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I 

 

Abstract 

This thesis presents a decision support system for Agile development of complex hardware systems. 

Agile is a general term covering different yet somehow similar methods that have evolved within 

the software community and find their foundations in the Manifesto for Agile Software 

Development. Over the last two decades, Agile approaches have gradually spread from the software 

domain to the development of physical products. With this spread over different engineering 

domains, the product development community started discussing the actual viability of 

implementing Agile in the context of hardware systems development. 

This work aims to contribute to the current debate on the topic by developing a framework 

to the viability of implementing Agile vs. Traditional or Hybrid product development process. 

Thus, provide structuring and planning of the resulting development process. It includes an 

analytical approach to managing development activities and consists of three macroblocks: 

structuring, simulating, and planning. The framework is implemented in an integrated tool. 

Within the framework development, several challenges entailed by engineering teams 

adopting Agile have been addressed, such as the Sprint planning, the Minimum Viable Product in 

the context of hardware systems, the question of the procurement and manufacturing, and the 

coordination aspect with potential development partners not implementing agile. 

Then the framework has been applied to a set of case studies to verify its capabilities in 

different industry contexts. In the case studies, it has been considered the development of a space 

system as well as the development of a consumer product. The analysis conducted within the case 

studies also provided valuable insights on the contextual factors enabling Agile implementation. 



II 

 

System modularity, supplier selection, team composition, location, and synchronization 

play a key role in the feasibility of Agile/Hybrid-Agile approach implementation. Modularity is 

crucial for the effective implementation of Agile because it drives both the cost and time of 

iterations. Typically, high modularity allows for more and faster iterations. Team composition, 

location, and synchronization may enable or hamper the possibility of iterative, incremental 

development. As demonstrated in the first case study, co-located cross-functional teams represent 

an effective setting for implementing Agile. While, as discussed in the second case study, highly 

dispersed functional teams are not ideal for Agile adoption. Supplier selection and supply chain 

management, in general, driving the time and the cost of procuring/manufacturing physical 

components, affect the feasibility of iterative, incremental development. Long lead-time items or 

expensive custom components hinder effective Agile implementation. A misguided combination 

of all those factors may completely overturn potential advantages in cost or schedule brought by 

Agile. 
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 Introduction 

High quality, low cost, and unique selling propositions are not enough to excel in today’s 

competitive market. Also speed and flexibility are essential in the development of new products 

(Takeuchi & Nonaka, 1986). 

In a 1986 edition of Harvard Business Review, Takeuchi and Nonaka published a seminal 

research work stating that the rules of the game in new product development were changing, 

highlighting the need for increased speed and flexibility. After thirty-five years from that 

publication, the statement seems more relevant than ever. 

Organizations are under constant pressure to create and sustain their competitive 

advantage. Since commercial markets are moving faster and faster and product life cycles are 

getting shorter, time is becoming a strategic source of competitive advantage. Furthermore, the 

product development process is continuously bullied by customer behavior changes, technological 

breakthroughs, competitors’ initiatives, disruptions in the supply chain, and internal organizational 

contingencies. 

These are the conditions project managers and development teams currently face at the 

beginning of a new project and are the starting point of this research work. 

“In today’s fast-paced, fiercely competitive 

world of commercial new product development, 

speed and flexibility are essential. […] This 

new emphasis on speed and flexibility calls for 

a different approach for managing new product 

development”. 

(Takeuchi & Nonaka, 1986) 
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1.1 Motivation 

Companies in all industries are increasingly facing the challenge of implementing development 

projects under uncertain, volatile, complex, and ambiguous (VUCA) conditions. A need for new 

development methodologies to deal with such circumstances is generally acknowledged. 

This need is driving companies to focus on streamlining the product development 

processes. In particular, there is a growing interest in Agile methodologies. Agile is a general term 

covering diverse yet somehow similar methods that have evolved within the software community 

and find their foundations in the Manifesto for Agile Software Development (Beck et al., 2001). 

This year, the Agile Manifesto is celebrating its twentieth anniversary, and over the last 

two decades, Agile approaches have gradually spread from the software domain to the development 

of physical products. The increasing interest toward Agile has been fired by the growing number 

of published success stories, which typically report that Agile has shortened the time-to-market, 

improved the development process efficiency, and enhanced the product fit to the customer needs 

(Recker et al., 2017). 

Although some skepticism exists whether agility can actually realize its potential in the 

domain of physical product, naturally characterized by different constraints and contractions 

compared to software, the euphoria seems to outstrip the skepticism in many companies. Scientific 

literature, as well as industry reports and surveys, provide hints that a considerable number of 

organizations have started adopting Agile methods for physical product development in real 

industrial settings (Digital.ai & VersionOne Inc., 2020; KPMG, 2019). 

However, while organizations started the Agile transition, there is still little evidence of 

consistent delivery of the purported benefits across different engineering projects. To date, there is 
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much anecdotal evidence on the improvements Agile provides to development process 

performance, but empirical proofs are mixed and hard to find (Serrador & Pinto, 2015). The 

question of whether Agile can truly fulfill its promise in complex hardware developments has not 

yet found a conclusive answer. 

The lack of quantitative analyses and empirical evidence comes together with a different 

understanding of Agile development between academia and industry. On the one hand, academia 

has focused on the teams’ dynamics and the social aspects of the development process (Chuang et 

al., 2014), which we will call soft aspects. On the other hand, industry interest relates to reducing 

development time and cost (which we will call hard aspects). According to a sector study on the 

Agile Development of Physical Products (Schmidt et al., 2018b), 73% of the interviewees expect 

Agile development to reduce the time-to-market, 76% expect to increase project effectiveness 

(Figure 1). Of course, the book title “Scrum: The art of doing twice the work in half the time” 

(Sutherland, 2014), one of the most famous references among corporate-level managers and 

consultants, certainly does not help mitigate the hype and overcome the misinterpretation. 

 

Figure 1. Expected value of Agile hardware development, data source (Schmidt et al., 2018b) 

0%

25%

50%

75%

100%
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The unclear effect of Agile on project performance, combined with the need for new 

methods to develop projects under VUCA conditions, has led to a proliferation of Agile frameworks 

and practices. At the time of writing this thesis, we have identified forty-five different operational 

frameworks and practices (Figure 2). Each of them addresses and tries to solve specific issues 

pertaining to the development process (e.g., issue: continuous process improvement and 

incorporation of lessons learned within the ongoing project; Practice: Sprint retrospective; 

Framework: Scrum), and each of them can serve well some situation while may not suit some 

others. 

 

Figure 2. Currently available Agile frameworks and practices 

Despite the wide selection of frameworks and practices, organizations still struggle to 

identify a development process structure that best fits their needs. Some organizations, enticed by 

the success stories hype, try to seamlessly implement Agile methods in their development process 

without accounting for both organizational and product boundary conditions. However, high 

expectations can lead to over-ambitious goal setting, and together with success stories, often comes 

an equal (if not greater) number of failures (Atzberger et al., 2019). 

45 AGILE

METHODS
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Some other companies, relying on their cultural legacy, fall back on classic plan-driven 

approaches such as the Stage-Gate (Cooper, 1990) approach or the V-Model (INCOSE, 2015), 

which often reveal to be too cumbersome and inflexible in dealing with fast-paced and ever-

changing market conditions. 

Both situations lead to frustration, schedule and cost overrun, waste of resources, and 

sometimes project failure. Empirical evidence (Garzaniti et al., 2019a; Golkar et al., 2019) suggests 

that the root of such troubles is not the lack of systematic methods to develop products but rather 

the inability to exploit available approaches tailoring the process to the specific project context and 

system features. Every development project is different, has its own peculiarities (i.e., product and 

process boundary conditions), and presents different challenges. 

Therefore, it has been identified the need for a methodology to support the structuring of 

Agile or Hybrid-Agile product development for hardware systems (Garzaniti et al., 2019b), 

underpinning the decision-making process by quantitative analyses and statistical evidence. Such a 

decision support system shall benchmark different development process structures. It shall evaluate 

cost, schedule, and quality for each PDP structure and eventually offer suggestions to tailor the 

process to the specific project context and system features. 

1.2 Scope of the research 

This research is related to four fields of knowledge (Figure 3). The focus lies on the 

intersection of New Product Development, Project Management, Systems engineering, and design 

research disciplines. 

Systems engineering is an “interdisciplinary approach and means to enable the realization 

of successful systems” (INCOSE, 2015). As a discipline, it offers valuable aids in managing 
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complexity in both technical and organizational processes. This work exploits the benefits of such 

approaches while facing the challenges of managing the lifecycle of products. 

 

Figure 3. Relation to fields of knowledge 

The second pillar of our research is the field of New Product Development (NPD). 

Generally speaking, NPD covers the entire process of bringing a new product to market or renewing 

an existing product. According to the ISO/IEC 15288, the product development stage includes all 

the activities required to move a product from the concept stage to the ramp-up or full-scale 

production stage (ISO/IEC JTC 1/SC 7, 2015). Figure 4 shows the positioning of this research 

within the overall product lifecycle stages. This work investigates the possibility of effectively 

implementing Agile development for complex hardware systems. It assesses the performance of 

Agile for hardware and explores the possibility of its integration with traditional development 

processes such as the Stage-Gate or the V-model. 

The third pillar is the project management discipline. A complex development project 

typically involves hundreds of tasks executed by a network of professionals from various 

New Product 
Development 

Systems 
Engineering 

Design 
research 

Project 
Management 

Scope 



1.3 Thesis objectives 

7 

 

disciplines and probably from multiple organizations. As project complexity increases, it becomes 

more challenging to manage the interactions among tasks, people, and all involved parties. It may 

be almost impossible to predict the impact of a single design decision over the whole development 

process. For this reason, project management techniques have traditionally played a key role in the 

successful execution of complex projects. 

 

Figure 4. Life cycle stages from ISO/IEC 15288 (ISO/IEC JTC 1/SC 7, 2015). In green the stage covered by our work. 

Finally, the thesis engages in design research and adopts the Design Research Methodology 

(Blessing & Chakrabarti, 2009) to formulate, develop and validate our methodology and related 

tools. 

1.3 Thesis objectives 

The motivation section acknowledged the need for new development methodologies to deal with 

VUCA conditions. According to the current debate within the product development community, 
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CONCEPT

Identify stakeholders’ needs

Explore concepts
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DEVELOPMENT

Refine system requirements
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PRODUCTION
Produce systems

Inspect and test [verify]

UTILIZATION Operate system to satisfy users’ needs

SUPPORT Provide sustained system capability

RETIREMENT Store, archive, or dispose of the system

Concept stage Development stage
Production 

stage

Utilization stage

Support stage

Retirement 
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Agile might represent a solution to such a concern. For this reason, several organizations have 

started adopting Agile methods in the development of physical products (Digital.ai & VersionOne 

Inc., 2020; KPMG, 2019). Nevertheless, despite the proliferation of Agile frameworks and 

practices, there is still little evidence of consistent delivery of the purported benefits (Schmidt et 

al., 2018b, 2019). Other companies, led by the skepticism toward Agile, fall back on traditional 

plan-driven approaches, which revealed to be unsuitable in dealing with fast-paced development 

conditions. 

In light of the two outlined perspectives, the research has two specific objectives. 

Goal 1 

To support project managers and engineering teams in understanding when and 

how to use Agile within the development process of a complex hardware system. 

Goal 2 

To support project managers and engineering teams in structuring and executing 

Agile or Hybrid-Agile methods within product development projects. 

This first goal is of conceptual nature and tries to address the rationale for implementing 

different degrees of agility within a given development process. The second goal tries to answer a 

clear industry need. The industry is seeking an integrated methodology, adopting transparent 

criteria, implemented in an easy-to-use tool. 
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1.4 Research Questions and Hypothesis 

According to the objectives set out, this research aims to answer the following research questions. 

RQ 1 

How to understand when and how to use Agile methods within the development 

process physical systems based on the specific project context and system features? 

The concept of understanding relates to the formulation of metrics and tools that, based on 

available project and system data, are able to provide an indication of the most suitable development 

process. Specifically, it is required to define metrics and related thresholds in terms of cost and time 

to recommend the use of Agile, Hybrid-Agile or traditional development processes. Then use this 

information to reason on the optimal level of tasks granularity to enable the implementation of 

Agile and the level of system modularity that best fit the Agile PDP. 

RQ 2 

How to support project managers and engineering teams in structuring and 

executing Agile or Hybrid-Agile methods within product development projects? 

The concept of support relates to the infrastructure (methods and tools) required to enhance 

the effectiveness of Agile methods for physical systems development. To answer this question, we 

need to address the problem of minimum viable products (MVP) definition, the procurement and 

manufacturing management in the Agile context, the resource allocation and leveling, and the 

coordination aspects with consortium participants for hybrid Agile product development. 
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The research relies on the hypothesis that: as systems can have several architectures, and, 

among those, one will best fit customer needs, so product development processes can have different 

structures and, among those, one might best fit project targets and constraints. 

1.5 Thesis Structure 

The thesis is organized as follows. 

Chapter 1 provides an introduction to the thesis, introduces the problem, and explains the 

motivation for the research work. Chapter 1 also explains the research objectives and presents the 

research questions. 

Chapter 2 reviews the state of the art of the bodies of knowledge framing the research 

work. It provides the theoretical foundation of Agile theory, and particularly of Agile Scrum. It 

offers an overview of the product development literature, emphasizing the traditional stage-gate 

approach, and discusses currently available project management techniques. In Chapter 2, the 

literature survey is also complemented with a field research study to validate the gaps identified in 

the literature, thus better informing the research questions. 

Chapter 3 presents the approach. It discusses the formulation of the decision support 

system in detail, mapping the approach steps to the gaps identified in the literature. Then, the 

framework is applied to an illustrative case. The objective is to demonstrate the use of such a system 

step by step. As an example case, a relatively simple product, like a software-defined X-Band 

transmitter for CubeSat, has been chosen. The example is also used to compare the proposed 

framework with traditional project management methods and tools. Following the illustrative case, 

the decision support system validity is addressed. The different validity aspects are discussed, 
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including the validity of the process model, the data model, the graphical user interface, as well as 

the general and face validity. 

Chapter 4 presents the framework applied to the first case study. The objective is to verify 

the capability of the system. The chapter describes all the steps of the framework deployment over 

the project and evaluates how the system supports engineering teams, thus meets research goals 

and research questions. This first case study also has the objective to validate the methodology to 

some extent. 

Chapter 5 presents the framework applied to the second case study. The objective is to 

verify the capability of our system in a different industry context as well as a different 

organizational structure. The chapter goes through the framework deployment steps over the project 

and presents how the system supports engineering teams, thus meets research goals and research 

questions. 

Chapter 6 draws the conclusion. It summarizes the main outcomes of the research work, 

highlighting the contribution to the knowledge and the contribution to the practice. Lastly, it states 

the limitation of this work and sets the basis for future work. 

1.6 Research methodology  

The research approach adopted relies on the Design Research Methodology (DRM) (Blessing & 

Chakrabarti, 2009), as presented in Figure 5. 
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Figure 5. DRM framework adapted from (Blessing & Chakrabarti, 2009) 

The chapters are mapped to the DRM methodology as follows. 

1. Chapter 1 and Chapter 2 refer to the Research Clarification stage.  

2. Section 2.5 discusses the field research and relates to the Descriptive study I. 

3. Chapter 3 presents the approach and relates to the Prescriptive Study I  

4. Chapter 4 and Chapter 5 present the case studies. These chapters evaluate the 

performance of our system and verify its capabilities. Finally, chapter 6 draws the 

conclusion. All these chapters relate to the Descriptive study II. 
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Investigation Method: literature review

Goal: to review the state of the art and identify the gap in the current literature

Descriptive study I
Investigation Method: experimental data analysis
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 Background 

This chapter reviews the state of the art of the bodies of knowledge framing our research work. It 

provides the theoretical and practical foundation of Agile theory, with a particular emphasis on 

Agile Scrum. The following sections review traditional product development approaches with a 

particular focus on the stage-gate model and discuss currently available project management 

techniques, contextualizing them in the problem of interest. This chapter also reports the field 

research study conducted to get additional insights into current challenges in implementing Agile 

for hardware, thus better inform the review. Following the literature review, the gap in the state-of-

the-art is identified, and the scientific contribution of this work is defined. 

2.1 Agile methodology and operational frameworks 

Agile methodologies are based on the concept of “iterative enhancement” (Larman & Basili, 2003). 

Unlike the Spiral model (Boehm, 1988), Agile attempts to simplify the development practices, 

bringing flexibility at all levels of the lifecycle (Bott & Mesmer, 2020). 

In essence, Agile is a very granular way to organize the work. It leverages short iterations 

and self-organized cross-functional teams. Iterations are typically self-contained mini-projects with 

“Dicebat Bernardus Carnotensis nos esse quasi 

nanos gigantium humeris insidentes, ut possimus 

plura eis et remotiora videre, non utique proprii 

visus acumine, aut eminentia corporis, sed quia 

in altum subvehimur et extollimur magnitudine 

gigantea”. 

(John of Salisbury, 1159) 
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activities spanning from system design to manufacturing, assembling, and testing. Each iteration 

leads to a product release as a growing and an evolving subset of the final system. Short iterations 

are the key to getting early feedback from customers, discovering defects at all levels of 

development, and getting new knowledge for product refinement and requirements adaptation. 

Agile finds its foundations in the Manifesto for Agile Software Development (Beck et al., 

2001) and encompasses several operational frameworks (Al-Zewairi et al., 2017; Ozkan et al., 

2020), including Adaptive Software Development (ASD), Agile Unified Process (AUP), Crystal 

Methods, Dynamic Systems Development Methodology (DSDM), Extreme Programming (XP), 

Feature Driven Development (FDD), Kanban, Scrum. This research considers the use of Scrum. 

2.2 Scrum: an overview 

Scrum (Schwaber & Beedle, 2001) is one of the most popular operational frameworks. The 

framework is constantly evolving; therefore, the two founding authors regularly publish an updated 

edition of their Scrum guide. The overview we provide in this section mostly relies on the latest 

Scrum guide published in 2020 (Schwaber & Sutherland, 2020). 

Before going into details, however, we need some clarification on the nomenclature. The 

literature may use the word “Scrum,” referring to a method, a process, a methodology, a concept, 

a set of rules, and even a mindset. This fragmentation of the nomenclature generally causes some 

confusion. 

Scrum is not a method. INCOSE defined method as a set of “techniques for performing a 

task; in other words, it defines the “how” of each task” (Estefan, 2008). Scrum does not offer much 

guidance in how to perform the actual development activities. 
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Scrum is not a process in a technical sense of the word. A process is typically based on 

series of actions or repetition of steps taken to achieve a particular and repeatable outcome. Since 

Scrum has some adapting capabilities to the project context, the term process might not be the most 

appropriate one. 

Someone might refer to Scrum as a methodology. However, a methodology is essentially 

a collection of related processes, methods, and tools (Estefan, 2008), and since Scrum lacks process 

and methods, it is not a methodology. Scrum is not a concept but rather a practice. Scrum is a 

framework because it merely frames a set of principles, activities, and tools. 

Scrum includes a set of micro-planning tools and strategies aimed at getting a working end-

product quickly. The rhythm of the development is marked by short, iterative, incremental Sprints 

(i.e., a given development time range) with the objective to deliver a Minimum Viable Product 

(MVP) at the end of each Sprint (Figure 6). 

 
Figure 6. Graphical representation of Scrum methodology, sources (Garzaniti et al., 2019b) 
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2.2.1 Roles artifacts and events 

The Scrum framework consists of three main elements: roles, meetings, and artifacts. 

Table 1. Scrum framework elements 

Roles Product Owner, Development Team, and Scrum Master 

Events Sprint Planning, Daily Scrum, Sprint Review, and Retrospective 

Artifacts Product Backlog, the Sprint Backlog, and Product Increment 

Roles: Product Owner 

The Product Owner is responsible for maximizing the product value delivered to the customer. In 

some cases, even be the customer itself can be the Product Owner. He or she is responsible for 

defining the product goal and the product backlog items as well as backlog items organization. In 

the Scrum theory, the Product Backlog management is an exclusive prerogative of the Product 

Owner, but in practice, the task is sometimes delegated to the development team. 

Roles: Development team 

The Development Team includes the personnel who actually do the job. They are responsible for 

delivering the planned Minimum Viable Product at the end of each Sprint. Scrum promotes self-

organizing cross-functional teams with no formal or informal hierarchic structure. Each team 

member is responsible for solving the tasks he or she is committed to individually. Therefore, 

backlog items must be granular enough to be addressed by a single person. The Development Team 

is often co-located to foster continuous and transparent communication amongst the team members. 

During a Sprint, the Development Team works only on tasks directly leading to the Sprint Goal. 

Sprint rescoping, i.e., add new tasks to the Sprint backlog while the Sprint is ongoing, is not 

allowed. 
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Roles: Scrum master 

The Scrum Master is the enabler of Scrum implementation. He or She has to ensure that the 

development team follows the rules defined in the Scrum Guide. The Scrum Master can be a 

member of the team or external personnel. Both configurations can have advantages and 

drawbacks. The Scrum Master facilitates daily meetings, ensuring that the team has a clear 

understanding of development tasks in the ongoing Sprints and shares a common understanding of 

the product vision. Lastly, the Scrum Master also serves as an interface between the Development 

Team and the surrounding organization or relevant stakeholders. 

Events: Sprint Planning meeting 

All Sprints begin with a Sprint Planning Meeting. The whole Scrum Team participates in the 

meeting, i.e., Product Owner, Scrum Master, and Development Team. The sprint planning typically 

addresses three questions: 1) what is the goal of the Sprint? i.e., understating the value delivered to 

the customer 2.) what can be actually done? i.e., identify the activity required to achieve the sprint 

goal 3) how to select the job to get done? i.e., understanding development team capability.  

The first two questions are addressed by negotiating between the Development Team and 

the Product Owner. The last question is addressed by using some qualitative supporting tools. One 

of the most popular is the planning poker. Given the criticality of this event, we will expand the 

literature review on the topic in Section 2.2.4 

Events: Daily Scrum 

The Daily Scrum is a 15-minute stand-up meeting held every day by the Development Team. The 

purpose of this meeting inspect progress and synchronize the work to reach the Sprint Goal. The 

Daily Scrum meeting is typically held every day at the same time and place 
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Events: Sprint Review 

The Sprint Review is the meeting that concludes the Sprint. The team presents the Sprint results to 

relevant stakeholders and assesses the progress made toward the final product. The purpose is to 

inspect the work completed within the Sprint and define the way forward. 

Events: Sprint Retrospective 

As the Sprint Review inspects the product, so the Sprint Retrospective reviews the process. The 

Sprint Retrospective follows the Sprint Review and aims to identify potential refinement of the 

Scrum process to improve the team efficiency. The Retrospective analysis offers the opportunity to 

bring forward issues encountered while performing the Sprint and suggestions to improve. It 

became a pillar of the continuous improvement strategy known as “inspect and adapt”, constituting 

one of the foundations of the Scrum framework. 

The Sprint 

Sprints are fixed-length time boxes where the job gets done. The Sprint acts as a container for all 

other events (Table 2).  A new Sprint starts when the previous is concluded. Various practices exist 

to monitor the development progress (e.g., burn-down charts) 

Table 2. Scrum Events 

 Sprint Planning Daily Scrum  Sprint Review Retrospective 

Perspective Forward-looking  Managing Assessing Retrospective  

Focus  Task breakdown 

and estimation 

Tasks Burn-down The Product The Process 

Purpose Planning Team synchronization Explain progress done Improving the process 

Participants Scrum Team  Dev. Team &  

Scrum Master  

Dev. Team & 

stakeholders  

Dev. Team & 

Scrum Master  

Input Product Backlog Items  Development status  Work completed Process-related issues  

Output Sprint Backlog Plan for the day Update for Product 

Backlog 

Suggestion for process 

improvement 
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Artifact: Product Backlog 

The Product Backlog is the collection of user stories, i.e., the list of the work to be done. It is a 

dynamic document defined and maintained by the Product Owner, and it evolves within the product 

development process. The Product Backlog may be ordered in several ways. Depending on the 

development strategy, the list can be sorted by value, risk, or priority. 

Artifact: Sprint Backlog 

The Sprint Backlog is a tool to visualize the work required to achieve the Sprint Goal. As the 

Product Backlog so the Sprint Backlog is a dynamic document that develops throughout the Sprint. 

It informs the Development Team on the work completed as well as the remaining work and time. 

Artifact: Product increment 

The Product Increment is the result of the Sprint. In earlier versions of the official Scrum Guide, 

the author used to give great importance to the results of each Sprint characterized as a Minimum 

viable product, i.e., a working part of the final product or a working prototype. However, in the 

latest Scrum Guide, greater emphasis is put on the “Definition of Done”. This is probably related 

to the difficulties of delivering a potentially shippable increment after each Sprint, and the 

“definition of done” represents an easier way of addressing the issue. Since the Minimum Viable 

Product represent one of the distinguishing features of agile approaches, particularly Scrum, we 

will expand the review on the topic in section 2.2.3 

2.2.2 Iterations 

Iterations are ubiquitous in the design and development of engineering systems (Maier & Störrle, 

2011). They are also one of the cornerstones of Agile approaches (Schuh et al., 2018a). 

Nevertheless, managing iterations is not an easy task; reaping their benefits is not an obvious 

conclusion (Costa & Sobek, 2003). 
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In design theory literature, iterations are broadly defined as the repetition of an action or as 

a heuristic reasoning process depending on the perspective adopted (Wynn & Eckert, 2017). 

Building on these definitions, researchers developed different taxonomies to help better understand 

the nature of the phenomenon. Those works propose to classify iterations based on designers 

behavior (Wynn et al., 2007), information/task interdependencies (Smith & Eppinger, 1997a, 

1997b), design process attributes (Costa & Sobek, 2003), or evolution of problem-solution space 

(Dorst & Cross, 2001). The reader can refer to (Wynn & Eckert, 2017) for a comprehensive review 

of the topic. 

This research adopts a perspective complementary to existing theories. It focuses on the 

development stages involved in the iteration (e.g., design, prototyping, manufacturing, testing) as 

well as the verification/validation activities carried out (thus the technical risk reduction and TRL 

advancement). Two primary forms of iteration cycles have been identified: the design-analyze-

redesign (DAR) and the design-manufacture-test-redesign (DMTR). 

