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Abstract 
 

 

PhD thesis is devoted to analytical study of Eigenstate Thermalization Hypothesis (ETH) 

in 2d CFTs. In this thesis we find spectrum of quantum KdV charges in large central 

charge limit by combining classical expressions for KdV charges in terms of action 

variables and quantum “corrections” which we unambiguously fix from the analytical 

form of quantum KdV charges acting on highest weight states. With this result we 

compute Generalized Gibbs Ensemble of 2D CFTs in large central charge limit. These 

calculations allows us to explicitly probe ETH in 2d CFTs and establish the correct form 

of thermalization hypothesis for large central charge theories, which we formulate in 

terms of Generalized ETH (GETH). We analytically check this hypothesis for several 

descendants in the “identity block” of 2D CFTs. 
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1 Introduction

Emergence of statistical thermodynamics from quantum mechanics is one of the excit-
ing open questions of theoretical physics. Extensive research in this field was carried
out in recent years. It has became an accepted paradigm that universality of thermal
equilibrium can be explained in terms of Eigenstate Thermalization Hypothesis (ETH)
шn case of nonintegrable (or "chaotic") systems, i.e., those without an extensive num-
ber of local conserved quantities. The ETH is an expectation that local properties
of individual microstates – energy eigenstates of spatially extended chaotic quantum
system – may only depend on thermodynamically relevant quantities, i.e. in most cases
only on energy density of the microstate.

The idea eigenstate thermalization for quantum many-body systems was formu-
lated in the works of Deutsch [1] and Srednicki [2]. The modern formulation [3] of the
Eigenstate Thermalization Hypothesis (ETH) ansatz states that for any finite-support
observable A

Aij = δijfA(Ei) + e−S/2f(Ei, Ej)rij, Aij ≡ 〈Ei|A|Ej〉, (1.1)

where fA is a smooth function which depends on energy density fA(Ei) = f̃A(Ei/V ),
and function f̃A approaches some volume-independent shape in the thermodynamic
limit, V →∞, E/V = fixed. Here smoothness of fA is simply the reflection of physical
equivalence of different eigenstates with the same (exponentially close) values of energy
density. As a trivial consequence of (1.1), provided most eigenstates obey the ETH
ansatz, fA(E) will be equal to the microcanonical average, up to volume-suppressed
corrections. Similarly, second term in (1.1), which describes off-diagonal matrix ele-
ments manifests indistinguishably of different eigenstates |Ei〉 with the same energy
density in statistical sense by declaring average magnitude of |A2

ij| to be smoothly de-
pendent only on mean energies Ei, Ej. The exponential suppression factor in (1.1) is
purely kinematic and can be recovered in full generality independently of the details of
the observable A [3].

Provided energy spectrum is non-degenerate, time-averaged expectation value of an
observable A is given by the so-called diagonal ensemble, which only includes diagonal
matrix elements Aii. Agreement between the latter and the equilibrium expectation
values emerging in model systems after a quantum quench [4] motivated substantial
interest in Eigenstate Thermalization in the context of cold atomic systems.

When the system, besides energy, possesses a number of additional local (or quasi-
local [5]) conserved quantities, as is normally the case for integrable systems, densities
of these additional conserved charges are also thermodynamically relevant. In this case

– 3 –



standard formulation ETH generally does not apply. Accordingly emerging equilib-
rium can be different from the Gibbs state. The main hypothesis is that in this case
the equilibrium can be described by the generalized Gibbs ensemble (GGE) [6–8], a
generalization of the grand canonical ensemble that includes all the conserved charges.
Validity of the GGE has been related to generalized eigenstate thermalization, which
generalizes ETH to include all the conserved extensive quantities.

Most of the research in both integrable and nonintegrable cases were carried out
via numerical methods. The aim of this thesis is to probe ETH analytically. In order
to do so we focus on two-dimensional conformal field theories, where many analytical
tools were developed before.

Conformal Field Theories in two dimensions describe one dimensional systems at
criticality, most notably string theoretic worldsheet. Thermalization of two-dimensional
theories came to the focus of attention recently in the context of entanglement spreading
following a quantum quench. Additional motivation to study 2d theories comes from
holographic duality, which relates thermal properties of boundary CFTs to black hole
physics in AdS3.

Due to tremendously difficulty of analytical checks, detailed understanding of ETH
is still missing. This thesis is devoted to analytical study of ETH for 2d conformal field
theories. Our project is the first non-trivial analytical study of ETH for space-extended
quantum systems. In order to tackle ETH we had to study integrable structure of 2d
CFTs, namely, quantum KdV charges. Large part of the thesis is devoted to a careful
analysis of quantum integrability of 2d CFTs. We first establish the spectral properties
quantum KdV charges which allows us study Generalized Gibbs ensemble of 2d CFTs.
These results lead to an explicit analytic checks of generalized ETH, which are the
main contribution of the thesis.

Main results of the thesis are the following:

• We explicitly find quantum spectrum of KdV charges up to first three orders in
1/c central charge expansion.

• We calculate Generalized partition function of 2d CFTs decorated by all quantum
KdV charges up to first two orders in 1/c central charge expansion.

• We formulate the correct form of eigenstate thermalization for 2d CFTs, which
must be in the form of generalized ETH which equates (in physical sense) indi-
vidual states not to Gibbs ensemble but to Generalized Gibbs Ensemble.

• We resolve the issue found in previous works of discrepancy between thermal
properties of heavy primary states and ETH prediction for the operators of so-
called identity block. We show that heavy primary states are not equivalent to
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Gibbs ensemble but to a singular Generalized Gibbs Ensemble. This conclusion is
based on a detailed calculation involving explicit form of GGE partition function.

The thesis is organized as follows.
In section 2 we give a concise introduction to classical KdV hierarchy and Novikov’s

finite-zone solutions. In section 2.1 we consider a Schrodinger eigenvalue problem and
study its periodic real-valued potentials. We show that isospectral deformations of the
problem are generated via the Hamiltonian flows associated with the quantities Q2k−1

called classical KdV charges. In section 2.2 we define finite-zone potentials as solutions
of the static generalized KdV equations. We show how the given spectral data defines
a quasi-momentum on a Riemann curve. In section 2.3 we give an exact solution of
generalized KdV equations for one-zone potential. In that case the Riemann curve is
a torus and the solution can be found in terms of Weierstrass’s function associated
with the torus. In section 2.4 we take a different route and introduce perturbative
approach of zone "openings". In sections 2.5 we find perturbatively the expression for
KdV charges Q2k−1 for one-zone potential in terms of co-adjoint orbit invariant h, k and
torus variable τ . We do the same for action variable I2k−1. Then we re-express Q2k−1

in terms of I2k−1 and h. In section 2.6 we extend this result to two-zone petentials.
In section 3 we employ quasi-classical quantization to calculate spectrum of quan-

tum KdV charges in the limit of large central charge c. Quantum-mechanically KdV
charges expressed in terms of action variables become the expansion in 1/c, while action
variables become boson occupation numbers ni. Crucially, classical expression, which
is homogeneous in Ii, acquire quantum corrections which include terms of subleading
powers. In section 3.1 we give a flash introduction to co-adjoint orbits of Virasoro
algebra. We consider the group of diffeomorphisms of S1 on periodic potential and
wave-function satisfying Schrodinger equation. We show that action of diffS1 foliates
the space of all potentials into co-adjoint orbits of Virasoro algebra. In section 3.2
we introduce quantum KdV charges as symmetries of 2d Conformal field theories. In
section 3.3 we discuss the space of states of KdV charges and introduce KdV-basis in
"boson representation". In section 3.4 we find perturbatively the values of quantum
KdV charges acting on primary states. We do this via Ordinary Differential Equa-
tions/ Integrable Models correspondence (ODE/IM) which relates KdV spectrum to
solutions of an auxiliary Schrodinger equation. In section 3.5 we conjecture that quan-
tum spectrum can be unambiguously fixed from the analytic form of Q2k−1 acting on
the highest weight (primary) states and classical expressions found in sections 2.5 and
2.6. We confirm this and find the explicit expressions for the spectrum of Q2k−1 up to
first three orders in 1/c expansion.

In section 4 we compute Generalized Partition function of 2d CFT decorated with
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all qKdV charges as a function of infinite number of chemical potentials in the limit
of large central charge. Section 4.1 is devoted to the standard partition function of
2d CFT in thermodynamic limit. We calculate the partition function via saddle point
approximation, which is exact in thermodynamic limit. In section 4.2 we add higher
KdV charges to the partition function and take large central charge limit c→∞. We
find the partition function in that limit in a concise form. In section 4.3 we consider
1/c corrections from Q3 and Q5. Given the result for quantum spectrum obtained in
section 2.5 we compute the partition function at first non-trivial 1/c correction with
Q3 and Q5 turned on. We also find effective action at 1/c. In section 4.4 we combine
all the above results and calculate first two 1/c contributions to Generalized partition
function with all quantum KdV charges included.

In section 5 we pedagogically develop the machinery of calculating zero modes
of local operators from the vacuum family and calculate explicit expressions for all
quasi-primaries of the dimension less or equal than eight. We also calculate the explicit
expression for Q7. Section 5.1 is devoted to a general technique of finding zero modes of
the product of arbitrary local operators in terms of Stirling numbers of second kind. In
section 5.2 we pedagogically show how to apply this technique to calculation of Q3. In
section 5.3 we continue to work out zero modes of various quasi-primaries, descending
from the identity operator. In section 5.4 we calculate an explicit expression for Q7 in
terms of Virasoro operators.

In section 6 we introduce Eigenstate Thermalization Hypothesis (ETH) and state
the hypothesis for 2d CFTs. Next, we compare generalized ensemble with the “eigen-
state ensemble” that consists of a single primary state. At infinite central charge the
ensembles match at the level of expectation values of local operators for any values
of qKdV fugacities. When the central charge is large but finite, for any values of the
fugacities the aforementioned ensembles are distinguishable. In section 6.1 we state the
standard formulation of Eigenstate Thermalization Hypothesis. Section 6.2 is devoted
to the challenge of formulating ETH for 2d CFTs. We argue that Generalized Gibbs
Ensemble plays a crucial role for ETH in 2d CFTs. In section 6.3 we show that at
infinite central charge “eigenstate ensemble” matches generalized Gibbs ensemble. We
continue the investigation in section 6.4 where we show that this is no longer true at
finite central charge. We give an argument that shows that elimination of discrepancy
between GGE and “eigenstate ensemble” is not possible on pertubative level for all
sufficiently excited states.

In section 7 we propose that in the thermodynamic limit large central charge 2d
CFTs satisfy generalized eigenstate thermalization (GETH), with the values of qKdV
charges forming a complete set of thermodynamically relevant quantities, which un-
ambiguously determine expectation values of all local observables from the vacuum
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family. Equivalence of ensembles further provides that local properties of an eigenstate
can be described by the Generalized Gibbs Ensemble that only includes qKdV charges.
In the case of a general initial state, upon equilibration, emerging Generalized Gibbs
Ensemble will necessary include negative chemical potentials and holographically will
be described by a quasi-classical black hole with quantum soft hair. In section 7.1 we
define the regime of "quasi-classical gravity" in which we test generalized eigenstate
thermalization. In section 7.2 we show in details how to explicitly check the hypoth-
esis and illustrate it with level 6 quasi-primary example. In section 7.3 we list all the
examples with analytic checks of GETH. In section 7.4 we show that among the states
from the micro-canonical ensemble satisfying a simple scaling property an exponential
majority of states satisfy "quasi-classical gravity" regime. Furthermore, most CFT
eigenstates satisfy "quasi-classical gravity" regime. In section 7.5 we discuss the exis-
tence of chemical potentials which satisfy Generalized ETH and show that at least in
some cases some of the chemical potentials should be negative.

