

Darabi et al. [8] _ oM $ooipeea (TS
karpfsl‘azam?(é)f r(ﬁ) + Fk

— { is an experimental parameter
— L is in the range of 0 to 1

— Suitable for a network of interconnected tortuous micro pores and nano pores
- F is the same as before

— ¢/t has been introduced to model Knudsen flow through porous media
~ Dy considers effects of pore surface roughness as one of the local heterogeneity on the Knudsen diffusion
- Dy varies between 2 and 3
- &'is the ratio size and defined as dy,/d
e

k=
8

Kerogen

7

Adsorbed
[ ]

pf<pa<ps

Solute

Free

Pore

» Multi — Mechanism Storage

Fig. 2. Schematic of storage in a thin section of a shale gas reservoir, different pore sizes have colourfully and schematically been distinguished.

2.3. Kerogen

Kerogen is the organic material analogous to the bitumen that has
the capability of storing hydrocarbons in a dissolved state. Recent re-
searches have theoretically and experimentally been reported that a
noticeable part of the gas-in-place in shale reservoirs is in the form of a
solute stored in the kerogen [4,18,20,52]. It also states that the solute
gas could contribute to the total gas production when an imbalance in

Table 3
Adsorption isotherms routinely used in petroleum industries.

concentration is created between the gas on the surface and within the
kerogen bulk owing to the gas desorption [4]. Even so, few studies have
been conducted on the gas transport mechanism in kerogen medium.
Most of the scientists believe that gas production from kerogen is a slow
process and Fickian flow is the predominant transport mechanism. The
second law of Fick in the Cartesian coordinate and z-direction is re-
presented as [22,53-56]:

Remarks

Model Correlation
Langmuir [44-47] = s
V=Vigs
BET [48] V= VinCP
: (€c-1r
Fp= Py 14—
@ 22

~ It follows a stabilized trend at high pressures

~ The model is applicable for all types of surfaces

- The model describes a mono-layer of adsorbed gas
~ It works based on 2 fitting parameters

~ Generally known as isotherm of Type I

- It is the general from of Langmuir isotherm

- It follows an ascending trend at higher pressures

- It is specified for homogeneous surfaces

— The model describes multilayer of adsorbed gas
- €= exp((E1—EL)/RT)

— It works based on a couple of fitting parameters

- Generally known as isotherm of Type IT
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Table 4 Table 5
Effects of adsorbed layer thickness on shale permeability. PSO parameters [68].
Model Correlation  Remarks Parameter Value
Sakhaee-pour and tads = aP — Useful for pores less than 50 nm and cy 2
Bryant [49] organic contents [ 2
— Thickness of the adsorbed layer is 0.7 nm Number of particles 30
in pressures above 4061 psi. Number of parameters (pressures) in each particle Number of grids
- a is a fitting slope
— Easy to be applied in permeability models
— Low computational efforts are required due to the pressure reduction. The gas molecules flow from a no-flow
— It is supported with experimental results b d d ode. Of th .
_ The thickness reduces linearly with oundary towards a constant pressure mode. course, there is an
pressure reduction organic part known as kerogen containing solute gas (yellow). Black
~ Not reflecting the actual thickness of the signs show the diffusion of solute gas molecules towards the interface
adsorbed layer between kerogen and pore space. The procedure has been symbolized
Singh et al. [50] Lads = 26l ~ Considering molecules are in the sphere with bicoloured circles. The multi-mechanism process that is pictured
shape . was developed in gradual steps from a basic model towards an ad-
B r"/"“‘ =z,,(531V 142 vanced one representing a shale gas system.
-v=23
~ It is based on thermodynamical concepts o
— Huge computational efforts are required 3.1. Model description
Through taking advantages of the conservation mass equation for a
2 . . . . .
E _ laj single grid, a one-dimensional (1D) model of a conventional porous
dz*  Dat 2) media can be developed as [24]:

where c is concentration, D is the diffusion coefficient, and z and t re-
present the space and time, respectively.

3. Methodology

The current study considers a comprehensive model in which a
variety of flow and storage mechanisms occur in a mathematical model
of the organic-rich shale. Pressure reduction due to the production of
free gas molecules causes desorption of molecules stuck on the surface
of kerogen. The latter causes a disturbance in the system, leading to the
creation of a concentration gradient between the pore walls and bodies
of kerogens. This will be the main reason for the transmission of solute
gas from the bulk of a kerogen to its surfaces. The arrangement is
schematically presented in Fig. 3.

In particular, the block under study includes a non-organic part
known as clay which has no effects on the main flow of gas molecules.
The green sign indicates the direction of the main non-Darcy flow of
free molecules (red) and those which have already been desorbed (blue)

z=h
z=0
K
3
//Q

—((opvA)xr arAI—(0 vA) L) = Vo ((0f desar—(op )r) 3)
It can be rearranged as:
d(pvA) 3
7 TAx =W
ax b ) “
where » is Darcy’s velocity and defined as:
k dp
= —(5.615)(0.001127) ———
v (¢ ) ),u x ©)
Combining Egs. (5) and (4) yields [24,57]:
-} Pr P 3
—] 0.00633kA—— |Ax = —V}
5x( 1 x ] a e 6)

where k is absolute permeability, A is the cross-section area, g/is free
gas density, u is gas viscosity, P is pressure, Ax is the length of each
grid, t is time, V}, is the bulk volume and ¢ is the porosity. Specifying an
initial and two boundary conditions is necessary to find a solution for

® Free Gas
@ Adsorbed Gas
Solute Gas

Fig. 3. Schematic of the supposed physical model.
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Mathematical configurations
(Equations 3 to 20) of the
physical model (Figure 3)

'

1 Discretization
| = Each row is s — -
introduced PSO initial population with 30 particles
to/the set ot for N grids:
Because of supposed s
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Online Updating
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have been calculated

The satisfying pressures for grids @

t n+l

Fig. 4. The schematic of the proposed hybrid of PSO and conventional techniques.

Eq. (6). For the initial condition, it is assumed that the pressure is
uniform and stable all over the model before production begins. One
side of the 1D sample is faced with a constant pressure boundary, which
is mathematically recalls the Dirichlet situation, in which the flow rate
is dynamic and the constant pressure plays the role of a chock. On the
other hand, the sample is controlled by a Neumann state with a no-flow
boundary or isolation condition. These conditions can be mathemati-
cally translated as [22,50]:

Initial Condition: P=PB, @ =0; 0<x<L

Left Boundary Condition: P = Py, @t > 0; x=0
. - aP
Right Boundary Condition: o =0@t>0; x=1L
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3.2. Fluid flow equation

In order to obtain the proper model for unconventional shale gas
reservoirs, the basic model has been combined with flow and storage
characteristics of shale gas resources that have already been discussed.
To simulate and consider the effect of slippage and diffusion in nano
pores, the absolute permeability has been replaced with apparent per-
meability, Eq. (7) [4,8].

d

ax

ProP

3
¥ i Kol = —V
(0 00633K 4y A e )Ax 5%E9)

(7)
where kg, is the apparent permeability. It is calculated based on the
model proposed by Darabi et al. [8]. Besides compressed gas in the pore
voids, adsorbed gas on pore walls is considered to be another type of
storage (accumulation). Therefore, Eq. (7) is turned into [8,48,58]:
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Table 6 El PyopP a
Initial values of parameters [8,22 48]. a(U.GOﬁSIik,IPPA;a]Ax = EVD(P)‘"p + (1-¢)p,) (8
Parameter Value
where p, is the density of the adsorbed gas (the mass of adsorbed gas
Temperature ('F) 200 per volume of solid). Chain rule and compressibility definition are
Initial Pressure (psi) 5000 Y N N A . .
c1% 100 employed to find a simple expression for the right side. Mathematically,
k (md) 0.0008 it can be stated as [24,58]:
@ 0.14
X () 4 19y
P (psi) 400 (e
o 0.8 #yop O
T 4
Dy 25
Py (psi) 1240 aﬂ = aﬂej =Cp ar
vy, (ft%/1b) 0.08015 a  epa Ta (10)
ey (bsft%) 164.185
Fy(Ib/f%) 0.04236 where C, is the gas compressibility. For the second term, it can be
D (ft*/day) 215 x 10710 presented mathematically as [48,58]:
kg (Ib/psi-ft®) 32x 107
Duration (day) 4 95 _ 9a 5pf P _ dp " P
=t = iCp
ot dp 0P ot dg 7 ar an
Based on Egs. (10) and (11), Eq. (8) can be reformed as [8,41.60]:
0.27
‘—1’==5_’-‘_n1-—-—---—-———m—————-~-——.—-—-—
="
H/l
0.18 e
7
z 7
=
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Fig. 5. (a) Validation of the applied numerical methods for 300 grids (b) Performance of the PSO versus Newton’s method to solve corresponding simultaneous

equations.
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Fig. 6. (a) The production profile as a function of the apparent permeability and desorption phenomenon for 300 grids (b) Effectiveness of PSO technique to solve a
large number of non-linear simultaneous equations with higher levels of complexities.

3 apP ap,
—10.00633k,,, A—-— |Ax = —V}C, 1-¢)—=
* [ app P x) Tt 2Pf [55 +(1-¢) pr] 12

Moreover, Patzek et al. [59] defined the differential equilibrium
partitioning coefficient of gas at a given temperature as:

dp,

3, a3

K,

Taking the advantages of Eq. (13) causes Eq. (12) to be formed as
[48,58]:

4

dx

ProP aP

(0.00633kﬂp,,AI—)Ax = —CoprVa (¢ + (1-$)Ka)

dx at 14)

In order to obtain a mathematical expression for g, and its deriva-
tive, the mass balance of adsorbed gas is formed as [48]:

Vo (1=¢) = o (Psr, Tsr)p, ViV (15)

where £y (Psr, Tsr) represents gas density in standard conditions, and V
is volume of adsorbed gas per bulk volume of the rock. Rearrangement
of the latter equation results in:
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_ pr(Psr, Tsr)py
AT

Since the adsorbed molecules occupy a portion of the flow path, it is
necessary to modify the pore diameter during the procedure of deso-
rption. The alteration within the thickness of the adsorbed layer, and
the subsequent effects on the apparent permeability, has been modelled
based on the following:

(16)

Teff = I=lads a7z

where ry is the effective pore radius, r is the pore radius, and fu.; is the
thickness of the adsorbed layer. The thickness of the adsorbed layer
responds according to what has been represented by Sakhaeepour and
Braynt [49] in Table 4.

Besides that, it is assumed that the solute gas obeys Eq. (2), and
diffuses linearly in the z direction within the kerogen body. The
quantity of the gas that is solute in the kerogen can be calculated ac-
cording to Henry’s law, in which the solute gas is proportional to the

pressure of the gas in the pore, which is represented as [22,54,60]:
¢ =kyP (18)

where ky; is Henry’s constant, and P is pressure. To solve Eq. (2), the
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Fig. 8. (a) Effects of kerogen inclusion on the trend and value of the cumulative production for 300 grids (b) How the PSO can reduce the Computational Time in the

most complicated case based on the number of grids.

initial and boundary conditions have been set. The supposed initial
condition is given as below:

Initial Condition: ¢y = kyP, @ =0; 0<z<h
The interface between the kerogen and pore wall is considered to be

the inner boundary at z = 0 where the gas concentration in the element
under study would be:

Boundary Condition 1: ¢=kyP; 2=0; >0

The outer body of kerogen is surrounded by clay minerals which
cannot feed gas molecules. Accordingly, the no-flow boundary is set for
the outer boundary of the kerogen at z = h which can mathematically
be presented as [22,53,54,56]:

Boundary Condition 2: :j =0; z=h; t>0
2z

Eventually, the rate of mass transfer between kerogen and pore
space can be calculated by [22,54]:

dc
P =Dy Ay —
b = B e 3 (19)

where g is kerogen mass flux, Dy is kerogen diffusion coefficient, and
Ay is kerogen surface area. To consider the effect of kerogen g, it is
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inserted as a source term to the left side of the equation. Furthermore, it
has notably been discussed that the dimensions of kerogens are 10 times
greater than pore sizes [22,54,55]. It must be remembered that the
introduced term has originally been inspired from fractured reservoirs,
technically known as double-porosity media. Accordingly, after the
insertion of Eq. (19) into the main Eq. (14), the final form of the gov-
erning partial differential equation is [22,54,60]:

a

popP . _ 0P
3 (o.oossskwfsia]m +g==

VG (¢ + (1-)Ko)

E3 (20)

Eq. (20) is the mathematical expression of what is happening in
Fig. 3.
3.3. Solver

To numerically solve the resulted governing equation, the applica-
tion of discretization based on the finite difference method generates
standard simultaneous equations. It can mathematically be stated as:

[Coeff.][P] = 0 (21)

where [Coeff.] represents the matrix of coefficients and [P] is the matrix
of unknown pressures. By regarding the thermodynamical nature of
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Table 7
Effects of complexity versus volume of calculations for both applied solvers (M is about the computational time of Newton's Method and W is about the PSO).
Number of Grids
Characteristics
100 200 300 400 500
Basic Model 4 1 18 27 i 38
4 10 17 25 I 35
Basic Model + Kapp P 20' 32l 50 l P
5 14 I 24 I 38 l 65
Basic Model + Kapp + 10 25 I 52 . %0 . 130
Desorption
8 18 l 40 l 69 l 100
Basic Model + Kapp + 12 30. 60. 106- 151
Desorption + Effects of the
Adsorbed Layer 8 19 l 41 l 7 l 112
Basic Model + Kapp + I 18i 37 i 70 i 122 i 178
Desorption + Effects of the
Adsorbed Layer + Kerogen I 11 I 23 I 44 l 82 l 124
0.44 —
—_———= =T
—~ - - - PRt
P e
0.33 Pt
s L LT
— /S 7 07
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Fig. 9. Cumulative production as a function of kerogen distributions for 300 grids.

gases, the produced simultaneous equations that are produced are
nonlinear. Usually, Newton's method which takes advantages of the
Jacobian matrix is employed to solve simultaneous nonlinear equations
[24]. It is technically performed as [25]:
[Biew] = [Boaal =T [f (Rua) ] (22)
in which J~ ! is the inversion of the Jacobian matrix, f(P,) represents
the responses of nonlinear simultaneous algebraic equations, P, is the
pressure within the last iteration and the P, symbolizes adjusted
pressures. In the Jacobian matrix, each row represents one block and
the columns stand for corresponding derivations based on existing
variables. Technically, the Jacobian matrix is the matrix of all first-
order partial derivatives of a vector-valued function. It is mathemati-
cally defined as [25]:

632

E
J,g,[g..i I R
dx dy  dx, ﬂ .ﬂ
ax Bxp (23)

It must be considered that the quality of the initial guess has a
significant impact on the convergence of Newton’s method. However,
there are some situations in which that arrangement of the Jacobian
matrix is somehow unmanageable [25]. For instance, it is understood
that forming the Jacobian matrix needs to have the derivations for
pressure-dependent parameters. Some of parameters like apparent
permeability can be subjected into both classical and numerical deri-
vations. Choosing between one of these two is challenging because
developing these classical methods are time-consuming, and the nu-
merical ones have inherent errors. On the other hand, for parameters
like the Z-factor, which is supposed to undergo numerical derivation
while choosing one of the methods of backward, central, or forward
causes that generate of different results again [24,25]. Moreover, the
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computational cost of Newton's method is also considerable because the
inversion of the Jacobian matrix must be calculated for a certain
number of iterations in each time step.

To overcome the addressed challenges of the initial guess and the
relevant difficulties with the Jacobian Matrix, the PSO as a free deri-
vation technique which does not need to have an initial guess can
conclude the group of pressures, which their produet with the matrix of
coefficients in each time step generates a relative zeros matrix
[30,31,61].

In short, PSO is a stochastic optimization technique inspired by
social systems among organisms such as birds flocking and fish
schooling. This robust technique which has recently drawn many pet-
roleum researchers’ attentions, can effectively be employed to solve
multidimensional optimization problems [62-67]. Starting with a set of
random particles or potential solutions including the numbers of pres-
sures, the algorithm makes attempts to improve solutions based on their
corresponding qualities, which ideally generates a certain number of
zeros. To iteratively reach the supposed goal, each particle changes its
values by using velocity vectors that are altered with the effects of
random factors. The procedure can mathematically be stated as [68]:

Kl _ ok ket
Xij =Xt vy (24)
where

K+l _ ok o k_ k . k_ .k
Vijt = Vi en (pesti=Xij) + €22 (Kgpest; ;—Xi) (25)

ry and rz are uniformly distributed random numbers within the range of
0 to 1. In the kth iteration, vf; and x/jare the jth component of the ith
particle’s velocity and position vector, respectively. Also, Xipes: and Xgpes:
reflect the best positions experienced so far by the ith particle and the
whole population as well. Moreover, ¢; and c;, show each particle’s
confidence in itself and in the population, correspondingly [68]. The
applied values for the relevant parameters of PSO have been laid out in
Table 5.

Graphically, the proposed procedure has been indicated in Fig. 4,
where the functionality of the PSO has been performed step by step.

4. Results and discussions

Based on the initial values of the parameters stated in Table 6, the
basic homogenous model which has mathematically been introduced
with Eq. (6) was solved by applying Newton’s and PSO methods.

The generated production results have been presented in Fig. 5,
where they have been compared against outputs from the analytical
solution of the pictured model addressed in well-known references
[69]. According to the statistical parameters of R-square (R2) and
Minimum Square Error (MSE), the developed model applied with the
both numerical methods satisfyingly performed in keeping with the
analytical outputs. In terms of computational time, it can also be in-
ferred that there is not a very broad difference between both applied
solvers, and they perform nearly the same.

By regarding the model for apparent permeability proposed by
Darabi et al. [8], and what has been described about the phenomena of
adsorption under the title of the Langmuir isotherm, it is possible to
analyse Eq. (14) based on applying the solvers being referred to. The
effects of inserting the apparent permeability, which symbolizes the
slippage and Knudsen diffusion, and the desorption process on the
production profile, are shown in Fig. 6.

To examine the effects of the adsorbed layer on the trend of ap-
parent permeability, the model propesed by Darabi et al. [8] has been
coupled with what was suggested by Sakhaee-pour and Bryant [49].
Specifically, the radius referred to in the presumed apparent perme-
ability model turns into a function of pressure based on a linear re-
lationship. The results are vividly apparent in the first part of Fig. 7. The
thickness of the adsorbed layer has been assumed as what was men-
tioned in Table 4. Below the 4061 psi, the effective flow path gradually
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becomes enhanced until the gas molecules on the pore walls are entirely
desorbed. Ultimately, if lower than the 500 psi pressure, the adsorbed
layer has a negligible effect, and causes the effective flow path and
intrinsic pore diameter to become identical.

The second part represents the importance of adsorbed layer effects
on the production profile in comparison with the exclusion of the
considering effect and apparent permeability model solely without any
second storage mechanism. At the early time of production, the trend of
inclusion has lower production rather than both cases. It can be labelled
so that the lower amounts of desorption process at the beginning of the
production leads to a thicker adsorbed layer. It means that the flow path
at the beginning has a smaller size than what it really is. As production
continues, the desorption process accelerates, and the adsorbed layer
starts to diminish. Eventually, at a later time, since the total gas in place
is identical, both trends are going to meet each other and reach a peak
of cumulative production, although they followed different paths.

Adding the adsorbed layer to the previously discussed phenomena,
apparent permeability and desorption, amplifies the level of complex-
ities which can noticeably, effectively, and robustly be overcome by
applying the PSO method shown in the third part. While implementing
Newton’s method as a conventional technique takes as long as 151 s in
the highest number of grids, this proposed solver only needs 112s.

The process of evolution for the basic model approaches towards the
final step by including the effects of solute gas stored in kerogens.
Impacts of the solute gas stored in organic contents on production
profiles are illustrated in Fig. 8(a). It can clearly be observed that in-
serting solute gas effects causes a significant jump in the level of sta-
bilization, or the amount of gas produced, which follows previous ex-
pectations about gas-in-place assumptions. With this in mind, it can be
concluded that solute gas effects play a leading role in the reserve es-
timations, and discounting it leads to be faced up with significant er-
rors. Moreover, including the effects of solute gas results in a dramatic
shift in stabilization. While the developed model without solute gas
effects stabilizes after 4 days, the fully developed model levels off after
14 days which shows the slow process of diffusion within kerogen
bodies. There is also another trend that includes the solute gas effects
but disregards the importance of the adsorbed layer. Without the ad-
sorbed layer, the surface of kerogen is affected more readily due to the
higher permeability that has already been shown in Fig. 7. The faster
process for depletion within the kerogen starts and less time is required
to reach the peak of the cumulative production. In the second part of
Fig. 8, the fully developed model has been subjected to two different
solvers. As can be understood, less time is required to solve the pre-
sumed nonlinear equations, even in a small number of grids, when the
PSO technique is applied.

