

Skolkovo Institute of Science and Technology

A DECISION SUPPORT SYSTEM FOR AGILE DEVELOPMENT

OF COMPLEX HARDWARE SYSTEMS

Doctoral Thesis

by

NICOLA GARZANITI

DOCTORAL PROGRAM IN ENGINEERING SYSTEMS

Supervisor

Associate Professor Alessandro Golkar

Co-Supervisor

Professor Clément Fortin

Moscow - 2021

© Nicola Garzaniti 2021

This page intentionally left blank

 “faber est suae quisque fortunae”

 Appius Claudius Caecus

This page intentionally left blank

I hereby declare that the work presented in this thesis

was carried out by myself at Skolkovo Institute of

Science and Technology, Moscow, except where due

acknowledgement is made, and has not been submitted

for any other degree.

Candidate (Nicola Garzaniti)

Supervisor (Prof. Alessandro Golkar)

Co-Supervisor (Prof. Clément Fortin)

This page intentionally left blank

I

Abstract

This thesis presents a decision support system for Agile development of complex hardware systems.

Agile is a general term covering different yet somehow similar methods that have evolved within

the software community and find their foundations in the Manifesto for Agile Software

Development. Over the last two decades, Agile approaches have gradually spread from the software

domain to the development of physical products. With this spread over different engineering

domains, the product development community started discussing the actual viability of

implementing Agile in the context of hardware systems development.

This work aims to contribute to the current debate on the topic by developing a framework

to the viability of implementing Agile vs. Traditional or Hybrid product development process.

Thus, provide structuring and planning of the resulting development process. It includes an

analytical approach to managing development activities and consists of three macroblocks:

structuring, simulating, and planning. The framework is implemented in an integrated tool.

Within the framework development, several challenges entailed by engineering teams

adopting Agile have been addressed, such as the Sprint planning, the Minimum Viable Product in

the context of hardware systems, the question of the procurement and manufacturing, and the

coordination aspect with potential development partners not implementing agile.

Then the framework has been applied to a set of case studies to verify its capabilities in

different industry contexts. In the case studies, it has been considered the development of a space

system as well as the development of a consumer product. The analysis conducted within the case

studies also provided valuable insights on the contextual factors enabling Agile implementation.

II

System modularity, supplier selection, team composition, location, and synchronization

play a key role in the feasibility of Agile/Hybrid-Agile approach implementation. Modularity is

crucial for the effective implementation of Agile because it drives both the cost and time of

iterations. Typically, high modularity allows for more and faster iterations. Team composition,

location, and synchronization may enable or hamper the possibility of iterative, incremental

development. As demonstrated in the first case study, co-located cross-functional teams represent

an effective setting for implementing Agile. While, as discussed in the second case study, highly

dispersed functional teams are not ideal for Agile adoption. Supplier selection and supply chain

management, in general, driving the time and the cost of procuring/manufacturing physical

components, affect the feasibility of iterative, incremental development. Long lead-time items or

expensive custom components hinder effective Agile implementation. A misguided combination

of all those factors may completely overturn potential advantages in cost or schedule brought by

Agile.

III

Publications

Journal Articles

▪ N. Garzaniti, Z. Tekic, D. Kukolj, A. Golkar, “Review of Technology Trends in New Space

Missions using a Patent Analytics Approach”, Progress in Aerospace Sciences, 2021, vol. 125,

p. 100727, Aug. 2021, doi: 10.1016/J.PAEROSCI.2021.100727

▪ N. Garzaniti, A. Golkar and P. Maggiore, “Additive Manufacturing Evaluation Tool for

Design Studies,” in IEEE Systems Journal, vol. 14, no. 3, pp. 4382-4393, Sept. 2020,

doi: 10.1109/JSYST.2019.2939906.

Conference Papers

▪ N. Garzaniti and A. Golkar, “Performance Assessment of Agile Hardware Co-development

Process,” in 2020 IEEE International Symposium on Systems Engineering (ISSE), 2020, pp 1-

6, doi: 10.1109/ISSE49799.2020.9272209.

▪ A. Golkar, S. Briatore, and N. Garzaniti, “Lessons learnt in the deployment of scrum in space

hardware development projects,” in Proceedings of the International Astronautical Congress

(IAC), 2019, IAC-19_D1_5_6_x51187.

▪ N. Garzaniti, C. Fortin, and A. Golkar, “Toward a Hybrid Agile Product Development

Process,” in IFIP Advances in Information and Communication Technology (PLM Conference

2019), 2019, vol. 565 IFIP, pp. 191–200, doi: 10.1007/978-3-030-42250-9_18.

▪ N. Garzaniti, S. Briatore, C. Fortin, and A. Golkar, “Effectiveness of the Scrum Methodology

for Agile Development of Space Hardware,” in IEEE Aerospace Conference Proceedings,

2019, vol. 2019-March, pp. 1–8, doi: 10.1109/AERO.2019.8741892.

▪ A. Camps et al., “FSSCAT, the 2017 copernicus masters’ ‘ESA sentinel small satellite

challenge’ winner: A federated polar and soil moisture tandem mission based on 6U Cubesats,”

in IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2018, vol. 2018-

July, pp. 8285–8287, doi: 10.1109/IGARSS.2018.8518405.

▪ N. Garzaniti, A. Golkar, and C. Fortin, “Optimisation of multi-part 3D printing build strategies

for lean product and process development,” in IFIP Advances in Information and

Communication Technology (PLM Conference 2018), 2018, vol. 540, pp. 488–497, doi:

10.1007/978-3-030-01614-2_45.

IV

Other publications

Journal Articles

▪ J. A. Ruiz-de-Azua, N. Garzaniti, A. Golkar, A. Calveras, and A. Camps, “Towards Federated

Satellite Systems and Internet of Satellites:The Federation Deployment Control Protocol,”

Remote Sensing, vol. 13, no. 5, p. 982-1003, March 2021, doi: doi.org/10.3390/rs13050982.

▪ K. Latyshev, N. Garzaniti, E. Crawley, and A. Golkar, “Lunar human landing system

architecture tradespace modeling,” Acta Astronautica, vol. 181, Pages 352-361, April 2021,

doi: 10.1016/j.actaastro.2021.01.015.

Conference Papers

▪ A. Camps et al., “FSSCAT Mission description and first scientific results of the FMPL-2

onboard 3CAT-5/A,” in IEEE International Geoscience and Remote Sensing Symposium

(IGARSS), 2021, vol. 2021-July

▪ K. Latyshev, N. Garzaniti, A. Golkar, and E. F. Crawley, “Technology Roadmap for Future

Human Landing Systems,” in ASCEND 2020, 2020, pp 1-18 doi: 10.2514/6.2020-4229.

▪ K. Osipova, N. Garzaniti, S. Briatore, and A. Golkar, “Systems architecture study of satellite

constellations for internet of things connectivity”, in Proceedings of the International

Astronautical Congress (IAC), 2020, IAC-20,D1,2,6,x58770

▪ J. A. Ruiz-De-Azua et al., “Demonstration of the Federated Satellite Systems Concept for

Future Earth Observation Satellite Missions,” in International Geoscience and Remote Sensing

Symposium (IGARSS), 2020, pp. 3574–3577, doi: 10.1109/IGARSS39084.2020.9323066.

▪ A. Golkar and N. Garzaniti, “Model based systems engineering approach to technology

roadmapping,” in Proceedings of the 2020 Summer Simulation Conference (SummerSim),

2020, pp. 1–12, doi: 10.5555/3427510.3427536.

▪ J. A. Ruiz-de-Azua et al., “Proof-of-Concept of a Federated Satellite System Between Two 6-

Unit CubeSats for Distributed Earth Observation Satellite Systems,” IEEE International

Geoscience and Remote Sensing Symposium (IGARSS), 2019, vol. 2019-July, pp. 8871–8874,

doi: 10.1109/igarss.2019.8900099.

▪ S. Briatore, N. Garzaniti, and A. Golkar, “Towards the Internet for Space: bringing cloud

computing to space systems,” in 36th International Satellite Communications Systems

Conference (ICSSC2018), 2018, pp. 38 - 42, doi: 10.1049/cp.2018.1719.

V

Table of Contents

Abstract .. I

Publications ..III

Table of Contents .. V

List of Symbols and Abbreviations ... IX

List of figures .. XI

List of tables ... XV

 Introduction ..1

1.1 Motivation ...2

1.2 Scope of the research ..5

1.3 Thesis objectives ...7

1.4 Research Questions and Hypothesis ...9

1.5 Thesis Structure...10

1.6 Research methodology ..11

 Background ..13

2.1 Agile methodology and operational frameworks ..13

2.2 Scrum: an overview ..14

2.2.1 Roles artifacts and events ...16

2.2.2 Iterations ...19

2.2.3 Minimum Viable Product definition ...21

2.2.4 Sprint planning ...22

2.3 Product development processes in the literature ...24

2.3.1 The State-Gate process ...25

Table of Contents

VI

2.3.2 Agile for hardware ..27

2.3.3 Hybrid-Agile approaches ..28

2.4 Catalog of gaps in the literature ..29

2.5 An industry perspective ..31

2.5.1 New Space and the question of the product development31

2.5.2 Mission overview ...32

2.5.3 Using “traditional” Scrum ..34

2.5.4 Support tools ...37

2.5.5 Scrum implementation ..38

2.5.6 MVP: Customer feedback and technology de-risking ..41

2.5.7 Hardware vs. Software: the question of the procurement42

2.5.8 Testing and the question of quality assurance ..43

2.5.9 Reactivity to unforeseen design changes ..44

2.5.10 The human factor ..44

2.5.11 Agile manifesto vs. complex hardware systems ...46

2.5.12 Catalog of gaps, challenges ..46

2.6 Summary of literature review and industry evaluation ...48

 A decision support system ..51

3.1 Structuring ...54

3.1.1 Product backlog architecture ..54

3.1.2 Scoring system: time and cost estimates ..56

3.1.3 Resource availability and disciplines involved ...58

3.1.4 Hybrid-Agile in multiparty consortia ...59

3.1.5 Agile implementation viability ...60

Table of Contents

VII

3.2 Simulation ...66

3.3 Planning ..70

3.3.1 Continuous process tracking and improvement ..74

3.3.2 MVP ...76

3.4 Illustrative case ...78

3.4.1 Process Structuring ...78

3.4.2 Simulation ...81

3.4.3 Planning ..83

3.4.4 Comparison with traditional project management approaches87

3.5 Validity of the decision support system ..91

3.5.1 Process model validity ..91

3.5.2 Data model validity ..93

3.5.3 Graphical User Interface validity ...95

3.5.4 DSS general validity ...96

3.5.5 Face validity ...99

3.6 Deployment in development projects..100

 Cast study: New Space mission payload ..105

4.1 General case study data ...106

4.2 Organizational structure ..108

4.3 Agile in the development process, motivation for Agile adoption109

4.4 CURSIVE deployment ..110

4.4.1 Process Structuring ...110

4.4.2 Simulation ...115

4.4.3 Planning ..118

Table of Contents

VIII

4.5 Process Insights ...121

4.6 Summary and interim conclusion ...124

 Cast study: A consumer product ..129

5.1 General case study data ...130

5.2 Organizational structure ..132

5.3 Agile in the development process, motivation for Agile adoption133

5.4 CURSIVE deployment ..133

5.4.1 Process Structuring ...133

5.4.2 Simulation ...138

5.4.3 Planning ..140

5.5 Process insights ...141

5.6 Summary and interim conclusion ...145

 Conclusion ..151

6.1 Thesis summary ..151

6.2 Thesis Contributions ...154

6.3 Limitations and Future Work ..157

References ..159

IX

List of Symbols and Abbreviations

AIT Assembly, Integration, and Testing

CAPEX Capital Expenditure

CPM Critical Path Method

DAR design-analyze-redesign

DMTR design-manufacture-test-redesign

DRM Design Research Methodology

DSM Design Structure <atrix

DSS decision support system

FCM Fuzzy C-means

FPGA Field Programmable Gate Array

FTE Full-time equivalent

INCOSE International Council on Systems Engineering

MBSE Model-Based System Engineering

MRD Mission Requirements Document

MVP Minimum Viable Product,

NPD new product development

O-ISL Optical Inter-Satellite Link

OPEX Operating Expense

PCB Printed Circuit Board

PDF Probability Density Functions

PDP Product Development Process

PDR Preliminary Design Review

List of Symbols and Abbreviations

X

PERT Project Evaluation Review Technique

RCPS Resource-Constrained Project Scheduling

RF Radio frequency

SMEs Small and Medium-sized Enterprises

SRD System Requirements Document

TRL Technology Readiness Level

V&V Verification and Validation

VUCA Uncertain, Volatile, Complex, and Ambiguous

XI

List of figures

Figure 1. Expected value of Agile hardware development, data source (Schmidt et al., 2018b)3

Figure 2. Currently available Agile frameworks and practices ..4

Figure 3. Relation to fields of knowledge ..6

Figure 4. Life cycle stages from ISO/IEC 15288 (ISO/IEC JTC 1/SC 7, 2015).7

Figure 5. DRM framework adapted from (Blessing & Chakrabarti, 2009)12

Figure 6. Graphical representation of Scrum methodology, sources (Garzaniti et al., 2019b)15

Figure 7. Sprint burndown chart ...22

Figure 8. Map of the Product development literature ...24

Figure 9. A representation of the Stage-Gate model ..26

Figure 10. Use case Project Life Cycle (design, development, and integrations stages)33

Figure 11. Functional block diagram of the payload, source (Garzaniti et al., 2019a)34

Figure 12. User stories with scores and preliminary tasks prioritization on a physical Kanboard .36

Figure 13. Example of Jira user interface ...37

Figure 14. Sprint length ..38

Figure 15. Planned story points per day for each Sprint...39

Figure 16. Percentage of work completed per Sprint ...41

Figure 17. Example of workflow to realize an MVP, source (Garzaniti et al., 2019b)42

Figure 18.Qualification model vibration test (left), proto-flight model TVAC test (right)43

Figure 19. CURSIVE macroblocks ..52

Figure 20. Workflow of proposed framework ..53

Figure 21. Notional example of DSM product backlog architecture ...55

List of figures

XII

Figure 22. Complementary information provided within the product backlog architecture58

Figure 23. Hybrid product development process architecture ..59

Figure 24. Survey data on sprint length, committed user stories and team composition63

Figure 25. Agile Implementation Viability Chart ..65

Figure 26. Notional example of activities network ..66

Figure 27. Schematic representation of simulation process ...67

Figure 28. Output dashboard of scenario analysis ..69

Figure 29. Output dashboard of the planning phase ...72

Figure 30. Continuous process tracking and improvement ..74

Figure 31. Product backlog architecture updates ..75

Figure 32. MVP mapping: V&V vs. Sprint length ...77

Figure 33. Artistic representation of an X-Band transmitter, source (EnduroSat, 2021)78

Figure 34. Illustrative case – product backlog architecture ..79

Figure 35 Illustrative case ..80

Figure 36. Illustrative case – Agile viability indexes ...80

Figure 37. Mean and variance over the number of simulations ...81

Figure 38. Illustrative case - Simulation output ...82

Figure 39. Illustrative case - Gantt chart ..83

Figure 40. Illustrative case - Sprints Backlog ...84

Figure 41. Illustrative case - Sprint sequence and costs ...85

Figure 42. Illustrative case - Tasks Time and Cost Breakdown ...86

Figure 43 PERT (activities on nodes), CPM in red ..89

Figure 44. Time distribution for RCPS ..90

Figure 45. Framework for evaluating DSS validity ...92

List of figures

XIII

Figure 46. DSS general validity elements ..96

Figure 47. General case study data collection format (1) ...102

Figure 48. General case study data collection format (2) ...103

Figure 49. Case A – Organization of the development team ..108

Figure 50. Input DSM for development of the optical telecommunication payload111

Figure 51. Case study A - Complementary information ..112

Figure 52. Case A – Agile Implementation viability ..113

Figure 53. Mean and variance over the number of simulations ...115

Figure 54. Case A - Simulation output ...116

Figure 55. Schedule Target vs time distribution of simulated scenarios117

Figure 56. Case A- Overall Schedule. ..117

Figure 57. Gantt chart of the baseline scenario meeting budget and time constraints118

Figure 58. Case A - Sprint backlog ..119

Figure 59. Sprint sequence and cost Breakdown ..120

Figure 60. Case A - Tasks Cost Breakdown ...121

Figure 61. Case A - Tasks Time Breakdown ..122

Figure 62. Degree of modularity ..127

Figure 63. Case B – Organization of the development teams ..132

Figure 64. Input DSM for development of the household appliance ...134

Figure 65. Case study B - Complementary information ...135

Figure 66. Case B – Agile Implementation viability ..136

Figure 67. Product DSM of the household appliance ...137

Figure 68. Mean and variance over the number of simulations ...138

Figure 69. Case B - Simulation output ...139

List of figures

XIV

Figure 70. Case B- Gantt chart of the baseline scenario meeting time constraints140

Figure 71. Case B - Comparison of different scenarios..141

Figure 72. Case B - Tasks Time Breakdown ..141

Figure 73. Summary of Process insights ..142

Figure 74. Suggested optimization ...142

Figure 75. Case B – Simulation output of optimized process structure143

Figure 76. Recommended strategy ...144

Figure 77. Degree of modularity ..149

XV

List of tables

Table 1. Scrum framework elements ..16

Table 2. Scrum Events ..18

Table 3. Agile manifesto vs. hardware systems development ..46

Table 4. Catalog of gaps, challenges ..47

Table 5 Taxonomy of MVP ..77

Table 6: Map of MVPs related to the MVP taxonomy ...85

Table 7 PERT data (durations are presented in days)...88

Table 8. Running time ..98

Table 9. Data collection methods ...101

Table 10. Map of MVPs related to the MVP taxonomy ...123

XVI

This page intentionally left blank

1

 Introduction

High quality, low cost, and unique selling propositions are not enough to excel in today’s

competitive market. Also speed and flexibility are essential in the development of new products

(Takeuchi & Nonaka, 1986).

In a 1986 edition of Harvard Business Review, Takeuchi and Nonaka published a seminal

research work stating that the rules of the game in new product development were changing,

highlighting the need for increased speed and flexibility. After thirty-five years from that

publication, the statement seems more relevant than ever.

Organizations are under constant pressure to create and sustain their competitive

advantage. Since commercial markets are moving faster and faster and product life cycles are

getting shorter, time is becoming a strategic source of competitive advantage. Furthermore, the

product development process is continuously bullied by customer behavior changes, technological

breakthroughs, competitors’ initiatives, disruptions in the supply chain, and internal organizational

contingencies.

These are the conditions project managers and development teams currently face at the

beginning of a new project and are the starting point of this research work.

“In today’s fast-paced, fiercely competitive

world of commercial new product development,

speed and flexibility are essential. […] This

new emphasis on speed and flexibility calls for

a different approach for managing new product

development”.

(Takeuchi & Nonaka, 1986)

Chapter 1. Introduction

2

1.1 Motivation

Companies in all industries are increasingly facing the challenge of implementing development

projects under uncertain, volatile, complex, and ambiguous (VUCA) conditions. A need for new

development methodologies to deal with such circumstances is generally acknowledged.

This need is driving companies to focus on streamlining the product development

processes. In particular, there is a growing interest in Agile methodologies. Agile is a general term

covering diverse yet somehow similar methods that have evolved within the software community

and find their foundations in the Manifesto for Agile Software Development (Beck et al., 2001).

This year, the Agile Manifesto is celebrating its twentieth anniversary, and over the last

two decades, Agile approaches have gradually spread from the software domain to the development

of physical products. The increasing interest toward Agile has been fired by the growing number

of published success stories, which typically report that Agile has shortened the time-to-market,

improved the development process efficiency, and enhanced the product fit to the customer needs

(Recker et al., 2017).

Although some skepticism exists whether agility can actually realize its potential in the

domain of physical product, naturally characterized by different constraints and contractions

compared to software, the euphoria seems to outstrip the skepticism in many companies. Scientific

literature, as well as industry reports and surveys, provide hints that a considerable number of

organizations have started adopting Agile methods for physical product development in real

industrial settings (Digital.ai & VersionOne Inc., 2020; KPMG, 2019).

However, while organizations started the Agile transition, there is still little evidence of

consistent delivery of the purported benefits across different engineering projects. To date, there is

1.1 Motivation

3

much anecdotal evidence on the improvements Agile provides to development process

performance, but empirical proofs are mixed and hard to find (Serrador & Pinto, 2015). The

question of whether Agile can truly fulfill its promise in complex hardware developments has not

yet found a conclusive answer.

The lack of quantitative analyses and empirical evidence comes together with a different

understanding of Agile development between academia and industry. On the one hand, academia

has focused on the teams’ dynamics and the social aspects of the development process (Chuang et

al., 2014), which we will call soft aspects. On the other hand, industry interest relates to reducing

development time and cost (which we will call hard aspects). According to a sector study on the

Agile Development of Physical Products (Schmidt et al., 2018b), 73% of the interviewees expect

Agile development to reduce the time-to-market, 76% expect to increase project effectiveness

(Figure 1). Of course, the book title “Scrum: The art of doing twice the work in half the time”

(Sutherland, 2014), one of the most famous references among corporate-level managers and

consultants, certainly does not help mitigate the hype and overcome the misinterpretation.

Figure 1. Expected value of Agile hardware development, data source (Schmidt et al., 2018b)

0%

25%

50%

75%

100%

4 3 2 1 0 NA

n=83

4=large value, 0= no value

Chapter 1. Introduction

4

The unclear effect of Agile on project performance, combined with the need for new

methods to develop projects under VUCA conditions, has led to a proliferation of Agile frameworks

and practices. At the time of writing this thesis, we have identified forty-five different operational

frameworks and practices (Figure 2). Each of them addresses and tries to solve specific issues

pertaining to the development process (e.g., issue: continuous process improvement and

incorporation of lessons learned within the ongoing project; Practice: Sprint retrospective;

Framework: Scrum), and each of them can serve well some situation while may not suit some

others.

Figure 2. Currently available Agile frameworks and practices

Despite the wide selection of frameworks and practices, organizations still struggle to

identify a development process structure that best fits their needs. Some organizations, enticed by

the success stories hype, try to seamlessly implement Agile methods in their development process

without accounting for both organizational and product boundary conditions. However, high

expectations can lead to over-ambitious goal setting, and together with success stories, often comes

an equal (if not greater) number of failures (Atzberger et al., 2019).

45 AGILE

METHODS

1.2 Scope of the research

5

Some other companies, relying on their cultural legacy, fall back on classic plan-driven

approaches such as the Stage-Gate (Cooper, 1990) approach or the V-Model (INCOSE, 2015),

which often reveal to be too cumbersome and inflexible in dealing with fast-paced and ever-

changing market conditions.

Both situations lead to frustration, schedule and cost overrun, waste of resources, and

sometimes project failure. Empirical evidence (Garzaniti et al., 2019a; Golkar et al., 2019) suggests

that the root of such troubles is not the lack of systematic methods to develop products but rather

the inability to exploit available approaches tailoring the process to the specific project context and

system features. Every development project is different, has its own peculiarities (i.e., product and

process boundary conditions), and presents different challenges.

Therefore, it has been identified the need for a methodology to support the structuring of

Agile or Hybrid-Agile product development for hardware systems (Garzaniti et al., 2019b),

underpinning the decision-making process by quantitative analyses and statistical evidence. Such a

decision support system shall benchmark different development process structures. It shall evaluate

cost, schedule, and quality for each PDP structure and eventually offer suggestions to tailor the

process to the specific project context and system features.

1.2 Scope of the research

This research is related to four fields of knowledge (Figure 3). The focus lies on the

intersection of New Product Development, Project Management, Systems engineering, and design

research disciplines.

Systems engineering is an “interdisciplinary approach and means to enable the realization

of successful systems” (INCOSE, 2015). As a discipline, it offers valuable aids in managing

Chapter 1. Introduction

6

complexity in both technical and organizational processes. This work exploits the benefits of such

approaches while facing the challenges of managing the lifecycle of products.

Figure 3. Relation to fields of knowledge

The second pillar of our research is the field of New Product Development (NPD).

Generally speaking, NPD covers the entire process of bringing a new product to market or renewing

an existing product. According to the ISO/IEC 15288, the product development stage includes all

the activities required to move a product from the concept stage to the ramp-up or full-scale

production stage (ISO/IEC JTC 1/SC 7, 2015). Figure 4 shows the positioning of this research

within the overall product lifecycle stages. This work investigates the possibility of effectively

implementing Agile development for complex hardware systems. It assesses the performance of

Agile for hardware and explores the possibility of its integration with traditional development

processes such as the Stage-Gate or the V-model.

The third pillar is the project management discipline. A complex development project

typically involves hundreds of tasks executed by a network of professionals from various

New Product
Development

Systems
Engineering

Design
research

Project
Management

Scope

1.3 Thesis objectives

7

disciplines and probably from multiple organizations. As project complexity increases, it becomes

more challenging to manage the interactions among tasks, people, and all involved parties. It may

be almost impossible to predict the impact of a single design decision over the whole development

process. For this reason, project management techniques have traditionally played a key role in the

successful execution of complex projects.

Figure 4. Life cycle stages from ISO/IEC 15288 (ISO/IEC JTC 1/SC 7, 2015). In green the stage covered by our work.

Finally, the thesis engages in design research and adopts the Design Research Methodology

(Blessing & Chakrabarti, 2009) to formulate, develop and validate our methodology and related

tools.

1.3 Thesis objectives

The motivation section acknowledged the need for new development methodologies to deal with

VUCA conditions. According to the current debate within the product development community,

LIFE CYCLE STAGES PURPOSE

CONCEPT

Identify stakeholders’ needs

Explore concepts

Propose viable solutions

DEVELOPMENT

Refine system requirements

Create solution description

Build system

Verify and validate system

PRODUCTION
Produce systems

Inspect and test [verify]

UTILIZATION Operate system to satisfy users’ needs

SUPPORT Provide sustained system capability

RETIREMENT Store, archive, or dispose of the system

Concept stage Development stage
Production

stage

Utilization stage

Support stage

Retirement
stage

Chapter 1. Introduction

8

Agile might represent a solution to such a concern. For this reason, several organizations have

started adopting Agile methods in the development of physical products (Digital.ai & VersionOne

Inc., 2020; KPMG, 2019). Nevertheless, despite the proliferation of Agile frameworks and

practices, there is still little evidence of consistent delivery of the purported benefits (Schmidt et

al., 2018b, 2019). Other companies, led by the skepticism toward Agile, fall back on traditional

plan-driven approaches, which revealed to be unsuitable in dealing with fast-paced development

conditions.

In light of the two outlined perspectives, the research has two specific objectives.

Goal 1

To support project managers and engineering teams in understanding when and

how to use Agile within the development process of a complex hardware system.

Goal 2

To support project managers and engineering teams in structuring and executing

Agile or Hybrid-Agile methods within product development projects.

This first goal is of conceptual nature and tries to address the rationale for implementing

different degrees of agility within a given development process. The second goal tries to answer a

clear industry need. The industry is seeking an integrated methodology, adopting transparent

criteria, implemented in an easy-to-use tool.

1.4 Research Questions and Hypothesis

9

1.4 Research Questions and Hypothesis

According to the objectives set out, this research aims to answer the following research questions.

RQ 1

How to understand when and how to use Agile methods within the development

process physical systems based on the specific project context and system features?

The concept of understanding relates to the formulation of metrics and tools that, based on

available project and system data, are able to provide an indication of the most suitable development

process. Specifically, it is required to define metrics and related thresholds in terms of cost and time

to recommend the use of Agile, Hybrid-Agile or traditional development processes. Then use this

information to reason on the optimal level of tasks granularity to enable the implementation of

Agile and the level of system modularity that best fit the Agile PDP.

RQ 2

How to support project managers and engineering teams in structuring and

executing Agile or Hybrid-Agile methods within product development projects?

The concept of support relates to the infrastructure (methods and tools) required to enhance

the effectiveness of Agile methods for physical systems development. To answer this question, we

need to address the problem of minimum viable products (MVP) definition, the procurement and

manufacturing management in the Agile context, the resource allocation and leveling, and the

coordination aspects with consortium participants for hybrid Agile product development.

Chapter 1. Introduction

10

The research relies on the hypothesis that: as systems can have several architectures, and,

among those, one will best fit customer needs, so product development processes can have different

structures and, among those, one might best fit project targets and constraints.

1.5 Thesis Structure

The thesis is organized as follows.

Chapter 1 provides an introduction to the thesis, introduces the problem, and explains the

motivation for the research work. Chapter 1 also explains the research objectives and presents the

research questions.

Chapter 2 reviews the state of the art of the bodies of knowledge framing the research

work. It provides the theoretical foundation of Agile theory, and particularly of Agile Scrum. It

offers an overview of the product development literature, emphasizing the traditional stage-gate

approach, and discusses currently available project management techniques. In Chapter 2, the

literature survey is also complemented with a field research study to validate the gaps identified in

the literature, thus better informing the research questions.

Chapter 3 presents the approach. It discusses the formulation of the decision support

system in detail, mapping the approach steps to the gaps identified in the literature. Then, the

framework is applied to an illustrative case. The objective is to demonstrate the use of such a system

step by step. As an example case, a relatively simple product, like a software-defined X-Band

transmitter for CubeSat, has been chosen. The example is also used to compare the proposed

framework with traditional project management methods and tools. Following the illustrative case,

the decision support system validity is addressed. The different validity aspects are discussed,

1.6 Research methodology

11

including the validity of the process model, the data model, the graphical user interface, as well as

the general and face validity.

Chapter 4 presents the framework applied to the first case study. The objective is to verify

the capability of the system. The chapter describes all the steps of the framework deployment over

the project and evaluates how the system supports engineering teams, thus meets research goals

and research questions. This first case study also has the objective to validate the methodology to

some extent.

Chapter 5 presents the framework applied to the second case study. The objective is to

verify the capability of our system in a different industry context as well as a different

organizational structure. The chapter goes through the framework deployment steps over the project

and presents how the system supports engineering teams, thus meets research goals and research

questions.

Chapter 6 draws the conclusion. It summarizes the main outcomes of the research work,

highlighting the contribution to the knowledge and the contribution to the practice. Lastly, it states

the limitation of this work and sets the basis for future work.

1.6 Research methodology

The research approach adopted relies on the Design Research Methodology (DRM) (Blessing &

Chakrabarti, 2009), as presented in Figure 5.

Chapter 1. Introduction

12

Figure 5. DRM framework adapted from (Blessing & Chakrabarti, 2009)

The chapters are mapped to the DRM methodology as follows.

1. Chapter 1 and Chapter 2 refer to the Research Clarification stage.

2. Section 2.5 discusses the field research and relates to the Descriptive study I.

3. Chapter 3 presents the approach and relates to the Prescriptive Study I

4. Chapter 4 and Chapter 5 present the case studies. These chapters evaluate the

performance of our system and verify its capabilities. Finally, chapter 6 draws the

conclusion. All these chapters relate to the Descriptive study II.

STAGES

Research Clarification
Investigation Method: literature review

Goal: to review the state of the art and identify the gap in the current literature

Descriptive study I
Investigation Method: experimental data analysis

Goal: to review the state of the practice and identify industry needs

Prescriptive study
Investigation Method: modelling and simulation

Goal: to develop a decision support system

Descriptive study II: verification and validation
Investigation Method: Implementation and verification of the framework on a
set of case studies. Iteration based on the lessons learnt

Goal: Validation of the methodology prosed

13

 Background

This chapter reviews the state of the art of the bodies of knowledge framing our research work. It

provides the theoretical and practical foundation of Agile theory, with a particular emphasis on

Agile Scrum. The following sections review traditional product development approaches with a

particular focus on the stage-gate model and discuss currently available project management

techniques, contextualizing them in the problem of interest. This chapter also reports the field

research study conducted to get additional insights into current challenges in implementing Agile

for hardware, thus better inform the review. Following the literature review, the gap in the state-of-

the-art is identified, and the scientific contribution of this work is defined.

2.1 Agile methodology and operational frameworks

Agile methodologies are based on the concept of “iterative enhancement” (Larman & Basili, 2003).

Unlike the Spiral model (Boehm, 1988), Agile attempts to simplify the development practices,

bringing flexibility at all levels of the lifecycle (Bott & Mesmer, 2020).

In essence, Agile is a very granular way to organize the work. It leverages short iterations

and self-organized cross-functional teams. Iterations are typically self-contained mini-projects with

“Dicebat Bernardus Carnotensis nos esse quasi

nanos gigantium humeris insidentes, ut possimus

plura eis et remotiora videre, non utique proprii

visus acumine, aut eminentia corporis, sed quia

in altum subvehimur et extollimur magnitudine

gigantea”.

(John of Salisbury, 1159)

Chapter 2. Background

14

activities spanning from system design to manufacturing, assembling, and testing. Each iteration

leads to a product release as a growing and an evolving subset of the final system. Short iterations

are the key to getting early feedback from customers, discovering defects at all levels of

development, and getting new knowledge for product refinement and requirements adaptation.

Agile finds its foundations in the Manifesto for Agile Software Development (Beck et al.,

2001) and encompasses several operational frameworks (Al-Zewairi et al., 2017; Ozkan et al.,

2020), including Adaptive Software Development (ASD), Agile Unified Process (AUP), Crystal

Methods, Dynamic Systems Development Methodology (DSDM), Extreme Programming (XP),

Feature Driven Development (FDD), Kanban, Scrum. This research considers the use of Scrum.

2.2 Scrum: an overview

Scrum (Schwaber & Beedle, 2001) is one of the most popular operational frameworks. The

framework is constantly evolving; therefore, the two founding authors regularly publish an updated

edition of their Scrum guide. The overview we provide in this section mostly relies on the latest

Scrum guide published in 2020 (Schwaber & Sutherland, 2020).

Before going into details, however, we need some clarification on the nomenclature. The

literature may use the word “Scrum,” referring to a method, a process, a methodology, a concept,

a set of rules, and even a mindset. This fragmentation of the nomenclature generally causes some

confusion.

Scrum is not a method. INCOSE defined method as a set of “techniques for performing a

task; in other words, it defines the “how” of each task” (Estefan, 2008). Scrum does not offer much

guidance in how to perform the actual development activities.

2.2 Scrum: an overview

15

Scrum is not a process in a technical sense of the word. A process is typically based on

series of actions or repetition of steps taken to achieve a particular and repeatable outcome. Since

Scrum has some adapting capabilities to the project context, the term process might not be the most

appropriate one.

Someone might refer to Scrum as a methodology. However, a methodology is essentially

a collection of related processes, methods, and tools (Estefan, 2008), and since Scrum lacks process

and methods, it is not a methodology. Scrum is not a concept but rather a practice. Scrum is a

framework because it merely frames a set of principles, activities, and tools.

Scrum includes a set of micro-planning tools and strategies aimed at getting a working end-

product quickly. The rhythm of the development is marked by short, iterative, incremental Sprints

(i.e., a given development time range) with the objective to deliver a Minimum Viable Product

(MVP) at the end of each Sprint (Figure 6).

Figure 6. Graphical representation of Scrum methodology, sources (Garzaniti et al., 2019b)

24h

Sprint

1 to 4 weeks

Sprint

Sprint

Backlog

Product

Backlog

Sprint

Planning

Meeting

MVP

Sprint review

Sprint retrospective

Sprint

Chapter 2. Background

16

2.2.1 Roles artifacts and events

The Scrum framework consists of three main elements: roles, meetings, and artifacts.

Table 1. Scrum framework elements

Roles Product Owner, Development Team, and Scrum Master

Events Sprint Planning, Daily Scrum, Sprint Review, and Retrospective

Artifacts Product Backlog, the Sprint Backlog, and Product Increment

Roles: Product Owner

The Product Owner is responsible for maximizing the product value delivered to the customer. In

some cases, even be the customer itself can be the Product Owner. He or she is responsible for

defining the product goal and the product backlog items as well as backlog items organization. In

the Scrum theory, the Product Backlog management is an exclusive prerogative of the Product

Owner, but in practice, the task is sometimes delegated to the development team.

Roles: Development team

The Development Team includes the personnel who actually do the job. They are responsible for

delivering the planned Minimum Viable Product at the end of each Sprint. Scrum promotes self-

organizing cross-functional teams with no formal or informal hierarchic structure. Each team

member is responsible for solving the tasks he or she is committed to individually. Therefore,

backlog items must be granular enough to be addressed by a single person. The Development Team

is often co-located to foster continuous and transparent communication amongst the team members.

During a Sprint, the Development Team works only on tasks directly leading to the Sprint Goal.

Sprint rescoping, i.e., add new tasks to the Sprint backlog while the Sprint is ongoing, is not

allowed.

2.2 Scrum: an overview

17

Roles: Scrum master

The Scrum Master is the enabler of Scrum implementation. He or She has to ensure that the

development team follows the rules defined in the Scrum Guide. The Scrum Master can be a

member of the team or external personnel. Both configurations can have advantages and

drawbacks. The Scrum Master facilitates daily meetings, ensuring that the team has a clear

understanding of development tasks in the ongoing Sprints and shares a common understanding of

the product vision. Lastly, the Scrum Master also serves as an interface between the Development

Team and the surrounding organization or relevant stakeholders.

Events: Sprint Planning meeting

All Sprints begin with a Sprint Planning Meeting. The whole Scrum Team participates in the

meeting, i.e., Product Owner, Scrum Master, and Development Team. The sprint planning typically

addresses three questions: 1) what is the goal of the Sprint? i.e., understating the value delivered to

the customer 2.) what can be actually done? i.e., identify the activity required to achieve the sprint

goal 3) how to select the job to get done? i.e., understanding development team capability.