We conclude in section 8 and outline some open problems for the future.

2 Preliminaries: classical KdV hierarchy

In this section we give a concise presentation of certain aspects of classical KdV hierar-
chy. In sections 2.1, 2.2 and 2.3 we mostly follow [9]. We start with the classic definition
of KdV charges as generators of isospectral deformation for Sturm-Liouville equation.
Then we introduce finite-zone "Novikov" potentials and develop perturbative technique
for solving generalized KdV equations. Finally we obtain perturbative expression for
KdV charges Q2k−1 in terms of action variables Ii. We will directly use these results in
the next section where we will discuss spectrum for quantum KdV charges.

2.1 KdV hierarchy

Consider a Schrödinger eigenvalue problem (Sturm-Liouville equation),

−ψ′′ + u

4
ψ = λψ, (2.1)

with periodic real-valued potential u(ϕ) = u(ϕ+2π). The (non-degenerate) eigenvalues
of periodic ψ(2π) = ψ(0) and anti-periodic ψ(2π) = −ψ(0) problems constitute the so-
called spectral data of u(ϕ). Different potentials may share the same spectral data.
In fact there is an infinite family of infinitesimal deformations which are isospectral,
i.e. preserve the spectral data. The isospectral deformations are generated by the
Hamiltonian flow

δu =
c

24
{Q2k−1, u}, (2.2)
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associated with the Poisson bracket [10],

c

24
{u(ϕ1), u(ϕ2)} = −2πDδ(ϕ1 − ϕ2), (2.3)

where c is some numerical parameter and differential operator D is defined as

D = (∂u) + 2u∂ − 2 ∂3. (2.4)

The quantities Q2k−1 are the so-called KdV charges (or generators), which can be
defined iteratively,

Q2k−1 =
1

2π

∫ 2π

0

dϕRk, ∂Rk+1 =
k + 1

2k − 1
DRk, (2.5)

R0 = 1, D ≡ (∂u) + 2u∂ − 2 ∂3. (2.6)

The polynomialsRk are called Gelfand-Dikii polynomials. They satisfy various relations
[11], in particular

c

24
{Q2k−1, u} = (2k − 1)∂Rk. (2.7)

First few Rk and Q2k−1 are given by

R0 = 1, R1 = u, R2 = u2 − 4

3
∂2u, R3 = u3 − 4u∂2u− 2(∂u)2 +

8

5
∂4u, (2.8)

q0 = u, q1 = u2, q2 = u3 + 2(∂u)2, q3 = u4 + 8u(∂u)2 +
16(∂2u)2

5
, (2.9)

where 2π Q2k−1 =
∫ 2π

0
dϕ qk. The quantities qk and Rk+1 differ only by a full derivative.

The name KdV comes from the form of the flow generated by Q3. Assuming it
defines a t-dependent function u(t, x) via

u̇ =
c

24
{Q3, u} = 6uu′ − 4u′′′, (2.10)

one can obtain the classic KdV equation. Generally speaking, the expression

u̇ =
c

24
{Q2k−1, u} (2.11)

defines all higher order KdV equations.
The KdV charges are in involution, {Q2k−1, Q2l−1} = 0, yet the action of Q2k−1

on a given u(x) is usually non-trivial. It is known that the corresponding Hamiltonian
flows exhaust all possible isospectral deformations.
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2.2 Finite-zone “Novikov” solutions

For an arbitrary complex λ equation (2.1) has two solutions, which can be combined
into a complex-valued quasi-periodic function ψ,

ψ(ϕ+ 2π) = ψ(ϕ)e2πip(λ). (2.12)

For real λ the so-called quasi-momentum p(λ) can be either real or pure imaginary.
Values of λ ∈ R for which quasi-momentum p(λ) is imaginary belong to the so-called
forbidden zone. Forbidden zones stretch between two consecutive eigenvalues of pe-
riodic or anti-periodic problem. The zone disappears if the periodic or anti-periodic
problem is double degenerate. The quasi-momentum is a complex function with the
branch-cuts along the forbidden zones and λ ≤ λ0, where λ0 is the energy of the
ground state. For example all eigenvalue of the periodic and antiperiodic problems for
the constant potential u = u0 are double degenerate (except for the ground state),

λ(n) =
n2 + u0

4
, n ≥ 0. (2.13)

Therefore there are no forbidden zones and p(λ) =
√
λ− u0/4.

A special class of potentials with only a finite number of degeneracies lifted, and
hence only a finite number of forbidden zones, are called finite-zone potentials. For
example a one-zone potential will have a double-degenerate eigenvalue λ(k) for some
k ≥ 1 split into two, λ(k)

− = λ1 and λ(k)
+ = λ2, while all other eigenvalues of periodic and

antiperiodic problems remain double-degenerate (although their values are no longer
given by (2.13)). It turns out that the values of all double-degenerate eigenvalues are
uniquely fixed by the vacuum energy λ0 and the ends of the zones, which in our case
are λ1, λ2. Corresponding p(λ) has two branch-cuts from −∞ to λ0 and from λ1 to
λ2 and is given by an Elliptic integral discussed below. More generally a finite zone
potential is specified by λi, 0 ≤ i ≤ 2n and is defined on a hyperelliptic curve of genus
n.

Finite-zone potentials emerge as solutions of the static generalized KdV equation
[12],

{H, u} = 0, H =
n∑
i=0

µ2i+1Q2i+1, µ2n+1 6= 0. (2.14)

In fact the following is true. Any solution of (2.14) is a m ≤ n-zone potential, and all
n-zone potentials can be obtained from (2.14) with the appropriate µ2i+1.

For the given spectral data specified by the ends of the zones λi, 0 ≤ i ≤ 2n,
quasi-momentum is specified indirectly by its differential

dp =
λn + rn−1λ

n−1 + . . . r0

2y
dλ, (2.15)
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which is defined on the Riemann curve

y2 =
2n∏
i=0

(λ− λi). (2.16)

Coefficients ri are fixed by the condition that∮
ai

dp = 2

∫ λ2i

λ2i−1

dp = 0, (2.17)

vanishes for any a-cycle, defined as the brunch-cuts of y from λ2i−1 to λ2i. Because of
(2.17), function p(λ) defined such that dp = (∂p/∂λ)dλ is a well defined function on
the Riemann curve (2.16). Furthermore for the potential associated with {λi} to be
2π-periodic one must also require integrals over b-cycles

Bi =

∮
bi

dp = 2

∫ λ2i−1

λ2i−2

dp (2.18)

to be integer-valued

Bi = ki − ki−1 (2.19)

As a complex function p(λ) has branch-cuts along the forbidden zones, and there-
fore finite zone solutions are also called finite- or multi-cut solutions.

Each Hamiltonian flow generated by Q2k−1 is isospectral, hence it deforms a finite-
zone solution into another, such that involution condition {H, u} = 0 continues being
satisfied. For any fixed Q2k−1, 1 ≤ k ≤ n + 1, values of all higher charges Q2k−1,
k > n + 1 are fixed and the space of solutions is an n-dimensional torus (Jacobian
of the hyperelliptic curve (2.16)). All charges Q2k−1 generate a flow on the Jacobian,
which is ergodic in a general case. The exception being the flow generated by Q1 which
is equivalent to the shift ϕ→ ϕ+ const and therefore 2π-periodic.

2.3 Example: one-cut solutions

In this section the exact solution of the generalized KdV equation (2.14) for n = 1 is
presented. We mostly follow [9]. For n = 1 the equation (2.14) takes the form

c

24
{Q3 + αQ1, u} = 6uu′ − 4u′′′ + αu′ = 0. (2.20)

By integrating this equation twice the problem can be reduced to of a particle moving
in a cubic potential,

u′2

2
+ V (u) = E, 2(E − V ) =

1

2
(u− u1)(u− u2)(u− u3), (2.21)

s1 = u1 + u2 + u3 = −α/2. (2.22)
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Two out of three parameters ui are free. They specify the values of Q1, Q3 evaluated
on the solution. From (2.21) u(ϕ) can be obtained in terms of Weierstrass’s elliptic
function ℘ by specifying the initial condition u(ϕ0). The solution is to be 2π-periodic,
which imposes a condition on “energy” E, leaving only one free parameter, besides ϕ0.
There is in fact an infinite tower of solutions with the period 2π/k for positive integer k,
each being parametrized by one continuous parameter, in addition to ϕ0. Weierstrass’s
function is associated with a torus, and it is convenient to choose s1 and torus modular
parameter q = eiπτ as the independent parameters of one-cut solution,

u1 =
s1

3
− 2k2

3

(
θ2(0; q)4 + θ3(0; q)4

)
, (2.23)

u2 =
s1

3
+

2k2

3

(
θ2(0; q)4 − θ4(0; q)4

)
, (2.24)

u3 =
s1

3
+

2k2

3

(
θ3(0; q)4 + θ4(0; q)4

)
. (2.25)

The order u1 ≤ u2 ≤ u3 is chosen in such way, that the periodic solution describes the
oscillations of a “particle” between u1 and u2. Sometimes instead of ui it is convenient
to use s1 and

s2 = u1u2 + u2u3 + u1u3 = −k
4

π4
g2(τ) +

s2
1

3
, (2.26)

s3 = u1u2u3 = −2k6

π6
g3(τ)− k4

3π4
s1g2(τ) +

s3
1

27
. (2.27)

Here g2 and g3 are modular forms. The value of Q1 can be written in terms of ui as

Q1 = u3 + (u2 − u3)
2F1

(
3
2
, 1

2
, 1; u2−u1

u3−u1

)
2F1

(
1
2
, 1

2
, 1; u2−u1

u3−u1

) . (2.28)

Higher KdV charges can be expressed through Q1 and si,

Q3 =
1

3
(2s1Q1 − s2), Q5 =

2s2
1 − s2

5
Q1 −

s1s2 + s3

5
. (2.29)

In terms of the spectral data, one-zone potential is characterized by three eigenval-
ues of the Schrödinger equation (2.1), the ground state λ0, and the ends of the forbidden
zone, λ1, λ2,

λ0 =
u1 + u2

8
, λ1 =

u1 + u3

8
, λ2 =

u2 + u3

8
. (2.30)

When the “energy” E is small, meaning E−V approaches zero, the “particle” oscillates
near the local minimum of the potential with the period 2π/k, and the values of λ1
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and λ2 approach λ0 + k2/4 from both sides. This corresponds to a small perturbation
of the constant potential which removes degeneracy of just one eigenvalue in (2.13).

Besides one-cut solutions with non-constant u(ϕ) there are also two ϕ-independent
solutions of (2.21) corresponding to a “particle” sitting at the top or bottom of the
potential.

2.4 Perturbative approach: “opening” a zone

Let us now consider the potential u = u0 + ε cos(kϕ) + O(ε2) where u0 is a constant,
` is positive integer, and ε is some infinitesimal parameter. Using quantum mechanics
perturbation theory we find at leading order that all eigenvalues of periodic and anti-
periodic problems remain the same and double-degenerate, except for λ` which splits
into

λ±k = u0 +
k2

4
± ε

2
. (2.31)

Hence now there are two forbidden zones, (−∞, u0) and (λ−k , λ
+
k ).