The overall results of applying the PSO algorithm as a solver in
comparison with the conventional method, in terms of computational
time, are illustrated in Table 7. The time spent with the PSO and
Newton’s to solve the required simultaneous equations are represented
in red and blue, respectively. Based on the fact that both techniques
nearly require equal time for a basic model including different numbers
of girds, it can be inferred that applying the PSO for normal cases can be
a noticeable plus. It is clear that adding different items inte the basic
model for the lowest number of grids causes the recording of various
computational time with the difference of 60%. However, the robust-
ness of PSO can be vividly highlighted when a complex model includes
grids as large as 500, in which the PSO has recorded 124 s, which is
31% less than what has already been spent by implementing Newton’s
method. Interestingly, it is also possible to conclude that the complexity
and heterogeneity of the model under study do not have the highest
level of impact on the amount of computational time. In fact, the ta-
bulated performances of both implemented solvers show that having
400 grids in the most complex case, last row requires shorter time than
having 500 grids, excluding solute gas effects. In other words, in-
creasing in the number of nonlinear simultaneous algebraic equations
takes shorter computational time than making the supposed system
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more complex by the inclusion of more phenomena.

Furthermore, it was decided to investigate whether the trend
showing cumulative production is a function of kerogen distribution.
During four different scenarios, with an equal amount of total gas in
place, one segment included the kerogen with the relevant phenomena
of desorption, gas diffusion, and effects of an adsorbed layer, while the
other three segments are only an ultra-tight porous media with the
related special effects of apparent permeability. In other words, the
length of the physical model (Fig. 3) was divided equally into 4 main
segments, and under each scenario only one segment contains kerogen.
The results are illustrated in Fig. 9.

Within each pattern, the considered segment is assigned with the
kerogen, and the remaining ones have a clay matrix. Technically, the
higher production in the first segment during the earlier time period
can be excused due to the fact that the first segment has the kerogen
source. It means that the signal of pressure reduction reaches the ad-
sorbed layer more quickly, which causes the beginning of desorption
and an improvement in apparent permeability. This is due to the reason
that the desorption process causes the adsorbed layer to become
thinner, which directly causes the effective pore radius to become
larger in size and has a positive influence in terms of approaching to-
wards a larger value for apparent permeability. After that, the signal is
referred to starts triggering the kerogen body to initiate the depletion
process. After a certain amount of time passes so that the pressure of the
last grid in the physical model has become equal to the presumed
Dirichlet boundary condition, and there is no more solute gas in the
kerogen body, the corresponding production profile starts to stabilize.
The position of kerogen with more distance from the outlet causes re-
ceiving the signal to be received at a later time, even though the same
described chain reactions are going to happen. Although the final value
of cumulative production is the same for all scenarios, it can be con-
cluded that kerogen distribution has an important effect on the pro-
duction profile, and it could generally be determined as an effective
parameter in a history matching procedure.

5. Conclusion

In this study, a multi-mechanism conceptual model was developed
to investigate the effects of non-Darcy’s flow, desorption, adsorbed
layer impact, gas diffusion from kerogen bodies and kerogen distribu-
tion on the production of shale gas reservoirs. A smart optimization
approach has also been introduced to solve the supposed nonlinear si-
multaneous algebraic equations.

The adsorption phenomena, which mainly occur on the pore walls
of organic media, increases the cumulative gas production, although it
has also a negative side effect on permeability for the ultra-tight porous
media. In other words, the reduction in permeability, due to the ex-
istence of the adsorbed layer, hinders bringing up total production to
the maximum value. Furthermore, it is assumed that the monolayer of
adsorbed gas covers the pore surfaces.

Solute gas in kerogen bodies contributes to the total gas production.
Kerogen has substantial effects on transportation and storage phe-
nomena of shale gas reservoirs. Desorption and gas diffusion from a
kerogen body to its surfaces are the mainly relevant phenomena with
organic materials. Various distribution of kerogen creates different
production profiles, which makes it an important parameter in history
matching for shale gas reservoirs.

PSO as a modern optimizer is a smart and robust technique to solve
nonlinear simultaneous algebraic equations. In comparison to Newton’s
method, PSO is a free derivation solver with a lower computational cost
which is also independent to initial guess. Furthermore, it converges
faster to the solution, and it is more striking when smaller steps of
discretization are chosen and complex phenomena are inserted into the
governing equation that increases the nonlinearity of the system.

The developed model can be taken to study multi-dimensional
systems with effects of multi-phase flow. Also, its advantages can be
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taken to do detailed and deep research about the behaviour of com-
positional systems in ultra-tight porous media. The effect of gravity is
another aspect that can easily be introduced into the extended model.
Several of the addressed issues that have been addressed can be con-
sidered for future studies.
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3. A nonlinear solver based on an adaptive neural network,

introduction and application to porous media flow

Summary: Using machine learning methods like ANNs to numerically solve partial
differential equations has been discussed in a wide range of previous studies. However, the
success of ANN applications is guaranteed if there would be proper access to a database. The
paper introduces a nonlinear solver based on AdNN. The procedure shows that using the
represented workflow makes it possible to get rid of making proper initial guesses, forming the
Jacobian matrix and also its inversion. Moreover, the results show that using the proposed

workflow can generate the results accurately as Newton’s method.
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Sensitivity to derivatives and a need for proper initial guesses are the main disadvantages of classic nonlinear
solvers like Newton's method. To overcome the obstacles, a numerical solver for second-order nonlinear Partial
Differential Equations (PDEs) based on an Adaptive Neural Network (AdNN) is introduced. While using Newton’s
method needs to form the Jacobian matrix and its inversion, which both of them are time-consuming and
dependent on the nature of the problem, the proposed solver tries to find the roots of the algebraic equations by
changing the weights of AANN by the help adaptive laws. The proposed approach has been applied to solve the
governing PDEs of the gas flow in shale resources and the immiscible two-phase flow of water and oil in hy-
drocarbon reservoirs as two highly nonlinear phenomena. The generated profiles of pressures and saturations
show a satisfying match with the outputs of Newton's method. However, using the presented algorithm not only
removes the former necessities but also helps the community to solve the relevant PDEs governing the critical
elements of the energy market in the future with a higher level of confidence.

1. Introduction

The proper and accurate simulation of fluid flow in the porous media
of hydrocarbon reservoirs can have a significant impact on the sus-
tainable supply of energy for the coming years (Bilgen and Sarikaya,
2016). Reservoir simulation is a robust numerical tool to describe the
chemical and physical transport phenomena and dominating forces (i.e.
capillary, gravity and viscous) in oil and gas resources to forecast the
behavior of the system under various development scenarios for maxi-
mizing the ultimate recovery (Fernandes et al., 2018; Ahmadi and Ebadi,
2014). The mathematical description based on the mass conservation
law and transport equation (Darcy’s equation) has been developed to
model the fluid flow in the porous media. The stated processes are
described by the second-order nonlinear Partial Differential Equations
(PDEs) with variables being functions of time and space simultaneously
(Huang et al., 2020). In more details, transmissibility, the coefficient of
accumulation and fluid compressibility are the most effective nonlinear
terms of governing PDEs (Vaferi et al., 2016).

Some analytical and numerical approaches have been introduced so
far to solve various types of PDEs (Wang et al., 2019). Although the
application of analytical methods yields exact and continues results in
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time and space, the stated methods are not applicable in cases of PDEs
with a high level of nonlinearity or irregular boundaries (Abou-Kassem
et al., 2006). Hence, numerical methods under different scenarios have
been put forward (Awadalla and Voskov, 2018). The discretization
procedure is a globally accepted method to expand the nonlinear PDEs
into a system of nonlinear simultaneous algebraic equations (Jayasinghe
et al., 2019). Solving a system of nonlinear equations by approximating
them with a system of linear equations in order to have benefits of linear
solvers is usually avoided (Mishev et al., 2009). In addition, increasing
the errors and inaccuracy in the prediction of the reservoir performance
are known as the major drawbacks of the linearization procedures
(Voskov and Tchelepi, 2012). Instead, it is highly recommended to
tackle problems directly by taking the advantages of nonlinear solvers,
which are capable of converging more accurate towards the correct
solutions (Younis et al., 2010).

Routinely, Newton's method is the most extensively used solver of
nonlinear equations (Nichita, 2018). The simplicity and the high rate of
convergence are persuasive enough to frequently apply the introduced
technique to solve nonlinear simultaneous algebraic equations (Spenke
et al., 2020). However, the performance of Newton’s method is strongly
dependent on making a proper initial guess. Evaluation of n® partial
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derivatives, computing the inversion of the Jacobian matrix including
f(n) by f(n) linear systems for a certain number of iterations in each time
step causing a high computational cost of O(n®) are the main disad-
vantages of Newton's method (Bezyan et al., 2019). Moreover, the
serious probability of not converging for large time steps due to the high
level of nonlinearity is another considerable weakness of Newton's
method (Zotos, 2018; Flashner and Guttalu, 1988).

As a result, various attempts have been made to remove the afore-
mentioned disadvantages. The modification of the Secant method
known as Broyden's which have been developed for multivariable
functions is the adjustment of Newton's method by approximating the
Jacobian matrix (Fernandes et al., 2018). Although Broyden's method
eliminates the computation of partial derivatives and the inversion of
the Jacobian matrix after the first step of the root-finding process, its
superlinear convergence rate has made it slower than Newton's method
(Broyden, 1965; Incerti et al., 1979). Both the mentioned methods only
converge when the proper initial guesses are chosen. Accordingly, the
Steepest Descent approach with a linear rate of convergence towards
solutions was introduced to overcome the difficulties of an appropriate
initial guess. Nevertheless, the Steepest Descent approach also requires
the relevant calculations of the Jacobian matrix within each iteration,
which is too much costly (Quarteroni et al., 2006). Another well-known
technique to solve nonlinear simultaneous algebraic equations is the
Homotopy or continuation method which widens the domain of the
converges (Ortega and Rheinboldt, 1970). This method changes an easy
problem to the complex target problem (lie, 2004). However, the same
as other referred methods, the Homotopy is a strong function of de-
rivatives as well. Requiring more functions and Jacobian inverse eval-
uation, and mathematical algebraic operations in comparison with other
Newton-type methods are also other significant aspects of Homotopy
(Luo et al, 2008; Mehta, 2011). Generally, the heavily
derivation-dependent, the high computational cost of the Jacobian
matrix and its inversions, and the lack of ability to deal with
ill-conditioned matrixes can theoretically be known as the most prob-
lematic aspects of classic nonlinear solvers. It should also be reminded
that forming the Jacobian matrix for some particular cases is unman-
ageable (Crevacore et al., 2019).

Therefore, advantages of other modern methods like soft computing
have also been taken to overcome the difficulties. For instance, the
behavior of a nonlinear Differential Equation (DE) has been imitated by
an Artificial Neural Network (ANN) which has classically been trained
with the gathered sample points of 2D heat and wave equations (Rudd
and Ferrari, 2015). In some studies, data required to train an ANN
simulating the mechanism of a nonlinear PDE have been collected from
the results generated with the application of numerical methods like
finite difference (Rankovic and Savi¢, 2011). Incremental training of the
network with the sensor data has been discussed in the literature (Wang
and Shi, 2014). The online sensor data have been gathered and used to
train the ANN to predict the performance of a reactor for the coming
times. After receiving more sensor data, a fixed number of data points,
including the newest ones and excluding the oldest records, have been
taken to retrain the network for further predictions. The idea of
increasing the nodes in the hidden layer of an ANN to reach the minimal
error through the conduction of a two-stage gradient descent training
algorithm has been discussed as well (Jianyu et al., 2003). The results of
an analytical solution have been used as a reference to find the best
structure of an ANN to generate the least amount of error. It has become
possible by using a global search method known as the Genetic Algo-
rithm (GA) (Tsoulos et al., 2009). Some research in which supposed
PDEs have been approximated with applications of ANN without
training points have shortly been mentioned in the following. Techni-
cally, the generation of zeros as a result of multiplication between a fixed
part reflecting boundary conditions and a variable part responding with
an ANN for different grids is the main idea behind (Raja and ul Islam
Ahmad, 2012). Minimizing the summation of all products is the concept
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that can be reached with the most optimized values of the ANN relevant
parameters, weights, and biases. In another research (Parisi et al., 2003),
the changeable part, which is sensitive to coordinations of grids in the
target plate, works based on an ANN in which the relevant parameters
have been optimized with the GA. The time-independent form of the
Schrodinger equation as an ODE and PDE have been approximated with
a hybrid of ANN and the eigenvalue in (Shirvany et al., 2008, 2009).
Although assigning a unique ANN to each discretized point causes heavy
computation, it leads to approximate very complex PDEs accurately
(Beidokhti and Malek, 2009). It has also been proved that the change-
able part can be approximated with the Fourier’s transform. It becomes
possible by employing an ANN to determine the required coefficient
(Rudd and Ferrari, 2015). Moreover, it has been shown that feeding the
network indirectly with inputs which had already been turned into
Chebyshev polynomials increases the flexibility and robustness of the
approximation method (Mall and Chakraverty, 2015, 2016). In other
words, the limited numbers of inputs can be extended to a certain level,
which makes the ANN generating more satisfying results. To sum up, itis
possible to interpret that applying the machine learning techniques to
solve the nonlinear PDEs has mainly been done either with the help of
ANNSs trained with data physically describe the supposed phenomena or
by taking advantage of the various aspects of the classic math.

The current research represents a user-friendly algorithm that
numerically solves the nonlinear PDEs through making a hybrid be-
tween the concept of discretization and the Adaptive Neural Network
(AdNN) which is a branch of soft computing that can adapt its weights
and minimize the loss function without the help of already gathered data
(Widrow and Lehr, 1993; Palnitkar and Cannady, 2004). Put the matter
another way, each porous media flow problems has its governing
equation which means Newton's method must be modified for different
problems because each of them has own unique Jacobian matrix.
Therefore, Jacobian matrix has to be completely recalculated and
written again as a programming code regarding any alteration in the
physics of the problem. All of these steps are very time-consuming and
accompany with unwanted mistakes whereas AANN solver is designed
based on a constant pattern which makes it possible to apply for any
porous media flow and phenomena. Besides, the AdNN-based algorithm
not only is independent to Jacobian matrix and the difficulties of classic
solvers but also the implemented particular type of AANN is trained with
no need for measured, recorded, or experimental data. Instead, the
generated errors by the nonlinear simultaneous algebraic equations are
taken as the input to the network and adaption laws. Then, the adaption
laws firstly correct the network parameters, and then the network gen-
erates the output correspondingly. It should necessarily be considered
that there is no cross-validation nor testing for the applied AANN. It
performs as a solver, which learns how much correction it should make
to the initial values within each iteration. The procedure continues
iteratively and stops when all the generated errors are less than an
already set criterion.

The one dimensional (1D) models of the gas flow in ultra-tight
porous media of shale gas resources and the immiscible two-phase (oil
and water) flow in hydrocarbon resources are the two nonlinear prob-
lems that have numerically been solved with the application of the
AdNN-based solver compared with Newton's method results. It will be
discussed that the output results of AANN show perfect agreement with
Newton's method answers, while AANN does the same with less
computational efforts since it is derivative independent. Moreover, it
will be proved that AANN can be used for any fluid flow problem by
implementing the same pattern of designing the network structure. It is
done by solving two bench mark problems, gas flow in shale gas and oil/
water in conventional porous medium.
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2. Methodology
2.1. Shale gas resources

Experimental studies have proved the existence of nanoscale pores in
organic-rich shale gas resources (Javadpour, 2009; Zhang et al., 2019).
They have enormous impacts on the flow and storage of shale gas re-
sources. Not only the nanoscale pores provide a large exposed surface
area for adsorbed gas, but also they cast doubt on the validity of
applying Darcy’s law, which has been initially developed for microscale
pores (Sheng et al., 2019). It is believed that slippage and transition are
the main flow mechanisms, and gas molecules are adsorbed on the
surface of pores and organic matter as the second type of storage.
(Naraghi et al., 2018). The complexity of the pictured situation in shale
gas resources can be modeled based on highly nonlinear PDEs.
Accordingly, different research have attempted to develop a fluid flow in
shale gas resources based on multi-mechanisms of flow and storage
(Javadpour, 2009; Darabi et al., 2012). Regarding the mass conservation
equation, the following second-order nonlinear PDE which takes the
effects of multi-mechanisms of flow and storgae into account has been
proposed (Bezyan et al., 2019).

d Py dp Gue Vi Op dap,
B kA Axt = Pr 1- - 1
ax ('r‘ " dx * a, e e+(1-¢) dap, @

The derivation of Eq. (1), its relevant parameters and the considered
boundary conditions are thoroughly discussed in A.

2.2. Immiscible two-phase flow

The simulation studies of multiphase flow have a high level of
importance in different engineering aspects of porous media. Therefore,
many studies have ever been done to provide accurate results under
different scenarios and properties (Rostami et al., 2019; Aljehani et al.,
2018). The case of immiscible two-phase (water and oil) flow in a
water-wet porous medium can be modeled based on the following

equations:

a ke Oy Vi (1-5,)

o (ﬁ[kAﬂ"B“ W) Axt g 7; ar (!ifi B, 2)
dJ kni (9ps _ dp. ) _Vaf S,

ox (ﬁ"kA B, ( ox  dx ) ) Ax e = @, or (WB‘,.) @

The background of both equations and the description of the con-
nected parameters are discussed in B. Describing the immiscible multi-
phase flow of oil and water in a porous medium, using Eq. (2) and Eq.
(3), is strongly nonlinear due to the existence of k, terms. It should be
considered that B and p have nonlinearity impacts, but not as effective as
the relative permeability or boundary conditions.

2.3. The classic solver

Following the discretization based on the finite difference method,
Eq. (1) representing the compressible fluid flow in shale gas reservoirs
and Egs. (2) and (3) as the mathematical expression for the immiscible
multiphase flow of oil and water in a porous medium can numerically be
stated as:

C¥+C,=0 (4)

where Y is the vector of unknowns, and both C; and C; are dependent
matrixes of coefficients to Y. By regarding the thermodynamical nature
of gases or the strong dependency of k. to saturations, Eq. (4) is a set of
nonlinear simultaneous algebraic equations either for shale gas reser-
voirs or the immiscible multiphase flow of oil and water in a porous
medium. Typically, Newton's method, which takes advantage of the
Jacobian matrix, is employed to solve nonlinear simultaneous algebraic
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equations. Newton's method is mathematically performed as:

JéY= —R (5)
where §Y is:
Y=yt -y (6)

where Y is the vector of unknown parameters. The superscript of j and
J+1 shows the current and next iterations, respectively. For shale gas
reservoirs, Y is defined as:

v=(p) 7

inwhichi =1,2,3...., N, and N is the number of grids. Similarly, Y for
the immiscible multiphase flow of oil and water in a porous medium is:

Y= (Su.p.)" (8)

Also, J is the Jacobian matrix composed by the partial derivatives of
the residuals shown as R which is:

R=(R)" (C)]
where the size of R; equals to the number of existing phases. In other
words, while it has one value for each grid in the single-phase

compressible fluid flow in shale gas resources, it has the following
form for the immiscible multiphase flow of oil and water as:

Ri=(R..R,) 10

As a result, J for the immiscible multiphase flow of oil and water has
the following form of:

(R awe o, i, ]
a5, ool
Ry, LS
ds,, By Ouy
H : (11)
Oy iy MR Ry
35, T Way O
R, Koy ORey DRy
" s, o
C LR P

Furthermore, J for the single-phase compressible fluid flow in shale
gas reservoirs is:

R o

an o

H . (12)
ORy

apy P ] N

2.4. The alternative approach

The universal approximation theory states that a Single Hidden
Layer (SHL) neural network has the capability of estimating any
nonlinear, continuous, and unknown functions. (Boudjedir, 2012;
Zabihifar et al., 1007). Accordingly, Li and Zheng initially took advan-
tage of a supervised ANN tuned with adaptive laws (AdNN) to solve
three benchmark systems of nonlinear simultaneous algebraic equations
formerly reported in the literature (Li and Zeng, 2008).

Through carrying some modifications out, the main launched idea
can innovatively be applied to estimate Y so that Eq. (1) generates the
matrix of zeros. The conduction of such an approach to numerically
solve highly-nonlinear Eq. (1) and the pair of Egs. (2) and (3) provides
the opportunity of removing the Jacobian matrix and its inversion.

Putting the matter another way, the designed solver is not dependent
on the nature of problems anymore because it does not use the Jacobian
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matrix. Specifically, any physical changes in foundations of regarding
problems should manually be reflected in the Jacobian matrix through
recalculations and modifications of its derivatives. It is shown by Egs.
(11) and (12), where each one represents its relevant problem. Sur-
prisingly and thanks to the implemented adaptive laws, the AANN-based
solver takes the effects of the same changes automatically. The proposed
technique has schematically been illustrated in Fig. 1.

To iteratively conclude the satisfying Y within each time step, a set of
initial values which are not necessarily proper or even following a
specific pattern are firstly fed to Eq. (4). Then, OV as the generated matrix
of output is compared with the desired one to produce the corresponding
matrix of tracking errors noted as ., Eq. (13).