The first two questions are addressed by negotiating between the Development Team and

the Product Owner. The last question is addressed by using some qualitative supporting tools. One

of the most popular is the planning poker. Given the criticality of this event, we will expand the

literature review on the topic in Section 2.2.4

Events: Daily Scrum

The Daily Scrum is a 15-minute stand-up meeting held every day by the Development Team. The

purpose of this meeting inspect progress and synchronize the work to reach the Sprint Goal. The

Daily Scrum meeting is typically held every day at the same time and place

Chapter 2. Background

18

Events: Sprint Review

The Sprint Review is the meeting that concludes the Sprint. The team presents the Sprint results to

relevant stakeholders and assesses the progress made toward the final product. The purpose is to

inspect the work completed within the Sprint and define the way forward.

Events: Sprint Retrospective

As the Sprint Review inspects the product, so the Sprint Retrospective reviews the process. The

Sprint Retrospective follows the Sprint Review and aims to identify potential refinement of the

Scrum process to improve the team efficiency. The Retrospective analysis offers the opportunity to

bring forward issues encountered while performing the Sprint and suggestions to improve. It

became a pillar of the continuous improvement strategy known as “inspect and adapt”, constituting

one of the foundations of the Scrum framework.

The Sprint

Sprints are fixed-length time boxes where the job gets done. The Sprint acts as a container for all

other events (Table 2). A new Sprint starts when the previous is concluded. Various practices exist

to monitor the development progress (e.g., burn-down charts)

Table 2. Scrum Events

 Sprint Planning Daily Scrum Sprint Review Retrospective

Perspective Forward-looking Managing Assessing Retrospective

Focus Task breakdown

and estimation

Tasks Burn-down The Product The Process

Purpose Planning Team synchronization Explain progress done Improving the process

Participants Scrum Team Dev. Team &

Scrum Master

Dev. Team &

stakeholders

Dev. Team &

Scrum Master

Input Product Backlog Items Development status Work completed Process-related issues

Output Sprint Backlog Plan for the day Update for Product

Backlog

Suggestion for process

improvement

2.2 Scrum: an overview

19

Artifact: Product Backlog

The Product Backlog is the collection of user stories, i.e., the list of the work to be done. It is a

dynamic document defined and maintained by the Product Owner, and it evolves within the product

development process. The Product Backlog may be ordered in several ways. Depending on the

development strategy, the list can be sorted by value, risk, or priority.

Artifact: Sprint Backlog

The Sprint Backlog is a tool to visualize the work required to achieve the Sprint Goal. As the

Product Backlog so the Sprint Backlog is a dynamic document that develops throughout the Sprint.

It informs the Development Team on the work completed as well as the remaining work and time.

Artifact: Product increment

The Product Increment is the result of the Sprint. In earlier versions of the official Scrum Guide,

the author used to give great importance to the results of each Sprint characterized as a Minimum

viable product, i.e., a working part of the final product or a working prototype. However, in the

latest Scrum Guide, greater emphasis is put on the “Definition of Done”. This is probably related

to the difficulties of delivering a potentially shippable increment after each Sprint, and the

“definition of done” represents an easier way of addressing the issue. Since the Minimum Viable

Product represent one of the distinguishing features of agile approaches, particularly Scrum, we

will expand the review on the topic in section 2.2.3

2.2.2 Iterations

Iterations are ubiquitous in the design and development of engineering systems (Maier & Störrle,

2011). They are also one of the cornerstones of Agile approaches (Schuh et al., 2018a).

Nevertheless, managing iterations is not an easy task; reaping their benefits is not an obvious

conclusion (Costa & Sobek, 2003).

Chapter 2. Background

20

In design theory literature, iterations are broadly defined as the repetition of an action or as

a heuristic reasoning process depending on the perspective adopted (Wynn & Eckert, 2017).

Building on these definitions, researchers developed different taxonomies to help better understand

the nature of the phenomenon. Those works propose to classify iterations based on designers

behavior (Wynn et al., 2007), information/task interdependencies (Smith & Eppinger, 1997a,

1997b), design process attributes (Costa & Sobek, 2003), or evolution of problem-solution space

(Dorst & Cross, 2001). The reader can refer to (Wynn & Eckert, 2017) for a comprehensive review

of the topic.

This research adopts a perspective complementary to existing theories. It focuses on the

development stages involved in the iteration (e.g., design, prototyping, manufacturing, testing) as

well as the verification/validation activities carried out (thus the technical risk reduction and TRL

advancement). Two primary forms of iteration cycles have been identified: the design-analyze-

redesign (DAR) and the design-manufacture-test-redesign (DMTR).

DAR cycles are used in almost all engineering design practices. They consist of a

concurrent, iterative exploration of the design space based on modelling and simulation. They

usually represent an effective tradeoff between cost/time invested and technical risk mitigated

(Unger & Eppinger, 2009).

DMTR cycles are a distinctive feature of flexible PDPs (e.g., Spiral, Agile). Modelling and

simulations are complemented with verification and testing activities performed on the real product

or a subset of it. DMTR cycles cover several phases of the product life cycle (design,

manufacturing, assembly integration, and testing), thus reducing project technical risk at multiple

levels. However, even if technical risk decreases and product quality theoretically improves with

successive cycles, iterations significantly impact cost and schedule (Garzaniti & Golkar, 2020).

2.2 Scrum: an overview

21

Reliably modelling such cycles becomes crucial when attempting to implement Agile in

complex hardware projects. Product and process interdependencies may completely overturn

advantages in cost and schedule brought by Agile (Golkar et al., 2019).

Currently available frameworks rarely model and analyze iterations in detail. Traditional

network-based project management techniques (Ben Issa & Tu, 2020), such as PERT/CPM (Wiest

& Levy, 1977), do not include iterations. More recent frameworks such as DSM-based simulation

models characterize iterations by rework probability and rework impact (Browning & Eppinger,

2002; Cho & Eppinger, 2005), (Ma et al., 2019). Although these last ones proved to be powerful

tools for analyzing process performance, the reliability of results is limited by the accuracy of input

information (not always available and hard to assess). Furthermore, they all fall short in modelling

iterations propagation in the later phases of the product lifecycle (e.g., procurement, manufacturing,

integration, and testing), making the iterations planning and management difficult.

2.2.3 Minimum Viable Product definition

The primary outcome of an iteration cycle is the Minimum Viable Product (MVP). The concept of

MVP has long been discussed in the literature (Lenarduzzi & Taibi, 2016). Scholars and

professionals have analyzed different aspects associated with the MVP definition, such as the

MVPs economic value (Rancic Moogk, 2012), the effectiveness of customer feedbacks depending

on the MVP structure (Schmidt et al., 2018a), the role of prototyping (Bergweiler et al., 2019),

(Schuh et al., 2018b), and the frequency of MVPs releases (Anderson et al., 2017).

Nevertheless, the definition of MVP within the context of complex hardware systems

development is not straightforward. The physical aspect of the system hampers the implementation

of a fully functional product increment. Furthermore, while there is a solid body of knowledge on

Chapter 2. Background

22

the MVP economic and market aspects, current literature still lacks perspective in capturing the

MVP technical and development process aspects.

2.2.4 Sprint planning

In Scrum theory, Sprint planning is the event when the team defines the Sprint objective (i.e., MVP

to be delivered) and lays out the work to get done (i.e., Sprint backlog) (McGreal, 2020). The Sprint

backlog (Scrum.org, 2019) is a subset of the product backlog (Sedano et al., 2019), including the

user stories (Lucassen et al., 2016) selected for the Sprint. In “traditional” Agile, user stories are

defined as atomic elements to be performed by individuals, with no explicit consideration of

product or process dependencies (Sedano et al., 2019). This entails several drawbacks during Sprint

planning activities.

The teams can realize while performing the Sprint that some tasks are missing: thus, the

MVP cannot be delivered. The decision to add tasks to the backlog while the Sprint is running will

unavoidably result in delays and cost overrun (Figure 7). Frameworks currently available do not

tackle this issue. They neither elicit nor represent user stories’ interdependencies.

Figure 7. Sprint burndown chart - Tasks added during Sprint execution (vertical steps marked in blue) – Delays due to

new task (marked in orange)

0

5

10

15

20

25

0 5 10 15 20

S
to

ry
 p

o
in

ts

Time

Guideline

Remaining Values

2.2 Scrum: an overview

23

Additional challenges are also posed by the scoring system adopted to evaluate the

complexity of the tasks allowing their prioritization within the Sprint time-box. The complexity

index used in traditional Scrum (i.e., story point) does not provide any viable information to support

the development process (Mahnič & Hovelja, 2012).

Recently some progress has been made in formulating parametric models for efforts

estimation (Kamal Tipu & Zia, 2012), (Briatore & Golkar, 2021). However, current scoring systems

do not clearly relate to cost or time, or resources needed to complete a user story. Furthermore, they

still cannot provide reliable estimates and eventually bring more complexity than benefits to the

process.

From an organizational standpoint, complex engineering systems are frequently developed

in multiparty consortia. Each organization in the consortium runs its own agenda and adopts its

preferred product development process. Therefore, Agile implementation, and specifically Sprint

planning, becomes more challenging as it might require coordination with traditional systems

engineering approaches and shall comply with consortium milestones.

Even if research efforts have been dedicated to these concerns (Garzaniti et al., 2019b;

Ramos et al., 2013), most of the implementations in real industrial settings were not as successful

as hoped (Atzberger et al., 2019).

This misalignment between literature contributions and industry results highlights a clear

gap in the definition of a structured framework and a coherent methodology (encompassing

processes, methods, and tools) to support the deployment of Agile for complex hardware systems

development.

Chapter 2. Background

24

2.3 Product development processes in the literature

The product development literature is quite broad and relies on more than half a century of research

and experience. The product development body of knowledge encompasses processes, methods,

and tools aimed at delivering a new product or improving an existing one.

The literature has been surveyed, mapping the different branches of product development

knowledge to frame our research, thus position our work. For this literature mapping exercise,

different repositories of knowledge have been surveyed using the following keywords (and

respective permutations): product, development, process, method, approach, model, philosophy,

strategy. The survey has then been refined by adding in subsequent rounds of search the following

keywords: agile, stage, gate, spiral, concurrent, sequential, flexible. The literature mapping

showed that, in general, product development processes could be classified based on the flexibility

and degree of tasks concurrency (Figure 8).

traditional sequential model

Stage gate model

Established models in the

literature

Compressed model

flexible model

process range

process mobility

mix strategy

Combination of PDPs

Learn startup

approach

Spiral

Agile

Set-based

concurrent

engineering

Integrated product

development

Agile-Stage-Gate

combination

Agile Hardware

Figure 8. Map of the Product development literature

Compressed models (Iansiti, 1995) include concurrent engineering (Lawson &

Karandikar, 1994; O’Neal, 1993; Stevens, 2015; Valle & Vazquez-Bustelo, 2009; Yassine et al.,

2.3 Product development processes in the literature

25

2003; Zhang & Daguang Zhang, 1995), Set-based design (Ghosh & Seering, 2014), and Integrated

product development (Gerwin & Barrowman, 2002; Khaleeq uz Zaman et al., 2017; Sommer et al.,

2014; Yingkui Gu et al., 2006). Traditional sequential models mostly refer to the Stage-gate

(Cooper, 1990; Royce, 1970; Sethi & Iqbal, 2008). Flexible models (Boehm, 1988; Burger et al.,

2017; Thomke, 1997) can be classified based on process range (Seebacher & Winkler, 2014),

process mobility (Upton, 1995), and their combination (Fernandes et al., 2012). Flexible models

include the Spiral model (Boehm, 1988; Buijs, 2003), the Learn startup approach (Boehm &

Turner, 2005; Fazzi Bortolini et al., 2018; Ghezzi & Cavallo, 2018), and Agile (Douglass, 2016a;

Schön et al., 2017; Schuh et al., 2018a). From these models over the year, hybrid approaches got

momentum (Bianchi et al., 2018; Cooper & Sommer, 2018; Mahmoud-Jouini et al., 2017; Robey

et al., 2018) and particularly the combination of Agile-Stage-Gate combination (Begel &

Nagappan, 2007; Boehm, 2004; Cooper, 2016; Cooper & Sommer, 2018; Karlström & Runeson,

2005, 2006; Sommer et al., 2015). Despite the variety of approaches, the scope of research is limited

to Agile, particularly the scrum version as presented in Section 2.2, and to the traditional Stage-

Gate model, one of the most adopted approaches for a wide range of applications. The combination

of the two is also considered.

2.3.1 The State-Gate process

The Stage-gate approach (Cooper, 1990), also called waterfall, phase gate, toll gate, checkpoint, or

structured product development by different authors and practitioners (Unger & Eppinger, 2009),

is a well-established product development process. Stage-Gate has been designed to help firms to

select the right projects, and once selected, to map out the key stages, best practice activities, and

roles and responsibilities as part of the project, bringing discipline to “chaotic” new product

development (NPD) activities (Sethi & Iqbal, 2008).

Chapter 2. Background

26

Concept
Definition

M 1
Project

Planning
go

No go M 2 go

Product
DefinitionNo go M 3 go

No go

Product
Implementation
and qualification

M 4 go

No go Release

Figure 9. A representation of the Stage-Gate model

The ideal Stage-Gate process proceeds in distinct stages, from product planning to product

release (Figure 9). At the end of each phase is a review, or gate, to evaluate whether the previous

phase was successfully completed. If the project is reviewed positively, work proceeds to the next

phase. If not, then the project iterates within that phase until it can successfully pass the review, or

the project may be terminated.

The major advantage of stage-gate processes is to provide structure to the development by

reaching sharp product definitions and specifications early in product development. Technical risk

is reduced because narrow iterations and reviews freeze specifications early. Rigid requirements

and stable product definitions help to avoid errors by avoiding midstream corrections (Cooper,

1990).

The main drawback of this product development process (PDP) is inflexibility. Narrow

iterations cannot incorporate feedback from later phases. Failure may occur if early specifications

and assumptions are proven wrong by subsequent market research or prototyping.

2.3 Product development processes in the literature

27

2.3.2 Agile for hardware

Agile development of physical products, Agile hardware development, and Agile development of

cyber-physical systems are used as synonyms in the scientific literature. The terms refer to the

development of products consisting of a combination of software and hardware elements (e.g.,

electronics, mechanisms, and many others).

While previous sections reviewed the literature on some specific topics related to the Agile

development of physical products, this section offers a general overview of the research in the field.

Due to the progressive spread of Agile in the hardware domain as well as the growing popularity

such methodologies reached over the last two decades, there is a vast literature on the topic. A

search on the Scopus database using the keywords “Agile” AND “Hardware” and “Agile” AND

“physical” AND “product”, as of the time of writing this thesis, has yielded a total of 1459 results,

covering five decades of research. Given the fast pace evolution of the topic, this thesis limited the

focus to publications that occurred in the last ten years.

This wide body of knowledge addresses different aspects relevant to the Agile development

of physical products. Dove & LaBarge (2014a, 2014b) provided a philological analysis on the

concepts of Agile systems-engineering and agile-systems engineering, while Dove (2002) provided

a philological analysis on the concepts related to the Agile enterprise. Atzberger & Paetzold (2019)

analyzed the challenges of adopting agile for hardware development, updating the analysis of

Ovesen & Dowlen (2012). Punkka (2012) analyzed the challenges and the opportunities of

implementing Agile in the co-design of embedded systems. Schmidt et al. (2018c) offered a critical

perspective on the expected vs real effects of Agile development of physical products, while

Atzberger et al. (2019) reviewed how the Agile for hardware development has matured over the

last decade and how the hype evolved.

Chapter 2. Background

28

Schmidt et al. (2018b, 2019) and Atzberger et al. (2020) conducted a set of empirical

studies addressing different thematics related to the agile development of physical products, such

as motivations, transition, potentials, and applicability. To date, these studies represent one of the

most compelling sources of data in the domain of Agile for hardware.

The literature also addresses the challenges of scaling and decentralized development

(Alqudah & Razali, 2016; Dikert et al., 2016; Ullah et al., 2011); however, those are issues not

limited to the context of hardware development. Lastly, several authors also presented case studies

on the application of Agile for developing hardware systems, such as Huang et al. (2012), Edwards

(2017), or Dove et al. (2017).

Overall, the literature focuses on the challenges and opportunities entailed in adopting agile

for developing physical products yet not providing enough actionable solutions to overcome such

challenges.

2.3.3 Hybrid-Agile approaches

The debate is ongoing on whether Stage-Gate and Agile are compatible and complementary and

how to best mix the two approaches to leverage their respective strengths and mitigate their

weaknesses (Bianchi et al., 2018). To date, there is still no widely shared agreement on the topic.

Cooper & Sommer (2016) describe the cases of established firms benefiting from the use

of Agile practices within their existing Stage-Gate systems. Some authors speculate on their

potential to deliver exceptional innovation outcomes (Papadakis & Tsironis, 2018), however few

studies rigorously examine how the integration of Stage-Gate and Agile affects product

development performance (Batra, 2018; Bianchi et al., 2018).

2.4 Catalog of gaps in the literature

29

Sommer et al., (2015) suggest that using a Stage-Gate model at the strategic level together

with Scrum tools at the execution level increases NPD productivity, flexibility, and coordination.

Dikert et al., (2016) instead indicate that the coexistence of the two approaches causes tensions at

all organizational levels, bureaucracy duplication, and reward system mismatch.

Cooper (2016) provided a formal characterization of Stage-Gate and Agile based on the

type of management (macro vs micro), the scope of the project, the structure of the organization,

and the decision model. Even if this represents a seminal work in the field, it still does not provide

clear indications on how to select the development process and manage the Stage-Gate-Agile

hybridization.

Overall, beyond qualitative analyses on the effect of adopting hybrid PDPs, the literature

lacks rigorous approaches to combine Agile and Stage-Gate and support the management of

projects over their execution.

2.4 Catalog of gaps in the literature

Section 2.1 and Section 2.2 have provided a brief yet comprehensive picture of Agile theory,

emphasizing Agile-Scrum. Section 2.3 instead briefly surveys product development literature,

focusing on the Stage-gate model and its combination with Agile. This paragraph summarizes the

gaps identified in the current Agile theories and practices, focusing on the challenges of

implementing Agile for physical products development. Furthermore, this paragraph reports

current challenges in coordinating Agile with the traditional development process. This synthesis

will serve as a guide in the development of the thesis and will also be used for evaluation purposes

in conclusion.

Chapter 2. Background

30

Gaps in current Agile theory

1. Lack of a taxonomy for Minimum Viable Product definition that accounts for technical and

development process aspects (ref. to section 2.2.1 and Section 2.2.3).

2. Lack of a method to support the tasks’ prioritization and Sprint planning activities that,

accounting for user stories interdependencies, minimizes the Sprint rescoping (ref. to

section 2.2.4).

3. Lack of a method to reliably evaluate the Sprint workload accounting for resource

availability and allowing for proper resource allocation and leveling (ref. to section 2.2.4).

4. Lack of methods to model and evaluate the impact of iterations propagation through the

development process, thus inform on the viability of given iterations (ref to Section 2.2.2)

Gaps in the relation between Agile and traditional product development processes

1. Lack of theories to reconcile traditional and Agile approaches (ref to Section 2.3.3).

2. Lack of quantitative metrics to evaluate the viability of implementing the different product

development processes (ref to Section 2.3.3 and Section 2.2.2).

3. Lack of methods to coordinate the interdependencies between different organizations

implementing different development processes, accounting for the complex interplay

between all the stakeholders (ref to Section 2.3.3 and Section 2.2.2).

2.5 An industry perspective

31

2.5 An industry perspective

To validate the gaps identified in the literature, thus better inform our research questions, the

literature-based investigation on the state-of-the-art has been complemented with field research.

The implementation of Agile for hardware development has been analyzed in a real industrial

setting, specifically in the context of a “New Space” mission. Based on these analyses, it has been

possible to quantitatively assess the effectiveness of implementing Agile to develop space systems

(Garzaniti et al., 2019a) and identify challenges and opportunities deriving from the multiparty

consortium dynamics (Garzaniti et al., 2019b; Golkar et al., 2019).

2.5.1 New Space and the question of the product development

In the last decades, global space activities radically changed with greater involvement of private

stakeholders, hundreds of startups created worldwide, and a significant increase in the influx of

private capital into space ventures. This new evolution of the space age is popularly known by the

name of “New Space” (Garzaniti et al., 2021). Within this new phase of maturity of space

exploitation, organizations increasingly focus their activities on economic profit, addressing the

need of customers coming not exclusively from the space industry.

Due to the explicit drive for profitability, New Space ventures started exploring new

business models and new product development approaches. The trend to prioritize activities with

lower capital cost requirements and short time-to-market, together with the need for a faster and

more adaptive response to changes in customer needs, is challenging traditional product

development processes such as the V-model and the Stage-Gate model (INCOSE, 2015), and

making Agile methods (Beck et al., 2001) a potential key enabler of the New Space sector.

Chapter 2. Background

32

While Agile methods are well known in the software industry, their use in hardware

development is not widely explored, not to mention in the space engineering domain. The status

quo is largely made of space projects that are structured and executed following the established

development processes. Nevertheless, there are hints in the scientific and grey literature that New

Space organizations are experimenting with Agile product development. This chapter analyzes the

experience of one of these organizations that engaged with Agile to develop its product.

2.5.2 Mission overview

The use case is a nanosatellite mission developed in a multiparty consortium including six different

organizations (SMEs, startups, universities, and institutional partners) spread over five countries

(Camps et al., 2018). At the consortium level, the traditional Space Flight Project Life Cycle has

been adopted (NASA, 2007). The consortium defined the overall mission requirements, the success

criteria, and a high-level schedule; individual organizations implemented their portion of the

project, according to this master plan, adopting their preferred product development process (PDP).

Mission requirements were formulated based on the contents of the mission proposal and

have been formalized in a Mission Requirements Document (MRD). Consequently, each

organization in the consortium has cascaded the MRD requirements into system requirements for

their specific contribution to the project. The system requirements have been consolidated into a

System Requirements Document (SRD). Based on the MRD and SRD, each organization has

shaped its own PDP.

The prime contractor managed the PDP at the consortium level and summarized High-level

activities and the main milestones in a traditional Gantt chart.

2.5 An industry perspective

33

This schedule included:

1. Preliminary Design Review (Kick-Off + 1 month);

Success criteria: definition and finalization of all mission requirements

2. Critical Design Review (K0 + 4 months);

Success criteria: definition of interfaces and system requirements

3. FlatSat testing (K0 + 6 months)

Success criteria: successful pass of interfaces test and functional test.

4. Payload delivery to Integrator (K0 + 9 months)

Success criteria: payload delivered; performance and environmental test passed.

01-Mar-18 01-Mar-19
01-Apr-1801-May-1801-Jun-18 01-Jul-18 01-Aug-18 01-Sep-1801-Oct-18 01-Nov-1801-Dec-18 01-Jan-19 01-Feb-19

Phase
A

Phase
B

Phase C Phase D

MDR

FlatSat Delivery

CDR: Critical Design Review

QR: Qualification Review

ORR: Operational Readiness Review

FRR: Flight Readiness Review

MDR: Mission Definition Review

PDR: Preliminary Design Review

Payload Delivery

PDR CDR QR ORR FRR

Figure 10. Use case Project Life Cycle (design, development, and integrations stages)

The first two milestones concern the design phase, while milestones three and four refer to

hardware implementation and test.

In an effort to ensure delivery of its payload on a tight schedule (less than 12 months), one

of the consortium participants structured the development process following an Agile approach,

and particularly the Scrum framework. This organization was responsible for the developed an

optical inter-satellite communication (O-ISL) payload.

Chapter 2. Background

34

A functional block diagram of the payload is presented in Figure 11. The system includes

a transmitter (TX), a receiver (RX), and two electronic boards, one for command and data handling

(C&DH) and one for power management (EPS). The receiver is based on a Cassegrain architecture

and includes a primary mirror steering device, while the transmitter is equipped with an

electromechanical solution to enable fine-pointing operations.

Figure 11. Functional block diagram of the payload, source (Garzaniti et al., 2019a)

2.5.3 Using “traditional” Scrum

Following Scrum, the work (i.e., design of the entire payload) has been decomposed into stories

related to the development of the main subsystems of the optical terminal:

1. Optics

2. Electronics

3. Mechanics

4. Software

2.5 An industry perspective

35

These high-level user stories (also known as epics) are the building blocks of the O-ISL

terminal and could be mostly handled as independent projects. Additional epics relate to the

definition and implementation of interfaces between subsystems, such as integrating the support

structures with the electronics or integrating the optical trains. Each epic is characterized and

decomposed into a subset of user stories. The decomposition provides structure to the development

process. The collection of all the user stories constitutes the product backlog.

In this phase, we can already observe the first divergence from traditional Scrum and one

of the limitations of Agile in hardware development projects. Scrum was initially conceived for a

homogeneous environment in terms of team expertise (e.g., ability to develop software using

object-oriented programming). Here, the development had to span across different disciplines

(optical, mechanics, electronics), each with its own requirements, design strategies, and issues. It

is not possible to use the same approach or the same personnel to design mechanical components

and electronic boards.

Later on, during the Sprint planning meeting, such user stories, if needed, were further

decomposed into smaller tasks to be ideally completed within a one-day time frame. Then they

were collected in the Sprint Backlog setting the objective of the Sprint. A team member was

assigned the role of “Scrum master”. Its role was to coordinate the team inputs/outputs and facilitate

the execution of the Agile process.

Sprint planning was performed collaboratively among all the team members using a

Fibonacci sequence (Falcon, 2016) scoring system. Tasks scoring aimed to evaluate the complexity

of each task and allow activities prioritization within the Sprint length. Scoring activities are

performed as follows: each team member votes providing a score in the Fibonacci sequence

(1, 3, 5, 8, …). Afterward, the median score is recorded by the Scrum master and assigned to the

Chapter 2. Background

36

task. The resulting Sprint backlog is then reviewed, prioritizing the activities according to the

agreed time box. Since providing scores is an empirical activity and mostly qualitative, task effort

estimation reliability tends to improve over successive sprints.

Figure 12. User stories with scores and preliminary tasks prioritization on a physical Kanboard

The development was structured in Sprints of duration between one and four weeks. Each

Sprint was devoted to completing the Sprint backlog tasks and delivering a minimum viable

product. Initially, one-week Sprints were adopted, but the team quickly realized that this duration

was way too short for consolidating results in the development. The sprint length became an issue,

particularly as the interdependencies with the supply chain and related lead times became more

relevant as the design evolved from a “cocktail napkin feasibility study” (Balint & Freeman, 2017)

to design models and ultimately to a physical system.

The tempo of the Sprint was marked by daily 15-minute stand-up meetings and daily close-

out meetings. At the end of each Sprint, the team performed a retrospective analysis to understand

what worked well, what did not work, and derive the lessons learned to improve the process in the

subsequent development iterations. In order to assess the correct implementation and constantly

monitor the status of the project, the team made use of a set of tracking technologies.

2.5 An industry perspective

37

2.5.4 Support tools

Task organizer

Jira (Atlassian, 2021) has been used to track tasks, task scores, and development status. Jira

provides a graphical representation of the development and indication of the distribution of tasks

in the team (Figure 13).

Time tracker

The team used Toggl (Toggl, 2021) to track the actual time spent on each task. This information

was helpful to establish a correlation between time and task complexity score, thus improving the

effort estimation during subsequent sprint planning activities. For instance, on a printed circuit

board (PCB) with more than 1,000 traces, measuring the time needed to complete ~100 traces

allowed estimating the time required to complete the remaining 90% of the task with ±5% average

time accuracy.

Figure 13. Example of Jira user interface

Repository monitoring

The team used GIT (Git, 2021) as the primary repository manager for all the design data. Git allows

for tracking changes and manage file versions, ensuring that every team member is working on the

Chapter 2. Background

38

correct file at every given moment. Analyzing the evolution of the git-commits is also possible to

roughly estimate the progression of the design.

2.5.5 Scrum implementation

This section reports the analysis of process data related to the first six months of development (i.e.,

FlatSat testing – milestone 3 of the project). The scope of this analysis has been limited to that

period because later, the development team significantly revised the development project diverging

from traditional Agile. Nevertheless, it is already enough to get preliminary results and draw

interesting conclusions on the use of Scrum for space hardware development projects.

The design and implementation process to achieve the FlatSat delivery consisted of 11

Sprints with Sprint lengths ranging from 1 week to 4 weeks. The team experimented with different

durations (Figure 14) to understand what can be the most effective in terms of MVP delivery.

Figure 14. Sprint length

The traditional one-week Sprint always resulted ineffective, while a longer period allowed

to get closer to the Sprint completion. However, such data shall not lead to wrong conclusions. It

is not possible to define a statistical correlation between Sprint duration and Sprint effectiveness

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

W
e
e
k
s

2.5 An industry perspective

39

measured as the percentage of completed tasks over the planned ones because of the multi-criteria

nature of the problem. It shall also be noted that sprints longer than four weeks were mostly avoided

because larger periods entirely overturn the benefits of early technical debt retirement.

While experimenting with different Sprint lengths, the development team also tried to find

the best fit for the story points per day to be allocated. Figure 15 reports the estimated task

complexity per day for each Sprint.

Figure 15. Planned story points per day for each Sprint

In the beginning, the team overestimated the workload but gradually refined the estimates,

reaching a steady-state of about 5 points per day with a core development team of three people. It

shall be highlighted that these figures apply only to the specific development team, as the scoring

system is subjective and affected by biases. In addition to the learning effect, the daily story points

decrease was also linked to the project evolution. The more the project got physical, the fewer

points per day have been achievable. This situation highlights the complete unreliability and

inefficiency of the traditional complexity-based scoring system: designing a component and

manufacturing a component might exhibit the same task complexity but have utterly different

execution times and costs.

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

P
o
in

ts
 p

e
r

d
a
y

Chapter 2. Background

40

A remarkable finding is that all Sprints failed. The team defined a failed Sprint as a Sprint

where only a subset of the planned tasks was completed. An average of 59% of planned work (with

a standard deviation of about 12%) has been completed per Sprint (Figure 16). Nevertheless, the

FlatSat has been delivered according to the consortium project schedule. This kind of “failure”

seems to be an issue shared by many development teams adopting Agile in hardware projects. The

reasons for such a failure are three-fold.

First, engineering teams required a couple of sprints to refine the task estimation, tune

sprint planning, and adapt to the Agile workflow. Engineers may often underestimate the

complexity or misunderstand the interdependencies between different user stories. For example,

after the Sprint began, the team might realize that tasks are missing in the backlog as they proceed

with the activities. Alternatively, the team may realize that they included unnecessary tasks for

delivering the given MVP. Finally, it can also happen that a task considered of moderate complexity

requires a whole week, hampering the MVP delivery. The scientific literature also substantiates

those statements (Feldmuller, 2018; Garzaniti et al., 2019a; Gregory et al., 2015).

Second, process disruption occurred due to interdependencies with components

procurement and manufacturing lead times, which are inherent characteristics of physical systems

not occurring in Agile software projects (Schmidt et al., 2019, 2017).

Third, there is still no consensus on the definition of a successfully completed Sprint.

Completing all tasks in the backlog does not necessarily imply delivering a meaningful MVP

(Schwaber & Sutherland, 2020).

For those reasons, several activities within the use case project have been rescheduled

during Sprint executions. Rescheduling typically involved a percentage close to 35% ± 6% of the

total points foreseen for a given Sprint (Figure 16).

2.5 An industry perspective

41

Figure 16. Percentage of work completed per Sprint

2.5.6 MVP: Customer feedback and technology de-risking

The main alleged advantage of Agile is the rapid development of products in iterative steps (MVPs),

with significant involvement of the customers. In theory, they evaluate the system from the early

stages of the development, thus provide feedback to align the product to their actual needs.

While this customer-centered approach can be easily implemented in the software domain,

it is more challenging to include customer evaluation in the design and development of hardware

systems, let alone a space-flying payload. The reason is that most valuable feedbacks come with

activities occurring during assembly, integration, and testing (AIT) phases, thus during later stages

of development. By then, the technical debt accumulated is quite large, and iterations would

completely overturn the benefits of fast development.

However, some design strategies might help exploit this Agile feature: incremental design

and rapid prototyping shall be adopted as best practices for all engineering disciplines involved

(Bergweiler et al., 2019; Schuh et al., 2018b; Zink et al., 2017). In this use case, the team used 3D

printing technology for rapid prototyping mechanical components. Incremental PCB prototyping

(Figure 17) has been used instead for electronics and avionics elements.

0%

20%

40%

60%

80%

100%

Chapter 2. Background

42

Figure 17. Example of workflow to realize an MVP, source (Garzaniti et al., 2019b)

Such an approach allowed the team to better align with the customer and investigate

potential AIT issues in the early stages of the development (Deininger et al., 2019; Schmidt et al.,

2018a). This latter point, we believe, is the most valuable and where Agile for hardware can make

the difference. Prototyping can help de-risking interface issues, manufacturability, or

assemblability problems, and the technology in general. The challenge will then become defining

such MVP sequence to increase the maturity of the product subsets over time.

2.5.7 Hardware vs. Software: the question of the procurement

Scrum was initially conceived for software. In software, all the development depends on the team

and relates to the Sprint structure. Therefore, the Scrum Master can constantly assess the

development status, add or remove resources, and optimize the process. If procurement of external

components is required, it is usually in the form of libraries, or software packages in general, that

are already immediately (or rapidly) available and ready to use (Brhel et al., 2015).

In the hardware domain, most elements need to go through a lengthy procurement process,

often involving manufacturing activities. Except in rare cases, the manufacturing is outsourced,

thus outside the direct control of the team (Wei et al., 2021). This dependency introduces

uncertainty. In worst cases, it may result in delays spanning over multiple Sprints and cost overruns

(Garzaniti et al., 2019a). The problem can be partially mitigated by adopting Model-Based Systems

2.5 An industry perspective

43

Engineering (MBSE) approaches and tools (Darpel et al., 2020; Meißner et al., 2021). However,

this would make the process lose momentum, introducing additional complexity due to reconciling

two quite far methodologies (Magdaleno et al., 2012; Ross et al., 2008).

Nevertheless, considering the procurement question cannot be avoided. A strategy to

address delays and external dependencies with the supply chain may consist of scheduling the

workflow accounting for suppliers' lead times and conceiving different scenarios with shifted AIT

Sprints depending on early or late delivery of components. However, it would require having a

dependencies structure of all the user stories to do so.

2.5.8 Testing and the question of quality assurance

A critical phase in hardware systems development, and specifically in space products, is

Verification and Validation (V&V). Scrum and Agile, by nature, lack this feature by design

because, according to Agile theory, testing as a stand-alone phase can be avoided in favor of

incremental development and continuous feedback (Douglass, 2016b). Using the product from

early phases, customers provide feedback on functionality and typically report bugs and problems.

However, it is not acceptable to replicate the same approach for space flying products. Rigorous

testing is essential to identify issues that cannot be fixed after the spacecraft is launched in orbit.

Figure 18.Qualification model vibration test (left), proto-flight model TVAC test (right)

Chapter 2. Background

44

In the use case presented in this chapter, the team introduced testing user stories for each

verification activity expected. Testing tasks were introduced at multiple levels, during the design,

using simulations, and during assembling and integration, using rapid prototyping or proto-flight

model development approaches. For instance, the team has dedicated an entire Sprint to test a set

of subsystems, with user stories fully dedicated to testing (Figure 18).

2.5.9 Reactivity to unforeseen design changes

Flexibility is one of the strengths of Scrum and Agile in general, making design changes during

project implementation easier than traditional development approaches (Diebold & Dahlem, 2014).

For instance, in the use case, a later modification happened in adopting the RS422 bus for

internal communication and control of the different payloads. While the generic bus characteristics

were discussed during the Preliminary Design Review (PDR), such as choosing the data protocol

and the power interfaces, the consortium did not analyze in-depth all the implications of connecting

multiple payload interfaces to the same bus. Solving the problem required a hardware modification

when electronics boards were already finalized and sent for manufacturing. A highly modular

design and task flexibility allowed the team to quickly solve the issue, update the schematics and

layouts, and send the new version for manufacturing (Schuh et al., 2017). That would have probably

been harder in a traditional stage-gate scenario (Fricke & Schulz, 2005).

2.5.10 The human factor

Even though significant efforts were devoted to quantitative evaluating process performance, with

numerous attempts in adapting team behavior, it is clear that significant uncertainties remain when

dealing with people.

2.5 An industry perspective

45

Task completion honesty

The reporting on the status of each activity was managed by the person in charge of the activity

itself. The situation led to arbitrary definitions of the “completion” concept that were not meeting

both the Sprint objective and the user story goal. While figuring well in numbers on the tracking

tools, this approach generally resulted in a 32% increase in time compared to similar tasks (same

score) where a more rigorous evaluation was adopted. This scenario has been observed on 12 tasks

over the project.

Sprint duration and task spreading

Dealing with hardware or having external interdependencies may introduce complexities that

require allocating some activities over multiple Sprints. An example is the purchase of electronics

components that, including order placement and shipment, can take up to 2 weeks. While the most

obvious approach would be to spread the task among multiple Sprints, this turned out to be a bad

strategy. In addition to damaging the integrity of task completion analysis and complicating

accurate statistics, the situation led to a mathematical worsening of story points estimation on future

Sprints, with an impact that reached a 17% error in full Sprint complexity (Figure 15, Figure 16).

