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Abstract

In machine learning and optimization tasks, it is common for data to have an un-
derlying geometrical structure, usually realized in the form of a low-dimensional
underlying manifold or specific inductive biases, e.g., presumed hierarchical nature
of data. Utilization of this structure often leads to performance improvement or
allows one to draw new insights and design better algorithms. This thesis is built
upon a series of papers devoted to theoretical and practical results in deep learn-
ing and numerical optimization achieved via the application of ideas from such
fields as algebraic and differential geometry, tensor analysis, and hyperbolic geome-
try. Concretely, we utilize such tools as Riemannian optimization, desingularization
of singular manifolds, topological data analysis, persistent homology, Gromov §-
hyperbolicity, and several others. We start with a new optimization algorithm on
matrix manifolds, allowing one to deal with a challenging problem of singular points
and curvature blow up. Then we move to tensor manifolds and discuss intriguing
connections of the geometry of these manifolds with theoretical properties of recur-
rent neural networks (RNNs). We extend these results to the class of generalized
tensor decompositions and RNNs with rectifier nonlinearity. For practical applica-
tions, we show how universal adversarial perturbations for neural networks can be
designed employing matrix analysis. We propose a new way to estimate the qual-
ity of generative models by comparing the topological properties of the underlying
data manifold and generated manifolds. We introduce hyperbolic geometry to the

computer vision area and evaluate our ideas on the few-shot learning tasks.
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Chapter 1

Introduction

1.1 Theoretical analysis of neural networks

1.1.1 Depth efficiency of neural networks

One of the biggest challenges in modern deep learning is achieving a better un-
derstanding of the theory underlying many empirically observed phenomena. A
particularly important open problem is achieving a better understanding of univer-
sality and ezpressivity of neural networks. Classical works |[Cybenko, 1989, Hornik
et al., 1989] demonstrated that neural networks are universal approzimators, i.e., in-
formally, they can approximate any given function with arbitrary precision. These
results, however, are not practical, as the constructed networks are shallow — they
have only one hidden layer. On the other hand, there is mounting empirical evidence
that for a given budget of resources (e.g., neurons), the deeper one goes, the better
the eventual performance will be. It is widely believed that recent progress in many
fields, e.g., Computer Vision (CV) and Natural Language Processing (NLP), in large
part, can be attributed to the increase of the depth of networks [He et al., 2016,
Dai et al., 2019, Vaswani et al., 2017, Simonyan and Zisserman, 2014]. Moreover,
there is evidence that the indefinite increase of the depth of a network only improves
the test accuracy |Nakkiran et al., 2019|, which, at first sight, contradicts the stan-
dard bias-variance tradeoff paradigm in classical statistics. Older results such as

[Hastad, 1986, Hastad and Goldmann, 1991, Delalleau and Bengio, 2011, Martens



Chapter 1. Introduction 1.1. Theoretical analysis of neural networks

and Medabalimi, 2014] only apply to specific types of networks, and not common
architectures such as Convolutional Neural Networks (CNNs)[LeCun et al., 1990].
A big step towards a better understanding of depth efficiency of CNNs was made
in [Cohen et al., 2016] and further extended in [Cohen and Shashua, 2016]. They
addressed the following question: is depth efficiency typical in the space of neural
networks? This is formalized as follows: given a neural network, let us consider the
equivalent shallow network (i.e., a neural network of width one, realizing the same
function). We say that the original network is exponentially more expressive than
the obtained shallow network if the latter has an exponentially large width with
respect to the width of the former network. Can we understand how often this is
the case? The authors of [Cohen et al., 2016] demonstrated that this property holds
for CNNs with multiplicative nonlinearities, besides a set of measure zero. Their
analysis is based on the formalism of tensor decompositions, which is one of the key

concepts in this thesis.

1.1.2 Tensor Decompositions

In modern deep learning and numerical analysis it is common to work with data
tensors, i.e., multi-way arrays X € R11*/2-xla - Ag the number of modes d increases,
the number of parameters grows exponentially. When the number of possible config-
urations is huge, much larger than our number of examples, it becomes statistically
difficult to say something meaningful. This is also known as the curse of dimen-
stonality. Despite the curse of dimensionality, algorithms may be developed based
on the assumptions that real data will often be confined to a region of the space
having lower effective dimensionality, in the directions over which important vari-
ations in variables occur. One of the most appealing approaches for this is based
on the apparatus of tensor networks (or tensor decompositions) [Vasilescu and Ter-
zopoulos, 2002, 2003, Cichocki et al., 2016, 2017, Orts, 2014]. Informally, a tensor
network allows one to efficiently represent a tensor by a network of smaller building
blocks (often) arranged based on a pre-specified tree-like pattern. Some exam-
ples are CANDECOMP /PARAFAC (CP) decomposition [Harshman, 1970, Carroll
and Chang, 1970], Tensor Train (TT) decomposition [Oseledets, 2011], Hierarchi-

10



Chapter 1. Introduction 1.2. Practical applications of geometrical ideas

cal Tucker (HT) decomposition [Grasedyck, 2010], Tensor Ring (TR) decomposition
[Zhao et al., 2016]. Vasilescu and Kim [2019], Vasilescu et al. [2020] compute a part-
based compositional hierarchical data tensor decomposition for arbitrary shapes
and sizes that has an architecture that parallels the CNN architecture. Importantly,
spaces of tensor networks often (in the case of general HT decomposition) form al-
gebraic sets. These are sets that are specified by polynomial equations and can be
well studied using the apparatus of Algebraic Geometry (AG) [Hartshorne, 2013,
Shafarevich and Hirsch, 1994].

In Cohen et al. [2016] the authors found a link between the (binary) HT decom-
position and CNNs, while CP decomposition corresponded to shallow nets. They
showed that such a CNN can only be represented by an exponentially wide shallow
network. This means that a tensor represented in the HT format with probability
one has an exponentially high CP rank. This analysis was also extended to CNNs
with Rectified Linear Unit (ReLU) nonlinearities in [Cohen and Shashua, 2016]. In
this case, the expressivity result not always holds; there exists an open set of CNN’s
equivalent to rank one shallow network.

The first part of this thesis is devoted to understanding whether similar results
hold for Recurrent Neural Networks (RNNs)[Rumelhart et al., 1986]. We explore
connections between multiplicative and generalized RNNs and T'T decomposition in

Chapter 2 and Chapter 3, respectively.

1.2 Practical applications of geometrical ideas

1.2.1 Riemannian optimization

Suppose that we are given an optimization task, where the variable belongs to a
manifold. In order to capitalize on this knowledge, the apparatus of Riemannian
optimization was developed [Absil et al., 2009, Uschmajew and Vandereycken, 2020]
and recently reintroduced in the area of deep learning |[Fonarev et al., 2017, Bécigneul
and Ganea, 2018|. Traditionally, Riemannian optimization is applied to problems
dealing with matrix or tensor variables, such as ordinary or partial differential equa-

tions, tensor or matrix completion, tensor, or matrix approximation. In these cases,

11
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we assume that the data lies in a subspace that can be approximated by the low-rank
matrix structure or the low-rank TT structure for a tensor. For instance, in the task
of matrix completion, one attempts to reconstruct the missing data based on given
entries, which is an ill-posed task without any assumptions on the data structure.
Riemannian optimization methods have been very successful in dealing with these
problems [Vandereycken, 2013, Kressner et al., 2014, Lubich et al., 2013]. Another
benefit of the usage of matrix/tensor factorized variables is the great reduction in
the required memory footprint and computational power [Rakhuba and Oseledets,
2016]. For instance, in the case of TT decomposition, the number of parameters falls
down to logarithmic with respect to the number of parameters in the full tensor. In
the common cases of low-rank matrix and tensor manifolds, however, exists a cer-
tain challenging problem related to the nature of these manifolds. Specifically, these
manifolds contain singular points, where the tangent space is not defined, and the
curvature term, appearing in second-order optimization methods, tends to infinity.
Traditional methods [Vandereycken, 2013 ignore this issue by setting the curvature
term to zero, which leads to subpar performance. In Chapter 4 we discuss the way

to resolve this issue by utilizing the concept of desingularization from AG.

1.2.2 Generative modeling

In practice, however, the true underlying data manifold is not known. This is the
case, for instance, for visual datasets such as ImageNet [Krizhevsky et al., 2012| or
CIFARI10 [Krizhevsky and Hinton, 2009|. The task of generative modeling is con-
cerned with the following problem. Given a dataset sampled from some unknown
distribution, can we learn a model to generate more samples from the same distri-
bution? Recent progress in this field is mostly based on the rapid development of
Generative Adversarial Networks (GANs) [Goodfellow et al., 2014a|. Recent mod-
els, e.g., StyleGAN [Karras et al., 2019] or BigGAN [Brock et al., 2019|, are able to
produce samples of excellent quality. Such models are particularly useful when data
is limited, and collecting new samples is costly. E.g., one interesting application of
GANs was found in particle physics [Paganini et al., 2018, Chekalina et al., 2019].
One of the biggest challenges in GAN research is estimating quality of the model.

12
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Compared to previous generative models (producing samples of lower visual quality)
such as Variational Autoencoders (VAEs) [Kingma and Welling, 2013|, GANs have
no explicit optimization objective. In order to estimate their quality several metrics
were proposed: Inception score [Salimans et al., 2016al, Frechét Inception Distance
[Heusel et al., 2017], Kernel Inception Distance [Binkowski et al., 2018], Multiscale
Intrinsic Distance [Tsitsulin et al., 2020]. Typically, such metrics rely on a pre-
trained network, e.g., Inception [Szegedy et al., 2015b|. In Chapter 5, we introduce
an approach to estimate the quality of a generative model, using the apparatus of

Topological Data Analysis (TDA).

1.2.3 Hyperbolic geometry

In certain cases, it is possible to make assumptions on what is the natural geometry
of data at hand. In particular, this is the case when we deal with hierarchical data,
such as various taxonomies. For instance, the existence of power-law distributions
in datasets can often be traced back to hierarchical structures [Ravasz and Barabasi,
2003]. The celebrated work [Krioukov et al., 2010] demonstrated that many prop-
erties of complex networks could be explained under the hypothesis that hyperbolic
space underlies these networks. These networks (graphs) can be characterized by

the following two properties:

1. Power-law degree distribution;

2. Strong clustering properties.

Formally, n-dimensional hyperbolic space denoted as H" is defined as the homoge-
neous, simply connected n-dimensional Riemannian manifold of constant negative
sectional curvature. The property of constant negative curvature makes it anal-
ogous to the ordinary Euclidean sphere (which has constant positive curvature);
however, the geometrical properties of the hyperbolic space are very different. The
authors demonstrated that these two properties emerge as a simple consequence of
the negative curvature of the hyperbolic space.

Hyperbolic geometry was reintroduced to the machine learning community in

Nickel and Kiela [2017]. The authors applied it to learning taxonomies (such as

13



Chapter 1. Introduction 1.3. Summary of papers

WordNet) in the Poincaré ball model of hyperbolic space and demonstrated the
superior quality of hyperbolic embeddings relative to Euclidean ones. This model
was later extended to the Lorentz model of hyperbolic geometry [Nickel and Kiela,
2018b|. Recent developments [Ganea et al., 2018, Skopek et al., 2019] demonstrated
that it is possible to design completely hyperbolic neural networks using the appa-
ratus of gyrovector spaces and even build hyperbolic VAEs, where the latent distri-
bution is supported in the hyperbolic space. Additional applications were found in
Recommender Systems [Tran et al., 2018| and language modeling [Gulcehre et al.,
2019]. The results above, however, are limited to models dealing with discrete data.
In Chapter 6, we discuss our approach on learning hyperbolic embeddings for various

visual tasks.

1.3 Summary of papers

1.3.1 Expressive Power of Recurrent Neural Networks

In this paper, we analyze the expressivity properties of RNNs, capitalizing on the
machinery developed in Cohen et al. [2016]. We consider RNNs with multiplicative

nonlinearity, specifically, the hidden state is updated as follows.
h"™' =) " Ghyx, (1.1)
ij

where h" is the hidden state at time step n, x" is the current input, and G,j; is
a trainable weight tensor. We show their connection to TT decomposition and
translate analysis of their expressivity to a statement about the manifold of tensors
represented in the TT format. We utilize the fact that this manifold forms an al-
gebraic variety and show that given a random D-way tensor represented in the T'T
format (with arbitrary ranks), with probability 1, this tensor will have a CP-rank
exponential in D. CP-rank of a tensor is defined as the number of terms in the CP
decomposition of a tensor. Note that in this case, we consider two different decom-
positions of the same tensor and find a connection between their complexities. On

the language of deep learning, this means that RNNs with multiplicative nonlinear-

14
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ities with probability one is equivalent to exponentially wide shallow network, i.e.,
they are exponentially more expressive. We additionally compare the expressivity of
CNNs and RNNs;, corresponding to HT and TT decompositions, respectively. Our
numerical experiments with these architectures confirm our theoretical findings and
demonstrate the superiority of RNNs over the shallow networks in the sense of test

accuracy.

1.3.2 Generalized Tensor Models for Recurrent Neural Net-

works

This work is the follow up of our previous paper, “Expressive power of recurrent
neural networks”. Networks considered in the latter utilized multiplication as non-
linearity, which, though used in practice [Wu et al., 2016, is not very popular. We
extend our analysis to more practical ReLLU nonlinearities. This makes the analysis
much more intricate since we cannot simply rely on the known results in algebraic ge-
ometry (which only deals with polynomials). We utilize so-called generalized tensor
decompositions which introduce an arbitrary commutative and associative operator
&(+,+). For the case of {(z,y) = zy, we get standard tensor decompositions. Fol-
lowing [Cohen and Shashua, 2016] we use the apparatus of grid tensors (grid of
values). Rather than comparing two functions ezactly, an RNN and the correspond-
ing shallow network are compared on a large but finite grid of points. Our main
results are twofold. Firstly, we show that ReLU RNNs are universal, i.e., that can
represent any possible function (on a fixed grid of points). Secondly, we show that
they are expressive, but only to some extent: even though there exist exponentially
expressive RNNs, there also exists an open set of non-expressive RNNs, equivalent
to thin shallow networks. Our numerical experiments demonstrate that the effect of

inexpressiveness becomes negligible as we increase the depth/width of ReLU RNNs.
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1.3.3 Desingularization of Bounded Rank Matrix Sets

The low-rank matrix manifold defined as
Mo, = {A e R :rank(A4) < r},

often appears in practical tasks, such as matrix completion or recommender systems
[Vandereycken, 2013|. An appealing tool for solving optimization problems on this
manifold is the framework of Riemannian optimization [Vandereycken, 2013, Absil
et al., 2009|, which allows to efficiently capitalize on the available manifold data,
such as the tangent space. In order to speed up the convergence, it is common to
utilize second-order methods (e.g., Newton method on manifolds). However, when
dealing with the low-rank matrix manifold, second-order Riemannian optimization
methods suffer from the so-called curvature blow up. Specifically, the curvature
term of M<, at a point X is proportional to ¥~!, where ¥ denotes the truncated
(at rank r) singular values of X. When X approaches a matrix of strictly smaller
rank, this term tends to infinity. To alleviate this problem, we utilize the concept
of desingularization, a well-known technique in algebraic geometry. Informally, we
move the optimization problem from this singular set to a new, smooth manifold,
which, however, is intimately related to an original manifold. Concretely, we use the

following manifold:
M, = {(A,Y) e R x Gr(m —r,m) : AY =0},

here Gr denotes the Grassmann manifold. It is easy to see that we can ‘lift’ op-
timization problems from M, to ./\//\lr7 which is, as we prove, a smooth manifold.
Using these observations, we build a second-order method on M\r and show how
to implement it efficiently. We conclude with numerical experiments which demon-
strate the superiority of our method compared to more traditional ones, such as
truncated Newton method [Absil et al., 2009] or Riemannian conjugate gradient

[Smith, 1994].

16
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1.3.4 Geometry Score: A Method For Comparing Generative

Adversarial Networks

In this work, we attack the problem of evaluation of the quality of generative models,
in particular, GANs. Our analysis is inspired by the Manifold Hypothesis [Good-
fellow et al., 2016]. Informally, it states that any real-life data is supported on a
small dimensional manifold. Thus, if we have some generative model, we expect the
generated manifold to at least be close to the original manifold in ‘shape’. However,
how to quantify the difference in shapes of two manifolds, to which we do not have
direct access? We use Topological Data Analysis (TDA) in order to achieve this.
On a very high level, we construct an approximation of manifolds using simplicial
complexes — primitive spaces built out of simplexes. Note, however, that the task
of reconstruction of a manifold given simples from it is ill-posed: it could have been
a discrete set of points or a single blob. To alleviate this, the reconstruction hap-
pens at all possible scales at once, tracking the evolution from a discrete set to a
connected space. After simplicial complexes are built, we compute their topological
properties, namely persistent homology |Ghrist, 2008]. Homology, widely used in
algebraic topology, represents certain properties of a manifold shape, concretely, the
number of holes in it. Persistent homology allows one to find an approximation of
this characteristic for a sequence of simplicial complexes, as described above. We
then compare real data and generated data by comparing their topological charac-
teristic, and build a new metric termed Geometry Score. We show that it allows us
to distinguish between spaces of various shapes and compare GANs (even applied
to non-visual data, where such metrics as FID and Inception Distance are not ap-
plicable). We find that in cases when Inception Score fails, our metric still allows

distinguishing between two generative models.

1.3.5 Hyperbolic Image Embeddings

Hyperbolic geometry, recently introduced to the Machine Learning community in
[Nickel and Kiela, 2017, was shown to be very successful in tasks of graph/taxonomy

embeddings and several NLP problems. There was, however, no extension to the
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visual domain. In this work, we argue that hyperbolic geometry may be beneficial
for certain image-based tasks as well. We start by analyzing whether the visual
datasets contain hyperbolic structure. Our primary tool for this is d-Hyperbolicity
introduced in |Gromov, 1987|. It allows us to estimate the ‘degree’ to which the
given dataset is hyperbolic, and we find that this degree is quite high in such datasets
as CIFAR10, CUB, and MinilmageNet. We additionally suggest a new data-based
approach for estimation of the hyperparameter ¢, inversely related to the curvature of
hyperbolic space, which is necessary when building hyperbolic models. We show how
standard pipelines for few-shot learning and re-identification tasks can be modified
to incorporate hyperbolic geometry and perform extensive numerical experiments.
We find that even simple Euclidean models, when modified to hyperbolic geometry,

can perform on the level of state-of-the-art models.
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Chapter 2

Expressive Power of Recurrent

Neural Networks

2.1 Introduction

Deep neural networks solve many practical problems both in computer vision via
Convolutional Neural Networks (CNNs) [LeCun et al., 1995, Szegedy et al., 2015b,
He et al., 2016] and in audio and text processing via Recurrent Neural Networks
(RNNs) [Graves et al., 2013, Mikolov et al., 2011, Gers et al., 1999|. However,
although many works focus on expanding the theoretical explanation of neural net-
works success [Martens and Medabalimi, 2014, Delalleau and Bengio, 2011, Cohen
et al., 2016], the full theory is yet to be developed.

One line of work focuses on expressive power, i.e. proving that some architec-
tures are more expressive than others. |[Cohen et al., 2016] showed the connection
between Hierarchical Tucker (HT) tensor decomposition and CNNs, and used this
connection to prove that deep CNNs are exponentially more expressive than their
shallow counterparts. However, no such result exists for Recurrent Neural Networks.

The contributions of this paper are three-fold.

1. We show the connection between recurrent neural networks and Tensor Train

decomposition (see Sec. 2.4);

2. We formulate and prove the expressive power theorem for the Tensor Train

19
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decomposition (see Sec. 2.5), which — on the language of RNNs — can be
interpreted as follows: to (exactly) emulate a recurrent neural network, a

shallow (non-recurrent) architecture of exponentially larger width is required;

3. Combining the obtained and known results, we compare the expressive power
of recurrent (TT), convolutional (HT), and shallow (CP) networks with each
other (see table 2.2).

Figure 2-1: Recurrent-type neural architecture that corresponds to the Tensor Train
decomposition. Gray circles are bilinear maps (for details see section 2.4).

2.2 Deep Learning and Tensor Networks

In this section, we review the known connections between tensor decompositions
and deep learning and then show the new connection between Tensor Train decom-
position and recurrent neural networks.

Suppose that we have a classification problem and a dataset of pairs

{(X® y")pL,

. Let us assume that each object X® is represented as a sequence of vectors
X® = (x,%s,...%4), X, €R", (2.1)

which is often the case. To find this kind of representation for images, several
approaches are possible. The approach that we follow is to split an image into
patches of small size, possibly overlapping, and arrange the vectorized patches in a

certain order. An example of this procedure is presented on fig. 2-2.
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Figure 2-2: Representation of an image in the form of eq. (2.1). A window of size
7 x 7 moves across the image of size 28 x 28 extracting image patches, which are
then vectorized and arranged into a matrix of size 49 x 16.

We use lower-dimensional representations of {x;}¢_,. For this we introduce
a collection of parameter dependent feature maps {fy, : R* — R}, which are

organized into a representation map
fo: R" — R™.
A typical choice for such a map is
fo(x) = 0(Ax + 1),

that is an affine map followed by some nonlinear activation ¢. In the image case if
X was constructed using the procedure described above, the map fy resembles the
traditional convolutional maps — each image patch is projected by an affine map with
parameters shared across all the patches, which is followed by a pointwise activation
function.

Score functions considered in [Cohen et al., 2016] can be written in the form
L(X) = (W, ®(X)), (2.2)
where ®(X) is a feature tensor, defined as
P(X)iztd = fo., (x1) fo,, (%2) - - - fo,, (Xa), (2.3)
and W, € R™ ™™ ig a trainable weight tensor. Inner product in eq. (2.2) is

21



Chapter 2. Expressive Power of RNNs 2.3. Tensor formats reminder

just a total sum of the entry-wise product of ®(X) and W,. It is also shown that
the hypothesis space of the form eq. (2.2) has the universal representation property
for m — oo. Similar score functions were considered in [Novikov et al., 2016,
Stoudenmire and Schwab, 2016].

Storing the full tensor W, requires an exponential amount of memory, and to re-
duce the number of degrees of freedom one can use a tensor decompositions. Various
decompositions lead to specific network architectures and in this context, expressive
power of such a network is effectively measured by ranks of the decomposition, which
determine the complexity and a total number of degrees of freedom. For the Hierar-
chical Tucker (HT) decomposition, [Cohen et al., 2016] proved the expressive power
property, i.e. that for almost any tensor W, its HT-rank is exponentially smaller
than its CP-rank. We analyze Tensor Train-Networks (TT-Networks), which cor-
respond to a recurrent-type architecture. We prove that these networks also have
exponentially larger representation power than shallow networks (which correspond

to the CP-decomposition).

2.3 Tensor formats reminder

In this section we briefly review all the necessary definitions. As a d-dimensional

tensor X we simply understand a multidimensional array:
X 6 RTLlXTLQX...Xnd'

To work with tensors it is convenient to use their matricizations, which are defined
as follows. Let us choose some subset of axes s = {iy,i5...19y, } of X, and denote
its compliment by ¢ = {j1,J2- .. ja—m.}, €-g. for a 4 dimensional tensor s could be

{1,3} and t is {2,4}. Then matricization of X specified by (s,t) is a matrix

X(s,t) € RMi1 Mg Mimg XMy Mg Mg _m g ,

obtained simply by transposing and reshaping the tensor A into matrix, which in

practice e.g. in Python, is performed using numpy.reshape function. Let us now
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introduce tensor decompositions we will use later.

