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Abstract

This thesis is devoted to the study of integrable structures of the conformal field theories by the
methods of the hidden affine Yangian symmetry. We introduce the RLL algebra generated by Liouville
reflection operator/Maulik Okounkov R-matrix, and discuss its relation to the current realization of the
affine Yangian of gl(1). We observe that the Integrals of Motion of the W algebras of type A coincide
with the ones associated to an affine Yangian ”spin chain” with periodic boundary conditions. The
integrable structures ofW algebras of types BCD are identified with affine Yangian ”spin chains” with
boundaries. We derive the corresponding Bethe ansatz equations and Bethe vectors for the spectrum
of the IOMs. We also construct the q-deformed versions of the reflection matrices and local Integrals
of Motion.
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Introduction

0.1 Integrable field theories, integrable structures of CFT

As was pointed out by Zamolodchikov [Zam89] there is a natural relation between integrable and
conformal field theories. Namely having an integrable field theory it is always possible to consider
its ultraviolet (UV) limit which is controlled by conformal field theory (CFT). The infinite tower of
Integrals of Motion Is(λ) in this limit splits into two independent family of Integrals of Motion defined
in a purely CFT terms.

Is(λ) = Is +O(λ), I−s(λ) = Īs +O(λ),

here λ is a scale parameter and turns to zero in a UV limit, Is and Īs are two decoupled integrable
systems acting in the space of holomorphic and antiholomorphic fields correspondingly. More im-
portantly, as explained in [Zam89] it is often possible to recover the massive integrable field theory
out of integrable structure of CFT. The integrable systems in CFTs is much more simple than the
ones in massive integrable field theories, and so, the study of integrable structures in CFT serves as a
good playground to understand the space of Integrable quantum field theories (IQFT). In particular
the integrable structures of CFTs plays an important role in [Lit19], [LV20] and allows to guess new
integrable Toda field theories, and provide a duality between them and Integrable sigma models.

Despite the great simplifications complete diagonalization of chiral Integrals of Motion (IOMs) is
yet a nontrivial problem. The study of integrable structure of conformal field theory began with the
seminal series of papers of Bazhanov, Lukyanov and Zamolodchikov (BLZ) [BLZ96, BLZ97, BLZ99]
devoted to study of quantum KDV integrable system, which appears in the UV limit of sine-Gordon
theory. In particular, the set of generating functions for local and non-local Integrals of Motion has
been explicitly constructed. Unfortunately the construction of [BLZ96,BLZ97,BLZ99] does not known
to provide by itself any equations for the spectrum of the Integrals of Motion.

New ideas appear since the discovery of Ordinary Differential Equation/Integrable Model (ODE/IM)
correspondence [DT99a,BLZ01,DT99b]. Using this approach and bunch of analytic intuition, Bazhanov,
Lukyanov and Zamolodchikov [BLZ04] were able to express the spectrum of the local IOMs in terms
of solutions of certain algebraic system of equations. Later these equations were generalized for some
other integrable structures, such as Fateev models or quantum AKNS model (see [KL20] for the list of
all known cases). Despite the obvious success of BLZ program, it is still unclear where the algebraic
equations of [BLZ04] come from, and whether they can be easily generalized for other models of CFT.

In this thesis we develop a parallel approach based on the affine Yangian symmetry. The advantage
of this approach is that it fits in general framework of the quantum inverse scattering method, provides
Bethe ansatz equations for the spectrum and allows to treat a lot of integrable structures in a unified
way. Being originally formulated geometrically [Var00, Nak01,MO19], it can be rephrased entirely
algebraically in CFT terms1. In [LV20], using this algebraic approach, we studied the integrable
structures in CFT related to Y

(
ĝl(1)

)
, the affine Yangian of gl(1) [Tsy17]. These integrable structures

describe W algebras of An type and its super-algebra generalizations and can be viewed as twist

1For the modern review of the geometric approach and more advanced topics see Andrei Okounkov’s summer lecture
course sites.google.com/view/andrei-okounkov-lecture-course/home.

https://sites.google.com/view/andrei-okounkov-lecture-course/home
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deformations of the quantum Gelfand-Dikii hierarchies (quantum ILWtype integrable systems). We
also were able to study integrable structures of W algebras of BCD type, by realising corresponding
integrable systems as an affine Yangian ”spin chain” with boundaries [LV21].

Affine Yangian of gl(1) admits two different descriptions: the current realisation which is useful in
studying the spectrum and Bethe eigenfunctions, and the so called Chevalley description in terms of
generators of W1+∞ algebra. The second description is more useful in study of the local Integrals of
Motion. In order to clarify the structure of W algebra, it may be useful to study its q-deformation.
The q-deformations of W algebras have been provided in [AKOS96] for type A, and in [FR97] for
simple Lie algebras. The deformations of the local IOMs associated to W algebras of type A were
constructed in [KOJ06], [FJM17]. In the third chapter we review the q-deformation of W algebras
defined as a commutant of screenings and provide a construction for a q-deformation of local integrals
of motion of arbitrary high spin for W algebras of type B,C,D.

Chiral Integrals of Motion, example. In order to clarify the ideas above, let us consider an
example of classical Sinh-Gordon model living on a cylinder of length L = 2π and defined by the
action:

S =

∫ (
1

π

(
∂zϕ∂z̄ϕ

)
+ λ cosh

(
2bϕ

))
d2z, (1)

where z = x+ iy, z̄ = x− iy are the complex coordinates.
The theory is known to contain an infinite tower of Integrals of Motions:

∂z̄Ts+1 = λ∂zΘs−1, ∂zT−s−1 = λ∂z̄Θ−s+1, s ≥ 1

Is(λ) =

∫
dx

2π

(
Ts+1 − λΘs−1

)
.

In the classical limit the first few IOMs are given by the following formulas:

T2 = (∂zϕ)
2 , Θ0 = 2πλ cosh(2bϕ) (2)

T4 = (∂zϕ)
4 + b−2(∂2zϕ)

2 , Θ2 = 4πλ (∂zϕ)
2 cosh(2bϕ), (3)

which should be corrected at the quantum level. One may already see that in the UV limit (λ→ 0) Θs

vanishes, and we are left with the chiral mutually commuting Integrals of Motion Is
def
= Is(0). It may

also be shown (see for eg [FF95]) that that the classical chiral Integrals of Motion may be selected by
the condition of the Poisson commutativity with the screenings

{Is,Si} = 0,

where

S1 =
∮
e2bϕ(z)

dz

2π
, S2 =

∮
e−2bϕ(z) dz

2π
.

It turns out that the quantization of chiral integrable system may be defined very directly. Namely,
following the ideas of Zamolodchikov [Zam89] developed in [LF91] and also [FF96] we will postulate
the following formula for the chiral Integrals of Motion in the quantum case2:

[Is,Si] = 0, (4)

and

S1 =
∮
e2bϕ(z)

dz

2π
, S2 =

∮
e−2bϕ(z) dz

2π
.

2Strictly speaking, the commutator in the LHS is not well defined, as the contour of integration is not closed for
the general values of the zero mode of the field ϕ(z). We, nevertheless, make this inaccuracy, the proper definition is
explained below (see (6), (7)).
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We would like to stress out that the rigorous quantization and definition of the IOMs for the full
massive integrable model with non zero λ is far more non trivial problem, which we don’t even touch
in this thesis.
Let us be more precise, we are working in a second quantisation picture, ϕ(z) is the free bosonic field:

∂ϕ(z) = u+
∑

n 6=0

ane
inz, [an, am] =

m

2
δm,−n. (5)

The field ϕ(z) acts in the standard Fock space Fu:

Fu = {C[a−1, a−2, . . . ]|∅〉},
an|∅〉 = 0, for n > 0,

a0|∅〉 = u.

We will search for the Integrals of Motion of fixed spin s, as an integrals of local densities
Is =

∫ 2π
0 Gs+1(∂ϕ(z), ∂

2ϕ(z), . . . ) dz2π , which are polynomials in ∂ϕ and its derivatives. We further

introduce two vertex operators V±(z) = e±2bϕ(z), the equations (4) then reads as a conditions on the
coefficients in the operator product expansion:

V±(w)Gs+1(z) = reg +
∂X

(1)
s (z)

z − w +
∑

k≥2

X
(k)
s (z)

(z − w)k , (6)

or equivalently: ∮

z

V±(w)Gs+1(z)
dw

2π
= ∂X(1)

s (z), (7)

where X
(k)
s (z) are some local fields. Equations (4) then is nothing but a system of a linear equations

on a coefficients of density Gs+1. Direct computation provides for the first few Integrals of Motion:

G2 =: (∂zϕ(z))
2 :

G4 =: (∂zϕ)
4 : +(Q2 + 1) : (∂2zϕ)

2 :

G6 =: (∂zϕ)
6 : −5

8
: (∂ϕ)4 : +5(Q2 + 2)

(
: (∂2zϕ)

2∂zϕ
2 : − 1

24
: (∂2ϕ)2 :

)
+
(
Q4 +

8

3
Q2 +

19

12

)
: (∂2ϕ)2 :

G8 =
(
: (∂zϕ)

8 : + . . .
)
,

here Q = b+ 1
b , and ” : : ” denotes the Wick normal ordering.

While I3 and I5 obviously commute with the I1 which plays the role of grading operator, the
commutativity of I3 and I5 is not obvious but straightforward to check. Note that this densities
coincide with densities Ts (2),(3) in the semiclassical limit b→∞ as it should be.

More generally, one can consider the tensor product of n Fock spaces Fu1 ⊗ · · · ⊗ Fun and the
corresponding n-component bosonic field ϕ(z) = (ϕ1, . . . , ϕn)

3:

∂ϕj(z) = uj +
∑

n 6=0

a(j)n einz, [ain, a
j
m] = mδi,jδm,−n,

and affine set of screenings corresponding to an affine Lie algebra ĝ.

Sr =
∮
eb(αr·ϕ(z)) dz

2π
,

3Note that commutation relation of bosonic modes a
(i)
n are different from ones defined previously in case of a single

field (5). This is because the Sinh-Gordon model is an Â1 Toda and in (1) we already decouple the U(1) center of mass
U = ϕ1+ϕ2

2
, and left with a single bosonic field ϕ = ϕ1−ϕ2

2
.
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where αr have scalar products corresponding to the Dynkin diagram of an affine Lie algebra ĝ:
(αr · αs) = cr,s. The Integrals of Motion can be again found as the intersection of kernels of all the
screenings [LF91], [FF96]:

[Is,Sr] = 0.

In this thesis we will consider in details the cases of ĝ = Ân and ĝ = B̂n, Ĉn, D̂n. The existence of
a grading operator I1 among the Integrals of Motion allows to restrict the IOMs on a finite dimen-
sional space I1 = N , such that they becomes a finite dimensional matrices. Nonetheless their exact
diagonalization is by far a non trivial problem. Our strategy in analysing this problem is to identify
corresponding integrable systems with integrable ”spin chains” with the symmetry of affine Yangian,
and then apply to them a machinery of algebraic Bethe ansatz.

0.2 Thesis results

The main results of chapters 1 and 2 are the Bethe ansatz equations and the Bethe eigenvectors,
which provide a diagonalization of the chiral integrals of motion obtained as a UV limit of the Toda
integrable system.

• For the An case we derive the Bethe ansatz equations for the spectrum of the local (1.13) and
KZ (1.66) Integrals of Motion:

q
∏

j 6=i

3∏

α=1

xi − xj − ǫα
xi − xj + ǫα

n∏

k=1

xi − uk + ǫ3
xi − uk

= 1 for all i = 1, . . . , N, (8)

here we used Nekrasov epsilon notations ǫ1 ∼ b−1, ǫ2 ∼ b, ǫ3 ∼ −Q, see formula (1.38) for details.
Corresponding Bethe vectors are given by the formula (1.83).

• For the BCD case we derive the boundary Bethe ansatz equations for the spectrum of the local
(2.1),(2.5) and KZ (2.14) Integrals of Motion:

rα(xi)r
β(xi)A(xi)A

−1(−xi)
∏

j 6=i
G(xi − xj)G−1(−xi − xj) = 1,

G(x) =
(x− ǫ1)(x− ǫ2)(x− ǫ3)
(x+ ǫ1)(x+ ǫ2)(x+ ǫ3)

, A(x) =
n∏

k=1

x− uk + ǫ3
2

x− uk − ǫ3
2

, rα(x) = −x+ ǫα/2

x− ǫα/2
.

(9)

And the Bethe vectors are defined in (2.25).

Another important results include:

• explicit computation of the current realisation (1.40) of the RLL algebra with Maulik-Okounkov
[MO19] R−matrix.

• three different solutions Ki (2.11)-(2.12) of the Sklyanin’s KRKR relation with the Maulik-
Okounkov [MO19] R−matrix.

In chapter 3 we studied Integrals of Motion for the q-deformed W algebras.

• We provide explicit formulas for the Integrals of Motion of the q-deformed W algebras of BCD
type (3.59).

• We construct the q-deformed versions of the reflection R and K operators (3.62).
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0.3 Thesis review

This section is a short guide through the thesis, which contains main statements and ideas. The thesis
consists of three chapters. The chapter 1 of the thesis is devoted to the study of ĝl1 affine Yangian
and related integrable systems. We studied in details the connection between the RLL algebra and
its current realisation. We derive the local Integrals of Motion for W algebras of type A (1.13) and
corresponding Bethe ansatz equations (1.81) for their spectrum. In the chapter 2 we introduce the
Integrals of Motion of BCD type (2.1),(2.5), and studied their spectrum by means of the boundary
Bethe ansatz of the affine Yangian. We provide three different solutions K1,2,3 of the Sklyanin’s KRKR
equation (2.11)-(2.12), and the Bethe ansatz equations (2.27) for the spectrum of the local Integrals
of Motion. In the chapter 3 we studied the q-deformation of the Local and KZ Integrals of Motion.
We provide explicit formulas for the q-deformed versions of the local Integrals of Motion of arbitrary
high spin (3.59) for the q-deformed W algebras of type BCD.

W algebras and Maulik-Okounkov R−matrix. In section 1.2 we recall the definition of our
main tool the Maulik-Okounkov R−matrix [MO19] as a unique (up to a normalisation factor) solution
of the intertwining relation:

Ri,j
(
Q∂ − ∂ϕi

)(
Q∂ − ∂ϕj

)
=
(
Q∂ − ∂ϕj

)(
Q∂ − ∂ϕi

)
Ri,j , (10)

where the product of two brackets is a Miura-Gelfand-Dikii transformation [FL88,Luk88] which defines
generators of W algebra. Multiplying the brackets in different orders we obtain two isomorphic but
not identical W algebras

(
Q∂ − ∂ϕj

)(
Q∂ − ∂ϕi

)
= (Q∂)2 +W (1)(z)(Q∂) +W (2)(z),

(
Q∂ − ∂ϕi

)(
Q∂ − ∂ϕj

)
= (Q∂)2 + W̃ (1)(z)(Q∂) + W̃ (2)(z)

The operator Ri,j then intertwines the two W algebras and acts in the tensor product of two Fock
representations of Heisenberg algebra with the highest weight parameters ui and uj

Fui ⊗Fuj
Ri,j−→ Fui ⊗Fuj

and its matrix depends on the difference ui − uj . Then, by considering W3 algebra generated by the
product of three terms

(
Q∂−∂ϕ1

)(
Q∂−∂ϕ2

)(
Q∂−∂ϕ3

)
, we immediately obtain from the definition

(10) that the Ri,j(ui − uj) matrix satisfies the Yang-Baxter equation

R1,2(u1 − u2)R1,3(u1 − u3)R2,3(u2 − u3) = R2,3(u2 − u3)R1,3(u1 − u3)R1,2(u1 − u2),

and hence the whole machinery of quantum inverse scattering method can be applied.

RLL algebra and its current realisation. In section 1.3 we introduce an RLL algebra:

Rij(u− v)Li(u)Lj(v) = Lj(v)Li(u)Rij(u− v). (11)

The left and right hand sides of this equation both act in the tensor product of three Fock spaces
Fui ⊗ Fuj ⊗ Fq. The Rij(ui − uj) matrix acts in the product of two Fock spaces Fui ⊗ Fuj , and
Li(ui) operator acts in Fui ⊗Fq. Hence the RLL algebra (11) may be considered as an infinite set of
quadratic relations between the matrix elements of L−operator, labeled by two partitions

Lλ,µ(u)
def
= 〈u|aλL(u)a−µ|u〉 where a−µ|u〉 = a−µ1a−µ2 . . . |u〉.

It is well known that the commutation relations of RLL algebras could be rewritten in an equivalent
current form, see [DF93] where such an analysis was performed for Uq(gl(n)). In this thesis we
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provide similar analysis for the case of Maulik-Okounkov R−matrix. We conjecture that the RLL
algebra (11) factorized over its center is related to the Yangian of ĝl(1) considered by Tsymbaliuk
in [Tsy17]. This is similar to the well known fact that the Yangians of gl(n) and of sl(n) are differ by
central elements [KS82]. We will usually refer to the RLL algebra as Yang-Baxter algebra and denote
as YB

(
ĝl(1)

)
, reserving the notation Y

(
ĝl(1)

)
for Tsymbaliuk’s algebra.

Our methods are similar to the analysis performed in [DF93]. We introduce three basic currents
of degree 0, 1 and −1 (see appendix A.2 for more details)

h(u)
def
= L∅,∅(u), e(u)

def
= h−1(u) · L∅,2(u) and f(u)

def
= L2,∅(u) · h−1(u),

as well as an auxiliary current (as we will see (1.40a) it also belongs to the Cartan subalgebra of
YB
(
ĝl(1)

)
)

ψ(u)
def
=
(
L2,2(u−Q)− L∅,2(u−Q)h−1(u−Q)L2,∅(u−Q)

)
h−1(u−Q). (12)

The direct computation (provided in the appendix A.2) allows to rewrite the RLL commutation
relations (11) in terms of e, f, h currents. The results are presented at the beginning of section 1.3.1.
There also exists an inverse mapping which allows to express Lλ,µ(u) operators in terms of e, h, f, ψ
currents. In particular there is an important for us formula

Lλ,∅(u) =
1

(2πi)|λ|

∮
· · ·
∮
Fλ(z|u)h(u)f(z|λ|) . . . f(z1)dz1 . . . dz|λ| (13)

where Fλ(z) is a concrete function and contours go clockwise around ∞ and all poles of Fλ(z). This
formula and recurrent definition of function Fλ(z) is explained in the appendix A.3, see formulas
(A.25),(A.27).

ǫ- notations. It is easy to note that quantum Integrals of Motion depends only on combination
Q = b+ 1

b and not b, b−1 themselves. Which results in a very well known symmetry b→ b−1. As can
be seen for example in [Tsy14], defining relations of affine Yangian algebra are symmetric under all
three parameters b, b−1 and Q parameters4. For this reason it will be more convenient to use Nekrasov
epsilon notations rather than Liouville notations. Formally, they are obtained by replacing central
charge parameter

b→ ǫ2√
ǫ1ǫ2

, b−1 → ǫ1√
ǫ1ǫ2

, Q→ − ǫ3√
ǫ1ǫ2

=⇒ ǫ1 + ǫ2 + ǫ3 = 0.

Note that without loss of generality it is always possible to put ǫ1ǫ2 = 1.

Center of YB(ĝl(1)) The section 1.3.2 is insufficient for the understanding of the main results of
the thesis. In this section we show that the algebra YB(ĝl(1)) contains an infinite dimensional center.
Namely for any singular vector |s〉 of Wn algebra acting in the space of n bosons we assign a central
element Ds (1.52). First element of this series is related to the operator ψ(u) (12) as

D1,1(u) = ψ(u)
h(u)h(u+ ǫ3)

h(u− ǫ1)h(u− ǫ2)
.

ψ(u) =
〈s1,1|L1(u)L2(u+ ǫ3)|s1,1〉

h(u)h(u+ ǫ3)
,

4For the case of KDV and ILW integrable systems this symmetry is broken by a particular choice of Fock represen-
tation.
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where
|s1,1〉u def

=
(
a
(1)
−1 − a

(2)
−1

)
|∅〉u ⊗ |∅〉u+ǫ3

is a singular vector of a W algebra which appears in the tensor product of two Fock spaces Fu1 ⊗Fu2
at special value of spectral parameters u2 = u1 + ǫ3.
In general, for the singular vector |s〉 ofWn algebra acting in the space of n Fock spaces F1(u1) . . .Fn(un)5
we may define a Cartan current acting on a quantum space as

hs = 〈s|L1(u− u1) . . .Ln(u− un)|s〉.

And the operator:

Ds =
hs(u)

n∏
i=1

h(u− vi)
(14)

is central.

Zero twist integrable system. In section 1.3.3 we considered the integrable system with zero
twist q = 0. In this case twist deformed transfer matrix Tq turns to the h(u) current introduced in
previous section. The spectrum and eigenbasis of h(u) is very simple and may be written explicitly.
For example for a representation in the tensor product of n Fock spaces: Fx1⊗· · ·⊗Fxn the eigenbasis
is enumerated by the collection of n Young diagrams ~λ = {λ(1), . . . λ(n)} and known as a basis of
generalised Jack polynomials. The eigenvalues may be conveniently written in terms of contents of
the Young diagrams

h(u)|~λ〉 =
∏

2∈~λ

(u− c2)
(u− c2 − ǫ3)

|~λ〉.

For a cell 2 = (i, j) the content c2 is defined as

c2 = xk − (i− 1)ǫ1 − (j − 1)ǫ2.

We proof that explicit formulas for the action of e, f generators in the eigenbasis of h are given by the
formulas (1.60):

e(u)|~λ〉 =
∑

2∈addable(~λ)

E(~λ, ~λ+2)

u− c2
|~λ+2〉,

f(u)|~λ〉 =
∑

2∈removable(~λ)

F (~λ, ~λ−2)

u− c2
|~λ−2〉,

(15)

where the amplitudes E(~λ, ~λ+2) and F (~λ, ~λ−2) are given by the formulas

E(~λ, ~λ+2) =
ǫ1ǫ2
ǫ3

∏

2′∈~λ+2

S−1(c2′ − c2)
n∏

k=1

(c2 − xk + ǫ3)

(c2 − xk)
,

F (~λ, ~λ−2) =
∏

2′∈~λ−2

S(c2 − c2′), (16)

with

S(x) =
(x+ ǫ1)(x+ ǫ2)

x(x− ǫ3)
.

This formulas plays the crucial role in definition of Bethe vector, study of its matrix elements.

5Note that a singular vector may exist only if evaluation parameters ui are not arbitrary, but they are restricted by
some resonance conditions.
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Transfer matrix and ILW Integrals of Motion. At the beginning of section 1.4 we recall that
the transfer matrix defined by

Tq(u) = Tr
(
qL

(0)
0 R0,1(u− u1)R0,2(u− u2) . . .R0,n−1(u− un−1)R0,n(u− un)

)∣∣∣
Fu

,

admits the following large u expansion

Tq(u) = Λ(u, q) exp

(
1

u
I1(q) +

1

u2
I2(q) + . . .

)
,

where Λ(u, q) is a normalization factor and I1 and I2 are the first ILWn Integrals of Motion.

I1(q) =
iQ

2π

∫ [
1

2

n∑

k=1

(∂ϕk)
2

]
dx,

I2(q) =
iQ

2π

∫ 
1
3

n∑

k=1

(∂ϕk)
3 +Q


 i

2

∑

i,j

∂ϕiD∂ϕj +
∑

i<j

∂ϕi∂
2ϕj




 dx,

I3(q) =
iQ

2π

∫ [
1

4

n∑

k=1

(∂ϕk)
4 + . . .

]
dx,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

where (Q = − ǫ3√
ǫ1ǫ2

), and D is the non-local operator whose Fourier image is

D(k) = k
1 + qk

1− qk .

Now let us define KZ Integral of Motion as Tq(u) operator at the special value of the parameter u = u1.
Using the fact that R0,1(0) = P0,1 is a permutation operator, one finds for the KZ IOM:

IKZ
1 (q)

def
= Tq(u1) = qL

(1)
0 R1,2(u1 − u2)R1,3(u1 − u3) . . .R1,n(u1 − un).

The rest of this section is aimed to show that the simultaneous spectrum of KZ and first few local
Integrals of Motion is governed by Bethe ansatz equations (8).

Special vector |χ〉, definition of Bethe vector. In section 1.4.1 we define the Bethe vector
B(x) which turns to the eigenvector of corresponding integrable system after imposing the Bethe
equations. In order to define Bethe vector we introduce the tensor product of n+N Fock spaces, with
n “quantum” and N “auxiliary” spaces

Fu1 ⊗ · · · ⊗ Fun︸ ︷︷ ︸
quantum space

⊗Fx1 ⊗ · · · ⊗ FxN︸ ︷︷ ︸
auxiliary space

generated from the vacuum state

|∅〉x ⊗ |∅〉u = |x1〉 ⊗ · · · ⊗ |xN 〉 ⊗ |u1〉 ⊗ · · · ⊗ |un〉.

We then searched for the Bethe vector in the form6:

|B(x)〉u def
=x〈∅|R(x,u)|χ〉x ⊗ |∅〉u where R(x,u) = Rx1u1 . . .RxNu1 . . .Rx1un . . .RxNun ,

6This definition is similar to the very general approach investigated in [AO17] (in particular this construction is
explained in section 1.3.3 of [AO17]).
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here |χ〉x is some vector in auxiliary space. The convenient choice for the vector |χ〉 is to choose it
equal to an eigenvector of zero twist integral of motion h(u) acting on auxiliary Fock space. Among
the various eigenvectors the simplest one is (see (1.68) for details)

|χ〉x def
= |2, . . . ,2︸ ︷︷ ︸

N

〉 ∼
∮

xN

dzN · · ·
∮

x1

dz1 e(zN ) . . . e(z1)|∅〉x.

Alternatively vector |χ〉x is fixed (up to proportionality factor) as an eigenvector of zero twist integrable
system with concrete eigenvalue

h(u)|χ〉x =
N∏

k=1

u− xk
u− xk − ǫ3

|χ〉x.

Explicit computation of Bethe vector and its properties. Here we continue to describe the
results of section 1.4.1. A direct consequence of (15),(16) implies a convenient formula :

x〈∅|f(zN ) . . . f(z1)|χ〉x = Symx

(
N∏

a=1

1

za − xa
∏

a<b

S(xa − xb)
)
,

where Symx means the symmetrization over the xi variables. Together with the formula (13) for an
L-operators in terms of f and h currents it allows to explicitly compute the matrix elements of Bethe
vector - the so called weight functions:

ω~λ(x|u)
def
= u〈∅|a(1)

λ(1) . . . a
(n)

λ(n) |B(x)〉u =x〈∅|Lλ(1),∅(u1) . . .Lλ(n),∅(un)|χ〉x.

After the straightforward computation we get

ω~λ(x|u) =
1

(2πi)N

∮
· · ·
∮

Ω~λ(~z|u) Symx

(
N∏

a=1

1

za − xa
∏

a<b

S(xa − xb)
)
d~z,

where function

Ω~λ(~z|u) = F~λ(~z|u)




|λ(1)|∏

j=1

u2 − z(1)j

u2 − z(1)j − ǫ3






|λ(2)|∏

j=1

u3 − z(2)j

u3 − z(2)j − ǫ3

|λ(1)|∏

j=1

u3 − z(1)j

u3 − z(1)j − ǫ3


 . . .

. . .




|λ(n−1)|∏

j=1

un − z(n−1)
j

un − z(n−1)
j − ǫ3

|λ(n−2)|∏

j=1

un − z(n−2)
j

un − z(n−2)
j − ǫ3

· · ·
|λ(1)|∏

j=1

un − z(1)j

un − z(1)j − ǫ3




The integral shrinks to the points x and one obtains explicit formula (see (1.78) for details)

ω~λ(x|u) = Symx

(
Ω~λ(~x|u)

∏

a<b

S(xa − xb)
)
.

The simplicity of this formula explains our choice of vector |χ〉.

Diagonalization of local and KZ Integrals of Motion. Using the computation methods de-
scribed above, in sections 1.4.2,1.4.4 we were able to compute the action of local and KZ Integrals of
Motion on a Bethe vector. Namely we were able to prove that upon the Bethe equations:

q
∏

j 6=i

3∏

α=1

xi − xj − ǫα
xi − xj + ǫα

n∏

k=1

xi − uk + ǫ3
xi − uk

= 1 for all i = 1, . . . , N,
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the Bethe vector becomes an eigenvector of KZ integral of motion IKZ
1 = qL

(1)
0 R1,2R1,3 . . .R1,n−1R1,n,

with eigenvalue:

t1q(u) =
N∏

k=1

xk − u1
xk − u1 + ǫ3

.

And also becomes an eigenvector of Local integral of motion I2:

−ǫ3
∫ 
1
3

√
ǫ1ǫ2

∑

i

(∂φi)
3 − ǫ3


1

2

∑

i,j

∂φiD(q)∂φj +
∑

i<j

∂φi∂
2φj




 dx
2π
− ǫ3I1(q)

2
− ǫ3

3

√
ǫ1ǫ2

∑

i

u3i ,

with eigenvalue
( N∑

1
xk

)
. We were also able to write explicitly the solution (1.83) of a difference

Knizhnik-Zamolodchikov (KZ) (1.84) and Okounkov-Pandharipande (OP) (1.96) equation in terms of
Bethe vector. This finishes the review of the first chapter.

Integrable structure of B,C,D conformal field theory. The second chapter is devoted to the
study of integrable structure of B,C,D conformal field theory and its relation to boundary Bethe
ansatz of affine Yangian.
In section 2.2 we introduce the affine Toda QFT associated to an affine Lie algebra g of BCD type.
We recall that Integrals of Motion can be found as a commutant of the affine set of screenings:

Sr =
∮
eb(αr ·ϕ(z) dz

2π
, (17)

[Is,Sr] = 0,

where vectors αr have the Gram matrix of BCD type affine Lie algebra and b = ǫ2√
ǫ1ǫ2

is the coupling
constant.

D̂n

B̂n

B̂∨
n

Ĉn

Ĉ∨
n

B̂Cn

Using the standard parametrization for the roots one can express the scalar products in the exponents
in (17) as

(α0 ·ϕ) =





−ϕ1

−2ϕ1

−ϕ1 − ϕ2

(αr ·ϕ) = ϕr − ϕr+1 for 0 < r < n, (αn ·ϕ) =





ϕn

2ϕn

ϕn−1 + ϕn

That is each of the affine diagrams can be interpreted as non-affine An−1 diagram with two boundary
conditions which can be of three types B, C or D corresponding to the short root, the long root or the
root of the length

√
2 correspondingly.
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As in the first chapter, we will search local Integrals of Motion in terms of integrals of local

densities Is =
2π∫
0

Gs+1(z)
dz
2π . First few local Integrals of Motion can be computed explicitly by solving

the equation
1

2πi

∮

z
eb(αr·ϕ(ξ))Gs+1(z)dξ = ∂Xs(z),

where Xs(z) is some local field. The first non trivial density has the form

G4(z) =
(
∂ϕ · ∂ϕ

)2 − 1

3

(
2n− ǫα + ǫβ

ǫ3

) n∑

k=1

(
∂ϕk

)4
+

+
4ǫ3√
ǫ1ǫ2

n∑

k=1

∂ϕ2
k


∑

j<k

(
j − 1 +

ǫ3 − ǫα
2ǫ3

)
∂2ϕj −

∑

j>k

(
n− j + ǫ3 − ǫβ

2ǫ3

)
∂2ϕj


+

+

(
2n+

4(n− 1)(ǫ21 + ǫ22)

3ǫ1ǫ2
+

(ǫ1ǫ2 − 2ǫ23)(ǫα + ǫβ − 2ǫ3)

3ǫ1ǫ2ǫ3

)(
∂2ϕ · ∂2ϕ

)
−

− 4ǫ23
ǫ1ǫ2

∑

i≤j

(
i− 1 +

ǫ3 − ǫα
2ǫ3

)(
n− j + ǫ3 − ǫβ

2ǫ3

)
(2− δij)∂2ϕi∂2ϕj , (18)

here α, β = {1, 2, 3} for the B,C or D type of endings correspondingly.

Sklyanin’s K−matrix of affine Yangian. The crucial step in understanding the relation of this
integrable structure to the boundary affine Yangian is to introduce reflection K−matrix. This is done
in section 2.3. The idea is to consider reflection operator K as an intertwining operator of W algebra,
analogically to how it was done for the R−matrix (10).

Let us introduce two currents of W4 algebra acting in the space of two bosonic Fock modules
Fu1 ⊗Fu2 :

W (2) = (∂ϕ1)
2 + (∂ϕ2)

2 +
2ǫ3√
ǫ1ǫ2

∂2ϕ1 +
ǫ3 − ǫα√
ǫ1ǫ2

(∂2ϕ2 + ∂2ϕ1)

and

W (4) = (∂ϕ1)
2(∂ϕ2)

2 +
2ǫ3√
ǫ1ǫ2

∂ϕ1∂ϕ2∂
2ϕ2 +

ǫ3 − ǫα√
ǫ1ǫ2

(
(∂ϕ1)

2∂2ϕ2 + (∂ϕ2)
2∂2ϕ1

)
−

− ǫ3ǫα
ǫ1ǫ2

(∂2ϕ1)
2 +

(ǫ3 − ǫα)2
ǫ1ǫ2

∂2ϕ1∂
2ϕ2 −

(ǫ1 − ǫα)(ǫ2 − ǫα)
2ǫ1ǫ2

(
∂ϕ1∂

3ϕ1 + ∂ϕ2∂
3ϕ2

)
−

− ǫ3(ǫ3 − ǫα)
ǫ1ǫ2

(
∂ϕ1∂

3ϕ1 − ∂ϕ1∂
3ϕ2

)
+

ǫ3√
ǫ1ǫ2

(
ǫα(ǫ3 − ǫα)

2ǫ1ǫ2
− ǫ23
ǫ1ǫ2

− 1

3

)
∂4ϕ1

where α = 1, 2, 3 correspond to the W algebras of types B, C or D correspondingly.
By definition the R and K operators are defined by the following intertwining relations:

R1,2W
(s) =W (s)

∣∣∣∣∣
ϕ1↔ϕ2

R1,2, K2W
(s) =W (s)

∣∣∣∣∣
ϕ2→−ϕ2

K2, (19)

for s = 2, 4. The R1,2 operator is identified with the Maulik-Okounkov R−matrix defined earlier (10)
R1,2 = R[∂ϕ1 − ∂ϕ2], while K2 is also equal to the MO R−matrix of the re-scaled argument

K1
2 = R[

√
2∂ϕ2]

∣∣∣
ǫ1→

√
2ǫ1,ǫ2→ǫ2/

√
2

for B series

K2
2 = R[

√
2∂ϕ2]

∣∣∣
ǫ1→ǫ1/

√
2,ǫ2→

√
2ǫ2

for C series

K3
2 = Id for D series
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Note that the simplest K operator is very explicit K3
2 = Id and it does not depend on spectral

parameter.

Now, similar to the argument of Maulik and Okounkov, the K−operator obeys Sklyanin’s KRKR
equation7

R[∂ϕ1 − ∂ϕ2]Kα1R[∂ϕ1 + ∂ϕ2]Kα2 = Kα2R[∂ϕ1 + ∂ϕ2]Kα1R[∂ϕ1 − ∂ϕ2]. (20)

KZ Integrals of Motion. In section 2.3.1 we have defined KZ Integrals of Motion:

T +
i = Ri,i+1 . . .Ri,nKαi Ri,n . . .Ri,i+1,

T −
i = Ri,1 . . .Ri,i−1Kβi R1,̄i . . .Ri−1,̄i,

IKZ
i = T −

i T +
i (21)

where the barred index ī means the conjugation by the operator of sign reflection Di

Dif(ϕ) = f(ϕ)
∣∣∣
ϕi→−ϕi

Di,

Ri,j̄ = DjRi,jDj = R[∂ϕi + ∂ϕj ],

Rī,j = DiRi,jDi = R[−∂ϕi − ∂ϕj ],

Their mutual commutativity is provided by KRKR equation (20)

[IKZ
i , IKZ

j ] = 0.

We also proved a commutativity between KZ and local Integrals of Motion [Is, IKZ
i ] = 0 which follows

from the intertwining relations (19) (see (2.15) for details)

T +
i Is = Is

∣∣∣
ϕi→−ϕi

T +
i , T −

i Is

∣∣∣
ϕi→−ϕi

= Is T −
i .