Finite-zone potentials are characterized by the ends of non-degenerate zones λi.
For the zero-zone potential above there is only one parameter λ0 = u0. After one zone
is opened, there are three parameters λ0 = u0, λ1 = λ−k and λ2 = λ+

k .
A given set {λi} which satisfies (2.17), (2.19), such that only n + 1 parameters

are independent, defines periodic potential u(ϕ), but in a non-unique way. Individual
potentials are labeled by points of the Jacobian of curve (2.16), with all of them sharing
the same spectrum. In other words isospectral potentials form an n-dimensional torus,
while full space of n-zone potentials is therefore 2n+ 1 dimensional.

We now consider a space of all n-zone potentials sharing the same h. This is a
2n-dimensional subspace within the orbit parametrized by h, which we will denote
as Fn(h). The pullback of symplectic form on this space is non-degenerate, hence it
is also a symplectic manifold equipped with Poisson bracket. Isospectral flows leave
this manifold invariant. Upon restricting to Fn(h), only first n KdV Hamiltonians
remain algebraically independent. The flows they generate move u along the Jacobian
of (2.16), which is the Liouvillian torus of a complete integrable dynamical system
defined by Q2k−1, k ≤ n. In other words the geometry of Fn(h) is a n-dimensional
torus parametrized by angle variables fibered above a base parametrized by n variables
Q2k−1. Alternatively, one can introduce n action variables Ii parameterizing the base
and forming canonical conjugate pars with angle variables.
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In terms of dp (2.15) values of KdV charges are given by an expansion at infinity
[12]

Q2k−1 =
2Γ(k + 1)Γ(1/2)

Γ(k + 1/2)

1

2πi

∮
∞

dp λk−1/2, (2.32)

while the action variables are

Ii = − 1

2π

∮
ai

p
dλ

λ
=

1

2π

∮
ai

dp lnλ. (2.33)

Functional dependence of Q2k−1 for k > n on charges Q2k−1 for k 6 n readily follows
from (2.32) and the form of dp (2.15).

Our task is conceptually trivial: we want to learn an explicit change of variables on
the base of Fn(h) from Q2k−1 to Ii. In practice explicit expressions for Q2k−1(h, Ii) is
not available in the closed form, we therefore will find it in first few orders by expanding
in powers of Ii. There is one notable exception, using Riemann bilinear relation one
can show in full generality

Q1 = h+
∑
i

i Ii, (2.34)

where h is related to the co-adjoint invariant – quasi-momentum at zero [12],

p(0)2 = −h. (2.35)

2.5 One-zone potentials

Before we consider one-zone potential in detail, we revisit zero-zone potential u = u0 ≡
λ0 and readily find differential

dp =
dλ

2
√
λ− λ0

(2.36)

to be defined on a Riemann sphere. This is the simplest possible case. In this case
p =
√
λ− λ0, u(ϕ) = λ0 = h and the whole symplectic space F0(h) shrinks to a point.

All KdV Hamitonians are fixed by h, Q2k−1 = hk with all action variables identically
equal zero.

Next, we consider a differential

dp =
(λ− r0)dλ

2
√

(λ− λ0)(λ− λ1)(λ− λ2)
(2.37)
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parameterized by λi, r0. It is defined on a torus – a Riemann curve of genus one. We
assume that (λ2, λ1) correspond to k-th zone. After satisfying (2.17) and (2.19) as well
as the orbit constraint −p(0)2 = h we find one-parametric family

λ2 − λ1 =
k2

2
θ2(τ)4, λ2 − λ0 =

k2

2
θ3(τ)4, λ1 − λ0 =

k2

2
θ4(τ)4. (2.38)

Here τ is purely imaginary and Im(τ) > 0. The orbit constraint can be rewritten in
the following form

√
h =

∫ λ0

0

dλ
λ− r√
y2
. (2.39)

After introducing q = e2πiτ , we obtain the following expansion

Ik =
32k3q2

h+ k2
+

64q4 (3h2k3 + 12hk5 + k7)

(h+ k2)3 +
128k3q6 (3h4 + 42h3k2 + 108h2k4 − 58hk6 + k8)

(h+ k2)5

+
128k3q8 (7h6 + 156h5k2 + 1083h4k4 + 1232h3k6 − 4035h2k8 + 788hk10 + k12)

(h+ k2)7 +O(q10).

Solving it inversely, we obtain

q2 =
(h+ k2)

32k3
Ik −

(3h2 + 12hk2 + k4)

512k6
I2
k +

(15h3 + 87h2k2 + 105hk4 + k6)

8192k9
I3
k

− (187h4 + 1402h3k2 + 3012h2k4 + 1606hk6 + k8)

262144k12
I4
k +O(I5

k).

Using this expression we find

Q2n−1 = hn + f
(n,1)
k Ik + f

(n,2)
k I2

k +O(I3), (2.40)

where

f
(n,1)
k =

(2n)!!k(h+ k2)n−1

2(2n− 3)!!

n−1∑
m=0

(2m− 1)!!

(2m)!!

(
h

h+ k2

)m
, (2.41)

f
(n,2)
k = −(2n)!!(h+ k2)n−2

16(2n− 3)!!

n−1∑
m=0

(3h+ k2 − 4k2m)
m−1∑
j=0

(2j − 1)!!

(2j)!!

(
h

h+ k2

)j
. (2.42)

2.6 Two-zone potentials

We parametrize two-zone coadjoint orbit as follows

λ0 =
u0

4
+ b01ε

2
1 + b02ε

2
2 + b12ε1ε2, (2.43)

λ1 = u0/4 + k2/4− ε1 + b1ε
2
1, λ2 = u0/4 + k2/4 + ε1 + b1ε

2
1, (2.44)

λ3 = u0/4 + l2/4− ε2 + b2ε
2
2, λ4 = u0/4 + l2/4 + ε2 + b2ε

2
2. (2.45)
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This parametrization includes five parameters bi which can be determined via two a-
cycle conditions, two b-cycle conditions and the condition (2.34). You find more details
in [13].

After the dust settles, we obtain

Q2n−1 = hn +
∑
k

f
(n,1)
k Ik + f

(n,2)
k I2

k +
1

2

∑
k 6=`

f
(n)
k,` IkI` +O(I3) (2.46)

with f (n,1)
k , f

(n,2)
k were given in the previous subsection and

f
(n)
k,` =

(2n)!!k`

4(2n− 3)!!(k2 − `2)

n−1∑
m=0

m−1∑
j=0

(2j − 1)!!hj

(2j)!!

[
(h+ k2)n−j−1 − (h+ `2)n−j−1

]
(2.47)

+
(2n)!!k`

4(2n− 3)!!

n−1∑
m=0

m−1∑
j=0

m(2j − 1)!!hj

(2j)!!

[
(h+ k2)m−j−1(h+ `2)n−m−1 + (h+ `2)m−j−1(h+ k2)n−m−1

]
.

The same expression can be rewritten as follows

Q2n−1 = hn +
∑
k

n−1∑
j=0

(2n− 1)Γ(n+ 1)Γ(1
2
)

2Γ(j + 3
2
)Γ(n− j)

hn−1−jk2j+1Ik (2.48)

−
∑
k

n−1∑
m=0

(2n− 1)(2mn− 2n+m+ 2)Γ(n+ 1)Γ
(

1
2

)
16 Γ

(
m+ 3

2

)
Γ(n−m)

hn−m−1k2mI2
k

+
1

2

∑
k,`

n−1∑
m=1

(2n− 1)2Γ(n+ 1)Γ
(

1
2

)
hn−m−1

22Γ(n−m)Γ
(
m+ 3

2

) m−1∑
s=0

k2(m−s)−1`2s+1IkI` +O(I3)

As the result of this section we get a perturbative expression for classical KdV
charges Q2n−1 in terms of action variables Ii and orbit invariant h. In the next section
we will show how to "quantize" this expression in order to establish quantum version
of the statement (2.48).

3 Quantum KdV hierarchy and 2d CFT

In this section we show how perturbative approach from the previous section for classical
KdV charges helps to establish the spectrum of quantum KdV charges as a series
expansion for large central charge c. As the result we provide an explicit expression for
the spectrum of all quantum KdV in large central charge c limit up to a third order of
expansion.

Section 3.1 is devoted to well-known connection between co-adjoint orbits of Vira-
soro algebra and periodic potentails u(ϕ). This presentation mostly follows [9]. Then,
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we introduce an infinite tower of quantum KdV charges Q̂2k−1 for 2d CFTs. In section
3.4 we compute eigenvalues for Q̂2k−1 on (highest weight) primary fields via ODE/IM
correspondence equation. Finally, we combine these results in section 3.5 and obtain
spectrum for quantum KdV charges in large c limit.

3.1 Co-adjoint orbit of Virasoro algebra

Consider the group diff S1 of diffeomorphisms of a circle. Elements of diff S1 are mono-
tonically increasing functions ϕ̃ = g(ϕ),

g(2π) = g(0) + 2π, (3.1)

such that g is an invertible map of a circle into itself, g(ϕ) = g(ϕ′) ⇒ ϕ = ϕ′. Corre-
sponding Lie algebra is the Witt algebra of vector fields on a circle f(ϕ)∂ϕ.

It is useful to consider an action of this group on our periodic potential u(ϕ),
u(ϕ+ 2π) = u(ϕ) and a wave-function ψ(ϕ) satisfying Schrödinger (or Hill’s) equation,

−ψ′′ + u

4
ψ = 0. (3.2)

Note, that equation (3.2) corresponds to (2.1) for λ = 0. So, the setup is not exactly
the same as in previous section. Diffeomorphisms g ∈ diff S1 naturally act on u and ψ,

g : ψ(ϕ)→ ψ̃(ϕ̃), (3.3)

g : u(ϕ)→ ũ(ϕ̃), (3.4)

such that the Hill’s equation continue being satisfied (the derivative is with respect to
ϕ̃),

−ψ̃′′ + ũ

4
ψ̃ = 0. (3.5)

The new potential and the new wave-function are defined as

ψ̃(ϕ̃(ϕ)) = ψ(ϕ)

(
dϕ̃

dϕ

)1/2

, (3.6)

ũ(ϕ̃(ϕ)) =

(
dϕ̃

dϕ

)−2

[u(ϕ) + 2{ϕ̃, ϕ}] . (3.7)

where for any θ(ϕ)

{θ, ϕ} ≡ θ′′′

θ′
− 3

2

(
θ′′

θ′

)2

, (3.8)
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defines the Schwarzian derivative. An infinitesimal transformation

g(ϕ) = ϕ− εf(ϕ) (3.9)

acts on the potential as follows,

ũ(ϕ) = u(ϕ) + εDf, D ≡ (∂u) + 2u∂ − 2 ∂3. (3.10)

It is well known that this action is exactly the the action of Virasoro algebra, central
extension of Witt algebra, on its co-adjoint orbit.