Data suggests that the practice adopted by the team to mitigate the issue was to plan for

longer Sprints to accommodate all necessary activities (Figure 14). However, there is an upper limit

when the process would unduly diverge from Scrum becoming de facto a traditional stage-gate.

Time-based scoring

The first approach adopted was a Fibonacci sequence scoring system, evaluating task complexity

based on people's votes. This voting method proved to be not very effective in sizing the time

required for completing a task. For this reason, the team has moved to a more straightforward time-

based scoring system. This method was used from Sprints 5 to 7 and seemed to correspond to

increased points per day completed (as shown in Figure 15 and Figure 16).

Chapter 2. Background

46

2.5.11 Agile manifesto vs. complex hardware systems

Building on lessons learned in the implementation of Scrum in the use case, Table 3 summarizes

potential conflicts between Agile manifesto values (Beck et al., 2001) and space systems, or

complex physical systems in general, development (Garzaniti et al., 2019b; Golkar et al., 2019).

Table 3. Agile manifesto vs. hardware systems development

Agile Manifesto Potential Conflicts

Individuals and interactions

over processes and tools

Complex systems development, such as space

products, is traditionally highly process-driven due

to the high capital costs involved and required

mission assurance standards.

Working software

over comprehensive documentation

Documentation is critical to ensure collaboration and

avoid any misunderstanding among multiple

organizations and complex supply chains.

Customer collaboration

over contract negotiation

Mission requirement documents (MRD) and System

requirement documents (SRD) are typically part of

the contractual agreement between customers and

mission integrators. MRD and SRDs are frozen

under configuration control at the initial phases of

the development.

Responding to change

over following a plan

Cost of changes increases significantly at later stages

of the development due to the high costs involved in

rework or requalification of space hardware.

2.5.12 Catalog of gaps, challenges

Section 2.5 has provided a comprehensive picture of an Agile-Scrum implementation in an

industrial setting. Table 4 summarizes the gaps and the challenges identified, reports potential

threats, and highlights the needs of engineering teams.

2.5 An industry perspective

47

Table 4. Catalog of gaps, challenges

ID Gaps, challenges Threats Engineering teams needs

1 The scoring system is

strongly linked to the human

factor

Section 2.5.10

scoring system subjective

and affected by biases not

allowing for reliable

planning

A reliable scoring system

correlated to time or cost estimates

2 Effective Sprint planning

(length)

Section 2.5.5

Schedule disruption A method for defining the Sprint

length based on activities inherent

characteristics and Minimum

Viable Product objectives

3 Effective Sprint planning

(contents)

Section 2.5.5

Sprint rescoping, cost and

schedule overrun.

An architecture that models the

dependencies among user stories,

allowing for task prioritization and

ensuring the inclusion of all

required tasks.

4 Meaningful definition of

Sprint objective (i.e., MVPs

sequence structure)

Section 2.5.6 & 2.5.8

Reworking the same

product subset without

improving the technology

readiness of the system

A taxonomy to define the MVPs

and map the MVPs over the

product maturity evolution

5 Management of procurement

and manufacturing

Section 2.5.7

Schedule disruption,

development process

interruption, cost overrun

An architecture that includes

procurement and manufacturing in

the product backlog modeling

their interdependencies with other

user stories.

6 Resource allocation and

leveling a non-homogenous

development environment.

Section 2.5.5 & 2.5.10

Unbalanced development

teams, understaffing, and

overhead of available

personnel

A model the accounts for resource

allocation and leveling during

planning activities evaluating

different project implementation

scenarios.

7 Coordination aspects with

different stakeholders such

as consortium participants,

customers, and suppliers.

Section 2.5.9

Interface mismatches or

failures between system

elements

A model that consistently maps

work packages (if any) and

external input/output to user

stories and accounts for their

interdependencies

Chapter 2. Background

48

2.6 Summary of literature review and industry evaluation

Previous sections reviewed the bodies of knowledge framing the research work, offering an

overview of the current state of the art. Sections 2.1 and 2.2 provided the theoretical and practical

foundation of Agile theory, with a particular emphasis on Agile Scrum. Section 2.3 briefly

discussed the literature on product development approaches with a particular focus on the Stage-

Gate model, Agile for hardware and their combination. It also discussed currently available project

management techniques, contextualizing them in the problem of interest. Section 2.5 reported the

field research study conducted to get additional insights into current challenges in implementing

Agile for hardware, thus better inform the review.

Following the literature review and the industry study, sections 2.4 and 2.5.12 presented

the gap in the state-of-the-art that has been identified, shaping the contribution of this work.

Specifically, gaps in current Agile theory, as well as Agile relation/combination with the traditional

approaches, have been identified.

The following list reports the gaps in the Agile theory mapping them to the challenges

faced by the industry and summarized in Table 4

a) Lack of a taxonomy for Minimum Viable Product definition that accounts for technical

and development process aspects (as presented in section 2.2.1 and Section 2.2.3,

mapped on the industry challenge Table 4, ID 4)

b) Lack of a method to support the tasks’ prioritization and Sprint planning activities that,

accounting for user stories interdependencies, minimizes the Sprint rescoping (as

presented in section 2.2.4, mapped on the industry challenges Table 4, ID 1 & 3).

2.6 Summary of literature review and industry evaluation

49

c) Lack of a method to reliably evaluate the Sprint workload accounting for resource

availability and allowing for proper resource allocation and levelling (as presented in

section 2.2.4, mapped on the industry challenge Table 4, ID 2 & 6).

d) Lack of methods to model and evaluate the impact of iterations propagation through

the development process, thus inform on the viability of given iterations (as presented

in Section 2.2.2, mapped on the industry challenges Table 4, ID 3 & 5).)

The following list reports the gaps in the Agile relation/combination with the traditional

approaches mapping them to the challenges faced by the industry and summarized in Table 4

a) Lack of theories to reconcile traditional and Agile approaches (as presented in Section

2.3.2, mapped on the industry challenge Table 4, ID 7).

b) Lack of quantitative metrics to evaluate the viability of implementing the different

product development processes (as presented in Section 2.3.2 and Section 2.2.2,

mapped over all the industry challenges presented in Table 4).

c) Lack of methods to coordinate the interdependencies between different organizations

implementing different development processes, accounting for the complex interplay

between all the stakeholders (as presented in Section 2.3.2 and Section 2.2.2, mapped

on the industry challenges Table 4, ID 5 & 7).

This thesis aims to fill those gaps enriching current Agile theory and developing a decision

support system (including methods and tools) to support project managers and engineering teams

in overcoming the challenges mentioned above.

50

This page intentionally left blank

51

 A decision support system

Chapter 1 described the motivation for this research and outlined the research goals. Specifically,

it has been identified the need for a decision support system to assist project managers and design

teams in structuring and planning the Agile or Hybrid-Agile development process, navigating

programmatic and technical tradeoffs. Chapter 2 surveyed the literature identifying challenges in

implementing Agile development for physical products, setting the boundary condition for our

decision-making problem.

This chapter addresses the need identified in Chapter 1, developing the decision support

system. This decision support system for Agile development of hardware systems (CURSIVE)

includes an analytical approach to managing development activities within a hardware project.

CURSIVE consists of three macroblocks: structuring, simulating, and planning, implemented in

an integrated tool (Figure 19). This setting allows CURSIVE to deal efficiently with typical projects

structure (Archibald, 2003; ISO/IEC JTC 1/SC 7, 2015)

The structuring macroblock refers to the methods and tools for reasoning about the

structure of the decision problem. If we consider the development activities as our decision

variables, the structuring problem includes: defining or evaluating the interconnections between the

“All models are wrong but

some are useful”.

(Box, 1979)

Chapter 3. A decision support system

52

different decision variables (tasks dependencies); determining the order in which decisions are to

be addressed (tasks order); evaluating the quality of the variables in describing the problem of

interest (tasks granularity).

The simulating block investigates the feasible solutions satisfying the problem constraints

and evaluates the overall process performance for different variables combinations and values.

The planning macroblock refers to methods and tools for further investigate potential target

solutions offering an actionable plan.

These macroblocks are integrated with a cross-block layer responsible for knowledge

representation. The representing or viewing layer (different names are used depending on whether

we refer to input or output data) includes methods and tools to formally represent the problem in a

way understandable by decision-makers and interpretable by computers. This layer is also

responsible for presenting decision-support information derived from structuring, simulating, and

planning blocks in a human-understandable format.

Figure 19. CURSIVE macroblocks

Task ID Task Name V
D

 s
u

p
p

o
rt

Le
n

s
H

o
ld

e
r

M
o

to
r

su
p

p
o

rt

B
e

a
ri

n
g

 s
u

p
p

o
rt

Sh
a

ft

R
in

g

M
o

to
r

A
M

1
0

2
0

G
e

a
rh

e
a

d
 1

0
/1

K

P
in

io
n

R
a

ck

Le
n

s
b

o
tt

o
m

Le
n

s
m

id
d

le

Le
n

s
to

p

Le
n

s
o

u
t

M
a

in
 M

ir
ro

r

Se
co

n
d

a
y

M
ir

ro
r

M
o

to
rH

o
ld

e
r

K
B

R
M

_
0

2
_

1

M
o

to
r

A
M

0
8

2
0

B
e

a
ri

n
g

 t
ip

N
u

t

M
o

to
rH

o
ld

e
rP

C
B

co
n

e
ct

o
r

P
E

E
K

 s
u

p
p

o
rt

M
a

in
 M

ir
ro

r
Su

p
p

o
rt

Fr
o

n
t

B
a

ck

T
o

p

B
o

tt
o

m

V
D

_
o

p
p

o
si

te

V
D

_
si

d
e

M
a

in
 B

o
a

rd

P
o

w
e

r
B

o
a

rd

W
ir

in
g

T
o

p
 H

e
a

ts
in

k

B
o

tt
o

m
 H

e
a

ts
in

k

V
D

 R
a

p
id

 P
ro

to
ty

p
e

O
S

R
a

p
id

 P
ro

to
ty

p
e

T
X

/R
x

R
a

p
id

 P
ro

to
ty

p
e

A
IT

 P
ro

to
ty

p
e

P
r

V
D

 s
u

p
p

o
rt

P
r

Le
n

s
H

o
ld

e
r

P
r

M
o

to
r

su
p

p
o

rt

P
r

B
e

a
ri

n
g

 s
u

p
p

o
rt

P
r

Sh
a

ft

P
r

R
in

g

P
r

M
o

to
r

A
M

1
0

2
0

P
r

G
e

a
rh

e
a

d
 1

0
/1

K

P
r

P
in

io
n

P
r

R
a

ck

P
r

Le
n

s
b

o
tt

o
m

P
r

Le
n

s
m

id
d

le

P
r

Le
n

s
to

p

P
r

Le
n

s
o

u
t

P
r

M
a

in
 M

ir
ro

r

P
r

Se
co

n
d

a
y

M
ir

ro
r

P
r

M
o

to
rH

o
ld

e
r

P
r

K
B

R
M

_
0

2
_

1

P
r

M
o

to
r

A
M

0
8

2
0

P
r

B
e

a
ri

n
g

 t
ip

P
r

N
u

t

P
r

M
o

to
rH

o
ld

e
rP

C
B

co
n

e
ct

o
r

P
r

P
E

E
K

 s
u

p
p

o
rt

P
r

M
a

in
 M

ir
ro

r
Su

p
p

o
rt

P
r

Fr
o

n
t

P
r

B
a

ck

P
r

T
o

p

P
r

B
o

tt
o

m

P
r

V
D

_
o

p
p

o
si

te

P
r

V
D

_
si

d
e

P
r

M
a

in
 B

o
a

rd

P
r

P
o

w
e

r
B

o
a

rd

P
r

W
ir

in
g

 c
o

m
p

o
n

e
n

ts

P
r

T
o

p
 H

e
a

ts
in

k

P
r

B
o

tt
o

m
 H

e
a

ts
in

k

A
IT

 M
a

in
 B

o
a

rd

A
IT

 P
o

w
e

r
B

o
a

rd

A
IT

 V
D

 B
e

a
ri

n
g

 s
ys

te
m

A
IT

 V
D

 s
u

p
p

o
rt

A
IT

 T
X

 le
n

se
s

A
IT

 R
X

 m
ir

ro
rs

W
 T

X
 le

n
se

s

W
 R

X
 m

ir
ro

rs

A
IT

 V
D

A
IT

 E
le

ct
ro

n
ic

s

A
IT

 R
X

 s
ys

te
m

A
IT

 p
a

yl
o

a
d

1 VD support VD support ● ● ● ● ● ● ●

2 Lens Holder Lens Holder ● ● ●

3 Motor support Motor support ● ● ●

4 Bearing support Bearing support ● ● ● ●

5 Shaft Shaft ● ●

6 Ring Ring ● ●

7 Motor AM1020 Motor AM1020 ● ● ● ● ●

8 Gearhead 10/1K Gearhead 10/1K ● ● ●

9 Pinion Pinion ● ● ● ●

10 Rack Rack ● ● ●

11 Lens bottom Lens bottom ● ● ● ● ●

12 Lens middle Lens middle ● ● ● ● ●

13 Lens top Lens top ● ● ● ● ●

14 Lens out Lens out ● ● ● ● ●

15 Main Mirror Main Mirror ● ● ●

16 Seconday Mirror Seconday Mirror ●

17 MotorHolder MotorHolder ● ● ● ● ● ●

18 KBRM_02_1 KBRM_02_1 ● ● ● ● ● ●

19 Motor AM0820 Motor AM0820 ● ● ●

20 Bearing tip Bearing tip ● ● ●

21 Nut Nut ● ● ●

22 MotorHolderPCBconector MotorHolderPCBconector ● ● ● ● ● ● ●

23 PEEK support PEEK support ● ● ● ● ● ●

24 Main Mirror Support Main Mirror Support ● ● ● ●

25 Front Front ● ● ● ● ● ● ●

26 Back Back ● ● ● ● ● ● ●

27 Top Top ● ● ● ● ● ●

28 Bottom Bottom ● ● ● ● ●

29 VD_opposite VD_opposite ● ● ● ● ●

30 VD_side VD_side ● ● ● ● ● ●

31 Main Board Main Board ● ● ● ●

32 Power Board Power Board ● ● ●

33 Wiring Wiring ● ● ● ● ● ●

34 Top Heatsink Top Heatsink ● ● ● ● ● ● ● ● ●

35 Bottom Heatsink Bottom Heatsink ● ● ●

36 VD Rapid Prototype VD Rapid Prototype ● ● ● ● ● ● ● ● ● ● ● ● ● ●

37 VD Rapid Prototype OS Rapid Prototype ● ● ● ● ● ●

38 TX/Rx Rapid Prototype TX/Rx Rapid Prototype ● ● ● ● ● ● ● ● ● ● ● ● ● ●

39 AIT Prototype AIT Prototype ● ● ●

40 Pr VD support Pr VD support ● ● ● ● ●

41 Pr Lens Holder Pr Lens Holder ● ● ●

42 Pr Motor support Pr Motor support ● ● ● ● ●

43 Pr Bearing support Pr Bearing support ● ● ● ● ●

44 Pr Shaft Pr Shaft ● ● ● ●

45 Pr Ring Pr Ring ● ● ● ●

46 Pr Motor AM1020 Pr Motor AM1020 ● ●

47 Pr Gearhead 10/1K Pr Gearhead 10/1K ● ●

48 Pr Pinion Pr Pinion ● ●

49 Pr Rack Pr Rack ● ●

50 Pr Lens bottom Pr Lens bottom ● ● ● ●

51 Pr Lens middle Pr Lens middle ● ● ● ●

52 Pr Lens top Pr Lens top ● ● ● ●

53 Pr Lens out Pr Lens out ● ● ● ●

54 Pr Main Mirror Pr Main Mirror ● ● ●

55 Pr Seconday Mirror Pr Seconday Mirror ● ● ●

56 Pr MotorHolder Pr MotorHolder ● ● ●

57 Pr KBRM_02_1 Pr KBRM_02_1 ● ●

58 Pr Motor AM0820 Pr Motor AM0820 ● ● ●

59 Pr Bearing tip Pr Bearing tip ● ● ●

60 Pr Nut Pr Nut ● ● ●

61 Pr MotorHolderPCBconector Pr MotorHolderPCBconector ● ● ●

62 Pr PEEK support Pr PEEK support ● ● ●

63 Pr Main Mirror Support Pr Main Mirror Support ● ● ●

64 Pr Front Pr Front ● ● ● ● ● ● ●

65 Pr Back Pr Back ● ● ● ● ● ● ●

66 Pr Top Pr Top ● ● ● ● ● ● ● ●

67 Pr Bottom Pr Bottom ● ● ● ● ● ● ●

68 Pr VD_opposite Pr VD_opposite ● ● ● ● ● ● ●

69 Pr VD_side Pr VD_side ● ● ● ● ● ● ● ●

70 Pr Main Board Pr Main Board ● ●

71 Pr Power Board Pr Power Board ● ●

72 Pr Wiring Pr Wiring components ● ● ● ●

73 Pr Top Heatsink Pr Top Heatsink ● ●

74 Pr Bottom Heatsink Pr Bottom Heatsink ● ●

75 Main Board Assembly AIT Main Board ● ●

76 Power Board Assembly AIT Power Board ● ●

77 AIT VD Bearing system AIT VD Bearing system ● ● ● ●

78 AIT VD support AIT VD support ● ● ● ● ● ● ● ●

79 AIT TX lenses AIT TX lenses ● ● ● ●

80 AIT RX mirrors AIT RX mirrors ● ● ●

81 W TX lenses W TX lenses ●

82 W RX mirrors W RX mirrors ●

83 AIT VD AIT VD ● ● ● ●

84 AIT Electronics AIT Electronics ● ● ● ● ● ●

85 AIT RX mirrors AIT RX system ● ● ● ● ● ● ● ● ● ● ●

86 AIT satellite AIT payload ● ● ● ● ● ●

Prepare Data

Structuring

Simulating

Planning

3. Overview

53

Figure 20 summarizes the overall workflow of the proposed framework. Each macroblock

consists of a set of activities (square shapes) producing a set of artifacts (rectangle with a wavy

base). Additional data (rhomboid shape) might be required to perform some activities. In the

following sections, we describe in detail each of the proposed steps.

St
ru

ct
u

ri
n

g
Si

m
u

la
ti

n
g

P
la

n
n

in
g

Upload data &
verify data integrity

Resource
Availability

Generate random samples
of time & cost within PDFs

Set all the tasks
in "to do" state

Apply work and
iteration policy

Verify all the tasks
are in "done" state

Feasible scenarios
dataset

Generate the
simulated scenario

Stable
distributions?

No
next batch of sim.

Yes
end sim.

Set cost, time or
risk posture targets

Define number
of Sprint

Define Sprints
Backlog and

sequence

Identify target
scenario

suggested
implementation

plan
Assess project

status
Update input

data
Rerun

simulating step

end

Track project
status?

yes

no

Project
completed?

yes

no

Start

Systems of
interest

architecture

Definition of

▪ Resources required

▪ Time estimates

▪ Cost estimates
Product Backlog

Architecture

Info on Agile
implementation

viability
Task list

definition

Tasks
Dependencies

elicitation

Tasks
Prioritization

Figure 20. Workflow of proposed framework

Chapter 3. A decision support system

54

3.1 Structuring

This first stage of CURSIVE aims to overcome some of the critical challenges identified in

Chapter 2. With reference to the catalog of gaps summarized in Table 4, this section addresses the

following challenges:

▪ Providing a reliable scoring system correlated to time or cost estimates (ID 1);

▪ Defining an architecture model to characterize the dependencies among user

stories, allowing for task prioritization and ensuring the inclusion of all required

tasks (ID 3);

▪ Introducing procurement and manufacturing activities in the architecture of the

product backlog modeling their interdependencies with other user stories (ID 5);

▪ Defining a model to consistently map work packages (coming from an upper

organizational layer, if any) and external input/output to user stories and accounts

for their interdependencies (ID 7);

By overcoming those challenges, this thesis contributes to filling the gap in Agile theory

and its coordination aspects with traditional product development processes identified in Section

2.4. The approach proposed in this first stage significantly contributes to answering the first

research question (specifically Section 3.1.5) and contributes to answering the structuring problem

of the second research question (particularly Section 3.1.1).

3.1.1 Product backlog architecture

Agile does not have a process architecture as typically defined in systems engineering literature

(Eppinger & Browning, 2018) but relies on the product backlog leaving the structuring exercise to

3.1 Structuring

55

the team. This situation entails several challenges and adds uncertainties to the process (e.g., Sprint

rescoping, schedule disruption, development interruption, interface mismatches)

To overcome these challenges, leveraging the existent product backlog artifact, this thesis

introduces the concept of product backlog architecture defined as “the collection of the user stories

supplemented by the elicitation of their interactions”.

The design structure matrix (DSM) is used to represent the product backlog architecture in

a compact yet exhaustive format (Eppinger & Browning, 2018). A DSM is a square matrix in which

cells on the diagonal represent the tasks, while marks in off-diagonal cells indicate activities

interfaces. For each task, marks in the row indicate its inputs (sub-diagonal marks), while marks in

the column define its feedbacks (super-diagonal marks). Activity names or acronyms are typically

listed in an additional column on the left of the matrix (Figure 21).

Figure 21. Notional example of DSM product backlog architecture

V
D

L
H

M
tr

_s

B
rg

_s

Sh
af

t

R
in

g

M
o

to
r

1

G
_h

P
in

io
n

R
ac

k

Lb Lm Lt Lo M
M

SM M
h

M
o

to
r

2

B
rg

 t
ip

N
u

t

M
H

 P
C

B
_c

P
EE

K
_s

M
 M

 S
u

p
p

O
S

F

O
S

B

O
S

T

O
S

B

O
S_

V
D

_o

O
S_

V
D

_s

M
B

P
B

T
D

is
s

B
 D

is
s

VD ● ● ● ● ● ●

L H ● ●

Mtr_s ● ●

Brg_s ● ● ●

Shaft ●

Ring ●

Motor 1 ● ● ● ●

G_h ● ●

Pinion ● ● ●

Rack ● ●

Lb ● ● ● ●

Lm ● ● ● ●

Lt ● ● ● ●

Lo ● ● ● ●

MM ● ● ●

SM ●

Mh ● ● ● ● ● ● ●

Motor 2 ● ●

Brg tip ● ●

Nut ● ●

MH PCB_c ● ● ● ● ●

PEEK_s ● ● ● ● ●

M M Supp ● ●

OS F ● ● ● ● ● ●

OS B ● ● ● ● ● ●

OS T ● ● ● ● ●

OS B ● ● ● ●

OS_VD_o ● ● ● ●

OS_VD_s ● ● ● ● ●

MB ●

PB ●

T Diss ● ● ● ● ● ● ●

B Diss ● ●

Chapter 3. A decision support system

56

The DSM provides a simple way to visualize the structure of an activity network and

compare alternative process architecture. The scientific literature provides several methods as well

as algorithms to analyze and optimize process DSM models (Eppinger & Browning, 2018).

Within the product backlog definition, project participants are also asked to provide

additional data about time and cost (discussed in section 3.1.2), resources required to perform the

activities (discussed in section 3.1.3), and Work Breakdown reference from the consortium plan, if

any (discussed in section 3.1.4).

3.1.2 Scoring system: time and cost estimates

One of the key elements for efficient planning, thus a successful implementation of Agile, is having

reliable task effort estimates. Agile frameworks do not prescribe a unique method for teams to

quantify the efforts, but they generally use some abstract metrics. Standard estimating practices

include numeric sizing, t-shirt sizes, and the Fibonacci sequence.

While the implementation process of such methods undoubtedly represents an effective

team-building activity, the outcome is not always meaningful. The team members might not always

share the same understanding of the metric or scale used. Furthermore, in hardware projects, where

different disciplines are involved, complexity indexes might not be comparable.

This thesis proposes to use a time and cost-based scoring system as a common language

shared by the whole team across all the disciplines. Moreover, instead of deterministic estimates,

stochastic variables are used to account for uncertainty.

To define those estimates, a combination of expertise-based approaches and data-driven

approaches are used. Expertise-based approaches are adopted when no quantified, empirical data

are available. They represent a practical, low time-consuming, and efficient solution. In this case,

3.1 Structuring

57

the development team is asked to provide a set of time and cost estimates in a Delphi-like method

(Nowack et al., 2011; Rowe & Wright, 1999). Data-driven approaches are used instead when

statistics from previous development projects or detailed information on the current one is

available.

These estimates have to be provided with their probability distribution to represent the

uncertainty associated with activity time and cost. The literature proposes different probability

density functions (PDFs) to represent such uncertainty (Hajdu & Bokor, 2014). The model

proposed here adopts triangular distributions, which are simple to estimate from typically available

programmatic data. Their definition requires three data points per task: Lower Boundary (LB),

Most Likely Value (ML), and Upper Boundary (UP). The area under the probability density

functions (PDF) has been normalized and set equal to one. The model assumes that task durations

are not interdependent, and each activity’s time PDF also accounts for internal reworks. The

expected PDP time is build based on all the considerations above.

 Since cost is strongly related to time, the cost PDF for a given activity usually has a shape

similar to the schedule one. We define for each task a correlation function based on the activity

cost-time elasticity and organization capability (e.g., supply chain activities - longer lead time is

usually associated with lower cost; design activities – mainly OPEX).

The boundaries of cost estimates are based on historical data or expert opinion and can be

deterministic or random variables. The overall PD cost is evaluated depending on the PDP

architecture accounting for all activities interactions. PDFs provide additional information on the

probabilities of different outcomes expressing a perception of the uncertainty. These estimates are

summarized in the product backlog architecture as additional columns alongside the DSM (Figure

22).

Chapter 3. A decision support system

58

Figure 22. Complementary information provided within the product backlog architecture work-packages traceability,

expertise required, cost and time estimates.

3.1.3 Resource availability and disciplines involved

Agile for hardware significantly differs from software version because of non-homogenous

development environments requiring expertise from different disciplines. For this reason, while

formulating user stories is also important to define the field of knowledge associated with them and

include in the team all the expertise needed.

CURSIVE includes expertise information in the product backlog architecture alongside

time and cost estimates (Figure 22). To be highlighted, it does not pre-assign the task to people but

only marks the discipline related to the task, including internal resources, i.e., development team,

and external resources, i.e., procurement and manufacturing. Those data will be used during the

project execution simulation, ensuring correct resource allocation and leveling.

Task ID Task Name WP ID Expertise # Exp needed m
in

m
o

de

m
ax

m
in

m
o

de

m
ax

1 VD 1 M 1 0.6 1 2 960 1600 3200

2 L H 1 M 1 0.6 1 1.4 960 1600 2240

3 Mtr_s 1 M 1 0.4 0.6 0.8 640 960 1280

4 Brg_s 1 M 1 0.8 1 2 1280 1600 3200

5 Shaft 1 M 1 0.1 0.2 0.6 160 320 960

6 Ring 1 M 1 0.2 0.4 0.6 320 640 960

7 Motor 1 1 M 1 0.2 0.4 0.6 320 640 960

8 G_h 1 M 1 0.2 0.4 0.6 320 640 960

9 Pn 1 M 1 0.4 0.8 1 640 1280 1600

10 Rk 1 M 1 0.4 0.6 1 640 960 1600

11 Lb 1 O 1 0.2 0.4 0.6 320 640 960

12 Lm 1 O 1 0.2 0.4 0.6 320 640 960

13 Lt 1 O 1 0.2 0.4 0.6 320 640 960

14 Lo 1 O 1 0.2 0.4 0.6 320 640 960

15 MM 1 O 1 0.2 0.4 0.6 320 640 960

16 SM 1 O 1 0.2 0.4 0.6 320 640 960

31 Main Board 1 E 1 2 3.6 4 3200 5760 6400

32 Power Board 1 E 1 1 1.8 2 1600 2880 3200

40 Pr VD 3 p 1 8 12 16 936 1170 1697

41 Pr L H 3 p 1 8 12 16 760 950 1378

42 Pr Mtr_s 3 p 1 8 12 16 696 870 1262

43 Pr Brg_s 3 p 1 8 12 16 800 1000 1450

44 Pr Shaft 3 p 1 3 4 8 2 2 5

weeks Currency

Prepare Data

3.1 Structuring

59

3.1.4 Hybrid-Agile in multiparty consortia

A multi-tier architecture has been formulated to manage a Hybrid-Agile PDP ensuring efficient

coordination between the consortium adopting stage-gate and the participants implementing Agile

(Garzaniti et al., 2019b). The key feature of the proposed method is the coordination interface that

reconciles the deliverables and activities of the two approaches (Figure 23).

Figure 23. Hybrid product development process architecture

The consortium layer sits at the top layer of the architecture. The consortium, as a

coordinating agent of the PDP, provides overall management of the project. It is in charge of the

governance of the project. The consortium members collegially define the mission requirements,

the functional system requirements, the interfaces among all parties involved in the project and

agree on project reviews and deliverables. The consortium is also responsible for strategic decisions

CONSORTIUM LAYER

PROJECT MANAGEMENT ACTIVITIES
Work package #

Task 1

Deliverable 1

Task 2

Deliverable 2

Task 3

Deliverable 3

Task 4

Deliverable 4

Mission Requirements

Functional System Requirements

Project schedule (consortium perspective)

Project Deliverables (consortium perspective)

OUTPUT

ORGANIZATION LAYER
24h

1 to 4

weeks

Sprint

Sprint

Backlog

Product

Backlog

Sprint

Planning
Sprint

SYSTEM IMPLEMENTATION
MVPs ⊂ System

System

AIT Procedures

AIT Logs & Results

Quality Assurance

OUTPUT

COORDINATION INTERFACE

Information Flow
Epics

Electronics

Mechanics

Software

User story n

Work
Package #

Project Deliverables

Number & type of
MVPs (tentative)

System/Subsystem Requirements

Schedule and related MVPs

Interface Control Document

OUTPUT (ORGANIZATION PERSPECTIVE)

Chapter 3. A decision support system

60

throughout the lifecycle of the project. Consortia can operate using either Agile or stage-gate PDP.

In our research, we focus on consortia operating using traditional Stage-Gate processes. Due to its

structured nature, stage-gate provides natural means of coordination through decision gates and

milestones, and it has been proven to work with large, complex organizations.

At the bottom layer of the architecture, we have the organization layer. This layer includes

all the organizations participating in the project. Each project participant operates its own PDP and

coordinates with others through interfaces with the consortium layer.

The coordination is implemented through a coordination interface defined at the

organization level. Each organization participating in the project maps the consortium work

packages, milestones, and deliverables on their internal means of project management, such as

product backlog and minimum viable products (MVPs) in the case of Agile. This layer can also

implement information coordination through direct interfaces between the participating

organizations. However, we neglect the latter in the current setting, focusing on the main structured

means of coordination.

3.1.5 Agile implementation viability

Two cornerstones of Agile methodologies, and specifically the Scrum version, are the iterative

enhancement of products and the implementation of projects through a sequence of Sprints

(Schwaber & Sutherland, 2020). While these distinctive features of Agile are highly beneficial for

getting early customer feedback and derisking products from both technical and business

perspectives, they might come at not negligible cost or time expense. Furthermore, the

implementation of some hardware-specific activities within a Sprint timebox (typically ranging

from a couple of weeks to one month) can be challenging, if not unfeasible at all, due to the physical

aspect of the system (Garzaniti et al., 2019a).

3.1 Structuring

61

Therefore, the Agile viability indexes (AV) are introduced. They are a set of non-dimensional

metrics, ranging from 0 to 1, aimed at assessing the viability of implementing Agile in a given

project based on time (AVT) and cost (AVC) data.

The time-based index provides information at the task level (1) and project level (2),

accounting for both Sprint feasibility (SV) and iteration viability (IV). These two core aspects of

Agile development, Sprint feasibility and iteration viability, are averaged into a unique metric

(AVT). The task-specific index AVT
i uses the most likely value of time estimates, TMLi, expressed in

weeks as reference. The threshold level adopted in eq (1) formulation relates to the recommended

maximum Sprint, i.e., four weeks. This value is consistent with the latest Scrum guide (Schwaber

& Sutherland, 2020), stating that Sprints “are fixed length events of one month or less to create

consistency”. For TMLi values higher than recommended Sprint length, AVT
i focuses on providing

information on the extent to which a Sprint is unfeasible.

 𝐴𝑉𝑖
𝑇 = {

1

2
(𝑆𝑉𝑖 + 𝐼𝑉𝑖) 𝑖𝑓 𝑇𝑀𝐿𝑖 ≤ 4

𝑆𝑉𝑖 𝑖𝑓 𝑇𝑀𝐿𝑖 > 4
 (1)

 𝐴𝑉𝑝𝑟𝑗
𝑇 =

∑ 𝐴𝑉𝑖
𝑇

𝑛

𝑛
 (2)

AVT
prj provides a rough indication of the most suitable development process for the

considered project: pure Agile (AVT
prj > 0.75), Hybrid-Agile (0.25 < AVT

prj ≤ 0.75), or stage-gate

(AVT
prj ≤ 0.25). The thresholds are correlated to the indexes formulation contributing to the AVT, as

discussed in detail in the following paragraphs.

AVTi offers task-specific information (i = 1,…, n with n = number of tasks), supporting

decision-makers in defining the detailed development process structure that best fits the project

characteristics (e.g., identify activities for which iterations would introduce a high risk of schedule

overrun; identify the set of activities implementable in Sprints).

Chapter 3. A decision support system

62

The Sprint viability index (SVi) assesses the feasibility of completing an activity within the

Sprint time-boxed periods (3).

 𝑆𝑉𝑖 =

{

−0.250 ∙ 𝑇𝑀𝐿𝑖 + 1 𝑖𝑓 0 ≤ 𝑇𝑀𝐿𝑖 ≤ 2

−0.125 ∙ 𝑇𝑀𝐿𝑖 + 0.75 𝑖𝑓 2 < 𝑇𝑀𝐿𝑖 ≤ 4

−0.25 ∙
𝑇𝑀𝐿𝑖−max(𝑇𝑀𝐿𝑖)

max(𝑇𝑀𝐿𝑖)−4
𝑖𝑓 𝑇𝑀𝐿𝑖 > 4

 (3)

As mentioned before, TMLi is the most likely value of time estimates of each task i expressed in

weeks. It is used as a reference metric in calculating the index. Three different ranges are set for

the TMLi, formalizing the shared understanding among practitioners regarding Sprints duration, as

reported in the scientific literature (Atzberger et al., 2020; Schmidt et al., 2018b, 2019), as well as

the industry surveys (Age-of-Product.com, 2018; Saat Network GmbH, 2008, 2011). The

maximum recommended length for a Sprint is four weeks, as reported in the latest Scrum guide

(Schwaber & Sutherland, 2020). Beyond this threshold, the process falls back on traditional

approaches. Below four weeks, shorter times are associated with higher Sprint efficiency, allowing

for faster MVPs evolution, thus convergence to the final product. The function approximating the

Sprint Viability index has been estimated based on the industry surveys data (Age-of-Product.com,

2018; Saat Network GmbH, 2008, 2011). Data reveal that practitioners’ consensus has converged

over the last decade in considering the two weeks Sprint as more effective, thus the widest adopted

(Figure 24-a). Data also suggest that practitioners typically allocate from four to thirteen user stories

per Sprint (Figure 24-b), with a team composed mainly of seven or more members (Figure 24-c).

Of course, those surveys exhibit few limitations. First, not all surveys report a careful and

transparent demographics selection and analysis; therefore, data might be biased based on the job

position and experience of the survey participants. Second, surveys address different sectors, thus

3.1 Structuring

63

including different products with different levels of product physicality. Nevertheless, those also

are the most recent and comprehensive data currently available.

Building on those data, the SVi index has been formulated to yield a value between

1 and 0.75 for TMLi lower than or equal to 2 weeks, a value between 0.25 and 0.75 for TMLi between

2 and 4 weeks, and a value between 0.25 and 0 for TMLi greater than four weeks. These ranges are

then used to provide recommendations for both project and task-specific indexes: Agile

(AVT > 0.75), Hybrid-Agile (0.25 < AVT ≤ 0.75), or stage-gate (AVT ≤ 0.25).

Figure 24. Survey data on sprint length, committed user stories and team composition

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 4+

%
 o

f
re

sp
o

n
d

en
ts

Sprint Length (weeks)

2008 #50 2011 #81 2018 #242 trend

0%

5%

10%

15%

20%

25%

30%

%
 o

f
re

sp
o

n
d

en
ts

Committed user stories per Sprint

respondents 81

0%

5%

10%

15%

20%

25%

30%

1-3 4 5 6 7 8 8+

%
 o

f
re

sp
o

n
d

en
ts

number of member in the team

2011 #81 2018 #242

(b) (c)

(a)

Chapter 3. A decision support system

64

The iteration viability index (IVi) evaluates the relative weight of a task over the project (4).

It provides an indication of task granularity, thus the effect of a potential iteration of the given task

on the project schedule. The IVi index ranges from 0 to 1, and it is formulated to provide a closer

to one value for shorter TMLi (one corresponds to the shorter task in the project) and a closer to 0

value for longer TMLi. This formulation, leveraging the relative weight of a task over the product

development, allows for a project-independent index that can be used across a variety of projects.

 𝐼𝑉𝑖 = 1 − [

𝑇𝑀𝐿𝑖
∑𝑇𝑀𝐿𝑖

−min(
𝑇𝑀𝐿𝑖
∑𝑇𝑀𝐿𝑖

)

max(
𝑇𝑀𝐿𝑖
∑𝑇𝑀𝐿𝑖

)−min(
𝑇𝑀𝐿𝑖
∑𝑇𝑀𝐿𝑖

)
] (4)

The cost-based Agile viability index (5). accounts for the relative weight of each task

compared to the average task (i.e., the median value of task cost samples 𝐶̃𝑀𝐿). It provides

information on the impact on the project cost of a potential iteration of the given task.