é=D-0 (13)
ere D represents the desired answers which based on Eq. (4) is a matrix
of zeros during all iterations of calculating satisfying ¥ within each time
step. Unless the max |e" is less than the primary set criterion, the al-
gorithm proceeds through the calculation of ¢ as the derivative of error
in respect to time.

et

14
Atecs aa
where ¢! is the matrix of tracking error in the previous iteration, and
Alecs is the time difference between Consecutive Computational Steps.
Then, X as the matrix of inputs to the adaptive and supervised neural
network should be prepared as:
N r

X=[fﬂ-él‘Dl-"'.Ffv-é.‘\hD‘v (15)

Consequently, AY as the corresponding output of the one-step more
trained network is employed to calculate the corrected pressures for the

The Adaptive and Supervised ANN
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next iteration as:

Y=y LAy ae)

Functionally, AY is calculated through the supposed network as
below:
AY = (W) 6, ((w)rx) a7
where oy, is a type of RBF sigmoid activation function that considers an

equal action for positive and negative input values, and it is firstly stated
as:

1
Open(€) = HT as)

To have a proper AY in terms of concluding the most satisfying
pressures, iteratively updating of v and w as weights of the network
should be considered through applications of adaptation laws.
Regarding the weights of the previous iteration, the procedure of
adaption can mathematically be stated as:

V=v Ay (19)
w=w" 4 Aw (20)
where

av=FXS" (w "Y', (v 'X) (21)
Aw = F,6,., (V"' X) 8" (22)

with any constant positive definite design matrix of F,, and F,. In fact,
the adaption laws are optimising the weights so that the network is
going to receive the less magnitude of errors in the next iteration. Also,

Hidden
Layer
(]
Input Qutput
Layer Up wy, Layer
| I
——
ili YH =Y/ 4+ AY Nonlinear Box,
Eq.17

r \
Updating Weights of
ANN, Eq. 32 & 33 J

L

Calculation of av and aw,
Eq.34 &35

Calculation of
¢ -Eq. 26

Is max |¢/| less than
the set criteria?

Creation of x, ‘Calculation oﬂ_
Eq. 28 & Eq.27 J‘

The satisfying answers for
grids have been reached

Fig. 1. The schematic of the proposed algorithm to numerically solve second-order nonlinear PDEs with the application of a supervised AANN.
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the derivative of the activation function is:
s (VX)) = 0 (VX) (1 = 60 (V71X)) (23)

and, the filtered tracking error known as S is:

S=é+ ie (24)

where § =[Sy, --,5x|" and 4 € ™" is a diagonal matrix known as the
coefficient of error. It can mathematically be interpreted that the iter-
ative convergence of § towards zero implies the simultaneous conver-
gence of ¢ and ¢ to zero as well. In other words, approaching § towards
zero does mean that subsequent v and w causes the network to produce a
AY that insertion of its corresponding Y'*! into Eq. (4) generates an
almost zero matrix and satisfies the required level of error. Additionally,
Fig. 2 shows precisely how the implemented fully-connected AANN in
the represented algorithm works based on taking the input vector and
generating the favorite response, respectively.

3. Results and discussions

The represented algorithm has been applied to solve both discussed
simulation problems. In the first part, a single-component 1D shale gas
model has been chosen as a basis for comparison between the concerned
algorithm and Newton's method. Then, the same kind of comparison
between both types of solvers has also been made for an immiscible two-
phase flow system. Finally, the computational efficiency of the proposed
algorithm has been compared to Newton's method.

3.1. Simulation of shale gas resources

The performance of the assumed shale model with parameters stated
in Table 1 has been considered to be simulated by both the AANN-based
algorithm and Newton'’s solver.

Also, the number of neurons (nn) in the hidden layer, coefficient of
error (1), and constant positive values of Fw and Fv are the four pa-
rameters of the represented algorithm, which have been determined
based on the sensitivity analysis, see C, to make the proposed solver
performing as robust and accurate as possible, Table 2.

The results of the simulation based on the implementation of both
solvers have comparatively been represented for five periods in Fig. 3.
For various periods of the production, the results represent the sub-
stantial agreement between the performance of the AdNN-based solver
and Newton's method.

Furthermore, Fig. 4 shows the reliability of the AdNN-based solver.
According to the concept of Minimum Square Error (MSE) (Rostami
et al., 2019), the first part shows that as much as time goes by, the

Hidden Layer

Input Layer

Output Layer

AYy = xy

Tl
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Table 1
Various parameters of the shale model (Bezyan et al.,
2019; Darabi et al., 2012).
Parameter Value
Temperature (*F) 237
Initial Pressure (psi) 5000
C 100
k (md) 0.0008
@ 0.15
Length (ft) 200
Puy (psi) 400
Duration (days) 720
@ 0.8
B 4
D¢ 25
Py (psi) 1240
0.07277
Vi tfg)
b 164.038
m (55)
Ax (ft) 4
At (days) 2
Table 2

The parameters of the AdNN-based solver
and their optimum values.

Parameter Value
nn 9

s 1200
Fu 3000
F, 1600

proposed AdNN-based solver generates results more dissimilar to those
converged by Newton's method. Also, it can be seen that the hump
showing the maximum of the difference between both generated pres-
sure profiles by both solvers approaches to the other boundary in time
while getting enlarged. In other words, the AdNN-based solver generates
close results to outputs of Newton's method for the early stages of
production, while its convergences for the final stages can relatively be
different.

Regarding the fact that k,, is the most representative flow parameter
of shale resources, it has analogously been examined how much the
pressure difference, which has already shown in Fig. 4(b), causes
dissimilarity in the results of relevant calculations. For that reason, grids
numbers 1, 25, and 50 have been chosen to observe the trends of kg,
temporally, Fig. 5. Not only the outputs show a remarkable consistency
in the produced results of both solvers, but also it could be concluded

Shale Ga: [ A Pl

= " Resmlrm: = Ay = H

’7 | APy
=AY ~

ASy,
Immiscible AP,

Two-Phase wp AY = u

Flow g
AS..
| AP,

Fig. 2. The implemented supervised AANN to iteratively converge to correct answers.
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g 2000 4 % —— 144 Days - Newton === 144 Days - AdNN
288 Days - Newton == 288 Days - AdNN
I/ 432 Days - Newton ~ —- 432 Days - AdNN
1000 4 576 Days - Newton ==+ 576 Days - AdNN
—— 720 Days - Newton s 720 Days - AdNN
0 50 100 150 200
x (ft)

Fig. 3. The comparison of pressure profiles generated by Newton’s method and
AdNN-based algorithm at different time intervals.

that the converged pressures by the AANN-based solver are close enough
to the results of Newton’s method.

3.2, Simulation of immiscible two-phase flow

A basic model of immiscible two-phase flow has been designed to
check the reliability of the AdNN-based solver. The relevant parameters
have been reported in Table 2. The supposed model has a water injection
well in the first block and an oil production well in the last block.

Like the previous part, Table 4 shows the parameters of the AANN-
based solver that has been set by trial-and-error to solve the problem
of immiscible two-phase flow. Apart from nn, which has been increased
for one neuron, the rest is the same, which shows the robustness and
overwhelming adaptability of the AANN-based solver.

The results of applying the AdNN-based solver for the case described
in Table 4 has been shown in Figs. 6 and 7 based on p, and S, respec-
tively. Generally, it could be observed that the results of the AANN-based
solver is in satisfying agreement with Newton's method in terms of p,
and S,,.

Moreover, it could be deduced that the solver makes overestimations
to predict the pressure before the front of the injected water, but after
that, it starts following an uprising trend of underestimation, Fig. 8 (a).
Similarly, the most significant differences between the calculated satu-
ration profiles at each time happens near the front between the water
and oil. It can also be seen that the magnitude of the hump showing the
difference grows as a function of time, Fig. 8 (b). The overall comparison
between the generated results show that the absolute differences

le-6

~#- MSEvs, Time

0 w4 288 4R 576 720
Time (days)

(a)
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between produced profiles of pressures and saturations are 12.5 psi and
5 x 10°5, respectively. Based on the scale of pressures and saturations in
hydrocarbon reservoirs, it can be concluded that the calculated de-
viations are negligible.

In addition, the MSE comparison between generated profiles of
pressures and saturations have been shown in Fig. 9. It could be
observed that the error of converged profiles of both variables follows an
uprising trend over time. However, the small magnitude of the calcu-
lated MSE approves the feasibility and validation of the AANN-based
solver.

In terms of the relative permeability, the overlapping of curves at
various times proves that the results of applying the AdNN-based solver
have the least amount of divergence from the results of Newton's
method, Fig. 10.

3.3. Computational efficiency

The efficiency of an algorithm depends on its design and imple-
mentation. Since every algorithm uses computer resources to run, in-
ternal memory usage is an important consideration to analyze the
algorithm. Based on the usage of Random Access Memory (RAM) show
in Fig. 11, the performance of the algorithm has been evaluated. The
domain has been split into various numbers of grids. Then, each model
with the different numbers of grids has been simulated 10 times, and the
median of the results has been selected as the corresponding memory
usage. The results show that the AdNN-based algorithm has the same
RAM usage for the small number of grids. However, for the larger
number of grids, it can be seen that the algorithm takes less memory
than Newton’s method. It is basically due to the removal of the Jacobian
matrix. Regarding the removal of the Jacobian matrix and its different
sizes for the two problems, the contrast between the two trends in the
case of immiscible two-phase flow is more noticeable than the difference
of trends in shale gas resources.

The next index to evaluate the computational efficiency of the rep-
resented algorithm is CPU Time. The same pattern of 10 times running
the algorithm has been implemented for the supposed number of grids.
The median of recorded CPU Times is plotted versus the relevant
number of grids in Fig. 12.

It can be observed that the AANN-based solver cannot perform as fast
as Newton’s method for the larger number of grids. However, it does not
necessarily mean that Newton's method should always be considered as
the first option. The fast convergence of Newton’s method is guaranteed
only if it is possible to form the related Jacobian matrix and make the
proper initial guesses.

6
2
En
Q
|
§
i
iy
f — 14Days  — 576Days
288Days — 720 Days
— 432Days
U T T T T T
0 50 100 150 200
x(ft)
(b)

Fig. 4. Newton's method vs. AdNN-based solver (a) MSE (according to the normalized pressures) (b) Pressure Difference.
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Fig. 5. The comparison of generated kg, based on the applied solvers. (a) Grid No. 1, (b) Grid No. 25, and (c) Grid No. 50.

Table 3

Various parameters of the immiscible two-phase model

(Ertekin et al., 2001).

Parameter Value
Temperature (°F) 237
Initial Pressure (psi) 5000
Py, (psi) 2884
k (md) 30
? 0.15
Length (ft) 600
Duration (days) 200
Hob 0.2884
Swe 0.16
qwin; (bbl/Day) 100
QOproa (bbl/Day) 80
Ax (ft) 15
At (days) 20
Table 4

Structure of the AdNN-based solver for the
case of immiscible two-phase flow.

Parameter Value
nn 10

A 1200
Fw 3000
By 1600

4. Conclusion

Fluid flow in porous media is one of the most critical aspects of en-
gineering. The modeling and simulation of compressible flow in ultra-
tight porous media of shale resources or immiscible multiphase flow
in hydrocarbon reservoirs are complex phenomena that are described
with highly nonlinear second-order PDEs. The proper understanding of
the supposed PDEs can be acquired by employing numerical solutions
with the implementation of nonlinear solvers. The classical scheme for
fully implicit cases is Newtown's method. However, inherent difficulties
such as proper initial guesses, strongly dependent on the Jacobian ma-
trix and its inversion causing high computational costs, and the proba-
bility of not converging in case of large time steps have routinely been
faced in many experiences. In this study, Adaptive Neural Network has
been proposed as a general solver and an alternative approach to classic
methods. The introduced technique is a trade-off between the Numerical
and soft computing approaches, which can use finite difference, finite
element or finite volume to discretize the PDEs, and then implement
AdNN to solve the discretized system of nonlinear equations. Instead of
using the derivations of PDEs to find the roots, AANN minimizes the
errors generated by inserting an initial set to the algebraic equations by
an iterative procedure and just through adjusting the weights of AANN
by means of adaption laws. In other words, the introduced algorithm
neither has the difficulties of applying the conventional numerical
methods like forming the Jacobian matrix, nor it has the inherent
problems of data gathering in case of using standard soft computing
methods. To put it more simply, AANN is not dependent on the physics of
the problems and corresponding governing equations and can be applied
to any problems of fluid flow in porous media. It was successfully
approved by implementing the presented algorithm to simulate the
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Fig. 6. The comparison of oi pressure distributions generated by both solvers (a) 40 Days (b) 80 Days (c) 120 Days (d) 160 Days (e) 200 Days.

compressible flow in the ultra-tight shale resources and immiscible two-
phase flow in a porous media. In both cases, the evolved algorithm has
been capable of simulating pressure profile and saturation as accurate as
Newton’s method. Moreover, in terms of computational efficiency,
AdNN occupies a lower amount of RAM than Newton's method, while
CPU time for AANN is higher than Newton's method, specifically for
two-phase flow. The demonstrated algorithm can be recc ded for

main principles of the coming hybrid of physics-based and soft-
computing enabled simulators.
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Appendix A. Fluid flow in shale gas resources

Typically, the mass conservation equation for a single grid is introduced based on a one-dimensional (1D) model of a conventional porous media as

below (Ertekin et al., 2001; Ahmed, 2019):

_ 0(acpud)

)]
¢ R |
o AxEdne=Vig (op)

where u (a%) based on Darcy’s law is defined as:

k op
u= — /}t; a
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combining Eq. (A.1) and Eq. (A.2) results in:

a P op e Vi 0
a(ﬂ[k‘l; &)A”E_I a(ﬂ(ﬂ) (A.3)

where A is the cross section area (ft*), Ax is the length of each grid (ft), p is viscosity (cp), p is density of the fluid (}"’g), k is absolute permeability (md), ¢

is time (day), p is pressure (psi), ¢ is the porosity and V;, is the bulk volume (ft®), a. is the volume conversion factor whose numerical value for the field
unit is 5.615, and f, is transmissibility conversion factor which equals to 0.001127 in the field unit system. Finally, g, is the rate of mass depletion
through wells which is positive for injection and negative for the production (J% X

Because of two storage mechanisms of free compressed and adsorption, the corresponding notations of densities are presented as p; and p,,

10
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respectively. Then, the effects of slippage and diffusion in nanopores are considered by replacing the permeability with the multi-mechanism apparent
permeability model (kq;,) which is the function of pressure and pore radius, simultaneously (Darabi et al., 2012; Kulga et al., 2018).

aJ Py op
o (ﬂ‘.k,,,,,,A rin Axt

Gne Vi 0

T (A4)

(rr9)

Besides the compressed gas in the pore space, the adsorbed gas as another type of storage mechanism is added to the accumulation term of mass
conservation law and turn Eq. A.4 into:

aJ P 0 me Vi 0
o (Pt —”)Am"—— 29 (po+(1-0)5,)

ox u ox a.  a. o A5

where p, is density of the adsorbed gas. In other words, p, is the mass of adsorbed gas per volume of the rock. A more straightforward expression is
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proposed for the right side of Eq. A.5 through taking advantages of the chain rule and compressibility concept as below:

12
g=—-L
Py P

where ¢, is the gas compressibility (psi !). Therefore,

aP'f dp
e
and

dp, dp, 9p;dp dp, dp

T ap dp o o, o

based on Eq. A.7 and A.8, Eq. A.5 is finalized as:

9 Py dp G _ Vo
O kg AL P Y pg e _ e
dx ('rj‘ T 1 * a.  a,

In order to obtain a mathematical expression for p, and its derivative, the mass balance of adsorbed gas is formed as (Yu et al., 2016)

_ #(Psr, Tsr)p, v
“ (1—¢)

dp ap,
- 1- .
e gﬂ;(@ +{l-g) o,

)
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where p;(Psr, Tsr) is the gas density in standard conditions, p, is bulk density, and V is volume of adsorbed gas per bulk volume of the rock.
Technically, Eq. A.9 describes the gas flow in the ultra-tight porous media of shale gas resources based on a variety of flow and storage mechanisms.
Eq. A.9 is numerically solved based on the following initial and boundary conditions.
Initial Conditionat t =0 and 0 < x < L:

P=Pin

Left Boundary Condition at t > 0 and x = 0:
P=Pae

Right Boundary Condition at t > 0 and x = L:

ap
—=0
dx

Appendix B Immiscible flow of water and oil in porous media

The incompressible two-phase flow in homogeneous porous media can mathemarically be described with the following PDEs:

a ko OpaY Wafs,

a(ﬂ[‘mﬂ”ﬂ“ E)AJ + G —Ea (WE‘) (B.1)
a ke Op Vydf s,

a(ﬂﬁflm&‘ . )Axiq...z “a E("’E) (B.2)

where k, shows the relative permeability and B is the formation volume factor (Z&). The subscriptions of 0 and w represent the properties for oil and
water, respectively. For oil and water wells, the ¢, and g, show either production or injection rates at standard conditions.

There are four unknowns of p,, py, So, and S, although there are merely two flow equations. With the assistance of auxiliary equations, the
saturation equation and the capillary pressure relationship, two unknowns could be eliminated, and PDEs are coupled to each other.

The constraints equation is defined as the sum of phase saturation which is equal to one and expressed as:

§,+8, =1 (B.3)

and the oil/water capillary relationship as a function of saturation is:

PCBE (B.4)

where p.(S,,) is estimated based on the model developed in the literature (Shams et al., 2015). By insertion of Eq. B.3 and B.4 into equations Eq. B.1 and
B.2, the number of unknowns reduces to two terms of p, and S,, as:

2 ko ). Vad[ (1-8)

O 1 ®9
a knw [Op. Ope Vv, a s,

L T

the relevant numerical solutions can properly be developed according to the following initial and boundary conditions for a 1D model having an
injection well in the first grid and a production well in the last one.
Initial Condition at t = 0 and 0 < x < L:

Po=Pin
5.=5.,

Left Boundary Condition at t > 0 and x = 0:

ap,
=0
dx
Right Boundary Condition at t > 0 and x = L:
ap,
=0
dx
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Appendix C. Sensitivity analysis of AANN structure

The most optimized structure of AANN for solving each one of the supposed problems has been concluded based on measuring the CPU Time of
convergence for the first time-step of introduced problems in Tables 1 and 3. In further detail, a basic structure of an AANN has been initialized, as
reported in Table C.1. The effects of changing a parameter is observed by running the modified AdNN for 10 times while the other parameters are kept
constant. Then, the median of all recorded times is reported as the CPU Time for the concerning parameter. More information about the applied
method are in the previous literature (Ahmadi et al., 2014a, 2014b).

Table C.1
Initial structure of AANN before running
the sensitivity analysis

Parameter Value
nn 8

s 1400
Fw 2500
Fy 1600

Regarding the fluid flow in the shale gas resource, the results of the sensitivity analysis are shown in Figure C.1. It should be noted that the tested
ranges have been recommended by similar research (Zabihifar et al., 1007).
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Fig. C 1. Determination of the most optimized AdNN structure to solve Eq. 1 (a) Effects of nn changes (b) Effects of i changes (c) Effects of F,, changes (d) Effects of
F, changes.

The results show that the AANN with 9 neurons makes the convergence faster than others, The reason why larger numbers of neurons are not faster
is due to their higher cost of computations. The . of 1200 causes the best performance. The larger values cause overshooting, and smaller ones make
slow convergence. The F,, of 3000 causes the best adaption, while the other adaptive coefficient of F, seems to have ignorable effects. Accordingly, an
AdNN having parameters reported in Table 2 is applied to solve Eq. (1).

Similarly, the primary AdNN with parameters of Table C.1 has been undertaken with the same sensitivity analysis, and the results are shown in
Figure C.2,
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Fig. C 2. Determination of the most optimized AdNN structure to solve Eq. 2 and Eq. 3 (a) Effects of nn changes (b) Effects of A changes (c) Effects of F,, changes (d)

Effects of F, changes.

Regarding the previous reasons discussed about the corresponding trend of each parmater, an AANN with parameters reported in Table 4 is applied

to solve Eq. (2) and Eq. (3).
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4.  Deep learning in denoising of micro-computed tomography
images of rock samples

Summary: The noise suppression of uxCT images is a time-consuming and user-
dependent procedure. In more details, there are various sorts of parameters that are required to
be determined by an experienced user. To overcome such a difficulty, an algorithm based on
deep learning has been suggested. The Residual Encoder-Decoder net (RES-net) based on
convolutional and deconvolutional layers has been employed. The training has been done based
on a set of noisy and denoised xxCT images. Each of the embedded layers is working based on
64 kernels with the size of 3 by 3. The results show that the applied method has performed

efficiently.
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Nowadays, the advantages of Digital Rock Physics (DRP) are well known and widely applied in comprehensive
core analysis. It is also known that the quality of the 3D pore scale model drastically influences the results of rock
properties simulation, which makes the preprocessing stage of DRP very important. In this work, we consider the
application of Deep Convolutional Neural Networks (CNNs) for the preprocessing of CT images, specifically for
denoising, in two setups - conventional fully-supervised learning and the self-supervised learning, when the only
available data is the noisy images. To train CNNs in a supervised setup, we use images processed by a combi-
nation of bilateral and bandpass filters. We trained CNNs of the same architecture with different loss functions to
find out how the choice of a loss function influences the model’s performance. Some of the obtained CNNs
yielded the highest quality in terms of full-reference and no-reference metrics and significant histogram effect
(bimodal intensity distribution). Images denoised with these models were qualitatively and quantitatively better
than the reference “ground truth” images used for training. We use the Deep Image Prior algorithm to train
denoising models in a self-supervised setup. The obtained models are much better than ones obtained in fully-
supervised setup, but are too slow, as they are optimization-based rather than feed-forward. Such an algo-
rithm can be used in the dataset generation for feed-forward meta-models. These results could help to develop an
Al-based instrument to build high-quality 3D segmented models of rocks for DRP applications.