DAR cycles are used in almost all engineering design practices. They consist of a 

concurrent, iterative exploration of the design space based on modelling and simulation. They 

usually represent an effective tradeoff between cost/time invested and technical risk mitigated 

(Unger & Eppinger, 2009). 

DMTR cycles are a distinctive feature of flexible PDPs (e.g., Spiral, Agile). Modelling and 

simulations are complemented with verification and testing activities performed on the real product 

or a subset of it. DMTR cycles cover several phases of the product life cycle (design, 

manufacturing, assembly integration, and testing), thus reducing project technical risk at multiple 

levels. However, even if technical risk decreases and product quality theoretically improves with 

successive cycles, iterations significantly impact cost and schedule (Garzaniti & Golkar, 2020). 
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Reliably modelling such cycles becomes crucial when attempting to implement Agile in 

complex hardware projects. Product and process interdependencies may completely overturn 

advantages in cost and schedule brought by Agile (Golkar et al., 2019). 

Currently available frameworks rarely model and analyze iterations in detail. Traditional 

network-based project management techniques (Ben Issa & Tu, 2020), such as PERT/CPM (Wiest 

& Levy, 1977), do not include iterations. More recent frameworks such as DSM-based simulation 

models characterize iterations by rework probability and rework impact (Browning & Eppinger, 

2002; Cho & Eppinger, 2005), (Ma et al., 2019). Although these last ones proved to be powerful 

tools for analyzing process performance, the reliability of results is limited by the accuracy of input 

information (not always available and hard to assess). Furthermore, they all fall short in modelling 

iterations propagation in the later phases of the product lifecycle (e.g., procurement, manufacturing, 

integration, and testing), making the iterations planning and management difficult. 

2.2.3 Minimum Viable Product definition 

The primary outcome of an iteration cycle is the Minimum Viable Product (MVP). The concept of 

MVP has long been discussed in the literature (Lenarduzzi & Taibi, 2016). Scholars and 

professionals have analyzed different aspects associated with the MVP definition, such as the 

MVPs economic value (Rancic Moogk, 2012), the effectiveness of customer feedbacks depending 

on the MVP structure (Schmidt et al., 2018a), the role of prototyping (Bergweiler et al., 2019), 

(Schuh et al., 2018b), and the frequency of MVPs releases (Anderson et al., 2017). 

Nevertheless, the definition of MVP within the context of complex hardware systems 

development is not straightforward. The physical aspect of the system hampers the implementation 

of a fully functional product increment. Furthermore, while there is a solid body of knowledge on 
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the MVP economic and market aspects, current literature still lacks perspective in capturing the 

MVP technical and development process aspects. 

2.2.4 Sprint planning 

In Scrum theory, Sprint planning is the event when the team defines the Sprint objective (i.e., MVP 

to be delivered) and lays out the work to get done (i.e., Sprint backlog) (McGreal, 2020). The Sprint 

backlog (Scrum.org, 2019) is a subset of the product backlog (Sedano et al., 2019), including the 

user stories (Lucassen et al., 2016) selected for the Sprint. In “traditional” Agile, user stories are 

defined as atomic elements to be performed by individuals, with no explicit consideration of 

product or process dependencies (Sedano et al., 2019). This entails several drawbacks during Sprint 

planning activities. 

The teams can realize while performing the Sprint that some tasks are missing: thus, the 

MVP cannot be delivered. The decision to add tasks to the backlog while the Sprint is running will 

unavoidably result in delays and cost overrun (Figure 7). Frameworks currently available do not 

tackle this issue. They neither elicit nor represent user stories’ interdependencies. 

 

Figure 7. Sprint burndown chart - Tasks added during Sprint execution (vertical steps marked in blue) – Delays due to 

new task (marked in orange) 
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Additional challenges are also posed by the scoring system adopted to evaluate the 

complexity of the tasks allowing their prioritization within the Sprint time-box. The complexity 

index used in traditional Scrum (i.e., story point) does not provide any viable information to support 

the development process (Mahnič & Hovelja, 2012).  

Recently some progress has been made in formulating parametric models for efforts 

estimation (Kamal Tipu & Zia, 2012), (Briatore & Golkar, 2021). However, current scoring systems 

do not clearly relate to cost or time, or resources needed to complete a user story. Furthermore, they 

still cannot provide reliable estimates and eventually bring more complexity than benefits to the 

process. 

From an organizational standpoint, complex engineering systems are frequently developed 

in multiparty consortia. Each organization in the consortium runs its own agenda and adopts its 

preferred product development process. Therefore, Agile implementation, and specifically Sprint 

planning, becomes more challenging as it might require coordination with traditional systems 

engineering approaches and shall comply with consortium milestones. 

Even if research efforts have been dedicated to these concerns (Garzaniti et al., 2019b; 

Ramos et al., 2013), most of the implementations in real industrial settings were not as successful 

as hoped (Atzberger et al., 2019). 

This misalignment between literature contributions and industry results highlights a clear 

gap in the definition of a structured framework and a coherent methodology (encompassing 

processes, methods, and tools) to support the deployment of Agile for complex hardware systems 

development. 
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2.3 Product development processes in the literature 

The product development literature is quite broad and relies on more than half a century of research 

and experience. The product development body of knowledge encompasses processes, methods, 

and tools aimed at delivering a new product or improving an existing one. 

The literature has been surveyed, mapping the different branches of product development 

knowledge to frame our research, thus position our work. For this literature mapping exercise, 

different repositories of knowledge have been surveyed using the following keywords (and 

respective permutations): product, development, process, method, approach, model, philosophy, 

strategy. The survey has then been refined by adding in subsequent rounds of search the following 

keywords: agile, stage, gate, spiral, concurrent, sequential, flexible. The literature mapping 

showed that, in general, product development processes could be classified based on the flexibility 

and degree of tasks concurrency (Figure 8). 
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Figure 8. Map of the Product development literature 

Compressed models (Iansiti, 1995) include concurrent engineering (Lawson & 

Karandikar, 1994; O’Neal, 1993; Stevens, 2015; Valle & Vazquez-Bustelo, 2009; Yassine et al., 
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2003; Zhang & Daguang Zhang, 1995), Set-based design (Ghosh & Seering, 2014), and Integrated 

product development (Gerwin & Barrowman, 2002; Khaleeq uz Zaman et al., 2017; Sommer et al., 

2014; Yingkui Gu et al., 2006). Traditional sequential models mostly refer to the Stage-gate 

(Cooper, 1990; Royce, 1970; Sethi & Iqbal, 2008). Flexible models (Boehm, 1988; Burger et al., 

2017; Thomke, 1997) can be classified based on process range (Seebacher & Winkler, 2014), 

process mobility (Upton, 1995), and their combination (Fernandes et al., 2012). Flexible models 

include the Spiral model (Boehm, 1988; Buijs, 2003), the Learn startup approach (Boehm & 

Turner, 2005; Fazzi Bortolini et al., 2018; Ghezzi & Cavallo, 2018), and Agile (Douglass, 2016a; 

Schön et al., 2017; Schuh et al., 2018a). From these models over the year, hybrid approaches got 

momentum (Bianchi et al., 2018; Cooper & Sommer, 2018; Mahmoud-Jouini et al., 2017; Robey 

et al., 2018) and particularly the combination of Agile-Stage-Gate combination (Begel & 

Nagappan, 2007; Boehm, 2004; Cooper, 2016; Cooper & Sommer, 2018; Karlström & Runeson, 

2005, 2006; Sommer et al., 2015). Despite the variety of approaches, the scope of research is limited 

to Agile, particularly the scrum version as presented in Section 2.2, and to the traditional Stage-

Gate model, one of the most adopted approaches for a wide range of applications. The combination 

of the two is also considered. 

2.3.1 The State-Gate process 

The Stage-gate approach (Cooper, 1990), also called waterfall, phase gate, toll gate, checkpoint, or 

structured product development by different authors and practitioners (Unger & Eppinger, 2009), 

is a well-established product development process. Stage-Gate has been designed to help firms to 

select the right projects, and once selected, to map out the key stages, best practice activities, and 

roles and responsibilities as part of the project, bringing discipline to “chaotic” new product 

development (NPD) activities (Sethi & Iqbal, 2008). 
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Figure 9. A representation of the Stage-Gate model 

The ideal Stage-Gate process proceeds in distinct stages, from product planning to product 

release (Figure 9). At the end of each phase is a review, or gate, to evaluate whether the previous 

phase was successfully completed. If the project is reviewed positively, work proceeds to the next 

phase. If not, then the project iterates within that phase until it can successfully pass the review, or 

the project may be terminated. 

The major advantage of stage-gate processes is to provide structure to the development by 

reaching sharp product definitions and specifications early in product development. Technical risk 

is reduced because narrow iterations and reviews freeze specifications early. Rigid requirements 

and stable product definitions help to avoid errors by avoiding midstream corrections (Cooper, 

1990). 

The main drawback of this product development process (PDP) is inflexibility. Narrow 

iterations cannot incorporate feedback from later phases. Failure may occur if early specifications 

and assumptions are proven wrong by subsequent market research or prototyping. 
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2.3.2 Agile for hardware 

Agile development of physical products, Agile hardware development, and Agile development of 

cyber-physical systems are used as synonyms in the scientific literature. The terms refer to the 

development of products consisting of a combination of software and hardware elements (e.g., 

electronics, mechanisms, and many others). 

While previous sections reviewed the literature on some specific topics related to the Agile 

development of physical products, this section offers a general overview of the research in the field. 

Due to the progressive spread of Agile in the hardware domain as well as the growing popularity 

such methodologies reached over the last two decades, there is a vast literature on the topic. A 

search on the Scopus database using the keywords “Agile” AND “Hardware” and “Agile” AND 

“physical” AND “product”, as of the time of writing this thesis, has yielded a total of 1459 results, 

covering five decades of research. Given the fast pace evolution of the topic, this thesis limited the 

focus to publications that occurred in the last ten years. 

This wide body of knowledge addresses different aspects relevant to the Agile development 

of physical products. Dove & LaBarge (2014a, 2014b) provided a philological analysis on the 

concepts of Agile systems-engineering and agile-systems engineering, while Dove (2002) provided 

a philological analysis on the concepts related to the Agile enterprise. Atzberger & Paetzold (2019) 

analyzed the challenges of adopting agile for hardware development, updating the analysis of 

Ovesen & Dowlen (2012). Punkka (2012) analyzed the challenges and the opportunities of 

implementing Agile in the co-design of embedded systems. Schmidt et al. (2018c) offered a critical 

perspective on the expected vs real effects of Agile development of physical products, while 

Atzberger et al. (2019) reviewed how the Agile for hardware development has matured over the 

last decade and how the hype evolved.  
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Schmidt et al. (2018b, 2019) and Atzberger et al. (2020) conducted a set of empirical 

studies addressing different thematics related to the agile development of physical products, such 

as motivations, transition, potentials, and applicability. To date, these studies represent one of the 

most compelling sources of data in the domain of Agile for hardware. 

The literature also addresses the challenges of scaling and decentralized development 

(Alqudah & Razali, 2016; Dikert et al., 2016; Ullah et al., 2011); however, those are issues not 

limited to the context of hardware development. Lastly, several authors also presented case studies 

on the application of Agile for developing hardware systems, such as Huang et al. (2012), Edwards 

(2017), or Dove et al. (2017).  

Overall, the literature focuses on the challenges and opportunities entailed in adopting agile 

for developing physical products yet not providing enough actionable solutions to overcome such 

challenges. 

2.3.3 Hybrid-Agile approaches 

The debate is ongoing on whether Stage-Gate and Agile are compatible and complementary and 

how to best mix the two approaches to leverage their respective strengths and mitigate their 

weaknesses (Bianchi et al., 2018). To date, there is still no widely shared agreement on the topic. 

Cooper & Sommer (2016) describe the cases of established firms benefiting from the use 

of Agile practices within their existing Stage-Gate systems. Some authors speculate on their 

potential to deliver exceptional innovation outcomes (Papadakis & Tsironis, 2018), however few 

studies rigorously examine how the integration of Stage-Gate and Agile affects product 

development performance (Batra, 2018; Bianchi et al., 2018). 
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Sommer et al., (2015) suggest that using a Stage-Gate model at the strategic level together 

with Scrum tools at the execution level increases NPD productivity, flexibility, and coordination. 

Dikert et al., (2016) instead indicate that the coexistence of the two approaches causes tensions at 

all organizational levels, bureaucracy duplication, and reward system mismatch. 

Cooper (2016) provided a formal characterization of Stage-Gate and Agile based on the 

type of management (macro vs micro), the scope of the project, the structure of the organization, 

and the decision model. Even if this represents a seminal work in the field, it still does not provide 

clear indications on how to select the development process and manage the Stage-Gate-Agile 

hybridization. 

Overall, beyond qualitative analyses on the effect of adopting hybrid PDPs, the literature 

lacks rigorous approaches to combine Agile and Stage-Gate and support the management of 

projects over their execution. 

2.4 Catalog of gaps in the literature 

Section 2.1 and Section 2.2 have provided a brief yet comprehensive picture of Agile theory, 

emphasizing Agile-Scrum. Section 2.3 instead briefly surveys product development literature, 

focusing on the Stage-gate model and its combination with Agile. This paragraph summarizes the 

gaps identified in the current Agile theories and practices, focusing on the challenges of 

implementing Agile for physical products development. Furthermore, this paragraph reports 

current challenges in coordinating Agile with the traditional development process. This synthesis 

will serve as a guide in the development of the thesis and will also be used for evaluation purposes 

in conclusion. 
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Gaps in current Agile theory 

1. Lack of a taxonomy for Minimum Viable Product definition that accounts for technical and 

development process aspects (ref. to section 2.2.1 and Section 2.2.3). 

2. Lack of a method to support the tasks’ prioritization and Sprint planning activities that, 

accounting for user stories interdependencies, minimizes the Sprint rescoping (ref. to 

section 2.2.4). 

3. Lack of a method to reliably evaluate the Sprint workload accounting for resource 

availability and allowing for proper resource allocation and leveling (ref. to section 2.2.4). 

4. Lack of methods to model and evaluate the impact of iterations propagation through the 

development process, thus inform on the viability of given iterations (ref to Section 2.2.2) 

 

Gaps in the relation between Agile and traditional product development processes 

1. Lack of theories to reconcile traditional and Agile approaches (ref to Section 2.3.3). 

2. Lack of quantitative metrics to evaluate the viability of implementing the different product 

development processes (ref to Section 2.3.3 and Section 2.2.2). 

3. Lack of methods to coordinate the interdependencies between different organizations 

implementing different development processes, accounting for the complex interplay 

between all the stakeholders (ref to Section 2.3.3 and Section 2.2.2). 
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2.5 An industry perspective 

To validate the gaps identified in the literature, thus better inform our research questions, the 

literature-based investigation on the state-of-the-art has been complemented with field research. 

The implementation of Agile for hardware development has been analyzed in a real industrial 

setting, specifically in the context of a “New Space” mission. Based on these analyses, it has been 

possible to quantitatively assess the effectiveness of implementing Agile to develop space systems 

(Garzaniti et al., 2019a) and identify challenges and opportunities deriving from the multiparty 

consortium dynamics (Garzaniti et al., 2019b; Golkar et al., 2019). 

2.5.1 New Space and the question of the product development 

In the last decades, global space activities radically changed with greater involvement of private 

stakeholders, hundreds of startups created worldwide, and a significant increase in the influx of 

private capital into space ventures. This new evolution of the space age is popularly known by the 

name of “New Space” (Garzaniti et al., 2021). Within this new phase of maturity of space 

exploitation, organizations increasingly focus their activities on economic profit, addressing the 

need of customers coming not exclusively from the space industry. 

Due to the explicit drive for profitability, New Space ventures started exploring new 

business models and new product development approaches. The trend to prioritize activities with 

lower capital cost requirements and short time-to-market, together with the need for a faster and 

more adaptive response to changes in customer needs, is challenging traditional product 

development processes such as the V-model and the Stage-Gate model (INCOSE, 2015), and 

making Agile methods (Beck et al., 2001) a potential key enabler of the New Space sector. 
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While Agile methods are well known in the software industry, their use in hardware 

development is not widely explored, not to mention in the space engineering domain. The status 

quo is largely made of space projects that are structured and executed following the established 

development processes. Nevertheless, there are hints in the scientific and grey literature that New 

Space organizations are experimenting with Agile product development. This chapter analyzes the 

experience of one of these organizations that engaged with Agile to develop its product. 

2.5.2 Mission overview 

The use case is a nanosatellite mission developed in a multiparty consortium including six different 

organizations (SMEs, startups, universities, and institutional partners) spread over five countries 

(Camps et al., 2018). At the consortium level, the traditional Space Flight Project Life Cycle has 

been adopted (NASA, 2007). The consortium defined the overall mission requirements, the success 

criteria, and a high-level schedule; individual organizations implemented their portion of the 

project, according to this master plan, adopting their preferred product development process (PDP). 

Mission requirements were formulated based on the contents of the mission proposal and 

have been formalized in a Mission Requirements Document (MRD). Consequently, each 

organization in the consortium has cascaded the MRD requirements into system requirements for 

their specific contribution to the project. The system requirements have been consolidated into a 

System Requirements Document (SRD). Based on the MRD and SRD, each organization has 

shaped its own PDP. 

The prime contractor managed the PDP at the consortium level and summarized High-level 

activities and the main milestones in a traditional Gantt chart. 
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This schedule included: 

1. Preliminary Design Review (Kick-Off + 1 month);  

Success criteria: definition and finalization of all mission requirements 

2. Critical Design Review (K0 + 4 months); 

Success criteria: definition of interfaces and system requirements 

3. FlatSat testing (K0 + 6 months) 

Success criteria: successful pass of interfaces test and functional test. 

4. Payload delivery to Integrator (K0 + 9 months) 

Success criteria: payload delivered; performance and environmental test passed. 

01-Mar-18 01-Mar-19
01-Apr-1801-May-1801-Jun-18 01-Jul-18 01-Aug-18 01-Sep-1801-Oct-18 01-Nov-1801-Dec-18 01-Jan-19 01-Feb-19

Phase
A

Phase
B

Phase C Phase D

MDR

FlatSat Delivery

CDR: Critical Design Review

QR: Qualification Review

ORR: Operational Readiness Review

FRR: Flight Readiness Review

MDR: Mission Definition Review

PDR: Preliminary Design Review

Payload Delivery

PDR CDR QR ORR FRR

 

Figure 10. Use case Project Life Cycle (design, development, and integrations stages) 

The first two milestones concern the design phase, while milestones three and four refer to 

hardware implementation and test. 

In an effort to ensure delivery of its payload on a tight schedule (less than 12 months), one 

of the consortium participants structured the development process following an Agile approach, 

and particularly the Scrum framework. This organization was responsible for the developed an 

optical inter-satellite communication (O-ISL) payload. 
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A functional block diagram of the payload is presented in Figure 11. The system includes 

a transmitter (TX), a receiver (RX), and two electronic boards, one for command and data handling 

(C&DH) and one for power management (EPS). The receiver is based on a Cassegrain architecture 

and includes a primary mirror steering device, while the transmitter is equipped with an 

electromechanical solution to enable fine-pointing operations. 

 

Figure 11. Functional block diagram of the payload, source (Garzaniti et al., 2019a) 

2.5.3 Using “traditional” Scrum 

Following Scrum, the work (i.e., design of the entire payload) has been decomposed into stories 

related to the development of the main subsystems of the optical terminal: 

1. Optics 

2. Electronics 

3. Mechanics 

4. Software 
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These high-level user stories (also known as epics) are the building blocks of the O-ISL 

terminal and could be mostly handled as independent projects. Additional epics relate to the 

definition and implementation of interfaces between subsystems, such as integrating the support 

structures with the electronics or integrating the optical trains. Each epic is characterized and 

decomposed into a subset of user stories. The decomposition provides structure to the development 

process. The collection of all the user stories constitutes the product backlog. 

In this phase, we can already observe the first divergence from traditional Scrum and one 

of the limitations of Agile in hardware development projects. Scrum was initially conceived for a 

homogeneous environment in terms of team expertise (e.g., ability to develop software using 

object-oriented programming). Here, the development had to span across different disciplines 

(optical, mechanics, electronics), each with its own requirements, design strategies, and issues. It 

is not possible to use the same approach or the same personnel to design mechanical components 

and electronic boards. 

Later on, during the Sprint planning meeting, such user stories, if needed, were further 

decomposed into smaller tasks to be ideally completed within a one-day time frame. Then they 

were collected in the Sprint Backlog setting the objective of the Sprint. A team member was 

assigned the role of “Scrum master”. Its role was to coordinate the team inputs/outputs and facilitate 

the execution of the Agile process. 

Sprint planning was performed collaboratively among all the team members using a 

Fibonacci sequence (Falcon, 2016) scoring system. Tasks scoring aimed to evaluate the complexity 

of each task and allow activities prioritization within the Sprint length. Scoring activities are 

performed as follows: each team member votes providing a score in the Fibonacci sequence 

(1, 3, 5, 8, …). Afterward, the median score is recorded by the Scrum master and assigned to the 
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task. The resulting Sprint backlog is then reviewed, prioritizing the activities according to the 

agreed time box. Since providing scores is an empirical activity and mostly qualitative, task effort 

estimation reliability tends to improve over successive sprints. 

 

Figure 12. User stories with scores and preliminary tasks prioritization on a physical Kanboard 

The development was structured in Sprints of duration between one and four weeks. Each 

Sprint was devoted to completing the Sprint backlog tasks and delivering a minimum viable 

product. Initially, one-week Sprints were adopted, but the team quickly realized that this duration 

was way too short for consolidating results in the development. The sprint length became an issue, 

particularly as the interdependencies with the supply chain and related lead times became more 

relevant as the design evolved from a “cocktail napkin feasibility study” (Balint & Freeman, 2017) 

to design models and ultimately to a physical system. 

The tempo of the Sprint was marked by daily 15-minute stand-up meetings and daily close-

out meetings. At the end of each Sprint, the team performed a retrospective analysis to understand 

what worked well, what did not work, and derive the lessons learned to improve the process in the 

subsequent development iterations. In order to assess the correct implementation and constantly 

monitor the status of the project, the team made use of a set of tracking technologies. 
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2.5.4 Support tools 

Task organizer 

Jira (Atlassian, 2021) has been used to track tasks, task scores, and development status. Jira 

provides a graphical representation of the development and indication of the distribution of tasks 

in the team (Figure 13). 

Time tracker 

The team used Toggl (Toggl, 2021) to track the actual time spent on each task. This information 

was helpful to establish a correlation between time and task complexity score, thus improving the 

effort estimation during subsequent sprint planning activities. For instance, on a printed circuit 

board (PCB) with more than 1,000 traces, measuring the time needed to complete ~100 traces 

allowed estimating the time required to complete the remaining 90% of the task with ±5% average 

time accuracy. 

 

Figure 13. Example of Jira user interface 

Repository monitoring 

The team used GIT (Git, 2021) as the primary repository manager for all the design data. Git allows 

for tracking changes and manage file versions, ensuring that every team member is working on the 
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correct file at every given moment. Analyzing the evolution of the git-commits is also possible to 

roughly estimate the progression of the design. 

2.5.5 Scrum implementation 

This section reports the analysis of process data related to the first six months of development (i.e., 

FlatSat testing – milestone 3 of the project). The scope of this analysis has been limited to that 

period because later, the development team significantly revised the development project diverging 

from traditional Agile. Nevertheless, it is already enough to get preliminary results and draw 

interesting conclusions on the use of Scrum for space hardware development projects. 

The design and implementation process to achieve the FlatSat delivery consisted of 11 

Sprints with Sprint lengths ranging from 1 week to 4 weeks. The team experimented with different 

durations (Figure 14) to understand what can be the most effective in terms of MVP delivery. 

 

Figure 14. Sprint length 

The traditional one-week Sprint always resulted ineffective, while a longer period allowed 

to get closer to the Sprint completion. However, such data shall not lead to wrong conclusions. It 

is not possible to define a statistical correlation between Sprint duration and Sprint effectiveness 
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measured as the percentage of completed tasks over the planned ones because of the multi-criteria 

nature of the problem. It shall also be noted that sprints longer than four weeks were mostly avoided 

because larger periods entirely overturn the benefits of early technical debt retirement. 

While experimenting with different Sprint lengths, the development team also tried to find 

the best fit for the story points per day to be allocated. Figure 15 reports the estimated task 

complexity per day for each Sprint.  

 

Figure 15. Planned story points per day for each Sprint 

In the beginning, the team overestimated the workload but gradually refined the estimates, 

reaching a steady-state of about 5 points per day with a core development team of three people. It 

shall be highlighted that these figures apply only to the specific development team, as the scoring 

system is subjective and affected by biases. In addition to the learning effect, the daily story points 

decrease was also linked to the project evolution. The more the project got physical, the fewer 

points per day have been achievable. This situation highlights the complete unreliability and 

inefficiency of the traditional complexity-based scoring system: designing a component and 

manufacturing a component might exhibit the same task complexity but have utterly different 

execution times and costs. 
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A remarkable finding is that all Sprints failed. The team defined a failed Sprint as a Sprint 

where only a subset of the planned tasks was completed. An average of 59% of planned work (with 

a standard deviation of about 12%) has been completed per Sprint (Figure 16). Nevertheless, the 

FlatSat has been delivered according to the consortium project schedule. This kind of “failure” 

seems to be an issue shared by many development teams adopting Agile in hardware projects. The 

reasons for such a failure are three-fold. 

First, engineering teams required a couple of sprints to refine the task estimation, tune 

sprint planning, and adapt to the Agile workflow. Engineers may often underestimate the 

complexity or misunderstand the interdependencies between different user stories. For example, 

after the Sprint began, the team might realize that tasks are missing in the backlog as they proceed 

with the activities. Alternatively, the team may realize that they included unnecessary tasks for 

delivering the given MVP. Finally, it can also happen that a task considered of moderate complexity 

requires a whole week, hampering the MVP delivery. The scientific literature also substantiates 

those statements (Feldmuller, 2018; Garzaniti et al., 2019a; Gregory et al., 2015). 

