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Abstract

In this thesis we study representation theory of quantum toroidal algebra Uy, 4, (g[l) We construct an

explicit realization of twisted Fock module ]-'énl’") identifying it with integrable level 1 representation
of quantum affine gl, algebra. Chevalley generators of Uy, 4, (g}[l) expressed via vertex operators of
quantum affine gl;.

We consider particular cases go = 1 and n = 2. In the first case we generalize our construction and
apply it for study of Nekrasov partition functions. Also, in both cases we considered the corresponding
deformed twisted W-algebras.
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Introduction

Preliminary information

In this thesis, we study the representation theory of quantum toroidal gl;. This algebra has appeared
in different areas of mathematics and mathematical physics independently. The algebra is known as
Woor1-algebra [FHST10], elliptic Hall algebra [SVI3D], double affine Hecke algebra for gl and Ding-
Ioharo-Miki algebra [DI97h, IMik07]. We will denote this algebra by Uy, 4, (gl;). From the geometric
representation theory viewpoint, Uy, 4, (gnll) acts on equivariant K-theory of certain moduli spaces of
sheaves on P2 [Negl5al, [Tsy17]. Due to different viewpoints, it is very interesting and useful to study
UQMIQ (g[l) ' .

In the paper [DI97h], algebra Uy, 4,(gl;) has appeared in a list of algebras, interpreted as a Drinfeld
double. Due to this interpretation, we automatically obtain all remarkable structures of quantum
groups (Hopf algebra structure and R-matrix). This approach yield a presentation of algebra in terms
of Chevalley generators Ey, F} for k € Z and H; for [ # 0.

Let us remark that toroidal gl,, algebras for n > 1 also appear in the list of Drinfeld doubles. Let
us denote the algebra by Uy, 4, (al,) [Vas98]. The algebras act on K-theory of sheaves on the quotient
of P? by finite subgroup Z/nZ [VV98]. Tt is surprising that analogous results for Uy, 4,(gl;) were
obtained more than 10 years later.

Algebras Uy, 4,(gl;) admit another presentation. It is generated by P, for (a,b) € Z?\{(0,0)} and
central elements ¢ and ¢ with certain relations. The Chevalley generators are expressed as follows

Ep =Py, H =Ry, Frp =P_1 (0.0.1)

This generators and relations originally appeared as a presentation of Hall algebra of an elliptic curve
[SV1Il [SV13b]. A remarkable property of this presentation is an explicit construction of an action of
SLy(Z) on Uy .0 (aly). Here SLy(Z) is a central extension of SLy(Z) by Z. Group SLy(Z) acts on the
quotient of Uy, 4, (gl;) modulo ¢ = ¢ = 1, the action is given by the formula 0Py = Pyap)- Another
remarkable result is PBW-type theorem for generators P .

DAHA and Macdonald polynomials Double affine Hecke algebra Hy (abbreviated as DAHA)
acts on the space of Laurent polynomials C[xfl, e ,xﬁl]. Let An be the ring of symmetric Laurent
polynomials in N variables. There is a spherical subalgebra in Hpy, denote it by SHy; we also will
refer to the subalgebra as spherical DAHA. Spherical DAHA SH  acts on Ay. There is a commutative
subalgebra in SH  acting by diagonalizable operators. The operators are called Macdonald operators,
and eigenvectors are Macdonald polynomials [Che92) Kir97, Mac03].

Let A be the ring of symmetric function in infinitely many variables. Then an analogue of SHy is
Uy .0 (aly) [EEIF11al SVIT, SVI3Dh]. Operators P, are Macdonald operators. For b > 0, operators
Py, are the operators of multiplication by power sum symmtric polynomial p, (up to a normalization).
Operators Py act as 0/0pp (up to a normalization). Algebra Uy, 4, (g[l) is generated by Fy; and

P, o, hence action of the operators determines action of whole Uy, 4,(gly) on A. The representation
obtained is called Fock module F,. The parameter u appears due to an automorphism Py, — u®PF, .

8
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In Macdonald theory, the polynomial depend on parameters ¢g,t. The parameters are connected
with our parameters as follows ¢ = ¢, g3 =t 1.

Bosonization There is another construction of Fock module [FHHT09]. Consider a Heisenberg
algebra generated by aj and the corresponding Fock space F'*. There is an action of Uy, 4, (gull) on F¢
determined by explicit formulas for Chevalley generators in terms of ax. More precisely, H, acts as
the generators ay (up to normalization), and for E(z) = >, Exz~% and F(2) = Y, Fy2~* there is an
explicit formula as a normally ordered exponent of ay.

Such constructions are called bosonization. Bosonization is an efficient tool for study Kac-Moody
algebras, and, more generally, in Conformal Field Theory [DFMS97].

It is remarkable that comultiplication gives explicit bosonization of F,, ® --- ® F,,,. The action
of Uy, .4, (gly) is expressed via n copies of Heisenberg algebra. Formulas for E(z) and F(z) is given by
a sum n normally ordered exponents.

Deformed W-algebras W-algebras appeared in Conformal Field Theory as a generalization of
Virasoro algebra. Then deformed W-algebras Wy, 4,(sl,) appeared in [FE96]. The original definition
of W was not via generators and relations, but via a bosonization, i.e. as an algebra, generated
by certain operators, expressed via Heisenberg algebra. A particular case of deformed W-algebras
is deformed Virasoro algebra W, 4,(sl2), which was originally defined via generators and relations
[SKAO90].

Using the explicit bosonization formulas one can see that Chevalley generators of Uy, 4, (gl,) act on
Fu, @+~ ® Fy, as generators of Wy, 4,(gl,) = We, 4. (1) @ Heis, here Heis is a Heisenberg algebra. In
other words, Wy, 4,(81,,) = Uy, 4o (611)/In, here T, is a two-sided ideal, annihilated by Fy, @ --- ® Fy,
[FHS™10].

Many important ingredients of Conformal Field Theory, including conformal blocks, can be defined
in terms of W-algebras. The algebras W, 4,(sl,) determine a g-deformation of conformal blocks
[AFO18].

K-theory of moduli spaces Let M,, ; be the moduli space of torsion free sheaves on P? of rank n
and with second Chern class k and fixed trivialization at infinity. Consider a torus 7' = Cj x Cj, x
Cy, x -+ x C, . There is an action T' ~ M, x, induced from the tautological action (CZ1 X (CZ2 ~ P?
and action of Cj; x --- x Cy by changing trivialization at infinity. Denote by K7 (M, i)1oc localized
equivariant K-theory M,, ;, with respect to the action of 7'. Finally, let

K, = P Kr(Mni)ioc (0.0.2)
k=0

Action of Uy, 4, (gl;) on K, was constructed via correspondences. The obtained representation is
isomorphic to F,, ®---® F,,, [Neglbal [Tsyl7], this is a generalization of results of Nakajima [Nak97].

Tor T acts on M,, ;, with finitely many fixed points. Due to localization theorem K7 (M,, )10c has
a basis, enumerated by the fixed points. The vectors are eigenvectors of P, . In particular, for n =1
the obtained basis is Macdonald basis with respect to the identification K; = A

All this is particularly interesting in light of Alday, Gaiotto, and Tachikawa conjecture about a
correspon-dence between supersymmetric gauge theories and conformal field theories [AGTI0]. The
correspondence can be formulated as a mathematical statement about action of W, 4, (gl,) on K,
[Negl8]. Also, all this admits a yangian version with K theory replaced by cohomology [MO19,[SV13al.

Gorsky-Negut conjecture K-theoretic stable envelopes form an important basis in a symplectic
resolution of X. The basis depend on an additional parameter called slope s € Pic(X) @ R\{walls};
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here ‘walls’ is a hyperplane arrangement. Actually the basis is determined by connection component
of Pic(X) ® R\{walls}. It is interesting to study change of basis, corresponding to wall-crossing.

An important example of symplectic resolution X is M,, ;. Moreover, we can consider case n = 1,
then M j, is Hilbert scheme of k point C2, denoted by Hilbg(C?). In this case Pic(X) = Z; the walls
are a/b for b < k.

E. Gorsky and A. Negut studied the change of basis on the walls m/n |[GN17]. They have con-
jectured an answer in terms of U,(gl, ). Recall that U,(gl,) has n integrable level 1, denote them by
Fy,...,F,_1. The conjecture says that there is an isomorphism K; — F; such that stable envelopes
with the slopes s = m/n+e are mapped to standard and costandard bases of F; correspondingly. Here
+e are infinitesimal shifts away from the wall. The conjecture was recently proved by Y. Kononov
and A. Smirnov [KS20al.

Twisted Fock modules Let M be a representation of Ug, 4, (gnll), TE 5*1(2, Z). Twisted represen-
tation M7™ coincides with M as a vector space, but the action is twisted by the automorphism 7. Let
p(7T) € SL(2,Z) be the projection of 7. Denote

p(T) = <m,/ m> : (0.0.3)

In this thesis, we will study twisted Fock modules F};. The representation F, is essentially determined
by (n/,n). More precisely, another choice of 7 for a fixed (n/,n) corresponds to a shift of u. In
particular, for m’ = m =n =1 and n’ = 0, twisted Fock module is isomorphic to Fock module. The
intertwiner operator V is called Bergon, Garsia, Haiman operator [BGHT99] and plays an important
role in combinatorics of Macdonald polynomials.

From the point of view of explicit realization, change of parameters (n’,n) — (n’ + nk,n) corre-
sponds to E(z) — 2FE(z) and F(z) — 27*F(2). Informally speaking, it is interesting to study the
dependence on n and residue of n’ modulo n. Note that, residue of n’ is determined by residue of m
since n'm = 1 mod n.

Note that 7P, equals Py, kn up a monomial in ¢ and ¢. In paper [Negl6a] the author has
calculated action of Py, i, in basis of stable envelopes with slope m/n — e. The action of Heisenberg
algebra corresponding to scaling matrices in Uv(gA[n) on standard basis of F{ has exactly the same form.
This observation suggests that there is a connection between stable envelopes for slope m/n + € and
twisted Fock module F;. This connection was one of the motivations for Gorsky-Negut conjecture.
Also, let us remark that twisted Fock modules were used for calculations in topological strings [AFS12]
and knot theory [GN15].

Thesis results

In this thesis, we study explicit realizations of twisted Fock modules of Uy, 4, (gull) and twisted W-
algebras.

e In case ¢o = 1, we have constructed three realizations of twisted Fock module Uy, 4, (g'll):
fermionic (Theorem , bosonic and strange bosonic (Theorem . It was proved that
Ugi 40 (gj[l) acts via a quotient, isomorphic to twisted deformed W-algebra (Theorems and
0.0.5)). These results were generalized for representation obtained by restriction to a sublattice.
As an application, we have proved an identity for g-deformed conformal blocks.

e We have constructed explicitly action of twisted and non-twisted Virasoro algebras on an inte-
grable level 1 representation of quantum affine sly (Theorems [0.0.6| and [0.0.7| correspondingly).
The answer is expressed via vertex operators of quantum affine sls .
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e We have constructed explicitly twisted Cherednik representation of double affine Hecke algebra
Hy (Theorems |0.0.8| and |0.0.9[). Twisted Fock module of Uy, 4, (gly) is constructed explicitly
via semi-infinite construction (Theorem [0.0.10] and [0.0.12). Action of Chevalley generators is
expressed via vertex operators U, (gA[n). As a corollary, we have constructed an identification (as
vector spaces) of representations F; and F, .

Below we will formulate the results of the thesis in more details. Also we will give links to the
main part of the thesis. We hope, this will help a reader to navigate.

Schur specialization case

Below we will review some results of Chapter

In this section we consider specialization gz = 1 of Uy, 4, (g[l) It is convient to introduce a
parameter ¢ = q3 = q; . The specialization is called Schur specialization since Macdonald polynomials
become Schur polynomials in this case.

Definition 0.0.1. Lie algebra Diff, has a basis Eyy (for (k,1) € Z*\{(0,0)}), ¢ and ¢’. Elements c

and c’ are central. All other commutators are given by the following formula

ks—Ir lr—ks

[Ek,lu Er,s] - (q 2 —q 2 )Ek—l-r,l—l—s + (lC + kC/) 6k+r,05l+s,0 (004)

We will define the algebra Uy, 4, (g-l.[l) below, but we want to formulate the relation between Dijf,
and Uqgy g, (g1)-

Proposition 0.0.1. Universal enveloping of Diff, is a specialization Uy, 4, (g.;'ll) for q = q3 = ql_l.
The isomorphism is given by the formula E,j = qd/zPavb, for d = ged(a,b). Moreover
c—1 d—1

c =2 lim ¢ =2 lim
2—1 gz — 1 @—1q—1

(0.0.5)

Let us determine the following currents
E(z) =) Ey;z7 F(z) =) E_y;z77 (0.0.6)
JEZ. JEZ
Consider Heisenberg algebra [ay, a;] = kdj4; 0. Denote its Fock space by F?2.

Proposition 0.0.2 ([GKL92]). The following formulas determine an action of Diff, on F?

C 1, C, — 0 E(]’j — aj, (007)
—1 k/2 _ —k/2 k/2 _ —k/2
F(z) = 1 ﬁ g1 P (Z qkqakzk> exp ( qkqakz_k> (0.0.8)
k>0 k>0

Denote the obtained representation by .%,.

Action of SLy(Z) and twisted rerepesentations

Let o be an element of SLy(Z)

o= <m,’ m) . (0.0.9)

n n
There is an action of SLa(Z) on Diff,, determined by the following formulas
0(Ex1) = Envsmi, wkni, o(d)=m'd +n'c, o(c) =md +ne. (0.0.10)

For any Diff,-module M, let py: Diff, — gl(M) be the corresponding homomorphism.
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Definition 0.0.2. For any Diff,-module M and o € SL(2,Z) let us define M as follows. M and
M? are the same vector space with different actions of Diff,, namely pype = ppoo.

We refer to M7 as twisted representation.

Explicit constructions

Fermionic construction Consider an algebra, generated by 1), [i] and 1/)2‘,)) [4] for i,j € Z; a,b =
0,...,n — 1, satisfying the following relations

(bl vmlily =0 {wilil v} = o (0.0.11)
{0l 1} = 8as diss0- (0.0.12)
Consider currents
Vo) (2) = Z?/)(a) [i]z7 L, Uiy (2) = Z@DZ})) e (0.0.13)
Consider a module F™¥ with cyclic vector |ly, ..., l,_1) and relations
Yyli] llos- - ln—1) =0 fori >, (0.0.14)
Yioldl llo, - ln—1) =0 for j > —l,. (0.0.15)

Let us define a grading deg,, as follows
degao ‘l(): IR ln—l) = - lO - ln—l degao 77/}((1) [Z] =1 degao ﬁb) [2] =-1 (0016)

Let F'¥ be a component of degree m.

Theorem 0.0.1 (Theorem [1.4.1)). For n € Zso and ny, € Z the following formulas determine an
action of Diff, on Fg”’b

¢ = Ntw, €C=TMN, (0017)
EBor=>_ Y wali] ¥ilil, (0.0.18)
a itj=k
1 N —a+b
E(Z) _ Z u;q—1/2zw(a)(q—1/2z)wzkb)(ql/QZ)th - 7q(a+b)/2n’ (0019)
b—a=—n¢yw mod n
1 —ngy—atb a n
F(z)= Y wngPau (@ Pl g Pe)z g et (0.0.20)

b—a=n¢, mod n

Recall . For ny, = n' the representation obtained is isomorphic to FJ.

This gives us an explicit construction of .7

. Moreover, we have obtained explicit constructions
of more general representations ﬁéntw’n). One can define and construct explicitly ﬁémw’n) for n <0,
using o forn’ =m =0and n =m' = —1.

Let d = ged(ngw,n). Denote Qqy = {(lo, - --,la—1) € Z" Z?:_ol l; = 0}.

Theorem 0.0.2 (Theorem [1.8.1)). The following Diff,-modules are isomorphic.

F(newn) o EB grw/dn/d) o o gnw/dn/d) o o g(niw/dn/d) (0.0.21)

Ud uqlo uq%+la uq%+ld*1
€Q)
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27

Strange bosonic construction Let ¢ be nth primitive root of unity, e.g. { =e = .

Theorem 0.0.3 (Theorem [1.4.3). For n € Zso and ny, € Z there is an action of @iffq on F*?2
determined by the following formulas

Eog = ang, = n, ¢ = ntun (0.0.22)
/ . q—k/2n _ qk/Qn Y
E(z) — pNtw n 1/n ZC tw (exp Z akC z 5 (0023)
. qk/2n . q—k/2n ok
F(z) = z_”““/" —1/n ZC m s exp Z L =8 7 ki) (0.0.24)

The representation obtained is isomorphic to ﬁl(tmw’n).

Twisted ¢-1V-algebra

Below we will continue review of Chapter
In this section we will continue to use specialization ¢ = g3 = ¢ 1 Though we expect that the
results of this section can be directly generalized any values of q1, g2, and ¢3.

Definitions Twisted g-W-algebra depends on n and residue of ng, modulo n. For ng, = 0, we
obtain non-twisted g-W-algebra [FE96]. Algebra W, ,(sl2, 1) was defined in [Shi04) (37)-(38)].
Let us introduce the following notation

(- 0 -g o)
2(n—k)

(1—2z)" =

=0

Definition 0.0.3. Algebra Wy(sl,,, nyy) is generated by TE[r] forr € nywk/n+Z andk =1,...,n—1.

It is convenient to denote T [r] = T[r] = d,0. The defining relations are the following
Z Jienl (Tf“’ r—I| T [s+] — [s—l]wa[r—i—l]) = —(q% - q_%)z(kr — $)TEY [r+s], (0.0.26)
an enll (T2 [ =0T [sH1] = TEls—UTE2 [r+1]) = (g% — g~ 3)2((n—k)r — 5) T} [r+s].
(0.0.27)
Let us rewrite the relations (0.0.26))—(0.0.27)) in current form. Denote
kntw
T (2) =Y T[r]a™", Th(z) =2 n T (2), (0.0.28)
(nfk)ntw
TR(2) =2 7 TP(z) = 27" Ty(2). (0.0.29)
Note that
To(z) =T,(z) =1 T,(z) =T5(z) = 2"v. (0.0.30)

Proposition 0.0.3. The relation (0.0.26]) is equivalent to

S (w/2)T1(2)Tie(w) — fion(z/w)T(w)T1(2) =
(g} —q3)? ((k—i—l)%d’(w/z)TkH(w)+w5(w/z)8wTk+1(w)). (0.0.31)
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The relation 18 equivalent to
frmten (/)T 1 (2)T(w) = fapn(z/w) TR (W) T _1(2) =
- (q% — q_%)2 <(n —k+ 1)%6’(w/z)T,§,1(w) + wd(w/z)@wT,;’,l(wD (0.0.32)

Connection of W-algebras and Diff, A connection between W,(sl,) and Diff, is known (see
[FHS™10, Prop. 2.14] and [NegI8, Prop. 2.25]). In this section, we will generalize the results for any
Ntw-

Let $eis be Heisenberg algebra, generated by I;Tj with the relation [ﬁi, ﬁj] = nidj1j0- We will
prove that there is a surjective homomorphism Diff, — W (sly, n¢w) @ U($Heis). The generators Ey
are mapped to ﬁj.

Let us introduce the following notation

312 _ gi/2 312 _ ¢—i/2
()= LT By, pr(z)= - T By, (0.0.33)
7>0 3>0
312 _ gil2 312 _ g=i/2 .
¢—(2) = Z 1 . ! H_;2, P+(z) = — Z ? -q iz (0.0.34)
j>0 J >0 J
Also denote
p(2) = o-(2) + 01 (2), P(2) = ¢-(2) + &4(2) (0.0.35)
Let
~ 1 k i k
Tr(2) = 7 €XP —Ego,(z) E”"(z) exp —Egmr(z) . (0.0.36)

Note that Tj(2) commutes with H. )

Let Jyunn., be a two-sided ideal in Diff,, generated by ¢ —n, ¢’ — ny, and Ty, (2) — p"2" (here
pu € C\{0}). Parameter ; is not essential since the automorphism E,p, — p~*Eqp maps Jy, pn,, tO
J1nne,- We will abbreviate Jy n,, = Jun,nge-

Lemma 0.0.4. Tj,(z) € Iyt for k> mn.

Theorem 0.0.4 (Theorem D . There is an isomorphism S : We(sly, nuw ) QU ($eis) = U(Diff, )/ Jnne,

determined by the following formulas

Tk(z) — ,U,ik’fk(z); ﬁj — Eo,j (0037)
The inverse map P is determined as follows
Eyj— ij; c—n; = np; (0.0.38)
1. 1.
E(z) — pexp <ncp(z)> T (z) exp <n4p+(z)> (0.0.39)
~lymmw 1 1
F(z) — —'127_1 exp (—cp_(z)) Th—1(2) exp <—cp+(z)) (0.0.40)
(¢2 —q 2)? n n

Theorem 0.0.5 (Theorem [1.7.2). The ideal J,, ndn,,d % annihilated by F&?m’n) X ® ESZW’”) for

1
1L oqg ™
p=(-)n

(- ug) (0.0.41)
q2 —q

N

As a corollary, we obtain an action of W(sl,,q4, ng,d) on F&?tw’n) Q- ® F&Zm’n). Using Theorems

0.0.4 and [0.0.5| we obtain an explicit realization of W,(sl,,, ns,) from fermionic realization (Theorem
0.0.1) and strange bosonic realization (Theorem [0.0.3]).
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Twisted and non-twisted Virasoro algebra

Algebra W, (sl,,, nuy) is a specialization of Wy, 4, (sln, nuw) for ¢ = g3 = ¢4 1 We expect that the results
of Section Twisted q-W -algebra can be generalized for go # 1. Therefore it is interesting to construct

explicit realization Virg, g, = Wy, 4, (8l2,0) and Virg¥ . = Wy, 4,(sl2, 1).

Bosonization of Uq(sA[Q) and its vertex operators

We recall bosonization of Uq(glg) and the corresponding vertex operators. All this can be found
in [JM95, Chapters 5,6]. Our notation almost coincide with notation from [JM95]; though we use
different noramlization of vertex operators.

Bosonization. Algebra U, (glg) is generated by xf, ay for k € Z, | € Zyg, K *1 and central elements
~E1/2 These generators are called Drinfeld generators. One can find defining relaitons in [JMO5,
(5.3)—(5.7)], though let us recall

lag, i) = Ok10——— (0.0.42)

here [n] = (v —v™")/(v — v ). R
Let Ag, Ay be fundamental weights of the algebra 5£2 and let « be the positive root of sly C sls.
We will construct two representations Fy and Fy of Uy(slz). As vector spaces

F,=Cla-1,a_9,...]® (EBnCeAi+"a) ) (0.0.43)
As the representations of Heisenberg algebra ay, these modules are countable sum of Fock spaces

V; = Cla_1,a_s,...] @ Cebitlale for = jmod 2. (0.0.44)

+

Let us define operators e™* and 0 as follows

eﬂ(f®£)=f®£ﬂa aQ®aﬂ=@%mf®J. (0.0.45)

Action of U, (sl) is given by the following formulas

K =1 ~y=u, (0.0.46)
X*(2) = exp (j: Z CE;L]RUJF”/QZ”> exp ($ Z [CZ]UJF”MZ_”) et zE (0.0.47)
n=1 n=1

here X*(z) = foz_k_l. The representation obtained is irreducible highest weight representation
with the highest vector [A;) = 1 ® el € F;.

Vertex operators. Let V, be the evaluation representation U, (5A[2), corresponding to standard two-
dimensional representaiton of sly. Vertex operators of Ug(sly) are intertwining operators

I N(): B F_ @V, D) By =V, @ Fy_y, (0.0.48)
&G (2): By @V, — Fiyq, UEHD (2): V, @ F; — Fyyq. (0.0.49)

Below we will abbreviate ®(z) = ®(1~%%)(2), if a statement holds for both i = 0, 1.
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Let e and e_ be standard basis in the two-dimensional representation. Let us define operators
®, (z) and @7 (z) as follows

P2 W=D, (2)w®Reyr +P_(2)WwW®e_ (0.0.50)
P*(2)(W®es) =P (2)W () (w®e ) =D_(2)w (0.0.51)
Analogously, we can define W (z) and ¥ (z). The operators exist and unique up to normalization.

Moreover, there are explicit formulas for ®_(z) and ¥ (z) [JM95]. Below we recall the formulas (also
the formulas fix the normalization)

d_(z) =exp (Z ELQTZUM/QZ") exp (— Z [QZ]UE’”/Qz") e/?(—v32)9/2, (0.0.52)
n=1 n=1
= A—n n n = An  _3p -n —Q -
U, (z) =exp (— Z mv /2 ) exp (Z Wv /2, ) e~ 2 (—uz)70/2, (0.0.53)
n=1 n=1

The operators ®(z), U_(z) are given by the following formulas (this follows directly from the defini-
tion as an intertwiner)

D4 (2) = [@-(2), 20 o, U_(2) = [¥4(2), 2¢ Jo- (0.0.54)
here we use the notation [A, B], = AB — pBA. Dual operators are given by the following formulas
P¥(2) = ®_(v22) and Ui (2) = U_.(v32)

Deformed Virasoro algebra

Below we will consider algebra Viry, 4, depending on two parameters qi, g2. Also we set v = gy 2 g
define the algebra Viry, 4,, we will need the following notation

Z fizt = = exp (Z u —1q:_ (ql - qg)a:”) . (0.0.55)
1=0

Definition 0.0.4. Deformed Virasoro algebra Virg, 4, is generated by T, for n € Z, the defining
relation is

Z ST Ty — Z STy = - 1 1)((]—1 2 (12" — a2) Sn+m.o- (0.0.56)
1=0 1=0 — %

Denote T(z) =3 ,cp.Tnz™", 0(z) = ey %, Relation (0.056) is equivalent to

F(w/2)T(2)T(w) — f(2/w)T(w)T(z) = — L= — ) (5 (“’) s (‘12w)> C(0.057)

1—gqy g2z z

Denote () = (vz;v4) 00/ (V375 v%) 00

Theorem 0.0.6 (Theorem [2.4.1)). The following formula determine action of Virg, 4, on V; for any
jEZLL.
L1/2Y /2(1 —q)

(=) = B(vaqr)

(u\IJi(vz)CI)+(q1z) + u_l\IJ*_(vz)q)_(qlz)>. (0.0.58)
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Twisted deformed Virasoro algebra

Definition 0.0.5. Twsited deformed Virasoro algebra Vir(t;ﬂq2 is generated by T, forr € 1/2 + Z, the

defining relation is

(1-aq1)(1—g3)
1-— q2_1

Z T —1Tsq — Z s Try) = — (57 — a5) Orts0- (0.0.59)
=0 =0

Denote T'(z) = 3" 19421727, d0dd(®) = 3,c1/247 " Relation (0.0.59) is equivalent to

F (/2T (2)T(w) — f(z/w)T(w)T(z) = — W)~ ) (aodd (w) ~ Goad (q’f")) ~ (0.0.60)

1—gy? q2
Theorem 0.0.7 (Theorem [2.4.2)). The following formula determine action 0]“Virfflﬂ7q2 on F; fori =0,1
3/2(, —1/2 _ 1/2
T(2) = (—12 @ @) (20" (v2)® 4 (q12) + U (02)D_(q12)) . (0.0.61)

B(vq1)

Twisted Cherednik representation

Double affine Hecke algebra

Below we will recall a definition and basic properties of double affine Hecke algebra (DAHA) [Che92,
Kir97, [Che05].

Definition 0.0.6. Double affine Hecke algebra Hy, is an algebra with generators Ty, ..., Ty_1, 751,

Ylil, . ,Yﬁl and relations
(T —0)(T;+v 1) =0, TTinT =T TiTisa, ( )
TY;T; = Y;—&-lv TlY; = YBTMJ 7£ 1,0+ 1 (0'0'63)
nYin Tl = ¢V, YY) =YY (0.0.64)
mTm =T, VT =T ( )
Here and below we use the notation Y7 = Yn41.
The operators 11, ..., Tn_1 generated finite Hecke algebra H. The operators 11, ..., Tn_1, Y1,..., YN
generated affine Hecke algebra HY . The operators T}, ..., Tn_1, 7 generated affine Hecke algebra HY;

one can define
X;=T,...Tyam Ty T (0.0.66)

Let 5’1(2, Z) be the braid group on three stands. More precisely, 5”1(2, Z) is generated by 74 and
7_ with the relation 7,7~ '7, = 7~ '7, 771, The reason for our notation is that SL(2,Z) is a central
extension of SL(2,7Z) by Z, the projection is given by

() () e

The kernel of the projection p is generated by (T+T:1T+)4.

Proposition 0.0.5 ([Che05]). There is an action of SL(2,7Z) on Hy determined by the following
formulas

e Ti—=T, Xi—Xi, Vi YXTio.. . TiTy ... Ty (0.0.68)
—: Ti—=T, X;— XY,T 5. 70T T, Y=Y (0.0.69)

"We were using parameter ¢ in Sections Schur specialization case and Twisted q-W -algebra. Parameter ¢ here and
below has a different meaning. We hope that, this will not lead to a confusion.
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Cherednik representation
Algebra HX has one dimensional representation C,
T, —v, 7 u. (0.0.70)

Cherednik representation C,, of Hy is the induced of representation C,. Representation C, can be
identified with Laurent polynomials (C[Ylil, ey Yﬁl]. Action of T; and 7 is given by the following
formulas

Y
r—1
T, = 83/ + (U - 1}71)‘9177 71'(Y1)‘IY2>\2 B 'YjéN) — quNY1>\NY2>\1YS/\2 B 'Y]$N71,
Yi/Yiqn =1
here SZY is the transposition of Y; and Yj41.

Twisted Cherednik representation

In this Section we will give an explicit construction of twisted Cherednik representation.

Action of affine Hecke algebra Let C™ be a vector space with the basis eg,...,e,—1. Define
R-matrix acting on C" @ C"

R = Z ’I)Eaa X Ea,a + Z <Eab X Eba =+ Eba (29 Eab =+ ('l} — ’U_l)Eaa X Ebb> .
a a<b

Define action of Hecke algebra H on ((C")®N by the formula T; — R; ;41, here the indices encodes tensor
factors on which R-acts. We can consider the induced representation of HY on (C*)®N[y !, .. YE.

We can write action of T} explicitly. Let s} be the operators on (C™)® [Ylﬂ, e ,Yﬁl] which swaps
Y; and Yi;1. Let s¢ be the operator on (C")®V [Ylﬂ, ... ,Yﬁl] which swaps tensor factors number 4
and i+ 1 (and commutes with all Y;). Finally, let s; = sY s¢. The action of T} is given by the following
formula

s}/ -1
Yi/Yig1 — 1

The obtained representation of affine Hecke algebra HY is well-know. It appears in the context of
quantum affine Shcur-Weyl duality [GRV94], [CP94].

T, = SZYRZ’,H-I + (v — U_l) (0.0.71)

Action of DAHA Below we will use identification
€y =) o @)V v L YEY (0.0.72)
(Yie, )@@ (YNe; ) = Y7 ... Yire, @ @ ey (0.0.73)
Let us define e; € C*[Y*!] for i € Z by
e = Y_1€i+n. (0.0.74)

Let us define operators x and D acting on C*[Y*!] by the formula xe; = e;_1, D(Ye,) = uqq?Ye,
fora=0,...,n—1. By k; and D; we denote the corresponding operators acting by x and D on i-th
tensor factor.

Theorem 0.0.8 (Theorem|3.2.1). For any ny, € Z, there is an action of algebra Hy on (CMEN[YEL Y]\j,ﬂ]
determined as follows

o subalgebra HY acts as discribed above

o T = H?M’Dlsl ...8N—1

Denote the obtained representation by CT(;(ﬁth)nfl
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Isomorphism with twisted Cherednik representation Twisted Cherednik representation CJ,
is determined by the projection p(r) € SL(2,Z), since (747~ '7,)* acts by an exterior automorphism
of Hy.

Theorem 0.0.9 (Theorem . Let gy, = n' be mutually prime with n, then C%ffﬂ’z)nfl is isomor-
phic to twisted Cherednik representation CJ, for

/
p(T) = <m, m) U=ug... Up_1q"" (0.0.75)

We can note that the representation C&%j_@u%l is determined (up to an isomorphism) by the
n42i—1
product ug...u,_1. For example, we can choose u; = u%q Si . Denote

n+2i—1

an’,n) — an/vn) L for U = u%q 2n (0076)

0y Un—

Twisted Fock module

Toroidal algebra

Toroidal algebra Uy, 4, (ﬁ[l) depends on two parameters g; and ¢o. Let us also introduce parameter g3
such that gi1gags = 1. The algebra has a presentation via generators P, for (a,b) € Z*\{(0,0)} and
central elements ¢, ¢. We will not need explicit form of the relations. Though these presentation is
used to obtain the following result.

Proposition 0.0.6 ([SV13b]). Group ,S/;E(Z,Z) acts on Uy, 4,(gly) via automorphism.

Let us consider an element 7 € ﬁ(Q, Z) such that the projection is

p(T) = (m,/ m) (0.0.77)

n n
Then action of 7 is given by the following formulas
m(e) = ()" () =c" ()" (0.0.78)
7 (Pap) = @0 (V"D P tacab, (0.0.79)
here n,(a,b) and m,(a,b) are certain integers, determined by 7 and (a, b).

Chevalley generators The algebra has another presentation. The generators are Py, Py, P—1p,
and central elements c, ¢. To describe the relations let us define

B(z) = Py F(z)=> P_ypz" (0.0.80)
beZ beZ

Define

Z 0 ,2% =exp (Z (1= qlg)k(l — qlg)P()’ikzk) (0.0.81)
k

k>0
For k € Z~yp and b € Z

(1—gf)(F —cF)
(1—g5)(1—db)
[Poe Pry) =c " (qf — 1)Pypss [Po,—k> Prp] =(1 = q7) Py (0.0.83)

[Po.ses Po1p] =(1 — b)) Prpss [Po,—ks Po1p) =(qf — 1) Pry_y, (0.0.84)

[Po.k, Po,—k] =k (0.0.82)
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(z — qw)(z — uw)(z — gaw)E(2) E(w) = — (w — q12)(w — q22)(w — q32) E(w) E(2) (0.0.85)
(z — qw)(z — @w)(z — gsw)F(2) F(w) = — (w — q12)(w — q22)(w — g32) F(w) F(2) (0.0.86)
Fora+b>0
(1—q1)c*d (1—q)c ()t
Pra,P1y] = 0, PiwPo1 ] =— s 0.0.87
Pro bl =g =g Mol = e gt (008D
ForaeZ
(1 _ (_I1) (Cacl _ C—a(cl)—l)
Pra, Py _d = 0.0.88
R (e (e (0055
[Pra, [PLa—1, PLa+1]] = 0 (0.0.89)
[P-1,as [P-1,a-1, P-1,041]] =0 (0.0.90)
Fock representation
Recall notation for Heisenberg algebra [ay,a;] = kdgi;0. Also recall that Fock representation is

denoted by F2.

Proposition 0.0.7 ([FHHT09]). The following formulas determine an action of Uy, 4, (aly) on F2.

1 /

c— v, c —1,
. J_ 1 .
Po—j = qraj, Py L=y i"a,
qs3 -1
k_ o~k —k
q1u g1 — go k I—q —k
E(z) = e — == a 2" |e az
-1 k k, —k —k( —k
U v¥ — g K v (g " — 1) k
F(z) = ——ex — = a_ .z" | ex — e Caiz
o5 g (o

The representation obtained is called Fock module and will be denoted F,.

Remark 0.0.1. Limit g2 — 1 of representation F,, is isomorphic to 9’2’;271.

Bosonization of Uv(gA[n) and its vertex operators

The algebra Uv(gA[n) has n integrable representations of level 1. Denote them by Fp,. ..
are vertex operators

o)) F,» F 9V, V() B = V. ® Fio,
D () @V, — Figy, L) () V, @ Fy — Fiyy.
Here V, denotes n-dimensional evaluation representation with the standard basis eg, ...
introduce operators ®g(z), ..., ®,_1(2) and ®j(z),..., P} _,(2)
n—1
(2w = Da(2)W @ eq D*(2)(W ® eq) = Po(2)W
a=0

Analogously, one can define ¥y(2),...,¥,_1(z) and ¥{(2),..., ¥ _;(2).

(0.0.91)

(0.0.92)

(0.0.93)

(0.0.94)

,Fn_1. There

(0.0.95)
(0.0.96)

,en_1. Let us

(0.0.97)
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Realizations of twisted Fock representations

Recall that v = q2_1/2. There is an isomorphism U, (gl,,) = U, (sl,,) @ U, (Heis). Let B; be the generators
of U,(Heis), satisfying the relation [By, Bj| = k[n]jk5k+l70.

Theorem 0.0.10 (Theorem [3.6.1). The following formulas determine an action of Uy, 4,(gly) on F;

J

/ ; -1 ,
C = U_n, o™ s P07,j = q{B,j, POJ = C]jjilv_jnBj, (0098)
43" —

_ 1 n+1 —a  B_a4n’ "

E(z)—u ng2> Z @ "z iy (@12)¥ g (2), (0.0.99)
a—B=n' mod n

n— / B —a—n'

F(2) s ung 5o S iU (0B (@1072). (0.0.100)
a—pB=—n' mod n
The representation obtained is isomorphic to FJ, for u' = uvMe-1(10)

Remark 0.0.2. The formulas (0.0.61)) and close to (0.0.100) but has different shifts of the arguments
and coefficients. The differences are yield by different normalization for vertex operators of U,(sl3)
and U,(gl,,).

Semi-infinite construction

Connection of Uy, ,,(gl;) and spherical DAHA Denote

o2 1 v — i
iy =t Mo =-""5 (0.0.101)
(K)E =[1F .. [k]F K]y =[1]s - - - [K]o (0.0.102)

In this Section we will consider Hy for different parameters ¢ and v, therefore we will write H (g, v).
Let S; and S_ be symmetrizer and antisymmetrizer.

_ 1 (o) o1 (o)
S, _WZU T, s__[N]!; > (—v)TOT, (0.0.103)

Let S+ Hn(q,v) = StHn(g,v)S+ be the corresponding spherical subalgebras of DAHA.

Theorem 0.0.11 ([SV1I]). There is a surjection from Uy, 4, (gly) onto Sy Hn(q,v) for g1 = q, g2 = v2.

Denote the image of P, ; by Pa(]z[).

Proposition 0.0.8 ([SV1I]). The following formulas hold for k >0 and b € Z

Péf/f) =S, (Y +--- + Y§)S4 Py =¢"S; (Y7 "+ + Y )8, (0.0.104)
P{}) =q[N], S, X1Y{'S, P =INJFS YPXTIS, (0.0.105)

Proposition 0.0.9. There is an algebra isomorphism S_Hy(q,v) = Sy Hy (g, —v1).

Corollary 0.0.10. There is a surjection from Uy, 4, (gly) onto S_Hn(q,v) for 1 = q, @@ = v 2.

Moreover

P =S (v 4+ v)s. Py =q"S_(Y7F+ -+ YyM)S_ (0.0.106)

P =qINJFS_X1YPS_ P =IN];S_YPX['S_ (0.0.107)
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The limit Recall that as vector space an’,n) is identified with (C" [Yﬂ])@)N. Consider an inductive
system

(m) (m) (m)
S_(CryE))®* 22, DML g (ory )oY Y, (0.0.108)

m)
992,1

S_cryH) =%

with the maps @%21 NWw) =S_ (w®en—_m). Denote the inductive limit by A(;o:; (C"[y=1). Also let
us denote @g?]b(w) =S_ (U} WeN-m D EeNt1-m D+ & 6Rflfm)-

Definition 0.0.7. Action of operators AN): S_ ((C”[Yﬂ])@v —S_ (C“[Yil])@\[ stabilizes if there
is Ng such that for any N > Ny we have

o)y 0 AN = AWE o ol (0.0.109)

Note that if A(Y) stabilizes, then there are induced operators A on A%": (Cry=1).

v,m

Below we will use notation ¢; = ¢, g2 = v—2 and PCEJ;]), cf. Corollary [0.0.10

Proposition 0.0.11. Operators U%Pfl\p stabilizes for an’ 4+ bn < 0.

Definition 0.0.8. Action of operators AN): S_ ((C”[Yil])@N — S_ ((C"[Yil])®N converges if for
any w € S_ (C"[Yil])®N the R — oo

Pinr © AN 0 o) 4 (W) (0.0.110)
Remark 0.0.3. Note that Af/ri (C"Y*!]) is a graded vector space with finite dimensional graded
components. Therefore convergence of sequence ((0.0.110) is understood in sence of finite dimensional
vector spaces over C.

N)

Proposition 0.0.12. Operators U%Péb converge for a > 0 and |q3| < 1.

Proposition 0.0.13. Operators U%Pé];j) converge for a < 0 and |q3| > 1.

Moreover, these operators admit an analytic continuation and can be defined for g3 # 1. Denote
the obtained operators by F, ;.