1. Introduction

Digital Rock Physics (DRP) is a widespread and advanced method for
hydrocarbon reservoirs study. The main idea of DRP is to replace con-
ventional methods of a rock properties estimation with computations on
a digital rock core twin obtained with micro-scale X-ray Computed To-
mography (pxCT). DRP can significantly reduce the time required for
obtaining properties of interest and avoid the degradation of a core
sample after a series of laboratory experiments. Another advantage of
the DRP is that it enables the reproduction of some conditions in a rock
sample, which are difficult or impossible to create in a conventional
laboratory setting.

The workflow of DRP can be divided into three stages: acquiring
images of a rock core sample using micro-computed CT, preprocessing
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the obtained stack of CT images, and simulation of physical processes in
rock. Since CT images usually posses noise and some artifacts, pre-
processing of a 3D image must include image enhancement stage
(denoising, artifacts removal, brightness correction) followed by seg-
mentation. Segmented images are then feed in some simulator, which
numerically solves the system of differential equations. It was shown
that the quality of segmented images has a strong influence on the
simulation results, which makes the preprocessing stage very important
(Andra et al., 2013).

The comparison of the influence upon segmentation results among
the original image, the denoised images by DIP approach and the CNN-
based method with different losses, and the results by the classical
methods (bilateral filter) presented in Fig. 1. The total porosity (¢) of
binary images varies from 11 % to 38 % and point that image quality
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enhancement is vital to build an adequate model of a rock.

All activities in 3D model creation could be divided into two pipe-
lines. The first pipeline is dedicated to preprocessing original images for
noise and artefact removing. The reason is the better quality of images —
the better results of binarization and probably segmentation. Many al-
gorithms have been developed and tested for this purpose (Buades et al.,
2005). Opportunities for deep learning (DL) algorithms for denoising
and image enhancement are promising. There are some publications
about image super-resolution problem (Wang et al., 2019; Da Wang
et al., 2019; Chen et al., 2020). Both Image denoising and Image
super-resolution are subproblems of the general problem — image
enhancement. In this work we concentrated mostly on the image
denoising. The second pipeline is more focused on direct segmentation
of original images without any preprocessing. It is known (Ronneberger
et al., 2015; Long et al., 2015; Karimpouli and Tahmasebi, 2019; Gar-
cia-Garcia et al., 2017), that end-to-end solutions can provide better
results and use of deep learning (DL) algorithms for segmentation of
noisy images seems to be a good way to go too.

Appling DL in both pipelines requires too much training data, i.e.,
pairs of images and their corresponding masks (denoised or segmented).
The creation of a dataset, including CT images of a rock core sample,
may be very time-consuming and, it would take several independent
experts from the field to get masks of high quality. So the point is to find
out how to prepare these datasets for DL algorithms training in auto-
matic or semiautomatic ways. For image preprocessing, perspectives are

Computers and Geosciences 151 (2021) 104716

much better because of the existence of non-reference metrics, which
characterize stand alone image. For seg llenging to
prepare dataset without expert help. In this work, we focused on the first
pipeline for 3D model creation because of high opportunities for auto-
mation. The main goal was to investigate the applicability of DL algo-
rithms to make a high quality easy in use denoising instrument for
reservoir engineers.

Image enhancement problems have been attracting considerable
interest in the computer vision research community for several decades
(Tikhonov and Arsenin, 1977; Yang et al., 1996; Tomasi and Manduchi,
1998; Dabov et al., 2007; Buades et al., 2011). After the CNNs were
shown to have an excellent performance in image recognition tasks
(Krizhevsky et al., 2012), there were many works related to their
application to image enhancement problems (Zhang et al., 2017, 2018;
Zhao et al., 2015; Mao et al., 2016; Yang et al., 2017a). Having a dataset
including pairs of degraded and clean images is a must for the training of
CNNs. In many works, the authors generate the datasets from clean
images by adding some degradation in it. But there are some cases when
only degraded images are available, and the creation of the dataset for a
CNN becomes a problem. For example, due to the physical limitations of
computed tomography, obtaining a high-resolution CT image of a rock
core sample without noise and artifacts is getting too complicated.

Recently, there were proposed image enhancement methods (Ulya-
nov et al., 2018; Lehtinen et al., 2018; Laine et al., 2019) that do not
require clean images at all. The performance of these methods is at least

ion, it is ch

(e) ¢ =11.6%

Fig. 1. Results of OTSU binarization (Otsu, 1979) for a slice from the test set. (a) - original image with noise, (b) - reference image. Images enhanced with different
models: (c) - RED-Net with SSIM loss, (d) - RED-Net with Perceptual loss (VGG1_1), (e) - Deep Image Prior algorithm.

2
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good as the state of the art CNNs trained on large datasets. But, all of
these self-supervised methods assuming that we need to apply optimi-
zation procedure for each image independently and, thus, are too slow.
But, when clean data is difficult to obtain, as in our case, these can be the
methods of choice.

Another option is to create a dataset by creating reference (clean)
images, using some self-supervised denoising methods. But the question
arises: will the performance of a CNN trained in this setting be better
than of the algorithm used for reference images generation? In this
work, we show that in this setting, it is possible to train a CNN, which
yields the results of higher quality compared to the reference images, by
choosing appropriate loss function.

The following paper is organized as follow. In section 2, we describe
the process of dataset collection, which was used in our experiments. In
section 3, the architecture of denoising CNNs, training setup, validation
scheme, and quality metrics are described. The discussion of the ob-
tained results is provided in section 4.

2. Dataset

A modern General Electric v|tomex L240 CT system, which allows
performing precise investigations of porous media structures on small
samples, has been used to project different samples of Achimovka for-
mation. The system is equipped with 2 X-ray sources (240 kV microfocus
tube and 180 kV high-power nano focus tube) and handles large samples
up to 500 x 800 mm and 50 kg. As a tight sandstone formation located in
the Western Siberia of Russia, core samples from Achimovka with the
porosity in the range of 13-15% and absolute permeability of 0.3-0.5
md have been selected for further projection and generation of the pxCT
images. The projection of the supposed samples with a diameter of 8 mm
has been made with the technical features reported in Table 1. Next, the
acquired stack of CT images with the resolution of 1.2 pm/voxel was
centrally cropped to the region of interest (ROI), forming the target
cubes with the final size of 1400° voxels (Fig. 2).|

For training a NN in a supervised learning framework, each object in
the training dataset must have corresponding general truth answer
(label). In the case of the image enhancement problem, and mainly,
image denoising, the object is an original image with noise, and the
answer is its denoised version. Accordingly, all slices of the formed cubes
were firstly normalized and then applied with a combination of various
filters. For increasing the quality of images and suppressing the adverse
effects of artifacts, roundoff errors, and various types of noises, all im-
ages were sequentially applied with a bandpass filter as a transform
domain (Yang et al., 2017b), and then with a bilateral filter as a spatial
operator (Landis and Keane, 2010). According to the Python program-
ming, the packages of Numpy, OpenCV, scikit-image, trackpy, and scipy
have been used to read the images, change their datatype, normalize
them, suppress the noises, and eventually write the clean images. The
reconstructed original and filtered images are available online (Ebadi,
2020). An example of a training pair is presented in Fig. 3.

Table 1

Technical configuration of the scanning system.
Item Value Unit
High Voltage 60 kv
Tube Current 90 HA
Beam exit window, material Beryllium -

ing (Number of projections) 8 -

Timing (Exposure) 2000 ms
Total number of projections 2400 -
Spatial Resolution 12 pm
Duration of scanning 14.5 Hours

Computers and Geosciences 151 (2021) 104716
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Fig. 2. Stack of N CT images having axa voxels. After the central cropping, the
final cube has 1400° voxels.

3. Methodology
3.1. Supervised image denoising

For a supervised image denoising problem, we used the Residual
Encoder-Decoder network (RED-Net) (Mao et al., 2016). This network
can be presented as stacked convolutional layers (encoder) followed by
deconvolutional layers (decoder). The network is trained in the residual
learning framework. For this purpose, the authors introduced symmetric
skip-connections between the corresponding convolutional and decon-
volutional layers in the network (Fig. 4). This modification tackles
vanishing gradients problem and, therefore, speeds up training, and also
makes it possible to use information from the down layers in the up
layers, preserving fine details in the image.

Another specific of this architecture is that it preserves spatial sizes of
all feature maps (i.e., there are no downsampling/upsampling layers in
the network). It was done to preserve fine image details while elimi-
nating low-level corruption. The main drawback of this strategy is the
enormous sizes of produced feature maps, which results in low inference
speed and high GPU memory consumption during training/inference. As
already proposed, the inference of this network can be accelerated by
downsampling feature maps after some layer (Mao et al., 2016).

All convolutional and deconvolutional layers have 64 kernels of size
3 x 3 with padding 1 and are followed by ReLU activation layer. We also
added a batch normalization layer before each activation to speed up
convergence and introduce regularization (loffe and Szegedy, 2015).

3.2. Self-supervised image denoising

As the ground truth images corresponding to the noisy CT slices are
difficult to obtain, it is natural to use self-supervised denoising algo-
rithms that require only noisy data. As such, in this work, we considered
Deep Image Prior (DIP) denoising algorithm proposed in (Ulyanov et al.,
2018).

Let ¥ is a noisy image and y is the corresponding ground truth, then
the image denoising problem is equivalent to the maximization of a
posterior probability:
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Fig. 4. Example of the RED-net architecture [ (Mao et al., 2016)].

y' = argmax p(y[y) = argmax p(3|y)p(y) (&)

where p(yly) is the conditional probability density function (pdf) of a
noisy image y given a corresponding clean image y and p(y) is the pdf of
a clean image. Intuitively, p(y|y) contains some information about the
noise model and also called a likelihood, and p(y) conveys some prior
knowledge of how clean image might look like and called a prior.

The maximization problem above is usually expressed as the corre-
sponding minimization problem:

y" = argmaxp(y[y)
! = argmaxp(3[y)p(y)
= ars;nin —logp(3]y) — logp(y)
— argminE(y.5) + R(y)

(2)

The main ideas of (Ulyanov et al., 2018) are the following:

o optimization over the parameter space of some bijective parametric
function f : —y makes the optimization problem unconstrained; as a
parametric function they proposed to use a CNN with some fixed
input z, trained for a given noisy image

o there is no need in the explicit prior R(y) as the architecture of the
learnable function f already contains necessary prior information

Finally, the optimization problem is:
0 :argr;lin E(fo(2),3),y =fo(2) 3)

with the mean squared error as the target function E(fy(z), y) =
IIfolz) - 3113-

It was also shown, that during training a CNN in this setting learns
some structured patterns rather than noise, but after thousands of
training iterations, the CNN learns the noise and the target function
E(fy(z).y) is minimized to the optimal solution fy(z) = y, which is
wrong. “Early stopping” criteria (Biship, 2007) should be applied to
avoid such a solution. During the training, the model is evaluated on a
holdout validation dataset after each epoch. If the performance of the

Computers and Geosciences 151 (2021) 104716

(b)

Fig. 3. Example of images from the dataset. (a) - Source (noisy) image, (b) - Target (denoised) image.

model on the validation dataset starts to degrade (e.g. loss begins to
increase or accuracy begins to decrease), then the training process is
stopped.

3.3. Training setup

All models have been implemented and trained in the PyTorch
framework (Paszke et al., 2017). For a supervised denoising model, we
have empirically estimated that the faster training converges to a better
local minimum when using Adam optimizer (Kingma and BaAdam,
2014) instead of conventional Stochastic Gradient Descent (SGD). The
initial learning rate was set to 10>. We also used the learning rate
scheduling - when the loss on the validation set does not decrease, the
learning rate reduced by a factor of 10 until it reaches value 10-5. We
did not use weight decay regularization as the model did not overfit
much. As a stop criteria we used “Early stopping” criteria (Biship, 2007).

Due to the specific architecture of the RED-Net (no downsampling/
upsampling layers), the feature maps of the hidden layers were exten-
sive, and if we trained the network on images of the full size (1400 x
1400), it would not fit in GPU memory. That is why we trained NN on
random crops of the input images. We have analyzed how different crop
sizes affect a model’s performance: 128 x 128, 256 x 256, 512 x 512. It
should be mentioned that with increasing the size of a crop CNN con-
verges faster and find a better local minimum, but for trainiL,ng GPU
with a lot of RAM is required. With increasing the size of a crop, it was
also necessary to decrease a mini-batch size to fit in memory. Error
curves comparison for different crop size could be found in Fig. 5a and b.
Anyone can see that the increasing the size of the crop didn’t improve
the performance significantly, thus, we could train the CNN on small
crops to fit in GPU limitations without significant performance
degradation.

The DIP model was trained with standard architecture proposed in
(Ulyanov et al., 2018). The learning rate was tuned to obtain the best
result in a minimal number of training iterations. We experimented on
several slices with the DIP algorithm and chose the number of iterations
such that the result looks plausible. Adam optimizer was also used in this
case. Image crops of size 256 x 256 were used during training. In Fig. 5¢
the corresponding error curve for DIP is presented.

In this work, we’ve trained a RED-Net with different loss functions.
Error curves comparison for different losses and the same crop size
128 x 128 presented in Fig. 5d. We trained CNNs on NVIDIA GPU Tesla
V100. For RED-Net it took about 12 h to converge. The DIP algorithm
usually converged to the plausible result in 1-2 min. The similar work
was done in (Zhao et al., 2015) and (Yang et al., 2017a), and their ideas
may be interesting to apply to denoising of CT images of rock cores. We
believe that a NN trained with appropriate loss function may yield re-
sults with quality even better than the corresponding reference.
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Fig. 5. Error curves. (a) - RED-Net with SSIM loss and different crop sizes, (b) - RED-Net with Perceptual loss (VGG1_1) and different crop sizes, (¢) - Deep Image
Prior algorithm, (d) - Error curves comparison for different losses and the same crop size 128 x 128.

3.3.1. Loss
Ly loss function (aka Mean Average Error) maps an object-reference
pair to a positive real number:

./(J,?):%iiir o)

3.3.2. L, Loss
Lo loss function has become a loss function of choice for neural
networks used in image enhancement problems:

e 1 n n . 2
¥ (.r. 1) - Z E (.5, - f,,) &)

Its popularity may be explained by the fact that it’s a differentiable
function, and it's implemented in many deep learning frameworks by
default. Another attractive property of L, loss is that the minimization of
it provides a maximum likelihood estimate in the case of independent
and identically distributed Gaussian noise (Zhao et al., 2015). It is
beneficial in cases when the noise is i.i.d. Gaussian, but it is not the case
for the rock core CT scans because the noise in some patch of CT scan
highly depends on the rock properties in this patch and, therefore,

depends on a particular position. Another drawback of L, loss, as was
stated in (Zhao et al., 2015), is that it introduces splotchy artifacts on a
processed image. Moreover, this loss does not correlate well with human
perception of image quality.

3.3.3. SSIM loss

Structural similarity index (SSIM), which was proposed in (Wang
et al., 2004) as a metric of image quality that in contrast to PSNR metric
(and Ly loss) inspired by the human visual system and, therefore,
correlate with human’s perception of image quality better. For a given
pair of images, SSIM is computed patch-wise, using the following
formula:

(Zy,,y; + m) (20,,; +e)

(o e o o).

SSIM(p,p) =

where Hy: p; are the averages, rr,f.rr;;z are the variances, O is the

covariance of patches of the reference and predicted images corre-
spondingly, ¢; and ¢; are constants included to avoid instability when
dividing by values close to zero. After the SSIM was computed for each
possible patch with sliding Gaussian window of size 11 x 11 (as in
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(Wang et al., 2004)), the SSIM of a pair of images is computed as the
average of the SSIMs of patches:

F (J.?) :i ZI SSIM (m ﬁ)

The SSIM loss can be computed using 2D convolutions and element-
wise matrix multiplications, and, therefore, is a differentiable function.
In (Zhao et al., 2015), they used SSIM loss to train NNs, but they used a
simplified version of it to speed up computations. We tried both variants
of this loss function but got decent results only when using the full
version.

@)

3.3.4. Perceptual loss

In (Yang et al., 2017a), instead of computing L loss between a
processed with NN image and its corresponding ground truth, they
proposed to compute L; loss between their projections in
high-dimensional feature space. This is achieved with a deep CNN
(VGG-19) pertained on the ImageNet dataset, which acts only as a
feature extractor. During the training, the weights of the feature
extractor are not changed.

After the feature maps were obtained, the loss is computed as the
MSE between feature maps of processed image and the reference one:

o 1 n m I " 2
v (1.1) -— Z 2 Z (FJ,; - F,J,()

As in (Yang et al., 2017a), we have tried to compute perceptual loss
between feature maps generated by the first ReLU layer in the first block
(VGG1_1), the first and the fourth ReLU layers in the third block
(VGG3_1,VGG3_4) as shown in Fig. 6.

Also, we have tried to train the NN with the perceptual loss function
from scratch, and with weights initialized from the same NN trained
with Ly loss, but the decent results were obtained only in the second
case.

@)

3.4. Validation scheme

It's a common practice in machine learning to train a model on one
part of data, called the training set, and estimate its performance on
another one (validation set) (Goodfellow et al., 2016) to get an unbiased
estimation of a model’s generalization error and detect overfitting. One
uses the estimation of a model’s performance on a validation set to select
the hyperparameters of a learning algorithm. It usually results in over-
fitting of hyperparameters to a validation set after several iterations of
model selection. Thus, it is recommended to use another holdout dataset
(test set) to get the final estimation of a model’s performance.

In this work, we have used a CT scan of one rock sample for training
and validation, and CT scan of another rock sample for testing trained
RED-Net models. We have split the training data into train and valida-
tion sets in the following way: the first 1260 slices of 1400x 1400x 1400
CT scan were used for training, and all the remain slices for validation.

VGG1_1 VGG3 1
Loss Loss
4 L]
I |
I 1
I |
I |
B2 g g8
313 « @B B o« 33 3
X—+ideim sl srlly,t
z zZl € z g & &z |zl &
8 |8 g |8 g |5 8
3 |3 3 (B 2 3 |3
Block 1 Block 2 Block 3
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Such validation scheme is more robust than, for instance, randomly
chosen subsets because the subsequent slices are very similar, and if a
model was trained on ten subsequent slices, except one of them, it would
show excellent performance on this slice but give a very poor approxi-
mation of generalization error. Even though models were trained on
image crops, they were validated on the full-size images because the
final model is supposed to process the full-size images. This was possible
because of fully-convolutional type of trained CNNs.

For the DIP algorithm, we used these train and validation sets for
hyperparameters tuning and the test set for the final evaluation of the
obtained model.

3.5. Quality metrics

The algorithms for the image enhancement problem are evaluated
with image quality assessment (IQA) metrics, that can be full-reference
(FR) (Wang et al., 2003, 2004), or no-reference (NR) (Zhu and Milanfar,
20105 Kong et al.,, 2013). The former compares the images, obtained
from a enhancement model, with the corresponding reference images
without any degradation in it, which are assumed to be the ground truth.
There are several settings where only degraded images are available,
and the acquisition/creation of the corresponding reference images of
high quality may be too expensive or even impossible. As a solution,
no-reference metrics can be used in such cases. To evaluate the quality of
trained models in this work, we have used both FR and NR IQA tech-
niques. The reference images for FR metrics were obtained, as described
in Section 2.

The most straightforward FR metric is the Peak Signal-to-Noise ratio
(PSNR), which was used in many works related to image enhancement
problems (Ulyanov et al., 2018; Zhang et al., 2017, 2018). This metric is
related to the pixel-wise Mean Squared Error (MSE) through the
following formula:

PSNR (1.?) =20log,, ©

1
MSE(I.?)'

where I'and T are the reference and predicted images, respectively, with
pixels” values in the range [0, 1].

In (Wang et al., 2003; Zhao et al., 2015), it was shown that PSNR
does not correlate well with human’s perception of image quality. For
example, if we compute PSNR of an image and its copy shifted by one
pixel, we get low PSNR, even though the two images are approximately
the same. It means that PSNR is a low-level metric, and it does not take
into account high-level information of an image. To tackle the problem,
we also used another FR metric - structural similarity index (SSIM)
(Wang et al., 2004) to evaluate the performance of trained models.