Second, process disruption occurred due to interdependencies with components 

procurement and manufacturing lead times, which are inherent characteristics of physical systems 

not occurring in Agile software projects (Schmidt et al., 2019, 2017). 

Third, there is still no consensus on the definition of a successfully completed Sprint. 

Completing all tasks in the backlog does not necessarily imply delivering a meaningful MVP 

(Schwaber & Sutherland, 2020). 

For those reasons, several activities within the use case project have been rescheduled 

during Sprint executions. Rescheduling typically involved a percentage close to 35% ± 6% of the 

total points foreseen for a given Sprint (Figure 16). 
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Figure 16. Percentage of work completed per Sprint 

2.5.6 MVP: Customer feedback and technology de-risking 

The main alleged advantage of Agile is the rapid development of products in iterative steps (MVPs), 

with significant involvement of the customers. In theory, they evaluate the system from the early 

stages of the development, thus provide feedback to align the product to their actual needs. 

While this customer-centered approach can be easily implemented in the software domain, 

it is more challenging to include customer evaluation in the design and development of hardware 

systems, let alone a space-flying payload. The reason is that most valuable feedbacks come with 

activities occurring during assembly, integration, and testing (AIT) phases, thus during later stages 

of development. By then, the technical debt accumulated is quite large, and iterations would 

completely overturn the benefits of fast development. 

However, some design strategies might help exploit this Agile feature: incremental design 

and rapid prototyping shall be adopted as best practices for all engineering disciplines involved 

(Bergweiler et al., 2019; Schuh et al., 2018b; Zink et al., 2017). In this use case, the team used 3D 

printing technology for rapid prototyping mechanical components. Incremental PCB prototyping 

(Figure 17) has been used instead for electronics and avionics elements. 
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Figure 17. Example of workflow to realize an MVP, source (Garzaniti et al., 2019b) 

Such an approach allowed the team to better align with the customer and investigate 

potential AIT issues in the early stages of the development (Deininger et al., 2019; Schmidt et al., 

2018a). This latter point, we believe, is the most valuable and where Agile for hardware can make 

the difference. Prototyping can help de-risking interface issues, manufacturability, or 

assemblability problems, and the technology in general. The challenge will then become defining 

such MVP sequence to increase the maturity of the product subsets over time. 

2.5.7 Hardware vs. Software: the question of the procurement 

Scrum was initially conceived for software. In software, all the development depends on the team 

and relates to the Sprint structure. Therefore, the Scrum Master can constantly assess the 

development status, add or remove resources, and optimize the process. If procurement of external 

components is required, it is usually in the form of libraries, or software packages in general, that 

are already immediately (or rapidly) available and ready to use (Brhel et al., 2015). 

In the hardware domain, most elements need to go through a lengthy procurement process, 

often involving manufacturing activities. Except in rare cases, the manufacturing is outsourced, 

thus outside the direct control of the team (Wei et al., 2021). This dependency introduces 

uncertainty. In worst cases, it may result in delays spanning over multiple Sprints and cost overruns 

(Garzaniti et al., 2019a). The problem can be partially mitigated by adopting Model-Based Systems 
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Engineering (MBSE) approaches and tools (Darpel et al., 2020; Meißner et al., 2021). However, 

this would make the process lose momentum, introducing additional complexity due to reconciling 

two quite far methodologies (Magdaleno et al., 2012; Ross et al., 2008). 

Nevertheless, considering the procurement question cannot be avoided. A strategy to 

address delays and external dependencies with the supply chain may consist of scheduling the 

workflow accounting for suppliers' lead times and conceiving different scenarios with shifted AIT 

Sprints depending on early or late delivery of components. However, it would require having a 

dependencies structure of all the user stories to do so. 

2.5.8 Testing and the question of quality assurance 

A critical phase in hardware systems development, and specifically in space products, is 

Verification and Validation (V&V). Scrum and Agile, by nature, lack this feature by design 

because, according to Agile theory, testing as a stand-alone phase can be avoided in favor of 

incremental development and continuous feedback (Douglass, 2016b). Using the product from 

early phases, customers provide feedback on functionality and typically report bugs and problems. 

However, it is not acceptable to replicate the same approach for space flying products. Rigorous 

testing is essential to identify issues that cannot be fixed after the spacecraft is launched in orbit. 

 

Figure 18.Qualification model vibration test (left), proto-flight model TVAC test (right) 
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In the use case presented in this chapter, the team introduced testing user stories for each 

verification activity expected. Testing tasks were introduced at multiple levels, during the design, 

using simulations, and during assembling and integration, using rapid prototyping or proto-flight 

model development approaches. For instance, the team has dedicated an entire Sprint to test a set 

of subsystems, with user stories fully dedicated to testing (Figure 18). 

2.5.9 Reactivity to unforeseen design changes 

Flexibility is one of the strengths of Scrum and Agile in general, making design changes during 

project implementation easier than traditional development approaches (Diebold & Dahlem, 2014). 

For instance, in the use case, a later modification happened in adopting the RS422 bus for 

internal communication and control of the different payloads. While the generic bus characteristics 

were discussed during the Preliminary Design Review (PDR), such as choosing the data protocol 

and the power interfaces, the consortium did not analyze in-depth all the implications of connecting 

multiple payload interfaces to the same bus. Solving the problem required a hardware modification 

when electronics boards were already finalized and sent for manufacturing. A highly modular 

design and task flexibility allowed the team to quickly solve the issue, update the schematics and 

layouts, and send the new version for manufacturing (Schuh et al., 2017). That would have probably 

been harder in a traditional stage-gate scenario (Fricke & Schulz, 2005). 

2.5.10 The human factor 

Even though significant efforts were devoted to quantitative evaluating process performance, with 

numerous attempts in adapting team behavior, it is clear that significant uncertainties remain when 

dealing with people. 
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Task completion honesty 

The reporting on the status of each activity was managed by the person in charge of the activity 

itself. The situation led to arbitrary definitions of the “completion” concept that were not meeting 

both the Sprint objective and the user story goal. While figuring well in numbers on the tracking 

tools, this approach generally resulted in a 32% increase in time compared to similar tasks (same 

score) where a more rigorous evaluation was adopted. This scenario has been observed on 12 tasks 

over the project. 

Sprint duration and task spreading 

Dealing with hardware or having external interdependencies may introduce complexities that 

require allocating some activities over multiple Sprints. An example is the purchase of electronics 

components that, including order placement and shipment, can take up to 2 weeks. While the most 

obvious approach would be to spread the task among multiple Sprints, this turned out to be a bad 

strategy. In addition to damaging the integrity of task completion analysis and complicating 

accurate statistics, the situation led to a mathematical worsening of story points estimation on future 

Sprints, with an impact that reached a 17% error in full Sprint complexity (Figure 15, Figure 16). 

Data suggests that the practice adopted by the team to mitigate the issue was to plan for 

longer Sprints to accommodate all necessary activities (Figure 14). However, there is an upper limit 

when the process would unduly diverge from Scrum becoming de facto a traditional stage-gate. 

Time-based scoring 

The first approach adopted was a Fibonacci sequence scoring system, evaluating task complexity 

based on people's votes. This voting method proved to be not very effective in sizing the time 

required for completing a task. For this reason, the team has moved to a more straightforward time-

based scoring system. This method was used from Sprints 5 to 7 and seemed to correspond to 

increased points per day completed (as shown in Figure 15 and Figure 16). 
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2.5.11 Agile manifesto vs. complex hardware systems 

Building on lessons learned in the implementation of Scrum in the use case, Table 3 summarizes 

potential conflicts between Agile manifesto values (Beck et al., 2001) and space systems, or 

complex physical systems in general, development (Garzaniti et al., 2019b; Golkar et al., 2019). 

Table 3. Agile manifesto vs. hardware systems development 

Agile Manifesto Potential Conflicts 

Individuals and interactions 

over processes and tools 

Complex systems development, such as space 

products, is traditionally highly process-driven due 

to the high capital costs involved and required 

mission assurance standards. 

Working software 

over comprehensive documentation 

Documentation is critical to ensure collaboration and 

avoid any misunderstanding among multiple 

organizations and complex supply chains. 

Customer collaboration 

over contract negotiation 

Mission requirement documents (MRD) and System 

requirement documents (SRD) are typically part of 

the contractual agreement between customers and 

mission integrators. MRD and SRDs are frozen 

under configuration control at the initial phases of 

the development. 

Responding to change 

over following a plan 

Cost of changes increases significantly at later stages 

of the development due to the high costs involved in 

rework or requalification of space hardware. 

2.5.12 Catalog of gaps, challenges 

Section 2.5 has provided a comprehensive picture of an Agile-Scrum implementation in an 

industrial setting. Table 4 summarizes the gaps and the challenges identified, reports potential 

threats, and highlights the needs of engineering teams.  
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Table 4. Catalog of gaps, challenges 

ID Gaps, challenges Threats Engineering teams needs 

1 The scoring system is 

strongly linked to the human 

factor 

Section 2.5.10 

scoring system subjective 

and affected by biases not 

allowing for reliable 

planning 

A reliable scoring system 

correlated to time or cost estimates 

2 Effective Sprint planning 

(length) 

Section 2.5.5 

Schedule disruption A method for defining the Sprint 

length based on activities inherent 

characteristics and Minimum 

Viable Product objectives 

3 Effective Sprint planning 

(contents) 

 

Section 2.5.5 

Sprint rescoping, cost and 

schedule overrun. 

An architecture that models the 

dependencies among user stories, 

allowing for task prioritization and 

ensuring the inclusion of all 

required tasks. 

4 Meaningful definition of 

Sprint objective (i.e., MVPs 

sequence structure) 

Section 2.5.6 & 2.5.8 

Reworking the same 

product subset without 

improving the technology 

readiness of the system 

A taxonomy to define the MVPs 

and map the MVPs over the 

product maturity evolution 

5 Management of procurement 

and manufacturing 

 

Section 2.5.7 

Schedule disruption, 

development process 

interruption, cost overrun 

An architecture that includes 

procurement and manufacturing in 

the product backlog modeling 

their interdependencies with other 

user stories. 

6 Resource allocation and 

leveling a non-homogenous 

development environment. 

Section 2.5.5 & 2.5.10 

Unbalanced development 

teams, understaffing, and 

overhead of available 

personnel 

A model the accounts for resource 

allocation and leveling during 

planning activities evaluating 

different project implementation 

scenarios. 

7 Coordination aspects with 

different stakeholders such 

as consortium participants, 

customers, and suppliers. 

Section 2.5.9 

Interface mismatches or 

failures between system 

elements 

A model that consistently maps 

work packages (if any) and 

external input/output to user 

stories and accounts for their 

interdependencies 
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2.6 Summary of literature review and industry evaluation 

Previous sections reviewed the bodies of knowledge framing the research work, offering an 

overview of the current state of the art. Sections 2.1 and 2.2 provided the theoretical and practical 

foundation of Agile theory, with a particular emphasis on Agile Scrum. Section 2.3 briefly 

discussed the literature on product development approaches with a particular focus on the Stage-

Gate model, Agile for hardware and their combination. It also discussed currently available project 

management techniques, contextualizing them in the problem of interest. Section 2.5 reported the 

field research study conducted to get additional insights into current challenges in implementing 

Agile for hardware, thus better inform the review. 

Following the literature review and the industry study, sections 2.4 and 2.5.12 presented 

the gap in the state-of-the-art that has been identified, shaping the contribution of this work. 

Specifically, gaps in current Agile theory, as well as Agile relation/combination with the traditional 

approaches, have been identified. 

The following list reports the gaps in the Agile theory mapping them to the challenges 

faced by the industry and summarized in Table 4 

a) Lack of a taxonomy for Minimum Viable Product definition that accounts for technical 

and development process aspects (as presented in section 2.2.1 and Section 2.2.3, 

mapped on the industry challenge Table 4, ID 4) 

b) Lack of a method to support the tasks’ prioritization and Sprint planning activities that, 

accounting for user stories interdependencies, minimizes the Sprint rescoping (as 

presented in section 2.2.4, mapped on the industry challenges Table 4, ID 1 & 3). 
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c) Lack of a method to reliably evaluate the Sprint workload accounting for resource 

availability and allowing for proper resource allocation and levelling (as presented in 

section 2.2.4, mapped on the industry challenge Table 4, ID 2 & 6). 

d) Lack of methods to model and evaluate the impact of iterations propagation through 

the development process, thus inform on the viability of given iterations (as presented 

in Section 2.2.2, mapped on the industry challenges Table 4, ID 3 & 5).) 

The following list reports the gaps in the Agile relation/combination with the traditional 

approaches mapping them to the challenges faced by the industry and summarized in Table 4 

a) Lack of theories to reconcile traditional and Agile approaches (as presented in Section 

2.3.2, mapped on the industry challenge Table 4, ID 7). 

b) Lack of quantitative metrics to evaluate the viability of implementing the different 

product development processes (as presented in Section 2.3.2 and Section 2.2.2, 

mapped over all the industry challenges presented in Table 4). 

c) Lack of methods to coordinate the interdependencies between different organizations 

implementing different development processes, accounting for the complex interplay 

between all the stakeholders (as presented in Section 2.3.2 and Section 2.2.2, mapped 

on the industry challenges Table 4, ID 5 & 7). 

This thesis aims to fill those gaps enriching current Agile theory and developing a decision 

support system (including methods and tools) to support project managers and engineering teams 

in overcoming the challenges mentioned above. 
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 A decision support system 

Chapter 1 described the motivation for this research and outlined the research goals. Specifically, 

it has been identified the need for a decision support system to assist project managers and design 

teams in structuring and planning the Agile or Hybrid-Agile development process, navigating 

programmatic and technical tradeoffs. Chapter 2 surveyed the literature identifying challenges in 

implementing Agile development for physical products, setting the boundary condition for our 

decision-making problem. 

This chapter addresses the need identified in Chapter 1, developing the decision support 

system. This decision support system for Agile development of hardware systems (CURSIVE) 

includes an analytical approach to managing development activities within a hardware project. 

CURSIVE consists of three macroblocks: structuring, simulating, and planning, implemented in 

an integrated tool (Figure 19). This setting allows CURSIVE to deal efficiently with typical projects 

structure (Archibald, 2003; ISO/IEC JTC 1/SC 7, 2015) 

The structuring macroblock refers to the methods and tools for reasoning about the 

structure of the decision problem. If we consider the development activities as our decision 

variables, the structuring problem includes: defining or evaluating the interconnections between the 

“All models are wrong but 

some are useful”. 

(Box, 1979) 
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different decision variables (tasks dependencies); determining the order in which decisions are to 

be addressed (tasks order); evaluating the quality of the variables in describing the problem of 

interest (tasks granularity). 

The simulating block investigates the feasible solutions satisfying the problem constraints 

and evaluates the overall process performance for different variables combinations and values. 

The planning macroblock refers to methods and tools for further investigate potential target 

solutions offering an actionable plan. 

These macroblocks are integrated with a cross-block layer responsible for knowledge 

representation. The representing or viewing layer (different names are used depending on whether 

we refer to input or output data) includes methods and tools to formally represent the problem in a 

way understandable by decision-makers and interpretable by computers. This layer is also 

responsible for presenting decision-support information derived from structuring, simulating, and 

planning blocks in a human-understandable format. 

 

Figure 19. CURSIVE macroblocks 
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1 VD support VD support ● ● ● ● ● ● ●

2 Lens Holder Lens Holder ● ● ●

3 Motor support Motor support ● ● ●

4 Bearing support Bearing support ● ● ● ●

5 Shaft Shaft ● ●

6 Ring Ring ● ●

7 Motor AM1020 Motor AM1020 ● ● ● ● ●

8 Gearhead 10/1K Gearhead 10/1K ● ● ●

9 Pinion Pinion ● ● ● ●

10 Rack Rack ● ● ●

11 Lens bottom Lens bottom ● ● ● ● ●

12 Lens middle Lens middle ● ● ● ● ●

13 Lens top Lens top ● ● ● ● ●

14 Lens out Lens out ● ● ● ● ●

15 Main Mirror Main Mirror ● ● ●

16 Seconday Mirror Seconday Mirror ●

17 MotorHolder MotorHolder ● ● ● ● ● ●

18 KBRM_02_1 KBRM_02_1 ● ● ● ● ● ●

19 Motor AM0820 Motor AM0820 ● ● ●

20 Bearing tip Bearing tip ● ● ●

21 Nut Nut ● ● ●

22 MotorHolderPCBconector MotorHolderPCBconector ● ● ● ● ● ● ●

23 PEEK support PEEK support ● ● ● ● ● ●

24 Main Mirror Support Main Mirror Support ● ● ● ●

25 Front Front ● ● ● ● ● ● ●

26 Back Back ● ● ● ● ● ● ●

27 Top Top ● ● ● ● ● ●

28 Bottom Bottom ● ● ● ● ●

29 VD_opposite VD_opposite ● ● ● ● ●

30 VD_side VD_side ● ● ● ● ● ●

31 Main Board Main Board ● ● ● ●

32 Power Board Power Board ● ● ●

33 Wiring Wiring ● ● ● ● ● ●

34 Top Heatsink Top Heatsink ● ● ● ● ● ● ● ● ●

35 Bottom Heatsink Bottom Heatsink ● ● ●

36 VD Rapid Prototype VD Rapid Prototype ● ● ● ● ● ● ● ● ● ● ● ● ● ●

37 VD Rapid Prototype OS Rapid Prototype ● ● ● ● ● ●

38 TX/Rx Rapid Prototype TX/Rx Rapid Prototype ● ● ● ● ● ● ● ● ● ● ● ● ● ●

39 AIT Prototype AIT Prototype ● ● ●

40 Pr VD support Pr VD support ● ● ● ● ●

41 Pr Lens Holder Pr Lens Holder ● ● ●

42 Pr Motor support Pr Motor support ● ● ● ● ●

43 Pr Bearing support Pr Bearing support ● ● ● ● ●

44 Pr Shaft Pr Shaft ● ● ● ●

45 Pr Ring Pr Ring ● ● ● ●

46 Pr Motor AM1020 Pr Motor AM1020 ● ●

47 Pr Gearhead 10/1K Pr Gearhead 10/1K ● ●

48 Pr Pinion Pr Pinion ● ●

49 Pr Rack Pr Rack ● ●

50 Pr Lens bottom Pr Lens bottom ● ● ● ●

51 Pr Lens middle Pr Lens middle ● ● ● ●

52 Pr Lens top Pr Lens top ● ● ● ●

53 Pr Lens out Pr Lens out ● ● ● ●

54 Pr Main Mirror Pr Main Mirror ● ● ●

55 Pr Seconday Mirror Pr Seconday Mirror ● ● ●

56 Pr MotorHolder Pr MotorHolder ● ● ●

57 Pr KBRM_02_1 Pr KBRM_02_1 ● ●

58 Pr Motor AM0820 Pr Motor AM0820 ● ● ●

59 Pr Bearing tip Pr Bearing tip ● ● ●

60 Pr Nut Pr Nut ● ● ●

61 Pr MotorHolderPCBconector Pr MotorHolderPCBconector ● ● ●

62 Pr PEEK support Pr PEEK support ● ● ●

63 Pr Main Mirror Support Pr Main Mirror Support ● ● ●

64 Pr Front Pr Front ● ● ● ● ● ● ●

65 Pr Back Pr Back ● ● ● ● ● ● ●

66 Pr Top Pr Top ● ● ● ● ● ● ● ●

67 Pr Bottom Pr Bottom ● ● ● ● ● ● ●

68 Pr VD_opposite Pr VD_opposite ● ● ● ● ● ● ●

69 Pr VD_side Pr VD_side ● ● ● ● ● ● ● ●

70 Pr Main Board Pr Main Board ● ●

71 Pr Power Board Pr Power Board ● ●

72 Pr Wiring Pr Wiring components ● ● ● ●

73 Pr Top Heatsink Pr Top Heatsink ● ●

74 Pr Bottom Heatsink Pr Bottom Heatsink ● ●

75 Main Board Assembly AIT Main Board ● ●

76 Power Board Assembly AIT Power Board ● ●

77 AIT VD Bearing system AIT VD Bearing system ● ● ● ●

78 AIT VD support AIT VD support ● ● ● ● ● ● ● ●

79 AIT TX lenses AIT TX lenses ● ● ● ●

80 AIT RX mirrors AIT RX mirrors ● ● ●

81 W TX lenses W TX lenses ●

82 W RX mirrors W RX mirrors ●

83 AIT VD AIT VD ● ● ● ●

84 AIT Electronics AIT Electronics ● ● ● ● ● ●

85 AIT RX mirrors AIT RX system ● ● ● ● ● ● ● ● ● ● ●

86 AIT satellite AIT payload ● ● ● ● ● ●
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Figure 20 summarizes the overall workflow of the proposed framework. Each macroblock 

consists of a set of activities (square shapes) producing a set of artifacts (rectangle with a wavy 

base). Additional data (rhomboid shape) might be required to perform some activities. In the 

following sections, we describe in detail each of the proposed steps.

St
ru

ct
u

ri
n

g
Si

m
u

la
ti

n
g

P
la

n
n

in
g

Upload data & 
verify data integrity

Resource
Availability

Generate random samples
of time & cost within PDFs

Set  all  the tasks 
in "to do" state

Apply work and 
iteration policy

Verify  all  the tasks 
are in "done" state

Feasible scenarios 
dataset

Generate the 
simulated scenario

Stable
distributions?

No
next batch of sim.

Yes
end sim.

Set cost, time or 
risk posture targets

Define number 
of Sprint

Define Sprints 
Backlog and 

sequence

Identify target 
scenario

suggested 
implementation 

plan
Assess project 

status
Update input 

data
Rerun 

simulating step

end

Track project 
status?

yes

no

Project 
completed?

yes

no

Start

Systems of 
interest 

architecture

Definition of

▪ Resources required

▪ Time estimates

▪ Cost estimates
Product Backlog 

Architecture

Info on Agile 
implementation 

viability
Task list 

definition

Tasks 
Dependencies 

elicitation

Tasks 
Prioritization

 

Figure 20. Workflow of proposed framework 
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3.1 Structuring 

This first stage of CURSIVE aims to overcome some of the critical challenges identified in 

Chapter 2. With reference to the catalog of gaps summarized in Table 4, this section addresses the 

following challenges: 

▪ Providing a reliable scoring system correlated to time or cost estimates (ID 1); 

▪ Defining an architecture model to characterize the dependencies among user 

stories, allowing for task prioritization and ensuring the inclusion of all required 

tasks (ID 3); 

▪ Introducing procurement and manufacturing activities in the architecture of the 

product backlog modeling their interdependencies with other user stories (ID 5); 

▪ Defining a model to consistently map work packages (coming from an upper 

organizational layer, if any) and external input/output to user stories and accounts 

for their interdependencies (ID 7); 

By overcoming those challenges, this thesis contributes to filling the gap in Agile theory 

and its coordination aspects with traditional product development processes identified in Section 

2.4. The approach proposed in this first stage significantly contributes to answering the first 

research question (specifically Section 3.1.5) and contributes to answering the structuring problem 

of the second research question (particularly Section 3.1.1). 

3.1.1 Product backlog architecture 

Agile does not have a process architecture as typically defined in systems engineering literature 

(Eppinger & Browning, 2018) but relies on the product backlog leaving the structuring exercise to 
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the team. This situation entails several challenges and adds uncertainties to the process (e.g., Sprint 

rescoping, schedule disruption, development interruption, interface mismatches) 

To overcome these challenges, leveraging the existent product backlog artifact, this thesis 

introduces the concept of product backlog architecture defined as “the collection of the user stories 

supplemented by the elicitation of their interactions”. 

The design structure matrix (DSM) is used to represent the product backlog architecture in 

a compact yet exhaustive format (Eppinger & Browning, 2018). A DSM is a square matrix in which 

cells on the diagonal represent the tasks, while marks in off-diagonal cells indicate activities 

interfaces. For each task, marks in the row indicate its inputs (sub-diagonal marks), while marks in 

the column define its feedbacks (super-diagonal marks). Activity names or acronyms are typically 

listed in an additional column on the left of the matrix (Figure 21). 

 

Figure 21. Notional example of DSM product backlog architecture 
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OS_VD_s ● ● ● ● ●

MB ●

PB ●

T Diss ● ● ● ● ● ● ●

B Diss ● ●
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The DSM provides a simple way to visualize the structure of an activity network and 

compare alternative process architecture. The scientific literature provides several methods as well 

as algorithms to analyze and optimize process DSM models (Eppinger & Browning, 2018). 

Within the product backlog definition, project participants are also asked to provide 

additional data about time and cost (discussed in section 3.1.2), resources required to perform the 

activities (discussed in section 3.1.3), and Work Breakdown reference from the consortium plan, if 

any (discussed in section 3.1.4). 

3.1.2 Scoring system: time and cost estimates 

One of the key elements for efficient planning, thus a successful implementation of Agile, is having 

reliable task effort estimates. Agile frameworks do not prescribe a unique method for teams to 

quantify the efforts, but they generally use some abstract metrics. Standard estimating practices 

include numeric sizing, t-shirt sizes, and the Fibonacci sequence. 

While the implementation process of such methods undoubtedly represents an effective 

team-building activity, the outcome is not always meaningful. The team members might not always 

share the same understanding of the metric or scale used. Furthermore, in hardware projects, where 

different disciplines are involved, complexity indexes might not be comparable. 

This thesis proposes to use a time and cost-based scoring system as a common language 

shared by the whole team across all the disciplines. Moreover, instead of deterministic estimates, 

stochastic variables are used to account for uncertainty. 

To define those estimates, a combination of expertise-based approaches and data-driven 

approaches are used. Expertise-based approaches are adopted when no quantified, empirical data 

are available. They represent a practical, low time-consuming, and efficient solution. In this case, 
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the development team is asked to provide a set of time and cost estimates in a Delphi-like method 

(Nowack et al., 2011; Rowe & Wright, 1999). Data-driven approaches are used instead when 

statistics from previous development projects or detailed information on the current one is 

available. 

These estimates have to be provided with their probability distribution to represent the 

uncertainty associated with activity time and cost. The literature proposes different probability 

density functions (PDFs) to represent such uncertainty (Hajdu & Bokor, 2014). The model 

proposed here adopts triangular distributions, which are simple to estimate from typically available 

programmatic data. Their definition requires three data points per task: Lower Boundary (LB), 

Most Likely Value (ML), and Upper Boundary (UP). The area under the probability density 

functions (PDF) has been normalized and set equal to one. The model assumes that task durations 

are not interdependent, and each activity’s time PDF also accounts for internal reworks. The 

expected PDP time is build based on all the considerations above. 