 𝐴𝑉𝑖
𝐶 =

{

 0.5∙[𝐶𝑀𝐿𝑖−𝐶̃𝑀𝐿]

min(𝐶𝑀𝐿𝑖)−𝐶̃𝑀𝐿
+ 0.5 𝑖𝑓 𝐶𝑀𝐿𝑖 ≤ 𝐶̃𝑀𝐿

0.5∙[𝐶𝑀𝐿𝑖−𝑚𝑎𝑥(𝐶𝑀𝐿𝑖)]

𝐶̃𝑀𝐿−max(𝐶𝑀𝐿𝑖)
𝑖𝑓 𝐶𝑀𝐿𝑖 > 𝐶̃𝑀𝐿

 (5)

The AVC
i index ranges from 0 to 1, and it is formulated to provide a closer to one value for

lower CMLi (one corresponds to the less expensive task in the project) and a closer to 0 value for

higher CMLi. This AVC
i formulation leveraging the relative weight of a task over to the average task

allows for a project-independent index that can be used across a variety of projects. The cost-based

index at the project level (AVC
prj) can be derived using AVC

i in (2). The same threshold values

presented for AVT
pr are applied to AVC

prj to have a unified formulation. However, in the case of the

cost indexes, the thresholds are intended as a rough indication. Agile teams might select a different

threshold based on different reference metrics, such as a percentage of the R&D budget or the total

project budget.

3.1 Structuring

65

These metrics, providing a measure of tasks’ intrinsic characteristics, can be used as a

proxy to understand if both work and system decomposition (i.e., task granularity and system

modularity) are suitable for Agile implementation. In support of this statement, there is a solid body

of knowledge developed over the last twenty years relating product modularity and product and

process granularity (Chiriac et al., 2011; Eckert et al., 2015; Maier et al., 2017; Sosa et al., 2003).

Specifically, the reader can refer to two seminal research works discussing the relation between

modularity and granularity in engineering systems design and their effect on process cost and time

performance (Maier et al., 2017, 2015). A detailed discussion of those concepts is out of the scope

of this thesis as it would require separate research. Instead, the work presented here leverages

previous research in the field and adopts those concepts in the context of Agile development of

physical products. The relation between those concepts and the Agile implementation suitability is

further discussed in the case studies and summarized in their interim conclusion.

Agile viability indexes data are summarized in a chart as in Figure 25 for easy reading and

interpretation. Based on these data, teams can refine user stories definition and have a first

understanding of when and how to use Agile within the development project.

Figure 25. Agile Implementation Viability Chart each point represents a task

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

It
er

at
io

n
 V

ia
b

ili
ty

 C
o

st
 In

d
ex

Iteration Viability Time Index

Increase
task

granularity

Increase
product

modularity

Chapter 3. A decision support system

66

3.2 Simulation

In the framework proposed in this thesis, the product development process (PDP) is characterized

as a network of activities exchanging information and deliverables (Figure 26). The network

topology is defined by the product backlog architecture, which serves as an adjacency matrix.

Activities generate an output based on given inputs. A change in the inputs requires revising the

activity. The rework affects the outcomes of the activity and potentially propagates through other

tasks.

Task i
Task i+1

Task i+2

Task i+3

Task i+4

Task i+5

Figure 26. Notional example of activities network

While input changes always require revising the task (to verify the consistency of data

exchanged), the impact of this new flow of information may vary. When an iteration occurs, an

upstream task i is reworked due to feedback from downstream activities (i + n). The different impact

of this rework is reflected in the time and the related cost required to complete the task again, as

well as the number of downstream activities affected by it. The model also considers that iterate

executions of the same activity take less time than the original duration (i.e., learning factor). The

cost is estimated accordingly.

3.2 Simulation

67

The model uses a discrete event simulation to compute PD process time and cost for

different batches of inputs (Figure 27). Each simulation run begins at system state 0 (all tasks in

the product backlog). Activities duration and the related cost for each simulation are randomly

sampled within PDFs boundaries fitting to the probability distributions shapes (we have also

implemented the Latin Hypercube method (Tang, 1993) if users prefer a different sampling

approach).

Figure 27. Schematic representation of simulation process

The simulation performs tasks using an Agile Kanban board (Rodríguez et al., 2018).

Initially, all activities are in the “to do” state; the simulation runs till all the tasks move in the “done”

state. In each system state, the model determines the activities to be done, verifying the

availability/readiness of the inputs and the availability of resources. If input requirements are

satisfied, the task is moved “in progress”. If input requirements are met, the task is moved “in

progress”. The same task is then moved “in done” according to its working elapsed time. Once an

activity ends, the cost of the work done is added to the cumulative cost. The total elapsed time

represents the process duration.

Input
PDFs Input

sampling

Discrete event simulation

Process
time, cost and
scenario data

To do In progress Done

Task i

Task i Task i+1

Task i+2

Task i+3
Task i+4

Task i+5

Resource
capabilities

Chapter 3. A decision support system

68

Algorithm 1. Process execution for each run of the simulation

Input: task list, DSM, time and cost estimates, task type, resource

Output: Process Time, Process Cost, state transition sequence {Time} and {Cost}

def Task.state: to do=0, in progress=0.5, done=1

1 Randomly sample time and cost of each activity

2 Initialize variables and set all Task.state=0

3 While not all Task.state==1 do

4 | For all tasks in the tasks list do

5 | | Identify the tasks where Task.state=0

6 | | Identify the set of tasks that meet precedence and resources constraints

7 | | Set Task.state =0.5 and allocate the resources

8 | | Work on the tasks (increment Task.progress by time step t)

9 | | If Task.progress=100%, then

10 | | | set Task.state=1 and empty the resource

11 | | End

12 | | If Task.type==(procurement or AIT) and alert is present then

13 | | | Set Task.state=0 and empty the alert

14 | | End

15 | | Look for iteration in upstream activities generated by completed tasks

16 | | If an iteration is triggered then

17 | | | Se the upstream Task.state=0

18 | | | Update time and cost estimates samples

19 | | | propagate iteration effect to procurement and AIT tasks

20 | | | If those AIT and procurement Task.state==1 then

21 | | | | Set Task.state=0

22 | | | | Update time and cost estimates samples

23 | | | Else

24 | | | | Set a procurement or AIT alert

25 | | | End

26 | | End

27 | End

28 End

29 Return Process Time, Process Cost, state transition sequence {Time} and {Cost}

3.2 Simulation

69

The simulation adopts a Monte Carlo approach (Theodoridis, 2020). It runs several times

and generates a set of pairs cost, C, and time, T, samples. The collection of all C and T samples

respectively form cost and time distribution. Together, they constitute a joint cost-schedule

distribution. Several runs (s) are required to get stable distributions. Batches of simulation, n, are

run until both expected value and standard deviation of the T and C distributions stabilize within

precision ε according to equations (6) and (7) reported here only for cost.

|𝜎𝐶,𝑠
2 − 𝜎𝐶,𝑠−𝑛

2 |

𝜎𝐶,𝑠−𝑛
2 < 𝜀 (6)

|𝐸[𝐶𝑠] − 𝐸[𝐶𝑠−𝑛]|

𝐸[𝐶𝑠−𝑛]
< 𝜀 (7)

The results of this phase are summarized in a chart reporting joint time and cost probability

distribution plots of the simulated scenarios (Figure 28). The summary is handy to quickly compare

process cost and time against budget and schedule target, inform on potential risks of schedule or

cost overrun, and eventually support selecting the best value-at-risk solution to comply with project

targets.

Figure 28. Output dashboard of scenario analysis

Time target

Cost target

Time target

Cost target

Probability
of meeting
the target

Probability
of meeting
the target

Chapter 3. A decision support system

70

3.3 Planning

In most projects, budget and schedule targets are set a priori; therefore, agility in the PDP shall

comply with these constraints. The objective is then to fine-tune all the process implementation

variables to meet the cost and time requirements.

The challenges in this undertaking are 1) Defining an optimal number of Sprints; 2)

Defining the Sprint backlog and duration 3) Defining the Sprint sequence, thus MVPs transition

strategy. Results of this process are then summarized in a dashboard of easy interpretation.

The model proposed here considers the schedule associated with each scenario resulting

from the simulation as a set of data points. Thus, the Sprint definition becomes a clustering problem.

In statistics, and specifically in statistical and exploratory data analysis, clustering or cluster

analysis is the task of grouping a set of objects (data points) so that the objects in the same group,

called a cluster, are more similar to each other than those in other groups (Shannon, 2007).

Several methods are available to tackle clustering problems (Butta et al., 2021; Chander &

Vijaya, 2021). Each of them involves some challenges in defining the set of parameters required

by the given method to solve the clustering task. In this work, given the type of data we have to

handle, we adopt a partitioning-based clustering technique, relying on squared error (Chander &

Vijaya, 2021).

In such kinds of methods, the first step is to identify the optimal number of clusters. This

is a recurring issue in clustering analysis and a separate question from the clustering process itself.

Even if the literature addressed this concern (Davies & Bouldin, 1979; De Amorim & Hennig,

2015; Pimentel & de Carvalho, 2020; Ünlü & Xanthopoulos, 2019), there is still no definitive

3.3 Planning

71

answer to the question. The optimal number of clusters is somehow subjective and depends on the

method used to measure similarities and the parameters used for partitioning.

To evaluate the optimal number of clusters, CURSIVE uses a heuristic method based on

the silhouette score (Rousseeuw, 1987). Our algorithm evaluates the silhouette values for different

numbers of clusters and finds the solution where adding a cluster no longer results in significantly

better data modeling. The approach attempts to maximize the median of the silhouette over each

cluster for a given number of clusters, minimizing its standard deviation. It has also been

implemented the same heuristic method using a different metric: the within-cluster sum of point-

to-centroid distances. The comparison of results derived from different metrics is used for

validation purposes (Sugar et al., 2003).

As a second step, the framework uses the fuzzy C-means algorithm (Berget et al., 2008;

Zhang et al., 2020) to define the Sprints backlog. Compared to crisp clustering methods, which

assign every object to a unique cluster, fuzzy clustering provides estimates on the degree of

membership of each object to each cluster (i.e., the probability of membership to the different

groups). The fuzzy C-means algorithm (FCM) aims to minimize the objective function J as in (8)

𝐽 =∑∑𝑤𝑖𝑗
𝑚𝑑𝑖𝑗

2

𝐶

𝑗=1

𝑁

𝑖=1

𝑚 > 1

where 𝑤𝑖𝑗
𝑚 ∈ [0 1] are the membership values telling the degree to which element, 𝑥𝑖,

belongs to the cluster, 𝑐𝑗, and 𝑑𝑖𝑗 are the distances between the point 𝑥𝑖 and the centroid 𝑐𝑗. The

index i=1, …, N refers to the object number, while the index j=1, …, C refers to the cluster number.

The hyper-parameter m is called fuzzifier and determines the fuzziness of the clustering. Typically

it is set equal to 2, as this value has proven to give good results with the FCM (Berget et al., 2008).

(8)

Chapter 3. A decision support system

72

Data are clustered based on process elapsed time, cost, task dependencies, and resource

availability. As inclusion criteria in the clustering process, thus Sprint definition, the Agile viability

indexes are used. Excluded tasks are then mapped on the suggested Sprints. The outcome of the

Sprint definition process offers information on the set of tasks to be performed within each Sprint,

the Sprints’ length and cost, and the resources required to perform the activities. Every Sprint has

its own goal. Therefore, Sprints’ lengths, as well as the Agile team, may vary within the

development. The framework accounts for all those questions and suggests a solution that best fits

the scenario constraints.

The last step in the Sprint planning process consists of defining the Sprint sequence (i.e.,

the MVPs delivery sequence) and the related transition strategy. Building on the cluster analysis

results, the framework suggests an optimal Sprints sequence taking into account the Sprints

interdependencies (including product interdependencies and relevant lifecycle phases such as

design, procurement, assembly, integration, testing, and validation).

Figure 29. Output dashboard of the planning phase

3.3 Planning

73

The output dashboard (Figure 29) reports the traditional Gantt chart of the process (top left

corner), a Sprint backlog mapped over the Gantt chart (top right corner), the number and sequence

of Sprint (bottom left corner), and the detailed time and cost breakdown structure for activity

sequence and iterations (bottom right side).

The approach proposed in this last stage answers the second research question, with a

particular focus on the process execution support problem. With reference to the catalog of gaps

summarized in Table 4, this section has addressed the following challenges:

▪ To provide a method for defining the Sprint length based on activities' inherent

characteristics and Minimum Viable Product objectives. (ID 2).

▪ To provide a method for defining Sprint backlog, accounting for dependencies

among user stories, allowing for task prioritization, and ensuring the inclusion of

all required tasks (ID 3).

▪ To provide a method for managing procurement and manufacturing activities,

accounting for interdependencies with other user stories (ID 5).

▪ To provide a method to handle resource allocation and leveling in a non-

homogenous development environment (ID 6)

It shall be remarked that the dashboards provided by this system do not aim to replace team

decision-making activities. Instead, the suggested Sprint backlog and MVPs sequence is meant to

be used within the Sprint planning meetings as a starting point for the discussion. The solution

proposed here aims to support the team's decision-making by offering quantitative analyses and

specific metrics to benchmark all the possible alternatives.

Chapter 3. A decision support system

74

3.3.1 Continuous process tracking and improvement

One of the distinctive characteristics of Agile methodologies is the adaption of the development

process as the development progresses. CURSIVE accounts for it by including a continuous process

tracking and improvement feature as illustrated in the Figure 20 flowchart and recalled in Figure

30 below.

St
ru

ct
u

ri
n

g
Si

m
u

la
ti

n
g

P
la

n
n

in
g

Upload data &
verify data integrity

Resource
Availability

Generate random samples
of time & cost within PDFs

Set all the tasks
in "to do" state

Apply work and
iteration policy

Verify all the tasks
are in "done" state

Feasible scenarios
dataset

Generate the
simulated scenario

Stable
distributions?

No
next batch of sim.

Yes
end sim.

Set cost, time or
risk posture targets

Define number
of Sprint

Define Sprints
Backlog and

sequence

Identify target
scenario

suggested
implementation

plan
Assess project

status
Update input

data
Rerun

simulating step

end

Track project
status?

yes

no

Project
completed?

yes

no

Start

Systems of
interest

architecture

Definition of

▪ Resources required

▪ Time estimates

▪ Cost estimates
Product Backlog

Architecture

Info on Agile
implementation

viability
Task list

definition

Tasks
Dependencies

elicitation

Tasks
Prioritization

Figure 30. Continuous process tracking and improvement

Since CURSIVE is a data-driven model, the adaptation of the process as it progresses is

ensured by updating the input data as they become available and rerunning the simulation and

planning steps. While the project is running, end-users can first track and assess the project status

by comparing the forecast with the actual implementation. Then, if major deviations occur, they

define an updated version of the product backlog architecture by a) considering a subset of the

initial product backlog, b) updating the task list, c) updating tasks dependencies d) updating the

time and cost estimates, e) permutations of the above (Figure 31). Lastly, end users shall re-execute

simulation and planning stages. Same principles and approaches on project structuring, Sprint

planning and MVPs definition (as presented in sections 3.2, 3.3) are applied. The new output will

offer an updated perspective on the PD, accounting for the new knowledge acquired while

developing the product as well as the context evolution.

3.3 Planning

75

Figure 31. Product backlog architecture updates

The product backlog architecture follows the same rules of the Scrum product backlog

artifact in terms of document dynamism, ownership, and maintenance strategy. The main difference

relies on the elicitation of task interactions and the integration with quantitative time/cost estimates

and engineering discipline information.

The framework proposed here also includes Sprint review and retrospective events as

defined in the Scrum theory. Nevertheless, those two essential features are not discussed in detail

because CURSIVE totally embraces the practice proposed in the Scrum guide (Schwaber &

Sutherland, 2020). The main difference between traditional Scrum and CURSIVE is the aids used

during the Sprints review and retrospective. The latter adopts structuring, simulation and planning

tools, including visual aids as presented in the previous sections of this chapter.

(A
)

(B
)

(C
)

(D
)

(E
)

(F
)

(G
)

(H
)

(I
)

(L
)

(M
)

(N
)

(O
)

(P
)

(Q
)

N
ew

 1

(R
)

(S
)

N
ew

 2

(T
)

(U
)

(V
)

(Z
)

(A) ● ● ● ● ● ●

(B) ● ●

(C) ● ●

(D) ● ● ●

(E) ● ● ● ● ●

(F) ● ●

(G) ● ● ● ● ● ●

(H) ● ● ●

(I) ● ● ●

(L) ● ●

(M) ● ● ● ● ●

(N) ● ● ● ● ●

(O) ● ● ● ● ●

(P) ● ● ● ● ●

(Q) ● ●

New 1 ●

(R) ● ● ●

(S) ● ● ● ● ● ●

New 2 ● ●

(T) ● ● ● ● ● ● ● ●

(U) ● ●

(V) ● ● ● ● ● ● ●

(Z) ● ● ● ● ●

New Dependencies

Completed tasks

New product backlog architecture

New tasks

Dependencies discovered
during the development

Chapter 3. A decision support system

76

3.3.2 MVP

As discussed in the literature review (Section 2.2.3), the MVP definition in the context of physical

products is still an open question. The constraint of physicality hampers the implementation of a

fully functional product increment at each iteration. Moreover, current literature still lacks

perspective in capturing the MVP technical and development process aspects.

In an attempt to provide a formulation that fits better in the context of hardware systems

and focuses more on the development process, we define the MVP as “a complete and testable

deliverable able to mitigate the technical risk associated with the product or a subset of it”.

According to (Unger & Eppinger, 2009), technical risk is defined as the uncertainty related

to whether a new product is technologically feasible and whether it will perform as expected, given

precise product specifications. This uncertainty on both feasibility and performance can be

mitigated at different levels of the product development process through verification activities.

Each layer of verification activities will lead to an improvement in the maturity of the product till

eventually reaching a system ready to be deployed in the operational environment. Therefore, it has

been decided to use the verification and validation activities (thus the technical risk retired) as a

proxy for the different levels of product maturity.

Given the capital intensity required to develop complex physical systems and the typically

large procurement times, Sprint planning shall account for verification and validation activities

performed on each MVP to ensure consistent improvement of product maturity over the Sprints

sequence.

To provide engineering teams with a unified system to correlated MVPs (and their

characteristics), verification and validation (V&V) activities, and product maturity, an MVP

taxonomy has been developed (Table 5).

3.3 Planning

77

Table 5 Taxonomy of MVP

MVP Acceptance criteria: objective on MVP

Fidelity Artifacts Representation

mode

V&V Activities

Low Diagram Digital/Abstract Verification Analysis

Low Numerical

Model

Digital/Abstract Verification Numerical simulation

Medium/

High

Digital

Mockup

Digital Verification Analysis, Simulation

Medium Physical

Mockup

Physical Verification Physical inspection, Functional Test

Medium Lab setup Physical Verification/

Validation

Functional Test, Performance Test

High Product

Subset

Physical Verification/

Validation

Functional Test, Performance Test

High Product Physical Validation Performance Test, Day-in-the-life

Such a model, mapping verification and validation activities on the MVP artifacts, enables

teams to trade off engineering efforts required to produce a given MVP and the risk retired by the

Sprint outcome. Figure 32 offers a notional example of a potential tradeoff among Sprint length

V&V activities and MVP artifacts.

Figure 32. MVP mapping: V&V vs. Sprint length

0 1 2 3 4

Analysis

Numerical simulation

Analysis, Simulation

Physical inspection, Functional Test

Functional Test, Performance Test

Functional Test, Performance Test

Performance Test, Day-in-the-life

Sprint length (Weeks)

V
&

V
 a

ct
iv

it
ie

s

Numerical Model
Diagram

Lab setup

Product Subset

Product

Physical Mockup

Digital Mockup

Sprint over
loading

under representing
the system

Chapter 3. A decision support system

78

3.4 Illustrative case

In this section, the decision support system is applied to an illustrative example. The objective is to

demonstrate the use of such a system step by step. As an example case1, it has been chosen a

software-defined X-Band transmitter for CubeSat. Even if it is a relatively simple product, its

development might not be that straightforward.

Figure 33. Artistic representation of an X-Band transmitter, source (EnduroSat, 2021)

3.4.1 Process Structuring

The first step consists of identifying all the activities required to develop such a system and define

the dependencies among those activities. In structuring the process, the development team has to

account for design, procurement or manufacturing, as well as verification and validation activities.

Starting from a system architecture model or a system block diagram, the development

team can brainstorm on the activities required to develop the product and list them. For instance,

the X-band transmitter would include a baseband signal processing unit (FPGA), a digital-to-analog

converter, a baseband filter, a phase-locked loop oscillator, a mixer, an X-Band filter, some

amplifier stages, and some input/output interfaces.

1 The author would like to thank his colleague Simone Briatore for providing valuable insights and details on

the input data used in developing this illustrative case.

3.4 Illustrative case

79

Building on this list, the team can define activities related to the development of each

component. When the team feels confident with the level of granularity of activities decomposition,

it can start collecting the task in a DSM defining the interdependencies. Figure 34 summarizes the

resulting product backlog architecture. It includes design activities (marked in green), procurement

or manufacturing (marked in orange), and AIT activities (marked in blue).

Figure 34. Illustrative case – product backlog architecture

As a second step, the team is asked to provide additional data about the time, cost, and

resources required to perform the activities. The information can be based on historical data,

experts’ opinion, or their combination. Each team member is asked to provide three values for both

time and cost, corresponding to the optimistic value, the most likely value, and the worst-case value.

The team iterates on the effort estimation till it reaches the consensus. Then, the values are

summarized in a table and attached to the product backlog architecture as complementary

information (Figure 35). This data package constitutes the input for the simulation step.

Task ID Task Name Illustrative case - Rev 1.0 - Garzaniti D
es

ig
n

B
as

e
ba

nd
 s

ig
na

l p
ro

ce
ss

in
g

D
es

ig
n

D
ig

it
al

-t
o

-a
na

lo
g

co
nv

er
te

r

D
es

ig
n

B
as

e
ba

nd
 f

ilt
er

s

D
es

ig
n

ph
as

e
lo

ck
ed

 lo
o

p
o

sc
ill

at
o

r

D
es

ig
n

M
ix

er

D
es

ig
n

X-
B

an
d

Fi
lt

er

D
es

ig
n

am
pl

if
ie

r
st

ag
es

D
es

ig
n

PC
B

 R
F

la
yo

ut

Si
m

ul
at

io
n

PC
B

 R
F

la
yo

ut

D
es

ig
n

PC
B

 P
o

w
er

 la
yo

ut

D
es

ig
n

PC
B

 D
ig

it
al

 la
yo

ut

D
es

ig
n

In
/O

ut
 In

te
rf

ac
es

D
es

ig
n

ex
te

rn
al

 c
as

e

m
an

uf
ac

tu
ri

ng
 P

C
B

Pr
o

cu
re

m
en

t
C

o
nn

ec
to

rs

m
an

uf
ac

tu
ri

ng
 c

as
e

A
ss

em
bl

y
PC

B

Fu
nc

ti
o

na
l t

es
t

Pe
rf

o
rm

an
ce

 T
es

t

A
ss

em
bl

y
pr

o
du

ct

Fu
nc

ti
o

na
l t

es
t

pr
o

du
ct

1 Design Base band signal processingDesign Base band signal processing ● ●

2 Design Digital-to-analog converterDesign Digital-to-analog converter ● ●

3 Design Base band filtersDesign Base band filters ● ● ●

4 Design phase locked loop oscillatorDesign phase locked loop oscillator ● ●

5 Design MixerDesign Mixer ● ●

6 Design X-Band FilterDesign X-Band Filter ●

7 Design amplifier stagesDesign amplifier stages ●

8 Design PCB RF layoutDesign PCB RF layout ● ● ● ● ● ● ● 0.9 0.8 0.1

9 Simulation PCB RF layoutSimulation PCB RF layout ●

10 Design PCB Power layoutDesign PCB Power layout ● ● ● ● ● ● ● 0.9

11 Design PCB Digital layoutDesign PCB Digital layout ● ● ● ● 0.9

12 Design In/Out InterfacesDesign In/Out Interfaces ● ●

13 Design external caseDesign external case ● ● ● ●

14 manufacturing PCBmanufacturing PCB ● ● ● ● ● ●

15 Procurement ConnectorsProcurement Connectors ●

16 manufacturing casemanufacturing case ●

17 Assembly PCBAssembly PCB ● ●

18 Functional testFunctional test ●

19 Performance TestPerformance Test ● ●

20 Assembly productAssembly product ● ● ● ●

21 Functional test productFunctional test product ●

Prepare Data

Feedback
provided
by task 9

Input required to
perform task 18

probability
of rework
If ● == 1

Chapter 3. A decision support system

80

Figure 35 Illustrative case – Complementary information attached to the product backlog architecture

While defining the product backlog architecture, CURSIVE provides the team with

information on the viability of implementing Agile. The framework evaluates a viability index for

each task in terms of time (Figure 36- left) and cost (Figure 36- right). Those data allow project

participants to optimize the process structure already at this stage, before the simulation.

Figure 36. Illustrative case – Agile viability indexes

Task ID Task Name WP ID Expertise # Exp needed Exp code m
in

m
o

de

m
ax

m
in

m
o

de

m
ax

1 Design Base band signal processing (FPGA) 1 E 1 1 5.0 5.0 10.0 1.0 1.0 2.0

2 Design Digital-to-analog converter 1 E 1 1 1.0 1.0 3.0 0.2 0.2 0.6

3 Design Base band filters 1 E 1 1 1.0 1.0 3.0 0.2 0.2 0.6

4 Design phase locked loop oscillator 1 E 1 1 1.0 1.0 5.0 0.2 0.2 1.0

5 Design Mixer 1 E 1 1 1.0 1.0 2.0 0.2 0.2 0.4

6 Design X-Band Filter 1 E 1 1 1.0 1.0 3.0 0.2 0.2 0.6

7 Design amplifier stages 1 E 1 1 2.0 3.0 5.0 0.4 0.6 1.0

8 Design PCB RF layout 1 E 1 1 5.0 5.0 10.0 1.0 1.0 2.0

9 Simulation PCB RF layout 1 AIT 1 5 5.0 7.0 10.0 1.0 1.4 2.0

10 Design PCB Power layout 1 E 1 1 2.0 3.0 4.0 0.4 0.6 0.8

11 Design PCB Digital layout 1 E 1 1 2.0 3.0 5.0 0.4 0.6 1.0

12 Design In/Out Interfaces 1 E 1 1 2.0 3.0 4.0 0.4 0.6 0.8

13 Design external case 1 M 1 2 1.0 2.0 4.0 0.2 0.4 0.8

14 manufacturing PCB 1 p 1 4 5.0 10.0 10.0 2.0 2.5 3.0

15 Procurement Connectors 1 p 1 4 3.0 5.0 10.0 0.1 0.1 0.1

16 manufacturing case 1 p 1 4 3.0 10.0 15.0 0.2 0.3 0.4

17 Assembly PCB 1 AIT 1 5 2.0 3.0 5.0 0.4 0.6 1.0

18 Functional test 1 AIT 1 5 5.0 5.0 10.0 1.0 1.0 2.0

19 Performance Test 1 AIT 1 5 5.0 5.0 10.0 1.0 1.0 2.0

20 Assembly product 1 AIT 1 5 1.0 2.0 2.0 0.2 0.4 0.4

21 Functional test product 1 AIT 1 5 2.0 3.0 5.0 0.4 0.6 1.0

time (day) k EUR

Prepare Data

0,0

0,2

0,4

0,6

0,8

1,0

1 3 5 7 9 11 13 15 17 19 21

It
er

at
io

n
 V

ia
b

ili
ty

 T
im

e
In

d
ex

Task ID

Agile Implementation Viability Chart time

0,0

0,2

0,4

0,6

0,8

1,0

1 3 5 7 9 11 13 15 17 19 21

It
er

at
io

n
 V

ia
b

ili
ty

 C
o

st
 In

d
ex

Task ID

Agile Implementation Viability Chart Cost

Increase
task granularity

Increase
product modularity

Long lead time
items are not
ideal for Agile

Time consuming
task: is it possible
to break it down? Expensive component:

minimize iterations

3.4 Illustrative case

81

For instance, the procurement of the PCB seems to be inefficient in terms of both time and

cost. A possible strategy is to increase the system modularity, meaning having different PCBs for

the RF block and the power block. This would allow the team to iterate more on the specific PCB

subsets at a lower cost. Naturally, this decision comes together with other technical considerations

on the efficiency of the overall systems and performance implications.

For the illustrative case purposes, let us suppose that the team prefers to have a more

integrated system because more compact and more power-efficient, thus keeping the process

structure defined in Figure 34.

3.4.2 Simulation

CURSIVE runs 3000 simulations (in batches, s, of 500) to stabilize both mean and variance of time

and cost distributions within precision, ε = 10-4 (Figure 37), according to equation (6), (7).

Figure 37. Mean and variance over the number of simulations for time (right) and cost (left) distributions

As a result of the simulation, the team gets distributions of time and cost. Figure 38 (left

side) shows the probability density functions (PDF) of simulated cost and schedule outcomes.

Figure 38 (right side) shows the joint PDF resulting from paired cost and schedule outcomes.

Chapter 3. A decision support system

82

Figure 38. Illustrative case - Simulation output Time and Cost Probability Distribution Functions (PDFs) (on the left)

Joint Time and Cost PDF contour plot of the simulated scenarios (on the right)

Such graphs are particularly useful to quickly compare process cost and time against budget

and schedule targets. During the contract negotiation phase, it can be used to tailor the project

schedule and budget and minimize programmatic risks. For instance, the delivery can be set in

twenty-two weeks, with a budget of 28.5kEUR. From the graph, it can be easily realized that it is

a tight schedule (likelihood of meeting the time target 8.6%) and a small budget (likelihood of

meeting the cost target of 8.4%).

Another critical piece of information retrievable from the graph is the time and cost of

iterations on physical MVPs. In Figure 38, the distributions exhibit three distinct areas

corresponding to three different MVPs strategies. The first peak in the distributions corresponds to

two physical MVPs, the second peak corresponds to three MPVs, and the third one to four. Each

of the three macro-scenarios (i.e., MVP strategy) corresponds to different verification activities

performed on a given physical MVP. Relying on these data, engineering teams can define a

development strategy to reach the desired product maturity that meets time on time and budget

constraints and assessing its feasibility.

Cost target

Time target
4 Physical

MVPs

3 Physical
MVPs

2 Physical
MVPs

Time target

Cost target

Likelihood
of meeting
time target

Mean Cost
of +1 MVP

Mean Time
of +1 MVP

3.4 Illustrative case

83

3.4.3 Planning

Let us consider the notional case of delivering the system within twenty-two weeks. The objective

is then to meet the schedule constrain, minimizing the cost. Providing the time target, CURSIVE

identifies a baseline scenario minimizing the root mean square error between targets and available

scenario data (Figure 39). The subsequent Sprint planning and MVPs structuring is then constrained

to these targets.

Figure 39. Illustrative case - Gantt chart of the baseline scenario meeting budget and time constraints design activities

(marked in green and black), procurement or manufacturing (marked in orange), and AIT activities (marked in blue).

The heuristic approach deployed to identify the optimal number of MVPs suggests

structuring the development process in seven Sprints. Combining this information with the product

backlog architecture, the framework outlines the Sprints backlog clustering the user stories. Figure

40 shows the suggested Sprints planning.

The first Sprint lasts for two weeks, and it is devoted to design the baseband signal

processing (FPGA), the digital-to-analog converter, the baseband filters, the phase-locked loop

oscillator, the mixer, the X-Band Filter. The second Sprint lasts for two weeks, and it is dedicated

Simulation
PCB RF layout design

external case

Physical
MVP 2

Physical
MVP 1

Components
used in both

Physical MVPs

Verification &
validation activities
on the final product

Chapter 3. A decision support system

84

to designing the amplifier stages and the PCB layouts, refining the functional blocks defined in the

first Sprint, and defining the In/Out interfaces. The third Sprint lasts for three weeks and a half. It

is mainly dedicated to the simulation of PCB RF layout and refining the system's design based on

the simulation results or potential issues encountered during the layouts’ definition. In this sprint,

the team also initiate the procurement of connectors. The fourth Sprint lasts for four weeks and

mainly relates to finalizing the PBC layout (RF, digital, and power), designing the external case,

and manufacturing the PCB.

Figure 40. Illustrative case - Sprints Backlog

Sprint five lasts for three weeks and relates to PCB assembling and preliminary functional

tests. Those preliminary functional tests provide feedback to the PCB layout definition that is then

refined and consolidated within the same Sprint. The Sprint six lasts for four weeks, and it is

devoted to final PCB version manufacturing assembling, and testing. The last Sprint lasts for two

weeks, and it is entirely devoted to assembly integration and testing of the final product.

Design of
functional

blocks

Refine PCB RF layout,
interface definition
refine funct. blocks

Finalize PCB layout,
procurement of

 PCB and ext. case

First AIT TRL 4
Implement lessons

learnt from funct. test

AIT of final PCB
Functional test

AIT of final
product
TRL 5-6

Refine functional
blocks and design

PCB RF layout

3.4 Illustrative case

85

The outcome of the Sprint definition process offers information on the set of tasks to be

performed within each Sprint (Figure 40), the Sprints durations, and the related cost Figure 41.

Figure 41. Illustrative case - Sprint sequence and costs

This information can be traced back to the MVP taxonomy provided in Table 5, ensuring

a consistent product improvement over the Sprints sequence and a balance between Sprint length

and TRL achieved. Table 6 summarizes the map of the MVP for the current case study related to

the MVP taxonomy.

Table 6: Map of MVPs related to the MVP taxonomy

Sprint MVP Acceptance criteria: objective on MVP

ID Length Fidelity Artifacts Repr. mode V&V Activities

1 2 Medium Schematics Digital Verification Analysis

2 3 High PCB layout Digital Verification Analysis

3 3 High PCB layout Digital Verification Simulation

4 3 High Product Subset Physical Verification Inspection

5 2 High Product Subset Physical Verification Functional Test

6 4 High Product Subset Physical Verification Functional Test

7 2 High Product Physical Verification Performance Test

Chapter 3. A decision support system

86

The framework also provides additional insights about the process, unfolding the time and

cost of each required to perform the different activities as well as the time and cost of iterations

(showed as different staked color bars) for the given scenario (Figure 42). The additional

information can help the development team reasoning on the cost-benefit of the selected

implementation strategy and evaluate the product maturity improvement associated with the MVP

delivery sequence.

Figure 42. Illustrative case - Tasks Time and Cost Breakdown

As demonstrated in this simple case study, CURSIVE offers a set of methods and tools to support

engineering teams in structuring and planning a development project. It helps project managers in

defining the most viable development approach. It supports teams in clearly understanding the

effect each task and each iteration cycle has on the cost and the schedule of the entire project; thus,

it helps the team navigate programmatic and technical tradeoffs. All this information can support

the fine-tuning of the process structure to increase process robustness, minimizing its sensitivity to

potential design changes occurring during project execution.

3.4 Illustrative case

87

3.4.4 Comparison with traditional project management approaches

This section considers the illustrative case presented above and applies traditional project

management approaches, specifically the Program Evaluation and Review Technique (PERT) and

the Critical Path Method (CPM). The comparison will provide a better understating of the limitation

of traditional approaches, thus highlighting the benefits and the novelty of the framework proposed

in this thesis.

As mentioned in the literature review, one of the main shortcomings of those traditional

approaches is that they rarely model or analyze iterations. Furthermore, the PERT/CPM (Wiest &

Levy, 1977) accounts only for the precedence constraints (Ben Issa & Tu, 2020).

In order to apply the PERT/CPM to the illustrative case study, the first step is to reshape

the data in the required format. The tasks dependencies, i.e., tasks predecessors, are identified from

the DSM in Figure 34. The expected time (te) required to complete an activity is evaluated according

to eq (9), with a standard deviation evaluated according to eq (10) (Habibi et al., 2018; Wiest &

Levy, 1977)

𝑡𝑒 =
𝑇𝐿𝐵 + 4𝑇𝑀𝐿 + 𝑇𝑈𝑃

6
 (9)

𝜎𝑡𝑒 =
𝑇𝑈𝑃 − 𝑇𝐿𝐵

6
 (10)

The expected time (Te) required to complete a path in the project (i.e., a sequence of

activities), according to classical PERT, is equal to the sum of all the te in the path, as reported in

eq (11), with a standard deviation evaluated according to eq (12).

𝑇𝑒 =∑𝑡𝑒𝑖

𝑛

𝑖=1

 (11)

Chapter 3. A decision support system

88

𝜎𝑇𝑒∑𝜎𝑡𝑒𝑖
2

𝑛

𝑖=1

 (12)

The PERT data so evaluated are summarized in Table 7. Early start and finish, as well as

late start and finish, have been estimated based on the predecessors derived from the DSM.