2.3.1 Canonical

Canonical decomposition, known as CANDECOMP /PARAFAC or CP-decomposition
for short [Harshman, 1970, Carroll and Chang, 1970], is defined as follows

T
4192...0q4 __ 11 2 id . ng
X = g VI'Via Vi  Via € R™. (2.4)
a=1

The minimal r such that this decomposition exists is called the canonical or CP-rank

of X. We will use the following notation
rankcp X =r.
When rankgp X = 1 it can be written simply as
Xitizdd — gyl .Vfid,

which means that modes of X are perfectly separated from each other. Note that
storing all entries of a tensor X requires O(n?) memory, while its canonical decompo-
sition takes only O(dnr). However, the problems of determining the exact CP-rank
of a tensor and finding its canonical decomposition are NP-hard, and the problem

of approximating a tensor by a tensor of lower CP-rank is ill-posed.

2.3.2 Tensor Train

A tensor X is said to be represented in the Tensor Train (TT) format [Oseledets,

2011] if each element of X’ can be computed as follows

1 72 Td—1
Xilig...id — Glfozl Gglizag ng—lld (2 5)
a1=1 az=1 ag_1=1

where the tensors G, € R™=1*™*" (rq = ry; = 1 by definition) are the so-called

TT-cores. The element-wise minimal ranks r = (rq,...74_1) such that decomposi-
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tion (2.5) exists are called TT-ranks
rankpr X =r.

Note that for fixed values of iy, 5. .., 144, the right-hand side of eq. (2.5) is just a
product of matrices

Gl[]_, 2'1, I]GQ[Z, ’ig, I] . Gd[i, id, ]_]

Storing X in the TT-format requires O(dnr?) memory and thus also achieves sig-
nificant compression of the data. Given some tensor X', the algorithm for finding
its T'T-decomposition is constructive and is based on a sequence of Singular Value
Decompositions (SVDs), which makes it more numerically stable than CP-format.

We also note that when all the TT-ranks equal to each other
rankyr X = (r,r,...,7),
we will sometimes write for simplicity

rankyr X = r.

2.3.3 Hierarchical Tucker

A further generalization of the TT-format leads to the so-called Hierarchical Tucker
(HT) format. The definition of the HT-format is a bit technical and requires intro-
ducing the dimension tree |Grasedyck, 2010, Definition 3.1]. In the next section we
will provide an informal introduction into the HT-format, and for more details, we
refer the reader to |Grasedyck, 2010, Grasedyck and Hackbusch, 2011, Hackbusch,
2012].

2.4 Architectures based on Tensor Decompositions

To construct the tensorial networks we introduce bilinear and multilinear units,

which perform a bilinear (multilinear) map of their inputs (see fig. 2-3 for an illus-
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X Y X1 X4
X9 X3

(a) Bilinear unit (b) Multilinear unit

Figure 2-3: Nodes performing multilinear map of their inputs. d-linear unit is
specified by a d + 1 dimensional core G.

tration). Suppose that x € R®,y € R™ and G € R™™*k_ Then a bilinear unit G

performs a bilinear map G : R® x R™ — R¥, defined by the formula

G(x,y) = z,
7k — Z Gikxiyi
1,5

Similarly, for x; € R™,...x; € R" a multilinear unit G € R *"2X.-*"dX"; defines

(2.6)

a multilinear map G : szl R™ — R™ by the formula

G(x1,X2,...,Xq) = 2
7 = Z Cv"'”é”""“')czfxé2 .. .xif. (2.7)
1,620l
In the rest of this section, we describe how to compute the score functions ,(X)
(see eq. (2.1)) for each class label y, which then could be fed into the loss function
(such as cross-entropy). The architecture we propose to implement the score func-

tions is illustrated on fig. 2-1. For a vector r = (r1,79,...74-1) of positive integers

(rank hyperparameter) we define bilinear units
Gk e RrklemXT'k’

with 7o = r4 = 1. Note that because ry = 1, the first unit G is in fact just a linear
map, and because r4 = 1 the output of the network is just a number. On a step
k > 2 the representation fy(x;) and output of the unit Gy_; of size ry are fed into

the unit G;. Thus we obtain a recurrent-type neural network with multiplicative
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connections and without non-linearities.

To draw a connection with the Tensor Train decomposition we make the following
observation. For each of the class labels y let us construct the tensor W, using the
definition of TT-decomposition (eq. (2.5)) and taking {G},}¢_, used for constructing
l,(X) as its TT-cores. Using the definition of the eq. (2.3) we find that the score

functions computed by the network from fig. 2-1 are given by the formula

,(X) = Z Wyilig.‘.idq)(X)ilig...idJ (2.8)
1,12,

which is verified using eq. (2.5) and eq. (2.3). Thus, we can conclude that the
network presented on fig. 2-1 realizes the TT-decomposition of the weight tensor.
We also note that the size of the output of the bilinear unit G5, in the TT-Network is
equal to r, which means that the TT-ranks correspond to the width of the network.
Let us now consider other tensor decompositions of the weight tensors W,, con-
struct corresponding network architectures, and compare their properties with the

original T'T-Network.

(a) CP-Network (b) HT-Network

Figure 2-4: Examples of networks corresponding to various tensor decompositions.

A network corresponding to the CP-decomposition is visualized on fig. 2-4a.

Each multilinear unit G, is given by a summand in the formula eq. (2.4), namely
Gzt = Vifavgfa .. .Vi;fa, ae{l,...r}.

Note that the output of each GG, in this case is just a number, and in total there are

rankcp VW, multilinear units. Their outputs are then summed up by the ¥ node. As
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before rank of the decomposition corresponds to the width of the network. However,
in this case the network is shallow, meaning that there is only one hidden layer.

On the fig. 2-4b a network of other kind is presented. Tensor decomposition
which underlies it is the Hierarchical Tucker decomposition, and hence we call it
the HT-Network. It is constructed using a binary tree, where each node other than
leaf corresponds to a bilinear unit, and leaves correspond to linear units. Inputs are
fed into leaves, and this data is passed along the tree to the root, which outputs a
number. Ranks, in this case, are just the sizes of the outputs of the intermediate
units. We will denote them by rankyr X'. These are networks considered in [Cohen
et al., 2016], where the expressive power of such networks was analyzed and was
argued that they resemble traditional CNNs. In general Hierarchical Tucker decom-
position may be constructed using an arbitrary tree, but not much theory is known
in general case.

Our main theoretical results are related to a comparison of the expressive power
of these kinds of networks. Namely, the question that we ask is as follows. Suppose
that we are given a TT-Network. How complex would be a CP- or HT-Network
realizing the same score function? A natural measure of complexity, in this case,
would be the rank of the corresponding tensor decomposition. To make transitioning
between tensor decompositions and deep learning vocabulary easier, we introduce

the following table.

Table 2.1: Correspondence between languages of Tensor Analysis and Deep Learn-
ing.

Tensor Decompositions Deep Learning
CP-decomposition shallow network
TT-decomposition RNN
HT-decomposition CNN

rank of the decomposition width of the network
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2.5 Theoretical Analysis

In this section we prove the expressive power theorem for the Tensor Train decompo-
sition, that is we prove that given a random d-dimensional tensor in the T'T format
with ranks r and modes n, with probability 1 this tensor will have exponentially
large CP-rank. Note that the reverse result can not hold true since TT-ranks can
not be larger than CP-ranks: rankyr X' < rankgp X

It is known that the problem of determining the exact CP-rank of a tensor is
NP-hard.

To bound CP-rank of a tensor the following lemma is useful.

Lemma 1. Let X" gnd rankcp X = r. Then for any matricization XY we

have rank X&) < 1 where the ordinary matriz rank is assumed.

Proof. Proof is based on the following observation. Let
Ahiz-da — Vlfvé2 .. .Vild,
be a CP-rank 1 tensor. Note for any s,¢
rank ACY = 1,

because A can be written as uw” for some u and w. Then the statement of the
lemma follows from the facts that matricization is a linear operation, and that for

matrices

rank(A + B) < rank A + rank B.
[

We use this lemma to provide a lower bound on the CP-rank in the theorem
formulated below. For example, suppose that we found some matricization of a
tensor X which has matrix rank r. Then, by using the lemma we can estimate that
rankep X > 7.

Let us denote n = (ny,ny...ng). Set of all tensors X with mode sizes n repre-

28



Chapter 2. Expressive Power of RNNs 2.5. Theoretical Analysis

sentable in TT-format with

rankyr X <,

for some vector of positive integers r (inequality is understood entry-wise) forms an
irreducible algebraic variety ([Shafarevich and Hirsch, 1994|), which we denote by
My. This means that My is defined by a set of polynomial equations in R"™*"2:"d
and that it can not be written as a union (not necessarily disjoint) of two proper non-
empty algebraic subsets. An example where the latter property does not hold would
be the union of axes z = 0 and y = 0 in R?, which is an algebraic set defined by the
equation xy = 0. The main fact that we use about irreducible algebraic varieties
is that any proper algebraic subset of them necessarily has measure 0 ([Ilyashenko
and Yakovenko, 2008]).

For simplicity let us assume that number of modes d is even, that all mode sizes
are equal to n, and we consider My with r = (r,7...7), so for any X € My we
have

rankyr X < (r,r,...,r),

entry-wise.

As the main result we prove the following theorem

Theorem 1. Suppose that d = 2k is even. Define the following set
B = {X c ,/\/lr : rankch < q%},

where ¢ = min{n, r}.

Then

where s the standard Lebesgue measure on M.

Proof. Our proof is based on applying lemma 1 to a particular matricization of X
Namely, we would like to show that for s = {1,3,...d — 1}, t = {2,4,...d} the
following set

B®Y = (X € My : rank X&) < g% — 1},
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has measure 0. Indeed, by lemma 1 we have
B c B®Y,

so if u(B®Y) = 0 then u(B) = 0 as well. Note that B! is an algebraic subset
of M, given by the conditions that the determinants of all q% X qg submatrices of
X8 are equal to 0. Thus to show that u(B®") = 0 we need to find at least one
X such that rank X > q%. This follows from the fact that because B®? is an
algebraic subset of the irreducible algebraic variety My, it is either equal to My or
has measure 0, as was explained before.

One way to construct such tensor is as follows. Let us define the following tensors:
Glfal — 51'1(117 Gl c Rlxnxr
Gy = Gy, Gr€RV™L kK =246,...,d—2

_ (2.9)
G =6y 0y G € RV B =357...,d—1

ag_11 1
Gdd 1td — 5idad_1a Gd 6 RT‘XTLX

where 9;, is the Kronecker delta symbol:

1, ifi=a,

5ia =
0, ifia

The TT-ranks of the tensor X defined by the TT-cores (2.9) are equal to
rankrr X = (r, 1,7, ...,7, 1,7).
Lets consider the following matricization of the tensor X
A i1583,evsia—1)(i2,i4,sia)
The following identity holds true for any values of indices such that
n=1...,q, k=1,...,d.
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(31,83 eyid—1),(12,04,iq) __ i1 Qd—1td __
X — Gl . .. Gd —

ALy, d—1

(2.10)
Z Oirar Oisar Oisas - - - Oiguag—y = OirinOigia - - - Oig_sig
(o2 BTN ad—1
The last equality holds because >\ _; iya,0i10p = Oigi,, for any i = 1,...,q.
We obtain that
X sy ia—1),(i25iase i) — SiyinOigis - Oiy_1ig = I(il7i37--~,id71)7(i2yi47--~7id)7 (2.11)

where I is the identity matrix of size ¢/? x ¢%/? where ¢ = min{n, r}.

To summarize, we found an example of a tensor X such that rankyr X < r and
the matricization A (1#:ia-1):(i2:34,--1a) hag a submatrix being equal to the identity
matrix of size ¢%/2 x ¢¥/2, and hence rank X (1:38:ia-1),(12,i4,w70) > /2,

d/2

This means that the canonical rankcp X > ¢%“ which concludes the proof. [

In other words, we have proved that for all TT-Networks besides negligible
set, the equivalent CP-Network will have exponentially large width. To compare
the expressive powers of the HT- and TT-Networks we use the following theorem

|Grasedyck, 2010, Section 5.3.2].

Theorem 2. For any tensor X the following estimates hold.
e [frankyr X <71, then rankyr X < r2.
e Ifrankyr X < r, then rankpp X < 1'%/,

It is also known that this bounds are sharp (see [Buczyniska et al., 2015]). Thus,

we can summarize all the results in the following table 2.2.

Example that requires exponential width in a shallow network A partic-
ular example used to prove Theorem 1 is not important per se since the Theorem
states that TT is exponentially more expressive than CP for almost any tensor (for
a set of tensors of measure one). However, to illustrate how the Theorem translates

into neural networks consider the following example.
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Table 2.2: Comparison of the expressive power of various networks. Given a network
of width r, specified in a column, rows correspond to the upper bound on the width
of the equivalent network of other type (we assume that the number of feature maps
m is greater than the width of the network r).

TT-Network HT-Network CP-Network

TT-Network r o8 Df2 r
HT-Network r? r r
CP-Network > rs > re -

Consider the task of getting d input vectors with n elements each and aiming to

compute the following measure of similarity between xi,...,X4/2 and Xg4/241, . . ., X
U(X) = (x{Xa/211) - - - (X} 9Xa) (2.12)

We argue that it can be done with a TT-Network of width n by using the
TT-tensor X defined in the proof of Theorem 1 and feeding the input vectors in the
following order: xi,Xg/241,- .. Xd/2, Xq. The CP-network representing the same func-
tion will have n%? terms (and hence n%? width) and will correspond to expanding

brackets in the expression (2.12).

The case of equal TT-cores In analogy to the traditional RNNs we can consider
a special class of Tensor Trains with the property that all the intermediate TT-cores
are equal to each other: Gy = G3 = --- = Gy4_1, which allows for processing
sequences of varied length. We hypothesize that for this class exactly the same
result as in Theorem 1 holds i.e. if we denote the variety of Tensor Trains with

equal TT-cores by M¢?, we believe that the following hypothesis holds true:
Hypothesis 1. Theorem 1 is also valid if M, is replaced by M¢9.

To prove it we can follow the same route as in the proof of Theorem 1. While
we leave finding an analytical example of a tensor with the desired property of rank
maximality to a future work, we have verified numerically that randomly generated
tensors X from M¢? with d = 6, n ranging from 2 to 10 and r ranging from 2 to

20 (we have checked 1000 examples for each possible combination) indeed satisfy
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Figure 2-5: Decision boundaries of the TT-Network on toy 2-D datasets.

d
2.

rankcp X > ¢q

2.6 Experiments

In this section, we experimentally check if indeed — as suggested by theorem 1 —
the CP-Networks require exponentially larger width compared to the TT-Networks
to fit a dataset to the same level of accuracy. This is not clear from the theorem
since for natural data, functions that fit this data may lay in the neglectable set
where the ranks of the TT- and CP-networks are related via a polynomial function
(in contrast to the exponential relationship for all function outside the neglectable
set). Other possible reasons why the theory may be disconnected with practice are
optimization issues (although a certain low-rank tensor exists, we may fail to find it
with SGD) and the existence of the feature maps, which were not taken into account
in the theory.

To train the TT- and CP-Networks, we implemented them in TensorFlow (|Abadi
et al., 2015]) and used Adam optimizer with batch size 32 and learning rate sweeping
across {4e-3, 2e-3, le-3, He-4} values. Since we are focused on assessing the expres-
sivity of the format (in contrast to its sensitivity to hyperparameters), we always
choose the best performing run according to the training loss.

For the first experiment, we generate two-dimensional datasets with Sklearn
tools ‘moons* and ‘circles‘ [Pedregosa et al., 2011] and for each training example feed
the two features as two patches into the TT-Network (see fig. 2-5). This example
shows that the T'T-Networks can implement nontrivial decision boundaries.

For the next experiments, we use computer vision datasets MNIST [LeCun et al.,
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Figure 2-6: Train accuracy on CIFAR-10 for the TT- and CP-Networks wrt rank
of the decomposition and total number of parameters (feature size 4 was used).
Note that with rank increase the CP-Networks sometimes perform worse due to
optimization issues.

1990] and CIFAR-10 [Krizhevsky and Hinton, 2009]. MNIST is a collection of 70000
handwritten digits, CIFAR-10 is a dataset of 60000 natural images which are to be
classified into 10 classes such as bird or cat. We feed raw pixel data into the TT- and
CP-Networks (which extract patches and apply a trainable feature map to them,
see section 2.2). In our experiments we choose patch size to be 8 x 8, feature maps to
be affine maps followed by the ReLU activation and we set number of such feature
maps to 4. For MNIST, both TT- and CP-Networks show reasonable performance
(1.0 train accuracy, 0.95 test accuracy without regularizers, and 0.98 test accuracy
with dropout 0.8 applied to each patch) even with ranks less than 5, which may
indicate that the dataset is too simple to draw any conclusion, but serves as a sanity
check.

We report the training accuracy for CIFAR-10 on fig. 2-6. Note that we did not
use regularizers of any sort for this experiment since we wanted to compare expressive
power of networks (the best test accuracy we achieved this way on CIFAR-10 is 0.45
for the TT-Network and 0.2 for the CP-Network). On practice, the expressive power
of the TT-Network is only polynomially better than that of the CP-network (fig. 2-

6), probably because of the reasons discussed above.
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2.7 Related work

A large body of work is devoted to analyzing the theoretical properties of neural
networks [Cybenko, 1989, Hornik et al., 1989, Shwartz-Ziv and Tishby, 2017|. Re-
cent studies focus on depth efficiency |[Raghu et al., 2017, Montufar et al., 2014,
Eldan and Shamir, 2016, Sutskever et al., 2013|, in most cases providing worst-case
guaranties such as bounds between deep and shallow networks width. Two works are
especially relevant since they analyze depth efficiency from the viewpoint of tensor
decompositions: expressive power of the Hierarchical Tucker decomposition [Cohen
et al., 2016] and its generalization to handle activation functions such as ReLU [Co-
hen and Shashua, 2016]. However, all of the works above focus on feedforward
networks, while we tackle recurrent architectures. The only other work that tackles
expressivity of RNNs is the concurrent work that applies the TT-decomposition to
explicitly modeling high-order interactions of the previous hidden states and analy-
ses the expressive power of the resulting architecture [Yu et al., 2017]. This work,
although very related to ours, analyses a different class of recurrent models.
Models similar to the TT-Network were proposed in the literature but were con-
sidered from the practical point of view in contrast to the theoretical analyses pro-
vided in this paper. [Novikov et al., 2016, Stoudenmire and Schwab, 2016] proposed
a model that implements eq. (2.2), but with a predefined (not learnable) feature
map ®. [Wu et al., 2016] explored recurrent neural networks with multiplicative
connections, which can be interpreted as the TT-Networks with bilinear maps that

are shared G = G and have low-rank structure imposed on them.

2.8 Conclusion

In this paper, we explored the connection between recurrent neural networks and
Tensor Train decomposition and used it to prove the expressive power theorem,
which states that a shallow network of exponentially large width is required to
mimic a recurrent neural network. The downsides of this approach is that it provides
worst-case analysis and do not take optimization issues into account. In the future

work, we would like to address the optimization issues by exploiting the Riemannian
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geometry properties of the set of TT-tensors of fixed rank and extend the analysis
to networks with non-linearity functions inside the recurrent connections (as was

done for CNNs in [Cohen and Shashua, 2016]).
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Chapter 3

(Generalized Tensor Models For

Recurrent Neural Networks

3.1 Introduction

Recurrent Neural Networks are firmly established to be one of the best deep learning
techniques when the task at hand requires processing sequential data, such as text,
audio, or video |Graves et al., 2013, Mikolov et al., 2011, Gers et al., 1999|. The
ability of these neural networks to efficiently represent a rich class of functions with
a relatively small number of parameters is often referred to as depth efficiency, and
the theory behind this phenomenon is not yet fully understood. A recent line of
work [Cohen and Shashua, 2016, Cohen et al., 2016, Khrulkov et al., 2018, Cohen
et al., 2018| focuses on comparing various deep learning architectures in terms of
their expressive power.

It was shown in [Cohen et al., 2016] that ConvNets with product pooling are
exponentially more expressive than shallow networks, that is there exist functions
realized by ConvNets which require an exponentially large number of parameters in
order to be realized by shallow nets. A similar result also holds for RNNs with mul-
tiplicative recurrent cells [Khrulkov et al., 2018|. We aim to extend this analysis to
RNNs with rectifier nonlinearities which are often used in practice. The main chal-
lenge of such analysis is that the tools used for analyzing multiplicative networks,

namely, properties of standard tensor decompositions and ideas from algebraic ge-
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ometry, can not be applied in this case, and thus some other approach is required.
Our objective is to apply the machinery of generalized tensor decompositions, and

show universality and existence of depth efficiency in such RNNs.

3.2 Related work

Tensor methods have a rich history of successful application in machine learning.
[Vasilescu and Terzopoulos, 2002|, in their framework of TensorFaces, proposed to
treat facial image data as multidimensional arrays and analyze them with tensor
decompositions, which led to significant boost in face recognition accuracy. |Bailey
and Aeron, 2017] employed higher-order co-occurence data and tensor factorization
techniques to improve on word embeddings models. Tensor methods also allow to
produce more accurate and robust recommender systems by taking into account a
multifaceted nature of real environments [Frolov and Oseledets, 2017].

In recent years a great deal of work was done in applications of tensor calculus to
both theoretical and practical aspects of deep learning algorithms. [Lebedev et al.,
2014] represented filters in a convolutional network with CP decomposition [Harsh-
man, 1970, Carroll and Chang, 1970] which allowed for much faster inference at the
cost of a negligible drop in performance. [Novikov et al., 2015| proposed to use Ten-
sor Train (TT) decomposition [Oseledets, 2011| to compress fully—connected layers
of large neural networks while preserving their expressive power. Later on, TT was
exploited to reduce the number of parameters and improve the performance of recur-
rent networks in long—term forecasting [Yu et al., 2017] and video classification [Yang
et al., 2017| problems.

In addition to the practical benefits, tensor decompositions were used to an-
alyze theoretical aspects of deep neural nets. [Cohen et al., 2016 investigated a
connection between various network architectures and tensor decompositions, which
made possible to compare their expressive power. Specifically, it was shown that CP
and Hierarchial Tucker [Grasedyck, 2010] decompositions correspond to shallow net-
works and convolutional networks respectively. Recently, this analysis was extended

by [Khrulkov et al., 2018] who showed that T'T decomposition can be represented as
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a recurrent network with multiplicative connections. This specific form of RNNs was
also empirically proved to provide a substantial performance boost over standard
RNN models [Wu et al., 2016].

First results on the connection between tensor decompositions and neural net-
works were obtained for rather simple architectures, however, later on, they were
extended in order to analyze more practical deep neural nets. It was shown that
theoretical results can be generalized to a large class of CNNs with ReLLU nonlin-
earities [Cohen and Shashua, 2016] and dilated convolutions |Cohen et al., 2018|,
providing valuable insights on how they can be improved. However, there is a miss-
ing piece in the whole picture as theoretical properties of more complex nonlinear
RNNs have yet to be analyzed. In this paper, we elaborate on this problem and
present new tools for conducting a theoretical analysis of such RNNs, specifically

when rectifier nonlinearities are used.

3.3 Architectures inspired by tensor decompositions

Let us now recall the known results about the connection of tensor decompositions
and multiplicative architectures, and then show how they are generalized in order

to include networks with ReLU nonlinearities.