Theorem 0.0.12. The following formulas determine an action of Uy, 4, (gly) on Ac;oé2 (Cry 1)

crsv ™ d o (0.0.111)
. A q{ —1 in A
Po,—j =¢’ Po, Pyj —t v "Ry (0.0.112)
k] ) ) 1_;*2](1{ _ 1 )
Py —Pry P_iyo Py (0.0.113)

The representation obtained is isomorphic to the representation from Theorem |0.0.10

Remark 0.0.4. Technically, we prove Theorems [0.0.10] and [0.0.12] simultaneously . There is a natural
identification F; = Ac;oé2 (C"y*+']) [KMS95, [LT00]. Using the identification it is not hard to see that
the formulas coincide. Therefore we can use either of the formulas to check the relations of Uy, 4, ( aly).

Our principal method is semi-infinite construction. The operators P, for an’ + bn < 0 satisfy
the relations since the operators stabilizes. Verification of the other relations F. The proof contains

both arguments via limit and explicit calculation.
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Schur specialization case

1.1 Introduction

Toroidal algebra Representation theory of quantum toroidal algebras has been actively developed
in recent years. This theory has numerous applications, including geometric representation theory
and AGT relation [Negl8], topological strings [AFS12], integrable systems, knot theory |[GN15], and
combinatorics [CM18].

In this thesis we consider only the quantum toroidal gl; algebra; we denote it by Uq,t(g"[l). The
algebra depends on two parameters ¢, t and has PBW generators Ey, (k,1) € 7?2 and central generators
d,c [BS12a]. In the main part of the text we consider only the case ¢ = ¢, where toroidal algebra
becomes the universal enveloping of the Lie algebra with these generators Ej;, ¢/, ¢ and the relation

[Ek,b Er,s} = (q(Skilr)/2 — q(lrisk)/2)Ek+r’l+S + (5]{’77, 517,s(clk‘ + Cl) (111)

We denote this Lie algebra by Diff,, since there is a homomorphism from this algebra to the algebra
of g-difference operators generated by D, x with the relation Dx = qxD; namely Ej; — ¢"/2xt Dk

There is another presentation of the algebra Diff, (and more generally Uq7t(g;[1)) using the Chevalley
generators E(2) =, E1p2 %, F(2) =Y cp Eo1p2 7%, H(z) = > k40 Eo 27", see e.g. [Tsyl7].

In this thesis we deal with the Fock representations of Diff,; to be more precise there is a family
F., of Fock modules, depending on the parameter u (see Proposition for a construction of F, ).
They are just Fock representations of the Heisenberg algebra generated by Ej . The images of E(2)
and F'(z) are vertex operators. A construction of this type is usually called bosonization.

It was shown in [FHHT09], [NegI8] that the image of toroidal algebra U, (gl;) in the endomor-
phisms of the tensor product of n Fock modules is the deformed W-algebra for gl,. There is the
so-called conformal limit ¢,t — 1, in which deformed W-algebras go to vertex algebras. These ver-
tex algebras are tensor products of the Heisenberg algebra and the W-algebras of sl,. In the case
q = t, the central charge of the corresponding W-algebra of sl,, is equal to n — 1. These W-algebras
appear in the study of isomonodromy/CFT correspondence (see |GIL12], [GM16]). This is one of the
motivations of this chapter.

The g-deformation of the isomonodromy/CFT correspondence was proposed in [BS17b], [BGT19],
[JNS17]. The main statement is an explicit formula for the g-isomonodromic tau function as an
infinite sum of conformal blocks for deformed certain W-algebras with ¢ = ¢. In general, these tau
functions are complicated, but there are special cases (corresponding to algebraic solutions) where
these tau functions are very simple ([BS17b], [BGMI19]). These cases should correspond to special
representations of g-deformed W-algebras. The construction of such representation is one of the
purposes of this chapter.

23
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Twisted Fock modules There is a natural action of SL(2,Z) on Diff,. We will parametrize

o€ SL(2,Z) by
m m
o= (n, n) . (1.1.2)

Then o acts as
0(Ex1) = Envksmiwkini, o(d)=m'd +n'c, o(c)=md +nec. (1.1.3)

For any ®iff, module M and o € SL(2,7Z), we denote by M? the module twisted by the automorphism
o (see Definition . The twisted Fock modules depend only on n and n’ (up to isomorphism).
These numbers are the values of the central generators ¢ and ¢, correspondingly, acting on Fg.
Therefore we will also use the notation Fén/’n) for F7. Twisted Fock modules F7 (for generic g,t)
were used, for example, in [AFS12] and [GN17].

In Section [I.4] we construct explicit bosonization of the twisted Fock modules FJ for ¢ = t.
Actually, we give three constructions: the first one in terms of n-fermions (see Theorem , the
second one in terms of n-bosons (see Theorem and the third one in terms of one twisted
boson (see Theorem [1.4.3]) (here, for simplicity, we assume that n > 0). In other words, any twisted
Fock module will be identified with the basic module for gA[n; these two bosonizations correspond to
homogeneous [FK81] and principal [LWT78|,[KKLW&]1| constructions.

The construction of the bosonization is nontrivial, because it is given in terms of Chevalley gen-
erators (note that the SL(2,Z) action is not easy to describe in terms of Chevalley generators). The
appearance of affine gl,, is in agreement with the Gorsky-Negut conjecture [GN17]. More specifically,
it was conjectured in [GN17] that there exists an action (with certain properties) of U,/ (gl,) on F9

for p = g/t # 1; we expect this to be p-deformation of the Q/;\In—action constructed in this chapter.
It is instructive to look at the formulas in the simplest examples. For simplicity, we give here only
formulas for E(z). Here we introduce the notation in a sloppy way (for details see Sections and

%)

Example 1.1.1. In the standard case n = 1, n’ = 0 we have

exp (0a2) —0la))s (L14)

E(z) = ug™ 22 (g 229" (¢'/%2) = §

where 1(z), 1*(z) are complex conjugate fermions (see Section , P(2) = ;20 alj]z77/j is a boson
and a[j] are generators of the Heisenberg algebra with relation [a[j], a[j']] = jd;+;0 (see Section|1.3.1)).

Ezample 1.1.2. The first nontrivial case is given by n = 2, n’ = 1. We have three formulas (corre-
sponding to Theorems [1.4.1] [1.4.2] |1.4.3)):

E(z) =utq 1 (zQw(O)(q_l/QZ)wa)(ql/Qz) + 2y (¢ 22) 0 (q1/22)> : (1.1.5)
E(z) _U%q_i (2’2 exp (¢1(q1/2z) o (q_l/zz)) i 42z exp (qSo(ql/Qz) — ¢ (q_1/2z)> ) (—1)2l0]
(1.1.6)
11 —k/4 _ k/4 —k/4 _ k/4
2U2
E(z) = =7y T exp Z q k: 4 apz *2 | = :exp Z(—l)k%aszwz
2(1 - q2) k#0 k£0

(1.1.7)

Here v (2), @Z)Eko)(z) and ¥(2), Q,Z)E“l)(z) are anticommuting pairs of complex conjugate fermions (see

Section [1.4.1), ¢p(2) = >, 0 aplilz=7/§ + Q + ap[0]log z are commuting bosons, and ay[j] are gener-
ators of the Heisenberg algebra with the relation [ap[j], ap [j']] = 70457000 (see Section [1.4.2)). The
generators a, in (1.1.7)) satisfy [ag, ap] = kdptr70-
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The relation between and is a standard boson-fermion correspondence. In the right-
hand side of formula we have only one Heisenberg algebra with generators ax, but since we
have both integer and half-integer powers of z, one can think that we have a boson with a nontrivial
monodromy. This is the reason for the term ‘twisted boson’; we will also call this construction strange
bosonization. Note that half-integer powers of z cancel in the right-side of .

We present two different proofs of Theorems|1.4.1],[1.4.2] and[1.4.3, The first one is given in Section
and is based on the following idea. For any full rank sublattice A € Z? of index n, we have a
subalgebra @iffé\l /n C Diff 1/, which is spanned by Ej for (a,b) € A and central elements ¢, ¢’. The

algebra @ifffz\l /n 1 isomorphic to Diff,; the isomorphism depends on the choice of a positively oriented
basis v1,v2 in A. Denote this isomorphism by ¢y, 4.

If the basis v, vy is such that v; = (N,0), va = (R, d), then the restriction of the Fock module F,
on Gy, vy (’Diffq) is isomorphic to the sum of tensor products of the Fock modules

ful/N|¢v1,v2(®iffq) = @ ‘Fuq"'l() ® o ® ]:uqr(%"'la) ® e ® fuqr<%+ld71) (118)
1€Q)

where 7 = ged(N, R) and Qq) = {(lo,---,la-1) € Z% > 1; = 0}. If we choose basis wy,wy in A which
differs from v1,v9 by 0 € SL(2,7Z), we get an analogue of decomposition with RHS given by
a sum of tensor products of the twisted Fock modules. For the basis w; = (r,n4), w2 = (0,n), we
write formulas for Chevalley generators of Diff, = Difffl\l /n Using either initial fermion or initial boson
for F,. Applying this for the lattices with d = 1, we get Theorems [1.4.1] [1.4.2] [1.4.3]

The second proof of these theorems is based on the semi-infinite construction. Let V,, denote the
representation of the algebra Diff, in a vector space with basis k=% for k € Z, where Diff, acts
as g-difference operators (see Definition . This representation is called vector (or evaluation)
representation; the parameter u is equal to ¢~®. The Fock module F,, is isomorphic to A%/ oy, C
N (Vi). After the twist, we get a semi-infinite construction of F¢ C (Aoo/2 Vu)? = N (V,7). Note
that conjecturally the semi-infinite construction of FJ can be generalized for ¢ # t (cf. [FFJ"11al).

Twisted W-algebras Denote by @ifffo the subalgebra of Diff, generated by ¢ and E,, for a > 0.
There is an another set of generators E*[j] of the completion of the U (”Difffo), defined by the formula
djez EE[jlz7 = (E(2)) (see Sectionfor the definition of the power of E(z)). The currents H (z)
and E¥(2) for k € Z satisfy relations of the g-deformed W-algebra of gl (see [NegI8]). We denote
this algebra by Wy (gl.)-

There is an ideal J i 2 in U (@iff?o) = W,(gl,,) which acts by zero on any tensor product F,, ®

- ® Fuy,, here p = i(ul e ud)l/”. This ideal is generated by relations ¢ = d and

1—q
E(z) = pldlexp (o (2)) exp (04 (2)), (1.1.9)
where
—i/2 _ 4il? A i/2 _ g=il? A
p-(2) =Y T —Bo;2, ei(x)=—> T —Epz . (1.1.10)
§>0 §>0

The quotient of W, (gl,)/J i 2 is the g-deformed W-algebra of gl;. We denote this algebra by W, (gl,);
it does no depend on g (up to isomorphism) and acts on any tensor product F,, ® ---® F,, (see
[FHS™10|, [Neg1g]).

In Section we study a tensor product of the twisted Fock modules 7, ® --- @ F . We prove
that the ideal J i dn'd generated by relations ¢ = nd and

E(2) = 2" (nd) exp (o (=) exp (94(2)) (1.1.11)
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—1/2n

acts by zero for p = (—1)1/"(11/‘2_W(u1 --ug)/". We denote the quotient W, (gl )/Jf%d wa D
Wy (gl,.q,n'd) and call it the twisted g-deformed W -algebra of gl 4.

There exists another description of the above using the g-deformed W-algebra of sl,, introduced in
[FEF96]. Define Tg[j] by the formula

= Tiljlz = ;'kexp (—]Zgo(z)) E*(2) exp <—]Zg0+(z)> . (1.1.12)

The generators Tj[j] are elements of a localization of the completion of U(@ifffo). These generators
commute with H; and satisfy certain quadratic relations. The algebra generated by T[j] is denoted
by W, (slx).

There is an ideal in W, (sl ) which acts by zero on any tensor product F,, ® - - - ® F,,. This ideal
contains relations ¢ = d, T;;(z) = 1, and Ty1,(2) = 0 for k£ > 0. The quotient is a standard W-algebra
We(slg) [EF96] (see also Definition [1.7.1). We have a relation We(gly) = Wy(slq) ® U($eis), where
$eis is the Heisenberg algebra generated by FEj ;.

In the case of a product of the twisted Fock modules Fj ® ---® Fy  the situation is similar. The
corresponding ideal contains the relations T),4(z) = e, Tha+k(z) = 0 for & > 0. We present the
quotient in terms of the generators T (z), ..., T,q(z) and relations (this is Theorem[1.7.1)). We call the
algebra with such generators and relations by twisted W-algebra W (sl,q4,n'd) ; see Definition m
E| The quadratic relations in the algebra W, (sl,4, n'd) are the same as in the untwisted case (see eq.
(C72)-(T.7-3)), the only difference lies in the relation T,,4(2) = 2.

The algebra W, (5[nd,n d) is graded, with degTy[j] = 7 + 2 k. Let us rename the generators
by TP [r] = Tilr — —] for r € 2% k + Z. The presentations of the algebra W, (sl,4,n'd) in terms
of generators T}*[r] and the presentatlons of the algebra W,(sl,q) is terms of generators Tj[r] are
given by the same formulas; the only difference is the region of r. Heuristically, one can think that
W, (sl,q,n/d) is the same algebra as W, (sl,,4) but with currents having nontrivial monodromy around
Z€ero.

In order to explain these results in more details, consider an example of sls.

Ezample 1.1.3. As a warm-up, consider the untwisted case n’ = 0. The algebra W, (sl2) is g-deformed
Virasoro algebra [SKAQO96]. It has one generating current 7'(z) = T1(z) and the relation reads

> FU(Tlr=0 Tls+1) = Tls— Tlr+1)) = ~2r(g* =g #6100, (1.1.13)

=0

where f[l] are coefficients of a series > 7%, f[l]z! = /(1 — qz)(1 — ¢~ z)/(1 — x). This algebra has a
standard bosonization [SKAO96]

1

T(z) = —(q% —q ?)z [u :exp (77((]1/22') - n(qil/Qz)> :+ut exp (n(qil/Qz) — n(q1/22)> :} , (1.1.14)

where 1(z2) = > .o nlklz ~k/k and n[k] are the generators of the Heisenberg algebra [n[k;], n[ks]] =
%klékﬁ;@p, one can also add 7[0] related to the parameter u. In terms of the toroidal algebra Diff,
this formula corresponds to the tensor product of two Fock modules F,, ® F,, here u? = uy /us.

Ezample 1.1.4. Now, consider the twisted case n’ = 1. The algebra W, (slz, 1) is generated by one cur-
rent T (z) = T{"(2) = Y ez /2 T{*[r]z=". The generators T"[r] = T{*[r] satisfy relation (1.1.13).
The algebra W (sl, 1) is called twisted q-deformed Virasoro algebra.

As was explained above, the representations of W (slz, 1) come from the twisted Fock modules

.7-"751’2). The bosonization of the twisted Fock module leads to the bosonization of the W, (sl2, 1). Using

!One can find a definition of W, ,(sl2, 1) in [Shi04] (37)—(38)].
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formula ([1.1.6)) we get a bosonization
1 1
T(2) = (¢3 —q7%) |22 cexp (n(a"/22) + m(a™Y/%2) ) s 4% sexp (=m(a"/22) = n(a™"/%2)) |

Using formula (1.1.7) we get a strange bosonization

S

¢i—q 1 .
— exp E TJTZ 2
24r 2fr

N3

1 1 _r T
TH(2) = (_1)5(121_722% Lexp Z 4179 ; -
2(q7 - r
(171.16)
Here n(2) = > 4 4o nlk]2 ~k /k4+-Q+n[0]log z, and J, are modes of the odd Heisenberg algebra, [J,, Js] =

70r45,0- These formulas for bosonization are probably new.

Example 1.1.5. One can also use embedding @iffﬁl /n C Diff1/m in order to construct a bosonization
of the W-algebras. Namely one can take a representation of Diff,1/» with known bosonization and
then express the W-algebra related to Diff, = @iffAl /n in terms of these bosons.

For example, consider A generated by v; = 61, v9 = 2e9 and the Fock representations F, 1/2 of
Diff,1/2. One can show (for example, using ) that W, (gl.) algebra related to Diff, = Qlffql/Q
acts on F,1/» through the quotient W;(gly). Therefore, we get an odd bosonization of non-twisted
g-deformed Virasoro algebra W (sls)

1 1 r r T ™
qZ + q_Z q_Z — qZ r qZ — q_Z r
T(z) = T |'eXP ;rJrz 2 |4 exp ;TJTZ 2. (1.1.17)
T T

Here J, are the odd modes of the initial boson for F,,. The even modes of the boson disappear in the
formula since it belongs to $eis C ’Diffl /2.

It follows from the decomposition (/1 that formula 7)) gives bosonization of certain special
representation W,(sly), to be more spemﬁc a direct sum of Fock modules (defined by m ) with
particular parameters u = ¢!~1/4 for [ € Z

In the conformal limit ¢ — 1 formula goes to the odd bosonization of the Virasoro algebra
L, = izé(ws):k Y A +%5k70, see e.g. [Zam87J.

Whittaker vectors and relations on conformal blocks As an application, in Section we
prove the following identity

1101 1 1 1
LRk H (eemsamian) = 3 E(dvarth g T ).

i (@0 = (loredn1)EQu)

(1.1.18)

Here the lattice Q) is as above, (u;q,q)oo = [[7j-o(1 — ¢"tJu). The function Z(uy, ..., u,;2) is a
Whittaker limit of conformal block. By AGT relation it equals to the Nekrasov partition function.
We recall the definition of Z(uy, ..., u,;2) below.

The relation was conjectured in [BGMI9] in the framework of g-isomonodromy/CFT
correspondence. As we discussed in the first part of the introduction the main statement of this
correspondence is an explicit formula for the g-isomonodromic tau function as an infinite sum of
conformal blocks. The left-hand side of is a tau function corresponding to the algebraic
solution of deautonomized discrete flow in Toda system, see [BGM19, eq. (3.11)]. The right-hand side
of is a specialization of conjectural formula [BGM19, eq. (3.6)] for the generic tau function of
these flows. In differential case the isomonodromy/CFT correspondanse is proven in many cases, see
[ILT15], [BS15], [GL18|,|GIL20], but in the g-difference case the main statements are still conjectures.
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The generic formula for tau function of deautonomized discrete flow in Toda system is proven only for
particular case n = 2 [BS19],[MN19]. Here we prove formula for arbitrary n but for special solution.

Let us recall the definition of Z(u1,...,uy;z). The Whittaker vector W (z|u1,...,uy) is a vector
in a completion of F,, ® ... ® F,,, which is an eigenvector of E,; for Nb > a > 0 with certain
eigenvalues depending on z, see Definition Such vector exists and unique for generic values
of uy,...,un. This property looks to be a part of folklore, we give a proof of this in Section
The proof is essentially based on the results of [Negl8], [Negl7]. The function Z is proportional to a
Shapovalov pairing of two Whittaker vectors

> (loguy)? 1 ) )
Z(u1,. .., up;z) = z 20ea)? H ——— (Wu(lqu, ", . qui ), W (zlu, . ug)) . (1.1.19)
i (quing 4, 0)s

We give a proof of ([1.1.18) using decomposition ([1.1.8). We consider the Whittaker vector W (z|1)
for the algebra Diff 1/n. Its Shapovalov pairing gives the left-hand side of the relation (1.1.18)). On the

other hand, we prove that its restriction to summands F i, ® - -- ® .7-" n-1, , is the Whittaker vector

for the algebra Diff,. So taking the Shapovalov pairing we get the rlght hand side of the relation
(1.1.18]).

In the conformal limit ¢ — 1 the analogue of the relation (|1.1.18]) in case n = 2 was proven
in [BS17a] by a similar method. The conformal limit of the decomposition (1.1.8) was studied in
[BGM18].

Discussion of ¢ # ¢ case. As we mentioned above, Diff, is a specialization of quantum toroidal
algebra Uq7t(g"[1) for ¢ = t. It is much more interesting to study the algebra without the constrain.
Let us discuss our expectations on generalizations of the results from this chapter.

Fermionic construction (see Theorem will be generalized after the replacement of the fermions
by vertex operators of quantum affine gl,, (see Chapter . Hence we have bosonization, expressing
the currents in terms of exponents dressed by screenings. We also expect that representations of
twisted and non-twisted W,,-algebras can be realized via these vertex operators (see Chapter [2| for
the n = 2 case). It is not clear how one can generalize strange bosonization and connection with
isomonodromy /CFT correspondence for ¢ # t.

Plan of the Chapter. The chapter is organized as follows.

In Section we recall basic definitions and properties on the algebra Diff,.

In Section we recall basic constructions of the Fock module F,,.

In Section [I.4] we present three constructions of the twisted Fock module F: the fermionic con-
struction in Theorem the bosonic construction in Theorem and the strange bosonic con-
struction in Theorem [1.4.3l

In Section we study restriction of the Fock module to a subalgebra @ifffl\. Using these restric-
tions we prove Theorems [1.4.1} |1.4.2] [1.4.3]

In Section we give an independent proof of Theorem using the semi-infinite construction.

In Section we study twisted g-deformed W-algebras. We define W, (sl,,, n4,) by generators
and relations. Then we show in Theorem that the tensor product Wy(sl,, ny,) ® U($eis) is
isomorphic to the certain quotient of U(Diff,); we denote this quotient by W,(gl,, nt,). We show
that W, (sl,q,n'd) acts on the tensor product of twisted Fock modules 7] ®---® Fy . At the end
of the section we study relation between these modules and the Verma modules for W,(gl,,4, n'd) and
W, (slpq,n'd).

In Section we prove decomposition ([1.1.8]). Then we study the strange bosonization of W-
algebra modules arising from the restriction of Fock module on @iffé\.

In Section we recall definitions and properties of Whittaker vector, Shapovalov pairing, and
conformal blocks. Then we prove (1.1.18)), see Theorem
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In Section [I.10| we give a definition and study necessary properties of regular product of currents
A(z)B(az) for a € C.

Sections [L.17] and [.12] consist of calculations which are used in Section [L.71

In Section we study the Whittaker vector for Diff, in the completion of the tensor product
Fu, ®...QF,,. We prove its existence and uniqueness (we use this in Section[L.9). To prove existence
we present a construction of Whittaker vector via an intertwiner operator from [AFS12]. We also
relate this Whittaker vector to the Whittaker vector of W, (sl,) introduced in [Tak10].

1.2 ¢-difference operators

In this section introduce notation and recall basic facts about algebra Diff,, see [FFZ89], [GKL92],
and [KR93|.

Definition 1.2.1. The associative algebra of q-difference operators Diffﬁ is an associative algebra
generated by D*' and ' with the relation Dx = qxD.

Definition 1.2.2. The algebra of q-difference operators Diff, is a Lie algebra with a basis Ey; (where
(k,1) € Z2\{(0,0)}), c and . The elements c and ¢ are central. All other commutators are given by

[Epp, Ers] = (q@F0/2 — gUr=sk) 2By o+ Opr 01— s (ke + €l). (1.2.1)

Remark 1.2.1. Note that the vector subspace of Difff spanned by x!D* (for (I,k) # (0,0)) is closed
under commutation i.e. has a natural structure of Lie algebra (denote this Lie algebra by Difqu).

Consider a basis of this Lie algebra Ej; := ¢"/22' D Finally, Diff, is a central extension of Diff(I; by
two-dimensional abelian Lie algebra spanned by ¢ and ¢'.

1.2.1 SLy(Z) action

In this section we will define action SLy(Z) on Diff,. Let o be an element of SLy(Z) corresponding

to a matrix
m' m
= . 1.2.2
o= (0 ) (122)

Then o acts as follows
0(Ex1) = Envsmi, wkni, o(d)=m'd +n'c, o(c) =md +ne. (1.2.3)
Proposition 1.2.1. Formula (1.2.3) defines SLa(Z) action on Diff, by Lie algebra automorphisms.

Proof. Note that (|1.2.1)) is SL2(Z) covariant. O]

For any Diff,-module M denote by pys: Diff, — gl(M) the corresponding homomorphism.

Definition 1.2.3. For any Diff,-module M and o € SL(2,Z) let us define the representation M as
follows. M and M? are the same vector space with different actions, namely ppje = ppr o o.

We will refer to M? as a twisted representation. More precisely, M? is the representation M, twisted
by o.
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1.2.2 Chevalley generators and relations

The Lie algebra Diff, is generated by Ey := Fj g, Fy := E_ ; and Hy := Ep . We will call them the
Chevalley generators of Diff,. Define the following currents (i.e. formal power series with coefficients
in Diff,)

=Y Bzt =) Bk (1.2.4)

kEZ keZ

=Y Bzt =) Fzh (1.2.5)
keZ neZ

=Y Bzt =) Hw " (1.2.6)
k#0 k#0

Let us also define the formal delta function

z)=> aF. (1.2.7)

keZ

Proposition 1.2.2. Lie algebra Diff, is presented by the generators Ey, Fy, (for all k € Z), H; (for
1 € Z\{0}), ¢, ¢ and the following relations

[Hy, Hj] = ke S (1.2.8)

[Hy, B(2)] = (¢7*% = ¢"?)2*E(2),  [Hy, F(2)] = (¢*% — ¢7*/?)2"F(2); (1.2.9)

(2 = qu)(z = ¢"'w)[B(2), E(w)] =0, (2 —qu)(2 —¢ 17«0)[F(Z) F(w)] = 0; (1.2.10)
[B(:), F(w)] = (Hg™w) = H(g"?w) + ') 8(w/2) + e =6'(w/2); (1.2.11)

2925 '[E(21), [E(22), E(23)]] + cyclic = 0; (1.2.12)

2925 '[F(21), [F(22), F(23)]] + cyclic = 0. (1.2.13)

One can find a proof of Proposition in [Mik07, Thm. 2.1] or [Tsy17, Thm. 5.5].

1.3 Fock module

In this section we review basic constructions of representations of Diff, with ¢ =1 and ¢’ = 0. These
construction were studied in [GKL92].
1.3.1 Free boson realization

Introduce the Heisenberg algebra generated by ay, (for k € Z) with relation [ag, a;] = kdj40. Consider
the Fock module F generated by |a) such that ag|a) =0 for k > 0, ap|la) = ala).

Proposition 1.3.1. The following formulas determine an action of Diff, on Fg:

c—1, dw—0, H,— ay (1.3.1)
—k/2 _ / —k/2 _ k)2
E(z) — exp (Z g q > exp (Z a a kzk> ; (1.3.2)
k>0 k<0
L kj2 _ ,—k/2
F(z)— T eXp (Z 1 kzk> exp (Z qkqa_kzk> . (1.3.3)
k>0 k<0

We will denote this representation by F,.
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Remark 1.3.1. Note that o does not appear in formulas ([1.3.1)—(1.3.3). But we will need operator ag
later (see the proof of Proposition [1.3.6)) for the boson-fermion correspondence. Heuristically, one can
think that v = ¢~

Remark 1.3.2 (on our notation). In this chapter, we consider several algebras and their action on the
corresponding Fock modules. We choose the following notation. All these representations are denoted
by the letter F (for Fock) with some superscript to mention an algebra. Since Diff, is the most
important algebra in this chapter, we use no superscript for its representation. Also, let us remark
that we consider several copies of the Heisenberg algebra. To distinguish their Fock modules, we write
a letter for generators as a superscript.

The standard bilinear form on F? is defined by the following conditions: operator a_j is dual of
ak, the pairing of |a) with itself equals 1. We will use the bra-ket notation for this scalar product.
For an operator A we denote by (a|A|a) the scalar product of A|a) with |a).

Proposition 1.3.2. Suppose the algebra Diff, acts on F§ so that Hy — ar and (a|E(2)|a) = 1%;

(alF(z)|a) = t#=. Then this representation is isomorphic to Fy.

Proof. Consider the current
—k/2 _ k/2 —k/2 _ k/2
T(z) = exp( Z 4 a kz’“) exp( Z a a kz’“) .
k>0 k<0

It is easy to verify that [ax,T(2)] = 0. Since F, is irreducible, T'(z) = f(z) for some formal power
series f(z) with C-coefficients. On the other hand, f(z) = (a|E(z)|a) = *;. This implies (1.3.2).
The proof of (1.3.3]) is analogous. O

Proposition 1.3.3. Denote Ej(z) = E; 2z *. The action of E;(z) on Fock representation F, is given
by the following formula

k2 kl/2 —klj2 _ gkl/2
exp (Z a > exp (Z q a_kzk> . (1.3.4)

k>0 k<0

Ey(z) —

Proof. The commutation relation (1.2.1)) implies that formula ((1.3.4) holds up to a pre-exponential
factor. Also, we see from (|1.2.1]) that

g 'w q'w

E(z)E|(w) = mEHl(q L) — o qleH_l(w) + reg. (1.3.5)
The factor can be found inductively from (1.3.5]). O

1.3.2 Free fermion realization

In this section we give another construction for the Fock representation of Diff,. To do this, let us
consider the Clifford algebra, generated by ; and LZJ; for i,j € Z subject to the relations

Wi} =0, {995} =0; (1.3.6)
{Wi, 5} = ditjo- 7

Consider the currents

= Z iz Y Z Wizt (1.3.8)
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Consider a module F¥ with a cyclic vector |I) and relation
Pill) =0 fori>1, ill)=0 forj>—I (1.3.9)

The module F¥ is independent of I. The isomorphism can be seen from the formulas 1*,|I) = [l + 1)
and ¥;_1|l) = |l — 1). Let us define the [-dependent normal ordered product (to be compatible with
|1)) by the following formulas

il iy = —iab for i =1, (1.3.10)
i}y =iypj  for i <. (1.3.11)

Proposition 1.3.4. The following formulas determine an action of Diff, on FY:

c1, =0, Hym > gl (1.3.12)
i+j=k
l
U _ _ N _ _ "
B(z) = T +ug V22 ap(q Pt (0M22) = ug P ep (g P2 )t (¢ 22); (1.3.13)
—ly~1 ~ L ~ o
F(2) = f_iq_l +u g2z (g P2)p* (g 1/22)¢(1): w2 (q! ) (7 2). (1.3.14)

Let us denote this representation by M,,.

Remark 1.3.3. The Products (g~ /22)y*(¢"/?2) and 9 (q'/%2)¢*(¢"'/?2) from formulas (1.3.13)-
(1.3.14)) are not normally ordered (see Section for a formal definition and some other technical
details on the regular product). In particular, this reformulation implies that M, does not depend
on [.

1.3.3 Semi-Infinite construction

Definition 1.3.1. The evaluation representation V,, of the algebra Diff, is a vector space with the
basis o for k € Z and the action

Eopa® = uaq%b+akxk+b; c=dcd =0. (1.3.15)
Remark 1.3.4. The associative algebra Diff (? acts on V. The representation of Diff, is obtained via
evaluation homomorphism ev: Diff, — Diff qA.

Remark 1.3.5. Informally, one can consider 2% € V,, as 2%~ for u = ¢~®. Define the action of Difqu
as follows. The generator x acts by multiplication and Dz~ = ¢F=2*F = = ygk2*—*. However, ¢~
is not well defined for arbitrary complex . So we consider u as a parameter of representation instead

of a.

Let us consider the semi-infinite exterior power of the evaluation representation A2 V. Tt is
spanned by |\, 1) = 2!7M A gl FImA2 AL A glEN A gIHENFL A gIHENF2 AL wwhere A is a Young diagram
and [ € Z. Let p1 > ... > p; and ¢; > ... > ¢; be Frobenius coordinates of A.

Proposition 1.3.5. There is a Diff,-modules isomorphism A Vi == M., given by

N o ()2 T D, (1.3.16)

Proposition 1.3.6. There is an isomorphism of Diff,-modules My = @y For,- The submodule
Fiu 1 spanned by |\, 1).
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Proof. Recall the ordinary boson-fermion correspondence (see [KR87]). The coefficients of

a(z) = Zanz_”_l =:(2)Y"(2) (0 (1.3.17)

are indeed generators of the Heisenberg algebra. Moreover, F¥ = @iz F?;. The highest vector of F',
is [I) (in particular, ag|l) = —I|l)). Note that this is the decomposition of Diff,-modules as well. Also,

note that
! -1, —1

qu q U
EE = 2=, eI = 1=
Therefore one can use Proposition for each summand F¢,. ]

—1°

There is a basis in the Fock module F, given by semi-infinite monomials
A =z M Azt A AT AL (1.3.18)

To write the action of Diff, in this basis, let us remind the standard notation. Let I()\) be the
number of non-zero rows. We will write s = (i, ) for the jth box in the ith row (i.e. 7 < A;). The
content of a box ¢(s) := i — j. For the diagram u C A, we define a skew Young diagram A\, being
a set of boxes in A which are not in p. Ribbon is a skew Young diagram without 2 x 2 squares. The
height ht(A\p) of a ribbon is one less than the number of its rows.

Proposition 1.3.7. The action of Diff, on F, is given by the following formulas

Eo b)) =g 2u® D (~1)MWgE 2eemn O, (1.3.19)
p\A=b—ribbon
EapN) =g 5u® Y7 (—)MOWgE ey, (1.3.20)
A\ p=b—ribbon
I(N)—1
EaolN) =u | 1=+ 3 (q“(z‘ml)—q‘“) IN); (1.3.21)
i=0
here b > 0.
In particular,
ua
E,o|@) = ). 1.3.22
010) = 5—19) (13.22)

Let us introduce the notation c(A) = > ., ¢(s). Define an operator 1. € End(F,) by the following
formula

L-|\) = ulMlgm2 ey (1.3.23)
The operator was introduced in [BGHT99] and is well known nowadays.
Proposition 1.3.8. The operator L. enjoys the property IrEa,bIT_l =FEq_pp-
Proof. Follows from 7. O
Corollary 1.3.9. 77 = F, for = (}1).
Remark 1.3.6. Also, Corollary follows from Proposition we will use this approach to prove

Proposition [I.5.2}

Corollary 1.3.10. The twisted representation FJ is determined up to isomorphism by n and n'.

Proof. Corollary implies that F,] fo o F7. Note that

1 K\ /m' m m' +kn' m+kn
Tk0—<0 1> (n, n>_< o . ) (1.3.24)

For the fixed n and n’, all the possible choices of m and m’ appear for the appropriate k. ]
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1.4 Explicit formulas for twisted representation

In this section we provide three explicit constructions of twisted Fock module F; for

o= (7:,/ 7:) . (1.4.1)

Constructions are called fermionic, bosonic, and strange bosonic. This section contains no proofs. We
will give proofs in Sections In Section [1.6] we will provide an independent proof of Theorem [1.4.1]

1.4.1 Fermionic construction

We need to consider the Z/27Z-graded nth tensor power of the Clifford algebra defined above. More
precisely, consider an algebra generated by 1q)[7] and wz‘b) [7], for i,j € Z; a,b=10,...,n — 1, subject
to relations

{Ylil, ¥wlil} = 0; {¢@UL¢&¢H}::& (1.4.2)
{0l b1} = 8as diss0- (1.4.3)
Consider the currents
Vo) (2) = Z bl Yy (2) = Z Yl (1.4.4)
Consider a module F™ with a cyclic vector |lg,...,l,—1) and the relations
V)l [los- - ln—1) =0 fori > 1, (1.4.5)

wz;)[j] o,y ln—1) =0 for j > —l,.

The module F™ does not depend on lo,...,l,—1. The isomorphism can be seen from the following
formulas:

1[)2;)[—%] |lo,...,la,.. . ,ln,1> = |l0,. N P ,ln,1>, (147)
Yiaylla =1 o+ las 1) = los o — 1, ).

Theorem 1.4.1. The formulas below determine an action of Diff, on Y

d=n', c=n, (1.4.9)
HE =3 > wali] wilil, (1.4.10)
a itj=Fk
w i _ _ * n’—a+b a n
By = 3 umg 2 (V2 (g20) s gl v/, (1.4.11)
b—a=—n' mod n
w -1 * — —n/—atb _ a n
F'"™(2) = Z u nql/sz(a)(ql/Qz)z/J(b)(q V25— g (atb)/2n, (1.4.12)

b—a=n’ mod n
The module obtained is isomorphic to MS,.

Since F C M¢, we have obtained a fermionic construction for F.
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1.4.2 Bosonic construction

Let us consider the nth tensor power of the Heisenberg algebra. More precisely, this algebra is
generated by a[i] for b=10,...,n — 1 and i € Z with the relation [ay, [i], ap,[j]] = i0p, b,0i+j0- Let us
extend the algebra by adding the operators e?¢, obeying the following commutation relations. The
operator e?v commutes with all the generators except for a[0] and satisfy a;[0]e@® = e@b(ay[0] + 1).
Denote

.
op(2) = Zf,ab[]]z 7+ Qp + ap[0] log z. (1.4.13)
i#0
Remark 1.4.1. Informally, one can think that there exists an operator Q) satisfying [a;[0], Qs] = 1.

However, this operator will not act on our representation. We will use @)y as a formal symbol. Our
final answer will consist only of €?¢, but not of Q; without the exponent.

We need a notion of a normally ordered exponent :exp(...):. The argument of a normally ordered
exponent is a linear combination of a[i] and Q. Let ai, a_, ap, and Q denote a linear combination
of apli] for i > 0, api] for i < 0, ap[0] and @, correspondingly (b is not fixed). Define

cexp (ay +a- +ap+Q): af exp (at) exp (a—) exp (Q) exp (ap) . (1.4.14)

Also, note that ay will have the coefficient log z. We shall understand it formally; the action of the
operator exp(ay[0]logz) = 2% is well defined, since in the representation to be considered below,
ap[0] acts as multiplication by an integer at each Fock module.

Let Q(,) be a lattice with the basis Qo—Q1, ..., @n—2—Qn-1. Consider the group algebra (C[Q(n)].

This algebra is spanned by e* for A = > AiQi € Qqp). Let us define the action of the commutative
algebra generated by a,[0] on C[Q(,,)]:

ap|0] €2 Qi = N, €29, (1.4.15)

Let F™* be the Fock representation of the algebra generated by ap[i] for ¢ # 0; i.e. there is a cyclic
vector |@) € F™ such that ap[i] |@) = 0 for i > 0.

Finally, we can consider F"*®C|[Q,)] as representation of the whole Heisenberg algebra as follows:
ap[i] for i # 0 acts on the first factor, a[0] acts on the second factor. Also, C[Qy)] acts on F™* ®

Theorem 1.4.2. There is an action of Diff, on F"* @ C[Qy)] determined by the formulas

H™ k] :Zab[k], d=n', c=n, (1.4.16)
b
tw . 1 atb-n "/—761‘9-17_,_1 . 1/2 N\ —1/2 .

E™(z) = Z ung 2n 2z n exp (p(q/2) — dalq™7%2) ) : €ap, (1.4.17)
b—a=—n' mod n

Ftw _ 1 —a—bin M+l . 71/2 o 1/2 . 1.4 18

()= > wwg =z oz hiexp (du(g22) — ¢alq?2)) : €ap (1.4.18)
b—a=n’ mod n

here ey = [1,(=1)>% (we consider the product over such r that a —1 = r > b for a > b and
b—1>r>a forb>a).
The representation obtained is isomorphic to F, .

1.4.3 Strange Bosonic construction

2mi

We will use notation of Section Let ¢ be a nth primitive root of unity, e.g. ( =en .
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Theorem 1.4.3. There is an action of Diff, on Fg determined by the formulas.

HY =au, c=n, d= n', (1.4.19)
1 —k/2n _ _k/2n
tw _.n'/n un n' q q —kl _—k/n ).
(e S Zg exp (Z (il Y ) . (1420
-1 n—1 k/2n _ —k/2n
tw _ —n'/n u n —In' . q q —kl —k/n .
F"(z) ==z o0 = Um Z;C :exp (2}; — apC "z ) s (1.4.21)

The representation obtained is isomorphic to F.

As before the representation does not depend on «, see Remark

1.5 Twisted representation via a sublattice

1.5.1 Sublattices and subalgebras
Consider a full rank sublattice A C Z? of index n (i.e. Z2/A is a finite group of order n). Let us define
a Lie subalgebra @iffé\ C Diff, which is spanned by E, for (a,b) € A and central elements c, ¢’.

Denote by E([;?l]), Cln]s c’[n] standard generators of Diff . Let v1 = (k1,11) and va = (kg,l2) be a basis
of A. Define a map ¢y, v, : Diffyn — Diff,

ﬁﬂvl,sz}Z}, = Eaki4bks, aly+blz (1.5.1)
Pur ) = k1 + lic, (1.5.2)
Pu1,v2Cn] = kad' + lge. (1.5.3)

Proposition 1.5.1. Let v1,vy be a positively oriented basis (i.e. kilo — kaly = n). Then the map
vy, 15 a Lie algebra isomorphism Diffn = @iffg\.

Proof. Tt follows from (1.2.1]) directly. O

Slightly abusing notation, denote the Fock representation of Diff » by ]:an] .

Proposition 1.5.2. Let vi = (n,0) and vo = (—m,1). Then fﬁﬁ = Fuly (Diff,n) 95 Diffyn-
v1,v9 qm

modules.
Proof. Note that the Fock module F,, is Z-graded with grading given by
deg(|a)) =0 deg(Eyp) = —b (1.5.4)

Recall that a character of a Z-graded module is the generating function of dimensions of the graded
components. Then the character of Fock module ch 7, = 1/(q)o0 := [[re; 1/(1 — q%).