Of-shell Bethe vector. The section 2.4 goes in parallel to the section 1.4.1 where we considered
the type A integrable structures. We introduce a product of n + N Fock spaces where the first n
products is a quantum Fu Fock space and the second N products is an auxiliary Fock space Fx

Fun ⊗ · · · ⊗ Fu1︸ ︷︷ ︸
quantum space

⊗Fx1 ⊗ · · · ⊗ FxN︸ ︷︷ ︸
auxiliary space

= Fu ⊗ Fx.

We then define two types of L− operators (2.21),(2.22), and Ku|x operator fixed by the recurrent
relations (2.24).

Finally we define an of-shell Bethe vector by the formula (see (2.25) for details)

|B(x)〉 =x〈∅|L̄vKxLv|∅〉v|χ〉x =x〈∅|Kv|x|∅〉v|χ〉x, (22)

where |χ〉x is the same vector as in the first chapter (1.68). The definition of Bethe vector may be

7Let us note that originally [Skl88] the KRKR equation was written in a quite different form:

R1,2(u1 − u2)K̃1(u1)R2,1(u2 + u1)K̃2(u2) = K̃2(u2)R1,2(u1 + u2)K̃1(u1)R2,1(u1 − u2).

The difference is actually insufficient as the two equations are differ by the redefinition of K−operator and overall
conjugation by the reflection of bosonic modes a1,2n → −a1,2n , n 6= 0
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illustrated by a picture:

|∅〉

∅ ∅∅∅∅∅∅∅

u1u2u3

x1

x2

x3

un−1un

|B(x)〉 =

|χ〉x

In the beginning of section (2.5) we suggest to interpret the Bethe vector |B(x)〉 as a product of some

L−operators L(un) . . .L(u1) sandwiched between bra and ket states 〈Kx| and
∣∣∣χ
∅

〉
x
, see the picture

below. This bra and ket vectors then should live in the tensor product of the Fock space and its dual
Fx ⊗F⋆x.

|∅〉

∅ ∅∅∅∅∅∅∅

u1u2u3

x1

x1

x2

x2

x3

x3

un−1un

|B(x)〉 =

〈Kx| L(u2)

|χ〉x

∣∣∣χ
∅

〉
x

Strange module. In section 2.5 we observe that modified operators L obeys the same RLL com-
mutation relations:

Rij(u− v)Li(u)Lj(v) = Lj(v)Li(u)Rij(u− v).

And we still can define h
def
= L∅,∅,e

def
= h−1L∅,2,f

def
= L2,∅h

−1 operators.

The difference is that L−operators act in the tensor product of Fock module and its dual Fx⊗F⋆x.
This representation for the L−operator doesn’t have a highest weight, however the action of h(z) still
can be diagonalized, the eigenvectors of h(u), ψ(u) in Fx⊗F⋆x are enumerated by the collection of 2N

Young diagrams and denoted by
∣∣∣
~λ
~µ

〉
. The eigenvalues are given by the formulas:

h(u)
∣∣∣
~λ
~µ

〉
=
∏

2∈~λ

(u− c2)
(u− c2 − ǫ3)

∏

2∈~µ

(u− c2 − ǫ3)
(u− c2)

∣∣∣
~λ
~µ

〉
,

where

c2 = xk − (i− 1)ǫ1 − (j − 1)ǫ2, for 2 = (i, j) ∈ ~λ,
c2 = −ǫ3 − xk + (i− 1)ǫ1 + (j − 1)ǫ2, for 2 = (i, j) ∈ ~µ.
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One can also find the action of e, f currents:

e(u)
∣∣∣
~λ
~µ

〉
=

∑

2∈addable(~λ)

E
(~λ → ~λ+2

~µ → ~µ

)

u− c2

∣∣∣
~λ+2

~µ

〉
+

∑

2∈removable(~µ)

E
(~λ → ~λ
~µ → ~µ−2

)

u− c2

∣∣∣
~λ

~µ−2

〉
,

f(u)
∣∣∣
~λ
~µ

〉
=

∑

2∈removable(~λ)

F
(~λ → ~λ−2

~µ → ~µ

)

u− c2

∣∣∣
~λ−2

~µ

〉
+

∑

2∈addable(~µ)

F
(~λ → ~λ
~µ → ~µ+2

)

u− c2

∣∣∣
~λ

~µ+2

〉
.

The E,F coefficients are given in (2.31),(2.32). Note that now operators e, f not only add or remove
boxes, but do both.

Reflection property of the 〈K| state. The final ingredient which allows to calculate the matrix
elements of Bethe vector the so called of-shell Bethe functions is the formula which describe the action
of the operator f on the state 〈K|. In section 2.5.2 we derive the following reflection properties (2.39):

〈K|h(u) = 〈K|h(−u)
〈K|f(u) = r(u)〈K|f(−ǫ3 − u),

with

r(u− ǫ3/2) = −
u+ ǫ3/2

u− ǫ3/2
for the D case,

r(u− ǫ3/2) = −
u+ ǫi/2

u− ǫi/2
for the BC case,

where in the last line i = 1 corresponds to the B case and i = 2 corresponds to the C case.

This formula allows to compute the coupling between 〈K| and |
~λ
~µ

〉
state (2.5.2),(2.5.2).

Diagonalization of KZ and local IOMs. In section 2.5.3 we derive the Bethe ansatz equation
for the diagonalization of KZ Integrals of Motion:

BAE(x)
def
= rα(xi)r

β(xi)A(xi)A
−1(−xi)

∏

j 6=i
G(xi − xj)G−1(−xi − xj) = 1,

G(x) =
(x− ǫ1)(x− ǫ2)(x− ǫ3)
(x+ ǫ1)(x+ ǫ2)(x+ ǫ3)

, A(x) =
n∏

k=1

x− uk + ǫ3
2

x− uk − ǫ3
2

, rα(x) = −x+ ǫα/2

x− ǫα/2
.

(23)

We also prove that the on-shell Bethe vector with shifted x parameters |B(x− ǫ3
2 )〉 are the eigenvectors

of KZ IOMs IKZ
i (21):

IKZ
i |B(x− ǫ3

2
)〉 BAE(x)=1

=
∏

a

(ui +
ǫ3
2 )

2 − x2a
(ui − ǫ3

2 )
2 − x2a

|B(x− ǫ3
2
)〉. (24)

Equations (23) and (24) together with the explicit form of off-shell Bethe vector (22) are the main
results of the second chapter.

In contrast to the A case we will not provide a proof for the diagonalization of local Integrals of
Motion, however we conjectured and checked numerically the formula for eigenvalues of
I3 =

1
2π

∫
G4(x)dx, the local density G4 is given by (18). Namely, on level N one has an eigenvalue:

Ivac3 +

(
4N − 4

n∑

k=1

u2k
ǫ1ǫ2

+
ǫ21 + ǫ22
3ǫ1ǫ2

(
2n− ǫα + ǫβ

ǫ3

))
N +

4

ǫ1ǫ2

(
2n− ǫα + ǫβ

ǫ3

) N∑

k=1

x2k,

where Ivac3 =u 〈∅|I3|∅〉u - is the vacuum expectation value.



0.3. THESIS REVIEW 23

More general integrable systems. One may note that affine Yangian commutation relations
(1.40) are symmetric with respect to permutations of all ǫα. Nevertheless Bethe Ansatz equations

(23) are not symmetric in all ǫα, because of the source term A(x) =
n∏
k=1

x−uk+ ǫ3
2

x−uk− ǫ3
2

. In fact this

symmetry is broken by a choice of a particular Fock representation, in order to restore the symmetry
back one should introduce three types of Fock modules Fα (see [FJMM13,BFM18,LS16]). The whole
machinery then may be applied to associate an integrable system to the chain of colored Fock spaces

with two colored boundaries βL

∣∣∣Fα1
1 ⊗ Fα2

2 · · · ⊗ Fαn
n

∣∣∣βR , αi, βL,R = 1, 2, 3. The corresponding

systems of screenings are summarised in picture (B.1). We present the details in Appendix B.1, here

we just mention a particular interesting model given by: 1
∣∣∣F1

1 ⊗ F3
2 · · · ⊗ F1

2n−1 ⊗ F3
2n

∣∣∣3. This model

provides a UV limit for the (dual of) O(2n+1) sigma model considered in [LS18]. Similarly the model

3
∣∣∣F3

1 ⊗F1
2 · · · ⊗ F3

2n+1

∣∣∣3 provides the UV limit of O(2n) sigma model.

q-deformation of local and KZ IOMs. In the last chapter we provide the q-deformation of objects
considered in first two chapter. In section 3.2 we review the definition of the q-deformed W algebra as
a commutant of the screenings. In section 3.3 we provide a construction of a commutant of affine set of
screenings, it turns out that in a q-deformed case the commutant can be found explicitly. We provide
explicit formulas for q-deformed Integrals of Motion of arbitrary high spin (3.59) for W algebras of
BCD cases, and considered in details an example of affine Lie algebra of type D in section 3.4. We
found that all W algebras of BCD case fits into the same scheme, which allows to introduce a new
algebra K which unifies the W algebras of type BCD. The detailed study of algebra K is reported in
paper [FJMV21], while in this thesis we restrict ourselves to a more elementary approach. Finally in
section 3.5 we provide a construction for a q-deformed versions of R and K reflection operators, as
well as q-deformed KZ IOMs.
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Chapter 1

Affine Yangian and Bethe ansatz

In this chapter we study integrable structure of conformal field theory by means of Liouville reflection
operator/Maulik Okounkov R−matrix. We discuss relation between RLL and current realization of
the affine Yangian of gl(1). We construct the family of commuting transfer matrices related to the
Intermediate Long Wave hierarchy and derive Bethe ansatz equations for their spectra discovered by
N.Nekrasov and A.Okounkov and independently by A.Litvinov.

1.1 Introduction

There is a large class of 2D QFT’s defined by Toda action

S0 =

∫ (
1

4π

(
∂µϕ · ∂µϕ

)
+ Λ

n∑

r=1

e

(
αr·ϕ

))
d2x, (1.1)

where ϕ = (ϕ1, . . . , ϕn) is the n−component bosonic field and (α1, . . . ,αn) is a set of linearly in-
dependent vectors. The theory (1.1), properly coupled to a background metric, defines a conformal
field theory. However, it is well known, that under some conditions on the set (α1, . . . ,αn) it also
enjoys enlarged conformal symmetry usually referred as W algebra [Zam85]. There is a class of such
distinguishable sets (α1, . . . ,αn) with semi-classical behavior

αr = ber for all r = 1, . . . , n,

where er are finite in the limit b → 0. The vectors er have to be simple roots of a semi-simple Lie
algebra g of rank n.

An interesting question arises if one perturbs the theory (1.1) by an additional exponential field

S0 → S0 + λ

∫
e

(
αn+1·ϕ

)
d2x. (1.2)

Typically this perturbation breaks down all the W algebra symmetry down to Poincaré symmetry.
However, there is a special class of perturbations, called the integrable ones, which survive an infinite
symmetry of the original theory in a very non-trivial way [Zam89]. Namely, one can argue that there
are infinitely many mutually commuting local Integrals of Motion Iλm and Īλm which are perturbative
in λ

Iλm = Im +O(λ), Īλm = Īm +O(λ),

where (Im, Īm) are defined in CFT.
Thus any integrable perturbation (1.2) induces a distinguished set of local IM’s Im in conformal

field theory. The seminal program devoted to calculation of simultaneous spectra of Im has been
initiated by Bazhanov, Lukyanov and Zamolodchikov in [BLZ96,BLZ97,BLZ99] for sl(2)/KdV case.
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The culmination was the discovery [BLZ04] of Gaudin-like equations for the spectrum. In current
notes we use an alternative approach, based on affine Yangian symmetry. We consider the case of
sl(n) symmetry. Actually, it will be convenient for us to extend the theory by adding an auxiliary
non-interacting bosonic field, leading to the action

S =

∫ (
1

4π

(
∂µϕ · ∂µϕ

)
+ Λ

n−1∑

k=1

eb(ϕk+1−ϕk) + Λeb(ϕ1−ϕn)

)
d2x, (1.3)

where the last term, corresponding to the affine root of sl(n), is known to lead to an integrable
perturbation. With the last term dropped, the theory (1.3) defines the conformal field theory, whose
symmetry algebra can be described by quantum Miura-Gelfand-Dikii transformation [FL88,Luk88]

(
Q∂ − ∂ϕn

)(
Q∂ − ∂ϕn−1

)
. . .
(
Q∂ − ∂ϕ2

)(
Q∂ − ∂ϕ1

)
= (Q∂)n +

n∑

k=1

W (k)(z)(Q∂)n−k, (1.4)

where Q = b + b−1. In fact, one can drop any other exponent in (1.3), leading to different, but
isomorphic W algebra. For example, dropping the term eb(ϕ2−ϕ1), one has different formula

(
Q∂ − ∂ϕ1

)(
Q∂ − ∂ϕn

)
. . .
(
Q∂ − ∂ϕ3

)(
Q∂ − ∂ϕ2

)
= (Q∂)n +

n∑

k=1

W̃ (k)(z)(Q∂)n−k. (1.5)

By symmetry arguments, it is clear that local Integrals of Motion Im should belong to the intersection
of these two W algebras. In particular, one can check that (for n large enough)

I1 = −
1

2π

∫ 


n∑

i<j

∂φi∂φj


 dx, I2 =

1

2π

∫ 


n∑

i<j<k

∂φi∂φj∂φk +Q
∑

i<j

∂φi∂
2φj


 dx,

I3 =
1

2π

∫ 


n∑

i<j<k<l

∂φi∂φj∂φk∂φl + . . .


 dx, . . . . . .

(1.6)

where

φk
def
= ϕk −

1

n

n∑

j=1

ϕj .

indeed satisfy this requirement. We note that in (1.6) we excluded trivial IM’s build out of U(1) field

U =
1

n

n∑

k=1

∂ϕk. (1.7)

In general, there are local Integrals of Motion for all m 6= 0(modn).
This point of view that IM’s should belong to intersection of two W algebras given by (1.4) and

(1.5) automatically implies that the intertwining operator IKZ
1

IKZ
1 W̃ (k)(z) =W (k)(z)IKZ

1 , (1.8)

will be itself an Integral of Motion. The operator IKZ
1 will be primarily important for us. We call it

Knizhnik-Zamolodchikov operator (see section 1.4). Actually it is natural to define more operators,
which will map between different W algebras corresponding to different permutations of factors in
(1.4). The Maulik-Okounkov R−matrix [MO19] corresponds to elementary transposition

Ri,j
(
Q∂ − ∂ϕi

)(
Q∂ − ∂ϕj

)
=
(
Q∂ − ∂ϕj

)(
Q∂ − ∂ϕi

)
Ri,j , (1.9)
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while the operator IKZ
1 introduced in (1.8) corresponds to the long cycle permutation

IKZ
1 = R1,2R1,3 . . .R1,n−1R1,n.

Apart from its simplicity, equation (1.9) cannot be solved in a closed form. Actually the R matrix
is closely related to the well known Liouville reflection operator [ZZ96], and has been studied a lot
in the past, see discussion in section 1.2. The operator Ri,j acts in the tensor product of two Fock
representations of Heisenberg algebra with the highest weight parameters ui and uj

Fui ⊗Fuj
Ri,j−→ Fui ⊗Fuj

and its matrix depends on the difference ui−uj . Then it follows immediately from the definition (1.9)
that Ri,j(ui − uj) satisfies the Yang-Baxter equation

R1,2(u1 − u2)R1,3(u1 − u3)R2,3(u2 − u3) = R2,3(u2 − u3)R1,3(u1 − u3)R1,2(u1 − u2),

and hence the whole machinery of quantum inverse scattering method can be applied. In particular,
one can construct a family of commuting transfer-matrices on n−sites

T(u) = Tr′
(
R0,1(u− u1)R0,2(u− u2) . . .R0,n−1(u− un−1)R0,n(u− un)

)∣∣∣
Fu

. (1.10)

At u = u1 one has R0,1 = P0,1 a permutation operator and hence

T(u1) = R1,2R1,3 . . .R1,n−1R1,n = IKZ
1 , (1.11)

which implies that T(u) commutes with local Integrals of Motion Im and can be taken as a generating
function.

In (1.10) the notation Tr′ corresponds to certain regularization of the trace, which goes through
the introduction of the twist parameter q

Tr′(. . . )
def
= lim

q→1

1

χ(q)
Tr
(
qL

(0)
0 . . .

)
, where χ(q) =

∞∏

k=1

1

1− qk

and L
(0)
0 =

∑
k>0 a

(0)
−ka

(0)
k is the level operator in auxiliary space Fu. Remarkably, the introduction

of the twist parameter does not spoil the integrability, indeed commutativity of the twist deformed
transfer-matrices

Tq(u) = Tr
(
qL

(0)
0 R0,1(u− u1)R0,2(u− u2) . . .R0,n−1(u− un−1)R0,n(u− un)

)∣∣∣
Fu

, (1.12)

follows from the Yang-Baxter equation (1.17) and the fact that the R matrix commutes with the

tensor square of the twist: [R1,2, q
L
(1)
0 ⊗ qL

(2)
0 ] = 0.

On the level of local Integrals of Motion (1.6) the twist deformation corresponds to the non-local
deformation Im → Im(q) called quantum ILWn (Intermediate Long Wave) integrable system [Lit13].
In particular

I1(q) =
1

2π

∫ [
1

2

n∑

k=1

(∂ϕk)
2

]
dx,

I2(q) =
1

2π

∫ 
1
3

n∑

k=1

(∂ϕk)
3 +Q


 i

2

∑

i,j

∂ϕiD∂ϕj +
∑

i<j

∂ϕi∂
2ϕj




 dx,

I3(q) =
1

2π

∫ [
1

4

n∑

k=1

(∂ϕk)
4 + . . .

]
dx,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

(1.13)
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where D is the non-local operator whose Fourier image is

D(k) = k
1 + qk

1− qk .

We note that the limit q → 1 is a little subtle since the operator D is singular at q → 1 and hence
some eigenvalues of Im(q) become infinite. However, one can show that on a subspace spanned by
eigenfunctions with finite eigenvalues the modes of the U(x) field (1.7) are not excited. It implies in
particular that

I2 = I2(q)
∣∣∣
U→0

.

The spectrum of ILWn integrable system is governed by finite type Bethe ansatz equations which
have been conjectured by Nekrasov and Okounkov1 and later independently by one of the authors
in [Lit13]

q
∏

j 6=i

(xi − xj − b)(xi − xj − b−1)(xi − xj +Q)

(xi − xj + b)(xi − xj + b−1)(xi − xj −Q)

n∏

k=1

xi − uk − Q
2

xi − uk + Q
2

= 1 for all i = 1, . . . , N, (1.14)

such that the eigenvalues of Im(q) are symmetric polynomials in Bethe roots

I1(q) ∼ −
1

2

n∑

k=1

u2k +N, I2(q) ∼
1

3

n∑

k=1

u3k − 2i
N∑

j=1

xj , . . . (1.15)

Equations (1.14)-(1.15) have been checked in [Lit13] by explicit calculations on lower levels. Later
these equations have been proven in the trigonometric (q-deformed) case independently by two groups:
using the algebraic methods of shuffle algebras by Feigin, Jimbo, Miwa and Mukhin [FJMM15] and
using the geometric method of quasi-maps by Aganagic and Okounkov [AO17]. Rational Bethe anzatz

equations (1.14) follow from the trigonometric ones in the limit q, t → 1, log(q)log(t) = b2 and thus (1.14)
are currently proven by two independent methods. In this notes we give a more direct proof which is
qualitatively different from [FJMM15] and [AO17].

We note that Bethe ansatz equations (1.15) are simplified drastically for q±1 → 0, which is equiv-
alent to D(k) → ±|k|. The limit of ILWn system at q±1 → 0 is known as BOn integrable sys-
tem (Benjamin-Ono). The basis of its eigenfunctions stands behind AGT correspondence [AGT10].
Namely, it has been shown in [AFLT11,FL12] that the matrix elements of semi-degenerateWn-primary
fields, dressed by suitably chosen U(1) vertex operators, sandwiched between the BOn eigenfunctions
coincide with bi-fundamental contribution to the Nekrasov partition function [Nek04] for correspond-
ing quiver gauge theory.

In the opposite limit q → 1 the Bethe equations (1.14) describe the spectrum of local Integrals of
Motion. In particular, the spectrum of I2 is given by (1.15). We note that the same system can be
studied by Bazhanov-Lukyanov-Zamolodchikov approach which leads to different Gaudin-like algebraic
equations for the spectrum. We have a remarkable phenomenon: there are two different systems of
algebraic equations, namely BAE (1.14) with q = 1 and Gaudin-like equations found in [BLZ04] which
describe the same integrable system2. See [Lit13] and discussions in section 1.5.

The Maulik-Okounkov R−matrix defines in a standard way the Yang-Baxter algebra (RLL alge-
bra). We note that Ri,j intertwines two representations of Heisenberg algebra (1.9) (ĝl(1) current
algebra). Since the matrix elements of Ri,j are rational functions of the highest weight/spectral
parameter (see below), it is natural to call the corresponding Yang-Baxter algebra the Yangian of

1See Okounkov’s talk at Facets of Integrability conference, SCGP January 2013.
2Technically, these Gaudin-like equations has been found in [BLZ04] only for qKdV case, i.e. for n = 2. However, a

generalization for n > 2 should not be a problem.

http://scgp.stonybrook.edu/video_portal/video.php?id=524
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ĝl(1), or affine Yangian of gl(1). The algebra under the same name has been introduced by Tsym-
baliuk in [Tsy17,Tsy14]. It has been given by explicit commutation relations (the so called current
realization). However both algebras do not coincide, but rather we conjecture that Tsymbaliuk’s
algebra Y

(
ĝl(1)

)
is obtained from the Yang-Baxter algebra YB

(
ĝl(1)

)
by factorization over infinite-

dimensional center. In section 1.3 we will show that the central elements of YB
(
ĝl(1)

)
correspond to

singular vectors of Wn algebra in the tensor product of n Fock spaces.
As we already mentioned, the Yangian Y

(
ĝl(1)

)
is the rational counterpart of the trigonometric

algebra called Ding-Iohara-Miki algebra or quantum toroidal gl(1) algebra [Tsy17]. This algebra has
been extensively studied by Feigin and collaborators in [AFH+11,FJMM,FJMM15,FKSW07]. Another
but equivalent approach through the methods of geometric representation theory was developed by
Okounkov and collaborators [OS16, AO17]. We borrow many ideas developed in [AFH+11, FJMM,
FJMM15,FKSW07] and [OS16,AO17] for our study. In particular, Bethe ansatz equations as well as
Bethe vectors can be found in the q-deformed case in [FJMM15] and in [AO17].

This chapter is organized as follows. In section 1.2 we define the main actor of our study – Li-
ouville reflection operator/Maulik-Okounkov R−matrix and discuss its general properties and various
representations. In section 1.3 we study corresponding RLL algebra and discuss its relation to affine
Yangian of gl(1). In section 1.4 we introduce quantum Integrals of Motion corresponding to ILW
system and prove Bethe ansatz equations for the spectrum. In section 1.5 we give some conclusions
an emphasize future possible directions of study. In appendices we present some explicit formulae and
calculations, used in the main text.

1.2 Maulik-Okounkov R-matrix as Liouville reflection operator

Let us recall the definition of Maulik-Okounkov R-matrix [MO19]

Ri,j
(
Q∂ − ∂ϕi

)(
Q∂ − ∂ϕj

)
=
(
Q∂ − ∂ϕj

)(
Q∂ − ∂ϕi

)
Ri,j . (1.16)

Here ϕi are free bosonic fields

∂ϕi(x) = ui +
∑

n 6=0

aine
inx, [ain, a

j
m] = mδi,jδm,−n.

Let us permute the product of three Miura terms, it can be done in a two ways:

R1,2(u1 − u2)R1,3(u1 − u3)R2,3(u2 − u3)
(
Q∂ − ∂ϕ1

)(
Q∂ − ∂ϕ2

)(
Q∂ − ∂ϕ3

)
=

=
(
Q∂ − ∂ϕ3

)(
Q∂ − ∂ϕ2

)(
Q∂ − ∂ϕ1

)
R1,2(u1 − u2)R1,3(u1 − u3)R2,3(u2 − u3),

R2,3(u2 − u3)R1,3(u1 − u3)R1,2(u1 − u2)
(
Q∂ − ∂ϕ1

)(
Q∂ − ∂ϕ2

)(
Q∂ − ∂ϕ3

)
=

=
(
Q∂ − ∂ϕ3

)(
Q∂ − ∂ϕ2

)(
Q∂ − ∂ϕ1

)
R2,3(u2 − u3)R1,3(u1 − u3)R1,2(u1 − u2).

If we take into account that Miura map provides an irreducible representation of W-3 algebra in
the tensor product of three Fock spaces, then it follows immediately that Ri,j(ui − uj) satisfies the
Yang-Baxter equation

R1,2(u1 − u2)R1,3(u1 − u3)R2,3(u2 − u3) = R2,3(u2 − u3)R1,3(u1 − u3)R1,2(u1 − u2), (1.17)

From the definition of R-matrix (1.16), it follows that Ri,j trivially commutes with the center of mass
field ϕi+ϕj . So, it is natural to introduce the operator acting on the space of a single bosonic field J

R = Ri,j |∂ϕi+∂ϕj=0, ∂ϕi−∂ϕj=2J , Ri,j = R
∣∣∣
J→ ∂ϕi−∂ϕj

2

,
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The operator R is known as the Liouville reflection operator and it is closely related to the Liouville
S-matrix introduced in [ZZ96] (see also paragraph 1.2 at the end of this section)

J(x) = u+
∑

n 6=0

ane
−inx, 2u = ui − uj (1.18)

[am, an] =
m

2
δm,−n.

which is defined as
R(−J2 +Q∂J) = (−J2 −Q∂J)R. (1.19)

The relation (1.19) can be used for calculation of R. Consider highest weight representation of the
Heisenberg algebra (1.18). It is generated by the negative mode operators a−k from the vacuum state
|u〉

an|u〉 = 0 for n > 0.

Then (1.19) is equivalent to the infinite set of relations

RL(+)
−λ1 . . . L

(+)
−λn |u〉 = R

vac(u)L
(−)
−λ1 . . . L

(−)
−λn |u〉, (1.20)

where L
(±)
n are the components of T (±) = −J2 ±Q∂J

L(±)
n =

∑

k 6=0,n

akan−k + (2a0 ± inQ)an, L
(+)
0 = L

(−)
0 =

Q2

4
+ a20 + 2

∑

k>0

a−kak.

and Rvac(u) is an eigenvalue for the vacuum state. In the following we will usually take

Rvac(u) = 1. (1.21)

Using (1.20) as a set of equations one can compute the matrix of R. For example at the level 1 one
has

RL(+)
−1 |u〉 = L

(−)
−1 |u〉 =⇒ Ra−1|u〉 =

2u+ iQ

2u− iQa−1|u〉.

Similarly, at the level 2 one obtains

Ra−2|u〉 =
((
8u3 + 2u(3Q2 − 1)− iQ(2Q2 + 1)

)
a−2 − 8iQua2−1

)
|u〉

(2u− iQ)(2u− iQ− ib)(2u− iQ− ib−1)
,

Ra2−1|u〉 =
(
−4iQua−2 +

(
8u3 + 2u(3Q2 − 1) + iQ(2Q2 + 1)

)
a2−1

)
|u〉

(2u− iQ)(2u− iQ− ib)(2u− iQ− ib−1)
.

Apart from explicit expressions on lower levels the reflection operator is not known in a closed
form. However it shares several properties allowing to judge about its structure:

Poles. It is clear that apart from the normalization factor the operator R is a meromorphic functions
of the momentum u. In fact, it can be argued that it has only simple poles located at the Kac points

u = um,n = i

(
mb

2
+
n

2b

)
, m, n > 0, (1.22)

i.e. R(u) can be written in the form

R(u) = 1 +
∑

m,n>0

Rm,n
u− um,n

. (1.23)
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Indeed it is well known that for the values (1.22) the map from the Fock module Fu to Verma module
V∆ given by the L+ generators has a kernel. More precisely all the states of the form

L
(+)
−λ1 . . . L

(+)
−λn

(
(L+

−1)
mn + . . .

)
|u〉,

where |χm,n〉 def
=
(
(L+

−1)
mn + . . .

)
|u〉 is a special state called co-singular vector, vanish at u = um,n.

Explicitly, one has

|χ1,1〉 = L+
−1|u〉, |χ2,1〉 =

(
(L+

−1)
2 − b2L+

−2

)
|u〉, |χ1,2〉 =

(
(L+

−1)
2 − b−2L+

−2

)
|u〉 etc

At the same time the reflected states

L
(−)
−λ1 . . . L

(−)
−λn

(
(L−

−1)
mn + . . .

)
|u〉, (1.24)

do not vanish for u = um,n which implies that R should exhibit a singularity at (1.24), namely a
simple pole, which implies (1.23).

We note that the formula (1.23) is a reminiscent of the Alyosha Zamolodchikov’s recurrence formula
for conformal block [Zam84]. In particular, one can use (1.23) as a tool for calculation of the matrix
of R(u).

Relation to Liouville S−matrix The Liouville reflection operator R is closely related to the
Liouville S−matrix introduced in Zamolodchikov’s paper [ZZ96]. Namely, they differ by the sign
change operator πJ(x) = −J(x)π as

R(u) = πŜ(u).

According to (1.20) the S-matrix Ŝ(u) acts between different Fock modules Fu
Ŝ(u)−−−→ F−u as follows

Ŝ(u)L
(+)
−λ1 . . . L

(+)
−λn |u〉 = L

(+)
−λ1 . . . L

(+)
−λn | − u〉. (1.25)

Expression through Screening operators. Given the stress energy tensor T+ = −J2 + Q∂J
with J = ∂ϕ, one finds that the exponential fields e2b

±1ϕ(z) satisfy

∮

Cξ
e2b

±1ϕ(z)T+(ξ)dz = 0. (1.26)

Then suppose that u = −um,n for m,n ≥ 0. In this case one can define a closed contour C such that

the normalized operator F−um.n

Qm,n−−−→ Fum.n

Qm,n = Ωm,n

∮

C
e2bϕ(z1) . . . e2bϕ(zm)e2b

−1ϕ(zm+1) . . . e2b
−1ϕ(zm+n)dz1 . . . dzm+n : Qm,n|−um,n〉 = |um,n〉

called the screening operator, is well defined. Then the formula (1.26) implies that

Qm,nL(+)
−λ1 . . . L

(+)
−λn | − um,n〉 = L

(+)
−λ1 . . . L

(+)
−λn |um,n〉. (1.27)

Comparing (1.25) and (1.27) one finds

Ŝ(−um,n) = Qm,n =⇒ R(−um,n) = πQm,n.
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Large momenta expansion. The details of large u expansion are collected in Appendix A.1.

We note that R1,2 coincides with the KZ operator (1.11) for n = 2 and hence R commutes with
the system of local Integrals of Motion of quantum KdV (mKdV) system

I2n−1 =
1

2π

∫ (
J2n + higher derivatives

)
dx. (1.28)

It can be shown that R is an exponent of semi-local (non-polynomial) Integral of Motion, see (A.2)-
(A.5) for details.3

R = exp

[
iQ

2π

∫ (
2J log J +

1− 2Q2

24

J2
x

J3
+ higher derivatives

)
dx

]
. (1.29)

The formula (1.29) is rather symbolic and requires a regularization prescription to make sense. Such
a regularization can be defined as a large u expansion. Namely, if one splits J into constant and
zero-mean parts J = u+ J̃ , then the expansion coefficients

J log J = u log u+J̃(log u+1)+
∞∑

k=1

(−1)k+1

k(k + 1)uk
J̃k+1,

J2
x

J3
=
J̃2
x

2

∑

k>1

(−1)k(k − 2)(k − 3)

2uk−1
J̃k−4, . . .

are zeta-valued regularized (similar regularization is used in the definition of local IM’s (1.28)). So
that (1.29) leads to large u expansion

R(u) = exp

[
iQ

2π

∫ (
2u log u+

J̃2

u
− J̃3

3u2
+O

(
u−3

))
dx

]
. (1.30)

We note that in (1.29) and (1.30) the normalization is different from the one used before, i.e. Rvac(u) 6=
1.

Free-fermion point. One can show that R admits simple representation at the free-fermion point
c = −2. Namely, if one uses boson-fermion correspondence to represent

J(x) = u+
1√
2
: ψ+(x)ψ(x) :,

where (ψ(x), ψ+(x)) is the chiral part of Dirac fermion, then up to normalization factor one has an
explicit formula (see appendix A.4)

R(u)
∣∣∣
c=−2
∼ exp

(
1

2π

∫ 2π

0
: ψ+(x) log

(
1 +

i

u
√
2
∂

)
ψ(x) : dx

)
. (1.31)

For c 6= −2 formula is more complicated and (1.31) will include multiple fermion terms.

Smirnov’s fermion formula. There is also Smirnov’s formula for Maulik-Okounkov R−matrix
involving an infinite product of fermionic operators [Smi16]. Unfortunately, we do not known any
practical use of it for our purposes.

3The existence of such semi-local Integrals of Motion for KdV (mKdV) equation has been noticed by Boris Dubrovin
[Dub06].
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1.3 Yang-Baxter algebra

The Maulik-Okounkov R−matrix defines the Yang-Baxter algebra in a standard way

Rij(u− v)Li(u)Lj(v) = Lj(v)Li(u)Rij(u− v). (1.32)

Here Li(u) is treated as an operator in some quantum space, a tensor product of n Fock spaces in
our case, and as a matrix in auxiliary Fock space Fu. The algebra (1.32) becomes an infinite set of
quadratic relations between the matrix elements labeled by two partitions

Lλ,µ(u)
def
= 〈u|aλL(u)a−µ|u〉 where a−µ|u〉 = a−µ1a−µ2 . . . |u〉.

It is well known that commutation relations of RLL algebras could be rewritten in an equivalent
current form, see [DF93] where such an analysis was performed for Uq(gl(n)). Here we provide similar
analysis for the case of Maulik-Okounkov R−matrix. A clear candidate for the current realization is
the Affine Yangian algebra introduced in [Tsy17,Tsy14] from quite different perspectives. Our goal
is to derive current realisation out of RLL algebra. As we will see, the two algebras are not literally
coincide. We rather conjecture that (1.32) is related to the Yangian of ĝl(1) by factorization over its
center. This is similar to the well known fact that the Yangians of gl(n) and of sl(n) are differ by
central elements [KS82]. We note that, compared to the non-affine case, the center of (1.32) is infinite
dimensional. We will denote the Yang-Baxter algebra as YB

(
ĝl(1)

)
, reserving the notation Y

(
ĝl(1)

)

for Tsymbaliuk’s algebra.
In discussions below we will mainly follow the analysis performed in [DF93]. We introduce three

basic currents of degree 0, 1 and −1 (see appendix A.2 for more details)

h(u)
def
= L∅,∅(u), e(u)

def
= h−1(u) · L∅,2(u) and f(u)

def
= L2,∅(u) · h−1(u), (1.33)

as well as an auxiliary current (as we will see (1.40a) it also belongs to the Cartan subalgebra of
YB
(
ĝl(1)

)
)

ψ(u)
def
=
(
L2,2(u−Q)− L∅,2(u−Q)h−1(u−Q)L2,∅(u−Q)

)
h−1(u−Q) (1.34)

As follows from definition of the R−matrix these currents admit large u expansion

h(u) = 1+
h0
u

+
h1
u2

+ . . . , e(u) =
e0
u
+
e1
u2

+ . . . , f(u) =
f0
u

+
f1
u2

+ . . . , ψ(u) = 1+
ψ0

u
+
ψ1

u2
+ . . .

(1.35)
As we will see below, it proves convenient to introduce higher currents labeled by 3D partitions. In
particular, on level 2 one has three eλ(u) currents

e (u) =
ibQ

(b2 − 1)(b2 + 2)
h−1(u) (L∅,22(u)− ibL∅,22(u)) ,

e (u) =
ib−1Q

(b−2 − 1)(b−2 + 2)
h−1(u)

(
L∅,22(u)− ib−1L∅,22(u)

)
, e (u) = Q

[
be (u) + b−1e (u)− e2(u)

]
.

(1.36)
and similarly

f (u) =
ibQ

(b2 − 1)(b2 + 2)
h−1(u) (L22,∅(u)− ibL22,∅(u)) ,

f (u) =
ib−1Q

(b−2 − 1)(b−2 + 2)
h−1(u)

(
L22,∅(u)− ib−1L22,∅(u)

)
, f (u) = Q

[
bf (u) + b−1f (u)− f2(u)

]
.

(1.37)
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As we will see below these currents are algebraically depending on the basic currents (1.33).
It will be more convenient to use Nekrasov epsilon notations rather than Liouville notations.