Elements of Virasoro algebra are the pairs (f, a) where f is a vector field and a is
a C-number with the following commutation relation

[(f1, a1), (f2, a2)] = (f1f
′
2 − f ′1f2, a), a =

∫ 2π

0

dϕ(f ′′′1 f2 − f1f
′′′
2 ). (3.11)

Co-adjoint space is the linear space dual to the algebra. Its elements are the pairs [u, t̂]

where u(ϕ)dϕ2 is a “two-differential” and [0, t̂] is an element formally dual to (0, 1).
Considering t̂ to be common for all elements one can reduce bulky notation [u, t̂] to
simple u, such that the scalar product is

〈(f, a), u〉 = a+

∫ 2π

0

dϕuf. (3.12)

It is easy to see that 〈(f, a), u〉 is invariant under the action of a Virasoro algebra
element (v, b) provided,

δf = vf ′ − v′f, δa =

∫ 2π

0

dϕ(v′′′f − vf ′′′), δu = Dv. (3.13)

Action of diff S1 (3.13) foliates the space of all u(ϕ) into orbits – the co-adjoint
orbits of Virasoro algebra. Starting with some potential u one defines a sub-algebra of
stabilizers f of u such that

δu = Df = 0. (3.14)

In full generality there could be either one or three linearly independent stabilizers [14],
which must be closed in the Lie algebra sense. Then the orbit is defined by the action
of all possible diffeomorphisms g(ϕ) on the given u, modulo the stabilizer subgroup.
The simplest orbit is obtained starting from a constant u(ϕ) = u0. In this case the
stabilizer is unique, f = 1, up to an overall rescaling, with an exception of the case
when u0 6= −n2 for some integer n. These are the orbits diff S1/S1 [14]. Quantization
of such an orbit gives rise to the corresponding Verma module.
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When u(ϕ) belongs to an orbit diff S1/S1 the stabilizer vector field f for each u is
unique and sign-definite. The converse is also correct and easy to see. Considering f ,
such that it is sign-definite and Df = 0, one can notice that

2πf−1
0 =

∫ 2π

0

dϕ

f
, (3.15)

is invariant under the diffeomorphism diff S1, as follows straightforwardly from (3.11).
Next, one can define the diffeomorphism ϕ→ ϕ̃ = g(ϕ),

dϕ̃ = f0
dϕ

f
, (3.16)

which brings f to a constant form f0. This is the diffeomorphism which brings u(ϕ) to
a constant, as follows from applying (3.7),

ũ(ϕ̃) = u0 =
uf 2 + f ′2 − 2ff ′′

f 2
0

. (3.17)

u0 defined this way is a constant, which can be verified by differentiating it, ũ′ =

(f/f0)∂ϕu0 = (f 2/f 3
0 )Df = 0. An alternative way to obtain the same expression is to

start with Df = 0 and solve it as an equation for u,

u(ϕ) =
u0f

2
0 − f ′2 + 2ff ′′

f 2
. (3.18)

Here u0f
2
0 appears as an integration constant. It is straightforward to see that (3.18)

is compatible with (3.13) only if u0f
2
0 is invariant under the diffeomorphisms. Hence

u0f
2
0 is equal to uf 2 when u(ϕ) is ϕ-independent and hence so is f . Finally, u0 is the

only invariant characterizing the orbit, and its invariance under the diffeomorphisms
follows straightforwardly from (3.17) and (3.11).

The space of all potentials is a Poisson manifold with the Poisson bracket (2.3),
Written in terms of the Fourier series

c

24
(u(ϕ) + 1) =

∑
k

`ke
ikϕ, (3.19)

the Poisson brackets (2.3) reduce to Virasoro algebra

i{`n, `m} = (n−m)`n+m +
c(n3 − n)

12
δn+m. (3.20)

In particular for any functional H[u(ϕ)],

c

24
{H, u(x)} = Df, f = 2π

δH
δu(x)

. (3.21)
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Here Df is as the Hamiltonian vector field associated with H in the space of potentials
u(ϕ).

Since the Hamiltonian vector field (3.21) has the form of (3.13) with some appro-
priate v = f , Hamiltonian flow does not move u(x) away from the orbit, hence on the
space of all potentials the Poisson bracket is degenerate. Restricting it to a particular
orbit removes this degeneracy, and (2.3) defines a symplectic form, such that each orbit
is a symplectic manifold. This symplectic form is the Kirillov-Kostant form on the
co-adjoint orbit of Virasoro algebra [15], as is also evident from (3.20).

3.2 qKdV symmetry in CFT2

The co-adjoint orbit of Virasoro algebra diff S1/S1 is a symplectic manifold with the
non-degenerate Poisson bracket (2.3). Upon quantization, it gives rise to Verma module
with the primary (highest weight) state |∆〉 of dimension

∆ =
c

24
(u0 + 1). (3.22)

Upon quantization Fourier modes `n (3.19) of the classical field u(ϕ) become Virasoro
algebra generators Ln, while u itself becomes stress-energy tensor in a CFT2 on a
cylinder with the central charge c,

T =
c

24
u. (3.23)

It is then easy to recognize (3.7) as the standard expression for the change of stress-
energy tensor upon a coordinate transformation.

The Poisson brackets (2.3) were originally introduced in the context of higher KdV
equations [10], and soon the connection with the Virasoro algebra was noticed by
Gervais and Neveu [15]. Later Gervais suggested that classical KdV charges (2.5),
upon quantization, should give rise to mutually-commuting quantum operators [16, 17].
While being very intuitive, this proposal is not trivial. Since the higher generators are
non-linear in u, their quantum counterparts will depend on the normal ordering and
may no longer commute as a result. This question was fully resolved only in [18–
20] where existence of an infinite tower of local commuting qKdV charges Q̂2k−1 was
established. Their definition, besides normal ordering, is also explicitly c-dependent.
For example, first few charges in terms of the stress-tensor are

Q̂1 =
1

2π

∫ 2π

0

dϕT, Q̂3 =
1

2π

∫ 2π

0

dϕ(TT ), Q̂5 =
1

2π

∫ 2π

0

dϕ (T (TT )) +
c+ 2

12
(∂T )2.

In our notations classical charges Q2k−1 give rise to
(
c

24

)−k−1
Q̂2k−1. Notice however

that
(
c

24

)3
Q5 is not equal to Q̂5 upon substitution u→ 24

c
T and normal ordering. An

extra term (∂T )2/6 is necessary to assure commutativity with Q̂3.
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In terms of Virasoro algebra generators Q̂1 is simply the CFT Hamiltonian L0− c
24
.

Expressions for Q̂3, Q̂5 in terms of Ln were obtained in [18], as well as for Q̂7 in [21].
Generally, explicit expressions for Q̂2k−1 are not known neither in terms of Virasoro
generators Ln, nor as integrals over ϕ.

3.3 2d CFT states

The first qKdV charge Q1 plays role of the Hamiltonian in 2d CFT,

Q1 = L0 −
c

24
. (3.24)

This Hamiltonian is highly degenerate. All Hilbert states in terms of eigenstates of Q1

can be enumerated as follows,

|E〉 = |mi,∆〉 = L−m1 . . . L−mk |∆〉, mi ≥ mj for i ≥ j,
∑

mi = n. (3.25)

At each level n there are p(n) (number of integer partitions of n) eigenstates of Q1

sharing the same energy E = ∆ + n − c
24
. Taking into account all qKdV charges

Q2k−1 in principle, we can construct a unique basis in which all these charges are
simultaneously diagonalized, since all Q2k−1 commute. The importance of this basis
will be evident when we will discuss Eigenstate Thermalization. There are no known
way to explicitly construct such basis, however, as we will see in section 4.1, similar
to (3.25) we can parametrize this basis by natural numbers. These natural numbers
can be conveniently combined into a Young tableau. We will use so-called "boson
representation" ni > 0, i = 1, 2, ... which counts the number of rows of length i in a
given Young tableau,

|ni〉 ≡ |n1, ...〉 ,
∞∑
i=1

ini = n. (3.26)

Corresponding eigenvalues of Q2k−1 we will denote as λ2k−1,

Q2k−1 |ni〉 = λ2k−1 |ni〉 . (3.27)

3.4 “Energies” of primary states

In section 2.6 we found classical expression for Q2k−1 in term of action variables Ii and
h which we now can interpret as the orbit invariant. To quantize this result, at least
naively, Ii should be promoted to an integer boson occupation number, while h would
become dimension of the highest weight (primary) state ∆, marking representation of
the Virasoro algebra. It is easy to see this naive recipe fails already for the values of
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Q̂2k−1 on primary state ∆. Indeed, taking all Ii to zero, we readily find Q2k−1 = hk,
which upon naive quantization yields λ0

2k−1 = ∆k where

Q̂2k−1|∆〉 = λ0
2k−1|∆〉. (3.28)

This answer is missing c-dependent terms. Explicit values of λ0
2k−1 for k ≤ 8 were

calculated in [22] using brute-force approach, using explicit expressions for Q̂2k−1 in
terms of free field representation. The pattern is clear, while ∆k is indeed a leading
term, full expression is a polynomial in both ∆ and c of order k.

There is no consistence recipe to obtain exact λ0
2k−1 from the quasi-classical quan-

tization, hence our strategy will be the following. We will combine exact expression
for λ0

2k−1 in the large c limit, which will be obtained in this section, with the classical
result of section 2.6, to find spectrum of Q2k−1 for excited states in next section.

To find λ0
2k−1 we use ODE/IM correspondence, initiated in [23, 24] and more re-

cently developed in [25], which relates qKdV spectrum to solutions of an auxiliary
Schrodinger equation:

∂2
xΨ(x) +

(
E − x2α − l(l + 1)

x2

)
Ψ(x) = 0, (3.29)

where

(l + 1/2)2 = 4(α + 1)∆̃, c̃ = − α2

4(α + 1)
(3.30)

and

c̃ =
c− 1

24
, ∆̃ = ∆− c̃. (3.31)

Taking c → ∞ limit equation (3.29) can be solved using WKB approximation by
systematically expanding in a small parameter. This leads to a quadratic ODE which
can be solved iteratively. We skip all details (which you can find in [13]) and only write
down iterative relation which defines coefficients c(n)

k ,

n∑
j=0

j∑
p=0

n−j∑
q=0

δp+q,kc
(j)
p c(n−j)

q − 2

[
n− k − u− n− 2

2α

]
c

(n−1)
k−1 + (2k − 3n+ 4) c

(n−1)
k = 0,

(3.32)

for n ≥ 1, we formally assumed c(n)
−1 = c

(n)
n+1 = 0, u2 = −∆̃/c̃, and the starting values

are

c
(0)
0 = − 1

α
, c

(1)
0 = −1

2
, c

(1)
1 =

1

2α
− u, . . . (3.33)
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Coefficients c(n)
k determine values of Q2n−1 acting on primaries,

λ0
2n−1 =

(2n− 1)Γ(n+ 1)√
πΓ(1− 2n−1

2α
)(4α + 4)n

2n∑
k=0

c
(2n)
k Γ

(
−3

2
(2n− 1) + k

)
Γ

(
2n− k − 2n− 1

2α

)
.

(3.34)

Although this is not obvious, λ0
2n−1 given by (3.34) is a polynomial in terms of ∆̃ and

c̃. After some algebra we find leading order expansion

λ0
2n−1 = ∆̃n +

n−1∑
j=0

R
(1)
n,j∆̃

n−j−1 c̃j +
n−2∑
j=0

R
(2)
n,j∆̃

n−j−2 c̃j +O(c̃n−3). (3.35)

where

R
(1)
n,j =

(2n− 1)Γ(n+ 1)Γ(1
2
)

4Γ(j + 3
2
)Γ(n− j)

ζ(−2j − 1), (3.36)

R
(2)
n,j =

(2n− 1)Γ(n+ 1)Γ(1
2
)

96Γ(j + 5
2
)Γ(n− j − 1)

(3.37)

×

{
−6ζ(−2j − 3)

[
2j + 3− (2n− 1)

j+1∑
`=0

1

2`+ 1

]
+ 3(2n− 1)

j∑
s=0

ζ(−2(j − s)− 1) ζ(−2s− 1)

}
.