Consider a subalgebra $eisg in Diff,» spanned by Epj and c. Note that $eisy is isomorphic to
the Heisenberg algebra. Since deg(¢y, v, Fo,—k) = deg(Egm —i) = k, the character of the $eisg-Fock
module is also 1/(q)co; i-e. it coincides with ch F,. This implies that F,| Goy 0g (Difin ) restricted to
$eisg is isomorphic to the $Heisp-Fock module. To finish the proof, we use Propositions and

L33 O
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w2

V2

U1

Figure 1.1: Lattice A, forn =3,m =1,

1.5.2 Twisted Fock vs restricted Fock

From now on we change ¢ — ¢'/. Our goal is to construct an action of Diff, on the Fock module
twisted by o € SLy(Z) as in (1.4.1]) for n # 0. Consider a sublattice A, C Z? spanned by v; = (n,0)
and vy = (—m, 1). Consider another basis of A, obtained by o

wy = m'vy +n'vg = (m'n —n'm,n) = (1,n)) (1.5.5)

wy = muy + nvg = (0,n) 1.5.6)

Remark 1.5.1. The construction of the sublattice A, C Z? naturally appears, if one require o to be a
transition matrix from v; to w; and assume v; = (n,0), we = (0,n).

Denote the Fock module of Diff 1/ by Fom

Theorem 1.5.1. There is an isomorphism of Diff,-modules (Fu)’ = .7-"15142] . (o,
wi,wo Mg

Proof. Proposition [1.5.2 implies ]:El//z] boprog () =~ Fu. On the other hand, relations (1.5.5) and
(1.5.6) yield that o is the transition matrix from wq, ws to vy, vs. O

Corollary 1.5.3. There is an isomorphism of Diff,-modules (M) = M/

wl/n

S (Diffy)

Theorem combined with results from Section [I.3]enables us to find explicit formulas for action
on F;. We will do this below.
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1.5.3 Explicit formulas for restricted Fock

Fermionic construction via sublattice

Denote fermionic representation of Diffa/m by MLI /" To be more specific, let us rewrite formulas
from Section |1.3.2| for M[ll//?j.

e 1, =0, Hpy— Y g, (1.5.7)
1+j=m
l/nul/n 1/n,—1/2n, . —1/2n w( 1/2n .
E(z) = 7 g TR (g™ =) (7 2) (1.5.8)
—l/n, —1/n
Pl = % +um g2 (g ) (g7 ) (1.5.9)

Proposition 1.5.4. The following formulas below determine an action of Diff, on F

c=n, d=np, HP=> Y il ¢l (1.5.10)
a itj=k
1 N —a+b
Bz = Y ung e (a7 2 (0 )T gt (1.5.11)
b—a=—n¢yw mod n
1 —ngy—atb a n
F(z) = > wwg ey (@ Pl (g e g et (1.5.12)

b—a=n¢, mod n

1/n]

The module obtained is isomorphic to M ul/n for wy = (1, n4y), wa = (0,m).

Pwy,wa (Diffy)

Remark 1.5.2. Below we will substitute ny, = n’ to prove Theorem However, Proposition m
is more general, than it is necessary for the proof, since we do not assume here that ged(n,ny,) = 1.
We will need the case of arbitrary ns, in Section

Proof. We use the notation E(z), F'(z) and H(z) for the Chevalley generators of Diff,1/». The gener-
ators of Diff, = @iffé\l/n (identified by ©u; w,) Will be denoted by E™(z), F*(z) and H'™(z). Let us
write the identification ¢y, ., explicitly for the Chevalley generators

H™(z ZHO k2 F (1.5.13)

E™(z) = z"“”/" > Bt (1.5.14)
k=n¢yw mod n

F(z) = z7mw/m N Fpzhn (1.5.15)

k=—ntw mod n

Let us consider currents 9 ,(2) and wz‘b)(z) for a,b = 0,1,...,n — 1. These currents are defined
by following equality

n—1 n—1
2p(2) =D 2" ) (") UNEEDPERTNED (1.5.16)

a=0 b=0
Let us denote the modes of 14)(2) and ¢ ) as in equality ((1.4.4 - It is easy to see that these modes
satisfy Clifford algebra relatlons -, So we have identified the Clifford algebra and the

nth power of Clifford algebra. This leads to an 1dent1ﬁcat10n FY = F™,
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Substituting (1.5.16)) into ( and (L1.5.9), we obtain

l/n 1/n n-in—l

E(z) = 7 + ZZ“W‘J kb g~ /2 nmatd 3T/J(a)(qfl/zzn)i/}?b)(ql/zzn)2(1)7 (1.5.17)
a=0 b=0
n—1n-1
—a+b n—a ny .k — n
F(Z)Z M +Y Y ut g2 o (620G (6722 gy . (15.18)
a=0 b=0

For technical reasons, we need to treat the cases ng, # 0 and ng, = 0 separately. Let us first consider
the case ny, # 0. Using formulas 1.5.13—m, we see that

w a+b n nw a+b %
Bz = > gt e (a7 20, (1 22), (1.5.19)
a—b=ny, mod n
w —(a+b) n "'w a+b % o
Flo(z)= > g mou e g e (6P 2)0 g, (a7 Pe). (1.5.20)

a—b=—n¢y mod n
For ng, = 0 we obtain

l/n 1/n n—l

Etw(z) — - ql/n + Zul/n a/n 2, :¢(a)(q—1/2z)¢a)(q1/2z) ) (1’5‘21)
. —l/n —1/n n—l o L »
Fw(z) = = gy +Zu /n —ll/'qu / z :sz)(a)(q / Z)wz:z)(q_ / Z):(l) (1522)
This can be rewritten as
fl =2
Etw Zul/n a/n( -1/2, . Pl ( 1/2Z)¢Zl)(ql/2z):(l)>’ (1.5.23)
tw n - q [l ﬂ 1/2 1/ * —1/2
E Z“ ﬁ T4 77z (a2 (a72) ) | - (1.5.24)

Note that the [-dependent normal ordering is defined in terms of ¢; and 7. One can check (cf.

({1.10.6))

l—a
N o E £

V(o) (2) Vi (w) = m+ 10y (2)¥ (W) 2y - (1.5.25)

Hence

el

g Py (a7 22) 0 (01 22) = qu + g7 oy (a7 P2 (01 22) 1 - (1.5.26)
]
Proof of Theorem [1.4.1 Follows from Theorem and Proposition O

Bosonic construction via sublattices

Proposition 1.5.5. There is an action of Diff, on F"*@C[Qy,] determined by the following formulas

H™[K] =Y aylk], ¢ =nw, c=n, (1.5.27)
w 1 atb—n ngy—atdb _
BU(z)= Y wng™ T e (0(0'/2%2) — dalaT%2)) s e, (1.5.28)
b—a=—n¢yw mod n
i B _1 —a-bin —mpyoatb g -1/2_\ _ 1/2 .
F"(z) = Z u ng 2z on exp ( (g™ %2) — dalq/%2) ) : €qp- (1.5.29)

b—a=n¢w mod n
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here €, = HT(—l)‘“[O] (we consider the product over such r that a —1 > r > b for a > b and
b—1>r>a forb>a).
. . . . 1
The representation obtained is isomorphic to ]:451//2] b o (DVf,) for wy = (1,n4y), wa = (0,n).

Proof Proposition[1.5.5. We need an upgraded version boson-fermion correspondence for the proof.
Namely, there is an action of nth tensor power of the Heisenberg algebra on F™ given by

Op(2) =11y (2)Y ) (2) 1(0) (1.5.30)
Let P, be a lattice spanned Q. According to boson-fermion correspondence ¥ W PF "RC[P ()]

Lemma 1.5.6. Vector subspace F™* @ C[Q(,)] C F™ @ C[P(,)] = F™ is a Diff,-submodule (with
respect to action, defined in Proposition . The action of Diff, on the subrepresentation is given

by (5270) (520

Proof. One should substitute

Yoy(2) = rexp (—y(2)): (—1)Tkmo 00 (1.5.31)
Wi (2) = rexp (dp(2)): (~1)Zkm0 a0 (1.5.32)

into fermionic formulas (1.5.10)—(1.5.12)). O

Recall that decomposition of /\/lL1 Mg given by eigenvalues of a[0]; more precisely, operator a[0]

f[l/n]

qj/"u'

acts by —j on
Lemma 1.5.7. Using identification F¥ = F™ (cf. (1.5.16)), we obtain a[0] = ag[0] + - - - + a,_1[0].
Sketch of the proof. This follows from [Z—wa =0forl=0and b=0,...n—1 (cf. (1.5.25)). O

Lemma implies that the identification of vector spaces F¥ = F™ leads to identification of
subspaces F§ = F"* ® C[Q,]. Let us package identifications of vector subspaces into a commutative
diagram

(1/n] . fq[tl/n] Fa Fre g C
U Sy (D) l f l[Q(n)]
i i P e

T by g (Diff,)

Proposition states that formulas (1.5.10)—(1.5.12)) gives an action of Diff, with respect to identi-
fication of bottom line of the diagram. Therefore, Lemma implies that formulas (1.5.27))—(1.5.29))
describes the action of Diff, with respect to identification of top line of the diagram. O

Proof of Theorem[1.4.3 Follows from Theorem [1.5.1] and Proposition [1.5.5 O
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Strange bosonic construction via sublattices

Proposition 1.5.8. There is an action of Diff, on Fy defined by formulas.

c=n, ¢ =nw, H"=an, (1.5.33)
tw n /n un in q k/n k/2n —kl _—k/n
E™(z) = z"w 77 ZC tw s exp Z — a2 5 (1.5.34)
l " — q —k/2n ki —k
F'"(z) = z*”t”/n — _1/n ZC e s exp Z L . A (1.5.35)
(1/7]

Obtained module is isomorphic to F Wl/m

for wi = (1, ngy), we = (0,n).
Gy (Dif,) (1, 7ew) (0m)

Proof. Formulas ((1.5.13)—(1.5.15)) imply

HY = Hp, (1.5.36)
n—1
1
Etw — = w/n Intw 1. 1/n 5.
(2) =2 > B, (1.5.37)
=0
1 n—1
F(z) = —z mw/n Ny " ¢t B, (1.5.38)
K 1=0
Substitution of Diff,1/n-version of (1.3.1)—(1.3.3) to (1.5.36)(1.5.38) finishes the proof. O
Proof of Theorem [1.4.3 Follows from Theorem and Proposition O

1.6 Twisted representation via a Semi-infinite construction

This section is devoted to another proof of the Theorem So we use the same notation

m m
o=,
n n

Twisted evaluation representation Let e, be a matrix unit (all entries are 0 except for one cell,
where it is 1; this cell is in bth column and ath row).
Consider a homomorphism ¢, , : Diff éA — Diff (f ® Mat, «, defined by

Eok — Eor®1 (1.6.1)
1 atb
El:k = un Z q 2n El’k_+b7a+n’ ® ea,b (162)
b—a=—n’ mod n "
_1 _atb
E_lak =u n Z q 2n E—l k,_,’_b—a—n’ ® €a7b- (163)

b—a=n’ mod n

Algebra Diff f ® Mat,,»,, tautologically acts on C"*[z, z~!]. Therefore, homomorphism t,,» induces
an action of Diﬂ‘f on C"[z, 2z~ 1.

Proposition 1.6.1. Obtained representation of Difqu is isomorphic to V7.
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2
Proof. Consider a basis v; := ¢ S u'n 2l of evaluation representation Clx, z7!]° Action with respect
to this basis looks like

Eo xvi = v (1.6.4)
1 n'4+kn+21
Eigor=unq 20 Uigpnkin (1.6.5)

_1 n' —kn—21
E,Lkvl =Uu nq 2n Vltnk—n' (166)

Let a,b = 0,...,n — 1 be such numbers that [ = nj +b and a = b+ n’ mod n. Substituting
[ =nj+ b into (1.6.5) we obtain
1l atdb n +b a k

Ey kUnjtb = unq2n q 20 q2qjvn(k+j+"lti’_a)+a (167)

Let us identify C*[z, 27 = Clz,27!] by 27e} > vpj4p. Then formula (1.6.7) will be rewritten

1l a+b .
FE; k(zjeb) =unq 2n (El,k+b*“+"' & €a7b> (Zjeb) (1.6.8)
To be compared with formula (1.6.2]) this proves the proposition for Ej ;. The proof for E_; j is
analogous. For Ej j, proposition is obvious from (1.6.4). O

Semi-infinite construction. To apply semi-infinite construction we need to pass from associative
algebras to Lie algebras.

Definition 1.6.1. Algebra Diff,(gl,,) is a Lie algebra with basis Eyx; ® eqp (where (k,1) € Z*\(0,0)
and a,b=10,...,n—1), ¢c and ¢. Elements ¢ and ¢ are central. All other commutators are given by

lok1— 11k2 likg—lgky
[Ekhh ® eal,blkazlz ® eaz,b2] = Ek1+k2»ll+l2 ® (q 5b1,a26a17b2 q 2 5b2,a1 eaQ,bl) +

+ 5k1,—k25l1,—l25a2,b15a1,b2 (Cll + Clk‘l). (1.6.9)

Proposition 1.6.2. There is an action of Diff,(gl,) on F™ given by formulas

c—1; =0 (1.6.10)
E(2) ® eap = 42200 (4 225 (a72) (1.6.11)
F(z) ®eqp — quw(a)(qiz) ( -2 2) (1.6.12)

Obtained representation is isomorphic to N C"[z, 2_1].
Proof of Theorem[1.4.1]. Accordmg to Proposition M ~ A% Vi Then MY = N2 V7.
Therefore, Propositions [I.6.1] and [I.6.2] imply Theorem O

1.7 ¢-W-Algebras

1.7.1 Definitions

Topological algebras and completions In this section we will work with topological algebras.
Let us define topological algebra appearing as a completion of Diff,. It is given by projective limit of
U(Diff,)/Jx where Jj is the left ideal generated by non-commutative polynomials in Ej, j, of degree
—k (with respect to grading deg Ej, j, = —j2). Although each U(Diff,)/Ji does not have a structure
of algebra, so does the projective limit. Moreover, the projective limit has natural topology.

Below we will ignore all corresponding technical problems concerning completions and topology.
We will use term ‘generators’ instead of ‘topological generators’, the same notation for Diff,, and its
completion and so on.
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Non-Twisted W-Algebras

Let us introduce a notation

00 n—k
1—qx) ™ (1—q~ Iy

> fenlllz! = fon(x )= i o ) (1.7.1)
1=0 (1—x)"n

Definition 1.7.1. Algebra W, (sl,,) is generated by Ty[r] for r € Z and k = 1,...,n — 1. It is

convenient to add generators To[r] =T,[r] = 6,0. The defining relations are

1 1

Z Funll (T1 r—UTy[s+1] — Tyls—1|T1 [m]) = (g2 —q )2 (kr — 8) Ty [r+] (1.7.2)

an kn ( n— l[r l]Tk[3+l] Tk[s l] n— 1[T+l]> (q%—q_%)z((n—k)r—s)Tk,l[r—&—s] (173)

Introduce currents Ti(2) = >, .z Tk[r]z7". Then relations (1.7.2)(1.7.3) can be rewritten in
current form

fen(w/2)T1(2)Ti(w) — frn(z/w)Ti(w)T1(2) =
52 (04 D28 (D) Ta(w) + wd(D)0u Tia(w) - (174

N[

|
>Q

IO‘H

— (g

fn—k,n(w/z)Tnfl(Z)Tk:(w) - fn—k,n(z/w)Tk(w)Tnfl(z) =
— (@ =g 3 (0 =k + D)2 () Ta(w) + wd(D)0uTea (w)) - (17.5)

Also note that Ty(z) = T (z) = 1.

Remark 1.7.1. There are different approaches to definition of ¢g-W-algebra. For example, in [FF96]
algebra W, ,(sl,) was defined via bosonization. The currents Tj(z) satisfy relation [FF96, Thm. 2]

Srn(w/2)T1(2) Ti(w) = frn(z/w)Ti(w)Ti(2) =

_ (=90 -p/q)
1—-p

(5(w/zp)TkH(z) — S(wpt /z)TkH(w)) . (1.7.6)

where

fon() = G A Y Y A ) (1.7.7)
kL _( m—1 ym n—1 n,—1. n) b
z[pmt p™, p" g, phg i p
One can check that limit p — 1 gives relation (|1.7.4). However [FF96] do not provide presentation
of W, p(sly,) in terms of generators and relations.

In the paper [Negl8] relation [Negl8, (2.62)] defines algebra W, ,(gl,) which (non-essentially)
differs from W, ,(sl,,) mentioned above (and from W,(sl,,) defined above).

Twisted g-WW-algebras

Twisted ¢-W-algebra depends on remainder of ng, modulo n. If ny, = 0, then we get definition of
non-twisted g-W-algebra from last section. One can find definition of W, ,,(sl2, 1) in [Shi04], (37)—(38)].
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Definition 1.7.2. Algebra Wy(sl,, nyy) is generated by TE[r] forr € nyyk/n+Z andk =1,...,n—1.
It is convenient to add TEV[r] = TE"[r] = &, 0. The defining relations are

> feanlll(TEIr=UTE [s+1) = T [s=UT{"[r+1]) = — (% — ¢ 22 (kr = $)T{ ks, (178)
=0

> faknlll (Tﬁ’ﬁl[r—l]T,ﬁw[sH] — T [sfl]Tffﬁl[rH]) — —(q% — ¢ 2)*((n—k)r — &) T}, [r+s).
=0

(1.7.9)
Let us rewrite relations f in the current form. Define currents
T (z) = ST, Tlz) = 2 RETER(2), (1.7.10)
TP (2) == z_%T,ﬁw(z) =z " T (2). (1.7.11)
Note that
To(z) =T,(z) =1 T,(z) =T5(z) = 2"v. (1.7.12)

Proposition 1.7.1. Relation (1.7.8) is equivalent to

Fran(w]2)T1(2)To(w) — fun(z/w)Ti(w) Ty () =
= —(* = a3 (b D20 (w/2) Tsa (W) + wd(w/2)0u T (w)) . (1.713)

Relation (1.7.9) is equivalent to

Pt (/2T 1 (VIR (W) = fmson (2 0) TR (W) T (2) =
(2 = q 2 ((n =kt DT (/TR () + wi(w/2)0u T (w)) - (17.14)

Remark 1.7.2. In non-twisted case we have relations ((1.7.4) and ([1.7.5)) for currents T (z). In twisted
case we have the same relations, but for two different sets of currents Tj(z) and 7 (z). One should

also keep in mind ([1.7.12)).

1.7.2 Connection of W,(sl,, ny,) with Dijff,

Connection between W (sl,) and Diff, is known (see [FHS™10, Prop. 2.14] or [Negl§, Prop. 2.25]).
In this section we generalize it for arbitrary .

Let feis be a Heisenberg algebra generated by H. j with relation [fNIi, H i1 = niditj0. We will prove
that there is a surjective homomorphism Diff, — W, (sl,, n4) @ U($eis). Secretly, generators Hj are
mapped to H j under the homomorphism. Let us introduce a notation to describe this homomorphism
more precisely.

Define
SO—(Z) - Z . H—jz ) 90+(Z) - Z . H]Z ]7 (1715)
7>0 J 7>0 J
- q .7/2_q.7/2~ _ q]/2_q7]/2~ _
o_(z) = Z , H_;, P4(z) = —Z , 27 (1.7.16)
7>0 J 7>0 J
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Also, let introduce notation
0(2) = p—(2) + 01 (), 5(2) = p—(2) + 54 (2). (L.7.17)

Define
Ti(2) = %exp (—:z@_(z)> E*(2)exp (—Sgp.,.(z)) . (1.7.18)

Note that Tj(2) commute with H;.

Let Jynn., be two sided ideal in Diff, generated by ¢ —n, ¢’ — ny, and T, (z) — pz™ (here
p € C\{0}). Parameter p is not essential since automorphism E,;, — p *E,p maps Jypnn,, tO
J1nnee - S0 we will abbreviate Jp, ., = Junn, -

Lemma 1.7.2. Tj,(z) € Jnn for k> n.

Proof. Tt holds in U(Diff,)/Jn.nw

EF(2) = nlp"z"w EF"(2) texp p(2): (1.7.19)
On the other hand,
k—n . . (2 B w)Z(k—n) k—n
E¥"(2) rexp p(w) := (o= qu)(z — g~ Tw)in exp p_(w)E" " (z) exp p4(w) (1.7.20)

Hence, E*~"(z) :exp ¢(z):= 0. O

Theorem 1.7.1. There is an algebra isomorphisms S: Wy(sly, niw) ® U($eis) = U(Diff,)/Inne
such that

Te(2) = p T (2);  Hj — H; (1.7.21)

The map P in opposite direction is given by

Hjw Hj; cron; o v ngw; (1.7.22)
E(z) > pexp (icﬁ_(z)) T1(2) exp (i@@«)) (1.7.23)
F(2) s —(q‘ﬁ_lj;f)g exp <—i¢_(z)> T 1(2) exp <—ig5+(z)> (1.7.24)

The rest of this section is devoted to proof of Theorem [1.7.1l First of all, we will prove that
formula (1.7.21)) indeed defines a homomorphism S: W, (sl,, niw) @ U($Heis) — U(Diff,)/Jnn., (see

Proposition|1.7.7)). Then we prove that formulas (|1.7.22)—(1.7.24}) defines a homomorphism in opposite
direction (see Proposition [1.7.8)). Finally, we note that maps P and S are mutually inverse.

Proposition 1.7.3. Currents Tj(z) (considered as power series with coefficients in U(Diff,)/ Inniw)

satisfy relation (|1.7.13)).

Proof. Let us define power series in two variables

EF+D (2, w) = (2 — qu)(z — ¢ 'w)E(2) E* (w) (1.7.25)
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According Corollary |1.11.5 E(k+1)(z, w) is regular in sense of Definition |1.10.2, Following relations
follows from results of Section [L.10]

EFHD) (2, w) = (2 — qu)(z — ¢~ 'w) EF (w) E(z) (1.7.26)
E® D (w, w) = (1 - ¢)(1 — ¢ ) EF (w) (1.7.27)
0. EF (2, w)L:w =(1—q)(1- q_l)w2ki18wEk+1(w) +(1-q)(1—g¢ HwE" (w) (1.7.28)

More precisely, ((1.7.26)—(1.7.27)) easily follows from Propositions [1.10.2l One can find a proof of
(1.7.28]) at the end of Section m

It is straightforward to check that

—qu — g 1w
St/ Tt = IO exp (<1 (-0 + ko))

E(2)E*(w) oxp (—; (o4 () + kmw))) (1.7.20)
Formulas and f implies that
Fion (0 2)T1 (2)Tu(w) = fin (/w0 To(w) T (=) =

g (=3 (oo 0) + ko)) B9 w) exp (= (o 2) + e (0) ) B (w™600/) =

= (1= @)1= )+ D ()28 (w/2) + (1 = )1 = T (w)d(w/2)

Ul
Lemma 1.7.4. The following OPE holds in Diff,
gEk—l 8wEk71 _ N Ek:fl - /Ek:fl
F(z)Ek(w) — k:(c ks 1) Z(l — w()“;) + kw (w) w Spl(lﬁ)w (w) ¢ (w) + reg;
(1.7.30)

or, equivalently
[F(2), E¥(w)] = k(c — k + l)Ek_l(w)%(S’(w/z)—i-
k <w8wEk_1(w) —w ¢ (w)E*H(w): —c’Ek_l(w)) d(w/z). (1.7.31)
Proof. Denote by E(w) = E(wy)--- E(wg). We will write : FI(z)E(w) : = Fy(2)E(w) + E(w)F_(2);

this definition reminds standard Definition [1.10.3] but is applied in different situation (E(w) is not a
current in one variable). Note that

F(2)E(w) = [F-(2), E(w)+ : F(2) E(w) := ZE(W) - B(wj-1)

(H((pwj) ; ?(wfj ij) —C _’_611;](1_]-11};)2) E(wj+1) .. E(wk)+ F(Z)E(M) (1732)
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Recall that we'(w) = H(q_%w) — H(q%w). It follows from (|1.2.9) that

_2B(wy)  Bw)  E(w)
R q;”—;_ 1—qg 1%

Wi wj

—w; ¢ (wj)E(w):,  (1.7.33)

(H(abw)) = H(gHuy)) B(w) =

B(wj) (H(gbw) - H(g 2w)) = 21E_(u;j) ) 1E_(1;)J3 - lE(qlfi)wl i

wj

wy @' (w)E(wj): . (1.7.34)

wj

Using identity

1 1 ﬂ
. - _ S " S— (1.7.35)
-5H0-%) 0-DH0-%)  0-5H0-%)
we obtain
Bl B B | wd,Bw) L)
(-SH0-% -ou-m|,_, _~ -9 1=t
Finally, we conclude that
1 1
H(q2w;) — H(q 2w;
S Bwn) - By T 0 ) ) -
J ? W=wW1=-=Wg
2% ph—1 2wE*2(w) 0, E 1@ (w) EFHw):
L (P\2EE) | (R B 0) 0B ) w0 )
2) (1-%) 2 1-% 1-%
Relation (|1.7.30]) follows from (|1.7.32]) and (1.7.37) O
Proposition 1.7.5. In algebra U(Diff,)/Jnn,,, holds
TRy 1 ~ 1
F(z)= —'117_1 exp <—<p_(z)) Th—1(2) exp (—(p+(z)) (1.7.38)
(42 —q2)? " "
Proof. Usign relation Ty, (z) — u"2" € Jypn,.,, we find a relation in U(Diff,)/ Inntw
F(2)E™"(w) = nlp"w™ F(z) :exp(op(w)): =
1— 1—qt
e S e () () explos (w) (1739
Comparing coefficient of (z —w)~2 with (1.7.30)), we obtain
nE" H(w) = nlp"w™ (1 - q)(1 - ¢~ ) exp(¢— (w)) F(w) exp(¢ (w)) (1.7.40)
O

Denote by T¢(2) = p "z~ Tj(2).
Proposition 1.7.6. Following relation holds in U(Diff,)/Jnn..,

St/ 2) T (VTR (w) = i (2/w0) T ()T (2) =
—(a* =72 ((n =k + D2 ()T () + wd(5)0 T} (w)) - (1.7.41)
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Proof. Proposition [1.7.5] imply

Frmten(w/2) 51 (2) T (w) = fu—kn(2/w) T ()T (2) =

1 1 g MM 1 k 1 k
b P e (o) = B ) P B e (o ) = Haw)).
It is straightforward to finish the proof using (|1.7.31]). O

Proposition 1.7.7. Formula (1.7.21)) defines a homomorphism S from Wy (s, nyy) @ U($eis) to the
algebra U (Diff,) [ Jnnsw -

Proof. Evidently, H; and Tk(z) commute, and H; form a Heisenberg algebra. We only have to check
that l%ka(Z) form W (sl,, nyy) algebra. Relation of Wy (sl,, ny,) algebra follows from Propositions

LT3 and 7.6l O

Proposition 1.7.8. Formulas (1.7.22)(1.7.24)) defines a homomorphism P from U(Diff,)/Jnns., to
the algebra Wy (sl,, ny,) ® U($eis).

Proof. Let us check that these formulas define morphism from Diff,. According to Proposition [I.2.2}

it is enough to prove relations ((1.2.8)—(1.2.13)). It is done in Section m Evidently, P annihilates
I mite - O

Proposition 1.7.9. Maps P and S are mutually inverse.

Proof. Let us prove PS = idyy, (s1,, s )oU(5eis) first. The algebra Wy(sl,, nyy) is generated by modes

of Ti(z). Hence it is sufficient to check PS(H,) = H, and PS(Ti(z)) = Ti(z). Both of them are
straightforward.

The algebra U(Diff,)/Jnn,, is generated by modes of E(z) and F(z). Evidently, SP(E(z))
E(z). Proposition @ implies SP(F(z)) = F(z).

Proof of Theorem [1.7.1. Follows from Proposition [1.7.7], [1.7.8 and [1.7.9]

o ol

1.7.3 Bosonization of W, (sl,,, n,)

Let o be as in (1.4.1)). Corollary |1.3.10|states that representation FJ actually does not depend on m/
and m; it is determined by n’ and n. Let us denote the representation by .7-"1(]1 )

Fock representation via Diff,

)

In this section we will discuss connection of twisted ¢-W algebras and twisted representations ]-'L(Ln "

)

Lemma 1.7.10. In representation ES””” operator Ty, (2) acts by —q_1/2uznlm.
Proof. We will use formula (1.4.11)) to calculate E™(z).
By Proposition
Dy (@ 22) 0 (a7 22) = =y (a7 72) ) (a7 72) (1.7.42)
Yoy (@220 (0'72) = =0y (62 2) ) (g1 22) (1.7.43)
for any a,b (even for a = b).
Consider a sequence of numbers 0 < ay,...,a, < n — 1 such that a;1; —a; = —n' mod n. Thus,

E"(2) = nlug™ 22" 00 (4722 0 (622000 (0220000 (0722) -y (22000 (02)
(1.7.44)
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Using bosonization (|1.5.31)), (1.5.32)) we obtain (cf. (1.7.15)) and (1.7.17)))

/ 1
n I P VP . .
E"(2) nlug™ 'z @ ) rexp(e(z)): (1.7.45)
Consequently,
- / 1
_ -1/2,, n

To(z) = —¢ Y ?uz (/2 = g1/ (1.7.46)
O

Proposition 1.7.11. Suppose, M; are representation of Diff, such thatl ideal Jui,m,n; acts by zero
(for i =1,...,k). Then J, . acts by zero on My @ --- @ My, for n = Zle ni, n' = Zle n; and
Mn —_— M"fl .../'I/Zk'

Proof. Recall that E"itl(z) € In; m;, Dy Lemma Thus, E™(z) act on M1 ® --- @ M}, as

k

ME”I (2) @+ ® E™(2) =n! 1:[1 (2" exp(p(2)) - (1.7.47)
]

Proposition 1.7.12. Ideal J,, nqna acts by zero on .ES?,’") R ® ,7-"152/’”) for

1
p=(~1)n lq_%_l (g -~ ug)nd , (1.7.48)
q2 — q 2

Proof. Follows from Lemma and Proposition [1.7.11 O

Theorem 1.7.2. There is an action of W(sl,q,n'd) ® U($eis) on .7-"1(‘?,’”) ®- - ® .7:75:;,’") such that
action of Diff, factors through W(sl,q,n'd) ® U($eis).

Proof. According to Proposition [1.7.12} algebra U(Diff,)/Jnd,n’a acts on ]-“fff/’") Q- ® ]—‘152/’"). By
Theorem algebra U (Diff,)/Jnd,na is isomorphic to W(sl,q, n'd) @ U($eis). O

Remark 1.7.3. One can consider tensor product of Fock modules with different twists F! @ --- ® F7d.
According to Proposition algebra W(sls~,,,, >-n}) ® U($eis) acts on this space. Obtained rep-
resentation is ‘irregular’ (cf. [Naglh]). In Section we consider an intertwiner between irregular
and (graded completion of) regular representation.

Explicit formula for bosonization

Below we will write explicit formula for bosonization of W, (sl,q,n'd). This bosonization comes from

action of W(sl,q4,n'd) on ]-"é?l’n) ® - ® ]:153/’”). Recall that realization of F{" ™ is written via apk]
for b=0,...n — 1. Denote by aj[k] (for i = 1,...,d and b = 0,...,n — 1) generators of Heisenberg
algebra action on ith factor of the tensor product ]-](L?/’") R ® ESZ/’").

To write action of W, (sl,,4, 'd) we need to introduce slightly different version of Heisenberg algebra.
Namely, consider an algebra, generated by 77};[14:] forb=0,...n—1;i=1,...,d and k € Z. Relations

are given by linear dependence and commutation relations

Zzng[k] =0 (1.7.49)

[771;1 [ka], my2 Uf2ﬂ = K10k, 42,0 <5z'1,z'25b1,b2 - nd> (1.7.50)
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Let us define representation F" ® (C[Qd ] (cf. Section . Lattice Q?n) consist of elements

S A Qi such that A\ € Z and for any i it holds >y At = 0. Define an action
ni[0] €2 M@ = A e M@ (1.7.51)
First factor F is a Fock space for subalgebra n}[k] for k # 0. We can consider F" ® (C[Q‘(jn)] as

representation of whole Heisenberg algebra as follows: né [k] for k # 0 acts on first factor, 12[0] acts on
the second factor by (1.7.51)). Note, that also C[an)] acts on F" ®(C[Q‘(jn)]. Let us introduce notation

i Loy iy
My(2) = Z Em[k]z "+ Qj + myl0] log 2 (1.7.52)
k40

Proposition 1.7.13. There is an action of Wy(sl,q,n'd) on F" ® C[Q( )] given by formulas

(ur -+ ua) 7 (g% — g~ 561%2 >

i=1 b—a=—n' mod n

3=

Ti(z) — (—1)"

1 a+b—n n’ a+b

ulq oz +oexp (77( 1/2) - né(qil/zz)):eflz (1.7.53)

1 1 1 n'
Toa1(2) = —(=1)% (ur -+ ug) 7 (g2 — g~ 2)q " dz >
=1 b—a=n' mod n
—1 _a-btn —n'—a . ;
wy tq T T exp (nj(a7Y22) — i (a/2%2)) ), (1754)

here 653) = HT(—l)"HO} (we consider product over suchr thata—1>1r > b fora>bandb—1>21r>a
forb>a).

Proof. Denote by [}"(n n) @ ESZ””)] . subspace of such v € ]-"75?/’”) K- ® .ESZ,’”) that Hyv =0

for k > 0. According to Theorem [1.7.2, the algebra W, (sl,q4,n'd) acts on ]-]SZL/’") R ® .ESZ,’")] .
On the other hand map 7} [k] — aj[k] — Db ai[k] is a homomorphism. Therefore, one can identify
e (C[Q?n)] and [qu? ) R ® ]:qSZ ’n)] ,
Substitution of (1.4.17)), (1.4.18]), and (1.7.48) to (1.7.23)), (1.7.24)) finishes the proof. O

Denote obtained representation by JF, W‘Z(S["d’n 9,

Remark 1.7.4. The parameter p is determlned by u1,...,uq only up to nd-th root of unlty The

Wy (slpa,n'd) . . : o We(slpq,m'd
modules Fy; Q(ﬁ P ) with different o are non-isomorphic in general (so notation Fy, q(s Tt ) is am-

biguous). For example, one can see this from the highest weights A\ defined in the next section.

The modules ]:22) ! (ﬁ[ﬁj’n/d) with different ;i are related by an external automorphism of W, (sly,, n44).

Ezxample 1.7.1. Let us consider case of twisted Virasoro algebra i.e. n = 2, n’ =1, d = 1. Then
everything is expressed via one boson 7(z) with relation [n[k1], n[ke]] = %klékﬁk%o and [n[0], Q] = %
So there is an action of W, (slz, 1) on F" ® C[Z] given by

Ti() = (~1) 72 (g7 — g )(~1)""
[z exp (n("/22) + n(g™12%2) ) s 2% rexp (—n(qu) (%)) :] (1.7.55)
We can simplify the formula using conjugation by (—1)77[0]2/ 2

Ti(2) = (q2 —q2) [z exp (n(ql/QZ) + n(Q‘1/22)> t+2% rexp (—77(611/22) - n(Q‘l/QZ)) :} (1.7.56)



Q-W-ALGEBRAS 51

Explicit formulas for strange bosonization

To write formulas for strange bosonization we need to consider Heisenberg algebra generated by &;[k]
fori=1,...d and k € Z. Relations are given by linear dependence and commutation relations

d
D &ilnk] =0 (1.7.57)
=1
[5@'1 [k‘l], &'2 [kiz]] = k15k1+k2,0 51'1,1'2 for either n )[ k‘l orn J( k‘g (1.7.58)
. . . 1
[gil[njl]7§i2 [nJQH - n]15j1+j2,0 <5i1,i2 - d> (1'7'59)

Denote corresponding Fock module by F¢.

Proposition 1.7.14. There is an action of Wy(sl,q,n'd) on F¢ given by

1 1
5 _qg 2 o
Ty(2) = —(=1) " — L (g ug) 7 2w
n(ge —q 21)
d n—1 —k/2n _ _k/2n
n n/ q q —_ —_ n
Zu,}/ ZCI :exp (Z T&[/ﬂ]{ Kl —k/ ): (1.7.60)
i=1 1=0 k
b g
1 - 1 nd—ln/
T 1(2) = —(—1)n — (g - ug)ma 25
n(an —q 2n)
d n—1 k/2n _ ,—k/2n
Zu;l/ " exp (Z q q &[k](klzk/n> : (1.7.61)
=1 l:()

Obtained representation is isomorphic to qu(ﬁiyj’” 9,

Proof. The proof is analogous to proof of Proposition [1.7.13] The only difference is that we have to
use (1.4.20]), (1.4.21) instead of (1.4. 17|) (1.4.18]). This representation is isomorphic to ]-"WQ(s[”d’n 9

Ud
since it also corresponds to ]—"IS? @ -7:1(;1 ) -

1.7.4 Verma modules vs Fock modules

Connection of Fock module and Verma module is known in non-twisted case. In this Subsection we
will generalize it for W, (sl,,, nty). Denote d = ged(ngy, n).

Definition 1.7.3. W, (gl,,, ntw) = U(Diff,)/ Jnns, -

Denote modes of E*(z) by E*[j]. Namely, E*(z) =Y, E*[j]2~

Definition 1.7.4. Verma module VWQ(g[”’ntW) is a module over Wy(gl,,, nyy) with cyclic vector ‘5\>g[
and relations

Hj, M)g[ =0 fork >0 (1.7.62)

Ek[jHj\>g[:0 fOTj
B [—snp /d] |N),, = % IV (1.7.64)

(1.7.63)
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Wq (g[n 7nt’w) 4

k”t“’ . Verma module V, sy is

Consider a grading on Wq(gl,,, nw) given by deg Ey[j] = —j —
a graded module with grading defined by requirement deg |/_\>g[ = O

Proposition 1.7.15. V;\/ijgkléntw)

and 1 < k; < n.

is spanned by E* [j1]. .. E*[j] ‘)\> for 42 LR % —

Proof. Recall that E™(z) = n!z™w :exp(¢(z)):. Therefore E"[j] acts on F.

Lemma 1.7.16. Module F is spanned by E™[—7j1] ... E"[—ji]|9)

Sketch of the proof. Let us consider operator E" [—j] defined by }; E™[— j]27 = exp(¢_(z)). On one
hand E"[—7j1] ... E"[—7j]|@) is a basis of ! (this basis coincide with a basis of complete homogeneous
polynomials up to renormalization of Heisenberg algebra generators). One the other hand,

E"—ji]... E"[=j]|@) = E2[—j1] ... E"[—jk]|@) + lower terms, (1.7.65)
here lower terms are taken with respect to lexicographical order. ]

Remark 1.7.5. Lemma|l1.7.16| holds for any exponent :exp (Z ajsz_j) : such that av_; # 0 for i > 0.
The proof does not use any other properties of coefficients «;. One can find the proof as the last part
of proof of [Negl8, Prop. 2.29].

Define @ifffg and CDiffq>0 as subalgebras of Diff, spanned by Ej ; with k¥ > 0 and k > 0 corre-
spondingly.

Lemma 1.7.17. Vector ‘5\ € V;\/Yq(g["’ntW) s cyclic with respect to action of @iff;o.

Proof. Theorem implies that the natural map U (®1ffq>0) — U(Diff,)/Jnnp, i surjective. Hence
Verma module is generated by non-commutative monomials in F; and H; applied to ‘)\> . Using
relation [H;, E;] = (¢77/? — ¢?/?)E;4 j, we see that the module is spaned by Ej, ... E;, H;, ... Hj, |/_\>g[.
Lemma |1.7.16/ implies that the module is spanned by E;, ... E;, E"[j1] ... E"[ji] ‘5\>g[ O

In [NegI7, (3.48)] author states, that algebra Diff,”" has a PBW-like basis E* [ji]... E¥[j] for

% < % < - < ]J? Thus VW‘I(gl"’nt“’) is spanned by E¥1[j1]... E*[j] !5\>g[ (with the same condition
on k; and j;). ‘ .

Note that if i—i > —=te then such vector is 0; moreover if %—i =—"w then EF[j;] acts by multipli-
cation on a constant, hence it can be excluded. Also note that E*[j] € J,, p,, for k = n + 1, therefore

we assume k; < n. The Proposition is proven. ]

—d
Corollary 1.7.18. Coefficients of ch V;\/Y({F?[)z;’ntw) are less or equal to coefficients of [[p- (1 — qkd> .