 Since cost is strongly related to time, the cost PDF for a given activity usually has a shape 

similar to the schedule one. We define for each task a correlation function based on the activity 

cost-time elasticity and organization capability (e.g., supply chain activities - longer lead time is 

usually associated with lower cost; design activities – mainly OPEX). 

The boundaries of cost estimates are based on historical data or expert opinion and can be 

deterministic or random variables. The overall PD cost is evaluated depending on the PDP 

architecture accounting for all activities interactions. PDFs provide additional information on the 

probabilities of different outcomes expressing a perception of the uncertainty. These estimates are 

summarized in the product backlog architecture as additional columns alongside the DSM (Figure 

22). 
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Figure 22. Complementary information provided within the product backlog architecture work-packages traceability, 

expertise required, cost and time estimates. 

3.1.3 Resource availability and disciplines involved 

Agile for hardware significantly differs from software version because of non-homogenous 

development environments requiring expertise from different disciplines. For this reason, while 

formulating user stories is also important to define the field of knowledge associated with them and 

include in the team all the expertise needed. 

CURSIVE includes expertise information in the product backlog architecture alongside 

time and cost estimates (Figure 22). To be highlighted, it does not pre-assign the task to people but 

only marks the discipline related to the task, including internal resources, i.e., development team, 

and external resources, i.e., procurement and manufacturing. Those data will be used during the 

project execution simulation, ensuring correct resource allocation and leveling. 

Task ID Task Name WP ID Expertise # Exp needed m
in

m
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de

m
ax

m
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m
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de

m
ax

1 VD 1 M 1 0.6 1 2 960 1600 3200

2 L H 1 M 1 0.6 1 1.4 960 1600 2240

3 Mtr_s 1 M 1 0.4 0.6 0.8 640 960 1280

4 Brg_s 1 M 1 0.8 1 2 1280 1600 3200

5 Shaft 1 M 1 0.1 0.2 0.6 160 320 960

6 Ring 1 M 1 0.2 0.4 0.6 320 640 960

7 Motor 1 1 M 1 0.2 0.4 0.6 320 640 960

8 G_h 1 M 1 0.2 0.4 0.6 320 640 960

9 Pn 1 M 1 0.4 0.8 1 640 1280 1600

10 Rk 1 M 1 0.4 0.6 1 640 960 1600

11 Lb 1 O 1 0.2 0.4 0.6 320 640 960

12 Lm 1 O 1 0.2 0.4 0.6 320 640 960

13 Lt 1 O 1 0.2 0.4 0.6 320 640 960

14 Lo 1 O 1 0.2 0.4 0.6 320 640 960

15 MM 1 O 1 0.2 0.4 0.6 320 640 960

16 SM 1 O 1 0.2 0.4 0.6 320 640 960

31 Main Board 1 E 1 2 3.6 4 3200 5760 6400

32 Power Board 1 E 1 1 1.8 2 1600 2880 3200

40 Pr VD 3 p 1 8 12 16 936 1170 1697

41 Pr L H 3 p 1 8 12 16 760 950 1378

42 Pr Mtr_s 3 p 1 8 12 16 696 870 1262

43 Pr Brg_s 3 p 1 8 12 16 800 1000 1450

44 Pr Shaft 3 p 1 3 4 8 2 2 5

weeks Currency

Prepare Data
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3.1.4 Hybrid-Agile in multiparty consortia 

A multi-tier architecture has been formulated to manage a Hybrid-Agile PDP ensuring efficient 

coordination between the consortium adopting stage-gate and the participants implementing Agile 

(Garzaniti et al., 2019b). The key feature of the proposed method is the coordination interface that 

reconciles the deliverables and activities of the two approaches (Figure 23). 

 

Figure 23. Hybrid product development process architecture 

The consortium layer sits at the top layer of the architecture. The consortium, as a 

coordinating agent of the PDP, provides overall management of the project. It is in charge of the 

governance of the project. The consortium members collegially define the mission requirements, 

the functional system requirements, the interfaces among all parties involved in the project and 

agree on project reviews and deliverables. The consortium is also responsible for strategic decisions 
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throughout the lifecycle of the project. Consortia can operate using either Agile or stage-gate PDP. 

In our research, we focus on consortia operating using traditional Stage-Gate processes. Due to its 

structured nature, stage-gate provides natural means of coordination through decision gates and 

milestones, and it has been proven to work with large, complex organizations. 

At the bottom layer of the architecture, we have the organization layer. This layer includes 

all the organizations participating in the project. Each project participant operates its own PDP and 

coordinates with others through interfaces with the consortium layer. 

The coordination is implemented through a coordination interface defined at the 

organization level. Each organization participating in the project maps the consortium work 

packages, milestones, and deliverables on their internal means of project management, such as 

product backlog and minimum viable products (MVPs) in the case of Agile. This layer can also 

implement information coordination through direct interfaces between the participating 

organizations. However, we neglect the latter in the current setting, focusing on the main structured 

means of coordination. 

3.1.5 Agile implementation viability 

Two cornerstones of Agile methodologies, and specifically the Scrum version, are the iterative 

enhancement of products and the implementation of projects through a sequence of Sprints 

(Schwaber & Sutherland, 2020). While these distinctive features of Agile are highly beneficial for 

getting early customer feedback and derisking products from both technical and business 

perspectives, they might come at not negligible cost or time expense. Furthermore, the 

implementation of some hardware-specific activities within a Sprint timebox (typically ranging 

from a couple of weeks to one month) can be challenging, if not unfeasible at all, due to the physical 

aspect of the system (Garzaniti et al., 2019a). 
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Therefore,  the Agile viability indexes (AV) are introduced. They are a set of non-dimensional 

metrics, ranging from 0 to 1, aimed at assessing the viability of implementing Agile in a given 

project based on time (AVT) and cost (AVC) data. 

The time-based index provides information at the task level (1) and project level (2), 

accounting for both Sprint feasibility (SV) and iteration viability (IV). These two core aspects of 

Agile development, Sprint feasibility and iteration viability, are averaged into a unique metric 

(AVT). The task-specific index AVT
i uses the most likely value of time estimates, TMLi, expressed in 

weeks as reference. The threshold level adopted in eq (1) formulation relates to the recommended 

maximum Sprint, i.e., four weeks. This value is consistent with the latest Scrum guide (Schwaber 

& Sutherland, 2020), stating that Sprints “are fixed length events of one month or less to create 

consistency”. For TMLi values higher than recommended Sprint length, AVT
i focuses on providing 

information on the extent to which a Sprint is unfeasible. 

 𝐴𝑉𝑖
𝑇 = {

 
1

2
(𝑆𝑉𝑖 + 𝐼𝑉𝑖) 𝑖𝑓 𝑇𝑀𝐿𝑖 ≤ 4

𝑆𝑉𝑖 𝑖𝑓 𝑇𝑀𝐿𝑖 > 4
 (1) 

 𝐴𝑉𝑝𝑟𝑗
𝑇 =

∑ 𝐴𝑉𝑖
𝑇

𝑛

𝑛
 (2) 

AVT
prj provides a rough indication of the most suitable development process for the 

considered project: pure Agile (AVT
prj > 0.75), Hybrid-Agile (0.25 < AVT

prj ≤ 0.75), or stage-gate 

(AVT
prj ≤ 0.25). The thresholds are correlated to the indexes formulation contributing to the AVT, as 

discussed in detail in the following paragraphs. 

AVTi offers task-specific information (i = 1,…, n with n = number of tasks), supporting 

decision-makers in defining the detailed development process structure that best fits the project 

characteristics (e.g., identify activities for which iterations would introduce a high risk of schedule 

overrun; identify the set of activities implementable in Sprints). 
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The Sprint viability index (SVi) assesses the feasibility of completing an activity within the 

Sprint time-boxed periods (3). 

 𝑆𝑉𝑖 =

{
 
 

 
 
−0.250 ∙ 𝑇𝑀𝐿𝑖 + 1 𝑖𝑓 0 ≤ 𝑇𝑀𝐿𝑖 ≤ 2

−0.125 ∙ 𝑇𝑀𝐿𝑖 + 0.75 𝑖𝑓 2 < 𝑇𝑀𝐿𝑖 ≤ 4

−0.25 ∙
𝑇𝑀𝐿𝑖−max(𝑇𝑀𝐿𝑖)

max(𝑇𝑀𝐿𝑖)−4
𝑖𝑓 𝑇𝑀𝐿𝑖 > 4

 (3) 

As mentioned before, TMLi is the most likely value of time estimates of each task i expressed in 

weeks. It is used as a reference metric in calculating the index. Three different ranges are set for 

the TMLi, formalizing the shared understanding among practitioners regarding Sprints duration, as 

reported in the scientific literature (Atzberger et al., 2020; Schmidt et al., 2018b, 2019), as well as 

the industry surveys (Age-of-Product.com, 2018; Saat Network GmbH, 2008, 2011). The 

maximum recommended length for a Sprint is four weeks, as reported in the latest Scrum guide 

(Schwaber & Sutherland, 2020). Beyond this threshold, the process falls back on traditional 

approaches. Below four weeks, shorter times are associated with higher Sprint efficiency, allowing 

for faster MVPs evolution, thus convergence to the final product. The function approximating the 

Sprint Viability index has been estimated based on the industry surveys data (Age-of-Product.com, 

2018; Saat Network GmbH, 2008, 2011). Data reveal that practitioners’ consensus has converged 

over the last decade in considering the two weeks Sprint as more effective, thus the widest adopted 

(Figure 24-a). Data also suggest that practitioners typically allocate from four to thirteen user stories 

per Sprint (Figure 24-b), with a team composed mainly of seven or more members (Figure 24-c). 

Of course, those surveys exhibit few limitations. First, not all surveys report a careful and 

transparent demographics selection and analysis; therefore, data might be biased based on the job 

position and experience of the survey participants. Second, surveys address different sectors, thus 
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including different products with different levels of product physicality. Nevertheless, those also 

are the most recent and comprehensive data currently available. 

Building on those data, the SVi index has been formulated to yield a value between 

1 and 0.75 for TMLi lower than or equal to 2 weeks, a value between 0.25 and 0.75 for TMLi between 

2 and 4 weeks, and a value between 0.25 and 0 for TMLi greater than four weeks. These ranges are 

then used to provide recommendations for both project and task-specific indexes: Agile 

(AVT > 0.75), Hybrid-Agile (0.25 < AVT ≤ 0.75), or stage-gate (AVT ≤ 0.25). 

  

  

Figure 24. Survey data on sprint length, committed user stories and team composition 
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The iteration viability index (IVi) evaluates the relative weight of a task over the project (4). 

It provides an indication of task granularity, thus the effect of a potential iteration of the given task 

on the project schedule. The IVi index ranges from 0 to 1, and it is formulated to provide a closer 

to one value for shorter TMLi (one corresponds to the shorter task in the project) and a closer to 0 

value for longer TMLi. This formulation, leveraging the relative weight of a task over the product 

development, allows for a project-independent index that can be used across a variety of projects. 

 𝐼𝑉𝑖 = 1 − [

𝑇𝑀𝐿𝑖
∑𝑇𝑀𝐿𝑖

−min(
𝑇𝑀𝐿𝑖
∑𝑇𝑀𝐿𝑖

)

max(
𝑇𝑀𝐿𝑖
∑𝑇𝑀𝐿𝑖

)−min(
𝑇𝑀𝐿𝑖
∑𝑇𝑀𝐿𝑖

)
] (4) 

The cost-based Agile viability index (5). accounts for the relative weight of each task 

compared to the average task (i.e., the median value of task cost samples 𝐶̃𝑀𝐿). It provides 

information on the impact on the project cost of a potential iteration of the given task. 

 𝐴𝑉𝑖
𝐶 =

{
 
 

 
 0.5∙[𝐶𝑀𝐿𝑖−𝐶̃𝑀𝐿]

min(𝐶𝑀𝐿𝑖)−𝐶̃𝑀𝐿
+ 0.5 𝑖𝑓 𝐶𝑀𝐿𝑖 ≤ 𝐶̃𝑀𝐿

0.5∙[𝐶𝑀𝐿𝑖−𝑚𝑎𝑥(𝐶𝑀𝐿𝑖)]

𝐶̃𝑀𝐿−max(𝐶𝑀𝐿𝑖)
𝑖𝑓 𝐶𝑀𝐿𝑖 > 𝐶̃𝑀𝐿

 (5) 

The AVC
i index ranges from 0 to 1, and it is formulated to provide a closer to one value for 

lower CMLi (one corresponds to the less expensive task in the project) and a closer to 0 value for 

higher CMLi. This AVC
i formulation leveraging the relative weight of a task over to the average task 

allows for a project-independent index that can be used across a variety of projects. The cost-based 

index at the project level (AVC
prj) can be derived using AVC

i in (2). The same threshold values 

presented for AVT
pr are applied to AVC

prj to have a unified formulation. However, in the case of the 

cost indexes, the thresholds are intended as a rough indication. Agile teams might select a different 

threshold based on different reference metrics, such as a percentage of the R&D budget or the total 

project budget. 
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These metrics, providing a measure of tasks’ intrinsic characteristics, can be used as a 

proxy to understand if both work and system decomposition (i.e., task granularity and system 

modularity) are suitable for Agile implementation. In support of this statement, there is a solid body 

of knowledge developed over the last twenty years relating product modularity and product and 

process granularity (Chiriac et al., 2011; Eckert et al., 2015; Maier et al., 2017; Sosa et al., 2003). 

Specifically, the reader can refer to two seminal research works discussing the relation between 

modularity and granularity in engineering systems design and their effect on process cost and time 

performance (Maier et al., 2017, 2015). A detailed discussion of those concepts is out of the scope 

of this thesis as it would require separate research. Instead, the work presented here leverages 

previous research in the field and adopts those concepts in the context of Agile development of 

physical products. The relation between those concepts and the Agile implementation suitability is 

further discussed in the case studies and summarized in their interim conclusion. 

Agile viability indexes data are summarized in a chart as in Figure 25 for easy reading and 

interpretation. Based on these data, teams can refine user stories definition and have a first 

understanding of when and how to use Agile within the development project. 

 

Figure 25. Agile Implementation Viability Chart each point represents a task 
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3.2 Simulation 

In the framework proposed in this thesis, the product development process (PDP) is characterized 

as a network of activities exchanging information and deliverables (Figure 26). The network 

topology is defined by the product backlog architecture, which serves as an adjacency matrix. 

Activities generate an output based on given inputs. A change in the inputs requires revising the 

activity. The rework affects the outcomes of the activity and potentially propagates through other 

tasks. 

Task i
Task i+1

Task i+2

Task i+3

Task i+4

Task i+5

 

Figure 26. Notional example of activities network 

While input changes always require revising the task (to verify the consistency of data 

exchanged), the impact of this new flow of information may vary. When an iteration occurs, an 

upstream task i is reworked due to feedback from downstream activities (i + n). The different impact 

of this rework is reflected in the time and the related cost required to complete the task again, as 

well as the number of downstream activities affected by it. The model also considers that iterate 

executions of the same activity take less time than the original duration (i.e., learning factor). The 

cost is estimated accordingly. 



3.2 Simulation 

67 

 

The model uses a discrete event simulation to compute PD process time and cost for 

different batches of inputs (Figure 27). Each simulation run begins at system state 0 (all tasks in 

the product backlog). Activities duration and the related cost for each simulation are randomly 

sampled within PDFs boundaries fitting to the probability distributions shapes (we have also 

implemented the Latin Hypercube method (Tang, 1993) if users prefer a different sampling 

approach). 

 

Figure 27. Schematic representation of simulation process  

The simulation performs tasks using an Agile Kanban board (Rodríguez et al., 2018). 

Initially, all activities are in the “to do” state; the simulation runs till all the tasks move in the “done” 

state. In each system state, the model determines the activities to be done, verifying the 

availability/readiness of the inputs and the availability of resources. If input requirements are 

satisfied, the task is moved “in progress”. If input requirements are met, the task is moved “in 

progress”. The same task is then moved “in done” according to its working elapsed time. Once an 

activity ends, the cost of the work done is added to the cumulative cost. The total elapsed time 

represents the process duration. 
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Algorithm 1. Process execution for each run of the simulation 

Input: task list, DSM, time and cost estimates, task type, resource 

Output: Process Time, Process Cost, state transition sequence {Time} and {Cost} 

def Task.state: to do=0, in progress=0.5, done=1 

1 Randomly sample time and cost of each activity 

2 Initialize variables and set all Task.state=0 

3 While not all Task.state==1 do 

4  | For all tasks in the tasks list do 

5  | | Identify the tasks where Task.state=0 

6  | | Identify the set of tasks that meet precedence and resources constraints 

7  | | Set Task.state =0.5 and allocate the resources 

8  | | Work on the tasks (increment Task.progress by time step t) 

9  | | If Task.progress=100%, then 

10 | | | set Task.state=1 and empty the resource 

11 | | End 

12 | | If Task.type==(procurement or AIT) and alert is present then 

13 | | | Set Task.state=0 and empty the alert 

14 | | End   

15 | | Look for iteration in upstream activities generated by completed tasks 

16 | | If an iteration is triggered then 

17 | | | Se the upstream Task.state=0 

18 | | | Update time and cost estimates samples 

19 | | | propagate iteration effect to procurement and AIT tasks 

20 | | | If those AIT and procurement Task.state==1 then 

21 | | | | Set Task.state=0 

22 | | | | Update time and cost estimates samples 

23 | | | Else 

24 | | | | Set a procurement or AIT alert 

25 | | | End 

26 | | End 

27 | End 

28 End 

29 Return Process Time, Process Cost, state transition sequence {Time} and {Cost} 
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The simulation adopts a Monte Carlo approach (Theodoridis, 2020). It runs several times 

and generates a set of pairs cost, C, and time, T, samples. The collection of all C and T samples 

respectively form cost and time distribution. Together, they constitute a joint cost-schedule 

distribution. Several runs (s) are required to get stable distributions. Batches of simulation, n, are 

run until both expected value and standard deviation of the T and C distributions stabilize within 

precision ε according to equations (6) and (7) reported here only for cost. 

|𝜎𝐶,𝑠
2 − 𝜎𝐶,𝑠−𝑛

2 |

𝜎𝐶,𝑠−𝑛
2 < 𝜀 (6) 

|𝐸[𝐶𝑠] − 𝐸[𝐶𝑠−𝑛]|

𝐸[𝐶𝑠−𝑛]
< 𝜀 (7) 

The results of this phase are summarized in a chart reporting joint time and cost probability 

distribution plots of the simulated scenarios (Figure 28). The summary is handy to quickly compare 

process cost and time against budget and schedule target, inform on potential risks of schedule or 

cost overrun, and eventually support selecting the best value-at-risk solution to comply with project 

targets. 

 

Figure 28. Output dashboard of scenario analysis 
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3.3 Planning 

In most projects, budget and schedule targets are set a priori; therefore, agility in the PDP shall 

comply with these constraints. The objective is then to fine-tune all the process implementation 

variables to meet the cost and time requirements.  

The challenges in this undertaking are 1) Defining an optimal number of Sprints; 2) 

Defining the Sprint backlog and duration 3) Defining the Sprint sequence, thus MVPs transition 

strategy. Results of this process are then summarized in a dashboard of easy interpretation. 

The model proposed here considers the schedule associated with each scenario resulting 

from the simulation as a set of data points. Thus, the Sprint definition becomes a clustering problem. 

In statistics, and specifically in statistical and exploratory data analysis, clustering or cluster 

analysis is the task of grouping a set of objects (data points) so that the objects in the same group, 

called a cluster, are more similar to each other than those in other groups (Shannon, 2007). 

Several methods are available to tackle clustering problems (Butta et al., 2021; Chander & 

Vijaya, 2021). Each of them involves some challenges in defining the set of parameters required 

by the given method to solve the clustering task. In this work, given the type of data we have to 

handle, we adopt a partitioning-based clustering technique, relying on squared error (Chander & 

Vijaya, 2021).  

In such kinds of methods, the first step is to identify the optimal number of clusters. This 

is a recurring issue in clustering analysis and a separate question from the clustering process itself. 

Even if the literature addressed this concern (Davies & Bouldin, 1979; De Amorim & Hennig, 

2015; Pimentel & de Carvalho, 2020; Ünlü & Xanthopoulos, 2019), there is still no definitive 
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answer to the question. The optimal number of clusters is somehow subjective and depends on the 

method used to measure similarities and the parameters used for partitioning. 

To evaluate the optimal number of clusters, CURSIVE uses a heuristic method based on 

the silhouette score (Rousseeuw, 1987). Our algorithm evaluates the silhouette values for different 

numbers of clusters and finds the solution where adding a cluster no longer results in significantly 

better data modeling.  The approach attempts to maximize the median of the silhouette over each 

cluster for a given number of clusters, minimizing its standard deviation. It has also been 

implemented the same heuristic method using a different metric: the within-cluster sum of point-

to-centroid distances. The comparison of results derived from different metrics is used for 

validation purposes (Sugar et al., 2003). 

As a second step, the framework uses the fuzzy C-means algorithm (Berget et al., 2008; 

Zhang et al., 2020) to define the Sprints backlog. Compared to crisp clustering methods, which 

assign every object to a unique cluster, fuzzy clustering provides estimates on the degree of 

membership of each object to each cluster (i.e., the probability of membership to the different 

groups). The fuzzy C-means algorithm (FCM) aims to minimize the objective function J as in (8) 

𝐽 =∑∑𝑤𝑖𝑗
𝑚𝑑𝑖𝑗

2

𝐶

𝑗=1

𝑁

𝑖=1

𝑚 > 1 

where 𝑤𝑖𝑗
𝑚 ∈ [0 1] are the membership values telling the degree to which element, 𝑥𝑖, 

belongs to the cluster, 𝑐𝑗, and 𝑑𝑖𝑗 are the distances between the point 𝑥𝑖 and the centroid 𝑐𝑗. The 

index i=1, …, N refers to the object number, while the index j=1, …, C refers to the cluster number. 

The hyper-parameter m is called fuzzifier and determines the fuzziness of the clustering. Typically 

it is set equal to 2, as this value has proven to give good results with the FCM (Berget et al., 2008). 

(8) 
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Data are clustered based on process elapsed time, cost, task dependencies, and resource 

availability. As inclusion criteria in the clustering process, thus Sprint definition, the Agile viability 

indexes are used. Excluded tasks are then mapped on the suggested Sprints. The outcome of the 

Sprint definition process offers information on the set of tasks to be performed within each Sprint, 

the Sprints’ length and cost, and the resources required to perform the activities. Every Sprint has 

its own goal. Therefore, Sprints’ lengths, as well as the Agile team, may vary within the 

development. The framework accounts for all those questions and suggests a solution that best fits 

the scenario constraints. 

The last step in the Sprint planning process consists of defining the Sprint sequence (i.e., 

the MVPs delivery sequence) and the related transition strategy. Building on the cluster analysis 

results, the framework suggests an optimal Sprints sequence taking into account the Sprints 

interdependencies (including product interdependencies and relevant lifecycle phases such as 

design, procurement, assembly, integration, testing, and validation). 

 

Figure 29. Output dashboard of the planning phase 
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The output dashboard (Figure 29) reports the traditional Gantt chart of the process (top left 

corner), a Sprint backlog mapped over the Gantt chart (top right corner), the number and sequence 

of Sprint (bottom left corner), and the detailed time and cost breakdown structure for activity 

sequence and iterations (bottom right side). 

The approach proposed in this last stage answers the second research question, with a 

particular focus on the process execution support problem. With reference to the catalog of gaps 

summarized in Table 4, this section has addressed the following challenges: 

▪ To provide a method for defining the Sprint length based on activities' inherent 

characteristics and Minimum Viable Product objectives. (ID 2). 

▪ To provide a method for defining Sprint backlog, accounting for dependencies 

among user stories, allowing for task prioritization, and ensuring the inclusion of 

all required tasks (ID 3). 

▪ To provide a method for managing procurement and manufacturing activities, 

accounting for interdependencies with other user stories (ID 5). 

▪ To provide a method to handle resource allocation and leveling in a non-

homogenous development environment (ID 6) 

It shall be remarked that the dashboards provided by this system do not aim to replace team 

decision-making activities. Instead, the suggested Sprint backlog and MVPs sequence is meant to 

be used within the Sprint planning meetings as a starting point for the discussion. The solution 

proposed here aims to support the team's decision-making by offering quantitative analyses and 

specific metrics to benchmark all the possible alternatives. 
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3.3.1 Continuous process tracking and improvement 

One of the distinctive characteristics of Agile methodologies is the adaption of the development 

process as the development progresses. CURSIVE accounts for it by including a continuous process 

tracking and improvement feature as illustrated in the Figure 20 flowchart and recalled in Figure 

30 below. 
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Figure 30. Continuous process tracking and improvement 

Since CURSIVE is a data-driven model, the adaptation of the process as it progresses is 

ensured by updating the input data as they become available and rerunning the simulation and 

planning steps. While the project is running, end-users can first track and assess the project status 

by comparing the forecast with the actual implementation. Then, if major deviations occur, they 

define an updated version of the product backlog architecture by a) considering a subset of the 

initial product backlog, b) updating the task list, c) updating tasks dependencies d) updating the 

time and cost estimates, e) permutations of the above (Figure 31). Lastly, end users shall re-execute 

simulation and planning stages. Same principles and approaches on project structuring, Sprint 

planning and MVPs definition (as presented in sections 3.2, 3.3) are applied. The new output will 

offer an updated perspective on the PD, accounting for the new knowledge acquired while 

developing the product as well as the context evolution. 
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Figure 31. Product backlog architecture updates 

The product backlog architecture follows the same rules of the Scrum product backlog 

artifact in terms of document dynamism, ownership, and maintenance strategy. The main difference 

relies on the elicitation of task interactions and the integration with quantitative time/cost estimates 

and engineering discipline information. 