Table 7 PERT data (durations are presented in days)

Starting from those data, the next step is to create an activity network and identify the

critical path (CP), defined as the longest sequence of activities (in terms of time) that must be

completed to conclude a project successfully, from start to finish. The activity network and identify

the critical path are presented in Figure 43. In this case study the critical path is represented by the

sequence of activities CP= [1, 2, 3, 4, 5, 7, 8,10, 11, 13, 14, 17, 18, 19, 20, 21]. The time associated

with the critical path is 11.5 weeks with a standard deviation σCP = 1.3 weeks. It is easy to observe

that the result is significantly lower compared to the estimates provided by the framework prosed

Task ID Predecessor Early Start Duration Early Finish Late Start Slack Late Finish

1 0,0 5,8 5,8 0,0 0,0 5,8

2 1 5,8 1,3 7,2 5,8 0,0 7,2

3 2 7,2 1,3 8,5 7,2 0,0 8,5

4 3 8,5 1,7 10,2 8,5 0,0 10,2

5 4 10,2 1,2 11,3 10,2 0,0 11,3

6 5 11,3 1,3 12,7 13,2 1,8 14,5

7 5 11,3 3,2 14,5 11,3 0,0 14,5

8 3 & 4 & 5 & 6 & 7 14,5 5,8 20,3 14,5 0,0 20,3

9 8 20,3 7,2 27,5 21,5 1,2 28,7

10 1 & 2 & 4 & 5 & 7 & 8 20,3 3,0 23,3 20,3 0,0 23,3

11 1 & 2 & 8 & 10 23,3 3,2 26,5 23,3 0,0 26,5

12 1 & 7 14,5 3,0 17,5 25,7 11,2 28,7

13 8 & 10 & 11 & 12 26,5 2,2 28,7 26,5 0,0 28,7

14 8 & 9 & 10 & 11 & 12 & 13 28,7 9,2 37,8 28,7 0,0 37,8

15 12 17,5 5,5 23,0 32,3 14,8 37,8

16 13 28,7 9,7 38,3 43,0 14,3 52,7

17 14 & 15 37,8 3,2 41,0 37,8 0,0 41,0

18 17 41,0 5,8 46,8 41,0 0,0 46,8

19 17 & 18 46,8 5,8 52,7 46,8 0,0 52,7

20 16 & 17 & 18 & 19 52,7 1,8 54,5 52,7 0,0 54,5

21 20 54,5 3,2 57,7 54,5 0,0 57,7

3.4 Illustrative case

89

in this thesis. Mainly because the PERT/CPM does not account for any kind of iterations and

typically does consider resource allocation and leveling. To overcome those issues, in practice,

project managers tend to consider the worst scenario estimates or add a margin to the PERT

estimates (around 30%) (Ben Issa & Tu, 2020). In such a situation, the estimated time associated

with the critical path will be 18.6 and weeks 15 weeks, respectively. These values are closer to the

estimation of the framework proposed here in the case of a single MVP.

Figure 43 PERT (activities on nodes), CPM in red

Nevertheless, as just demonstrated, the PERT/CPM offers no means to evaluate the effect

of multiple MVPs or potential iterations occurring due to new input coming from tasks performed

during subsequent stages in the design and development of engineering systems.

To overcome the limitation of the approaches presented above, the project management

community started considering Resource-Constrained Project Scheduling techniques (RCPS). Such

methodologies account for precedence and resource constraints. Many approaches have been

developed, including heuristic methods, meta-heuristic methods, exact methods, multi-criteria

heuristic methods. The reader can refer to Ben Issa & Tu (2020) for an extensive literature review

Early

Start
Duration

Early

Finish

Late

Start
Slack

Late

Finish

Task name

Each node includes the
following information

Chapter 3. A decision support system

90

on the topic. Those methodologies overcome the limitation of PERT/CPM; however, they still do

not explicitly consider iterations, thus being agnostic on the number of MVPs.

The following time distribution is obtained by applying a heuristic method to the activity

network presented in Figure 43 and resource constraints RC = [2 1 1 2] (i.e., electronic engineers,

mechanical engineers, procurement specialists, and systems engineers, respectively).

Figure 44. Time distribution for RCPS

Comparing the estimates provided by the RCPS with the one provided by the framework

proposed in this thesis, it is observable that RCPS estimates are included in the results provided by

CURSIVE. RCPS results correspond to the time distribution that considers one MVP (Figure 38).

That is correct because, excluding iterations and multiple MVPs releases, the limiting case would

be a project scheduling problem under precedence and resource constraints (that is correctly

included in CURSIVE estimates).

These comparisons have proved that the methodology proposed in this work extends

current theories and practices, including the ability to simulate and analyze iterations and multiple

physical MVPs releases, essential features of Agile PD.

3.5 Validity of the decision support system

91

3.5 Validity of the decision support system

Within this thesis, considerable efforts have been dedicated to validating the decision support

system (DSS) and specifically to the validation of the process model, the data model, the graphical

user interface, as well as to the DSS general and face validity. However, the quality of support

perceived by managers and engineer teams has not been assessed. Such an analysis would be

somehow subjective, and results would be hardly generalizable. Furthermore, it is outside the scope

of this work.

To evaluate the validity of the decision support system, it has been adopted the validation

framework for DSS proposed by Finlay & Wilson (1997). The original validation framework has

also been enriched integrating methods and criteria formulated by Adelman (1991); Boukhayma &

Elmanouar (2016), Isaksson et al. (2020), Le Dain et al. (2013) as well as with the process model

validation criteria proposed by Law, (2014), Smith & Morrow (1999). Figure 45 summarizes the

validation framework we adopted.

3.5.1 Process model validity

The first type of validity tackled is the process model validity. In the original validation framework

(Finlay & Wilson, 1997), it is called generically logic model validity, while in this work, it is

specifically addressed as a process model. This type of validity consists of analytical and

theoretical validity.

The theoretical validity relates to the adherence of the model construct to the theories

underpinning the model itself. In other words, it aims to verify if the assumptions, the

simplifications, and the process elements model are theoretically sound. CURSIVE satisfies the

theoretical validity because it uses assumptions and modeling parameters based on the existing

Chapter 3. A decision support system

92

literature. Specifically, as presented in section 3.2, the process is characterized as a network of

activities exchanging information and deliverables (Smith & Morrow, 1999; Wynn & Clarkson,

2018), and the network topology is defined by a DSM (Eppinger & Browning, 2018). Task states

are consistent with the Agile theory: to do, in progress, done (Rodríguez et al., 2018). Iteration

models are aligned with the literature models presented in section 2.2.2. Both iteration and working

policies are transparent and reported in Algorithm 1, page 68.

Figure 45. Framework for evaluating DSS validity

The analytical validity relates to the consistency between the model outputs and actual

process performance. Typically, this validity is achieved by applying the framework to

retrospective datasets gathered from the industry. In the literature, it is also defined this validity as

the second level of validity (Smith & Morrow, 1999). The analytical validity of CURSIVE has been

evaluated within the first case study, presented in chapter 4. Specifically, in section 4.4.2, the

Process
Model

Data
Model

Graphical User
interface

DSS

Process model validity

analytical
validity

theoretical
validity

data validity

accuracy precision

storage &
access

interface validity

usability information
validity

theoretical
validity

general
validity

face
validity

3.5 Validity of the decision support system

93

forecast of our simulation model has been compared with the actual data, using as an input the

process structure and project execution metadata provided by the manufacturer of the system

subject of the case study. As reported in section 4.4.2, the model provided quite consistent outcomes

compared with the actual data. By satisfying analytical and theoretical validity criteria, the process

model can be considered validated for Finlay & Wilson (1997), Smith & Morrow (1999), Le Dain

et al. (2013), and Isaksson et al. (2020).

3.5.2 Data model validity

Data model validity concerns both accuracy and precision of input/output data as well as data

integrity aspects related to data storage and access.

In the context of DSS data model validity, accuracy refers to the set of parameters used in

the model and not end-user defined, which can potentially systematically bias the output of the DSS

(Finlay & Wilson, 1997). As concerns the simulation model, preset parameters have been avoided.

The only parameter that can potentially bias the results is the learning rate adopted in the iteration

model. The case studies presented in this thesis have been used a value equal to 15% (i.e., the

repeated execution of a given task will take at every iteration 15% less time than the previous

execution). A minimum boundary related to minimum process sensitivity has been set. This preset

value can potentially systematically affect the forecast, overestimating or underestimating the time

required for iterations. Since it is tightly correlated with the team executing the project, we

recommend fine-tuning it according to team performance, relying on historical data derived from

previous projects (if available). Concerning our case studies, that value represented a good

approximation of the team learning rate.

As concern the Agile Viability Indexes formulation, the coefficients used in eq (3) and (5)

have been derived from different industry surveys (Atzberger et al., 2020; Automotive Agile PEP,

Chapter 3. A decision support system

94

2018; Digital.ai & VersionOne Inc., 2020; Schmidt et al., 2018b, 2019). The values of these

coefficients are solidly grounded in the current state of the art and practice.

In the context of DSS data model validity, precision refers to the coherence of metrics and

units of measurement between input-output data (Finlay & Wilson, 1997). In other words, it is

necessary to ensure that metrics and units of measurement used in the simulation model and

provided as output are coherent with the ones provided in the input data and vice versa. As concerns

the cost metric, our DSS is units of measure agnostic, thus providing the output in the same unit of

the input. As concerns the time metric, a check on the unit of measure of input data has been

implemented, the time step of the simulation is set accordingly. Output data can be scaled according

to end-user preference (output resolution is defined by input resolution).

The last aspect to be analyzed for validating the data model relates to data integrity,

specifically data handling aspects such as storage and access. Input data are stored in a Microsoft®

Excel® file (.xlsm extensions is used). Data access is managed by a MATLAB® script. The current

version of the script is the seventh (Input_v7.m). The script reads and uploads DSM data, the task

vector, the time and cost estimates vectors. It verifies the completeness of the data, reporting an

error if any value is missing. Lastly, it also verifies the correct formulation of the time and cost

estimates (in the triangular distribution, the three values a,b,c shall satisfy the inequality constraints

a≤b≤c), reporting a warning in case of non-compliance. If all the checks are successfully passed,

the system moves to the simulation. Simulation output data are stored in a MATLAB® data file

(simulation_output.mat). Visualization script and planning scrip access and append their additional

data to the simulation output file without the ability to alter the simulation data.

Based on the considerations mentioned above, the data model can be considered validated

(Borenstein, 1998; Finlay & Wilson, 1997; Isaksson et al., 2020; Le Dain et al., 2013).

3.5 Validity of the decision support system

95

3.5.3 Graphical User Interface validity

Even if the current interface is to be considered as a minimum viable product of the DSS user

interface, some efforts have been dedicated to ensuring its validity. Graphical user interface validity

mainly concerns usability and information validity, and theoretical validity (Finlay & Wilson, 1997;

Myers, 1995).

Usability is typically broken down into simplicity, consistency, and flexibility. Two points

of view have been considered for evaluating usability: engineering teams’ perspective and project

managers’ perspective. As an input interface, it has been used the process DSM tool (Figure 21)

and a table for additional information (Figure 22). Based on the case studies, engineering teams

generally seem more familiar with the DSM tool than project managers. However, it required less

than ten minutes for project managers to master the DSM tool. As a simulation output interface,

histograms and a contour plot (Figure 28) are provided. A traditional Gantt chart and a set of bar

charts are used as the output of the planning phase (Figure 29). Based on the case studies, both

engineering teams and project managers seem familiar with the tools adopted in the output interface

and find them easy to use and interpret. As application software for the input interface, CURSIVE

uses Microsoft® Excel®. It is widely adopted in many industries and holds a significant market

share (Statista, 2021). As application software handling the output interface, CURSIVE uses

MATLAB®; however, moving it into a web application might be considered in the future.

It is understood that two case studies do not provide enough data to reach statistical

significance and generalize the claim on the interface usability; however, they are enough for a

preliminary validation and to meet the objectives of this thesis (Smith & Morrow, 1999).

The information validity of the graphical user interface mainly relates to the consistent use

of metrics and units of measurement between input-output data. This is primarily ensured by data

Chapter 3. A decision support system

96

model validity. The user can define the units of measurement for time and cost in the input file.

Then they will be consistently used over the whole model.

Theoretical validity of the graphical user interface mainly relates to the compliance of the

selected data visualization strategy with best practice. As mentioned before, output data are

presented by means of histograms, Gantt charts, and bar charts, being fully compliant with project

management best practices.

Based on the considerations mentioned above, we can consider the graphical user interface

validated according to Borenstein (1998), Finlay & Wilson (1997), Myers (1995).

3.5.4 DSS general validity

DSS General validity refers to the validity of DSS from a holistic perspective. It includes six main

elements: robustness, internal validity, conceptual validity, experimental validity, operational

validity, and reliability (Figure 46).

Figure 46. DSS general validity elements

Robustness, also called external validity (McCutcheon & Meredith, 1993; Salkind, 2012),

transferability (Lincoln & G. Guba, 1958), analytical generalization or generalization validity (Yin,

2013), refers to the extent to which a method or a theory developed from one case is extendable to

other situations with similar conditions (i.e., the range of applications the DSS can serve). The DSS

developed in this thesis has been specifically designed and applied to physical and cyber-physical

products. As presented in chapters 4 and 5, the framework can cover a wide range of applications.

general validity

Robustness internal
validity

conceptual
validity

experimental
validity

operational
validity

Reliability

3.5 Validity of the decision support system

97

CURSIVE has been applied to the development of a space system as well as the development of a

consumer product. It has not been tested on “pure” software systems; thus, we cannot claim the

applicability to such kind of products. Concerning the R&D composition and location, the DSS has

been deployed and tested in cases of collocated (chapter 4) and sparse/dispersed R&D teams

(chapter 5), providing in both situations valuable process insights (sections 4.5 and 5.5).

Internal validity refers to the extent to which causal relationships are certifiable in

observing a phenomenon (Le Dain et al., 2013). According to (Yin, 2013) internal validity is mainly

a concern for “explanatory case studies” (i.e., when a researcher is trying to explain how and why

event x led to event y). According to Yin (2013), this logic is not applicable to exploratory or

descriptive studies which do not concern this kind of causal situation (as in the case of our research).

In this case, authors such as Smith & Morrow (1999), Le Dain et al. (2013), Yin (2013), and

Isaksson et al. (2020) suggest adopting the credibility criterion, i.e., the extent to which the results

appear to be adequate representations of the situation under study. In our framework is ensure by

process mode validity (refer to section 3.5.1), including both theoretical validity (i.e., adherence of

the model construct to the theories underpinning the model itself) and analytical validity (i.e.,

consistency between the model outputs and actual process performance ensured by verification on

the case studies).

Conceptual validity refers to the suitability of the selected tools to describe/measure the

phenomenon. Some authors relate to this kind of validity as construct validity (Finlay & Wilson,

1997; Isaksson et al., 2020; Le Dain et al., 2013; Yin, 2013). The literature acknowledges the

difficulty of ensuring this validity the inevitable intrusion of the researcher’s biases. To overcome

this issue, many authors recommend using multiple sources of evidence, constructing chains of

evidence (by using model/tool reflecting reality), and have preliminary results reviewed by key

informants (Isaksson et al., 2020; Le Dain et al., 2013; Seepersad et al., 2006; Yin, 2013). This

Chapter 3. A decision support system

98

thesis followed these recommendations deploying the system for different case studies (Chapters 4

and 5). Data collection and analysis have been performed according to a standard format (as present

in Table 9), and different interviewees in the different organizations participating in the case studies

have reviewed the results. Having received positive feedback from case studies participants, the

conceptual validity can be consider ensured. It is understood that two case studies do not provide

enough data to reach statistical significance and generalize the claim on the conceptual validity;

however, they are enough for a preliminary validation and to meet the objectives of this thesis

(Smith & Morrow, 1999).

Operational validity relates to the extent to which the DSS can actually be used in an

operational environment (Finlay & Wilson, 1997). Specifically, it concerns the ease of use, entry

barriers (time required to learn how to use it), informativeness of the output, running time. This

validity is mainly ensured by the usability, information validity, and theoretical validity of the

graphical user interface (section 3.5.3). As concerns the running time, elapsed times are reported in

Table 8. Simulations have been run on a workstation equipped with an Intel® Core™ i7-7700HQ

CPU @ 2.80GHz and 64GB of installed ram. Based on the data reported in (section 3.5.3) and

Table 8, the operational validity can be consider ensured.

Table 8. Running time

Elapsed time [s]

Activity Case A

(7000 sim.)

Case B

(3000 sim.)

1.7946 1.9825
Accessing the input file, reading and

importing data, verifying data integrity

391.9040 614.5148 Simulation

10.2117 9.4135 Saving simulation data

0.0348 0.1123 Data visualization

3.8456 1.9317 Scenario analysis and planning

3.5 Validity of the decision support system

99

Experimental validity relates to the extent to which the research process is transparently

and comprehensively exposed for external critical scrutiny (Finlay & Wilson, 1997; Le Dain et al.,

2013). This thesis ensures experimental validity.

Reliability relates to the extent to which a study can be repeated with the same results given

the same input conditions (Finlay & Wilson, 1997; Isaksson et al., 2020; Le Dain et al., 2013; Yin,

2013). This validity has been ensured by running the DSS several times using the same case studies

input data and verifying the consistency of the results.

Based on the considerations mentioned above, the DSS can be considered generally valid

according to Finlay & Wilson (1997), Isaksson et al. (2020), Le Dain et al. (2013), and Yin (2013).

3.5.5 Face validity

Face validity refers to the extent to which the models, the data, the assumptions, and the

computational tractability seem reasonable to those who are familiar with the field of product

development management (Smith & Morrow, 1999). It is a subjective metric, and it mainly refers

to the relevance of the DSS for DSS test users.

CURSIVE satisfies face validity criteria according to Smith & Morrow (1999) since it

addresses an important product development issue (as reported in chapter 1), has reasonable

computational tractability (Algorithm 1 and Table 8), uses modeling parameters and assumptions

(chapter 3, sections 3.1, 3.2 and 3.3) based on the current state of the art (survey in chapter 2) and

state of the practice (chapter 2 section 2.5). Face validity has also been ensured by applying the

DSS to the two case studies and collecting feedback from the interviewees.

Based on all the validity criteria mentioned above, the framework can be considered

validated for Finlay & Wilson (1997), Isaksson et al. (2020), Le Dain et al. (2013), and Yin (2013).

Chapter 3. A decision support system

100

3.6 Deployment in development projects

The design and development of products is a highly dynamic process, with a complex interplay of

people and activities. Each project comes with a unique combination of people, skills, and tasks.

Therefore, experiments in a controlled environment that sufficiently represent the problem would

be extremely challenging to define. Nevertheless, simplified academic case studies would hardly

reflect real project situations (Adelman, 1991).

Over the following chapters, the framework is applied to a set of real projects. The objective

is to verify CURSIVE the capability in different industry contexts. The chapters go through the

framework deployment steps over the projects and evaluate how the system supports engineering

teams, thus meets research goals and research questions outlined in Sections1 1.3 and 1.4.

Each project represents a different case study with different boundary conditions, team

setting, organizational structure (Yin, 2013). The first project, presented in chapter 4, pertains to

the development of a payload for a New Space Mission. It is a pilot study on a project already

executed. This will allow us to benchmark the results provided by our model with the actual

development metadata. The objective is to verify the results and validate the model forecasts.

The second project, presented in chapter 5, pertains to the development of a consumer

product. This development project is still ongoing. In this case study, CURSIVE is used to support

decision-makers in optimizing the combined development of the product platform and product

accessories to minimize the time to market while keeping customers’ hype.

Empirical data are collected and analyzed following a common approach and reported in

the same format. The case studies format consists of the sections reported in the list on the following

page, while data collection methods are reported in Table 9.

3.6 Deployment in development projects

101

Case studies format:

1. General case study data

2. Organizational structure

3. Agile in the development process and motivation for Agile transition

4. CURSIVE deployment

a. Process structuring,

b. Simulation

c. Planning

5. Insights

Table 9. Data collection methods

Item of interest Source of data Notes

General case study Structured interview2
The interview’s structure is reported

in Figure 47 and Figure 48

Organizational structure

Documentation and archival

records

They have been used to retrieve

information on the organization of

R&D divisions and typical supply

chain management.

Semi-structured interview3
It has been used to get details on the

development project structure

Agile in the development

process and motivation for

Agile transition

Semi-structured interview

CURSIVE input data
Documentation and structured

interview

Participants were asked to share

process data and to fill the product

backlog architecture

2 Some sources refer to structured interviews also as closed quantitative interviews (Blessing & Chakrabarti,

2009)
3 Some sources refer to semi-structured interview also as standardized open-ended interviews (Blessing &

Chakrabarti, 2009; Yin, 2013)

Chapter 3. A decision support system

102

Figure 47. General case study data collection format (1)

Product composition

Mechanics %

Electronics %

Embedded Software %

Standalone Software %

Discipline n %

Total 100%

Degree of physicality [0, 1]

Brief product/products
description

Product

Customers

Brief description of target customers,
and go to market strategy

Addressed markets

Market

Company name

Employee
Total n
R&D m

Location
country

Size
Startup, SME, Large

Customer involvement

Customer only validating the product

Customer in mildly involved (monthly meetings)

Customer is heavily involved (weekly meetings)

The product composition refers
to the percentage of elements
of the product belonging to a
specific domain.

DoPh Degree of physicality

Hw Hardware

𝑆𝑤𝐸𝑚𝑏 Embedded Software

𝑆𝑤 Standalone Software

𝐷𝑜𝑃ℎ =
∑𝐻𝑤 +

1
2
𝑆𝑤𝐸𝑚𝑏

∑𝐻𝑤 + ∑𝑆𝑤

3.6 Deployment in development projects

103

Figure 48. General case study data collection format (2)

Impact on the organization

Notes on Scrum implementation if any

0 1 2 3 4 5

Years

Experience with Agile Sprint Length in weeks

0 1 2 3 4

Weeks

1 to 4

Product-
market fit Requirements

Preliminary Des.

Detailed Design

Manufacturing

Assembling

Functional test

Performance T.

Environmental T.

Day in the life

SW updates

Configurations
files

Scrum in the Development Process

Scoping Business case Development Test & Validation Launch

Additional notes if any

Agile fully implemented
Agile used in some extent

Interviewees

Name Interviewee name
Position position
Background degree, specialization
Role in Scrum Product Owner, Dev Team, etc.

104

This page intentionally left blank

105

 Cast study: New Space mission payload

In this chapter, the framework is applied to the development of an optical telecommunication

payload for a New Space mission. The system under consideration is the same that has been the

subject of the field research presented in Section 2.5. While during the field research, the analyses

were limited to the design and development of the FlatSat model (ECSS, 2010, 2018), in this

chapter, the development process of the entire system is covered, from the design phase to the

assembling, integration, and testing (AIT) of the flight model (ECSS, 2010, 2018).

The context of the case study is a nanosatellite mission developed in a multiparty

consortium (Camps et al., 2018). In the following section, the general case study data resulting

from the structured interview are presented. Sections 4.2 reports the organization and the project

structure resulting from documentation and publicly available data analysis as well as the semi-

structured interview with a project participant. Section 4.3 summarizes the motivation for Agile

adoption and the fitting of Agile into development processes traditionally used by the organization,

as described by the interviewee. Section 4.4 describes the application of the framework to the

project data provided by the organization, detailing all the implementation steps. Lastly, process

insights are derived, and the case study conclusion is drawn.

Chapter 4. Cast study: New Space mission payload

106

4.1 General case study data

satellite subsystems,
satellite components

Product

Customers

satellites integrators
and operators

The company mostly
operates in the EU. It
is currently expanding
the business in North
America and Asia

Market

Company A

Employee

Total <10

R&D 3

Location

Estonia

Size

Startup

Mechanics
23%

Electronics
30%Embedded Software

15%

Standalone Software
10%

Optics
22%

Product composition

Mechanics 23%

Electronics 30%

Embedded Software 15%

Standalone Software 10%

Optics 22%

Total 100%

Degree of physicality 0.83

Customer involvement

Customer only validating the product

Customer in mildly involved (monthly meetings)

Customer is heavily involved (weekly meetings)

𝐷𝑜𝑃ℎ =
∑𝐻𝑤 +

1
2
𝑆𝑤𝐸𝑚𝑏

∑𝐻𝑤 +∑𝑆𝑤

4.1 General case study data

107

Impact on the organization

Scrum is implemented in most parts of the development.

However, large obstacles exist due to the legacy paradigms of

the market the company serves.

0 1 2 3 4 5

Years

Experience with Agile Sprint Length in weeks

0 1 2 3 4

Weeks

1 to 4

Product-
market fit Requirements

Preliminary Des.

Detailed Design

Manufacturing

Assembling

Functional test

Performance T.

Environmental T.

Day in the life

SW updates

Configurations
files

Scrum in the Development Process

Scoping Business case Development Test & Validation Launch

Note: Some parts can be manufactured multiple times (at each iteration: electronics and some

mechanical components). Some other parts can be manufactured only once (final version:

expensive optics and mechanics)

Agile fully implemented
Agile used in some extent

Interviewees

Name Interviewee A1
Position Executive
Background Electronic engineer
Role in Scrum Mixed role, formally Product Owner, but also Dev Team

Chapter 4. Cast study: New Space mission payload

108

4.2 Organizational structure

The R&D division of organization A has a cross-functional Scrum team consisting of mechanical,

optoelectronics, and software engineers. Each team member is responsible for the design,

procurement, assembly, integration, and test of the components of his/her area of knowledge.

Software engineers are “shared resources” since they are employed in more than one project and

relate to more than one team. Mechanical engineers are also responsible for the AIT activity of the

full system (Figure 49).

The organization carries out the design of mechanics, optics, and electronics in-house. The

manufacturing of all components is outsourced. Assembly, integration, and testing (functional and

performance) are performed in-house. Environmental tests and day-in-the-life tests are entrusted to

a third party for quality certification purposes. The software is fully developed in-house.

The main production facility is located in Estonia. Part of the supply chain is Estonian, but

most suppliers are abroad, spread over Europe, the USA, and China. The customers are located in

Europe and particularly in the Netherlands, Italy, and Portugal.

Figure 49. Case A – Organization of the development team

Functional Team (non-colocated)

Colocated Cross Functional Team

Scrum Master

Product Owner

Customers

Internal Prototyping

External Prototyping

Internal Manufacturing

External Manufacturing

Procurment

Electronics

Optics

Software

Shared Resources

Different
project

Mechanics

4.3 Agile in the development process, motivation for Agile adoption

109

4.3 Agile in the development process, motivation for Agile adoption

Organization A uses a Stage-Gate model as the overall management tool for development activities

and payments-deliveries negotiation with customers. The Stage-Gate process represents the status

quo in the reference sector; therefore, it is used as the principal guiding framework even while

attempting to implement Agile.

Agile-Scrum is fitted primarily in the stage called “Development” and in the stage called

“Test and validation.” This is because to mark an MVP as done is required to prove its correct

functionality and performance. Some efforts have also been made to push Scrum activities into the

preceding “Business Case” stage (refer to section 4.1, page 107).

The team involved in the project includes three people covering all the disciplines required

to develop the product: one optoelectronic engineer (responsible for optics and electronics), one

mechanical engineer (responsible for structures, mechanisms, and AIT), one electronics/software

engineer (responsible for electronics and software). Two out of the three members in the team had

already used Agile, specifically the Scrum framework, in other projects. From the previous

experience, they appreciated the team self-organization feature that enabled team members to

micromanage their own work. They also appreciated the ability to enhance the product iteratively,

allowing for early releases, thus a shorter time to market.

Therefore, given the small size of the team, the budget, and schedule constraints, the team

decided to experiment with Agile, believing that, by adopting a traditional approach, they would

not have delivered the product on time. The interviewee reported that the main drivers for Agile

adoption were potential time and cost savings. The choice of experimenting with Agile was not

based on rigorous quantitative analyses but instead relied on the team belief of purported time and

cost benefits.

Chapter 4. Cast study: New Space mission payload

110

4.4 CURSIVE deployment

4.4.1 Process Structuring

As a first step, the team shall define the user stories for the project. Since the team was already

familiar with Scrum and was using Jira (Atlassian, 2021) as a project tracking tool, the user stories

the team defined on Jira at the beginning of the development were used. In this way, CURSIVE

has been fed with the very same information the team had at the beginning of the project, avoiding

biases caused by the new knowledge engineers have acquired while developing the product. Data

were imported manually; in the future, an API to automate the importing process and enhance

CURSIVE compatibility with existing project management tools might be developed.

As a second step, the development team has been asked to define the dependencies among

the tasks using a DSM. Dependencies can be primarily infer based on the system architecture

(mainly for design tasks and AIT tasks) and logical linkage between activities (e.g., a procurement

task requires one or more design tasks as input, an AIT task requires one or more procurement/

manufacturing tasks as input; AIT tasks provide feedback to design activities). This rationale

minimizes the likelihood of potential biases due to the knowledge the team acquired during project

implementation.

In the DSM, cells on the diagonal correspond to the tasks, the marks in off-diagonal cells

indicate tasks interactions. The marks in the row denote activities inputs (sub-diagonal marks),

while marks in the column indicate the feedbacks (super-diagonal marks). Feedback links can be

deterministic, marked with the black filled circle symbol, i.e., probability of occurrence equal to 1,

or probabilistic, defined with a probability 𝑝 ∈ [0,1].

Figure 50 shows the product backlog architecture the team produced. It provides a

comprehensive overview of the product backlog, listing the eight-six user stories complemented

4.4 CURSIVE deployment

111

by the elicitation of their interactions. The backlog includes design activities (marked in green),

rapid prototyping (yellow tasks), procurement or manufacturing (marked in orange), and AIT

activities (marked in blue). Development activities involve three different fields of knowledge,

namely mechanics, optics, and electronics.

Most of the activities exhibit deterministic dependencies. A few probabilistic interactions

between AIT activities in the late stages of development and related design activities have been

specified for some electronic components.

Figure 50. Input DSM for development of the optical telecommunication payload

Task ID V
D

L
H

M
tr

_
s

B
rg

_
s

Sh
af

t

R
in

g

M
o

to
r

1

G
_

h

P
n

R
k

Lb Lm Lt Lo M
M

SM M
h

K
B

R
M

_
0

2
_

1

M
o

to
r

2

B
rg

 t
ip

N
u

t

M
H

 P
C

B
_

c

P
EE

K
_

s

M
 M

 S
u

p
p

O
S

F

O
S

B

O
S

T

O
S

B

O
S_

V
D

_
o

O
S_

V
D

_
s

M
ai

n
 B

o
ar

d

P
o

w
er

 B
o

ar
d

W
ir

in
g

To
p

 D
is

s

B
o

tt
o

m
 D

is
s

V
D

 R
ap

id
 P

ro
to

ty
p

e

O
S

R
ap

id
 P

ro
to

ty
p

e

TX
/R

x
R

ap
id

 P
ro

to
ty

p
e

A
IT

 P
ro

to
ty

p
e

P
r

V
D

P
r

L
H

P
r

M
tr

_
s

P
r

B
rg

_
s

P
r

Sh
af

t

P
r

R
in

g

P
r

M
o

to
r

1

P
r

G
_

h

P
r

P
in

io
n

P
r

R
ac

k

P
r

Lb

P
r

Lm

P
r

Lt

P
r

Lo

P
r

M
M

P
r

SM

P
r

M
h

P
r

K
B

R
M

_
0

2
_

1

P
r

M
o

to
r

2

P
r

B
rg

 t
ip

P
r

N
u

t

P
r

M
H

 P
C

B
_

c

P
r

P
EE

K
_

s

P
r

M
M

 S
u

p
p

P
r

O
S

F

P
r

O
S

B

P
r

O
S

T

P
r

O
S

B

P
r

O
S_

V
D

_
o

P
r

O
S_

V
D

_
s

P
r

M
ai

n
 B

o
ar

d

P
r

P
o

w
er

 B
o

ar
d

P
r

W
ir

in
g

co
m

p
o

n
en

ts

P
r

To
p

 D
is

s

P
r

B
o

tt
o

m
 D

is
s

A
IT

 M
ai

n
 B

o
ar

d

A
IT

 P
o

w
er

 B
o

ar
d

A
IT

 V
D

 B
rg

_
s

A
IT

 V
D

 s
u

p
p

o
rt

A
IT

 T
X

 le
n

se
s

A
IT

 R
X

 m
ir

ro
rs

W
 T

X
 le

n
se

s

W
 R

X
 m

ir
ro

rs

A
IT

 V
D

A
IT

 E
le

ct
ro

n
ic

s

A
IT

 R
X

 s
ys

te
m

A
IT

 p
ay

lo
ad

1 VD ● ● ● ● ● ● ●

2 L H ● ● ●

3 Mtr_s ● ● ●

4 Brg_s ● ● ● ●

5 Shaft ● ●

6 Ring ● ●

7 Motor 1 ● ● ● ● ●

8 G_h ● ● ●

9 Pn ● ● ● ●

10 Rk ● ● ●

11 Lb ● ● ● ● 0,6

12 Lm ● ● ● ● 0,6

13 Lt ● ● ● ● 0,6

14 Lo ● ● ● ● 0,6

15 MM ● ● ●

16 SM ●

17 Mh ● ● ● ● ● ●

18 KBRM_02_1 ● ● ● ● ● ●

19 Motor 2 ● ● ●

20 Brg tip ● ● ●

21 Nut ● ● ●

22 MH PCB_c ● ● ● ● ● ● ●

23 PEEK_s ● ● ● ● ● ●

24 M M Supp ● ● ● ●

25 OS F ● ● ● ● ● ● ●

26 OS B ● ● ● ● ● ● ●

27 OS T ● ● ● ● ● ●

28 OS B ● ● ● ● ●

29 OS_VD_o ● ● ● ● ●

30 OS_VD_s ● ● ● ● ● ●

31 Main Board ● ● 0,9 0,8

32 Power Board ● ● 0,9

33 Wiring ● ● ● 0,8 0,8 0,8

34 Top Diss ● ● ● ● ● ● ● ● 0,8

35 Bottom Diss ● ● 0,8

36 VD Rapid Prototype ● ● ● ● ● ● ● ● ● ● ● ● ● ●

37 OS Rapid Prototype ● ● ● ● ● ●

38 TX/Rx Rapid Prototype ● ● ● ● ● ● ● ● ● ● ● ● ● ●

39 AIT Prototype ● ● ●

40 Pr VD ● ● ● ● ●

41 Pr L H ● ● ●

42 Pr Mtr_s ● ● ● ● ●

43 Pr Brg_s ● ● ● ● ●

44 Pr Shaft ● ● ● ●

45 Pr Ring ● ● ● ●

46 Pr Motor 1 ● ●

47 Pr G_h ● ●

48 Pr Pinion ● ●

49 Pr Rack ● ●

50 Pr Lb ● ● ● ●

51 Pr Lm ● ● ● ●

52 Pr Lt ● ● ● ●

53 Pr Lo ● ● ● ●

54 Pr MM ● ● ●

55 Pr SM ● ● ●

56 Pr Mh ● ● ●

57 Pr KBRM_02_1 ● ●

58 Pr Motor 2 ● ● ●

59 Pr Brg tip ● ● ●

60 Pr Nut ● ● ●

61 Pr MH PCB_c ● ● ●

62 Pr PEEK_s ● ● ●

63 Pr MM Supp ● ● ●

64 Pr OS F ● ● ● ● ● ● ●

65 Pr OS B ● ● ● ● ● ● ●

66 Pr OS T ● ● ● ● ● ● ● ●

67 Pr OS B ● ● ● ● ● ● ●

68 Pr OS_VD_o ● ● ● ● ● ● ●

69 Pr OS_VD_s ● ● ● ● ● ● ● ●

70 Pr Main Board ● ●

71 Pr Power Board ● ●

72 Pr Wiring components ● ● ● ●

73 Pr Top Diss ● ●

74 Pr Bottom Diss ● ●

75 AIT Main Board ● ●

76 AIT Power Board ● ●

77 AIT VD Brg_s ● ● ● ●

78 AIT VD support ● ● ● ● ● ● ● ●

79 AIT TX lenses ● ● ● ●

80 AIT RX mirrors ● ● ●

81 W TX lenses ●

82 W RX mirrors ●

83 AIT VD ● ● ● ●

84 AIT Electronics ● ● ● ● ● ●

85 AIT RX system ● ● ● ● ● ● ● ● ● ● ●

86 AIT payload ● ● ● ● ● ● ●

Prepare Data

Design activities

Prototyping activities

Procurement & manufacturing
activities

AIT activities

Probabilistic
feedbacks

Chapter 4. Cast study: New Space mission payload

112

Within the product backlog definition, project participants are also asked to provide

additional data about the time, cost, and resources required to perform the activities (Figure 51).

The information can be based on historical data, experts’ opinions, design support tools output

(Garzaniti et al., 2020), or their combination.

The process of defining the resources needed to execute the project does not involve pre-

assigning tasks to people since it would violate the Agile principle of self-organizing teams. The

team is asked only to indicate the discipline related to the activities. Those data become essential

to refine the team composition and manage dependencies between internal resources (i.e.,

development team) and external resources (i.e., procurement and manufacturing partners).

Figure 51. Case study A - Complementary information provided within the product backlog architecture definition –

work-packages traceability, expertise required (e.g., M: mechanical engineer, O: Optical engineer, E: electronic engineer,

p: procurement department), cost and time estimates.