3.3.1 Score functions and feature tensor

Suppose that we are given a dataset of objects with a sequential structure, i.e. every

object in the dataset can be written as

X

I
—
»
PN

[
=
»
—
S
=

: X(T)) , x® eRN, (3.1)
We also introduce a parametric feature map fy : RY — RM which essentially pre-
processes the data before it is fed into the network. Assumption 3.1 holds for many
types of data, e.g. in the case of natural images we can cut them into rectangular
patches which are then arranged into vectors x(). A typical choice for the feature

map fy in this particular case is an affine map followed by a nonlinear activation:
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fo(x) = 0(Ax+b). To draw the connection between tensor decompositions and

feature tensors we consider the following score functions (logits'):
U(X) = (W, ®(X)) = (vee W) vec ®(X), (3.2)

where W € RM*Mx..xM ig  trainable T-way weight tensor and ®(X) € RM*Mx..xM

is a rank 1 feature tensor, defined as
B(X) = fo(x) @ fo(x?)... @ fo(xD), (3.3)

where we have used the operation of outer product ®, which is important in tensor
calculus. For a tensor A of order N and a tensor B of order M their outer product

C = A® B is a tensor of order N + M defined as:
Ci1i2..-i1vj1j2-~~jM = AiliQ---iNBﬁjQ-"jM' (34)

It is known that (3.2) possesses the universal approzimation property (it can
approximate any function with any prescribed precision given sufficiently large M)

under mild assumptions on fp [Cohen et al., 2016, Poggio and Girosi, 1990].

3.3.2 Tensor Decompositions

Working the entire weight tensor W in eq. (3.2) is impractical for large M and
T, since it requires exponential in 7" number of parameters. Thus, we compactly
represent it using tensor decompositions, which will further lead to different neural

network architectures, referred to as tensor networks [Cichocki et al., 2017].

CP-decomposition The most basic decomposition is the so-called Canonical

(CP) decomposition [Harshman, 1970, Carroll and Chang, 1970] which is defined

1By logits we mean immediate outputs of the last hidden layer before applying nonlinearity.
This term is adopted from classification tasks where neural network usually outputs logits and
following softmax nonlinearity transforms them into valid probabilities.
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as follows

W = Z M eovP e, ovl (3.5)

where vi? € RM and minimal value of R such that decomposition (3.3.2) exists

is called canonical rank of a tensor (CP-rank). By substituting section 3.3.2 into

eq. (3.2) we find that

R

T
(X) =Y A [foxD), v @ @ (fo(x ™), v =Y A T [(fo(x?), v?).

r=1 r=1  t=1 (36)

In the equation above, outer products ® are taken between scalars and coincide with

the ordinary products between two numbers. However, we would like to keep this

notation as it will come in handy later, when we generalize tensor decompositions

to include various nonlinearities.

TT-decomposition Another tensor decomposition is Tensor Train (TT) decom-

position [Oseledets, 2011| which is defined as follows

R1 RT—I
WY g el e 08D, (3.7
T'1=1 ’V‘T,1=1

where gg),m € RM and ry = rp = 1 by definition. If we gather vectors gg),m for all

corresponding indices r,_; € {1,..., Ry_1} and r, € {1,..., R;} we will obtain three—
dimensional tensors G € RM*f-1xRe (for t = 1 and t = T we will get matrices
gV e RMx1x and g1 ¢ RM*Br-1x1) - The set of all such tensors {G¥}7 | is
called TT-cores and minimal values of { R, }7_,* such that decomposition (3.7) exists
are called TT-ranks. In the case of TT decomposition, the score function has the

following form:

Ry Ry T
(X)) = o > [[ex®),el ). (3.8)
ri=1 rr_1=1t=1
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3.3.3 Connection between TT and RNN

Now we want to show that the score function for Tensor Train decomposition exhibits
particular recurrent structure similar to that of RNN. We define the following hidden

states:
h e RF :h() = (f,(x),gl)),

Ri_1 (39)
h® e RF - h(®) = Y (f(x),g? "D t=2. T

re—1=1

Such definition of hidden states allows for more compact form of the score function.

Lemma 2. Under the notation introduced in eq. (3.9), the score function can be

written as

((X)=h" ¢ R

Proof of Lemma 2 as well as the proofs of our main results from Section 3.5 were
moved to Section 3.8 due to limited space.

Note that with a help of TT—cores we can rewrite eq. (3.9) in a more convenient

index form:
0 = 300 x0T = G ) M),k
,J

(3.10)
where the operation of tensor contraction is used. Combining all weights from G®
and fy() into a single variable @(gt) and denoting the composition of feature map,
outer product, and contraction as g : Rf-1 x RV x RV*Fe-1xFe s RE we arrive at

the following vector form:
h® = g(h), x®;0F)), h® e R, (3.11)

This equation can be considered as a generalization of hidden state equation for
Recurrent Neural Networks as here all hidden states h(®) may in general have different
dimensionalities and weight tensors @g) depend on the time step. However, if we

st R=Ry=---=Rp_and G =G® = ... = gV we will get simplified hidden
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state equation used in standard recurrent architectures:
h® = g(h® Y x®.05), W eRE, t=2...7-1 (3.12)

Note that this equation is applicable to all hidden states except for the first h() =
GW £5(xM) and for the last h(™) = £ (x™)GTh(T-1 due to two-dimensional na-
ture of the corresponding T'T—cores. However, we can always pad the input sequence
with two auxiliary vectors x(©) and x(T+ to get full compliance with the standard
RNN structure. Figure 3-1 depicts tensor network induced by T'T decomposition
with cores {GW}T .

Figure 3-1: Neural network architecture which corresponds to recurrent TT-
Network.

3.4 Generalized tensor networks

3.4.1 Generalized outer product

In the previous section we showed that tensor decompositions correspond to neural
networks of specific structure, which are simplified versions of those used in practice
as they contain multiplicative nonlinearities only. One possible way to introduce
more practical nonlinearities is to replace outer product ® in eq. (3.6) and eq. (3.10)
with a generalized operator ®, in analogy to kernel methods when scalar product
is replaced by nonlinear kernel function. Let £ : R x R — R be an associative
and commutative binary operator (Vx,y,z € R : £(&(z,y),2) = &(x,&(y, 2)) and
Ve,y € R : &(x,y) = &(y,x)). Note that this operator easily generalizes to the
arbitrary number of operands due to associativity. For a tensor A of order N and

a tensor B of order M we define their generalized outer product C = A ®¢ B as an
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(N + M) order tensor with entries given by:

ci1-~.iNj1~~~jM = 5 ('A’h-..iN? le--~j1\4) : (313)

Now we can replace ® in egs. (3.6) and (3.10) with ®, and get networks with various
nonlinearities. For example, if we take &(z,y) = max(z,y,0) we will get an RNN
with rectifier nonlinearities; if we take {(z,y) = In(e* +¢¥) we will get an RNN with
softplus nonlinearities; if we take (z,y) = zy we will get a simple RNN defined in

the previous section. Concretely, we will analyze the following networks.
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Generalized shallow network with &mnonlinearity
e Score function:

0X) =N [(fox™),viD) @c ... @ (fo(x),viD)]
= (3.14)

R
= A& ((foxM), v, (fo(x ), v
e Parameters of the network:
6 = ({AMHL eR VO, e RY) (3.15)

Generalized RNN with £&—nonlinearity

e Score function:

k = Z g”k (t)) ®e h(t—l)Lj — Z g(t;€ ¢ ([C(t)fe(x(t))]i’ h§t—1)>

4,J

((X)=h"

e Parameters of the network:

= ({CUHL, € RFM (GO} € RExR-ixt) (3.17)

Note that in eq. (3.16) we have introduced the matrices C®*) acting on the input
states. The purpose of this modification is to obtain the plausible property of
generalized shallow networks being able to be represented as generalized RNNs of
width 1 (i.e., with all R; = 1) for an arbitrary nonlinearity £. In the case of {(z,y) =
2y, the matrices C® were not necessary, since they can be simply absorbed by G®

via tensor contraction (see Section 3.8 for further clarification on these points).

Initial hidden state Note that generalized RNNs require some choice of the
initial hidden state h(®. We find that it is convenient both for theoretical analysis

and in practice to initialize h(®) as unit of the operator £, i.e. such an element u
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that {(z,y,u) = &(z,y) Yo,y € R. Henceforth, we will assume that such an element
exists (e.g., for £(z,y) = max(z,y,0) we take u = 0, for £(z,y) = zy we take u = 1),
and set h(®) = u. For example, in eq. (3.9) it was implicitly assumed that h(® = 1.

3.4.2 Grid tensors

Introduction of generalized outer product allows us to investigate RNNs with wide
class of nonlinear activation functions, especially ReLU. While this change looks
appealing from the practical viewpoint, it complicates following theoretical analysis,
as the transition from obtained networks back to tensors is not straightforward.

In the discussion above, every tensor network had corresponding weight tensor
W and we could compare expressivity of associated score functions by compar-
ing some properties of this tensors, such as ranks [Khrulkov et al., 2018, Cohen
et al., 2016]. This method enabled comprehensive analysis of score functions, as
it allows us to calculate and compare their values for all possible input sequences
X = (x, ..., x™). Unfortunately, we can not apply it in case of generalized tensor
networks, as the replacement of standard outer product ® with its generalized ver-
sion ®¢ leads to the loss of conformity between tensor networks and weight tensors.
Specifically, not for every generalized tensor network with corresponding score func-
tion £(X) now exists a weight tensor W such that ¢(X) = (W, ®(X)). Also, such
properties as universality no longer hold automatically and we have to prove them
separately. Indeed as it was noticed in [Cohen and Shashua, 2016| shallow networks
with £(x,y) = max(x,0) + max(y,0) no longer have the universal approximation
property. In order to conduct proper theoretical analysis, we adopt the apparatus
of so-called grid tensors, first introduced in [Cohen and Shashua, 2016].

Given a set of fixed vectors X = {x(l), e ,X(M)} referred to as templates, the
grid tensor of X is defined to be the tensor of order 7" and dimension M in each

mode, with entries given by:
FK(X>i1i2...iT =/ (X) 5 X = (X(il)a X(iz)a s aX(iT)) > (318)
where each index i; can take values from {1,..., M}, i.e. we evaluate the score
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function on every possible input assembled from the template vectors {x®}M,. To
put it simply, we previously considered the equality of score functions represented
by tensor decomposition and tensor network on set of all possible input sequences
X = (X(l), e ,X(T)) , x e RN, and now we restricted this set to exponentially
large but finite grid of sequences consisting of template vectors only.

Define the matrix F € R™*M wwhich holds the values taken by the representation

function fy : RY — RM on the selected templates X:

P2 [fx) fle®) . )] - (3.19)

Using the matrix F we note that the grid tensor of generalized shallow network has

the following form (see Section 3.8 for derivation):

R
(X)) =) A (Fv) @ (Fv?) @ ... @¢ (Fv"). (3.20)

r=1
Construction of the grid tensor for generalized RNN is a bit more involved. We find
that its grid tensor I'*(X) can be computed recursively, similar to the hidden state

in the case of a single input sequence. The exact formulas turned out to be rather

cumbersome and we moved them to Section 3.8.

3.5 Main results

With grid tensors at hand we are ready to compare the expressive power of gen-
eralized RNNs and generalized shallow networks. In the further analysis, we will
assume that &(x,y) = max(x,y,0), i.e., we analyze RNNs and shallow networks
with rectifier nonlinearity. However, we need to make two additional assumptions.
First of all, similarly to [Cohen and Shashua, 2016] we fix some templates X such
that values of the score function outside of the grid generated by X are irrelevant
for classification and call them covering templates. It was argued that for image
data values of M of order 100 are sufficient (corresponding covering template vec-

tors may represent Gabor filters). Secondly, we assume that the feature matrix F is
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invertible, which is a reasonable assumption and in the case of fy(x) = 0(Ax + b)
for any distinct template vectors X the parameters A and b can be chosen in such

a way that the matrix F is invertible.

3.5.1 Universality

As was discussed in section 3.4.2 we can no longer use standard algebraic techniques
to verify universality of tensor based networks. Thus, our first result states that
generalized RNNs with £(z,y) = max(x,y,0) are universal in a sense that any
tensor of order 1" and size of each mode being m can be realized as a grid tensor of

such RNN (and similarly of a generalized shallow network).

Theorem 3 (Universality). Let H € RM>MxxM pe qn qrbitrary tensor of order
T. Then there exist a generalized shallow network and a generalized RNN
with rectifier nonlinearity (x,y) = max(x,y,0) such that grid tensor of each of the

networks coincides with H.

Part of Theorem 3 which corresponds to generalized shallow networks readily
follows from [Cohen and Shashua, 2016, Claim 4]. In order to prove the statement

for the RNNs the following two lemmas are used.

Lemma 3. Given two generalized RNNs with grid tensors T*4(X), I'*5(X), and
arbitrary &-nonlinearity, there exists a generalized RNN with grid tensor T (X)
satisfying

I'c(X) = aT*(X) + oI (X), Va,b € R.

This lemma essentially states that the collection of grid tensors of generalized
RNNs with any nonlinearity is closed under taking arbitrary linear combinations.
Note that the same result clearly holds for generalized shallow networks because

they are linear combinations of rank 1 shallow networks by definition.

Lemma 4. Let E91297) e an arbitrary one-hot tensor, defined as

(]1]2]T) _ 1, Jt = %t Vit S {1, “o ,T},
i112...47
0, otherwise.
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Then there exists a generalized RNN with rectifier nonlinearities such that its grid

tensor satisfies

¢ (X) — gUrjz-jr)

This lemma states that in the special case of rectifier nonlinearity £(z,y) =

max(z,y,0) any basis tensor can be realized by some generalized RNN.

Proof of Theorem 3. By Lemma 4 for each one-hot tensor £%2-7) there exists
a generalized RNN with rectifier nonlinearities, such that its grid tensor coincides

with this tensor. Thus, by Lemma 3 we can construct an RNN with

I‘Z(X) = Z %ili}“idg(iliz--iT) =H.

11,82, 50T

For generalized shallow networks with rectifier nonlinearities see the proof of [Cohen

and Shashua, 2016, Claim 4]. O]

The same result regarding networks with product nonlinearities considered in
[Khrulkov et al., 2018 directly follows from the well-known properties of tensor
decompositions (see Section 3.8).

We see that at least with such nonlinearities as {(z,y) = max(z,y,0) and
&(x,y) = xy all the networks under consideration are universal and can represent
any possible grid tensor. Now let us head to a discussion of expressivity of these

networks.

3.5.2 Expressivity

As was discussed in the introduction, expressivity refers to the ability of some class of
networks to represent the same functions as some other class much more compactly.
In our case the parameters defining size of networks are ranks of the decomposition,
i.e. in the case of generalized RNNs ranks determine the size of the hidden state,
and in the case of generalized shallow networks rank determines the width of a net-
work. It was proven in [Cohen et al., 2016, Khrulkov et al., 2018| that ConvNets
and RNNs with multiplicative nonlinearities are exponentially more expressive than

the equivalent shallow networks: shallow networks of exponentially large width are
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required to realize the same score functions as computed by these deep architec-
tures. Similarly to the case of ConvNets [Cohen and Shashua, 2016], we find that
expressivity of generalized RNNs with rectifier nonlinearity holds only partially, as

discussed in the following two theorems. For simplicity, we assume that T is even.

Theorem 4 (Expressivity I). For every value of R there exists a generalized RNN
with ranks < R and rectifier nonlinearity which is exponentially more efficient than
shallow networks, i.e., the corresponding grid tensor may be realized only by a shallow

network with rectifier nonlinearity of width at least % min(M, R)"~.

This result states that at least for some subset of generalized RNNs expressivity
holds: exponentially wide shallow networks are required to realize the same grid
tensor. Proof of the theorem is rather straightforward: we explicitly construct an
example of such RNN which satisfies the following description. Given an arbitrary
input sequence X = (x(l), .. .X(T)) assembled from the templates, these networks (if
M = R) produce 0 if X has the property that x(1) = x® x®) = x@  x(T=) =
x(M) and 1 in every other case, i.e. they measure pairwise similarity of the input
vectors. A precise proof is given in Section 3.8.

In the case of multiplicative RNNs [Khrulkov et al., 2018| almost every network
possessed this property. This is not the case, however, for generalized RNNs with

rectifier nonlinearities.

Theorem 5 (Expressivity II). For every value of R there exists an open set (which
thus has positive measure) of generalized RNNs with rectifier nonlinearity (z,y) =
max(z,y,0), such that for each RNN in this open set the corresponding grid tensor

can be realized by a rank 1 shallow network with rectifier nonlinearity.

In other words, for every rank R we can find a set of generalized RNNs of positive
measure such that the property of expressivity does not hold. In the numerical
experiments in Section 6.5 and Section 3.8 we validate whether this can be observed
in practice, and find that the probability of obtaining CP-ranks of polynomial size
becomes negligible with large 7" and R. Proof of Theorem 5 is provided in Section 3.8.
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Shared case Note that all the RNNs used in practice have shared weights, which
allows them to process sequences of arbitrary length. So far in the analysis we
have not made such assumptions about RNNs (i.e., G® = ... = g-V) By
imposing this constraint, we lose the property of universality; however, we believe
that the statements of Theorems 4 and 5 still hold (without requiring that shallow
networks also have shared weights). Note that the example constructed in the proof
of Theorem 5 already has this property, and for Theorem 4 we provide numerical

evidence in Section 3.8.

3.6 Experiments

In this section, we study if our theoretical findings are supported by experimental
data. In particular, we investigate whether generalized tensor networks can be
used in practical settings, especially in problems typically solved by RNNs (such as
natural language processing problems). Secondly, according to Theorem 5 for some
subset of RNNs the equivalent shallow network may have a low rank. To get a grasp
of how strong this effect might be in practice we numerically compute an estimate

for this rank in various settings.

Performance For the first experiment, we use two computer vision datasets MNIST [Le-
Cun et al., 1990] and CIFAR-10 |Krizhevsky and Hinton, 2009, and natural lan-
guage processing dataset for sentiment analysis IMDB [Maas et al., 2011|. For the
first two datasets, we cut natural images into rectangular patches which are then
arranged into vectors x(*) (similar to [Khrulkov et al., 2018]) and for IMDB dataset
the input data already has the desired sequential structure.

Figure 3-2 depicts test accuracy on IMDB dataset for generalized shallow net-
works and RNNs with rectifier nonlinearity. We see that generalized shallow network
of much higher rank is required to get the level of performance close to that achiev-
able by generalized RNN. Due to limited space, we have moved the results of the

experiments on the visual datasets to Section 3.9.
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Figure 3-2: Test accuracy on IMDB  Figure 3-3: Distribution of lower bounds
dataset for generalized RNNs and gener-  on the rank of generalized shallow net-
alized shallow networks with respect to  works equivalent to randomly gener-
the total number of parameters (M =  ated generalized RNNs of ranks 1,2,4, 8
50, T'= 100, &(x,y) = max(z,y,0)). (M =10, T =6).

Expressivity For the second experiment we generate a number of generalized
RNNs with different values of TT-rank r and calculate a lower bound on the rank
of shallow network necessary to realize the same grid tensor (to estimate the rank
we use the same technique as in the proof of Theorem 4). Figure 3-3 shows that for
different values of R and generalized RNNs of the corresponding rank there exist
shallow networks of rank 1 realizing the same grid tensor, which agrees well with The-
orem 5. This result looks discouraging, however, there is also a positive observation.
While increasing rank of generalized RNNs, more and more corresponding shallow
networks will necessarily have exponentially higher rank. In practice we usually deal
with RNNs of R = 10? — 10 (dimension of hidden states), thus we may expect that
effectively any function besides negligible set realized by generalized RNNs can be
implemented only by exponentially wider shallow networks. The numerical results

for the case of shared cores and other nonlinearities are given in Section 3.9.

3.7 Conclusion

In this paper, we sought a more complete picture of the connection between Re-
current Neural Networks and Tensor Train decomposition, one that involves various
nonlinearities applied to hidden states. We showed how these nonlinearities could be

incorporated into network architectures and provided complete theoretical analysis
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on the particular case of rectifier nonlinearity, elaborating on points of generality
and expressive power. We believe our results will be useful to advance theoretical
understanding of RNNs. In future work, we would like to extend the theoretical
analysis to most competitive in practice architectures for processing sequential data

such as LSTMs and attention mechanisms.

3.8 Proofs

Lemma 2. Under the notation introduced in eq. (3.9), the score function can be

written as
((X)=h" c R
Proof.
R Rr—y
Z(X)zz... Z H fo(x (t gn m>

r1=1 rr_1=1t=1
R1 RT 1

=> .. > H fox9). g1 ) (o). g1,
7‘1:1 rr—_1=— =1t=2 A

h{)

Rp_1 Ry T

= > O ), g2, )nl
TT71:1 ’f‘1:1 t=2
Ry Ry, T r1

= Z <f9( ) ’r‘t 1T‘t> Z<f9< >7g1”12‘2>h1(”1)
rp_1=1 ro=1t=3 ri=1

h@

Rr_1 Ry T

= Z ZH<f9( ) g?"f 17”t>h’$‘§)
rp_1=1 ro=1t=3
Ry
rr_1= =1

]

Proposition 3.8.1. If we replace the generalized outer product ®¢ in eq. (3.16)

with the standard outer product ®, we can subsume matrices C® into tensors G
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without loss of generality.

Proof. Let us rewrite hidden state equation eq. (3.16) after transition from ®; to
X:
b =3 G [CUn") o nt ]

ij
1,

t t t—1 = (1) t t
N R s,
i l i
= (1) -
= Zgljkf9(x(t))lh§'t )
l’j

J

— Z QSL [f@(X(t)) ® h(tfl)]l‘ _
Lj

We see that the obtained expression resembles those presented in eq. (3.10) with
TT-cores GY replaced by Q(t) and thus all the reasoning applied in the absence of
matrices C) holds valid. O

Proposition 3.8.2. Grid tensor of generalized shallow network has the following

form (eq. (3.20)):

R
FZ(X) = Z Ay (FV,(,l)) Qe (FVS)) Q¢ ... Qg (FVﬁT)) .
r=1
Proof. Let X = (x(il),x(”), e ,X(iT)) denote an arbitrary sequence of templates.

Corresponding element of the grid tensor defined in eq. (3.20) has the following form:

R
FE(X)iliQWiT = Z Ar [(Fvﬁl)) %93 (vanz)) Qe ... Q¢ (FV?QT))]ilig...iT

r=1
R

- Z Ar (Fvﬁl))il ¢ (Fvv("Q))iQ Qg - -+ D¢ (FvﬁT))iT
r=1
R

= Z /\7"€ ((fﬁ(x(il))a V£1)>> R <f9<x(iT))’ VrT)>) = E(X)
r=1
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Proposition 3.8.3. Grid tensor of a generalized RNN has the following form:

r'(X)=h® ¢ R!,

Iw,1(X)km1 _ Z gz(Jlll (C(I)FT Re Fe,O) c RR1><M’

imyj

1majmi

,J
FZ’Q(X)kmlmQ _ Z 95]2]1 (C(2)FT R I‘“) c RszMxM7
1,3

imrjmi..mp_q ’

..........

(3.21)

Proof. Proof is similar to that of Proposition 3.8.2 and uses eq. (3.16) to compute

the elements of the grid tensor. O]

Lemma 3. Given two generalized RNNs with grid tensors T*A(X), T8 (X), and
arbitrary &-nonlinearity, there evists a generalized RNN with grid tensor I'‘c(X)
satisfying

I'c(X) = al'(X) + 01" (X), Va,b € R.

Proof. Let these RNNs be defined by the weight parameters
04 = ({CD)L) e RAVGRYE, e RInaxfua ),

and

Op = ({CHHL, € RFM {GRYL | € REv<finxiicn )

We claim that the desired grid tensor is given by the RNN with the following weight
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settings.

Cg) c R(La+tLp)xM

®

ot _ |Ca
< oW
B

gg) c REa+Lp)x1x(Ri,a+Ry p)

¢

{gg)]i,:,: =

\

G0 o] i€ L)

gg) e R(LA"FLB)X (Ri—1,A+Ri—1,B) X (Rt a+R:,B) 7

\

/

\

[g(t)h 0
4 . ie{l,....La}
0 0
0 0
, 1€ {LA + 1,
O [g(Bt)](ifLA)vzr:

R(La+Lp)X(Ri—1,a+Ri—1,8)x1

T
b[ (B )](i—LA),:,:

0 [gg)](mm,;,l , ie{Lla+1,

(T)
a[ A ]i,:,:
, ie{l,...,LA}
0
0
, iG{LA+1,.