The framework proposed here also includes Sprint review and retrospective events as 

defined in the Scrum theory. Nevertheless, those two essential features are not discussed in detail 

because CURSIVE totally embraces the practice proposed in the Scrum guide (Schwaber & 

Sutherland, 2020). The main difference between traditional Scrum and CURSIVE is the aids used 

during the Sprints review and retrospective. The latter adopts structuring, simulation and planning 

tools, including visual aids as presented in the previous sections of this chapter. 
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3.3.2 MVP 

As discussed in the literature review (Section 2.2.3), the MVP definition in the context of physical 

products is still an open question. The constraint of physicality hampers the implementation of a 

fully functional product increment at each iteration. Moreover, current literature still lacks 

perspective in capturing the MVP technical and development process aspects. 

In an attempt to provide a formulation that fits better in the context of hardware systems 

and focuses more on the development process, we define the MVP as “a complete and testable 

deliverable able to mitigate the technical risk associated with the product or a subset of it”. 

According to (Unger & Eppinger, 2009), technical risk is defined as the uncertainty related 

to whether a new product is technologically feasible and whether it will perform as expected, given 

precise product specifications. This uncertainty on both feasibility and performance can be 

mitigated at different levels of the product development process through verification activities. 

Each layer of verification activities will lead to an improvement in the maturity of the product till 

eventually reaching a system ready to be deployed in the operational environment. Therefore, it has 

been decided to use the verification and validation activities (thus the technical risk retired) as a 

proxy for the different levels of product maturity. 

Given the capital intensity required to develop complex physical systems and the typically 

large procurement times, Sprint planning shall account for verification and validation activities 

performed on each MVP to ensure consistent improvement of product maturity over the Sprints 

sequence. 

To provide engineering teams with a unified system to correlated MVPs (and their 

characteristics), verification and validation (V&V) activities, and product maturity, an MVP 

taxonomy has been developed (Table 5). 
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Table 5 Taxonomy of MVP 

MVP Acceptance criteria: objective on MVP 

Fidelity Artifacts Representation 

mode 

V&V Activities 

Low Diagram Digital/Abstract Verification Analysis 

Low Numerical 

Model 

Digital/Abstract Verification Numerical simulation 

Medium/

High 

Digital 

Mockup 

Digital Verification Analysis, Simulation 

Medium Physical 

Mockup 

Physical Verification Physical inspection, Functional Test 

Medium Lab setup Physical Verification/ 

Validation 

Functional Test, Performance Test 

High Product 

Subset 

Physical Verification/ 

Validation 

Functional Test, Performance Test 

High Product Physical Validation Performance Test, Day-in-the-life 

Such a model, mapping verification and validation activities on the MVP artifacts, enables 

teams to trade off engineering efforts required to produce a given MVP and the risk retired by the 

Sprint outcome. Figure 32 offers a notional example of a potential tradeoff among Sprint length 

V&V activities and MVP artifacts. 

 

Figure 32. MVP mapping: V&V vs. Sprint length  
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3.4 Illustrative case 

In this section, the decision support system is applied to an illustrative example. The objective is to 

demonstrate the use of such a system step by step. As an example case1, it has been chosen a 

software-defined X-Band transmitter for CubeSat. Even if it is a relatively simple product, its 

development might not be that straightforward. 

 

Figure 33. Artistic representation of an X-Band transmitter, source (EnduroSat, 2021) 

3.4.1 Process Structuring 

The first step consists of identifying all the activities required to develop such a system and define 

the dependencies among those activities. In structuring the process, the development team has to 

account for design, procurement or manufacturing, as well as verification and validation activities. 

Starting from a system architecture model or a system block diagram, the development 

team can brainstorm on the activities required to develop the product and list them. For instance, 

the X-band transmitter would include a baseband signal processing unit (FPGA), a digital-to-analog 

converter, a baseband filter, a phase-locked loop oscillator, a mixer, an X-Band filter, some 

amplifier stages, and some input/output interfaces. 

 
1 The author would like to thank his colleague Simone Briatore for providing valuable insights and details on 

the input data used in developing this illustrative case. 
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Building on this list, the team can define activities related to the development of each 

component. When the team feels confident with the level of granularity of activities decomposition, 

it can start collecting the task in a DSM defining the interdependencies. Figure 34 summarizes the 

resulting product backlog architecture. It includes design activities (marked in green), procurement 

or manufacturing (marked in orange), and AIT activities (marked in blue).  

  

Figure 34. Illustrative case – product backlog architecture 

As a second step, the team is asked to provide additional data about the time, cost, and 

resources required to perform the activities. The information can be based on historical data, 

experts’ opinion, or their combination. Each team member is asked to provide three values for both 

time and cost, corresponding to the optimistic value, the most likely value, and the worst-case value.  

The team iterates on the effort estimation till it reaches the consensus. Then, the values are 

summarized in a table and attached to the product backlog architecture as complementary 

information (Figure 35). This data package constitutes the input for the simulation step. 
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Figure 35 Illustrative case – Complementary information attached to the product backlog architecture  

While defining the product backlog architecture, CURSIVE provides the team with 

information on the viability of implementing Agile. The framework evaluates a viability index for 

each task in terms of time (Figure 36- left) and cost (Figure 36- right). Those data allow project 

participants to optimize the process structure already at this stage, before the simulation. 

 

Figure 36. Illustrative case – Agile viability indexes 
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2 Design Digital-to-analog converter 1 E 1 1 1.0 1.0 3.0 0.2 0.2 0.6

3 Design Base band filters 1 E 1 1 1.0 1.0 3.0 0.2 0.2 0.6

4 Design phase locked loop oscillator 1 E 1 1 1.0 1.0 5.0 0.2 0.2 1.0

5 Design Mixer 1 E 1 1 1.0 1.0 2.0 0.2 0.2 0.4

6 Design X-Band Filter 1 E 1 1 1.0 1.0 3.0 0.2 0.2 0.6

7 Design amplifier stages 1 E 1 1 2.0 3.0 5.0 0.4 0.6 1.0

8 Design PCB RF layout 1 E 1 1 5.0 5.0 10.0 1.0 1.0 2.0
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21 Functional test product 1 AIT 1 5 2.0 3.0 5.0 0.4 0.6 1.0
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For instance, the procurement of the PCB seems to be inefficient in terms of both time and 

cost. A possible strategy is to increase the system modularity, meaning having different PCBs for 

the RF block and the power block. This would allow the team to iterate more on the specific PCB 

subsets at a lower cost. Naturally, this decision comes together with other technical considerations 

on the efficiency of the overall systems and performance implications. 

For the illustrative case purposes, let us suppose that the team prefers to have a more 

integrated system because more compact and more power-efficient, thus keeping the process 

structure defined in Figure 34. 

3.4.2 Simulation 

CURSIVE runs 3000 simulations (in batches, s, of 500) to stabilize both mean and variance of time 

and cost distributions within precision, ε = 10-4 (Figure 37), according to equation (6), (7). 

 

Figure 37. Mean and variance over the number of simulations for time (right) and cost (left) distributions 

As a result of the simulation, the team gets distributions of time and cost. Figure 38 (left 

side) shows the probability density functions (PDF) of simulated cost and schedule outcomes. 

Figure 38 (right side) shows the joint PDF resulting from paired cost and schedule outcomes. 
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Figure 38. Illustrative case - Simulation output Time and Cost Probability Distribution Functions (PDFs) (on the left) 

Joint Time and Cost PDF contour plot of the simulated scenarios (on the right) 

Such graphs are particularly useful to quickly compare process cost and time against budget 

and schedule targets. During the contract negotiation phase, it can be used to tailor the project 

schedule and budget and minimize programmatic risks. For instance, the delivery can be set in 

twenty-two weeks, with a budget of 28.5kEUR. From the graph, it can be easily realized that it is 

a tight schedule (likelihood of meeting the time target 8.6%) and a small budget (likelihood of 

meeting the cost target of 8.4%).  

Another critical piece of information retrievable from the graph is the time and cost of 

iterations on physical MVPs. In Figure 38, the distributions exhibit three distinct areas 

corresponding to three different MVPs strategies. The first peak in the distributions corresponds to 

two physical MVPs, the second peak corresponds to three MPVs, and the third one to four. Each 

of the three macro-scenarios (i.e., MVP strategy) corresponds to different verification activities 

performed on a given physical MVP. Relying on these data, engineering teams can define a 

development strategy to reach the desired product maturity that meets time on time and budget 

constraints and assessing its feasibility. 
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3.4.3 Planning 

Let us consider the notional case of delivering the system within twenty-two weeks. The objective 

is then to meet the schedule constrain, minimizing the cost. Providing the time target, CURSIVE 

identifies a baseline scenario minimizing the root mean square error between targets and available 

scenario data (Figure 39). The subsequent Sprint planning and MVPs structuring is then constrained 

to these targets. 

 
Figure 39. Illustrative case - Gantt chart of the baseline scenario meeting budget and time constraints design activities 

(marked in green and black), procurement or manufacturing (marked in orange), and AIT activities (marked in blue). 

The heuristic approach deployed to identify the optimal number of MVPs suggests 

structuring the development process in seven Sprints. Combining this information with the product 

backlog architecture, the framework outlines the Sprints backlog clustering the user stories. Figure 

40 shows the suggested Sprints planning. 

The first Sprint lasts for two weeks, and it is devoted to design the baseband signal 

processing (FPGA), the digital-to-analog converter, the baseband filters, the phase-locked loop 

oscillator, the mixer, the X-Band Filter. The second Sprint lasts for two weeks, and it is dedicated 
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to designing the amplifier stages and the PCB layouts, refining the functional blocks defined in the 

first Sprint, and defining the In/Out interfaces. The third Sprint lasts for three weeks and a half. It 

is mainly dedicated to the simulation of PCB RF layout and refining the system's design based on 

the simulation results or potential issues encountered during the layouts’ definition. In this sprint, 

the team also initiate the procurement of connectors. The fourth Sprint lasts for four weeks and 

mainly relates to finalizing the PBC layout (RF, digital, and power), designing the external case, 

and manufacturing the PCB. 

 

Figure 40. Illustrative case - Sprints Backlog 

Sprint five lasts for three weeks and relates to PCB assembling and preliminary functional 

tests. Those preliminary functional tests provide feedback to the PCB layout definition that is then 

refined and consolidated within the same Sprint. The Sprint six lasts for four weeks, and it is 

devoted to final PCB version manufacturing assembling, and testing. The last Sprint lasts for two 

weeks, and it is entirely devoted to assembly integration and testing of the final product. 
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The outcome of the Sprint definition process offers information on the set of tasks to be 

performed within each Sprint (Figure 40), the Sprints durations, and the related cost Figure 41. 

 

Figure 41. Illustrative case - Sprint sequence and costs 

This information can be traced back to the MVP taxonomy provided in Table 5, ensuring 

a consistent product improvement over the Sprints sequence and a balance between Sprint length 

and TRL achieved. Table 6 summarizes the map of the MVP for the current case study related to 

the MVP taxonomy. 

Table 6: Map of MVPs related to the MVP taxonomy 

Sprint MVP Acceptance criteria: objective on MVP 

ID Length Fidelity Artifacts Repr. mode V&V Activities 

1 2 Medium Schematics Digital Verification Analysis 

2 3 High PCB layout Digital Verification Analysis 

3 3 High PCB layout Digital Verification Simulation 

4 3 High Product Subset Physical Verification Inspection 

5 2 High Product Subset Physical Verification Functional Test 

6 4 High Product Subset Physical Verification Functional Test 

7 2 High Product Physical Verification Performance Test 



Chapter 3. A decision support system 

86 

 

The framework also provides additional insights about the process, unfolding the time and 

cost of each required to perform the different activities as well as the time and cost of iterations 

(showed as different staked color bars) for the given scenario (Figure 42). The additional 

information can help the development team reasoning on the cost-benefit of the selected 

implementation strategy and evaluate the product maturity improvement associated with the MVP 

delivery sequence. 

 

Figure 42. Illustrative case - Tasks Time and Cost Breakdown 

As demonstrated in this simple case study, CURSIVE offers a set of methods and tools to support 

engineering teams in structuring and planning a development project. It helps project managers in 

defining the most viable development approach. It supports teams in clearly understanding the 

effect each task and each iteration cycle has on the cost and the schedule of the entire project; thus, 

it helps the team navigate programmatic and technical tradeoffs. All this information can support 

the fine-tuning of the process structure to increase process robustness, minimizing its sensitivity to 

potential design changes occurring during project execution. 
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3.4.4 Comparison with traditional project management approaches 

This section considers the illustrative case presented above and applies traditional project 

management approaches, specifically the Program Evaluation and Review Technique (PERT) and 

the Critical Path Method (CPM). The comparison will provide a better understating of the limitation 

of traditional approaches, thus highlighting the benefits and the novelty of the framework proposed 

in this thesis. 

As mentioned in the literature review, one of the main shortcomings of those traditional 

approaches is that they rarely model or analyze iterations. Furthermore, the PERT/CPM (Wiest & 

Levy, 1977) accounts only for the precedence constraints (Ben Issa & Tu, 2020). 

In order to apply the PERT/CPM to the illustrative case study, the first step is to reshape 

the data in the required format. The tasks dependencies, i.e., tasks predecessors, are identified from 

the DSM in Figure 34. The expected time (te) required to complete an activity is evaluated according 

to eq (9), with a standard deviation evaluated according to eq (10) (Habibi et al., 2018; Wiest & 

Levy, 1977) 

𝑡𝑒 =
𝑇𝐿𝐵 + 4𝑇𝑀𝐿 + 𝑇𝑈𝑃

6
 (9) 

𝜎𝑡𝑒 =
𝑇𝑈𝑃 − 𝑇𝐿𝐵

6
 (10) 

The expected time (Te) required to complete a path in the project (i.e., a sequence of 

activities), according to classical PERT, is equal to the sum of all the te in the path, as reported in 

eq (11), with a standard deviation evaluated according to eq (12). 

𝑇𝑒 =∑𝑡𝑒𝑖

𝑛

𝑖=1

 (11) 
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𝜎𝑇𝑒∑𝜎𝑡𝑒𝑖
2

𝑛

𝑖=1

 (12) 

The PERT data so evaluated are summarized in Table 7. Early start and finish, as well as 

late start and finish, have been estimated based on the predecessors derived from the DSM. 

Table 7 PERT data (durations are presented in days) 

 

Starting from those data, the next step is to create an activity network and identify the 

critical path (CP), defined as the longest sequence of activities (in terms of time) that must be 

completed to conclude a project successfully, from start to finish. The activity network and identify 

the critical path are presented in Figure 43. In this case study the critical path is represented by the 

sequence of activities CP= [1, 2, 3, 4, 5, 7, 8,10, 11, 13, 14, 17, 18, 19, 20, 21]. The time associated 

with the critical path is 11.5 weeks with a standard deviation σCP = 1.3 weeks. It is easy to observe 

that the result is significantly lower compared to the estimates provided by the framework prosed 

Task ID Predecessor Early Start Duration Early Finish Late Start Slack Late Finish

1 0,0 5,8 5,8 0,0 0,0 5,8

2 1 5,8 1,3 7,2 5,8 0,0 7,2

3 2 7,2 1,3 8,5 7,2 0,0 8,5

4 3 8,5 1,7 10,2 8,5 0,0 10,2

5 4 10,2 1,2 11,3 10,2 0,0 11,3

6 5 11,3 1,3 12,7 13,2 1,8 14,5

7 5 11,3 3,2 14,5 11,3 0,0 14,5

8 3  & 4  & 5  & 6  & 7 14,5 5,8 20,3 14,5 0,0 20,3

9 8 20,3 7,2 27,5 21,5 1,2 28,7

10 1  & 2  & 4  & 5  & 7  & 8 20,3 3,0 23,3 20,3 0,0 23,3

11 1  & 2  & 8  & 10 23,3 3,2 26,5 23,3 0,0 26,5

12 1  & 7 14,5 3,0 17,5 25,7 11,2 28,7

13 8  & 10  & 11  & 12 26,5 2,2 28,7 26,5 0,0 28,7

14 8  & 9  & 10  & 11  & 12  & 13 28,7 9,2 37,8 28,7 0,0 37,8

15 12 17,5 5,5 23,0 32,3 14,8 37,8

16 13 28,7 9,7 38,3 43,0 14,3 52,7

17 14  & 15 37,8 3,2 41,0 37,8 0,0 41,0

18 17 41,0 5,8 46,8 41,0 0,0 46,8

19 17  & 18 46,8 5,8 52,7 46,8 0,0 52,7

20 16  & 17  & 18  & 19 52,7 1,8 54,5 52,7 0,0 54,5

21 20 54,5 3,2 57,7 54,5 0,0 57,7
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in this thesis. Mainly because the PERT/CPM does not account for any kind of iterations and 

typically does consider resource allocation and leveling. To overcome those issues, in practice, 

project managers tend to consider the worst scenario estimates or add a margin to the PERT 

estimates (around 30%) (Ben Issa & Tu, 2020). In such a situation, the estimated time associated 

with the critical path will be 18.6 and weeks 15 weeks, respectively. These values are closer to the 

estimation of the framework proposed here in the case of a single MVP. 

  

Figure 43 PERT (activities on nodes), CPM in red 

Nevertheless, as just demonstrated, the PERT/CPM offers no means to evaluate the effect 

of multiple MVPs or potential iterations occurring due to new input coming from tasks performed 

during subsequent stages in the design and development of engineering systems. 

To overcome the limitation of the approaches presented above, the project management 

community started considering Resource-Constrained Project Scheduling techniques (RCPS). Such 

methodologies account for precedence and resource constraints. Many approaches have been 

developed, including heuristic methods, meta-heuristic methods, exact methods, multi-criteria 

heuristic methods. The reader can refer to Ben Issa & Tu (2020) for an extensive literature review 
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on the topic. Those methodologies overcome the limitation of PERT/CPM; however, they still do 

not explicitly consider iterations, thus being agnostic on the number of MVPs. 

The following time distribution is obtained by applying a heuristic method to the activity 

network presented in Figure 43 and resource constraints RC = [2 1 1 2] (i.e., electronic engineers, 

mechanical engineers, procurement specialists, and systems engineers, respectively). 

 

Figure 44. Time distribution for RCPS 

Comparing the estimates provided by the RCPS with the one provided by the framework 

proposed in this thesis, it is observable that RCPS estimates are included in the results provided by 

CURSIVE. RCPS results correspond to the time distribution that considers one MVP (Figure 38). 

That is correct because, excluding iterations and multiple MVPs releases, the limiting case would 

be a project scheduling problem under precedence and resource constraints (that is correctly 

included in CURSIVE estimates).  

These comparisons have proved that the methodology proposed in this work extends 

current theories and practices, including the ability to simulate and analyze iterations and multiple 

physical MVPs releases, essential features of Agile PD. 
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3.5 Validity of the decision support system 

Within this thesis, considerable efforts have been dedicated to validating the decision support 

system (DSS) and specifically to the validation of the process model, the data model, the graphical 

user interface, as well as to the DSS general and face validity. However, the quality of support 

perceived by managers and engineer teams has not been assessed. Such an analysis would be 

somehow subjective, and results would be hardly generalizable. Furthermore, it is outside the scope 

of this work. 

To evaluate the validity of the decision support system, it has been adopted the validation 

framework for DSS proposed by Finlay & Wilson (1997). The original validation framework has 

also been enriched integrating methods and criteria formulated by Adelman (1991); Boukhayma & 

Elmanouar (2016), Isaksson et al. (2020), Le Dain et al. (2013) as well as with the process model 

validation criteria proposed by Law, (2014), Smith & Morrow (1999). Figure 45 summarizes the 

validation framework we adopted.  

3.5.1 Process model validity 

The first type of validity tackled is the process model validity. In the original validation framework 

(Finlay & Wilson, 1997), it is called generically logic model validity, while in this work, it is 

specifically addressed as a process model. This type of validity consists of analytical and 

theoretical validity. 

The theoretical validity relates to the adherence of the model construct to the theories 

underpinning the model itself. In other words, it aims to verify if the assumptions, the 

simplifications, and the process elements model are theoretically sound. CURSIVE satisfies the 

theoretical validity because it uses assumptions and modeling parameters based on the existing 
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literature. Specifically, as presented in section 3.2, the process is characterized as a network of 

activities exchanging information and deliverables (Smith & Morrow, 1999; Wynn & Clarkson, 

2018), and the network topology is defined by a DSM (Eppinger & Browning, 2018). Task states 

are consistent with the Agile theory: to do, in progress, done (Rodríguez et al., 2018). Iteration 

models are aligned with the literature models presented in section 2.2.2. Both iteration and working 

policies are transparent and reported in Algorithm 1, page 68. 

  

Figure 45. Framework for evaluating DSS validity 

The analytical validity relates to the consistency between the model outputs and actual 

process performance. Typically, this validity is achieved by applying the framework to 

retrospective datasets gathered from the industry. In the literature, it is also defined this validity as 

the second level of validity (Smith & Morrow, 1999). The analytical validity of CURSIVE has been 

evaluated within the first case study, presented in chapter 4. Specifically, in section 4.4.2, the 
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forecast of our simulation model has been compared with the actual data, using as an input the 

process structure and project execution metadata provided by the manufacturer of the system 

subject of the case study. As reported in section 4.4.2, the model provided quite consistent outcomes 

compared with the actual data. By satisfying analytical and theoretical validity criteria, the process 

model can be considered validated for Finlay & Wilson (1997), Smith & Morrow (1999), Le Dain 

et al. (2013), and Isaksson et al. (2020). 

3.5.2 Data model validity 

Data model validity concerns both accuracy and precision of input/output data as well as data 

integrity aspects related to data storage and access. 

In the context of DSS data model validity, accuracy refers to the set of parameters used in 

the model and not end-user defined, which can potentially systematically bias the output of the DSS 

(Finlay & Wilson, 1997). As concerns the simulation model, preset parameters have been avoided. 

The only parameter that can potentially bias the results is the learning rate adopted in the iteration 

model. The case studies presented in this thesis have been used a value equal to 15% (i.e., the 

repeated execution of a given task will take at every iteration 15% less time than the previous 

execution). A minimum boundary related to minimum process sensitivity has been set. This preset 

value can potentially systematically affect the forecast, overestimating or underestimating the time 

required for iterations. Since it is tightly correlated with the team executing the project, we 

recommend fine-tuning it according to team performance, relying on historical data derived from 

previous projects (if available). Concerning our case studies, that value represented a good 

approximation of the team learning rate. 

As concern the Agile Viability Indexes formulation, the coefficients used in eq (3) and (5) 

have been derived from different industry surveys (Atzberger et al., 2020; Automotive Agile PEP, 
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2018; Digital.ai & VersionOne Inc., 2020; Schmidt et al., 2018b, 2019). The values of these 

coefficients are solidly grounded in the current state of the art and practice. 

In the context of DSS data model validity, precision refers to the coherence of metrics and 

units of measurement between input-output data (Finlay & Wilson, 1997). In other words, it is 

necessary to ensure that metrics and units of measurement used in the simulation model and 

provided as output are coherent with the ones provided in the input data and vice versa. As concerns 

the cost metric, our DSS is units of measure agnostic, thus providing the output in the same unit of 

the input. As concerns the time metric, a check on the unit of measure of input data has been 

implemented, the time step of the simulation is set accordingly. Output data can be scaled according 

to end-user preference (output resolution is defined by input resolution). 

The last aspect to be analyzed for validating the data model relates to data integrity, 

specifically data handling aspects such as storage and access. Input data are stored in a Microsoft® 

Excel® file (.xlsm extensions is used). Data access is managed by a MATLAB® script. The current 

version of the script is the seventh (Input_v7.m). The script reads and uploads DSM data, the task 

vector, the time and cost estimates vectors. It verifies the completeness of the data, reporting an 

error if any value is missing. Lastly, it also verifies the correct formulation of the time and cost 

estimates (in the triangular distribution, the three values a,b,c shall satisfy the inequality constraints 

a≤b≤c), reporting a warning in case of non-compliance. If all the checks are successfully passed, 

the system moves to the simulation. Simulation output data are stored in a MATLAB® data file 

(simulation_output.mat). Visualization script and planning scrip access and append their additional 

data to the simulation output file without the ability to alter the simulation data. 

Based on the considerations mentioned above, the data model can be considered validated 

(Borenstein, 1998; Finlay & Wilson, 1997; Isaksson et al., 2020; Le Dain et al., 2013). 
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3.5.3 Graphical User Interface validity 

Even if the current interface is to be considered as a minimum viable product of the DSS user 

interface, some efforts have been dedicated to ensuring its validity. Graphical user interface validity 

mainly concerns usability and information validity, and theoretical validity (Finlay & Wilson, 1997; 

Myers, 1995). 

Usability is typically broken down into simplicity, consistency, and flexibility. Two points 

of view have been considered for evaluating usability: engineering teams’ perspective and project 

managers’ perspective. As an input interface, it has been used the process DSM tool (Figure 21) 

and a table for additional information (Figure 22). Based on the case studies, engineering teams 

generally seem more familiar with the DSM tool than project managers. However, it required less 

than ten minutes for project managers to master the DSM tool. As a simulation output interface, 

histograms and a contour plot (Figure 28) are provided. A traditional Gantt chart and a set of bar 

charts are used as the output of the planning phase (Figure 29). Based on the case studies, both 

engineering teams and project managers seem familiar with the tools adopted in the output interface 

and find them easy to use and interpret. As application software for the input interface, CURSIVE 

uses Microsoft® Excel®. It is widely adopted in many industries and holds a significant market 

share (Statista, 2021). As application software handling the output interface, CURSIVE uses 

MATLAB®; however, moving it into a web application might be considered in the future.  

It is understood that two case studies do not provide enough data to reach statistical 

significance and generalize the claim on the interface usability; however, they are enough for a 

preliminary validation and to meet the objectives of this thesis (Smith & Morrow, 1999). 

The information validity of the graphical user interface mainly relates to the consistent use 

of metrics and units of measurement between input-output data. This is primarily ensured by data 
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model validity. The user can define the units of measurement for time and cost in the input file. 

Then they will be consistently used over the whole model. 

Theoretical validity of the graphical user interface mainly relates to the compliance of the 

selected data visualization strategy with best practice. As mentioned before, output data are 

presented by means of histograms, Gantt charts, and bar charts, being fully compliant with project 

management best practices. 

Based on the considerations mentioned above, we can consider the graphical user interface 

validated according to Borenstein (1998), Finlay & Wilson (1997), Myers (1995). 