3.5 Spectrum of quantum Q̂2k−1 generators

At this point we are ready to combine classical pertubative expression for Q2n−1(h, Ik)

(2.48) with the “energies” of primary state (3.35) to obtain λ2n−1 up to first three orders
in 1/c̃ expansion. The naive quantization scheme maps classical to quantum charges
as follows

Q2n−1(h, Ik)→ λ2n−1 = c̃nQ2n−1(∆̃/c̃, (nk + 1/2)/c̃). (3.38)

Infinite sums appearing because of the Maslov index +1/2 should be regularized using
zeta-function regularization. It is now straightforward to see that we immediately
reproduce leading 1/c̃ term (3.40) as well as certain terms from (3.37). The full quantum
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spectrum we present as follows

λ2n−1 = ∆̃n +
∑
k

n−1∑
j=0

(2n− 1)Γ(n+ 1)Γ(1
2
)

2Γ(j + 3
2
)Γ(n− j)

c̃j∆̃n−1−jk2j+1ñk (3.39)

− n(n− 1)(2n− 1)∆̃n−1

4c

+
∑
k

n−1∑
j=0

(2n− 1)Γ(n+ 1)Γ(1
2
)

8Γ(j + 3
2
)Γ(n− j)

(
−2j + (2n− 1)

j∑
`=0

1

2`+ 1
−

)
c̃j−1∆̃n−1−jk2j+1ñk

−
∑
k

n−1∑
m=0

(2n− 1)(2mn+ 2n− 3m− 2)Γ(n+ 1)Γ
(

1
2

)
16 Γ

(
m+ 3

2

)
Γ(n−m)

c̃m−1∆̃n−m−1k2mñ2
k

+
1

2

∑
k,`

n−1∑
m=1

(2n− 1)2Γ(n+ 1)Γ
(

1
2

)
22Γ(n−m)Γ

(
m+ 3

2

) c̃m−1∆̃n−m−1

m−1∑
s=0

k2(m−s)−1`2s+1ñkñ`

+O(cn−3).

Here ñk = nk+1/2 and we added terms of order c̃n−2 linear and zeroth order in nk such
that upon taking nk = 0 we obtain λ0

k. This expression is our final result, to which we
give a consistency check in the next subsection using computer algebra.

In leading order the above result reduces to "free boson" expression

λ2k−1 = ∆̃k +
k−1∑
p=0

ξpk ∆̃k−1−p c̃p

(
∞∑
i=1

i2p+1ni +
ζ(−2p− 1)

2

)
+O(c̃k−2),

ξpk =
(2k − 1)Γ(k + 1)Γ(1/2)

2 Γ(p+ 3/2)Γ(k − p)
, ∆̃ = ∆− c̃, c̃ =

c− 1

24
. (3.40)

We will use this expression extensively in the next section.

3.6 Computer algebra check

For n = 1 the expansion (3.39) reduces to Q1 = ∆ +n− c
24
, which is a simple check. A

more sophisticated check is provided by Q3, Q5 as well as by Q7 which are known ex-
plicitly [21] in terms of Virasoro algebra generators. Using computer algebra spectrum
of Q3 and Q5 can be expressed in terms of boson occupation numbers nk

λ3 = ∆̃2 + ∆̃

(
6n− 1

2

)
+ c̃

(∑
k k

3nk
6

+
1

1440

)
(3.41)

+
∑
k

n2
k

(
−36∆̃

c̃
− 3k2

2

)
+

36∆̃(2n−
∑

k nk)

c̃
+

1

6

∑
k

(
5k3 − 9k2

)
nk + 3n2 +O(1/c̃),
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and n ≡
∑

k k nk. Similarly one can obtain an analogous expression for Q5,

λ5 = ∆̃3 +

(
15n− 1

2

)
∆̃2 + c̃∆̃

(
5
∑

k k
3nk

6
+

1

288

)
+ c̃2

(∑
k k

5nk
72

− 1

36288

)
+

c̃

(
7
∑

k k
5nk

36
− 5

12

∑
k

k4n2
k −

5
∑

k k
4nk

12
+

5

6
n
∑
k

k3nk +
n

288
− 1

2592

)
−

∆̃2 (180
∑

k n
2
k + 180

∑
k nk − 360n)

c̃
+

∆̃

(
35
∑

k k
3nk

2
− 35

2

∑
k

k2n2
k −

35
∑

k k
2nk

2
+ 25n2 − 5n

6
+

5

72

)
+O(c̃0)

These expressions are in agreement with (3.39), which serves as a non-trivial consistency
check.

4 GGE partition function

Now, when we know the spectrum of quantum KdV charges explicitly we can start to
reap of the benefits. We start with calculating Generalized Gibbs Ensemble (GGE)
partition function which is a standard partition function of 2d CFTs decorated with
KdV charges, namely,

Z = Tr
(
e−βH−

∑∞
k=2 µ2k−1Q̂2k−1

)
. (4.1)

When all µ2k−1 = 0 for k ≥ 2, (4.1) is the regular partition function on a torus with the
modular parameter τ = i β

2π`
. In particular partition function is invariant under modular

transformations of τ . Turning on µ2k−1 would break modular invariance, although Z
still exhibits some interesting properties under modular transformations [26]. In this
section we focus on thermodynamic limit ` → ∞, while β, µ2k−1 are kept fixed. Our
goal is to calculate the extensive part of free energy F = logZ,

F =
c π2`

6 β
f(β, µ2k−1, c) + o(`). (4.2)

We show how to calculate f at leading and sub-leading orders in central charge c when
all fugacities are greater than or equal to zero µ2k−1 > 0. We start with recalling
how to calculate conventional partition function in thermodynamic limit. Then we
discuss GGE partition function at infinite central charge. In sections 4.3 and 4.4 we
move beyond infinite central charge limit and calculate sub-leading correction to the
partition function. Physical implication of these results will be discussed later.

– 24 –



4.1 Generalized Gibbs Ensemble in the thermodynamic limit

The crucial simplification of thermodynamic limit `→∞ is that saddle point approx-
imation becomes exact. We first illustrate that in the case of the conventional Gibbs
ensemble

Z(β) = Tr(e−βH), H =
L0 − c/24

`
. (4.3)

Here Ln is the conventional Virasoro algebra generator related to the stress tensor on
the plane,

T (z) =
∑
n

Ln
zn+2

. (4.4)

The sum in (4.3) goes over all states in the Hilbert space,

|mi,∆〉 = L−m1 . . . L−mk |∆〉, mi ≥ mj for i ≥ j, (4.5)

parametrized by the dimension of Virasoro primary ∆ and sets {mi},
∑k

i=1mi = n,
arranged in the dominance order. Using the degeneracy of H, L0|mi,∆〉 = (∆ +

n)|mi,∆〉 the partition function can be represented as a double sum,

Z(β) =
∑

∆

∑
n=0

P (n) e−
β
`

(∆+n). (4.6)

In what follows we are only interested in the extensive part of free energy, and therefore
we dropped the explicitly c-dependent term in H. The sum

∑
∆ goes over all Virasoro

primaries including possible multiplicities, and P (n) is the number of integer partitions
– Young tableaux consisting of n elements. For large n [27],

P (n) ≈ eπ
√

2n
3 (4.7)

and the sum over n can be substituted by an integral. Similarly, the sum over ∆ in
(4.6) can be substituted by an integral multiplied by the density of primaries given by
Cardy formula [28]. Combining all together gives

Z(β) =

∫
d∆ eπ

√
2
3

(c−1)∆

∫
dn eπ

√
2n
3 e−

β
`

(∆+n) = eF , F =
c π2 `

6 β
. (4.8)

It is easy to see that in the limit `→∞ the saddle point approximation is exact,

L = π

√
2

3
(c− 1)∆ + π

√
2n

3
− β

`
(∆ + n), (4.9)

∆∗ = (c− 1)π2`2/6β2, n∗ = π2`2/6β2,
∂L
∂∆

∣∣∣∣
∆∗,n∗

=
∂L
∂n

∣∣∣∣
∆∗,n∗

= 0, (4.10)

F = L(∆∗, n∗) =
c π2 `

6β
. (4.11)
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4.2 GGE at Infinite Central Charge

Our next step is to decorate the partition function by higher qKdV charges,

Z(β, µ2i−1) = Tr(e−βH−
∑
k µ2k−1Q̂2k−1). (4.12)

We start our analysis with Q̂3. The expression for Q̂3 in terms of Virasoro generators
can be found in [18] (in our case expression for Q̂3 is different by an overall factor 1/`3).
Using the explicit form of Q̂3 we split it into two parts as follows

Q̂3 = Ql
3 + Q̃3 (4.13)

`3Ql
3 =

(
L2

0 −
c+ 2

12
L0 +

c(5c+ 22)

2880

)
, `3Q̃3 = 2

∞∑
n=1

L−nLn. (4.14)

The term Q̃3 is defined such that it annihilates primary states, Q̃3|∆〉 = 0, while the
rest is degenerate and depends only on the combination ∆ +n. Using scaling with ` of
the saddle point values ∆∗ ∼ `2 and n∗ ∼ `2 we immediately find that L0-independent
term from Ql

3 would give 1/`3 contribution to free energy, while − c+2
12
L0 will contribute

as ∼ 1/`. Hence in the thermodynamic limit these terms can be neglected. Assuming
for simplicity that only µ3 is turned on we get,

Z(β, µ3) =
∑

∆

∑
n=0

P (n) e−
β
`

(∆+n)−µ3
`3

(∆+n)2+L̃(c,µ3/`3,∆,n), (4.15)

eL̃(c,µ3/`3,∆,n) ≡ 1

P (n)

∑
{m}=n

〈mi,∆|e−µ3Q̃3|mi,∆〉. (4.16)

In (4.16) the sum is over sets {mi} satisfying
∑

imi = n, i.e. over the partitions of n.
A crucial simplification, which will be justified in the next section, is that Q̃3 does

not contribute to free energy at leading order in 1/c expansion. Hence at infinite central
charge one can simply take L̃ to be zero,

Z(β, µ3) =

∫
d∆

∫
dn eL, (4.17)

L = π

√
2

3
(c− 1)∆ + π

√
2n

3
− β

`
(∆ + n)− µ3

`3
(∆ + n)2. (4.18)

Adding higher charges can be done in a similar way. Thus Q5, also given in [18], can
be split into

Q5 = Ql
5 + Q̃5 (4.19)

`5Ql
5 =

(
L3

0 −
c+ 4

8
L2

0 +
(c+ 2)(3c+ 20)

576
L0 −

c(3c+ 14)(7c+ 68)

290304

)
, (4.20)

`5Q̃5 =
∑

n1+n2+n3=0
n1 orn2 orn3 6=0

: Ln1Ln2Ln3 : +
∞∑
n=1

(
c+ 11

6
n2 − 1− c

4

)
L−nLn +

3

2

+∞∑
r=1

L1−2rL2r−1.
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Normal ordering in : Ln1Ln2Ln3 : means that the operators ordered to satisfy n3 ≥
n2 ≥ n1. Again Q̃5 is chosen to annihilate primary states, while Ql

5 is a function of L0.
It is easy to see from `-scaling of saddle point values of ∆, n that only L3

0 term from
Ql

5 contributes to the extensive part of free energy. Similarly to the case of Q3, we
drop Q̃5 at leading order in c. The rest is straightforward and can be generalized to all
Q2k−1. After integrating over n the partition function can be reduced to the integral
over E = ∆ + n,

Z(β, µ2k−1) =

∫
dE eLE , LE = π

√
2

3
cE − β

`
E − µ3

`3
E2 − µ5

`5
E3 − . . . . (4.21)

It is easy to see than that free energy will depend on the inverse temperature β and
fugacities µi only through the combinations

F =
c π2`

6 β
f0(t2k−1), t2k−1 =

(
c π2

6 β2

)k−1
µ2k−1

β
. (4.22)

Free energy F admits perturbative expansion in t2i−1 at any value of c, while expansion
in µ2k−1 breaks down for large central charge. In principle f0 is given by the algebraic
equation specifying the saddle point E∗ of (4.21),

LE =
c π2`

6 β
s0, E∗ =

c π2`

6 β
e∗, (4.23)

s0 = 2
√
e− e− t3e2 − t5e3 − . . . , (4.24)

f0 = s0(e∗),
∂s0

∂e

∣∣∣∣
e∗

= 0. (4.25)

In practice perturbative expansion of f0 is easier to recover iteratively. We notice that
at leading order in c the expectation values of Q2k−1 are given by `(E∗/`2)k. In terms
of the partition function (4.21) this can be rewritten as a differential equality

−`−1∂µ2k−1
logZ = (−`−1∂β logZ)k, (4.26)

or in terms of variables t2k−1,

(f0 + 3t3∂t3f0 + 5t5∂t5f0 + . . . )2 + ∂t3f0 = 0 , (4.27)

(f0 + 3t3∂t3f0 + 5t5∂t5f0 + . . . )3 + ∂t5f0 = 0 , (4.28)

. . .