..., La+ Lp}

1<t<T

...,LA+LB}

.., Lo+ Lg}.

It is straightforward to verify that the network defined by these weights possesses

the following property:

h(t)

hg): A1 o<t<T,
h(t)
B
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and

h( = ah!] +bn],

concluding the proof. We also note that these formulas generalize the well-known

formulas for addition of two tensors in the Tensor Train format [Oseledets, 2011]. [

Proposition 3.8.4. For any associative and commutative binary operator &, an
arbitrary generalized rank 1 shallow network with &—nonlinearity can be represented

in a form of generalized RNN with unit ranks (Ry = -+ = Ry, = 1) and &-

nonlinearity.

Proof. Let © = (X, {v("}L,) be the parameters specifying the given generalized
shallow network. Then the following weight settings provide the equivalent general-

ized RNN (with h® being the unity of the operator ¢).

c® — (V<t>)T e RM
g(t) 1,
G =\

t<T,

Indeed, in the notation defined above, hidden states of generalized RNN have

the following form:

h® — g(t)g ([C(t)fg(x(t))], h(t—l))
=& ((fo(x®),v®)y n=D)  p =1, T-1
h™ = \¢ (<f9(X(T))’V(T)>,h(T71)) '

The score function of generalized RNN is given by eq. (3.16):

0(X) =hD = 2 ((fo(xD), v\ Ty, hTD)
= A ((fo(x D), v D) (fo(xT7D), v(T=) h(T2)

= A (o) v ) (fo(x ), v D))

which coincides with the score function of rank 1 shallow network defined by

parameters ©.
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Lemma 4. Let E992+97) be an arbitrary one—hot tensor, defined as

8(.7132 ]T) 1, jt == it Vt € {1, cee ,T},

i142...07
0, otherwise.

Then there exists a generalized RNN with rectifier nonlinearities such that its grid

tensor satisfies

| (X) = EUiz-jr)

Proof. It is known that the statement of the lemma holds for generalized shallow
networks with rectifier nonlinearities (see [Cohen and Shashua, 2016, Claim 4]).
Based on Proposition 3.8.4 and Lemma 3 we can conclude that it also holds for

generalized RNNs with rectifier nonlinearities. O]
Proposition 3.8.5. Statement of Theorem 3 holds with {(x,y) = zy.

Proof. By assumption the matrix F is invertible. Consider the following tensor H

_ -1
zm Ar — E %h »JTF]111 T FjTiT7

J1yeenndT

and the score function in the form of eq. (3.2):

Note that by construction for any input assembled from the template vectors we
obtain ¢ ((x(z1 .. ,X(iT))) = H,;, ... By taking the standard TT and CP decompo-
sitions of H which always exist [Oseledets, 2011], and using Lemma 2 and eq. (3.6)

we conclude that universality holds. O]

Theorem 4 (Expressivity I). For every value of R there exists a generalized RNN
with ranks < R and rectifier nonlinearity which is exponentially more efficient than
shallow networks, i.e., the corresponding grid tensor may be realized only by a shallow

network with rectifier nonlinearity of width at least 7= mln(M R)"~.
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In order to prove the theorem we will use the standard technique of matriciza-
tions. Simply put, by matricizing a tensor we reshape it into a matrix by splitting
the indices of a tensor into two collections, and converting each one of them into
one long index. l.e., for a tensor A of order T" with mode sizes being m, we split
the set {1,...,T} into two non—overlapping ordered subsets s and ¢, and define
the matricization A € RM™ M 1y simply reshaping (and possibly transposing)
the tensor A according to s and t. We will consider the matricization obtained by
taking Spqq = (1,3,...,T — 1), teyen = (2,4,...,T), i.e., we split out even and odd
modes. A typical application of matricization is the following: suppose that we can
upper and lower bound the ordinary matrix rank of a certain matricization using
the parameters specifying each of the architectures being analyzed. Then under the
assumption that both architectures realize the same grid tensor (and thus ranks of
the matricization coincide) we can compare the sizes of corresponding architectures.
In the case of generalized shallow networks with rectifier nonlinearity we will use

the following result [Cohen and Shashua, 2016, Claim 9.

Lemma 5. Let TY(X) be a grid tensor generated by a generalized shallow network

of rank R and &(z,y) = max(x,y,0). Then

S even TM
rank [(x)] " < R—=,

where the ordinary matriz rank is assumed.

This result is a generalization of a well-known property of the standard CP-
decomposition (i.e. if {(z,y) = xy), which states that for a rank R decomposition,
the matrix rank of every matricization is bounded by R.

In order to prove Theorem 4 we will construct an example of a generalized RNN
with exponentially large matrix rank of the matricization of grid tensor, from which

and Lemma 5 the statement of the theorem will follow.

Lemma 6. Without loss of generality assume that x; = e; (which can be achieved
since F is invertible). Let 179 denote the matriz of size p x q with each entry

being 1, IP9 denote the matriz of size p X q with Ig’q) = 0;; (0 being the Kronecker

99



Chapter 3. Generalized Tensor Models For RNNs 3.8. Proofs

symbol), and b = [1 — min(M, R),05_,] € RY™E. Consider the following weight

setting for a generalized RNN with £(z,y) = max(zx,y,0).

(

D R
IMALM _ IMALM 4 oven.

4

VR € RMXIXE ¢ odd,
g(t) = IM,R

€ RMHDXEXT ¢ oyen,
b
\

Then grid tensor T*(X) of this RNN satisfies
rank [I‘K(X)} (Sodd;teven) > min(M, R)T/Q,

where the ordinary matrix rank is assumed.

Proof. Informal description of the network defined by weights in the statement in
the lemma is the following. Given some input vector e; it is first transformed into its
bitwise negative €;, and its first R components are saved into the hidden state. The
next block then measures whether the first min(R, M) components of the current
input coincide with the hidden state (after again taking bitwise negative). If this is
the case, the hidden state is set 0 and the process continues. Otherwise, the hidden
state is set to 1 which then flows to the output independently of the other inputs.
In other words, for all the inputs of the form X = (xi;,Xi;, .- Xiy s Xip,) With
it < R,...,ip/2 < R we obtain that /(X) = 0, and in every other case /(X) = 1.
Thus, we obtain that [I‘E(X)](s"dd’t”m) is a matrix with all the entries equal to 1,
except for min(M, R)"/ entries on the diagonal, which are equal to 0. Rank of such
a matrix is B>+ 1if R < M and M"” otherwise, and the statement of the lemma

follows. 0
Based on these two lemmas we immediately obtain Theorem 4.

Proof of Theorem 4. Consider the example constructed in the proof of Lemma 6.

By Lemma 5 the rank of the shallow network with rectifier nonlinearity which is able
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to represent the same grid tensor is at least =3 mln(M R)T/2 O

Theorem 5 (Expressivity II). For every value of R there exists an open set (which
thus has positive measure) of generalized RNNs with rectifier nonlinearity £(z,y) =
max(z,y,0), such that for each RNN in this open set the corresponding grid tensor

can be realized by a rank 1 shallow network with rectifier nonlinearity.

Proof. As before, let us denote by I?®9 a matrix of size p x ¢ such that I(p 2 — = 0y,
and by aP1P2-Pa) we denote a tensor of size p; X ... X pg with each entry being a
(sometimes we will omit the dimensions when they can be inferred from the context).

Consider the following weight settings for a generalized RNN.

cO— (F7)"

2MLE) - —

G — 1MERER) p—9 T 1

1OLRY =T

\

The RNN defined by these weights has the property that I'(X) is a constant tensor
with each entry being 2(M R)T~!, which can be trivially represented by a rank 1
generalized shallow network. We will show that this property holds under a small
perturbation of C®, G® and F. Let us denote each of these perturbation (and every
tensor appearing size of which can be assumed indefinitely small) collectively by e.

Applying eq. (3.21) we obtain (with £(z,y) = max(z,y,0)).

r'(X) =0 e R,

T4 (X) oy —ngj,l (I 1 e) 2 0), =1®(2+e),

imyj

T2(X) kg = Z G (I 4 g) @ TH(X)) ® (2MR +¢)® 1,

imajmi

T (X kmimgmr = 1@ 2MR)T ' +e)®1... @1,

r(X) = (X), =2MR)" ' +e)®1...1,

sigigeangs
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where we have used a simple property connecting ®¢ with &(z,y) = max(z,y,0)
and ordinary ®: if for tensors A and B each entry of A is greater than each entry
of B, A®: B=.A® 1. The obtained grid tensors can be represented using rank 1

generalized shallow networks with the following weight settings.

A=1,
F_'(2(MR)T1 +¢), t =1,
Vi =
0, t>1,
where F. is the feature matrix of the corresponding perturbed network. O

3.9 Additional experiments

In this section we provide the results additional computational experiments, aimed

to provide more thorough and complete analysis of generalized RNNs.

Different £-nonlinearities In this paper we presented theoretical analysis of rec-
tifier nonlinearity which corresponds to &(x,y) = max(z,y,0). However, there is a
number of other associative binary operators £ which can be incorporated in gen-
eralized tensor networks. Strictly speaking, every one of them has to be carefully
explored theoretically in order to speak about their generality and expressive power,

but for now we can compare them empirically.

§(z,y) ry  max(z,y,0) In(e”+e¥) z+y /22 + 12 Y2

MNIST  97.39 97.45 97.68 96.28 96.44
CIFAR-10 43.08 48.09 55.37 57.18 49.04
IMDB 83.33 84.35 82.25 81.28 79.76

Table 3.1: Performance of generalized RNN with various nonlinearities.

Table 3.1 shows the performance (accuracy on test data) of different nonlineari-
ties on MNIST, CIFAR—10, and IMDB datasets for classification. Although these
problems are not considered hard to solve, we see that the right choice of nonlin-

earity can lead to a significant boost in performance. For the experiments on the
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visual datasets we used T' = 16, m = 32, R = 64 and for the experiments on the
IMDB dataset we had T" = 100, m = 50, R = 50. Parameters of all networks were
optimized using Adam (learning rate o = 10~%) and batch size 250.

Expressivity in the case of shared cores We repeat the expressivity experi-
ments from Section 6.5 in the case of equal TTcores (G% = ... = g7y We
observe that similar to the case of different cores, there always exist rank 1 general-
ized shallow networks which realize the same score function as generalized RNN of

higher rank, however, this situation seems too unlikely for big values of R.

1.0 1.0
EE rR=1 A rR=1
/1 R=2 /1 R=2
1 R=4 1 R=4
B3 R=38 3 rR=38

0.5 0.5

0.05 5 10 0.0 5 10

Lower bound on shallow network rank Lower bound on shallow network rank

Figure 3-4: Distribution of lower bounds  Figure 3-5: Distribution of lower bounds
on the rank of generalized shallow net- on the rank of generalized shallow net-
works equivalent to randomly generated  works equivalent to randomly generated
generalized RNNs of ranks (M = 6, generalized RNNs of ranks (M = 6,

T'=6,{(x,y) = max(z,y,0)). T'=6,¢(x,y) = Va? +¢).
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Chapter 4

Desingularization of bounded-rank

matrix sets

4.1 Introduction

Although low-rank matrices appear in many applications, the structure of the cor-
responding matrix variety (real algebraic) is not fully utilized in the computations,
and the theoretical investigation is complicated because of the existence of singu-
lar points |Lakshmibai and Brown, 2015] on such a variety, which correspond to
matrices of smaller rank. We tackle this problem by utilizing the modified Room-
Kempf desingularization [Naldi, 2015] of determinantal varieties that is classical in
algebraic geometry, but has never been applied in the context of optimization over
matrix varieties. Briefly, it can be summarized as follows. Idea of the the Room-
Kempf procedure is to consider a set of tuples of matrices (A, Y') satisfying equations
AY = 0 and BY = 0 for some fixed matrix B. These equations imply that the rank
of A is bounded and moreover a set of such tuples is a smooth manifold (for rea-
sonable matrices B). However, conditions of the form BY = 0 can be numerically
unstable, so we modify it by imposing the condition Y7Y = I instead. The precise
definition of the manifold we work with is given in terms of Grassmannians and then
we transition to the formulas given above. We also show that the dimension of this

manifold is the same as of the original matrix variety. Our main contributions are:
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e We propose and analyze a modified Room-Kempf desingularization technique
for the variety of matrices of shape n x m with rank bounded by r (sec-

tion 4.2.2).

e We prove smoothness and obtain bounds on the curvature of the desingularized
variety in section 4.2.2 and section 4.2.3. The latter is performed by estimating
singular values of the operator of the orthogonal projection onto the tangent

space of the desingularized variety.

e We find an effective low-dimensional parametrization of the tangent space
(section 4.2.4). Even though the desingularized variety is a subset of a space
of much bigger dimension, this allows us to construct robust second order

method with O((n + m)r) complexity.

e We implement an effective realization of a reduced Hessian method for the
optimization over the desingularized variety (section 4.3). We start with the
Lagrange multipliers method for which we derive a formula for the Newton
method for the corresponding optimization problem. The latter takes the
saddle point form which we solve using the null space method found in [Benzi
et al., 2005]. In section 4.3.6 we show how to reduce the total complexity of

the algorithm to O((n + m)r) per iteration.

e We also briefly discuss a few technical details in the implementation of the

algorithm (section 4.4)

e We present results of numerical experiments and compare them with some

other methods found in section 4.5.

The manifolds that we work with in this paper will always be C* and in fact

smooth algebraic varieties.

4.1.1 Idea of desingularization

Before we define desingularization of bounded rank matrix sets, we will introduce

its basic idea. The low-rank matrix case will be described in next section. Let V be
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a variety (not necessarily smooth) and f be a function
f: V=R,

which is smooth in an open neighborhood of V' (which is assumed to be embedded
in R¥). To solve

f(z) = min,z € V,

we often use methods involving the tangent bundle of V. However, due to the
existence of the singular points where the tangent space is not well-defined, it is
hard to prove correctness and convergence using those methods. To avoid this

problem we construct a smooth variety V and a surjective smooth map m
m:V =V

Let fbe a pullback of f via map 7 i.e.
]/”\: V =R,

f:fow.

It is obvious that

Ixrg‘x/l flz) = Iylélél f(y);

so we reduced our non-smooth minimization problem to a smooth one. Typically
Visa variety in a space of bigger dimension and is constructed to be of the same
dimension as the smooth part of V. To have some geometrical idea one can think
about the following example (see fig. 4-1). Let V be a cubic curve given by the
following equation

y2 = xQ(x +1),

and parametrized as

(2(t),y(t) = (£ = L,t(t* = 1)).

It is easy to see that (0,0) is a singular point of V. Then its desingularization is
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given by
V= (z(t),y(t), 2(t)) = (> = 1,¢(t> — 1),t) C R?,

which is clearly smooth. Projection is then just

(a) Singular cubic (b) Desingularized cubic

Figure 4-1: Desingularization of the cubic.

4.2 Desingularization of low-rank matrix varieties

via kernel

4.2.1 2 x 2 matrices

Let V' be a variety of 2 x 2 matrices with the rank < 1. We have
V= {(xllu Ta1, T12, I22) S R : T11T22 — T12T21 = 0}7 (4-1)

so it is indeed an algebraic variety. In order to analyze its smoothness and compute
the tangent space we recall the following result.

Let h; i€ {1...k} be some smooth functions

h; - R - R,
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with & <. Define the set M as
M ={z €R": hi(z) =0,hy(z) =0... he(x) = 0}.

Then for a point p € M we construct the matrix N(p),

(Vi (p)
Vhy (p)

| Vhi(p)

where Vh;(p) is understood as the row vector

Vhi(p) = <6hi 8hi) ‘

oxy 7 Ox

A point p is called nonsingular if N(p) has maximal row rank at p. In this case, by
implicit function theorem, M is locally a manifold (see [Lee, 2013, Theorem 5.22|)

and tangent space at p is defined as
T,M = {v € R": N(p)v = 0}.
Applying this to V' defined in eq. (4.1) we obtain

N($1171’217$12,$22): Tog —T12 —T21 T11| >

and then (0,0,0,0) is a singular point of V.
We desingularize it by considering V which is defined as the set of pairs (A,Y) €

R2*2 x R? with coordinates

T11 T12
T21 22

and
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satisfying
AY =0,

and

Y'Y =1.

Such choice of equations for Y is based on the Room-Kempf procedure described in

[Naldi, 2015|, which suggests the following equations:
AY =0, BY =0,

with some fixed matrix B. Since the latter equation is numerically unstable, using
an orthogonality condition instead allows us to maintain the manifold property while
making computations more robust.

More explicitly we have
V= {p: (z11yr + 21292 = 0, 22131 + @22y = 0,57 + 43 = 1)},

p = (211, Ta1, T12, Taz, Y1, Y2) € R,

We find that the normal space at p is spanned by rows of the following matrix N (p):

yi 0 y2 0 xpp 710
N(p) =10 U1 0 Yo T21 To2| - (42>

Since y? +y5 = 1 the matrix eq. (4.2) clearly has rank 3 at any point of V which

proves that V is smooth. The projection 7 is just

Z/ ($117$2173:12ax22ay17y2) — ($117$2171"1271’22)a

whose image is the entire V. However, we would also like to estimate how close

the tangent spaces are at close points. Recall that by definition of the Grassmanian
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metric the distance between subspaces C' and D is given by
da,(C, D) := ||Pc — Ppl|F,

where Po and Pp are the orthogonal projectors on the corresponding planes. Since
Pri = I — P¢ the distance between any two subspaces is equal to the distance
between their orthogonal complements.

It is well known that the projection on the subspace spanned by the rows of a matrix
M is given by MTM, where MT is a pseudoinverse which for matrices of maximal
row rank is defined as

M =M"(MM")™!.

Hence, for two different points p and p’ on the desingularized manifold we obtain
I1Py@) — Py lle= IIN(p)'N(p) = NN @)l £

We will use the following classical result to estimate || Py — Py l|r (We use it in
the form appearing in [Dutta and Li, 2017, Lemma 3.4] which is based on the [Davis
and Kahan, 1970, The sin # Theorem]):

IN () N(p) = N@)N@) < 2max{ [N (p)'[l2, [N @) 2HIN @)= N@)le- (4.3)

In order to estimate the smoothness we need to estimate how Pp(,) changes under
small changes of p. It is sufficient to estimate the gradient of P. Thus, we have to
uniformly bound ||NT||; from above, which is equivalent to bounding the minimal
singular value of N from below. Denote the latter by o, (V). By taking the

defining equations of the desingularized manifold into account, we find that

1 + .73%1 -+ .217%2 T11X21 + L1222 0
N(p)N(p)T = |z11w21 +T12722 1+ 1’31 + 23%2 0l - (4.4)
0 0 4

Hence 02, (N(a)) > 1 and ||N(a)'||< 1. From the definition of N(p) it follows that

min
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forp=(A,Y) and p/ = (A", Y"):
IN(p) = N@)llr< VO[Y =Y p+][A = Al
and from eq. (4.3) we obtain
der(T,V, Ty V) < 2V6(|[A = A'llp+[[Y = Y||r)-
We will derive and prove similar estimates for the general case in the next section.

4.2.2 General construction and estimation of curvature

Remark. We will often use vectorization of matrices which is a linear operator
. mxn mnx1
vec : R — R ,

which acts by stacking columns of the matriz into a single column vector. To further
simplify notation, variables denoted by uppercase and lowercase variables are under-
stood as a matriz and vectorization of the corresponding matriz, e.g. p = vec(P).

We will also define the transposition operator T, ,,:
T vee(X) — vec(X 1),

for X € R™*",

Consider a variety M, of n x m of matrices of rank not higher than r,
Mo, ={A e R :rank(4) <r}.

We recall the following classical result [Lakshmibai and Brown, 2015, Theorem

10.3.3].
Lemma 7. A € M., is a singular point if and only if A has rank smaller than r.

By definition, the dimension of a variety X is equal to the dimension of the

manifold X \ Xy, where X;,, is the set of all singular points of X |Griffiths and

71



Chapter 4. Desingularization 4.2. Desingularization of low-rank matrix varieties via kernel

Harris, 2014]. In the case of M<, we find that
dim M, = dim M_,,

where

M_, = {A € R”™ : rank(A) = r},

is known to be of dimension (n + m)r — r? (e.g. [Vandereycken, 2013, Proposition
2.1]).
Now we return to the main topic of the paper.

Let Gr(m — r,m) be the Grassmann manifold:
Gr(m —r,m) =R /G Ly,
where R»™~" is the noncompact Stiefel manifold
R™™ = {y € R™ (™= . Y full rank},

and GL,,_, is the group of invertible m — r x m — r matrices.

It is known [Lee, 2013| that
dim Gr(m —r,m) =r(m —r).
We propose the following desingularization for .KA\T:
M, = {(A,Y) € R™™ x Gr(m —r,m) : AY =0}, (4.5)

and prove the following theorem.

Theorem 6. M\T as defined by eq. (4.5) is a smooth manifold of dimension (n +

m)r —r.

Proof. Let U, be a local chart of Gr(m — r,m). To prove the theorem it suffices

to show that M, N (R™™ x U,) is a smooth manifold for all o. Without loss of
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generality let us assume that the coordinates of Y € Gr(m —r,m)NU, are given by

Im—r
Y = ,
Yo
where -~ _
11 012 ... Qim—p
Y, = Qg1 Qg9 ... Qm—r
Or1 Q22 ... Opmyp
In this chart equation eq. (4.5) reads
]m—r
A = 0. (4.6)
Yo
Splitting A as
A — |:A1 A2:| )

where

Al c ]Rnx(m—r)7 A2 c Rnxr’

and by using properties of the Kronecker product ® we obtain that the Jacobian

matrix of eq. (4.6) is equal to
In(m—r) YaT ® In Im—r & AQ )

which is clearly of full rank, since it contains identity matrix. To conclude the proof

we note that

dim M, =nm+(m—r)r— nm-r) = n+m)r—r?
N -~ 7
number of variables number of equations
as desired. [

The use of M\T is justified by the simple lemma
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Lemma 8. The following statements hold:
e If(A)Y) € M, then A € M,
o [f A e M., then there exists Y such that (A,Y) € M,.

Proof. These statements obviously follow from the equation
AY =0,

which implies that the dimension of the nullspace of A is at least m — r. n

We would like to construct Newton method on the manifold M\r. In order to
work with quotient manifolds such as Gr(m — r,m) the conventional approach is
to use the total space of the quotient. The tangent space is then dealt with using
the concept of horizontal space (sometimes this is referred to as gauge condition)
which is isomorphic to the tangent space of the quotient manifold. This approach
is explained in great detail in [Absil et al., 2009]. Although we will not go into the

details of these concepts, we will apply them to M\r in the next section.

4.2.3 Tangent space of M\r

For our analysis, it is more convenient to employ the following representation of the
Grassmanian:

Gr(m —r,m) = St(m —r,m)/O,,_, (4.7)

where St(m — r,m) is the orthogonal Stiefel manifold
St(m —r,m) ={Y e R™™ . Y'Y =1,_,},

and O,,_, is the orthogonal group.
Let 7 be the quotient map eq. (4.7) and id x 7 is the obvious map

R™™ x St(m —r,m) — R™™ x Gr(m — r,m).
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It is easy to see that /T/l\:i"t = (id x W)_I(M\r) is the following manifold:
M\;cnot = {(A,)Y) eR™™ x R™™ " AY =0, Y'Y =1,,_,}. (4.8)

Let us now compute the horizontal distribution on ﬂﬁOt. As described in [Absil

et al., 2009, Example 3.6.4] in the case of the projection
7 R — Gr(m —r,m),

Y — span(Y),

the horizontal space at Y is defined as the following subspace of Ty R»™~":
{6Y € TyR™™ . (Y)Y =0}. (4.9)

It immediately follows that in the case eq. (4.8) the horizontal space at (A,Y) is
equal to

H(A, Y) = T(Ay) (./(/l\?tf)t) N 'H(;r(A, Y),

where Hg(A,Y) is similarly to eq. (4.9) defined as:
Heo(AY) = {(0A,6Y) € Tiay)(R™™ x RIV™ ") (6Y)TY = 0}. (4.10)

Note that the dimension of H is equal to the dimension of M\r since it is, by con-
struction, isomorphic to the T./T/l\,,. We now proceed to one of the main results of

the paper

Theorem 7. The orthogonal projection on H(A,Y) is Lipschitz continuous with
respect to (A,Y) and its Lipschitz constant is no greater than 2(y/n +v/m —r) in

the Frobenius norm.