3.5.4 DSS general validity 

DSS General validity refers to the validity of DSS from a holistic perspective. It includes six main 

elements: robustness, internal validity, conceptual validity, experimental validity, operational 

validity, and reliability (Figure 46). 

 

Figure 46. DSS general validity elements 

Robustness, also called external validity (McCutcheon & Meredith, 1993; Salkind, 2012), 

transferability (Lincoln & G. Guba, 1958), analytical generalization or generalization validity (Yin, 

2013), refers to the extent to which a method or a theory developed from one case is extendable to 

other situations with similar conditions (i.e., the range of applications the DSS can serve). The DSS 

developed in this thesis has been specifically designed and applied to physical and cyber-physical 

products. As presented in chapters 4 and 5, the framework can cover a wide range of applications. 
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CURSIVE has been applied to the development of a space system as well as the development of a 

consumer product. It has not been tested on “pure” software systems; thus, we cannot claim the 

applicability to such kind of products. Concerning the R&D composition and location, the DSS has 

been deployed and tested in cases of collocated (chapter 4) and sparse/dispersed R&D teams 

(chapter 5), providing in both situations valuable process insights (sections 4.5 and 5.5). 

Internal validity refers to the extent to which causal relationships are certifiable in 

observing a phenomenon (Le Dain et al., 2013). According to (Yin, 2013) internal validity is mainly 

a concern for “explanatory case studies” (i.e., when a researcher is trying to explain how and why 

event x led to event y). According to Yin (2013), this logic is not applicable to exploratory or 

descriptive studies which do not concern this kind of causal situation (as in the case of our research). 

In this case, authors such as Smith & Morrow (1999), Le Dain et al. (2013), Yin (2013), and 

Isaksson et al. (2020) suggest adopting the credibility criterion, i.e., the extent to which the results 

appear to be adequate representations of the situation under study. In our framework is ensure by 

process mode validity (refer to section 3.5.1), including both theoretical validity (i.e., adherence of 

the model construct to the theories underpinning the model itself) and analytical validity (i.e., 

consistency between the model outputs and actual process performance ensured by verification on 

the case studies). 

Conceptual validity refers to the suitability of the selected tools to describe/measure the 

phenomenon. Some authors relate to this kind of validity as construct validity (Finlay & Wilson, 

1997; Isaksson et al., 2020; Le Dain et al., 2013; Yin, 2013). The literature acknowledges the 

difficulty of ensuring this validity the inevitable intrusion of the researcher’s biases. To overcome 

this issue, many authors recommend using multiple sources of evidence, constructing chains of 

evidence (by using model/tool reflecting reality), and have preliminary results reviewed by key 

informants (Isaksson et al., 2020; Le Dain et al., 2013; Seepersad et al., 2006; Yin, 2013). This 
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thesis followed these recommendations deploying the system for different case studies (Chapters 4 

and 5). Data collection and analysis have been performed according to a standard format (as present 

in Table 9), and different interviewees in the different organizations participating in the case studies 

have reviewed the results. Having received positive feedback from case studies participants, the 

conceptual validity can be consider ensured. It is understood that two case studies do not provide 

enough data to reach statistical significance and generalize the claim on the conceptual validity; 

however, they are enough for a preliminary validation and to meet the objectives of this thesis 

(Smith & Morrow, 1999). 

Operational validity relates to the extent to which the DSS can actually be used in an 

operational environment (Finlay & Wilson, 1997). Specifically, it concerns the ease of use, entry 

barriers (time required to learn how to use it), informativeness of the output, running time. This 

validity is mainly ensured by the usability, information validity, and theoretical validity of the 

graphical user interface (section 3.5.3). As concerns the running time, elapsed times are reported in 

Table 8. Simulations have been run on a workstation equipped with an Intel® Core™ i7-7700HQ 

CPU @ 2.80GHz and 64GB of installed ram. Based on the data reported in (section 3.5.3) and 

Table 8, the operational validity can be consider ensured. 

Table 8. Running time 

Elapsed time [s] 

Activity Case A 

(7000 sim.) 

Case B 

(3000 sim.) 

1.7946 1.9825 
Accessing the input file, reading and 

importing data, verifying data integrity 

391.9040 614.5148 Simulation 

10.2117 9.4135 Saving simulation data 

0.0348 0.1123 Data visualization 

3.8456 1.9317 Scenario analysis and planning 
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Experimental validity relates to the extent to which the research process is transparently 

and comprehensively exposed for external critical scrutiny (Finlay & Wilson, 1997; Le Dain et al., 

2013). This thesis ensures experimental validity. 

Reliability relates to the extent to which a study can be repeated with the same results given 

the same input conditions (Finlay & Wilson, 1997; Isaksson et al., 2020; Le Dain et al., 2013; Yin, 

2013). This validity has been ensured by running the DSS several times using the same case studies 

input data and verifying the consistency of the results. 

Based on the considerations mentioned above, the DSS can be considered generally valid 

according to Finlay & Wilson (1997), Isaksson et al. (2020), Le Dain et al. (2013), and Yin (2013). 

3.5.5 Face validity 

Face validity refers to the extent to which the models, the data, the assumptions, and the 

computational tractability seem reasonable to those who are familiar with the field of product 

development management (Smith & Morrow, 1999). It is a subjective metric, and it mainly refers 

to the relevance of the DSS for DSS test users. 

CURSIVE satisfies face validity criteria according to Smith & Morrow (1999) since it 

addresses an important product development issue (as reported in chapter 1), has reasonable 

computational tractability (Algorithm 1 and Table 8), uses modeling parameters and assumptions 

(chapter 3, sections 3.1, 3.2 and 3.3) based on the current state of the art (survey in chapter 2) and 

state of the practice (chapter 2 section 2.5). Face validity has also been ensured by applying the 

DSS to the two case studies and collecting feedback from the interviewees. 

Based on all the validity criteria mentioned above, the framework can be considered 

validated for Finlay & Wilson (1997), Isaksson et al. (2020), Le Dain et al. (2013), and Yin (2013). 
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3.6 Deployment in development projects 

The design and development of products is a highly dynamic process, with a complex interplay of 

people and activities. Each project comes with a unique combination of people, skills, and tasks. 

Therefore, experiments in a controlled environment that sufficiently represent the problem would 

be extremely challenging to define. Nevertheless, simplified academic case studies would hardly 

reflect real project situations (Adelman, 1991). 

Over the following chapters, the framework is applied to a set of real projects. The objective 

is to verify CURSIVE the capability in different industry contexts. The chapters go through the 

framework deployment steps over the projects and evaluate how the system supports engineering 

teams, thus meets research goals and research questions outlined in Sections1 1.3 and 1.4. 

Each project represents a different case study with different boundary conditions, team 

setting, organizational structure (Yin, 2013). The first project, presented in chapter 4, pertains to 

the development of a payload for a New Space Mission. It is a pilot study on a project already 

executed. This will allow us to benchmark the results provided by our model with the actual 

development metadata. The objective is to verify the results and validate the model forecasts.  

The second project, presented in chapter 5, pertains to the development of a consumer 

product. This development project is still ongoing. In this case study, CURSIVE is used to support 

decision-makers in optimizing the combined development of the product platform and product 

accessories to minimize the time to market while keeping customers’ hype. 

Empirical data are collected and analyzed following a common approach and reported in 

the same format. The case studies format consists of the sections reported in the list on the following 

page, while data collection methods are reported in Table 9. 
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Case studies format: 

1. General case study data 

2. Organizational structure 

3. Agile in the development process and motivation for Agile transition 

4. CURSIVE deployment 

a. Process structuring, 

b. Simulation 

c. Planning 

5. Insights 

Table 9. Data collection methods 

Item of interest Source of data Notes 

General case study Structured interview2 
The interview’s structure is reported 

in Figure 47 and Figure 48 

Organizational structure 

Documentation and archival 

records 

They have been used to retrieve 

information on the organization of 

R&D divisions and typical supply 

chain management. 

Semi-structured interview3 
It has been used to get details on the 

development project structure 

Agile in the development 

process and motivation for 

Agile transition 

Semi-structured interview  

CURSIVE input data 
Documentation and structured 

interview 

Participants were asked to share 

process data and to fill the product 

backlog architecture  

 
2 Some sources refer to structured interviews also as closed quantitative interviews (Blessing & Chakrabarti, 

2009) 
3 Some sources refer to semi-structured interview also as standardized open-ended interviews (Blessing & 

Chakrabarti, 2009; Yin, 2013) 
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Figure 47. General case study data collection format (1) 
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Figure 48. General case study data collection format (2) 
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 Cast study: New Space mission payload 

In this chapter, the framework is applied to the development of an optical telecommunication 

payload for a New Space mission. The system under consideration is the same that has been the 

subject of the field research presented in Section 2.5. While during the field research, the analyses 

were limited to the design and development of the FlatSat model (ECSS, 2010, 2018), in this 

chapter, the development process of the entire system is covered, from the design phase to the 

assembling, integration, and testing (AIT) of the flight model (ECSS, 2010, 2018). 

The context of the case study is a nanosatellite mission developed in a multiparty 

consortium (Camps et al., 2018). In the following section, the general case study data resulting 

from the structured interview are presented. Sections 4.2 reports the organization and the project 

structure resulting from documentation and publicly available data analysis as well as the semi-

structured interview with a project participant. Section 4.3 summarizes the motivation for Agile 

adoption and the fitting of Agile into development processes traditionally used by the organization, 

as described by the interviewee. Section 4.4 describes the application of the framework to the 

project data provided by the organization, detailing all the implementation steps. Lastly, process 

insights are derived, and the case study conclusion is drawn. 
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4.1 General case study data 
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Impact on the organization 

Scrum is implemented in most parts of the development. 

However, large obstacles exist due to the legacy paradigms of 

the market the company serves. 
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4.2 Organizational structure 

The R&D division of organization A has a cross-functional Scrum team consisting of mechanical, 

optoelectronics, and software engineers. Each team member is responsible for the design, 

procurement, assembly, integration, and test of the components of his/her area of knowledge. 

Software engineers are “shared resources” since they are employed in more than one project and 

relate to more than one team. Mechanical engineers are also responsible for the AIT activity of the 

full system (Figure 49). 

The organization carries out the design of mechanics, optics, and electronics in-house. The 

manufacturing of all components is outsourced. Assembly, integration, and testing (functional and 

performance) are performed in-house. Environmental tests and day-in-the-life tests are entrusted to 

a third party for quality certification purposes. The software is fully developed in-house. 

The main production facility is located in Estonia. Part of the supply chain is Estonian, but 

most suppliers are abroad, spread over Europe, the USA, and China. The customers are located in 

Europe and particularly in the Netherlands, Italy, and Portugal. 

 

Figure 49. Case A – Organization of the development team 
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4.3 Agile in the development process, motivation for Agile adoption 

Organization A uses a Stage-Gate model as the overall management tool for development activities 

and payments-deliveries negotiation with customers. The Stage-Gate process represents the status 

quo in the reference sector; therefore, it is used as the principal guiding framework even while 

attempting to implement Agile. 

Agile-Scrum is fitted primarily in the stage called “Development” and in the stage called 

“Test and validation.” This is because to mark an MVP as done is required to prove its correct 

functionality and performance. Some efforts have also been made to push Scrum activities into the 

preceding “Business Case” stage (refer to section 4.1, page 107). 

The team involved in the project includes three people covering all the disciplines required 

to develop the product: one optoelectronic engineer (responsible for optics and electronics), one 

mechanical engineer (responsible for structures, mechanisms, and AIT), one electronics/software 

engineer (responsible for electronics and software). Two out of the three members in the team had 

already used Agile, specifically the Scrum framework, in other projects. From the previous 

experience, they appreciated the team self-organization feature that enabled team members to 

micromanage their own work. They also appreciated the ability to enhance the product iteratively, 

allowing for early releases, thus a shorter time to market.  

Therefore, given the small size of the team, the budget, and schedule constraints, the team 

decided to experiment with Agile, believing that, by adopting a traditional approach, they would 

not have delivered the product on time. The interviewee reported that the main drivers for Agile 

adoption were potential time and cost savings. The choice of experimenting with Agile was not 

based on rigorous quantitative analyses but instead relied on the team belief of purported time and 

cost benefits. 
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4.4 CURSIVE deployment 

4.4.1 Process Structuring 

As a first step, the team shall define the user stories for the project. Since the team was already 

familiar with Scrum and was using Jira (Atlassian, 2021) as a project tracking tool, the user stories 

the team defined on Jira at the beginning of the development were used. In this way, CURSIVE 

has been fed with the very same information the team had at the beginning of the project, avoiding 

biases caused by the new knowledge engineers have acquired while developing the product. Data 

were imported manually; in the future, an API to automate the importing process and enhance 

CURSIVE compatibility with existing project management tools might be developed. 

As a second step, the development team has been asked to define the dependencies among 

the tasks using a DSM. Dependencies can be primarily infer based on the system architecture 

(mainly for design tasks and AIT tasks) and logical linkage between activities (e.g., a procurement 

task requires one or more design tasks as input, an AIT task requires one or more procurement/ 

manufacturing tasks as input; AIT tasks provide feedback to design activities). This rationale 

minimizes the likelihood of potential biases due to the knowledge the team acquired during project 

implementation. 

In the DSM, cells on the diagonal correspond to the tasks, the marks in off-diagonal cells 

indicate tasks interactions. The marks in the row denote activities inputs (sub-diagonal marks), 

while marks in the column indicate the feedbacks (super-diagonal marks). Feedback links can be 

deterministic, marked with the black filled circle symbol, i.e., probability of occurrence equal to 1, 

or probabilistic, defined with a probability 𝑝 ∈ [0,1]. 

Figure 50 shows the product backlog architecture the team produced. It provides a 

comprehensive overview of the product backlog, listing the eight-six user stories complemented 
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by the elicitation of their interactions. The backlog includes design activities (marked in green), 

rapid prototyping (yellow tasks), procurement or manufacturing (marked in orange), and AIT 

activities (marked in blue). Development activities involve three different fields of knowledge, 

namely mechanics, optics, and electronics. 

Most of the activities exhibit deterministic dependencies. A few probabilistic interactions 

between AIT activities in the late stages of development and related design activities have been 

specified for some electronic components. 

 

Figure 50. Input DSM for development of the optical telecommunication payload 
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1 VD ● ● ● ● ● ● ●

2 L H ● ● ●

3 Mtr_s ● ● ●

4 Brg_s ● ● ● ●

5 Shaft ● ●

6 Ring ● ●

7 Motor 1 ● ● ● ● ●

8 G_h ● ● ●

9 Pn ● ● ● ●

10 Rk ● ● ●

11 Lb ● ● ● ● 0,6

12 Lm ● ● ● ● 0,6

13 Lt ● ● ● ● 0,6

14 Lo ● ● ● ● 0,6

15 MM ● ● ●

16 SM ●

17 Mh ● ● ● ● ● ●

18 KBRM_02_1 ● ● ● ● ● ●

19 Motor 2 ● ● ●

20 Brg tip ● ● ●

21 Nut ● ● ●

22 MH PCB_c ● ● ● ● ● ● ●

23 PEEK_s ● ● ● ● ● ●

24 M M Supp ● ● ● ●

25 OS F ● ● ● ● ● ● ●

26 OS B ● ● ● ● ● ● ●

27 OS T ● ● ● ● ● ●

28 OS B ● ● ● ● ●

29 OS_VD_o ● ● ● ● ●

30 OS_VD_s ● ● ● ● ● ●

31 Main Board ● ● 0,9 0,8

32 Power Board ● ● 0,9

33 Wiring ● ● ● 0,8 0,8 0,8

34 Top Diss ● ● ● ● ● ● ● ● 0,8

35 Bottom Diss ● ● 0,8

36 VD Rapid Prototype ● ● ● ● ● ● ● ● ● ● ● ● ● ●

37 OS Rapid Prototype ● ● ● ● ● ●

38 TX/Rx Rapid Prototype  ● ● ● ● ● ● ● ● ● ● ● ● ● ●

39 AIT Prototype ● ● ●

40 Pr VD ● ● ● ● ●

41 Pr L H ● ● ●

42 Pr Mtr_s ● ● ● ● ●

43 Pr Brg_s ● ● ● ● ●

44 Pr Shaft ● ● ● ●

45 Pr Ring ● ● ● ●

46 Pr Motor 1 ● ●

47 Pr G_h ● ●

48 Pr Pinion ● ●

49 Pr Rack ● ●

50 Pr Lb ● ● ● ●

51 Pr Lm ● ● ● ●

52 Pr Lt ● ● ● ●

53 Pr Lo ● ● ● ●

54 Pr MM ● ● ●

55 Pr SM ● ● ●

56 Pr Mh ● ● ●

57 Pr KBRM_02_1 ● ●

58 Pr Motor 2 ● ● ●

59 Pr Brg tip ● ● ●

60 Pr Nut ● ● ●

61 Pr MH PCB_c ● ● ●

62 Pr PEEK_s ● ● ●

63 Pr MM Supp ● ● ●

64 Pr OS F ● ● ● ● ● ● ●

65 Pr OS B ● ● ● ● ● ● ●

66 Pr OS T ● ● ● ● ● ● ● ●

67 Pr OS B ● ● ● ● ● ● ●

68 Pr OS_VD_o ● ● ● ● ● ● ●

69 Pr OS_VD_s ● ● ● ● ● ● ● ●

70 Pr Main Board ● ●

71 Pr Power Board ● ●

72 Pr Wiring components ● ● ● ●

73 Pr Top Diss ● ●

74 Pr Bottom Diss ● ●

75 AIT Main Board ● ●

76 AIT Power Board ● ●

77 AIT VD Brg_s ● ● ● ●

78 AIT VD support ● ● ● ● ● ● ● ●

79 AIT TX lenses ● ● ● ●

80 AIT RX mirrors ● ● ●

81 W TX lenses ●

82 W RX mirrors ●

83 AIT VD ● ● ● ●

84 AIT Electronics ● ● ● ● ● ●

85 AIT RX system ● ● ● ● ● ● ● ● ● ● ●

86 AIT payload ● ● ● ● ● ● ●

Prepare Data

Design activities 

Prototyping activities 

Procurement & manufacturing 
activities 

AIT activities 

Probabilistic 
feedbacks 
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Within the product backlog definition, project participants are also asked to provide 

additional data about the time, cost, and resources required to perform the activities (Figure 51). 

The information can be based on historical data, experts’ opinions, design support tools output 

(Garzaniti et al., 2020), or their combination. 

The process of defining the resources needed to execute the project does not involve pre-

assigning tasks to people since it would violate the Agile principle of self-organizing teams. The 

team is asked only to indicate the discipline related to the activities. Those data become essential 

to refine the team composition and manage dependencies between internal resources (i.e., 

development team) and external resources (i.e., procurement and manufacturing partners). 

 

Figure 51. Case study A - Complementary information provided within the product backlog architecture definition – 

work-packages traceability, expertise required (e.g., M: mechanical engineer, O: Optical engineer, E: electronic engineer, 

p: procurement department), cost and time estimates. 

Task ID Task Name WP ID Expertise # Exp needed m
in

m
o

de

m
ax

m
in

m
o

de

m
ax

1 VD 1 M 1 0.6 1 2 960 1600 3200

2 L H 1 M 1 0.6 1 1.4 960 1600 2240

3 Mtr_s 1 M 1 0.4 0.6 0.8 640 960 1280

4 Brg_s 1 M 1 0.8 1 2 1280 1600 3200

5 Shaft 1 M 1 0.1 0.2 0.6 160 320 960

6 Ring 1 M 1 0.2 0.4 0.6 320 640 960

7 Motor 1 1 M 1 0.2 0.4 0.6 320 640 960

8 G_h 1 M 1 0.2 0.4 0.6 320 640 960

9 Pn 1 M 1 0.4 0.8 1 640 1280 1600

10 Rk 1 M 1 0.4 0.6 1 640 960 1600

11 Lb 1 O 1 0.2 0.4 0.6 320 640 960

12 Lm 1 O 1 0.2 0.4 0.6 320 640 960

13 Lt 1 O 1 0.2 0.4 0.6 320 640 960

14 Lo 1 O 1 0.2 0.4 0.6 320 640 960

15 MM 1 O 1 0.2 0.4 0.6 320 640 960

16 SM 1 O 1 0.2 0.4 0.6 320 640 960

31 Main Board 1 E 1 2 3.6 4 3200 5760 6400

32 Power Board 1 E 1 1 1.8 2 1600 2880 3200

33 Wiring 1 E 1 0.2 0.4 0.6 320 640 960

40 Pr VD 3 p 1 8 12 16 936 1170 1697

41 Pr L H 3 p 1 8 12 16 760 950 1378

42 Pr Mtr_s 3 p 1 8 12 16 696 870 1262

43 Pr Brg_s 3 p 1 8 12 16 800 1000 1450

44 Pr Shaft 3 p 1 3 4 8 2 2 5

weeks Currency

Prepare Data
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The definition of the product backlog architecture is a collective effort involving all players 

participating in the project. Each team member provides tasks, input/out dependencies, and time or 

cost estimates. The final product backlog architecture results from team consensus reached by 

adopting an iterative refinement process. We leveraged the value of the Agile Manifesto of 

promoting “Individuals and interactions over process and tools” (Beck et al., 2001) while providing 

a common language and structure to define the activities required to deliver the product. At the 

same time, we offer a holistic view of the project. 

While shaping the product backlog architecture, the framework also provides the team with 

a handy chart to understand the viability of implementing Agile in the different portions of the 

project (Figure 52). 

 

Figure 52. Case A – Agile Implementation viability 
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The same color code used in the product backlog architecture is adopted: design tasks are 

marked in green, procurement or manufacturing tasks are marked in red, prototyping tasks are in 

yellow, and AIT tasks are in blue. The tasks in the upper pane represent the activities for which 

Agile implementation is efficient both in terms of cost and time. In this case, fast iterations will 

lead to an equally rapid increase of product maturity without a significant impact on budget and 

schedule. Tasks in the lower pane represent the activities for which Agile implementation would 

be highly inefficient in terms of both cost and time. Iterating such tasks would lead to a schedule 

disruption or cost overrun. The tasks in the two yellow bands represent the activities for which 

Agile implementation would be inefficient either in terms of cost or time. 

Based on this information, the team might decide to adopt different solutions. 

1. To increase the level of granularity of task decomposition. This solution may 

improve the viability indexes of resulting tasks in terms of time (e.g., the activities 

resulting from activity 31 breakdown will be located higher than activity 31 itself). 

As a consequence, it also may improve the viability indexes of related procurement 

and manufacturing tasks. 

2. To improve system modularity. This solution may improve the viability indexes of 

resulting tasks in terms of both time and costs. It also may improve the viability 

indexes of related procurement and manufacturing tasks. 

3. To accept the current plan. Then to use a Hybrid-Agile process, implementing agile 

on the portion of the project where it will be efficient and Stage-gate where time 

and cost of iteration will be inefficient. 
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Such information already in the early phase represents a valuable aid for optimizing the 

whole process. Interviewee A1 collaborating on this case study, said: “Having a better 

understanding of the quality of task decomposition as well as the system modularity would have 

been particularly useful during the project planning and execution. For instance, as shown in the 

chart, the high integration of the subsystem related to task 31 significantly impacted the cost. 

Unfortunately, we realized this at the end of the project. We plan to increase the modularity of that 

subsystem for the next version of the product”. 

The consolidated product backlog architecture resulting from this process, including the 

DSM and the complementary information, is then used as input for the simulation step of our 

framework. 

4.4.2 Simulation 

Seven thousand simulations (in batches, s, of 1000) have been run to stabilize mean and variance 

of time and cost distributions within precision, ε = 10-4 (Figure 53) according to equation (6), (7). 

 

Figure 53. Mean and variance over the number of simulations for time (right) and cost (left) distributions 
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As a result of the simulation, we get distributions of time and cost. Figure 54 (left side) 

shows the probability density functions (PDF) of simulated cost and schedule outcomes. Figure 54 

(right side) shows the joint PDF resulting from paired cost and schedule outcomes. 

 

Figure 54. Case A - Simulation output Time and Cost Probability Distribution Functions (PDFs) normalized (on the left) 

Joint Time and Cost PDF contour plot of the simulated scenarios (on the right) 

These graphs are particularly useful to quickly compare process cost and time against 

budget and schedule targets. (Figure 55). During the contract negotiation phase, the simulation 

model can be used to tailor project schedule and budget, mitigating programmatic risks and 

increasing the likelihood of successful product delivery within cost and time constraints. 

Alternatively, it can also be run while the process is ongoing to monitor process execution, as 

presented in section 3.3.1. Activity duration and cost estimates or tasks dependencies can be 

updated with actual values as soon as they become available, thus having more reliable results for 

the subsequent phases of the project. The simulation results evolve over the process execution to 

the extent the development team iterates and updates the product backlog architecture data. 

Simulations become crucial when dealing with projects involving hundreds of tasks, 

different stakeholders, and complex interactions among activities and people. As the complexity 
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increases, simulations become the only way to assess the impact of a single design decision on the 

whole development process. 

 

Figure 55. Schedule Target vs time distribution of simulated scenarios 

The model proposed here also allows evaluating the sensitivities of budget and schedule to 

potential risk factors associated with activity costs, durations, and iterations. Thus, it enables 

decision-makers to refine the process architecture to enhance process performance. At the time of 

project implementation, the team did not optimize the process, which generally resulted in delays. 

Interestingly, given the input summarized in Figure 50 and Figure 51 of the non-optimized process, 

CURSIVE provided quite consistent outcomes compared with the actual data (Figure 56). 
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Figure 56. Case A- Overall Schedule.In yellow planned milestone, in red actual milestone. 
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4.4.3 Planning 

During the contract negotiation phase, the consortium set the schedule and budget constraints for 

all the mission contributors. According to the agreement, the payload shall be delivered within a 

tight schedule and a small budget (0.20 T of time distributions and minimum cost in Figure 54). 

Providing time and schedule targets, CURSIVE identifies a baseline scenario able to meet 

such targets minimizing the root mean square error between targets and available scenario data 

(Figure 57). Therefore, the Sprint planning and MVPs structuring is constrained to these targets. 