As a simple NR IQA metric, signal-to-noise ratio (SNR) was used.
Mathematically, SNR is the ratio between the mean and standard devi-
ation of intensity values in a patch of an image:

VGG3 4
Loss
A
3 =] 3 3 =] 3 3 3
L 80,38 - 8.8 4.3
& TlRCIE 2 & & R :
g E 5§ 8 85 E B
g 2 15 B |3 g % B |8
Block 4 Block 5

Fig. 6. Perceptual loss computation with pretrained VGG-19 network.
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SNR(1) =2, a0
where [; is the i-th sliding window and y; and ¢; are the mean and
standard deviation of pixels from this window correspondingly. The
overall SNR is the average across all SNRs for sliding windows.

A more comprehensive NR metric was proposed in (Kong et al.,
2013). Given a noisy image I and the same image enhanced with
denoising NN 7, the removed noise can be estimated as the difference
between them M = I — 1. Then two structural similarity maps N =
SSIM(I,M), P = SSIM(I, T) are computed with the same procedure as for
estimating the SSIM between two images. As opposed to the stated in
3.2, SSIM, in this case, is based only on the structure comparison term,
assuming that the luminance and contrast are preserved by the denois-
ing algorithm. Each element of N reflects how much noise was removed
from the corresponding homogeneous region, and each element of P
shows the structure preservation in the corresponding high structured
region. In our case, the size of the region where we calculate N and P was
7 x 7 pixels.

For illustration consider some homogenous region in the noisy
image. Suppose that we managed to remove the noise as much as
possible from this region. Then structurally the removed noise (M) will
be nearly the same as the noisy image in this region, and, therefore,
similarity (N) between them will be high. On the other hand, if the
denoising algorithm fails, the structure should be dissimilar. Another
situation will be for P value, which is computed from the input noisy
image I and the denoised image 1, when we remove almost all the noise
in the homogenous region. In this case, I and I images will be totally
different, and P value will be deficient. Now let us consider highly
textured regions. If the denoising algorithm good enough to preserve the
image structure (meaningful information) the similarity between I and T
will be high and the value of P will also be high. However, the value of N
will be low because the I and M are enormously different in this case. I
will include information about the highly textured structure and M -
about homogenous noise mask.

A good denoising algorithm should maintain the right balance and
satisfy both conditions (for homogenous and highly textured regions). In
regions with large N values (i.e., homogeneous regions that are not
dominated by image structures), the other term P should be as small as
possible, and vice versa. Considering those terms as two random

()
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variables, a natural choice for modelling such observation is the corre-
lation coefficient, which computes the dependency relation between
them. In our work we used a module of Pearson'’s correlation coefficient
between N and P, which can be used as the quality Kong metric.

The final goal of the CT-image denoising is to obtain an image, which
can be segmented with good quality using some fast and simple seg-
mentation algorithms like (Otsu, 1979). The success of such algorithms
for an image depends on the separability of the image histogram modes.
Thus, as another criteria of the image quality, the number of modalities
in the image histogram was used. The enhanced images were also
evaluated visually by experts in image processing and micro geology.

4. Results and discussions

In this section, we provide the results obtained from our experiments.
In Fig. 7 the results of image denoising with RED-Net architecture CNNs
trained with different loss functions, are presented. From the figure, it
can be seen that images denoised with CNNs (c - h) are better in com-
parison with our reference images according to applied non-reference
quality metrics.

To verify this quantitatively, the metrics from 3.4 are calculated for
all models, see Table 2 and Table 3. All models were evaluated on images
from the test set, and the mean and standard deviation of a particular
metric are provided in the tables. From Table 2 it can be seen that in
terms of PSNR, the best models are the ones trained with per-pixel loss
functions L; and L. The rest of the models have low PSNRs, but high

Table 2
Full-reference metrics for trained models (mean and standard deviation are
calculated for samples from the test set).

Source GT Ly Ly
PSNR  17.031 £0.712 28.119 £ 0.891 27.819 = 0.899
SSIM 0.553 + 0.005 1.000 0.952 + 0.002 0.951 =+ 0.001
SSIM VGG1_1 VGG3_1 VGG3.4
PSNR  26.287 +£0.832  24.718 £ 0.607  22.205 + 1.253  21.777 + 1.278
SSIM 0.966 = 0.001 0.965 + 0.001 0.961 = 0.002 0.961 + 0.003

(8) (h)

Fig. 7. Results of denoising for a slice from the test set. (a) - original image, (b) - reference image. Images enhanced with different models: (¢) - L; loss, (d) - L2 loss,
(e) - SSIM loss, (f) - Perceptual loss (VGG1_1), (g) - Perceptual loss (VGG3_1), (h) - Perceptual loss (VGG3_4).
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Table 3
No-reference metrics for trained models (mean and standard deviation are
calculated for samples from the test set).

Source GT Ly Ly
SNR 0.108 & 0.558 + 0.493 & 0.528 &
0.004 0.025 0.032 0.034
Kong (Kong et al., - 0.892 + 0.898 & 0.888 +
2013) 0.012 0.012 0.013
SSIM VGG1_1 VGG3_1 VGG3 4
SNR 0.582 + 0.590 + 0.546 + 0.576 +
0.040 0.042 0.039 0.039
Kong (Kong et al., 0.893 + 0.889 + 0.891 £ 0.889 +
2013) 0.013 0.013 0.014 0.014

SSIM, as the corresponding losses impose structure preservation. In our
research we found that all VGG-based losses show a nearly equally CNN
performance, but all of them outperform L1-and L2-based losses. The
reason for that — such losses penalizes differences between image high-
level features (multipixel structures) rather than between low-level
features (pixels) and thus they take into account some content
information.

As another measure of model quality, we used the number of modes
in the image histogram (Fig. 8). Histogram of the source image has only
one explicit mode, and thus it may be challenging to set a threshold that
separates all pixels in pores and matrix. The same is true for the ground
truth image, but in this case, the distribution is narrower. It should be
noticed that the histograms of the results from models, which incorpo-
rate some structure preservation, have two explicit modes - for matrix
and for minerals, but there is still no peak, corresponding to the pores.

NR metrics from Table 3 show that images obtained from some of the
trained CNNs have a better quality compared to the reference image
(GT). In terms of SNR metric, the best models are those trained with loss
functions that penalize for changes in the structure of an image (i.e.,
SSIM, VGG1_1, VGG3_1 and VGG3_1 losses).

Taking into account all metries (FR and NR) and histogram shapes,
we can state that the best models for supervised image denoising are
CNNs with SSIM and VGG1_1 losses. It means that the loss functions
which incorporate the preservation of the structure in an image make
the CNN find a better local optimum while training.

0.025

0.020 0.020
0.015 0.015
0.010 0.010
0.005 0.005
0.000 0.000
0

50 100 150 200 250 50 100 150 200 250
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0.025 7 0.025 7
0.020 0.020
0015 0015
0.010 o.010
0.005 0.005
0.000 | 0.000+
0 50 100 150 200 250 0 50 100 150 200 250
Intensity Level Intansity Level

(e) ()

Computers and Geosciences 151 (2021) 104716

The result of denoising with the DIP algorithm is presented in Fig. 9.
Qualitatively, the obtained result is much better than the corresponding
ground truth image used in supervised image denoising. The result was
evaluated using NR metrics (Table 4), and it can be seen that the DIP
algorithm yields the best result in terms of metrics. The histogram of the
DIP result Fig. 9¢ has three explicit modes and shows the superiority of
this algorithm, among others.

As a micro-CT data is a 3D composition of different azimuthal x-ray
acquisition and sometimes rocks have anisotropic stratification, it was
important to look at different slices of the volume (Fig. 10). Everyone
can see that denoising quality remain very high.

Time comparison of the classical method (bilateral filter), DIP al-
gorithm and CNN-based methods has been made for the image with size
256 x 256 voxels. As mentioned in section 3.3 the training time for RED-
Net models was approximately 12 h and then trained model denoised
the image less than 1 s. DIP algorithm performance to treat an image is
3-4 min. The bilateral filter works near 1 s but to apply it user need to
spend time to find proper parameters. Thus, the DIP algorithm shows the
best results in a quality of denoising but the worst results in terms of time
consumption. Otherwise, the bilateral filter is much faster than DIP and
even CNN, but very human dependent and in general proceed the image,
not in the best way.

The main benefit of 3D CNNs is that it takes into account all three
spatial dimensions (as the source data is 3D) and it seems that such a
network will outperform the 2D counterpart, However, according to the
recent work on segmentation ((Varfolomeev et al., 2019)), their 3D
network only slightly outperforms 2D counterpart, while the training of
3D network requires more computational resource and time.

5. Conclusions

New image filters (Al-filters) have been developed based on the
Residual Encoder-Decoder network (RED-Net) architecture and Deep
Image Prior (DIP) algorithm. A specific feature of RED-Net architecture
is that the filter preserves fine image details while processing noise and
low-level corruption. To train Al-filters in a supervised setting, we used
images processed by a combination of bilateral and bandpass filters. For
spatial domain filtering, the bilateral filter is one of the most effective
non-linear instruments to increase the signal-to-noise ratio and preserve
the edges. We also applied the bandpass frequency filter to remove

0.025 0.025

0.020 0.020

0.015 0.015

0.010 0.010

0,005 0.005

0.000 0.000

0 50 100 150 200 250 0 50 100 150 200 250

Intensity Level Intensity Leve
(c) (d)

0.025 0.025

0.020 0.020

0015 0.015

0.010 0.010

0,005 0.005

0.000 | 0.000 4

50 100 150 200 250 50 100 150 200 250

Intensity Level Intensity Level

(2) (h)

Fig. 8. Histograms of original and enhanced images from the test set. (a) - original image, (b) - reference image. Images enhanced with trained models: (c) - L, loss,
(d) - L2 loss, (e) - SSIM loss, (f) - Perceptual loss (VGG1_1), (g) - Perceptual loss (VGG3_1), (h) - Perceptual loss (VGG3_4).
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Bandpass +
Bilatgral Filgr

-

Source
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0.025
0.020 0.020 0.050
0.015 0.015 0.015
0.010 0.010 0.010
0.005 0.005 0.005
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Fig. 9. Results of denoising (images and intensity distribution histograms) for a slice from the test set. (a) - original image, (b) - reference image, (c) - image denoised
with the Deep Image Prior algorithm.

background variation (large-scale image artifacts).

The main practical advantage of Al-filter is the automatization of
image processing. Applying CNN-based filters, the operator doesn’t need
to tune parameters or deciding on which type of filter or a combination

Table 4
No-reference metrics for Deep Image Prior algorithm (mean and standard de-
viation are calculated for samples from the test set).

e GL Dl of filters should be used for particular image processing. To build the
SNR 0.108 £ 0.004  0.558 £0.025  0.751 + 0.057 best automated filter, different CNNs of the same architecture trained
Kong (Kong et al., 2013) - 0.892 + 0.012 0.936 + 0.022 with different loss functions were tested. For CNNs comparison, we’ve

used not only the full-reference (FR) metrics, which makes CNN

Raw image

image

Denoised

Slice # 1 Slice # 2 Slice # 3 Slice # 4

Fig. 10. Different slices of the 3D volume (original and after DIP images).
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performing similar to the “ground truth” filtering procedure but also no-
reference (NR) metrics, which are the standalone criteria of image
quality. The Al-filters demonstrate better quality than the combination
of bandpass and bilateral filters:

o full-reference (FR) metrics confirm that Al-filters significantly
decrease the noise level and preserve the similarity to the original
image. It does not remove the important elements of rock structure
due to smoothing;

no-reference (NR) metrics also confirm that some implementations
of Al-filters work even better than “ground truth” — the benchmark
images for training

CNN with SSIM and Perceptual losses dramatically change the his-
togram of images: intensity distribution became bimodal with the
second peak refers to high-density intrusions (Fig. 8).

A very notable visual representation of CNNs performance is pre-
sented in Fig. 11. In Fig. 11 we can see the difference between the
reference image and the images enhanced with a trained model. The
regions colored in red assign where the pixel values in the reference
image are greater than the pixel values of the denoised one and the blue
color shows the regions where the pixel values in the reference image are
less than the pixel values of the denoised one. One can see that CNNs
corrected intensity gradient effect and artifacts around dense intrusions.

FR and NR metrics together show that the best Al-filters are CNNs
with SSIM and Perceptual VGG1_1 losses. These networks provide the
highest values of SNR and SSIM metrics, very high values of PSNR
metric, and significant histogram enhancement (transition from single
modal to bimodal intensity distribution), as can be seen in Fig. 8. Pol-
ymodal type of histogram points that image becomes more contrast —
different structural elements (pores, matrix, high-density inclusions)
could be detected more precise. Unfortunately, the histogram
enhancement level for CNNs is not enough to extract at least the third
peak refers to pores. We also have shown that in enhancement probl

Computers and Geosciences 151 (2021) 104716

are optimization-based rather than feed-forward, i.e. it is necessary to
adjust a new DIP algorithm for each noisy image, that may take days to
treat only one 3D model on modern GPUs. But this class of methods can
be used for dataset preparation for the supervised methods for full-cycle
image processing, including segmentation.

The main goal of the research to test DL algorithms as a high-quality,
fast and easy in use image denoising instrument. It is especially crucial
for tight rocks where segmentation strongly depends on image quality.
The next step will be to develop effective workflow of how to apply this
instrument for rock samples with different structure, for images ob-
tained by another X-ray CT systems, for different ground truth dataset
size. The universal workflow could be the following:

o Divide single core sample images on training and executive subsets
(in relation 1 to 10);

o Apply DIP algorithm or any other high quality (and usually heavy)
algorithm to training subset

e Train CNN on proceeded train images from the previous step;

o Apply CNN to the executive part of the images.

DIP approach is heavily built upon the self-supervised image
denoising method. To apply DIP to all dataset is very time-consuming.
To avoid the limitations, we propose to train surrogate CNN models
on the generated data (training subset) and apply it to the unseen data.
This approach could make it possible to obtain clean images in a few
minutes on a GPU.

Another workflow could base on developing CNN trained on
different data, including different rock type and image quality. In this
case, we can increase the generalization of CNN and expect good
denoising of new images without any additional training. Both imple-
mentations could help to develop an Al-based instrument to build high-
quality 3D segmented models of rocks for DRP applications.

like denoising, when it is challenging to obtain the paired dataset, self-
supervised methods (DIP) work better than fully supervised ones. NR
metrics (SNR and Kong (Kong et al., 2013)) show that DIP has better
performance even then CNNs with SSIM and Perceptual VGG1_1 losses
(Tables 3 and 4). One can also mention that there are three peaks on
histogram (Fig. 8). The main disadvantage of these methods is that they

Comp code ilability

The prepared computer code for the training and evaluation of RED-
Net models is available at www.github.com/smikhail/deep-image-d
enoising. Also, the training of Deep Image Prior has been done based
on a publicly available code at www.github.com/DmitryUlyan
ov/deep-image-prior.

()

)

(8) (h)

Fig. 11. Visualization of difference between the reference image and the images enhanced with a trained model. (a) - original image, (b) - reference image. Images
enhanced with different models: (c) - L loss, (d) - L loss, (e) - SSIM loss, (f) - Perceptual loss (VGG1_1), (g) - Perceptual loss (VGG3_1), (h) - Perceptual loss (VGG3_4).
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‘We open-sourced the dataset used in our experiments. It can be found
at https://doi.org/10.17632/tz5zwgs85v. 1, an open-source online data
repository hosted at Mendeley Data (Ebadi, 2020).
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5. Different methods of permeability calculation in digital
twins of tight sandstones

Summary: The application of classic DRP approaches to tight porous media is
questionable. It is due to the fact that the spatial resolution of images is technically larger than
the size of a large portion of pores. Therefore, they cannot be seen in the uxCT images. The
research has tried to figure out how much the classic DRP approaches can successfully describe
the image-based petrophysical properties as close as possible to the experimental values. The
research has approached the target based on two separate sensitivity analyses of various PSS
and DIP methods. The results show that the Direct Simulation and Automated DIP methods
are the best types of PSS and DIP approaches, respectively. Also, it has been understood that
the classic DRP approaches cannot take the effects of sub-resolved pores into account

effectively.
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The development of tight hydrocarbon resources has a significant impact on the future of the energy market.
Digital Rock Physics (DRP) is technically recognized as an effective method for characterizing reservoir rock
properties. However, there is uncertainty about what result the user-defined chain of Digital Image Processing
(DIP) and Pore-Scale Simulation (PSS) will produce when applying DRP. The uncertainty surrounding this
technology faces even a greater deal in tight formations where a considerable portion of pores are sub-resolved
and cannot explicitly be seen in the reconstructed micro-scale x-ray Computed Tomography (uxCT) images.

Regarding the xCT images of Achimovskiy formation, which is classified as a tight sandstone resource, the
addressed uncertainty has been evaluated based on various scenarios of well-known DIP and PSS approaches.
The results show that image processing and segmentation impact on the absolute permeability values stronger
than calculation methods. Furthermore, the cross-plot analysis shows that simple image processing and seg-
mentation indicate the same trend as precise image processing and segmentation. The generated results for the
studied formation show that if the experimental open porosity of a core sample is higher than 5%, pxCT images
could feasibly resolve the system of connected pores.

Credit author statement

Denis Orlov - Conceptualization, Methodology Software Validation
Formal analysis Investigation Resources Data Curation Writing - Orig-
inal Draft Writing - Review & Editing Visualization. Mohammad Ebadi -
Methodology, Software, Investigation, Data curation Writing - Original
Draft Writing - Review & Editing Visualization. Ekaterina Muravleva -
Conceptualization, Formal analysis, Denis Volkhonskiy — Software,
Investigation, Andrei Erofeev - Software, Investigation. Dmitry Koroteev
— Conceptualization, Writing — review & editing, Supervision, Evgeny
Savenkov — Software, Investigation, Vladislav Balashov - Software,
Investigation, Boris Belozerov — Conceptualization, Resources, Super-
vision, Project administration, Vladislav Krutko - Conceptualization,
Resources, Supervision, Project administration, Ivan Yakimchuk -
Software, Investigation, Writing — review & editing, Nikolay Evseev -

* Corresponding author.
E-mail address: Mohammad.Ebadi@skoltech.ru (M. Ebadi).

https://doi.org/10.1016/].jngse.2020.103750

Software, Investigation
1. Introduction

Recent advances in technologies of hydraulic fracturing and hori-
zontal wells have made the development of tight hydrocarbon resources
possible (Bezyan et al., 2019). Generally, the profitable production from
unconventional reservoirs strongly depends on the accurate estimation
of physical rock properties (Al-Marzouqi, 2018). The traditional exper-
imental methods to approximate the relevant rock properties are
routinely time-consuming and expensive. Although some recent exper-
imental advances like the pressure pulse decay method have been
considered eye-catching improvements in petrophysical characteriza-
tion of unconventional resources, Digital Rock Physics (DRP) has drawn
much attention (de Oliveira et al., 2020). It is due to the fact that DRP is
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an innovative technique of performing digital core analysis, which offers
a couple of advantages compared to laboratory measurements. For
instance, DRP usually causes saving time and costs (Ivanova et al.,
2019). It also allows performing various numerical experiments on
exactly the same sample (Grathoff et al., 2016). It also provides the
researcher to conducts several analyses concurrently on one sample. Last
but not least, the study of rock properties under multiple situations is
remarked to be the other main advantage (l1u et al. Mostaghimiet al.).

Technically, the standard workflow of DRP can sequentially be
divided into two main steps of Digital Image Processing (DIP), and Pore
Scale Simulation (PSS) (Kaestner et al., 2008). The preparation of a
realistic pore-scale model is the most significant target of DIP. It is
typically achieved by taking a series of sequential steps starting from the
projection of the rock sample with the X-ray at different angles and
continues with image filtering, histogram analysis, segmentation, and
3D object reconstruction (Taud et al., 2005). Regarding the advantages
of both Lagrangian and Eulerian frame of references, and their specifi-
cations of the flow fields, various scenarios of PSS are typically imple-
mented to calculate the required rock properties (Mehmani et al., 2019,
2020).

As the ease with which a fluid can move through porous media,
evaluation of permeability is undoubtedly one of the essential steps of
developing unconventional hydrocarbon resources (Saxena et al., 2017).
Making the classic DRP methods customized for tight resources has
drawn many researchers’ attentions (Ning et al., 2019). For example,
advantages of micro-scale x-ray Computerized Tomography (pxCT)
imaging and visualization at the pore scale have been taken to design a
particular workflow based on the Pore Network Modelling (PNM) to
observe the effects of pore-lining clay minerals on pore preservation and
sufficient transport capability (Ma, 2016), The Parallel Lattice Boltz-
mann Method (PLBM) has been used to study the nanoscale effects on a
3D tube, The results of applying the same technique of PSS have been
used to estimate the apparent permeability of natural nanoscale porous
media of shale resources (Sun et al., 2017a). A specific workflow of DRP,
which is less dependent on the users’ experiences, has been developed
for tight sandstones. Regarding the non-negligible effects of
sub-resolved porosities in providing connectivity among the flow paths,
the global thresholding has been combined with the image-based
meshing strategy to form a computational domain on the 3D stack of
images. Then, the Direct Simulations (DS) has been applied to calculate
the absolute permeability (Verri et al., 2017). However, it has been
stated that the effects of sub-resolved pores are not crucial because they
are typically filled with water (Ramstad et al.,, 2019). To map the
porosity distribution from micro to macro scale, employing a multi-scale
imaging workflow has been followed. Then, the results of a 3D regis-
tered porosity map has been implemented to construct a multi-scale pore
network in which regions having macro-porosity are modeled based on
classic pore network manners and the elements with micro-porosity are
regarded as continuous porous mediums (Ruspini et al., 2016). The
capability of Scanning Electron Microscopes (SEM) to reveal the Pore
Size Distribution (PSD) and pore structures has been taken to introduce a
multi-scale digital rock scheme to understand the nature of fluid flow in
tight sandstones (Liu et al., 2017). Due to the existence of micro and
nanopores, fluid flow in tight formations deviates significantly from the
outputs of conventional models. By taking the effects of boundary layers
and the media deformation into accounts, a stochastics network,
including the anisotropic topology, has primarily been constructed for
tight formations. It has been understood that the abovementioned ef-
fects cause the reduction of pore-scale flow velocity. In other words,
excluding the effects of boundary and the deformation from the
computational domain could lead to the overestimation of permeability
(Chen et al., 2019).