Proof. In order to prove the theorem, first we need to find the equations of H(A,Y").
Recall the defining equations of /T/l\ff)t eq. (4.8) and that for a given p = (A,Y) the

tangent space is the nullspace of the gradient of the constraints. By taking into
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account the gauge condition eq. (4.10) we find that
H(A,Y) ={v: N(p)v =0},
where the matrix N(p) has the following block structure:

Y'®I, I,,®A
N(p) = : (4.11)
0 [, ®YT
For simplicity of notation we will omit p in N(p). The projection onto the horizontal

space of a given vector z is given by the following formula
v=>U—-N"(NNT")"'N)z = Pyz, (4.12)

where

Py = (I — N'N),
is the orthogonal projector onto the row range of N. Using exactly the same idea
as in previous section we estimate o, (V) from below. Consider the Gram matrix

Syt |V 80 LeAdl| Yo, o |

0 Ly QYT | Loy @ AT I, QY

Y'YRIL,+1, ,0AAT I, ., AY
I, ,@YTAT I, Y'Y

Now we recall that for each point at the manifold /\//\lﬁot eq. (4.8) holds, therefore

[+1,,0AAT 0
Z = . (4.13)
0 I

It is obvious that o (Z) > 1 since it has the form I + DDT. Finally, 02, (N) =

min

Omin(Z) > 1, therefore
Omin(N) = omin(NT) > 1, [(NT[l,< 1. (4.14)
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Putting eq. (4.14) into eq. (4.3) we get

[Py — Pxi||p< 2||N — N'||,

with N = N(A,Y),N' = N(A',Y’). Finally, we need to estimate how N changes
under the change of A and Y. We have

Y -Y)QIL, Lp,r®(A—(A))

N —-N' = 7
0 Ly ® (YT — (Y’)T)
therefore
IN = N'lp< (Vo+Vm—=r)|Y =Y'|[p+vVm —r||A— A p.
Thus
dar(H(A,Y"), H(A,Y)) = ||Py — Pn||F

<2|IN — N'||p (4.15)
<2(vVn+vVm—=7r)([Y =Y'||lp+ [|A = A|F).

For small r

(m +n)r —r* < nm,

so to fully utilize the properties of /(/l\,« in computations we first have to find an

explicit basis in the horizontal space. This will be done in the next section.

4.2.4 Parametrization of the tangent space

To work with low rank matrices it is very convenient to represent them using the

truncated singular value decomposition (SVD). Namely for A € M, we have
A=USVT,

with U and V having r orthonormal columns and S being a diagonal matrix. Using

this notation we find that the following result holds:
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Theorem 8. The orthogonal basis in the kernel of N from eq. (4.11) is given by

columns of the following matriz Q)

Vel, -Y&(US)
0 I, ®(VS,)

I

where

Sy and Sy are diagonal matrices defined as

=

S =8(S+1,)72, Sy=(S*+1)

Proof. It suffices to verify that QTQ = I and N@Q = 0 which is performed by direct
multiplication. The number of columns in @ is nr 4+ (m — r)r which is exactly the

dimension of the H(A,Y). O

Now we will use smoothness of /(/l\r to develop an optimization algorithm over
M. The idea of using kernel of a matrix in optimization problems has appeared be-
fore [Markovsky and Usevich, 2012, 2013|. Algorithm constructed there is a variable—
projection—Tlike method with O(m?) per iteration complexity, where m is number

of columns in the matrix. We explain this approach in more detail in section 5.6.

4.3 Newton method

4.3.1 Basic Newton method

Consider the optimization problem
F(A) - min, s.t. Ae M.,

where F'is twice differentiable. Using the idea described in section 4.1.1 this problem
is equivalent to

F(AY) - min, st. (4,Y) € M,,

and
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Following the approach described in e.g. [Absil et al., 2009, Section 4.9] we solve this
problem by lifting it to the total space ./(/l\ff’t defined by eq. (4.8) with the additional

condition that the search direction lies in the horizontal bundle H, that is
F(AY) = min, st. (A,Y) e M,

F(A,Y) = F(A),
(0A,8Y) € H(A,Y). (4.16)

To solve it we will rewrite it using the Lagrange multipliers method, with the
additional constraint eq. (4.16). Taking into account the defining equations of Mt

eq. (4.8) the Lagrangian for the constrained optimization problem reads
1
L(AY,A,M) = F(A) + (AY,A) + 5<M, Y'Y - 1),

where A € R™™ " and M € R(™=")x(m=r) N\[T — M are the Lagrange multipliers.

We now find the first-order optimality conditions.

4.3.2 First order optimality conditions

By differentiating £ we find the following equations
VF+AY"=0, YM+A'A=0, AY =0, Y'Y =1

Multiplying second equation by Y ' from the left and using equations AY = 0 and
YTY = I we find that M = 0. Thus, the first-order optimality conditions reduce to

VF+AY" =0, ATA=0, AY =0, Y'Y =1 (4.17)
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4.3.3 Newton method and the reduced Hessian system

Now we can write down the Newton method for the system eq. (4.17), which can be
written in the saddle point form
G NT| |sz f

=", (4.18)
N 0| [6x 0

and

f=—vec(VF +AYT).

where we assumed that the initial point satisfies the constraints (AY = 0,YTY =
L), the vectors 0z and d\ are
vec(dA vec(dA
ea| [ vecton

0z = , = ,

vec(0Y) vec(0M)
and the matrix G in turn has a saddle-point structure:

~ H C
G
ct 0

where H = V2F is the ordinary Hessian, and C' comes from differentiating the term
AY T with respect to Y and will be derived later in the text. The constraints on the

search direction 0z are written as
Néz =0,
and

Y'®I, I,,®A
0 e

which means that 0z is in the H(A,Y") as desired. In what follows our approach is
similar to the null space methods described in [Benzi et al., 2005, Section 6]. Using

a parametrization via the matrix () defined in theorem 8 we obtain that 6z = Qdw.
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The first block row of system eq. (4.18) reads
GQiw+ NT6X = f.
Multiplying by Q" we can eliminate 6\, which leads to the reduced Hessian equation
QTGQsw = Q¢ (4.19)

Note that QTGQ is a small (n+m)r —r2 X (n+m)r —r? matrix as claimed. We now
would like to simplify equation eq. (4.19). Using the transposition operator defined

in section 4.2.2 we find that matrix C' is written as
C=Un@NTm—r

An important property of the matrix C' is that if Q2 = =Y ® (US)) is the (1, 2)
block of the matrix (), then
QIQC = Oa

if
ATA =0,

which is again verified by direct multiplication using the properties of the Kronecker

product. The direct evaluation of the product
aloc —_ QTG\Q;

(together with the property above) gives

Goc _ Qi HQn LHQu + Q[,CQ w20)
IQHQH + Q;—2CTQ11 QlTQHle
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and the system we need to solve has the form

QL HQn (1HQu + Q11CQx | |du _ Qh (4.21)
QEHQH + QQTQCTQH QEHQH op QlTQ ’

with
oU € R™7 5P e R™(m=7),

We also need to estimate A. Recall that to get ()1oC' = 0 we have to require that
ATA = 0 exactly, thus
AN=270,

where Z is the orthonormal basis for the left nullspace of A, and ® is defined from

the minimization of

|VF + Z®Y " || min,

1.e.

o =—-Z"VFY,

and

AN=—-Z7"VFY.

Note that f then is just a standard projection of VF' on the tangent space:
f=-—vec(VF -~ ZZ'VFYY") = —vec(VF — (I —UU"VF( - VVT")),
which is always a vectorization of a matrix with a rank not larger than 2r. Moreover,

n=QLf=V'elf= (4.22)

—vec((VF — (I —=UUN)VF(I = VV")V) = vec(=VEV),

and the second component

g2=QLf=-YT@USs)")f= (4.23)
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vec((US))(VF — (I —=UU")VF(I —VV"))Y) = vec(S]U'VFY).

The solution is recovered from du, dp as
ba=(V&I)ou— (Y& (US))dp,

or in the matrix form,

SA=0UV' —US6PY ",

and the error in A (which we are interested in) is given by
16A[I%= 16T1[7+]|S10P|%
We can further simplify the off-diagonal block. Consider
C=QLCQxn=V"a I NTIeV)IS).
Then multiplication of this matrix by a vector takes the form:
mat(Cvec(®)) = A(VS®) TV = ATS] VTV = Ad' 5],

thus

~

C == (SQ (059 A)Tr,nfr-

4.3.4 Retraction

Note that since we assumed that the initial points satisfy the constraints
AY =0, Y'Y =1,_,, (4.24)

after doing each step of the Newton algorithm we have to perform the retraction
back to the manifold /\//\l£Ot. One such possible retraction is the following. Define a
map

R: M oM — M,
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R((A,Y),(0Y,04)) = (Ri(A,64), Ro(Y,6Y))
Ry(Y,8Y) = qf(Y +6Y) =Y,
Ri(A,54) = A(I —Y1Y,")

where qf(£) denotes the Q factor of the QR-decomposition of £, which is a standard
second-order retraction on the Stiefel manifold [Absil et al., 2009, Example 4.1.3].

In the fast version of the Newton method which will be derived later, we will also
use the standard SVD-based retraction which acts on the matrix A + § A simply by
truncating it’s SVD to the rank r. It is also known that given the SVD of the matrix
A then for certain small corrections 6 A, the SVD of A+ 0A can be recomputed with
low computational cost as described in [Vandereycken, 2013, §3 |. It is also known
to be a second order retraction [Absil and Malick, 2012]. We denote this operation
by Rsvp(A,0A).

4.3.5 Basic Algorithm

The basic Newton method on the manifold /T/l\,n is summarized in the following al-

gorithm

Algorithm 1 Newton method

1: Initial conditions Ay, Y, functional F'(A) and tolerance

2: Result: minimum of F' on M,
3: while [|0U"||34]/(S1)"0P"||3> € do
4: U, S,V = svd(A4Y)

AN u o~
5: Solve Gl — | where G'¢, g1, g5 are defined by formulas eqs. (4.20),

5Pi g2
(4.22) and (4.23)

6: SA" = SUWVIT —UY(S)6PY'T Y = Vi(Sy)i6 P!
7: ALY = R((A §AY), (Y, 6YY))

8: t=1+1

9: end while

10: return A°
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Even though this algorithm demonstrates that our approach is rather inefficient
in terms of memory and complexity — storing and doing multiplications by Y are of
order O(m?) instead of desired O((n+m)r). We resolve this issue in the next section.
Analysis of the convergence and behavior of the algorithm near the points (A,Y)

corresponding to matrices of strictly smaller rank is performed in section 4.5.2.

4.3.6 Semi-implicit parametrization of the tangent space

Let us introduce a new variable
§dT =YS§PT,

dp € R™™.

This results in an implicit constraint on 6
0PV = 0.

In order to make an arbitrary & satisfy it, we first multiply it by the projection
operator I —VV'T,
=01 -VVT,

or in the matrix form

ou I 0 ou
0¢’ 0 I-VVTRI| |ip
Notice also that
0P = )dY,

and again using the properties of the Kronecker product we obtain

ou I 0 ou
op 0 YT®I| i
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Denote

I 0
II = ,
0 I-VVT®I

I 0
W =
0 Y®I

The equations for the Newton method in the new variables take the following form:

N 5
nTwTglewn |7 = aw T |9 (4.25)
o¢ g2

where g1, g2, G are as in eqs. (4.20), (4.22) and (4.23) and the linear system in
eq. (4.25) is of size (n 4+ m)r.

4.3.7 Iterative method

For a large n and m forming the full matrix eq. (4.25) is computationally expensive,
so we switch to iterative methods. To implement the matvec operation we need to
simplify
h — ITWT O W ou ’
2 0¢
first.

Direct computation shows that

(VI HH(V @ I)ju—

(VT DH(I @ U)vec(S160(1 —VVT))—
vec((I —UUT)YVEI —=VVT)§®TS,)
=0'wr ,
(YT HI®S)(IeU")H(V &I)dut+
(YT ® Ivec(So(6U) T (—(I —UUT)VF))+
YTeHI®S)IoUNHI®U)vec(S160(1 —VVT))

I

I
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and the right hand side has the following form:

9 W —vecVEV
A (YT @ Ivec(S1UTVF)

Since both II and W only act on the second block it is easy to derive the final

formulas:

h=VT@DHV@Nou— (V'@ DHHI @ U)vec(Sid®(I —VVT)) (496
—vec((I —UUNVF(I —VVT)§dTS,),

L=—-I-VV'ehI®S)(IoU YH(V &I)ju
+ vec(Sy(8U) (=(I —UUT)VE(I —VVT)) (4.27)
+(I-VVTeDIeS)(IoU )VH(I ®U)vec(S160(I —VVT)),
g1 = —vecVFEV, (4.28)
gy = vec(S\U'VE(I —VVT)). (4.29)

Note that in new variables we obtain
SA=0UV"T —US,69,

and

A+6A=U(SVT —5,60) +5UVT.

Using this representation of A+ JA we can recompute its SVD without forming the
full matrix as described in section 4.3.4. This allows us not to store the matrix A

itself but only the U, S and V that we get from the SVD. We obtain the following

algorithm
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Algorithm 2 Fast Newton method

1: Initial conditions Uy, Sp, V, functional F'(A) and tolerance e

2: Result: minimum of F' on M,

3. while ||6U"||*+||(S1)"0®"||3-> ¢ do

4: Solve linear system with matvec defined by formulas (4.26),(4.27) and right
hand side defined by formulas eqs. (4.28) and (4.29) using GMRES, obtaining
dut, 5.

5: SAT = SUWT — U(S)) 6

6: Uit S+ Vit = Rayp (A7, §AY)

7 1=1+1

8: end while

9: return U*, S, V*

4.4 Technical aspects of the implementation

4.4.1 Computation of the matvec and complexity

To efficiently compute the matvec for a given functional F' one has to be able to

evaluate the following expressions of the first order:
VEV,(VF) U VF§X,6XVF, (4.30)
and of the second order:
VT DHV @Dz, (V' @ NH(I @ U)dx (4.31)

(IoUNYH(\V @z, (IoU)YH(I @ U)dz.

The computational complexity of algorithm 2 depends heavily on whether we can
effectively evaluate eqgs. (4.30) and (4.31), which, however, any similar algorithm

requires. Let us now consider two examples.
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4.4.2 Matrix completion

Given some matrix B and a set of indices I' define

F(r) = Z (x” - Bi,j)2 — min, z € Mc,.

(¢,5)er

Then
VFE; =xi; — By, (i,5) € T,

Then H in this case is a diagonal matrix with ones and zeroes on the diagonal,
the exact position of which are determined by I". Assuming that the cardinality
of I" is small, the matrix products from eq. (4.30) can be performed efficiently by
doing sparse matrix multiplication. Note that multiplication by H in eq. (4.31)
acts as a mask, turning the first factor into a sparse matrix, allowing for effective

multiplication by the second factor.

4.4.3 Approximation of a sparse matrix

Consider the approximation functional
1 9 .
F<x) = §||$ - BHF_> min, r € MST‘?
and B is a sparse matrix. Then
VF=x-8B,

and expressions eq. (4.31), can be heavily simplified by noticing that H in this case

is the identity matrix and the sparseness of B is used to evaluate eq. (4.30).
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4.5 Numerical results

4.5.1 Convergence analysis

algorithm 2 was implemented in Python using numpy and scipy libraries. We tested
it on the functional described in section 4.4.3 for B being the matrix constructed from
the MovieLens 100K Dataset [Harper and Konstan, 2015, so n = 1000, m = 1700
and B has 100000 non-zero elements. Since the pure Newton method is only local,
for a first test we choose small random perturbation (in the form 0.1N(0,1)) of
the solution obtained via SVD as initial condition. We got the following results for

various r (see fig. 4-2a). This shows the quadratic convergence of our method.

107!
1072 —o—;.r=1

1073 —o—.r=2
1074 —— =4
—o— r=8

r=16

—o— r=32

10°°
107()
10°7
108
10754
10710
10 11
10~ 12
10-1
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(a) Close initial guess.

(b) Convergence histograms.

Figure 4-2: Sparse matrix approximation: test of local convergence.

Now we fix the rank and test whether the method converges to the exact answer
for a perturbation of the form aN (0, 1) for various a and plot a number of convergent
iterations vs o € [0.1,2.5] (see fig. 4-2b). We see that for a sufficiently distant initial
condition the method does not converge to the desired answer. To fix this we
introduce a simple version of the trust-region algorithms described in [Yuan, 2000]
(to produce initial condition we perform a few steps of the power method). Results
are summarized in fig. 4-3. We also test our algorithm for the matrix completion
problem. As an initial data we choose first 15000 entries in the database described
above. Using the same trust-region algorithm we obtained the following results (see
fig. 4-4a).

As a final test we show quadratic convergence even in a case when the exact

solution is of rank smaller than r for which the method is constructed. To do
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Figure 4-3: Sparse matrix approximation: trust-region method.

this we take first k& elements of the dataset for various k, find the rank ry of the
matrix constructed from these elements, and run the trust-region Newton method

for r = rg 4+ 10. The results are presented in fig. 4-4b.
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rank defficiency.

Figure 4-4: Matrix completion tests.
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4.5.2 Behavior of the algorithm in cases of rank deficiency

and underestimation

In the Newton equation of algorithm 1, one has to solve a linear system with

(loe _ QL HQu HHQ12 + Q1,CQa
1L HQ11 + Q2,C Q1 Q1,HQ1»

with H the Hessian of the objective function F' : R™*™ — R, which we can assume
to be positive definite. Suppose that a matrix of rank < r is the global minimum
of F. Then S is singular and A = 0, which in turn imply that Q1 = =Y ® (US))
is singular and C' = 0. Hence, the matrix Gloc is singular. It is easy to understand
the reason of this behavior. The function F defined on M\T now has non-unique
critical point, — the set of critical points is now in fact a submanifold of M\T. Thus
any vector tangent to this submanifold will be a solution of the Newton system.
An analysis of the behavior of the Newton method for such functions is studied in
e.g. |Decker and Kelley, 1980]. While we plan to analyze it and prove quadratic
convergence in our future work, now we note that Krylov iterative methods handle
singular systems if we choose initial condition to be the zero vector, and quadratic
convergence has been observed in all the numerical experiments.

We will now compare our method (desN) with the reduced Riemannian Newton
(rRN) (which is also known as constrained Gauss-Newton method [Kressner et al.,
2016]) and CG methods on the fixed-rank matrix manifolds for the approximation
problem. The former is obtained by neglecting the curvature term involving S~! in
the Hessian (see [Vandereycken, 2013, Proposition 2.3|) and for the latter we use the
Pymanopt |Townsend et al., 2016] implementation. We choose n = m = 30,7 = 10
and for the first test we compare the behavior of these algorithms in the case of the
exact solution being of rank ry < r with ryp = 5. In the second test, we study the
converse situation when the rank is underestimated — the exact solution has rank
ro > r with ro = 15. As before, for the reference solution we choose a truncated SVD
of the approximated matrix. The results are summarized in the figs. 4-5a and 4-5b.

Note that the case of rank underestimation was also studied in fig. 4-4b. We observe
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that the proposed algorithm maintains quadratic convergence in both cases. Even
though the reduced Riemannian Newton method is quadratic in the case of rank
deficiency, it becomes linear in the case of rank underestimation. This phenomenon
is well-known and explained e.g. in [Kressner et al., 2016, Section 5.3] and is related
to the fact that when exact minimum is on the variety this approximate model in

fact becomes exact second order model. CG is linear in both cases.
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(a) Rank defficiency case (b) Rank underestimation.

Figure 4-5: Comparison of the convergence behaviour of various optimization algo-
rithms.

4.5.3 Comparison with the regularized Newton method

In this subsection we will compare behavior of our method and of the full Rieman-
nian Newton method on the low-rank matrix variety. To avoid problems with zero
or very small singular values we choose some small parameter ¢, and in the sum-
mands involving S~! in the formulas for the Hessian matrix [Vandereycken, 2013,

Proposition 2.3] we use the regularized singular values
o; = max{o;, e},

thus obtaining regularized Newton method (regN). As a test problem we choose
a matrix completion problem where the exact answer is known (given sufficiently
many elements in the matrix) and of a small rank. To construct such a matrix A
we take the uniform grid of size N = 40 in the square [—1, 1]* and sample values of

the function
2 2

flo,y) =e "7,
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on this grid. It is easy to check that this matrix has rank exactly 1. We choose
ro = 5 and compare relative error with respect to the exact solution A, value of
the functional as defined in section 4.4.2 and value of the second singular value .

Results are given in fig. 4-6. We see that even though in all the cases value of the
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Figure 4-6: Matrix completion tests in the case of strong rank deficiency.

functional goes to 0, regularized Newton method fails to recover that oy of the exact

answer is in fact 0 and it’s behavior depends on the value of ¢.

4.6 Related work

Partly similar approach using so-called parametrization via kernel is described in
[Markovsky and Usevich, 2012, 2013]. However, optimization algorithm proposed
there is not considered as an optimization problem on a manifold of tuples (A,Y") and
is based on two separate optimization procedures (with respect to A and to Y, where
the latter belongs to the orthogonal Stiefel manifold), thus separating the variables.
As stated in [Markovsky and Usevich, 2013] in general it has O(m?) complexity
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per iteration. An overview of Riemannian optimization is presented in [Qi, 2011].
An example of the traditional approach to bounded-rank matrix sets using Stiefel
manifolds is given in [Koch and Lubich, 2007| where explicit formulas for projection
onto the tangent space are presented. An application of Riemannian optimization to
low-rank matrix completion where M, is considered as a subvariety in the set of all
matrices is given in [Vandereycken, 2013]. The case of F' being non-smooth but only
Lipschitz is studied in [Hosseini and Uschmajew, 2017]. Theoretical properties of
matrix completion such as when exact recovering of the matrix is possible are studied
in [Candeés and Tao, 2010]. Standard references for introductory algebraic geometry
are [Hartshorne, 2013] and [Shafarevich and Hirsch, 1994]. For more computational
aspects see |Grayson and Stillman, 2002].
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Chapter 5

Geometry Score: A Method For
Comparing Generative Adversarial

Networks

5.1 Introduction

Generative adversarial networks (GANs) [Goodfellow et al., 2014b] are a class of
methods for training generative models, which have been recently shown to be very
successful in producing image samples of excellent quality. They have been applied
in numerous areas |[Radford et al., 2015, Salimans et al., 2016b, Ho and Ermon,
2016). Briefly, this framework can be described as follows. We attempt to mimic
a given target distribution pgaa(x) by constructing two networks G(z;0(@)) and
D(x;0P)) called the generator and the discriminator. The generator learns to sam-
ple from the target distribution by transforming a random input vector z to a vector
x = G(2;0'%), and the discriminator learns to distinguish the model distribution
Pmodel(X) from pyata(x). The training procedure for GANSs is typically based on ap-
plying gradient descent in turn to the discriminator and the generator in order to
minimize a loss function. Finding a good loss function is a topic of ongoing research,
and several options were proposed in [Mao et al., 2016, Arjovsky et al., 2017].

