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The thesis document includes the following changes in answer to the external review process.

“Introduction” and “Preliminary remark” section 2.1 were modified to improve consistency as 
requested by one of the committee members. In particular, on page 25, a paragraph was added 
explaining why we need to introduce special Lyapunov exponents for periodic trajectories. The 
text of the paragraph as below:


Usually, if a system has a positive maximal Lyapunov exponent , it means that the almost all 
randomly selected trajectories in the system are unstable. The periodic trajectories, however, require 
special consideration. In particular, as we will show below, there are certain cases when a chaotic 
system possesses a stable periodic trajectory. The stability of such a trajectory cannot be described 
with the maximal Lyapunov exponent . For this reason, we will introduce a special ``periodic’’ 
Lyapunov exponent , describing the stability of the periodic trajectories. 


In order to address the question, "Why is the motion periodic?" section 2.3.2 (Periodic 
trajectories) was expanded. Pages 28-29.


…The one-spin trajectory  is limited to a two-dimensional manifold - the surface of a unit 
sphere . On a two-dimensional manifold a phase-space trajectory normally cannot avoid 
closing onto itself, which means that it becomes periodic. The corresponding many-spin trajectory, to 
be denoted as ,  also becomes periodic.


Since all spins during this dynamics point in the same direction, the projections of  and  in 
Eq.(2.6) can be replaced by those of , and, as a result, the periodic one spin trajectories  can 
be computed with the help of one-spin Hamiltonian


(2.7)


Initial conditions (2.2) correspond to zero energy, indeed if then . The 
quadratic equation  in terms of  and , together with the condition , defines an 
energy shell, which is represented by a line on the unit sphere. In Figure 2-2 we plot one-spin 
trajectories  for different values of . As expected  closes onto itself, and thus becomes 
periodic. 
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In order to address the question: “What happens with Lyapunov exponents in the vicinity of 
separatrix” new figure was added (page 35): 




Figure 2-4: Lyapunov exponent  in the vicinity of separatrix . The value of separatrix 
is approximately . Minimal value of  is equal to . Values  
correspond to the regime of librations, while  correspond to rotations.


The following text answering the above question was added (page 37): 


To analyze the behavior of periodic Lyapunov exponents near separatrix, we have computed them for 
different small violations from  such that , see Fig. 2-4. This figure shows that  
growth in the vicinity of separatrix, yet this growth is slow.


Although we cannot compute  on the separatrix or arbitrarily close to it, we expect that it has a 
finite value. The following argument supports this expectation. Points in the phase space move with 
limited speed; therefore,  must be confined from above for all finite , including . Also, from 
Fig. 2-4, we can see that in the vicinity of separatrix, the Lyapunov exponent is an even function of 
perturbation, such that . This fact hints that  shall be continuous in the 
point .


The standard algorithms of calculation of Lyapunov exponents do not work in the close vicinity of 
separatrix . Indeed, as we approach separatrix closer, we need to take smaller values of initial 
perturbations . In real calculations, however, we are always limited by selected machine precision 
(the smallest difference between two numbers which computer recognizes). Therefore, in practice, 
we cannot approach separatrix arbitrarily close.
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In order to address the question about the behavior of entanglement entropy of a fully 
polarized state, a new figure was added (page 54): 



Figure 2-16: Time-evolution of entanglement entropy for initial  state. Entanglement is 
normalized by the quantity , where  is total number of states in subsystem. For a single spin 

, , for the chain of three spins (bipartite division) .


The following text answering the above question was added as a new subsubsection 2.4.4 (page 
53): 


In section 2.4.2 we used the value of entanglement entropy for the eigenstates of the system as the 
test of ETH. The entanglement entropy of the system as such was not the principal concern of the 
present investigation: instead we could have used the expectation value of a different physical 
observable, for example, the expectation value of . Yet, in this subsection, for the sake of 
completeness, we present the time-evolution of entanglement entropy for initial state . 

 

In the Figure 2-16, we plot normalized entanglement entropy , where  is the 
dimensionality of the Hilbert space of subsystem. We investigated the entanglement entropies of a 

single spin and of a half of the chain (  spins for even , and  spins for odd ). In both cases 

we see that  slowly converges to some saturation value, which in its turn close to 1. 
Initially  exhibits linear growth, which is slowed down after some time.
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In order to address the question: “Expand on the measure of classical like behavior / coherence 
length. Why does it measure quantumness?” On the page 89 after formula (4.6) the explanation 
was expanded as follows:


Now we need to choose some physical quantity, to quantitatively characterize the quantumness of the 
heavy particle. For a set up described above the most natural quantity is the coherence length [86,87].


(4.6)


Here  is a reduced density matrix of the particle obtained from a pure state  of 
the closed particle-gas system and is its matrix elements in the position 
basis. The quantity (4.6) has a measure of length and depends on off-diagonal elements of the density 
matrix. It effectively measures the spatial extension of a superposition of localized states, ranging 
from  for a particle localized on a single site to  for a highly non-classical state of the form


(4.7)


where  is some state of  fermions. If the coherence length is equal to zero, all the off-diagonal 
elements of the density matrix  are equal to zero. Larger values of coherence length correspond to 
larger values of off-diagonal elements in the density matrix . Larger values of  for non-zero 
off-diagonal elements imply longer coherence length.
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