Theorem 1.7.3. If fﬁ?tw/d’n/d) ®.7-"(m“’/d /D) s irreducible then natural map p: VWQ(gk‘;ntw) —
fqg?tw/d’n/d) - J—“&Z*w/d’”/d) is an isomorphism for
s 1
b () N~
(¢ —a77)"

Proof. Let us first prove existence of the map p. This will follow automatically from the following
lemma.
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Lemma 1.7.19. The highest vector |u) € qu?tw/d’n/d) ®--® fﬁgtw/d’”/d) satisfy following conditions

Hy|u) =0 for k>0 (1.7.67)
E*[j]|a) =0 (1.7.68)
E'@ [—sny,/d] |u) = T As @) (1.7.69)

Proof. Assertions (1.7.67)—(1.7.68) are evident. Let us check (1.7.69). Denote by 5%( z) action of F(z)
on jth tensor multiple; in particular F(z) = e1(2) + - - + €4(2). Recall that £;(2)a ! = 0. Thus

ns|

,'8 Z a,?l(z)s,i(z) ) skg(z) +..., (1.7.70)

k1 <ka<---<k;

SH

ET(2) —

—~
Qs
\._/

here dots denote summands with a power which is not a multiple of 3 (thus, this summands do not
contribute to E'@ [—sny,/d] |@)). To finish the proof we note that

@' n n n
A’ o) od (o4 a0 = 5 ( *1/2> s !
e (al Ekl(z)€k2(2> .. .8ks(z) lu) = 7 Uy -k, (4 2z d e q—1/2)% . (1.7.71)
O
Image of p is whole Fy, (n“"/ dn/d) g, ®Fu, (ntw/d,n/d) , since Fy, (n“”/ dn/d)e, z(ﬁt”/ 4n/d) i irreducible.
Note that ch( qﬁ?iw/d’"/d) - ® J’:(mw/d n/d ) [, < lkd>d' Corollary 1.7.18| implies that p is
—qn
injective and ch VW" g["’nt“’) =1l O

(=t

Remark 1.7.6. Note that representation F, W‘I(ﬂ”d’nm) is irreducible iff F,, ® - - - ® Fy,, is irreducible. In

particular, for d = 1 then fql/v a(8bnnew) i srreducible automatically. Generally, criterion of irreducibility
of Fuy ® --- ® Fy, is given by Lemma [1.9.1]

Definition 1.7.5. Verma module V;\/quf[/’\znm) is a module over Wy(sl,, ny,) with cyclic vector ‘5\>5[
and relations

T[] [A) =0 forr >0 (1.7.72)
TE 4107 | XYy = As [A) (1.7.73)
Introduce grading on W (sl,,, ny,) by deg T,i“’ [r] = —r. Verma module VWq(g[/(“nm) is a graded

module with grading defined by deg ‘5\>5[ = 0.
To simplify notation for comparison of sl,, and gl, cases, we will assume below that p = 1 (cf.

Remark [1.7.4)).
VWq (gl ntw) ~ yyWa(sln,ntw)

Proposition 1.7.20. N =V Ay ® FH with respect to identification Wy(gl,, ntw) =
Wy (sln, i) @ U($Heis).

Proof. The existence of maps in both directions can be checked directly using universal property of
the Verma module. Evidently, these maps are mutually inverse. O

Corollary 1.7.21. If ]-'ZY‘Z 575;;’”’5“’) is irreducible then natural map p: VW"(SI/(ZW“’) fﬁ?(fmmw) is an

isomorphism for \s as in (|1.7.66)).
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1.8 Restriction on @iffﬁ} for general sublattice

We generalize results of Section for arbitrary sublattice. For applications in Section we will
need only case of sublattice Ag = span(ey, ney) C Z2.
1.8.1 Decomposition of restriction

Let A C Z? be a sublattice of finite index. Let us choose basis w;, ws of lattice A so that w; = (ry Ng)
and we = (0,n). Let d be the greatest common divisor of n and ny,.

Theorem 1.8.1. There is an isomorphism of Diff,-modules

[1/nr] ~ ntw/d n/d (ntw/d,n/d) (ntw/d,n/d)
.Fud/n'r ¢w1’w2 (lefq le? uq'rlo - ® .F 'r( +lo) K- Q ..F r(d 1 g1 (181)
(d)
Proof. Proposition [1.3.3| implies that F [1(//2:} = F [1//2]. Hence it is enough to consider case

req,eq

[1/n]

r = 1. We will use realization of F d/n constructed in Proposition |1.5.50 Strategy of our

Py wo (Diffy)
proof is as follows; first we will construct decomposition on the level of vector spaces and then study

action on each direct summand.

For each a =0,...,d —1 let Q?;;l/ad) be a subset of lattice P, consisting of elements
Z ZNGQa such that Z Iy =l
a=a mod d a=a mod d
Note that 1
0,1 —1,1q_
Qm= ]I Qi) @ ® Q)
lo+++lg—1=0

Or equivalently
CQwl= D (C[Q(();ll/od)} Q... ®C{Q?;/1Cbzd_l} '

lo+++lg—1=0
Let Fi%* be Fock module for Heisenberg algebra generated by ay[k] for b = a mod d. Then
na Za N a, d—1,1
FreClQul= @ (Fivtec(Qll|)e o (Fictaclq)y']) (82
lot+-+lg—1=0

Let us show that (1.8.2) is a decomposition of Diff,-modules (moreover, that it leads to decomposition
(1.8.1))). Let us define

HYK = ) aplk] (1.8.3)
b=a mod d
tw d atbon mgp—atb g 1/2 ~1/2
E}X(z) = Z unq 20z = exp (¢b(q z) — ¢al(q z)) D €ab (1.8.4)

b—a=—n¢w mod n
a=a mod d

_d —a—btn —ngy—a+tb _
Fi*(2) = Z wrg Iz thiexp (gbb(q 1/2,) - qba(ql/Qz)) D €abs (1.8.5)

b—a=n¢, mod n
a=a mod d

here €, = [, (—1)*[% (product over such 7 that a—1>r > bfora>band b—1>r > a for b > a).

Lemma 1.8.1. Formulas ([1.8.3)(L8.5) defines an action of Diff, on Fi%* @ ClQY l")]; obtained

(n/d
(ntw/d, n/d)

representation is isomorphic to ]: TN
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Sketch of the proof. Let us define &, = [[,(—1)*[%) (product over r satisfying above inequalities and
condition r = @ mod d. One can check that there exists an index set I such that conjugation of EL*(2)
and F(z2) by H(i’j)el(—l)ai[o]‘” O will turn €a,b 10 €gp. Theorem finishes the proof. O

On the other hand, formulas (1.5.27)—(1.5.29) implies
H ) = ST HSE, Bz = S ER(z), F) = 3 ). (1.8.6)

« « o

Therefore embedding of vector space from first row of following commutative diagram leads to second
row embedding of Diff,-modules

(Fga,o ®C {Q(()hl/od)D R @ (F%a»d lg [Q?n/ldld ID ——— F" @ C[Q(y)]

]:(”tw/d n/d) ]:(”tw/d n/d) R - ]:(”tw/d n/d) c ; ]:[1/”]
uglo gitia g T a1 U ] g (DFF)
O
Corollary 1.8.2. Following Diff,-modules are isomorphic
Fl/ml . @ @ ®F aiy®@ - ®@F a1, . (1.8.7)
d)el,neQ(@‘ffq lGQ(n) uq uq n 1
Remark 1.8.1. Lattice A admits another basis v; = (N, 0), va = (R,d). There is an isomorphism
[1/nr] . o .
G g (DIFF,) ze? wrto @7 O F g ) © ®fun( At ttar) (1.8.8)
(d)
1.8.2 Strange Bosonization and Odd Bosonization
Representation ]-][}/ n}‘ admits fermionic, bosonic, and strange bosonic realizations; formulas

Py wy Diff
are given in Proposition [1.5.4], [1.5.5] and [1.5.§8] correspondingly. This Section is devoted to study of
]

. We will consider strange bosonization

corresponding W (sl,, ny,) algebra action on }"1[}/ "
buwy ,wy Diffg

and its classical limit.
Let us introduce following notation (cf. with (1.3.2))

—k/2n _ _k/2n
e(z) =:exp Z %akz_k : (1.8.9)
k40

[1/n]

Proposition 1.8.3. For w1 = e1 + ngwez, wa = nea ideal J,, yn,, acts by zero on Fy
bwy wy (Diffy)

for
11 1
u dq 2n —(Qq2n d q 2nu
p=——a X = ()r—c——7 (1.8.10)
n(l—qn») q2 —q 2 (¢2 —q2)

} . Recall that we denote by ¢ a primitive

Proof. We will use strange bosonization of .7-"1[}/ "
Dwy wy (Diffy)

root of unity of degree n. We have

u nt

E(z)m ————2 (e(zl/”) +(Me(CMY) 4 C("_l)”twe(g“”_lzl/”)> (1.8.11)
n(l—gqn)



56 CHAPTER 1. SCHUR SPECIALIZATION CASE

Let us calculate

u

(n(l - Q")E(z)> e (e(zl/n) + C”twe(gzl/n) 4t C(n_l)ntwe((n_lzl/n))n _

n!zntw(_1)(n—1)ntwe(zl/n)e<czl/n) . e(Cn—lzl/n> _

(_1)(n—1)ntwn!zntw H . (1 - Cj*i)Q 1 :e(zl/n)e(gzl/n) . e(Cn—lzl/n):
ic; (L=gn@@™ (1 =g n¢77))

We need to compute

0 (L= ¢y _ L-00-C) ey 0=¢0r

i (L= qn¢@=) (1 — g n¢i=0) 15 q (1 —gn¢i=i)(1 — gn (i) o (L—gnchy
i (L—gn)" (g% —g7 )"
T T g

Note that :e(z'/™)e(¢2Y/") - e(¢"121/"): =:exp ¢(z):. Hence

1

e 1 n —L n
[ = (— 1) ( O 2")n) = (=1)(n=Dnew-tn (“‘12") (1.8.13)

1 1 1 1
n(l—qn) (¢ —q2) z—q

[NIES

Finally note that (n — 1)ng, + n =d mod 2. O

Remark 1.8.2. Another way to prove Proposition is to derive it from Proposition [1.7.12] (since

isomorphism (1.8.1))). Beware inconsistency of our notation in (|1.7.48) and ((1.8.10|). Let us rewrite
(1.7.48)

1 1

d q 2n 1 d q 2n n d d—1\"™ 4 q_%
p= Dt = (0F T () ) = c0f
q2—q 2 2 q2—q 2

Let us consider subalgebra of Heisenberg algebra generated by J, = aj for n 1 k. Denote corre-
sponding Fock module by F.

Corollary 1.8.4. There is an action of Wy(sly, ny) on F7 given by

1 _1 n—1 _k k.
i]- 2 — 2 Niw 2n — 2n _ _k
Tl(z)z—(—l)“g%zz > ¢ vexp | ) %ch e | (1.8.14)
gen —q 2n 1=0 ntk
[1/n]

Obtained representation corresponds to Fy

bwy wa (Diffy)

Proof. Follows from Theorem [1.7.1] and Proposition [1.8.3 O

Remark 1.8.3. Let us consider non-twisted case ny, = 0. Then d = n and total sign —(—1)% = 1.
More accurately, the coefficient is a root of unity of degree n (cf. Remark [1.7.4]). Nevertheless, this
freedom disappears if we require T1(z) = n + o(h) for A =log ¢ (this is a standard setting for classical
limit).
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Ezxample 1.8.1. Odd bosonization is a particular case of strange bosonization for n = 2 and ng, = 0.

1 1 T T T T
i4q71 i —gq1 . —i— g1 .
Ti(z) = % :exp Z %Jﬂf5 i+ exp | — Z %Jﬂfﬁ : (1.8.15)
2r 2tr

Consider classical limit ¢ — 1. It is convenient to assume ¢ = e and & — 0. If there exists an
expansion

Ti(2) = 2+ 22 L(2)h?* + o(h?) (1.8.16)
then modes of current L(z) = L,2~""2 form ‘not g-deformed’ Virasoro algebra. Note that
-2
o (277 1 . 2.\ 32 2
Ti(z) = 2+ 2 < T 42 : Joad(2) > R + o(h?) (1.8.17)
where Joda(2) = X o, Jrz"2~!. Hence
L()—ﬁ—l-lznf (2)2 (1.8.18)
Z) = 16 1 tdoddl(Z) i, 0.
Or equivalently
1 1
Ly =~ : t+—0k0- 8.
k 4 Z JT“]S +166k,0 (1 8 19)
%(7‘—&—3):1@

Formula ((1.8.19)) is well-known; it coincides with [Zam87, eq.(2.16)] after substitution J, = 21 1, Let

us emphasize that formula ([1.8.15)) is a g-deformation of ([1.8.19)).

1.9 Relations on conformal blocks

1.9.1 Whittaker vector

In this section we define and study basic properties of Whittaker vector W (z|uy,...,un) € Fy, @---®
Fuy- We will restrict ourself to case when F,,, ® --- ® Fy,,, is irreducible.

Lemma 1.9.1. 7, ® -+ ® Fy, s irreducible if u;/uj # q* for any k € Z.
Proof. Follows from the proof of |[FFJT11b, Lemma 3.1]. O

In papers [Neglba] [Tsyl7] Whittaker vector is defined geometrically. We will define Whittaker
vector by algebraic properties (cf. [Neglba, Prop. 4.15]). Then we will prove that these properties
define Whittaker vector uniquely up to normalization if the module F,, ® --- ® F,, is irreducible.

Definition 1.9.1. Whittaker vector W (z|ui,...,un) € Fuy, ® - @ Fyy is an eigenvector of operators
E,p for Nb > a > 0 with eigenvalues

k
z

E07kW(Z|U1,...,UN) ZWW(Z”Ul,...,UN) (191)

_1 k

(=g 2)Nup - unz
ENk,k W(Z|U1,...,UN) :( q—k/2_qk/2 ) W(Z|U1,...,U,N) (1.9.2)
for k> 0;

Ekl,kQW(z]ul,...,uN) =0 (1.9.3)

for Nky > k1 > 0. We require W (z|ui,...,un) =|9) @ - & |&) + -+ to fix normalization (by dots
we mean lower vectors).
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Remark 1.9.1. Whittaker vector is an element of graded completion of F,, ® --- ® Fy,. Abusing
notation, we use the same symbols for modules and their completions.

Remark 1.9.2. Whittaker vector is an eigenvector for surprisingly big algebra. This explains why we
have to consider specific eigenvalues (for general eigenvalues there is no eigenvector in corresponding
representation). Theorem [1.13.2] clarify origin of this eigenvalues.

Theorem 1.9.1. If F,, ® --- ® Fy,, 15 irreducible, then there exists unique Whittaker vector.

One can find a proof of Theorem in Section This statement can be considered as a part
of folklore; unfortunately, we do not know a precise reference for the theorem.

Proposition 1.9.2. Decomposition of Whittaker vector W (z'/"|u) € FI with respect to (1.8.7) is

%‘th—l)

given by Whittaker vectors W (z|ug, ..., uq up to normalization.

Proof. The idea of the proof is that relations ((1.9.1)) and (1.9.2) for N = 1 implies these relations for
N = n. Let us work out conditions (1.9.2) for W (z|ug', ... ,uan_l‘H"*l)

1 k k
o —q 2 " H uqﬁHk z n—
oy = <( (q)—k/zk—(qk/z) ) ) W(zlug,... ug™s tt)  (1.9.4)

Evkk W(z\uqlo, o, Uq

Let us calculate

n—1
n n n— n
(Tt = (e = (k) o
k=0
So W (z|ugl, ... ,uq%l“"—l) is defined (up to normalization) by conditions
lo nlyg, a lo nlyg,
Eo i W(zlug®,...,ug = ) :WW(zmq N VT ) (1.9.6)
11 nk
n—1 <_q_%zﬁu> n—1
B W(zlug, ... jug » Th=1) = % W(zlugh, ... ug = tin-1) (1.9.7)
’ q- /2 — q /2
By iy, W (z|ug', ..., uan_lH"*l) =0 (1.9.8)

for £ > 0 and nka > k1 > 0. Denote by E(%n] generators of Diff,1/». Then
(=)™
(@) (i)
(rbste)”
() 7 (g
Epy iy W (2" u) = B W () = 0 (1.9.11)

Eo W (") = B W (21" u) = W (/") (1.9.9)

B kW (2" u) = BN W (21" u) = W (/" u) (19.10)

Note that conditions ([1.9.9)—(1.9.11)) and conditions (1.9.6)—(1.9.8) coincide. Hence each compo-

nent of W (z'/"|u) also satisfy those conditions, i.e. coincide with Whittaker vector up to normaliza-
tion. O
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Whittaker vector for F,
Recall that we use notation c(\) = ), c(s).
Proposition 1.9.3. We have an expansion of vector W (z|u) in the basis |\)

,lc()\)
q 2
W p—
(z|u) Z Mo (q%h(s) B q—%h(s)>

To prove the Proposition we need the following lemmas.

PRI (1.9.12)

Lemma 1.9.4. Following vectors in F, coincide

<i - ) 2) =Y [ My (19.13)
exp W2 ok Ok | 19) = s —LIho\ - -
k=1 k(a2 = q7t72) [Lsen (qéh( ) —q 2h ))
Proof. Recall Cauchy identity
1
exp <— > kpk(w)pk(y)> =TT = ziy) =D (=)Msw (2)sa(v). (1.9.14)
k i\j A
Let us use specialization of Cauchy identity (see [Mac95, §1.4 Ex. 2])
pi() HW, sy (@) (=1 (1.9.15)

Lo (a0~ 0)

To finish the proof let us recall that there is an identification of space of symmetric polynomials and
Fock module F¢ given by sy +— |\) and px — a_j, (see [KR8T]). O

Remark 1.9.3. For |¢| < 1 this specialization comes from substitution pk(qu/z, 232, .. ).
Lemma 1.9.5. Following vectors in JF, coincide

o (—q_l/zuz)k
exp (- > R = q_k/g)P(Ek,k)> @) ="

k=1

2P| (1.9.16)
Proof. Recall that we have defined an operator 1. by (1.3.23]). Let us calculate

LY

~ 4o N gaem) =31

1Al —
h(s) _ f%h(s) i ‘)\> Z %h(s) _ f%h(s)
q HsG)\ q q

Q

P! (1.9.17)

N

[Lex (q

Proposition [1.3.8| implies that

X (=g 2yz)" X (=g 2yz)"
L; <eXP <— > k((q,gg - q,z/Q)P(E—k,—k)> |®>> = exp (— > k:((q’*j? — qk)/2)a—k> (@) (1.9.18)

k=1 k=1

Using Cauchy identity for another specialization

()

e\ =12
(z) s~ sy (z) — (=) W

Al
[Tiex (q%h(” - q—%h(s)) = (1.9.19)

we see that RHS of (1.9.17) and (1.9.18)) coincide. O
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Remark 1.9.4. For |g| > 1 this specialization comes from substitution py(—zuq~!, —zuqg=2,...).

Proof of Proposition[I.9.3. To prove the Proposition let us check that RHS of ([1.9.12)) satisfy condition

(11.9.1)—(1.9.3). Conditions (1.9.1)) and ([1.9.2) are equivalent to Lemmas [1.9.4] and [1.9.5| correspond-
ingly. To finish the proof we note that for N = 1 conditions (1.9.1)) and ([1.9.2]) imply (1.9.3]). O

Remark 1.9.5. Note that we did not use Theorem [I.9.1] in the proof of Proposition Moreover,
we have proven a particular case of the Theorem for W (z|u).

Whittaker vector and restriction on sublattice

Let us recall interpretation of decomposition in terms of boson-fermion correspondence. One
can identify F™ = F¥. Embedding F§ C F¥ corresponded to embedding F™* ® ClQm)] c Fo,
Hence we have decomposition
Fr= P Fr@eilie (1.9.20)
1€Qqn)

We argue by construction that decomposition ([1.8.7)) correspond to ((1.9.20)).

Proposition 1.9.6. Decomposition (1.9.20) identifies |@) @ e~ 2:4%i with |\) for some X. Moreover,
partition A\ satisfy following properties.

(i) Hooks of A are in bijection with tuples {(i,j, ki, kj) | ki < li; kj = l;; nki+1i > nk; + j}. Length
of a hook corresponding to a tuple (i, j, k;, k;) equals to n(k; — kj) +i—j

.. 1,4 A —1 42
(i) 1 (E+1)2 =Bl 1yt o

Proof. The n-fermion Fock space F™ is isomorphic to tensor product F¥®- - -®@ F¥. The n-Heisenberg
highest vectors are products |lg) ®- - -®|l,—1). After identification of F™¥ with one F'¥, these products
becomes for special A\. Such diagrams X are called n-cores.

Combinatorially boson-fermion correspondence is a correspondence between Maya diagrams and
charged partitions (A1), see e.g. [Neglhbl Section 6.4] or [EMI7]. Boxes of a partition correspond to
pairs of white and black points in Maya diagram such that the coordinate of white point is greater
than the coordinate of the black point. The hook length equals the difference between the coordinates
of white and black points (cf. [Negl5b, Section 6.4]). This proves ({i).

For formula see e.g. [EMI17, Prop. 2.30]. O

Lemma 1.9.7. Let l; > ;. Let us consider hooks with fized i and j (see Proposition .
o Ifi > j, then possible lengths of hooks are nk +1i —j for k=0,1, ..., l; —=1; — 1.
o Ifi < j then possible lengths of hooks are nk +1i—j fork=1,2, ..., [; —1l; — 1.
There are exactly l; — l; — k such hooks of length nk +1i — j for all possible k.

For each | € Q(;) we will use notation H(i, k) for product over triples (i, j, k) satisfying following
conditions. Numbers ¢,j run over 0,...,n — 1 with condition /; > I;. If i > j, then k = 0, 1, ...,
li—=1lj—=1;ifi<jthenk=1,2,...,l; —1; — 1.

Corollary 1.9.8. If diagram \ corresponds to |@) @ e~ 2:liQ:  then

11 (Q%h(s) - q‘%h(s)) =11 (Q%<"’€+i—j) —~ q_%(”kJri_j))lHrk' (1.9.21)
SEA (4.4,k)
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Theorem 1.9.2. Decomposition of Whittaker vector W (z'/"u!/") € ‘7__1[31//2] with respect to (T i
given by | |
g3 3 DU+ =(5)°) L8]

lO %+ln—l
Y N W(z|ug”, ..., ugq ) (1.9.22)
Proof. Recall that according to Proposition we just have to verify the coefficient. This coefficient
can be found as coefficient of W (z!/"|u!'/") at highest vector of Fugo®@ - OF by Q@ QF n-1y, .
ugqmn k uq n n—1
By Proposition coefficient of W (z'/™ul/™) at |)) is

q_ic(k) z% B q—ﬁc()\)z% S (it £)2—(£)2) oo
3 (s) — 5 h(s) N 1 (k+i22) —1(k4izd) Li—l—k" (1.9.23)
[sex (q mTe ) L jx <q2 n/—q 2 )

Equality ((1.9.23) follows from Corollary and Proposition (). O

1.9.2 Shapovalov form

Definition 1.9.2. Let My, My be two representations of Diff,. A pairing (—, —)s : M1 ® My — C is
called Shapovalov if (v, Egpw)s = —(E_q _pv, w)s.

Proposition 1.9.9. There exists a unique Shapovalov pairing F, ® Fg,—1 — C such that (0|0)s = 1.

Proof. There exists a unique pairing on Fock space such that aj is dual to —a_. Since algebra Diff,
is generated by modes of F(z) and F(z), it remains to check Shapovalov property for them. Formulas

(L3:2) and (L33) implies (v, E(z)w) = —(F (=)o, w). 0

Remark 1.9.6. Note that this pairing differs from the pairing defined in Section More precisely,
in Section [I.3.T] we required aj, to be dual to a_g, not —a_.

Proposition 1.9.10. (W (1|qu™!), W (z|u)) = (¢2;¢,¢)o
Proof. Formulas and implies
00 Lk
W (z|u) = exp (Z E(q*/? — q—k/2)ak> |@). (1.9.24)

k=1

Using (|1.9.24)) one can finish the by straightforward computation. O

Proposition 1.9.11. There exists a unique Shapovalov pairing M, & M, -1 — C such that

(110)s =1 (v, w) = (v, w)s (v, Pjw) = (P v, W) (1.9.25)

Proof. There exists unique pairing satisfying (|1.9.25)). The Shapovalov property can be checked di-
rectly using (|1.3.12)—(|1.3.14)). O

Proposition 1.9.12. Shapovalov pairing for Fock modules for basis |\) has form (Au)s = (=1)Algy .

Proof. Let p1,...,p; and ¢1, ..., q; be Frobenius coordinates of A; analogously, p1,...,p; and q1,...,q;
be Frobenius coordinates of p. Using identification given by (|1.3.16)) we obtain

(1, 1|\, 0)5 = (_1)Zk(qk*1)(_1)Zk(qk*1)<1’¢§l .. '%fﬂ?ﬁi—l s 1y D, quiﬂ ... 1/,qu+1|@>5

(1.9.26)
Evidently, if this product is non-zero, then i = j, qx = pg, and p; = §;; this exactly means that
w = XN. It remains to calculate RHS of in this case; it equals (—1)Zr e +tZipti® — (1)1l

since |A| =D g + >, p — 1. O
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Definition 1.9.3. Standard Shapovalov pairing (—, —)ss: M1 @ My — C for My = Fy, @ -+ @ Fu,
and My = Fyy, @ -+ @ Fyy, 1 defined by

i

Here (—,—); stands for Shapovalov pairing F,, ® fqu;1 — C as in Proposition .

flgl/”]®f[1l/7} restricts to (—1)|>\|<_a —)ss: Mi®@My; — C
qn [u

&-- ~®.7:q140/u (with respect to decomposition

Proposition 1.9.13. Shapovalov pairing on

Jor My = F 1o ®:+®F -1, 1cdeMQ—J-"l l
uq n -
(1.8.7). Other pairs of direct summands are orthogonal

Proof. Property (v, Eqpw)s = —(E_q _pv, w), is preserved under restriction. Since module M; and Mo
are irreducible, there exists unique Shapovalov pairing M;® My — C. So restriction of pairing coincides
with the standard pairing up to multiplicative constant. The constant equals to (N|\) = (=1)* due

to Proposition [1.9.12] (and Proposition [1.9.6)).
Orthogonality with all other summands also follows from Proposition [1.9.12|and irreducibility. [

Remark 1.9.7. Let us comment on another way to prove orthogonality mentioned in Proposition|1.9.13
All direct summands are pairwise non-isomorphic. Hence there is no non-zero pairing for all other
pairs of direct summands.

1.9.3 Conformal blocks

Definition 1.9.4. Pochhammer and double Pochhammer symbols are defined by

o0 o
(q1)00 = [J(1 = giw), (w501, 02)00 = [] (1 — qidduw). (1.9.28)
=0 ij=0

Remark 1.9.8. Standard definition works for |q1], |g2|] < 1 and any u. For sufficiently small u double
k

(1 QQ)
has non-zero radios of convergence for |q1|, |g2| # 1. Moreover the series enJoys property (u; gy ', g2)o0 =
1/(q1u; q1,G2) 00, hence we can define double Pochhammer symbol for any |q1], |g2| # 1.

Pochhammer symbol can be presented as (u;q1,¢2)oc = €Xp ( — Y pey a ) The series in u

In particular, new definition implies (u;q, ¢~ )oo = 1/(qu; ¢, ¢)oo; this is important to compare our
formulas with [BGM19]. Below we assume |q| # 1.

Definition 1.9.5. Let us define g-deformed conformal block
¥ (log u;)? 1

Z(uy, ... Un;2) = 2 200za)? m <I/Vu(1’qu;17 cee qul—l)’ W(z|uq,. .. ’u”>>ss (1.9.29)
Z;ﬁ] T ] P & o0

Remark 1.9.9. AGT statement claims that function Z(uq,...,uy;2) is equal to Nekrasov partition
function for pure supersymmetric SU(n) 5d theory. This was conjectured in [AY10], the proof follows
from the geometric construction of the Whittaker vector given in the [Negl5a] and [Tsyl17].

Theorem 1.9.3.

i1 1 1 1 n—1
o H (qnzn;qn,qn> = > Z(ql(’,qn”l,---,q wote z)

7,75] 7Q7 Q)OO *° (lo,...,ln_l)GQ(n)
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The idea of the proof is to find two different expressions for (W (1|g*/™), W (2!/"|1)) using The-

orem m To do this we need to simplify Z(uq,...,uy;2) after substitution u;—1 = q%Hi. Let us
concentrate on the second factor of ((1.9.29)).

Proposition 1.9.14.

1451,
1 (q ’q’q)oo SYEm | ! — (1.9.31)

Li—l4+14+24 L —k_izg
i#£j (q ’ 54,9 (i,4,k) (qz"" I —q 2 2n
[e.9]

Proof. Let l; —1; > 0. It is straightforward to check that

1+4, ) bl
(q " 7Q7q i llfl' g J 1
Ea ( o "J;q) J — (1.9.32)
Li—li+1+52 o] L i=d li—=lj—k
AT Pt (1_q+n)
9]
L+ ) Li—l;—1
(q n 7q7q . 1.—1; g J 1
oo _ 1412, J
l._l.+1+ﬂ - (q n »Q)OO H f i ll‘*ljfk‘ (1933)
<QJ i n7Q7q)oo k=0 (1_q——n)

Denote by v;; = q% for i > j and v;; = qnti_j for ¢ < j. Formulas ([1.9.32)—(1.9.33)) implies the
following assertions. For ¢ > j

(q1+ n ;q7q> (q” n ;q,q)
[e.e] >< o0

[ izj ] J—1t
(q“ EAAT ;q,q) (q“ B ;q,q>
oo o0

li—l—1

li—1; li—l; (—1)lizti=h

(vij3 @)Y (vjis @) 3 H — (P pry (1.9.34)
E+z J _k_i—j 7 J
k=0 <q2 2n —q 2 2n>
For j >4
i=J Jj—i
(q1+ D ;q,q> (q” D ;q,q>
0 % A e B
] =7 ] 1=
(q“ EARND ;q,q) (q“ hHI g, q)
e.) o0
i li—l Li—l;—k
li—l Li—1; (1)
(vijs @) (s q) II — —————  (1.9.35)
kypizi ke i=g\2(i—li—k)
k=1 (q2 2n —(q 2 2n>
Using identities ((1.9.34)—(1.9.35|), we obtain
i
<q1+ n ,q, q) (_1)li—lj—k‘

R— = (1.9.36)

H <qli*lj+1+i7j N H i—j i—j)?(li—lj—k)'

i "3, C]>OO (i,5,k) (q§+% e T

To finish the proof, it remains to clarify the sign. This product already appeared as the product over
all hooks. For diagram A the number of hooks is |\|. O

Proof of Theorem[1.9.3. We will provide two different expressions for (W (1|¢'/™), W (z/"(1)) to prove
the theorem. On one hand (by Proposition |1.9.10)

(Walg/m. W) = (7277, q7) (1.9.37)
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On the other hand (by Theorem and Proposition [1.9.13))

5 (Uit 5> =(3)?
1/n 1/n _ 2?2
<W(1’q ),W(Z ’1)> - Z i 1 o )2(li—lj—k) x

(10l —1)EQ(n) H(i,j,k) (q%(k+ =) q—a(kjujla

(D)MW (1g =5t g ), W sl g ) (19.38)
88
Note that to prove (1.9.38]) we also used following observations: lengths of hooks in A and X\’ coincides,
and ¢(A\) + ¢(\) = 0.
2
Multiplying RHS of (|1.9.37) and (|1.9.38) by 2%277 Hi# (11) we obtain
10,9

Rt

3=
\/
\_/

11 1 1 1 n—1
Z2Zn H ((ann;Qn’QrL)oo: Z Z(qlo,q"-Hl,...,q - +l"_1;z>
Z#] ! ,q q) (107~~:ln—1)€Q<n)
(1.9.39)

Note that here we applied Proposition O

1.10 Regular product

In this section, we develop general theory of regular product. Term ‘regular product’ should be
considered as an opposite to regularized (i.e. normally ordered) product.
Let A(2) = > ez Arz7% be a formal power series with coefficients in End (V) for a vector space V.

Definition 1.10.1. The series A(z) is called smooth if for any vector v € V there exists N such that
Arv=0 fork > N

Let G(z,w) = > 1 1ez Gsz_kw_l be a formal power series in two variables with operator coeffi-
cients. The operators G}, ; acts on a vector space V.

Definition 1.10.2. We will call G(z,w) regular if for any N and for any v € V' there are only finitely
many Gy, such that k+1= N and G} v # 0.

If a current G(z,w) in two variables is regular one can substitute w = az and obtain well-defined
power series G(z,az) for any a € C.

Let A(z) and B(w) be two smooth formal power series with operator coefficients. Recall definition
of normal ordering. Denote A4 (2) = ;- A_pzPand A_(2) = >, o Ak

Definition 1.10.3. Normal ordered product is defined as: A(z)B(w): = Ay (z)B(w)+(—1)*B(w)A_(z)

The sign (—1)¢ depends on parity of A(z) and B(z) in the standard way. Note that smooth formal
power series in two variables : A(z)B(w) : is regular. Formal power series A(z) and B(z) are called
local (in weaker sence) if

A(z)B(w) — (=1)°B ZZd S(a;z, w) (1.10.1)

i=1 j=0
where s1,...,5ny € Z>q, a1,...ay € C and C](i)(w) are operator valued power series.
Then one has the following OPE
C(i)(w)

A(z)B(w) =Y 1 A(2)B(w): (1.10.2)
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Proposition 1.10.1. If currents A(z) and B(w) are smooth and satisfy (1.10.1)), then the following
product (a1z — w)*' -+ (ayz — w)*N A(z) B(w) is reqular.

Definition 1.10.4. For a # a; define regular product
((alz —w)* - (anz — w)SNA(z)B(w)) ‘

A(2)B(az) == P o P (1.10.3)

From (|1.10.2) one obtains that normally ordered product and regular product are connected by
the following relation

C-i) az
A(2)B(az) =) @ (Jl(_ a) Ty + :A(2)B(az): (1.10.4)

Ezample 1.10.1. Let us consider case of fermions A(z) = ¢(z), B(z) = ¢*(2), introduced in Sec-
tion m Beware, that we use notation A(z) = Apz™F, but o (z) = ¥;z7"! (hence Ay = ¢p_1).
Comparing formulas (|1.3.10)—(1.3.11|) with Definition [1.10.3] we conclude

()P (w) s = P(2)Y" (w) 3o (1.10.5)

Using [-depended normal ordering, we obtain

wlz—l—l
Y(2)Y" (w) = Towt (2" (w) (1.10.6)
Hence
l
U (02) = o2 ) (1.10.7)
This relation was used in formula .
Ezample 1.10.2. Let A(z) = B(z) = E(z). Then
1
E(2)E(w) = %Eﬂq_lw) — W)t BE)B(w) (1.10.8)
Therefore,
1
F2(w) = — CEa(g W) + - - -Ey(w)+ : E(w)E(w) : (1.10.9)

Let us comment on deep meaning of formula . One can present algebra Diff, using currents
E(2) (currents of Lie algebra type) or E¥(z) (currents of ¢g-W algebra type). This two series of
currents are connected in non-trivial way starting from k& = 2. For k = 2 they are related by .
For general k see formula (7.17) in [Negl§].

Proposition 1.10.2. Regular product is (super) commutative and associative

A(z)B(az) =(—1)B(az)A(z) (1.10.10)
A(a12) (B(az)C(asz)) = (A(a12)B(azz)) C(asz) (1.10.11)

(of course we assume that these reqular products are well defined).
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Proposition 1.10.3. Let A(z), B(z), and a € C be as in Definition[1.10.4 Then

0, (A(2)B(az)) = A'(2)B(az) + aA(2)B'(az) (1.10.12)
Proof. Let f(z,w) be a polynomial such that following power series in two variables are regular

(0:f(z,w)) A(z) B(w),  (9uwf(z,w)) A(z)B(w), f(z,w)(0:A(z)) B(w), [f(z,w)A(z) (&uf(w)) - |
1.10.13
Moreover, assume that f(z,az) # 0. It is easy to see that such f(z,w) exists.

f(z,w)A(z) B(w)

9 (A(2)B(az)) = (0. + ady) F(z,az) _

One should differentiate this expression by application of Leibniz rule (and obtain six summands).
Due to our assumptions, each of these summands is regular in the sense of Definition Hence,
one can substitute w = az to each summand separately. The proof is finished by straightforward
computation. [

As a corollary we prove formula (|1.7.28]).
Proof of (1.7.28).

REF(zw)| = (2~ qu)(z — M) B'(2) BF(w) + (22 — qu — ¢ ') B(2) B (w)

Z—w2z— 71w2 Z—qw)(z — 71w
( (1 —qQ))(i - qgl),z?) BB w) + ((1 —qq)gi - qgl)z; (22 —qu =g W BEEw)|

Note that each summand is regular. Hence, we are allowed substitute z = w to each of them separately

DEF (2 w)| = (1)1~ g B (w) EHw) + (2 — g — g HwEM (w)  (110.14)

zZ=w

Using Propositions|1.10.2/and [1.10.3, we can prove inductively that 9, E**1(w) = (k+1)E'(w) E*(w).
To finish the proof, we substitute last formula into (|1.10.14)). O

1.11 Serre relation

This Section is devoted to detailed study of Serre relation.
2923 '[E(21), [E(22), E(23)]] + cyclic = 0. (1.11.1)

Let E(z) be a current satisfying

(z — quw)(z — ¢ 'w)[E(2), E(w)] = 0. (1.11.2)

Remark 1.11.1. Let us emphasize the difference between E(z) and E(z). Current E(z) is a current
from Diff,, but current F(z) is just a current satisfying (1.11.2). We need E(z) to formulate equivalent
conditions to Serre relations.

Define 6(z1/22/23) = 3 o p oo 712525 for a,b,c € Z.

Proposition 1.11.1. There exist three currents Ry(z), Rao(z) and E3(2) such that triple commutator

[E(z1), [E(z2), E(23)]] equals to

E3(21)0(4*21/q72/ 23) — E3(22)0(4°22/qz3/ 1) — E3(21)0(4*21/ 423/ 22) + E3(23)0(a23/qz2/ 1)+
R1(21)5(21/QZQ/Z3) — Rl(zl)é(zl/ZQ/qz;),) + R2(21)6(21/ZQ/q7123) — RQ(Zl)(Zl/q71Z2/Z3). (1.11.3)
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Proof. First of all, note that condition (1.11.2)) is equivalent to existence of currents Es(z) and ES(w)
such that ) ) B B
[E(2), E(w)] = E2(2)d(w/qz) — E3(w)é(z/qw). (1.11.4)

Commutator [E(z), ij)] is skew symmetric on z and w, hence FE5(z) = ES(z) Now consider triple
commutator [E(z1), [E(z2), E(z3)]. Jacobi identity and relation (1.11.2)) imply

(21 — qzo) (21 — ¢ '22) (21 — q23) (21 — ¢ ' 23)[E(21), [E(22), E(23)] = 0 (1.11.5)

Substituting (1.11.4) to (1.11.5)), we obtain

(21 — q22) (21 — ¢ '22) (21 — 22) (21 — 2)[E(21), E(22)]0(23/q22)+
(21 — ¢*23) (21 — 23) (21 — q23) (21 — ¢ ' 23)[E(21), B (23)]0(22/q23) = 0 (1.11.6)

This implies that [E(z1)[E(22), E(z3)]] is indeed a sum of triple delta functions with some operator
coefficients as in ; it remains to prove proposed relations on the coefficients.

Note that triple commutator [E(z1), [E(22), E(23)]] is skew symmetric on z2,z3. Also note that
the sum over cyclic permutations is zero. This implies relation . O

Proposition 1.11.2. Serre relation for E(z) is equivalent to Ri(z) = Ra(z) = 0.

Proof. Straightforward computation. O

1.11.1 Operator product expansion for E(w;) - E(wy)
One can find reformulation of Serre relation in terms of OPE in [EJMMI6| Section 3.3]

Proposition 1.11.3. Formal power series in three variables E(z1)E(z2)E(23) can be presented as sum
some of reqular part and singular part. Regular part is some reqular power series in three variables,
singular part has a form

2o\ _ o 23 o 22 o 23
> (=2 =) R, () + (1 - ¢ 2)7 (1 = ¢ 2) T RP,, ()4
et 1 21 21 )
_ a8l _ 2P\ =1p(3) _€Z3 -1 p(1)
(-2 -2 RGLQ(ZS))+EZ¢1 (1= 2) RO 1)t
23 _ (22

(1= ) RO zp,20) + (1= ¢ 2 RO a1, 2)) + v (1107)
Proof. Denote G(z1,22,23) = [[;,;(zi — q2;)(zi — q'2;) E(z1)E(22)E(z3). Relation yields
G(z1, 22, z3) to be regular. O

Proposition 1.11.4. Serre relation for E(z) is equivalent to condition that singular part of E(z1)E(29)E(z3)
restricted to z; = z3 has no poles of order greater than 1.

Proof. Note that second order pole can appear only from terms of form

-1 -1
(1 - q622> (1 - q_ez?’) R ()
Z1 Z9

for ¢ = +£1. Note that these two poles can not cancel because they are at the different points
21 = ¢°%z2. On the other hand, R;(z) = Rg?il(z) and Ra(z) = R(f%’l(z). Application of Proposition
1.11.2| completes the proof. O

Corollary 1.11.5. E(z)E*(w) has no poles of order greater than one. Poles may appear only at
points z = qilw.