One of the main challenges [Lucic et al., 2017, Barratt and Sharma, 2018| in the

GANs framework is estimating the quality of the generated samples. In traditional
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GAN models, the discriminator loss cannot be used as a metric and does not nec-
essarily decrease during training. In more involved architectures such as WGAN
[Arjovsky et al., 2017| the discriminator (critic) loss is argued to be in correlation
with the image quality, however, using this loss as a measure of quality is nontriv-
ial. Training GANSs is known to be difficult in general and presents such issues as
mode collapse when pyoqe(x) fails to capture a multimodal nature of pgag.(x) and
in extreme cases all the generated samples might be identical. Several techniques to
improve the training procedure were proposed in [Salimans et al., 2016b, Gulrajani
et al., 2017].

In this work, we attack the problem of estimating the quality and diversity of
the generated images by using the machinery of topology. The well-known Manifold
Hypothesis [Goodfellow et al., 2016| states that in many cases such as the case of
natural images the support of the distribution pgae.(X) is concentrated on a low
dimensional manifold Mg.i. in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to define explicitly. It can
be argued that interesting features and patterns of the images from pga.(x) can
be analyzed in terms of topological properties of Mg.ia, namely in terms of loops
and higher dimensional holes in Mgata. Similarly, we can assume that ppoge(Xx) is
supported on a manifold M,oge (under mild conditions on the architecture of the
generator this statement can be made precise [Shao et al., 2017]), and for sufficiently
good GANs this manifold can be argued to be quite similar to Mgata (see fig. 5-1).
This intuitive claim will be later supported by numerical experiments. Based on
this hypothesis we develop an approach which allows for comparing the topology of
the underlying manifolds for two point clouds in a stochastic manner providing us
with a visual way to detect mode collapse and a score which allows for comparing
the quality of various trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds based only on samples is
ill-posed by nature, we estimate them using a certain probability distribution (see
section 5.4).

We test our approach on several real-life datasets and popular GAN models

(DCGAN, WGAN, WGAN-GP) and show that the obtained results agree well with
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the intuition and allow for comparison of various models (see section 5.5).
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Figure 5-1: The Manifold Hypothesis suggests that in the case of natural images
the data is supported on a low dimensional data manifold Mgaa. Similarly, GANs
sample images from an immersed manifold M o4 By comparing topological prop-
erties of the manifolds Mgaia and M,oqe We can get insight in how strongly GAN
captured intricacies in the data distribution pga.(x), and quantitatively estimate
the difference.

5.2 Main idea

Let us briefly discuss our approach before dwelling into technical details. As de-
scribed in the introduction we would like to compare topological properties of Mgt
and M o4e1 in some way. This task is complicated by the fact that we do not have
access to the manifolds themselves but merely to samples from them. A natural
approach in this case is to approximate these manifolds using some simpler spaces
in such a way that topological properties of these spaces resemble those of Mgt
and M. The main example of such spaces are simplicial complexes (fig. 5-
2), which are build from intervals, triangles and other higher dimensional simplices.

In order to reconstruct the underlying manifold using a simplicial complex several
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z3

Figure 5-2: Simplicial complex. Topological space X is constructed from several
edges (01,03,04) and a two dimensional face 0.

methods exist. In all such approaches proximity information of the data is used,
such as pairwise distances between samples. Typically one chooses some threshold
parameter £ and based on the value of this parameter one decides which simplices

are added into the approximation (see fig. 5-3). However a single value ¢ is not

Figure 5-3: A simplicial complex constructed on a sample X. First, we fix the
proximity parameter €. Then we take balls of the radius € centered at each point, and
if for some subset of X of size k+1 all the pairwise intersections of the corresponding
balls are non-empty, we add the k-dimensional simplex spanning this subset to the
simplicial complex R..

enough — for very small values the reconstructed space will be just a disjoint union
of points and for very large ¢ it will be a single connected blob, while the correct
approximation is somewhere in between. This issue is resolved by considering a
family (fig. 5-4, a) of simplicial complexes, parametrized by the (‘persistence’) pa-
rameter €. It is also convenient to refer to the parameter € as time, with the idea
that we gradually throw more simplices into our simplicial complex as time goes

by. For each value of € we can compute topological properties of the corresponding
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€1 €2 €3 3

Figure 5-4: Using different values of the proximity parameter ¢ we obtain different
simplicial complexes (a). For ¢ = £; the balls do not intersect and there are just 10
isolated components (b, [left]). For e = €5 several components have merged and one
loop appeared (b, [middle|). The filled triangle corresponding to the triple pairwise
intersection is topologically trivial and does not affect the topology (and similarly
darker tetrahedron on the right). For e = e3 all the components merged into one
and the same hole still exists (b, [right]). In the interval [eq,e3] one smaller hole as
on fig. 5-3 appeared and quickly disappeared. This information can be conveniently
summarized in the persistence barcode (c¢). The number of connected components
(holes) in the simplicial complex for some value g is given by the number of intervals
in Hy (H,) intersecting the vertical line € = €.

simplicial complex, namely homology which encodes the number of holes of various
dimensions in a space. Controlling the value of ¢ allows us to decide holes of which
size are meaningful and should not be discarded as a noise. For simplicial complex
presented on fig. 5-3 there are two one-dimensional holes, and for slightly bigger
value of € the lower hole disappeared (fig. 5-4, b), while the top one remained intact,
which suggests that the top hole is more important topological feature. Information
about how homology is changing with respect to € can be conveniently encoded in

the so-called persistence barcodes |Ghrist, 2008, Zomorodian and Carlsson, 2005].
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An example of such barcode is given on (fig. 5-4, ¢). In general, to find the rank of
k-homology (delivering the number of k-dimensional holes) at some fixed value ¢
one has to count intersections of the vertical line ¢ = ¢; with the intervals at the
desired block Hj,.

These barcodes provide a way to compare topological properties of the underly-
ing manifolds. In principle, we could obtain a metric of similarity of two datasets
by comparing the barcodes of the simplicial complexes constructed based on each
dataset (as described on fig. 5-3), but there are disadvantages of this approach, such
as a huge number of simplices for large datasets. Moreover, in order to extract in-
teresting topological properties from such large simplicial complexes various tricks
are required |Ghrist, 2008]. To remedy these issues we can note that we are in fact
interested in topological approximations rather than geometrical. The difference is
that to obtain a correct estimate of the topological properties much smaller num-
ber of simplices is often sufficient, e.g., for any number of points sampled from a
circle the correct answer could be obtained by taking just three points (thus ob-
taining a triangle which is topologically equivalent to the circle). Based on these
ideas the so-called witness complex is introduced |De Silva and Carlsson, 2004],
which provides a topological approximation with a small number of simplices. In
order to achieve this a small subset of landmark points is chosen and a simplicial
complex is constructed using these points as vertices (while also taking into account
the proximity information about all the remaining points called witnesses).

To construct a numerical measure which could be compared across datasets we
would like to estimate the correct values of homology. Comparing the computed bar-
codes is a challenging task since they are non-trivial mathematical objects (though
some metrics exist they are hard to compute). We take the simpler route and to
extract meaningful topological data from the barcode we propose computing Rel-
ative Living Times (RLT) of each number of holes that was observed. They are
defined as the ratio of the total time when this number was present and of the value
Emax When points connect into a single blob. These relative living times could be
interpreted as a confidence in our approximation — if say for 50% of all period of

topological activity we have observed that there is at least 1 one-dimensional hole (as
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Figure 5-5: Estimation of the topology of a dataset sampled from the 32-dimensional
hyperplane in 784-dimensional space. With high confidence, we can say that there
are no 1-dimensional holes. For details see section 5.4.

on fig. 5-4), then it is probably an accurate estimation of topology of the underlying
space.

Choosing the correct landmarks is a nontrivial task. We follow the discussion in
[De Silva and Carlsson, 2004] which advises doing it randomly. To account for this
randomness, we compute the RLT stochastically by repeating the experiment a large
number of times. By averaging the obtained RLT we compute the Mean Relative
Living Times (MRLT). By construction, they add up to 1 and employing Bayesian
point of view we can interpret them as a probability distribution reflecting our confi-
dence about the correct number of holes on average. An example of such distribution
is given on fig. 5-5, where we run our method for a simple planar dataset (in a high
dimensional space). To quantitatively evaluate the topological difference between
two datasets we propose computing the Lo—error between these distributions. Note
that in practice (when activation functions such as ReLU are used) the resulting
space Mode1 may fail to be a manifold in precise mathematical sense, however, the
analysis is still applicable since it deals with arbitrary topological spaces. Now let

us introduce all the technical details.

5.3 Homology to the rescue

In this section we briefly discuss the important concepts of simplicial complexes and

homology. For thorough introduction we refer the reader to the classical texts such
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as [Hatcher, 2002, May, 1999].

Simplicial complexes Simplicial complex is a classical concept widely used in

topology. Formally it is defined as follows.

Definition 1. A simplicial complex S (more precisely an abstract simplicial com-

plex) is specified by the following data:
o The vertex set Z = {z1,29,...,2,}

o A collection of simplices ¥, where p-dimensional simplex o, is defined just as

ap+1 element subset of Z:

Op = {Ziys Zigs - -1 Zigin

e e require that the collection X is closed under taking faces, that is for each
p-dimensional simplex o, all the (p — 1)-dimensional simplices obtained by

deleting one of the vertices z;,, ..., z;, are also elements of X.

An example of a simplicial complex S is presented on fig. 5-2. It contains 5
vertices {z1,22...,25} and several edges and faces: two-dimensional face oo and
one-dimensional edges o1,03,04. Note that these are mazimal simplices, since by
the third property all the edges of o9 are also elements of S. Important topological
properties of S (such as connectedness, existence of one-dimensional loop) do not
depend on in which Euclidean space S is embedded or on precise positions of vertices,
but merely on the combinatorial data — the number of points and which vertices
together span a simplex.

As was described in section 5.2 given a dataset X sampled from a manifold M we
would like to compute a family of simplicial complexes topologically approximating
M on various scales, namely witness complexes. This family is defined as follows.
First we choose some subset L C X of points called landmarks (whereas points in X
are called witnesses) and some distance function d(z, z’), e.g., the ordinary Euclidean
distance. There is not much theory about how to choose the best landmarks, but

several strategies were proposed in [De Silva and Carlsson, 2004]. The first one is to

103



Chapter 5. Geometry Score: A Method For Comparing GANs 5.3. Homology to the rescue

choose landmarks sequentially by solving a certain minimax problem, and the second
one is to just pick landmarks at random (by uniformly selecting a fixed number of
points from X'). We follow the second approach since the minimax strategy is known
to have some flaws such as the tendency to pick up outliers. The selected landmarks
will serve as the vertices of the simplicial complex and witnesses will help to decide

on which simplices are inserted via a predicate “is witnessed”:

o C L is witnessed by w € X if Vie o,VI' € L\ o (51)
5.1

d(w,1)* < d(w,l')? + «,

with « being a relaxation parameter which provides us with a sequence of simplicial
complexes. The maximal value of « for the analysis is typically chosen to be pro-
portional to the maximal pairwise distance between points in L. Witness complexes
even for small values of a are good topological approximations to M. The main
advantage of a witness complex is that it allows constructing a reliable approxima-
tion using a relatively small number of simplices and makes the problem tractable
even for large datasets. Even though it is known that in some cases it may fail to
recover the correct topology [Boissonnat et al., 2009, it still can be used to compare
topological properties of datasets, and if any better method is devised, we can easily

replace the witness complex by this new more reliable simplicial complex.

Homology The precise definition of the homology is technical, and we have to
omit it due to the limited space. We refer the reader to [Chapter 2| [Hatcher,
2002] for a thorough discussion. The most important properties of homology can
be summarized as follows. For any topological space X the so-called 7*" homology
groups H; are introduced. The actual number of -dimensional holes in X is given
the rank of H;, the concept which is quite similar to the dimension of a vector space.
These ranks are called the Betti numbers 3; and serve as a coarse numerical measure
of homology.

Homology is known to be one of the most easily computable topological invari-
ants. In the case of X being a simplicial complex H; can be computed by pretty much

linear algebra, namely by analyzing kernels and images of certain linear maps. Di-
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mensions of matrices appearing in this task are equal to the numbers d, of simplices
of specific dimension k in X, e.g. in the case of fig. 5-2 we have dy = 5,d; = 6,dy = 1
and matrices will be of sizes 6 x 1 and 5 x 6. Existent algorithms [Kaczynski et al.,
2006 can handle extremely large simplicial complexes (with millions of simplices)
and are available in numerous software packages. An important property of homol-
ogy is that k' homology depends only on simplices of dimension at most k + 1,

which significantly speeds up computations.

Persistent homology In section 5.2 we discussed that to find a proxy of the
correct topology of M it is insufficient to use single simplicial complex but rather
a family of simplicial complexes is required. As we transition from one simplicial
complex to another, some holes may appear, and some disappear. To distinguish
between which are essential and which should be considered noise the concept of
persistence was introduced [Edelsbrunner et al., 2000, Zomorodian and Carlsson,
2005]. The formal Structure Theorem [Zomorodian and Carlsson, 2005| states that
for each generator of homology (“hole” in our notation) one could provide the time
of its “birth” and “death”. This data is pictorially represented as (fig. 5-4, [bottom)]),
with the horizontal axis representing the parameter and the vertical axis representing
various homology generators. To perform the computation of these barcodes, an
efficient algorithm was proposed in [Zomorodian and Carlsson, 2005]. As an input
to this algorithm one has to supply a sequence of (oy,¢;), with o; being a simplex
and ¢; being its time of appearance in a family. This algorithm is implemented in
several software packages such as Dionysus and GUDHI [Maria et al., 2014], but the

witness complex is supported only in the latter.

5.4 Algorithm

Let us now explain how we apply these concepts to construct a metric to compare
the topological properties of two datasets. First let us define the key part of the
algorithm — the relative living times (RLT) of homology. Suppose that for a dataset

X and some choice of landmarks L we have obtained a persistence barcode with
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the persistence parameter « spanning the range [0, uax]. Let us fix the dimension
k in which we study the homology, and let Z,, = {[b;, d;]}!; be the collection of
persistence intervals in this dimension. Then in order to find the k" Betti number
for a fixed value o one has to count the number of persistence intervals containing

«, and we obtain the integer valued function

Then the RLT are defined as follows (for non-negative integers i):

RLT(, k, X, L) & MO [0’0‘2“}: Bila) = i}) (5.3)

that it is for each possible value of fBy(«) we find how long it existed relatively to
the whole period of topological activity. Note that in our analysis we use witness
complexes which depend on the choice of landmarks, which is random. Thus it is
reasonable to consider the distribution of RLT(i, k, X, L) on the set of landmarks
(tuples of points), in other words, we repeatedly sample the landmarks and compute
the RLT of the obtained persistence barcode. After sufficiently many experiments
we can approximate the Mean Relative Living Times (MRLT):

MRLT (i, k, X) £ EL[RLT(i, k, X, L)]. (5.4)

We hypothesize that these quantities provide us with a good way to compare the
topological properties of datasets, as they serve as measures of confidence in the
estimation of the topology of the underlying manifolds. From eq. (5.3) it follows
that

> MRLT(i,k, X) = 1,

which suggest that for a fixed value of k we could interpret MRLT (i, k, X) as a
probability distribution (over integers). This distribution defines our certainty about
the number of k-dimensional holes in the underlying manifold of X on average. In

this work we consider the case k = 1, i.e. we study the first homology of datasets.
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We motivate this by drawing an analogy with the Taylor series: we can get a good
understanding of behavior of a function by looking at the first term of the series
(see also |Ghrist, 2008] for discussion). Based on the probabilistic understanding
given two datasets X; and X, we define a measure of their topological similarity

(Geometry Score) in the following way:

GeomScore( X, Xy) £
imax—1 (5.5)
(MRLT(4,1, X;) — MRLT(i, 1, X,))?,
i=0

with i, being an upper bound on f;(«) for X; and X, (for typical datasets we

found that i,,,x = 100 suffices).
To construct the witness complex given the sets of landmarks L and witnesses
X one has to provide the matrix of pairwise distances between L and X and the
maximal value of persistence parameter « (see eq. (5.1)). In our experiments, we
have chosen a.x to be proportional to the maximal pairwise distance between
points in L with some coefficient 7. Since we only compute () the simplices of
dimension at most 2 are needed. In principle to compare two datasets any value of
suffices, however in our experiments we found that to get a reasonable distribution
for datasets of size ~ 5000 the value ﬁ yields good results (for large v a lot of
time is spend in the regime of a single connected blob which shifts the distributions
towards 0). We summarize our approach in algorithm 3 and algorithm 4. We also

suggest that to obtain accurate results datasets of the same size should be used for

comparison

Complexity Let us briefly discuss the complexity of each step in the main loop
of algorithm 3. Suppose that we have a dataset X € RV*?. Computing the matrix
of pairwise distances between all points in the dataset and the landmarks points re-
quires O(N DLy) operations. The complexity of the next piece involving computing
the persistence barcode is hard to estimate, however we can note that it does not
depend on the dimensionality D of the data. In practice this computation is done

faster than computing the matrix in the previous step (for datasets of significant
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Algorithm 3 The algorithm to compute RLT of a dataset. See section 5.4 for
details. Suggested default values of the parameters for a dataset X € RV*P are
Ly =64, 7 = 135/ 5005 tmax = 100, n = 10000.

Require: X: 2D array representing the dataset
Require: Ly: Number of landmarks to use
Require: ~: Coefficient determining o yax
Require: i,,,.: Upper bound on 7 in RLT (¢, 1, X, L)
Require: n: Number of experiments
Require: dist(A, B): Function computing the matrix of pairwise (Euclidean)
distances between samples from A and B
Require: witness(d, «, k): Function computing the family of witness complexes
using the matrix of pairwise distances d, maximal value of persistence parameter
a and maximal dimension of simplices k
Require: persistence(w, k): Function computing the persistence intervals of a
family w in dimension &
Returns: An array of size n X iy, of the obtained RLT for each experiment
Initialize: rlt = zeros(n, imax)
fort=0ton—1do

L% + random_choice(X, size=Ly)

d « dist(LW, X)

ol + v - max(dist(L®, L))

WO « witness(d®, ally, 2)

I® ¢+ persistence(W®, 1)

for j =0 to iy — 1 do

Compute RLT(j,1, X, L®) using egs. (5.2) and (5.3)
rltfi, j] < RLT(j, 1, X, L®)

end for

end for

Algorithm 4 Geometry Score, the proposed algorithm to compute topological sim-
ilarity between datasets

Require: X, X5: arrays representing the datasets

Returns: s: a number representing the topological similarity of X; and X,
Initialize: s =0

For X; and X, run algorithm 3 with the same collection of parameters, obtaining
arrays rlt; and rlt,

mrlt; < mean(rlt;, axis=0)

mrlty <— mean(rlty, axis=0)

s <+ sum((mrlt; — mrlty)?)

dimensionality). All the remaining pieces of the algorithm take negligible amount of
time. This linear scaling of the complexity w.r.t dimensionality of the data allows

us to apply our method even for high—dimensional datasets. On a typical laptop
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(3.1 GHz Intel Core 15 processor) one iteration of the inner loop of algorithm 3 for

one class of the MNIST dataset takes approximately 900 ms.

5.5 Experiments

Experimental setup We have implemented algorithms 3 and 4 in Python using
GUDHI! for computing witness complexes and persistence barcodes. Our code is
available on Github?. Default values of parameters in algorithm 3 were used for

experiments unless otherwise specified. We test our method on several datasets and

GAN models:

e Synthetic data — on synthetic datasets we demonstrate that our method

allows for distinguishing the datasets based on their topological properties.

e MINIST — as the next experiment we test our approach on the MNIST
dataset of handwritten digits. We compare two recently proposed models:
WGAN |Arjovsky et al., 2017] and WGAN-GP |[Gulrajani et al., 2017] in order
to verify if the improved model WGAN-GP indeed produces better images.

e CelebA — to demonstrate that our method can be applied to datasets of large
dimensionality we analyze the CelebA dataset [Liu et al., 2015] and check if
we can detect mode collapse in a GAN using MRLT.

e CaloGAN — as the final experiment we apply our algorithm to a dataset
of a non-visual origin and evaluate the specific generative model CaloGAN

[Paganini et al., 2017].

Synthetic data For this experiment we have generated a collection of simple
2D datasets {X;}5_; (see fig. 5-6) each containing 5000 points. As a test prob-
lem we would like to evaluate which of the datasets {X; }?:2 is the best approx-
imation to the ground truth X;. For each of {X;}>_, we ran algorithm 3 using

Lo = 32, n = 2000, tmax = 3, 7 = % and compute MRLT using eq. (5.4). The

Thttp://gudhi.gforge.inria.fr/
2https://github.com /KhrulkovV /geometry-score
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resulting distributions are visualized on fig. 5-6, [bottom|. We observe that we can
correctly identify the number of 1-dimensional holes in each space X; using the MAP
estimate

Bi(X;) = argmax MRLT (i, 1, Xj). (5.6)

It is clear that X, is the most similar dataset to X, which is supported by the fact
that their MRLT are almost identical. Note that on such simple datasets we were
able to recover the correct homology with almost 100% confidence and this will not

be the case for more complicated manifolds in the next experiment.

MNIST In this experiment we compare topological properties of the MNIST
dataset and samples generated by the WGAN and WGAN-GP models trained on
MNIST. It was claimed that the WGAN-GP model produces better images and we
would like to verify if we can detect it using topology. For the GAN implemen-
tations we used the code® provided by the authors of [Gulrajani et al., 2017]. We
have trained each model for 25 epochs and generated 60000 samples. To compare
topology of each class individually we trained a CNN classifier on MNIST (with
99.5% test accuracy) and split generated datasest into classes (containing roughly

6000 images each). For every class and each of the 3 corresponding datasets (‘base’,

1

g Similarly

‘wgan’, ‘wgan—gp’) we run algorithm 3 and compute MRLT with v =

we evaluate MRLT for the entire datasets without splitting them into classes using

1

Y = 1o55- Lhe obtained MRLT are presented on fig. 5-7 and the corresponding Ge-

ometry Scores for each model are given in table 5.1. We observe that both models
produce distributions which are very close to the ground truth, but for almost all
classes WGAN-GP shows better scores. We can also note that for the entire datasets
(fig. 5-7, [right|) the predicted values of homology does not seem to be much bigger
than for each individual digit. One possible explanation is that some samples (like
say of class ‘7’) fill the holes in the underlying manifolds of other classes (like class

‘1’ in this case) since they look quite similar.

3https://github.com /igul222 /improved wgan _training
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Figure 5-6: Mean Relative Living Times (MRLT) for various 2D datasets. The
number of one-dimensional holes is correctly identified in all the cases. By comparing
MRLT we find that the second dataset from the left is the most similar to the ‘ground
truth’ (noisy circle on the left).

All

5010 (0] / 2 3 4 — vfga;n
Hoos| | \’\ f\ }f\\ f\ 015

010 by & =2 b4 q 5

; f\ 0.05

Foos Fi .

o )[\ \K K )ﬁf\\ m 000

20 40 0 20 40 0 20 40 0 20 40 0 20 40 : 0 4 8 12 16 20
i i i i i i

Figure 5-7: Comparison of MRLT of the MNIST dataset and of samples generated by
WGAN and WGAN-GP trained on MNIST. MRLT match almost perfectly, however,
WGAN-GP shows slightly better performance on most of the classes.

Table 5.1: Geometry Scores x103 of WGAN and WGAN-GP trained on the MNIST
dataset (see also fig. 5-7). Each class contained roughly 6000 images, except for ‘All’
which corresponds to the total datasets of 60000 images.