Formally, they are obtained by replacing central charge parameter

b→ ǫ2√
ǫ1ǫ2

, b−1 → ǫ1√
ǫ1ǫ2

, Q→ − ǫ3√
ǫ1ǫ2

=⇒ ǫ1 + ǫ2 + ǫ3 = 0, (1.38)

together with the normalization of the bosonic fields:

ϕj → φ(x) = −i ϕj√
ǫ1ǫ2

. (1.39)

Altogether, this leads to the following Miura transformation

W(2)(z) = (iǫ3∂ − ∂φ1)(iǫ3∂ − ∂φ2)

We also have to scale our basic current e(u) and f(u) as

e(u)→ √ǫ3e(u), f(u)→ √ǫ3f(u).

1.3.1 Current realisation of the Yang-Baxter algebra YB
(
ĝl(1)

)

Using the definition (1.33) and (1.34) and explicit expression for the R−matrix on first three levels
one finds (see appendix A.2 for details)

[h(u), ψ(v)] = 0, [ψ(u), ψ(v)] = 0, [h(u), h(v)] = 0, (1.40a)

(u− v − ǫ3)h(u)e(v) = (u− v)e(v)h(u)−ǫ3h(u)e(u), (1.40b)

(u− v − ǫ3)f(v)h(u) = (u− v)h(u)f(v)−ǫ3f(u)h(u), (1.40c)

[e(u), f(v)] =
ψ(u)− ψ(v)

u− v , (1.40d)

as well as ee, ff relations

g(u− v)
[
e(u)e(v)− e (v)

u− v + ǫ1
−

e (v)

u− v + ǫ2
− e (v)

u− v + ǫ3

]
=

= ḡ(u− v)
[
e(v)e(u)− e (u)

u− v − ǫ1
−

e (u)

u− v − ǫ2
− e (u)

u− v − ǫ3

]
, (1.40e)

ḡ(u− v)
[
f(u)f(v)− f (v)

u− v − ǫ1
−

f (v)

u− v − ǫ2
− f (v)

u− v − ǫ3

]
=

= g(u− v)
[
f(v)f(u)− f (u)

u− v + ǫ1
−

f (u)

u− v + ǫ2
− f (u)

u− v + ǫ3

]
, (1.40f)

ψe, ψf relations
g(u− v)ψ(u)e(v) = ḡ(u− v)e(v)ψ(u) + locals,

g(u− v)f(v)ψ(u) = ḡ(u− v)ψ(u)f(v) + locals,
(1.40g)

and Serre relations
∑

σ∈S3
(uσ1 − 2uσ2 + uσ3)e(uσ1)e(uσ2)e(uσ3)+

∑

σ∈S3
[e(uσ1), e (uσ2) + e (uσ2) + e (uσ2)] = 0,

∑

σ∈S3
(uσ1 − 2uσ2 + uσ3)f(uσ1)f(uσ2)f(uσ3)+

∑

σ∈S3
[f(uσ1), f (uσ2) + f (uσ2) + f (uσ2)] = 0.

(1.40h)
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In the relations above we have used the following notations

g(x)
def
= (x+ ǫ1)(x+ ǫ2)(x+ ǫ3), ḡ(x)

def
= (x− ǫ1)(x− ǫ2)(x− ǫ3).

The higher currents eλ and fλ in (1.40e)-(1.40h) are related to (1.36) and (1.37) by change of notations
(1.38)-(1.39) and by certain scaling factors.

We note that the terms shown by blue in (1.40b)-(1.40g) depend only on one parameter either u
or v (in (1.40g) these terms are so complicated, that we do no write them explicitly) and in (1.40h)
they depend only on two parameters instead of three. We call such terms local and use shorthand
notation locals in formulas instead of writing them explicitly. If one writes the commutation relations
for the modes of the currents (1.35), local terms affect only few of them. Indeed if we apply

1

(2πi)2

∮

C∞

∮

C∞
uivjdu dv (1.41)

to (1.40b) for i, j ≥ 0 the local term h(u)e(u) does not contribute and we obtain

[hi+1, ej ]− [hi, ej+1] = ǫ3hiej .

The local term appears if we apply (1.41) with j = −1

[h(u), e0] = ǫ3h(u)e(u)
(1.33)
=⇒ L∅,2(u) = [e0, h(u)]. (1.42)

Similarly, applying
1

(2πi)2

∮

C∞

∮

C∞
uivjdu dv·

for i, j ≥ 0 to (1.40e), local terms represented by eλ(u) do not contribute and we obtain

[ei+3, ej ]− 3[ei+2, ej+1] + 3[ei+1, ej+2]− [ei, ej+3] + σ2 ([ei+1, ej ]− [ei, ej+1]) = σ3{ei, ej},

where σk are elementary symmetric polynomials in ǫj . However, taking either i or j negative allow to
express the higher currents eλ in terms of commutators

e (u) =
1

(ǫ1 − ǫ2)(ǫ1 − ǫ3)
(
(u− ǫ2)(u− ǫ3)[e(u), e0]− (2u+ ǫ1)[e(u), e1] + [e(u), e2]− 3[e1, e0]

)
,

e (u) =
1

(ǫ2 − ǫ1)(ǫ2 − ǫ3)
(
(u− ǫ1)(u− ǫ3)[e(u), e0]− (2u+ ǫ2)[e(u), e1] + [e(u), e2]− 3[e1, e0]

)
,

e (u) =
1

(ǫ3 − ǫ1)(ǫ3 − ǫ2)
(
(u− ǫ1)(u− ǫ2)[e(u), e0]− (2u+ ǫ3)[e(u), e1] + [e(u), e2]− 3[e1, e0]

)
,

(1.43)
and similar expressions for fλ(u).

Using the relations (1.43) one can express generators of the Yangian L∅,λ(u) with |λ| = 2 as

L∅,22(u) = [e0, [e0, h(u)]], L∅,22(u) = [[e1, e0], h(u)]

and similarly for Lλ,∅(u) with ek being replaced by fk. These equations as well as (1.42) suggest that
generic generator Lλ,µ(u) can be obtained as an adjoint action of ek and fk generators on h(u). Using
the RLL relations (1.32) at level 3 one can find

L∅,222(u) = [e0, [e0, [e0, h(u)]]], L∅, 222 (u) = [e0, [[e1, e0], h(u)], L∅,222(u) = [[e1, [e1, e0]], h(u)]

In general, we have found nice representation for the generating function

〈u|e
∑

n
t−nanL(u)e

∑

n
tna−n |u〉 = e

∑

n
t−ntn

e

∑

n
U−ntn

e
−

∑

n
Unt−n

h(u)e

∑

n
Unt−n

e
−

∑

n
U−ntn

.
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Here Un are the modes of the U(1) current W (1) (A.20), which can be expressed in terms of e and f
currents (A.22)

U−1 = e0, U−2 = [e1, e0], U−3 = [e1, [e1, e0]], . . .

U1 = f0, U2 = [f1, f0], U3 = [f1, [f1, f0]], . . .

One can compare current relations (1.40) with commutation Y0-Y6 in Tsymbaliuk’s paper [Tsy17].
In fact, it has been noticed already in [Tsy14] that these relations can be compactly written in terms
of the generating functions (see also section 2.1 of [Pro16] or section 2.1 of [GGLP17], where these
relations were written in a convenient form). The conceptual difference between our relations (1.40)
and Tsymbaliuk ones is that we have an auxiliary current h(u). However, one can immediately see
that Tsymbaliuk’s relations, spanned by the currents e(u), f(u) and ψ(u), are contained in ours, that
is Y(ĝl(1)) is a subalgebra in YB(ĝl(1)). Moreover, as we will show in the next subsection, the algebra
YB(ĝl(1)) contains infinitely many central elements, with the simplest one given by (1.44), which
allows in principle to exclude additional generator h(u).

1.3.2 Center of YB(ĝl(1))

In this section we will show that the algebra YB(ĝl(1)) contains a huge center. Namely for any singular
vector |s〉 of Wn algebra in the space of n bosons we assign a central element Ds (1.52). First element
of this series is related to the operator ψ(u) in (1.34) as

D1,1(u) = ψ(u)
h(u)h(u+ ǫ3)

h(u− ǫ1)h(u− ǫ2)
. (1.44)

For the representation of YB(ĝl(1)) in the space of n bosons Fu1 ⊗ . . .Fun the element D1,1(u) acts
by the function:

D1,1(u)|∅〉 = V (u)|∅〉 where V (u) =

n∏

k=1

u− uk + ǫ3
u− uk

,

which we call the weight of the representation.
In order to see that operator (1.44) is indeed central and act in any representation by a number,

we note that the algebra (1.40) contains additional Hamiltonian ψ(u) which commutes with h(v). One
can derive that

ψ(u)e(v) =
3∏

α=1

(u− v − ǫα)
(u− v + ǫα)

e(v)ψ(u)+locals. (1.45)

Here, locals denote the terms which contain operators depending only on one parameter either u or v
instead of two. Such terms should cancel the poles of the RHS, and may be computed explicitly, see
also some discussion right after the formulas (1.40).
Using the relation

e(v + ǫ3)h
−1(v + ǫ3) = h−1(v + ǫ3)e(v),

which immediately follows from (1.40b) at u = v + ǫ3, we may transform the operator ψ(u) to the
more convenient form

ψ(u) = −h−1(u) u〈∅| ⊗ u+ǫ3〈∅|a
(2)
1 |L1(u)L2(u+ ǫ3)

(
a
(1)
−1 − a

(2)
−1

)
|∅〉u ⊗ |∅〉u+ǫ3h−1(u+ ǫ3).

Using another identity

u+ǫ3〈∅| ⊗ u〈∅|(a(1)1 + a
(2)
1 )L1(u)L2(u+ ǫ3)(a

(1)
−1 − a

(2)
−1)|∅〉u ⊗ |∅〉u+ǫ3 = 0,

we find

ψ(u) =
〈s1,1|L1(u)L2(u+ ǫ3)|s1,1〉

h(u)h(u+ ǫ3)
,
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where
|s1,1〉u def

=
(
a
(1)
−1 − a

(2)
−1

)
|∅〉u ⊗ |∅〉u+ǫ3

is a singular vector of a W algebra which appears in the tensor product of two Fock spaces Fu1 ⊗Fu2
at u2 = u1 + ǫ3. Indeed it can be checked that under the resonance condition u2 = u1 + ǫ3 the vector
|s1,1〉 is annihilated by positive modes of the W currents defined by Miura formula:

−ǫ23∂2 − iǫ3W(1)(z)∂ +W(2)(z) = (iǫ3∂ − ∂φ1)(iǫ3∂ − ∂φ2)

Due to the property that the singular vector is annihilated by all positive modes of W currents it
follows that the R−matrix acts trivially on the tensor product of the vacuum and the singular vector.
In our particular case we have

R0,1(u− v)R0,2(u− v + ǫ3)|∅〉u ⊗ |s1,1〉v =
u− v + ǫ3
u− v |∅〉u ⊗ |s1,1〉v (1.46)

Relation (1.46) implies the commutativity of h(v) and ψ(u) and ensures that the Hamiltonian ψ(u)
acts on the vacuum |∅〉v by the highest weight

ψ(u)|∅〉v =
u− v + ǫ3
u− v |∅〉v

We also found by explicit calculation that ψ(u) h(u)h(u+ǫ3)
h(u−ǫ1)h(u−ǫ2) commutes with e(v) and f(v) and

so belongs to the center of RLL algebra 4. In order to understand this phenomenon, let us note that
R-matrix between two vector spaces which are representations of W∞ algebra is completely (up to
a normalization constant) fixed by the eigenvalues of zero modes W0 of W currents on vacuum and
intertwining identity

R
(∑

k≥0

(
W(k)(z)⊗ 1

)(
iǫ3∂

)n1−k
)(∑

k≥0

(
W(k)(z)⊗ 1

)(
iǫ3∂

)n1−k
)(∑

k≥0

(
1⊗W(k)(z)

)(
iǫ3∂

)n2−k
)
=

=
(∑

k≥0

(
1⊗W(k)(z)

)(
iǫ3∂

)n2−k
)(∑

k≥0

(
W(k)(z)⊗ 1

)(
iǫ3∂

)n1−k
)
R (1.47)

We will consider two representations of W algebra, one in the space of one boson, and other in
the space of finite number of bosons n. We take two different representations of Wn algebra - one is
the standard Fock representation and the other is the highest weight representation arising from the
singular vector |s〉u. Let us compute exchanging relation of higher Hamiltonian

hs = 〈s|L1(u− u1) . . .Ln(u− un)|s.

and the current e(v). On general grounds, it has the form

hs(u)e(v) = Fs(u− v)e(v)hs(u)+locals, (1.48)

where Fs(u−v) is some rational function. Let us concentrate on the first term of (1.48), because local
terms are fixed by a demand that l.h.s of (1.48) doesn’t have poles5. According to the RLL relation,
the function Fs(u− v) is equal to the matrix element

Fs(u− v) = V −1(u− v)u〈s| ⊗ v〈∅|a1R(u− v)a−1|∅〉v|s〉u, (1.49)

4This fact is an analog of similar relation in gl(2) Yangian: operator ψ(u) is a direct analog of q-determinant [KS82]

qDet
[

L
gl(2)(u)

]

= 〈↑ ⊗ ↓ − ↓ ⊗ ↑ |R(1)(u)R(2)(u+ ǫ3)| ↑ ⊗ ↓ − ↓ ⊗ ↑ |〉

and qDet
[

Lgl(2)(u)
]

belongs to the center of Y
(

gl(2)
)

.
5First term of (1.48) obviously has poles because of the rational function Fs(u − v). Its residues should be canceled

by local terms which fixes them unambiguously.
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where V (u− v) is the weight of representation arising from the singular vector |s〉
R(u− v)|∅〉v|s〉u = V (u− v)|∅〉v|s〉u

In order to calculate the matrix element (1.49) let us act by the minus first mode of intertwining

identity (1.47), specified to the case n1=1, n2 = n,
( ∑
k≥0

(
W(k)(z) ⊗ 1

)(
iǫ3∂

)n1−k
)
→ iǫ3∂ − ∂φ(z),

on vacuum

R
[
a−1

∑

k

W(k)
0

(
iǫ3∂

)n−k
+
∑

k

W
(k)
−1 (−ǫ3 + iǫ3∂ + u)

(
iǫ3∂

)n−k]|∅〉u ⊗ |s〉v =

= V (u− v)
[
a−1

∑

k

W(k)
0

(
− ǫ3 + iǫ3∂

)n−k
+
∑

k

W(k)
−1 (iǫ3∂ + u)

(
iǫ3∂

)n−k]|∅〉u| ⊗ |s〉v (1.50)

The desired matrix element can be found by solving a linear system and excluding all W
(k)
−1 modes

in the l.h.s of (1.50). However one can avoid this complicated calculation simply by substitution
iǫ3∂ → −u+ ǫ3:

v〈s| ⊗ u〈�|R(u− v)|�〉u × |s〉v = V (u− v)
∑

kW
(k)
0

(
− u+ ǫ3

)n−k
∑

kW
(k)
0

(
− u
)n−k .

Thus we find that the exchanging function in (1.48) depends only on the polynomial Ps(u):

Ps(u) =
∑

k

W
(k)
0

(
− u
)n−k

=
n∏

k=1

(u− vk) (1.51)

as

Fs(u− v) =
Ps(u+ ǫ3)

Ps(u)
.

For example, explicit calculation for singular vector on the first level |s1,1〉 = (a
(1)
−1 − a

(2)
−1)|∅〉v,v+ǫ3

provides
Ps1,1(u) = (u− v − ǫ1)(u− v − ǫ2)

More generally for a singular vector in W2 algebra sm,n at level mn

Psm,n = (u− v −mǫ1)(u− v − nǫ2)
Let us note that the same polynomial corresponds to a vacuum vector in two Fock spaces Fv−mǫ1 ⊗
Fv−nǫ2 . This calculation immediately implies that current Dm,n(u) =

hsm,n (u)

h(u−mǫ1)h(u−nǫ2) commute with

e(v), f(v), h(v) and so belongs to the center of Y B(ĝl(1)). Indeed:

Dm,n(u)e(v) = e(v)Dm,n(u)+locals

However, as we have seen, all local terms came up with poles which should be canceled with residues
of non local term. Since non-local terms do not have poles no local terms allowed. Thus, we proved

Dm,n(u)e(v) = e(v)Dm,n(u)

Exchanging relation with f(u) is similar, and hence we prove that Dm,n(u) is indeed belongs to the

center of Y B(ĝl(1)).
In general, by the same argument, any singular vector ofWn algebra in the space of n Fock modules

gives rise to central element of Y B(ĝl(1)). As we explained exchanging relations of higher Hamiltonian
hs with e(v), f(v) currents are encoded in a single polynomial (1.51). And the operator:

Ds =
hs(u)

n∏
i=1

h(u− vi)
(1.52)

is the central element of the algebra YB(ĝl(1)).
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1.3.3 Zero twist integrable system

The Yang-Baxter algebra YB(ĝl(1)) contains commutative subalgebra spanned by modes of the current
h(u). If one consider a representation of the YB(ĝl(1)) algebra on n sites, this integrable system is
known to coincide with matrix generalization of quantum Benjamin-Ono integrable hierarchy. It
attracted some attention because it is directly related to AGT representation for conformal blocks
[AGT10]. Much is known about this integrable system. In particular, its spectra and eigenfunctions
can be written rather explicitly.

Suppose, one has an eigenvector of h(u)

h(u)|Λ〉 = hΛ(u)|Λ〉.

Then one can try to create new states by repetitive application of e(v). Using (1.40b), one finds that

h(u)e(v)|Λ〉 = u− v
u− v − ǫ3

hΛ(u)e(v)|Λ〉 −
ǫ3

u− v − ǫ3
L∅,2(u)|Λ〉, (1.53)

and hence in general e(v)|Λ〉 is not an eigenvector of h(u). However if e(v)|Λ〉 develops a singularity
at some value v = x, typically a pole, then the second term in the r.h.s. of (1.53) is negligible and we
have a new eigenvector

|Λ̃〉 = 1

2πi

∮

Cx

e(v)|Λ〉dv, h(u)|Λ̃〉 = (u− x)
(u− x− ǫ3)

hΛ(u)|Λ̃〉 (1.54)

Similar argument applies to the operator ψ(u)

ψ(u)|Λ̃〉 =
3∏

α=1

(u− x− ǫα)
(u− x+ ǫα)

ψλ(u)|Λ̃〉 (1.55)

and to any higher Hamiltonian hs(u) from the previous section.
Using (1.54)-(1.55), one can generate any eigenvector from the vacuum state by successive applica-

tion of e(u). We note that the operators e(u) do not commute. However the structure of commutation
relations (1.40e) implies the following property

∮

Cy

dv

∮

Cx

du e(u)e(v)|Λ〉 =
3∏

α=1

(x− y − ǫα)
(x− y + ǫα)

∮

Cy

dv

∮

Cx

du e(v)e(u)|Λ〉 (1.56)

provided that x and y are simple poles and that y 6= x+ ǫα.
The properties (1.54)-(1.55) and (1.56) are used to show that the eigenstates are in correspondence

with tuples of Young diagrams or more generally with 3D partitions. In order to demonstrate how it
works, we take our quantum space to be the tensor product of n Fock modules generated from the
vacuum state |∅〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉

Fx1 ⊗ · · · ⊗ Fxn = span{a(1)−λ(1) . . . a
(n)

−λ(n) |∅〉 : λ(k) = λ
(k)
1 ≥ λ(k)2 ≥ . . . }.

Our normalization of h(u), which is inherited from our normalization of the R−matrix (1.21), implies
that h(u)|∅〉 = |∅〉. Then it follows from the definition of ψ(u) (1.34) that

ψ(u)|∅〉 =
n∏

k=1

u− xk + ǫ3
u− xk

|∅〉. (1.57)

Moreover the vacuum state is annihilated by f(u)

f(u)|∅〉 = 0,
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while the new states are generated by the modes of e(u). In principle, one can rewrite a generic state
in Fx1 ⊗ · · · ⊗ Fxn as an integral

a
(1)

−λ(1) . . . a
(n)

−λ(n) |∅〉 =
∫
· · ·
∫
ρ~λ(u)e(uN ) . . . e(u1)|∅〉 du1 . . . duN where N =

n∑

k=1

|λ(k)|,

for some function ρ~λ(u) (see [Pro16,GGLP17] for explicit formulae on lowest levels). The eigenfunc-

tions of h(u) provide another basis |~λ〉 in Fx1 ⊗ · · · ⊗Fxn which has very simple form in terms of e(u)
generators

|~λ〉 ∼
∮

CN

duN · · ·
∮

C1

du1 e(uN ) . . . e(u1)|∅〉, N = |~λ| =
n∑

k=1

|λ(k)|, (1.58)

We will specify the proportionality coefficient in (1.58) later. In fact it depends on the order
in which we perform integrations. The contours in (1.58) go counterclockwise around simple poles
located at the contents of Young diagrams in ~λ. By definition a content of a cell with coordinates
(i, j) in Young diagram λ(k) is

c2 = xk − (i− 1)ǫ1 − (j − 1)ǫ2.

The order of the contours Ci in (1.58) should follow the order of any standard Young tableaux associated
to λ(k). Different choices of the ordering would lead to the same state which might differ by a factor,
later we will provide a formula for eigenvector |~λ〉 which is independent of the ordering (see (1.64)).

The state defined by (1.58) is an eigenstate of h(u) and ψ(u) with eigenvalues

h(u)|~λ〉 =
∏

2∈~λ

(u− c2)
(u− c2 − ǫ3)

|~λ〉, ψ(u)|~λ〉 =
3∏

α=1

∏

2∈~λ

(u− c2 − ǫα)
(u− c2 + ǫα)

n∏

k=1

(u− xk + ǫ3)

(u− xk)
|~λ〉 (1.59)

We note that (1.59) follows immediately from (1.40b), (1.45) and (1.57) provided that the surrounded
singularities of the integrand in (1.58) are all simple poles. This statement can be proven by induction
in level N :

• The base of induction. Let us consider generic states at level one: e(u)|∅〉. In order to find its
poles we use (1.40d)

f(v)e(u)|∅〉 = −ψ(u)− ψ(v)
u− v |∅〉,

which implies that poles of e(u)|∅〉 are located exactly at u = xk and hence

|2k〉 ∼
∮

Ck

du e(u)|∅〉

are the eigenstates of h(u).

• Let us assume that up to level N the operators e(u) and f(u) act as follows

e(u)|~λ〉 =
∑

2∈addable(~λ)

E(~λ, ~λ+2)

u− c2
|~λ+2〉 for |~λ| < N,

f(u)|~λ〉 =
∑

2∈removable(~λ)

F (~λ, ~λ−2)

u− c2
|~λ−2〉 for |~λ| ≤ N,

(1.60)
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where the amplitudes E(~λ, ~λ+2) and F (~λ, ~λ−2) are given by

E(~λ, ~λ+2) =
ǫ1ǫ2
ǫ3

∏

2′∈~λ+2

S−1(c2′ − c2)
n∏

k=1

(c2 − xk + ǫ3)

(c2 − xk)
,

F (~λ, ~λ−2) =
∏

2′∈~λ−2

S(c2 − c2′), (1.61)

with

S(x) =
(x+ ǫ1)(x+ ǫ2)

x(x− ǫ3)
. (1.62)

In (1.60) the sets addable(~λ) and removable(~λ) corresponds to the sets of all boxes which can
be either added or removed from ~λ.

• We have to show that e(u)|~λ〉 with |~λ| = N has poles at addable points. Consider u poles of the
following vector

f(v)e(u)|~λ〉 = −ψ(u)− ψ(v)
u− v |~λ〉+ e(u)f(v)|~λ〉. (1.63)

There are two sources of poles in the r.h.s of (1.63): the eigenvalue of ψ(u) and the e(u)f(v)|~λ〉
term. It is easy to show that both terms have poles only at addable and removable points.
Formula (1.61) provides exact cancellation of poles at removable points, which implies the state-
ment.

Finally, we provide the normalized formula (1.58) for the eigenvector |~λ〉 which agrees with formulas
(1.60)

|~λ〉 = lim
ui→ci

∏

i,k

ui − xk
ui − xk − ǫ3

∏

i<j

S(ui − uj)e(uN )...e(u1)|∅〉 (1.64)

The state e(uN )...e(u1)|∅〉 contains a lot of poles at ui → ci which are cancelled by a numerical
prefactor, so the formula (1.64) should be understood by L’Hôpital’s rule - careful analysis of this
formula leads to the same residues as in (1.58). ci variables are equal to the contents of Young
diagrams ~λ and ordered to follow the order of any standard Young tableaux associated to λ(k). Note
that this prescription doesn’t completely define an ordering, however each ordering leads to the same
formula. Indeed two admissible orderings are different by a number of transposition of e(ui) currents
in (1.64) note that for such transpositions corresponding arguments ui are not in a resonance, using
(1.40e) we have:

S(ui − uj)e(ui)e(uj) = S(uj − ui)e(uj)e(ui) + locals

The local terms are regular at ui → ci and so doesn’t contribute to the (1.64).

1.4 ILW Integrals of Motion and Bethe ansatz

Consider the transfer matrix on n sites Tq(u) defined by (1.12). Using the formulas (A.2),(A.3) from
the Appendix A.1 one can easily see that Tq(u) admits the following large u expansion

Tq(u) = Λ(u, q) exp

(
1

u
I1(q) +

1

u2
I2(q) + . . .

)
,

where Λ(u, q) is a normalization factor and I1 and I2 are the first ILWn Integrals of Motion (1.13). As
explained in Introduction among other Integrals of Motion there is a particular one called KZ integral

IKZ
1 (q)

def
= Tq(u1). (1.65)
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Using the fact that R0,1(0) = P0,1 a permutation operator, one finds

IKZ
1 (q) = qL

(1)
0 R1,2(u1 − u2)R1,3(u1 − u3) . . .R1,n(u1 − un). (1.66)

As announced in Introduction the simultaneous spectrum of Tq(u) is governed by Bethe ansatz
equations (1.15). In this section we will derive these equations.

1.4.1 Off-shell Bethe vector

The basic ingredient of algebraic Bethe ansatz is the construction of the so-called off-shell Bethe vector.
We take the tensor product of n+N Fock spaces, with n “quantum” and N “auxiliary” spaces

Fu1 ⊗ · · · ⊗ Fun︸ ︷︷ ︸
quantum space

⊗Fx1 ⊗ · · · ⊗ FxN︸ ︷︷ ︸
auxiliary space

(1.67)

generated from the vacuum state

|∅〉x ⊗ |∅〉u = |x1〉 ⊗ · · · ⊗ |xN 〉 ⊗ |u1〉 ⊗ · · · ⊗ |un〉.

Consider the special eigenstate in the auxiliary space (1.58),(1.64)

|χ〉x def
= |2, . . . ,2︸ ︷︷ ︸

N

〉 ∼
∮

CN

dzN · · ·
∮

C1

dz1 e(zN ) . . . e(z1)|∅〉x, (1.68)

where the contour Ck encircles the point xk in counter-clockwise direction. The vector |χ〉x is an
eigenvector of zero twist integrable system with eigenvalue

h(u)|χ〉x =
N∏

k=1

u− xk
u− xk − ǫ3

|χ〉x. (1.69)

A direct consequence of (1.60) implies a convenient formula :

x〈∅|f(zN ) . . . f(z1)|χ〉x = Symx

(
N∏

a=1

1

za − xa
∏

a<b

S(xa − xb)
)
, (1.70)

which is an immediate consequence of (1.60) and (1.61).
Now we define the off-shell Bethe vector, our definition is similar to the very general approach

investigated in [AO17] (in particular this construction is explained in section 1.3.3 of [AO17])

|B(x)〉u def
=x〈∅|R(x,u)|χ〉x ⊗ |∅〉u where R(x,u) = Rx1u1 . . .RxNu1 . . .Rx1un . . .RxNun . (1.71)

The off-shell Bethe vector |B(x)〉 can be represented by the following picture (similar to the figure 2
in [AO17])

|B(x)〉 =

∅

∅

∅

∅

∅∅ ∅∅∅∅∅∅

|χ〉x

u1 u2 u3 u4 un−3un−2un−1 un

xN

xN−1

x2

x1
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Consider the matrix element between |B(x)〉u and generic state

ω~λ(x|u)
def
= u〈∅|a(1)

λ(1) . . . a
(n)

λ(n) |B(x)〉u =x〈∅|Lλ(1),∅(u1) . . .Lλ(n),∅(un)|χ〉x, (1.72)

which is non-zero only if

|~λ| =
n∑

k=1

|λ(k)| = N.

Following [TV95], we call ω~λ(x|u) the weight function. It can be simplified by noting that the matrix
element of Lax operator Lλ,∅(u) can be expressed through h(u) and f(z) via contour integral6

Lλ,∅(u) =
1

(2πi)|λ|

∮

C1
· · ·
∮

C|λ|

Fλ(z|u)h(u)f(z|λ|) . . . f(z1)dz1 . . . dz|λ|, (1.73)

where each contour Ck goes clockwise around ∞ and u − ǫ3. Using (1.73) the weight function (1.72)
can be rewritten as

ω~λ(x|u) =
1

(2πi)N
×

×
∮
F~λ(~z|u) x〈∅|h(u1) f(z(1)1 )f(z

(1)
2 ) . . .︸ ︷︷ ︸

|λ(1)|

h(u2) f(z
(2)
1 )f(z

(2)
2 ) . . .︸ ︷︷ ︸

|λ(2)|

. . . h(un) f(z
(n)
1 )f(z

(n)
2 ) . . .︸ ︷︷ ︸

|λ(n)|

|χ〉x d~z,

(1.74)

where

F~λ(~z|u) =
n∏

k=1

F
λ(k)

(
z
(k)
1 , . . . , z

(k)

|λ(k)|
∣∣uk
)
. (1.75)

Then the matrix element in (1.74) can be explicitly computed using (1.40c) and (1.70). One obtains

ω~λ(x|u) =
1

(2πi)N

∮
· · ·
∮

Ω~λ(~z|u) Symx

(
N∏

a=1

1

za − xa
∏

a<b

S(xa − xb)
)
d~z, (1.76)

where (z1, . . . , zN ) = (z
(1)
1 , . . . z

(1)

λ(1) , z
(2)
1 , . . . z

(2)

λ(2) , . . . , z
(n)
1 , . . . z

(n)

λ(n)) and the function

Ω~λ(~z|u) = F~λ(~z|u)




|λ(1)|∏

j=1

u2 − z(1)j

u2 − z(1)j − ǫ3






|λ(2)|∏

j=1

u3 − z(2)j

u3 − z(2)j − ǫ3

|λ(1)|∏

j=1

u3 − z(1)j

u3 − z(1)j − ǫ3


 . . .

. . .




|λ(n−1)|∏

j=1

un − z(n−1)
j

un − z(n−1)
j − ǫ3

|λ(n−2)|∏

j=1

un − z(n−2)
j

un − z(n−2)
j − ǫ3

· · ·
|λ(1)|∏

j=1

un − z(1)j

un − z(1)j − ǫ3


 (1.77)

has been obtained from F~λ(~z|u) as a result of application of (1.40c). We note that as explained in
appendix A.3 the local terms do not appear in (1.76) if one extends the integration contour to include
all singularities of (1.77). It implies that the integral shrinks to the points x and one obtains

ω~λ(x|u) = Symx

(
Ω~λ(~x|u)

∏

a<b

S(xa − xb)
)
. (1.78)

Let us note finally that this last equation implies the well known co-product property of weight
function:

ωV1,V2~λ(1),~λ(2)
=

∑

I=I1+I2

ωV1~λ1
(x(1))ωV2~λ2

(x(2))
∏

xi∈I2
V1(xi)

∏

i∈I1,j∈I2
S(xi − xj),

Where the sum is over partitions of set of indices I = 1, 2, ...N into two sets (I1, I2) of lengths (N1, N2),
we also denote all xi variables from set Ia x

(a).

6See Appendix A.3 for details.
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1.4.2 Diagonalization of KZ Integral

The action of the KZ Integral of Motion (1.65) on off-shell Bethe vector |B(x)〉u is very simple and
can be explained by the following picture

∅

∅

∅

∅

∅

∅

∅

∅

∅∅ ∅∅∅∅∅∅∅∅ ∅∅∅∅∅∅

|χ〉x|χ〉x
u1

u1

u2

u2

u3

u3

un

un

xNxN

x2x2

x1x1

qL0

qL0

=

Projecting this equation on arbitrary state, one obtains

u〈∅|a(1)
λ(1) . . . a

(n)

λ(n) |IKZ
1 (q)|B(x)〉u = q|λ

(1)|
x〈∅|Lλ(2),∅(u2) . . .Lλ(n),∅(un)Lλ(1),∅(u1)|χ〉x (1.79)

If we require that |B(x)〉u is an eigenstate for IKZ
1 (q) we have to demand

q|λ
(1)|

x〈∅|Lλ(2),∅(u2) . . .Lλ(n),∅(un)Lλ(1),∅(u1)|χ〉x = t1q(u)x〈∅|Lλ(1),∅(u1) . . .Lλ(n),∅(un)|χ〉x,
(1.80)

which should hold for any set of partitions ~λ. The eigenvalue t1q(u) can be found from (1.80) by taking

λ(1) = ∅

t1q(u) =
N∏

k=1

xk − u1
xk − u1 + ǫ3

.

For generic ~λ the eigenstate equation (1.80) implies the integral identity

q|λ
(1)|
∮
F~λ(~z|u) x〈∅|h(u2) f(z(2)1 ) . . .︸ ︷︷ ︸

|λ(2)|

. . . h(un) f(z
(n)
1 ) . . .︸ ︷︷ ︸
|λ(n)|

h(u1) f(z
(1)
1 ) . . .︸ ︷︷ ︸
|λ(1)|

|χ〉x d~z =

= T1(u)

∮
F~λ(~z|u) x〈∅|h(u1) f(z(1)1 ) . . .︸ ︷︷ ︸

|λ(1)|

h(u2) f(z
(2)
1 ) . . .︸ ︷︷ ︸
|λ(2)|

. . . h(un) f(z
(n)
1 ) . . .︸ ︷︷ ︸
|λ(n)|

|χ〉x d~z,

which holds provided that x obeys Bethe ansatz equations

q
∏

j 6=i

3∏

α=1

xi − xj − ǫα
xi − xj + ǫα

n∏

k=1

xi − uk + ǫ3
xi − uk

= 1 for all i = 1, . . . , N. (1.81)

Indeed using (1.40c) and (1.40f) one can drag all f(z
(1)
j )’s to the left. As the integrals over z

(j)
i go

around simple poles located at the points x1, . . . , xN (see (1.76)), the local terms in (1.40c) and (1.40f)
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do not contribute and we will have

q|λ
(1)|
∮
F~λ(~z|u) x〈∅|h(u2) f(z(2)1 ) . . .︸ ︷︷ ︸

|λ(2)|

. . . h(un) f(z
(n)
1 ) . . .︸ ︷︷ ︸
|λ(n)|

h(u1) f(z
(1)
1 ) . . .︸ ︷︷ ︸
|λ(1)|

|χ〉x d~z =

=

∮
F~λ(~z|u)

|λ(1)|∏

k=1

D(z(1)k |z) x〈∅| f(z(1)1 ) . . .︸ ︷︷ ︸
|λ(1)|

h(u2) f(z
(2)
1 ) . . .︸ ︷︷ ︸
|λ(2)|

. . . h(un) f(z
(n)
1 ) . . .︸ ︷︷ ︸
|λ(n)|

h(u1)|χ〉x d~z =

= T1(u)

∮
F~λ(~z|u)

|λ(1)|∏

k=1

D(z(1)k |z) x〈∅| f(z(1)1 ) . . .︸ ︷︷ ︸
|λ(1)|

h(u2) f(z
(2)
1 ) . . .︸ ︷︷ ︸
|λ(2)|

. . . h(un) f(z
(n)
1 ) . . .︸ ︷︷ ︸
|λ(n)|

|χ〉x d~z,

(1.82)

where z denotes the set of all z
(j)
i and

D(z|z) = q
∏

zj 6=z

3∏

α=1

z − zj − ǫα
z − zj + ǫα

n∏

k=1

z − uk + ǫ3
z − uk

.

One can easily show that under Bethe ansatz equations (1.81) each additional factor D(z(1)k |z) in
(1.82) equals to 1, which implies the statement.