68 CHAPTER 1. SCHUR SPECIALIZATION CASE

Proof. To study E(z)E(w)* we will consider OPE E(z)E(w) - - - E(wy) and substitute w; = w. Only

term (2 — q“w;)"1(z — ¢“w;)1... can give poles of order higher than 1 after substitution. OPE

is symmetric on z,wi,...,wy as a rational function. We will consider order (E(w;)E(z)E(w;)) - -.
According to Proposition [1.11.4] the term (2 — ¢“w;)~!(2z — ¢“w;) ™! ... does not appear. O

1.12 Homomorphism from Diff, to W-algebra

This Section is devoted to proof of Propositions The proof is a straightforward check of relation
from Proposition [1.2.2] The relations will be checked for operators

H(z) :ZI:Ijz_j, c=mn, [ =nu, (1.12.1)
i#0
_ 1. 1.
E(z) = pexp Etp_(z) Ti(z) exp g<p+(z) , (1.12.2)
—1,,—ntw
~ w2 1. 1.
F(z) = ——4——5—exp (—cp_(z)> T—1(2) exp <—<p+(2)> . (1.12.3)
(q2 —q2)2 n n
Proposition 1.12.1. Relations (1.2.8)), (1.2.9) are satisfied.
Proof. Straightforward. O

Proposition 1.12.2. Currents E(z) and F(z) satisfy relation (T.2.10).

Proof. 1t is easy to see that

L. (1—2)2

EGEW) = Ty /) o
exp (16 (2) 4 o)) LT wyexp (13 (:) + Gaw))) - (112
Thus,
(2 = qu)(z — ¢ 'w) (B(2) B(w) — Bw)E(2)) = (2 — w)* exp (i«a_(z) + ¢_<w>>>
(oI T W) ~ /o) Ti T ) exp (5542 + G (w)) =0
Proof for F(z) is analogous. O

Proposition 1.12.3. Currents E(z) and F(z) satisfy relation (T.2.11) for ¢ =n and ¢ = ng,.

Proof. 1t is easy to see that

5 I 1
E)F(w) = ————— fa-1n(w/z
(F0) =~ ol
exp <:L(<ﬁ(z) - @(W)) T (2)T—1(w) exp (i(@r(z) _ 95+(w))> w-"t
Thus,
[E(Z),F(w)} =
1
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Consequently,

52). Flw)] = 08 () 1 (B2 — A(g} w

[B(2), F(w)] = n28' (2) + (A(g#2) H(q2z)+ntw)5<z>

z z

Denote by E®(z,w) = (z — qu)(z — ¢ 'w)E(2)E(w).
Lemma 1.12.4. E?(z) = 2u%exp (24_(2)) Ta(2) exp (254(2))
Proof.
Sin(w/2)T1(2)Ty(w) = fin(z/w)Ti(w)Ti(z) =
-2 <_1 5 5 £ () _Ls 5 -1 _
ienn (<1 -(2) + 6o () EPerw) exp (<1 (542 + @1 (w0) ) B (w7 00/2) =

1 1

9, 1 _1 2 ~ 2 w
e =P (<26 ()) By e (< 2puw)) L/ +0tw/2)
On the other hand, LHS can be found from relation (1.7.13). Comparing coefficients of §'(w/z2)
completes the proof. O

Proposition 1.12.5. E(z) and F(z) satisfy Serre relation (1.2.12).

Proof. Using Lemma we see that

(1- 1)
(1-g¢2)(1-q1%)

exp (i (p-(2) + 2¢—(w))> fon(w/2)T1(2)Ta(w) exp <1 (P4+(2) + 2(/3+(w))> (1.12.5)

n

E(2)E*(w) = 2°

Note that (2 — w)2f2,n(w/~z)T1(z)T2(w) is regular. Proposition [1.11.4] completes the proof of Serre
relation for F(z). Proof for F'(z) is analogous. O

1.13 Whittaker vector

1.13.1 Uniqueness of Whittaker vector
Recall that operators E¥[d] are defined by E¥(z) = 3", E¥[d]z~%.

Proposition 1.13.1. Whittaker vector W (z|uy,...,uy) is annihilated by E*[d] for d > 0 and k =
1,...,n—1.

Proof. Actually we will prove that Whittaker vector is annihilated by E¥[d] for nd > k. To do this
we will need [Negl8, eq. (7.17)]. Let us rewrite this with respect to our notation

k€N, d;eZ;
ko ke =k
dy+-+di=d
EFd] = Z(_l)k—t Z coEpydy - Eryd,- (1.13.1)
t>1 v={FL <R <<t}

Here ¢, denotes some combinatorially defined coefficient, which is not quite important for us.
Inequality nd > k implies nd; > k¢; therefore Ey, 4, W (z|u1,...,u,) = 0. So, any summand of RHS
annihilates Whittaker vector. O
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Let us denote Wy (gl,) := Wy(gl,,0) = U(Diff,)/Jno. Denote Verma module for W,(gl,) by

V) (cf. Definition [1.7.4).

Definition 1.13.1. For each graded Diff, module M let us define Shapovalov dual module MY. As

a wvector space MV is graded dual to M. Action is defined by requirement that canonical pairing
MY @ M — C is Shapovalov.

Finally note that involution E, — E_, _; maps ideal Jy, g to J,, o (maybe with different ). Hence
if M is a Wy(gl,,)-module then so is M".

Proposition 1.13.2. Let u;/u; # q* for any k € Z (cf. Lemma m There is no more than one
Whittaker vector W (z|ui,...,un) € Fu, @ -+ & Fup -

Proof. Denote by n a subalgebra of W, (gl,,) generated by E¥[d] and H; for k=1,...,n—1,d > 0 and
J > 0. Analogously, let n¥ be a subalgebra of W, (gl,,) generated by F*[—d] and H_jfork=1,...,n—1,
d >0 and j > 0. Note that involution E,; — E_, _; induces an involoution on Wy(gl,,) which swaps
nand nV.

Consider Fy, ® - -- @ Fy,, as a Wy(gl,,)-module. Whittaker vector is an eigenvector for n. Hence, it
is enough to show that F,,, ®---®F,,, is cocyclic for n. Equivalently, we need to prove that Shapovalov
dual module (Fy, ® -+ ® F,, )" = Fofun @ @ Fyy, is cyclic for n¥.

Fock module F/,,, ® «-- & Fq/y, is isomorphic to Verma module V;\/Y?(g’ [)i‘)

o for corresponding A;

by Theorem [1.7.3] Verma module V;\/Y".(g[;d) is cyclic for n¥ by an analogue of Proposition |1.7.15 for

.oy

FF*[d]. O

1.13.2 Construction of Whittaker vector
Let (n},n1) and (n},n2) be a basis of Z2.

Theorem 1.13.1 ([AESI2]). There exist homomorphisms

i FM @ F) — Fnne), (1.13.2)
@ FUityamn) i) g piren), (1.13.3)

These homomorphisms are defined uniquely up to normalization.

(nj+njy,n1+ns)

Remark 1.13.1. Actually operators ® and ®* maps to graded completion of .7-'_(1_1 2 and
qsnll’nl) ® fén”m) correspondingly. Abusing notation, we will use the same symbol for a module

and its completion. Moreover, we are going to consider a composition of such ®*; there appear an
infinite sum as a result of such composition (a priori this sum does not make sense). We will use a
calculus approach to infinite sums; below we will provide a sufficient condition for convergence of the
series.

Denote by @Z(u) component of ®* corresponding to |u) € fﬁ”?’"”. More precisely, for any z in
]:.(n’l—i-né,nl—i-ng)

g2
oz = |u)® (Dh(u) - x) (1.13.4)
o
To simplify our notation we will consider particular case
“ 1,—k ke
o FO, = FOD @ Fibh (1.13.5)
Note that both ]-"Elq’flk /)QW and ]ﬂglﬁk*l) are Fock modules for Heisenberg algebra generated by ay =

Ep.
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Proposition 1.13.3 ([AFS12]). Operator ®;(u) is defined by following explicit formulas

—k
* u
CI)Q(U) =1exp Z mak o (1136)
k0
O (u) ~: 05 (u) [ [F (¢ 24) (1.13.7)
SEX

Here sign ~ means up to multiplication by a number. Recall

/2 — gk
~ 1 exp Z arz ", (1.13.8)

Corollary 1.13.4. Heisenberg normal ordering is given by

* * f)\ ,U(/U/u) * *
O (u)P) (v) = ————— D (u) P (v): 1.13.9
i) = 0 ) ) (113.9)
for some rational function fy ,(v/u) = %,‘ here l; and k; are integer numbers.
;(1=q9v/u
Consider a homomorphism
= 1,0 —1,n
Dp: ‘Fél/Q)Z—l ®f(§1/22()7q_1/2)"u1---un —
(FO @ 0 FOD) @ Fi ® Fou (1.13.10)
u1 Un a2 (¢ )" (zur ..un) 7 1/2'2( g2 Uy un” o

obtained as composition of

10k o d* o 5] 0,1 0,1 (1,—k) (—1,n)
1d® ®¢ ® ld. (‘F'L("l ) ® PN ® fl(l, )> ® ‘Fql/Q(fql/Q)k(Zul.“uk),l ® ql/QZ(fq_l/z)"ul---un
0,1 0,1 (1,—k—1) (=1,n)
(fél )@ ® ESHZ) D F a2yt s )1 @ Fatronqt/2yig o, — (113:11)

Lemma 1.13.5. There exists a unique invariant pairing F, @ Fg,-1 — C such that (0|0) = 1.
Proof. This is equivalent to Proposition [1.9.9 O

Composition of @y and the pairing gives a homomorphism

q2z~ q2u1 Unz(—q—1/2)n “

Let us reformulate above inductive procedure via an explicit formula
&1 (M) @1A2) =Y (Nal®}, (wn) - @, (w) M) i) @ -~ @ ). (1.13.13)

As we warned in Remark [1.13.1] operator ®; is not a priori well defined. However, the series
(appearing from the composition) converges in a domain |u;| < |ug| < -++ < |uy|. This assertion
follows from a formula

Dol () ... D% (ur)[ A1) = H(““J#

Al (up) ... ®F (ug): |\ 1.13.14
i<j quz‘/uj';q,q)oo< 1l @, (un) . By () [A2) ( )

Moreover, one can consider analytic continuation of obtained function given by RHS of the formula.
Corollary |1.13.4] implies that we can extend the domain to w;/u; # ¢® for any k € Z. Evidently,
analytic continuation also enjoys intertwiner property. Hence we obtained following proposition
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Proposition 1.13.6. If u;/u; # q* for any k € Z, then there is an intertwiner

. q1/2Z—1 q1/2u1~~-unz(—q*1/2)” ul Un

(n1,n2

Denote the highest vector of Fy ) by |n1,nsg).

Theorem 1.13.2. Whittaker vector W (z|ui, ... ,u,) € ]-'15?’1) ®-® .F,S%D can be constructed via

homomorphism ® (as in (1.13.15)).

W(z|ut, ..., up) = H (qui/uj5q,q) ®(]1,0)® | —1,7n)) (1.13.16)
1<j

Proof. Follows from (|1.3.22)). O

Remark 1.13.2. Recall that existence of Whittaker vector can be seen from geometric construction
(see [Neglbha] and [Tsyl7)).

Proof of Theorem[1.9.1] Existence and uniqueness follows from Theorem[I.13.2]and Proposition[TI.13.2]
correspondingly. O

1.13.3 Whittaker vector for W,(sl,) algebra
Let us define coefficient ¢, /,,, by (cf. (1.13.1)))

E™[1] = ¢ mBmi+ ... (1.13.17)
Also recall that for Fp,, ® --- @ F,
1 1
= l_q(ul---un)n. (1.13.18)
Definition 1.13.2. For m = 1,...n — 1 Whittaker vector Wi (z|uy, ..., u,) € fﬁq(sm with respect
to Wy(sly,) is an eigenvector for Ty[r] (for k=1,...,n—1 and r > 0) with eigenvalues given by
1
(—q2)"uy - Uz Crym "
Tp[l] W (2lus, . .. up) = =i qm” ”:m WE (2, . . ., un) (1.13.19)
Te[1] W2 (2|ug, ... up) =0 for k #m (1.13.20)
Tilr] W (2|, ..., u,) =0 forr>2 (1.13.21)
We require Wi (z|uq, ..., u,) = |@) + - -+ to fix normalization (by dots we mean lower vectors).

One can find notion of Whittaker vector for W, (sl,,) in the literature (see [Tak10]). In this section
we will explain connection between notion of Whittaker vector W2l (z|uy, ..., u,) and Whittaker
vector W (z|ui, ..., uy,) for Diff, (see Deﬁnition. Our plan to explain this connection is as follows.
First we define Whittaker vector with respect to Wy(gl,,) (we denote it by W (z|ug,...,up)). Then
we will see, that on the one hand, the vector W™ (zu1, ..., up) is connected with W2 (z|ug, ..., uy);
on the other hand it is connected with W (z|uq, ..., uy).

Recall, that W,(gl,,) = Diff,/Jn0; ideal J, o annihilates Fy, ® --- ® F,,. Hence Fy, @ -+ @ Fy,
is a representation of W, (gl,,).
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Definition 1.13.3. For m =1,...n — 1 Whittaker vector W%[”(z|u1, ..., Up) 1S a vector belonging to
Fuy @ -+ @ Fy,, and satisfying following conditions

H W (zu, ... un) =0 for k>0 (1.13.22)

(—q2)"uy - - unz

E™[1] W (z|uy, ..., u,) = P TERYE C1/m W (z|ug, ..., un) (1.13.23)
EF[ W (z|ug,...,un) =0 fork<m (1.13.24)
EF[r) W (z|uy, ..., un) =0  forr>2andk <m (1.13.25)
FFr) Wi (zug, ..., u,) =0 forr>1and k <n—m (1.13.26)

We require W3 (zlui, ... ,up) =|u) +--- to fix normalization (by dots we mean lower vectors).

Recall that Fy, @ - - QF,, = ]:32} q(ﬂz) ® FH with respect algebra identification W, (gl,,) = W,(sl,)®
U($eis).
Lemma 1.13.7. Vector satisfies properties of War (z|ut, ... un) iff it is Wik (2|ug, ..., up) @ |@) g

Proof. Note that

E* (1) (W,fi”(z|u1, ceyUp) ® \@)H) = ﬁTk(t) W (2lug, . .., u,) ® exp (iga_(t)) @) (1.13.27)
F*(t) (an["(z\ul,...,un) ® \®>H) Zj]iTnk(t) Watn (z|ug, . .., un) ® exp <—fl<p—(t)> D) 1
(1.13.28)

Moreover ¢_ (t) has only terms of positive degree in t. Hence we expressed action of E¥[l] via Tj[s] for
s > 1. Therefore we have proven that W2 (z|uy, . .., u,)®|@) g satisfies property of Wil (zlug, ..., up).
The implication in opposite direction is analogous. ]

Proposition 1.13.8. There exists at most one vector W,gl[”(z\ul, ceUp) € Fuy @ @ F, -

Proof. Analogous to proof of Proposition [1.13.2] The only difference is that we consider a different
character of subalgebra n. O

We need to generalize notion of Whittaker vector for Diff, to compare it with Wi (z|uy, . .., uy).

Definition 1.13.4. For any m € Z, Whittaker vector Wy, (z|ui,...,un) € Fy, ® -+ @ Fy, 15 an
eigenvector of operators Eqyp for mb > a > —(n —m)b and b > 0. More precisely,

k
z
E,(n,m)k’k Wm(z‘u:[, ce ,Un) :me(zml, e ,Un) (11329)
((—g2)"ur -+ upz)"
Emk,k Wm(z\ul,...,un) = q_k/2 —qk/2 Wm(z]ul,...,un) (1.13.30)
for k> 0.
By ks Win(2) = 0 (1.13.31)

for (n —m)ka > k1 > —mky and kg > 0. We require W, (z|u1, ..., up) = |0) @ --- @ &) + -+ to fix
normalization (by dots we mean lower vectors).

Recall that we have defined operator I, € End(F,) by . By Proposition the operator
enjoys intertwiner property ITp(Ea’b)I;1 = p(Eq—pp). Denote I.,, =1, ® ---® 1, € End(F, ® ... ®
Fu, ). Note that I, also enjoys intertwiner property I p,(Eqp)I7 1 — pn(Eq—pp) (here p, denotes the
homomorphism of the representation p,,: Diff, — End(Fy, ® ... ® Fy,)).
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Proposition 1.13.9. Wy, (z|u1, ..., up) = L™ W(z|ug, ..., up).

Corollary 1.13.10. There exists unique Wy, (2|u, ..., up) if ui/uj # q".

Proposition 1.13.11. There exists unique vector Wﬁl["(z\ul, ...y Up). Moreover, W (zlug, ..., up) =
Win(z|ug, ... up).
Proof. We already know uniqueness of Wik (z|ui, ..., uy) and existence of Wy, (z|u1,...,u,) from

Proposition|1.13.8land Corollary|1.13.10|correspondingly. So it is sufficient to show that W, (z|u1, ..., uy,)
satisfies properties of Wi (z|ui, ..., uy). Last assertion follows from formula (1.13.1)) (also see (1.13.17)).
L]

Theorem 1.13.3. There exists unique vector Wi (z|uy, ..., up). Moreover, Wi (z|uy, ... u,) ®
1D g = Win(zlut, ... un) = 15" W(zlug, .. up).

Proof. Follows from Lemma [I.13.7 and Proposition O



Chapter 2

Twisted and non-twisted Virasoro

2.1 Introduction

The work is devoted to a probably new connection between deformed Virasoro algebra and quantum
quantum affine algebra sls, denoted by Uq(;[g). More specifically, we use integrable representations
V(Ag) and V(A7) of Uq(;[g) on level 1, they possess realization in terms of Heisenberg algebra. Also
there are vertex operators

B(2): V(A) = V(A1) @V, U(2): VIA) = Ve @ V(A1) (2.1.1)

for the tautological evaluation representation V, of U, (;[2) The main result is a realization of deformed
Virasoro algebra in terms of these vertex operators see Theorem and Theorem Let us
remark that deformed Virasoro algebra depend on parameters q1, g2, g3 such that q1g2q3 = 1. It turns
out, that deformed Virasoro algebra is connected with U, (5A[2) for ¢ = qé/ 2,

To be more precise, in Theorem we have a realization of twisted deformed Virasoro algebra.
This algebra was defined in [Shi04] (37)—(38)] but its bosonization was unknown.

In Theorem we have constructed realization of ordinary (non-twisted) deformed Virasoro
algebra defined in [SKAO96G]. A bosonization of this algebra is known since [SKAO96], but our
bosonization is a different one. The bosonization from [SKAO96] can be also realized by the same
formula as in Theorem [2.4.1] but using another vertex operators [DI97a] defined by with respect
to Drinfeld coproduct.

The existence of two realizations (our Theorems and is similar to the existence of two
choices of twist in XXZ model, see e.g. [MNI8| eq. 4.3].

Further development Deformed Virasoro algebra is a particular case of Wy, 4,(sl,) for n = 2.
Twisted deformed Virasoro is a particular case of twisted W-algebras Wy, 4,(sly,, n4y) for n = 2 and
ngw = 1. Generally ny,, is a parameter of twist, i.e. for ng, = 0 we obtain non-twisted W-algebra. We
expect that one can construct a bosonization of Wy, 4,(sly,, nuy) algebra from the vertex operators of
quantum sl, on the level 1 (see [Koy94]).

Also we expect that the tensor product of W, 4, (sl,, ns,) with Heisenberg algebra Heis are certain
quotients of toroidal algebra Uy, 45,45 (gnll); for non-twisted case such a relation is known [FHST10],
[FEJT11b|, [Negl8|]. Hence a representation of Wy, 4,(sl,,nu) ® Heis becomes a representation of
Uy a0 (011) automatically. We expect that for ged(n, ng,) = 1, the discussed above bosonized repre-
sentation of Wy, 4,(sl,, ) will lead to Fock modules of Uy, 4, 45 (1) with slope ny,/n. For the case
g3 = 1 all this was done in Chapter |1} Let us remark Wy, 4,(sly, nuy) ® Heis acts on an integrable level
1 representations of Uq(é\[n) = Uq(s/:\[n) ® Heis if this holds without the Heis factors.

One of our motivations for this project comes from [GN17]. It was conjectured in loc. cit. that
there is an action (with certain properties) of U, 3 [,, on the Fock module of toroidal algebra Uy, 4, 45 (gj[l)

75
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with slope n’/n. As it was explained above, we also expect that Uqé\[n acts on the Fock module of
toroidal algebra Uy, 4,,45(8l1). So we hope that both actions exist and coincide.

Our methods. The main technical tool of this chapter is R-matrix relations (Theorems and
2.3.2). One can find these relations without delta-function term in [JM95]. In loc. cit. the parameters
of vertex operator are numbers, but, in in this thesis, the parameters are formal variables. Therefore
our formulas are close to formulas in loc. cit., but have a different meaning and probably are new.

Technically, we write down formulas (2.4.5) and (2.4.24) for the current of deformed Virasoro
algebra T'(z) via vertex operators ®(z) and ¥*(z), and then we check relations of deformed Virasoro
algebra using interchanging relations for vertex operators. Delta-function term on the RHS of deformed
Virasoro relation appears from the delta-function term in the R-matrix relation.

Plan of the chapter. The chapter is organized as follows

In Section [2.2] we recall the bosonization of Uy (sly) and its vertex operators following [JM95).

In Section we study relations for the vertex operators: interchanging relations (in particular
R-matrix relations), and ‘special point relations’.

In Section @ we construct realizations of twisted and non-twisted Virasoro algebra via vertex
operators of Uy(slz). A connection of obtained representations with Verma modules is studied.

2.2 Bosonization of Uq(sAIQ) and its vertex operators

In this section, we will recall the bosonization of the level 1 representations of Uq(sAlg) and its vertex
operators. All this can be found in [JM95, Chapters 5,6]. Our notation almost coincides with [JM95];
however, there are differences in the normalization of the vertex operators.

Fock modules. Algebra U, (sly) is generated by :Uki, a, for k € Z, 1 € Zz9, K*! and central elements
~*1/2 These elements are called Drinfeld generators. The relations are [JM95, (5.3)—(5.7)], although

let us recall 2K N N
2k| % —
ak, ai] = 5k+l,077q . (2.2.1)
here [n] = (¢" —q™™)/(q — ¢7"). R R R
Denote by Ag, A; the fundamental weights of sl and by « root of sly C sly. The algebra Uy (sls)
admits two basic representations V' (Ag) and V(A;). As vector spaces

V(A) =Cla_1,a_a,...] ® (@,Cetitme). (2.2.2)
As representations of Heisenberg subalgebra aj, these modules are infinite sums of Fock modules
V; = Cla_1,a_s,...] @ CeMitlale for = jmod 2. (2.2.3)
+a

Let us define operators e™* and 9 as follows

o (fod) =fac,  o(fee)=(0p)fed (2.2.4)

The action of other U, (;[2) generators is given by

K = q87 Y =q, (225)
o [o.¢]

X*(2) = exp (j: Z CE;l?qu”/Qz”> exp <¥ Z mq:m/?z_") eto*9 (2.2.6)
n=1 n=1

here X*(2) = :sz_k_l. The obtained representations are irreducible highest weight representations
with highest vectors |A;) = 1 ® eM € V(A;).
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Vertex operators. Vertex operator of U, (;[2) are certain formal power series of operators
L (2): V(A = V(AL), T (2): V(A — VI(A). (2.2.7)

Below we will abbreviate ®(z) = @il_i’i)(z), if a statement holds for both i = 0, 1.
A conceptual definition of these operators via certain intertwiner relations is given in [JM95]
Chapter 6]. For us it is more convenient to give an ad hoc definition

d_(z) =exp (i ?27;] g2z ") exp ( i [;L;;]qg‘"pz”) e?(—q32)9/2, (2.2.8)
n=1 n=1
W, (2) =exp ( > " ) exp (Z aal ) o2(—g2) P, (22.9)
n=1 =1
Operator @ (z), ¥_(z) are determined by each of the formulas
Dy (2) = [(I)—(z)vxa]!ﬁ QQZCI)-F(Z) :[(I)—(Z)vxl_]q*h (2.2.10)
U (2) = (94 (=), 2o (¢22) 710 (2) =W, (2), 2t ] (2.2.11)
here we use the following notation [A4, B}, = AB — pBA.
We will also need the dual operator U*(z) = U__(¢?2). Then
U* (2) = exp <— Z [2_75(]5”/22”) exp (Z [2:;](]_7”/22_"> e 2(—q32)79/2, (2.2.12)
Denote
(¢*7¢Y) oo oy (LT o (00
) = g O e Y T (2.2.13)
It is straightforward to check that
(—¢%2) P ag(w/2)@_(2)_(w) = :O_(2)@_(w):, (2.2.14)
(—q ) Y2ay (w/2) 01 ()W (w) = 104 (2) W (w):, (2.2.15)
(—¢*2)2B(w/2)®_(2)¥" (w) = :®_(2)¥" (w):, (2.2.16)
(—q*w) 2 B(z/w)V* (w)P_(2) = :®_(2)U* (w):. (2.2.17)
here : ... : stands for the normal ordering in terms of Heisenberg algebra. Then
zil/za(ﬁ(w/z)fb_(z)@_(w) —w 2 ay(z/w)®_(w)P_(2), (2.2.18)
27V 20 (w/2) T (2) T (w) =w 2 ay(z/w)T* (w)T* (2), (2.2.19)
228w/ 2)®_(2)¥* (w) =w'/?B(z/w)T* (w)®_(2). (2.2.20)

m-involution Recall, that Uq(glg) is also generated by e;, f;, t; for i = 0,1. These generators are
called Chevalley generators. The connection with Drinfeld generators is as follows

t1 =K, :L'a_ =eq, Zg =f1, (2.2.21)
to =yK 1, x] =egly, bt =t fo. (2.2.22)

Let us consider an exterior automorphism 7 of Uq(;[g) given by w(e;) = e1—i, 7(fi) = fi—i. Then 7
acts on the Drinfeld generators as follows

m(K) =~vK1, m(ad) =27 K71, m(zy) = Ka™, (2.2.23)
m(wy) = yag K m(aty) =~ ' Kaxy. (2.2.24)
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Proposition 2.2.1. There exist an involution 7 interchanging V(Ao) and V (A1), such that 7 X7 =
m(X) for any X € Uy(sly).

Proof. V(Ap) and V(A1) are irreducible highest weights representations and 7 preserves triangular
decomposition. To finish the proof we notice that action of 7 interchange the highest weights of the
representations. [

To determine 7 uniquely we require 7 (|A;)) = |[A1-4).
Proposition 2.2.2. Conjugation by involution T is expressed as follows
7 <<I>$_i’i)(z)> F=(—®) 200, 7 (cp(_l‘”‘) (z)) 7=(—¢*) 220010 (2),  (2.2.25)
# (\y(jﬂ?i)(z)) 7 =(—)3G=1) 20, 7 (xp(}*l”” (z)) 7 =(—q)*(a7) 23001702y (2.2.26)

Sketch of a proof. One can prove the formulas up to a constant via the intertwining properties [JM95L
Chapter 6]

< a1 ~ () g (i1 1—ii - (i) (i1

7 (<I>(+ )(z)> 7 :cg Il )(z), ( ' )( )) 7 :cg )z‘I)Sr )(z), (2.2.27)

7 (\y(j‘i’“(z)) 7 =c w0 (), 7 (\P(_l_i’i)(z)) i =c) 2010 (), (2.2.28)
here ng‘) and cgi) are some z-dependent scalars. Then one can find the constants by comparison with
the normalization [JM95] eq. (6.4), (6.5)]. O

Corollary 2.2.3. The following relations hold

ey (w)2) B (2)B (w) =w 2y (z/w) By (1) (2), (2.2.29)
z_l/Zaw(w/z)\I/’j_(z)‘llj_( ) =w" aw(z/w) (w)¥ (2), (2.2.30)
22w/ 2) P4 (2) V% (w) =w?B(z/w) W (w) P (). (2.2.31)

Proof. These relations are obtained from f after conjugation by 7. O

2.3 Vertex operators relations revisited

The main results of this section are R-matrix relations (Theorems [2.3.1] and [2.3.2]). One can find
these relations without delta-function term in [JM95]. In loc. cit. parameters of vertex operator are
numbers, but in this thesis, the parameters are formal variables. Although formulas below are close
to formulas in loc. cit., they have a different meaning and can be considered as a new result.

2.3.1 R-matrix relations

R-matrix is an operator on C?> ® C2. Let v, v_ be a basis of each C2. The matrix of this operator
with respect to the basis vy Q@ vy, vy ® v_, v_ ® v4, v— ® v_ looks as follows

1 0 0 0
0 (=R e o
R(z) = . L, . (2.3.1)
1—q¢?%z 1—q%z
0 0 0 1

This R-matrix is an important object in the representation theory of Uq(sAlg), though in this chapter
we will not use any information on R-matrix apart from (2.3.1). Below we will see that R-matrix
encodes certain interchanging relations for vertex operators.
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Interchanging relation on ¢-vertex operators

Denote by 6(z,y) = > 11— xFyl.

Proposition 2.3.1. The following relations hold

(¢* —1)z/w
@ —z/w

haglu/2)8- (01 (w) — whag(e/o) (152w o)+

B (W) (2)

= (-1)2(—¢*) 7 %6(z, ¢*w), (2.3.2)

21
B0 () + e (we ()

= —(—1)?(—¢*)2q35(2, ¢*w). (2.3.3)

q(1 — z/w)
@ —z/w

z_%oz(z,(w/z)(lhr(z)@,(w) - w_%a¢(z/w) (

Proof. Using (2.2.10]), we obtain

B ()8 (w), 2 )y2 = B (2)[®_(w), 5 ]q + a[®_ ()5 P ()
=®_(2)Py(w)+ qPi(2)P_(w), (2.3.4)

B ()0 (w), 7]y = &_(2)[®_(w),27]y1 + 4 [B_(2), 7 g1 B ()
= Pwd_(2)® 4 (w) + qz®, (2)®_(w). (2.3.5)

Solving the system of two linear equations, one can find

-2

(@ (2)®-(w), 2g ]2 — [P (2)®_(w), 2]

O_(2)P, (w) = 0 —Ful2) - (2.3.6)
—qu[®_(2)P_(w), x5 g2 + ¢ P_(2)P_(w), 2] ]2
Dy (2)P_(w) = Z‘Zlq_ T2 LEUE (2.3.7)
Using , we see that
1 2@ (2)P_(w): x5 ]2 — [P (2)P_(w):, 7],
(—¢*2) 2 ag(w/2)@-(2)@4(w) = Z((]l_qgw/z> = (2.3.8)
1 —qu[:®_(2)®_(w): ,a5],2 + ¢ [ P_(2)P_(w): , 27,2
(—¢*2) 2a4(w/2)®4 (2)P_(w) = 221 — Ful?) ! . (2.3.9)
Then
1 1—z/w 2 1)z/w
2T 2ah(w/2)®_(2)® 4 (w) — w Y2 ay(z/w) (qég — wa) Dy (w)P_(2)+ H/U@_(w)%(Z))

= (—qg)% (qzw[:¢_(q2w)¢_(w):,ma]qz —[®_(Pw)®_(w) :,mf]q72>5(z,q2w), (2.3.10)

1 1 — z/w 2
s Hag(u/2)04 (18- () - w-bagle/u) (e o)+ L e e ()

= (—¢*)2 ( — qu[:®_(¢*w)®_(w):, 25 ]2 + ¢ '[P (FPw)P_(w):, .’L'l_]q72>(5(27 ¢w). (2.3.11)
Lemma 2.3.2. The following relation holds

Fwl®_(Pw)®_(w):, 25 ]2 — [P (Pw)P_(w):, 27 ]2 = (-1)%2 (2.3.12)

q
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Proof. We will proof the lemma assuming w to be a number, not a formal variable; the formal
variable version follows. Let us consider two contours of integration Cy = {y | |y| = R+ > |wl|},
Co={yllyl =R <|wl}

Denote Q(w) = : ®_(¢?w)®_(w):. Note that

(Qw), 73], = / Q)X )y =" [ X~ (w)2Aw)dy, (2.3.13)

Hoe = [ v @y - g7 /C Y X~ () Qw)dy. (2.3.14)

Hence

Pulw), 73], — [Qw), 57 ]2 = / (¢2w — 4) Qw) X~ (y)dy — / (¢*w — ¢~ 29) X~ () Qw)dy

_ cy
2 4 -2
(¢*w —y) - ¢'w—q%y .
= Q(w)X y:dy—/ X (y)Q(w): dy
/c_ ¢*(q*w — y)(¢°w — y) ()X ) oy (¥ = q*'w)(y — ¢°w) W)
g’ q?
= :X_wa:dy—/ Qw) X (y): dy
L X Wty = [ ow)x )
2
_ q - _ o —2
T€Sy_ gty T X (y)Qw): dy. = (—1)%
Here we used : X~ (¢*w)Q(w) := (—1).
To finish the proof of Proposition we apply Lemma [2.3.2f to (2.3.10) and ([2.3.11]). O

Matrix notation Denote ®(z) = @, (2) @ v + ®_(2) ® v— € Hom(V(A;), V(A1—;)) ® C2. Denote
products

(I)(l)(z)q)(2) (w) = Z D, (2)Pe, (W) @ Ve, ® ey, o (w)(I)(l)(Z) = Z P, (W) Pe, (2) @ Ve, ® ey

€1,e2==% €1,e0==%

Finally denote by R~ (z/w)®® (w)®")(2) the result of the action of R~'(z/w) on the C?® C? tensor
multiple of Hom(V'(A;), V(A;)) ® C? @ C2.

Theorem 2.3.1. The following relation holds
2 rag(w/z) 20 (2) 2 (w) =
1 —1 (2) (1) N9 (a1 _ 2 2
wbag(z/w) R (2 /w)d® ()8D(2) + (12 (=)} (" lv_ vy — g 20s @ v_)d(2,qPw). (2.3.15)
Proof. The theorem is just a reformulation of (2.2.18), (2.2.29) and Proposition [2.3.1] O

Interchanging relation for V-vertex operators

Proposition 2.3.3. The following relations hold

q(1 — z/w)
1—q%z/w

)
o)

= (-1)%(~q)7¢*3(¢*z,w), (2.3.16)

P ay (w/2) W (2) T (w) — w2z fw) ( U (w) Wy (2) +

P ay(w/2) W (2) T () — w2y (= fw) (ql(l_:_,z@ww)wz) +

w

1-¢*z
1_q2;‘1’—(w)‘1’+(2’)>

= —(-1)?(—q)2¢d(¢%z,w). (2.3.17)
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Proof. Using (2.2.11]) we obtain

(T4 (2) T (w), 2 ]2 = O (2)[ T (W), g Jg + q[ P (2), 2 1P () = Ty (2) T (w) + q P (2) Ty (w),

[0y ()W (w), 2Ty = U () (w), 27 s+ g7 [T (2), 27 ]y U ()
— (Pw) UL ()T (w) + (¢%2) T (2) T (w).

Solving the system of linear equations, we obtain

w)z ([0 (W (), e + "2V ()T (), ], 2)
@ —w/z ’
() (), 0] — Pl ()T (), 5]

U_(2) T (w) = pa— . (2.3.19)

U (2)V_(w) = (2.3.18)

Using ([2.2.15)), we see that

w (_[: Uy (2)¥q(w):s, m(—Hq2 + g 2[4 (2) Ty (w):, xi_l]q”)

—q2) oy (w/2) U 4 (2)T_(w) =
(—g2)" oy (w/2) Wi (2) V- (w) q22(1—qé”7>

(2.3.20)
(—g2) 2y (/=)0 ()T (w) gV (2) ¥ (w) g e — PV (2) Uy (w): 2t (2.3.21)

Then

1 1 — 2 — Z/Ww
g/ V- ()~ 0 bay(efu) (2o we @)+ L e o))
_ (_q)%q2z(— [0 (2) 04 (¢%2) 1, 2 ]2 +q4z[:\1/+(z)\1:+(q22):,xtl],ﬁ) 5(q%z,w). (2.3.22)
1 1 —Z/W —q? z/w
2720 (w/2)V_(2)¥ 1 (w) —w 2ay(z/w) <ql(1_ qu//w) Uy (w)¥_(2) + wu@_(w)\ll+(z))

= (—Q)%q2<[!‘11+(2)‘11+(q22) LG g2 — q4Z[¢‘P+(Z)\If+(q22)nwl]q%)d(q%w) (2.3.23)

Lemma 2.3.4. The following relation holds
(U (2)W 4 (g%2) ad ]2 — q4z[:\Il+(z)\IJ+(q2z):,xfl]qu = —(=1)%271, (2.3.24)

Proof. Denote by

T(2) =V, (2)¥,(¢%2): . (2.3.25)

Note that
(X (2), ]z = /C T(2) X (y)dy — ¢ /C X*(y) Y (=)dy, (2.3.26)
Xt = [T EX = [ XYy (2.3.27)
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Hence

[Y(2), 2l — a*2[T(2), 271 ] g2 = / (1—q"2/y)T(2) X (y)dy — qQ/ (1—z/y) X" (y)T(2)dy
c- cy

_ (1 —q*z/y) YNXF () dy — (1—=/y) vt )
—/C_ ==y TEX W)y~ /C = - X WTE):dy

2 2
. q . +00. q Y+ )
=— — Y (2)X y.dy+/ —— X (y)Y(2): dy
/cy(qzz—y) EX) o, Y(@?z —y) W)r(e)
2
q + o -1
=reS,—2, —5—— X (Y)Y(2):dy =—(—1)%2"".
Yy=q y(qZZ—y) () () ( )
Here we used : X T(¢?2)Y(2): = (—1)7. O
O
In terms of the operators ¥*  Proposition [2.3.3| can be rewritten as follows.
Corollary 2.3.5. The following relation holds
—-1/2 * * —1/2 q(l—Z/’lU) * * 1_q2 * *
2 ay(w/2)V* (2)V (w) —w / ay(z/w) <1_q2z/w\lf+(w)\lf_(z) + W\P_(w)\lq(z)

= (-1)%(~q)248(¢*z,w), (2.3.28)

1-2 1-¢%)z
z—1/2a¢(w/z)\ll*+(z)\ll*_(w) — w2y (z/w) <q1(_qQ“:ZU)\I/i (w) T (2) + (1_;12)1{“\111(111)\11’:&0

=

= —(-1)%(—¢)26(¢*z,w). (2.3.29)

Matrix notation Denote U*(z) = ¥* (2) ® v + ¥* () ® v* € Hom(V(A;), V(A1—;)) ® (C?)". Let
us emphasise that (C2?)" is the dual space to C2, considered in the definition of ®(z).
Denote products

v OEE O (w) = 3T W ()W (w) © 07, @), (2.3.30)
€1,e20==%1

O OE) = 3w ) ) o @, (2331)
€1,e0==%1

Finally denote by ¥*®) (w)¥*(1(2) R(z/w) the result of the dual action of R(z/w) on the (C2eC?)’
tensor multiple of Hom(V (A;), V(A;)) ® (C? ® C2)". In other words, we multiply the operator-valued
row vector on the matrix.

Theorem 2.3.2. The following relation holds

-

2 hay (w/2) 00 (2) 73 (w)
= w b ay (2/w) B (W)U O (2)R(z/w) + (~1)?(=q)? (qv” @ v} — v ®v2)3(¢*2,w).  (2.3.32)

Proof. The theorem is just a reformulation of (2.2.19)), (2.2.30)), and Corollary O]
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2.3.2 Special point relation
Special point for ¢
Proposition 2.3.6. We have the following identity

(-1)?

= 2.3.33
w=q2z zq2(1 _ q2) ( )

(—02) g (w/2) (4@ ()@ (w) — @4 ()0 (w))|
Remark 2.3.1. Note, that a priori the LHS of (2.3.33)) is not well defined since a coefficient of any
power of z is an infinite sum of operators. So we have to prove that the result of the substitution
exists as well as to find the result. Also note, that we substitute w — ¢?z to the whole expression, not
to the individual multiples; the result of the substitution to the individual multiples does not have to
exist.

Proof. Substituting w +— ¢z to (2.3.8)) and (2.3.9) we obtain

(~42) " ag(w/2) (- (2) B (1) — B4 (2B (w))] =

w=q2z
P P_(2)P_(q?2): 152 — [ P—(2)P_(¢%2): , 27,2 (2.3.34)
qz(1 = ¢?)
To finish the proof we apply Lemma [2.3.2 O
Special point for ¥
Proposition 2.3.7. We have the following identity
~1/2 qu—! d
(—q2)” Fay(w/z) (V_(2)V4(w) — q¥4(2)V_(w)) . 1_7612(—1) : (2.3.35)
Proof. Let us substitute z — ¢?w to ([2.3.20)) and (2.3.21))
(—42) 20y w/2) (U-(2) W4 (w) — U ()0 (u))|_, =
L () (w): 25 ] — Cw[ Y (Pw) W (w):, 27 -
5 . (2.3.36)
g —1
To finish the proof we applying Lemma [2.3.4 O

Corollary 2.3.8. For any ¢1 € C\{0} we have the following identity

* * * * w
(—q1/2) Pay(w/z) (Vi (q12) ¥ (gq1w) — ¢¥7 (4q12) V7 (qq1w)) i —W(—l)a' (2.3.37)
2.3.3 Interchanging relation on ¢ and ¥
Proposition 2.3.9. The following relation holds
22 B(w)2) e, (2)UE, (w) = w3 B(2/w) WL (w)d, (). (2.3.38)

Proof. We have already seen the cases €; = €3 = =, see (12.2.20)) and ([2.2.31]). To prove the remaining
cases, let us use a relation from [JM95| Section 6.3] and relation [JM95l (6.12)]

U* (2)zg — xg V¥ (2) =0, D_(2)zd —xf ®_(2) =0. (2.3.39)
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To be combined with (2.2.10) and (2.2.11)), the relations yield

(@ ()07 (w), )y = [ (2), 25,0 (w) = B ()" (w), (2.3.40)
[©_ ()07 (w), ]y = D—(2)[ 0" (w), 2], = B ()T} (w). (2.3.41)

Considering g-commutator of (2.2.20) with x, and wg, we obtain the cases €1 = +, g = —and ¢ = —,
€9 = + correspondingly. O

2.4 Realization of (Twisted) Deformed Virasoro algebra

In this section, we will consider two algebras: deformed Virasoro algebra and twisted deformed Virasoro
algebra. Deformed Virasoro algebra is extensively studied. Twisted Virasoro was defined in [Shi04],
though this algebra is considerably less famous.