For the Taylor expansion of f0 equations (4.27),(4.28), etc. yield iterative relations
which can be easily solved,

f0 = 1− t3 + 4t23 − 24t33 − t5 + 12t3t5 − 132t23t5 + 9t25 − 234t3t
2
5 − 135t35 + . . .(4.29)
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This result can be generalized in order to include all higher qKdV charges. The
function f0 can be elegantly written in terms of all t2k−1 as follows:

f0 = 1 +
∞∑
n=1

∞∑
k1,...,kn=2

2
(−1)n

n!

(2K − n)!

(2K − 2n+ 2)!

n∏
i=1

ki t2ki−1, K ≡
∑
i

ki. (4.30)

This expression was originally found in [29].

4.3 GGE at Finite Central Charge

When the central charge is finite, extensive part of free energy acquires 1/c corrections,

F =
c π2`

6 β

(
f0 +

f1

c
+
f2

c2
+ . . .

)
. (4.31)

Functions fk admit Taylor expansion in terms of t2k−1 (4.22). For k ≥ 2, fk depends
only on t2i−1, i ≥ k, and start with a term linear in t2k−1. Thus, if expressed in terms
of µ2k−1, extensive part of free energy is polynomial in c. To calculate f1, f2, . . . we
need to take into account additional contribution to the effective action,

eL̃(c,µ2k−1/`
2k−1,∆,n) ≡ 1

P (n)

∑
{m}=n

〈mi,∆|e−µ3Q̃3−µ5Q̃5−...|mi,∆〉. (4.32)

4.3.1 1/c corrections from Q̃3

We start with the case when only µ3 6= 0, (4.16). It is easy to see that the operator Q̃3

written in the basis (4.5) is not more than linear in c and ∆,

Q̃3 = c Q̃c
3 + ∆ Q̃∆

3 + Q̃
(0)
3 . (4.33)

The key observation is that matrices Q̃c
3, Q̃

∆
3 are lower-triangular. Its diagonal elements

are

`3Q̃c
3|mi,∆〉 = λ|mi,∆〉+ . . . , λ =

1

6

(∑
i

m3
i −mi

)
, (4.34)

`3Q̃∆
3 |mi,∆〉 = ν|mi,∆〉+ . . . , ν = 4n. (4.35)

Because of the triangular form, c λ+∆ ν are the eigenvalues of c Q̃c
3 +∆ Q̃∆

3 . Moreover,
these diagonal elements are exactly the eigenvalues λ3 (3.40) of Q̂3 at sub-leading
order. This is the reason why we can parametrize qKdV spectrum at large c with
Young tableau (3.26),

λ3 =
(

∆− c

24

)2

+
(

∆− c

24

)[
6
∑

knk −
1

6

]
+ c

[
1

6

∑
k3nk + +

1

1440

]
. (4.36)
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Here the sum goes over nk rather thanmi This sum can be understood as a rewriting
in the free boson representation. Namely, each set mi will be parametrized by the set
of integer numbers nk, where nk is the number of times natural number k appears in
the set mi. Then the sum over all sets {mi} is equivalent to the sum over all nk and

∑
i

mi =
∞∑
k=1

k nk,
∑
i

m3
i =

∞∑
k=1

k3nk. (4.37)

Further, we will use both representation.
To estimate contribution of each term in (4.33) toward free energy in the section

4.3.3 we calculate

`3〈Q̃3〉∆,n ≡
`3

P (n)

∑
{m}=n

〈mi,∆|Q̃3|mi,∆〉 = (a0c+ b0)n2 + 4∆n+O(`3), (4.38)

in the limit of infinite n, assuming n,∆ ∼ `2. The n-independent coefficients

a0 =
2

5
, b0 = 4. (4.39)

We note that leading n-scaling in (4.38) is fixed to be n2 lest the contribution of Q̃3

diverge in the thermodynamic limit ` → ∞. At leading order in c this is easy to see
directly from the sum over Young tableaux in (4.38),

1

P (n)

∑
{m}=n

(
1

6

∑
i

m3
i

)
= a0n

2 +O(n). (4.40)

For large n there are exponentially many ways to represent n as a sum of integers with
the typical partition consisting of ∼

√
n terms with each term being of order mi ∼

√
n.

From here it immediately follows that
∑

im
3
i ∼
√
n × n3/2 ∼ n2. After substituting

scaling of saddle-point values ∆∗ ∼ c`2, n∗ ∼ `2 into (4.38) we find that both c Q̃c
3 and

∆ Q̃∆
3 contribute toward f1 and potentially to f2, while Q̃

(0)
3 contributes to f2 only. So

far we are interested only in f1 we can simplify (4.16) to be

eL̃(c, µ3/`3,∆,n) ≡ e−
µ3
`3

4n∆

P (n)

∑
{m}=n

e−
µ3
`3

c
6

∑
im

3
i , (4.41)

L̃ = −µ3/`
3 4n∆− a0 (c µ3/`

3)n2 − a1 (c µ3/`
3)2n7/2 − a2 (c µ3/`

3)3n5 + . . .(4.42)

The expansion (4.42) assumes `3/(c µ3) � n � 1. Sum over Young tableaux (4.41)
provides a non-perturbative definition of L̃. It is a simplified version of the sums
appearing in [30].
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In principle effective action (4.42) together with (4.18) completely determines f1(t3)

via maximization over ∆ and n, but there is a direct way to obtain f1 bypassing this
step. We first notice that at leading order in c effective action (4.18) as a function of ∆

reduces to (4.21) and therefore saddle-point value of ∆∗ is fixed by (4.24) independently
of the value of n∗,

∆∗ =
cπ2`2

6 β2
(e∗ +O(1/c)) . (4.43)

In case when only t3 is “turned on” e∗ can be found explicitly,

e∗ =
(t3 − (t33 + 27t43 + 33/2t

7/2
3

√
2 + 27t3)1/3)2

6t23(t33 + 27t43 + 33/2t
7/2
3

√
2 + 27t3)1/3

= 1− 4t3 + 28t23 − 240t33 + 2288t43 − 23296t53 +O
(
t63
)
.

Then leading 1/c correction to free energy can be found now by plugging ∆∗ back into
(4.18) and keeping O(c0) terms,

e
π2`
6β

f1 = e−
π
2

√
∆∗
6c

∑
{mi}

e−
β
`
n−6

µ3
`3
n∆∗−µ3

`3
c
6

∑
im

3
i . (4.44)

Here n =
∑

imi and the sum goes over all Young tableaux. This sum can be calculated
by rewriting (4.44) using free boson representation (4.37). For any coefficients x, y > 0

we find∑
{mi}

e−x
∑
imi−y

∑
im

3
i =

∞∑
r1=0

∞∑
r2=0

. . . e−
∑
k nk(xk+yk3) =

∞∏
k=1

(
1− e−xk−yk3

)−1

. (4.45)

This infinite product can be consequently rewritten as an exponent of the sum of
logarithms. Going back to (4.44) this gives

π2`

6β
f1 = −π

2`

6β

√
e∗ −

∞∑
k=1

log
(

1− e−
β
`

(1+6t3e∗)k− t3
π2 (β` )

3
k3
)
. (4.46)

The effective variables in (4.46) is the combination βk/` and in the limit ` → ∞ the
sum over k can be substituted by an integral, yielding

f1 = −
√
e∗ − 6

π2

∫ ∞
0

dk log
(

1− e−(1+6t3e∗)k−t3k3/π2
)
. (4.47)

A few first terms in Taylor series expansion of f1 can be easily calculated by expanding
this expression in t3,

f1 = −22

5
t3 +

2096

35
t23 −

4464

5
t33 +

82304

5
t43 +O

(
t53
)
. (4.48)

This agrees with the perturbative calculation of [31].
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4.3.2 1/c corrections from Q̃5

Adding µ5 to consideration is straightforward. We notice that Q̃5 is not more than
quadratic in c and ∆,

Q̃5 = c2Q̃cc
5 + c∆Q̃c∆

5 + ∆2Q̃∆∆
5 + c Q̃c

5 + ∆Q̃∆
5 + Q̃

(0)
5 , (4.49)

and all three matrices Q̃cc, Q̃c∆, Q̃∆∆
5 are lower-triangular in the basis (4.5). Their

diagonal matrix elements are easy to calculate,

`5Q̃cc
5 |mi,∆〉 = α|mi,∆〉+ . . . , α =

1

12

(∑
i

m5
i

6
− 5m3

i

12
+
mi

4

)
, (4.50)

`5Q̃c∆
5 |mi,∆〉 = δ|mi,∆〉+ . . . , δ =

∑
i

5

6
m3
i −mi, (4.51)

`5Q̃∆∆
5 |mi,∆〉 = γ|mi,∆〉+ . . . , γ = 12n. (4.52)

Only these three matrices contribute toward f1 via

eL̃(c, µ3/`3, µ5/`5,∆,n) ≡ e−
µ3
`3

4n∆−µ5
`5

12n∆2

P (n)

∑
{m}=n

e−( cµ3
6 `3

+
5c∆µ5

6 `5
)
∑
im

3
i−

c2µ5
72`5

∑
im

5
i . (4.53)

Next steps are completely analogous to the case with only Q̂3. At leading order in c
saddle point value of ∆ is fixed by

s0 = 2
√
e− e− t3e2 − t5e3, (4.54)

f0 = s0(e∗),
ds0

de

∣∣∣∣
e∗

= 0, ∆∗ =
cπ2`2

6 β2
e∗, (4.55)

while f1 is given by

f1 = −
√
e∗ − 6

π2

∫ ∞
0

dk log
(

1− e−(1+6t3e∗+15t5(e∗)2)k−(t3+5t5e∗)k3/π2− 1
2
t5k5/π4

)
.(4.56)

A few first terms in Taylor series expansion are

f1 = −22

5
t3 −

302

21
t5 +

2096

35
t23 +

14328

35
t3t5 +

51168

77
t25 + . . . (4.57)

Generalization to include higher charges is conceptually straightforward. We will give
the full expression for f1 in terms of all t2k−1 in section 4.4.
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4.3.3 Computation of a0, b0

In this section we show how to calculate

`3〈Q̃3〉∆,n ≡
`3

P (n)

∑
{m}=n

〈mi,∆|Q̃3|mi,∆〉 = (a0c+ b0)n2 + 4∆n+O(`3), (4.58)

in the limit when ∆, n ∼ `2. An analogous calculation can be also found in [26]. Recall
that Q̃3 = 2

∑
L−kLk. The expectation value 〈Q̃3〉∆,n can be thought of as trace

q−n−∆ Tr
(
qL0Q̃3

)
over a subspace with fixed n and ∆ spanned by the states (4.5).