1.4.3 Quantum KZ equation

Off-shell Bethe vectors (1.71), are closely related to solutions of difference KZ equation. Namely, let
us introduce auxiliary functions

V (~)(x) =
Γ(x

~
)

Γ(x−ǫ3
~

)
, Φ(~)(x) =

Γ(x−ǫ1
~

)Γ(x−ǫ2
~

)

Γ(x
~
)Γ(x+ǫ3

~
)
,

where S(x) is given by (1.62). The main property of these functions which will be used is the shift
relation

V (~)(x+ ~) = V (~)(x)
x

x− ǫ3
, Φ(~)(x+ ~) = S(−x)Φ(~)(x)

Then the wave function

|ψ(u)〉 def=
∮
q
∑ xa

~

N∏

a=1

n∏

j=1

V (~)(uj − xa)
∏

a 6=b
Φ(~)(xa − xb)|B(x)〉u

dNx

(2πi)N
, (1.83)

is a solution of difference KZ equation:

|ψ(u1 + ~, u2, ..., un)〉 = IKZ
1 |ψ(u1, ..., un)〉, (1.84)

where IKZ
1 is the first KZ operator (1.65).

The proof of (1.84) is simple. Let us pick a tuple of Young diagrams ~λ = {λ(1), ...,λ(n)} and
consider the projection of the wave function |ψ(u)〉

u〈∅|a(1)
λ(1) . . . a

(n)

λ(n) |ψ(u)〉 =
∮
q
∑

a
xa
~

N∏

a=1

n∏

j=1

V (~)(uj − xa)
∏

a 6=b
Φ(~)(xa − xb)ω~λ(x|u)

dNx

(2πi)N
, (1.85)
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where the weight function ω~λ(x|u) is given by (1.78). At the same time using (1.79) one finds

u〈∅|a(1)
λ(1) . . . a

(n)

λ(n) |IKZ
1 |ψ(u)〉 =

∮
q
∑

a
xa
~

N∏

a=1

n∏

j=1

V (~)(uj − xa)
∏

a 6=b
Φ(~)(xa − xb)q|λ

|1||ω ~λ′
(x|u′)

dNx

(2πi)N
,

(1.86)

where u′ = (u2, . . . , un, u1) and ~λ′ = {λ(2), ...,λ(n),λ(1)}. As the integration kernel in (1.85) and
(1.86) is x symmetric, one can replace (see (1.77))

ω~λ(x|u)→ Fu
~λ
(x)

∏

a<b

S(xa − xb), ω ~λ′(x|u′)→ Fu′

~λ′ (x)
∏

a<b

S(xa − xb).

Then it is immediately to see that the shift

u1 → u1 + ~,
(
x1, . . . , x|λ(1)|

)
→
(
x1 + ~, . . . , x|λ(1)| + ~

)

reduces (1.85) to (1.86) after relabelling of integration variables. The statement (1.84) follows.

Of course these considerations are correct modulo choice of integration contour. Integrals of
the form (1.83) have been discussed in details in the literature [AHKS13, Zen19]. Following these
approaches, we treat the integral (1.83) as a sum over residues, the poles contributing to the integral
are in one to one correspondence with a collection of n 3D partitions, with fixed floor shape λ:

xI = vk − (ik − 1)ǫ1 − (jk − 1)ǫ2 + ~n
(k)
i,j

Here we treat the 3D partition as 2D Young diagram filled with integer numbers n
(k)
i,j such that:

n
(k)
i,j ≥ n

(k)
i+1,j n

(k)
i,j ≥ n

(k)
i,j+1

1.4.4 Diagonalization of I2 Integral

The diagonalization problem of KZ integral given above does not work for n = 1, because in that case
there is no KZ operator. Direct formula (1.65) provides an identity operator. Specially for this case
and also for academic purposes we consider diagonalization problem for I2(q) IM (1.13). We have to
remember that we have changed normalization in (1.38)-(1.39). It is also convenient to subtract the
vacuum eigenvalue and ǫ3

2 I1(q) from I2(q). Altogether, one has

Ĩ2(q) = −ǫ3
∫ 
1
3

√
ǫ1ǫ2

∑

i

(∂φi)
3 − ǫ3


1

2

∑

i,j

∂φiD(q)∂φj +
∑

i<j

∂φi∂
2φj




 dx
2π
−ǫ3I1(q)

2
−ǫ3

3

√
ǫ1ǫ2

∑

i

u3i

where the last two terms are added for a convenience, in order to have more simple formula for the
eigenvalues (1.93).

Since our total Fock space splits into quantum and auxiliary parts (1.67), it will be convenient
to add an upper index to Ĩ2(q), either x, u or (x,u) referring to auxiliary, quantum or total spaces

respectively. The key observation is that the Integral of Motion Ĩ
(x,u)
2 (q) is almost the sum of terms

acting separately on spaces Fu and Fx plus a cross term

Ĩ
(x,u)
2 (q) = Ĩx2 (q) + Ĩ

(u
2 (q)− 1

2π

∫
Uu(ξ)(D(q) + ∂)Jx(ξ)dξ, (1.87)

where Ux/v(ξ) is the U(1) mode (A.20), in our particular representation Ux/v(ξ) =
√
ǫ3

∑
i∈Fx/u

∂φi(ξ).
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We will show that on-shell Bethe vector, is an eigenvector of Ĩu2(q)

Ĩu2 (q) x〈∅|R(x,u)|χ〉x ⊗ |∅〉u =

(
N∑

k=1

xk

)
x〈∅|R(x,u)|χ〉x ⊗ |∅〉u

where xk obeys Bethe anzatz equations (1.81). We start with off-shell Bethe vector (1.71) and insert
Integral of Motion for a system with zero twist q = 0 acting on x space

|B(x)〉u =x〈∅|R(x,u)|χ〉x ⊗ |∅〉u −→x 〈∅|R(x,u)Ĩ
x

2 (0)|χ〉x ⊗ |∅〉u

We have the following chain of arguments

1. Since |χ〉x is an eigenvector of zero twist integrable system (1.69), it is also an eigenvector for
Ĩ
x

2 (0) with eigenvalue
∑

k xk. It implies

x〈∅|R(x,u)Ĩ
x

2 (0)|χ〉x ⊗ |∅〉u =
N∑

k=1

xk|B(x)〉u (1.88)

2. On the other hand, the Integral Ĩ
x

2 (0) can be completed by (1.87) to Ĩ
(x,u)
2 (0) which acts on the

whole (x,u) space

Ĩ
(x,u)
2 (0) = Ĩ

x

2 (0) + Ĩ
u

2 (0)− i
∑

k∈Z
(|k|+ k)Uu

k U
x
−k,

because the last two terms vanish on |∅〉u. It implies

x〈∅|R(x,u)Ĩ
x

2 (0)|χ〉x ⊗ |∅〉u =x〈∅|R(x,u)Ĩ
x,u
2 (0)|χ〉x ⊗ |∅〉u (1.89)

3. From the definition of R(x,u) (see (1.71)) we have

R(x,u)Ĩ(x,u)
2 (0) = Ĩ

(u,x)
2 (0)R(x,u) where I

(u,x)
2 (0) = Ĩ

x

2 (0)+Ĩ
u

2 (0)−i
∑

k∈Z
(|k|+k)Ux

k U
u
−k,

and hence

x〈∅|R(x,u)Ĩ
x,u
2 (0)|χ〉x ⊗ |∅〉u =x〈∅|

(
Ĩ
u

2 (0)− 2i
∑

k>0

kUu
−kU

x
k

)
R(x,u)|χ〉x ⊗ |∅〉u (1.90)

4. One has a remarkable property

x〈∅|Ux
k R(x,u)|χ〉x ⊗ |∅〉u = qk x〈∅|R(x,u)Ux

k |χ〉x ⊗ |∅〉u, (1.91)

which holds provided that x satisfy (1.81).

5. One can replace Ux
k → Ux

k + Uu
k in the r.h.s. of (1.91) and use the property

[R(x,u), Ux
k + Uu

k ] = 0,

to obtain

x〈∅|Jx
k R(x,u)|χ〉x ⊗ |∅〉u =

qk

1− qk x〈∅| Ju
k R(x,u)|χ〉x ⊗ |∅〉u. (1.92)
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6. Equations (1.88), (1.89), (1.90), (1.91) and (1.92) imply that

Ĩu2 (q)|B(x)〉u =
N∑

k=1

xk|B(x)〉u. (1.93)

on Bethe ansatz equations (1.81).

In the above reasoning (1.91) requires explanation. In Appendix A.3 we have shown that

Ux
k = Adk−1

f1
f0

Using this formula, one finds explicitly

Ux
k =

∮
gk(ξ)f(ξ1)...f(ξk)dξ with gn(~ξ) =

∏

i

ξi

(∑
(−1)iCinξ−1

i

)
(1.94)

where Cin are the binomial coefficients.
Consider a matrix element of the l.h.s. of (1.91) with generic state

u〈∅|a(1)
λ(1) . . . a

(n)

λ(n) ⊗ x〈∅| Jx
k R(x,u)|χ〉x ⊗ |∅〉u,

with
n∑

j=1

|λ(j)|+ k = N.

It can be rewritten as

u〈∅|a(1)
λ(1) . . . a

(n)

λ(n) ⊗ x〈∅| Jx
k R(x,u)|χ〉x ⊗ |∅〉u =x〈∅|Jx

k Lλ(1),∅(u1) . . .Lλ(n),∅(un)|χ〉x =

=

∮
gk(ξ)F~λ(~z|u) x〈∅|f(ξ1)...f(ξk)h(u1) f(z

(1)
1 ) . . .︸ ︷︷ ︸
|λ(1)|

h(u2) f(z
(2)
1 ) . . .︸ ︷︷ ︸
|λ(2)|

. . . h(un) f(z
(n)
1 ) . . .︸ ︷︷ ︸
|λ(n)|

|χ〉x dξ d~z =

= qk
∮
gk(ξ)F~λ(~z|u) x〈∅|h(u1) f(z

(1)
1 ) . . .︸ ︷︷ ︸
|λ(1)|

h(u2) f(z
(2)
1 ) . . .︸ ︷︷ ︸
|λ(2)|

. . . h(un) f(z
(n)
1 ) . . .︸ ︷︷ ︸
|λ(n)|

f(ξ1)...f(ξk)|χ〉x dξ d~z,

(1.95)

which is equivalent to (1.91). In the first line in (1.95) we have used definition of Lλ,∅(u), in the
second line (1.94), (1.73) and definition (1.75), while in the third line we have used argument similar
to the one in (1.82) that is dragging all f(ξj)’s to the right, abandoning local terms in commutation
relations (1.40c) and (1.40f) and using the fact that all the factors (here z denotes the set of all ξj

and z
(k)
i )

∏

zj 6=z

3∏

α=1

z − zj + ǫα
z − zj − ǫα

n∏

k=1

z − uk
z − uk + ǫ3

are equal to q on Bethe ansatz equations (1.81).

1.4.5 Okounkov-Pandharipande equation

We saw that there are two related problems: diagonalization of KZ integral and solution of KZ
difference equation. Both problems can be solved in terms of Bethe vector. Similarly to KZ case, both
counterparts exists for local Integrals of Motion. Let us consider the following equation [OP10]:

Ĩ2(q)|ψ〉 = ~q
d

dq
|ψ〉 (1.96)
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We will show now that this equation is solved by the same wave function (1.83). In order to do that
let us notice that while acting (1.83) differential operator ~q ddq is equal to multiplication on

∑
xk.

The later can be expressed as an action of Integral of Motion in auxiliary space:

N∑

k=1

xk|B(x)〉u =
N∑

k=1

xk x〈∅|R(x,u)|χ〉x ⊗ |∅〉u =x 〈∅|R(x,u)Ĩ
x

2 (0)|χ〉x ⊗ |∅〉u

Then we may repeat all the steps from previous section and find that under the integral over Bethe
roots, action of Ix2 (0) on auxiliary space is equal to the action of Iv2 (q) on the quantum space. The
only problematic point is number 4, let us explain it more details.

Let us consider the matrix element of the wave function:

u〈∅|a(1)
λ(1) . . . a

(n)

λ(n) ⊗ x〈∅| R(x,u)Ux
k |χ〉x ⊗ |∅〉u =x〈∅|Lλ(1),∅(u1) . . .Lλ(n),∅(un)U

x
k |χ〉x =

= Symx

(
Ω~λ(x1, ..., xN−k|u)gk(xN−k+1, ..., xN )

∏

i<j

S(xi − xj)
)

On the other hand, if we insert Uxk from the left we will have:

u〈∅|a(1)
λ(1) . . . a

(n)

λ(n) ⊗ x〈∅| Ux
k R(x,u)|χ〉x ⊗ |∅〉u =x〈∅|Ux

k Lλ(1),∅(u1) . . .Lλ(n),∅(un)|χ〉x =

= Symx

(
D(x1, ..., xk|xk+1, ...xN )Ω~λ(x1, ..., xN−k|u)gk(xN−k+1, ..., xN )

∏

i<j

S(xi − xj)
)
,

where

D(xi|yj) =
∏

i,j

3∏

α=1

xi − yj − ǫα
xi − yj + ǫα

∏

i

n∏

k=1

xi − uk + ǫ3
xi − uk

.

As we explain in Appendix A.3 (see (A.24)), the function gk(xi) is transnational invariant under the
matrix element. And under the integral (1.83) we can freely perform simultaneous shift of all xi for
i > N − k. After this shift factor D(xi|yj) will be canceled, and we arrive to the desired identity

u〈∅|a(1)
λ(1) . . . a

(n)

λ(n)⊗x〈∅| Jx
kR(x,u)|χ〉x⊗|∅〉u ∼ qk u〈∅|a(1)

λ(1) . . . a
(n)

λ(n)⊗x〈∅|R(x,u)Jx
k |χ〉x⊗|∅〉u,

where the ” ∼ ” means equivalence under the integral (1.83). Other steps are completely similar to
the ones in section 1.4.4. And we recover the equation (1.96).

1.4.6 Difference equations and norms of Bethe eigenvectors

Both KZ (1.84) and OP (1.96) equations has an extra parameter ~. It is clear intuitively that in
the limit ~ → 0 the corresponding solution of KZ,OP equations turns into a Bethe vector. In this
section we will develop this intuition, and show that it helps to derive a determinant formula for the
norms of Bethe vectors [Sla89], [RV94]. In this section we will treat ~ to be purely imaginary. As we
already discussed in section (1.4.3), solutions of KZ-OP (1.84), (1.96) equations on level N are labeled
by collections of Young diagrams with N boxes. Let us compute the scalar product of two different
solutions

〈ψλ(u)|ψµ(u)〉

As a consequence of KZ and OP equations this scalar product obeys

Dvi
~
〈ψλ(u)|ψµ(u)〉 = q

d

dq
〈ψλ(u)|ψµ(u)〉 = 0,
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and can be computed at the point q = 0:

〈ψλ(u)|ψµ(u)〉
∣∣∣
q=0

= δλ,µC(N, ~). (1.97)

We note that the constant C(N, ~) is independent on the spectral parameters ui and the twist q. Let
us compute the integral (1.83) for general q , but in the limit ~→ 0. In this limit (1.83) can be taken
by the saddle point method. Using

Γ
(x
~

)
=

√
2π~

x
e

x
~
(log(x)−1)−x

~
log(~) + o(~),

we find that the integration kernel in (1.83) turns to the exponent of the Yang-Yang function:

|ψλ(u)〉 =
∮

Cλ

1

F(x)e
Y(x)

~ |B(x)〉u
dNx

(2πi)N
, (1.98)

where

Y(x) =
∑

i 6=j

[
ω(xi − xj − ǫ1) + ω(xi − xj − ǫ2)− ω(xi − xj + ǫ3)− ω(xi − xj)

]
+

+
∑

i,k

(ω(vk − xi)− ω(vk − xi − ǫ3)) +
∑

i

xi log(q), with ω(x) = x(log(x)− 1).

and

F(x) =
∏

i 6=j
S(xi − xj)

∏

i,k

uk − xi
uk − xi − ǫ3

Computing the integral (1.98) by saddle point, we found:

|ψλ(u)〉 = e
Ycrit(x)

~

~
N
2√

F(x)H(Y)
|Bλ(x)〉u,

where H(Y) is a Hessian:

H(Y) = det

(
∂2Y
∂xi∂xj

)

Comparing to the (1.97), we immediately recover the Slavnov’s determinant formula for the norms of
on-shell Bethe vectors [Sla89]

〈Bλ|Bµ〉 = C(N)δλ,µH(Y)F(x) (1.99)

Where C(N) is the limit C(N) = lim
~→0

C(N, ~)~−N . The formula (1.99) can be rewritten in a different
way:

〈Bλ|Bλ〉q
H(Y)F(x) =

〈Bλ|Bλ〉q
H(Y)F(x)

∣∣∣
q=0

1.5 Concluding remarks

This notes represents our efforts to understand the affine Yangian of gl(1) and its role in integrability
of conformal field theory. Many aspects have not been touched. Below we present some open problems
and preliminary results that will be left for future work.
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Other representations of the Yangian. As we have seen, the commutation relations of YB(ĝl(1))
(1.40) are symmetric with respect to permutations of ǫk. It implies that the algebra YB(ĝl(1)) admits

three types of Fock modules F (k)
u with k = 1, 2, 3. Taking a representation of generic type

F (k1)
u1 ⊗F

(k2)
u2 ⊗ · · · ⊗ F

(kn)
un ,

will lead to ILW type integrable system corresponding to more general W algebras introduced in
[BFM18,LS16]. The corresponding Miura transformation is explicitly known [PR19,Pro19]. All the
results obtained in current notes can be generalized with a mild modification to this case. We collect
some details in appendix A.4.

Massive deformation of ILWn integrable system. The twist deformation of CFT integrable
system (1.13) leads to certain τ−deformation of Toda action (1.3). Namely, for our choice of twist
deformation (1.12), one exponent in (1.3) gets replaced by its non-local counterpart

eb(ϕ2(x,t)−ϕ1(x,t)) twist deformation−−−−−−−−−−−→ eb(ϕ2(x,t)−ϕ1(x+πτ,t)), where q = eiπτ

The corresponding classical field theory called non-local gl(n) Toda field theory is known to be inte-
grable in a Lax sense [DLO+91,LOPZ91]. Its quantization has not been studied in the literature so
far.

The simplest model of this kind is a free boson perturbed by a single exponent

S =

∫ (
1

8π
∂µϕ∂µϕ+ Λeb(ϕ(x,t)−ϕ(x+πτ,t))

)
d2x, (1.100)

This model has an interesting feature, in a finite volume of circumference L = πnτ : (x ∼ x + L),

relabeling the fields: φ(x+πkτ)
def
= φk(x) we found that non local theory (1.100) in a volume L = πnτ

is mapped to a local affine An Toda in volume τ . So it will be interesting to study the S matrix and
the spectrum of theory (1.100) in finite volume.

Relation to quantum KP equation. Bethe anzatz equations similar to the ones studied in this
notes were recently obtained by Kozlowski, Sklyanin, Torrielli in a slightly different context of quan-
tization of the first Hamiltonian structure of KP equation [KST17]. We believe that our results may
be relevant in this context.

ODE/IM correspondence. The spectrum of untwisted integrable systems (i.e. at q = 1) can
be studied by means of ODE/IM correspondence (see eg [DDT07] for review). In our approach,
the q → 1 limit could be taken, both approaches works well and could be checked numerically,
however We do not know any transparent relation between them. In particular the transfer matrices
which naturally arise in both approaches are quite different, while they could be related order by
order in 1/u expansion, we were unable to find any closed formula. We note also that algebraic
equations for the spectrum are rather different in two approaches. In Yangian approach one has
BA equations (1.81), while on ODE/IM side the spectrum is given by Gaudin-like equations (see for
example [BLZ04,Luk13,KL20]). It looks similar to the known duality between trigonometric Gaudin
and rational XXX models [MTV08], however it has not been clarified yet (see discussions in [FJM17]).
Finally let us mention that conjecturing an ODE/IM relations is always a piece of art, while in our
approach Bethe equations (1.81) are derived, and could be easily generalised to more general models,
for example despite the long history of ODE/IM correspondence the spectrum of Reflection operator
(KZ operator T1 in our terminology) was studied very recently [KL20].
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Relation to ”Tsymbaliuks” Affine Yangian As we mentioned in introduction, current algebra
relations (1.40) are not the same as Affine Yangian relations (Y0-Y6) revisted in [Tsy17]. In partic-
ular, relations (1.40) include one extra Cartan current h(u), this leads to the existence of an infinite
dimensional center 1.3.2 which is not presents in Affine Yangian of [Tsy17]. However two algebras are
very similar, we conjecture that the factor of Y B(ĝl(1)) algebra over it’s center will be isomorphic to
the Affine Yangian of [Tsy17].

Yangian Double. The algebra called Yangian Double has been introduced in [KT96] following
Drinfeld’s quantum double construction [Dri88]. The Yangian Double seems to be more appropriate for
construction of Bethe vectors by the so called ”method of projections” developed in [EKP07,KPT07]
(see [HLP+17, LPRS19] for latest results). Unfortunately, we were unable to repeat the procedure
executed in [HLP+17,LPRS19] and define the off-shell Bethe vector as a projection of a state build of
”total” currents. This is an interesting open problem.
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Chapter 2

BCD integrable structures and

boundary Bethe ansatz.

In this chapter we study integrable structures of conformal field theory with BCD symmetry. We
realise these integrable structures as gl(1) affine Yangian ”spin chains” with boundaries. We provide
three solutions of Sklyanin’s KRKR equation compatible with the affine Yangian R-matrix and derive
Bethe ansatz equations for the spectrum. Our analysis provides a unified approach to the integrable
structures with BCD symmetry including superalgebras.

2.1 Introduction

In current notes we generalize the results and the methods of previous chapter (see also [LV20]) to the
W -algebras of BCD type. The key new ingredient, which appears in this case is the analog of Sklyanin’s
K−matrix [Skl88], introduced by him for studying of spin chains with boundary. The ”boundary” in
the current context corresponds to the endpoints of the affine Dynkin diagram for a given integrable
system. This fact has been already noticed and studied in trigonometric case in [FJMV21]. Here we
restrict ourselves to the conformal case, but consider the problem of diagonalization of Integrals of
Motion. Similar to the A case [LV20], it is convenient to diagonalize KZ Integrals of Motion (called
reflection operators in [KL20]) rather that local ones. We explicitly construct the off-shell Bethe
vector, which depends on auxiliary parameters x1, . . . , xN , where N is the level, and show that the
KZ operator acts diagonally on this vector provided that xk’s satisfy Bethe ansatz equations. These
equations (formula (2.27)) together with the explicit form of off-shell Bethe vector (formula (2.25))
constitute the main results of the current chapter.

2.2 Integrable systems of BCD type in CFT

The integrable systems studied in this chapter can be realized by the n−component bosonic free field
ϕ = (ϕ1, . . . , ϕn). Local Integrals of Motion have the following general form

Is =
1

2π

∫ 2π

0
Gs+1(z)dz, Īs =

1

2π

∫ 2π

0
Ḡs+1(z̄)dz̄, (2.1)

where Gs+1(z) and Ḡs+1(z̄) are the local densities with the spins s belonging to some set, which is a
characteristic property of a particular integrable system. The important property of local IM’s is that
they form the commutative set

[Ir, Is] = 0.
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The best way to describe our integrable systems goes through affine Toda QFT

S =

∫ ( 1

4π
(∂aϕ · ∂aϕ) + Λ

n∑

r=0

eb(αr·ϕ)
)
d2z. (2.2)

where the vectors (α0,α1, . . . ,αn) have the Gram matrix corresponding to one of the affine Dynkin
diagrams of BCD type:

D̂n

B̂n

B̂∨
n

Ĉn

Ĉ∨
n

B̂Cn

and b is the coupling constant. Using the standard parametrization for the roots one can express the
scalar products in the exponents in (2.2) as

(α0 ·ϕ) =





−ϕ1

−2ϕ1

−ϕ1 − ϕ2

(αr ·ϕ) = ϕr −ϕr+1 for 0 < r < n, (αn ·ϕ) =





ϕn

2ϕn

ϕn−1 + ϕn

(2.3)

That is each of the affine diagrams can be interpreted as non-affine An−1 diagram with two boundary
conditions which can be of three types B, C or D corresponding to the short root, the long root or the
root of the length

√
2 correspondingly.

The theories (2.2) are known to be integrable both classically and quantum mechanically. They

share an interesting property of the duality (see e.g. [Cor94]). Namely, both D̂n and B̂Cn theories are
self-dual with respect to the substitution b→ b−1, while B̂n and B̂∨

n as well as Ĉn and Ĉ∨
n are mapped

to each other. The quantum integrability implies that the theory admits the set of local Integrals of
Motion whose short distance limit coincides with Is and Īs from (2.1).

The integrals Is and Īs by themselves can be defined up to a total factor from the equation (and
similar antiholomorphic equation)

1

2πi

∮

Cz
eb(αr·ϕ(ξ))Gs+1(z)dξ = ∂Vs(z), (2.4)

where Vs(z) is some local field (and similar formula for Ḡs+1). Using (2.4) one can construct first few
local IM’s explicitly. It is convenient to write them in Nekrasov epsilon notations1

b =

√
ǫ2
ǫ1
, b−1 =

√
ǫ1
ǫ2

and ǫ3
def
= −ǫ1 − ǫ2.

1The answer will depends only on the ratio ǫ1
ǫ2
, so without loss of generality we may assume ǫ1ǫ2 = 1 and thus

b = ǫ2, b
−1 = ǫ1 and Q = b+

1

b
= −ǫ3.
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The first non-trivial local Integral of Motion is I3 and the corresponding Wick ordered density has the
form

G4(z) =
(
∂ϕ · ∂ϕ

)2 − 1

3

(
2n− ǫα + ǫβ

ǫ3

) n∑

k=1

(
∂ϕk

)4
+

+
4ǫ3√
ǫ1ǫ2

n∑

k=1

∂ϕ2
k


∑

j<k

(
j − 1 +

ǫ3 − ǫα
2ǫ3

)
∂2ϕj −

∑

j>k

(
n− j + ǫ3 − ǫβ

2ǫ3

)
∂2ϕj


+

+

(
2n+

4(n− 1)(ǫ21 + ǫ22)

3ǫ1ǫ2
+

(ǫ1ǫ2 − 2ǫ23)(ǫα + ǫβ − 2ǫ3)

3ǫ1ǫ2ǫ3

)(
∂2ϕ · ∂2ϕ

)
−

− 4ǫ23
ǫ1ǫ2

∑

i≤j

(
i− 1 +

ǫ3 − ǫα
2ǫ3

)(
n− j + ǫ3 − ǫβ

2ǫ3

)
(2− δij)∂2ϕi∂2ϕj , (2.5)

where each of the indexes α and β takes the values 1, 2 and 3, corresponding to either B, C or D
boundary conditions. And ϕk is the free bosonic field

∂ϕk(x) = −i
uk√
ǫ1ǫ2

+
∑

n 6=0

a(k)n e−inx, [aim, a
j
n] = mδm,−nδi,j . (2.6)

We stress that in general the solution to the commutativity equation (2.4) should be searched in
terms of analytically regularized densities rather that Wick ordered ones. In the case of the density of
spin 4 these two differ by an amount which is by itself an Integral of Motion. In general this is not the
case and starting from the spin 6 one expects to have corrections to the Wick ordered density, which
formally correspond to lower spins (see section 2.6 for the example).

2.3 Maulik-Okounkov R-matrix, K-matrix

The Maulik-Okounkov R−matrix is related to the Liouville reflection operator [ZZ96] as

Rij = R[∂ϕi − ∂ϕj ]. (2.7)

We will use both notations (2.7) interchangeably. Sometimes it may also be convenient to use the
notation Ri,j(ui − uj) in order to emphasise the value of the zero mode (see (2.6)).

This reflection operator can be defined up to a normalisation factor from the condition (Q = ǫ1+ǫ2√
ǫ1ǫ2

)

R[∂ϕi − ∂ϕj ](Q∂ − ∂ϕi)(Q∂ − ∂ϕj) = (Q∂ − ∂ϕj)(Q∂ − ∂ϕi)R[∂ϕi − ∂ϕj ], (2.8)

In order to introduce the K-operator, we consider rank two W -algebras of BCD type. They can
be defined as commutants of screening operators (here b = ǫ2√

ǫ1ǫ2
)

S1 =
∫
eb(ϕ1−ϕ2)dz, S2 =





∫
ebϕ2dz for B,∫
e2bϕ2dz for C,∫
eb(ϕ1+ϕ2)dz for D.

(2.9)

The corresponding holomorphic currents W (2) and W (4) have the explicit form

W (2) = (∂ϕ1)
2 + (∂ϕ2)

2 +
2ǫ3√
ǫ1ǫ2

∂2ϕ1 +
ǫ3 − ǫα√
ǫ1ǫ2

(∂2ϕ2 + ∂2ϕ1)
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and

W (4) = (∂ϕ1)
2(∂ϕ2)

2 +
2ǫ3√
ǫ1ǫ2

∂ϕ1∂ϕ2∂
2ϕ2 +

ǫ3 − ǫα√
ǫ1ǫ2

(
(∂ϕ1)

2∂2ϕ2 + (∂ϕ2)
2∂2ϕ1

)
−

− ǫ3ǫα
ǫ1ǫ2

(∂2ϕ1)
2 +

(ǫ3 − ǫα)2
ǫ1ǫ2

∂2ϕ1∂
2ϕ2 −

(ǫ1 − ǫα)(ǫ2 − ǫα)
2ǫ1ǫ2

(
∂ϕ1∂

3ϕ1 + ∂ϕ2∂
3ϕ2

)
−

− ǫ3(ǫ3 − ǫα)
ǫ1ǫ2

(
∂ϕ1∂

3ϕ1 − ∂ϕ1∂
3ϕ2

)
+

ǫ3√
ǫ1ǫ2

(
ǫα(ǫ3 − ǫα)

2ǫ1ǫ2
− ǫ23
ǫ1ǫ2

− 1

3

)
∂4ϕ1

where α = 1, 2, 3 correspond to B, C and D W -algebras correspondingly.

Each screening operator (2.9) generates the reflection operator according to the rule

R1,2W
(s) =W (s)

∣∣∣∣∣
ϕ1↔ϕ2

R1,2, K2W
(s) =W (s)

∣∣∣∣∣
ϕ2→−ϕ2

K2, (2.10)

for s = 2, 4. We have R1,2 = R[∂ϕ1 − ∂ϕ2], while K2 is also equal to the reflection operator of the
re-scaled argument

K1
2 = R[

√
2∂ϕ2]

∣∣∣
ǫ1→

√
2ǫ1,ǫ2→ǫ2/

√
2

for B series (2.11)

K2
2 = R[

√
2∂ϕ2]

∣∣∣
ǫ1→ǫ1/

√
2,ǫ2→

√
2ǫ2

for C series

K3
2 = Id for D series (2.12)

Note that K3
2 = Id is the simplest among the operators, as it does not depend on spectral parameter

and has very simple action on bosons.

Now, similar to the argument of Maulik and Okounkov, the K-operator obeys Sklyanin’s KRKR
equation2

R[∂ϕ1 − ∂ϕ2]Kα1R[∂ϕ1 + ∂ϕ2]Kα2 = Kα2R[∂ϕ1 + ∂ϕ2]Kα1R[∂ϕ1 − ∂ϕ2]. (2.13)

It is interesting to note that K1, K2 and K3 seem to exhaust all solutions to KRKR equation (2.13)
which preserve the grading operator

∫
W2dz. This is an unproven statement, confirmed by explicit

calculations on lower levels.

2.3.1 KZ integrals of motion.

Having defined R− and K−operators, one can define the important family of IOM’s constructed from
two solutions of KRKR equation – the so called KZ Integrals of Motion. Let us introduce the following
operators:

T +
i = Ri,i+1 . . .Ri,nKαi Ri,n . . .Ri,i+1,

T −
i = Ri,1 . . .Ri,i−1Kβi R1,̄i . . .Ri−1,̄i,

IKZ
i = T −

i T +
i (2.14)

2Let us note that originally [Skl88] the KRKR equation was written in a quite different form:

R1,2(u1 − u2)K̃1(u1)R2,1(u2 + u1)K̃2(u2) = K̃2(u2)R1,2(u1 + u2)K̃1(u1)R2,1(u1 − u2).

The difference is actually insufficient as the two equations are differ by the redefinition of K-operator and overall
conjugation by the reflection of bosonic modes a1,2n → −a1,2n , n 6= 0
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where we defined the conjugation operator Di, and the bared index ī means the conjugatoin by the
Di

Dif(ϕ) = f(ϕ)
∣∣∣
ϕi→−ϕi

Di,

Ri,j̄ = DjRi,jDj = R[∂ϕi + ∂ϕj ],

Rī,j = DiRi,jDi = R[−∂ϕi − ∂ϕj ],

Using KRKR equation (2.13), it is straightforward to check that

[IKZ
i , IKZ

j ] = 0.

It is also possible to prove the commutativity of KZ Integrals of Motion and local ones. Indeed,
any screening operator Sα acts non-trivially only in two (or one at the endpoints) spaces. In order to
point it out we will equip it with the label i, such that Sαi acts in the space of two bosons Fi ⊗Fi+1

for i 6= 0, n, while Sα0 and Sαn acts only on first and the last boson correspondingly (see (2.3)). Now,
from the very definition of the reflection operators (2.10) any operator Oi which commutes with Sαi

has a nice intertwining property with the reflection operators

Ri,i+1Oi = Oi
∣∣∣
ϕi↔ϕi+1

Ri,i+1 , i = 1 . . . n− 1

KiOi = Oi
∣∣∣
ϕi→−ϕi

Ki , i = 0, n.

As local IM’s commute with all screening operators, they nicely intertwine with both T − and T +

T +
i Is = Is

∣∣∣
ϕi→−ϕi

T +
i , T −

i Is

∣∣∣
ϕi→−ϕi

= Is T −
i , (2.15)

which proves the commutativity [Is, IKZ
i ] = 0.

2.3.2 Review of the RLL algebra YB(ĝl1)

Let us remind the basic properties of RLL algebra and its equivalent description in terms of generating
currents h, e and f (for more details see [LV20]).

The Maulik-Okounkov R-matrix defines the Yang-Baxter algebra (YB
(
ĝl(1)

)
) in the standard way

Rij(u− v)Li(u)Lj(v) = Lj(v)Li(u)Rij(u− v).

Here Li(u) is treated as an operator in some quantum space, a tensor product of n Fock spaces in
our case, and as a matrix in the auxiliary Fock space Fu. The algebra (??) becomes an infinite set of
quadratic relations between the matrix elements labeled by two partitions

Lλ,µ(u)
def
= 〈u|aλL(u)a−µ|u〉 where a−µ|u〉 = a−µ1a−µ2 . . . |u〉.

Let us introduce three basic currents of degree 0, 1 and −1

h(u)
def
= L∅,∅(u), e(u)

def
= h−1(u) · L∅,2(u) and f(u)

def
= L2,∅(u) · h−1(u), (2.16)

as well as an auxiliary current (as we will see (2.18a) it also belongs to the Cartan subalgebra of
YB
(
ĝl(1)

)
)

ψ(u)
def
=
(
L2,2(u+ ǫ3)− L∅,2(u+ ǫ3)h

−1(u+ ǫ3)L2,∅(u+ ǫ3)
)
h−1(u+ ǫ3) (2.17)
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As follows from definition of the R-matrix these currents admit large u expansion

h(u) = 1+
h0
u

+
h1
u2

+ . . . , e(u) =
e0
u
+
e1
u2

+ . . . , f(u) =
f0
u
+
f1
u2

+ . . . , ψ(u) = 1+
ψ0

u
+
ψ1

u2
+ . . .

Using the definition (2.16) and (2.17) and explicit expression for the R-matrix on first three levels
one can prove [LV20] the following relations

[h(u), ψ(v)] = 0, [ψ(u), ψ(v)] = 0, [h(u), h(v)] = 0, (2.18a)

(u− v − ǫ3)h(u)e(v) = (u− v)e(v)h(u)−ǫ3h(u)e(u),
(u− v − ǫ3)f(v)h(u) = (u− v)h(u)f(v)−ǫ3f(u)h(u), (2.18b)

[e(u), f(v)] =
ψ(u)− ψ(v)

u− v , (2.18c)

as well as ee, ff relations

g(u− v)
[
e(u)e(v)− e (v)

u− v + ǫ1
−

e (v)

u− v + ǫ2
− e (v)

u− v + ǫ3

]
=

= ḡ(u− v)
[
e(v)e(u)− e (u)

u− v − ǫ1
−

e (u)

u− v − ǫ2
− e (u)

u− v − ǫ3

]
,

ḡ(u− v)
[
f(u)f(v)− f (v)

u− v − ǫ1
−

f (v)

u− v − ǫ2
− f (v)

u− v − ǫ3

]
=

= g(u− v)
[
f(v)f(u)− f (u)

u− v + ǫ1
−

f (u)

u− v + ǫ2
− f (u)

u− v + ǫ3

]
, (2.18d)

ψe, ψf relations
g(u− v)ψ(u)e(v) = ḡ(u− v)e(v)ψ(u) + locals,

g(u− v)f(v)ψ(u) = ḡ(u− v)ψ(u)f(v) + locals,
(2.18e)

and Serre relations
∑

σ∈S3
(uσ1 − 2uσ2 + uσ3)e(uσ1)e(uσ2)e(uσ3)+

∑

σ∈S3
[e(uσ1), e (uσ2) + e (uσ2) + e (uσ2)] = 0,

∑

σ∈S3
(uσ1 − 2uσ2 + uσ3)f(uσ1)f(uσ2)f(uσ3)+

∑

σ∈S3
[f(uσ1), f (uσ2) + f (uσ2) + f (uσ2)] = 0.