Task ID Task Name WP ID Expertise # Exp needed m
in

m
o

de

m
ax

m
in

m
o

de

m
ax

1 VD 1 M 1 0.6 1 2 960 1600 3200

2 L H 1 M 1 0.6 1 1.4 960 1600 2240

3 Mtr_s 1 M 1 0.4 0.6 0.8 640 960 1280

4 Brg_s 1 M 1 0.8 1 2 1280 1600 3200

5 Shaft 1 M 1 0.1 0.2 0.6 160 320 960

6 Ring 1 M 1 0.2 0.4 0.6 320 640 960

7 Motor 1 1 M 1 0.2 0.4 0.6 320 640 960

8 G_h 1 M 1 0.2 0.4 0.6 320 640 960

9 Pn 1 M 1 0.4 0.8 1 640 1280 1600

10 Rk 1 M 1 0.4 0.6 1 640 960 1600

11 Lb 1 O 1 0.2 0.4 0.6 320 640 960

12 Lm 1 O 1 0.2 0.4 0.6 320 640 960

13 Lt 1 O 1 0.2 0.4 0.6 320 640 960

14 Lo 1 O 1 0.2 0.4 0.6 320 640 960

15 MM 1 O 1 0.2 0.4 0.6 320 640 960

16 SM 1 O 1 0.2 0.4 0.6 320 640 960

31 Main Board 1 E 1 2 3.6 4 3200 5760 6400

32 Power Board 1 E 1 1 1.8 2 1600 2880 3200

33 Wiring 1 E 1 0.2 0.4 0.6 320 640 960

40 Pr VD 3 p 1 8 12 16 936 1170 1697

41 Pr L H 3 p 1 8 12 16 760 950 1378

42 Pr Mtr_s 3 p 1 8 12 16 696 870 1262

43 Pr Brg_s 3 p 1 8 12 16 800 1000 1450

44 Pr Shaft 3 p 1 3 4 8 2 2 5

weeks Currency

Prepare Data

4.4 CURSIVE deployment

113

The definition of the product backlog architecture is a collective effort involving all players

participating in the project. Each team member provides tasks, input/out dependencies, and time or

cost estimates. The final product backlog architecture results from team consensus reached by

adopting an iterative refinement process. We leveraged the value of the Agile Manifesto of

promoting “Individuals and interactions over process and tools” (Beck et al., 2001) while providing

a common language and structure to define the activities required to deliver the product. At the

same time, we offer a holistic view of the project.

While shaping the product backlog architecture, the framework also provides the team with

a handy chart to understand the viability of implementing Agile in the different portions of the

project (Figure 52).

Figure 52. Case A – Agile Implementation viability

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 10 20 30 40 50 60 70 80 90

It
er

at
io

n
 V

ia
b

ili
ty

 T
im

e
In

d
ex

Task ID

Iteration Viability Time Chart

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 10 20 30 40 50 60 70 80 90

It
er

at
io

n
 V

ia
b

ili
ty

 C
o

st
 In

d
ex

Task ID

Iteration Viability Cost Chart

Long lead time items
are not ideal for Agile

Chapter 4. Cast study: New Space mission payload

114

The same color code used in the product backlog architecture is adopted: design tasks are

marked in green, procurement or manufacturing tasks are marked in red, prototyping tasks are in

yellow, and AIT tasks are in blue. The tasks in the upper pane represent the activities for which

Agile implementation is efficient both in terms of cost and time. In this case, fast iterations will

lead to an equally rapid increase of product maturity without a significant impact on budget and

schedule. Tasks in the lower pane represent the activities for which Agile implementation would

be highly inefficient in terms of both cost and time. Iterating such tasks would lead to a schedule

disruption or cost overrun. The tasks in the two yellow bands represent the activities for which

Agile implementation would be inefficient either in terms of cost or time.

Based on this information, the team might decide to adopt different solutions.

1. To increase the level of granularity of task decomposition. This solution may

improve the viability indexes of resulting tasks in terms of time (e.g., the activities

resulting from activity 31 breakdown will be located higher than activity 31 itself).

As a consequence, it also may improve the viability indexes of related procurement

and manufacturing tasks.

2. To improve system modularity. This solution may improve the viability indexes of

resulting tasks in terms of both time and costs. It also may improve the viability

indexes of related procurement and manufacturing tasks.

3. To accept the current plan. Then to use a Hybrid-Agile process, implementing agile

on the portion of the project where it will be efficient and Stage-gate where time

and cost of iteration will be inefficient.

4.4 CURSIVE deployment

115

Such information already in the early phase represents a valuable aid for optimizing the

whole process. Interviewee A1 collaborating on this case study, said: “Having a better

understanding of the quality of task decomposition as well as the system modularity would have

been particularly useful during the project planning and execution. For instance, as shown in the

chart, the high integration of the subsystem related to task 31 significantly impacted the cost.

Unfortunately, we realized this at the end of the project. We plan to increase the modularity of that

subsystem for the next version of the product”.

The consolidated product backlog architecture resulting from this process, including the

DSM and the complementary information, is then used as input for the simulation step of our

framework.

4.4.2 Simulation

Seven thousand simulations (in batches, s, of 1000) have been run to stabilize mean and variance

of time and cost distributions within precision, ε = 10-4 (Figure 53) according to equation (6), (7).

Figure 53. Mean and variance over the number of simulations for time (right) and cost (left) distributions

Chapter 4. Cast study: New Space mission payload

116

As a result of the simulation, we get distributions of time and cost. Figure 54 (left side)

shows the probability density functions (PDF) of simulated cost and schedule outcomes. Figure 54

(right side) shows the joint PDF resulting from paired cost and schedule outcomes.

Figure 54. Case A - Simulation output Time and Cost Probability Distribution Functions (PDFs) normalized (on the left)

Joint Time and Cost PDF contour plot of the simulated scenarios (on the right)

These graphs are particularly useful to quickly compare process cost and time against

budget and schedule targets. (Figure 55). During the contract negotiation phase, the simulation

model can be used to tailor project schedule and budget, mitigating programmatic risks and

increasing the likelihood of successful product delivery within cost and time constraints.

Alternatively, it can also be run while the process is ongoing to monitor process execution, as

presented in section 3.3.1. Activity duration and cost estimates or tasks dependencies can be

updated with actual values as soon as they become available, thus having more reliable results for

the subsequent phases of the project. The simulation results evolve over the process execution to

the extent the development team iterates and updates the product backlog architecture data.

Simulations become crucial when dealing with projects involving hundreds of tasks,

different stakeholders, and complex interactions among activities and people. As the complexity

4.4 CURSIVE deployment

117

increases, simulations become the only way to assess the impact of a single design decision on the

whole development process.

Figure 55. Schedule Target vs time distribution of simulated scenarios

The model proposed here also allows evaluating the sensitivities of budget and schedule to

potential risk factors associated with activity costs, durations, and iterations. Thus, it enables

decision-makers to refine the process architecture to enhance process performance. At the time of

project implementation, the team did not optimize the process, which generally resulted in delays.

Interestingly, given the input summarized in Figure 50 and Figure 51 of the non-optimized process,

CURSIVE provided quite consistent outcomes compared with the actual data (Figure 56).

T0

MDR

Payload Delivery

Phase BPhase A

FlatSat Delivery

DelayPhase C

FRR

Delay

ORRQRCDR ORR

Payload Delivery

PDR CDR FRR

Phase D

QR

CDR: Critical Design Review

QR: Qualification Review

ORR: Operational Readiness Review

FRR: Flight Readiness Review

MDR: Mission Definition Review

PDR: Preliminary Design Review

Figure 56. Case A- Overall Schedule.In yellow planned milestone, in red actual milestone.

Example Time target

Chapter 4. Cast study: New Space mission payload

118

4.4.3 Planning

During the contract negotiation phase, the consortium set the schedule and budget constraints for

all the mission contributors. According to the agreement, the payload shall be delivered within a

tight schedule and a small budget (0.20 T of time distributions and minimum cost in Figure 54).

Providing time and schedule targets, CURSIVE identifies a baseline scenario able to meet

such targets minimizing the root mean square error between targets and available scenario data

(Figure 57). Therefore, the Sprint planning and MVPs structuring is constrained to these targets.

Figure 57. Gantt chart of the baseline scenario meeting budget and time constraints

The heuristic approach deployed to identify the optimal number of MVPs suggests

structuring the development in seventeen Sprints. Combining this information with the product

backlog architecture, the framework outlines the Sprints backlog clustering the different user

stories. The result of the cluster analysis is summarized in Figure 58.

Mechanical design
Electronics design
Optics design
Procurement
AIT

Electronics physical MVPs

4.4 CURSIVE deployment

119

Figure 58. Case A - Sprint backlog

As we can observe in Figure 58, the system performed quite well in organizing the backlog

for design, procurement of non-long lead time items, and AIT activities. As concern procurement

and manufacturing of long lead time items (lengthy blue bars), which are cross-Sprint activities,

they have not been included in the cluster analysis because they would have introduced noise, and

the framework would not have been able to allocate them properly. In some cases, they would have

been assigned based on the starting time, in some others according to the finishing time. The tasks

to be excluded from the cluster analysis are systematically identified based on the Agile viability

indexes presented in Figure 52. Excluding long-lead items from this analysis does not represent a

critical issue for two reasons. First, the team can refer to the project Gantt chart as presented in

Figure 58 or to the long lead items allocation chart (Figure 59, bottom) to initiate components

procurement in the most appropriate Sprint according to the execution time. Second, by its nature,

our framework does not aim to replace the people reasoning and decision-making activities, but it

seeks to support and ease that.

long lead
time items

Chapter 4. Cast study: New Space mission payload

120

The outcome of the Sprint definition process offers information on the set of tasks to be

performed within each Sprint, as well as the Sprints’ durations (Figure 59, left side) and the related

cost (Figure 59, right side). Long lead items cost is allocated within the Sprint the procurement is

initiated, while the delivery time is not included in the Sprints duration. Information about those

items is summarized in a different graph indicating the Sprint where the procurement is initiated

and the Sprint where the orders are delivered (Figure 59, bottom).

Figure 59. Sprint sequence and cost Breakdown

Most of the Sprints are in a finish-start sequence; however, some sprints have some degrees

of concurrency. This is because the framework tries to optimize resource allocation, ensuring

resource-leveling. So, if a Sprint is dedicated to developing an MVP that does not require a given

discipline, CURSIVE suggests also starting another Sprint where the team can exploit that

Sprints where
procurement

is initiated

Sprints
where items
are delivered

4.5 Process Insights

121

discipline. Even if this might not be very aligned with the orthodoxy of Agile theory, a non-

homogeneous environment requires additional attention to the problem of resource allocation and

leveling. This strategy may help improve process performance.

4.5 Process Insights

The analysis of the process implementation strategy provides useful insights to evaluate the actual

benefit of using the Agile/Hybrid-Agile PDP in terms of cost, time, and technical risk. Figure 60

and Figure 61 show the normalized cost and time required to perform the different activities as well

as the time and cost of iterations (showed as different staked color bars) for the given scenario.

Figure 60 and Figure 61 that some user stories are time-critical while others are cost-

critical. Therefore, deciding whether to iterate a given task based on the cost or time efficiency

directly relates to the Δrisk-mitigation enabled by each iteration cycle.

Figure 60. Case A - Tasks Cost Breakdown

Chapter 4. Cast study: New Space mission payload

122

Figure 61. Case A - Tasks Time Breakdown

The team can use the information reported in, Figure 59, Figure 60, and Figure 61 to map

the MVPs sequence to the taxonomy evaluating the product maturity improvement achieved over

time, as shown in Table 10.

For instance, the team can decide to mitigate the technical risk deriving from a task, such

as the 31st, at different stages of the lifecycle, accepting the programmatic risk posed by cost and

time investment. If the task relates to a critical element of the system, they can fully exploit the

Agile PDP capability of retiring technical risk by using DMTR iteration.

For other activities, the programmatic risk might jeopardize the whole project (e.g.,

procurement of long-lead items – task 64 to 69), and the team can decide to be conservative using

DAR iterations (e.g., task 25 to 30 refers to the design of those long lead items) and adopting

traditional systems engineering approaches.

Design
tasks

Prototyping
tasks

AIT
tasks

Procurement tasks

4.5 Process Insights

123

Table 10. Map of MVPs related to the MVP taxonomy

Sprint MVP Acceptance criteria: objective on MVP

ID Fidelity Artifacts Repr. mode V&V Activities

1 Medium Schematics/CAD Digital Verification Analysis

2 Medium PCB layout/CAD Digital Verification Analysis

3 High PCB Prot./CAD Physical Verification Inspection

4 High PCB Prot./CAD Physical Verification Functional Test

5 High Funct. Prototypes Physical Verification Functional Test

6 High Funct. Prototypes Physical Verification Funct.Test/Inspection

7 High Funct. Prototypes Physical Verification Functional Test

8 High CAD, BOM Digital Verification Analysis

9 High Product Subset Physical Verification Funct.Test/Inspection

10 High Funct. Prototypes Physical Verification Funct.Test/Inspection

11 High Funct. Prototypes Physical Verification Funct.Test/Inspection

12 High Funct. Prototypes Physical Verification Funct.Test/Inspection

13 High Product Subset Physical Verification Functional Test

14 High Product Subset Physical Verification Funct. and Perf. Test

15 High Product Subset Physical Verification Funct. and Perf. Test

16 High Product Subset Physical Verification Funct. and Perf. Test

17 High Product Physical V&V Performance Test

Having a clear understanding of the effect each task and iteration cycle has on the cost and

the schedule of the entire project helps the development team navigate programmatic and technical

tradeoffs. The information offered by the proposed framework can also support teams in fine-tuning

the process structure to increase process robustness, minimizing its sensitivity to potential design

changes occurring during project execution.

Chapter 4. Cast study: New Space mission payload

124

4.6 Summary and interim conclusion

This chapter analyzed the development process of an optical telecommunication payload for a New

Space mission applying our framework. The analysis covered the entire development of the system

from the design phase to the assembling, integration, and testing (AIT) of the flight model (ECSS,

2010, 2018), including prototyping, procurement, and manufacturing activities.

Sections 4.1 and 4.2 introduced the case study providing background information on the

project and the organization executing the project. Section 4.3 briefly discussed the motivation for

adopting Agile. Section 4.4 dived into the PDP structuring and planning analysis using CURSIVE.

The analysis of the PDP has been organized according to the three macroblocks of our framework,

namely process structuring, simulating (or simulation), and planning.

In the structuring phase, a set of methods and tools for reasoning about the structure of the

decision problem have been deployed. First, eighty-six tasks spanning over the whole development

cycle have been identified. Then, those activities have been organized in a DSM, defining their

interconnections (tasks dependencies) and outlining the order in which tasks shall be addressed.

Tasks exhibited deterministic and probabilistic dependencies. The outcome of this exercise has

been consolidated in the product backlog architecture. The product backlog architecture has been

integrated with complementary information about the time, cost, and resources required to perform

the activities.

Within the structuring phase, CURSIVE also assessed the viability of implementing Agile

for the given project. The time viability index for the entire project, 𝐴𝑉𝑝𝑟𝑗
𝑇 , is equal to 0.7, while

the cost viability index, 𝐴𝑉𝑝𝑟𝑗
𝐶 , is equal to 0.64. Those values imply that the project can benefit from

Agile adoption; however, it is not recommended to execute all the portions of the project using

4.6 Summary and interim conclusion

125

Agile. The detailed analysis of the Agile Viability charts (Figure 52) identified the items for which

the use of Agile is not beneficial (i.e., long lead time items). Therefore, the framework suggested

executing the project adopting a Hybrid-Agile approach. The information resulting from the

structural reasoning exercise has been then used as input for the simulation phase.

During the simulation phase, CURSIVE has analyzed the solutions satisfying the problem

constraints and evaluates the overall process performance for different variables combinations and

values. As an outcome of the simulation, we got time and cost distributions representing the feasible

scenarios and the dataset, including all the process details for each considered scenario.

The planning phase has been explored in-depth the scenario that meets the time and cost

target offering an actionable plan. A heuristic approach has been deployed to define the Sprints

backlog as well as the Sprints sequence. While defining the Sprints backlogs, CURSIVE has

excluded the activities that are not recommended to be executed using Agile, as indicated by the

viability indexes. Those activities have been then related to the different Sprints depending on

procurement initiation and delivery time. The results of the planning activities have been

summarized in a set of charts (Figure 57, Figure 58, and Figure 59), offering a comprehensive

picture, from multiple perspectives, of the project execution plan.

Together with the structuring reasoning exercise, the Sprint backlog definition represented

a fundamental activity in the deployment of Agile for hardware systems. The first provided the

rationale for Agile implementation. The latter provided the rationale for the organization of Sprints

(including goals, lengths, MVPs, and transition), as well as means of coordination between

activities executed adopting different implementation strategies (iterative vs. not iterative).

The combined outcome of the three phases of our framework provided valuable insights

on the process performance (Agile or Hybrid-Agile) in terms of cost, time, and technical risk.

Chapter 4. Cast study: New Space mission payload

126

Figure 60 and Figure 61 reported the normalized cost and time required to perform the different

activities, as well as the time and cost of iterations. Table 10 mapped the Sprint sequence to the

MVP taxonomy, evaluating the product maturity improvement achieved over time. These data

brought the focus on critical activities, such as tasks 1 and 31 (cost-critical), or 48 and 64 (time-

critical). This information can be used to evaluate potential strategies for process improvement,

such as increase tasks granularity (e.g., task 1), increase the system modularity (e.g., task 31), or

consider different suppliers (e.g., task 64 to 69).

As shown in the case study, CURSIVE does not aim to make independent decisions,

replacing development team judgment. Instead, it is a predictive model aiming to provide the team

with quantitative means to underpin their decision-making process. The following conclusions can

be drawn from this study:

• If a Hybrid-Agile approach is adopted, means of coordination are needed not only with

external partners (e.g., consortium participants) but also within the organization between

Agile and non-Agile activities (Figure 59). This coordination of tasks dependencies

becomes essential to ensure coherent development and avoid schedule disruption.

• Using Agile does not necessarily mean shorter development time or lower cost. Actually,

due to the cost of iterations (Figure 60), Agile might exhibit a higher cost than traditional

development processes. However, Agile lowers the technical debt (Allman, 2012),

reducing the probability and the impact of reworks in later phases of the development.

• Vendors’ selection, and generally supply chain management, represents a critical activity

not only for quality reasons but also in terms of lead times. For instance, tasks from 64 to

69 could have been assigned to a different supplier able to deliver in less than a tenth of

the time (without cost increases), allowing iterations also in that portion of the project.

4.6 Summary and interim conclusion

127

• System modularity is a key feature for the effective implementation of Agile. It represents

a crucial driver for both the cost and time of iterations; high modularity allows for more

and faster iterations. In this case study, the system exhibited a mild degree of modularity:

system modularity index (SMI), equal to 0.223 (Figure 62). The SMI index is based on the

exponential decay approximating the actual decay structure of sorted singular values of the

product DSM. Please refer to eq. (6) in (Holtta-Otto & de Weck, 2007) for further details.

Figure 62. Degree of modularity

Given the degree of modularity, the Hybrid-Agile approach was a reasonable compromise.

However, some subsystems, such as the one related to task 31 or 32, could have been

further decomposed, enhancing the cost-effectiveness of Agile implementation.

• In the context of Agile for hardware, the product maturity does not increase

homogeneously. Different subsystems achieve different maturity in different Sprints (as

reported in Table 10), eventually converging over the project execution. Mapping and

managing the MVP sequence over time allows for the coherent integration of all the

subsystems and successful product delivery.

128

This page intentionally left blank

129

 Cast study: A consumer product

In this chapter, the framework is applied to the development of a consumer product, specifically a

household appliance. The system under consideration consists of a product platform and a set of

accessories. The company aims to release the product on the market within a tight schedule, and it

is willing to invest considerable resources to achieve this goal. The management provided the

project details. The framework then used this information to assess the feasibility of meeting the

time target and propose potential process improvements to either shorten the time-to-market or

increase the likelihood of meeting the scheduled release.

Section 5.1 presents the general case study data resulting from the structured interview.

Sections 5.2 and 5.3 report the organization and the project structure resulting from documentation

and publicly available data analysis, as well as the semi-structured interview with a project

participant. Section 5.3 summarizes the motivation for Agile adoption and the fitting of Agile into

development processes traditionally used by the organization, as described by the interviewees.

Section 5.4 describes the application of the framework to the project data provided by the

organization, detailing all the implementation steps, and eventually, it derives process insights and

draws the case study conclusion.

Chapter 5. Cast study: A consumer product

130

5.1 General case study data

Mechanics
55%

Electronics
30%

Embedded Software
12%

Application software
3%

home appliances

Product

Customers

Retail sales through mono-branded
flagship stores and boutiques

The company mostly
operates Russia, CIS
countries and Poland

Market

Company B

Employee

Total 1200

R&D 50

Location

Russia

Size

Large enterprise

Product composition

Mechanics 55%

Electronics 30%

Embedded Software 12%

Application software 3%

Total 100%

Degree of physicality 0.91

Customer involvement

Customer only validating the product

Customer in mildly involved (monthly meetings)

Customer is heavily involved (weekly meetings)

5.1 General case study data

131

0 1 2 3 4 5

Years

Impact on the organization

We are still evaluating a potential Agile transition. So far we do

not really use Agile.

Experience with Agile Sprint Length in weeks

0 1 2 3 4

Weeks

Not predefined structure

Scrum in the Development Process

Scoping Business case Development Test & Validation Launch

Note: the company leverage the internal manufacturing facility for rapid prototyping of some

components, however the product of the final system is outsourced

Agile fully implemented
Agile used in some extent

Requirements

Preliminary Des.

Detailed Design

Functional test

Performance T.

SW updates

Early adopters
mishandling

Early adopters
ease of use

Prototyping

Interviewees

Name Interviewee B1
Position Head of product
 development dpt
Background Economy
Role in Scrum No formal role

Name Interviewee B2
Position deputy head of
 product development
Background Unknown
Role in Scrum No formal role

Chapter 5. Cast study: A consumer product

132

5.2 Organizational structure

The R&D division of organization B has the headquarters in Moscow, Russian Federation, but has

a network of development partners spread over Germany, Russia, France, Italy, Switzerland, China,

Turkey, South Korea, and Australia. Each partner is responsible for the development of a different

element of the final product.

The organization mostly outsources the development of all the components constituting the

product. The R&D division primarily coordinates the different design teams, ensuring that

outcomes of R&D activities are consistent with the product vision. Particular efforts are also

dedicated to quality assurance and after-sales service. The project presented here is handled by a

project manager located in the Moscow headquarter, coordinating company development partners.

The company does not have its own production site. Products are manufactured in China,

Poland, Hungary, Germany, Japan, Turkey, and France. The organization mainly trades in Russia,

the commonwealth of independent states, and Poland.

Figure 63. Case B – Organization of the development teams

Development partners

R&D headquarters
Project manager

Early adopters

Internal Prototyping

Suppliers and external
production facilities

5.3 Agile in the development process, motivation for Agile adoption

133

5.3 Agile in the development process, motivation for Agile adoption

Organization B is a large company that employs more than a thousand people worldwide, with

development partners spread over twelve different countries. As such, the company uses a Stage-

Gate model as the overall management tool for development activities.

The company does not formally use Agile. However, some of the Agile principles are

implemented during the stages called “Development”, “Test and validation”, and l “Launch” (refer

to Section 5.1 page 131).

Organization B is not directly interested in the Agile process. However, it is always

interested in any approach that can potentially streamline the process and accelerate the

development schedule. Therefore, if Agile can bring some benefits in any stage of development,

they are willing to experiment with that. In this case study, the main driver for a potential Agile

adoption relates to time savings.

5.4 CURSIVE deployment

5.4.1 Process Structuring

At the beginning of the project, there was a kick-off meeting with the management of the product

development department. Company B provided an overview of the product vision and a preliminary

concept. After this first introductory meeting, I asked the project manager and development team

to define the set of tasks they envision for completing the project.

The team listed eighty-four tasks related to ten macro areas: Electronics, Mechanics,

Software, Tooling, Manufacturing, Assembly line, Testing, Packaging, Certification, Patenting.

Then, these tasks were collected in a DSM, and the dependencies’ structure was outlined. In the

Chapter 5. Cast study: A consumer product

134

DSM, cells on the diagonal correspond to the tasks, the marks in off-diagonal cells indicate tasks

interactions. The marks in the row denote activities inputs (sub-diagonal marks), while marks in

the column indicate the feedbacks (super-diagonal marks). In this case study, the team provided

only deterministic feedback links, marked with the black filled circle symbol, i.e., probability of

occurrence equal to 1. While defining the process architecture, the team and I realized that some

tasks related to the definition of interfaces between subsystems were missing. Those tasks were

added and, within two iterations, the final product backlog architecture was consolidated.

Figure 64 shows the resulting product backlog architecture the team produced. The backlog

includes design activities (marked in green), rapid prototyping (yellow tasks), procurement or

manufacturing (marked in orange), AIT activities (marked in blue), IP protection (purple tasks),

certifications activities (marked in grey), packaging (light grey tasks) and assembly line (light blue).

Figure 64. Input DSM for development of the household appliance

Task ID Task Name Kronos 3 Project - Rev 1.0 - Garzaniti D
r

Fl

D
r

Sw
h

sp
ec

PC
B

 d
ev

 3
V

D
el

iv
er

y
PC

B
 3

V
 (E

M
)

D
is

p
FS

 r
eq

D
is

p
FT

 r
eq

u

D
 S

c-
PC

B
 in

t

D
 S

w
-P

C
B

 in
t

Fi
n

Fl
w

Fi
n

Sw
 s

pe
c

D
sg

 D
r

sc
r

Pr
o

to
ty

pi
ng

 D
is

p

Pr
o

to
ty

pi
ng

 S
w

 (E
M

)

D
el

iv
er

y
M

tr
 (E

M
)

Te
st

in
g

M
tr

 (E
M

) w
it

h
br

b
an

d
dm

dr

A
IT

_P
C

B
-M

tr

EM
C

 t
es

t_
P

C
B

-M
tr

O
rd

er
 4

 P
C

B
 p

cs
 f

o
r

pr
o

to
ty

pe

Te
st

 P
C

B
 p

ro
to

ty
pe

 f
o

r
lo

gi
c

an
d

bu
gs

Pr
o

du
ct

 c
o

nc
ep

t
3D

 d
es

ig
n

PC
B

 s
up

pl
ie

r
co

m
pa

ny
 s

ea
rc

h

PC
B

 s
up

pl
ie

r
qu

o
ta

ti
o

ns

M
tr

 s
up

pl
ie

r
se

ar
ch

v
su

pp
lie

r
qu

o
ta

ti
o

ns

Pr
o

cu
re

m
en

t
o

f
M

tr
 -

 4
 p

cs
 f

o
r

pr
o

to
ty

pe

D
ie

-c
as

t
ho

us
in

g
su

pp
lie

r
se

ar
ch

D
ie

-c
as

t
ho

us
in

g
su

pp
lie

r
qu

o
ta

ti
o

ns

D
es

ig
n

M
tr

 b
ea

ri
ng

D
es

ig
n

A
r

be
a

ri
ng

D
es

ig
n

B
L

m
ec

h

D
es

ig
n

LR
 f

o
r

A

D
es

ig
n

PA
 in

t

D
es

ig
n

A
cc

es
so

ry
 1

D
es

ig
n

A
cc

es
so

ry
 2

D
es

ig
n

A
cc

es
so

ry
 3

D
es

ig
n

A
cc

es
so

ry
 4

D
es

ig
n

A
cc

es
so

ry
 5

D
es

ig
n

A
cc

es
so

ry
 6

D
es

ig
n

A
cc

es
so

ry
 7

D
es

ig
n

A
cc

es
so

ry
 8

D
es

ig
n

A
cc

es
so

ry
 9

D
es

ig
n

A
cc

es
so

ry
 1

0

D
es

ig
n

A
cc

es
so

ry
 1

1

D
es

ig
n

A
cc

es
so

ry
 1

2

D
es

ig
n

A
cc

es
so

ry
 1

3

D
es

ig
n

A
cc

es
so

ry
 1

4

D
es

ig
n

pr
o

du
ct

 A
ss

em
bl

y

Pr
o

to
ty

pi
ng

 M
tr

 b
ea

ri
ng

Pr
o

to
ty

pi
ng

 A
r

be
a

ri
ng

Pr
o

to
ty

pi
ng

 B
L

m
ec

h

Pr
o

to
ty

pi
ng

 L
R

 f
o

r
A

Pr
o

to
ty

pi
ng

 P
A

 in
t

Pr
o

to
ty

pi
ng

 a
n

co
m

po
ne

n
ts

Pr
o

to
ty

pi
ng

 e
xt

er
na

l c
as

e

A
IT

 P
ro

to
ty

pe
 f

ul
l p

ro
du

ct
 (F

un
ct

io
na

l)

D
ef

in
it

io
n

Pr
o

du
ct

 D
es

ig
n

B
as

el
in

e

M
o

ck
up

 o
f

fu
ll

pr
o

du
ct

 (N
o

t
Fu

nc
t

Pr
o

to
ty

pi
ng

)

D
es

ig
n

to
o

lin
g

2D
 d

ra
w

in
g

D
FM

 r
ep

o
rt

Fi
rs

t
o

ff
 t

o
o

l (
FO

T)

(E
B

1)
 -

 p
ro

to
ty

pi
ng

(E
B

2)
 -

 p
ro

to
ty

pi
ng

Pr
e

pr
o

du
ct

io
n

o
rd

er
 (f

o
r

pl
as

ti
c

pa
rt

s
o

nl
y)

To
o

lin
g

im
po

rt
 (f

o
r

pl
as

ti
c

pa
rt

s
o

nl
y)

3D
 p

o
ly

fo
am

 d
es

ig
n

de
ve

lo
pm

en
t

2D
 G

if
t

B
o

x
di

e-
cu

t
de

ve
lo

pm
en

t

2D
 M

as
te

r
B

o
x

di
e-

cu
t

de
ve

lo
pm

en
t

Fu
ll

pa
ck

ag
in

g
pr

o
to

ty
pe

 (
po

ly
fo

am
, G

B
, M

B
)

A
rr

an
ge

m
en

t
de

liv
er

y
to

 t
he

 f
ac

to
ry

In
st

ru
ct

io
n

M
an

ua
l d

ev
el

o
pm

en
t

In
st

ru
ct

io
n

M
an

ua
l p

ri
nt

in
g

R
at

in
g

La
be

l d
ev

el
o

pm
en

t

R
at

in
g

La
be

l p
ri

nt
in

g

M
tr

 p
at

en
t

PC
B

 p
at

en
t

B
L

m
ec

h
pa

te
nt

PL
 m

ec
h

pa
te

nt

A
r

be
a

ri
ng

 p
at

en
t

D
es

ig
n

pa
te

nt
 (b

ef
o

re
 t

o
o

lin
g

st
ar

t)

Sk
o

lk
o

vo
 A

pp
lic

at
io

n

TU
V

 R
ep

o
rt

 c
er

ti
fi

ca
ti

o
n

(b
as

ed
 o

n
pr

o
to

ty
pe

)

TU
V

 f
in

al
 c

er
ti

fi
ca

ti
o

n
(b

as
ed

 o
n

m
as

s
pr

o
du

ct
io

n)

R
O

H
S

ce
rt

if
ic

at
io

n
(b

as
ed

 o
n

m
as

s
pr

o
du

ct
io

n)

R
EA

C
H

 c
er

ti
fi

ca
ti

o
n

(b
as

ed
 o

n
m

as
s

pr
o

du
ct

io
n)

In
it

ia
l p

an
el

s
te

st
in

g
(in

t
co

nn
)

A
ss

em
bl

ed
 P

an
el

 t
es

ti
ng

 (
ex

t
co

nn
)

A
ss

em
bl

ed
 p

ro
du

ct
 f

ul
l l

if
e

te
st

 (a
ft

er
 p

re
 p

ro
d)

D
ro

p
te

st

V
ib

ra
ti

o
n

te
st

A
ss

em
bl

y
lin

e
dr

aw
in

g

Sp
ar

e
pa

rt
 p

ur
ch

as
in

g/
im

po
rt

W
ar

eh
o

us
e

sh
el

ve
s

re
lo

ca
ti

o
n

A
ss

em
bl

y
lin

e
bu

ild
in

g/
ca

lib
ra

ti
o

n

A
ss

em
bl

y
lin

e
ce

rt
if

ic
at

io
n

1 Dr Fl Dr Fl

2 Dr Swh spec Dr Swh spec

3 PCB dev 3V PCB dev 3V ● ● ● ● ● ●

4 Delivery PCB 3V (EM)Delivery PCB 3V (EM) ●

5 Disp FS req Disp FS req ●

6 Disp FT requ Disp FT requ ●

7 D Sc-PCB int D Sc-PCB int ● ● ● ●

8 D Sw-PCB int D Sw-PCB int ● ●

9 Fin Flw Fin Flw ● ●

10 Fin Sw spec Fin Sw spec ● ● ●

11 Dsg Dr scr Dsg Dr scr ● ● ●

12 Prototyping DispPrototyping Disp ●

13 Prototyping Sw (EM)Prototyping Sw (EM) ●

14 Delivery Mtr (EM)Delivery Mtr (EM)

15 Testing Mtr (EM) with brb and dmdrTesting Mtr (EM) with brb and dmdr ●

16 AIT_PCB-Mtr AIT_PCB-Mtr ● ● ●

17 EMC test_PCB-MtrEMC test_PCB-Mtr ●

18 Order 4 PCB pcs for prototypeOrder 4 PCB pcs for prototype ● ●

19 Test PCB prototype for logic and bugsTest PCB prototype for logic and bugs ● ● ● ●

20 Product concept 3D designProduct concept 3D design ● ● ● ●

21 PCB supplier company searchPCB supplier company search

22 PCB supplier quotationsPCB supplier quotations ● ●

23 Mtr supplier searchMtr supplier search ●

24 v supplier quotationsv supplier quotations ● ●

25 Procurement of Mtr - 4 pcs for prototypeProcurement of Mtr - 4 pcs for prototype ● ● ●

26 Die-cast housing supplier searchDie-cast housing supplier search ●

27 Die-cast housing supplier quotationsDie-cast housing supplier quotations ● ●

28 Design Mtr bearingDesign Mtr bearing ● ● ●

29 Design Ar bearingDesign Ar bearing ● ●

30 Design BL mech Design BL mech ●

31 Design LR for A Design LR for A ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

32 Design PA int Design PA int ● ● ● ● ●

33 Design Accessory 1Design Accessory 1 ● ● ●

34 Design Accessory 2Design Accessory 2 ● ● ●

35 Design Accessory 3Design Accessory 3 ● ● ●

36 Design Accessory 4Design Accessory 4 ● ● ●

37 Design Accessory 5Design Accessory 5 ● ● ●

38 Design Accessory 6Design Accessory 6 ● ● ●

39 Design Accessory 7Design Accessory 7 ● ● ●

40 Design Accessory 8Design Accessory 8 ● ● ●

41 Design Accessory 9Design Accessory 9 ● ● ●

42 Design Accessory 10Design Accessory 10 ● ● ●

43 Design Accessory 11Design Accessory 11 ● ● ●

44 Design Accessory 12Design Accessory 12 ● ● ●

45 Design Accessory 13Design Accessory 13 ● ● ●

46 Design Accessory 14Design Accessory 14 ● ● ●

47 Design product AssemblyDesign product Assembly ● ● ● ● ● ● ● ● ●

48 Prototyping Mtr bearingPrototyping Mtr bearing ●

49 Prototyping Ar bearingPrototyping Ar bearing ●

50 Prototyping BL mechPrototyping BL mech ●

51 Prototyping LR for APrototyping LR for A ● ● ● ● ●

52 Prototyping PA intPrototyping PA int ● ● ● ● ●

53 Prototyping an components Prototyping an components ● ● ● ● ● ● ●

54 Prototyping external casePrototyping external case ● ● ● ● ● ● ●

55 AIT Prototype full product (Functional)AIT Prototype full product (Functional) ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

56 Definition Product Design BaselineDefinition Product Design Baseline ●

57 Mockup of full product (Not Funct Prototyping)Mockup of full product (Not Funct Prototyping) ●

58 Design tooling 2D drawingDesign tooling 2D drawing ●

59 DFM report DFM report ● ●

60 First off tool (FOT)First off tool (FOT) ● ● ●

61 (EB1) - prototyping(EB1) - prototyping ●

62 (EB2) - prototyping(EB2) - prototyping ●

63 Pre production order (for plastic parts only)Pre production order (for plastic parts only) ● ●

64 Tooling import (for plastic parts only)Tooling import (for plastic parts only) ●

65 3D polyfoam design development3D polyfoam design development ● ●

66 2D Gift Box die-cut development2D Gift Box die-cut development ● ●

67 2D Master Box die-cut development2D Master Box die-cut development ● ●

68 Full packaging prototype (polyfoam, GB, MB)Full packaging prototype (polyfoam, GB, MB) ● ● ●

69 Arrangement delivery to the factoryArrangement delivery to the factory ● ● ●

70 Instruction Manual developmentInstruction Manual development ●

71 Instruction Manual printingInstruction Manual printing ●

72 Rating Label developmentRating Label development ● ●

73 Rating Label printingRating Label printing ●

74 Mtr patent Mtr patent ●

75 PCB patent PCB patent ●

76 BL mech patent BL mech patent ●

77 PL mech patent PL mech patent ●

78 Ar bearing patentAr bearing patent ●

79 Design patent (before tooling start)Design patent (before tooling start) ●

80 Skolkovo ApplicationSkolkovo Application

81 TUV Report certification (based on prototype)TUV Report certification (based on prototype) ●

82 TUV final certification (based on mass production)TUV final certification (based on mass production) ●

83 ROHS certification (based on mass production)ROHS certification (based on mass production) ●

84 REACH certification (based on mass production)REACH certification (based on mass production) ●

85 Initial panels testing (int conn)Initial panels testing (int conn) ●

86 Assembled Panel testing (ext conn)Assembled Panel testing (ext conn) ●

87 Assembled product full life test (after pre prod)Assembled product full life test (after pre prod) ●

88 Drop test Drop test ●

89 Vibration test Vibration test ●

90 Assembly line drawingAssembly line drawing ● ●

91 Spare part purchasing/importSpare part purchasing/import ● ●

92 Warehouse shelves relocationWarehouse shelves relocation ●

93 Assembly line building/calibrationAssembly line building/calibration ●

94 Assembly line certificationAssembly line certification ●

Prepare Data

assembly line

packaging

certifications

IP protection

Prototyping

Design
activities

Design
activities

Procurement

5.4 CURSIVE deployment

135

After consolidating the tasks list and the process structure, project participants were asked

to provide additional data about time, cost, and resources required to perform the activities (Figure

65). The information is based on historical data, experts’ opinion, or their combination. The main

concern of the management was related to the time-to-market; therefore, they decided to provide

only time data and focus all the analysis on the schedule.