The algebras depend on two parameters ¢, go. It is also convenient to consider g3 such that
q192q3 = 1. In this section we study a connection between the algebras and U, (;[2) for ¢> = ¢3.

To define (twisted) deformed Virasoro algebra, we need the following notation

; fix = f(x) = exp <; % u 1%3;_; q2)x”> . (2.4.1)
Note that 1
f(x) = ——B(qgz) B (¢ "¢ '2) . (2.4.2)

1—=x

2.4.1 Deformed Virasoro algebra

Definition 2.4.1. Deformed Virasoro algebra Viry, 4, is generated by T, for n € Z. The defining
relation is

(1-q1)(1—qo)
1-— q3—1

[e.e] o0
> AT T =Y fiT0 Ty = — (45" = 45) Ontmoo- (2.4.3)
=0 =0

Denote T(z) =3 ,c5Tnz"", 8(z) = Y 4cp ¥, Relation [2:4.3) is equivalent to

Fw) )T ()T (w) — F(2)w)T(w)T(z) = — L= 01 —a2) (5 <w> ) (W)> . (2.4.4)

1-— q3 1
Representation Recall that V; were defined by ([2.2.3]).

Theorem 2.4.1. The formula below determines an action of Virg, 4, on V; for all j € Z.

3/2¢,1/2 _ —1/2
T(z) = LA24 (qﬁl(q/qjl ) (u@i(qqlz)¢+(z) + u_l\I'*_(qqlz)CI),(z)). (2.4.5)

Denote the obtained representation by ]-][f !

Remark 2.4.1. A bosonization of deformed Virasoro algebra is known since [SKAQ96], but our bosoniza-
tion is a different one. In both cases current T'(z) is presented as a sum of two summands. Surprisingly,
the first summands in both cases are ‘the same normally ordered exponent of Heisenberg a;’; however,
the second ones are different. In [SKAO96] the second summand is also an exponent of the same
Heisenberg, but this is not true for our bosonization. Note that U* (gq12)®_(2) is an exponent of
Heisenberg m(ay), but not of a.
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Proof. The proof is basically a verification of (2.4.4)). Let us rewrite (2.4.5)) in the matrix form

1/2 —1/2
q3/2(q1/ —q /)

Bla/qr)
Using (2.4.2), Proposition [2.3.9| and (2.2.13]) we obtain

fw/z) (¥ (qqr2)e.2(2)) (U° (qu)%fb

1 (qqﬂu)iﬁ( z > (qlqz> W (g1 2) ¥ ()(qqlw)> €: ® ew (q>(1)(z)<1>(2)(w)>

1o w/z qLqw (
( ) B < ) (qqizw)?
q1qw q149=

x(zféaw (%) T (ggy2) T (qqlw)>€z®€w (z*%%(%)@“)(z)cp(@(w)). (2.4.7)

To continue the calculation, we apply Theorems and The RHS of (2.4.7) can be presented
as a sum of three summands. The first summand is

?(zin) (e ) m=o

x (wf%%(z/ww*’@) (4a10) ¥ (g12) ) R(z/w)e. @ ey B (z/w) (0 bag(z/w)0@ (w)a W) (2))

5 ()3 (22) (e ) . )

T 1- z/w q1qw q19z

o (o) 8 (B05) (0 qaro)endw) (9 gars)e-a()

T z/w" \ qrqw w
= f(z/w) (*(qqrw)e,P(w)) (¥ (qq12)e.P(2)). (2.4.8)
Here we have used Proposition |2.3.9|and an important property

R(z/w)e. ® e R N (z/w) = €, @ &, (2.4.9)

T(z) = U*(qq12)e.B(2), for e, = 21/2 (g u01> . (2.4.6)

NI

The second summand without factor (525 ) 8 (72 is

(amz0)} (=0 (2) 9 0g012) 0 Clgqw) ). eu(-0)H (0 v- @0 —g 20 @0-)0(z ¢w)) (1)
w (2 Sy (w/2) 0 (gg12) 8@ (gqw) ) ((—) (g~ v-2vy — ¢ 20s@0)d(z,¢*w) ) (~1)°
= ¢ ew(—ar/2) Ry (w/2) (0¥ (4012) Vi (anw) — V2 (0a12) ¥ (garw) ) (~1)°5(z, ¢*w)

-1
-1 w 2 2
=q zwl_i(ﬁé(z,q w) = 6(z/q"w).

l\)\»—l

= (qq1)22

q(1 - ¢?)
Here we used Corollary [2.3.8
The third summand without factor g (qlqw) B <q1“(’12) is

aai(z0)? ((—a)H (" @ vt — vy @0 )o(g a2, qnw) ) £ @ ew (2 Rag (/200 (2)0) (w) ) (~1)?
= qq1zw ((—q)%(qvi QUi — vl ® v*)o(Pq1z, qqlw)> <z_%a¢(w/z)¢>(l)(z)¢(2) (w)) (—1)8
= —gqzw (—g2) Fag(w/2) (40 ()0 () = 1 ()0 (w) ) (~1)76(¢ 2, g w)

1 1
2 3 2
_ 1 - -
q q1zw Zq2(1 q2) (q q1z, q(.hw) q(l q2) (q Z/w)
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Here we used Proposition [2.3.6
When we calculated the second and the third summands, we have omitted the multiple

PN (P 1o e 2 l-q 2
5(L)8(5) = T Gl - =2 G @40
So the delta-function coeflicient is
2
l-q 2 1 (1-qg)1-g) Bla/q1)
= (Bla/a)” x 5y = T <q3/2(q}/2 - q1_1/2)> : (2.4.11)

To sum up, we have proven

f(w/z) (¥ (qq12)e-@(2)) (Y (qqurw)ew®(w)) — f(z/w) (¥ (qprw)ew®(w)) (V" (gq12)e-D(2))

_a —(1q1_)§13_1—)q2) (@/2(253/?;”2))2 (5 (qiﬂ) ) (qiz)) . (24.12)

Evidently, this is equivalent to the theorem. ]

Connection with Verma module. Highest weight vector |X\) for Virg, 4, with highest weight A € C
in a Virg, 4,-module is defined by the following properties

To|\) = A|N), T,|\) =0 forn> 0. (2.4.13)
Denote by [j) =1® Celitlila € V; the highest weight vector with respect to Heisenberg algebra.

Proposition 2.4.1. Vector |j) € .E[Lj] is a highest weight vector for Viry, 4, with the highest weight

Mg = (0 a2t (0 200 ) (2414

Proof. Using (2.2.17)), we obtain

2 (q? — QI1/2)21/2\I,* (0012)D_(2) = ¢a”” = 4, ') (—¢* % qqlz)—1/221/2 L U* (qqu2)P_(2):
B(a/q1) - B(a/q1) B(1/qq1) N
(0, — 7 ) (~¢® x qqr) 112

= (= 1/q) U (qr2) @ (2):= (—q) Y2 V" (qqr2)®_(2):. (2.4.15)

Using (2.4.15)) and the formulas for explicit bosonization ([2.2.8]) and (2.2.12), we obtain

3/2(qi/2 _ q1—1/2)

Bla/q1)

here O(z) is a formal power series, which vanishes at z =0, i.e. Y _;an2".

21124 U (qq12)P-(2)]5) = (—a)*(gq1) 7?[j) + O(2). (2.4.16)

Lemma 2.4.2. The vector 7|j) coincides up to a scale with the vector |1 — j).
Sketch of a proof. Let us consider two grading on V(Ag) ® V(Aq)

deg,, |j) = j(j — 1)/4 degrv =7 iff Kv=¢v (2.4.17)
deg,,a_ =k (2.4.18)

One can check that
degy (m(v)) =1 —deggv deg,, ((v)) = degp, v (2.4.19)

Up to a scale, vector |j) is the only vector with deg = j and deg,, = j(j —1)/4. O
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Let us apply m-involution to (2.4.16); Proposition and Lemma imply

3/2( 1/2 —1/2)

—q
Bla/q1)

—i -1 (i,1—1) i—l 1o (1—iy )
1/24 ) (01g%2) 2 U0 (gq12) (—g?) 33007 ()1 — )

= (=) Y2(gq1) 2|1 — §) + O(2). (2.4.20)

(—g)*C2

z

Replacing of j — 1 — j, we obtain

2q3/2( /2 q1_1/2) o y
A S V@)@ (1) = (-0) (a1 + O(2). (2.4.21)
Comparison of (2.4.16]) and (2.4.21]) with (2.4.5)) finishes the proof. =

Verma module M(\) is a module with a cyclic highest weight vector |A) and without any other
relations apart from (2.4.13). Verma module M () enjoys a universal property: it maps to any
module with a highest weight vector of weight A. According to Proposition there is a natural

map ¢y j: M(Ayj) = ]-"[j] We will say that A is generic if A # £(¢; r/2 5/2—|—q1 q2_5/2) for r,s € Z>1.

Proposition 2.4.3. For a generic A the Verma module M(X) is irreducible. The dimension of the
nth graded component is p(n), i.e. the number of partitions of n elements.

This proposition follows from the fact that the determinant of the Shapovalov form for such A is
nonzero, this fact was proven in [BP98, Th. 3.3], using [SKAQ96]. One can also deduce this from the
irreducibility of the corresponding tensor product of Fock modules of toroidal algebra Uy, 4,45 (g';'ll)
[FEJ"11bl, Lem 3.1] and its relations to W-algebras [Neglg] [FHST10).

We will say that a pair u, j is generic if the corresponding highest weight A, ; is generic.

Corollary 2.4.4. For generic values of u, j the module .7-"[]] is irreducible. The natural map ¢y j: M(Ay ;) =

.7-"7[f Vis an isomorphism.

Proof. Note that the dimensions of the graded components of both M(\) and .7-"1[;] equals to p(n),
in particular they coincide. If M (A, ;) is irreducible, then the map ¢, ;: M (A, ;) — FIis an
isomorphism. ]

Remark 2.4.2. As it was mentioned in Remark another bosonization of Viry, 4, was constructed
n [SKAO96]. Moreover, their formula for the highest weight essentially coincides with our formula
. Namely, in the notation of [FF96], Sec. 3], the highest weight of the representation , equals
to Ay if ¢* in notation of loc. cit. equals to (—q?’)%(qql)ju in notation of this chapter (note that
parameters ¢, p in loc. cit. correspond to qi,q5 Uin this chapter). For generic u,j these modules are
isomorphic since they both are isomorphic to irreducible Verma module.

The structure of the modules .7-"1[;} for non generic values of u,j looks to be an interesting open
qtﬁstion. Standard tool to study bosonized modules is screening operator, its construction for modules

J

+ ' is another interesting open question.

2.4.2 Twisted Deformed Virasoro algebra

Definition 2.4.2. Twisted deformed Virasoro algebra Virl" , is generated by T, forr € 1/2+ 7. The

q1,92
defining relation is
o0 oo
l—q)d —gq) , _
Z Sl Tsq — Z Jils Ty = _< 1>( 2) (Q3 " - qg) (5r+s,0- (2422)

1=0 1=0 1—aq5
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Denote T'(2) = 3_,c1 /04721127, 6oad(®) = 3,1 /217 2" Relation (2.4.22) is equivalent to

P AT T () = £ /)T T(E) = - IS B (g0, (2 g0, (B2)). 2429

1-— 3 3
Theorem 2.4.2. The formulas below determines an action of Vqu1 e on V(A;) fori=0,1
(" — g%
T(z) = (-1)"/? e /ql)l (29" (gq12) @4 (2) + U7 (¢q12)P_(2)) - (2.4.24)

Denote the obtained representation by Fli.

Remark 2.4.3. Note, that there is no twisted Virasoro algebra in a conformal field theory. This does
not contradict the fact that it is possible to consider the g,q; — 1 limit of the formula[2.4.24] Let ¢ =
el g1 = e"" and assume that T, = hix/—1/2k(k + 2)b.+o0(h), then b, satisfy twisted Heisenberg algebra
[br,bs] = 1r4s0. In this limit the formula is standard bosoniztion of twisted Heisenberg
algebra in terms of standard one (limit of a,). In terms of representation theory of sly this can be
viewed as a relation between Lepowsky-Wilson and Frenkel-Kac constructions.

Proof. Let us rewrite (2.4.24)) in the matrix form

3/2( 1/2 —1/2)

—q
Bla/q1)

The proof is very similar to the proof of Theorem A crucial point is that (2.4.9) holds for the
new ¢,. Hence the RHS of (| still can be presented as a sum of three summands. The first

summand is still given by (2.4.8 - The second summand without the factor £ (qlqw> B (qluéz)

T(z) = (-1)"/24

U*(qq12)eP(2), for e, = <2 é) (2.4.25)

(qw2)? (= (w/2) 0D (g012) 0D (gqrw)) e 820 (=) (47 v-vs =g or@0-)0(z ¢ w)(~1)°
= (—q) (Z_%aw(w/z)‘l’*’(l)(QQ1Z)‘I’*’(2)(QQ1W)) £: ®ew (¢ v_®vy — ¢ P04 ®0_) Goaa(z/¢*w)(—1)
= (~q1/2)7 ay(w/2) 0D (g1 2) P (gq1w) (¢ wvs @v_ — wo_©v4) Foaa(z/g*w)(~1)°
= ¢ w x (—q1/2)% ay(w/2) (V5 (4912) ¥ (qa1w) — q¥—(qq12) V" (qq1w)) doaa(2/¢7w)(—1)°

o wl 1

= —q wl_iqz‘;odd(z/ﬂfw) = -

7]

ol

M‘Sodd(z/q%ﬂ)'

The third summand without the factor g3 <q1qw> 15} (qf‘;z)

1

aq1 (w2)? ((=0)3 (g @ v — v} @0 )o(g 02, gq1w) ) 2 @ 2 (2 Bag(w/2)00(2)0 (w)) (-1)°
= —(=)7% ((qv" ® v} = v} ® " )doaa(a’2/w)) £ @ 0 (o (w/2)00 (2)0P (w)) (~1)°
= —(-0) 7% (g0} @ 0" —wo” @) (2720 (w/2)8(2)0? (w) ) dua(eP2/w)(-1)°
= g2(=q2) Fag(w/2) (g2 ()0 (w) — B4 ()2 (w)) doaa (g2 /w)(~1)°
oy tea62/0) = s boaa(as /),

The end of the proof is almost the same as in non-twisted case. ]

:qz
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Connection with Verma module. Highest weight vector |@) in a representation of twisted de-
formed Virasoro algebra is defined by the following properties

T,|@) =0 forr > 0. (2.4.26)

Proposition 2.4.5. The vectors |A;) € FU are highest weight vectors.
Proof. Recall the grading deg,,, on V(A;) defined by (2.4.17) and (2.4.18). One can check that Flil ig

a graded Virfl‘ﬁqQ—module with respect to a grading deg,, T, = r. To finish the proof one has to note
that deg,, [0) = deg,, |1) = 0 and deg, |j) > 0 for j # 0,1, O

Verma module M™ of twisted Virasoro algebra is a cyclic module with a cyclic vector |&) and
without any other relations apart from . Verma module enjoys a universal property: it maps
to any module with a highest weight vector. Hence there exist a natural map ¢;: M™ — Flil such
that |@) — |A;).

Lemma 2.4.6. Verma module M™ is spanned by

T

—Tm ¢

ST |@) forO<ry <rg <--- <. (2.4.27)

Sketch of a proof. One can prove that any element Ty, ... T, |&) can be presented as a linear combi-

nation of vectors (2.4.27)) using (2.4.22)) by an induction. O

Proposition 2.4.7. For generic qz3 the Verma module M™ is irreducible. Natural maps ¢;: M™ —
FUil are isomorphisms.

Proof. The representation Fl for g3 = 1 was considered in Example it follows from Section
that the representations are irreducible. Hence FU is irreducible for generic ¢3. Then the maps
bi: MW — Flil are surjective. Now recall Gauss identity

j(j—1)
1 qJ 1 .
| I R — E = fori=0,1. 2.4.28
1 - qT Hn:l(l - qn) ( )

r=147, jEiI+2Z

According to Lemma the dimensions of the graded components of M' do not exceed the
corresponding coefficient of the LHS of . On the other hand, the coefficients of the RHS
of are equal to the dimensions of the graded components of F(. Hence, it follows from
surjectivity of ¢; that ¢; is an isomorphism. O

Corollary 2.4.8. For generic g3, the vectors (2.4.27) form a basis of M™.



Chapter 3

Semi-infinite construction

3.1 Double Affine Hecke Algebra
In this section we recall the definition and basic properties of double affine Hecke algebra (DAHA)
[Che92l Kir97, [Che05]. This section consists no new results.

Definition 3.1.1. The DAHA for gl is an algebra H with generators Ty, ..., Ty_1, 71, Ylﬂ, e ,Yﬁl
and relations

(T; —v)(T;+v ") =0, TTinT; =T TiT, (3.1.1)
LYT; =Yy, LY; =YD, j#4,1+1 (3.1.2)
Yl = VY, VY =YY (3.1.3)
i = i1 T, = TirV (3.1.4)

Here and below we use the convention Y7 = Yy 1.
The operators 11, ..., Tn_1 generate finite Hecke algebra H. The operators 11, ..., Tn_1,Y1,..., YN
generate affine Hecke algebra HY. The operators T}, ...,Tn_1,7 generate affine Hecke algebra H™X,

here one can define
X;=T,..Tyam ‘"I . T (3.1.5)

The relations on X; are
TXT7 =X, XoMXoY'=TE XY, 'X[ 'Y =17 (3.1.6)

Let 5*1(2,2) be the braid group on 3 stands. More precisely, ﬁ(2,Z) is generatred by 74 and 7_

with the relation 7,7~ 17, = 7= 17, 77!, The reason for our notation is that SL(2,7) is an extensions

of SL(2,7Z) by Z, the projection is given by

Ty <(1) 1) T_ G (1)) (3.1.7)

The kernal is generated by (r4.7— 7y )%
Proposition 3.1.1. There is an action of 37)(2,Z) on Hy determined by the following formulas
w: Ti—=T, Xi—=X;,, Vi=>YVXT..TWTh... T\ (3.1.8)
—: Ti—=T, X;— X1 .. 10T T, Y=Y (3.1.9)
The algebra Hy is bigraded with obvious gradings degy and degy defined by
degym=-1 degx Y; =0 degx T; =0 (3.1.10)
degy ™ =0 degy Y; =1 degy T; =0. (3.1.11)

90
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Lemma 3.1.1. Let n,n’ € Z>o be coprime integers. Let m,m' € Z>q be unique pair of integers such
that m < n, m' <n' and nm’ —n'm = 1. Then, there is an SL(2,7) transformation such that XZ-_1
1s mapped to B; and Y; is mapped to A; such that

degy(B;) = —n, degy (B;) =n' degy(A;) = —m, degy (A;) =m/ (3.1.12)

Moreover Bi—i-l = TZ'...TlBlTl . Tz, Ai+1 = TZ'...TlAlTl . Tz; and

Bi=Z1. Zpirss AL=Wi-.. Wi, (3.1.13)
where

| gn (G —Dn 1 | dn (G —Dn
Z;i =Y = Z;i=X = 1 1.14
i=h i Ln—i—n’J {n—&—n’J’ I v Y n+n/ et | (3:1.14)

| gm (—Dm o | dm (G —1m
i =Y] = | ——- =X = | —F—- 1. d.1

W; 1 if {m+m’J {m%—m’J’ W; Lif e e + (3.1.15)

Proof. The formulas for B;, A;, in terms of By, A; follows from the relations Xj_+11 = Tij_lTj,
Y11 = 1;Y;T;. The formulas for B1,A1, can be proven using Euclidean algorithm. For the step one
uses the formulas 7, (X; ) = V1 X, ' =721 (W). O

/
Euclidean algorithm used in the proof can be viewed as decomposition of the matrix (:1 TZ,)

. . 11 10
into product of the matrices <O 1) (1 1

The formula for B has also following geometric interpretation. Draw the segment from
(0,0) to (n’,n) and draw closest line consisting of horizontal and vertical lines below. Then,
for any horizontal segment we write Y1 and for any vertical segment we write X, L

> which correspond to 74:1, 7~ in the basis (—1,0), (0,1).

Example 3.1.1. Let us take n = 5 and n’ = 3. Then /

el (XY = X X v X2
Tl () = Xy X

The formulas of B; agrees with the form of the sequence Jn namely

n+n’
0, g, %, 18—5, %), 28—5, %, %, % as well as geometric description.

3.1.1 Cherednik representation

The algebra HX has trivial 1-dimensional representation
T — v, T u.

Cherednik representation C,, is a representation of Hy which is induced from the trivial representation
of HX. Tt can be identified with the space of Laurent polynomials (C[Ylﬂ, e ,Yﬁl]. The action of
the generators T; and 7 can be written as

Y
si —1

v 1 (YY) YNy = u )‘NY)‘NY)“Y)‘Q...YANA,
Yz‘/YiJrl—l ( 1 T2 N ) q 1 9 I3 N

Ti=s] +(w—vh

Y
i

For any composition A = (A1,---Ax) € ZY we denote Y* = Yl)‘1 . ...YJGN, such vectors form the
standard monomial basis in Cherednik representation. We will say A < p if p — A € ©Z>pa;, where

«; are positive simple roots of sly.

here s is permutation if Y¥; and Y;11.
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Definition 3.1.2. Let \, u € ZV. We write A < p if
1. A" < u™ where A\ is the dominant coweight lying in the orbit of A\, and similarly for ™
2. M =pTand A< p

For example, for N =2

(1,1) < (0,2) < (2,0)

The action of the operators Xi,..., Xy in the basis Y is triangular with respect to the order <.
More explicitly
)
XY =ulg MY A Y Y (3.1.16)
H=A
here
= [{gIh <A+ Hali > g8 = A3 = [ > A3 = [l < 5. = A (3.1.17)
The non-symmetric Macdonald polynomials E are defined as eigenvectors of X1,..., Xy with leading

term Y. Note that (3.1.16)) imply that

N

X;E\ =u" g Mo E). (3.1.18)

3.2 Representation

In this section we introduce representation C%ffj’{)n_l, generalize (3.1.16)) and interpret the obtained
representation as twisted Cherednik representation.

3.2.1 Explicit construction

Action of affine Hecke algebra Fix n and let C" be a vector space with the basis eg,...,e,_1.
Define an R matrix acting on C" @ C"

R = Z VFEee ® Egq + Z < b @ Epg + Epg @ Egp + (v — v_l)Eaa & Ebb) . (3.2.1)
a<b

Define an action of H on (C")®N by the formula T; — R;;;1, here indices encodes factors on which
R-matrix acts. One can induce an action of HY on ((C")®N[Yi1 Y.

One can write the action of T} explicitly. Let s} be an operator acting on (C™)®N[Y; = ... V!
which swaps Y; and Y;y1. Let s¢ be an operator actlng on (CM®N[YF!, .. Yﬂ] which swaps tensor
factors number i and i + 1 (and commutes with all Y;). Finally, let s; = s¥ s¢. Then the action of T}

is given by the following formula

Y
si —1

Ti=s Rijo1+(w—vH)—At——
7 i 1,041 ( )Y;/EJA 1

(3.2.2)

The obtained representation of affine Hecke algebra is well-know [GRV94], [CP94]. It appears in
the context of quantum affine Shcur-Weyl duality.
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Action of DAHA Below we will use identification
€y )Y - @)V vEL L YEY (3.2.3)
(YPe) @@ (YNei ) s YU Vine, @ -+ Qep
Let us introduce e; € C*[Y*!] for i € Z by setting
ei =Y e (3.2.5)

Introduce operators x and D acting on C*[Y*!] by rke; = e;_1, D(Yie,) = uqg?Y7e, for a =
0,...,n—1. By k; and D; we denote the corresponding operators acting by « and D on i-th ten-
sor factor.

Theorem 3.2.1. For any ny, € 7Z, there is an action of algebra Hy on ((C”)®N[Y1i1,...,Y]$1]
determined by the following conditions

o subalgebra HY acts as discribed above
o m=r{"Dis1...5N_1
(n7ntw)

Denote the obtained representation by Cy, "%, ;-

Proof. Tt is enough to check the relations which involve 7. The relations 7Y;r—! = i+1 and Tyl =
T;+1 are easy to see. Let us check that 7N commutes with 7}. Since

7rN(wl ® - Quwy) =K""Dw @ K" Dwy ® - -+ @ K" Dwy

it is sufficient to consider only the N = 2 case. In this case we denote T" = T} for brevity. Let
Il=m+nk+sfork>0and s=0,...n—1. Fors=0

k
T(em @ e) =ve; @ e+ (v—2v1) Z €l—nj @ €mtnj for k>0 (3.2.6)
j=1
k—1
Tler®em)=v tem®@e—(v—0"1)Y € nj @ eminj for k>0 (3.2.7)
j=1
For s >0
k
Tlem@e) =e @ em—+ (v—v1) Z emtnj @ €l—nj, (3.2.8)
j=0
k
T(er®em)=em®@er— (V—0"")Y  €1nj @ €mnj. (3.2.9)
j=1
Since the formulas (3.2.6)—(3.2.9) are invariant under the shift [ — [ — ny,,, m — m — ny,, we see that
Tr? = 72T for N = 2. O

3.2.2 Triangularity of Macdonald operators

Introduce a grading on (C"[Y*!])®V as follows
degeq, @+ ®eqy :Zai, degY; =n. (3.2.10)

Then the operators T; preserve the grading and degm = —ny,,. Hence generators deg X; = nyy.
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To simplify our notation, let us assume n, ng, > 0. Let d = ged(n, nyy), we use notations n” = n/d,
n' = ny,/d. Let m, m’ such numbers that nm’ — ngy,m =d, 0 <m’ <n’, 0 <m < n”. Hence there is

o€ 57)(2, Z) such that

o(X;) =B;* degy (B;) = —n", degy (B;) =7/, deg B; =0 (3.2.11)
o(Y;) =A; degy (A;) = —m, degy (A;) =/, deg A; =d (3.2.12)
"o
The corresponding matrix in SL(2,7Z) is <1ln, mn,l> . Lemma(3.1.1| gives explicit formulas for B;, A;.
For any collection A = (A1,...,An) € Z", we can consider a vector ey = ey, ® -+ ® ey -

Consider an operator G; = T;s;. It follows from (3.2.2)) that

1 —s
— s 2.1
ViV 1% (3.2.13)

Denote G ;41 = G;. For any i # j let G; ; be the operator given by the formula (3.2.13) with ¢,¢ + 1
replaced by i, j correspondingly. Using this notation, we can write the following formula

G; = R@Hlsf + (1) — 1)71)

Xfl = wTNil .. .Tfl =ky"™Dysy... sN,lsN,lG;Vl SlGl 5 = k"™ DG ]1\, Gi; (3.2.14)

Note also that Y7 = k1"
We are going to prove that operators B; are triangular in the basis ey. The prove is just a
computation. Let us first explain the idea on the following example (cf. Example |3.1.1]).

Example 3.2.1. Let us take N = 3, n = 5, ny, = 3. Then we have

Bl:YlX_IYIX_QYIX_zzfﬁ (k D1G1:13G12) °(w D1G1§G12)2 _5( D1G1§G12)
= (k1 °DiGT, %;G 2"51)( 'DiGy :1),G 2“1)(’<&11D1G1§G 2“1)("31 DiGY, éG 2"91)(D1G1 éGl 2)

By = iBiTh = Grasiky (kD1 G, :1J,G1 2)r1° (KID1GY ZliGl 2)° w1 (KID1GY, :%,Gl 2) G281
=G 2("52 DyGs, 3G2 1”2)("02 4D2G2 5G2 1”2)(52 1D2G2 G, 1"52)( 2 3D2G2,3G2,1"02)D2G2_,:1a

Bs; =T111BThT,
= Ga352G12s1h7 (KID1G 3G o)k (K1 D1G 3G 5) k1 (k7 D1G 3G 3) Gr251G2 352
= Ga3Gh 3("53 D3Gy 5G3 113) (k3 4D3G3 %G 1"53)(“3 1DSG?) 5G 1"53)( 3D3G3 %Gs 1%3) D3
Using Proposition below, we see that all these operators are triangular.
Now we proceed to the proof.
Proposition 3.2.1. The operator G; is triangular in the basis ey with respect to order <.

Proof. 1t is sufficient to consider case N = 2. In this case we will write simply G omitting the index.
The formulas below is just a reformulation of (3.2.6)—(3.2.9). Recall that | = m +nk + s for £ > 0
and s=0,...n—1. For s =0

k
Gl ®epm) =veem+ (v—0v" Z €l—nj ® Emnj for k > 0, (3.2.15)
j=1
k—1
Glem®e)=v e, e —(v—0v1) Z €l—nj & Cmtnj for k > 0. (3.2.16)

=1
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For s >0
k
Gleg®en) =€ @em+ (v—0v1) Z emtnj @ €l—nj, (3.2.17)
§=0
k
Glem®@e)=en®e —(v—v1) Z €l—nj ® €mtnj- (3.2.18)
j=1

O]

Proposition 3.2.2. For i < j operators /{;dGm/{?, 0<d<nand /-i;de,m?, 0 <d<mn are

triangular in the basis ey with respect to order <. Operators R?Dm? are diagonal for any d.

Proof. 1t is sufficient to consider N = 2 and operators ﬁfdGme, 0<d<nand smfdGmesl, 0<d<n.

Everything follows from (3.2.15))—(3.2.18)). O

Theorem 3.2.2. Operators By, ...By are triangular in the basis ey with respect to order <.
Proof. Recall that n” =n/d, ' = ny,/d. Using Lemma we can write
Bi=T1..T\Z ... ZopswTi ... Ti_1. (3.2.19)
Now we substitute formulas for Y7 = ] ", Xfl = m?“”DlGi}V .. Gf% and
Tic1..T1 =Gi—14i...G18i-1...51,
X1_1T1 T =k"Dysy ... Si—lsN—lG;]{/' e G;il_s_l.

Hence we get

—d; — —1 dj — —
Bi:GiLi...GU( II = JDiGM{,...Gi,llmi’>DiGi,]{,...Gi’iﬁrl. (3.2.20)
j<n’4n"
Zj=X71

Let {x} denote the fractional part of x € R. One can observe that

dj =nl{sls < j, Zs = Vi}| = nw|{sls < j, Z, = X{ '}
s /! /] 1/
. n Jn Jjn

Here j is such that Z; = Xfl, hence {n’j’Jrn’} < n,ﬁ/n, by the condition (3.1.14). Hence 0 < d; < n.

Therefore Proposition [3.2.2| imply, that the operator is upper-triangular. O

Corollary 3.2.3. There are eigenvectors Ey=ey\+ Zu</\ Bauep of Bi,...,By in Cq(fé:?/,,)unfl. The
etgenvalues are given by

- ) -
B,E\ = ug...up_1¢" "% ¢ME) (3.2.22)
Proof. Theorem is equivalent to the following formula
Biex = baaex+ Y bauey (3.2.23)
H=A

Now we compute by y using the formula (3.2.20). It follows from the computation in the proof of
Theorem that the numbers d; are distinct and form a set {1,...,n—1}. Hence it remains to compute
diagonal term in the action of the operators

a) Gy for j < i; b) ﬁ;dGi_’]{,Dm?, lii_dGi_’le}Zd forO<d<mn,j#1 c) G;jl for j > i.
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We get

by = ol TSI ZAN =AY =G <l <N =X I <A > A AN (<2 A AN )|

1-—n 1(-)\) i

(UO ce un_l)q

where = stands for = (mod n) and we used formulas (3.2.15)-(3.2.18)). O

3.2.3 Monomial basis

"

Proposition 3.2.4. Operators A; can be represented in the form A; = Agm;dAl , where the operators
!/

Al A are triangular with respect to the order <. Moreover, matriz entries of A, Al on the diagonal
are monomials.

The proof is similar to the proof of Theorem
Proof. Using (3.1.13)) we get
Ay=T .. T\Wy .. WopamT1 ... Ti—

)

— . . . “%p.-l =16\ . —dpn ~—1 -1
=Gi1,...Gy, 11 Ky DGy .. Gl >Hi DGy .. Gl (3.2.24)
j<m+m’,Wj:Xf1

It remains to compute numbers c;. We have

¢; =n|{sls < j, Wy = Y1} — newl|{sls < j, W, = X'}
(] gm B gm_ | _ v o dm j
_n<j {mij,J) Nt \‘m—f-m’J d((n +n){m+m,}+m+m,>, (3.2.25)

Since W; = Xl_1 we have 0 < { Jm } < m_nll,. Hence

m~+m’ m—+
im m—1 n'm+n"m —1-n"—n
(n”+n’){m‘]+m,}S(n”+n’)m+m,— ey <n” -1
Hence 0 < ¢j < n. Using Proposition [3.2.2 we conclude the proof. O

Let us now assume that d = 1, i.e. n =n", ny, = n'. In this case, operators A; increase grading
by 1. For any A € ZN denote
A=A} AVWer® - Qe (3.2.26)

Theorem 3.2.3. Vectors Ay form a basis in (C"[YT)®N and this basis is triangular with respect to
ey basis. Moreover, we have

Ay = ay ey + Z QN pCpu (3227)
H=A
where the coefficients ay ,, € Z[gt, v and ay y is invertible in Z[gF, v,

Proof. Since A; is expressed via operators Tfl,Yjﬂ,wil its matrix elements in ey basis belong to
Z[q*', vH1]. Hence, the vectors Ay expand in ey basis with coefficients in Z[¢*!, v*1].

The product A; ... Ay is some combination of products Y1 ... Yn = w1 " ... k" and X1_1 .. .X;]l =
N = /{{L/ .. ./{%Dl ...Dp. Hence the product A;... Ay is diagonal in the ey basis. Therefore it is

sufficient to prove the formula (3.2.27)) for the compositions such that Aq,..., Ay > 0.
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Let [ = max A\;. We proceed by induction on [. For [ = 0 there is nothing to prove. The induction
stepis [ —1 — 1. Let 1 <41 <--- <i; < N be a subset of indices such that \;; =1 and \; <[, for
j & {i1,... i} Let \(®), 0 < s < k be a composition such that

-1, for j =iq,...1s
)\5-5) =<1, for j = dg1,.. .1k
)\j, fOl"jQ{il,...,Z'k}

For example \(©) = ).
By the induction hypothesis we know that A, is a linear combination of e, with p < M%) and
coefficient « Ak) (k) 1s invertible. Now we prove by induction on s that

A)\(S) = A “ e AlkAA(k)

Ts+1

satisfy condition (3.2.27)) with additional constraint that for all terms in right side p; <[, for [ < i541.
The induction base is s = k, the induction step is s — s — 1 and follows from the formula (3.2.24]).
Namely, by the Proposition all triangular terms in the formula ([3.2.24]) have invertible elements
on the diagonal and cannot make p; = [ for j < i,. O
Corollary 3.2.5. The elements ey expand in monomial basis Ay with coefficients in Z[vil, qil].
Proof. 1t follows from the Theorem that the matrix o used in (3.2.27) is invertible in Z[v!, ¢*1].
O

3.2.4 Twisted Cherednik representation

We will use notation of Subsection Let us now assume that d = 1, ng, = n’. In this case,
operators A; increase grading by 1.
For any Hy-module M denote by ppr: Hy — Endc(M) the corresponding homomorphism.

Definition 3.2.1. For any Hy-module M and 7 € SNL(Q,Z) let us define the representation M7 as

follows. M and M7 are the same vector space with different actions, namely ppr = par o771,

We will refer to M™ as a twisted representation.

Theorem 3.2.4. The CSZQ;T‘_T?UW,I is wsomorphic to twisted Cherednik representation CS for o as in
(3.2.11), (3.2.12) and u = ug ... up_1¢*~".

Proof. Let HB be a copy of affine Hecke algebra generated by T; and B;. Twisted Cherednik repre-
sentation C¢ can be interpreted as a representation Hy induced from one-dimensional representation
of HB. As a vector space, C¢ is isomorphic to space of Laurent polynomials C[Alﬂ, LA,

The vector eqgyn € C%’ﬁ/,,)u%l is eigenvector for T7,---Txn_1. Moreover, due to Theorem |3.2.2
vector e~ is an eigenvector for By, ..., By

Bieyy =g .. un,lql_”vm_l_Ne(o)N. (3.2.28)

Comparing (3.1.18)) with (3.2.28)), we see that there is a homomrphism 1: CJ — C%fl_?unfl determined

by ’gb(l) = G(O)N.
The twisted Cherednik representation C¢ has a basis Ay. On the other hand, it follows from
Theorem [3.2.3|that their images form a basis in ey € ngn)un_l Hence the map 1 an isomorphism.
O
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Remark 3.2.1. There is another way to finish the proof withour using Theorem Namely, since
Cherednik representation is irreducible the map  is injective. And it remains ot show that 052’77,7u,kl

is generated from ey by the action of Th....Tn_1, Ylil, . Yj\j,:l7 .
As a corollary we notice, that the representation C%’ﬁ_?uwl depends (up to an isomorphism) only

1 n42i—1
on the product ug...u,_1. For example we can take u; = unq™ 2» . Let us denote

1 n42i—1

C?(annl) — C(”:n/) for U; =Unqg 2n (3229)

UQ;,--+Un—1

3.3 Toroidal algebra

In this section we recall presentations and certain properties of quantum toroidal gl; algebra Uy, ¢, ( g.;'ll).
In particular, we describe its connection with Double Affine Hecke algebra H . The section contains
no new results.

Presentations The algebra Uy, 4, (gnll) is an algebra depending on parameters ¢q; and ¢o. Let us
introduce parameter g3 such that ¢1g2g3 = 1. The algebra has a presentation via generators P, for
(a,b) € Z*\{(0,0)} and central elements ¢, ¢. We will not need explicit form of the relations, see
[BS12bl Def. 6.4] for the reference, relation between our generators and generators in loc. cit. is
Py = (1 - ¢)ugp, where d = ged(a, b).

Proposition 3.3.1 ([BS12b]). Group .S/E(Q,Z) acts on Uy, 4,(gly) via automorphisms.

Let us consider an element 7 € ﬁ(2, Z) such that under the projection (3.1.7)) it is mapped

SN <m,’ m) (3.3.1)

n n

Let SL(2,R) be universal covering of SL(2,R). The group SL(2,Z) can be interpreted as the preimage

of SL(2,Z) in SL(2,R). Hence we can think about the element 7 € SL(2,Z) as a path 7 in SL(2,R)

from identity matrix to the matrix (3.3.1). The path « induces a path v(a,b) in R?\{0,0} by action

on (a,b). The intersection number of y(a,b) and the line a = 0 is called winding number n,(a, b)ﬂ
Then the action of 7 is given by the following formulas

T(c) =c" (C’)m 7(c) =c" (C')m (3.3.2)
m'a+mb p'a4n nr(a,b)
T (Pa,b) = ((C/) b & + b) Pm’a—i—mb,n’a—i—nba (333)

Chevalley presentation The algebra has another presentation, the equivalence between this two
was shown in [Schi12]. The generators are Pj, Py, P_1p, and central elements ¢, ¢’. To describe the
relations let us introduce currents

E(z) =Y Pz’ F(2) =) Pz (3.3.4)

bezZ beZ

Define

Zg:tkzz_k = exXp (Z <1 — qg)k(l — qlg)Pg;th_k) (3.3.5)

k>0 k

Yif path v(a,b) goes clockwise then (a,b) is included but 7(a,b) is not included into the path ~(a,b). For the
conterclockwise path 7(a,b) the convention is opposite. See the recent papet [BHM 21l Sec 3.2.1] for the treatment of
this group action, bit conventions in loc. cit. differ from ours
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For ke Z-gand be Z

(L—a)(c" —c ")

[Poks Pog] =k Okt1.0 (3.3.6a)
(1-d)(1—af) "

[Poe, Prp] =c " (qf — 1)Prytk [Po, 1, Piy] =(1 — ¢¥)Prp_s (3.3.6b)

[Poe, Po1p] =(1 — aF) P-4 [Po,—k, P—1) =(q} — 1)c" Py (3.3.6¢)

(2 — qw)(z — @2w)(z — q) E(2) E(w) = — (w — 1) (w — q22)(w — g2) B(w)E(z)  (3.3.6d)

(z —qw)(z — w)(z — gaw)F(2) F(w) = — (w — q12)(w — ¢22)(w — q32) F(w) F(2) (3.3.6e)
Fora+b>0
(U —a)ed (- g)et(e)?
[PLa, P*Lb] _(1 _ qz)(l — q3)9a+b [Pl,—aa Pfl,fb] = (1 — QQ)(l — q3) Hfafb (336f)
For a € Z

(1 _ Q1) (CaCI _ c—a<cl>—1)

P, aan ,—al = 3.3.6

P Pt = =) (8.3.68)
[PLas [Pra—1, Prat1]] =0 (3.3.6h)
[P-14,[P-14-1,P-1a41]] = 0 (3.3.61)

Definition 3.3.1. Algebra Uy, 4, (g.;'ll) is an algebra generated by Py, Py, P—1, and central elements

¢, ¢ with the relations (3.3.6al)—(3.3.61)).