(2.18f)

In the relations above we have used the following notations

g(x)
def
= (x+ ǫ1)(x+ ǫ2)(x+ ǫ3), ḡ(x)

def
= (x− ǫ1)(x− ǫ2)(x− ǫ3).

We note that the terms shown by blue in (2.18c)-(2.18e) depend only on one parameter either u or
v (in (2.18e) these terms are so complicated, that we do no write them explicitly) and in (2.18f) they
depend only on two parameters instead of three. We call such terms localand use shorthand notation
locals in formulas instead of writing them explicitly. The main idea is that they always can be omitted
in actual computations, as we only interested in relations between modes of currents the local terms
always will stand inside some contour integral, it turns out that the integration contour always can
be chosen in a way to exclude local terms.

Now let us describe the inverse map from the Borel sub-algebra of RLL algebra to the currents.
We introduce the modes Un of W (1)(z) current

〈∅|L(u) a(0)−n|∅〉 =
Un
u

+O

(
1

u2

)
, n > 0

〈∅|a(0)n L(u)|∅〉 =
U−n
u

+O

(
1

u2

)
, n > 0
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It is clear from the RLL relation that the R−matrix commutes with the W (1) current:

(a(0)n + Un)R0,v = R0,v(a
(0)
n + Un)

Taking the matrix element over the auxiliary space 〈∅| . . . |µ〉 for positive n we will get:

[Lµ,∅(u), Un] = Lµ+n,∅(u), (2.19)

where 〈µ+ n| def= 〈µ|an.
It is also clear, that Un for n > 0 belongs to the subalgebra n+. Indeed, explicit calculation of the

large u limit of R(u) (see [LV20] for the details) shows that:

U1 = f0 U−1 = e0,

Uk+1 = −k[f1, Uk] Uk−1 = −k[e1, Uk].

Then we get:

Ux
k =

∮
· · ·
∮
gk(z)f(z1)...f(zk)dz with gk+1(z) = −k

(
z1gk(z2, . . . , zk+1)− gn(z1, . . . , zk)zk+1

)
,

and

gk(z) = (−1)k−1(k − 1)!
∏

i

zi

(∑
(−1)iCikz−1

i

)
,

where Cin are the binomial coefficients.

Finally using (2.19) we may express Lλ,∅(u) as a multiple commutator of L∅,∅(u) = h(u) and
modes of f(z) currents, or equivalently as contour integral

Lλ,∅(u) =
1

(2πi)|λ|

∮
· · ·
∮
Fλ(z|u)h(u)f(z|λ|) . . . f(z1)dz1 . . . , dz|λ| (2.20)

with some explicit function Fλ(z|u).

2.3.3 Antipode

As we will see there is an important operation: the reflection of the boson ϕ(x) → −ϕ(x). Using it
we define the antipode of L-operator:

(Lµ,ν(u))a def
= L̄µ,ν(u) = (−1)l(µ)+l(ν)L(−u)µ,ν ,

L(u)L(v) def
= L̄(v)L̄(u).

Here l(µ) is the number of rows in Young diagram µ3.

It is convenient to write the conjugated L operator as follows:

L̄λ,∅(u) =
1

(2πi)|λ|

∮
· · ·
∮
Fλ(z|u) f(−ǫ3 − z|λ|) . . . f(−ǫ3 − z1)h(−u)dz1 . . . dz|λ|

3Note that if we think of the diagram as of the bosonic state: |λ〉 =
l(λ)
∏

i=1

a−λi
|∅〉, then multiplication by (−1)λ is

nothing but the reflection of the bosons a−n → −a−n.
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2.4 Off-shell Bethe vector

In order to construct the off-shell Bethe vector we consider the tensor product of n+N Fock spaces

Fun ⊗ · · · ⊗ Fu1︸ ︷︷ ︸
quantum space

⊗Fx1 ⊗ · · · ⊗ FxN︸ ︷︷ ︸
auxiliary space

= Fu ⊗ Fx

generated from the vacuum state

|∅〉u ⊗ |∅〉x = |un〉 ⊗ · · · ⊗ |u1〉 ⊗ |x1〉 ⊗ · · · ⊗ |xN 〉.

In order not to confuse between the auxiliary and quantum Fock spaces, we will label Fock space not
by it’s index, but by it’s spectral parameter. So that the R-matrix between two Fock spaces will read
as Rui,uj while the R-matrix between two auxiliary spaces as Rxi,xj .

As usual let us introduce Li(ui) operators:

Li(ui) = Rui,x = Rui,x1 . . .Rui,xN , Lu = Ln(un) . . .L1(u1). (2.21)

It is also convenient to define opposite L̄ operators:

L̄i(ui) = Rūi,x = Rūi,xN . . .Rūi,x1 , L̄u = L̄1(u1) . . . L̄n(un) (2.22)

2.4.1 K operators

In the previous section we have defined the K-matrix acting on the single Fock space (2.10). It is
useful to extend its action to the tensor product of quantum and auxiliary Fock spaces. Let us define

Ku|y
def
= Ru,yKyRu,y, (2.23)

where

Ru,y = Run,y . . .Ru1,y , Rv,x = Rv,xN . . .Rv,x1
and Ky is the operator defined in (2.10). The definition (2.23) is the direct analog of L-operator to
the boundary case. This definition can be conveniently illustrated with the following picture

Ku|y =
y

y

u1u2u3un−1un

We note that Ku|x1 still enjoys KRKR equation (2.13)

Rx1,x2Ku|x1Rx1,x̄2Ku|x2 = Ku|x2Rx1,x̄2Ku|x1Rx1,x2 .

Now let us extend the action of our K-operator to the full auxiliary space Fx. The most convenient
way to do it is by recurrent formula

Ku|y,x = Ku|xRȳ,xKy.

Here Ku|y is the operator defined in (2.23) acting on a tensor product Fu ⊗ Fy, while Ku|x acts on
a tensor product of Fu ⊗ Fx. The last formula can be illustrated by the following picture (here we
consider for simplicity the case of N = 3)
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c

u1u2u3

x1

x2

x3

un−1un

Ku|x =

Figure 2.1: Explicitly this K operator reads as Ku|x3,x2,x1 = Ku|x3Rx̄2,x3Ku|x2Rx̄1,x3Rx̄1,x2Ku|x1

Finally our definition of Kv|x may be summarised in two operations which increase the number of
quantum and auxiliary Fock spaces:

∆q(Ku|x)
def
= Kv,u|x = L̄vKu|xLv, ∆a(Ku|x)

def
= Ku|y,x = Ku|xRȳ,xKy. (2.24)

Using the Yang-Baxter equation and KRKR relation, one can show that two operators actually
commute ∆q(∆a(Kv|x)) = ∆a(∆q(Kv|x)). This property may be illustrated by the following picture

pp =

u1 u1
u1u2 u2

u2u3 u3
u3

x1 x1x1

x2 x2
x2

x3 x3
x3

un−1 un−1
un−1un unun

2.4.2 Off-shell Bethe vector

Now we are ready to introduce the off-shell Bethe vector

|B(x)〉 =x〈∅|L̄vKxLv|∅〉v|χ〉x =x〈∅|Kv|x|∅〉v|χ〉x (2.25)
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here |χ〉x is the same vector as in the A type considerations (1.68). It has grading N with respect to
the standard grading operator. The vector |B(x)〉 can be represented by the following picture 4

|∅〉

∅ ∅∅∅∅∅∅∅

u1u2u3

x1

x2

x3

un−1un

|B(x)〉 =

|χ〉x

(2.26)

We will provide more details about the Bethe vector in the next section, for now let us just announce
the main property of Bethe vector - .

2.4.3 Bethe Ansatz equations, eigenvalues of KZ IOMs.

We note that the Yang-Baxter and KRKR relation (2.13) provide the nice intertwining property of
the off-shell Bethe vector with the T +

i operator (2.14)

T +
i |B(x)〉 = |B(x)〉

∣∣∣
ϕi→−ϕi

In the next section we will prove that under the Bethe ansatz equations

rα(xi)r
β(xi)A(xi)A

−1(−xi)
∏

j 6=i
G(xi − xj)G−1(−xi − xj) = 1,

G(x) =
(x− ǫ1)(x− ǫ2)(x− ǫ3)
(x+ ǫ1)(x+ ǫ2)(x+ ǫ3)

, A(x) =
n∏

k=1

x− uk + ǫ3
2

x− uk − ǫ3
2

, rα(x) = −x+ ǫα/2

x− ǫα/2
.

(2.27)

the Bethe vector with shifted x parameters |B(x − ǫ3
2 )〉 becomes an eigenvector of KZ IOMs IKZ

i

(2.14):

IKZ
i |B(x− ǫ3

2
)〉 BAE(x)=1

=
∏

a

(ui +
ǫ3
2 )

2 − x2a
(ui − ǫ3

2 )
2 − x2a

|B(x− ǫ3
2
)〉. (2.28)

Equations (2.27) and (2.28) together with the explicit form of off-shell Bethe vector (2.25) are the
main results of the current chapter.

4This formula differs from the one provided by Sklyanin [Skl88] in sl(2) case. In his approach Ku|x operator is a
product of single space operators

∏

i

Ku|xi
. It can be shown, that for sl(2) case these two approaches coincide. For

example on level 3 we have:

|B(x)〉 =x 〈↓↓↓ |Ku|x3,x2,x1
| ↑↑↑〉x ⊗ | ↓〉u =x 〈↓↓↓ |Ku|x3

Rx̄2,x3
Ku|x2

Rx̄1,x3
Rx̄1,x2

Ku|x1
| ↑↑↑〉x ⊗ | ↓〉u.

In the case of sl(2), R-matrices between the auxiliary spaces may be omitted, and we reproduce Sklyanin’s formula:

|B(x)〉
for sl(2)

= x 〈↓↓↓ |Ku|x3
Ku|x2

Ku|x1
| ↑↑↑〉x ⊗ | ↓〉u = 〈↓ |Ku|x3

| ↑〉〈↓ |Ku|x2
| ↑〉〈↓ |Ku|x1

| ↑〉| ↓〉u.
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2.5 Diagonalization of KZ integral

Let us revise the formula for the off-shell Bethe vector (2.25). One observes that the definition of (2.25)
(as especially seen from the picture (2.26)) suggests that |B(x)〉 can be interpreted as a product of

some L−operators L(un) . . .L(u1) sandwiched between bra and ket states 〈Kx| and
∣∣∣χ
∅

〉
x

|∅〉

∅ ∅∅∅∅∅∅∅

u1u2u3

x1

x1

x2

x2

x3

x3

un−1un

|B(x)〉 =

〈Kx| L(u2)

|χ〉x

∣∣∣χ
∅

〉
x

This observation can be formalized as follows. Let us define L(u) operator by the picture

Fx1
Fx2
Fx3

F⋆x1
F⋆x2
F⋆x3

λ

µ

L(u)λ,µ =

By definition it acts in the tensor product of Fock module and it’s dual Fx ⊗ F⋆x and equals to the
infinite sum

L(u)λ,µ =
∑

ρ

L(u)ρ,µ ⊗ L̄(u)λ,ρ (2.29)

It is though clear that L(u)-operators, still enjoys RLL algebra

R(u1 − u2)L(u1)L(u2) = L(u2)L(u1)R(u1 − u2)

Using this equation we may define the currents in complete analogy with A case with exactly the same
commutation relations (1.40):

h(u)
def
= L∅,∅(u), e(u)

def
= h−1(u)L∅,2(u) and f(u)

def
= L2,∅(u)h

−1(u).

Exploiting this picture further, we can consider K−operator Kx as a bra vector 〈K| acting from

Fx ⊗ F⋆x to C. We will denote vectors from Fx ⊗ F⋆x by a two rows objects
∣∣∣λ
µ

〉
, where λ ∈ Fx ,
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µ ∈ F⋆x. It allows to rewrite Bethe vector (2.25) as follows:

|Bα,u(x)〉 =x〈∅|L̄1 . . . L̄nKαxLn . . .L1|χ〉x|∅〉u ≡ x〈Kα|Ln . . .L1

∣∣∣χ
∅

〉
x
|∅〉u. (2.30)

The benefit of this approach is that the structure of the Bethe vector may be analysed by the rep-
resentation theory of the Affine Yangian in Fx ⊗ F⋆x. We call the corresponding representation the
strange module.

2.5.1 Strange module

Our goal is to describe the action of e, f, h and ψ currents on this strange module. The first obvious
remark is that while there is no highest weight vector, nevertheless Cartan currents h(u) and ψ(u)
still can be diagonalized. Let us consider the first component of tensor product Fx ⊗F⋆x. We already
know [LV20] that the eigenbasis is numerated by the collection of Young diagrams ~λ = {λ(1), . . . ,λ(N)}
with the eigenvalues:

h(u)|~λ〉 =
∏

2∈~λ

(u− c2)
(u− c2 − ǫ3)

|~λ〉, ψ(u)|~λ〉 =
3∏

α=1

∏

2∈~λ

(u− c2 − ǫα)
(u− c2 + ǫα)

n∏

k=1

(u− xk + ǫ3)

(u− xk)
|~λ〉,

where by definition the content of the cell with coordinates (i, j) in Young diagram λ(k) is

c2 = xk − (i− 1)ǫ1 − (j − 1)ǫ2.

Now, both h and ψ act by a triangle matrices in the tensor product of two eigenbases. Indeed,
according to (2.29):

h(u) = h(u)⊗ h(−u) +
∑

ρ 6=∅

L∅,ρ(u)⊗ L̄ρ,∅(u),

and hence the eigenbasis of h(u), ψ(u) in Fx ⊗ F⋆x is enumerated by the collection of 2N Young
diagrams

h(u)
∣∣∣
~λ
~µ

〉
=
∏

2∈~λ

(u− c2)
(u− c2 − ǫ3)

∏

2∈~µ

(u− c2 − ǫ3)
(u− c2)

∣∣∣
~λ
~µ

〉
,

ψ(u)
∣∣∣
~λ
~µ

〉
=

3∏

α=1


∏

2∈~λ

(u− c2 − ǫα)
(u− c2 + ǫα)

∏

2∈~µ

(u− c2 + ǫα)

(u− c2 − ǫα)




n∏

k=1

(u− xk + ǫ3)

(u− xk)
(u+ xk)

(u+ xk + ǫ3)

∣∣∣
~λ
~µ

〉
,

where

c2 = xk − (i− 1)ǫ1 − (j − 1)ǫ2, for (i, j) ∈ ~λ - the contents of the upper diagram,

c2 = −ǫ3 − xk + (i− 1)ǫ1 + (j − 1)ǫ2, for (i, j) ∈ ~µ - the contents of the lower diagram.

Moreover from the e, h commutation relation

h(u)e(v)|Λ〉 = u− v
u− v − ǫ3

e(v)hΛ(u)|Λ〉 −
ǫ3

u− v − ǫ3
L∅,2(u)|Λ〉,
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it follows that e(u) acts on the eigenvectors
∣∣∣
~λ
~µ

〉
with the known poles:

e(u)
∣∣∣
~λ
~µ

〉
=

∑

2∈addable(~λ)

E
(~λ → ~λ+2

~µ → ~µ

)

u− c2

∣∣∣
~λ+2

~µ

〉
+

∑

2∈removable(~µ)

E
(~λ → ~λ
~µ → ~µ−2

)

u− c2

∣∣∣
~λ

~µ−2

〉
,

f(u)
∣∣∣
~λ
~µ

〉
=

∑

2∈removable(~λ)

F
(~λ → ~λ−2

~µ → ~µ

)

u− c2

∣∣∣
~λ−2

~µ

〉
+

∑

2∈addable(~µ)

F
(~λ → ~λ
~µ → ~µ+2

)

u− c2

∣∣∣
~λ

~µ+2

〉
.

We have a freedom to change the coefficients F,E by re-scaling the eigenvectors, however their product
is fixed by the ef commutation relation (2.18c):

E
(~λ−2 → ~λ

~µ → ~µ

)
F
(~λ → ~λ−2

~µ → ~µ

)
= Resu=c2

〈~λ
~µ

∣∣∣ψ(u)
∣∣∣
~λ
~µ

〉

〈~λ
~µ

∣∣∣
~λ
~µ

〉 (2.31)

and

E
( ~λ → ~λ
~µ+2 → ~µ

)
F
(~λ → ~λ
~µ → ~µ+2

)
= Resu=c2

〈~λ
~µ

∣∣∣ψ(u)
∣∣∣
~λ
~µ

〉

〈~λ
~µ

∣∣∣
~λ
~µ

〉 (2.32)

The choice of coefficients E and F consistent with (2.31)-(2.32) is equivalent to the choice of
normalisation for eigenvectors. It is convenient to use the following one

E
(~λ → ~λ+2

~µ → ~µ

)
=
ǫ1ǫ2
ǫ3

∏

2′∈~λ+2

S−1(c2 − c2′)
∏

2′∈~µ
S(c2 − c2′)

n∏

k=1

(c2 − xk + ǫ3)

(c2 − xk)
(c2 + xk)

(c2 + xk + ǫ3)
,(2.33)

F
(~λ → ~λ
~µ → ~µ+2

)
=
∏

2′∈~λ

S(c2′ − c2)
∏

2′∈~µ+2

S−1(c2′ − c2)
n∏

k=1

(c2 − xk + ǫ3)

(c2 − xk)
(c2 + xk)

(c2 + xk + ǫ3)
, (2.34)

E
(~λ → ~λ
~µ → ~µ−2

)
=
ǫ1ǫ2
ǫ3

∏

2′∈~λ

S−1(c2 − c2′)
∏

2′∈ ~µ−2

S(c2 − c2′),

F
(~λ → ~λ−2

~µ → ~µ

)
=

∏

2′∈~λ−2

S(c2′ − c2)
∏

2′∈~µ
S−1(c2′ − c2), (2.35)

with

S(x) =
(x+ ǫ1)(x+ ǫ2)

x(x− ǫ3)
.

Let us now define the vector |χ〉x announced in definitions of off-shell Bethe vector (2.25), (2.30).
The idea is to choose the vector which will maximally simplify the computation of Bethe vector. The
most natural definition is: ∣∣∣χ

∅

〉
x
=
∣∣∣2, . . . ,2

∅

〉
x
.

Alternatively, this vector may be defined (up to proportionality constant) as an eigenvector of h(z)
with the most natural eigenvalue:

h(u)
∣∣∣χ
∅

〉
x
=

N∏

i=1

u− xi
u− xi − ǫ3

∣∣∣χ
∅

〉
x
.
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The main advantage of this choice is that it provides an understandable structure of the off-shell Bethe
function (2.43), (2.48). Namely the matrix elements

x〈Kα|h(un) f(z(n)1 )f(z
(n)
2 ) . . .︸ ︷︷ ︸

|λ(n)|

. . . h(u2) f(z
(2)
1 )f(z

(2)
2 ) . . .︸ ︷︷ ︸

|λ(2)|

h(u1) f(z
(1)
1 )f(z

(1)
2 ) . . .︸ ︷︷ ︸

|λ(1)|

∣∣∣χ
∅

〉
x

involved in (2.48) may have poles only at points zi = xj or zi = −xj − ǫ3. Then one may compute
them explicitly either from formulas (2.34), (2.35), (2.42), or by analysis of hf, ff commutation relations
(2.18a), (2.18d) and 〈K|f relation (2.39). This logic will be explained in section (2.5.3).

2.5.2 Calculation of K-operator

Our K−operator Kx provides the pairing in the space Fx ⊗ F⋆x. Our goal for this section is the
calculation of the matrix elements:

〈~µ|Kx|~λ〉 =
〈
Kx

∣∣∣
~λ
~µ

〉

In order to do so, we use the reflection equation:

KvL̄(u)KxL(u) = L(u)KxL̄(u)Ku (2.36)

Being rewritten in terms of L(u), equation (2.36) takes the form:

〈K|L(u)λ,Kµ = 〈K|L̄(u)Kλ,µ

Two immediate consequences of these relations are:

〈K|h(u) = 〈K|h(−u), (2.37)

〈K|L2,∅(u) = −κ(u)〈K|L2,∅(−u), (2.38)

where K|2〉 = κ(u)|2〉. The last equation can be equivalently rewritten in terms of the reflection
relation for the f current:

〈K|f(u) = r(u)〈K|f(−ǫ3 − u), (2.39)

with

r(u) = −2u+ ǫ3 + ǫ3κ(u)

2uκ(u)
.

This equation immediately follows from (2.37), (2.38) after substitution L2,∅(u) = f(u)h(u) and the
following chain of relations

〈K|f(u)h(u) = −κ(u)〈K|f(−u)h(−u) = −κ(u)〈K|h(−u)f(−u− ǫ3) =

= −κ(u)〈K|h(u)f(−u− ǫ3) = −
ǫ3κ(u)

2u+ ǫ3
〈K|f(u)h(u)− 2uκ(u)

2u+ ǫ3
〈K|f(−u− ǫ3)h(u)

Finally we have

κ(u) = 1 , r(u− ǫ3/2) = −
u+ ǫ3/2

u− ǫ3/2
for the D case, (2.40)

κ(u) =
u− ǫi − ǫj/2
u+ ǫi + ǫj/2

, r(u− ǫ3/2) = −
u+ ǫi/2

u− ǫi/2
for the BC case, (2.41)

where in the last line {i, j} = {1, 2} corresponds to the B case and {i, j} = {2, 1} corresponds to the
C case.
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Relations (2.37) and (2.40)-(2.41) completely define the matrix elements (2.36). First of all from
(2.37) it follows that K acts diagonally in the eigenbasis of h i.e. ~λ = ~µ. Then one can find

〈
Kx

∣∣∣
~λ
~λ

〉
= F−1

( ~λ → ~λ
~λ−2 → ~λ

)
resz=c2

〈
Kx

∣∣∣f(−ǫ3 − z)
∣∣∣

~λ
~λ−2

〉
=

= r−1(c2)F
−1
( ~λ → ~λ
~λ−2 → ~λ

)
resz=c2

〈
Kx

∣∣∣f(z)
∣∣∣

~λ
~λ−2

〉
= (2.42)

= r−1(c2)F
−1
( ~λ → ~λ
~λ−2 → ~λ

)
F
( ~λ → ~λ−2

~λ−2 → ~λ−2

)〈
Kx

∣∣∣
~λ−2

~λ−2

〉

2.5.3 Off-shell Bethe function, diagonalization of KZ integral.

Motivated by the formulas (2.40) and (2.41), it is convenient to shift x variables: x→ x− ǫ3
2 , as well

as redefine the operators f: f(z)→ f(z − ǫ3
2 ).

Let us consider the following Bethe vectors:

|Bα,u(x)〉 =x〈∅|L̄1 . . . L̄nKαxLn . . .L1|∅〉u|χ〉x ≡x〈Kα|Ln . . .L1|∅〉u
∣∣∣χ
∅

〉
x

|B̄β,u(x)〉 =x〈∅|Ln . . .L1KβxL̄1 . . . L̄n|∅〉u|χ̄〉x ≡x〈Kβ |L̄1 . . . L̄n|∅〉u
∣∣∣χ̄
∅

〉
x
,

where α = 1, 2, 3 labels possible K−operators.
It is also useful to introduce their matrix elements the so called off-shell Bethe functions:

ω
α,~λ

(x|u) def
= 〈~λ|Bα,u(x)〉 =x〈Kαx |Lλ(1),∅(u1) . . .Lλ(n),∅(un)

∣∣∣χ
∅

〉
x
, (2.43)

ω̄
β,~λ

(x|u) def
= 〈~λ|B̄β,u(x)〉 =x〈Kβx |L̄λ(n),∅(un) . . . L̄λ(1),∅(u1)

∣∣∣χ̄
∅

〉
x
.

The off-shell Bethe vectors and hence the off-shell functions have nice intertwining relations with
R-matrix and K-operators:

Ri,i+1|Bα,u(x)〉 = Pi,i+1|Bα,u(x)〉,
Ri,i+1|B̄β,u(x)〉 = Pi,i+1|B̄β,u(x)〉,

Kαn |Bα,u(x)〉 = Dn|Bα,u(x)〉,
Kβ1D1|B̄β,u(x)〉 = |B̄β,u(x)〉.

It implies in particular, the simple action of KZ operators:

T +
i |Bα,u(x)〉 = Di|Bα,u(x)〉, (2.44)

T −
i Di|B̄β,u(x)〉 = |B̄β,u(x)〉. (2.45)

Our goal for this section is to prove that under the Bethe ansatz equations (2.27) two Bethe vectors
are proportional to each other:

|Bα,u(x)〉 BAE(x)=1
= |B̄α,u(x)〉

∏

i,a

ui − xa − ǫ3
2

ui − xa + ǫ3
2

c(x), (2.46)

for some c(x). Combining this equation and relations (2.44)-(2.45) one can immediately conclude that
on-shell Bethe vector is indeed an eigenvector of KZ operator (2.56).
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Let us proceed to the proof. It is enough to check (2.46) for any matrix element, or, which is the
same, to establish similar relation for off-shell functions (2.49). In order to compute the later, let us
remind (2.20) that Lλ,∅ is generated by the h(u) and f(z) currents:

Lλ,∅(u) =
1

(2πi)|λ|

∮

C1
· · ·
∮

C|λ|

Fλ(z −
ǫ3
2
|u) h(u)f(z|λ|) . . . f(z1)dz1 . . . dz|λ|, (2.47)

where each contour Ck goes clockwise around∞ and u−ǫ3, so that it doesn’t pick the poles of function
F~λ

. Using (2.47) the weight function (2.43) can be rewritten as

ω
α,~λ

(x|u) = 1

(2πi)N
×

×
∮
F~λ(~z−

ǫ3
2
|u) x〈Kα|h(un) f(z(n)1 )f(z

(n)
2 ) . . .︸ ︷︷ ︸

|λ(n)|

. . . h(u2) f(z
(2)
1 )f(z

(2)
2 ) . . .︸ ︷︷ ︸

|λ(2)|

h(u1) f(z
(1)
1 )f(z

(1)
2 ) . . .︸ ︷︷ ︸

|λ(1)|

∣∣∣χ
∅

〉
x
d~z,

(2.48)

where

F~λ(~z|u) =
n∏

k=1

F
λ(k)

(
z
(k)
1 , . . . , z

(k)

|λ(k)|
∣∣uk
)
.

The contour integral (2.48) can be computed by residues. In order to do so let us analyse possible
poles in z variables. As we already explained any f(z) operator either removes one box from the upper
Young diagram χ or add a box to the lover Young diagram with a pole equal to the content of the

corresponding cell. We also proved that the matrix element
〈
K
∣∣∣
~λ

~µ

〉
is nonzero only if ~λ = ~µ. Thus

we conclude that the only possible poles of the contour integral (2.48) are

zi = xσ(i) or zi = −xσ(i),

where σ is some permutation. It is convenient to consider the group spanned by the elements s,
which is generated by permutations of all indices SN and Z2 reflection of each index i → ī with the
convention xī = −xi. The weight function itself is given by the sum over residues as:

ω
α,~λ

(x|u) =
∑

s

Iαs(1,...,N) .

We are going to prove the proportionality of two weight functions under the Bethe equations:

ω
α,~λ

(x|u) BAE(x)=1
= c(x)ω̄

β,~λ
(x|u). (2.49)

Actually, we will prove a stronger statement of proportionality of the corresponding residues:

Iαs(1,...,N)

BAE(x)=1
= c(x)Īβs(1,...,N). (2.50)

Using the fact that the integral (2.47) defined to avoid the poles of F~λ
, we have explicitly:

Iαs(1,...N)(x) = F~λ(s(x)−
ǫ3
2
|u)Reszi=xs(i) x〈Kα|h(un) f(z(n)1 )f(z

(n)
2 ) . . .︸ ︷︷ ︸

|λ(n)|

. . .

. . . h(u2) f(z
(2)
1 )f(z

(2)
2 ) . . .︸ ︷︷ ︸

|λ(2)|

h(u1) f(z
(1)
1 )f(z

(1)
2 ) . . .︸ ︷︷ ︸

|λ(1)|

∣∣∣χ
∅

〉
x

(2.51)
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and

Īβs(1,...N)(x) = F~λ(s(x)−
ǫ3
2
|u)Reszi=xs(i) ·

x〈Kβ| f(−z(1)1 )f(−z(1)2 ) . . .︸ ︷︷ ︸
|λ(1)|

h(−u1) f(−z(2)1 )f(−z(2)2 ) . . .︸ ︷︷ ︸
|λ(2)|

h (−u2) . . . f(−z(n)1 )f(−z(n)2 ) . . .︸ ︷︷ ︸
|λ(n)|

h(−un)
∣∣∣χ
∅

〉
x
.

(2.52)

Taking into account formulas (2.33)-(2.35) and (2.42), it is straightforward to compute the matrix
elements and check equation (2.50) with

c(x) =
∏

i<j

S(xi + xj)
∏

i

rβ(−xi). (2.53)

One can also provide a simpler proof without reference to the explicit formulas for matrix ele-
ments, but using the fh, ff commutation relation (2.18a),(2.18d) and 〈K|f relation (2.39). The direct
consequence of this relations is the formula for the matrix elements:

Reszi=xi x〈Kα| . . . f(zi+1)f(zi) . . .
∣∣∣χ
∅

〉
x
= G−1(xi+1 − xi) Reszi=xi x〈Kα| . . . f(zi)f(zi+1) . . .

∣∣∣χ
∅

〉
x
,

(2.54)

Reszi=xi x〈Kα| . . . f(zi)h(u) . . .
∣∣∣χ
∅

〉
x
=
u− xi + ǫ3

2

u− xi − ǫ3
2

Reszi=xi x〈Kα| . . . h(u)f(zi) . . .
∣∣∣χ
∅

〉
x
,

Reszi=xi x〈Kα|f(−zN ) . . .
∣∣∣χ
∅

〉
x
= r(−xN ) Reszi=xi x〈Kα|f(zN ) . . .

∣∣∣χ
∅

〉
x
. (2.55)

Note that in the first two relations we additionally used the fact that Bethe roots xi are not in
resonance with each other as well as with evaluation parameters uk. It allow us to omit local (blue)
terms in (2.18b), (2.18d). These three relations are completely define the residues up to a constant.

We immediately observe that both matrix elements (2.51),(2.52) share the same transformation
properties under the permutation of xi variables. At the first glance the transformation under reflection
of xi variables is different. Indeed the reflection of xN in the first matrix element (2.51) produce a
simple factor rα(xN ), while in the opposite matrix element (2.52) we have to move corresponding
operator f(−zN ) to the left boundary and back which produce the product of many terms:

rβ(−xN )
∏

k

x2N − (uk − ǫ3
2 )

2

x2N − (uk +
ǫ3
2 )

2

∏

j 6=N
G−1(xN − xj)G−1(xN + xj).

Two factors coincide under the Bethe equations (2.27). This proves the proportionality of corre-
sponding residues (2.51),(2.52). The proportionality constant (2.53) may be computed along the same
lines.

It may be useful to note that the identities (2.54)-(2.55) may be summarized in the following rules
for computation of the residues:

Iα1,...,N = F~λ(x+
ǫ3
2
|u)
∏

k

N∏

i=|λk|+1

uk − xi + ǫ3
2

uk − xi − ǫ3
2

∏

i<j

S(xi − xj),

Iα...,i+1,i,...(x) = Iα...,i,i+1,...(Pi,i+1x),

Iα...,N̄ (x) = Iα...,N (x)
∣∣∣
xN→−xN

rα(xN ).
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Finally, let us compute the action of KZ integral of motion IKZ
i = T −

i T +
i on Bethe vector:

T −
i T +

i |Bα,u(x)〉 = T −
i Di|Bα,u(x)〉 BAE(x)=1

= T −
i Di|B̄α,u(x)〉ui + xa +

ǫ3
2

ui + xa − ǫ3
2

∏

j 6=i,a

ui − xa − ǫ3
2

ui − xa + ǫ3
2

c(x)

T −
i Di|B̄α,u(x)〉 = |B̄α,u(x)〉 BAE(x)=1

= |Bα,u(x)〉ui − xa +
ǫ3
2

ui − xa − ǫ3
2

∏

j 6=i,a

uj − xa + ǫ3
2

uj − xa − ǫ3
2

c−1(x),

which finally proves

IKZ
i |Bα,u(x)〉 BAE(x)=1

= |Bα,u(x)〉(ui +
ǫ3
2 )

2 − x2a
(ui − ǫ3

2 )
2 − x2a

. (2.56)

2.6 Concluding remarks

In this notes we discovered Bethe ansatz equations for the spectrum of Integrals of Motion in CFT
with the W symmetry of BCD type. There many open questions, which we list in random order.

T-operator. We have avoided the construction of the boundary transfer matrix similar to Sklyanin
[Skl88]. The reason is that this object is not well defined for Y(ĝl(1)). Its construction requires the
corresponding R-matrix to satisfy the property known as crossing unitarity. One can easily show that
MO R-matrix satisfies two basic properties of

Unitarity : R[∂ϕi − ∂ϕj ]R[∂ϕj − ∂ϕi] = 1, (2.57)

T-symmetry : Rt[∂ϕi − ∂ϕj ] = R[∂ϕi − ∂ϕj ], (2.58)

which follow immediately from the defining relations (2.8). Both (2.57) and (2.58) hold level by level
and can be easily verified by explicit calculations for lower levels. However, the crossing unitarity
property

Rti [∂ϕi − ∂ϕj ]Rti [∂ϕj − ∂ϕi] = 1. (2.59)

is more subtle, as it mixes different levels and involves infinite sums of matrix elements. It is question-
able if one can make it any sense. Even if we believe that (2.59) holds and try to make a step further,
we may conjecture the following formula for the generating function of integrals of motion (for the D
case)

T (u) = Tr
∣∣∣
0

(
R0̄,1 . . .R0̄,nR0,n . . .R0,1

)

This formula requires more accurate definition as it involves divergent summation over infinite dimen-
sional Fock space. In the A case this divergence has been regularised by an introduction of the twist
parameter which preserved the integrability. It is unclear whether such a twist can be introduced in
the present case as well. This certainly remains as open interesting question.

Eigenvalues of local Integrals of Motion. Our construction is specially adapted to diagonal-
ization of KZ integral. Diagonalization of local IM’s is a separate issue. We note that in the A
case [LV20] we provided explicit construction for diagonalization of the simplest non-trivial local IM
I2. In principle, it can be generalized for Is with s > 2. Despite the fact that direct diagonalization
of local IM’s is still lacking, it is rather natural to expect that their eigenvalues are some symmetric
polynomials in Bethe roots. In the present case, we conjecture the following formula for the integral
I3 = 1

2π

∫
G4(x)dx corresponding to the local density G4 given by (2.5). Namely, on level N one has

an eigenvalue

Ivac3 +

(
4N − 4

n∑

k=1

u2k
ǫ1ǫ2

+
ǫ21 + ǫ22
3ǫ1ǫ2

(
2n− ǫα + ǫβ

ǫ3

))
N +

4

ǫ1ǫ2

(
2n− ǫα + ǫβ

ǫ3

) N∑

k=1

x2k, (2.60)
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where xk’s satisfy Bethe ansatz equations

r(α)(xi)r
(β)(xi)A(xi)A

−1(−xi)
∏

j 6=i
G(xi − xj)G−1(−xi − xj) = 1, (2.61)

with

r(α)(x) = −x−
ǫα
2

x+ ǫα
2

, A(x) =
n∏

k=1

x− uk + ǫ3
2

x− uk − ǫ3
2

.

We have confirmed (2.60) by explicit diagonalization on lower levels and it is interesting to find a
proof.