Therefore, it could typically be figured out that the permeability of
various systems has generally been calculated based on three numerical
methods. As a lattice of wide pores joined by throats through which
transport and displacement could semi-analytically be computed, the
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PNM has broadly been used under different scenarios and assumptions
(Xiong et al., 2016). The Lattice Boltzmann Method (LBM) is the other
approach in which its coding is noticeably straightforward, and it can
conveniently be paralleled. Principally, the LBM takes the fluid as a set
of particles that can move on a prescribed regular lattice (Manwart et al.,
2002). The most accurate approach is direct modeling, which is based on
the applying of Navier-Stokes equations on a slow steady-state incom-
pressible flow (Mostaghimi et al., 2013; Zhang et al., 2015).

There are several papers comparing the performance of referred
methods based on some synthetic or conventional samples (Ramstad
et al., 2019). The results show that the PNM is the fastest method, but
there are some ambiguities with the network extraction algorithms. The
results can be also achieved by applying the LBM method if there would
be possible to apply different scenarios of boundary conditions with less
degree of complications. Naturally that the DS is capable of generating
the most accurate results, although it is computationally demanding.
Nevertheless, there is still no comprehensive research showing how
much satisfying the discussed methods can perform in case of studying
unconventional resources like clastic tight sandstones where the
permeability is usually less than 1 milliDarcy (mD), but porosities are
typically more than 10% (Grechneva et al., 2012; Grafet al., 2014).

The current research has examined the results of applying all the
referred methods on the clastic tight sandstone samples gathered from
the Achimovskiy formation located in the Western Siberia, Russia
(Krutko et al., 2019). Accordingly, the general workflow of DIP and
different theories behind PNM, LBM, and DS methods have been dis-
cussed in the methodology. Next, the generated results have been
analyzed not only as the function of applied methods but also as the
consequences of implementing various scenarios of DIP. Eventually, all
the results have shortly been inferred and then summarized in the
conclusion.

2. Methodology

Based on the general concept of DRP, the methodology of 3D digital
rock reconstruction and the applied algorithm of PSS can both be the
area of uncertainty over the calculation of absolute permeability.
Nowadays, there is no unified procedure for constructing a proper 3D
model of the rock sample. The well-known commercial or open-source
software, such as PerGeos, GeoDict, and ImageJ, provides the re-
searchers with many instruments to perform image processing and
segmentation. The only differences between this software in terms of
DIP are user interface and software price. In this research, we were more
focused on testing permeability calculation methods implemented in
different software. However, the feasibility, accuracy, and consistency
of using the referred packages have always been a severe challenge to
the DRP community. Referring to the variety of DIP methods, how much
the quality of the reconstructed 3D digital model can influence on the
calculation of porosity and permeability remains open to questions. The
validity of the final model becomes a matter of even more attentions
when DRP is applied to low permeable rocks where the experimental
values for macro-scale cores are not accurate enough to tune the initial
parameters of the model, which is based on the micro resolution CT
images of small size sample. The current section firstly discusses how
technically the X-ray projections are turned into CT images. Then, it
shows how the general DIP can proceed on the basis of the reconstructed
CT images to form a 3D digital rock model. Finally, the various algo-
rithms of permeability calculations are theoretically presented.

2.1. Image reconstruction

The general concept behind the reconstruction of the pxCT images
has been shown in Fig. 1. After cleaning the 8 mm-diameter mini-sample
with a mixture of alcohol and benzene, the dried sample is rotationally
projected in the CT system. A planar X-ray detector collects magnified
projection images. At the most basic level, tomographic reconstruction
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Fig. 1. Schematic reconstruction of 3D digital model based on CT images (Bultreys et al., 2016).

of projection images leads to a 3D distribution of X-ray linear attenua-
tion coefficients with certain assumptions. Because features and phases
of different materials often have various X-ray absorption properties, the
supposed constructing elements can accordingly be identified from the
images. Obtained back-projected images with different angles in which
brightness depends on the degree of X-ray absorption are then super-
imposed to reconstruct the 3D digital model. Multiple scanning is the
most common practice to obtain the optimized parameters of the CT
system in terms of projecting low-permeable samples.

The X-ray projection can be considered as a high-quality procedure if
it satisfies two essential conditions. Firstly, the X-ray should not
completely be attenuated. In other words, the detector should be able to
register a certain level of X-ray beam intensity after passing through the
object. Increasing the energy of the emission source is known as a proper
solution. The second condition is that dynamic range of resolved beam
intensities should be high enough to obtain high contrast projections, i.e.
detector should be capable to register signal from points with highest
and lowest beam intensity without out-of-range distortion. This
requirement makes it possible to distinguish more details in the 3D
digital models. A case in point, the projection with high contrast causes a
successful segmentation of minerals with densities close to each other
like quartz and argillite. In contrast, implementing a low-contrast pro-
jection leads to the creation of voxels with similar gray-scale values,
which do not apply to many segmentation algorithms. Because the best
method to increase the dynamic diapason is keeping the beam intensity
of the X-ray on a low level, it is required to make a trade-off for the
satisfaction of referred criteria (Wang et al., 2017).

To maximize the quality of CT images, finalizing the optimum power
of radiation should be followed by adjusting other significant parame-
ters, including the number of projections, timing, and averaging. A
higher number of projections makes more information available to
reconstruct more representative CT images. However, more projections
require more time. A high level of timing allows to increase the dynamic
range, and also increase scanning time of the sample. Averaging could
increase the Signal to Noise Ratio (SNR) and compensate for the adverse
effects of extensive timing. Regarding the aforementioned parameters
can significantly increase the duration of the CT scanning procedure.
The long time of scanning subsequently leads to instabilities in X-ray
generation, which means changes in the beam intensity and energy
spectrum characteristics of radiation. It generally occurs due to the
thermal effect shifts and blur of a focus spot. Typically, the best
configuration of all the parameters is governed by the experimental
conditions and obtained by the trial-and-error.

2.2. Digital image processing

The reconstruction of a 3D abject from a series of 2D projections at
different angles is the essential element of modern imaging methods
(Ramandi et al., 2016; Diwakar and Kumar, 2018). The supposed 3D
object can be created as the result of stacking the sequence of tomo-
graphically reconstructed 2D images (Kaestner et al., 2008). The exis-
tence of artifacts, roundoff errors, and different types of mathematical
noises in the reconstructed CT images are the main reasons to build
incorrect 3D digital models of the porous structure. Furthermore, the
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visual noises are identified as the other group of phenomena which have
destructive effects on the quality of CT images (Kornilov et al., 2019). In
principle, visual noises are recognized as the undesired information that
mainly damages the visual effects of an image showing the low contrast
objects. Among various factors adversely affecting the quality of CT
images, there is no doubt that artifacts are the most important one
(Diwakar and Kumar, 2018). Typically, the artifacts do refer to any
systematic disagreement between the gray intensity of the voxels in the
reconstructed image and the actual attenuation coefficient in a corre-
sponding point of the object (Boas and Fleischmann, 2012). Thus,
applying edge-preserving filters to suppress the noise from CT images is
highly essential. The main challenging task is to reduce the level of noise
without losing significant features such as sharp structures, corners, and
edges (Schladitz, 2011).

The methods of image denoising can be categorized based on two
primary sections of spatial or transform domain filtering. In spatial
domain filtering, the target is to reduce noises by applying the filtering
process directly on the original noisy images. Several methods like linear
and non-linear filters, anisotropic diffusion, dictionary learning tech-
niques, non-local means filters, and deep learning algorithms are known
as the principal members of spatial domain filtering. There is no doubt
that bilateral filters are one of the most prominent subsets of spatial
domain filtering (Eklund et al., 2013). By applying bilateral filter, the
intensity values of voxels in each image are replaced by a weighted
average of intensity values from surrounding voxels (Tomasi and Man-
duchi, 1998). The advantages of bilateral filters like non-linearity,
edge-preservation, and smoothness make them great candidates to be
applied to the gray-scale CT images (Landis and Keane, 2010),

The different methods like block-matching and 3D filtering, methods
based on scale dependencies, shrinkage rules, wavelet transform, and
threshold estimation are known as various subsets of transform domain
filtering (Diwakar and Kumar, 2018). Typically, images are Fourier
transformed, multiplied with the filter function, and then
re-transformed into the spatial domain. Universally, attenuating high
frequencies results in a smoother image in the spatial domain, and
attenuating low frequencies enhances the edges. As one of the most
commonly used method, the bandpass filter removes noise and back-
ground variation. It attenuates very low and very high frequencies but
retains a middle-range band of frequencies (Yang et al., 2017). It means
that bandpass filtering can be used to enhance edges (suppressing low
frequencies) while reducing the noise at the same time (attenuating high
frequencies) (Cerqueira et al., 2018).

Besides, the main idea of DRP is based on the fact that each porous
media could be considered as the union of solid and empty parts.
Accordingly, the segmentation techniques should be applied to the
denoised gray-scale CT images to turn them into black and white ver-
sions resembling pores and solid phase, respectively. In other words,
segmentation is the portioning of gray-scale CT images into disjoint
regions that comparatively have a uniform density. (Sudakov et al.,
2019).

The segmentation algorithms have primarily been classified into two
categories: (i) global thresholding segmentation schemes and (ii) seg-
mentation based on the local adaptive schemes. The main idea behind
global thresholding schemes is the histogram representation of the in-
tensity and discrepancy of all the gray pixels in a scene. Inherently,
global segmentation methods not only do not consider the spatial dis-
tribution of intensity values but also the global voxel-based thresholding
algorithms cannot generate the proper segmented images when there
are intensity heterogeneities in the target regions. On the other hand, the
local adaptive segmentation schemes are based on the fact that seg-
mentation decision is made for each voxel. Commonly, taking advantage
of the local information causes the generation of segmentations with
better quality, but it still demands higher memory and computations
(Saxena et al., 2019).

To develop a robust segmentation algorithm capable of overcoming
the mentioned difficulties, taking advantage of statistical particle-based
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methods has drawn many researchersa€ ™ attention. The applications of
Random Walker (RW) theory has innovatively provided the commu-
nities of image processing with highly efficient and practical segmen-
tation algorithms. Receiving binary images in which even weak
boundaries are respected is the eye-catching output of applying RW
theory as the segmentation algorithm where occurrences of crossing the
sharp intensity gradients have been avoided by consideration of
imposing biases to the main body of the procedure (Grady, 2006).
Running the RW theory for the segmentation of gray-scale images needs
the introduction of two thresholds. All the voxels with the intensity
values higher than the larger threshold are grains, and those with in-
tensity values lower than the smaller one are labelled as pores. The
proposed algorithm does make a decision on which class the middle
voxels should accordingly be labelled. Since the peak of pores is
comparatively very small or submerged within the peak of grains, an
automatic algorithm of finding histogram knee should be applied to find
the first threshold (Rosin, 2001). The second threshold with the larger
value is routinely chosen at the peak of the histogram.

Due to the thresholding nature of the binarization technique, some
voxels attributable to grains can instead be classified as the pore space
and vice versa. In order to improve the quality of binarized outputs and
address the mentioned above commonly occurring visual artifacts, it is
highly recommended to take advantage of morphological trans-
formations, which are some shift-invariant operators strongly related to
Minkowski additions. In more details, Dilation and Erosion are the
fundamental operators that are the basis for other similar operators as
well. In the Erosion, the supposed voxel locating in the center of the
kernel is the minimum of the remaining elements of the kernel. On the
other hand, the value of the voxel in the Dilation is the maximum of
other elements of the kernel. Also, the procedure in which the Dilation
follows the Erosion is called the Opening, and its reverse mode is named
Closing. Technically, the basic idea behind these operators is to probe a
binary image with a pre-defined and straightforward shape to check how
it misses or fits the shapes in the images (Iassonov et al. Tuller).

The procedure of image processing mentioned above has schemati-
cally been illustrated in Fig. 2. Before doing the segmentation based on
the RW theory, histogram analysis of all images could be a great help to
automatically find the required thresholds. The peak of histogram
shown with the blue arrow is the threshold that voxels with higher in-
tensities than are going to be labelled as grain or white parts.

The same as how green dashes show, fitting two lines, which one of
them has a zero-slope to the first numerical derivation of the histogram
and the other one tries to cover as many as points in the uprising region,
produces an intersection that could be taken as the threshold which its
value is the most substantial intensity that the relevant voxel is certainly
a pore or black. The remaining middle part highlighted in gray is the
zone in which further decision of segmentation is made with the RW
theory.

Eventually, it is highly required to determine the Representative
Elementary Volume (REV), which is the least volume beyond that the
properties of the domain do not change. For the estimation of REV, a
characteristic parameter such as porosity, permeability, or others is
calculated for the initial 3D digital model. Then, a certain number of
subsamples are randomly cropped from the initial 3D digital model.
After calculating the characteristic parameter for each of subsamples,
generated values are compared over the value of the initial 3D model.
Next, the size of the subsamples is sequentially reduced, and the char-
acteristic parameter is recalculated. The mean value and variation of the
calculated parameter are plotted versus the corresponding subsample
size. The size where the mean value and variation of the characteristic
parameter become stable is known as the REV (Islam et al., 2018).

2.3. Simulation and modeling

The pxCT images provide the researchers with an evident view of
pore structures. It has been taken as the main incentive to come up with
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a variety of numerical approaches for the calculation of rock perme-
ability. As a result, direct solver by taking the advantages of Navier-
Stokes equations, Lattice-Boltzmann method based on the Lattice Gas
Automata (LGA) and the Pore Network Modeling (PNM) which concerns
making the approximation of pore-throat geometry are the primary
matter of importance (Sun et al., 2017b). The main idea behind all the
referred methods is to extract a corresponding couple of velocity and
pressure profiles to be inserted in Darcy’s law for the calculation of the
permeability as below (Zhang et al., 2019; Yakimchuk et al., 2019):

@

where p stands for viscosity, U is the average flow velocity in the entire
flow domain and 4% is the applied pressure difference over the length of
L.

2.3.1. Direct Simulations
Regarding the incompressible, Newtonian fluid within a steady-state
laminar flow, the Navier-Stokes equations are simplified as:

VP — VU =0
VU=0 s
with the nonslip condition at the solid-fluid interface.

The main numerical challenge in solving Equation 2 is the weak

coupling of the pressure and velocity fields. Normally, Pressure -Based
Method (PBM) like the Semi Implicit Method for Pressure Linked
Equations (SIMPLE) is applied to solve the resultant linear system of
equations (Mostaghimi et al., 2013). Then, the averages of generated
profiles are inserted into Equation 1 for the further calculations of
permeability.

2.3.2. Lattice-boltzman method

Regarding the low-Mach number and the LBM method, the pressure
gradient can be replaced with a uniform body force (bs), which can
produce the same flow rate as the pressure driven-flow. Basically, the
LBM illustrates the evolution of a discretized particle distribution
function, which represents the probability of finding an imaginary
particle in a specific location of domain x with a certain velocity & at a
particular time t. A discretization of the Boltzmann equation in time and
space with the conversion of & into a finite set of velocities c; generates
the lattice Boltzmann equation as:
fi(x+ et 1+ A1) — fi(x, 1) = — I; [filx,t) = £ (x, 1) 3)
in which the distribution function of particles moving with the speed of
¢; is represented with f;. The right-hand side of the equation shows the
Single Relaxation Time (SRT) Bhatnagar, Gross, and Krook (BGK)
collision term, including the t as the dimensionless relaxation time and
At, is the time step. The f? known as equilibrium distribution function
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where ¢ is the model-dependent sound speed, w; is the weight associated
with the ¢;, and u represents the macroscopic velocity vector. Following
the D3Q19 model of velocity and the non-dimensional form of sound
speed, the macroscopic quantities of density and velocity can be defined
by the probability distribution function as (Eshghinejadfard et al., 2016;
Wang):

p=3 ()
pu=3 fie ®)

2.3.3. Pore-network modelling

Pore-network modeling is widely used as a simplified technique
developed especially for flow modeling in porous media. It consists of
two main steps, including extracting the network of pores and further
caleulations based on hydraulic principles (Song et al. Lei). Basically, a
network model is simply a coarse representation of the flow domain.
Technically, the void space of the rock is represented as pores that are
connected through narrower restrictions called throats (Mahanta et al.,
2020). The pores and throats are usually reproduced by idealized
spheres and cylinders. Based on a pore network model, the flow rate of Q
for a single-phase flow between two connected pores of i and j is given
by:

Qi =gpi(pi—p+p.) (7)

where p; and p; are the pressure in pores i and j, respectively. The p,
stands for capillary pressure, and g, ; as the conductance of two adjacent
pores i and j is:

Ly _ Ly L L{,,

+ +
Bpii  Bpi  Bpr  Bpj

@8)

Lij is the distance from the pore-throat interface of pore i to j, and L, is the
total length of the pore throat. L, ; and L, ; are the radii of pore body i and
J, respectively. Moreover, the g, which depends on the shape of the
channel can be derived from the Hagen-Poiseuille formula as:

AG
g =k
T,

)

the dynamic viscosity of the fluid is shown by u,, G and A are the shape
factor and cross-sectional area of the pore-network model, respectively.
According to the shape of circular, equilateral and square tube, k can
have one of the values of 0.6, 0.6 or 0.5623 (Zhu et al. Zhu). By adapting
Equation 1, the absolute permeability of the pore network model can be
calculated as:

_noL

K,= 10
0= AAP (10)

where L is the length and AP is the pressure drop.
3. Results and discussions

The permeability of Achimovskiy formation, which is a tight hy-
drocarbon resource, has been calculated as a function of various algo-
rithms and different DIP operations. Firstly, the details of the X-ray
projection with the relevant parameters have been introduced. After
determining the REV, the results of calculating the permeability ac-
cording to 6 different approaches have been shown and discussed.
Eventually, the dependency of permeability calculation on the type of
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DIP has been represented as well. The important point is that 3D models
discussed in the work are not representative ones in relation to core
samples. The maximum achieved spatial resolution of uxCT images was
1.2 pm/vox and the portion of pores having the diameter > 1 pm varied
in the range of 3-43 %. That is why we do not have an aim to compare
results of simulations with experimental results. The main aim of the
current research is to test different flow calculation methods on real rock
samples with bad connectivity, small sizes of pores comparable with
voxel size, and a wide range of PSD.

3.1. Imaging and REV determination

A modern General Electric v|tome|x L240 CT system which allows
performing precise investigations of porous media structures on small
samples has been used to project 5 samples of Achimovskiy formation.
The system is equipped with 2 X-ray sources (240 kV microfocus tube
and 180 kV high-power nanofocus tube) and handles large samples up to
500 x 800 mm and 50 kg. The optimized configurations of the CT system
has been listed in Table 1,

Implementation of the already described DIP on the gray-scale im-
ages resulted in the generation of binary images. After stacking the
finalized black & white cross-sections, they were employed to determine
the REV. For this purpose, the averaged gray-scale intensity of 3D
models (Krutko et al., 2019), porosity, and permeability have been
observed for the corresponding sizes, Fig. 3. The results show that all the
characteristic parameters have been stabilized in the range of 0.3-0.6
mm. The same procedure has been repeated for the other 4 samples. It
has comparatively been concluded that the REV of Achimovskiy for-
mation is as large as 0.6 mm or 5007 voxels.

3.2. Calculation of porosity and permeability

Based on the previously constructed 3D models and to make sure that
there is no uncertainty about the determined REV, the favorite param-
eters have been calculated for the size of 600°. The Cross-Laboratory
Control DIP was performed on the 3D models in Schlumberger com-
pany. Down to the details of the Cross-Laboratory Control DIP, the
implemented algorithm utilizes the spatial covariance of the image in
conjunction with indicator kriging to determine object edges. The use of
indicator kriging makes the thresholding local and guarantees smooth-
ness in the threshold surface. Implementation of the method requires a
priori population identification of some percentage of the image (Oh and
Lindquist, 1999).

Table 2 represents the porosity of all 5 samples treated with Cross-
Laboratory Control DIP. In addition, the method of Pore Size Distribu-
tion by Porosimetry has been employed to calculate the mean pore
diameter (Baklanov et al., 2000).