Figure 65. Case study B - Complementary information provided within the product backlog architecture definition –

work-packages traceability, expertise required, and time estimates.

The definition of the product backlog architecture was a collective effort involving the

management team responsible for the project. Each team member provided tasks, input/out

dependencies, and time estimates. The final product backlog architecture resulted from team

consensus reached by adopting an iterative refinement process.

Task ID Task Name WP ID Expertise # Exp needed Exp code m
in

m
o

de

m
ax

1 Dr Fl 1 E 1 1 1 2 20

2 Dr Swh spec 1 E 1 1 4 4 15

3 PCB dev 3V 1 E 1 1 29 58 65

4 Delivery PCB 3V (EM) 1 p 1 4 3 14 40

5 Disp FS req 1 E 1 1 3 17 20

10 Fin Sw spec 1 E 1 1 25 49 60

11 Dsg Dr scr 1 E 1 1 49 98 120

12 Prototyping Disp 1 p 1 4 60 101 120

13 Prototyping Sw (EM) 1 p 1 4 50 101 120

14 Delivery Mtr (EM) 1 p 1 4 75 124 150

15 Testing Mtr (EM) with brb and dmdr 1 AIT 1 5 3 16 60

21 PCB supplier company search 1 S 1 6 3 13 15

22 PCB supplier quotations 1 S 1 6 5 6 60

23 Mtr supplier search 1 S 1 6 0 2 40

24 v supplier quotations 1 S 1 6 0 1 15

25 Procurement of Mtr - 4 pcs for prototype 1 p 1 4 15 54 60

26 Die-cast housing supplier search 1 S 1 6 5 50 60

27 Die-cast housing supplier quotations 1 S 1 6 3 5 15

28 Design Mtr bearing 1 E 1 1 5 19 40

29 Design Ar bearing 1 E 1 1 5 43 50

65 3D polyfoam design development 3 E 1 1 5 15 30

66 2D Gift Box die-cut development 3 E 1 1 5 7 30
67 2D Master Box die-cut development 3 E 1 1 5 18 20

75 PCB patent 4 PT 1 8 15 53 60

81 TUV Report certification (based on prototype) 4 C 0 7 147 174 210

82 TUV final certification (based on mass production) 4 C 0 7 15 54 60

90 Assembly line drawing 8 E 5 1 10 11 30

94 Assembly line certification 12 p 9 4 10 40 45

time (man-day)

Prepare Data

Chapter 5. Cast study: A consumer product

136

We leveraged the value of the Agile Manifesto of promoting collaboration between project

participants and development partners, while providing a common language and structure to define

the activities required to deliver the product. The resulting product backlog architecture offered the

team a holistic view of the project.

While shaping the product backlog architecture, the framework provided the team with a

chart to understand the viability of implementing Agile in the different portions of the project

(Figure 66). The same color code used in the product backlog architecture is adopted: design tasks

are marked in green, procurement or manufacturing tasks are marked in red, prototyping tasks are

in yellow, AIT tasks in blue, IP protection in purple, certification in grey, packaging in light grey

and industrialization tasks are marked light blue. The tasks in the upper pane represent the activities

for which agile implementation is efficient in terms of time. In this case, fast iterations will lead to

an equally rapid increase of product maturity without significantly impacting the schedule. Tasks

in the lower pane represent the activities for which Agile implementation would be highly

inefficient in terms of time. Iterating such tasks would lead to a schedule disruption.

Figure 66. Case B – Agile Implementation viability

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

It
er

at
io

n
 V

ia
b

ili
ty

 T
im

e
In

d
ex

Task ID

Agile Implementation Viability Chart

5.4 CURSIVE deployment

137

It is quickly noticeable from the chart that 68% of tasks lie in the non-viable area and less

than 15% in the viable one. The time viability index for the entire project, 𝐴𝑉𝑝𝑟𝑗
𝑇 , is equal to 0.38.

Therefore, based on this structuring reasoning exercise, it can be concluded that Agile is not a viable

solution for the project under consideration. Nevertheless, some small iterations might be

considered for a few tasks.

From the product perspective (Figure 67 shows the product DSM), we can also notice that

the product exhibits a bus-modularity structure (Holtta-Otto & de Weck, 2007), i.e., one component

connects to many other components, but none of the other components connects to each other. This

product feature opened the question of optimizing the combined development of the product

platform and product accessories to minimize the time to market while keeping customers’ hype.

Figure 67. Product DSM of the household appliance

Item ID Kronos 3 Project - Rev 1.0 - Garzaniti M
tr

P
C

B

Sw Sc
r

SP A B M
tr

 b
ea

ri
n

g

A
 b

ea
ri

n
g

B
L

m
ec

h
an

is
m

LR
 f

o
r

A

P
A

 in
te

rf
ac

es

A
cc

es
so

ry
 1

A
cc

es
so

ry
 2

A
cc

es
so

ry
 3

A
cc

es
so

ry
 4

A
cc

es
so

ry
 5

A
cc

es
so

ry
 6

A
cc

es
so

ry
 7

A
cc

es
so

ry
 8

A
cc

es
so

ry
 9

A
cc

es
so

ry
 1

0

A
cc

es
so

ry
 1

1

A
cc

es
so

ry
 1

2

A
cc

es
so

ry
 1

3

A
cc

es
so

ry
 1

4

1 Mtr ● ● ● ●

2 PCB ● ● ● ●

3 Sw ● ● ●

4 Scr ● ● ●

5 SP ● ● ● ●

6 A ● ● ●

7 B ●

\ 8 Mtr bearing ● ●

9 A bearing ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10 BL mechanism ● ● ●

11 LR for A ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

12 PA interfaces ● ● ● ● ● ● ● ● ● ● ● ● ● ●

13 Accessory 1 ● ● ●

14 Accessory 2 ● ● ●

15 Accessory 3 ● ● ●

16 Accessory 4 ● ● ●

17 Accessory 5 ● ● ●

18 Accessory 6 ● ● ●

19 Accessory 7 ● ● ●

20 Accessory 8 ● ● ●

21 Accessory 9 ● ● ●

22 Accessory 10 ● ● ●

23 Accessory 11 ● ● ●

24 Accessory 12 ● ● ●

25 Accessory 13 ● ● ●

26 Accessory 14 ● ● ●

Prepare Data

Bus modularity

Chapter 5. Cast study: A consumer product

138

Specifically, the question was to understand the benefit of defining a set of primary

accessories to be ready for the product launch, postponing the development of the secondary

accessories to be released in the later months, or develop and release all in one. The simulation and

planning CURSIVE capabilities are used to evaluate this tradeoff.

The consolidated product backlog architecture resulting from the structuring process

(Figure 64), including the DSM and the complementary information (Figure 65), is used as input

for the simulation step of the framework.

5.4.2 Simulation

Three thousand (3000) simulations (in batches, s, of 500) have been run to stabilize both mean and

variance of time distribution within precision, ε = 10-4 (Figure 68) according to equation (6), (7).

Figure 68. Mean and variance over the number of simulations for time distribution

5.4 CURSIVE deployment

139

As a result, the simulation provided a time distribution. Figure 69 shows the probability

density functions (PDF) of simulated schedule outcomes.

Figure 69. Case B - Simulation output Time Probability Distribution Functions (PDFs) normalized

The graph was helpful in quickly comparing process time against the scheduled target. We

could immediately notice that the programmatic risks associated with the time objective were

extremely high. There was less than a 10% likelihood to complete the project within the target

timeframe, while the most likely scenario was about 24% longer than the schedule objective. This

opened the question of whether the issue was the process structure or the sensitivity of the

implementation strategy to some specific activities’ uncertainty. This concern is further addressed

by analyzing different implementation scenarios. Then the results are used to benchmark process

performance identifying the source of programmatic risks.

Target

Chapter 5. Cast study: A consumer product

140

5.4.3 Planning

In the planning stage, CURSIVE was provided with different time targets, trying to get more details

on the different project implementation strategies. Two scenarios have been analyzed: the nominal

scenario (tight schedule, target 0.07 T of time distributions in Figure 69) and the most likely

scenario. Figure 70 shows the Gantt chart of the nominal scenario meeting time constraints.

Figure 70. Case B- Gantt chart of the baseline scenario meeting time constraints, in green design tasks, in orange

procurement and manufacturing, in yellow project management tasks, in blue AIT, in purple IP management, and in light

purple certification tasks

Given the structure of the process, summarized in Section 5.4.1, Agile did not represent a

viable solution for the considered project. Therefore, the algorithm for identifying the number of

MVP and defining the Sprint backlog has not been deployed. Nevertheless, the algorithm has been

used to define some activities clusters and set milestones to monitor the project execution.

Then the information gathered within the CURSIVE deployment has been collected and

used to derive insights, thus provide recommendations.

Design

AI&T

Management

Certifications

Patenting

Procurement

Product concept

Product Design Baseline

Procurement &
Manufacturing

Certifications

5.5 Process insights

141

5.5 Process insights

The comparison of the Gantt chart of two process implementation scenarios, the nominal scenario

(Figure 71 - left) and the most likely scenario (Figure 71 - right), suggested that the development

time issue relates to the process structure rather than the sensitivity to task durations.

Figure 71. Case B - Comparison of different scenarios

The analysis of the normalized time required to perform the different activities as well as

the iterations time (showed as different staked color bars) for a given scenario (Figure 72)

confirmed this hypothesis. The development process is mostly sequential, with no iterations and no

task overlaps.

Figure 72. Case B - Tasks Time Breakdown

Product concept

Product Design Baseline

Procurement &
Manufacturing

Certifications

Product concept

Product Design Baseline

Procurement &
Manufacturing

Certifications

Chapter 5. Cast study: A consumer product

142

Further analysis of the PDP also showed that 65% of the time is spent on the Product

baseline definition and 20% of the time on the development of the secondary accessories.

Figure 73. Summary of Process insights

Therefore, the following suggestions were made: 1) To defer the development of the

secondary accessories until the completion of the “first product” account for requirements

commonalities. 2) To overlap development tasks and prototyping activities to reduce lead time and

early mitigate technical risks. This combined strategy would increase the likelihood of releasing

the product within the target timeframe (Figure 74).

Figure 74. Suggested optimization

0 0,2 0,4 0,6 0,8 1

Product concept

Supply chain

Product Baseline

Main Interfaces

Main attachments

Seconday attachments

Full Product Definition

Prototyping

Procurement

Patenting

Certification

AIT

Assembly line

DEFER

ANTICIPATE

Product baseline

definition

65%

Task overlay in product
baseline definition

~0%

Secondary accessories

development

20%

5.5 Process insights

143

The process structure was amended according to the recommendations resulting from the

analysis. Then the new process was simulated. Figure 75 shows the time probability density of the

optimized process. It is immediately observable that there is a much higher likelihood to complete

the project in time in this new configuration. Furthermore, if we assume the same risk posture of

the non-optimized scenario, the time to market can be reduced by about 14% compared to the

planned target.

Figure 75. Case B – Simulation output of optimized process structure

Additional optimization can also be made at the resource-allocation level. Improving the

coordination with the development partners and temporarily doubling the personnel working on the

project for the required time frame will lower the time-to-market by 40% while having

hypothetically no impact on the project’s total cost. Increasing the full-time equivalent (FTE) for a

short period might not affect the budget much while bringing significant benefits to the schedule.

However, this scenario may affect other projects the organization is running. Not having a

comprehensive picture of the R&D portfolio and knowing all the project interdependencies, this

solution was discarded.

Target

Chapter 5. Cast study: A consumer product

144

Based on these analyses, the process implementation strategy presented in Figure 76 has

been recommended: 1) Staring the development of the product platform and primary accessories at

T0, deferring the development of secondary accessories at T5. 2) Anticipating the prototyping and

AIT activities between T1 and T3. On the one hand, this solution optimized the speed of delivery,

increasing the likelihood to release the product in time; on the other hand, it allows for earlier

mitigation of technical risks reducing the risk for reworks.

Figure 76. Recommended strategy

As we can observe in Figure 76, the complete set of secondary attachments will be ready

immediately after the product release; however, these attachments might require additional tests

before being ready for commercialization. Those tests are not included in the current Gantt chart

and might require further investigations. Deferring the development of secondary attachments also

has some implications in terms of design optimization. While the combined development of the

product platform and the full set of accessories would ensure a system entirely optimized, deferring

a subset of accessories might lead to a suboptimal solution. The system would be optimized for

Secondary
attachments deferred

Product release

Primary attachments

Platform and
interfaces

5.6 Summary and interim conclusion

145

product platform and primary set of attachments, while secondary ones are not taken into

consideration in platform design and optimization. Potential issues deriving from this situation are

mitigated by a careful interface definition and specifically by developing a standard interface

(tasks 31 and 32 in the product backlog architecture).

5.6 Summary and interim conclusion

This chapter analyzed the development process of a consumer product and specifically a house

appliance applying our framework. The analysis covered all the aspects of the system development,

including design, prototyping, manufacturing, assembling, integration, testing, packaging,

assembly line design and deployment, certification, and IP protection

After introducing the case study providing background information on both the project and

the organization executing the project, and briefly discuss the motivation for adopting Agile, we

have dived into the PDP structuring and planning analysis using CURSIVE. The analysis of the

PDP has been organized according to the three macroblocks of our framework, namely process

structuring, simulating (or simulation), and planning.

During the structuring phase, we deployed a set of methods and tools for reasoning about

the structure of the decision problem. First, we have identified ninety-four tasks spanning over the

whole development cycle. Then, those activities have been organized in a DSM, defining their

interconnections (tasks dependencies) and outlining the order in which tasks shall be addressed.

Tasks exhibited deterministic dependencies. The outcome of this exercise has been consolidated in

the product backlog architecture. The product backlog architecture has been integrated with

complementary information about the time and resources required to perform the activities.

Chapter 5. Cast study: A consumer product

146

Within the structuring phase, CURSIVE also assessed the viability of implementing Agile

for the given project. The time viability index for the entire project, 𝐴𝑉𝑝𝑟𝑗
𝑇 , is equal to 0.38. This

value implies that the project would not benefit from Agile adoption; on the contrary potential

iterations would have a huge impact on the schedule, eventually jeopardizing the project. Therefore,

it is not recommended to execute the project using Agile, even if some small iterations might be

considered for few tasks. The detailed analysis of the Agile Viability charts (Figure 66) identified

the few items for which iterations are feasible (about 14 tasks). Overall, the framework suggested

executing the project adopting a traditional Stage-gate approach, with a light Agile-hybridization

on electronics design tasks and packaging design tasks. The information resulting from the

structural reasoning exercise has been then used as input for the simulation phase.

During the simulation phase, CURSIVE has analyzed the solutions satisfying the problem

constraints and evaluates the overall process performance for different variables combinations and

values. As an outcome of the simulation, we got a time distribution representing the feasible

scenarios and the dataset, including all the process details for each considered scenario.

In the planning phase, we have explored in-depth the scenario that meets the time target

offering an actionable plan. The results of the planning activities have been summarized in a set of

charts (Figure 70, Figure 72, and Figure 73), offering a comprehensive picture, from multiple

perspectives, of the baseline execution plan.

Together with the structuring reasoning exercise, the analysis of the project execution plans

represented a fundamental activity in defining the degree of agility (intended as iterations viability)

to deploy within the development of a hardware system. The first provided the rationale for Agile

implementation. The latter provided means of coordination between activities executed adopting

different implementation strategies (iterative vs. not iterative).

5.6 Summary and interim conclusion

147

The combined outcome of the three phases of our framework provided valuable insights

on the process performance in terms of time and technical risk. Figure 72 reported the normalized

time required to perform the different activities, as well as the time of iterations. These data brought

the focus on critical activities, such as task 81 (time-critical), and highlighted that the PDP is mostly

sequential with no iterations and no tasks overlap. Further analyses also showed that 65% of the

time is spent on the Product baseline definition and 20% of the time on the development of the

secondary accessories. All this information can be used to evaluate potential strategies for process

improvements (Figure 74). First, it has been suggested to defer the development of secondary

attachments leveraging subsystems' commonalities and standard interfaces. Then, it has been

suggested to overlap design and prototyping activities to reduce lead time and early mitigate

technical risks. This combined strategy would increase the likelihood of releasing the product

within the target timeframe, as presented in Figure 75.

It has also been investigated the possibility of additional optimizations at the resource-

allocation level. Improving the coordination with the development partners and temporarily

increasing the personnel working on the project for the required time frame will lower the time-to-

market while having hypothetically no impact on the project’s total cost (increasing FTEs for a

short period might not affect the budget much while bringing significant benefits to the schedule).

However, not having a comprehensive picture of the full R&D portfolio of the company and

without knowing all projects' interdependencies, we did not recommend pursuing this solution.

As shown in the case study, CURSIVE is a versatile framework that provides project

managers and development teams with quantitative means to underpin their decision-making

process. It can be used to assess the feasibility of meeting a time target for a given process structure

as well as propose and investigate potential process improvements to either shorten the time-to-

market or increase the likelihood of meeting the scheduled release.

Chapter 5. Cast study: A consumer product

148

Based on the analysis conducted within this study, the following conclusions can be drawn.

• Team composition, location, and synchronization play a key role in the feasibility of

Agile/hybrid-Agile approach implementation. One of the factors that made Agile not viable

for this case study relates to the team theme. As presented in section 5.2, organization B

has the headquarters in Moscow, Russian Federation, but has a network of development

partners spread over nine different countries. Each partner is responsible for developing a

subset of the final product. Furthermore, the company does not have its own production

site but leverages a network of manufacturers spread over seven countries. This

organization setting with highly dispersed functional teams is not ideal for Agile adoption.

o Dispersed functional teams (instead of traditionally recommended co-located

cross-functional teams) might lack a holistic perspective on the product, requiring

a detailed set of system requirements in clear contrast with Agile theory.

o Dispersed functional teams make difficult the development of incremental MVPs

requiring additional logistic support for product shipment between the different

development sites. Only functional MVPs related to the discipline assigned to a

given development site are allowed, preventing the full exploitation of Agile

potential in retiring technical risk through fast iterations at multiple stages of

product development.

o Dispersed teams might exhibit synchronization issues related to the different

development speed different teams might have. Therefore, different product

subsets might be ready at a different moment requiring additional coordination

efforts for efficient project execution.

5.6 Summary and interim conclusion

149

o Functional teams might exhibit issues related to the development culture. A

complex project entails a large variety of disciplines involved, and each team might

not share the same approach to the development. As a result, they might prioritize

different system features at different stages of the product development leading to

suboptimal solutions.

• This case study highlighted that System modularity is not only an essential factor for the

effective implementation of Agile/hybrid-Agile, but it generally represents a crucial driver

in the process structuring. From the Agile perspective, modularity drives iterations cost and

time (high modularity allows for more and faster iterations). From the process structuring

perspective, modularity allows for different prioritization strategies of development

activities. For instance, in this case study, the system exhibited a bus modularity structure:

system modularity index (SMI), equal to 0.157 (Figure 77).

Figure 77. Degree of modularity

The SMI index is based on the exponential decay approximating the actual decay structure

of sorted singular values of the product DSM (Figure 67). For additional details on the SMI

Chapter 5. Cast study: A consumer product

150

formulation., please refer to eq. (6) in (Holtta-Otto & de Weck, 2007). The bus modularity,

combined with a careful interface definition and standardization, enabled the deferral of

secondary attachments development, increasing the likelihood to release the product

according to the time target (Figure 75 and Figure 76).

• Outsourcing the development of all the components constituting the product hampers the

possibility of developing the entire product through iterations and incremental MVPs.

Nevertheless, it opens the question of the number and the type of MVPs/prototypes to

produce. The R&D division responsible for the project coordination and product

integrations might still need a set of MVPs/prototypes alongside digital models (or a digital

twin, if any) for verification and validation purposes.

• Product certification might represent a significant impediment to iterative development. As

we can observe in Figure 70 (light-purple tasks), certification accounts for a considerable

amount of time in the project schedule. Every new iteration on the product would require

an additional set of certification activities, ultimately jeopardizing the project schedule.

151

 Conclusion

The thesis presented a decision support system for Agile development of complex hardware

systems. This research work contributes to the current debate in the field on the viability of

implementing Agile in the context of hardware systems development. The proposed framework

aims to support engineering teams and project managers in structuring and planning development

projects. This last chapter summarizes the main findings of the research. It highlights the thesis

contributions, states the limitations, and sets the basis for future research.

6.1 Thesis summary

The thesis has first identified and discussed the gaps in the current Agile theory contextualized in

the development of physical products, as well as the challenges and opportunities arising from the

implementation of Agile in hardware projects. Then it has proposed a methodology and a tool to

fill those gaps and exploit the opportunity opened by Agile adoption.

Chapter 1 introduced the problem and provided the rationale for the research opportunity.

It has been acknowledged that the need to develop products under uncertain, volatile, complex, and

ambiguous (VUCA) conditions drove and is still driving companies in all industries to focus on

“Simplicity is the ultimate

sophistication”.

(Leonardi da Vinci)

Chapter 6. Conclusion

152

streamlining the development processes and eventually looking for new development

methodologies. In this context, Agile methods have drawn considerable attention. Nevertheless,

despite the large variety of frameworks and practices available, organizations still struggle to

identify and implement a development process structure that best fits their needs, thus getting the

maximum benefit. Therefore, the need for a methodology to support the structuring of Agile or

Hybrid-Agile product development for hardware systems underpinning the decision-making

process by quantitative analyses and statistical evidence has been identified.

Chapter 2 critically reviewed the bodies of knowledge that frame the research. It has

provided the foundations of Agile theory and specifically Agile- Scrum, and it offered an overview

of the literature on product development and discussed current project management techniques.

Chapter 2 has also reported the results of the field research conducted to validate the gaps identified

in the literature and better inform the research questions.

Chapter 3 proposes the decision support system Agile development of hardware systems

(CURSIVE). It includes an analytical approach to managing development activities within a

hardware project and consists of three macroblocks, namely structuring, simulating, and planning

(Figure 19). A cross-blocks layer, the representing or viewing layer, serves as a graphical user

interface. The decision support system has been implemented in an integrated tool. Chapter 3 also

addressed CURSIVE validity, specifically the validity of the process model, the data model, the

graphical user interface, as well as the general and face validity. Given the lack in the literature of

a formal methodology for validating decision support systems (few authors addressed this concern),

this thesis also formulated a validation framework as a comprehensive synthesis of the works in

related fields. This framework has been then used to guide the validation process.

6.1 Thesis summary

153

In chapter 4 and chapter 5, the proposed framework is applied to two case studies for

verification and validation purposes.

The first case study, presented in chapter 4, entailed the development of an optical

telecommunication payload for a nanosatellite mission. The case study covered the entire

development process of the system, from the design phase to the assembling, integration, and

testing (AIT) of the flight model. The initial sections of the case study reported the organization

and the project structure, summarizing the motivation for Agile adoption and the fitting of Agile

into development processes traditionally used by the organization. Then, the framework is applied

to the project data, detailing all the implementation steps. Eventually, process insights are derived,

and the case study conclusion is drawn. In this first study, it was also possible to benchmark

CURSIVE estimates against actual development data, verifying the framework capabilities and

validating the accuracy of the forecasts.

In the second case study, presented in chapter 5, the framework is applied to the

development of a consumer product. The company aimed to release the product on the market

within a tight schedule and was willing to invest considerable resources to achieve this goal. The

challenge here was to support the management in optimizing the development to meet the time

target, defining the best strategy for developing the product platform and the product accessories.

By applying the framework to this second case study, it was possible to test its flexibility and ability

to adapt to the different project contexts.

This last chapter draws conclusions, summarizes thesis contributions, informs on the

limitation of our work, and sets the bases for future research.

Chapter 6. Conclusion

154

6.2 Thesis Contributions

The thesis contributions are unfolded starting from the answers to the research questions defined in

Section 1.4. Within the answer to the research questions, the contributions are highlighted.

RQ 1

How to understand when and how to use Agile methods within the development

process physical systems based on the specific project context and system features?

This thesis has proposed a methodology that assesses the viability of implementing the

Agile Scrum approach accounting for the project context and the systems feature. Such

methodology includes the Agile viability indexes (Section 3.1.5), two quantitative metrics that,

relying on the tasks’ decomposition and on the time and cost estimates, assess to which extent is

viable to implement Agile in a given project. Based on the current state of the practice, thresholds

in terms of cost and time have been set to recommend the use of Agile, Hybrid-Agile, or traditional

development processes. The methodology also offers high-level suggestions on the task granularity

and system modularity level, even if it does not explicitly address the two concepts, supporting the

design team in the decision-making process.

Such methodology and related metrics attempt to solve the long-standing debate in the

product development community on the effectiveness and the potential benefits of using Agile. The

community is currently split into Agile supporters and opponents. The former believe that Agile is

the solution to be adopted in every project; the latter believe that Agile should never be used. From

the case studies analysis, it can be noticed that the solution is a middle way. Some tasks, project

portions, or entire projects may benefit from Agile adoption allowing for rapid technical risk

retirement and reducing the technical dept. In some other situations, the iterative nature of Agile

6.2 Thesis Contributions

155

may jeopardize the project, and therefore traditional approaches shall be preferred. By deploying

the proposed framework, project managers and design teams can reason on the question supported

by quantitative analysis. Such an approach represents a significant shift in perspective of the current

literature, moving from the analysis of challenges and opportunities entailed by Agile development

to the analysis of contextual variables to evaluate the viability of Agile implementation.

It has also been developed a predictive model to simulate the process implementation

(Section 3.2), thus assessing the impact of a given process structure on the process performance,

namely time and cost. The simulation results provide additional insight into the feasibility of a

given implementation strategy to meet potential schedule and budget constraints. Such a model is

able to simulate complex iteration paths and independently manage the number and the position of

the iterations within the product development. It represents significant advance respect to the

literature models that can simulate only simple iterations patterns modeled by manual input.

The results of such predict model allow navigating programmatic and technical tradeoffs.

The performance benchmark of alternative project implementations offers valuable information for

planning and executing engineering projects meeting the stakeholders’ needs while accounting for

organization capabilities and resource availability.

RQ 2

How to support project managers and engineering teams in structuring and

executing Agile or Hybrid-Agile methods within product development projects?

A framework to support the project structuring (section 3.1) and planning (3.3) has been

developed. First, it has been introduced the concept of product backlog architecture. The benefit

of defining a backlog architecture over a traditional product backlog is twofold. First, project

Chapter 6. Conclusion

156

participants are not only informed on the activities to be performed (i.e., user stories) but also are

aware of their relationships. This will enable decision-makers to reshuffle or redefine the high-level

user stories to mitigate programmatic risks and meet project milestones. Second, Agile teams move

from a qualitative definition of the story points to a quantitative definition of FOMs (i.e., time and

cost), complemented by information on the uncertainty associated with their formulation. This

provides a common understanding of the effort related to the task, retiring the risk linked to the

human factor.

In the product backlog architecture, tasks covering the entire product development cycle

are included, also accounting for extern dependencies such as procurement and manufacturing. This

perspective complements the traditional Agile theory that lacking this aspect has caused several

problems in organizations implementing Agile for physical products.

Since Agile for hardware significantly differs from the software version because of the

non-homogenous development environments requiring expertise from different disciplines, the

expertise information has been included in the product backlog architecture alongside time and

cost estimates. Naturally, following the Agile principles, tasks are not pre-assigned to people, but

the disciplines related to the tasks are marked, including internal resources (i.e., development team)

and external resources (i.e., procurement and manufacturing). Those data will be used during the

project execution simulation, ensuring correct resource allocation and leveling.

The proposed model also supports engineering teams in the sprint planning activities and

Minimum Viable Product Definition. Combining simulation results with the product backlog

architecture, the framework identifies an optimal number of MVPs and suggests a Sprints planning

strategy (section 3.3) through a heuristic approach. The model then summarizes all cost, time, and

6.3 Limitations and Future Work

157

Sprint backlog information facilitating development team activities. It should be emphasized that

the model is not intended to replace team planning activities but rather aims to provide quantitative

analyses and a common starting point for classic Scrum activities.

The thesis work also proposes a multi-tier architecture to coordinate Agile with the

traditional Stage-gate process in the context of multi-party consortia (Section 3.1.4). Such

architecture ensures the mapping of the Product Backlog item to the work packages and enables

traceability of consortium requirements to the Agile organization user stories.

Lastly, a taxonomy of Minimum Viable Products (Section 3.3.2) has been developed.

MVPs are classified based on the level of fidelity, the type of artifacts, the representation mode, the

verification and validation activities enable by the MV. By mapping verification and validation

activities on the MVP artifacts, such a taxonomy allows development teams to trade off engineering

efforts required to produce the MVP versus the risk retired by the Sprint outcome. A notional map

of a tradeoff between Sprint length, V&V activities, and MVP artifacts is then also presented.

6.3 Limitations and Future Work

The work proposed here has a few limitations related to the validation. Within this thesis,

considerable efforts have been dedicated to ensuring the validity of the decision support system and

specifically to the validity of the process model, the data model, the graphical user interface, as

well as to the CURSIVE general and face validity (as presented in chapter 3, section 3.5). However,

even though the framework has also been verified on a set of case studies (chapters 4 and 5), a full

validation would require an experimental setup to compare the implementations of the same project

following the recommendations provided by our model, Stage-gate project management experts,

Chapter 6. Conclusion

158

and Agile coach or Scrum master experts, plus control groups. This effort would require a relatively

large sample size of complex engineering projects within different industrial settings to reach

statistical significance. Possible future research works may address this point.

Concerning the range of applications the framework can serve, as discussed in chapter 3,

section 3.5.4, it has been specifically designed and applied to physical and cyber-physical products.

As presented in chapters 4 and 5, the framework can cover a wide range of applications. It has been

applied to the development of a space system as well as the development of a consumer product. It

has not been tested on “pure” software systems; thus, we cannot claim the applicability to this kind

of product. Concerning the R&D composition and location, the DSS has been deployed and tested

in cases of collocated (chapter 4) and sparse/dispersed R&D teams (chapter 5), providing in both

situations valuable process insights (sections 4.5 and 5.5). Possible future research works may test

the framework capability for a larger set of applications. In particular, it would be interesting to

evaluate CURSIVE performance in the context of product-service systems.

Another direction of future work can be integrating our model with a broader data-driven

systems engineering framework, e.g., Valispace (Valispace GmbH, 2019), to improve its analytical

capabilities and increase the accuracy of estimates.

159

References

Adelman, L. (1991). Experiments, Quasi-Experiments, and Case Studies: A Review of Empirical Methods

for Evaluating Decision Support Systems. IEEE Transactions on Systems, Man and Cybernetics, 21(2),

293–301. https://doi.org/10.1109/21.87078

Age-of-Product.com. (2018). Agile Transition: Scrum Master Duties, Serving a Single Team (Survey

Results). https://age-of-product.com/scrum-master-duties/

Al-Zewairi, M., Biltawi, M., Etaiwi, W., & Shaout, A. (2017). Agile Software Development Methodologies:

Survey of Surveys. Journal of Computer and Communications, 05(05), 74–97.

https://doi.org/10.4236/jcc.2017.55007

Allman, E. (2012). Managing technical debt. Communications of the ACM, 55(5), 50–55.

https://doi.org/10.1145/2160718.2160733

Alqudah, M., & Razali, R. (2016). A Review of Scaling Agile Methods in Large Software Development.

International Journal on Advanced Science, Engineering and Information Technology, 6(6), 828–837.

https://doi.org/10.18517/IJASEIT.6.6.1374

Anderson, E., Lim, S. Y., & Joglekar, N. (2017). Are More Frequent Releases Always Better? Dynamics of

Pivoting, Scaling, and the Minimum Viable Product. Proceedings of the 50th Hawaii International

Conference on System Sciences (2017). https://doi.org/10.24251/hicss.2017.705

Archibald, R. D. (2003). Managing High-Technology Programs and Projects. 396.

Atlassian. (2021). Jira | Project Tracking Software. https://www.atlassian.com/software/jira

Atzberger, A., Gerling, C., Schrof, J., Schmidt, T. S., Weiss, S., & Paetzold, K. (2019). Evolution of the Hype

around Agile Hardware Development. Proceedings - 2019 IEEE International Conference on

Engineering, Technology and Innovation, ICE/ITMC 2019. https://doi.org/10.1109/ICE.2019.8792637

References

160

Atzberger, A., Nicklas, S., Schrof, J., Weiss, S., & Paetzold, K. (2020). Agile Entwicklung Physischer

Produkte - Eine Studie zum aktuellen Stand der industriellen Praxis. https://doi.org/10.18726/2020_5

Atzberger, A., & Paetzold, K. (2019). Current challenges of agile hardware development: What are still the

pain points nowadays? Proceedings of the International Conference on Engineering Design, ICED,

2019-Augus, 2209–2218. https://doi.org/10.1017/dsi.2019.227

Automotive Agile PEP. (2018). Automotive Agile PEP-Survey Report: Perspectives of Agile Product

Development Processes in the Automotive Ecosystem. www.agile-auto-pep.com

Balint, T. S., & Freeman, A. (2017). Designing the design at JPL’S innovation foundary.

https://doi.org/10.1016/j.actaastro.2017.04.026

Batra, D. (2018). Agile values or plan-driven aspects: Which factor contributes more toward the success of

data warehousing, business intelligence, and analytics project development? Journal of Systems and

Software, 146, 249–262. https://doi.org/10.1016/j.jss.2018.09.081

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J.,

Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S., Schwaber, K.,

Sutherland, J., & Thomas, D. (2001). Manifesto for Agile Software Development.

http://agilemanifesto.org/

Begel, A., & Nagappan, N. (2007). Usage and Perceptions of Agile Software Development in an Industrial

Context: An Exploratory Study. First International Symposium on Empirical Software Engineering

and Measurement (ESEM 2007), 255–264. https://doi.org/10.1109/ESEM.2007.12

Ben Issa, S., & Tu, Y. (2020). A survey in the resource-constrained project and multi-project scheduling

problems. Journal of Project Management, 5, 117–138. https://doi.org/10.5267/j.jpm.2019.11.001

Berget, I., Mevik, B.-H., & Naes, T. (2008). New modifications and applications of fuzzy C-means

methodology. Computational Statistics & Data Analysis, 52, 2403–2418.

https://doi.org/10.1016/j.csda.2007.10.020

 References

161

Bergweiler, G., Hansen, J. O., & Dörfer, M. (2019). Agile Development with Physical Prototypes for a Better

Project Planning. ATZ Worldwide, 121(7–8), 44–47. https://doi.org/10.1007/s38311-019-0075-6

Bianchi, M., Marzi, G., & Guerini, M. (2018). Agile, Stage-Gate and their combination: Exploring how they

relate to performance in software development. Journal of Business Research.

https://doi.org/10.1016/J.JBUSRES.2018.05.003

Blessing, L. T. M., & Chakrabarti, A. (2009). DRM, a design research methodology. In DRM, a Design

Research Methodology. https://doi.org/10.1007/978-1-84882-587-1

Boehm, B. (2004). Balancing Agility and Discipline: A Guide for the Perplexed (pp. 1–1).

https://doi.org/10.1007/978-3-540-24675-6_1

Boehm, B., & Turner, R. (2005). Management Challenges to Implementing Agile Processes in Traditional

Development Organizations. IEEE Software, 22(5), 30–39. https://doi.org/10.1109/MS.2005.129

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE Computer, 21(5),

61–72. https://doi.org/10.1109/2.59

Borenstein, D. (1998). Towards a practical method to validate decision support systems. Decision Support

Systems, 23(3), 227–239. https://doi.org/10.1016/S0167-9236(98)00046-3

Bott, M., & Mesmer, B. (2020). An Analysis of Theories Supporting Agile Scrum and the Use of Scrum in

Systems Engineering. Engineering Management Journal, 32(2), 76–85.

https://doi.org/10.1080/10429247.2019.1659701

Boukhayma, K., & Elmanouar, A. (2016). Evaluating decision support systems. International Conference on

Intelligent Systems Design and Applications, ISDA, 2016-June, 404–408.

https://doi.org/10.1109/ISDA.2015.7489263

Box, G. E. P. (1979). Robustness in the Strategy of Scientific Model Building. In Robustness in Statistics

(pp. 201–236). Elsevier. https://doi.org/10.1016/b978-0-12-438150-6.50018-2

References

162

Brhel, M., Meth, H., Maedche, A., & Werder, K. (2015). Exploring principles of user-centered agile software

development: A literature review. Information and Software Technology, 61, 163–181.

https://doi.org/10.1016/J.INFSOF.2015.01.004

Briatore, S., & Golkar, A. (2021). Estimating Task Efforts in Hardware Development Projects in a Scrum

Context. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2021.3049737

Browning, T. R., & Eppinger, S. D. (2002). Modeling impacts of process architecture on cost and schedule

risk in product development. IEEE Transactions on Engineering Management, 49(4), 428–442.

https://doi.org/10.1109/TEM.2002.806709

Buijs, J. (2003). Modelling Product Innovation Processes, from Linear Logic to Circular Chaos Early Delft

Period. In CREATIVITY AND INNOVATION MANAGEMENT (Vol. 12).

https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8691.00271

Burger, N., Demartini, M., Tonelli, F., Bodendorf, F., & Testa, C. (2017). Investigating flexibility as a

performance dimension of a Manufacturing Value Modeling Methodology (MVMM): a framework for

identifying flexibility types in manufacturing systems. Procedia CIRP, 63, 33–38.

https://doi.org/10.1016/j.procir.2017.03.343

Butta, R., Kamaraju, M., & Sumalatha, V. (2021). Heuristic methods for data clustering. In Artificial

Intelligence in Data Mining (pp. 65–86). Elsevier. https://doi.org/10.1016/b978-0-12-820601-0.00003-

3

Camps, A., Golkar, A., Gutierrez, A., Ruiz De Azua, J. A., Munoz-Martin, J. F., Fernandez, L., Diez, C.,

Aguilella, A., Briatore, S., Akhtyamov, R., & Garzaniti, N. (2018). FSSCAT, the 2017 copernicus

masters’ “ESA sentinel small satellite challenge” winner: A federated polar and soil moisture tandem

mission based on 6U Cubesats. International Geoscience and Remote Sensing Symposium (IGARSS),

2018-July, 8285–8287. https://doi.org/10.1109/IGARSS.2018.8518405

Chander, S., & Vijaya, P. (2021). Unsupervised learning methods for data clustering. Artificial Intelligence

 References

163

in Data Mining, 41–64. https://doi.org/10.1016/b978-0-12-820601-0.00002-1

Chiriac, N., Hölttä-Otto, K., Lysy, D., & Suk Suh, E. (2011). Level of Modularity and Different Levels of

System Granularity. Journal of Mechanical Design, 133(10). https://doi.org/10.1115/1.4005069

Cho, S. H., & Eppinger, S. D. (2005). A simulation-based process model for managing complex design

projects. IEEE Transactions on Engineering Management, 52(3), 316–328.

https://doi.org/10.1109/TEM.2005.850722

Chuang, S. W., Luor, T., & Lu, H. P. (2014). Assessment of institutions, scholars, and contributions on agile

software development (2001-2012). Journal of Systems and Software, 93, 84–101.

https://doi.org/10.1016/j.jss.2014.03.006

Cooper, R. G. (1990). Stage-gate systems: A new tool for managing new products. Business Horizons, 33(3),

44–54. https://doi.org/10.1016/0007-6813(90)90040-I

Cooper, R. G. (2016). Agile–Stage-Gate Hybrids. Research-Technology Management, 59(1), 21–29.

https://doi.org/10.1080/08956308.2016.1117317

Cooper, R. G., & Sommer, A. F. (2016). The Agile–Stage-Gate Hybrid Model: A Promising New Approach

and a New Research Opportunity. Journal of Product Innovation Management, 33(5), 513–526.

https://doi.org/10.1111/jpim.12314

Cooper, R. G., & Sommer, A. F. (2018). Agile–Stage-Gate for Manufacturers. Research-Technology

Management, 61(2), 17–26. https://doi.org/10.1080/08956308.2018.1421380

Costa, R., & Sobek, D. K. (2003). Iteration in engineering design: Inherent and unavoidable or product of

choices made? Proceedings of the ASME Design Engineering Technical Conference, 3, 669–674.

https://doi.org/10.1115/detc2003/dtm-48662

Darpel, S., Beckman, S., Ferlin, T., Havenhill, M., Parrot, E., & Harcula, K. (2020). Method for tracking and

communicating aggregate risk through the use of model-based systems engineering (MBSE) tools.