LABEL 0 1 2 3 4 5 6 7 8 9 ALL

WGAN 0.85 214 0.60 7.04 1.52 0.47 228 220 0.76 1.27 26.1
WGAN-GP 5.19 1.44 0.54 0.27 2.16 0.03 13.5 1.38 0.14 5.00 2.04

CelebA We now analyze the popular CelebA dataset consisting of photos of var-
ious celebrities. In this experiment we would like to study if we can detect mode
collapse using our method. To achieve this we train two GAN models — a good
model with the generator having high capacity and a second model with the genera-

tor much weaker than the discriminator. In this experiment we utilize the DCGAN

111



Chapter 5. Geometry Score: A Method For Comparing GANs 5.5. Experiments

model and use the implementation provided* by the authors [Radford et al., 2015].
For the first model (‘dcgan’) we use the default settings, and for the second (‘bad-
dcgan’) we set the latent dimension to 8 and reduce the size of the fully connected
layer in the generator to 128 and number of filters in convolutional layers to 4. Im-
ages in the dataset are of size 108 x 108 and to obtain faces we perform the central
crop which reduces the size to 64 x 64. We trained both models for 25 epochs
and produced 10000 images for our analysis. Similarly, we randomly picked 10000
(cropped) images from the original dataset. We report the obtained results on fig. 5-
8. MRLT obtained using the good model matches the ground truth almost perfectly
and Geometry Score of the generated dataset is equal to 14 x 1073, confirming the
good visual quality of the samples [Radford et al., 2015|. MRLT obtained using the
weak model are maximized for ¢ = 0, which suggests that the samples are either
identical or present very little topological diversity (compare with fig. 5-5), which
we confirmed visually. On fig. 5-8, [right| we report the behavior of the Geometry
Score and Inception Score [Salimans et al., 2016b] w.r.t the iteration number. The

Inception Score introduced uses the pretrained Inception network [Szegedy et al.,

2015a] and is defined as

I({zn}n21) = exp Ex(Diw (p(y[x)|lp(1))).

where p(y|x) is approximated by the Inception network and p(y) is computed as
p(y) = + >, p(ylx;). Note that the Geometry Score of the better model rapidly
decreases and of the mode collapsed model stagnates at high values. Such behavior

could not be observed in the Inception Score.

CaloGAN In this experiment, we will apply our technique to the dataset ap-
pearing in the experimental particle physics. This dataset® represents a collection
of a calorimeter (an experimental apparatus measuring the energy of particles) re-
sponses, and it was used to create a generative model [Paganini et al., 2017] in order

to help physicists working at the LHC. Evaluating the obtained model® is a non-

4https://github.com /carpedm?20,/DCGAN-tensorflow
Shttps://data.mendeley.com/datasets/pvn3xc3wy5/1
Shttps://github.com /hep-lbdl/CaloGAN
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Figure 5-8: MRLT of the (cropped) CelebA dataset and samples generated using
DCGAN and DCGAN with forced mode collapse. Plots on the right present the
behavior of the Geometry Score and Inception Score for these two models during
the training. Mode collapse in ‘bad-dcgan’ is easily observable using the Geometry
Score.

trivial task and was performed by comparing physical properties of the obtained and
the real data. Since our method is not limited to visual datasets we can apply it in
order to confirm the quality of this model. For the analysis we used ‘eplus’ dataset
which is split into 3 parts (‘layer 0, ‘layer 1°, ‘layer 2’) containing matrices of sizes
3% 96,12 x 12,12 x 6 correspondingly. We train the CaloGAN model with default
settings for 50 epochs and generate 10000 samples (each sample combines data for
all 3 layers). We then randomly pick 10000 samples from the original dataset and
compare MRLT of the data and generated samples for each layer. Results are pre-
sented on fig. 5-9. It appears that topological properties of this dataset are rather
trivial, however, they are correctly identified by CaloGAN. Slight dissimilarities be-
tween the distributions could be connected to the fact that the physical properties of
the generated samples do not exactly match those of the real ones, as was analyzed

by the authors of [Paganini et al., 2017].
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Figure 5-9: MRLT of the dataset used in experimental particle physics and of the
samples generated using the corresponding CaloGAN model.

5.6 Related work and discussion

Several performance measures have been introduced to assess the performance of
GANSs used for natural images. Inception Score [Salimans et al., 2016b| uses the
outputs of the pretrained Inception network, and a modification called Fréchet In-
ception Distance (FID) [Heusel et al., 2017| also takes into account second order
information of the final layer of this model. Contrary to these methods, our ap-
proach does not use auxiliary networks and is not limited to visual data. We note,
however, that since we only take topological properties into account (which do not
change if we say shift the entire dataset by 1) assessing the visual quality of samples
may be difficult based only on our algorithm, thus in the case of natural images we
propose to use our method in conjunction with other metrics such as FID. We also
hypothesize that in the case of the large dimensionality of data Geometry Score of
the features extracted using some network will adequately assess the performance

of a GAN.

5.7 Conclusion

We have introduced a new algorithm for evaluating a generative model. We show
that the topology of the underlying manifold of generated samples may be different
from the topology of the original data manifold, which provides insight into proper-
ties of GANs and can be used for hyperparameter tuning. We do not claim however

that the obtained metric correlates with the visual quality as estimated by humans
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and leave the analysis to future work. We hope that our research will be useful to

further theoretical understanding of GANs.
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Chapter 6

Hyperbolic Image Embeddings

6.1 Introduction

ok

it
“‘.hﬂ_.:‘ nr

Figure 6-1: An example of two-dimensional Poincaré embeddings computed by a
hyperbolic neural network trained on MNIST, and evaluated additionally on Om-
niglot. Ambiguous and unclear images from MNIST, as well as most of the images
from Omniglot, are embedded near the center, while samples with clear class labels
(or characters from Omniglot similar to one of the digits) lie near the boundary. *For
inference, Omniglot was normalized to have the same background color as MNIST.
Omniglot images are marked with black crosses, MNIST images with colored dots.

Learned high-dimensional embeddings are ubiquitous in modern computer vi-
sion. Learning aims to group together semantically-similar images and to separate
semantically-different images. When the learning process is successful, simple clas-

sifiers can be used to assign an image to classes, and simple distance measures can
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be used to assess the similarity between images or image fragments. The operations
at the end of deep networks imply a certain type of geometry of the embedding
spaces. For example, image classification networks [Krizhevsky et al., 2012, LeCun
et al., 1989] use linear operators (matrix multiplication) to map embeddings in the
penultimate layer to class logits. The class boundaries in the embedding space are
thus piecewise-linear, and pairs of classes are separated by Euclidean hyperplanes.
The embeddings learned by the model in the penultimate layer, therefore, live in the
Euclidean space. The same can be said about systems where Euclidean distances are
used to perform image retrieval [Oh Song et al., 2016, Sohn, 2016, Wu et al., 2017|,
face recognition |[Parkhi et al., 2015, Wen et al., 2016] or one-shot learning [Snell
et al., 2017].

Alternatively, some few-shot learning [Vinyals et al., 2016], face recognition [Schroff
et al., 2015, and person re-identification methods [Ustinova and Lempitsky, 2016,
Yi et al., 2014] learn spherical embeddings, so that sphere projection operator is
applied at the end of a network that computes the embeddings. Cosine similarity
(closely associated with sphere geodesic distance) is then used by such architectures
to match images.

Euclidean spaces with their zero curvature and spherical spaces with their posi-
tive curvature have certain profound implications on the nature of embeddings that
existing computer vision systems can learn. In this work, we argue that hyper-
bolic spaces with negative curvature might often be more appropriate for learning
embedding of images. Towards this end, we add the recently-proposed hyperbolic
network layers |Ganea et al., 2018| to the end of several computer vision networks,
and present a number of experiments corresponding to image classification, one-shot,
and few-shot learning and person re-identification. We show that in many cases, the
use of hyperbolic geometry improves the performance over FEuclidean or spherical
embeddings.

Our work is inspired by the recent body of works that demonstrate the advan-
tage of learning hyperbolic embeddings for language entities such as taxonomy en-
tries [Nickel and Kiela, 2017], common words [Tifrea et al., 2018|, phrases [Dhingra

et al., 2018] and for other NLP tasks, such as neural machine translation [Gul-
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Figure 6-2: In many computer vision tasks, we want to learn image embeddings that
obey the hierarchical constraints. E.g., in image retrieval (left), the hierarchy may
arise from whole-fragment relation. In recognition tasks (right), the hierarchy can
arise from image degradation, when degraded images are inherently ambiguous and
may correspond to various identities/classes. Hyperbolic spaces are more suitable
for embedding data with such hierarchical structure.

cehre et al., 2019]. Our results imply that hyperbolic spaces may be as valuable for

improving the performance of computer vision systems.

Motivation for hyperbolic image embeddings. The use of hyperbolic spaces
in natural language processing |Nickel and Kiela, 2017, Tifrea et al., 2018, Dhingra
et al., 2018] is motivated by the ubiquity of hierarchies in NLP tasks. Hyperbolic
spaces are naturally suited to embed hierarchies (e.g., tree graphs) with low dis-
tortion [Sarkar, 2011, Sala et al., 2018]. Here, we argue that hierarchical relations

between images are common in computer vision tasks (Figure 6-2):

e In image retrieval, an overview photograph is related to many images that
correspond to the close-ups of different distinct details. Likewise, for classifi-
cation tasks in-the-wild, an image containing the representatives of multiple
classes is related to images that contain representatives of the classes in iso-

lation. Embedding a dataset that contains composite images into continuous
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space is, therefore, similar to embedding a hierarchy.

e In some tasks, more generic images may correspond to images that contain
less information and are therefore more ambiguous. E.g., in face recognition,
a blurry and/or low-resolution face image taken from afar can be related to
many high-resolution images of faces that clearly belong to distinct people.
Again natural embeddings for image datasets that have widely varying image

quality /ambiguity calls for retaining such hierarchical structure.

e Many of the natural hierarchies investigated in natural language processing
transcend to the visual domain. E.g., the visual concepts of different animal
species may be amenable for hierarchical grouping (e.g. most felines share

visual similarity while being visually distinct from pinnipeds).

Hierarchical relations between images call for the use of Hyperbolic spaces. In-
deed, as the volume of hyperbolic spaces expands exponentially, it makes them
continuous analogues of trees, in contrast to Euclidean spaces, where the expan-
sion is polynomial. It therefore seems plausible that the exponentially expanding
hyperbolic space will be able to capture the underlying hierarchy of visual data.

In order to build deep learning models which operate on the embeddings to hy-
perbolic spaces, we capitalize on recent developments [Ganea et al., 2018|, which
construct the analogues of familiar layers (such as a feed—forward layer, or a multi-
nomial regression layer) in hyperbolic spaces. We show that many standard ar-
chitectures used for tasks of image classification, and in particular in the few—shot
learning setting can be easily modified to operate on hyperbolic embeddings, which
in many cases also leads to their improvement.

The main contributions of our paper are twofold:

e First, we apply the machinery of hyperbolic neural networks to computer vi-
sion tasks. Our experiments with various few-shot learning and person re-
identification models and datasets demonstrate that hyperbolic embeddings

are beneficial for visual data.
e Second, we propose an approach to evaluate the hyperbolicity of a dataset
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based on the concept of Gromov d-hyperbolicity. It further allows estimating
the radius of Poincaré disk for an embedding of a specific dataset and thus

can serve as a handy tool for practitioners.

6.2 Related work

Hyperbolic language embeddings. Hyperbolic embeddings in the natural lan-
guage processing field have recently been very successful [Nickel and Kiela, 2017,
2018a]. They are motivated by the innate ability of hyperbolic spaces to embed
hierarchies (e.g., tree graphs) with low distortion [Sala et al., 2018, Sarkar, 2011].
However, due to the discrete nature of data in NLP, such works typically employ Rie-
mannian optimization algorithms in order to learn embeddings of individual words
to hyperbolic space. This approach is difficult to extend to visual data, where image
representations are typically computed using CNNs.

Another direction of research, more relevant to the present work, is based on
imposing hyperbolic structure on activations of neural networks [Ganea et al., 2018,
Gulcehre et al., 2019]. However, the proposed architectures were mostly evaluated
on various NLP tasks, with correspondingly modified traditional models such as
RNNs or Transformers. We find that certain computer vision problems that heav-
ily use image embeddings can benefit from such hyperbolic architectures as well.

Concretely, we analyze the following tasks.

Few—shot learning. The task of few—shot learning is concerned with the over-
all ability of the model to generalize to unseen data during training. Most of the
existing state-of-the-art few—shot learning models are based on metric learning ap-
proaches, utilizing the distance between image representations computed by deep
neural networks as a measure of similarity [Vinyals et al., 2016, Snell et al., 2017,
Sung et al., 2018, Nichol and Schulman, 2018, Chen et al., 2019a, Chu et al., 2019,
Li et al., 2019, Bauer et al., 2017, Rusu et al., 2019, Chen et al., 2019b|. In contrast,
other models apply meta-learning to few-shot learning: e.g., MAML by [Finn et al.,
2017], Meta-Learner LSTM by |[Ravi and Larochelle, 2016], SNAIL by [Mishra
et al., 2017]. While these methods employ either Euclidean or spherical geometries
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(like in [Vinyals et al., 2016]), there was no extension to hyperbolic spaces.

Person re-identification. The task of person re-identification is to match pedes-
trian images captured by possibly non-overlapping surveillance cameras. Papers
[Ahmed et al., 2015, Guo and Cheung, 2018, Wang et al., 2018] adopt the pair-
wise models that accept pairs of images and output their similarity scores. The
resulting similarity scores are used to classify the input pairs as being matching
or non-matching. Another popular direction of work includes approaches that aim
at learning a mapping of the pedestrian images to the Euclidean descriptor space.
Several papers, e.g., [Suh et al., 2018, Yi et al., 2014| use verification loss functions
based on the Euclidean distance or cosine similarity. A number of methods utilize
a simple classification approach for training [Chang et al., 2018, Su et al., 2017,
Kalayeh et al., 2018, Zhao et al., 2017|, and Euclidean distance is used in test time.

6.3 Reminder on hyperbolic spaces and hyperbolic-
ity estimation.

Formally, n-dimensional hyperbolic space denoted as H" is defined as the homoge-
neous, simply connected n-dimensional Riemannian manifold of constant negative
sectional curvature. The property of constant negative curvature makes it analogous
to the ordinary Euclidean sphere (which has constant positive curvature); however,
the geometrical properties of the hyperbolic space are very different. It is known
that hyperbolic space cannot be isometrically embedded into Euclidean space [Kri-
oukov et al., 2010, Linial et al., 1998|, but there exist several well-studied models of
hyperbolic geometry. In every model, a certain subset of Euclidean space is endowed
with a hyperbolic metric; however, all these models are isomorphic to each other,
and we may easily move from one to another base on where the formulas of interest
are easier. We follow the majority of NLP works and use the Poincaré ball model.
The Poincaré ball model (D", ¢gP) is defined by the manifold D" = {x € R™ ||x||<
1} endowed with the Riemannian metric ¢”(x) = A\2¢”, where \, = ﬁ is the

conformal factor and ¢ is the Euclidean metric tensor ¢ = I". In this model the
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geodesic distance between two points is given by the following expression:

X = aIrccos HX_y||2
d(x.y) h (L 2 ) (6-)

D? = {x € R*: [x|| < 1}

-
"""""

_____

Figure 6-3: Visualization of the two-dimensional Poincaré ball. Point z represents
the Mdébius sum of points x and y. HypAve stands for hyperbolic averaging. Gray
lines represent geodesics, curves of shortest length connecting two points. In order to
specify the hyperbolic hyperplanes (bottom), used for multiclass logistic regression,
one has to provide an origin point p and a normal vector a € T,D? \ {0}. For more
details on hyperbolic operations see Section 6.4.

In order to define the hyperbolic average, we will make use of the Klein model
of hyperbolic space. Similarly to the Poincaré model, it is defined on the set
K" = {x € R" : ||x||< 1}, however, with a different metric, not relevant for further
discussion. In Klein coordinates, the hyperbolic average (generalizing the usual Eu-

clidean mean) takes the most simple form, and we present the necessary formulas

in Section 6.4.
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From the viewpoint of hyperbolic geometry, all points of Poincaré ball are equiv-
alent. The models that we consider below are, however, hybrid in the sense that
most layers use Euclidean operators, such as standard generalized convolutions,
while only the final layers operate within the hyperbolic geometry framework. The
hybrid nature of our setups makes the origin a special point, since, from the Eu-
clidean viewpoint, the local volumes in Poincare ball expand exponentially from the
origin to the boundary. This leads to the useful tendency of the learned embeddings
to place more generic/ambiguous objects closer to the origin while moving more
specific objects towards the boundary. The distance to the origin in our models,
therefore, provides a natural estimate of uncertainty, that can be used in several
ways, as we show below.

This choice is justified for the following reasons. First, many existing vision
architectures are designed to output embeddings in the vicinity of zero (e.g., in the
unit ball). Another appealing property of hyperbolic space (assuming the standard
Poincare ball model) is the existence of a reference point — the center of the ball. We
show that in image classification which construct embeddings in the Poincare model
of hyperbolic spaces the distance to the center can serve as a measure of confidence
of the model — the input images which are more familiar to the model get mapped
closer to the boundary, and images which confuse the model (e.g., blurry or noisy
images, instances of a previously unseen class) are mapped closer to the center. The
geometrical properties of hyperbolic spaces are quite different from the properties of
the Euclidean space. For instance, the sum of angles of a geodesic triangle is always
less than 7. These interesting geometrical properties make it possible to construct
a “score” which for an arbitrary metric space provides a degree of similarity of this
metric space to a hyperbolic space. This score is called d-hyperbolicity, and we now

discuss it in detail.

6.3.1 oJ-Hyperbolicity

Let us start with an illustrative example. The simplest discrete metric space pos-
sessing hyperbolic properties is a tree (in the sense of graph theory) endowed with

the natural shortest path distance. Note the following property: for any three ver-
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Figure 6-4: Visualization of a geodesic triangle in a tree. Such a tree endowed with
a natural shortest path metric is a 0-Hyperbolic space.

tices a, b, ¢, the geodesic triangle (consisting of geodesics — paths of shortest length
connecting each pair) spanned by these vertices (see Figure 6-4) is slim, which infor-
mally means that it has a center (vertex d) which is contained in every side of the
triangle. By relaxing this condition to allow for some slack value d and considering

so-called 0-slim triangles, we arrive at the following general definition.

Table 6.1: Comparison of the theoretical degree of hyperbolicity with the relative
delta d,¢ values estimated using Equations (6.2) and (6.4). The numbers are given
for the two-dimensional Poincaré ball D?, the 2D sphere S, the upper hemisphere
Sy, and a (random) tree graph.

D? Sy S Tree

Theory 0 1 1 0
Orel 0.18£0.08 0.86 +0.11 0.97£0.13 0.0

Table 6.2: The relative delta 9, values calculated for different datasets. For image
datasets we measured the Euclidean distance between the features produced by
various standard feature extractors pretrained on ImageNet. Values of 9, closer
to 0 indicate a stronger hyperbolicity of a dataset. Results are averaged across 10
subsamples of size 1000. The standard deviation for all the experiments did not
exceed 0.02.

Encoder Dataset

CIFAR10 CIFAR100 CUB MinilmageNet
Inception v3 [Szegedy et al., 2015b] 0.25 0.23 0.23 0.21
ResNet34 [He et al., 2016] 0.26 0.25 0.25 0.21
VGG19 [Simonyan and Zisserman, 2014]  0.23 0.22 0.23 0.17
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Let X be an arbitrary (metric) space endowed with the distance function d. Its
0-hyperbolicity value then may be computed as follows. We start with the so-called

Gromov product for points z,y, z € X:

(1, 2)2 = () + d(,2) — d(y, ) (62

Then, ¢ is defined as the minimal value such that the following four-point condition

holds for all points z,y, z,w € X:

(,2)w = min((x,Y)w, (Y, 2)w) — 0. (6.3)

The definition of hyperbolic space in terms of the Gromov product can be seen
as saying that the metric relations between any four points are the same as they
would be in a tree, up to the additive constant §. d-Hyperbolicity captures the basic
common features of “negatively curved” spaces like the classical real-hyperbolic space
D™ and of discrete spaces like trees.

For practical computations, it suffices to find the § value for some fixed point
w = wy as it is independent of w. An efficient way to compute ¢ is presented
in [Fournier et al., 2015]. Having a set of points, we first compute the matrix A of
pairwise Gromov products using Equation (6.2). After that, the § value is simply
the largest coefficient in the matrix (A ® A) — A, where ® denotes the min-max

matrix product

A® B = max min{A;, By, }- (6.4)

Results. 1In order to verify our hypothesis on hyperbolicity of visual datasets we

compute the scale-invariant metric, defined as d,¢(X) = d?frff(())(), where diam(X) de-
notes the set diameter (maximal pairwise distance). By construction, d,(X) € [0, 1]
and specifies how close is a dataset to a hyperbolic space. Due to computational
complexities of Equations (6.2) and (6.4) we employ the batched version of the algo-
rithm, simply sampling /N points from a dataset, and finding the corresponding 9,;.

Results are averaged across multiple runs, and we provide resulting mean and stan-

dard deviation. We experiment on a number of toy datasets (such as samples from
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the standard two—dimensional unit sphere), as well as on a number of popular com-
puter vision datasets. As a natural distance between images, we used the standard
Euclidean distance between feature vectors extracted by various CNNs pretrained
on the ImageNet (ILSVRC) dataset |Deng et al., 2009|. Specifically, we consider
VGG19 [Simonyan and Zisserman, 2014], ResNet34 [He et al., 2016] and Inception
v3 [Szegedy et al., 2015b| networks for distance evaluation. While other metrics
are possible, we hypothesize that the underlying hierarchical structure (useful for
computer vision tasks) of image datasets can be well understood in terms of their
deep feature similarity.

Our results are summarized in Table 6.2. We observe that the degree of hyper-
bolicity in image datasets is quite high, as the obtained ¢,; are significantly closer
to 0 than to 1 (which would indicate complete non-hyperbolicity). This observation

suggests that visual tasks can benefit from hyperbolic representations of images.

Relation between J-hyperbolicity and Poincaré disk radius. It is known
[Tifrea et al., 2018| that the standard Poincaré ball is 0-hyperbolic with dp = log(1+
\/§) ~ (.88. Formally, the diameter of the Poincaré ball is infinite, which yields the
0re; value of 0. However, from computational point of view we cannot approach the
boundary infinitely close. Thus, we can compute the effective value of 9, for the
Poincaré ball. For the clipping value of 1075, i.e., when we consider only the subset
of points with the (Euclidean) norm not exceeding 1 — 107°, the resulting diameter
is equal to ~ 12.204. This provides the effective 9, &~ 0.144. Using this constant
we can estimate the radius of Poincaré disk suitable for an embedding of a specific
dataset. Suppose that for some dataset X we have found that its 9, is equal to dx.

Then we can estimate ¢(X) as follows.

0.144)2

c(X) = <T (6.5)

For the previously studied datasets, this formula provides an estimate of ¢ ~ 0.33.
In our experiments, we found that this value works quite well; however, we found
that sometimes adjusting this value (e.g., to 0.05) provides better results, probably

because the image representations computed by deep CNNs pretrained on ImageNet
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may not have been entirely accurate.

6.4 Hyperbolic operations

Hyperbolic spaces are not vector spaces in a traditional sense; one cannot use stan-
dard operations as summation, multiplication, etc. To remedy this problem, one
can utilize the formalism of Mobius gyrovector spaces allowing to generalize many
standard operations to hyperbolic spaces. Recently proposed hyperbolic neural net-
works adopt this formalism to define the hyperbolic versions of feed-forward net-
works, multinomial logistic regression, and recurrent neural networks |[Ganea et al.,
2018]. In Appendix 6.7, we discuss these networks and layers in detail, and in
this section, we briefly summarize various operations available in the hyperbolic
space. Similarly to the paper [Ganea et al., 2018|, we use an additional hyper-
parameter ¢ which modifies the curvature of Poincaré ball; it is then defined as
D" = {x € R": ¢||x||?’< 1,¢ > 0}. The corresponding conformal factor now takes

the form \§ = In practice, the choice of ¢ allows one to balance between

2
1—c[lx[?
hyperbolic and Euclidean geometries, which is made precise by noting that with
¢ — 0, all the formulas discussed below take their usual Euclidean form. The fol-

lowing operations are the main building blocks of hyperbolic networks.