Bullough-Dodd model Integrable systems studied in this notes are already non-trivial for n = 1.
Let us consider B̂C1 system, which is known also as Bullough-Dodd model, or Zhiber-Shabat model.
This is the theory of one bosonic field ϕ with the action

S =

∫ (
1

8π
(∂aϕ)

2 + Λ
(
e2bϕ + e−bϕ

))
d2z.

According to Zamolodchikov [Zam89], this theory can be interpreted as Φ1,2 integrable perturbation
of CFT (or equivalently as Φ1,5 perturbation). The corresponding conformal integrable system has
been studied within BLZ approach in [FRS96]. However, as far as we concerned, a system of algebraic
equations for the spectrum similar to [BLZ04] has not been derived yet5.

From the general formula (2.5) we see that I3 identically vanishes for BD model. It implies the
following identity for the Bethe roots

N∑

k=1

x2k =
1

12

(
4u2 − 4N −Q

)
.

The first non-trivial integral is I5 which has the form

I5 =
1

2π

∫ [
(∂ϕ)6 − 5

4
(∂ϕ)4 − 5

2
(b− b−1)(2Q2 + 1)(∂2ϕ)3+

+ 5(3Q2 + 1)

(
(∂2ϕ)2(∂ϕ)2 − 1

12
(∂2ϕ)2

)
+

(
3Q4 +

17Q2

4
+

8

3

)
(∂3ϕ)2

]
dx. (2.62)

Here all densities are Wick ordered. We note that our integral (2.62) differs from the analytically
regularized integral by addition of I1 and a constant. Bethe Ansatz equations follows the general rules
(2.61) with α = 1, β = 2 and n = 1. We found that the eigenvalues of I5 − Ivac5 are given by

N

(
63Q4

8
+
(
45N − 63

2

)
Q2 + 80N2 − 95N + 27

)
− 5N(9Q2 + 24N − 19)u2 + 60Nu4 − 270

N∑

k=1

x4k.

5We note that algebraic equations for quantum KdV system, proposed by Bazhanov, Lukyanov and Zamolodchikov
[BLZ04], were given in [Fio05] improved explanation with precise connection to Virasoro symmetry. It will be interesting
if the approach considered in [Fio05] will provided new equations for the spectrum of conformal Bullough-Dodd system,
which is related to Virasoro algebra as well. It is also worth to mention, that as proposed in the recent paper of Lukyanov
and Kotousov [KL20], the desired algebraic equations for BD model should be searched in the Boussinesq integrable
system rather than KdV one.
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Colored Fock spaces and more general integrable systems. One may wonder that despite
affine Yangian commutation relations (1.40) are symmetric with respect to permutations of all ǫα, but
in the Bethe Ansatz equations (2.27) this symmetry is broken by the source term

A(x) =
n∏

k=1

x− uk + ǫ3
2

x− uk − ǫ3
2

.

In fact this symmetry is broken by a choice of a particular Fock representation, in order to restore the
symmetry back one should introduce three types of Fock modules Fα (see [FJMM13,BFM18,LS16]),
this will provides us with more general integrable systems. In fact, we associate an integrable system to

the chain of colored Fock spaces with two colored boundaries βL

∣∣∣Fα1
1 ⊗Fα2

2 · · ·⊗Fαn
n

∣∣∣βR , αi, βL,R =

1, 2, 3. We present the details in Appendix B.1, here we just mention a particular interesting model

given as: 1
∣∣∣F1

1 ⊗F3
2 · · · ⊗ F1

2n−1 ⊗F3
2n

∣∣∣3. This model provides a UV limit for the (dual of) O(2n+ 1)

sigma model considered in [LS18]. Similarly

3
∣∣∣F3

1 ⊗F1
2 · · · ⊗ F3

2n+1

∣∣∣3 provides the UV limit of O(2n) sigma model.

K-matrices. We have mentioned in the main text that there are only three solutions of Sklyanin
reflection equation (2.13), which commute with the level. In such a case one can always set the vacuum
eigenvalue of K operator to 1. Then, if we denote

Ka−1|u〉 = g(u)a−1|u〉,

the reflection relation (2.13) on level 1 is equivalent to the functional relation

(u+ v)(g(u)− g(v)) = (u− v)(g(u)g(v)− 1) =⇒ g(u) =
ξ + u

ξ − u,

where ξ is an arbitrary parameter. The reflection relation on level 2 is more restrictive. It is not just
fixes the matrix of the K-operator on level 2, but also demands that the parameter ξ takes one of
three values

ξ = 0, ξ = −
(
b+

1

2b

)
or ξ = −

(
1

b
+
b

2

)
,

corresponding to three solutions K1,2,3. In principle, one might go to higher levels and check that
there are only three solutions. It would be interesting to prove this statement in general.
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Chapter 3

Integrals of motion for the deformed W

algebras.

In this chapter we review deformed W algebra. associated to a Lie algebras of B,C,D types. We
explicitly construct ”local Integrals of Motion” for this W-algebras, which commute with additional
affine Screening charge, and mutually commute with each other. Our Integrals of Motion are trigono-
metric generalisation of integrable structures in non deformed algebras, we argue that their structure
is easier in the deformed case. We also present explicit formulas for deformed R−matrix and Sklyanin
reflection operators.

3.1 Introduction

This chapter is based on my notes which has been never published, but became a part of the joint
paper with much more results and details [FJMV21].

From a general philosophy of quantum groups, it is quite natural to consider q-deformations of
local IM in search for clarification of the matters. It turns out that after the q-deformation, the
local Integral of Motion become non-local, but can be written down explicitly. The q-deformations
of W algebras have been provided in [AKOS96] for type A, and in [FR97] for simple Lie algebras,
however in this chapter we will rely on [KP18] where the W algebras are defined as a commutant of
screenings. The deformations of the local IM associated to the W algebra of type A were constructed
in [KOJ06], [FJM17]. In this chapter we provide the construction for the q-deformation of the local
Integrals of Motion for the case of BCD type W algebras. We will first define Integrals of Motion as
a subset in W algebra which commute with additional affine screening, and then prove their mutual
commutativity. We also provide quantum analogs for the reflection and Sklyanin R,K matrices, as
well as KZ Integrals of Motion considered in previous chapter (??).

As it was noted in [FJM17] the integrable structures of type A can be naturally unified in the

quantum toroidal algebra
ˆ̂
gl1, which may be thought as an analytical continuation of the type An

Wn-algebra in variable n. Similarly to the An case, in [FJMV21] we suggest to unify W currents
of type BCD in some other algebra K. It was also shown that algebra K has a three commutative
subalgebras, which after specialisation a concrete representation reproduce the IOMs for W algebras
of BCD case. In this chapter we develop more direct and more elementary approach, as I believe
that detailed consideration of algebra K lies beyond the scope of the current thesis, and suggest to an
interested reader to read the paper.

This chapter is organised as follows: in section 3.2, we recall a definition of a quiver W-algebra
according to the work of Pestun and Kimura [KP18]. In section 3.3, we use a conjecture that the
Integrals of Motion could be found as a commutant of affine set of screenings, and provide explicit
formulas for them. In section 3.4, we prove that the conjectured Integrals of Motion are indeed com-
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mute with each other. In section 3.5 we repeat the arguments of [MO19] and construct the reflection
R matrix and Sklyanin’s K matrix corresponding to the W algebra, we also provide the formula for
the KZ Integrals of Motion which commute with each other and with an infinite series of the local
Integrals of Motion built it section 3.3.

3.2 Basic Definitions

In this section we will define q-deformed W algebra following the paper of [KP18]. Our input data
will be the numbers {q1, q2, q3} such that q1q2q3 = 1 and a quiver Γ. The rational limit considered in
previous chapters may be restored in the limit qi = eβǫi , β → 0. For our purposes we will consider
quiver Γ to be a Dynkin diagram of an (affine) Lie algebra g. To the each vertex i ∈ {1, . . . , rank(g)}
of this quiver we will assign a half integer number di which is the squared norm of corresponding root
di = (αi · αi), in our notations roots in the middle of a Dynkin diagram normalised to have a unit
lengths. The edges between i-th and j-th vertex will be denoted as e(i→ j), to any oriented edge e

it is assigned a number µe, in all examples we will put all µe = q
1
2
3 , except the ĝl(N) case, for which

µi,i+1 = q
1/2
3 , i = 1, . . . N − 1, µn,1 = µq

1/2
3 , 1. We will also define (q1, q2) deformed Cartan matrix ci,j

and it’s symmetrysation bi,j = ci,j
1−qdi1
1−q1

ci,j = (1 + q−1
2 q−di1 )δi,j −

∑

e(i→j)

µe
1− q−di1

1− q−di,j1

−
∑

e(j→i)

µ−1
e q

−di,j
1 q−1

2

1− q−di1

1− q−di,j1

, (3.1)

here , di,j = min(di, dj)
2. We will also use a shorthand notation f [n](q1, q2, µ) = f(qn1 , q

n
2 , µ

n).
We define a W-algebra as a commutant of a set of screenings Si =

∮
Si(z) dz2πz :

Si(z) =: e

∑

k 6=0
si,kz

−k+si,0 log(z)+Qi

: (3.2)

[si,n, sj,m] = −c[n]i,j
1

n

1− qdin1

1− q−n2

δn+m,0, (3.3)

[Qi, sj,0] = −
log(q1)

log(q−1
2 )

c0i,j .

It is convenient to write down a W-currents in terms of Loran series in Y operators:

Yi(z) =: e

∑

k 6=0
yi,kz

−k+yi,0
:

yi,n = (1− q−n2 )(c[n])−1
i,j sj,n. (3.4)

Commutation relations of the screening currents (3.7) and definition of the Y -operators (3.4), imply
commutation relations:

[yi,n, sj,m] = −
1

n
(1− qdin1 )δi,jδn+m,0,

[yi,n, yj,m] = −
1

n
(1− qdin1 )(1− qn2 )(c[−n])−1

i,j δn+m,0.

1In general parameters µe are irrelevant, except the cases when quiver has loops, in that case W-algebra depends only
on the product of µe along the loop.

2Originally in paper [KP18], di,j = 1
2
gcd(2di, 2dj), however as we are dealing with ABCD series only we may replace

in by di,j = min(di, dj)
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It follows that the Y operators are almost commute with the screenings, except some contact terms:

[Yi(z),Si(w)] = (1− q−di1 )δ(qdi1
w

z
) : Yi(z)Si(w) :

Which implies that commutator of a Screening Si and a Y - operator is a local operator:

[Yi(z),Si] = (1− q−di1 ) : Yi(z)Si(zq−di1 ) :

Remarkably , there exist another operator : Yi(z)A
−1(q−d1 q−1

2 z) : [KP18] , which has the same
commutator with the screening charge Si =

∮
Si(w) dw2πw .

[
: Yi(z)

Si(q−di1 z)

Si(q−di1 q−1
2 z)

:,Si
]
= −(1− q−di1 ) : Yi(z)Si(q−di1 z) :

The operator Ai(z) =
Si(z)
Si(q2z)

can be expressed in terms of the Yj(z)

Ai(z) =: Yi(z)Yi(q
di
1 q2z)



∏

e(i→j)

dj
di,j

−1
∏

r=0

Yj(µeq
rdi,j
1 x)

∏

e(j→i)

dj
di,j

−1
∏

r=0

Yj(µ
−1
e q

(r+1)di,j
1 q2x)




−1

: (3.5)

Having these operators at hand, we can always complete any expression in a way that it will commute
with i-th screening Si , for example Yi(x) we will be completed to Yi(x)+ : A−1

i (q−di1 q−1
2 x)Yi(x) : which

commute with Si:

Yi(x)+ : A−1
i (q−di1 q−1

2 x)Y1(x) :=

=Yi(x)+ :




∏
e(i→j)

dj
di,j

−1∏
r=0

Yj(µeqq
rdi,j−di
1 x)

∏
e(j→i)

dj
di,j

−1∏
r=0

Yj(µ
−1
e q

(r+1)di,j−di
1 x)




Yi(q
−di
1 q−1

2 z)
:

Such combination of operators commute with i-th screening Si, but doesn’t commute with it’s nearest
neighbours, the strategy is to pick a different screening charge Si±1 and complete the expression to
commute with them, and so on. This construction is similar to the one which apeeared in represen-
tation theory, namely Yi is an analog of (exponent of) fundamental weight, while A−1

i is an analog
of simple root. For a quivers which are the Dynkin diagrams of a simple Lie algebras, this procedure
will have a finite number of terms equal to the dimension of i-th fundamental representation.

So by definition the i-th fundamental W current Ti(z) is a current which starts with Yi(z) and
then completed to commute with all the screenings:

T i(z) = Yi(z)+ : A−1
i (q−di1 q−1

2 x)Yi(x) : + . . .

3.2.1 Higher W currents

If there is a product of several Yi(z)Yi(w) operators with common i, additional factors Sdi should be
added. The combination which starts with Yi(z)Yi(w) and commute with Si is equal to:

W i
2(z, w) =: Yi(z)Yi(w) : + Sdi(

w

z
) :

Yi(z)Yi(w)

Ai(q
−di
1 q−1

2 z)
: +Sdi(

z

w
) :

Yi(z)Yi(w)

Ai(q
−di
1 q−1

2 w)
: +

+ :
Yi(z)Yi(w)

Ai(q
−di
1 q−1

2 w)Ai(q
−di
1 q−1

2 w)
: (3.6)
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Sd(x) =
(1− qd1x)(1− q2x)
(1− x)(1− qd1q2x)

=
d−1∏

k=0

S(q1z). (3.7)

Note that the current T i2(z, w) should be properly understood: we assume that the first argument is
larger than the second one |z| ≫ |w| (radial ordering)3. Easily to observe, that current T i2(z, w) is
almost symmetric, except some delta terms arising from pole contribution of Sdi(

z
w ) .

W i
2(z, w)−W i

2(w, z) =
(1− q2)(1− qdi1 )

1− qdi1 q2
δ(
zqdi1
qw

) :
Yi(z)Yi(

zq
di
1
q )

Ai(z)
: −

− (1− q2)(1− qdi1 )

1− qdi1 q2
δ(
wqdi1 q2
z

) :
Yi(z)Yi(q

−di
1 q−1

2 )

Ai(q
−di
1 q−1

2 z)
:

A higher W-current is defined to start with a product of Y operators, and then completed to commute
with all screenings:

T in(z1, . . . , zn) =:
n∏

i=1

Yi(zi) : + . . . (3.8)

This current could also be defined as a product of n fundamental currents:

T in(z1, . . . , zn) =
∏

i<j

(
f i(

zi
zj
)
)−1

n∏

i=1

T i(zi). (3.9)

Function fi(x) could be found by normal ordering of Yi(z) with Yi(w).

Yi(z)Yi(w) = f i
(w
z

)
: Yi(w)Yi(z) :

3.2.2 Example of WN algebra

In this example, we choose conventions which already adopted for affine system of screenings ĝl(N),
we will have one extra (affine)screening SN and one extra Y-current YN (z), but will not demand a
commutativity with SN . Cartan matrix of affine gl(N) is equal to:

ci,j = (1 + q3)δi,j −
N−1∑

i=1

(δi,i+1 + δi,i−1)
√
q3 − δ1,Nµ

√
q3 − δN,1µ−1√q3, (3.11)

WN -algebra corresponds to a linear quiver, and there is N − 1 currents which corresponds to a N − 1
fundamental representations of gl(N) algebra. For the first fundamental representation we have a sum
of N terms:

T 1(z) =
Y1(z)

YN (µ
√
q3z)

+
Y2(
√
q3z)

Y1(q3z)
+
Y3(q3z)

Y2(q
3
2
3 z)

+ · · ·+ YN−1(q
N−1

2
3 z)

YN−2(q
N
2
3 z)

+
YN (q

N
2
3 z)

YN−1(q
N+1

2
3 z)

.

For the second fundamental representation we have the sum of N(N−1)
2 terms which coincides with the

dimension of this representation:

T 2(z) =
Y2(z)

YN (µq3)
+
Y1(
√
q3z)Y3(

√
q3z)

Y2(q3z)YN (µq3)
+ · · ·+ YN−2(q

N−1
2

3 z)YN (q
N−1

2
3 z)

YN−1(q
N
2
3 z)YN−3(q

N
2
3 z)

+
YN (q

N−1
2

3 z)

YN−2(q
N+1

2
3 z)

,

3Actually we write |z| ≫ |w| here, because there are poles not only at z = w, but also at a shifted point z = (qd1q2)
±1w
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. . .

The last current corresponds to the anti-fundamental representation of gl(N):

TN−1(z) =
YN−1(z)

YN (
√
q3z)

+
YN−2(

√
q3z)

YN−1q3z
+
YN−3(q3z)

YN−4(q
3
2
3 z)

+ · · ·+ Y1(q
N−1

2
3 z)

Y2(q
N
2
3 z)

+
YN (µq

N
2
3 z)

Y1(q
N+1

2
3 z)

.

Let us find a commutation relations in WN -algebra. It could be done directly using commutation
relations of Yi(z) currents, but the more convenient way is to use the formula (3.6)

T1(z)T1(w) = fµ

(w
z

)
T2(z, w) = fµ

(w
z

)[
:

Y1(z)

YN (µ
√
q3z)

Y1(w)

YN (µ
√
q3w)

: +S(
w

z
) :

Y2(
√
q3z)

Y1(q3z)

Y1(w)

Yn(µ
√
q3w)

: +

+S
( z
w

)
:
Y2(
√
q3w)

Y1(q3w)

Y1(z)

Yn(µ
√
q3z)

: + :
Y2(
√
q3w)

Y1(q3w)

Y2(
√
q3z)

Y1(q3z)
: + · · ·+ :

YN (q
N
2
3 z)

YN−1(q
N+1

2
3 z)

YN (q
N
2
3 w)

YN−1(q
N+1

2
3 w) :

]
,

here S(x) = S1(x) from eq (3.2).

Function f(x) could be found by normal ordering of Y1(z)
YN (µ

√
q3z)

with Y1(w)
YN (µ

√
q3w)

,

Y1(z)

YN (µ
√
q3z)

Y1(w)

YN (µ
√
q3w)

= fµ

(w
z

)
:

Y1(z)

YN (µ
√
q3z)

Y1(w)

YN (µ
√
q3w)

:

fµ(z) = exp


−

∑

n>0

1

n
(1− qn1 )(1− qn2 )

(1− µnq−n
N−2

2
3 )

(1− µnq−n
N
2

3 )
zn


 .

Analysing the poles of S(wz ) function we get:

T 1(z)T 1(w)f−1
µ (

w

z
)− T 1(w)T 1(z)f−1

µ

( z
w

)
=

=
(1− q2)(1− q1)

1− q−1
3

δ
( z

q3w

)
: T 2(

√
q3z)−

(1− q2)(1− q1)
1− q−1

3

δ
(q3w
z

)
T 2
( z√

q3

)
.

3.3 Commutant of affine set of screenings

In this section we will consider quivers corresponding to affine Dynkin diagrams, we will have one
additional affine Screening Ŝ(z). According to the procedure of building a W-current described in the
previous section one would get an infinite number of terms [KP18]. It is not clear what is the meaning
of corresponding W-algebras. In this notes we will do quite a different thing: we will search for a
subalgebra of W algebra which commute with affine screenings.

In ⊂W (g) , [In, Ŝ] = 0.

In this section we will explain how to construct such elements In, and consider some examples of type
A. In the next section we will consider in details the Integrals of Motion of D type and prove their
commutativity.
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3.3.1 Example of ĝl(2)

This section is an illustration on how to construct commutant of screenings in the simplest case of
gl(2) W alpgebra. According to the section 3.2 we have the q-deformed ĝl(2) cartan matrix of the
form (3.11) , two screening currents S1(z) , S2(z) = Ŝ(z) and two Yi currents. Our strategy will
be the following: let us wright explicitly the fundamental current which corresponds to a W-algebra
commuting with S1

T 1(z) =
Y1(z)

Y2(µ
√
q3z)

+
Y2(
√
q3z)

Y1(q3z)
.

And the fundamental current which commutes with S2

T̂ 1(z) =
Y2(z)

Y1(
√
q3z)

+
Y1(µ

−1√q3z)
Y2(q3z)

This two currents are sums of two terms which are identical up to some shifts of arguments, and we
conclude that their zero modes coincides4:

I1 =

∮
T 1(z)

dz

2πz
=

∮
T̂ 1(z)

dz

2πz
. (3.19)

The operator I1 coincides with the first Integral of Motion considered in [FJM17], [FKSW07]. Under
the limit µ → 0 we reproduce generalized Macdonald integrable system, current T 1(z)|µ=0 = e(z)
where e(z) is a Ding-Iohara-Mikki current at level 2 , [FJM17].
To construct the higher Integrals of Motion, let us consider the current which corresponds to a tensor
product of the two fundamental representations (3.6):

T 1
2 (z, w) =:

Y1(z)

Y2(µ
√
q3z)

Y1(w)

Y2(µ
√
q3w)

: +S
( z
w

)
:

Y1(z)

Y2(µ
√
q3z)

Y2(
√
q3w)

Y1(q3w)
: +

+S
(w
z

)
:

Y1(w)

Y2(µ
√
q3w)

Y2(
√
q3z)

Y1(q3z)
: + :

Y2(
√
q3z)

Y1(q3z)

Y2(
√
q3w)

Y1(q3w)
:

Here S(x) = S1(x) from section 3.2 (3.7)
There is also another current, which commutes with Ŝ = S2

T̂ 1
2 (z, w) =:

Y2(z)

Y1(
√
q3z)

Y2(w)

Y1(
√
q3w)

: +S
( z
w

)
:

Y2(z)

Y1(
√
q3z)

Y1(µ
−1√q3w)

Y2(q3w)
: +

+S
(w
z

)
:
Y1(µ

−1√q3z)
Y2(q3z)

Y2(w)

Y1(
√
q3w)

: + :
Y1(µ

−1√q3z)
Y2(q3z)

Y1(µ
−1√q3w)

Y2(q3w)
:

Again these two are the sums of four similar terms, but now after a shifts of arguments current T̂ 2

will contain shifted rational functions S( q3µ
w
z ). The idea is to find a commutant of two screenings as

a convolution which will absorb this difference:

I2 =

∮

C

S∞,τ (
z

w
)T 1

2 (z, w)
dz

2πz

dw

2πw
=

∮

C

S∞,τ (
z

w
)T̂ 1

2 (z, w)
dz

2πz

dw

2πw
. (3.22)

If (3.22) is true, than obviously [I2, S1,2] = 0. Equation (3.22) is equivalent to a system of difference
equations on a function S∞,τ (z):

S∞,τ

( z
w

)
= S∞,τ

(w
z

)
,

S∞,τ

( z
w

)
S
( z
w

)
= S∞,τ

( µ
q3

z

w

)
S
(q3
µ

w

z

)
.

4Note that the definition of fundamental currents is ambiguous, for example T 1 can be multiplyed by any function of
Y2 operators. However, equation (3.19) uniquely fixes this ambiguity.
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Solution to this equations could be conveniently written in terms of the quantum dilogarithm functions
[KOJ06]:

(z; τ)∞ =
∞∏

n=0

(1− zτn) ; τ =
µ

q3
,

S∞,τ (z) = σ(z)σ(1/z) =
(z; τ)∞(zq−1

3 ; τ)∞
(q1z; τ)∞(q2z; τ)∞

(z−1; τ)∞(z−1q−1
3 ; τ)∞

(q1z−1; τ)∞(z−1q2; τ)∞
.

Proceeding further, one could construct higher Integrals of Motion:

In =

∮

C

∏

1≤j<i≤n
S∞,τ

( zi
zj

)
T 1
n(z1, . . . , zn)

n∏

i=1

dzi
2πzi

,

here T 1
n(z1, . . . , zn) is a higher W current (3.2.1) :

T 1
n(z1, . . . , zn) =:

n∏

i=1

Y1(zi)

Y2(µ
√
q3zi)

: + . . .

Here, one should specify the contour of integration: our choice is to do all integration along the unit
circle |zi| = 1. Such choice of contour is clearly symmetric under the permutation of variables zi ↔ zj ,
another benefit of this contour is that functions S∞,τ (z) could be expanded in a convergent Tailor
series, and the whole integral of motion could be computed as a zero mode of some series:

In =

[ ∏

1≤j<i≤n
S∞,τ

( zi
zj

)
T 1
n(z1, . . . , zn)

]

0

.

Where for function f(z1, . . . , zn) =
∞∑
ik=0

fi1,...,inz
i1
1
in
n we defined [f(z)]0 = f0,...,0. Operators In coincides

with the ones built in [FKSW07], [FJM17].

3.3.2 Example of ĝl(4) = ŝo(6)

In this section we will use the isomorphism between ĝl(4) and ŝo(6) affine Lie algebras, we then expect
to have an Integrals of Motion built from the second fundamental current of gl(4) W algebra which
at the same time is the fundamental current of so(6) W algebra. However we will observe that the
Integrals of Motion of this type appears only at a spectial parameter of a twist µ = 1.
It is easy to check that similarly to the previous case, zero modes of fundamental current T 1(z) and
anti-fundamental current T 3(z) commute with all screenings of gl(4)

I11 =

∮
dz

2πz
T 1(z) =

∮
dz

2πz

(
Y1(z)

Y4(µq
1/2
3 z)

+
Y2(q

1/2
3 z)

Y1(q3z)
+

Y3(q3z)

Y2(q
3/2
3 z)

+
Y4(q

3/2
3 z)

Y3(q23z)

)
,

and

I31 =

∮
dz

2πz
T 3(z) =

∮
dz

2πz

(
Y3(z)

Y4(q
1/2
3 z)

+
Y2(q

1/2
3 z)

Y3(q3z)
+

Y1(q3z)

Y2(q
3/2
3 z)

+
Y4(µq

3/2
3 z)

Y1(q23z)

)
.

There also exists another current , which corresponds to the second fundamental representation of
gl(4) or fundamental representation of so(6):

T 2(z) =
( Y2(z)

Y4(µq3z)
+
Y1(q

1/2
3 z)Y3(q

1/2
3 z)

Y4(µq3z)Y2(q3z)
+
Y3(q

1/2
3 z)

Y1(q
3/2
3 z)

+
Y1(q

1/2
3 z)Y4(q3z)

Y3(q
3/2
3 z)Y4(µq3z)

+
Y4(q3z)Y2(q3z)

Y1(q23z)Y3(q
2
3z)

+
Y4(q3z)

Y2(q23z)

)

(3.27)
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And commutes with S1,S2,S3. One can also construct another current:

T̂ 2(z) =

(
Y4(z)

Y2(q3z)
+
Y1(µ

−1q
1/2
3 z)Y3(q

1/2
3 z)

Y4(q3z)Y2(q3z)
+

Y3(q
1/2
3 z)

Y1(µ−1q
3/2
3 z)

+
Y1(µ

−1q
1/2
3 z)

Y3(q
3/2
3 z)

+
Y4(q3z)Y2(q3z)

Y1(q23z)Y3(q
2
3z)

+
Y2(q3z)

Y4(q23z)

)

(3.28)
Which commutes with S2,S3,S4.

We see that zero modes of the currents (3.27) and (3.28) don’t coincide, except the case µ = 1.
We conclude that at the special value of twist parameter (µ = 1): additional current appears, we will
see that W-algebras of B,C,D don’t have such a parameter and should be thought as µ = 1.

For the end of this section, let us prove that [I11 , I
3
1 ] = 0 for any µ. First of all, let us note that due

to commutativity of two currents: [ Y1(z)

Y4(µq
1/2
3 z)

, Y3(w)

Y4(q
1/2
3 w)

] = 0, corresponding currents T 1(z) and T 3(w)

commute up to delta terms:

[T 1(z), T 3(w)] =
(1− q2)(1− q1)

1− q−1
3

(
δ(

z

q23w
) :

Y1(z)

Y4(µq
1/2
3 z)

Y4(µq
3/2
3 w)

Y1(q23w)
: −δ(wµ

q3z
) :

Y1(z)

Y4(µq
1/2
3 z)

Y4(µq
3/2
3 w)

Y1(q23w)
: +

+δ(
z

q3w
) :

Y2(q
1/2
3 z)

Y1(q3z)

Y1(q3w)

Y2(q
3/2
3 w)

: −δ(w
z
) :

Y2(q
1/2
3 z)

Y1(q3z)

Y1(q3w)

Y2(q
3/2
3 w)

: +

+δ(
z

w
) :

Y3(q3z)

Y2(q
3/2
3 z)

Y2(q
1/2
3 w)

Y3(q3w)
: −δ( w

q3z
) :

Y3(q3z)

Y2(q
3/2
3 z)

Y2(q
1/2
3 w)

Y3(q3w)
: +

+δ(
q23z

w
) :

Y4(q
3/2
3 z)

Y3(q23z)

Y3(w)

Y4(q
1/2
3 w)

: −δ( w
q3z

) :
Y4(q

3/2
3 z)

Y3(q23z)

Y3(w)

Y4(q
1/2
3 w)

:
)

Now it is easy to note that under the integral over
∮

dz
2πz

dw
2πw all delta terms cancels with each other.

[I11 , I
3
1 ] =

∮
dz

2πz

dw

2πw
[T 1(z), T 3(w)] = 0

Now let us look at the OPE of W current corresponding to the first and second fundamental repre-
sentations 5

T 1(z)T 2(w) = S
(q1/23 w

z

)
fµ

( w

q
1/2
3 z

)
fµ

(q1/23 w

z

)(
:

Y1(z)

Y4(µq
1/2
3 z)

Y4(z)

Y2(q3z)
: + . . .

)

fµ

( w

q
1/2
3 z

)
fµ

(q1/23 w

z

)
= exp

(∑

n>0

1

n
(1− qn1 )(1− qn2 )

(1− µnq−n3 )(q
−n/2
3 + q

n/2
3 )

(1− µnq−2n
3 )

(w
z

)n
)

It turns out that at the point µ = 1 the scalar factors exactly cancel each other, and two currents
becomes local with respect to each other, and commute up to delta terms. It could be checked that
these delta terms cancels under the integral which picks up zero modes, the last statement proofs the
commutativity of [I11 , I

2
1 ] = 0. 6

Each of three local currents I i1 produce a series of integrals:7

Iin =

∮

C

∏

1≤j<i≤n
S∞,τ=q

−1−|i−2|
3

( zi
zj

)
T in(z1, . . . , zn)

n∏

i=1

dzi
2πzi

,

5As explained in [KP18], see also first section of the current manuscript, there is a procedure to uniquely determine
”. . . ” by the condition of commutativity with all the screenings, together with some minimality assumption.

6Appearance of additional Integrals of Motion for the special values of twist parameter looks similar to ones revealed
on Rybnikov Ilyin arXiv:1810.07308

7Here τ = q
−1−|i−2|
3 is just a short notation to say that τ = q−2

3 , for i = 1, 3 and τ = q−1
3 , for i = 2.
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here T in(z1, . . . , zn) is a higher W current (3.2.1):

T 1
n(z1, . . . , zn) =:

n∏

i=1

Y1(zi)

Y4(
√
q3zi)

: + . . .

T 2
n(z1, . . . , zn) =:

n∏

i=1

Y2(zi)

Y4(q3zi)
: + . . .

T 3
n(z1, . . . , zn) =:

n∏

i=1

Y3(z)

Y4(q
1/2
3 z)

: + . . .

The mutual commutativity of I1,3n was proven in [FKSW07], the mutual commutativity of I2n and more
generally IOMs associated with ŝo(2N) affine Lie algebra will be proven in the next section.

3.4 Integrals of Motion of ŝo(2N) type.

In this section we will be concentrated on the D̂N Dynkin diagram (fig 3.1). Let us consider S1̄

1

1̄

2 3 4 5

6

6̄

Figure 3.1: D̂7 Dynkin diagram

screening as an affine one. The definition of fundamental W current T 1(z) is ambiguous, namely it
may be multiplied on any operator depending of Y1̄. We fix this ambiguity in way that its zero mode
I1 =

∮
dz
2πzT

1(z) commutes with the affine screening as well:

T 1(z) =
Y1(z)

Y1̄(q3z)
+

Y2(q
1/2
3 z)

Y1̄(q3z)Y1(q3z)
+

Y3(q3z)

Y2(q
3/2
3 z)

+
Y4(q

3/2
3 z)

Y3(q23z)
+ · · ·+

YN−1(q
N−2

2
3 z)YN−1(q

N−2
2

3 z)

YN−2(q
N−1

2
3 z)

+

+
YN−1(q

N−2
2

3 z)

YN−1(q
N
2
3 z)

+
YN−1(q

N−2
2

3 z)

YN−1(q
N
2
3 z)

+
YN−2(q

N−1
2

3 z)

YN−1(q
N
2
3 z)YN−1(q

N
2
3 z)

+
YN−3(q

N
2
3 z)

YN−2(q
N+1

2
3 z)

+ . . .

+
Y1̄(q

N−2
3 z)Y1(q

N−2
3 z)

Y2(q
2N−1

2
3 z)

+
Y1̄(q

N−2
3 z)

Y1(q
N−1
3 z)

Indeed zero mode I1 =
∮

dz
2πzT

1(z) is symmetric with respect to exchange 1 ↔ 1̄ , and so commute
with additional affine screening S1̄.
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Analytical properties of higher W current Before we proceed further let us describe some
properties of this current. The fundamental W current is a sum of 2N terms:

T 1(z) =

N∑

1

Λi(z) +

2N∑

N+1

Λi(z).

The contractions of different terms may be computed and written explicitly as:

Λi(z)Λi(w) = fτ

(w
z

)
: Λi(z)Λi(w) : (3.39)

Λi(z)Λj(w) = fτ

(w
z

)
S
( z
w

)
: Λi(z)Λj(w) : , i < j , i 6= 2N − j,

Λi(z)Λj(w) = fτ

(w
z

)
S
(w
z

)
: Λi(z)Λj(w) : , i > j , i 6= 2N − j,

Λi(z)Λ2N−i(w) = fτ

(w
z

)
S
( z
w

)
S
( z
w
q−N+i+1
3

)
: Λi(z)Λ2N−i(w) : , i < N (3.40)

Λ2N−i(z)Λi(w) = fτ

(w
z

)
S
(w
z

)
S
(w
z
q−N+i+1
3

)
: Λ2N−i(z)Λi(w) : , i < N, (3.41)

where

fτ (z) = exp

(∑

n>0

1

n
(1− qn1 )(1− qn2 )

(1− τnqn3 )
(1− τn) zn

)
, with τ = q2−N3 .

Now let us consider the higher W current

T 1
2 (z1, z2) = f−1

τ

(z2
z1

)
T 1(z1)T

1(z2) =

=: Λ1(z1)Λ1(z2) : +S
(z1
z2

)
: Λ1(z1)Λ2(z1) : +S

(z2
z1

)
: Λ2(z1)Λ1(z1) : + . . . .

Naively there is a plenty of poles at points z1 = z2q
k
3 , |k| ≤ N −1, however all poles except k = 1, k =

N − 1 cancels. Indeed poles at z1 = z2 cancels because for any term of a form : Λi(z1)Λj(z2) : there is
a term : Λj(z1)Λi(z2) : which has an opposite residue at point z1 = z2. Residues at points z1 = qk3z2
cancels due to an identity:

: Λi(z)Λ2N−i(q
N−i
3 z) :=: Λi−1(z)Λ2N−i+1(q

N−i
3 z) :

The residue at z1 = z2q3 is proportional to a second fundamental current T 2(q
1
2
3 z2) (3.9)

T 2(z) =
Y2(z)

Y1(q
1/2
3 z)Y1(q

3/2
3 z)

+
Y3(q

1/2
3 z)

Y2(q3z)Y1(q
3/2
3 z)

+ . . .

The residue at z2 = z1q
1−N
3 is proportional to a Heisenberg current H(z)

def
=

Y1̄(q
−1
3 z)

Y1̄(q3z)
which commute

with all Si except S1̄. These results may be compactly written in a following commutation relation:

T 1
2 (z1, z2)− T 1

2 (z2, z1) =
(1− q−1

1 )(1− q−1
2 )

1− q−1
3

(
δ
(
q3
z1
z2

)
T 2(q

1/2
3 z2) + δ

(
q3
z2
z1

)
T 2(q

1/2
3 z1)

)
+

+ S(qN−3
3 )

(1− q−1
1 )(1− q−1

2 )

1− q−1
3

(
δ
(
qN−1
3

z2
z1

)
H(z2) + δ

(
qN−1
3

z1
z2

)
H(z1)

)

Another important observation is that due to zeroes of function S(z) involving into contractions
(3.39) − (3.41), we have some zero conditions for the triple product of fundamental currents. let us
introduce a function h(z) = (1− qN−1

3 z)(1− q−N+1
3 z)(1− q3z)(1− q−1

3 z), then the operator:

O(z1, z2, z3) = h
(z1
z2

)
h
(z1
z3

)
h
(z2
z3

)
T3(z1, z2, z3), (3.43)
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is symmetric and has the following zero conditions:

O(z, qiz, qiqjz) = 0 (i 6= j, i, j ∈ {1, 2, 3}), (3.44)

O(z, q
±(N−1)
3 z, q1,2q

±(N−1)
3 z) = 0 (3.45)

which are easily verified by using (3.39)-(3.41). These conditions will be important in the proof of the
commutativity of the IOMs.