 

Figure 57. Gantt chart of the baseline scenario meeting budget and time constraints 

The heuristic approach deployed to identify the optimal number of MVPs suggests 

structuring the development in seventeen Sprints. Combining this information with the product 

backlog architecture, the framework outlines the Sprints backlog clustering the different user 

stories. The result of the cluster analysis is summarized in Figure 58. 

Mechanical design 
Electronics design 
Optics design 
Procurement 
AIT 

Electronics physical MVPs 
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Figure 58. Case A - Sprint backlog 

As we can observe in Figure 58, the system performed quite well in organizing the backlog 

for design, procurement of non-long lead time items, and AIT activities. As concern procurement 

and manufacturing of long lead time items (lengthy blue bars), which are cross-Sprint activities, 

they have not been included in the cluster analysis because they would have introduced noise, and 

the framework would not have been able to allocate them properly. In some cases, they would have 

been assigned based on the starting time, in some others according to the finishing time. The tasks 

to be excluded from the cluster analysis are systematically identified based on the Agile viability 

indexes presented in Figure 52. Excluding long-lead items from this analysis does not represent a 

critical issue for two reasons. First, the team can refer to the project Gantt chart as presented in 

Figure 58 or to the long lead items allocation chart (Figure 59, bottom) to initiate components 

procurement in the most appropriate Sprint according to the execution time. Second, by its nature, 

our framework does not aim to replace the people reasoning and decision-making activities, but it 

seeks to support and ease that. 

long lead 
time items 
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The outcome of the Sprint definition process offers information on the set of tasks to be 

performed within each Sprint, as well as the Sprints’ durations (Figure 59, left side) and the related 

cost (Figure 59, right side). Long lead items cost is allocated within the Sprint the procurement is 

initiated, while the delivery time is not included in the Sprints duration. Information about those 

items is summarized in a different graph indicating the Sprint where the procurement is initiated 

and the Sprint where the orders are delivered (Figure 59, bottom). 

 

Figure 59. Sprint sequence and cost Breakdown 

Most of the Sprints are in a finish-start sequence; however, some sprints have some degrees 

of concurrency. This is because the framework tries to optimize resource allocation, ensuring 

resource-leveling. So, if a Sprint is dedicated to developing an MVP that does not require a given 

discipline, CURSIVE suggests also starting another Sprint where the team can exploit that 

Sprints where 
procurement 

is initiated 

Sprints 
where items 
are delivered 
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discipline. Even if this might not be very aligned with the orthodoxy of Agile theory, a non-

homogeneous environment requires additional attention to the problem of resource allocation and 

leveling. This strategy may help improve process performance. 

4.5 Process Insights 

The analysis of the process implementation strategy provides useful insights to evaluate the actual 

benefit of using the Agile/Hybrid-Agile PDP in terms of cost, time, and technical risk. Figure 60 

and Figure 61 show the normalized cost and time required to perform the different activities as well 

as the time and cost of iterations (showed as different staked color bars) for the given scenario. 

Figure 60 and Figure 61 that some user stories are time-critical while others are cost-

critical. Therefore, deciding whether to iterate a given task based on the cost or time efficiency 

directly relates to the Δrisk-mitigation enabled by each iteration cycle. 

 

Figure 60. Case A - Tasks Cost Breakdown 
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Figure 61. Case A - Tasks Time Breakdown 

The team can use the information reported in, Figure 59, Figure 60, and Figure 61 to map 

the MVPs sequence to the taxonomy evaluating the product maturity improvement achieved over 

time, as shown in Table 10. 

For instance, the team can decide to mitigate the technical risk deriving from a task, such 

as the 31st, at different stages of the lifecycle, accepting the programmatic risk posed by cost and 

time investment. If the task relates to a critical element of the system, they can fully exploit the 

Agile PDP capability of retiring technical risk by using DMTR iteration. 

For other activities, the programmatic risk might jeopardize the whole project (e.g., 

procurement of long-lead items – task 64 to 69), and the team can decide to be conservative using 

DAR iterations (e.g., task 25 to 30 refers to the design of those long lead items) and adopting 

traditional systems engineering approaches. 
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Table 10. Map of MVPs related to the MVP taxonomy 

Sprint MVP Acceptance criteria: objective on MVP 

ID Fidelity Artifacts Repr. mode V&V Activities 

1 Medium Schematics/CAD Digital Verification Analysis 

2 Medium PCB layout/CAD Digital Verification Analysis 

3 High PCB Prot./CAD Physical Verification Inspection 

4 High PCB Prot./CAD Physical Verification Functional Test 

5 High Funct. Prototypes Physical Verification Functional Test 

6 High Funct. Prototypes Physical Verification Funct.Test/Inspection  

7 High Funct. Prototypes Physical Verification Functional Test 

8 High CAD, BOM Digital Verification Analysis 

9 High Product Subset Physical Verification Funct.Test/Inspection  

10 High Funct. Prototypes Physical Verification Funct.Test/Inspection  

11 High Funct. Prototypes Physical Verification Funct.Test/Inspection  

12 High Funct. Prototypes Physical Verification Funct.Test/Inspection  

13 High Product Subset Physical Verification Functional Test 

14 High Product Subset Physical Verification Funct. and Perf. Test 

15 High Product Subset Physical Verification Funct. and Perf. Test 

16 High Product Subset Physical Verification Funct. and Perf. Test 

17 High Product Physical V&V Performance Test 

Having a clear understanding of the effect each task and iteration cycle has on the cost and 

the schedule of the entire project helps the development team navigate programmatic and technical 

tradeoffs. The information offered by the proposed framework can also support teams in fine-tuning 

the process structure to increase process robustness, minimizing its sensitivity to potential design 

changes occurring during project execution. 
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4.6 Summary and interim conclusion 

This chapter analyzed the development process of an optical telecommunication payload for a New 

Space mission applying our framework. The analysis covered the entire development of the system 

from the design phase to the assembling, integration, and testing (AIT) of the flight model (ECSS, 

2010, 2018), including prototyping, procurement, and manufacturing activities. 

Sections 4.1 and 4.2 introduced the case study providing background information on the 

project and the organization executing the project. Section 4.3 briefly discussed the motivation for 

adopting Agile. Section 4.4 dived into the PDP structuring and planning analysis using CURSIVE. 

The analysis of the PDP has been organized according to the three macroblocks of our framework, 

namely process structuring, simulating (or simulation), and planning. 

In the structuring phase, a set of methods and tools for reasoning about the structure of the 

decision problem have been deployed. First, eighty-six tasks spanning over the whole development 

cycle have been identified. Then, those activities have been organized in a DSM, defining their 

interconnections (tasks dependencies) and outlining the order in which tasks shall be addressed. 

Tasks exhibited deterministic and probabilistic dependencies. The outcome of this exercise has 

been consolidated in the product backlog architecture. The product backlog architecture has been 

integrated with complementary information about the time, cost, and resources required to perform 

the activities. 

Within the structuring phase, CURSIVE also assessed the viability of implementing Agile 

for the given project. The time viability index for the entire project, 𝐴𝑉𝑝𝑟𝑗
𝑇 , is equal to 0.7, while 

the cost viability index, 𝐴𝑉𝑝𝑟𝑗
𝐶 , is equal to 0.64. Those values imply that the project can benefit from 

Agile adoption; however, it is not recommended to execute all the portions of the project using 
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Agile. The detailed analysis of the Agile Viability charts (Figure 52) identified the items for which 

the use of Agile is not beneficial (i.e., long lead time items). Therefore, the framework suggested 

executing the project adopting a Hybrid-Agile approach. The information resulting from the 

structural reasoning exercise has been then used as input for the simulation phase. 

During the simulation phase, CURSIVE has analyzed the solutions satisfying the problem 

constraints and evaluates the overall process performance for different variables combinations and 

values. As an outcome of the simulation, we got time and cost distributions representing the feasible 

scenarios and the dataset, including all the process details for each considered scenario. 

The planning phase has been explored in-depth the scenario that meets the time and cost 

target offering an actionable plan. A heuristic approach has been deployed to define the Sprints 

backlog as well as the Sprints sequence. While defining the Sprints backlogs, CURSIVE has 

excluded the activities that are not recommended to be executed using Agile, as indicated by the 

viability indexes. Those activities have been then related to the different Sprints depending on 

procurement initiation and delivery time. The results of the planning activities have been 

summarized in a set of charts (Figure 57, Figure 58, and Figure 59), offering a comprehensive 

picture, from multiple perspectives, of the project execution plan. 

Together with the structuring reasoning exercise, the Sprint backlog definition represented 

a fundamental activity in the deployment of Agile for hardware systems. The first provided the 

rationale for Agile implementation. The latter provided the rationale for the organization of Sprints 

(including goals, lengths, MVPs, and transition), as well as means of coordination between 

activities executed adopting different implementation strategies (iterative vs. not iterative). 

The combined outcome of the three phases of our framework provided valuable insights 

on the process performance (Agile or Hybrid-Agile) in terms of cost, time, and technical risk. 
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Figure 60 and Figure 61 reported the normalized cost and time required to perform the different 

activities, as well as the time and cost of iterations. Table 10 mapped the Sprint sequence to the 

MVP taxonomy, evaluating the product maturity improvement achieved over time. These data 

brought the focus on critical activities, such as tasks 1 and 31 (cost-critical), or 48 and 64 (time-

critical). This information can be used to evaluate potential strategies for process improvement, 

such as increase tasks granularity (e.g., task 1), increase the system modularity (e.g., task 31), or 

consider different suppliers (e.g., task 64 to 69). 

As shown in the case study, CURSIVE does not aim to make independent decisions, 

replacing development team judgment. Instead, it is a predictive model aiming to provide the team 

with quantitative means to underpin their decision-making process. The following conclusions can 

be drawn from this study: 

• If a Hybrid-Agile approach is adopted, means of coordination are needed not only with 

external partners (e.g., consortium participants) but also within the organization between 

Agile and non-Agile activities (Figure 59). This coordination of tasks dependencies 

becomes essential to ensure coherent development and avoid schedule disruption. 

• Using Agile does not necessarily mean shorter development time or lower cost. Actually, 

due to the cost of iterations (Figure 60), Agile might exhibit a higher cost than traditional 

development processes. However, Agile lowers the technical debt (Allman, 2012), 

reducing the probability and the impact of reworks in later phases of the development. 

• Vendors’ selection, and generally supply chain management, represents a critical activity 

not only for quality reasons but also in terms of lead times. For instance, tasks from 64 to 

69 could have been assigned to a different supplier able to deliver in less than a tenth of 

the time (without cost increases), allowing iterations also in that portion of the project. 
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• System modularity is a key feature for the effective implementation of Agile. It represents 

a crucial driver for both the cost and time of iterations; high modularity allows for more 

and faster iterations. In this case study, the system exhibited a mild degree of modularity: 

system modularity index (SMI), equal to 0.223 (Figure 62). The SMI index is based on the 

exponential decay approximating the actual decay structure of sorted singular values of the 

product DSM. Please refer to eq. (6) in (Holtta-Otto & de Weck, 2007) for further details. 

 

Figure 62. Degree of modularity 

Given the degree of modularity, the Hybrid-Agile approach was a reasonable compromise. 

However, some subsystems, such as the one related to task 31 or 32, could have been 

further decomposed, enhancing the cost-effectiveness of Agile implementation. 

• In the context of Agile for hardware, the product maturity does not increase 

homogeneously. Different subsystems achieve different maturity in different Sprints (as 

reported in Table 10), eventually converging over the project execution. Mapping and 

managing the MVP sequence over time allows for the coherent integration of all the 

subsystems and successful product delivery. 
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 Cast study: A consumer product 

In this chapter, the framework is applied to the development of a consumer product, specifically a 

household appliance. The system under consideration consists of a product platform and a set of 

accessories. The company aims to release the product on the market within a tight schedule, and it 

is willing to invest considerable resources to achieve this goal. The management provided the 

project details. The framework then used this information to assess the feasibility of meeting the 

time target and propose potential process improvements to either shorten the time-to-market or 

increase the likelihood of meeting the scheduled release. 

Section 5.1 presents the general case study data resulting from the structured interview. 

Sections 5.2 and 5.3 report the organization and the project structure resulting from documentation 

and publicly available data analysis, as well as the semi-structured interview with a project 

participant. Section 5.3 summarizes the motivation for Agile adoption and the fitting of Agile into 

development processes traditionally used by the organization, as described by the interviewees. 

Section 5.4 describes the application of the framework to the project data provided by the 

organization, detailing all the implementation steps, and eventually, it derives process insights and 

draws the case study conclusion. 
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5.1 General case study data 

 

Mechanics
55%

Electronics
30%

Embedded Software
12%

Application software
3%

home appliances 

Product 

Customers 

Retail sales through mono-branded 
flagship stores and boutiques 

The company mostly 
operates Russia, CIS 
countries and Poland 

Market 

Company B 

Employee 

Total 1200 

R&D 50 

Location 

Russia 

Size 

Large enterprise 

Product composition

Mechanics 55%

Electronics 30%

Embedded Software 12%

Application software 3%

Total 100%

Degree of physicality 0.91

Customer involvement 

Customer only validating the product

Customer in mildly involved (monthly meetings)

Customer is heavily involved (weekly meetings)
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0 1 2 3 4 5

Years

Impact on the organization 

We are still evaluating a potential Agile transition. So far we do 

not really use Agile. 

Experience with Agile Sprint Length in weeks 

0 1 2 3 4

Weeks

Not predefined structure 

Scrum in the Development Process 

Scoping Business case Development Test & Validation Launch 

Note: the company leverage the internal manufacturing facility for rapid prototyping of some 

components, however the product of the final system is outsourced 

Agile fully implemented 
Agile used in some extent 

Requirements

Preliminary Des.

Detailed Design

Functional test

Performance T.

SW updates

Early adopters 
mishandling

Early adopters 
ease of use

Prototyping

Interviewees 

Name Interviewee B1 
Position Head of product 
 development dpt 
Background Economy 
Role in Scrum No formal role 

Name Interviewee B2 
Position deputy head of 
 product development 
Background Unknown 
Role in Scrum No formal role 
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5.2 Organizational structure 

The R&D division of organization B has the headquarters in Moscow, Russian Federation, but has 

a network of development partners spread over Germany, Russia, France, Italy, Switzerland, China, 

Turkey, South Korea, and Australia. Each partner is responsible for the development of a different 

element of the final product. 

The organization mostly outsources the development of all the components constituting the 

product. The R&D division primarily coordinates the different design teams, ensuring that 

outcomes of R&D activities are consistent with the product vision. Particular efforts are also 

dedicated to quality assurance and after-sales service. The project presented here is handled by a 

project manager located in the Moscow headquarter, coordinating company development partners. 

The company does not have its own production site. Products are manufactured in China, 

Poland, Hungary, Germany, Japan, Turkey, and France. The organization mainly trades in Russia, 

the commonwealth of independent states, and Poland. 

 

Figure 63. Case B – Organization of the development teams 

Development partners

R&D headquarters
Project manager

Early adopters

Internal Prototyping

Suppliers and external
production facilities
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5.3 Agile in the development process, motivation for Agile adoption 

Organization B is a large company that employs more than a thousand people worldwide, with 

development partners spread over twelve different countries. As such, the company uses a Stage-

Gate model as the overall management tool for development activities. 

The company does not formally use Agile. However, some of the Agile principles are 

implemented during the stages called “Development”, “Test and validation”, and l “Launch” (refer 

to Section 5.1 page 131). 

Organization B is not directly interested in the Agile process. However, it is always 

interested in any approach that can potentially streamline the process and accelerate the 

development schedule. Therefore, if Agile can bring some benefits in any stage of development, 

they are willing to experiment with that. In this case study, the main driver for a potential Agile 

adoption relates to time savings. 

5.4 CURSIVE deployment 

5.4.1 Process Structuring 

At the beginning of the project, there was a kick-off meeting with the management of the product 

development department. Company B provided an overview of the product vision and a preliminary 

concept. After this first introductory meeting, I asked the project manager and development team 

to define the set of tasks they envision for completing the project. 

The team listed eighty-four tasks related to ten macro areas: Electronics, Mechanics, 

Software, Tooling, Manufacturing, Assembly line, Testing, Packaging, Certification, Patenting. 

Then, these tasks were collected in a DSM, and the dependencies’ structure was outlined. In the 
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DSM, cells on the diagonal correspond to the tasks, the marks in off-diagonal cells indicate tasks 

interactions. The marks in the row denote activities inputs (sub-diagonal marks), while marks in 

the column indicate the feedbacks (super-diagonal marks). In this case study, the team provided 

only deterministic feedback links, marked with the black filled circle symbol, i.e., probability of 

occurrence equal to 1. While defining the process architecture, the team and I realized that some 

tasks related to the definition of interfaces between subsystems were missing. Those tasks were 

added and, within two iterations, the final product backlog architecture was consolidated. 

Figure 64 shows the resulting product backlog architecture the team produced. The backlog 

includes design activities (marked in green), rapid prototyping (yellow tasks), procurement or 

manufacturing (marked in orange), AIT activities (marked in blue), IP protection (purple tasks), 

certifications activities (marked in grey), packaging (light grey tasks) and assembly line (light blue). 

  

Figure 64. Input DSM for development of the household appliance 
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1 Dr Fl Dr Fl

2 Dr Swh spec Dr Swh spec

3 PCB dev 3V PCB dev 3V ● ● ● ● ● ●

4 Delivery PCB  3V (EM)Delivery PCB  3V (EM) ●

5 Disp FS req Disp FS req ●

6 Disp FT requ Disp FT requ ●

7 D Sc-PCB int D Sc-PCB int ● ● ● ●

8 D Sw-PCB int D Sw-PCB int ● ●

9 Fin Flw Fin Flw ● ●

10 Fin Sw spec Fin Sw spec ● ● ●

11 Dsg Dr scr Dsg Dr scr ● ● ●

12 Prototyping DispPrototyping Disp ●

13 Prototyping Sw (EM)Prototyping Sw (EM) ●

14 Delivery Mtr (EM)Delivery Mtr (EM)

15 Testing Mtr (EM) with brb and dmdrTesting Mtr (EM) with brb and dmdr ●

16 AIT_PCB-Mtr AIT_PCB-Mtr ● ● ●

17 EMC test_PCB-MtrEMC test_PCB-Mtr ●

18 Order  4 PCB pcs for prototypeOrder  4 PCB pcs for prototype ● ●

19 Test  PCB prototype for logic and bugsTest  PCB prototype for logic and bugs ● ● ● ●

20 Product concept 3D designProduct concept 3D design ● ● ● ●

21 PCB supplier company searchPCB supplier company search

22 PCB supplier quotationsPCB supplier quotations ● ●

23 Mtr supplier searchMtr supplier search ●

24 v supplier quotationsv supplier quotations ● ●

25 Procurement of Mtr - 4 pcs for prototypeProcurement of Mtr - 4 pcs for prototype ● ● ●

26 Die-cast housing supplier searchDie-cast housing supplier search ●

27 Die-cast housing supplier quotationsDie-cast housing supplier quotations ● ●

28 Design Mtr bearingDesign Mtr bearing ● ● ●

29 Design Ar bearingDesign Ar bearing ● ●

30 Design BL mech Design BL mech ●

31 Design LR for A Design LR for A ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

32 Design PA int Design PA int ● ● ● ● ●

33 Design Accessory 1Design Accessory 1 ● ● ●

34 Design Accessory 2Design Accessory 2 ● ● ●

35 Design Accessory 3Design Accessory 3 ● ● ●

36 Design Accessory 4Design Accessory 4 ● ● ●

37 Design Accessory 5Design Accessory 5 ● ● ●

38 Design Accessory 6Design Accessory 6 ● ● ●

39 Design Accessory 7Design Accessory 7 ● ● ●

40 Design Accessory 8Design Accessory 8 ● ● ●

41 Design Accessory 9Design Accessory 9 ● ● ●

42 Design Accessory 10Design Accessory 10 ● ● ●

43 Design Accessory 11Design Accessory 11 ● ● ●

44 Design Accessory 12Design Accessory 12 ● ● ●

45 Design Accessory 13Design Accessory 13 ● ● ●

46 Design Accessory 14Design Accessory 14 ● ● ●

47 Design product AssemblyDesign product Assembly ● ● ● ● ● ● ● ● ●

48 Prototyping Mtr bearingPrototyping Mtr bearing ●

49 Prototyping Ar bearingPrototyping Ar bearing ●

50 Prototyping BL mechPrototyping BL mech ●

51 Prototyping LR for APrototyping LR for A ● ● ● ● ●

52 Prototyping PA intPrototyping PA int ● ● ● ● ●

53 Prototyping an components Prototyping an components ● ● ● ● ● ● ●

54 Prototyping external casePrototyping external case ● ● ● ● ● ● ●

55 AIT Prototype full product (Functional)AIT Prototype full product (Functional) ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

56 Definition Product Design BaselineDefinition Product Design Baseline ●

57 Mockup of full product (Not Funct Prototyping)Mockup of full product (Not Funct Prototyping) ●

58 Design tooling 2D drawingDesign tooling 2D drawing ●

59 DFM report DFM report ● ●

60 First off tool (FOT)First off tool (FOT) ● ● ●

61 (EB1) - prototyping(EB1) - prototyping ●

62 (EB2) - prototyping(EB2) - prototyping ●

63 Pre production order (for plastic parts only)Pre production order (for plastic parts only) ● ●

64 Tooling import (for plastic parts only)Tooling import (for plastic parts only) ●

65 3D polyfoam design development3D polyfoam design development ● ●

66 2D Gift Box die-cut development2D Gift Box die-cut development ● ●

67 2D Master Box die-cut development2D Master Box die-cut development ● ●

68 Full packaging prototype (polyfoam, GB, MB)Full packaging prototype (polyfoam, GB, MB) ● ● ●

69 Arrangement delivery to the factoryArrangement delivery to the factory ● ● ●

70 Instruction Manual developmentInstruction Manual development ●

71 Instruction Manual printingInstruction Manual printing ●

72 Rating Label developmentRating Label development ● ●

73 Rating Label printingRating Label printing ●

74 Mtr patent Mtr patent ●

75 PCB patent PCB patent ●

76 BL mech patent BL mech patent ●

77 PL mech patent PL mech patent ●

78 Ar bearing patentAr bearing patent ●

79 Design patent (before tooling start)Design patent (before tooling start) ●

80 Skolkovo ApplicationSkolkovo Application

81 TUV Report certification (based on prototype)TUV Report certification (based on prototype) ●

82 TUV final certification (based on mass production)TUV final certification (based on mass production) ●

83 ROHS certification (based on mass production)ROHS certification (based on mass production) ●

84 REACH certification (based on mass production)REACH certification (based on mass production) ●

85 Initial panels testing (int conn)Initial panels testing (int conn) ●

86 Assembled Panel testing  (ext conn)Assembled Panel testing  (ext conn) ●

87 Assembled product full life test (after pre prod)Assembled product full life test (after pre prod) ●

88 Drop test Drop test ●

89 Vibration test Vibration test ●

90 Assembly line drawingAssembly line drawing ● ●

91 Spare part purchasing/importSpare part purchasing/import ● ●

92 Warehouse shelves relocationWarehouse shelves relocation ●

93 Assembly line building/calibrationAssembly line building/calibration ●

94 Assembly line certificationAssembly line certification ●
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After consolidating the tasks list and the process structure, project participants were asked 

to provide additional data about time, cost, and resources required to perform the activities (Figure 

65). The information is based on historical data, experts’ opinion, or their combination. The main 

concern of the management was related to the time-to-market; therefore, they decided to provide 

only time data and focus all the analysis on the schedule. 

 

Figure 65. Case study B - Complementary information provided within the product backlog architecture definition – 

work-packages traceability, expertise required, and time estimates. 

The definition of the product backlog architecture was a collective effort involving the 

management team responsible for the project. Each team member provided tasks, input/out 

dependencies, and time estimates. The final product backlog architecture resulted from team 

consensus reached by adopting an iterative refinement process. 

Task ID Task Name WP ID Expertise # Exp needed Exp code m
in

m
o

de

m
ax

1 Dr Fl 1 E 1 1 1 2 20

2 Dr Swh spec 1 E 1 1 4 4 15

3 PCB dev 3V 1 E 1 1 29 58 65

4 Delivery PCB  3V (EM) 1 p 1 4 3 14 40

5 Disp FS req 1 E 1 1 3 17 20

10 Fin Sw spec 1 E 1 1 25 49 60

11 Dsg Dr scr 1 E 1 1 49 98 120

12 Prototyping Disp 1 p 1 4 60 101 120

13 Prototyping Sw (EM) 1 p 1 4 50 101 120

14 Delivery Mtr (EM) 1 p 1 4 75 124 150

15 Testing Mtr (EM) with brb and dmdr 1 AIT 1 5 3 16 60

21 PCB supplier company search 1 S 1 6 3 13 15

22 PCB supplier quotations 1 S 1 6 5 6 60

23 Mtr supplier search 1 S 1 6 0 2 40

24 v supplier quotations 1 S 1 6 0 1 15

25 Procurement of Mtr - 4 pcs for prototype 1 p 1 4 15 54 60

26 Die-cast housing supplier search 1 S 1 6 5 50 60

27 Die-cast housing supplier quotations 1 S 1 6 3 5 15

28 Design Mtr bearing 1 E 1 1 5 19 40

29 Design Ar bearing 1 E 1 1 5 43 50

65 3D polyfoam design development 3 E 1 1 5 15 30

66 2D Gift Box die-cut development 3 E 1 1 5 7 30
67 2D Master Box die-cut development 3 E 1 1 5 18 20

75 PCB patent 4 PT 1 8 15 53 60

81 TUV Report certification (based on prototype) 4 C 0 7 147 174 210

82 TUV final certification (based on mass production) 4 C 0 7 15 54 60

90 Assembly line drawing 8 E 5 1 10 11 30

94 Assembly line certification 12 p 9 4 10 40 45

time (man-day)

Prepare Data
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We leveraged the value of the Agile Manifesto of promoting collaboration between project 

participants and development partners, while providing a common language and structure to define 

the activities required to deliver the product. The resulting product backlog architecture offered the 

team a holistic view of the project. 