Mboébius addition. For a pair x,y € D”, the Mdbius addition is defined as follows:

142 2 1— 2
cy o (o 2e0ey) ey + (1 cly 66)
1+ 2(x,y) + ANy [P

Distance. The induced distance function is defined as

d.(x,y) = %arctanh(ﬁ”—x ®. vl (6.7)

Note that with ¢ = 1 one recovers the geodesic distance (6.1), while with ¢ — 0 we

obtain the Euclidean distance lim. o d.(x,y) = 2||x — y||.
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Exponential and logarithmic maps. To perform operations in the hyperbolic
space, one first needs to define a bijective map from R"” to D? in order to map
Euclidean vectors to the hyperbolic space, and vice versa. The so-called exponential
and (inverse to it) logarithmic map serves as such a bijection.

The ezponential map exp$ is a function from 74D” = R" to D7, which is given

by

expl (V) = X @0 <tanh (ﬁAf‘!V”) JE‘\I\VH ) (6.8)

The inverse logarithmic map is defined as

—X @cy

arctanh(\/EH —X @c yn)m

log,..(y) == fCLA (6.9)

Hyperbolic averaging. One important operation common in image processing
is averaging of feature vectors, used, e.g., in prototypical networks for few—shot
learning [Snell et al., 2017]. In the Euclidean setting this operation takes the form
(X1,...,Xy) — % >; Xi. Extension of this operation to hyperbolic spaces is called

the Einstein midpoint and takes the most simple form in Klein coordinates:

N N

HypAve(xy,...,xy) = Z %-xi/z Vi (6.10)

i=1 i=1
C— 1 . . . .

where ~; T are the Lorentz factors. Recall from the discussion in Section
6.3 that the Klein model is supported on the same space as the Poincaré ball;
however, the same point has different coordinate representations in these models.
Let xp and xg denote the coordinates of the same point in the Poincaré and Klein

models correspondingly. Then the following transition formulas hold.

XK

Xp = , (6.11)
L+ /1 —c||xk|?
2X]D)
Xg = ————. 6.12
= Th ol (612)

Thus, given points in the Poincaré ball, we can first map them to the Klein model,
compute the average using Equation (6.10), and then move it back to the Poincaré

model.
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Numerical stability. While implementing most of the formulas described above
is straightforward, we employ some tricks to make the training more stable. In
particular, to ensure numerical stability, we perform clipping by norm after applying

the exponential map, which constrains the norm not to exceed %(1 —1073).
C

6.5 Experiments

©Omniglot
MNIST

o J ot . . | it - | J
: 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7
ds(x,0) dy(x, 0) do(x, 0) ds(x, 0)

Figure 6-5: Distributions of the hyperbolic distance to the origin of the MNIST
(red) and Omniglot (blue) datasets embedded into the Poincaré ball; parameter n
denotes embedding dimension of the model trained for MNIST classification. Most
Omniglot instances can be easily identified as out-of-domain based on their distance
to the origin.

Experimental setup. We start with a toy experiment supporting our hypothesis
that the distance to the center in Poincaré ball indicates a model uncertainty. To
do so, we first train a classifier in hyperbolic space on the MNIST dataset [LeCun
et al., 1998| and evaluate it on the Omniglot dataset [Lake et al., 2013]. We then
investigate and compare the obtained distributions of distances to the origin of
hyperbolic embeddings of the MNIST and Omniglot test sets.

In our further experiments, we concentrate on the few-shot classification and
person re-identification tasks. The experiments on the Omniglot dataset serve as
a starting point, and then we move towards more complex datasets. Afterwards,
we consider two datasets, namely: MinilmageNet [Ravi and Larochelle, 2016] and
Caltech-UCSD Birds-200-2011 (CUB) [Wah et al., 2011b]. Finally, we provide the
re-identification results for the two popular datasets: Market-1501 [Zheng et al.,
2015] and DukeMTMD |Ristani et al., 2016, Zheng et al., 2017]. Further in this
section, we provide a thorough description of each experiment. Our code is available

at github!.

Thttps://github.com /leymir /hyperbolic-image-embeddings
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Table 6.3: Kolmogorov-Smirnov distances between the distributions of distance to
the origin of the MNIST and Omniglot datasets embedded into the Poincaré ball
with the hyperbolic classifier trained on MNIST, and between the distributions of
Pmax (maximum probablity predicted for a class) for the Euclidean classifier trained
on MNIST and evaluated on the same sets.

n=2 n=8 n=16 n =232

dp(x,0) 0.868 0.832 0.853 0.859
Pmax(X)  0.834 0.835 0.840 0.846

6.5.1 Distance to the origin as the measure of uncertainty

In this subsection, we validate our hypothesis, which claims that if one trains a
hyperbolic classifier, then the distance of the Poincaré ball embedding of an image
to the origin can serve as a good measure of confidence of a model. We start by
training a simple hyperbolic convolutional neural network on the MNIST dataset
(we hypothesized that such a simple dataset contains a very basic hierarchy, roughly
corresponding to visual ambiguity of images, as demonstrated by a trained network
on Figure 6-1). The output of the last hidden layer was mapped to the Poincaré
ball using the exponential map (6.8) and was followed by the hyperbolic multi-linear
regression (MLR) layer [Ganea et al., 2018|.

After training the model to ~ 99% test accuracy, we evaluate it on the Omniglot
dataset (by resizing its images to 28 x 28 and normalizing them to have the same
background color as MNIST). We then evaluated the hyperbolic distance to the ori-
gin of embeddings produced by the network on both datasets. The closest Euclidean
analogue to this approach would be comparing distributions of py,.,, maximum class
probability predicted by the network. For the same range of dimensions, we train
ordinary Euclidean classifiers on MNIST and compare these distributions for the
same sets. Our findings are summarized in Figure 6-5 and Table 6.3. We observe
that distances to the origin represent a better indicator of the dataset dissimilarity
in three out of four cases.

We have visualized the learned MNIST and Omniglot embeddings in Figure 6-1.
We observe that more “unclear” images are located near the center, while the images

that are easy to classify are located closer to the boundary.
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6.5.2 Few-shot classification

We hypothesize that a certain class of problems — namely the few-shot classifica-
tion task can benefit from hyperbolic embeddings, due to the ability of hyperbolic
space to accurately reflect even very complex hierarchical relations between data
points. In principle, any metric learning approach can be modified to incorporate
the hyperbolic embeddings. We decided to focus on the classical approach called
prototypical networks (ProtoNets) introduced in [Snell et al., 2017]. This approach
was picked because it is simple in general and simple to convert to hyperbolic geome-
try. ProtoNets use the so-called prototype representation of a class, which is defined
as a mean of the embedded support set of a class. Generalizing this concept to
hyperbolic space, we substitute the Euclidean mean operation by HypAve, defined
earlier in (6.10). We show that Hyperbolic ProtoNets can achieve results competitive
with many recent state-of-the-art models. Our main experiments are conducted on
MinilmageNet and Caltech-UCSD Birds-200-2011 (CUB). Additional experiments
on the Omniglot dataset, as well as the implementation details and hyperparam-
eters, are provided in Section 6.8. For a visualization of learned embeddings see

Section 6.9.

MinilmageNet. MinilmageNet dataset is the subset of ImageNet dataset |[Rus-
sakovsky et al., 2015| that contains 100 classes represented by 600 examples per
class. We use the following split provided in the paper [Ravi and Larochelle, 2016]:
the training dataset consists of 64 classes, the validation dataset is represented by 16
classes, and the remaining 20 classes serve as the test dataset. We test the models
on tasks for 1-shot and 5-shot classifications; the number of query points in each
batch always equals to 15. Similarly to [Snell et al., 2017|, the model is trained in
the 30-shot regime for the 1-shot task and the 20-shot regime for the 1-shot task.
We test our approach with two different backbone CNN models: a commonly used
four-block CNN [Snell et al., 2017, Chen et al., 2019a] (denoted ‘4 Conv’ in the
table) and ResNet18 [He et al., 2016]. To find the best values of hyperparameters,
we used the grid search; see Section 6.8 for the complete list of values.

Table 6.4 illustrates the obtained results on the MinilmageNet dataset (alongside
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Table 6.4: Few-shot classification accuracy results on MinilmageNet on 1-shot 5-
way and 5-shot 5-way tasks. All accuracy results are reported with 95% confidence

intervals.

Baselines Embedding Net 1-Shot 5-Way 5-Shot 5-Way
MatchingNet [Vinyals et al., 2016] 4 Conv 43.56 + 0.84%  55.31 + 0.73%
MAML [Finn et al., 2017 4 Conv 48.70 £ 1.84%  63.11 £ 0.92%
RelationNet [Sung et al., 2018] 4 Conv 50.44 £ 0.82%  65.32 £ 0.70%
REPTILE |Nichol and Schulman, 2018] 4 Conv 49.97 £ 0.32%  65.99 £ 0.58%
ProtoNet [Snell et al., 2017] 4 Conv 49.42 + 0.78%  68.20 £ 0.66%
Baseline* [Chen et al., 2019a) 4 Conv 41.08 £ 0.70%  54.50 £ 0.66%
Spot&learn [Chu et al., 2019] 4 Conv 51.03 £ 0.78%  67.96 £ 0.71%
DN4 [Li et al., 2019] 4 Conv 51.24 + 0.74%  71.02 £ 0.64%
Hyperbolic ProtoNet 4 Conv 54.43 + 0.20% 72.67 + 0.15%
SNAIL [Mishra et al., 2017] ResNet12 55.71 £ 0.99%  68.88 £+ 0.92%
ProtoNet™ [Snell et al., 2017 ResNet12 56.50 £ 0.40%  74.2 £ 0.20%
CAML [Jiang et al., 2019 ResNet12 59.23 £ 0.99%  72.35 + 0.71%
TPN [Liu et al., 2019] ResNet12 59.46% 75.65%
MTL [Sun et al., 2019] ResNet12 61.20 + 1.8% 75.50 £+ 0.8%
DN4 [Li et al., 2019] ResNet12 54.37 £ 0.36%  74.44 £ 0.29%
TADAM [Oreshkin et al., 2018] ResNet12 58.50% 76.70%
Qiao-WRN [Qiao et al., 2018| Wide-ResNet28  59.60 + 0.41%  73.74 £ 0.19%
LEO [Rusu et al., 2019] Wide-ResNet28  61.76 + 0.08% 77.59 + 0.12%
Dis. k-shot [Bauer et al., 2017] ResNet34 56.30 £ 0.40%  73.90 + 0.30%
Self-Jig(SVM) [Chen et al., 2019b| ResNet50 58.80 £ 1.36%  76.71 £ 0.72%
Hyperbolic ProtoNet ResNet18 59.47 £ 0.20%  76.84 £+ 0.14%

other results in the literature). Interestingly, Hyperbolic ProtoNet significantly
improves accuracy as compared to the standard ProtoNet, especially in the one-
shot setting. We observe that the obtained accuracy values, in many cases, exceed
the results obtained by more advanced methods, sometimes even in the case of
architecture of larger capacity. This partly confirms our hypothesis that hyperbolic

geometry indeed allows for more accurate embeddings in the few—shot setting.

Caltech-UCSD Birds. The CUB dataset consists of 11,788 images of 200 bird
species and was designed for fine-grained classification. We use the split introduced
in [Triantafillou et al., 2017]: 100 classes out of 200 were used for training, 50
for validation and 50 for testing. Due to the relative simplicity of the dataset, we
consider only the 4-Conv backbone and do not modify the training shot values as
was done for the MinilmageNet case. The full list of hyperparameters is provided
in Section 6.8.

Our findings are summarized in Table 6.5. Interestingly, for this dataset, the

hyperbolic version of ProtoNet significantly outperforms its Euclidean counterpart

(by more than 10% in both settings), and outperforms many other algorithms.
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Table 6.5: Few-shot classification accuracy results on CUB dataset [Wah et al.,
2011a] on 1-shot 5-way task, 5-shot 5-way task. All accuracy results are reported
with 95% confidence intervals. For each task, the best-performing method is high-
lighted.

Baselines Embedding Net 1-Shot 5-Way 5-Shot 5-Way
MatchingNet [Vinyals et al., 2016] 4 Conv 61.16 + 0.89 72.86 4+ 0.70
MAML [Finn et al., 2017 4 Conv 55.92 + 0.95%  72.09 £+ 0.76%
ProtoNet [Snell et al., 2017] 4 Conv 51.31 £ 0.91%  70.77 + 0.69%
MACO [Hilliard et al., 2018] 4 Conv 60.76% 74.96%
RelationNet [Sung et al., 2018] 4 Conv 62.45 +£ 0.98%  76.11 £ 0.69%
Baseline++ [Chen et al., 2019a) 4 Conv 60.53 + 0.83%  79.34 £ 0.61%
DN4-DA [Li et al., 2019] 4 Conv 53.15 £ 0.84%  81.90 £ 0.60%
Hyperbolic ProtoNet 4 Conv 64.02 + 0.24% 82.53 £+ 0.14%

Table 6.6: Person re-identification results for Market-1501 and DukeMTMC-relD for
the classification baseline (Fuclidean) and its hyperbolic counterpart (Hyperbolic).
(See 6.5.3 for the details). The results are shown for the three embedding dimen-
sionalities and for two different learning rate schedules. For each dataset and each
embedding dimensionality value, the best results are bold, they are all given by the
hyperbolic version of classification (either by the schedule sch#1 or sch#2). The
second-best results are underlined.

Market-1501 DukeMTMC-reID

Euclidean  Hyperbolic  Euclidean  Hyperbolic

dim, Ir schedule r1 mAP r1 mAP rl mAP rl1 mAP
32, sch#1 71.4 49.7 69.8 459 56.1 356 56.5 34.9
32, sch#2 68.0 434 75.9 51.9 572 357 62.2 39.1
64, sch#1 80.3 60.3 83.1 60.1 69.9 485 70.8 48.6
64, sch#2 80.5 57.8 84.4 62.7 683 455 70.7 48.6
128, sch#1 86.0 67.3 87.8 68.4 74.1 533 76.5 55.4
128, sch#2 86.5 68.5 864 66.2 71.5 51.5 T74.0 522

6.5.3 Person re-identification

The DukeMTMC-reID dataset [Ristani et al., 2016, Zheng et al., 2017| contains
16,522 training images of 702 identities, 2,228 query images of 702 identities and
17,661 gallery images. The Market1501 dataset [Zheng et al., 2015| contains 12,936
training images of 751 identities, 3,368 queries of 750 identities and 15,913 gallery
images respectively. We report Rankl of the Cumulative matching Characteristic
Curve and Mean Average Precision for both datasets. The results (Table 6.6) are
reported after the 300 training epochs. The experiments were performed with the
ResNet50 backbone, and two different learning rate schedulers (see Appendix 6.8 for
more details). The hyperbolic version generally performs better than the Euclidean

baseline, with the advantage being bigger for smaller dimensionality.
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6.6 Discussion and conclusion

We have investigated the use of hyperbolic spaces for image embeddings. The mod-
els that we have considered use Euclidean operations in most layers, and use the
exponential map to move from the Euclidean to hyperbolic spaces at the end of
the network (akin to the normalization layers that are used to map from the Eu-
clidean space to Euclidean spheres). The approach that we investigate here is thus
compatible with existing backbone networks trained in Euclidean geometry.

At the same time, we have shown that across a number of tasks, in particular
in the few-shot image classification, learning hyperbolic embeddings can result in
a substantial boost in accuracy. We speculate that the negative curvature of the
hyperbolic spaces allows for embeddings that are better conforming to the intrinsic
geometry of at least some image manifolds with their hierarchical structure.

Future work may include several potential modifications of the approach. We
have observed that the benefit of hyperbolic embeddings may be substantially bigger
in some tasks and datasets than in others. A better understanding of when and
why the use of hyperbolic geometry is warranted is therefore needed. Finally, we
note that while all hyperbolic geometry models are equivalent in the continuous
setting, fixed-precision arithmetic used in real computers breaks this equivalence.
In practice, we observed that care should be taken about numeric precision effects.
Using other models of hyperbolic geometry may result in a more favourable floating

point performance.

6.7 Hyperbolic Neural Networks

Linear layer. Assume we have a standard (Euclidean) linear layer x — Mx + b.

In order to generalize it, one needs to define the Mobius matrix by vector product:

Mx
IMx||”

if Mx # 0, and M®¢(x) = 0 otherwise. Finally, for a bias vector b € D" the

®e X) = H HarC an X
M () 1= - tan (H arctann(yal H)) (6.13)

operation underlying the hyperbolic linear layer is then given by M®<(x) @, b.
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Concatenation of input vectors. In several architectures (e.g., in siamese net-
works), it is needed to concatenate two vectors; such operation is obvious in Eu-
clidean space. However, straightforward concatenation of two vectors from hy-
perbolic space does not necessarily remain in hyperbolic space. Thus, we have
to use a generalized version of the concatenation operation, which is then de-
fined in the following manner. For x € DM y € D we define the mapping

Concat : D' x D72 — D7 as follows.
Concat(x,y) = MP*x @, MJ°y, (6.14)

where M; and Ms are trainable matrices of sizes n3 x ny and nz X ny correspondingly.
The motivation for this definition is simple: usually, the Euclidean concatenation
layer is followed by a linear map, which when written explicitly takes the (Euclidean)

form of Equation (6.14).

Multiclass logistic regression (MLR). In our experiments, to perform the
multiclass classification, we take advantage of the generalization of multiclass logistic
regression to hyperbolic spaces. The idea of this generalization is based on the
observation that in Euclidean space logits can be represented as the distances to
certain hyperplanes, where each hyperplane can be specified with a point of origin
and a normal vector. The same construction can be used in the Poincaré ball
after a suitable analogue for hyperplanes is introduced. Given p € D? and a €
T,D7 \ {0}, such an analogue would be the union of all geodesics passing through
p and orthogonal to a.

The resulting formula for hyperbolic MLR for K classes is written below; here

pr € D7 and a;, € T, D" \ {0} are learnable parameters.

p(y = k|x)

XS |a _
exp (—pkH d arcsinh( 2Ve{=pr & X’Qak> ))
Ve (1 — c||[—pr e x|12) || ax|

For a more thorough discussion of hyperbolic neural networks, we refer the reader
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to the paper |[Ganea et al., 2018].

6.8 Experiment details

Omniglot. As a baseline model, we consider the prototype network (ProtoNet).
Each convolutional block consists of 3 x 3 convolutional layer followed by batch
normalization, ReLLU nonlinearity and 2 x 2 max-pooling layer. The number of filters
in the last convolutional layer corresponds to the value of the embedding dimension,
for which we choose 64. The hyperbolic model differs from the baseline in the
following aspects. First, the output of the last convolutional block is embedded into
the Poincaré ball of dimension 64 using the exponential map. Results are presented
in Table 6.7. We can see that in some scenarios, in particular for one-shot learning,
hyperbolic embeddings are more beneficial, while in other cases, results are slightly
worse. The relative simplicity of this dataset may explain why we have not observed
a significant benefit of hyperbolic embeddings. We further test our approach on

more advanced datasets.

Table 6.7: Few-shot classification accuracies on Omniglot. In order to obtain Hyper-
bolic ProtoNet, we augment the standard ProtoNet with a mapping to the Poincaré
ball, use hyperbolic distance as the distance function, and as the averaging operator
we use the HypAve operator defined by Equation (6.10).

ProtoNet Hyperbolic ProtoNet

1-shot 5-way 98.2 99.0
5-shot H-way 99.4 99.4
1-shot 20-way 95.8 95.9
5-shot 20-way 98.6 98.15

mintImageNet. We performed the experiments with two different backbones,
namely the previously discussed 4-Conv model and ResNet18. For the former, em-
bedding dim was set to 1024 and for the latter to 512. For the one-shot setting both
models were trained for 200 epochs with Adam optimizer, learning rate being 5-103
and step learning rate decay with the factor of 0.5 and step size being 80 epochs. For
the 4-Conv model we used ¢ = 0.01 and for ResNet18 we used ¢ = 0.001. For 4-Conv
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in the five-shot setting we used the same hyperparameters except for ¢ = 0.005 and
learning rate decay step being 60 epochs. For ResNetl8 we additionally changed

learning rate to 1073 and step size to 40.

Caltech-UCSD Birds. For these experiments we used the same 4-Conv architec-
ture with the embedding dimensionality being 512. For the one-shot task, we used
learning rate 1073, ¢ = 0.05, learning rate step being 50 epochs and decay rate of
0.8. For the five-shot task, we used learning rate 1073, ¢ = 0.01, learning rate step

of 40 and decay rate of 0.8.

Person re-identification. We use ResNet50 [He et al., 2016| architecture with
one fully connected embedding layer following the global average pooling. Three
embedding dimensionalities are used in our experiments: 32, 64 and 128. For the
baseline experiments, we add the additional classification linear layer, followed by
the cross-entropy loss. For the hyperbolic version of the experiments, we map the
descriptors to the Poincaré ball and apply multiclass logistic regression as described
in Section 6.4. We found that in both cases the results are very sensitive to the
learning rate schedules. We tried four schedules for learning 32-dimensional descrip-
tors for both baseline and hyperbolic versions. The two best performing schedules
were applied for the 64 and 128-dimensional descriptors. In these experiments, we
also found that smaller ¢ values give better results. We therefore have set ¢ to 107°.
Based on the discussion in 6.4, our hyperbolic setting is quite close to Fuclidean.
The results are compiled in Table 6.6. We set starting learning rates to 3-10~* and
6 - 1074 for sch#1 and sch#2 correspondingly and multiply them by 0.1 after each
of the epochs 200 and 270.

6.9 Visualizations

For the visual inspection of embeddings we computed projections of high dimensional
embeddings obtained from the trained few—shot models with the (hyperbolic) UMAP
algorithm [Mclnnes et al., 2018| (see Figure 6-6). We observe that different classes

are neatly positioned near the boundary of the circle and are well separated.
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Figure 6-6: A visualization of the hyperbolic embeddings learned for the few—shot
task. Left: 5-shot task on CUB. Right: 5-shot task on MiniImageNet. The two-

dimensional projection was computed with the UMAP algorithm [McInnes et al.,
2018|.
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"If you optimize everything, you will

always be unhappy."

Donald Knuth

Chapter 7

Conclusion

In this thesis we explored how geometrical ideas can be applied to further out un-
derstanding of deep learning and develop new practical algorithms. Ultimately, our
goal is to produce learning algorithms that utilize the geometrical structure of un-
derlying data manifolds in an automatic, unsupervised manner. We anticipate one
of the main directions towards this goal to be a utilization of powerful generative
models, which infer a solid model of the data manifold. Another area where similar
ideas could be explored is reinforcement learning. In Srinivas et al. [2020], it was
shown that even simple image-based augmentations allow one to achieve state-of-
the-art sample efficiency on a large number of tasks where the inputs are represented
as images. However, in many RL tasks, the state space has some non-trivial man-
ifold structure. An additional complication is that actions have to be transformed
as well as states — as an example, we can think about the state reflection in the
Snake game. We believe that an automatic discovery of state-action symmetries is

a crucial step towards truly intelligent RL agents.
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AG Algebraic Geometry. 11, 12

CNNs Convolutional Neural Networks. 10, 11
CP CANDECOMP/PARAFAC. 10, 11

CV Computer Vision. 9

GANs Generative Adversarial Networks. 12, 17
HT Hierarchical Tucker. 10, 11, 15

NLP Natural Language Processing. 9

ReLU Rectified Linear Unit. 11, 15

RNNs Recurrent Neural Networks. 11, 14

TDA Topological Data Analysis. 13, 17
TR Tensor Ring. 11

TT Tensor Train. 10, 14, 15

VAEs Variational Autoencoders. 13, 14
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