Using cyclic property of trace one can easily get [32]

〈L−kLk〉∆,n = qk〈LkL−k〉∆,n =
qk

1− qk
〈[Lk, L−k]〉∆,n =

=
qk

1− qk
(

2k〈L0〉∆,n +
c

12
(k3 − k)

)
,

(4.59)

where q = e−
β
` . Summing (4.59) over k one obtains

〈Q̃3〉∆,n = 4σ1〈L0〉∆,n +
c

6
(σ3 − σ1), (4.60)

where

σ1 =
∑
k

kqk

1− qk
, (4.61)

σ3 =
∑
k

k3qk

1− qk
. (4.62)

Expectation value 〈L0〉∆,n is just equal to n+ ∆ and the sums σ1, σ3 can be evaluated
in thermodynamic limit by replacing the sum over k by an integral

∑
k →

∫
dk. In this

limit

σ1 →
`2π2

6β2
, (4.63)

σ3 →
`4π4

15β4
. (4.64)

The final step is to recall that if we sum Tr
(
qL0Q̃3

)
over n main contribution will be

given by a particular saddle point value n = `2π2

6β2 . Thus substituting `2π2

6β2 by n we get

〈Q̃3〉∆,n = 4n(n+ ∆) +
2

5
c n2. (4.65)

As a result, a0 = 2
5
and b0 = 4. It is straightforward but tedious to generalize the above

calculation to higher orders to obtain a1, a2 etc. from (4.42).
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4.3.4 Effective action at 1/c decorated with Q̂3

In this section we show how to calculate the effective action (4.42), which is a partition
function decorated by the first non-trivial qKdV charge Q3 restricted to a particular
large descendant level n,

eL̃(c, µ3/`3,∆,n) ≡ e−
µ3
`3

4n∆

P (n)

∑
{m}=n

e−
µ3
`3

c
6

∑
im

3
i . (4.66)

We remind the reader that first 1/c correction to free energy f1 calculated in section
4.3.1 is given by (compare with (4.44))

e
π2`
6β

f1 = e−
π
2

√
∆∗
6c

∑
n

P (n) e−
β
`
n−µ3

`3
2n∆∗+L̃(c, µ3/`3,∆∗,n). (4.67)

To calculate L̃ we introduce an auxiliary partition function of the same kind, which
depends on arbitrary parameter x,

eF(x) =
∑
n

P (n) e−
x
`
n+

µ3
`3

4n∆+L̃(c, µ3/`3,∆,n). (4.68)

In the limit of large ` this sum is saturated at some saddle point n∗,

F(x) = π

√
2n∗

3
− x

`
n∗ +

µ3

`3
4n∗∆ + L̃(c, µ3/`

3,∆, n∗), (4.69)

which is related to x and µ3 via n∗ = −`dF
dx
. “Free energy” F can be calculated exactly

the same way f1 was calculated in section 4.3.1,

F(x) = −`
∫ ∞

0

dk ln
(

1− e−xk−
c
6
µ3k3
)
. (4.70)

After changing the integration variable k → k/x and expanding in µ3 one finds

F(x) =
`

x

(
π2

6
− π4cµ3

90x3
+

2π6c2µ2
3

189x6
− 4π8c3µ3

3

135x9
+

40π10c4µ4
3

243x12
+ . . .

)
(4.71)

Using the explicit expression (4.70) we can relate n∗ and x,

n∗

`2
=

d

dx

∫ ∞
0

dk ln
(

1− e−xk−
c
6
µ3k3
)
, (4.72)

and solve this equation perturbatively with respect to x by expanding in µ3,

x =
π`√
6n∗
− 4cµ3n

∗

5`2
+

144
√

6c2µ2
3(n∗)5/2

25π`5
− 20736c3µ3

3(n∗)4

25π2`8
+

4762368
√

6c4µ4
3(n∗)11/2

125π3`11
+ . . .
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Plugging this back into (4.69) and finally renaming n∗ into n gives (compare with
(4.42))

µ3

`3
4n∆ + L̃(c, µ3/`

3,∆, n) = −π
√

2n

3
+
x(n)

`
n+ F(x(n)) (4.73)

= −2

5
(c µ3/`

3)n2 +
288
√

6

175π
(c µ3/`

3)2n7/2 − (4.74)

−20736

125π2
(c µ3/`

3)3n5 +
732672

√
6

125π3
(c µ3/`

3)4n13/2 . . .

Generalization to include Q̂5 and higher charges would be tedious but straightforward.

4.4 Full generalized partition function

In this section we extend the calculation of section 4.3 to all qKdV charges Q̂2k−1.
Conceptually, this is the same calculation. We sum over "free bosons" using the leading
part of qKdV spectrum (3.40).

Given that all Q̂2k−1 mutually commute, the generalized partition function (4.1)
is given by the sum over primaries ∆ and sets (Young tables) {mi}, parametrizing
descendants via (4.5),

Z =
∑

∆

∑
{mi}

exp

(
−
∞∑
k=1

µ2k−1

`2k−1

(
∆k +

k−1∑
p=0

∑
i

m2p+1
i cp∆k−1−p ξ̃pk +O(ck−2)

))
,(4.75)

where

ξ̃pk = 24−p
(2k − 1)Γ(k + 1)Γ(1/2)

2Γ(p+ 3/2)Γ(k − p)
. (4.76)

Note, that we neglected irrelevant in thermodynamic limit terms. At large central
charge sum over ∆ can be substituted by an integral∑

∆

→
∫
d∆ eπ

√
2c′∆/3, c′ ≡ c− 1, (4.77)

where the density of primaries follows from Cardy formula [28, 33]. It is convenient to
introduce σ via

∆ =
c′π2`2

6 β2
σ. (4.78)

In this section we will do an expansion in 1/c′. Since at leading order c = c′ + O(1),
the structure of λ remains the same: ∆k contributes as (c′)k while cp∆k−1−p terms

– 34 –



contribute as (c′)k−1. Going from the sets {mi} to free boson representation (4.37), the
partition function reduces to that one of non-interacting auxiliary bosons

Z(β, t) =

∫
dσ exp

{
c′π2`

6β

(
2
√
σ −

∞∑
k=1

t2k−1σ
k

)} ∑
n1,n2,...

e−
∑∞
r=1 nrMr+O(1/c′),(4.79)

logZ ≡ F =
π2`

6β
(c′f0(t) + f1(t) +O(1/c′)) , (4.80)

t2k−1 =

(
π2c′

6β2

)k−1
µ2k−1

β
, t1 ≡ 1, (4.81)

where the spectrum of bosons is given by

Mr =
∞∑
k=1

t2k−1σ
k−1

k−1∑
p=0

ξpk

(
6

π2σ

)p(
βr

`

)2p+1

= (4.82)

βr

`

∞∑
k=1

t2k−1σ
k−1k(2k − 1) 2F1

(
1, 1− k, 3/2,− 1

σ

(
βr

2π`

)2
)
. (4.83)

In (7.40) we write the partition function as a function of β, t2k−1. For the given fixed
β, t2k−1 the terms contributing as (c′)k−2 to eigenvalues of Q2k−1 contribute to free
energy as 1/c′. Our scope is to calculate free energy up to the first two orders in 1/c′

expansion, i.e. only keep the terms which survive in the c′ → ∞ limit. Hence O(1/c′)

terms can be neglected.
Up to 1/c′ corrections the value of σ is determined via saddle point approximation

of

Z0(β, t) = exp

{
c′π2`

6β
f0

}
=

∫
dσ exp

{
c′π2`

6β

(
2
√
σ −

∞∑
k=1

t2k−1σ
k

)}
, (4.84)

while the remaining sum over the boson occupation numbers nr in (7.40) “takes” saddle
point value of σ as an input. The saddle point equation

√
σ =

∞∑
k=1

t2k−1σ
kk, (4.85)

can be solved in terms of an infinite series

σ = 1 +
∞∑
n=1

∞∑
k1,...,kn=2

2
(−1)n

n!

(2K − n+ 1)!

(2K − 2n+ 2)!

n∏
i=1

ki t2ki−1, K ≡
∑
i

ki, (4.86)

– 35 –



yielding (expansion (4.88) was found in [29]),

f0 =
∞∑
k=1

t2k−1σ
k(2k − 1), (4.87)

f0 = 1 +
∞∑
n=1

∞∑
k1,...,kn=2

2
(−1)n

n!

(2K − n)!

(2K − 2n+ 2)!

n∏
i=1

ki t2ki−1, K ≡
∑
i

ki. (4.88)

With σ being fixed, the remaining part of the partition function describes some auxiliary
non-interacting bosons

π2`

6β
f1 = log

∑
n1,n2,...

e−
∑∞
r=1 nrMr = −

∞∑
r=1

log
(
1− e−Mr

)
. (4.89)

In the thermodynamic limit `→∞ summation over r can be substituted by integration
(Thomas–Fermi approximation), yielding (4.90),

Z = eF , F =
π2`

6 β
(c′f0 + f1 +O(1/c′)) , (4.90)

f0 =
∞∑
k=1

t2k−1σ
k(2k − 1),

√
σ =

∞∑
k=1

t2k−1σ
kk,

f1 = −12

π

∫ ∞
0

dκ log
(
1− e−2πκγ

)
, γ =

∞∑
k=1

t2k−1σ
k−1k(2k − 1)2F1(1, 1− k, 3/2,−κ2/σ),

c′ = c− 1, t2k−1 =

(
π2c′

6β2

)k−1
µ2k−1

β
, t1 ≡ 1.

Here σ(t1, t3, ...) is a function which satisfies
√
σ =

∑∞
k=1 t2k−1σ

kk. It can be expressed
explicitly in terms of an infinite power series in t2k−1, see (4.86).

4.4.1 Alternative representation of the partition function

The answer (4.90) was derived assuming β 6= 0 and µ1 = β enters the expression for
free energy differently from all other chemical potentials. In this section we obtain the
answer for free energy F in another “coordinate patch,” assuming some other chemical
potential µ2r−1 for a given r is non-zero, µ2r−1 6= 0, while the rest of chemical potentials,
including µ1 = β, could be zero.