While shaping the product backlog architecture, the framework provided the team with a 

chart to understand the viability of implementing Agile in the different portions of the project 

(Figure 66). The same color code used in the product backlog architecture is adopted: design tasks 

are marked in green, procurement or manufacturing tasks are marked in red, prototyping tasks are 

in yellow, AIT tasks in blue, IP protection in purple, certification in grey, packaging in light grey 

and industrialization tasks are marked light blue. The tasks in the upper pane represent the activities 

for which agile implementation is efficient in terms of time. In this case, fast iterations will lead to 

an equally rapid increase of product maturity without significantly impacting the schedule. Tasks 

in the lower pane represent the activities for which Agile implementation would be highly 

inefficient in terms of time. Iterating such tasks would lead to a schedule disruption. 

 

Figure 66. Case B – Agile Implementation viability 

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

It
er

at
io

n
 V

ia
b

ili
ty

 T
im

e 
In

d
ex

Task ID

Agile Implementation Viability Chart



5.4 CURSIVE deployment 

137 

 

It is quickly noticeable from the chart that 68% of tasks lie in the non-viable area and less 

than 15% in the viable one. The time viability index for the entire project, 𝐴𝑉𝑝𝑟𝑗
𝑇 , is equal to 0.38. 

Therefore, based on this structuring reasoning exercise, it can be concluded that Agile is not a viable 

solution for the project under consideration. Nevertheless, some small iterations might be 

considered for a few tasks. 

From the product perspective (Figure 67 shows the product DSM), we can also notice that 

the product exhibits a bus-modularity structure (Holtta-Otto & de Weck, 2007), i.e., one component 

connects to many other components, but none of the other components connects to each other. This 

product feature opened the question of optimizing the combined development of the product 

platform and product accessories to minimize the time to market while keeping customers’ hype. 

 

Figure 67. Product DSM of the household appliance 
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1 Mtr ● ● ● ●

2 PCB ● ● ● ●

3 Sw ● ● ●

4 Scr ● ● ●

5 SP ● ● ● ●

6 A ● ● ●

7 B ●

\ 8 Mtr bearing ● ●

9 A bearing ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10 BL mechanism ● ● ●

11 LR for A ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

12 PA interfaces ● ● ● ● ● ● ● ● ● ● ● ● ● ●

13 Accessory 1 ● ● ●

14 Accessory 2 ● ● ●

15 Accessory 3 ● ● ●

16 Accessory 4 ● ● ●

17 Accessory 5 ● ● ●

18 Accessory 6 ● ● ●

19 Accessory 7 ● ● ●

20 Accessory 8 ● ● ●

21 Accessory 9 ● ● ●

22 Accessory 10 ● ● ●

23 Accessory 11 ● ● ●

24 Accessory 12 ● ● ●

25 Accessory 13 ● ● ●

26 Accessory 14 ● ● ●
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Specifically, the question was to understand the benefit of defining a set of primary 

accessories to be ready for the product launch, postponing the development of the secondary 

accessories to be released in the later months, or develop and release all in one. The simulation and 

planning CURSIVE capabilities are used to evaluate this tradeoff. 

The consolidated product backlog architecture resulting from the structuring process 

(Figure 64), including the DSM and the complementary information (Figure 65), is used as input 

for the simulation step of the framework. 

5.4.2 Simulation 

Three thousand (3000) simulations (in batches, s, of 500) have been run to stabilize both mean and 

variance of time distribution within precision, ε = 10-4 (Figure 68) according to equation (6), (7). 

 

Figure 68. Mean and variance over the number of simulations for time distribution 
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As a result, the simulation provided a time distribution. Figure 69 shows the probability 

density functions (PDF) of simulated schedule outcomes. 

 

Figure 69. Case B - Simulation output Time Probability Distribution Functions (PDFs) normalized 

The graph was helpful in quickly comparing process time against the scheduled target. We 

could immediately notice that the programmatic risks associated with the time objective were 

extremely high. There was less than a 10% likelihood to complete the project within the target 

timeframe, while the most likely scenario was about 24% longer than the schedule objective. This 

opened the question of whether the issue was the process structure or the sensitivity of the 

implementation strategy to some specific activities’ uncertainty. This concern is further addressed 

by analyzing different implementation scenarios. Then the results are used to benchmark process 

performance identifying the source of programmatic risks. 

Target 
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5.4.3 Planning 

In the planning stage, CURSIVE was provided with different time targets, trying to get more details 

on the different project implementation strategies. Two scenarios have been analyzed: the nominal 

scenario (tight schedule, target 0.07 T of time distributions in Figure 69) and the most likely 

scenario. Figure 70 shows the Gantt chart of the nominal scenario meeting time constraints. 

 

Figure 70. Case B- Gantt chart of the baseline scenario meeting time constraints, in green design tasks, in orange 

procurement and manufacturing, in yellow project management tasks, in blue AIT, in purple IP management, and in light 

purple certification tasks 

Given the structure of the process, summarized in Section 5.4.1, Agile did not represent a 

viable solution for the considered project. Therefore, the algorithm for identifying the number of 

MVP and defining the Sprint backlog has not been deployed. Nevertheless, the algorithm has been 

used to define some activities clusters and set milestones to monitor the project execution. 

Then the information gathered within the CURSIVE deployment has been collected and 

used to derive insights, thus provide recommendations. 
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5.5 Process insights 

The comparison of the Gantt chart of two process implementation scenarios, the nominal scenario 

(Figure 71 - left) and the most likely scenario (Figure 71 - right), suggested that the development 

time issue relates to the process structure rather than the sensitivity to task durations. 

 

Figure 71. Case B - Comparison of different scenarios 

The analysis of the normalized time required to perform the different activities as well as 

the iterations time (showed as different staked color bars) for a given scenario (Figure 72) 

confirmed this hypothesis. The development process is mostly sequential, with no iterations and no 

task overlaps. 

 

Figure 72. Case B - Tasks Time Breakdown 
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Further analysis of the PDP also showed that 65% of the time is spent on the Product 

baseline definition and 20% of the time on the development of the secondary accessories. 

 

Figure 73. Summary of Process insights 

Therefore, the following suggestions were made: 1) To defer the development of the 

secondary accessories until the completion of the “first product” account for requirements 

commonalities. 2) To overlap development tasks and prototyping activities to reduce lead time and 

early mitigate technical risks. This combined strategy would increase the likelihood of releasing 

the product within the target timeframe (Figure 74). 

 

Figure 74. Suggested optimization 
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The process structure was amended according to the recommendations resulting from the 

analysis. Then the new process was simulated. Figure 75 shows the time probability density of the 

optimized process. It is immediately observable that there is a much higher likelihood to complete 

the project in time in this new configuration. Furthermore, if we assume the same risk posture of 

the non-optimized scenario, the time to market can be reduced by about 14% compared to the 

planned target. 

 

Figure 75. Case B – Simulation output of optimized process structure 

Additional optimization can also be made at the resource-allocation level. Improving the 

coordination with the development partners and temporarily doubling the personnel working on the 

project for the required time frame will lower the time-to-market by 40% while having 

hypothetically no impact on the project’s total cost. Increasing the full-time equivalent (FTE) for a 

short period might not affect the budget much while bringing significant benefits to the schedule. 

However, this scenario may affect other projects the organization is running. Not having a 

comprehensive picture of the R&D portfolio and knowing all the project interdependencies, this 

solution was discarded. 
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Based on these analyses, the process implementation strategy presented in Figure 76 has 

been recommended: 1) Staring the development of the product platform and primary accessories at 

T0, deferring the development of secondary accessories at T5. 2) Anticipating the prototyping and 

AIT activities between T1 and T3. On the one hand, this solution optimized the speed of delivery, 

increasing the likelihood to release the product in time; on the other hand, it allows for earlier 

mitigation of technical risks reducing the risk for reworks. 

 

Figure 76. Recommended strategy 

As we can observe in Figure 76, the complete set of secondary attachments will be ready 

immediately after the product release; however, these attachments might require additional tests 

before being ready for commercialization. Those tests are not included in the current Gantt chart 

and might require further investigations. Deferring the development of secondary attachments also 

has some implications in terms of design optimization. While the combined development of the 

product platform and the full set of accessories would ensure a system entirely optimized, deferring 

a subset of accessories might lead to a suboptimal solution. The system would be optimized for 
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product platform and primary set of attachments, while secondary ones are not taken into 

consideration in platform design and optimization. Potential issues deriving from this situation are 

mitigated by a careful interface definition and specifically by developing a standard interface 

(tasks 31 and 32 in the product backlog architecture). 

5.6 Summary and interim conclusion 

This chapter analyzed the development process of a consumer product and specifically a house 

appliance applying our framework. The analysis covered all the aspects of the system development, 

including design, prototyping, manufacturing, assembling, integration, testing, packaging, 

assembly line design and deployment, certification, and IP protection  

After introducing the case study providing background information on both the project and 

the organization executing the project, and briefly discuss the motivation for adopting Agile, we 

have dived into the PDP structuring and planning analysis using CURSIVE. The analysis of the 

PDP has been organized according to the three macroblocks of our framework, namely process 

structuring, simulating (or simulation), and planning. 

During the structuring phase, we deployed a set of methods and tools for reasoning about 

the structure of the decision problem. First, we have identified ninety-four tasks spanning over the 

whole development cycle. Then, those activities have been organized in a DSM, defining their 

interconnections (tasks dependencies) and outlining the order in which tasks shall be addressed. 

Tasks exhibited deterministic dependencies. The outcome of this exercise has been consolidated in 

the product backlog architecture. The product backlog architecture has been integrated with 

complementary information about the time and resources required to perform the activities. 
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Within the structuring phase, CURSIVE also assessed the viability of implementing Agile 

for the given project. The time viability index for the entire project, 𝐴𝑉𝑝𝑟𝑗
𝑇 , is equal to 0.38. This 

value implies that the project would not benefit from Agile adoption; on the contrary potential 

iterations would have a huge impact on the schedule, eventually jeopardizing the project. Therefore, 

it is not recommended to execute the project using Agile, even if some small iterations might be 

considered for few tasks. The detailed analysis of the Agile Viability charts (Figure 66) identified 

the few items for which iterations are feasible (about 14 tasks). Overall, the framework suggested 

executing the project adopting a traditional Stage-gate approach, with a light Agile-hybridization 

on electronics design tasks and packaging design tasks. The information resulting from the 

structural reasoning exercise has been then used as input for the simulation phase. 

During the simulation phase, CURSIVE has analyzed the solutions satisfying the problem 

constraints and evaluates the overall process performance for different variables combinations and 

values. As an outcome of the simulation, we got a time distribution representing the feasible 

scenarios and the dataset, including all the process details for each considered scenario. 

In the planning phase, we have explored in-depth the scenario that meets the time target 

offering an actionable plan. The results of the planning activities have been summarized in a set of 

charts (Figure 70, Figure 72, and Figure 73), offering a comprehensive picture, from multiple 

perspectives, of the baseline execution plan. 

Together with the structuring reasoning exercise, the analysis of the project execution plans 

represented a fundamental activity in defining the degree of agility (intended as iterations viability) 

to deploy within the development of a hardware system. The first provided the rationale for Agile 

implementation. The latter provided means of coordination between activities executed adopting 

different implementation strategies (iterative vs. not iterative). 
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The combined outcome of the three phases of our framework provided valuable insights 

on the process performance in terms of time and technical risk. Figure 72 reported the normalized 

time required to perform the different activities, as well as the time of iterations. These data brought 

the focus on critical activities, such as task 81 (time-critical), and highlighted that the PDP is mostly 

sequential with no iterations and no tasks overlap. Further analyses also showed that 65% of the 

time is spent on the Product baseline definition and 20% of the time on the development of the 

secondary accessories. All this information can be used to evaluate potential strategies for process 

improvements (Figure 74). First, it has been suggested to defer the development of secondary 

attachments leveraging subsystems' commonalities and standard interfaces. Then, it has been 

suggested to overlap design and prototyping activities to reduce lead time and early mitigate 

technical risks. This combined strategy would increase the likelihood of releasing the product 

within the target timeframe, as presented in Figure 75. 

It has also been investigated the possibility of additional optimizations at the resource-

allocation level. Improving the coordination with the development partners and temporarily 

increasing the personnel working on the project for the required time frame will lower the time-to-

market while having hypothetically no impact on the project’s total cost (increasing FTEs for a 

short period might not affect the budget much while bringing significant benefits to the schedule). 

However, not having a comprehensive picture of the full R&D portfolio of the company and 

without knowing all projects' interdependencies, we did not recommend pursuing this solution. 

As shown in the case study, CURSIVE is a versatile framework that provides project 

managers and development teams with quantitative means to underpin their decision-making 

process. It can be used to assess the feasibility of meeting a time target for a given process structure 

as well as propose and investigate potential process improvements to either shorten the time-to-

market or increase the likelihood of meeting the scheduled release. 
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Based on the analysis conducted within this study, the following conclusions can be drawn. 

• Team composition, location, and synchronization play a key role in the feasibility of 

Agile/hybrid-Agile approach implementation. One of the factors that made Agile not viable 

for this case study relates to the team theme. As presented in section 5.2, organization B 

has the headquarters in Moscow, Russian Federation, but has a network of development 

partners spread over nine different countries. Each partner is responsible for developing a 

subset of the final product. Furthermore, the company does not have its own production 

site but leverages a network of manufacturers spread over seven countries. This 

organization setting with highly dispersed functional teams is not ideal for Agile adoption. 

o Dispersed functional teams (instead of traditionally recommended co-located 

cross-functional teams) might lack a holistic perspective on the product, requiring 

a detailed set of system requirements in clear contrast with Agile theory. 

o Dispersed functional teams make difficult the development of incremental MVPs 

requiring additional logistic support for product shipment between the different 

development sites. Only functional MVPs related to the discipline assigned to a 

given development site are allowed, preventing the full exploitation of Agile 

potential in retiring technical risk through fast iterations at multiple stages of 

product development. 

o Dispersed teams might exhibit synchronization issues related to the different 

development speed different teams might have. Therefore, different product 

subsets might be ready at a different moment requiring additional coordination 

efforts for efficient project execution. 
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o Functional teams might exhibit issues related to the development culture. A 

complex project entails a large variety of disciplines involved, and each team might 

not share the same approach to the development. As a result, they might prioritize 

different system features at different stages of the product development leading to 

suboptimal solutions. 

• This case study highlighted that System modularity is not only an essential factor for the 

effective implementation of Agile/hybrid-Agile, but it generally represents a crucial driver 

in the process structuring. From the Agile perspective, modularity drives iterations cost and 

time (high modularity allows for more and faster iterations). From the process structuring 

perspective, modularity allows for different prioritization strategies of development 

activities. For instance, in this case study, the system exhibited a bus modularity structure: 

system modularity index (SMI), equal to 0.157 (Figure 77). 

 

Figure 77. Degree of modularity 

The SMI index is based on the exponential decay approximating the actual decay structure 

of sorted singular values of the product DSM (Figure 67). For additional details on the SMI 
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formulation., please refer to eq. (6) in (Holtta-Otto & de Weck, 2007). The bus modularity, 

combined with a careful interface definition and standardization, enabled the deferral of 

secondary attachments development, increasing the likelihood to release the product 

according to the time target (Figure 75 and Figure 76). 

• Outsourcing the development of all the components constituting the product hampers the 

possibility of developing the entire product through iterations and incremental MVPs. 

Nevertheless, it opens the question of the number and the type of MVPs/prototypes to 

produce. The R&D division responsible for the project coordination and product 

integrations might still need a set of MVPs/prototypes alongside digital models (or a digital 

twin, if any) for verification and validation purposes. 

• Product certification might represent a significant impediment to iterative development. As 

we can observe in Figure 70 (light-purple tasks), certification accounts for a considerable 

amount of time in the project schedule. Every new iteration on the product would require 

an additional set of certification activities, ultimately jeopardizing the project schedule. 
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 Conclusion 

The thesis presented a decision support system for Agile development of complex hardware 

systems. This research work contributes to the current debate in the field on the viability of 

implementing Agile in the context of hardware systems development. The proposed framework 

aims to support engineering teams and project managers in structuring and planning development 

projects. This last chapter summarizes the main findings of the research. It highlights the thesis 

contributions, states the limitations, and sets the basis for future research. 

6.1 Thesis summary 

The thesis has first identified and discussed the gaps in the current Agile theory contextualized in 

the development of physical products, as well as the challenges and opportunities arising from the 

implementation of Agile in hardware projects. Then it has proposed a methodology and a tool to 

fill those gaps and exploit the opportunity opened by Agile adoption. 

Chapter 1 introduced the problem and provided the rationale for the research opportunity. 

It has been acknowledged that the need to develop products under uncertain, volatile, complex, and 

ambiguous (VUCA) conditions drove and is still driving companies in all industries to focus on 

“Simplicity is the ultimate 

sophistication”. 

(Leonardi da Vinci) 
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streamlining the development processes and eventually looking for new development 

methodologies. In this context, Agile methods have drawn considerable attention. Nevertheless, 

despite the large variety of frameworks and practices available, organizations still struggle to 

identify and implement a development process structure that best fits their needs, thus getting the 

maximum benefit. Therefore, the need for a methodology to support the structuring of Agile or 

Hybrid-Agile product development for hardware systems underpinning the decision-making 

process by quantitative analyses and statistical evidence has been identified. 

Chapter 2 critically reviewed the bodies of knowledge that frame the research. It has 

provided the foundations of Agile theory and specifically Agile- Scrum, and it offered an overview 

of the literature on product development and discussed current project management techniques. 

Chapter 2 has also reported the results of the field research conducted to validate the gaps identified 

in the literature and better inform the research questions. 

Chapter 3 proposes the decision support system Agile development of hardware systems 

(CURSIVE). It includes an analytical approach to managing development activities within a 

hardware project and consists of three macroblocks, namely structuring, simulating, and planning 

(Figure 19). A cross-blocks layer, the representing or viewing layer, serves as a graphical user 

interface. The decision support system has been implemented in an integrated tool. Chapter 3 also 

addressed CURSIVE validity, specifically the validity of the process model, the data model, the 

graphical user interface, as well as the general and face validity. Given the lack in the literature of 

a formal methodology for validating decision support systems (few authors addressed this concern), 

this thesis also formulated a validation framework as a comprehensive synthesis of the works in 

related fields. This framework has been then used to guide the validation process. 
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In chapter 4 and chapter 5, the proposed framework is applied to two case studies for 

verification and validation purposes. 

The first case study, presented in chapter 4, entailed the development of an optical 

telecommunication payload for a nanosatellite mission. The case study covered the entire 

development process of the system, from the design phase to the assembling, integration, and 

testing (AIT) of the flight model. The initial sections of the case study reported the organization 

and the project structure, summarizing the motivation for Agile adoption and the fitting of Agile 

into development processes traditionally used by the organization. Then, the framework is applied 

to the project data, detailing all the implementation steps. Eventually, process insights are derived, 

and the case study conclusion is drawn. In this first study, it was also possible to benchmark 

CURSIVE estimates against actual development data, verifying the framework capabilities and 

validating the accuracy of the forecasts. 

In the second case study, presented in chapter 5, the framework is applied to the 

development of a consumer product. The company aimed to release the product on the market 

within a tight schedule and was willing to invest considerable resources to achieve this goal. The 

challenge here was to support the management in optimizing the development to meet the time 

target, defining the best strategy for developing the product platform and the product accessories. 

By applying the framework to this second case study, it was possible to test its flexibility and ability 

to adapt to the different project contexts. 

This last chapter draws conclusions, summarizes thesis contributions, informs on the 

limitation of our work, and sets the bases for future research. 
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6.2 Thesis Contributions 

The thesis contributions are unfolded starting from the answers to the research questions defined in 

Section 1.4. Within the answer to the research questions, the contributions are highlighted. 

RQ 1 

How to understand when and how to use Agile methods within the development 

process physical systems based on the specific project context and system features? 

This thesis has proposed a methodology that assesses the viability of implementing the 

Agile Scrum approach accounting for the project context and the systems feature. Such 

methodology includes the Agile viability indexes (Section 3.1.5), two quantitative metrics that, 

relying on the tasks’ decomposition and on the time and cost estimates, assess to which extent is 

viable to implement Agile in a given project. Based on the current state of the practice, thresholds 

in terms of cost and time have been set to recommend the use of Agile, Hybrid-Agile, or traditional 

development processes. The methodology also offers high-level suggestions on the task granularity 

and system modularity level, even if it does not explicitly address the two concepts, supporting the 

design team in the decision-making process. 

Such methodology and related metrics attempt to solve the long-standing debate in the 

product development community on the effectiveness and the potential benefits of using Agile. The 

community is currently split into Agile supporters and opponents. The former believe that Agile is 

the solution to be adopted in every project; the latter believe that Agile should never be used. From 

the case studies analysis, it can be noticed that the solution is a middle way. Some tasks, project 

portions, or entire projects may benefit from Agile adoption allowing for rapid technical risk 

retirement and reducing the technical dept. In some other situations, the iterative nature of Agile 
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may jeopardize the project, and therefore traditional approaches shall be preferred. By deploying 

the proposed framework, project managers and design teams can reason on the question supported 

by quantitative analysis. Such an approach represents a significant shift in perspective of the current 

literature, moving from the analysis of challenges and opportunities entailed by Agile development 

to the analysis of contextual variables to evaluate the viability of Agile implementation. 

It has also been developed a predictive model to simulate the process implementation 

(Section 3.2), thus assessing the impact of a given process structure on the process performance, 

namely time and cost. The simulation results provide additional insight into the feasibility of a 

given implementation strategy to meet potential schedule and budget constraints. Such a model is 

able to simulate complex iteration paths and independently manage the number and the position of 

the iterations within the product development. It represents significant advance respect to the 

literature models that can simulate only simple iterations patterns modeled by manual input. 

The results of such predict model allow navigating programmatic and technical tradeoffs. 

The performance benchmark of alternative project implementations offers valuable information for 

planning and executing engineering projects meeting the stakeholders’ needs while accounting for 

organization capabilities and resource availability. 

RQ 2 

How to support project managers and engineering teams in structuring and 

executing Agile or Hybrid-Agile methods within product development projects? 

A framework to support the project structuring (section 3.1) and planning (3.3) has been 

developed. First, it has been introduced the concept of product backlog architecture. The benefit 

of defining a backlog architecture over a traditional product backlog is twofold. First, project 
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participants are not only informed on the activities to be performed (i.e., user stories) but also are 

aware of their relationships. This will enable decision-makers to reshuffle or redefine the high-level 

user stories to mitigate programmatic risks and meet project milestones. Second, Agile teams move 

from a qualitative definition of the story points to a quantitative definition of FOMs (i.e., time and 

cost), complemented by information on the uncertainty associated with their formulation. This 

provides a common understanding of the effort related to the task, retiring the risk linked to the 

human factor. 

In the product backlog architecture, tasks covering the entire product development cycle 

are included, also accounting for extern dependencies such as procurement and manufacturing. This 

perspective complements the traditional Agile theory that lacking this aspect has caused several 

problems in organizations implementing Agile for physical products. 

Since Agile for hardware significantly differs from the software version because of the 

non-homogenous development environments requiring expertise from different disciplines, the 

expertise information has been included in the product backlog architecture alongside time and 

cost estimates. Naturally, following the Agile principles, tasks are not pre-assigned to people, but 

the disciplines related to the tasks are marked, including internal resources (i.e., development team) 

and external resources (i.e., procurement and manufacturing). Those data will be used during the 

project execution simulation, ensuring correct resource allocation and leveling. 

The proposed model also supports engineering teams in the sprint planning activities and 

Minimum Viable Product Definition. Combining simulation results with the product backlog 

architecture, the framework identifies an optimal number of MVPs and suggests a Sprints planning 

strategy (section 3.3) through a heuristic approach. The model then summarizes all cost, time, and 
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Sprint backlog information facilitating development team activities. It should be emphasized that 

the model is not intended to replace team planning activities but rather aims to provide quantitative 

analyses and a common starting point for classic Scrum activities. 

The thesis work also proposes a multi-tier architecture to coordinate Agile with the 

traditional Stage-gate process in the context of multi-party consortia (Section 3.1.4). Such 

architecture ensures the mapping of the Product Backlog item to the work packages and enables 

traceability of consortium requirements to the Agile organization user stories. 

Lastly, a taxonomy of Minimum Viable Products (Section 3.3.2) has been developed. 

MVPs are classified based on the level of fidelity, the type of artifacts, the representation mode, the 

verification and validation activities enable by the MV. By mapping verification and validation 

activities on the MVP artifacts, such a taxonomy allows development teams to trade off engineering 

efforts required to produce the MVP versus the risk retired by the Sprint outcome. A notional map 

of a tradeoff between Sprint length, V&V activities, and MVP artifacts is then also presented. 

6.3 Limitations and Future Work 

The work proposed here has a few limitations related to the validation. Within this thesis, 

considerable efforts have been dedicated to ensuring the validity of the decision support system and 

specifically to the validity of the process model, the data model, the graphical user interface, as 

well as to the CURSIVE general and face validity (as presented in chapter 3, section 3.5). However, 

even though the framework has also been verified on a set of case studies (chapters 4 and 5), a full 

validation would require an experimental setup to compare the implementations of the same project 

following the recommendations provided by our model, Stage-gate project management experts, 
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and Agile coach or Scrum master experts, plus control groups. This effort would require a relatively 

large sample size of complex engineering projects within different industrial settings to reach 

statistical significance. Possible future research works may address this point. 

Concerning the range of applications the framework can serve, as discussed in chapter 3, 

section 3.5.4, it has been specifically designed and applied to physical and cyber-physical products. 

As presented in chapters 4 and 5, the framework can cover a wide range of applications. It has been 

applied to the development of a space system as well as the development of a consumer product. It 

has not been tested on “pure” software systems; thus, we cannot claim the applicability to this kind 

of product. Concerning the R&D composition and location, the DSS has been deployed and tested 

in cases of collocated (chapter 4) and sparse/dispersed R&D teams (chapter 5), providing in both 

situations valuable process insights (sections 4.5 and 5.5). Possible future research works may test 

the framework capability for a larger set of applications. In particular, it would be interesting to 

evaluate CURSIVE performance in the context of product-service systems. 

Another direction of future work can be integrating our model with a broader data-driven 

systems engineering framework, e.g., Valispace (Valispace GmbH, 2019), to improve its analytical 

capabilities and increase the accuracy of estimates. 
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