Commutant of screenings Analogically to ĝl(2) case, commutant of screenings could be con-
structed as a multiple integrals of the higher W-currents:

In =

∮

C

∏

1≤j<i≤n
S∞,q2−N

3

( zi
zj

)
T 1
n(z1, . . . , zn)

n∏

i=1

dzi
2πzi

.

The integration contour C goes along unit circle |zi| = 1, T 1
n(z1, . . . , zn) is a higher W current (3.2.1):

T 1
n(z1, . . . , zn) =:

n∏

i=1

Y1(zi)

Y1̄(q3zi)
: + . . .

Let us show that (3.46) is indeed commute with all the screenings. As we already point out T 1(z) is
a sum of vertex operators :

T 1(z) =
2N∑

i=1

Λi(z), (3.48)

If we exchange the argument of first and the last terms: Λ1(z)→ Λ1(τ
−1z) , Λ2N (z)→ Λ2N (τz) then

corresponding W-current:

T̂ 1(z) = Λ2N (τz) +
2N−1∑

i=2

Λi(z) + Λ1(τ
−1z) (3.49)

will not commute with the first screening charge S1 but will commute with the affine one S1̄. We want
to prove that the two currents (3.48),(3.49) are identical under the integral (3.46). Let us for example
consider the case of n = 2. We want to prove that:

∮

C

S∞,τ

(z2
z1

)
f−1
τ

(z2
z1

)
T 1(z1)T

1(z2)
dz1
2πz1

dz2
2πz2

?
=

∮

C

S∞,τ

(z2
z1

)
f−1
τ

(z2
z2

)
T̂ 1(z1)T̂

1(z2)
dz1
2πz1

dz2
2πz2

The only problem terms are:
∮

C

S∞,τ

(z2
z1

)
f−1
τ

(z2
z1

)
Λ1,2N (z1)Λi(z2)

dz1
2πz1

dz2
2πz2

?
=

∮

C

S∞,τ

(z2
z1

)
f−1
τ

(z2
z1

)
Λ1,2N (τ

∓1z1)Λi(z2)
dz1
2πz1

dz2
2πz2

And analogical ones with exchanged order of Λ operators.

The idea is to shift the variable z1 → τ−1z1, and note that the product of two functions S∞,τ

(
z2
z1

)
f−1
τ

(
z2
z1

)

remains invariant. The only thing we need to care, is that we don’t cross any pole when shifting the
integration contour. This can be done using contractions (3.39)-(3.40), the crucial fact is that poles

at points z1 = z2q
±1
3 , z1 = q

±(N−1)
3 z2 are canceled by zeroes of function S∞,τ (

z1
z2
). The case of general

n is completely analogical, the same line of argument leads to the fact that:

∮

C

∏

1≤j<i≤n
S∞,τ=q2−N

3

( zi
zj

)
T 1
n(z1, . . . , zn)

n∏

i=1

dzi
2πzi

=

∮

C

∏

1≤j<i≤n
S∞,τ=q2−N

3

( zi
zj

)
T̂ 1
n(z1, . . . , zn)

n∏

i=1

dzi
2πzi

.
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And so

In =

∮

C

∏

1≤j<i≤n
S∞,τ=q2−N

3

( zi
zj

)
T 1
n(z1, . . . , zn)

n∏

i=1

dzi
2πzi

commutes with the affine set of screenings. The Integrals of Motion In can be rewritten in terms of
fundamental current as well:

In =

∮

C

T 1(z1) . . . T
1(zn)

∏

1≤j<i≤n
ωτ=q2−N

3

( zi
zj

) n∏

i=1

dzi
2πzi

.

Here we used the definition of higher W currents (3.9) and introduce the function:

ωτ (z) = f−1
τ (z)S∞,τ (z) =

Θτ (z)Θτ (q
−1
3 z)

Θτ (q1z)Θτ (q2z)
.

Proof of mutual commutativity of In In this paragraph we will assume that: {q3 > 1, q1 <
1, q2 < 1 τ < 1}, the other domains of parameters could be achieved by analytic continuation. Now
we want to proof the commutativity [In, Im] = 0. We have for the product of two IOMs:

InIm =

∮

Cn,m

∏

i<j≤n
S∞,τ

( zi
zj

) ∏

n+1≥i<j≤n+m
S∞,τ

( zi
zj

)
T 1
n(z1, . . . , zn)T

1
m(zn+1, . . . , zn+m)

n+m∏

i=1

dzi
2πzi

.

The contour Cn,m is understood in the spirit of radial ordering i.e we assume that zi ≪ zj for
i ≤ n, j > n. Now using the identity which follows from pestun’s prescription to write a higher
W-currents (3.2.1):

Tn(z1, . . . , zn)Tm(w1, . . . , wm) =
∏

i,j

fτ

(wi
zj

)
Tn+m(z1, . . . , zn, w1, . . . , wm)

we may rewrite the product of two IOMs as:

InIm =

∮

Cn,m

n,n+m∏

i=1,j=n+1

1

ωτ (
zi
zj
)

∏

1≤j<i≤n+m
S∞,τ

( zi
zj

)
Tn+m(z1, . . . , zn+m)

n+m∏

i=1

dzi
2πzi

,

ImIn =

∮

Cm,n

n,n+m∏

i=1,j=m+1

1

ωτ (
zi
zj
)

∏

1≤j<i≤n+m
S∞,τ

( zi
zj

)
Tn+m(z1, . . . , zn+m),

As follows from the properties of higher W current and the position of zeroes of S∞,τ function the
operator:

S∞,τ

( zi
zj

)
Tn+m(z1, . . . , zn+m)

is symmetric with respect to permutation zi ↔ zj , and do not have any poles other than the poles of
function S∞,τ . Our strategy is to deform both contours Cm,n and Cn,m to the unit circle, once it is
done the product of theta functions could be symmetrized under the integral, and the commutativity
of IM reduced to the following theta identity, which was proven by induction in [FKSW07].

Sym
( n,n+m∏

i=1,j=n+1

1

ωτ (
zi
zj
)

)
= Sym

( n,n+m∏

i=1,j=m+1

1

ωτ (
zj
zi
)

)
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Let us rename the variables zn+i = wi. The function f
(
w
z

)
has its poles outside of the contour so

we don’t have to cross them when moving contour to the unit circle. The only obstruction to move
the contour Cn,m to the unit circle are poles of operator Tn+m(z1, . . . zn, w1, . . . wm) at points wi =
q−1
3 zj , wi = τq−1

3 zj , while for the contour Cm,n we have to cross poles at points wi = q3zj , wi = τq3zj .
Now we are going to show that corresponding residues are identical for both integrals which will finish
the proof. In this notes we consider only the example of n = 1,m = 2, the proof for a general case is
analogical and provided in [FJMV21].
Let us consider the residues at w = z2q

−1
3 for the first integral and, w = z2q3 for the second one. It is

convenient to write the residues in term of O3(z1, z2, z3) operator (3.43) which doesn’t have any poles,
and symmetric in its arguments:

J1 =

∮

|z1|=|z2|=1

h−1
(q−1

3 z2
z1

)
h−1

(z2
z1

)
S∞,τ

(z1
z2

)
fτ (q

−1
3 )fτ

(z2
z1
q−1
3

)
O3(q

−1
3 z2, z1, z2)

3∏

i=1

dzi
2πzi

,

J2 =

∮

|z1|=|z2|=1

h−1
(q3z2
z1

)
h−1

(z2
z1

)
S∞,τ

(z1
z2

)
fτ (q

−1
3 )fτ

(z1
z2
q−1
3

)
O3(z1, z2, q3z2)

3∏

i=1

dzi
2πzi

.

Now, after the shift of variables z2 → q3z2 in the first integral, the integrands become the same due
to identities:

S∞,τ (z) = στ (z)στ (1/z)

στ (q3z)fτ (z) = στ (z)S
−1(q3z)

S(z−1) = S(q3z).

And we again have to care that we may perform a shift of argument z2 → q3z2 without crossing a

pole. The only relevant poles at points z1 = q−1
1,2z2 in this case are coming from the S∞,τ

(
z1
z2

)
function,

however thy are cancelled with a zero of O3(z1, q
−1
1,2z1, q

−1
1,2w) operator (3.44).

Now consider a residue at w = τq−1
3 z2 for the first integrals and w = τ−1q3z2 for the second one. We

have:

J ′
1 =

∮

|z1|=|z2|=1

h−1
(τq−1

3 z2
z1

)
h−1

(z2
z1

)
S∞,τ

(z1
z2

)
fτ (τq

−1
3 )fτ

(z2
z1
τq−1

3

)
O3(τq

−1
3 z2, z1, z2)

3∏

i=1

dzi
2πzi

,

J ′
2 =

∮

|z1|=|z2|=1

h−1
(τ−1q3z2

z1

)
h−1

(z2
z1

)
S∞,τ

(z1
z2

)
fτ (τq

−1
3 )fτ

(z1
z2
τq−1

3

)
O3(z1, z2, τ

−1q3z2, )
3∏

i=1

dzi
2πzi

.

Again after a shift z2 → τ−1q3z2 in the first integral, integrands become the same due to an identity:

στ (q3τ
−1z)f(z) = S−1(τ−1q3z)S

−1(q3z)στ (z).

The relevant poles of function S∞,τ

(
z1
z2

)
at points z2 = q−1

1,2z1 z2 = q−1
1,2τ

−1z1 are cancelled by a zero

condition (3.45). Which finishes the proof of commutativity.

3.4.1 Integrals of motion for the q-deformed W algebras of BCD type.

Cases of BCD algebras fits into the same scheme. There are three types of endings of an affine Dynkin
diagram (see 3.2). We pick one node as an affine one, and consider W albega of corresponding non
affine Lie algebra. We resctricted ourselves to the case when affine node is of type D or C (long root),
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while the case of type B (short root) is not covered by our construction. We define the fundamentalW
current T 1(z) such that it commutes with all screenings except affine one and we fix a U(1) ambiguity
of this current by a requirement that its zero mode I1 =

∮
dz
2πzT

1(z) commutes with all screenings.
We define higher W currents according to (3.8),(3.9).

T 1
2 (z1, z2) = f−1

τ

(z2
z1

)
T 1(z1)T

1(z2) =

=: Λ1(z1)Λ1(z2) : +S
(z1
z2

)
: Λ1(z1)Λ2(z1) : +S

(z2
z1

)
: Λ2(z1)Λ1(z1) : + . . .

parameter τ is chosen according to table 3.1.

Affine Lie algebra Parameter of elliptic deformation τ

AN µq
−N

2
3 - arbitrary

B∨
N q1/q

N−1
3

CN q21/q
N−1
3

DN q−N+2
3

BCN q
3
2
1 /q

N−1
3

Table 3.1: Contrary to the AN case, parameter of elliptic deformation in BCD case should be fixed

It turns out that analytical properties of higher W current are analogical to the ones of D case:

T 1
2 (z1, z2)− T 1

2 (z2, z1) =
(1− q−1

1 )(1− q−1
2 )

1− q−1
3

(
δ
(
q3
z1
z2

)
T 2(q

1/2
3 z2) + δ

(
q3
z2
z1

)
T 2(q

1/2
3 z1)

)
+

+ S(C2)
(1− q−1

1 )(1− q−1
2 )

1− q−1
3

(
δ
(
C2 z2

z1

)
H(z2) + δ

(
C2 z1

z2

)
H(z1)

)

where C2 = τ−1q3 for type D affine node, and C2 = τ−1q1 for type C. This similarity was used
in [FJMV21] to define K algebra generated by the current E(z) and K(z) which unifies W algebras
of types BCD. We also studied the representation theory of the K algebra, we found that in concrete
representations current E(z) becomes equal to a fundamental current T 1(z) of W algebra. Another
result of the paper is a formula for higher Integrals of Motion, let us mention them here without a
proof:

In =

∮

C

T 1(z1) . . . T
1(zn)

∏

1≤j<i≤n
ωατ

( zi
zj

) n∏

i=1

dzi
2πzi

.

here, α = 3 for a D type affine node, and α = 1 for a C type affine node,

ω3
τ (z) =

Θτ (z)Θτ (q
−1
3 z)

Θτ (q1z)Θτ (q2z)
,

ω1
τ (z) =

Θτ (z)Θτ (q
−1
1 z)

Θτ (q2z)Θτ (q3z)
.

In [FJMV21] it is proven that IMs (3.59) commute with each other and with affine set of screenings.
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3.5 R - matrix, K-matrix, and associated KZ Integrals of Motion

In this section we provide a q-deformed versions of R and K matrices, build KZ integrals of motion,
and show that they commute with the local IMs.

Let us remember that screening operators and Y operators have zero modes, si,0, yi,0. In this
section we will write them explicitly: Yi(z) = eyi,0Y osc

i (z) , Si(z) = esi,0 log(z)Sosci (z) , where osc means
that operator contains only oscillatoric zero modes yi,k,si,k k 6= 0. In order to have a notations con-
venient for Yang-Baxter equation we introduce spectral parameters ui = eyi,0 . Screenings zero modes
then equal to:

si,0 =
(
αi · logq2(u)

)
,

where αi is a simple roots of a Lie algebra and bold symbols denotes vectors log(u) = {log(u1), . . . , log(un)},
y0 = {y1,0, . . . , yn,0}.
Having at hand the screening operator Si, one can always define a reflection matrix Ř, by definition:

• It depends only on current si(z), in other words [Ři, Yj(z)] = 0 for i 6= j

• And intertwines the spectral parameter of corresponding W algebra:

Ři

(
eyi,0Y osc

i (z) + eyi,0−(αi·y0) : Y osc
i (z)

Sosci (zq−di1 )

Sosci (zq−di1 q−1
2 )

:

)
=

=

(
eyi,0−(αi·y0)Y osc

i (z) + eyi,0 : Y osc
i (z)

Sosci (zq−di1 )

Sosci (zq−di1 q−1
2 )

:

)
Ři . (3.62)

This last equation means that the result of conjugation by the R-matrix is just an action of Weyl
reflection on zero modes of W-current: yi,0 → yi,0 − (αi · y0). In other words, R-matrix intertwines
with the action of a Weyl group on zero modes of W-algebra. We will see that depending on the root
system, this reflection operators becomes a q-deformation of R and K matrices considered in previous
chapters 8. Ř operator uniquely fixed by these two conditions. It is also clear that Ři operator doesn’t
depend on the overal shift of zero modes and so depend only on certain combination Ři = Ři

(
e(αi·y0)

)

RRR relation. Let us consider two roots of equal lengths, connected with a node, corresponding
fundamental W current reads:

W (z) = u1Y
osc
1 (z) + u2

Y osc
2 (q

1/2
3 z)

Y osc
1 (q3z)

+ u3
1

Y osc
2 (q

3/2
3 z)

.

Using the commutation relations (3.62), easy to see that:

Ř1(
u2
u1

)Ř2(
u3
u1

)Ř1(
u3
u2

)W (z)Ř−1
1 (

u3
u2

)Ř−1
2 (

u3
u1

)Ř−1
1 (

u2
u1

) =

= u2Y1(z)+u3
Y osc
2 (q

1/2
3 z)

Y osc
1 (q3z)

+ u1
1

Y osc
2 (q

3/2
3 z)

=

= Ř2(
u3
u2

)Ř1(
u3
u1

)Ř2(
u2
u1

)W (z)Ř−1
2 (

u2
u1

)Ř−1
1 (

u3
u1

)Ř−1
2 (

u3
u2

),

this last line is equivalent to a Yang-Baxter equation [MO19]:

Ř1(
u2
u1

)R2(
u3
u1

)Ř1(
u3
u2

) = Ř2(
u3
u2

)Ř1(
u3
u1

)Ř2(
u2
u1

).

8We put a check because rational analogs of reflection operator not only reflects zero modes but also permute Fock
spaces.
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KRKR relation. Now let us consider two roots of lengths 2 and 1, corresponding fundamental W
current reads:

W (z) = u1Y
osc
1 (z) + u2

Y osc
2 (q

1/2
3 z)

Y osc
1 (q3z)

+ u−1
2

Y osc
1 (q−2

1 q−1
2 z)

Y osc
2 (

q
−3/2
2

q51/2
z)

+ u−1
1

1

Y osc
1 (q−3

1 q−2
2 z)

.

Analogically to the previous case, it is clear that:

Ř2(u
2
2)Ř1(u1u2)Ř2(u

2
1)Ř1(

u2
u1

) = Ř1(
u2
u1

)Ř2(u
2
1)Ř1(u1u2)Ř2(u

2
2).

In this case it is instructive to change a notation Ř2(u
2) = Ǩ2(u), and recognise a famous Sklyanin

KRKR = RKRK relation [Skl88]:

Ǩ2(u2)Ř1(u1u2)Ǩ2(u1)Ř1(
u2
u1

) = Ř1(
u2
u1

)Ǩ2(u1)Ř1(u1u2)K2(u2).

The same relation will be true for two roots of lengths 1 and 2 (clearly this is just a redefinition of
(3.66)).

Now let us suppose that we have an affine Lie algebra of B,C,D type it’s Dynkin diagram is a
strip with three possible endings (see fig(3.2)). One can always define Ři(u) operators attached to any
root in the middle, and Ǩ1(u), ǨN (u) operators attached to the first and last roots. 9 Such operators
will enjoy the relations of affine Weyl group, it is known that there is a commutative N dimensional
lattice [I84], we call the corresponding commutative operators - Integrals of Motion of KZ type

Ti = T +
i T −

i , (3.68)

T +
i = Ři(

ui+1

ui
) . . . ŘN−1(

uN
uN−1

)ǨN (uN )ŘN−1(uNuN−1) . . . Ři(ui+1ui),

T −
i = Ři−1(uiui−1) . . . Ř1(u2u1)Ǩ1(u1)Ř1(

u2
u1

) . . . Ři−1(
ui
ui−1

)

[Ti, Tj ] = 0.

These KZ Integrals of Motion commute with ”local” Integrals of motion which uniquely defined as a
kernel of affine screening system (see sections (3.3),(3.4))

[In,Si] = 0, for i = 1, . . . , rank(ĝ),

[In, Ti] = 0,

[In, Im] = 0.

The first line is just a definition of integrals In, second line follows from the fact that R̂i,i+1(ui−ui+1)
acts on the elements of W algebra simply by exchanging ui ↔ ui+1 , as In belongs to an intersection
of all W algebras, R and K matrices just permute the weights ui. It is then easy to understand that
the result of the KZ operator is the identical permutation. The last line follows from the conjecture
that T1 has a simple spectrum (we checked it numerically in rational limit), and all Integrals of Motion
commute with Ti

3.6 Discussion

In this chapter we present (3.59) an explicit formulas for Integtals of motion of q-deformedW algebras
of B,C,D types. We explained that contrary to A type, these integrable systems don’t have a twist
parameter.

9The case of D W-algebra should be treated differently, we have two roots 1 and 1̄ which doesn’t connected with a
node, which means that Ř1(u)Ř1̄(v) = Ř1̄(v)Ř1(u). Let us define Ǩ1 operator such that Ǩ1S1Ǩ1 = S1̄ and Ǩ1 depends
only on difference s1(z)−s2(z), it is clear that KRKR = RKRK is trivially satisfied. Note that for the D case K operator
doesn’t depend on spectral parameter u.
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Figure 3.2: Three types of endings of the Dynkin diagram of B,C,D type. The construction of local
Integrals of Motion doesn’t work for B type node chosen as an affine one.

Generating function of IOMs, KZ IOMs We presented an explicit formula for Sklyanin K
matrices (3.66)-(3.67), and found KZ IOMS (3.68) which commute with local ones. It will be nice
to build a generating function which contain all these Integrals of Motion under some specialisation,
usually this generating function could be found as a trace
T = tr(K0(u)R01(

u
u1
)R02(

u
u2
)0n(

u
un

)K0(u)R
−1
0n (

u1
u ) . . . R

−1
01 (

u1
u )) , however we were not able to do that.

The deep reason for our failure is that DIM R-matrix doesn’t have a crossing unitarity property which
is necessarily in Sklyanin’s construction [Skl88], more technically we were unable to properly define
an auxiliary space which is traced out in Sklyanin’s formula.

The case of ĝl(N): appearence of additional Integrals of Motion at µ = q
N
2
−k

3 We found that
in gl(N) case there are integrals of motion which are built from a fundamental and anti-fundamental
W current. Additional integral of motion which corresponds to k − th fundamental representation of
gl(N):

Ik1 =

∮
dz

2πz

(
Yk(z)

Yk+1(
√
q3z)

+ . . .

)

appeared at special values of µ = q
N
2
−k

3 or τ = q
−(k−1)
3 , for N > k > 1.

At this special points two things happens:

• k-th fundamental current become local with respect to a fundamental and anti-fundamental
ones. And simple calculation shows that their zero modes commute.

• Zero mode of k-th fundamental current start to commute with affine system of screenings.

It would be interesting to probe the spectrum of IOMs at this special points.

Analytic continuation of W algebras of type BCD In [FJMV21] we introduced a new quantum
algebra K which may be thought as an analytical continuation of BCD W algebras. This algebra
posses a comodule structure which allows to multiply the represenations of K and representations of

toroidal algebra
ˆ̂
gl(1) which corresponds to increasing the rank of a BCD Lie algebra. EachW algebra

considered in this chapter corresponds to a particular representation of algebra K. It was observed
that algebra K has three integrable subalgebras, which after specialisation of a concrete representation
reproduce Integrals of Motion considered in current notes.
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Conclusion

In this thesis we studied the integrable structures associated to an affine Yangian and its q-deformatoin.

• We found that integrable structures of affine Yangian are naturally appears in the context of
conformal field theories. Namely we identify the affine Yangian ”spin chain” on n sites with
integrable systems of Wn algebras of type A.

• We studied the question of integrable boundary conditions for the affine Yangian. We found three
solution of Sklyanin KRKR equation (2.11)-(2.12). We identify the boundary affine Yangian
”spin chain” with integrable structures of the W algebras of types BCD.

• We studied the spectrum of the integrable structures, and constructed the Bethe vector, and
found the correspondig Bethe equations (1.14), (2.27).

• We found that the study of representation theory of the affine Yangian may provide new in-
tegrable perturbations of CFT. In particular affine Yangian has Fock representations of three
different colors Fα. We associate an integrable system to the chain of colored Fock spaces with

two colored boundaries βL

∣∣∣Fα1
1 ⊗Fα2

2 · · · ⊗ Fαn
n

∣∣∣βR , αi, βL,R = 1, 2, 3.

• We provided explicit formulas for the q-deformed Integrals of Motion of arbitrary high spin for
the case of W algebras of type BCD (3.59), we also provide formulas for q-deformed R and K
matrices (3.62).
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Proceedings of the Symposium on Representation Theory 2006 , pages 102–114. Publication
Society of the Proceedings of the Symposium on Representation Theory, 2006.

[KP18] Taro Kimura and Vasily Pestun. Fractional quiver W−algebras. Letters in Mathematical
Physics, 108(11):2425–2451, 2018.

[KPT07] Sergey Khoroshkin, Stanislav Pakuliak, and Vitaly Tarasov. Off-shell Bethe vectors and
Drinfeld currents. Journal of Geometry and Physics, 57:1713–1732, 2007.

[KS82] P.P. Kulish and E.K. Sklyanin. Quantum spectral transform method. Recent development.
Lect. Notes Phys., 151:61–119, 1982.

[KST17] Karol K Kozlowski, Evgeny Sklyanin, and Alessandro Torrielli. Quantization of the
Kadomtsev–Petviashvili equation. Theor. Math. Phys., 192(2):1162–1183, 2017.

[KT96] S.M. Khoroshkin and V.N. Tolstoi. Yangian Double. Lett. Math. Phys., 36:373–402, 1996.

[LF91] S. L. Lukyanov and V. A. Fateev. Additional symmetries and exactly solvable models in
two-dimensional conformal field theory. Soviet Scientific Reviews, sec A, volume 15, part
3, 1991.

[Lit13] A. V. Litvinov. On spectrum of ILW hierarchy in conformal field theory. JHEP, 11:155,
2013.

[Lit19] A. V. Litvinov. Integrable gl(n|n) Toda field theory and its sigma-model dual. Pisma Zh.
Eksp. Teor. Fiz., 110(11):723–726, 2019.

[LOPZ91] D. Lebedev, A. Orlov, S. Pakuliak, and A. Zabrodin. Non-local integrable equations as
reductions of the toda hierarchy. Phys. Lett. A, 160(2):166–172, 1991.



BIBLIOGRAPHY 93

[LPRS19] A.N. Liashyk, S.Z. Pakuliak, E. Ragoucy, and N.A. Slavnov. Bethe vectors for orthogonal
integrable models. Theor. Math. Phys., 201(2):1545–1564, 2019.

[LS16] Alexey Litvinov and Lev Spodyneiko. On W algebras commuting with a set of screenings.
JHEP, 11:138, 2016.

[LS18] A. V. Litvinov and L. A. Spodyneiko. On dual description of the deformed O(N) sigma
model. JHEP, 11:139, 2018.

[Luk88] Sergei L. Lukyanov. Quantization of the Gel’fand–Dikii brackets. Funct. Anal. Its Appl.,
22:255–262, 1988.

[Luk13] Sergei L. Lukyanov. ODE/IM correspondence for the Fateev model. JHEP, 1312:012,
2013.

[LV20] Alexey Litvinov and Ilya Vilkoviskiy. Liouville reflection operator, affine Yangian and
Bethe ansatz. JHEP, 12:100, 2020.

[LV21] Alexey Litvinov and Ilya Vilkoviskiy. Integrable structure of BCD conformal field theory
and boundary Bethe ansatz for affine Yangian. JHEP, 141, 2021.

[MO19] Davesh Maulik and Andrei Okounkov. Quantum Groups and Quantum Cohomology.
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Appendix A

A.1 Large u expansion of the operator R(u)
We look for the solution to the equation

R(u)
(
−
(
u+ J(x)

)2
+QJ ′(x)

)
=
(
−
(
u+ J(x)

)2 −QJ ′(x)
)
R(u) (A.1)

where J(x) =
∑

k 6=0 ake
−ikx in the form [MO19]

R(u) = exp

(
iQ
(
2u log u+

∞∑

k=1

(−1)k−1 rk
uk

))
, where rk =

1

2π

∫ 2π

0
gk+1(x)dx, (A.2)

Solving (A.1) one can find first few densities gk(x) explicitly:

g2 = J2, g3 =
J3

3
, g4 =

J4

6
+

1− 2Q2

24
J2
x , g5 =

J5

10
+

1− 2Q2

8
JJ2

x ,

g6 =
J6

15
+

1− 2Q2

4
J2J2

x +
2− 9Q2 + 6Q4

480
J2
xx, g7 =

J7

21
+

5(1− 2Q2)

12
J3J2

x +
2− 9Q2 + 6Q4

96
JJ2

xx,

(A.3)
and more disgusting expression for g8

g8 =
1

28
J8 +

5

8
(1− 2Q2)J4J2

x +
1

32
(2− 9Q2 + 6Q4)J2J2

xx +
1

576

(
−9 + 41Q2 − 26Q4

)
J4
x+

+
1

161280

(
90− 671Q2 + 998Q4 − 360Q6

)
J2
xxx.

For all densities gk(x) in (A.3) we used zeta-function regularization. For example
∫
J2 =

∫
: J2 : − 1

24
,

∫
J4 =

∫
: J4 : −

∫
1

4
: J2 : +

1

192
,

∫
J2
x =

∫
: J2

x : +
1

240
,

where :: stands for the Wick ordering.
Explicit formula (A.2) is useful for us, because it provides a relation between Yangian currents

(1.33) and Wn(z) currents. For example for the first few modes:

f0 = Qa1 , f1 = Q
∑

n

an+1a−n

e0 = Qa−1 , e1 = Q
∑

n

an−1a−n.

Of course these formulas are only true in a bosonic representation, however it is easy to analytically
continue them to the arbitrary number of bosons:

f0 = QU1 , f1 = QL1

e0 = QU−1 , e1 = QL−1.
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Where L±1 is a special W(2) current, such that:

[L±1, Un] = −nUn±1.

Let us also note that there is easily established pattern in the densities (A.3). Namely, the first
terms in (A.3) can be written as

gn =
2

n(n− 1)
Jn +

(n− 2)(n− 3)

48
(1− 2Q2)Jn−4J2

x+

+
(n− 2)(n− 3)(n− 4)(n− 5)

11520
(2− 9Q2 + 6Q4)Jn−6J2

xx + . . .

Using this observation one can formally do the resumation in (A.2).

G(x)
def
= 2u log u+

∞∑

k=1

(−1)k−1gk+1(x)/u
k,

which admits the derivative expansion

G(x) = 2(u+ J) log (u+ J) +
1− 2Q2

24

J2
x

(u+ J)3
+

2− 9Q2 + 6Q4

480

J2
xx

(u+ J)5
+ . . . (A.4)

The expansion (A.4) suggests the following general form

G(x) = 2(u+ J) log (u+ J) +
∞∑

k=1

U2k+2(Jx, Jxx, . . . )

(u+ J)2k+1
, (A.5)

where U2k+2(Jx, Jxx, . . . ) is a homogeneous and even with respect to the transformation J → −J
density of degree 2k + 2. It would be interesting to find the densities U2k+2(Jx, Jxx, . . . ) exactly.

One can also compute the R(u) operator in the “free fermion” point c = −2. Namely, take
Q = − i√

2
in (A.2) and represent the current J(x) by the complex fermion ψ(x) as

J(x) =
1√
2
: ψ+(x)ψ(x) : .

Then one can check that (see also appendix A.4)

R(u)
∣∣∣
c=−2
∼ exp

(
1

2π

∫ 2π

0
ψ+(x) log

(
1 +

i

u
√
2
∂

)
ψ(x) dx

)

A.2 Affine Yangian commutation relations

Here we will derive current form of commutation relations of the Yang Baxter algebra (1.40) from the
RLL algebra (1.32). Similar analysis has been performed in [Pro19]. We use the following notations

〈u| |u〉 = L∅,∅(u)
def
= h(u) 〈u| a−1|u〉= L∅,2(u) 〈u|a1 |u〉 = L2,∅(u)

and admit the convention that the operators acts in “quantum” space from up to down. It is also
convenient to define according to (1.33)

h(u)
def
= L∅,∅(u), e(u)

def
= h−1(u) · L∅, (u) and f(u)

def
= L ,∅(u) · h−1(u).
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We will introduce currents eλ(u) and fλ(u) associated to 3D partitions. There are 3 currents on level
2 (1.36), 6 currents on level 3 (see (A.17)) etc. Similar expressions one has for fλ(u).

All these and other generators of the Yang-Baxter (1.32) admit large u expansion which is inherited
from the large u expansion of the R−matrix (A.2). In particular,

h(u) = 1 +
h0
u

+
h1
u2

+ . . . , e(u) =
e0
u

+
e1
u2

+ . . . , f(u) =
f0
u

+
f1
u2

+ . . . ,

while the higher currents are expected to behave at u→∞ as

eλ(u) ∼
1

uλ
, fλ(u) ∼

1

uλ
.

The relations of the Yang-Baxter algebra (1.32) appear from the tensor product of two Fock spaces
Fu and Fv. We will use the following notations for the bra and ket highest weight states in Fu ⊗Fv

〈vac| def= 〈u| ⊗ 〈v|, |vac〉 def= |u〉 ⊗ |v〉.

The action of the zero-mode a0 on the vacuum state |u〉 is

a0|u〉 = −iu|u〉.

he and hf relations:

Then on level 0 we have

|u〉

|v〉

〈v|

〈u|

=

〈v|

〈u|

|u〉

|v〉

=⇒ h(u)h(v) = h(v)h(u)

(A.6)

On level 1 one has two relations

|u〉

a−1|v〉

〈v|

〈u|

=

〈v|

〈u|

|u〉

a−1|v〉

=⇒ h(u)L∅,2(v) =
u−v

u−v+QL∅,2(v)h(u) +
Q

u−v+Qh(v)L∅,2(u)

(A.7)

and

a−1|u〉

|v〉

〈v|

〈u|

=

〈v|

〈u|

a−1|u〉

|v〉

=⇒ L∅,2(u)h(v) =
Q

u−v+QL∅,2(v)h(u) +
u−v

u−v+Qh(v)L∅,2(u)

(A.8)

In fact (A.7) and (A.8) are not independent. Taking the linear combination Q×(A.7)−(u−v)×(A.8)
one arrives to the equation (A.7) with u↔ v.

Now, multiplying (A.7) by (u− v +Q)h−1(v) from the left and using (A.6) one get the relation

(u−v+Q)h(u)e(v) = (u−v)e(v)h(u)+QL∅,2(u) =⇒ (u−v+Q)e(v) = (u−v)h−1(u)e(v)h(u)+Qe(u).
(A.9)

In the leading order in large v expansion one obtains (compare to (1.42))

[e0, h(u)] = QL∅,2(u).



98 APPENDIX A.

We note that the relation (A.6) implies that the product h(u)e(v) could not have poles, which
implies that

L∅,2(u) = h(u)e(u) = e(u+Q)h(u).

Formula (A.9) allows one to rewrite

ej1 . . . ejnh(u)ejn+1 . . . ejn+m =

∮

Cn+m

· · ·
∮

C1

n+m∏

k=1

zjkk ·
n+m∏

k=n+1

u− zk
u− zk +Q

e(zn+m) . . . e(z1)h(u)d~z,

where the contours C∞ go concentrically around ∞ in such a way that all singularities of the function
F (z) are kept inside of these contours.

Similarly to (A.9) one also obtains the relation

(u− v +Q)f(v)h(u) = (u− v)h(u)f(v) +QL2,∅(u),

which enables one to rewrite

fjn+m . . . fjn+1h(u)fjn . . . fk1 =

∮

Cn+m

· · ·
∮

C1

n+m∏

k=1

zjkk ·
n∏

k=1

u− zk
u− zk −Q

h(u)f(zn+m) . . . f(z1)d~z.

ee and ff relations:

On level 2 we have three independent equations

|u〉

a2−1|v〉

〈v|

〈u|

=

〈v|

〈u|

|u〉

a2−1|v〉

|u〉

a−2|v〉

〈v|

〈u|

=

〈v|

〈u|

|u〉

a−2|v〉

a−1|u〉

a−1|v〉

〈v|

〈u|

=

〈v|

〈u|

a−1|u〉

a−1|v〉

(A.10)

In the r.h.s of any of these relation one has a linear combination of five terms

h(v)L∅,22(u), h(v)L∅,22(u), L∅,2(v)L∅,2(u), L∅,22(v)h(u), L∅,22(v)h(u).

One can always find special linear combination of three equations (A.10) which kills contributions of
last two terms. Explicitly, one has

A1(u− v)h(u)L∅,22(v) +A2(u− v)h(u)L∅,22(v) +A3(u− v)L∅,2(u)L∅,2(v) =

= A1(v − u)h(v)L∅,22(u) +A2(v − u)h(v)L∅,22(u) +A3(v − u)L∅,2(v)L∅,2(u), (A.11)

where

A1(u) = −Q(u+Q), A2(u) = −iQ, A3(u) = (u+ b)(u+ b−1)
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We note that using (A.9) one can express1

L∅,2(u)L∅,2(v) =
h(u)h(v)

u− v
[
(u− v −Q)e(u)e(v) +Qe2(v)

]
,

and hence the relation (A.11) can be rewritten as

(u− v + b)(u− v + b−1)(u− v −Q)e(u)e(v) = (u− v − b)(u− v − b−1)(u− v +Q)e(v)e(u)+

+
(
(u−v−b−1)(u−v+Q)e (u)+(u−v−b)(u−v+Q)e (u)+(u−v−b)(u−v−b−1)e (u)+(u←→ v)

)
,

(A.12)

where the higher currents eλ(u) are given by (1.36).
Other two relations from (A.10) are equivalent to commutation relations between h(u) end eλ(v)

(similar to (A.9))

(u− v +Q)
(
u− v +Q+

1

b

)
e (v) = (u− v)

(
u− v + 1

b

)
h−1(u)e (v)h(u)+

+

(
(u− v +Q)

(
u− v +Q+

1

b

)
− (u− v)

(
u− v + 1

b

))
e (u)− 2bQ(u− v)

b− b−1

(
e (u)− e (u)

)
−

− 2ibQ
(
(u− v +Q)e(v)e(u)−Qe2(u)

)

and similar for e (v)

(u− v +Q)(u− v +Q+ b)e (v) = (u− v)(u− v + b)h−1(u)e (v)h(u)+

+
(
(u− v +Q)(u− v +Q+ b)− (u− v)(u− v + b)

)
e (u)− 2b−1Q(u− v)

b− b−1

(
e (u)− e (u)

)
−

− 2ib−1Q
(
(u− v +Q)e(v)e(u)−Qe2(u)

)

ef relation

In order to obtain the relation (1.40d), we consider matrix element

a−1|u〉

|v〉

〈v|a1

〈u|

=

〈v|a1

〈u|

a−1|u〉

|v〉

which reads explicitly as

u− v
u− v +Q

L∅,2(u)L2,∅(v)+
Q

u− v +Q
L2,2(u)h(v) =

u− v
u− v +Q

L2,∅(v)L∅,2(u)+
Q

u− v +Q
L2,2(v)h(u).