By the consideration of REV for each sample, the absolute perme-
ability has been calculated based on the variety of techniques mentioned
in former parts. Following the Navier-Stokes equations and the general
concept of DS, the permeabilities have been calculated by the means of:

» GeoDict as a commercial simulator with an academic licence,
* DIMP which is an academic simulator (Balashov et al., 2019),

Table 1

Technical Configuration of the scanning system.
Item Value Unit
High Voltage 60 kv
Tube Current 90 HA
Beam exit window, material Beryllium -
Averaging (Number of projections) 8 -
Timing (Exposure) 2000 ms
Total number of projections 2400 -
Spatial Resolution 1.2 pm
Duration of scanning 14.5 Hours
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Fig. 3. REV determination of Sample E based on (a) grayscale image intensity
(b) porosity (c) permeability calculated with PNM.

Table 2
Porosity and pore size of Achimovskiy samples.
Sample Total Effective Mean Pore
Porosity, % Porosity, % Diameter, ym
A 6.5 5.8 6.3
B 53 4.4 10.1
Cc 58 53 7.5
D 9.9 9.7 10.6
E 7 6.4 9.3
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o Density functional hydrodynamics as a Schlumberger Coreflow ser-
vice based on Direct HydroDynamic (Koroteev et al., 2014).

Furthermore, PerGeos has been used to calculate the permeability of
samples based on the LBM (Golab et al., 2015). Moreover, the feasibility
of applying PNM to calculate the absolute permeabilities of supposed
samples has also been examined by means of PerGeos and implementing
the open-source libraries of pnextract to extract the pore network and
OpenPNM for further simulations (Raeini et al., 2017; Boujelben et al.,
2018). The calculated permeabilities have been reported in Table 3 and
comparatively illustrated in Fig. 4.

The data on Fig. 4 was normalized by permeability values calculated
with DHD. The results show a noticeable deviation in calculated values.
It can be seen that permeability depends not only on the methods (Direct
Simulations, LBM or PNM) but also on the applied approach. The best
matching was observed between DHD and GeoDict simulations. DiMP,
in two cases, has given two times overestimation in comparison with the
DHD, which had been chosen as a reference. The LBM tends to over-
estimate the permeability, and the PNM-based approaches generally
generate the lower values. Principally, Direct Simulations demonstrate a
higher level of consistency for investigated tight samples.

3.3. How DIP affects permeability

The next section of the research is concerned with the influence of
various DIP procedures on the calculations of favorite parameters. The
effects of taking a local or global threshold for segmentation, the cubic
size of the digital rock model, and implemented types of filters to in-
crease the quality of images have been taken into account to investigate
how far they bring about changes of permeability. Generally, the 3D
models constructed with the help of Manual DIP on the personal com-
puters are computationally less expensive and much faster. In opposite,
Automated DIP allows forming more precise 3D models although it is
time-cor ing, and its impl ion requires having access to the
architecture of a High-Performance Computing (HPC) unit.

To analyze the influence of various DIP procedures on the calcula-
tions, it was essential to perform calculations based on the same method
and the same calculation implementation. For this purpose, we chose
DiMP academic simulator which has been developed with help of co-
authors of this paper. The permeabilities of all 5 samples have firstly
been calculated based on the Manual DIP where, due to the technical
limitations of the employed PCs, the binarized cubes by the imple-
mentation of the Otsu algorithm cannot have the sizes of larger than
400°. Following the Cross-Laboratory Control DIP, the same calculations
have been performed on samples that have a size of 600° and have been
segmented into two main phases of grains and pores, according to the
Kriging-Indicator algorithm in Schlumberger company. Finally, the
permeabilities of the supposed samples have also been calculated ac-
cording to the outputs of applying the DIP procedure shown in Fig. 2, or
known as the Automated DIP method. Using the HPC unit has made it
possible to generate the segmented cubes with a size of 1400° through
the implementation of the RW algorithm. The results have been reported
in Table 4.

Table 3
Performance of different methods in terms of calculating the absolute perme-
ability in z-direction, mD.

Sample Methods
Direct Simulations LBM PNM
DiMP GeoDict DHD PerGeos OpenPNM PerGeos
A 0.84 0.71 0.67 1.18 0.39 0.5
B 0.87 0.88 1 1.21 1.57 0.35
C 0.66 0.39 0.32 0.83 0.32 0.18
D 9.38 11.8 10.2 12,5 7.4 7.68
E 1.28 0.83 0.68 1.73 0.36 0.39
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Fig. 4. Calculated permeabilities of each sample based on various methods.

Table 4
Effects of different image processing methods on the results of DiMP, mD.
Sample Manual DIP Cross-Laboratory Control DIP Automated DIP
Effective ke ky ks Effective ke ky ks Effective ky ky ks
Porosity Porosity Porosity
A 0.111 5.22 6.1 5.78 0.058 0.87 1.05 0.84 0.081 2.83 231 3.05
B 0.056 ) 1.21 0.24 0.044 2.33 1.85 0.87 0.065 1.6 171 1.09
C 0.052 0.045 0 0 0.053 0.8 0.54 0.66 0.032 0 ) )
D 0.1 10.85 5.4 9.41 0.097 10.27 9.85 9.38 0.102 15.17 12.98 12.53
E 0.071 0.76 0.24 0.23 0.064 116 1.13 1.28 0.09 3.31 2.93 4.02

It can be interpreted that there is not a steady trend among the
generated data. For example, the highest and lowest permeability values
of sample A (for all axes) were calculated based on the results of the
Manual DIP and Cross-Laboratory Control DIP, respectively. Also, the
highest Z-axes permeability value of sample B, D and E was obtained for
Automated DIP, but the highest value of sample C was calculated based
on Cross-Laboratory Control DIP.

Furthermore, the anisotropic analysis of the generated results as the
function of implemented various image processing methods have visu-
ally been represented in Fig. 5. Sample A shows isotropic behavior based
on all the implemented image processing techniques. In sample D, it can
be seen that isotropy is virtually independent of the applied DIP methed,
although implementation of the Manual DIP leads to the generation of a
ky relatively smaller than other values. However, applying the Manual
DIP on sample B caused Y-axis having permeability significantly larger
than the values of the X- and Z-axes. While Manual DIP and Automated
DIP generated almost zero permeability for all three axes, the Cross-
Laboratory Control DIP showed a low level of anisotropy for sample C.
The Manual DIP and Cross-Laboratory Control DIP techniques produce
isotropic results for sample E, while the Automated DIP shows a higher
value for k..

Regarding the calculated absolute values of permeability, both the
Cross-Laboratory Control DIP and Automated DIP produce relatively
comparable results. It has been achieved due to using advanced in-
struments and techniques of image processing to generate the favorite
3D models. Another reason why Cross-Laboratory Control DIP and
Automated DIP lead to similar results is that both consider the volumes,
600° and 14003 voxels or 0.7 and 1.7 mm respectively, which are larger
than the REV (500° voxels or 0.6 mm).

Typically, various approaches of 3D models building including
image processing and the subsequently applied binarization techniques
can dramatically influence porosity and permeability calculations. The
main effective factors can shortly be known as the quality of image

processing (type, parameters, and consequence of applied filters),
binarization type (local or global and 2D or 3D algorithms), size of the
3D models (4003, 600°, 1400° voxels), and positions of subvolumes in
the original CT cubes (for models with sizes smaller than the REV).
Besides considering reported results from Table 4, outputs of applying
Erosion and Dilation as the other types of image processing have been
added as well. Erosion has continuously been applied several times to
sample A and relevant porosity and permeability have been calculated
with the help of DiMP. For Dilation the same procedure has also been
applied several times, Table 5. It represents that the results of applying
Erosion and Dilation increase the range of petrophysical correlation in
comparison with other sorts of results. By applying the sequential op-
erations of Erosion and Dilation to the initial 3D model, we can estimate
the threshold for pores connectivity. In the case of core sample A, the
threshold level for total porosity is almost 5%. The observed value is in a
strong agreement with the behavior of all other data where 3D models
with porosity less then 4-6% usually do not have the pore space con-
nectivity (Table 4).

The next step was to compare various techniques of image processing
and different methods of permeability calculations (DiMP, GeoDict and
DHD) in a cross-plot form. The generated permeabilities of all connected
3D models in the Z direction, which coincides with the flowing direction
in standard core samples, have been presented versus their corre-
sponding porosities in Fig. 6. It is observable that all data follow the
same trend. It points out that various image processing and binarization
procedures result in the same geostatistical outputs. It means that all the
porosity and the permeability obtained based on different processing of
uxCT images satisfy a single petrophysical model. 3D core models from
different DIP covers a wide range of porosity (from 4% to 14%) and
permeability (from 0.01 mD to 30 mD).

The spread of permeability in Fig. 6 is the same for Manual DIP,
Automated DIP, and Cross-Laboratory Control DIP. In other words, the
implementation of all the discussed methods of DIP results in the same
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Fig. 5. Effects of image processing on the permeability anisotropy analysis.
Table 5
Results of erosion and dilation, Sample A.
Operation Erosion (4 Erosion (3 Erosion Erosion Original  Dilation Dilation Dilation (3 Dilation (4
times) times) (twice) (once) Cube (once) (twice) times) times)
Porosity, % 1.8 2.7 4.1 5.9 8.1 10.7 13.4 16.3 19.5
Permeability, 0 0 0 1.08 4.5 239 45.5 17 288
‘mD

petrophysical model. Therefore, if we want to investigate a tight reser-
voir to find correlations between its petrophysical characteristics, it is
not necessary to conduct complex and computationally heavy image
processing and segmentation. Manual DIP for sample size less than REV
could also generate a satisfactory petrophysical correlation.

4. Conclusions
The study has investigated how the employed methods of digital

image processing and pore-scale simulation creates uncertainties on the
final DRP results of a tight sandstone reservoir. The research has brought

both effects of the various methodologies to create the 3D digital rock
models and methods to calculate the permeability on the final results
into sharp focus. The absolute permeability has been calculated based on
Pore Network Modeling (open-source package), Lattice Boltzmann
Method, and Navier-Stokes equations. The generated results showed a
significant deviation in calculated permeability values. However, the
consistency among different methods of Direct Simulation is in a
stronger agreement over the other methods. It should be regarded that
although more accurate techniques like nano-CT gives rise to less un-
certainty over the applied methods and more consistency among
generated results, the results of nano-CT scanning for rocks with a high
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degree of heterogeneity are not representative.

The main reason for deviation in calculated permeability values is a
complex pore structure of tight sandstones. Some calculation methods
are more robust to the geometry of the flow area (Direct Simulation),
and some of them generate more errors in permeability calculations
(Pore Network Modeling). Thus this trend in permeability deviation due
to different calculation methods could be applied to any 3D model of
complex structure (with a significant number of thin pore channels and
high tortuosity).

The Manual DIP, Cross-Laboratory Control DIP, and Automated DIP
as three different methodologies have been applied to create 3D digital
rock models. The number of voxels in the final model, consistency, and
consequence of image processing and binarization techniques are the
main differences. The permeability deviation analyses of gathered
clastic tight sandstone samples have shown that image processing and
segmentation have stronger impacts on the absolute permeability values
than calculation methods. The averaged standard deviations of perme-
ability are:

¢ o =0.71mD for the same DIP but different calculation methods,
Table 3;

e 7= 1.41mD for the same calculation method (DiMP) but different
DIP, Table 4.

In other words, if you need to estimate permeability of a specific core
sample, it is more important to perform reliable and accurate image
processing and segmentation than wusing advanced calculation
techniques.

However, the cross-plot analysis of clastic tight sandstone samples
from Achimovskiy formation shows that studying a group of supposed
cores through applying the simple DIP (Manual methods) generates the
results following the same trend of those results generated by applying
the precise DIP (Auto DIP). It means that to find the petrophysical cor-
relation governing the tight samples applying simple DIP can produce a
fast and reliable answer.

The open porosity threshold for pores connectivity has been esti-
mated by using the cross-plot analysis of all available data. This
threshold level for Achimovskiy formation is equal to 5%. If open
porosity of core sample is higher than 5%, pxCT could resolve the system
of connected pores. Otherwise, building a reliable 3D model required
implementing a more advanced technique as nano-scale X-ray
Computed Tomography nxCT, FIB-SEM, or synchrotron X-ray CT. The
results have shown that by using morphological transformations
(Erosion and Dilation) or other instruments of 3D model treatment, it is
possible to obtain statistical representative data for Achimovskiy

formation with the help of only one X-Ray CT of one sample.
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6. Strengthening the digital rock physics, using downsampling
for sub-resolved pores in tight sandstones

Summary: Downsampling is known as one of the most fundamental operators of deep
learning. It has been applied to estimate the porosity and permeability at the spatial resolution
of 0 um/vox, which is technically impossible but theoretically possible. The proposed
workflow has been implemented to 5 samples taken from the Achimovskiy formation. With
the help of inserting an exponential trendline into the scatter data, it has become possible to
estimate the porosity at the resolution of 0 um/vox. Then, the bias between the two sets of
porosities has been computed. The resultant biases have been employed to correct the image-

based permeability. The outcomes prove that the proposed workflow performs efficiently.
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Employing digital rock physics (DRP) to study the petrophysical characteristics of tight sandstones is a chal-
lenging and problematic issue. The non-resolved individual pores (sub-resolved pores), which cannot be deter-
mined in micro x-ray Computed Tomography (pxCT) images, is the main reason for incorrect calculations of the
petrophysical properties with DRP, We present a workflow to resolve the matter. We compute the porosity and
permeability for the pxCT images of samples from tight sandstone. After that, we apply downsampling. For each
downsampled model, the porosity has been calculated. Then, by approximation of the trendline into the porosity

data, the porosity for an effective resolution of 0 pm per voxel (pm/vox), is estimated. Next, we calculate the bias
to correct the computed permeability. The match between calculated parameters and lab measurements proves
that the proposed workflow is a reliable approach for practical DRP applications. Further analysis shows that
taking advantage of image processing for studies of tight porous media leads to more accurate results than using
the conventional petrophysical models of tight resources to map the porosity to permeability.

1. Introduction

Based on the recent advances in various fields of drilling technolo-
gies, well completions and reservoir stimulations, developments of tight
and ultra-tight hydrocarbon resources have turned into the backbone of
booming economies in the world (Solarin and Bello, 2020; Ebadi et al.,
2020b). Because of that, the leading oil companies of the global energy
perspective have put forth great efforts to have commercial and stable
production from the abovementioned hydrocarbon resources (Holditch,
2013; Charlez, 2016). For instance, several joint-ventures and sub-
sections of Gazprom have planned to develop one of the most prominent
unconventional resources of Russia.

As a set of low-permeable hydrocarbon-bearing layers located in the
Western Siberia, Achimovskiy formation has theoretically been catego-
rized as a tight sandstone resource (Nenasheva et al., 2018; Yakimchuk
et al., 2019), Fig. 1. It has been formed by moving landslides of sandy
and silty flows from shallow water to deep-sea conditions (Grechneva
et al., 2012). The presence of tectonic and lithological screens are the
main reasons why Achimovskiy formation is vertically and laterally
heterogeneous (Yudin et al., 2014).

* Corresponding author.
E-mail address: Mohammad.Ebadi@skoltech.ru (M. Ebadi).
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Despite all the eye-catching technological achievements, the devel-
opment of unconventional resources might yet be a risky investment if it
is not supported well with detailed and accurate reservoir studies (Liu
etal., 2017; Almetwally and Jabbari, 2020). To fit the risk attitude of the
decision-makers, applying modern methods of core analysis like Digital
Rock Physics (DRP) has mainly been focused over the last decade
(Bultreys et al., 2016; Wang et al., 2017). Besides the fact that DRP is an
efficient method of cost control and risk management, it provides the
research projects with the opportunities of performing multiple nu-
merical experiments on exactly the same sample and implementing
various analyses on one sample at the same time (Oliveira et al., 2020).

In principle, the standard workflow of DRP is divided into two main
steps of Digital Image Processing (DIP), and Pore Scale Simulation (PSS)
(Andra et al., 2013a, b). The most significant target of DIP is to prepare a
realistic pore-scale model for the further steps of simulation by taking a
series of sequential steps starting from projecting a rock sample with
x-ray from different angles and continues with Computed Tomography
(CT) to generate micro x-ray CT (pxCT) images, image filtering, histo-
gram analysis, binary segmentation, and three-dimensional (3D) object
reconstruction (Karimpouli and Tahmasebi, 2019; Saxena et al., 2018).
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Fig. 1. The achimovskiy formation, Russia.

However, applying the DRP method is not always easy and
straightforward (Lin et al., 2016). One of the most challenging problems
is the sub-resolved pores. The voxels containing sub-resolved pores are
not as dark as voxels showing pores and also are not as light as those
voxels which are labeled as grains (Smal et al., 2018; Lanetc et al.,
2020). It is due to the fact that although x-ray energy can emit through
those sub-resolved pores and have subsequent effects on the detector,
their smaller sizes than the subsequent spatial resolution of the
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projection cannot be recorded as an absolute dark voxel (Baveye et al.,
2017; Wang and Aryana, 2020). The sub-resolved pores can be detected
by going down to several nanometers using Scanning Electron Micro-
scopy (SEM), but it is a destructive method (Xiao et al., 2020). Thanks to
the recent advances in imaging equipment, it is technically possible to
generate nano x-ray CT (nxCT) images and overcome the discussed
limitation (Mehmani et al., 2020). But, it is physically impracticable
because the projecting object should have a diameter of less than 1 mm,
but the core samples have diameters of 5-30 mm (Zhu et al., 2019). For
instance, the CT images of the gathered samples from Achimovskiy
formation have 1.2 pm per voxel (pm/vox) as the Spatial Resolution
(SR), which is still larger than a significant portion of detected pores in
the mercury injection test (Yakimchuk et al., 2019). To put it more
simply, overlapping the obtained SR of the reconstructed CT images
with the relevant Pore Size Distribution (PSD) turned it out that a large
number of pores cannot be seen in the grayscale CT images (Saxena
et al., 2018; Guan et al., 2018), Fig. 2.

Therefore, the PSD of the supposed samples can explicitly be divided
into two main zones of resolved pores, which can be seen in the CT
images and sub-resolved ones that their recognitions need images with
the higher SR (Peng et al., 2014). Accordingly, taking the effects of
sub-resolved pores into account is one of the most challenging aspects of
DRP. By coupling the advantages of pxCT and QEMSCAN (Quantitative
Evaluation of Minerals by SCANning electron microscopy) images,
representative 3D mineralogy and porosity maps were reconstructed by
Rusipini et al. (2016). Then, the reconstructed maps were employed to
obtain a Multi-Scale Pore Network (MSPN) representing both micro- and
macro-porosity regions. Eventually, a Process-Based Method (PBM) was
applied to the extracted MSPN to characterize the favorite petrophysical
properties (Ruspini et al., 2016). Soulaine et al. (2016) studied the im-
pacts of sub-resolution pores of the Berea sandstone samples on their
macroscopic flow properties. Through taking advantage of the
finite-volume toolbox OpenFOAM A®, flow in the fully resolved pores
was described by the application of the Stokes equation, and a Darcy
model was also used for the sub-resolution part. Comparing the

Pore Diameter (um)

Fig. 2. Sub-resolved pores in CT and SEM images of Achimovskiy Formation.
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generated results and experimental ones show that making a clear and
proper interpretation of the supposed media is highly required (Soulaine
et al., 2016). Regarding the limestone samples, Lin et al. (2016) devel-
oped an experimental procedure based on high-salinity contrast brine
and differential imaging techniques of computed tomography to obtain
3D spatially resolved information on porosity and the connectivity.
Following the various phases of solid grains, sub-resolution micro-pores
within the grains, and the macro-pores, conducting an accurate
three-phase segmentation causes the generation of results that are in
good agreement with the results of helium porosimeter experiments (Lin
et al., 2016). As a matter of concern, sub-resolved pores have been tried
to be localized and quantified by applying a new algorithm proposed by
Smal et al. (2018). Regarding a typical bimodal histogram of a good
quality pxCT image, 6 threshold parameters making zones for two
phases of pores and grains are assigned. The mathematical iterative
procedure keeps going till finding a stabilized and small difference be-
tween neighbors. The generated results show that the proposed algo-
rithm is capable to arguably derive correct porosity estimation in
comparison with measured laboratory values. Although the algorithm
operates in a fully automatic manner, its performance in case of applying
to the histogram of 3D models and tight sources where a more significant
portion of pores is known as sub-resolved still needs more discussions
(Smal et al., 2018). Shah et al. (2016) studied the petrophysical prop-
erties for different rock types varying from sandstone to carbonate
samples. The samples were firstly scanned at four different resolutions,
and then the generated images were fed to the two modeling techniques
of Lattice Boltzmann Method (LBM) and Pore Network Modeling (PNM)
for further calculation of permeability. Next, a numerical coarsening
method was applied, which artificially reduces the resolution of images.
The synthetically reduced-resolution images have been reintroduced to
the supposed algorithm. The generated results showed the same accu-
racy for the favorite parameters. Therefore, it has been deduced that
numerical coarsening can be considered as an essential asset in
improving the computational efficiency of transport property calcula-
tions (Shah et al., 2016). Regarding the grid coarsening technique more,
Chung et al. (2020) applied the agglomeration method to merge the
neighboring voxels to form macro-elements. The generation of
non-uniform gridding for large-scale problems is the main advantage of
the agglomeration, which makes the system becomes more computa-
tionally affordable to solve. Technically, the binary images are probed
with a kernel of 2 x 2 x 2 voxels. If all the examined voxels are pores,
the set of supposed voxels are turned into one agglomerated voxel. In
case of possibility, the procedure can move further to generate the next
level of agglomerated grids (Chung et al., 2020).