References

164

Journal of Space Safety Engineering, 7(1), 11–17. https://doi.org/10.1016/J.JSSE.2020.01.001

Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI-1(2), 224–227.

https://doi.org/10.1109/TPAMI.1979.4766909

De Amorim, R. C., & Hennig, C. (2015). Recovering the number of clusters in data sets with noise features

using feature rescaling factors. Information Sciences, 324, 126–145.

https://doi.org/10.1016/j.ins.2015.06.039

Deininger, M., Daly, S. R., Lee, J. C., Seifert, C. M., & Sienko, K. H. (2019). Prototyping for context:

exploring stakeholder feedback based on prototype type, stakeholder group and question type.

Research in Engineering Design, 30, 453–471. https://doi.org/10.1007/s00163-019-00317-5

Diebold, P., & Dahlem, M. (2014). Agile practices in practice - A mapping study. ACM International

Conference Proceeding Series. https://doi.org/10.1145/2601248.2601254

Digital.ai, & VersionOne Inc. (2020). 14th annual State of Agile Report. In stateofagile.com.

https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494

Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges and success factors for large-scale agile

transformations: A systematic literature review. Journal of Systems and Software, 119, 87–108.

https://doi.org/10.1016/j.jss.2016.06.013

Dorst, K., & Cross, N. (2001). Creativity in the design process: Co-evolution of problem-solution. Design

Studies, 22(5), 425–437. https://doi.org/10.1016/S0142-694X(01)00009-6

Douglass, B. P. (2016a). Agile Systems Engineering. In Agile Systems Engineering.

https://doi.org/10.1016/B978-0-12-802120-0.00008-4

Douglass, B. P. (2016b). Chapter 2 – What Are Agile Methods and Why Should I Care? In Agile Systems

Engineering (pp. 41–84). https://doi.org/10.1016/B978-0-12-802120-0.00002-3

 References

165

Dove, R. (2002). Response Ability: The Language, Structure, and Culture of the Agile Enterprise (Vol. 1).

http://books.google.com/books?id=M3wnwrol2YgC&pgis=1

Dove, R., & LaBarge, R. (2014a). 8.4.2 Fundamentals of Agile Systems Engineering - Part 2. INCOSE

International Symposium, 24(1), 876–892. https://doi.org/10.1002/J.2334-5837.2014.TB03187.X

Dove, R., & LaBarge, R. (2014b). 8.4.1 Fundamentals of Agile Systems Engineering – Part 1. INCOSE

International Symposium, 24(1), 859–875. https://doi.org/10.1002/J.2334-5837.2014.TB03186.X

Dove, R., Schindel, W., & Hartney, R. W. (2017). Case study: Agile hardware/firmware/software product

line engineering at Rockwell Collins. 11th Annual IEEE International Systems Conference, SysCon

2017 - Proceedings. https://doi.org/10.1109/SYSCON.2017.7934807

Eckert, C., Albers, A., Bursac, N., Chen, H. X., Clarkson, P. J., Gericke, K., Gladysz, B., Maier, J. F.,

Rachenkova, G., Shapiro, D., & Wynn, D. (2015). Integrated product and process models: Towards an

integrated framework and review. Proceedings of the International Conference on Engineering Design,

ICED, DS 80-02, 389–398.

ECSS. (2010). ECSS-E-HB-10-02A - Verification guidelines. https://ecss.nl/hbstms/ecss-e-10-02a-

verification-guidelines/

ECSS. (2018). ECSS-E-ST-10-02C Rev.1 – Verification. https://ecss.nl/standard/ecss-e-st-10-02c-rev-1-

verification-1-february-2018/

Edwards, T. V. (2017). Application of agile methodology to electromechanical design: A case study. 2017

International Annual Conference of the American Society for Engineering Management, ASEM 2017.

EnduroSat. (2021). X-Band Transmitter CubeSat Communication Module.

https://www.endurosat.com/cubesat-store/cubesat-communication-modules/x-band-transmitter/

Eppinger, S. D., & Browning, T. R. (2018). Process Architecture DSM Models. In Design Structure Matrix

Methods and Applications. https://doi.org/10.7551/mitpress/8896.003.0008

References

166

Estefan, J. A. (2008). Survey of model-based systems engineering (MBSE) methodologies. Incose MBSE

Focus Group, 25, 1–70. http://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf

Falcon, S. (2016). The k-Fibonacci difference sequences. Chaos, Solitons and Fractals, 87, 153–157.

https://doi.org/10.1016/j.chaos.2016.03.038

Fazzi Bortolini, R., Nogueira Cortimiglia, M., de Moura Ferreira Danilevicz, A., & Ghezzi, A. (2018).

Management Decision Lean Startup: a comprehensive historical review. Management Decision.

https://doi.org/10.1108/MD-05-2017-0477

Feldmuller, D. (2018). Usage of agile practices in Mechatronics System Design Potentials, Challenges and

Actual Surveys. Proceedings of the 2018 19th International Conference on Research and Education in

Mechatronics, REM 2018, 30–35. https://doi.org/10.1109/REM.2018.8421803

Fernandes, R., Gouveia, J. B., & Pinho, C. (2012). Product mix strategy and manufacturing flexibility.

Journal of Manufacturing Systems, 31, 301–311. https://doi.org/10.1016/j.jmsy.2012.02.001

Finlay, P. N., & Wilson, J. M. (1997). Validity of decision support systems: Towards a validation

methodology. Systems Research and Behavioral Science, 14(3), 169–182.

https://doi.org/10.1002/(SICI)1099-1743(199705/06)14:3<169::AID-SRES112>3.0.CO;2-G

Fricke, E., & Schulz, A. P. (2005). Design for Changeability (DfC): Principles To Enable Changes in Systems

Throughout Their Entire Lifecycle. Systems Engineering, 8(4). https://doi.org/10.1002/sys.20039

Garzaniti, N., Briatore, S., Fortin, C., & Golkar, A. (2019a). Effectiveness of the Scrum Methodology for

Agile Development of Space Hardware. IEEE Aerospace Conference Proceedings, 2019-March, 1–8.

https://doi.org/10.1109/AERO.2019.8741892

Garzaniti, N., Fortin, C., & Golkar, A. (2019b). Toward a Hybrid Agile Product Development Process. IFIP

Advances in Information and Communication Technology, 565 IFIP, 191–200.

https://doi.org/10.1007/978-3-030-42250-9_18

 References

167

Garzaniti, N., & Golkar, A. (2020). Performance Assessment of Agile Hardware Co-development Process.

ISSE 2020 - 6th IEEE International Symposium on Systems Engineering, Proceedings.

https://doi.org/10.1109/ISSE49799.2020.9272209

Garzaniti, N., Golkar, A., & Maggiore, P. (2020). Additive Manufacturing Evaluation Tool for Design

Studies. IEEE Systems Journal, 14(3), 4382–4393. https://doi.org/10.1109/JSYST.2019.2939906

Garzaniti, N., Tekic, Z., Kukolj, D., & Golkar, A. (2021). Review of technology trends in new space missions

using a patent analytics approach. Progress in Aerospace Sciences, 125, 100727.

https://doi.org/10.1016/j.paerosci.2021.100727

Gerwin, D., & Barrowman, N. J. (2002). An Evaluation of Research on Integrated Product Development.

Management Science, 48(7), 938–953. https://doi.org/10.1287/mnsc.48.7.938.2818

Ghezzi, A., & Cavallo, A. (2018). Agile Business Model Innovation in Digital Entrepreneurship: Lean

Startup Approaches. Journal of Business Research. https://doi.org/10.1016/j.jbusres.2018.06.013

Ghosh, S., & Seering, W. (2014). Set-Based Thinking in the Engineering Design Community and Beyond.

ASME International Design Engineering Technical Conferences, 1–13.

https://doi.org/10.1115/DETC2014-35597

Git. (2021). Git. https://git-scm.com/

Golkar, A., Briatore, S., & Garzaniti, N. (2019). Lessons learnt in the deployment of scrum in space hardware

development projects. Proceedings of the International Astronautical Congress, IAC, 2019-Octob.

https://doi.org/IAC-19_D1_5_6_x51187

Gregory, P., Barroca, L., Taylor, K., Salah, D., & Sharp, H. (2015). Agile Challenges in Practice: A Thematic

Analysis (pp. 64–80). https://doi.org/10.1007/978-3-319-18612-2_6

Habibi, F., Taghipour Birgani, O., Koppelaar, H., & Radenović, S. (2018). Using fuzzy logic to improve the

project time and cost estimation based on Project Evaluation and Review Technique (PERT). Journal

References

168

of Project Management, 3, 183–196. https://doi.org/10.5267/j.jpm.2018.4.002

Hajdu, M., & Bokor, O. (2014). The Effects of Different Activity Distributions on Project Duration in PERT

Networks. Procedia - Social and Behavioral Sciences, 119, 766–775.

https://doi.org/10.1016/j.sbspro.2014.03.086

Holtta-Otto, K., & de Weck, O. (2007). Degree of Modularity in Engineering Systems and Products with

Technical and Business Constraints. Concurrent Engineering, 15(2), 113–126.

https://doi.org/10.1177/1063293X07078931

Huang, P. M., Darrin, A. G., & Knuth, A. A. (2012). Agile hardware and software system engineering for

innovation. IEEE Aerospace Conference Proceedings. https://doi.org/10.1109/AERO.2012.6187425

Iansiti, M. (1995). Shooting the Rapids: Managing Product Development in Turbulent Environments.

California Management Review, 38(1), 37–58. https://doi.org/10.2307/41165820

INCOSE. (2015). INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes and

Activities (4th ed.). John Wiley & Sons, Inc.

Isaksson, O., Eckert, C., Panarotto, M., & Malmqvist, J. (2020). You need to focus to validate. Proceedings

of the Design Society: DESIGN Conference, 1, 31–40. https://doi.org/10.1017/DSD.2020.116

ISO/IEC JTC 1/SC 7. (2015). ISO/IEC/IEEE 15288:2015 - Systems and software engineering - System life

cycle processes. https://www.iso.org/standard/63711.html

John of Salisbury. (1159). Metalogicon, Book III, Chapter 4.

Kamal Tipu, S., & Zia, S. (2012). An Effort Estimation Model for Agile Software Development. Advances

in Computer Science and Its Applications (ACSA), 314(1), 2166–2924.

www.worldsciencepublisher.org

Karlström, D., & Runeson, P. (2005). Combining Agile methods with stage-gate project management. IEEE

Software, 22(3), 43–49. https://doi.org/10.1109/MS.2005.59

 References

169

Karlström, D., & Runeson, P. (2006). Integrating agile software development into stage-gate managed

product development. Empirical Software Engineering, 11(2), 203–225.

https://doi.org/10.1007/s10664-006-6402-8

Khaleeq uz Zaman, U., Rivette, M., Siadat, A., & Meysam Mousavi, S. (2017). Integrated product-process

design: Material and manufacturing process selection for additive manufacturing using multi-criteria

decision making. Robotics and Computer Integrated Manufacturing, 51, 169–180.

https://doi.org/10.1016/j.rcim.2017.12.005

KPMG. (2019). Agile Transformation Survey on Agility: From Agile experiments to operating model

transformation: How do you compare to others?

https://assets.kpmg/content/dam/kpmg/be/pdf/2019/11/agile-transformation.pdf

Larman, C., & Basili, V. R. (2003). Iterative and incremental development: A brief history. In Computer

(Vol. 36, Issue 6, pp. 47–56). https://doi.org/10.1109/MC.2003.1204375

Law, A. M. (2014). Simulation Modeling and Analysis (5th ed.). McGraw-Hill Education.

Lawson, M., & Karandikar, H. M. (1994). A Survey of Concurrent Engineering. Concurrent Engineering:

Research and Applications, 2(1), 1–6. https://doi.org/10.1177/1063293X9400200101

Le Dain, M. A., Blanco, E., & Summers, J. D. (2013). Assessing design research quality: Investigating

verification and validation criteria. Proceedings of the International Conference on Engineering

Design, ICED, 2 DS75-02, 183–192.

Lenarduzzi, V., & Taibi, D. (2016). MVP Explained: A Systematic Mapping Study on the Definitions of

Minimal Viable Product. Proceedings - 42nd Euromicro Conference on Software Engineering and

Advanced Applications, SEAA 2016, 112–119. https://doi.org/10.1109/SEAA.2016.56

Lincoln, Y. S., & G. Guba, E. (1958). Naturalistic Inquiry (1st ed.). SAGE Publications, Inc.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., & Brinkkemper, S. (2016). The use and effectiveness

References

170

of user stories in practice. Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 9619, 205–222.

https://doi.org/10.1007/978-3-319-30282-9_14

Ma, G., Jia, J., Zhu, T., & Jiang, S. (2019). A critical design structure method for project schedule

development under rework risks. Sustainability (Switzerland), 11(24).

https://doi.org/10.3390/SU11247229

Magdaleno, A. M., Werner, C. M. L., & Araujo, R. M. De. (2012). Reconciling software development

models: A quasi-systematic review. Journal of Systems and Software, 85(2), 351–369.

https://doi.org/10.1016/J.JSS.2011.08.028

Mahmoud-Jouini, S. Ben, Silberzahn, P., & Paris, T. (2017). Resolving the Commitment-Flexibility Dilemma

in New Technology Ventures. International Journal of Innovation Management, 21(6), 1750047.

https://doi.org/10.1142/S1363919617500475

Mahnič, V., & Hovelja, T. (2012). On using planning poker for estimating user stories. Journal of Systems

and Software, 85(9), 2086–2095. https://doi.org/10.1016/j.jss.2012.04.005

Maier, A. M., & Störrle, H. (2011). What are the characteristics of engineering design processes? ICED 11 -

18th International Conference on Engineering Design - Impacting Society Through Engineering

Design, 1, 188–198.

Maier, J. F., Eckert, C. M., & Clarkson, P. J. (2017). Model granularity in engineering design – concepts and

framework. Design Science, 3. https://doi.org/10.1017/DSJ.2016.16

Maier, J. F., Eckert, C. M., & Clarkson, P. J. (2015). Different levels of product model granularity in design

process simulation. Proceedings of the International Conference on Engineering Design, ICED, 3(DS

80-03).

McCutcheon, D. M., & Meredith, J. R. (1993). Conducting case study research in operations management.

Journal of Operations Management, 11(3), 239–256. https://doi.org/10.1016/0272-6963(93)90002-7

 References

171

McGreal, D. (2020). What is Sprint Planning? Scrum.Org. https://www.scrum.org/resources/what-is-sprint-

planning

Meißner, M., Jacobs, G., Jagla, P., & Sprehe, J. (2021). Model based systems engineering as enabler for rapid

engineering change management. Procedia CIRP, 100, 61–66.

https://doi.org/10.1016/J.PROCIR.2021.05.010

Myers, B. A. (1995). State of the Art in User Interface Software Tools. Readings in Human–Computer

Interaction, 323–343. https://doi.org/10.1016/B978-0-08-051574-8.50035-2

NASA. (2007). Systems Engineering Handbook NASA/SP-2007-6105, Revision 1.

Nowack, M., Endrikat, J., & Guenther, E. (2011). Review of Delphi-based scenario studies: Quality and

design considerations. Technological Forecasting and Social Change, 78(9), 1603–1615.

https://doi.org/10.1016/j.techfore.2011.03.006

O’Neal, C. (1993). Concurrent Engineering with Early Supplier Involvement: A CrossFunctional Challenge.

International Journal of Purchasing and Materials Management, 29(1), 2–9.

https://doi.org/10.1111/j.1745-493X.1993.tb00001.x

Ovesen, N., & Dowlen, C. (2012). The challenges of becoming agile - Experiences from new product

development in industry and design education. Proceedings of the 14th International Conference on

Engineering and Product Design Education: Design Education for Future Wellbeing, EPDE 2012, 9–

14.

Ozkan, N., Gok, M. S., & Kose, B. O. (2020). Towards a Better Understanding of Agile Mindset by Using

Principles of Agile Methods. Proceedings of the 2020 Federated Conference on Computer Science and

Information Systems, FedCSIS 2020, 721–730. https://doi.org/10.15439/2020F46

Papadakis, E., & Tsironis, L. (2018). Hybrid methods and practices associated with agile methods, method

tailoring and delivery of projects in a non-software context. Procedia Computer Science, 138, 739–

746. https://doi.org/10.1016/j.procs.2018.10.097

References

172

Pimentel, B. A., & de Carvalho, A. C. P. L. F. (2020). A Meta-learning approach for recommending the

number of clusters for clustering algorithms. Knowledge-Based Systems, 195, 105682.

https://doi.org/10.1016/j.knosys.2020.105682

Punkka, T. (2012). Agile Hardware and Co-Design. Embedded Systems Conference, 1–8.

http://www.agilemodeling.com/essays/communication.htm

Ramos, A. L., Ferreira, J. V., & Barceló, J. (2013). Lithe: An agile methodology for human-centric model-

based systems engineering. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and

Humans, 43(3), 504–521. https://doi.org/10.1109/TSMCA.2012.2207888

Rancic Moogk, D. (2012). Minimum Viable Product and the Importance of Experimentation in Technology

Startups. Technology Innovation Management Review, 2(3), 23–26.

https://doi.org/10.22215/timreview/535

Recker, J., Holten, R., Hummel, M., & Rosenkranz, C. (2017). How Agile Practices Impact Customer

Responsiveness and Development Success: A Field Study. Project Management Journal, 48(2), 99–

121. https://doi.org/10.1177/875697281704800208

Robey, D., Hellman, K., Monlouis, I., Nations, K., & Johnston, W. J. (2018). Between flexibility and

discipline in new product development: expertise as a boundary condition. Marketing Intelligence &

Planning, MIP-02-2015-0042. https://doi.org/10.1108/MIP-02-2015-0042

Rodríguez, P., Mäntylä, M., Oivo, M., Lwakatare, L. E., Seppänen, P., & Kuvaja, P. (2018). Advances in

Using Agile and Lean Processes for Software Development. Advances in Computers.

https://doi.org/10.1016/BS.ADCOM.2018.03.014

Ross, A. M., Rhodes, D. H., & Hastings, D. E. (2008). Defining changeability: Reconciling flexibility,

adaptability, scalability, modifiability, and robustness for maintaining system lifecycle value. Systems

Engineering, 11(3), 246–262. https://doi.org/10.1002/SYS.20098

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis.

 References

173

Journal of Computational and Applied Mathematics, 20(C), 53–65. https://doi.org/10.1016/0377-

0427(87)90125-7

Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: Issues and analysis. International

Journal of Forecasting, 15(4), 353–375. https://doi.org/10.1016/S0169-2070(99)00018-7

Royce, W. W. (1970). Managing the development of large software systems. Electronics, 26(August), 1–9.

https://doi.org/10.1016/0378-4754(91)90107-E

Saat Network GmbH. (2008). Quick Poll Results: Sprint Duration. https://saat-network.ch/2008/05/quick-

poll-results-sprint-duration/

Saat Network GmbH. (2011). What is the optimal Story Size? https://saat-network.ch/2011/03/what-is-the-

optimal-story-size/

Salkind, N. (2012). Encyclopedia of Research Design. Encyclopedia of Research Design.

https://doi.org/10.4135/9781412961288

Schmidt, T. S., Atzberger, A., Gerling, C., Schrof, J., Weiss, S., & Paetzold, K. (2019). Agile Development

of Physical Products - An Empirical Study about Potentials, Transition and Applicability. January, 96.

https://athene-forschung.unibw.de/doc/128068/128068.pdf

Schmidt, T. S., Chahin, A., Kößler, J., & Paetzold, K. (2017). Agile Development and the Constraints of

Physicality: A Network Theory-based Cause-and-Effect Analysis. 21st International Conference on

Engineering Design, 199–208.

Schmidt, T. S., Wallisch, A., Böhmer, A. I., Paetzold, K., & Lindemann, U. (2018a). Media richness theory

in agile development choosing appropriate kinds of prototypes to obtain reliable feedback. 2017

International Conference on Engineering, Technology and Innovation: Engineering, Technology and

Innovation Management Beyond 2020: New Challenges, New Approaches, ICE/ITMC 2017 -

Proceedings, 2018-Janua, 521–530. https://doi.org/10.1109/ICE.2017.8279930

References

174

Schmidt, T. S., Weiss, S., & Paetzold, K. (2018b). Agile Development of Physical Products: An Empirical

Study about Motivations, Potentials and Applicability.

Schmidt, T. S., Weiss, S., & Paetzold, K. (2018c). Expected vs. Real effects of agile development of physical

products: Apportioning the hype. Proceedings of International Design Conference, DESIGN, 5, 2121–

2132. https://doi.org/10.21278/idc.2018.0198

Schön, E.-M., Thomaschewski, J., & Escalona, M. J. (2017). Agile Requirements Engineering: A systematic

literature review. Computer Standards & Interfaces, 49, 79–91.

https://doi.org/10.1016/j.csi.2016.08.011

Schuh, G., Dölle, C., Kantelberg, J., & Menges, A. (2018a). Identification of Agile Mechanisms of Action

As Basis for Agile Product Development. Procedia CIRP, 70, 19–24.

https://doi.org/10.1016/j.procir.2018.02.007

Schuh, G., Dölle, C., & Schloesser, S. (2018b). Agile Prototyping for technical systems Towards an adaption

of the Minimum Viable Product principle. Proceedings of NordDesign: Design in the Era of

Digitalization, NordDesign 2018.

Schuh, G., Riesener, M., & Breunig, S. (2017). Design for Changeability: Incorporating Change Propagation

Analysis in Modular Product Platform Design. Procedia CIRP, 61, 63–68.

https://doi.org/10.1016/J.PROCIR.2016.11.238

Schwaber, K., & Beedle, M. (2001). Agile Software Development with Scrum. In Cdswebcernch (Vol. 18).

https://doi.org/10.1109/2.947100

Schwaber, K., & Sutherland, J. (2020). The Scrum Guide The Definitive Guide to Scrum: The Rules of the

Game.

Scrum.org. (2019). What is a Sprint Backlog? Scrum Org. https://www.scrum.org/resources/what-is-a-sprint-

backlog

 References

175

Sedano, T., Ralph, P., & Peraire, C. (2019). The Product Backlog. Proceedings - International Conference

on Software Engineering, 2019-May, 200–211. https://doi.org/10.1109/ICSE.2019.00036

Seebacher, G., & Winkler, H. (2014). Evaluating flexibility in discrete manufacturing based on performance

and efficiency. International Journal of Production Economics, 153, 340–351.

https://doi.org/10.1016/J.IJPE.2014.03.018

Seepersad, C. C., Pedersen, K., Emblemsvåg, J., Bailey, R., Allen, J. K., & Mistree, F. (2006). The Validation

Square: How Does One Verify and Validate a Design Method? Decision Making in Engineering

Design, 303–313. https://doi.org/10.1115/1.802469.CH25

Serrador, P., & Pinto, J. K. (2015). Does Agile work? — A quantitative analysis of agile project success.

International Journal of Project Management, 33(5), 1040–1051.

https://doi.org/10.1016/J.IJPROMAN.2015.01.006

Sethi, R., & Iqbal, Z. (2008). Stage-Gate Controls, Learning Failure, and Adverse Effect on Novel New

Products. Journal of Marketing, 72(1), 118–134. https://doi.org/10.1509/jmkg.72.1.118

Shannon, W. D. (2007). 11 Cluster Analysis. In Handbook of Statistics (Vol. 27, pp. 342–366). Elsevier.

https://doi.org/10.1016/S0169-7161(07)27011-7

Smith, R. P., & Eppinger, S. D. (1997a). Identifying Controlling Features of Engineering Design Iteration.

Management Science, 43(3), 276–293. https://doi.org/10.1287/mnsc.43.3.276

Smith, R. P., & Eppinger, S. D. (1997b). A predictive model of sequential iteration in engineering design.

Management Science, 43(8), 1104–1120. https://doi.org/10.1287/mnsc.43.8.1104

Smith, R. P., & Morrow, J. A. (1999). Product development process modeling. Design Studies, 20(3), 237–

261. https://doi.org/10.1016/s0142-694x(98)00018-0

Sommer, A. F., Dukovska-Popovska, I., & Steger-Jensen, K. (2014). Barriers towards integrated product

development - Challenges from a holistic project management perspective. International Journal of

References

176

Project Management, 32(6), 970–982. https://doi.org/10.1016/j.ijproman.2013.10.013

Sommer, A. F., Hedegaard, C., Dukovska-Popovska, I., & Steger-Jensen, K. (2015). Improved Product

Development Performance through Agile/Stage-Gate Hybrids: The Next-Generation Stage-Gate

Process? Research-Technology Management, 58(1), 34–45.

https://doi.org/10.5437/08956308X5801236

Sosa, M. E., Eppinger, S. D., & Rowles, C. M. (2003). Identifying Modular and Integrative Systems and

Their Impact on Design Team Interactions. Journal of Mechanical Design, 125(2), 240–252.

https://doi.org/10.1115/1.1564074

Statista. (2021). Office productivity software global market share 2021.

https://www.statista.com/statistics/983299/worldwide-market-share-of-office-productivity-software/

Stevens, R. (2015). Concurrent engineering methods and models for satellite concept design. 2015 IEEE

Aerospace Conference, 1–15. https://doi.org/10.1109/AERO.2015.7119270

Sugar, C. A., Gareth, &, James, M., & James, G. M. (2003). Finding the Number of Clusters in a Dataset.

Journal of the American Statistical Association, 98, 750–763.

https://doi.org/10.1198/016214503000000666

Sutherland, J. (2014). Scrum: The Art of Doing Twice the Work in Half the Time. Crown Business.

Takeuchi, H., & Nonaka, I. (1986). The New New Product Development Game. Harvard Business Review,

64(1), 285–305. https://hbr.org/1986/01/the-new-new-product-development-game

Tang, B. (1993). Orthogonal array-based latin hypercubes. Journal of the American Statistical Association,

88(424), 1392–1397. https://doi.org/10.1080/01621459.1993.10476423

Theodoridis, S. (2020). Monte Carlo Methods. In Machine Learning (pp. 731–769). Elsevier.

https://doi.org/10.1016/b978-0-12-818803-3.00026-x

Thomke, S. H. (1997). The role of flexibility in the development of new products: An empirical study.

 References

177

Research Policy, 26(1), 105–119. https://doi.org/10.1016/S0048-7333(96)00918-3

Toggl. (2021). Free Time Tracking Software. https://toggl.com/

Ullah, K., NiaziMahmood, & AhmadRashid. (2011). Barriers in the selection of offshore software

development outsourcing vendors: An exploratory study using a systematic literature review.

Information and Software Technology, 53(7), 693–706. https://doi.org/10.1016/J.INFSOF.2010.08.003

Unger, D. W., & Eppinger, S. D. (2009). Comparing product development processes and managing risk.

International Journal of Product Development, 8(4), 382–402.

https://doi.org/10.1504/IJPD.2009.025253

Ünlü, R., & Xanthopoulos, P. (2019). Estimating the number of clusters in a dataset via consensus clustering.

Expert Systems with Applications, 125, 33–39. https://doi.org/10.1016/j.eswa.2019.01.074

Upton, D. M. (1995). Flexibility as process mobility: The management of plant capabilities for quick response

manufacturing. In Journal of Operations Management (Vol. 12).

Valispace GmbH. (2019). Valispace. https://www.valispace.com/

Valle, S., & Vazquez-Bustelo, D. (2009). Concurrent engineering performance: Incremental versus radical

innovation. International Journal of Production Economics, 119(1), 136–148.

https://doi.org/10.1016/j.ijpe.2009.02.002

Wei, X., Prybutok, V., & Sauser, B. (2021). Review of supply chain management within project management.

Project Leadership and Society, 2, 100013. https://doi.org/10.1016/J.PLAS.2021.100013

Wiest, J. D., & Levy, F. K. (1977). A management guide to PERT/CPM : with GERT/PDM/DCPM and other

networks. https://books.google.pt/books?id=GAFUAAAAMAAJ&pgis=1&redir_esc=y

Wynn, D. C., & Clarkson, P. J. (2018). Process models in design and development. Research in Engineering

Design, 29(2), 161–202. https://doi.org/10.1007/s00163-017-0262-7

Wynn, D. C., & Eckert, C. M. (2017). Perspectives on iteration in design and development. Research in

References

178

Engineering Design, 28(2), 153–184. https://doi.org/10.1007/s00163-016-0226-3

Wynn, D. C., Eckert, C. M., & Clarkson, P. J. (2007). Modelling Iteration in Engineering Design. DS 42:

Proceedings of ICED 2007, the 16th International Conference on Engineering Design, Paris, France,

28.-31.07.2007, 693-694 (exec. Summ.), full paper no. DS42_P_561.

Yassine, A., Braha, D., & Engineering, C. C. (2003). Complex Concurrent Engineering and the Design

Structure Matrix Method. Concurrent Engineering, 11(3), 165–176.

https://doi.org/10.1177/106329303034503

Yin, R. K. (2013). Case Study Research: Design and Methods (5th ed.). SAGE Publications Inc.

Yingkui Gu, Juanjuan Liu, & Weidong Wu. (2006). Integrated Product and Process Development Mode

Based on Models Coupling. 2006 6th World Congress on Intelligent Control and Automation, 6744–

6747. https://doi.org/10.1109/WCICA.2006.1714389

Zhang, H. C., & Daguang Zhang. (1995). Concurrent Engineering: An Overview from Manufacturing

Engineering Perspectives. Concurrent Engineering, 3(September 1995), 221–236.

https://doi.org/10.1177/1063293X9500300308

Zhang, X., Nojima, Y., Ishibuchi, H., Hu, W., & Wang, S. (2020). Prediction by Fuzzy Clustering and KNN

on Validation Data With Parallel Ensemble of Interpretable TSK Fuzzy Classifiers. IEEE Transactions

on Systems, Man, and Cybernetics: Systems, 1–15. https://doi.org/10.1109/TSMC.2020.2999813

Zink, L., Hostetter, R., Bohmer, A. I., Lindemann, U., & Knoll, A. (2017). The use of prototypes within agile

product development explorative case study of a Makeathon. 2017 International Conference on

Engineering, Technology and Innovation (ICE/ITMC), 68–77.

https://doi.org/10.1109/ICE.2017.8279871

	1 Introduction
	1.1 Motivation
	1.2 Scope of the research
	1.3 Thesis objectives
	1.4 Research Questions and Hypothesis
	1.5 Thesis Structure
	1.6 Research methodology

	2 Background
	2.1 Agile methodology and operational frameworks
	2.2 Scrum: an overview
	2.2.1 Roles artifacts and events
	Roles: Product Owner
	Roles: Development team
	Roles: Scrum master
	Events: Sprint Planning meeting
	Events: Daily Scrum
	Events: Sprint Review
	Events: Sprint Retrospective
	The Sprint
	Artifact: Product Backlog
	Artifact: Sprint Backlog
	Artifact: Product increment

	2.2.2 Iterations
	2.2.3 Minimum Viable Product definition
	2.2.4 Sprint planning

	2.3 Product development processes in the literature
	2.3.1 The State-Gate process
	2.3.2 Agile for hardware
	2.3.3 Hybrid-Agile approaches

	2.4 Catalog of gaps in the literature
	2.5 An industry perspective
	2.5.1 New Space and the question of the product development
	2.5.2 Mission overview
	2.5.3 Using “traditional” Scrum
	2.5.4 Support tools
	Task organizer
	Time tracker
	Repository monitoring

	2.5.5 Scrum implementation
	2.5.6 MVP: Customer feedback and technology de-risking
	2.5.7 Hardware vs. Software: the question of the procurement
	2.5.8 Testing and the question of quality assurance
	2.5.9 Reactivity to unforeseen design changes
	2.5.10 The human factor
	Task completion honesty
	Sprint duration and task spreading
	Time-based scoring

	2.5.11 Agile manifesto vs. complex hardware systems
	2.5.12 Catalog of gaps, challenges

	2.6 Summary of literature review and industry evaluation

	3 A decision support system
	3.1 Structuring
	3.1.1 Product backlog architecture
	3.1.2 Scoring system: time and cost estimates
	3.1.3 Resource availability and disciplines involved
	3.1.4 Hybrid-Agile in multiparty consortia
	3.1.5 Agile implementation viability

	3.2 Simulation
	3.3 Planning
	3.3.1 Continuous process tracking and improvement
	3.3.2 MVP

	3.4 Illustrative case
	3.4.1 Process Structuring
	3.4.2 Simulation
	3.4.3 Planning
	3.4.4 Comparison with traditional project management approaches

	3.5 Validity of the decision support system
	3.5.1 Process model validity
	3.5.2 Data model validity
	3.5.3 Graphical User Interface validity
	3.5.4 DSS general validity
	3.5.5 Face validity

	3.6 Deployment in development projects

	4 Cast study: New Space mission payload
	4.1 General case study data
	4.2 Organizational structure
	4.3 Agile in the development process, motivation for Agile adoption
	4.4 CURSIVE deployment
	4.4.1 Process Structuring
	4.4.2 Simulation
	4.4.3 Planning

	4.5 Process Insights
	4.6 Summary and interim conclusion

	5 Cast study: A consumer product
	5.1 General case study data
	5.2 Organizational structure
	5.3 Agile in the development process, motivation for Agile adoption
	5.4 CURSIVE deployment
	5.4.1 Process Structuring
	5.4.2 Simulation
	5.4.3 Planning

	5.5 Process insights
	5.6 Summary and interim conclusion

	6 Conclusion
	6.1 Thesis summary
	6.2 Thesis Contributions
	6.3 Limitations and Future Work

	References