Using (A.8) and similar relation

u− v
u− v +Q

h(u)L2,∅(v) +
Q

u− v +Q
L2,∅(u)h(v) = L2,∅(v)h(u)

1We also have more general relation

L∅,2(u)L∅,λ(v) =
h(u)h(v)

u− v

[

(u− v −Q)e(u)eλ(v) +Qe(v)eλ(v)
]

.
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nothing that

e(u+Q) = L∅,2(u)h
−1(u),

and multiplying by h−1(u)h−1(v) from the right one obtains

e(u+Q)f(v) +
Q

u− v +Q

(
L2,2(u)h

−1(u)− L∅,2(u)h
−1(u)L2,∅(u)h

−1(u)
)
=

= f(v)e(u+Q) +
Q

u− v +Q

(
L2,2(v)h

−1(v)− L2,∅(v)h
−1(v)L∅,2(v)h

−1(v)
)
. (A.13)

After shifting u→ u−Q, equation (A.13) reads

[e(u), f(v)] = −Qψ(u)− ψ(v)
u− v where ψ(u+Q) = L2,2(u)h

−1(u)− L∅,2(u)h
−1(u)L2,∅(u)h

−1(u).

Serre relations

Formulas at level 3 becomes tough, however they are straightforward. For example for e(u)e (v) we
will have:

e(u)e (v) =
ḡ(u− v)ḡ(u− v + b)

g(u− v)g(u− v + b)
e (v)e(u) +

2Q

(b− b−1)(Q+ b)

ḡ(u− v)ḡ(u− v + b)

g(u− v)g(u− v + b)
×

× e(v)
( 1

v − u−Q− be (u) +
1

v − ue (u) +
1

v − u− b− b−1
e (u)

)
+ locals

We will specify ”locals” terms later (see (A.16)), here we just want to point out that l.h.s by definition
doesn’t have any poles and so does the r.h.s. This condition will imply some additional relations, most
of them will be non local, and we are not gonna discuss them. However we note that the multiplier

ḡ(u− v)ḡ(u− v +Q)

g(u− v)g(u− v +Q)

doesn’t have pole at u = v +Q. Surprisingly, there is a ”local” term with pole at this point. Setting
the residue to zero, one finds a relation

(1 + b2)(1 + 2b2)e(u)e (u) +Q(1 + 2b2)e(u)e (u)− b(b4 − b2 − 4)e (u)e(u)+

+ 2b(1 + b2)e (u)e(u) + 2b(1 + b2)e (u)e(u)− (b2 + 1)2e (u))
def
= e (u) = 0 (A.14)

We will have similar relation for e(u)e (v). And also one trivial relation which follows from the fact

that e(u)e(u)2 = e(u)2e(u) = e(u)3. As a result we will have 6 independent currents at level 3, which
is equal to the number of 3d young diagrams with 3 boxes. In practise we used this three relations
in order to exclude composite currents (e (u)e(u), e (u)e(u), e (u)e(u)). This three relations may
look mysterious, however, after explicit calculation we found that this three relations are equivalent
to Serre relations, the later could be written down in terms of currents as

∑

σ∈S3
(xσ1 − 2xσ2 + xσ3)e(xσ1)e(xσ2)e(xσ3) +

∑

σ∈S3
[e(xσ1), e (xσ2) + e (xσ2) + e (xσ2)] = 0 (A.15)

Namely, using the quadratic relations, we may reorder any polynomial in e(ui) in a way that it will
contain only monomials with ordered arguments: e(ui1)e(ui2)...e(uin) , i1 < i2... < in , this could be
done explicitly with the formulas (A.16). After doing this procedure with Serre relations we found that
they proportional to linear combination of three currents, and so equal to zero in Yangian algebra.
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Finally, after imposing three relations (A.14) we will have explicitly:

g(u− v)g(u− v + b)
[
e(u)e (v)

]
d
= ḡ(u− v)ḡ(u− v + b)

[
e (v)e(u)

]
d
+

+
2Q

(b− b−1)(Q+ b)

(
ḡ(u− v)ḡ(u− v + b)

v − u−Q− b
[
e(v)e (u)

]
d
+
ḡ(u− v)ḡ(u− v + b)

v − u
[
e(v)e (u)

]
d
+

+
ḡ(u− v)ḡ(u− v + b)

v − u− b− b−1

[
e(v)e (u)

]
d

)
, (A.16)

where

[
e(u)e (v)

]
d

def
= e(u)e (v)− 1

u− v + 2b
e (v)− b− 2b−1

u− v + b−1
e (v)− b+ 2Q

u− v −Qe (v),

[
e(u)e (v)

]
d

def
= e(u)e (v)− 1

u− v + 2b−1
e (v)− 2b− b−1

u− v + b
e (v)− 2b+ b−1

u− v −Qe (v),

[
e(u)e (v)

]
d

def
= e(u)e (v)− 1

u− v − 2Q
e (v)− Q+ 2b

u− v + b
e (v)− (Q+ 2b−1)(Q+ b)

u− v + b−1

e (v)

2Q+ b−1
,

and

[
e (v)e(u)

]
d

def
= e (v)e(u)− 2

(b− b−1)(b+Q)

1

u− v − 2b−1
e (u)− 2bQ

Q+ b

u− v − b+ b−1

(u− v − b)(u− v − b−1)
e (u)−

− 2

b− b−1

u− v −Q− b
(u− v − b)(u− v −Q)

e (u)− 2Q

(b− b−1)(Q+ b)

1

(u− v − 2Q)
e (u)+

+
b2

(b− b−1)(b+Q)

2v − 2u− 4b+ b−1 + b−3

(u− v − b)(u− v − 2b)
e (u)− (Q+ b−1)b−1

(2Q+ b−1)(b− b−1)

2v − 2u− 3Qb−2

(u− v − b−1)(u− v +Q)
e (u)

with the higher currents given by

e (v) =
Q

(b−1 − b)(2b+ b−1)
h−1(v)

(
L∅, (v) + ibL

∅,
(v)
)

e (v) =
Q

(b− b−1)(b+ 2b−1)
h−1(v)

(
L∅, (v) + ib−1L

∅,
(v)
)

e (v) =
Q

(2b+ b−1)(b+ 2b−1)
h−1(v)

(
2Q2L∅, (v) + iQL

∅,
(v)− (2b+ b−1)(b+ 2b−1)e2(v)

)

e (v) =
2Q2

(b− b−1)(2b− b−1)(Q+ b)(Q+ 2b)
h−1(v)

(
L∅,222(v) + 3ibL∅, 222 (v)− 2b2L∅,222(v)

)
,

e =
2Q2

(b− b−1)(b− 2b−1)(2b−1 + b)(3b−1 + b)
h−1(v)

(
L∅,222(v) + 3ib−1L∅, 222 (v)− 2b−2L∅,222(v)

)
,

e =
2Q4

(Q+ b−1)(Q+ b)
h−1(v)

(
L∅,222(v)+

12iQ

(2Q+ b)(2Q+ b−1)
L∅, 222 (v)− 4

(2Q+ b)(2Q+ b−1)
L∅,222(v)

)
−

− 2Q2(Q+ 2b−1)

2Q+ b−1
e(v)e (v)− 2Q2(Q+ 2b)

2Q+ b
e(v)e (v)− 2Qe(v)e (v),

e = − 2Q2

(b− b−1)(b− 2b−1)(Q+ b−1)(2b− b−1)(Q+ b)
h−1(v)

(
L∅,222(v)+iQL∅, 222 (v)−L∅,222(v)

)
,
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e =
Q3b−1

(b− b−1)(Q+ b)2(Q+ b−1)(Q+ 2b−1)
×

× h−1(v)
(
(2Q+ b−1)L∅,222(v) + i(3Q+ b)b−1L∅, 222 (v)− 2b−1L∅,222(v)

)
− Q

Q+ b−1
e(v)e (v),

and

e =
Q3b

(b− b−1)(Q+ b)(Q+ b−1)(Q+ 2b)(2Q+ b)
×

× h−1(v)
(
(2Q+ b)L∅,222(v) + i(3Q+ b−1)bL∅, 222 (v)− 2bL∅,222(v)

)
− Q

2Q+ b
e(v)e (v),

In principle we may go further, and calculate quadratic relations at next levels, however as we already
have shown, the algebra is generated by the h(u), e(u) and f(u) currents, so in principle we don’t
need to use higher currents. The only problem is to prove that quadratic and Serre relations are the
only ones which currents e(u) obeys.

Relations in ǫ notations

We see that there is an S3 symmetry associated to permutation of the triple (b, b−1,−Q). In fact it is
more convenient to go to epsilon notations:

b =
ǫ1√
ǫ1ǫ2

, b−1 =
ǫ2√
ǫ1ǫ2

, Q = − ǫ3√
ǫ1ǫ2

=⇒ ǫ1 + ǫ2 + ǫ3 = 0.

It is also convenient to change a normalization of the highest weight/spectral parameters, together
with the normalization of the bosonic zero mode:

ϕ(x)→ φ(x) = −i ϕ(x)√
ǫ1ǫ2

.

Then the relation (A.12) takes apparently symmetric form

g(u− v)
[
e(u)e(v) +

e (v)

u− v + ǫ1
+

e (v)

u− v + ǫ2
+

e (v)

u− v + ǫ3

]
=

= ḡ(u− v)
[
e(v)e(u) +

e (u)

u− v − ǫ1
+

e (u)

u− v − ǫ2
+

e (u)

u− v − ǫ3

]
,

where

g(x) = (x+ ǫ1)(x+ ǫ2)(x+ ǫ3), ḡ(x) = (x− ǫ1)(x− ǫ2)(x− ǫ3).

Our conventions about relation between ǫ and b,Q notations are summarized in the table below

fields normalisation Current e commutator [e, f ]

b notations ∂ϕ(x)∂ϕ(y) = − 1
sin2(x−y) + reg e(u) = h−1(u)L∅,2(u) [e(u1), f(u2)] = −Qψ(u1)−ψ(u2)

u1−u2
ǫ notations ∂φ(x)∂φ(y) = 1

sin2(x−y) + reg e(v) =
√
ǫ3h

−1(v)L∅,2(v) [e(v1), f(v2)] =
ψ(v1)−ψ(v2)

v1−v2

In definition of matrix elements Lλ,µ(u) we define the state |�〉, as well as any state |λ〉 to be
normalized as 〈λ|λ〉 = 1 in any notation.

Note that here we used a Maulik-OkounkovRmatrix, which breaks the symmetry between ǫ1, ǫ2, ǫ3,

so that we have a selected ǫ3. In fact, there exist additional R(1,2)
f matrices with either ǫ1 or ǫ2 selected

(see appendix A.4).
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A.3 Special vector |χ〉 and shuffle functions

In the later we will need a more detailed description of a subalgebra n+ generated by currents f(z).
Easy to understand that the subspace of the form Lµ,∅1(v1) . . .Lµ,∅n(vn) may be identified with the
subspace n+(v) = h(v1) . . . h(vn)n

+. A particular result of this section is an explicit realization of this
mapping, which plays an essential role in sections 1.4.1-1.4.5.

First of all let us note that both spaces are graded by the number of f(ξi) currents in the monomial,
let us note each graded component of corresponding algebras by n+N , n

+
N (v).

It is a natural idea to identify elements of n+ and n+(v) by their matrix elements in some repre-
sentation:

n+N → 〈∅|n+N |χ〉 (A.18)

In order to unambiguously characterize the elements of n+N , n
+
N (v) we need a big enough set of repre-

sentations and vectors |χ〉. Our choice is the following: let us pick an N Fock spaces: Fx1 ⊗ . . .FxN ,
and consider simplest vector of grade N :

|χ〉x def
= |2, . . . ,2︸ ︷︷ ︸

N

〉 = lim
ξi→xi

∏

i,k

ξi − xk
ξi − xk − ǫ3

∏

i<j

S(ξi − ξj)e(ξN )...e(ξ1)|0〉

Then, our mapping (A.18) maps an element of n+N , n+N (v) to a rational function of N variables
f(x1, . . . , xN ) obeying the so called ”wheel” condition [FJMM15]:

f(x1, x1 + ǫi, x1 + ǫi + ǫj , x4, . . . ) = 0

For n+N and additional condition:

f(v, v + ǫ3, x3, . . . ) = 0

For n+N (v). This functions is a rational limits of Sh0 and Sh1 functions from [FJMM15]. The multi-
plication in algebra, implies the multiplication of Shuffle functions

S0 : n
+
N × n+M → n+N+M (A.19)

f(x) ⋆ g(y) ≡ Symx,y

(
f(x)g(y)

∏

i,j

S(xi − yj)
)

For n+, And

S1 : n
+
N (v)× n+M (u)→ n+N+M (u, v)

f(x) ⋆ g(y) ≡ Symx,y

(
f(x)g(y)

∏

n,i

un − xi
un − xi − ǫ3

∏

i,j

S(xi − yj)
)

For n+(v).

Let us introduce, W (1)(z) current Un

〈∅|L(u) a(0)−n|∅〉 =
Un
u

+ o

(
1

u2

)
, n > 0

〈∅|a(0)n L(u)|∅〉 =
U−n
u

+ o

(
1

u2

)
, n > 0 (A.20)

It is clear from the RLL relation that R(u) matrix commute with W (1) current:

(a(0)n + Un)R
0,v = R0,v(a(0)n + Un)
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Taking the matrix element over the auxiliary space 〈∅| . . . |µ〉 for positive n we will get:

[Lµ,∅(u), Un] = Lµ+n,∅(u), (A.21)

where 〈µ+ n| def= 〈µ|an.
It is also clear, that Jn for n > 0 belongs to the subalgebra n+. Indeed, explicit calculation of the

large u limit of R(u) matrix (A.2) shows that:

U1 = f0 U−1 = e0, (A.22)

Un+1 = −n[f1, Un] Un−1 = −n[e1, Un].

Then we get:

Ux
k =

∮
· · ·
∮
gk(ξ)f(ξ1)...f(ξk)dξ with, (A.23)

gn+1(~ξ) = −k
(
ξ1gn(ξ2 . . . ξn+1)− gn(ξ1 . . . ξn)ξn+1

)
,

and
gn(ξ) = (−1)n−1(n− 1)!

∏

i

ξi

(∑
(−1)iCinξ−1

i

)
,

where Cin are the binomial coefficients.
Note that the function g(ξ) defined ambiguously, indeed algebra Y (ĝl(1)) enjoys Serre relations

(A.15)
Symi,j,k[fi, [fj [fk+1]]] = 0

Indeed such an element lies in the kernel of the Shuffle map (A.19)

Symi,j,k

(
ξi1ξ

k
2ξ
k
3 (ξ1 − 2ξ2 + ξ3)S(ξ1 − ξ2)S(ξ1 − ξ3)S(ξ2 − ξ3)

)
= 0

In particular, commutativity of Jn may be thought as a consequence of Serre relation, for example
choosing i = j = k = 0

[U1, U2] = [f0, [f1, f0]]
Serre
= 0

We should consider functions gn(ξ) modulo equivalence:

g(1)n (ξ) ∼ g(2)n (ξ) + Ker(S0) (A.24)

It is easy to understand that modulo this equivalence function gn(ξ) is invariant under the simultaneous
shift of all variables ξ → ξ + ~ we will use this fact in section 1.4.5.

As we announced, operators L(u)µ,∅ belongs to the subspace n+(u)|µ|:

Lλ,∅(u) =
1

(2πi)|λ|

∮
· · ·
∮
Fλ(z|u)h(u)f(z|λ|) . . . f(z1)dz1 . . . dz|λ| (A.25)

where contours go clockwise around ∞ and all poles of Fλ(z).
Let us prove this statement, and find recurrence relations for the rational function Fλ(z|u). Now

in order to recover formula (A.25) we have to use relation (A.21) together with the formula (A.23).
In order to reproduce (A.25) we have to reorder h and f current, in order to move h to the left, this
can be done with the simple fact

∮

∞

ξnf(ξ)h(u)
dξ

2πi
=

∮

∞

[ (u− ξ)
(u− ξ − ǫ3)

h(u)f(ξ)− ǫ3
(u− ξ − ǫ3)

f(u)h(u)
]
ξn

dξ

2πi
=

=

∮

∞+{u−ǫ3}

(u− ξ)
(u− ξ − ǫ3)

h(u)f(ξ)ξn
dξ

2πi
(A.26)
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Here in the first equality we used equation (1.40c), while in the second we used a simple fact that l.h.s
of (1.40c) doesn’t have pole at u = v + ǫ3, and so r.h.s does (h(u)f(u+ ǫ3) = f(u)h(u)), thus we may
deform integration contour.

Equation (A.21) together with (A.26) implies integral formula (A.25) together with recurrence
representation for Fλ(z|u)

Fλ+n(z,w|u) = Fλ(z|u)gn(w)


1−

∏

i,j

G(zi − wj)
∏

i

u− wi
u− wi − ǫ3


 (A.27)

A.4 Other representations of YB
(
ĝl(1)

)

In this notes we were concentrated on an examples of ”spin chain” with n sites and periodic boundary
conditions, this setup corresponds to an affine An Toda field theory. At the each site of our ”spin
chain” we should place a representation of RLL algebra. The generating function of IM’s is equal to

T (u) = TrF0

(
q

∑

n
a
(0)
−na

(0)
n R0,1(u− u1) . . .R0,n(u− un)

)

One possibility is to choose R0,k(u − uk) to be the Maulik-Okounkov R−matrix. However we have
already seen that RLL algebra in current realization is symmetric under permutation of three param-
eters ǫα, in terms of usual parameters b,Q, b−1 this means a symmetry between b and Q = b+ 1

b where

b =
√

ǫ1
ǫ2
.

In order to see two additional representations of RLL algebra let us realize representation of W
algebra in the space of two bosons as commutant of Screening charge, according to [BFM18, LS16]
there are three choices of screening currents. Our notation is that there exist three different types of

representation of Y B(ĝl(1): we call them F (1)
u , F (2)

u and F (3)
u . We assign the screening charge Sk to a

tensor product of two Fock spaces of the same type F (k)
u ⊗F (k)

v , and we assign ”fermionic” screening

charge Si,f to the tensor product of different Fock spaces F (j)
u ⊗ F (k)

v with (i, j, k) = cycl(1, 2, 3).
Fixing one of the Fock spaces to be of the type 3, we will have three options for the other one

Sf,1 =

∮
ebφ0(x)−βφ1(x)dx, Sf,2 =

∮
eb

−1φ0(x)−β̄φ1(x)dx, S±
3 =

∮
eb

±1(φ0(x)−φ1(x))dz,

where β = i
√
b2 + 1 and β̄ = i

√
1 + b−2.

While the third screening charge S3 leads to the MO R−matrix

R(3)
0,1 = RMO

0,1 = e
iQ

2π
∫

x=0

[
1
2u

(∂φ0(x)−∂φ1(x))2− 1
6u2

(∂φ0(x)−∂φ1(x))3
]
+o( 1

u2
)] dx

2π
,

the first and the second screenings have dimension 1
2 and the corresponding W algebra admits free

fermion representation. For example for the first screening, let us introduce two fermionic currents

ψ(x) = e−ibuxebφ0(x)−βφ1(x) (A.28)

ψ†(x) = eibuxe−bφ0(x)+βφ1(x), (A.29)

where iu is the zero mode of φ0(x). It is easy to check that they obeys free fermionic OPE’s

ψ(x)ψ†(y) =
1

sin(x− y) + reg, ψ(x)ψ(y) = reg, ψ†(x)ψ†(y) = reg.
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Correspondingly, W (2)(x) current which commutes with S1 is simply

W (2)(x) = ψ†(x)(i∂ + ub)ψ(x)

Intertwining relation implies

R(1)
f ψ†(x)(i∂ + ub)ψ(x) = ψ(x)(i∂ − ub)ψ†(x)R(1)

f (A.30)

One can find that the R(1)
f matrix is given by the explicit formula

R(1)
f (u) = exp

[ 1

2π

∫ 2π

0
ψ†(x) log

(
1 +

i∂

ub

)
ψ(x)dx

]
(A.31)

Indeed under the adjoint action of R matrix fermions transform as:

R(1)
f ψ(z)

(
R(1)
f

)−1
=

1

1 + i∂
ub

ψ(z)

R(1)
f ψ†(z)

(
R(1)
f

)−1
=
(
1− i∂

ub

)
ψ†(z)

Such that (A.30) holds. Although formula for R matrix looks pretty simple, it’s structure is quite
complicated because one should remember that ψ(z) operator is nontrivial in terms of individual
bosons (A.28),(A.29).

In order to find local integrals of motion we have to expand R matrix in powers of 1
u . Let us

introduce a shorthand notation
Φ(x) = bφ0(x)− βφ1(x)

It is easy to find that

: ψ†(x)ψ(x) := ∂Φ(x) (A.32)

: ψ†(x)∂ψ(x) :=
1

2

(
∂Φ(x)

)2
+

1

2
∂2Φ(x) (A.33)

: ψ†(x)∂2ψ(x) :=
1

3
(∂Φ(x))3 + ∂Φ(x)∂2Φ(x) +

1

3
∂3Φ(x)

. . .

Using the formulas (A.31), (A.32)-(A.33), it is easy to find first non trivial integral of motion in the
space of one boson F2:

T (u) = Tr′aux(q
∑

n a−nanR
(1)
f ) = e

I1
u
+

I2
u2

+...,

where

I1 =
iQ

2π

∫ 2π

x=0
∂φ2dx, I2 = −

iQ

b

∫ 2π

x=0

[1
3
β(∂φ)3 − 1

2
b2∂φD∂φ

]dx
2π

In general, representation may contain Fock modules of different types. Let us consider the fol-
lowing one

Fq =
(
F (1)
u

)⊗n1
(
F (2)
u

)⊗n2
(
F (3)
u

)⊗n3

, Faux = F3

Where Fq is our quantum space, and Faux is an auxiliary space. As usual the generating function of
Integrals of Motion is

T (u) = Traux

(
q
∑

n ana−nRaux,q

)
= traux

(
q
∑

n ana−n

n1∏

j=1

R2,f (u−vj)
n1+n2∏

i=n1+1

R1,f (u−vi)
n1+n2+n3∏

k=n1+n2

RMO(u−vk)
)
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Expanding at large spectral parameter, it is easy to find first non trivial integral of motion:

I2 = iQ

2π∫

x=0

[ β̄
3

n1∑

i=1

(∂φi)
3+

β

3

n1+n2∑

i=n1+1

(∂φi)
3−1

3

n1+n2+n3∑

i=n1+n2+1

(∂φi)
3−


1

2

∑

i,j

Bi,j∂φiD∂φj +
∑

i<j

Bi,j∂φi∂
2φj



]dx
2π

Where B is a n1 × n2 × n3 block matrix:

B =



b 1 β
1 b−1 β̄
β β̄ −Q




Alternatively, after switching to the epsilon notations:

I2 = −ǫ3
2π∫

x=0

[1
3

ǫ1
σ3

n1∑

i=1

(∂φi)
3 +

1

3

ǫ2
σ3

n1+n2∑

i=n1+1

(∂φi)
3 +

1

3

ǫ3
σ3

n1+n2+n3∑

i=n1+n2+1

(∂φi)
3−

−


1

2

∑

i,j

ǫiǫj
σ3

∂φiD∂φj +
∑

i<j

ǫiǫj
σ3

∂φi∂
2φj



]dx
2π

And basic fields normalized as follows:

∂iφ(x)∂jφ(y) = −δi,j
σ3
ǫi

1

sin2(x− y)

Where σ3 = ǫ1ǫ2ǫ3.
Bethe ansatz for the models considered in this section could be derived along the same lines,

the only difference is in the action of ψ(u) generators on vacuum. For a Fock space representation

F =
∏
k⊗F

(αk)
uk we have:

ψ(u)|∅〉 =
n∏

k=1

u− uk − ǫαk

u− uk
|∅〉

So that we will have the same Bethe equations as in (1.81), but with different source function

A(u) =
n∏

k=1

u− uk − ǫαk

u− uk
.
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Appendix B

B.1 Restoring the symmetry between ǫα

One may note that affine Yangian commutation relations (1.40) are symmetric with respect to per-
mutations of all ǫα. Nevertheless Bethe Ansatz equations (2.27) are not symmetric in all ǫα, because

of the source term A(x) =
n∏
k=1

x−uk+ ǫ3
2

x−uk− ǫ3
2

. We are now in a position to restore the symmetry, which will

help us to build more general integrable systems. The resolution of the paradox is the following: there
actually exists three types of Fock modules Fαx . In order to describe Integrable systems, we have to
define an R-matrix acting between different Fock spaces Fαx1 ⊗ F

β
x2 . In the following we will use the

results of [BFM18,LS16] and also [FJMV21] where various integrable systems of this type considered
in details for the q-deformed case. To the Fock module Fαv we assign a free bosonic field (2.6):

∂ϕ(x) = −i u
√
ǫβǫγ

+
∑

n 6=0

ane
−inx, [am, an] = mδm,−n,

here (α, β, γ) = perm(1, 2, 3). To the tensor product of two Fock modules we have to assign a W -
algebra and an R-matrix. If the both Fock modules are of the same type Fαx1 ⊗Fαx2 then we assign to
them two Screening currents:

S±
α =

∮
e

(

ǫβ
ǫγ

)± 1
2 (ϕ1(x)−ϕ2(x))dx,

where (α, β, γ) = perm(1, 2, 3). The W -algebra which commutes with these Screenings consists of two
currents of spin 1 and 2

Wα
1 = ∂ϕ1(x) + ∂ϕ2(x)

Wα
2 =

1

2
(∂ϕ1(x)− ∂ϕ2(x))

2 +
ǫα√
ǫβǫγ

(∂2ϕ1(x)− ∂2ϕ2(x))

defines the R-matrix in the usual way:

R1,2(ϕ1 − ϕ2|ǫα, ǫβ , ǫγ)Wα
1,2 =Wα

1,2

∣∣∣
ϕ1↔ϕ2

R1,2(ϕ1 − ϕ2|ǫα, ǫβ , ǫγ).

Here Rα,α1,2 (ϕ1 − ϕ2|ǫβ , ǫγ , ǫα) is our old Maulik-Okounkov R-matrix (2.8).

Now to Fock modules of different types: Fαx1 ⊗F
β
x2 we assign a single ”fermionic” screening charge

Sf,γ =

∮
e

√

ǫα
ǫγ
ϕ1(x)−

√

ǫβ
ǫγ
ϕ2(x)

dx.
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This screening called ”fermionic” because it is a zero mode of a free fermion:

ψ(x) = e

√

ǫα
ǫγ
ϕ1(x)−

√

ǫβ
ǫγ
ϕ2(x)

, ψ†(x) = e
−
√

ǫα
ǫγ
ϕ1(x)+

√

ǫβ
ǫγ
ϕ2(x)

ψ(x)ψ†(y) =
1

sin(x− y) + reg

Sf,γ = ψ0

Corresponding W algebra which commutes with screening charges consists of two currents of spin 1,
2:

Wf ;1 =
1√
ǫα
∂ϕ1(x) +

1
√
ǫβ
∂ϕ2(x)

Wf ;2 = (∂Φ(x))2 + ∂2Φ(x),

where Φ(x) =
√

ǫα
ǫγ
ϕ1(x)−

√
ǫβ
ǫγ
ϕ2(x) and also an auxiliary current of spin 3. Again the R-matrix can

be found from the condition:
Rα,β1,2 Wf ;1,2 = P1,2(Wf ;1,2)Rα,β1,2 ,

here P1,2 is a permutation operator P1,2 : Fαx1⊗F
β
x2 → Fβx2⊗Fαx1 . Note that now we have to permute not

only the bosonic field ϕ1 ↔ ϕ2, but also have to exchange ǫα ↔ ǫβ (we use (α, β, γ) = perm(1, 2, 3)).
Fermionic R-matrix has very similar form in terms of free fermions:

Rα,β1,2 = exp
[ 1

2π

∫ 2π

0
: ψ†(x) log (∂)ψ(x) : dx

]
.

Boundaries and K-matrices. We already seen (2.11)-(2.12) that there is three types of boundaries,
which produce three types of K-matrices. First let us consider the case of the right boundary. We will

use the following notation Fα1
1 ⊗ Fα2

2 · · · ⊗ Fαn
n

∣∣∣βR for n Fock spaces and the right boundary. The

case of a left boundary is completely similar and can be obtained by the following isomorphism

(βL = βR)
∣∣∣Fαn

n ⊗F
αn−1

n−1 · · · ⊗ Fα1
1 ≃ D1 . . . Dn

(
Fα1
1 ⊗Fα2

2 · · · ⊗ Fαn
n

∣∣∣βR
)
,

where Di is the operator of reflection of the bosonic fields ϕi → −ϕi.
For the Fock module of type α and the boundary of type β: Fαn

∣∣∣β we assign two screenings charges:

S±
γ =

∮
e

(

2ǫβ
ǫγ

)± 1
2√

2ϕn(x)dx,

where (α, β, γ) = perm(1, 2, 3). The corresponding K-matrix is equal to:

Kα|β = R(
√
2ϕn|

ǫβ√
2
,
√
2ǫγ ,−

ǫβ√
2
−
√
2ǫγ)

If the Fock module and the boundary are of the same color, then the K-matrix is equal to the identity
matrix:

Kα|α = Id.

Additional screening charges depend not only on the last Fock module Fαxn , but on the previous

one Fβxn−1 . For Fαn−1 ⊗Fαn
∣∣∣α we have

S±
α =

∮
e

(

ǫβ
ǫγ

)± 1
2 (ϕn−1(x)−ϕn(x))dx , S̄±

α =

∮
e

(

ǫβ
ǫγ

)± 1
2 (ϕn−1(x)+ϕn(x))dx.
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And for Fαn−1 ⊗F
β
n

∣∣∣β we have:

Sf,γ =

∮
e

√

ǫα
ǫγ
ϕn−1(x)−

√

ǫβ
ǫγ
ϕn(x)

dx , S̄f,γ =

∮
e

√

ǫα
ǫγ
ϕn−1(x)+

√

ǫβ
ǫγ
ϕn(x)

dx.

Equivalently corresponding W -algebra may be found from the condition of symmetry under reflection
of the last boson ϕn → −ϕn. These rules may be summarised by the following picture:

Fαn−1 Fβn Fαn−1 Fαn

Fαn−1
Fαn−1 Fβn Fαn−1 Fαn α

√
ǫα
ǫγ
ϕn−1(x)−

√
ǫβ
ǫγ
ϕn(x)

(
2
ǫβ
ǫγ

)± 1
2 √

2ϕn−1(x)

(
ǫβ
ǫγ

)± 1
2
(ϕn−1(x)− ϕn(x))

√
ǫα
ǫγ
ϕn−1(x)−

√
ǫβ
ǫγ
ϕn(x)

√
ǫα
ǫγ
ϕn−1(x) +

√
ǫβ
ǫγ
ϕn(x)

β
β

(
ǫβ
ǫγ

)± 1
2
(ϕn−1(x)− ϕn(x))

(
ǫβ
ǫγ

)± 1
2
(ϕn−1(x) + ϕn(x))

Figure B.1: The exponent of corresponding screenings, for different choices of Fock spaces and bound-
ary conditions.

Finally we may assign an integrable system to the chain of colored Fock spaces with two colored

boundaries βL

∣∣∣Fα1
1 ⊗ Fα2

2 · · · ⊗ Fαn
n

∣∣∣βR , using the corresponding R− and K-matrices. We may

construct KZ Integrals of Motion (2.14) and off-shell Bethe vectors (2.25) in precisely the same way
s described in the main text. We may also find local Integrals of Motion as commutant of screenings
charges. The corresponding Bethe equations read as:

rβL(xi)r
βR(xi)A(xi)A

−1(−xi)
∏

j 6=i
G(xi − xj)G−1(−xi − xj) = 1,

G(x) =
(x− ǫ1)(x− ǫ2)(x− ǫ3)
(x+ ǫ1)(x+ ǫ2)(x+ ǫ3)

, A(x) =
n∏

k=1

x− uk +
ǫαk
2

x− uk −
ǫαk
2

, rα(x) = −x+ ǫα/2

x− ǫα/2
.
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C.1 Sklyanin’s K matrices

In this appendix we will present some formulas which relate the KB,C,D(u) matrices and R-matrices
of some shifted parameters, u, q1, q2. R(u)-matrix itself could be computed explicitly at each level, or
order by order in 1

u expansion [FHMZ17].
In the D case, there is an explicit formula in terms of modes of screening current

ǨD = e
iπ

∑

n

n(1−q−n
2 )

(1−qn1 )(1+qn3 )
(s1,n−s1̄,n)(s1,−n−s1̄,−n)

Straightforward property of this operator is:

ǨDS1(z)ǨD = S1̄(z)
ǨDR1(u)ǨD = ǨDŘ1̄(u)ǨD.

Using the fact that nodes 1 and 1̄ doesn’t connected with a node : [S1(z),S1̄(w)] = 0 we have

Ř1(u)Ř1̄(v) = Ř1̄(v)Ř1(u).

The later immediately leads to the KRKR relation:

ǨDR1(u1u2)ǨDŘ1(
u2
u1

) = Ř1(
u2
u1

)ǨDŘ1(u1u2)ǨD

C and B cases are more complicated, here we will concentrated on a C case, while the case of B is
completely analogical. As was defined in previous section Ǩ(u) depends only on the longest screening
S1(z), and obey the relation

Ǩ(u)


uY1(z) +

1

u
: Y1(z)

S1(q
−d1
1 z)

S1(q
−d1q−1

2
1 z)

:


 =

(
1

u
Y1(z) + u : Y1(z)

S1(q
−d1
1 z)

S1(q
−d1
1 q−1

2 z)
:

)
Ǩ(u)

Here d1 = 2 , but let us stay with a general d1 for a moment. K-matrix could be found as a series in
1
u2
:

Ǩ(u) = (1 +
∞∑

n=1

Ǩn
1

u2n
)Ǩ0

For u→∞ one has:

Ǩ0Y1(z) =: Y1(z)
S1(q−d11 q−1

2 z)

S1(qd11 z)
: Ǩ0

With a straightforward solution:

Ǩ0 = exp

(
(log(q−d11 q−1

2 ) +
iπ

n
)

1− q−n2(
1− qn1

)(
1 + q−d11 q−1

2

)s−nsn
)
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Proceeding further, Ki could be found as a solution of equations [FHMZ17]:

[Ǩi, : Y1(z)A
−1(q−d11 q−1

2 z) :] = Y1(z)Ǩi−1 − Ǩi−1 : Y1(z)A
−1(q−d11 q−1

2 z)A(q−2d1
1 q−2

2 z) : (C.2)

For i > 1 , and:

[Ǩ1, : Y1(z)A
−1
1 (q−d11 q−1

2 z) :] = Y1(z)− : Y1(q
−2d1
1 q−2

2 z)A−1
1 (q−d11 q−1

2 z)A1(q
−2d1
1 q−2

2 z) :

For i = 1

Here we introduced shorthand notation: Ai(z) =: Si(z)
Si(q2z)

: see (3.5) , [KP18] for details. General

solutions of equations (C.2) are not known, however they could be solved order by order, for example:

Ǩ1 =
1− q−d11 q−1

2

(1− q−1
2 )(1− q−d11 )

∮
A1(z)

dz

2πz

In general, Kn is a multiple integral, containing n integrations.
Easily to observe that structure of the formula doesn’t depend on the value of parameter d1 and

so we have an identity:

ǨC(u, q1, q2) = Ř(u2, q21, q2)

ǨB(u, q1, q2) = Ř(u, q
1
2
1 , q2)
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