Definition 3.3.2. Algebra Uy, ,,(gl;)" is an algebra generated by Py, Pop and a central element ¢
with the relations (3.3.6al), (3.3.6b)), (3.3.6d)), (3.3.6h)).

Definition 3.3.3. Algebra Uy, 4, (gnll)_ is an algebra generated by P_;, [y and a central element c
with the relations (3.3.6al), (3.3.6¢|), (3.3.6€|), (3.3.61).

Proposition 3.3.2. Algebras Uy, 4,(g1)" and Uy, 4, (aly)~ are subalgebras of Uy, 4,(gl).

Connection with spherical DAHA Denote

oE2 1 o — pi
[i]s = F 1 k], = p—— (3.3.7)
K]y =[] K]y K]y =[]y - - [k, (3.3.8)

In this paragraph we will need to consider Double Affine Hecke Algebras for different parameters ¢
and v, therefore we will write Hy(q,v). Let S+ and S_ be the symmetrizer and anti-symmetrizer in
finite Hecke algebra

s+ngﬁj§:vuwz; S = 3 (o) U, (3.3.9)
The basic property of S is that fori=1,...,N —1
T;Sy+ =S, T; = vSy T,S_. =S _T;=—v'S_ (3.3.10)
Let S+Hn(q,v) = S+Hn(g,v)S+ be the corresponding spherical DAHA.

Proposition 3.3.3. There is algebra isomorphism S_Hy(q,v) = S.Hn(q, —v71).
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Proof. The relations (3.1.1)—(3.1.4) imply that there is an isomorphism pu: Hy(q,v) = Hy (g, —v™1)
defined by p(T;) = T3, w(Y;) = Yi, p(m) = m. To finish the proof we note that pu(S_) = Sy. O

Theorem 3.3.1 ([SVII]). The following formulas defines a surjection of the algebra Uy, 4,(gl;) to
Sy HN(g,v) for 1 = q, @2 = v*

Pé,]zf) =S (Y] +---+Y})S, Péff)k =¢"S (Y7 P+ + YyM)S, (3.3.11a)
Py =" (X + -+ xK)S, PU =S (XTF 4+ X358 (3.3.11b)
Pl(,]bv) —=q[N], S+ X178, Pf’f}) =[NFS Y XS, (3.3.11c¢)

Here k € Z~o and b € Z and the image of P, is denoted by PCEZX).

Remark 3.3.1. Tn [SVII] the authors prove that quotient of Uy, 4, (gly) by relations ¢ = ¢ = 1 is a
projective limit of SH . This deep result is one of the motivations for our work. Though, formally
speaking, we will not use it.

Corollary 3.3.4. U, ,,(gl) surjects to S_Hn(q,v) for ¢ = q, g2 = v=2. Moreover

Pé,];\f) =S (Y +---+Y{)S_ P(@k =¢"S_(Y7F - 4 Y H)S. (3.3.12a)
Py =d's_(Xf+-- + xk)s_ PU =S (X% 4+ X358 (3.3.12D)
Pl(,]bv) —=q[N]FS_X1YPS_ Pfﬁv}) =[N],;S_YPXx[1S_ (3.3.12¢)

3.4 Deformed exterior power

The algebra S_H (g, v) acts on the subspace s_.cr) =g (cn [Yil])®N. The space S_ (C" [Yﬂ])®N
was considered in [KMS95, [LT00]. In loc. cit., the authors considered only affine Hecke algebra action

on ((C”[Yﬂ])@)N, but not DAHA. In this section we will recall and extend their results. Spherical
DAHA will be considered in the subsequent sections.

3.4.1 Finite v-wedge

The v-deformd exterior power can be defined as a subspace S_ ((C" [Yﬂ])@)N. On the other hand it
can be identified with the quotient space via tautological projection

S_ (€' =) Sy E) N S (0 (3.4.1)

The inverse map is induced by S_. We will use both interpretations as a subspace and as a quotient.
Denote by e;, A---Nejy =S_ (e, @+ @ eiy).

Lemma 3.4.1 ([KMS95, eqgs. (41), (42)]). Let l=m+nk+j for k>0 and 0 < j < n. Then

eeNen =—emne forj=0 (3.4.2a)
e\ em =—ven, e for k=0 (3.4.2b)
el N em =—vem A€ — €_nk N €mink — Vemink N €l—nk otherwise (3.4.2¢)

The above identities can be used for a vectors of the form ej; A---ANegNeym N+ Nejy.

Proposition 3.4.1 ([KMS95, Prop 1.3]). Vectors ej, N--- A eiy foriy <ia < --- <iy form a basis
Of Sf(@n[yil])@N.

Lemma 3.4.2 ([LT00, Lemma 7.6]). Let kq,...,kn be integers such that le\il(z —m —k;) < N and
all k; < N —m for certain m € Z. Then ey, N\ --- Neg, = 0.
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Vertex operators Considering w as an element of subspace we will writeitasw =2, . ;i iy ®
- ®ejy C S_ ((C"[Yil])@v. Considering w as a an element of the quotient we will write w =
i1yeyiny Tityenin Cin N Nejy.

Let us define (modes of) vertex operators @y, ¥y,: S_(C*YF)®N — §_(CPY*!)®N+D by the
formula

Cp(w) = D Ty Aep A Aeiy, Yp(w) = Y @yl A Ay Aer,  (34.3)

here w is considered as an element of the quotient. Note also that vertex operators ®;, ¥, can also
be defined in terms of subspace.

N+1
Py (w) Z Liy,.. ,1N6k®621®"'®ei1\7)
7/17 SIN
N+1 (N+1)
= Z Liy,.. 71N€k®el1®"'®ei1\r)_sf Z Yjr,nin €k Q@ €5y & -+ B €y,
'Ll: 7ZN ]17 JN
N . .
where S(_ ) denotes anti-symmetrizer in Hy.

Define (modes of) dual vertex operators ®F, Us: S_(C"[Y )2V — S_(C"[Y*!])®N=1 by the
formula

Z Yekjzojn Cjz @+ & €jys Uy (w) = Z Yi1in 10—k €1 @ - R €5y, (3.4.4)

J2y-0JN J1yeoJN—1

Here w is considered as an element of the subspace. It is easy to see that

T+U Z Y=kjo.jn €z @ D €jy = T+U Z Yjtrin—1,—k €1 @ - @ ejy_ =0

J25--JN J1y-sdN—1

for any 1 <i < N — 2. Hence the image of ®; and ¥} indeed belongs to S_ (C" [Yﬂ])@v*l.
Consider operators

bj =Y+ + Y. (3.4.5)
Lemma 3.4.3. The following relaitons hold for k € Z and j € Z
[bj; Pk] =Pt [bj, Vi] =Wkin; [bj, ®%] = — Ppipj [bj, U] = — Vi (3.4.6)
Proof. Follows directly from the following formulas

N
E ':Uil,...,’iNeil JACERIVAN Cin = E Exil,...,i]\]eil JANEERIVAN €ir+kn ARRIAN Cin

il,...,iN il,...7i1\] r=1

b, E  Yjrin i @ @ ey = E E Yirin € O Q€ O - O €y
jlz"'7.jN j17"‘7jN r=1

O]

Involution In order to prove certain propertirs of vertex operators we will need bar involution. This
is anilinear map ¥ = v™! and its action on (C" [Yil])@)N given by the formula [LT00, Prop. 5.5

ej; - Qejy = vN(N’l)/Q’bJTwOejN ® - ®e. (3.4.7)
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Here b; is the number of pairs (j,, js) such that j, # j; mod n, wg is the longest element in Weyl group
and Ty, is the corresponding element of the Hecke algebra. This is an ad hoc definition, see [LT00]

for more details.
Bar involution preserves the subspace S_(C" [Yil])@)N and acts by the formula [LT00, Prop. 5.9]

e, N Ay =(—1)NINTD27big, AL Aey, (3.4.8)

Lemma 3.4.4. The following holds

(—D)No—aWWie, A Al =Prei, A--- Aeiy (3.4.9)

(—D)N @MWt e, A Aey =Prei, A A ey (3.4.10)
here ai(k) is the number of r such that i, % k mod n.

Proof. For the first relation we use (3.4.8) we get

Tpeq, A Aeiy = Up(—1)NN=D/2p=big; A Ney = (—1)NE=D20ber “A T e, Aey

= (=)Mo %ep Aey, A Aeiy = (=)Mo Tpe A-e- Mgy
For the second relation we use notation e;, A -+ Aejy =) ;yjej; ® - ®ejy. Then
e N Aeiy = (—U)_N(N_l)/QTJ;m — (_1)N(N—1)/2,U_bi ZJ_ Jiejx @ @ ej,.

Here we used relations (3.4.7) and b; = b;. Therefore using this relation twice we obtain

Wieiy Ao Neiy = Zj(_l)N(N_l)/vaiyj\pzejN ®--- Qe

— b S ———
- Z ()Nl s, i © - B e

j2)"‘,jN

= (—1)(N*1)v“i<1>26i1 A Neiy = ()N Dy%dre, Ao Aeyy

O
3.4.2 The limit
Let us consider an inductive system of vector spaces
+1 ‘/’(277? +17\ ®2 @(372) 905\73)\/—1 +11\ON WS\TIH/+)1N
S_C'y* ——s_ (C"y*1) Ty S_(Cry*)TT —/—= ... (3.4.11)

with the maps 905\7;21 y(Ww) = w A eny_p. Denote the injective limit by A(;o;i (C"[y*1). Also let us
define maps cpggb)v(w) =wAeN_mAeNt1-m A+ Ner_1_m for R > N.

By gprn) = 90(()22\[: S_(C» [Yil])®N — Afii (C"[Y*!]) we denote the canonical map.

Definition 3.4.1. Action of (a sequence of) operators AV : S_ (C" [Yil])@v —S_(cr [Yil])®(N+6)
stabilizes if for any w € S_ (C”[Yﬂ])®k there is M such that for any N > M we have

m—+4§ m n m
PN s vs 0 AN (w) = AN+ 0 () () (3.4.12)

Note that if action of A(N) stabilizes, then it induces an operator A: AZOZ (Cry*) — AZO,ZM (Cry ).
Actually, the operator A depends on residue of N modulo n. We will omit this dependence in our
notation.
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Proposition 3.4.2. Let ASN) stabilizes and AéN) stabilizes. Then the composition AgN)AéN) stabilizes
and the induced operator equals the composition of induced operators AiAs.
Proposition 3.4.3. [LT00, Sec. 7.6] Action of bar involution stabilizes.

For any partition A with [(A) < N consider a vector
IAN) =e_xmmAergtri—m A Ae_xdr—1-mA€r—m A+ ANeN_1-m (3.4.13)

We will denote this vector as |\)n, if these indices were not clear from the context. We will write
|)\>oo,m = @izg\f’)ON,m
Lemma 3.4.5. For m — k+ |\| < N we have

[NT; (@E)) A envom = [N + 107 (10) Aewm) (3.4.14)

v

Proof. Let us introduce notation [A\) =3, . j  jyej, ® - ®e€jy. Then we have

LHS of 3414) = [N]/ (O Yo jnCia @ @ €jy) AeN_m

=[NIZ Y

In order to compute RHS of (3.4.14) we will use factorization formula

J25JN

Y-k, jin€ia N Nejy NEN—m (3.4.15)

j27"'7jN

1 N+1 _ N)
g(N+D) _ PN o) st
B N+ 15 2y (0) » V)=
Using this we obtain that
1 N+1 N-1
|)\> /\ eN—m e m (szl (_U)p+ Tp ..... TN) (ZJ yj e,jl ® e ® e,jN ® eN_m)
Here and below we use multi-index notation j = (j1,...,jn). For the action of T; - - - - - Ty we will use

formulas (3.2.6)—(3.2.9). Informally, the formulas say that under the action of T', the vectors either
remains the same, or permute, or approach to each other. Hence we get

N+ 1N Aevm = (X, (Z;V:l(—v)p+N_lTp e Ty 1y

(VVin=N-me; ® ... ®ejy_ @eN-—m®ejy + (U —v 1)e;®. .. ®ejyDen—_m)

+ (=) *Nyse5,®. .. ®ejN®eN_m)> + lower terms
N o
= (X2, (X2, (oot Ty e @ Bejy, Ben—mBey+
N
((—v)2N + szl(v - v_l)(—v)p+N_1(—U)p_N)yj e ®... ®ejN®eN_m>) + lower terms

— = ZNH Zj v =g Sir=N-m ((_U)quNfl +(v—vY) qul(_v)erNfl(_v)pqu)

q=1 p=1
Yjej ®...Q¢ej,_QeN_m®e;, @ ...Rej, + lower terms

N+1 N s _
= Z . Z v2r=q dir=N-m(_y)N Hyie,®. .. ®ej, 1 VeN-—m®e;j,® ... Xejy + lower terms.
q= j

Here lower terms stands for linear combination of terms e;; ® --- ® ej,, where [; < N —m, Vi. In

the computation we used (3.2.6)), (3.2.8) and relation T}, 3 3 yje;, ® ... ®ej, ,@en—m®e;,®...Qej, =
(—v)~t > Ve ® ... ®ej,_ ®en—m®e;,® ... Qe for p <gq.
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In order to compute RHS of (3.4.14]) we apply S(_N)Q>,*;. Due to Lemma the lower terms vanish
after S(_N). Hence we get

RHS of ([3.4.14])

N+1 N 5 Negil
_ Z N Z g Sir=N-m (_y)N =4 Yekorjornjn €ia/N -+ - N€j_  NEN—mAEj A ... NEjy
N+1
_ 2N+2 2
Z Z Ty_ Ejosenin€ia N s Nejy NeN—m
J25e-HJN
=INEY.  ykgmen@i A Ay Aen—m (3.4.16)
J25--IN

where we used Lemma to permute ex_,, to the right and Lemma to cancel out additional
lower terms. Comparing the formulas (3.4.15)) and (3.4.16)) we get the result. [

Proposition 3.4.4. Action of & and &} = [N} ®% stabilize.

Proof. Lemma imply, that action of ®;, stabilizes for N —m > k. Lemma imply that i),’;
stabilizes. O

Remark 3.4.1. We used Lemma in the proof above. But below in Section we will need a
refinement of this result. Let us introduce the following notation

(i)lyA)) = Z xﬂe_ﬂl-‘rl—m ARERIA e—uN_1+N—m—17 (3417)
I
(&)Z <|)\> 4 eN_m)) - Z xite—ul-l-l—m Ao Ne—pun+N-m; (3.4.18)
I

Then for (1) < N — 1 we have x, = 2/,.
The proof is based on the same computation as proof of Lemma We redefine lower terms as
terms containing only e; with [ < N —m. The action of S_ cannot give e_,, 11-m A= ANe_,yiN-m

with uny = 0 (i.e. terms containing ey _, ).

Proposition 3.4.5. The following operators stabilize

Uy, =(~1)No TNy, It =(—)N [Ny N (3.4.19)

Proof. Follows from the previous proposition and Lemma O

Let us denote the induced operators as follows

br: AL (CMYFY) = A (CMYEY) Wy AL (CYEY)) = A (CUYEY) (3.4.20)
i AL (CYFY) = A (CYEY)) b A (CPYEY) = AL (CMYEY)) (34.21)

Definition 3.4.2. Action of (a sequence of) operators AM): S_ (C" [Yil])®N —S_(C" [Yil])®(N+6)
weakly stabilizes if for any w € S_ ((C” [Yil])®k there is M such that for any N > M we have

m—+0 m m—+0 n m
PN 0 AR (w) = ) | 0 AN+ 6 S0 (w) (3.4.22)

Proposition 3.4.6 ([KMS95]). Action of operators by = Y +---+Y¥ stabilizes for k < 0 and weakly
stabilizes for k > 0. The induced operators By, satisfy deformed Heisenberg algebra relation

[Bk, Bl] = k[n]:kékﬂ,o (3.4.23)
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Example 3.4.1. The operators by = Y7 + - - - + Y do not stabilize. It can be seen from the formula

n—1
bieg Neg AN---Nen_1 = Z(—’U)keo ANet A+ Nen_1_p N~ ANeN_1 A EN—1—k+n (3.4.24)
k=0

Definitely, RHS of (3.4.24]) does not belong to the image of 905\9)an‘ Though RHS of (3.4.24)) belongs
to the kernel of gog\of). Hence Blgpg\o,)(el A-+-Nen—1) =0. Moreover note that

b_ibiegANer AN---Ney_1 = [n]jeo ANerA---Nen_1 + ker gog\?) (3.4.25)

B_1BiegAe1 A---Ney_1AN---=0 (3.4.26)

This means that composition of induced operators does not have to be equal to induced operator
of the composition (if the second operator weakly stabilizes). Also, this illustrates the fact that
[B1, B_1] = [n]}, though [b1,b_1] = 0.

Proposition 3.4.7. Let A( ) weakly stabilizes and A( ) stabilizes. Then the composition A( )AgN)
weakly stabilizes and the mduced operator equals the composition of induced operators A As.

Proposition 3.4.8. The following relaitons hold for all k € Z and j > 0

[B—ja qsk] = ék—njv [B—j7 ‘ilk] = \ilk—nﬁ [B—j7 (I)Z] = _(i)lt—nﬁ [B—j7 \IJZ] = _\ijz—nj’
(3.4.27)

[Bj, O] = Ppynj, By, Ui = 0¥V (B, 04 = —0¥"04 0 (B, Ui = —v H W5
(3.4.28)

Proof. Commutation relations (3.4.27) follows from (3.4.6) since B_; stabilizes. Also, one can check
that

[Bj, drlow () = 057 (b, @iJw) = 0§ (@psnjw) = Spynjply” (w). (3.4.29)

For the relation with U;, we use Lemma and [LT00, Prop. 7.8] that B; = v~ B, for j > 0.
Hence

[Bj, Wl|A) = (=D)N[o=2(n=D B; v~ (B ][A)
= (—1)Ny=2(n=1) x p=ax® &y XY = 0P DTN, (3.4.30)

here ay (k) equals to ay(k) — ”T_lN for sufficiently large NE|
The relation [Bj, ‘i)/f;] = —v2j”<i>’,; nj 18 Proven in Section m (Theorem . Finally,

[Bj, WJIA) = (=)N-1o=2 =D By vaa B dr][A)
= (—1)Np=2(=D+2jn s pan®dr L IN) = v Tf [N, (34.31)

O]

3.5 Semi-infinite construction of twisted Fock module I

In this and the next sections, we will provide an explicit construction for the action of Uy, 4, (gly) on
twisted Fock module FJ (Theorem|3.6.1]). This is the central result of the whole paper. Our method is

*We use notation ay (k) = ai(k) for i; = —\; +5j — 1 — m, see Lemmam
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semi-infinite construction. Namely, we will use explicit construction of C{ = C(” ") (Theorem
to derive explicit construction of 7 as a limit N — oo.

In subsection we will study the limit N — oo for the Chevalley generators (after a rescaling)
denoted by ]51(7];]), ]507];]) , and PE]PI; It turns out that the generators ]51(2[) and Pfjf)b converge for
lg'v?| < 1 and |¢~'v?| > 1 correspondingly. Therefore we can not obtain the action of whole
Ugi g0 (g[l) by straightforward limit argument. Though we prove that we do obtain actions of the
subalgebras Uy, 4, (gly) " and Uy, 4, (gl;) ™

We obtain explicit formulas for the limit of Chevalley generators. The formulas allow us to make
analytic continuation for general ¢ and v (subsection [3.5.3] m Also, we consider the formulas in the
case n = 1, n’ = 0 and show that the obtained operators give Fock module of Uy, 4, (gl;) (subsection
- We will prove for general n and n’ that the obtained operators give twisted Fock module of
whole Uy, 4,(gl) in Section

3.5.1 Finite case
It follows from the Corollary that

P =(-1)N"1g[N],S_rlYPS_, PU =(~1)¥1[N],S_vPrS_. (3.5.1)

Recall the representation C&n’nl) defined by (3.2.29)). Theorem implies that

Py =bi. P =" b, (3.5.2a)
i L nb—n')/n
P =)Vl a5 [N, ST R gy @ (3.5.2D)
kEZ
PUD =)V g5 [N, S ¢ 0 U (3.5.2¢)
kEZ

Note that for each vector w € S_ (C”[Yil])@v only finitely many terms at RHS of ([3.5.2b])-(3.5.2¢)
have non-zero action.

3.5.2 The limit for the right and left halves

Below we will construct an action Uy, 4, (gl;)* on Aoo/2 (C"[Y*']). Analogous results holds for

Ugi g0 (j[l)*. To simplify our notation, we will consider the case m = 0, and u rlbqn;;l =1. We

will recover these parameters at the end.

Proposition 3.5.1. The operators ]51(];[) = U%PI(ZZ) stabilizes for n' +nb < 0. The induced operator
keZ

For any vector w € Ajigz (C“[Yil]), only finitely many terms \i/kJrnurnbfi)’iku? are non-zero.
Recall the notation |A) introduces in (3.4.13). We will need the following lemma.

Lemma 3.5.1. U;_A®*,|\) =0 for A >0 and k > |\ + A.

Proof. Introduce notation |A) =} ;yjej, @ -+ @ ejy. Then

\Ifk_A(I)tk |)\> = Z Yk,...in41€2 /N N €jy N egp—A. (3.5.4)

j27"'7jN+1
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Consider the decomposition with respect to the basis |u)
Z Ykyojnys1Cia N N ejy A epn = Z Ty € N €—pot1 - N €y +N—1 (3.5.5)
J2,0JN B12 2

It follows from x,, .,y 7# 0 that || = |A] + A.
There exist a number t € {k,k+1,... N—1} such that ¢t & {ja,...,jn} for terms of RHS of (3.5.4)).

Then there is ¢’ € {k,k+1,...N — 1} such that ¢/ & {—pp+1 + &k, —ppro+k+1,...,—uy + N — 1}
Hence there is pis > 0 for s > k+1. Therefore k+1 < |u| = |A\|+ A, which contradicts the assumption
of the lemma. ]

Proof of Proposition[3.5.1. Using the notation from Propositions [3.4.4] and [3:4.5] we can rewrite
(3.5.2b)) as in formula (3.5.3]). Lemma implies that

[A|=1—n'—nb
N —k—nb—n' T X %
2PV W (e R JAY )Y (3.5.6)
k=—X\1
Propositions and imply that each term q(*k*"b*"/)/”\ilmnqnb(fik stabilizes. ]

Convergence Action of operators ]51(],2[) does not weakly stabilize for n’ +nb > 0. Therefore we will
need the following notion.

Definition 3.5.1. Action of operators A(N): §_ ((C"[Yﬂ])(gw — S_ ((C”[Yil])@N converges if for
any w € S_ (C" [Yil])@)N the following sequence converges for R — oo

o) g 0 ANHR) o ) (w). (3.5.7)

Remark 3.5.1. This is the first place in our article where we use that the base field is C, but not a field

of characteristic 0. Note, that Am/2 (C"Y*1]) is graded vector space with finite dimensional graded

components. Therefore the word converges’ is understood in sence of finite dimensional vector space
over C.

Actually all convergence will be just convergence of infinite geometric series. Therefore all matrix
elements at the end will be rational functions.

Lemma 3.5.2. \ilk+A+n<i>*_k_ng0§3)|)\> = v2\ilk+A<i>*_kg0§3)|)\) for A >0 and k > || —

Proof. Let A =nl—sfor s=0,...,n—1. Lemma implies that for k +nl > |A| + (nl — A) we
have Wi a®*,_ 0'V|\) =0, and for k-l > |\ —nl+ (nl A) we have U 2%, BioW|\) = 0.
Hence for k > |A\| — A we get using the Proposition m

0= (Bl Wiy a0 1N) = 020 (B agn® gy — 0?0y ) 901N (358)
We argue by induction on [. For [ = 1 the lemma follows from (3.5.8]). Then for j+n > |A| — (A —n)
0= [Br Wi asn® 0ol |0) = v [Br, Uyt Joi1N)
— p2(n=1) (\ifj+A+2n<i>i PP A ZIUNI LT TN j) SN, (3.5.9)
Relation 9) implies that for k > |A\| —
(@kﬂﬂncﬁik_m P20 A B+ (= Do ad k) SN = 0. (3.5.10)

The step of the induction follows from and ( m O
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This lemma will be useful to prove that series (3.5.14)) converges (essentially, this boils down to
convergence of a geometric series). The next lemma is a finite analogue valid before the limit N — oo.

Lemma 3.5.3. U a®*,|A) = 0v?Up_pn @, [A) for A>0, N—A>Fk>|\—-A+n.

Proof. Let i)*_k |A) = Zu Tpe_p+1 Ne_ppy2- - Ne—puy +N—1. We claim that

Wria <€—u1+1 Ne—ppy2- - N 6*MN—1+N*1) =0, ifl(p) #k+A. (3.5.11)

Indeed, if pgra = 0, then we get zero from the vanishing of tale ex1aA A--- Aen—1 A exra by Lemma
.4.2)
If pp+atr1 > 0 then there exist a number ¢t € {k + A+ 1,k + A+ 2,...,N — 1} such that

t€{—ppsn1 +k+A+1,...,—un—1+ N — 1}. Consider the expansion
\I’k—i-A (6—M1+1 A C—po+2 """ A e*ﬂN—1+N*1> = Z j1/17~--7VN€—V1 Ne—_pyt1 -+ A €—vNy+N-1- (3'5'12)
V12> 2UN

Then for each term on the RHS there is ¢ € {k+ A+ 1,k + A+ 2,...,N — 1} such that ¢’ ¢
{-Vhtat2 +k+A+1,...,—vy + N — 1}. Hence there is v, > 0 for p > k+ A + 1. Therefore
kE+A+1< |v] = |\ — A, which contradicts the assumption of the lemma. Hence the expression

(13.5.12)) is zero.
Therefore

\I/k—f—A(I)ikp\) = \Ifk+A< Z 'i",ue*m /\"'/\e—uk-;-A-i—k’-‘rA/\ek+A+1"'/\"'/\6N—1>

o l(p)=k+A
N, —2=L(N—-1 ~
= (—1) v on ( ) Z Tpe—py N Ne—ppatb+A Negrar1i Ao - Nen—1 A eggn
() =k+A
E4+A+1l N—-l—k—A—|N=1=k=A | n—1l/nr 1 ~
= (—1) Tatly, | n o ( ) Z Ty ey NNy a+k+ANCErANCELA+1IA - NeN—1.

ps L(p)=k+A

It was shown in Remark that the coefficients , are stable. Hence the product \i/kJrA(f*_k is
stable

0 T, T % e ~4 0
N v T a®T 1 IN) = Wi a7 o0 V) (3.5.13)
Hence the lemma follows from Lemma [3.5.2) O

1

Proposition 3.5.2. The operators ]51(];[) = U%Pl( v?| < 1. Moreover, the induced

operator ]51,1) equals

7];7) converge for |q~

Pry=> qhmmbmmdingy @7y (3.5.14)
keZ

In particular, the series at the RHS of (3.5.14]) converges.
Proof. 1t follows from (3.5.2b)) that

e I -
Pl(,b) = Zq( SIS TURINE (3.5.15)
kez

We know that each term in right side of (3.5.15|) stabilizes to the corresponding term in the right side
of (3.5.14]). Let us consider the vector

0 —k—nb—n' ~ 4
Wk, R = QOEV)JFTLR o (q( k—nb—n )/n\pk+n’+an)*_k> (6,)\1 Ne_x.4r—1 Ner N+ A eN_1+nR) (3.5.16)

Stabilization mentioned above means that wy, g stablilizes for any fixed k and R — oco. Now the
proposition follows from the following statements
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(i) wg,r =0 for k < —X\;

(i) wgr = ¢ "W?wWg_p g for N+nR—n'—nb>k> |\ —n'—nb+n

(iii) wgr =0 for k > N +nR —n' —nb

Statement is obvious. Statement (fii) is equivalent to Lemma m For the statement note

that terms containing eg,/1np vanishes after gog\%rn g for such k). O

1

In the rest of this subsection we will assume |¢~'v?| < 1. In order to study relations on ]51,1,2

defined above we will need the following Proposition.
Proposition 3.5.3. The operators pl(]li) . ,ﬁ(N)ﬁl(]g[l) converge to Pu,t e Pl,bzlfﬁ,bl.

Proof. Denote

V) = ey Ne—por1 Ao Nepyqr—1 Aer Ao ANeN—s—1 NeN—stu, =  NEN—241p NEN—141,- (3.5.17)

In particular, |u, @) = |u). Let

N
Ve Z ) + 3y |, 9) (3.5.18)
1,0
In the first sum we have |u| = |\| + n + n’b. In the second sum we have || — |P| = |\ + n + n'b and

0 < |7| < n+ n'b. Note that only finitely many diagram g, i and U satisfy this conditions.
Lemma 3.5.4. The coefficients yl(lj\;) tends to 0 for N — oo.

Proof. Note that

N-1
Sy 1, ) S TG @A) (3.5.19)
0 k=N-—n'—nb
Also, we can see that
N—1—k
N =)y #A Ve iy ANe_mrt A Aegra A Aen—i (3.5.20)
A=0

To study the coefficients y( M) we will use the following trick. Let us act by Wi on (3.5.20). Using
Lemma, we obtain

~, kA | No1-k—A | (B N)
Wi a®” [ N) = (o) VIR T PRI ) (3.5.21)
Recall (3.4.19)). Denote cy = (—I)NU_nT_lN. Then we have

~ ~ N—1—k—A ~
Wiy a® (| A) = (—o)N IRy R ey ) (3.5.22)

Denote ?gkgv) = (—o)N-1-k=A o R AJcN 1y( M) Note that Lemma [3.5.3 and stabilization

relation (3.5.13)) imply

~(k+n,N+ ~(k,N+ ~(k,N
Fuam Nt = o2yl = o2y, (3.5.23)
Then cy_ Hny(kJr" NAn) _ v2en_ 1Y§1 N) . Hence y( +n) _ q_1v2yf~l D). This finishes the proof since we

have assumed \q L2 < 1. O
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Let
~(N ~ ~(N
P, 8y =" M)+ 5 e ) (3.5.24)
Y €,0

Lemma 3.5.5. The coefficients it(WN) and gjgg) are bounded.

Proof. In case of empty 3, the lemma follows from Proposition and Lemma Below we will
deduce the general case from the case of empty 5.
Recall the operators b, see (3.4.5). Note that

|, B) = Z Zjtegipbin - - 0t |P) (3.5.25)

J1see-J15P

Moreover, the coefficients 2, , does not depend on IN. Then lemma follows from the commutation

relation [b;, Pfg)] = (¢ — 1) Pl( blg u
Let
5 N
P PRIPEIN =" a 10 + > 0y In, 0) (3.5.26)
¢ 7,0

Lemma 3.5.6. The coefficients @%) tends to 0.
Proof. Follows from Lemmas and by induction on t. O

Let us proof Proposition by induction on t. Let

~(N ~(N N N) -~ =~
Pl Py IN) = Zw( 10+ >0t 1. 6) (3.5.27)
Y
Pip - Py oIV =Zx5¢N €) (3.5.28)
¢

Note, that 90 |17, 0) = 0. Hence the assumption of the induction says that JJEN) tends to T Then
Lemmas [3.5.5] and [3.5.6] imply that

. 0) 5(N) N 5 5 0 . N
Jim. (gagv)Pf’bt. AN - Pl’bt...PLbl(ng)])Q)ZA}gHOOZy%é)SON ln,0) =0 (3.5.29)
7,6

O]

Now let us drop the assumption u wlzqngll =1

Theorem 3.5.1. For |¢~'?| < 1 the following formulas determine an action of Uy, 4, (gl1)T on the
space Af:fl (Cry=1)

c—uv " (3.5.30a)
, ¢ -1 .
. J . . - mp.
P07_] = q B_], P()’J '—)U_zjqj — 1’U BJ, (3530b)
1 n+l R R A Ay
Py Py=ungen Y qF gy 00y (3.5.30c)
keZ

forq1=q, ¢ =v2.
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Proof. In this proof we will denote by P ; and P; j the images, prescribed by (3.5.30b)) and ([3.5.30c)).
The proof is verification of relations (3.3.6a)), (3.3.6b)), (3.3.6d|), and (3.3.6h]).

Relation (3.3.6a)) follows from ((3.4.23])

[Po,5> Po,—5]

(1= )" — o)
(0 —qv)(1—v )
Equality in (3.5.30c) was proven in Proposition m For relation (|3.3.6b)) we will use formula
with vertex operators and Proposition [3.4.8] For example, for 7 > 0

- m”ﬁ"‘f [Bj, B-j] = j (3.5.31)

_1 ntl L ) ~ A, . .,
keZ
A B . ‘ 4
e mv jn (q]Q}QJ(TL 1) — Q}2]n) P].,b-’r] e (q-j _ l)vjnp]_7b+] (3532)

Relations (3.3.6d)) and (3.3.6h]) follow from Proposition and Corollary Here we definition

of Py as a ]5171, (i.e. interpretation as the limit of Pl(]l\;[))'
O

Theorem 3.5.2. The operators pﬁjf)b = QF%PEJY)I) converge for |qu=2| < 1. Let ]5_1’1, denote the

induced operators. The following formulas determine an action of Uy, 4,(gly)~ on Ajﬁ (Cry=h)

c—u " (3.5.33a)
P()’_j —q B_j P(),j H*U_quj — 11) Bj (3.5.33]2))
Poyy 0 Py = ung'm v RV TR (3.5.33¢c)

keZ

forq1=q, g =072

Sketch of a proof. The results of this Subsection have a counterpart for P_y;, the proofs are analo-

gous. Relations (3.3.6¢|), (3.3.61) hold for both ]3_171, and v_”bP_Lb. Proposition implies relation
(3.3.6¢)). For example, for j > 0

1 n-1 _ q] -1 —q z Tk x T, %
[Po,ja P—l,b] =unq v nbm“ mn qu/n([Bja Qpr |V, + (I)k:—n’-l-nb[Bja W—k])
kEZ
¢ —1 i, —2 j
O
Currents For a = 0,1,...,n — 1 let us define the following currents (i.e. operator-valued formal
power series)
(i)(a)(z) :Z(i)a—i-nkziky \ij(a)(z) :Z‘ila—i-nkzika (3.5.35)
keZ keZ
bf(2) =D ", Uiy (z) =) 0t 2™ (3.5.36)
keZ keZ
Then (3.5.30c]) and ([3.5.33¢c|) can be reformulated as follows
_1 ntl _a poafn » ~
E(z) =u"nq Z g nz o Wi (g2) (s (2) (3.5.37)

a—pB=n' mod n

F(z) :u%qnﬁl Z q%zﬁ_if” (i)(a) (vj"z)\ilz‘ﬁ) (qui"2) (3.5.38)

a—pB=—n' mod n
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3.5.3 Analytic continuation

It follows from Lemmathat the series applied to any vector |\) gives infinite geometric
series, which can be written as a rational function. This is analytic continuation from the region
lg~*v?| < 1 to arbitrary g, v.

Another way to say this is just rewrite

—k—nb—n’ 2 1 —k—nb—n' 2 2 _92a 2
Z q " \I’k+n/+an)tk = 1_71}_2 Z q " (qjk+n’+nb¢)ik - 2\Ijk+n’+nb+nq>*fkfn) :
keZ q kEZ
(3.5.39)

Lemma implies that for any vector |\)s, only finitely many terms of RHS of (3.5.39)) does not
annihilate |\). Hence the sum is well-defined without the assumption |quv~—2| < 1.

Proposition 3.5.4. The following formulas determine an action of Uy, 4 (al)t on Ac;of1 (Cry 1)

c—ov " (3.5.40a)
Po_j— ¢ B_ Py L= g, (3.5.40Db)
0,—7 q D 0,7 mv j 0.
_1 nd1
U nq n —k—nb—n' A 2 4 D 2
PN =1— = g (‘I’k+n'+nb‘1’—k —v 2‘1’k+n'+nb+nq’_k_n) A) (3.5.40c)
- keZ

forq=q, ¢ =v72
Proof. Note that (3.5.40c) is an analytic continuation of (3.5.30c|). The relations hold after the analytic

continuation. O

The above construction can be reformulated in the language of currents. Namely, the following
current is well-defined

. . 1

Y (a)(q2) @5 (2) (3.5.41)

(1= v72w/2) ¥ o) (w) (4 (2)

T

w=qz

Using this notation, we can use ([3.5.37)) without the assumption |gv~2| < 1. Analogously, the following
current is well defined

. 1

D) (V" 2) W5 (qv"2) = (1= 0%2/w)d () (V" 2) Uy (v w) (3.5.42)

— g 1y2
1 q v w=qz

We prefer to use the current form of the formulas. The next proposition is a counterpart of Proposition
for Ug, 4,(gl;)”. We omit not-current form version.

Proposition 3.5.5. The following formulas determine an action of Uy, 4, (al)~ on A(;o;i (Cry*1)

c—ov " (3.5.43a)
Py_j— ¢B_ Py —L =L g, 3.5.43b

0,—j = 4" B 04 7 v g — 1" j (3.5.43b)
F(z) — ung's Z quﬂ_i_n @(a) (vnz)\ilz‘ﬁ) (qu"2) (3.5.43c¢)

a—pB=—n'/ mod n

forqr=q, @@ =v"
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3.5.4 Examplen=1
In this case [By, Bi| = kép110. The space A(;o;z (C[Yil]) is Fock space for the Heisenberg algebra.

Namely it has a cyclic vector |m) = e_,; A e_mi1 A ... such that Bglm) = 0 for £ > 0. Let us
oo /2

consider an operator e*@: Af;z (CIY*) = AL .41 (C[Y*!']) determined by etm) = |m + 1) and
[By, et?] = 0.

Proposition 3.5.6. The operators ®(z), ¥(z): A (ClYy®)) — Ai/,iH (C[Y*Y]) are given by

v,m

B(2) = U(z) = exp (Z ’ > exp < Z Bk> @ mtl (3.5.44)

The operators ®*(z), U*(z): A (ClY=']) — A (C[Y*!]) are given by

v,m v,m—1
. 0 2k Hk < - —0.-m
O*(z) =exp —Z ? B_j | exp Z TBk e %z (3.5.45)
k=1 k=1
. o ~2k k © —k
U*(z) =exp | — Z : B_j | exp TBk ey m (3.5.46)
k=1 k=1
Proof. Follows from Proposition O
Then
R ., wMz—m o ,wk: _ 7)2ka 0 ka o wfk
U(w)P*(z) :m exp (Z TB_;C exp Z TB;C (3.5.47)
k=1 k=1
N R oMoy =M o Zk . ,U—kak 0 w—k o Z—k
* _
k=1 k=1
Substituting this to (3.5.37)) and (3.5.38)), we obtain
-1, m+1 x  k 2k © —k
_vuT g q" —v k 1—q —k
E(Z) —m exp (Z TB_kZ ) exp <Z L BkZ ) (3549)
k=1 k=1
v lug™ 0k _ ghyk i > vk(gh — 1) L
k=1 k=1
The following proposition is [FHHT09, Prop. A.6].
Proposition 3.5.7. Formulas (3.5.49), (3.5.50) and
1 , ¢ -1 Cin
CH— v P07,j = qJB,j P()’j »—0 Bj (3551)

v2gl —1

determine an action of Uq, 4, (g-;.ll) forqr =q, gg =v2.

For m = 0 we will denote the representation by F,

Remark 3.5.2. Note that Proposmlonsnand- guarantee only existence of actions of Uy, 4, ( g[l)
and Uy, 4, (g[l)_ separately. Remarkably, the actions of Uy, 4,(gly)™ are restrictions of the action of
whole Uy, 4, (g1;). Below we will prove the same result for general n.

The obtained representation is celebrated Fock representation of Uy, 4, (g[l) It was constructed
in [FHH09| via formulas (3.5.49), (3.5.50) (up to different notation). Though, for the best of our
knowledge, the interpretation via the operators ®(z), ¥(z), ®*(z), and U*(z) is new.
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3.6 Semi-infinite construction of twisted Fock module 11

In the previous section, we have obtained actions of Uy, 4,(gl;)t and Uy, 4, (gl;)~ on AZOGQ (Cry ).
In this section we prove that these actions (after a simple rescaling) give action of the whole algebra

Ugi g0 (ﬁ[l) We do not check directly the relations m ) due to technical difficulties.