The current research employs a more general type of numerical
coarsening algorithm known as downsampling to take the effects of sub-
resolved pores more practically, effectively, and quickly. The mathe-
matical logic behind the downsampling has firstly been discussed in the
next part. Then, it will technically be discussed how the represented
approach can either directly or sequentially be applied to the original
high-resolution pxCT images. After that, the main idea will be launched
how the series of products by downsampling can mathematically be
treated to extract the actual values of the main petrophysical parame-
ters. Next, the set of samples from Achimovskiy formation will go
through the pictured process, and the outputs will comprehensively be
discussed in results and discussions. Finally, the conclusion will shortly
highlight the importance of tight formation again, and it will underline
the most important aspects of the implemented approach and the sub-
sequent results.

2. Methodology
2.1. DIP

Regarding the primary concept of DIP as the digitally 3D recon-
struction of a concerned sample, the roadmap begins with the x-ray
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projection (Blunt et al., 2013; Hakimov et al., 2019). Within the
computerized x-ray imaging, narrow beams of x-rays are aimed at a
rotating object (Reshetova et al., 2019). During a Computed Tomogra-
phy (CT) scan, the x-ray tube shoots narrow beams of x-rays through the
object, and a special digital x-ray detector which is located directly
opposite the source picks up the x-rays after leaving the object
(Al-Marzougi, 2018; Yu et al., 2020). After finishing each rotation, the
recorded raw data (sinograms) are transmitted to a computer to recon-
struct 2D cross-sectional grayscale images of the object based on so-
phisticated mathematical techniques (Chauhan et al., 2016). The slices
can digitally be stacked to form a 3D representation of the object
(Kaestner et al., 2008).

Due to the number of technical reasons such as artifacts, statistical or
random noises, and roundoff errors, the reconstructed pxCT images
could have insufficient quality adversely affecting the features of the
final output (Diwakar and Kumar, 2018). Accordingly, it could be highly
demanding to take advantage of various filters that subtract the noise
component from a noisy image to find the original one with the mini-
mum loss of features (Anas et al., 2011). Although noise suppression
from pxCT images is still considered as a challenging topic, the preser-
vation of image boundaries and global contrast, and no generation of
new artifacts are the main common criteria among all the relevant
research (Schofield et al., 2020).

Denoising methods can be categorized based on two primary sections
of spatial and transform domain filtering. In spatial domain filtering, the
target is to reduce noises by applying the filtering process directly on the
original noisy images. Several methods like linear and non-linear filters,
anisotropic diffusion, dictionary learning techniques, non-local means
filters, and deep learning algorithms are known as the principal mem-
bers of spatial domain filtering. Undoubtedly, bilateral filters are one of
the most prominent subsets of spatial domain filtering (Eklund et al.,
2013). Following a bilateral filter, the intensity values of voxels in each
image are replaced by a weighted average of intensity values from
surrounding voxels (Tomasi and Manduchi, 1998). The advantages of
bilateral filters like non-linearity, edge-preservation, and smoothness
make them excellent choices to be applied to the grey-scale CT images
(Landis and Keane, 2010).

Transform domain filtering is mostly known by block-matching and
3D filtering, methods based on scale dependencies, shrinkage rules,
wavelet transform, and threshold estimation (Diwakar and Kumar,
2018). Generally, images are Fourier transformed, multiplied with the
filter function, and then re-transformed into the spatial domain. Uni-
versally, attenuating high frequencies results in a smoother image in the
spatial domain, and attenuating low frequencies enhances the edges. As
one of the most commonly used methods, the bandpass filter removes
noise and background variation. It attenuates very low and very high
frequencies but retains a middle-range band of frequencies (Yang et al.,
2017; Mali et al., 2019). It means that bandpass filtering can be used to
enhance edges (suppressing low frequencies) while reducing the noise at
the same time (attenuating high frequencies) (Cerqueira et al., 2018;
Chow and Paramesran, 2016).

Besides, the main idea of DRP is based on the fact that each porous
media could be considered as the union set of solid and empty parts. As a
consequence, the segmentation techniques should be applied to the
denoised grey-scale CT images to turn them into black and white ver-
sions resembling pores and solid phase, respectively. In other words,
segmentation is the portioning of grey-scale CT images into disjoint
regions that comparatively have a uniform density (Taud et al., 2005).

The segmentation algorithms have primarily been classified into two
categories: (i) global thresholding segmentation schemes and (ii) seg-
mentation based on the local adaptive schemes. The main idea behind
global thresholding schemes is the histogram representation of the in-
tensity and discrepancy of all the grey pixels in a scene. Inherently,
global segmentation methods not only do not consider the spatial dis-
tribution of intensity values but also they cannot generate the proper
segmented images when there are intensity heterogeneities in the target
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Fig. 3. The DIP workflow to construct a digital rock.

regions. On the quite contrary, the local adaptive segmentation schemes
are based on the fact that segmentation decision is made for each voxel.
Regularly, taking advantage of the local information causes the gener-
ation of segmentations with better quality, but it still demands higher
memory and computations (Verri et al., 2017).

To develop a robust segmentation algorithm capable of overcoming
the difficulties mentioned above, taking advantage of statistical particle-
based methods has drawn many researchersa€™ attention. The appli-
cations of Random Walker (RW) theory in other fields of DIP has given
fresh impetus to the communities of DRP to represent a highly efficient
and practical segmentation algorithm (Grady, 2006). Receiving binary
images in which even weak boundaries are respected is the eye-catching
output of applying RW theory as the segmentation algorithm where
occurrences of crossing the sharp intensity gradients have been avoided
by consideration of imposing biases to the main body of the procedure
(Haque and Neubert, 2020). Running the RW theory for the segmenta-
tion of grey-scale images needs the introduction of two thresholds. All
the voxels with the intensity values higher than the larger threshold are
grains, and those with intensity values lower than the smaller one are

labeled as pores. The proposed algorithm does make a decision on which
class the middle voxels should accordingly be labeled. Since the peak of
pores is comparatively very small or submerged within the peak of
grains, an automatic algorithm of finding histogram knee should be
applied to find the first threshold (Grady, 2006). The second threshold is
routinely chosen at the peak of the histogram.

Because of the thresholding nature of the binarization method, the
resultant binary images could contain some numerous imperfection. In
fact, some voxels attributable to pores could alternately be classified as
the matrix part and vice versa (Halisch et al., 2016). Morphological
transformations are a collection of nonlinear and shift-invariant opera-
tors strongly related to Minkowski additions (Jin et al., 2018).
Morphological transformations probe an image with a small template
known as the structuring kernel. The structuring kernel is positioned at
all possible locations in the image, and it is compared with the corre-
sponding region of voxels (Mostaghimi et al., 2016). Erosion and Dila-
tion are the primary operators that are the foundations for other similar
transformations as well. The voxel in the center of the structuring kernel
is turned into the minimum or maximum of other elements located in the
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Fig. 4. The schematic procedure of the downsampling algorithm. The blue arrow represents the sequential do
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Fig. 5. Application of sequential downsampling on a digital porous media with
the maximum operator.

structuring kernel of Erosion or Dilation, respectively (Mostaghimi et al.,
2016). The pictured procedure has been depicted in Fig. 3.

2.2. Direct numerical simulation (DNS)
The permeability of the determined REV can be calculated by using
Darcy's law as:

o

1)

where k is the permeability (md), p stands for fluid viscosity (¢p), (v} and
V(p) are the superficial averages of velocity (cm/sec) and pressure
gradient (atm/cm) over the supposed computational domain provided
with the binary images, respectively (Bezyan et al., 2019). In terms of
universal conservation laws and following a slow, steady-state, and
incompressible flow having negligible inertial forces, the Navier-Stokes
equations with the following form can be employed to calculate v and p
of all voxels labeled as pores.

Vv=0

Vp—uViv =0 @

which is usually completed with no-slip boundary conditions be-
tween black and white voxels (Aziz et al., 2020).

Although fluid properties and geometry are the only inputs for
further simulations, it should highly be considered that there are not any
analytical solutions for Equation 2 in the case of complex morphologies.
Thanks to the recent tremendous advances of high-resolution imaging
techniques such as pxCT, it is now possible to accurately describe the
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geometry of the complex pore space (Mostaghimi et al., 2012). Among a
few numbers of numerical methods that can handle the weak coupling of
the velocity and pressure fields, the Semi-Implicit Method for Pressure
Linked Equations (SIMPLE) algorithm is the most well-known iterative
solver which is widely applied to solve Equation 2 for the concerned
digital porous media (Saxena et al., 2017b).

2.3. Downsampling

The numerical coarsening or generally known as downsampling is
one of the primary Digital Image Processing (DIP) methods in which the
spatial resolution is going to be reduced while keeping the same i-
dimensional representation [53]. Regarding a signal as x = (x,),
downsampling x by n can be commonly viewed as pre-filtering x with a
linear filter g = (g ), generating a signal u = (u,), and then decimating u
by i, receiving a signal v = (v,) where v,, = wn for all n (Starnoni et al.,
2017). Practically, the direct or sequential forms of applying the
downsampling algorithm, the taken operator (f) of downsampling, and
the kernel-size of n as hyperparameters are principally known as the
primary sources of uncertainties. Fig. 4 shows two various possible
scenarios of downsampling implemented to a schematic segmented
pxCT image.

Following the key concept of downsampling, the finalized binary
cube of a sample with an initial high resolution could be applied with the
coarsening algorithm (Chung et al., 2020). For instance, a direct pro-
cedure of the coarsening algorithm relying on the concept of turning 2 x
2 x 2 neighboring voxels into a single cube based on the maximum
operator is graphically illustrated in Fig. 5. The result is a downsampled
cube that has the same physical length but with a two times lower res-
olution. After calculating the favorite parameters of the formed down-
sampled cube, the algorithm proceeds to the next step where the initial
cube undergoes the next iteration of resolution reduction in which 4 x
4 x 4 neighboring voxels are turned into a single voxel having four times
lower resolution (Eklund et al., 2013).

2.4. Transform for biases

A systematic offset has been reported when comparing the DRP re-
sults of porosity and permeability with those measured in the lab (Ebadi
et al., 2020a). More in-depth information shows that DRP analysis re-
sults in an underestimation of porosity by a factor of close to 0.5, and
overestimation of permeability up to the one magnitude of order (Sax-
ena el al.,, 2017a). It is due to the fact that the quality of DRP results
strongly depends on a variety of determinants like the quality and
cleanness of reconstructed pxCT images (Shah et al., 2016). In more
details, the porosity calculated by DRP can adversely be impacted by
every element of DIP workflow shown in Fig. 3, including the biases
imposed by various methods of segmentation. In principle, the research
laboratory is usually implemented on 40 mm cylindrical core plugs
while DRP computations are conducted on 4 mm size cubes taken out
from the larger core plugs used for laboratory measurements. In other
words, the DRP computations are typically made on g, th of the sample
used for laboratory measurements (Saxena et al., 2018). The referred
substantial difference in the physical size of the investigated samples
leads to the creation of bias in the computed results even for the ideally
homogeneous samples with no geological layering within the plugs. The
addressed biases should properly be corrected before making the com-
parison between DRP results and laboratory measurements. In view of
that, the correlation has been recommended by (Saxena et al., 2019) as:

ki

& b (3)

where k; stands for the permeability which is calculated based on the
Images, and k4 shows the Actual permeability by regarding the effects of
sub-resolved pores. ka can be inferred if the effects of bias (f) is taken
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Fig. 6. Implementation of downsampling to take effects of sub-resolved pores into account.

into account. Statistically, the p has been represented as the function of
corrections made to porosity, and (Saxena et al., 2017b) has addressed it
as:

p= (‘”_*)1 (ﬂ) @)
Py 11—,
similarly, ¢, and ¢, show the Image and Actual porosities, respec-

tively. It should be highlighted that ¢, takes the resolved and sub-
resolved pores together.

2.5. The proposed approach

As described above, the determination of the ¢, is the main idea
behind removing the effects of biases causing overestimation of k4. To
calculate the ¢, from the images with sub-resolved pores, taking ad-
vantages of downsampling, described in part 2.3, can be can be
considered a significant plus from the point of view of precision and
robustness (Shah et al., 2016). Following the finalized binary cube and
the consequent downsampled representations shown in Fig. 5, the
porosity for each resolution can be calculated through the ratio of black
voxels over the total number of voxels (Chung et al., 2020). Then, an
exponential trendline is fitted to the scatter plot of porosity versus res-
olution for each sample. The intersection of the trendline with the y-axis,
where the resolution has its highest theoretical value of 0 pm/vox

(Eklund et al., 2013), could show the porosity very close to the experi-
mental values for tight sandstones. The estimated value can adequately
be taken as ¢,. The supposed procedure has been illustrated in Fig. 6.
The previous studies show that the reduction of resolution leads to
less detection of pores, and subsequently, a lower estimation of porosity
(Saxena et al., 2019; Bazaikin et al., 2017). For the simulation of the
same observations, the downsampling with the maximum operator,
which causes the synthetic reduction of porosity, has been selected.

3. Results and discussions

The introduced dataset by (Orlov et al., 2020), including the pxCT
images and their corresponding binary ones based on Automated DIP,
have been used to conduct the current study. The dataset has been
formed based on imaging five samples and then applied with a
comprehensive DIP which has shortly been described in part 2.1. More
details about the generation of the referenced images and the imple-
mented DIP have thoroughly been discussed in (Orlov et al., 2021). All
the grayscale and binary images of the dataset have the sizes of 1400 x
1400 voxels. For each one of the five sample, Fig. 7 shows one grayscale
slice and its corresponding binary.

Besides, GeoDict software has been used to calculate k; based on
Equation 2. It should be remarked that all the addressed pxCT and bi-
nary images have a spatial resolution of 1.2 pm/vox. Both the lab
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(O] )

Fig. 7. (a)-(b): Sample a, (c)-(d): Sample B, (e)-(f): Sample C, (g)-(h): Sample D, (i)-(j): Sample E

measurements and image-based calculated values have been reported in sample with the spatial resolution of 1.2 pm/vox has been downsampled

Table 1. to lower resolutions based on the direct mode and the maximum oper-
To accurately estimate ¢,, the represented approach in part 2.5 has ator. After fitting an exponential trendline into the scattered data, the ¢,
been implemented. As depicted in Fig. 6, the digital rock model of each has been estimated by introducing the theoretical resolution of 0 pm/
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Table 1
orosity an rmeability (mD) of selected samples.
P d bility (mD) of selected 1
Sample Plab Kot I ki
A 0.133 033 0.081 4.46
B 0.112 0.15 0.065 1.58
C 0.905 0.06 0.031 0.12
D 0.146 1.06 0.103 22.9
E 0.131 0.16 0.078 1.5
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Fig. 8. The estimation of ¢, based on the proposed approach for all samples.

Table 2

@, and p after downsampling corrections.
Sample @A p
A 0.140 5.90
B 0.106 4.82
C 0.050 4.40
D 0.149 3.28
E 0.127 4.74

vox into the corresponding correlation. The results are in Fig. 8.

The estimated ¢, and the corresponding p, stated by Equation 4, for
each sample has been reported in Table 2.

The significance of applying the downsampling method and valida-
tion of the estimated ¢, have been shown in Fig. 9.

It can be deduced that that results of ¢, are much closer to the
measured ¢y, In more details, the mean of 2 is almost equals to the
unity (g, = 0.9099) while the mean of results for «j’r:h is almost 37.53%
less (g, = 0.624). It can be reasoned based on sub-resolved pores,
which cannot be detected in the images.

Next, the estimated @, should be taken to calculate the k4. Apart
from what has been discussed for Equation 3, a couple of studies have
introduced other models to map the ¢, to k, in tight systems. In keeping
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Table 3
The k4 (mD) based on different models.
Sample Ka
Equation 3 Equation 5 Equation 6
A 0.52 13.92 2.02
B 0.23 1.59 0.52
C 0.03 0.04 0.05
D 3.82 23.38 2.78
E 0.32 5.75 1.16

with the advantages of an exponential trendline, Abbasi et al. (2016)
have shown that:

Ky =0.00173¢501 (5)

In the same way (Du, 2019), has stated the following model by
investigation of 35 tight sandstone samples.

ky =0.0076 x 1.4879'™% (6)

The estimation of k4 as the function of all the refereed models have
been made and reported in Table 3. Furthermore, the comparison of the
produced k, versus their lab measurements in terms of permeability
Ratio (kg, = ﬁfh and ﬁ) have been depicted in Fig. 10.

As it has already been referred, the generated k; are larger than the
kian almost for a magnitude of order (kg, = 11.40). Not only applying
Equations 5 could not result in the generation of satisfying k4 but also in
cases of A and E it has caused more deviations. kg, for the results of
applying Equations 5 is 22,31, While using Equation 6 can make the
resultant k, close to lab measurements (kg = 4.10), the calculated k4
by Equation 3 are eye-catchingly similar to ki, (kra = 1.82). It should
noticeably be considered that applying Equation 3 to estimate k, results
in more deviations in comparison with using other methods. In fact, the
implementation of Equation 3 leads to the generation of satisfying re-
sults only if the supposed case study has ¢, greater than a specific
threshold. In more detail (Orlov et al., 2021), have shown that if the ¢, is
greater than 5%, then it is possible to conduct the correction method.

Additionally, the quality of linear regression among the generated k4
and kg is the other point of comparison between the result of using
Equation 3 and Equation 6, Fig. 11. The results of R? = 0.9942 shows
that the model fits the data very well. Above and beyond, the calcula-
tions based on Equation 3 shown in part (b) not just caused the gen-
eration of results close to lab measurements (kz, = 1.82); they can still
fit the data perfectly by the R? of 0.9812. As depicted in part (c), results
generated by Equation 6 does not fit data well (R* = 0.7695) although
the generated k, are closer to kjg than k;.

Finally, the cross-plot analysis of all computed data has been carried
out and performed in Fig. 12. It can be observed that petrophysical
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Fig. 12. The cross-plot of permeability vs. porosities.

parameters computed directly based on the available pxCT images are
required to be shifted both horizontally and vertically to be as close as
possible to the experimental values. It can be interpreted that the esti-
mation of ¢, by means of downsampling has been successful enough.
However, it could be inferred that applying methods based on removing
biases is more useful than using correlation to map ¢, to the appropriate
ka. It is due to the fact the proposed method makes attempt to remove
the referred biases from the early stages of DIP, and correct the model
before running the permeability computations. Comparing the slope and
intercept of the exponential trendline fitted to the data generated by
using Equation 3 are closer to the same values of the trendline gener-
ated by lab measurements than other methods.

4. Conclusion

The energy supply in the future can be guaranteed by the adequate
development of tight hydrocarbon resources. The DRP is one of the most
effective methods to determine petrophysical parameters. However, the
classical DRP cannot generate results close enough to lab measurements
in tight porous media because the pxCT images cannot show the sub-
micron pores properly.

Therefore, it is required to employ auxiliary methods to take the
effects of sub-resolved pores into account and estimate the core-scale
permeability and porosity based on pxCT images. Downsampling has
been remarked as a DIP technique that synthetically can reduce the
spatial resolution of supposed images without their physical dimensions.
Measuring the model’s porosity after each step of downsampling with
different kernel sizes and fitting an exponential trendline into the scatter
data provides the opportunity to estimate the porosity at 0 pm/vox
which is the highest theoretical resolution including the pores with all
possible sizes. It must be underlined that using the proposed workflow
useful if ¢; is greater than 5%. The resultant ¢; and ¢, can be taken to
calculate the inherent bias of DIP. Then, it is possible to calculate the
actual permeability for samples whose k; have already been calculated.
The analysis shows that the proposed workflow to determine the
porosity and permeability with the consideration of sub-resolved pores
can generate results that strongly agree with the lab measurements. On
the topic of sub-resolved pores, multi-scale modeling is globally recog-
nized as a standard workflow to characterize petrophysical parameters
(Zhao et al., 2018; Wu et al., 2019). Table 4 provides a comparison
between this happening often method in the literature and the proposed
approach, which takes advantage of downsampling.

Table 4
The advantages of the proposed approach versus multi-scale modeling.

Requirement Proposed Approach Multi-scale Modeling

Scans with different = +

resolutions
Registration - +
3D model Binary, only connected Segmented, high
pores do matter uncertainties
due to upscaling
Computations Only 1 time permeability Computations on different

computation scales
for large models
(= 2000 voxels)

on a 14007 voxel model
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