( Y

We prove that the defined below operators P, stabilize for an’ 4+ bn < 0 and general ¢ and

v. Therefore we obtain a representation of the corresponding subalgebra Uy, 4, (g.;.ll)/ C Ug g (g';'ll)

(subsection [3.6.1)). We extend the action to the whole Uy, 4, (gl;), the obtained representation is

isomorphic to twisted Fock module F7] by construction. Then we compare the obtained action
oo /2

Uy o (gl) ~ A 0 (C"Y*1]) with the actions of the subalgebras Uy, 4, (gl)*.

Recall that the actions of Uy, ¢, (gly)* are determined by explicit formulas for Chevalley generators
(Proposition [3.5.4] and 3.5.5)). Hence we get explicit formulas for the action of Chevalley generators of

00/2

Uy .0 (gl1) on Av o (€ [Y*1]), the obtained representation is isomorphic to twisted Fock module FJ
(Theorem [3. . This is the central result of the whole paper.

3.6.1 The limit for the bottom half

Existence of the limit Below we will use the results of Sections and Recall that m, m’
are integers such that nm’ —n'm = 1 and 0 < m < n, 0 < m’ < n/. Recalll also definition of

o € SL(2,7Z) in Section

Lemma 3.6.1. a) The operators v P,gm) ey Stabilize for k € Z~g .

b) The operators kaP,gn) oy — U PR G ZZ L(02q7 1) stabilize for k € Zy.
¢) The operators v *NP_p, pn —u vkq_k ZZ (072 for k € Z stabilize.

Proof. a) The formula (3.3.12a) and SL(2, Z)-transformation properties of the Pa(];f) generators imply

N N
PIEZ,)—km’ =0 (Péji)k) =¢"S_> o (V) TFS_=4"'S_> A;s_. (3.6.1)
i=1 i=1

Note that Zf\i 1A ¥ commutes with finite Hecke algebra and, in particular, with S_. Hence

P]ﬁ et |A) = =q" Z S_ A 6 MOl 1@ @ €N71) (3.6.2)

We decompose the proof into two steps.
Step 1. First we show that i-th term in (3.6.2)) vanishes for i > |A\| + k. Denote

A;k (e_)\l Re_xt+1® @ eN—l) = Z Cj1,jnin @ - R ey (3.6.3)

J1ssJN

For a sequence {j1,...,jn}, we will say that a number risaholeif0 <r < N—landr ¢& {ji,...,Jn}.
Let us prove that for each summand in ) there is a hole r > i — 1.

We will use the formula Note that the operators ; CGilmc K; CGilnc, and k; preserve
the existence of a hole with posmon > 4 — 1. If there is no Such holes operator Kk; must create one.
Hence the operator Ai_k must create a hole.

Let us also denote

S_AZ-_Ig (e,)\l Re (tr1® Q& eN_1) = Z Culpy Ne_ppr1 Noo- Neny_q (3.6.4)
H1Zp22. ..
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Note that |u| = |A| + k. Existence of a hole r imply pr+1 > 0. Hence |pu| > r+1 >4 > |\ + k.
Hence the sum runs over the empty set, i.e. S,A;k (e_>\1 Re_y+1®--® €N—1) =0.

Step 2. It remains to study the terms in for small i. If we replace N — N + n and use
again formula , we get mk additional factors of the form x; “Gi n11 ... Gi NynkS. Each of this
factors acts diagonally with addition of the terms with holes r > N. As before, such additional terms
vanish after the action of S_. The diagonal part acts by v="* by the formulas f.

b) The proof is similar to the previous one. Using formula and SL(2,Z)-transformation

property, we obtain Pk(ﬂ]y)—k:n’ =qFS_ Zf\il Bi_kS_. Then
N
NP IN) =g v"“NZ S_B; " (e—x, ®e_x41® - ®en_1) (3.6.5)

We have two steps as in the proof above.
Step 1 Let i > |A]. Hence \; = 0. In order to compute i-th term in the sum we use the
formula . Each triangular operator of the form &; CGﬂ/@C, K; CGillic actson e_y, ®e_x,41 ®
-Ren_1 dlagonally with addition of the terms with holes T Z 71— 1 Terms with holes vanishes after
the action of S_. The diagonal contribution was computed in the proof of the Corollary [3.2.3] Hence

the i-th term in the sum (3.6.5)) is equal to

N 41—
kka(uo---un—lql "ol g Ait 1) k(&)\l ®ef,\2+1®~~-®61\/—1)
—uky kq2k(v q )ik(e_)\l®€_)\2+1®...®6N71)

q

where we used 1( =N 4+ 1 — 2¢ and convention ([3.2.29)).
Step 2. The same as above.

c) Using the formula (3.3.12b)) and SL(2,Z) invariance of the P, generators we have PEJZT)LM, =
S_ Zfi  BES_. The remaining proof is similar to the proof of b). O

Proposition 3.6.1. The operators U%Pé?j) stabilize for an’ +bn < 0.

Proof. 1t follows from the commutation relations that any P,;, € Uy, 4, (gl;) with @ > 0 can be
represented as algebraic combination of Pj g, its commutators with Py, for b € Z and also ¢,c.

Using SL(2 Z) symmetry we see that any element Ppp € Uy, g0 (gl;) with an’ + bn < 0 is algebraic
combination of P, _,, its commutators with Py, _4,/, b € Z and ¢, ¢/. To finish the proof we use

Lemma [3.6.1] O

Remark 3.6.1. a) This proposition gives another proof of the Proposition
b) The additional series > 2, (v2¢~!)* which appears in Lemma [3.6.1b) converges if |[v2¢~!| < 1.

This is in agreement with Theorem |3.5.1

For an’ + bn < 0, let P(N) = U%Pélp. Denote stable limit of PCE]Z) by Pa,b- Similarly consider
operators
”(N) oFN pY ) LT N L uFokgh
p(V) kN pY) —k “2g)ik uky =k
P—kn kn' P—kn kn' Z 1 . (’U 2q)k (367)

Denote by P;m _kn and P_;m ks Stable limit of P( ) ey and P(k) gy Let Uq17q2(g"[1)/ be a
subalgebra of Uy, 4, (gl;) generated by P, for an’ +bn < 0.
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Proposition 3.6.2. There is an action of Uy, 4, (g?[l)/ given by

c—v " o, (3.6.8a)
P,y Poy for a >0, (3.6.8b)
Pyp — v_”b_”’“]:’mb fora < 0. (3.6.8¢)

Proof From the limit arguments we see that operators P, b satisfy relations of Uy, 4, (gly)< for ¢ =
¢ = 1. It remains to show that formulas (3.6.8b)—(3.6.8d) defines isomorphism of Uy, 4, (g1))<

and Uy, 4 (g[l)/‘

|c:1,c’:1

/.
c=v~ " /=y

—~— J— , J—
Let & be an element of SL(2,7Z) such that corresponding matrix in SL(2,7Z) is <WZ n) and
nz(0,—1) = 0. Using the formula (3.3.2) we see action of & induces an isomorphism

Ugnaz(80)7 oy oyt = Uaraa (00 V] (3.6.9)

In the region an’ +bn < 0 the winding number ns(a,b) = 0 for a > 0 and ns(a,b) = 1 for a < 0, hence
the formula (3.3.3) for the action of & on P, ; generators gives

P_a_ / f >0
T o= (3.6.10)
e an’afnb,m/aerb for a <0
Similarly & induces an isomorphism between Uy, 4, (Q'[l)/‘c:m,:l and Uy, ¢, (‘g“[l)—i_‘c:l?c’:l
Pa,b = P—n’a—nb,m’a+mb- (3611)

Since the relations of Uy, 4,(gl;)" does not include ¢/, there is an isomorphism of Uy, 4, (j[l)*‘

and Uy, 4, (gull)ﬂczl w—1 Which acts Py p — Py for any a > 0 and b.
To sum up the above, we have obtained a chain of isomorphisms

c=1,c/=v

Ufh#]z (g“[l)/‘c:v—n@:vfn’ ; UQMD (g“[l)—i—‘czl’c/:v ; Uqu]z (g.[l)—‘r}czl’c/:l l> U<117Q2 (g"[l)/|c:1,c’:1'

To finish the proof we notice that the composition indeed is given by (3.6.8b)—(3.6.8¢)). O

Denote the obtained representation by .7-'73/ .

Connection with twisted representation Below we will give an alternative interpretation of fu/
as a version of twisted representation. To do this we need to introduce the following notions.
Let Uy, 4, (gl;)* be a subalgebra of Uy, 4, (g[l) enerated by P, for b < 0. In Subsection we

have constructed action of Uy, 4, (gl;) on Av 0 (C[Yﬂ}) Denote its restriction to Up, 4, (gl by p1.
On the other hand, let us consider partlcular case n = 1 and n/ = 0 of Proposition [3.6.2 It gives a

priori another action of Uy, 4, (gl;)* on AOO/2 (C[Y=!]). Denote it by ps.
Lemma 3.6.2. The actions p1 and p2 coincide.

Proof. Let us prove p1(Pap) = p2(Pyp) for a > 0. The operator U%PCEJZ) converges to p1(Pyp)

for [v2¢~1| < 1 by Proposition [3.5.3l On the other hand, operator P(N) stabilizes and the induced

operator is pa(P,, b) Notlce that for |v?2¢~!| < 1, the limits of v P( ) and P( ) coincide (even for

an’ +bn =0, see (3.6.6)—(3.6.7)). Hence p1(P,p) = p2(Payp) for [v?q 1\ < 1. Slnce matrix coefficients
of p1(P,) and pg( A b) are analytic (even ratlonal) functions of ¢ and v, we have p1(Pnp) = p2(Payp)
for any values of ¢ and v.

The case a < 0 is analogous. Note that prefactors in formulas (3.6.8c) and (3.5.33c) agrees for
n=1n"=0. O
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Let Fi be the restriction of Fock module F, to Ugi g0 (gj[l)i. Recall that o is an element in

SL(2,7) such that Upao(8h)< = o (UquqQ(g}[l)i). Recall the formulas (3.3.2) and (3.3.3]) for the
action SL(2,Z) ~ Uy o (011)-

Lemma 3.6.3. For b <0, the element 0(Py}) acts on ]-'u/ as

L) NN fora>0or 2b>a (3.6.12)
n

v_(”"(1’0)+1)ana,mb7,n/a+m/b otherwise (3.6.13)

Proof. In this proof we assume b < 0. One can check that the winding number is given by

1,0 fi >0 or b >
ny(a,b) = no(1,0) ora=Tornb=a (3.6.14)
ne(1,0) +1 otherwise
To finish the proof, we notice that the element (¢/)"*~ ™ ¢=7'a+m’d acts on F as vt O

Proposition 3.6.3. There is an isomorphism of vector spaces 1/3: .F,f — .7-"7‘{ such that 1& ntertwine
the actions. More precisely, o(X)dw = 1 (Xw) for any w € Fy and X € Ugr.o (80

Proof. Note that Fy is a free cyclic module over the algebra generated by Py _j, for k € Z~ with cyclic
vector |0) = eg A e A.... Analogously, FZ s a free cyclic over algebra generated by o(FPy ) with
the corresppndin cyclic vector |0). Hence there is an isomorphism of vector spaces 1]1: .7-'& — ]:u/
such that ¢(]0)) = |0) and ¢ satisfy the intertwining property for X = Py _j.

It remains to prove that the intertwining property holds for any X € Uy, 4, (g}[l)i. To do this
we will need the following notation. Let Fy[< k] and 7 [< k| be subspaces, spanned by |A)s for
IA| < k. Analogously, let S_ ((C[Yil])@N [< k] and S_ ((C”[Yil])@N [< k] be subspaces, spanned by
NN =e€_x; Ae_xy41 A--- Aen—y for |A| < k. Let us consider the following diagram

(1]

S_(Cly+ )V [< k] -2 F< K]

ld; Jw (3.6.15)

S_ (Cry=))*N [< &) i FL < k]

Recall that we used notation (prn) for the canonical map from the definition inductive limit (see
subsection [3.4.2). In this proof we omit superscript (m) since we consider only the case m = 0. We
denote the corresponding maps by Lp%,] and Lp[ﬁ] to distinguish the first and the second rows of .
Note that here we have used interpretation of Fi via p2, see Lemma m

The map ¢ induced from the isomorphism 1 CJ — C(un’n,), see Theorem More precisely, it
is determined by

D0Y N = [0) p e (L0 (P(if?) § =P (3.6.16)

Also, note that we abuse notation using the same symbols for maps with and without restriction to
corresponding [< k] subspace.

Lemma 3.6.4. Diagram (3.6.15)) is commutative for any (fized) k and sufficiently large N .

3Here and below we use the same notation for vectors in Fy and F% . Hopefully, this will not lead to a confusion.
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Proof. One can verify that the operators cp ¢ and ¢g0 for sufficiently large NV

[n]¢|0> =|0) U(Pofl)SDEG}”L/NJWN =l 1/JP VAN (3.6.17)
bl 10yn =0) o (P ) i) =0 BN (3.6.18)

Actually (3.6.17) and (3.6.18) are the same property for the operators gp[ﬁ} 1/; and 1[190%] correspondingly.
To finish the proof we note that the maps <p 1,/) and 1,Z)<,0 are determined by the property. O

Let us prove that o( ab)¢|)\) = Pop|A\)) for b < 0. Let us take k large enough such that
Pop|A\) € Fi[< k]. Then we take sufficiently large N such that diagram (3.6.15) is commutative and

o P ])\> for a > 0

3.6.19
-0 [”P » |A)n  otherwise ( )

Fa b‘PN ‘>\> {
Note that here we used the interpretation of the action as po, see Lemma Also we take N large

enough such that
P(N) A fora >0
Pape i ) { P (3.6.20)

v b [n]P b |A)N  otherwise

Using Lemma [3.6.3 we obtain

e (L0B I pIV) AN fora>0
o (Pup) PN )N {v (mo (L0 1)b %Pz);a:nim),b‘)\m otherv_vise (3.6.21)
It follows from the above
0 (Pas)d|Noe = o (Pl on N = 0(Pap)o 01N v = -+ = §Puso AV = 9 Pasl V) e,
here dots stands for the omitted steps involving the cases (straightforward to write down using ,
[B51), and (B519). 0

3.6.2 Action of the whole algebra

Theorem 3.6.1. The following formulas determine an action of Uy, 4, (gly) on AZOSQ (Cry+)

i

c—uv ", o, (3.6.22a)
: J .
PO,—j — qu_j, PO,j — mv ]nBj, (3622b)
_1 nt1 _a BfaJrn/ A~ 2
E(z)—»u ng2 Z g nz o Viay(gz)P(s (), (3.6.22¢)
a—pB=n’ mod n
F(z) »ungmo™ 3 ghTw T (0" )05 (qv"2). (3.6.22d)

a—B=—n' mod n

for g1 = q, g2 = v~2. The obtained representation is isomorphic to twisted Fock module Fo.

Proof. There is an action of Uy, 4,(gl) on Aiigz (C"[Y*!]) determined as follows. Recall that we have
defined a map 1 from Fy to Aj{f (Cry#l]) = F¥ . But there is an action of the whole Uy .00 (gl1) on
co/2

Fu, which coincides with Fy as a vector space. Hence, for any X € Uy a0 (1) and w € Ao (Cry 1)
we can define pg,(X)w := Yo PF., (U*I(X )) o p~lw. The representation obtained is isomorphic to
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twisted Fock module FZ. In particular, formula (3.3.2) for 7 = o~! implies py,(c) = v™™ and
p(¢) = v~ It remains to prove that the action py, is is given by (3.6.22b)(3.6.22d).

Note, that now we have two actions of Uy ¢, (gly)*" on Aigg (C"Y*!]). The first one comes
from Proposition let us denote it by p4. The second one comes from the restriction of p, to

UQ1 »q2 (g“[l ) + .

Lemma 3.6.5. p(Pyp) = prw(Pap) for n'a+nb <0 and b> 0.

Proof. Analogous to proof of Lemma [3.6.2 O

Lemma 3.6.6. The actions py and ptw|Um2 )+ coincide.
Proof. We use notation |m) = e_y, Ae_py1 A ... We will simply write P,y = p4(Pap) = prw(Pap)
for na+nb<0and b > 1.

Any vector of Aig ((C” [Yil]) is a linear combination of vector P,, p, ... Py, p,|m) for n’a;+nb; < 0
and b; > 0. The following proposition is [BS12b, Lemma 5.6].

Proposition 3.6.4. Algebra Uy, 4,(gl)" has a basis Py, , ... Py, for 11?11 < ,2—22 < < ,lc—’i

Hence action of Py € Uy, q, (gull)Jr for 'k + nl > 0 is determined by commutation relations in
Ug,q2 (1) and the conditions P jjm) = 0 for n'k +nl > 0. O

Let us denote by p_ the action of Uy, 4, (g}[l)_, coming from Proposition m The following
lemma is analogous to Lemma |3.6.6

Lemma 3.6.7. It holds p,(P,p) = v*“”/p_(Pa,b).

Proposition imply that ps, (E(2)) = p+ (E(2)) is given by (3.6.22¢|). Analogously, Proposition
m imply that pp, (F(2)) = v~ p_ (F(2)) is given by (3.6.22d). To find the action of py, (P ), one
can use either py or p_. O

3.7 Standard basis

As was already mentioned in the Introduction, one of the motivations of this paper is Gorsky-Negut
conjecture on stable envelope bases in equivariant K-theory of Hilbert schemes of points on C? [GNT7].
Let us recall this conjecture.

We use notations n,n/,m, m’ as before, see Section The Fock module F;, as a vector space
can be identified with space of symmetric functions A using the correspondence py <+ Py _, for k > 0.
Hence the twisted Fock module F;] can be identified with A using correspondence py <+ Py, —gm/, for
k> 0.

There are several classical bases in the space A, e.g. Schur basis. Another important basis consists
of symmetric Macdonald polynomials P, and renormalized ones M), see [Negl6b, Sec. 2.4] and
references therein. On the other hand, it was shown in Lemma that the action of Py, gy
stabilize in |A)y. Hence the vectors |\)o, form basis in A. In order to identify this basis with stable
envelope basis it should satisfy the following properties.

(i) |\)eo are integral, i.e. they can be expanded in Schur basis with coefficients in Z[g*!, v*1].

(ii) |A)so are triangular with respect to dominance order “<” in M) basis

(iii) The coefficients ¢y (q,v) in the expansion |A)o = > ch (g, v) M, satisfy “window” condition.
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We do not write precise form of window condition since we do not use it here.
Actually the conjecture in [GN17] was posed in a weaker form, namely it was stated there exists

identification of AS*/? (C"[Y*1!]) with space of symmetric functions A such that image of the basis |\)
satisfy properties f and similarly for |A). In this form the conjecture was proven in [KS20D]
using 3d mirror symmetry. Above we conjectured additionally that this identification comes from our
Theorem [3.6.1]

We prove properties (i) and using analogues properties of the (nonsymmetric, finite) basis
ey = ey, ® - ® ey, shown in Section The proofs are always consist of two steps: first we apply
S_ and then take the limit N — oco. We believe that property can be also deduced from some
analogue of window condition for basis ey.

In agreement with notations of Section [3.2] let us denote
E_r—p =€) De_) 41 D - @eN_1. (3.7.1)

When we want to stress number of variables we write e_x—, y. Clearly we have M) N =S_e_x_,nN-
Similarly, we use notations Ay n, £y y for monomial and Macdonald bases in space (C" [YE)ON of
functions on N variables, see formula (3.2.26)) and Corollary correspondingly.

Theorem 3.7.1. The basis |\) oo is triangular with respect to My basis.

Proof. 1t follows from the definition of En, ~ (see Corollary j that we have the decomposition

€ A-pN = Z BrnEnN- (3.7.2)
n=X=A—p

Note that here n is a composition, not a partition. Let us apply S_ to both sides. To calculate the
action of S_ on RHS of (3.7.2)) we need certain preparations.
It follows from the formulas (3.2.22)) that

N . N 8
(Zizl Bi)S—En,N =Uup-.. .U,N_lqlin(zizl q"’vl?) S—En,N, (3.7.3)

where we used commutativity of > B; and finite Hecke algebra H. This formula does not depend on
order of parts 7;, hence without loss of generality we can assume that n; < ny < --- < ny. Then the
eigenvalue takes the form ~ 3 ¢"v 2! where ~ stands for factor that does not depend on 7.

On the other hand we can use Theorem and identify (C"[Y*))®N with (C[AT])®N. It
is known (see e.g. [Kir97, Sec. 7]) that all eigenvectors of > B; in S_(C[AT!])®N has the form
P,n(A7Yq,qu2) A Here p= (w1 > po > -++ > un) is a partition (possibly with negative parts),
PMN(A*l;q,qU*Q) is a symmetric Macdonald polynomial on N variables Al_l, .. .,A]_\,1 and A =
ﬁ [Tic;(vAi — v~14;). The corresponding eigenvalue has the form ~ >, ¢ (¢ 'v?)~" where ~
stands for factor that does not depend on p.

Comparing two formulas for eigenvalue, we see that composition 7 should be related to partition
p by the formula p; = —n; +4 — 1 and in this case S_E, v ~ P, n(A71;¢,qu?)A, here ~ is some
constant depending on n, v, q. In particular if some parts of n are equal then there is no such partition
pand S_FE, v = 0. For the expansion , it follows from v < —\ — p that parts of y are nonegative
and p < A. Therefore we get

My = BauPun(AHA. (3.7.4)
H<A
Taking the limit N — oo, we get the theorem. O

Theorem 3.7.2. The vectors |\) o are integral.
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Proof. 1t follows from Theorem that we have expansion

€_\—p,N = Z 54)\77714,771\7, (3.7.5)
n3=A=p
where @, € Z[qT!, vt
integral.

Introduce usual (not v-deformed) antisymmetrizer S*=! = % S (= 1)H®)pA  here summation goes
over all permuations and w® permutes the operators A;. It was shown in [Kir97, Th. 8.2] that
Ker SU=! = KerS_. Hence the vector S_A, n is skew symmetric in 7;. Therefore it is sufficient to
consider the case m; <72 < --- <N

Introduce partition p by the formula p; = —n; +i — 1. We have S_A, y = fu(A_l).A for some
symmetric polynomial since it belongs to the image of S_, see [Kir97, proof of Th. 7.1]. We claim
that f,(A™!) = s,(A™!). This is obvious for v = 1. For generic v it is easy to check that fz = 1 and
multiplication of f, by ", Ai_k is given by formulas which do not depend on v (Murnaghan-Nakayama
rule). Evidently, f, is determined by the formulas.

To finish the proof we take the limit N — oc. O

. We apply S_ to both sides. It remains to show that the vectors S_A, y are

Remark 3.7.1. Similarly using (3.4.8)) one can show that costandard basis |A) satisfies properties (i
and (ii). This is also in agreement with conjectures of [GNIT].

3.8 Quantum affine algebra and its vertex operators

In this paper, we have used the space A(;o/ri (C"Y*!) and the vertex operators ®(z), ¥(z), ®*(z), and
U*(z). The space Affi (C"[y*1]) is known as an integrable level-one representation of quantum affine
U, (gl,,) [KMS95, ILT00]. The vertex operators can be defined via intertwining properties. R

Integrable level-one representations and the vertex operators have their counterpart for U, (sl,,).
Below we will study connection between the gl,, and sl,, versions.

We will consider only the vertex operator ®*(z). The situation for other operators is analogous.
We will need the results concerning ®*(z) for the proof of Proposition m

3.8.1 Action of quantum affine algebra

Let aq, ..., a,_1 be simple positive roots of sA[n We will use standard scale product (o, a;), and
Cartan matrix (o, o) = 2 (o, ) / (o5, ). Note that for sl,, we have (a;, ;) = (o, j). Algebra
U,(sl,) is generated by E;, K; and F; for i = 0,1,...,n — 1. The relations are

KK = KK,  KEK 1 =o@%E,  gFK =0 (@0 (3.8.1)
K —K; !
[Ei, Fj] = 5i,jﬁ, (3.8.2)
bij b bij b
(—1)F [,:f] EFEEY =0, Y (-1)F [;CJ] EFE;E " = 0. (3.8.3)
k=0 v k=0 v

here b;; = 1 — {¢;, ;) and = [b;il!/ ([k]o!b;is — kly!). There is an action of U, ;[n on C"[y+!
J j j J

determined as follows !

di=j—1—06i=j
Eie; :5iEj€j+1 Fiej :51‘Ej—16j—1 K;e; =v™=7 ! le;j (384)
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Using the comultiplication
A(K;) =K; ®K; A(E;) =E;® 1+ Ki_l & E; A(F;) =F;®K +1®F; (3.8.5)

we can define action of Uy(sl,) on (cr [Yﬂ])@v.

Proposition 3.8.1. Action of (affine) Hecke algebra commutes with U, (;[n)

Hence we have obtained an action U, (;[n) ~S_ (C”[Yil})@w [KMS95,, [ILT00].

The limit Let us use the inductive system (3.4.11)). Let EgN),KEN),Fi(N) ~ ((C"[Yﬂ])(gN be the
operators, coming from the defined above action U, (;[n) ~ ((C”[Yﬂ])@N. Consider a number r =

0,1,...,n—1such that r = N —1—m (mod n) . Let us define the following operators

FN) _g() RN) _ oo () FV) —firp V), (3.8.6)

Below we will need the following versions of Definitions and

RN+A

Definition 3.8.1. Action of operators AN): S_ ((C"[Yﬂ])@N — S_ (Cr[y®!)) 1-stabilizes if

for any w € S_ ((C”[Yjﬂ])wc there is M such that for any N > M we have

(m)

Pniarinsn o AN o s@ﬁ?}i(w) =AW, wg\ﬁ)l,k(w) (3.8.7)

Definition 3.8.2. Action of operators AN): S_ (C" [Yil])@w —S_(Cn [Yil])®N+A weakly 1-stabilizes
if for any w € S_ (C" [Yil])®k there is M such that for any N > M we have

Pl a 0 AN 0 W (w) = )y 4y 0 ANTD 0 ST (w) (3.8.8)

Proposition 3.8.2. The operators (i}; 1-stabilize.

(N)

i

and IZZ(-N) 1-stabilize. The operators EgN)

Proposition 3.8.3. The operators F weakly 1-stabilize.

Moreover, for i # r the operator EEN) stabilizes. More explicitly, for any w € S_ ((C"[Yil])@k and
sufficiently large N Zm +1i+ 1 (mod n) we have
m N m N+n m
‘Pngn,N °© EE ) ° ‘ng,zz(w) = EE ) o wg\/ll,k(w) (3.8.9)

Denote the induced operators by E;, K;, and F;.

Proposition 3.8.4 ([KMS95, [LT00]). The formulas E; — E;, Ki — K;, F; — F; determine an action
of Uy(sly) on Affl (Cry ).

From sl, to gl, Let U,(Heis) be the algebra generated by By, for k € Z and central ¢! with the

relation
c 2k 1

[BlmBl] = kwékﬂ,o (3.8.10)

oo

Remark 3.8.1. We abuse notation since By, was defined as an operator on Avyﬁ ((C” [Yil]) and c is an
clement of Uy, 4, (gh)-

Let Uv(é\[n) =U, (;[n) ® Uy(Heis). The algebra Uv(g/j\[n) acts on A(;Oﬁi (C"[Y*1]) as follows. Action

of U, (;[n) comes from Proposition The generators By act as the operators with the same name
defined in Proposition The central element ¢ acts as multiplication by v~". Denote the obtained
representation by Fi,.
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Proposition 3.8.5. The obtained representation Fy, is irreducible integrable level-one representation
of Uy(gl,,). There are n non-isomorphic classes of such representations Fy, ..., F,_1. The represen-
tations Fy, and Fp, ook are isomphic for any k € Z.

Let F§l, F¥l, ...  F3' | be the irreducible integrable level-one representation of U, (s?[n) Let FM be
Fock module of U,(Heis) for ¢ = v=".

Proposition 3.8.6. The representations F; is isomorphic to Ffl@FH as representations of Uv(gA[n) =

Uy, (sl,) ® Uy(Heis) fori=0,1, ..., n—1.

3.8.2 Vertex operators

Below we will study intertwining property of @Z Its analogue defines vertex operators for sl,, [FR92).
In this subsection we will recall basic properties of the vertex operators for sl,, and start to study
connection between vertex operators of sl,, and @k. The connection will be made more precise in the
next subsection.

Intertwining property Let us define an operator by

b A (CMY ) = CrY @A (CP Y EY) (3.8.11)
O'w = e Pruw. (3.8.12)

keZ
Proposition 3.8.7. ®* is an Uv(ff,\[n)—mtertwiner
Evidently, Proposition [3.8.7] is equivalent to the following proposition.

Proposition 3.8.8. The following relations hold

iRy =pdth=—170itk=0R, o (3.8.13)
DIE; =04 g1 Ppuq + 0Orh=0Or=1F,pF (3.8.14)
OiF; =0 pmoki®_, + F; D} (3.8.15)
Proof. Analogously to (3.8.12]), consider operator
o S (CyH)) Y S (v E)) @ s (CryE)) N (3.8.16)
'w = e ® Pjw (3.8.17)

kEZ
Evidently, the operator is an intertwiner. Equivalently, ®; satisfy the counterparts of (3.8.13))—(3.8.15))

(I)I:KZ(N) :v5i+k£71—6i+kEOK§N71)qf"; (3.8.18)
O =iy pm 1 @)y + 00 S gV Vg (3.8.19)
OiFY) =5, ok Vr | 4 FV Do (3.8.20)

(N) () g(N) 1, g(N) 5(N)

7 7 %

, and FEN) stabilize for j # r, the corresponding relation hold for @Z It

Note that in the relations above we can replace K ,I:"E-N) correspondingly.

(N) ()

Since the operators K; i

remains to check

DiE, = Op e 1Df, + vOrHh=0"0rtk=01F, B} (3.8.21)
Notice that E§N+1) stabilizes. Hence (3.8.21)) follows from
@ZE£N+1) = Opih=1®f g + U6r+k£0*5r+k£—lE£_N)(pz (3.8.22)

O]
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Vertex operators for Uy(sA[n) Abusing notation, we will denote the highest vector of F# by [i).
Let us also define Ffl for any i € Z by F; = Ffl ® FH.

Vertex operators for U, (;[n) are defined as the following intertwiners

(i)*,sl: FiSl N ((Cn[Y:tl]) ®Fis_l1 (3_8'23)
iy =e_; @i — 1) + Z ek ® wg (3.8.24)
k<i

for certain vectors wy € F;_1.
Proposition 3.8.9 ( [FR92]). There exists unique operator o5l determined by (3.8.23)—(3.8.24).

Also, we define operators &% and currents @E‘j)l(z) by

oy =3 e @ dpw )= "o" 2t (3.8.25)
k€EZ keZ
Let us consider principal grading on Ffl given by deg |i) = —i(igl), degE; =1, degF; = —1. Note that

deg @Z’Sl =k.

Lemma 3.8.1. For any mtertwmer o =3 e @y S sl — (C"[Y*!) @FF, such that deg qSZ’Sl =
k+ A, we have qSk = k+A for certain v € C

Proof. Note that deg d)f’_slA i) = deg|i — 1). Since the subspace of degree deg |i — 1) is one-dimensional,
we have ¢, " SIA i) = 7]i — 1) for certain v € C. Proposition implies Y e_j @ ¢« slo—ndrsl. O

Proposition 3.8.10. There exist operators Zq ~ F1 such that for 2(z) = 3 o, Zaz ¢ we have

7, (2) = &5 (2) @ E(2) (3.8.26)

Proof. We can extend the grading from FZ-SZ to F; by deg Bx, = kn. Note that deg $p = k. We can
present by = Zdy gbz ZZV ® Eq, for linear independent operators =4, with deg=4, = nd (e.g. take
E4 to be matrix unlts for a homogeneous basis of FH). Proposition and Lemma imply

that qbz ZZV =4, ,,<I> 4 for certain 4, € C. Hence ) = dod ,:Slnd ® (-, YdrZdy)- d

Bosonization The operator @Eﬁl) (2) was calculated in [Koy94, Thm. 3.4]. Note that the parameter
q used in the loc. cit. corresponds to our parameter v = v~'. To write the answer, we recall notation
of loc. cit..

Let Q and P be root and weight lattices for sl,, correspondingly. We use notation e for an element
of group algebra C[P], corresponding to 3 € P. Denote the fundamental weights of s, by Ay, ..., A,_1.
There is Heisenberg algebra in Uv(gln) generated by a;(k) for k € Z and j =1,...,n — 1. Let F'* be
Fock module for the Heisenberg algebra. Then F; can be naturally identified with F® ® C[Q]e?, and
the action of Uy(sl,) can be constructed explicitly, see [FJ88] or [Koy94, Sect. 2.4].

For o € P, let us introduce operator 9, (w ® 3) = (o, B)w ® B. There exists subalgebra a}(k) in
the algebra generated by a;(k). In the representation Fj, the operators satisfy

e (3827
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Proposition 3.8.11 ([Koy94]). Vertex operator i)zr’il)(z): F; — F;_1 is given by the following for-
mula

(IJE"SZ 1y(2) = exp < Zal yu—zk ) exp (—Za’{(k)vgkzk>

k=1

Normal ordered product : ‘i)zjil)(zl)‘i)?jil)(zé) : is an operator from F; to F;_o defined by the
following formula

5 *,8 2%, 3k —
:<I>(1’1i1)(21)®(1’111)( = exp < Zal P+ 25) ) exp ( Zal vk (7% 4 2, k))

x e72M H ((—1)”-1U—1zj)‘8A1+(" b V%w(—l)”"ﬁ’j(’ﬁ“), (3.8.29)
j=1,2

here i; =i+ 2 — j. Note that the normal ordering is not symmetric, namely

- E %S Tk, S —1 *s *s
2 R ()R ()= 2y T (20) 0 (1) (3.8.30)

The following relations can be checked directly

%8l 7%l n—1, —1 nT_l (U 22/217?}2”)00 *,sl *,8l
®(n,1)(21)¢>(n71)(m): (D)o 'z) (02220, 07 o <I>(n 1)( )CI>(n 1)( 29): . (3.8.31)

3.8.3 Factorization of the vertex operator

We continue to study connection between vertex operators for sl, and @*a (z). This subsection is
devoted to a proof of Theorem [3.8.1] The theorem is used for the proof of Proposition [3.4.8

Theorem 3.8.1. The following holds
Tk *,61 U2jn i 1 —q
((2) = <I>( )" (2) ® exp —ZﬁB,jzj exp Zﬁsz . (3.8.32)
>0 ][n] J >0 j[n] j

To prove the theorem we need certain preparations. Let us define

DED K S (3.8.33)
keZ

Lemma 3.8.2. The following relation holds
(v22 — 22) P (21) Py (22) = (v22g — 21) P (22) P (21) (3.8.34)

Proof. Consider operator

(1®3%)0d*: S_ (C"Y* ) = (C'y*)) @ (C*Y*)) @ S_ (C"[y*1)* 2 (3.8.35)

1P )odw=> e 0", 0" w (3.8.36)
k€7

Also, consider operator

Ty ~ (C'Y*)) @ (CY*!)) @ S_ (Cry*!))®" 2 (3.8.37)
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induced from action of T" on first two tensor multiples. Recall that T is given by (3.2.6)—(3.2.9)). The
basic property of anti-symmetrizer (3.3.10) implies
Tis0(1@®*)od* = —v71 (1@ ®%) o d*. (3.8.38)

Let | > k and | = k mod n. Consider in ([3.8.38)) the coefficients in front of ¢; ® ex and ey, ® ex_p

(0.) [o.¢]
v — (v =) Y BT (v —0T)) = 0T T B, (3.8.39)
j=1 j=1

[o.¢] o
OO U (R NIRRT S (TR T BN A QP PR O
=2 i=2
(3.8.40)
Hence

v (5%, — 0, 0, ) —(v—v )@Y 4 (v — v )R, 0F,
= —v 1 (¥, 0%, — @, 0", ,) (3.8.41)

Equivalently
0@ BT, — v e, BT, = v B 4 ud, B, (3.8.42)
Substituting I — n instead of [ and multiplying by v, we obtain
VRO* L BF L — N 0F =070 DY — BF P (3.8.43)
To finish the proof we notice that (3.8.43|) is symmetric on [ and k. O

Proposition 3.8.12. The following holds

(0721 = 22) 87, (21) B[y (22) = (V322 — 21) ] (22) D7,y (21) (3.8.44)
Proof. Follows from Lemma since the operators ®; stabilize. O

Remark 3.8.2. Proposition [3.8.12) can be generalized. Namely, one can write interchanging relation
for ®,(21) and ®}(22). The result is R-matriz relation [DO94, eq.(2.17)] [JM95, eq.(6.31)]. We will
neither formulate nor use the relation.

Proof of Theorem[3.8.1 Let us substitute (3.8.26)) to (3.8.44) for « = n — 1. Using relation (3.8.31)),

we obtain

n=1 (v229 /21, 0%") = ksl < ksl — =
(V221 — 29)2, " (inzz/zl,UQ”)o:o :<I>(7’:_1)(Z1)‘1>(;f_1)(z2): ®=(21)E(22)

o=l (’U221/2’2,’U2n)00 2 sl = %, sl - _
= (1)22;2 — 21)2;2 n (’(}2”21/2277)2”)00 :¢(7ZL—1)(Z2)¢(77'L—1)(Z1): ®:(22):.(21) (3845)

Using (3.8.30]), one can see that

(v220/21, V)00 —, (V221 /20,000 —,
(V22 — 22) 21 (v2”22/z1,v2”)0:0 2(21)2(2z2) = (v22y — 21) 2 (U2n21/22,?]2n)0:0 E(29)E(21) (3.8.46)

The relation [B_;, ®}] = —@Z_nj implies

1 s
E(z) =E_(2)exp | ) —+Bjz’ |, (3.8.47)
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here Z_(z) is a formal power series, the coefficients are operators on FM and [B_;,Z_(z)] = 0.
Equivalently, E_(z) = 3=, oy, Bopy - - B,ujz“". Denote

= [ Bort | (22) = D ey (Bow +207) o (B + 27 ) 2 (3.8.48)
n

Substituting (3.8.47)) to (3.8.46]), we obtain

(U222/Zl7v2n)oo —_ — —k
(02”22/21,v2”)oo:_(zl):_ [B*k + 2 } (22)

(v2z1 — 29)21

(0221/2277}2”)00 - —_ _k
(712”21/22,112”)005_(22):_ [B—k + 29 } (z1) (3.8.49)

= (v222 — 21)29

Consider expansion of LHS in zo. Note that only non-negative degrees in zo appear. Analogously,
expansion of RHS in z; has only non-negative degrees. Hence we can divide by (v221 — 20)(v%29 — 21)
and obtain

(212”+222/21, 7)271)00 _ _ K (1}2n+221/2,2’ in)oo _ _ &
e S (1)E (Bt 2] (o) = S R (2B [Bokt 5] (2)
(3.8.50)
Let us define
~ 2jn A
E () =E_(z) xexp [ Y B2 (3.8.51)

>0 J [n]vj

We can substitute (3.8.51)) to (3.8.50). Note that the exponent from (3.8.51)) is an invertible series.
Since (3.8.50)) has only positive degree in both z; and 2o, we can multiply both sides by the inverse to
the exponents. We obtain

2 (2)E- [B,k + z;k] (20) = B_(2)E_ {B,k + z;ﬂ (21) (3.8.52)

It is legitimate to divide by Z_(z1)Z_(z2). A priori, the result is a series in z; and zy with coefficients
in rational function in B_;. We obtain

=) = = (3.8.53)

In the RHS we have only positive powers of 21 and negative powers of zg, and vise versa for LHS.
Hence, the expression is a constant. Therefore Z(z) is a constant. Normalization condition (3.8.24))
implies 2(z) = 1. O



Conclusion

In this thesis, we have constructed explicit realizations of twisted Fock modules of Uy, 4, (gl;) and
twisted W-algebras.

e In case g2 = 1, we have constructed three realizations of twisted Fock module Uy, 4, (g.;'ll):
fermionic (Theorem [1.4.1)), bosonic (Theorem and strange bosonic (Theorem [1.4.3). It
was proved that Uy, 4,(gl;) acts via a quotient, isomorphic to twisted deformed W-algebra (The-
orems and . These results were generalized for representation obtained by restriction
to a sublattice (Proposition and Theorem . As an application, we have proved an
identity for g-deformed conformal blocks (Theorem .

e We have constructed explicitly action of twisted and non-twisted Virasoro algebras on an inte-
grable level 1 representation of quantum affine sly (Theorems [2.4.1| and [2.4.2| correspondingly).
The answer is expressed via vertex operators of quantum affine sl .

o We have constructed explicitly twisted Cherednik representation of double affine Hecke algebra
Hy (Theorems |3.2.1| and |3.2.4[). Twisted Fock module of Uy, 4, (g"[l) is constructed explicitly
via semi-infinite construction (Theorem . Action of Chevalley generators is expressed via
vertex operators U, (5 [,,). As a corollary, we have constructed an identification (as vector spaces)
of representations F; and F].
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