Let us introduce c′r−1µ2r−1 = λ 6= 0 and the following set of independent variables

τ2k−1 =
µ2k−1

µ2r−1

c′k−r
(

π2

6λ2r2

) k−r
2r−1

, τ2r−1 ≡ 1, (4.91)
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and functions fi(τ), σ(τ),

F = c′`λ

(
π2

6λ2r2

) r
2r−1

(f0 + f1/c
′ +O(1/c′2)), ∆ = c′`2

(
π2

6λ2r2

) 1
2r−1

σ. (4.92)

Using these notations the expression for f0 is as follows

f0 = 2r
√
σ −

∞∑
k=1

τ2k−1σ
k =

∑
k=1

(2k − 1)τ2k−1σ
k, (4.93)

where the last equality holds “on-shell,”

rσ1/2 =
∞∑
k=1

τ2k−1k σ
k, σ = 1− 2

r(2r − 1)

∑
k 6=r

k τ2k−1 + . . . (4.94)

Finally, the expression for f1,

f1 = −12r

π

∫ ∞
0

dκ log

(
1− exp

{
−2π

r
κγ

})
, (4.95)

γ =
∑
k=1

τ2k−1k(2k − 1)σk−1
2F1(1, 1− k, 3/2,−κ2/σ). (4.96)

4.4.2 1/c versus 1/c′ expansion

In section 4.3.4 we were discussing free energy in 1/c expansion

F =
π2`

6β

(
cf̃0(t̃) + f̃1(t̃) +O(1/c)

)
, (4.97)

using variables

t̃2k−1 =

(
π2c

6β2

)k−1
µ2k−1

β
. (4.98)

But here we used on 1/c′ expansion

F =
π2`

6β
(c′f0(t) + f1(t) +O(1/c′)) , (4.99)

and the variables

t2k−1 =

(
π2c′

6β2

)k−1
µ2k−1

β
. (4.100)
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Here we outline the relation between these two expansion schemes. Using

t2k−1 = t̃2k−1

(
1− 1

c

)k−1

(4.101)

we readily find

f̃0(t) = f0(t), (4.102)

and

f̃1(t) = −f0(t)−
∞∑
k=1

(k − 1)t2k−1
∂f0(t)

∂t2k−1

+ f1(t). (4.103)

Using the explicit form of f0, (4.87), this can be simplified as

f̃1(t) = −
√
σ(t) + f1(t). (4.104)

A comparison of f1 from (4.90) with (4.57) confirms this result.

5 Zero modes of local operators in 2d CFT

In this section we show how to calculate zero modes of local operators in 2d CFT on a
cylinder. Every qKdV charge is defined as such zero mode. So, it’s essential to know
how to calculate them effectively. Moreover, information about zero modes of quasi-
primary operators will be essential when we will discuss Eigenstate Thermalization.

This section is organized as follows. In section 5.1 we develop general technique for
calculating the zero modes of the normal ordered product of local operators. In section
5.2 we show in detail how this technique applies in the simplest case and calculate
first non-trivial qKdV charge Q̂3. In section 5.3 we list the explicit expressions of the
zero modes for all quasi-primary operators with the dimension of less or equal to eight.
Then, in section 5.4 we give the explicit expression for Q̂7 in terms of the Virasoro
algebra generators and verify its consistency in the large c limit and also using the
constraints coming from the (9,2) minimal model.

5.1 Zero modes of the operator product

In this section we will describe general technique of finding zero modes of the product
of arbitrary local operators A(w) and B(w) on a cylinder worldsheet, namely

(AB)0 =

∮
dw

2π
(AB)(w), (5.1)
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where the contour is taken over a spacial circle. The operator A(w) and B(w) are
assumed to have analytic mode expansion

A(w) =
+∞∑

n=−∞

Ane
−inw, (5.2)

and similarly for B(w). The parentheses in (AB)(w) denote normal ordering of the
operators and is defined as

(AB)(w) =

∮
w

dz

2πi

1

z − w
T (A(z)B(w)) , (5.3)

where the integration is performed over the circle around w and the symbol T stands
for “chronological ordering,” i.e.

T (A(z)B(w)) =

{
A(z)B(w), if Im z < Imw,

B(w)A(z), if Im z > Imw.
(5.4)

Figure 1. Deformation of the blue contour (5.3) into the green one (5.5).

To perform the integration (5.3) we will split the contour into two pieces as showed
in the fugure 1, where we deform the contour in such a way that we can deal with two
chronologically ordered expressions separately, namely

(AB)(w) =

∫ 2π−iε

−iε

dz

2πi

A(z)B(w)

z − w
−
∫ 2π+iε

iε

dz

2πi

B(w)A(z)

z − w
. (5.5)
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The strategy of calculating (5.5) is to express the integrand in terms of mode expansion
eiw and eiz. Let us introduce two axillary variables u and v,

u = eiz, v = eiw, (5.6)

and make the following transformation,
1

2πi

dz

z − w
=

1

2π

dz

log(u)− log(w)
=

1

2π

dz

log
(
1 + u−v

v

) =

=
dz

2π

(
v

u− v
+
∞∑
k=0

ck

(
u− v
v

)k)
,

(5.7)

where we formally expanded one over logarithm and ck denote the coefficients of this
expansion. The combination v/(u− v) can be easily represented in terms of the mode
expansion, namely

v

u− v
=

{∑+∞
k=1 e

ik(w−z), Im(z) < Im(w),∑+∞
k=0 e

ik(z−w), Im(z) > Im(w).
(5.8)

Plugging (5.7) and (5.8) into (5.5) we obtain

(AB)(w) =

∫ 2π−iε

−iε

dz

2π

(
∞∑
k=1

eik(w−z) +
∞∑
k=0

ck
(
ei(z−w) − 1

)k)
A(z)B(w)−

−
∫ 2π+iε

+iε

dz

2π

(
−
∞∑
k=0

eik(z−w) +
∞∑
k=0

ck
(
ei(z−w) − 1

)k)
B(w)A(z).

(5.9)

In each of the two integrals in (5.9) we can integrate the first term assuming (5.2) and
combine the rest into an integral of the commutator [A(z), B(w)], i.e.

(AB)(w) = A−(w)B(w) +B(w)A+(w)+

+

∫ 2π

0

dz

2π

∞∑
k=0

ck
(
ei(z−w) − 1

)k
[A(z), B(w)],

(5.10)

where

A−(w) =
∞∑
n=1

A−ne
inw, A+(w) =

∞∑
n=0

Ane
−inw. (5.11)

Substituting (5.10) into (5.1) we obtain

(AB)0 =
∞∑
n=1

A−nBn +
∞∑
n=0

B−nAn+

+

∫ 2π

0

dw

2π

∫ 2π

0

dz

2π

∞∑
k=0

ck
(
ei(z−w) − 1

)k
[A(z), B(w)].

(5.12)
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To move further one should calculate the commutator [A(z), B(w)] and perform the
integration of an infinite sum over k. This seems to be a difficult task, but we will see
shortly that only finite number of terms in this sum give non-zero contributions to the
integral ∫ 2π

0

dz

2π

∞∑
k=0

ck
(
ei(z−w) − 1

)k
[A(z), B(w)] (5.13)

from (5.10). Indeed, if we fix k and expand
(
ei(z−w) − 1

)k we immediately see that the
only modes of A(z) which contribute are those from 0 to k. More precisely for a given
fixed k we have

k∑
n=0

ck
k!

n!(n− k)!
(−1)ne−inw[An, B(w)] (5.14)

If we now rewrite the commutator in terms of the mode expansion e−inw[An, B(w)] =∑
m[An, Bm]e−(n+m)w and keep in mind that both operators A and B are “built” out of

stress-energy tensor, then both An and Bn will be some normal ordered polynomials
in Li such that the total sum of indexes is equal to n. The commutator [An, Bm] is
therefore also a polynomial in Li with a coefficient which is a polynomial in n. Therefore
the sum in (5.14) will be a linear combination of the terms

S(a, k) =
k∑

n=0

1

n!(n− k)!
(−1)k−nna, (5.15)

where a is some non-zero integer. The expression above is the Stirling number of the
second kind, which vanishes unless k ≤ a. This immediately confirms that only finite
number of terms in (5.14) with k ≤ a contribute.

We illustrate the emergence of the polynomial expression in n explicitly in the
case A = B = T (w) in the next section. Here we only note that the finite number
of terms contributing in the sum over k in (5.10) provide a crucial simplification. It
allows computing (5.10) efficiently using computer algebra, which we use extensively
in the computation of the zero modes in section 5.3.2 as well as of Q7 in section 5.4.

5.2 Warm-up: computation of Q̂3

In this section we apply the machinery devised in the previous section to the sim-
plest non-trivial example Q̂3 =

∮
dz
2π

(TT )(z) and show explicitly how to perform the
integration (5.12). It’s convenient to introduce shifted Virasoro generators,
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L̃n = Ln −
c

24
δn,0. (5.16)

In terms of these operators the stress-energy tensor T (z) has the following mode ex-
pansion

T (z) =
+∞∑

n=−∞

L̃ne
−inz, (5.17)

and the Virasoro algebra in terms of the shifted generators is modified as

[L̃n, L̃m] = (n−m)L̃n+m +
c

12
n3δn+m,0. (5.18)

Substituting A(z) = T (z) and B(w) = T (w) into (5.12) we obtain

Q̂3 = (TT )0 = 2
+∞∑
n=1

L̃−nL̃n + L̃2
0+

+

∫ 2π

0

dw

2π

∫ 2π

0

dz

2π

∞∑
k=0

ck
(
ei(z−w) − 1

)k
[T (z), T (w)].

(5.19)

The calculation of the commutator is a bit tedious but straightforward:

[T (z), T (w)] =
∑
m,n∈Z

e−inze−imw[L̃n, L̃m] =

=
∑
m,n∈Z

e−imze−inw
(

(n−m)L̃n+m +
c

12
n3δn+m,0

)
=

=
∑
m,n∈Z

e−in(z−w)(2n− (m+ n))e−i(m+n)wL̃m+n +
c

12

∑
n∈Z

n3e−in(z−w).

(5.20)

As was anticipated in the end of previous subsection, the commutator of two local
operators gives rise to a polynomial expression in n. Namely, using the notations of
the previous section (An is equal to L̃n and B(w) is equal to T (w)),

e−inw[An, B(w)] =
∑
m∈Z

(2n−m)e−imwL̃m +
c

12
n3,

and therefore only terms with k ≤ 3 will contribute in the sum over k in (5.10). Here
we would like to illustrate that by combing (5.20) into a local expression. We continue,

[T (z), T (w)] =

2(i∂z)
∑
n∈Z

e−in(z−w)T (w) + i
∑
n∈Z

e−in(z−w)∂wT (w) +
c

12
(i∂z)

3
∑
n∈Z

e−in(z−w) =

= 4πi∂zδ(z − w)T (w) + 2πiδ(z − w)∂wT (w) +
c

12
(i∂z)

32πδ(z − w),

(5.21)
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where on the last line we have used the following representation of delta-function,

2πδ(z − w) =
∑
n∈Z

e−in(z−w). (5.22)

Note, that we have represented the commutator of stress-energy tensors [T (z), T (w)]

in such a way that every term in the final expression contains delta-function δ(z − w)

or its derivatives. This representation helps us easily perform the integration over z in
(5.19), namely

∮
dz

2π

∞∑
k=0

ck
(
ei(z−w) − 1

)k
[T (z), T (w)] = ic0∂wT (w)−

−2i∂z

+∞∑
k=0

ck
(
ei(z−w) − 1

)k∣∣∣∣∣
z=w

T (w) +
c

12
(−i∂z)3

+∞∑
k=0

ck
(
ei(z−w)−1

)k∣∣∣∣∣
z=w

.

(5.23)

Here in the first term we have used 00 = 1. Let us denote

ak = −i∂z
(
ei(z−w) − 1

)k∣∣∣
z=w

, bk = (−i∂z)3
(
ei(z−w) − 1

)k∣∣∣
z=w

. (5.24)

The coefficients ak and bk are non-zero only for the first few values of k ≤ 3. Specifically,

a1 = 1, a2,3,4,... = 0,

b1 = 1, b2 = 6, b3 = 6, b4,5,6,... = 0.
(5.25)

That means that the sums
∑
ck ak and

∑
ck bk contain only finite number of terms

and only four first coefficients ck contribute to these sums. From the definition we find

c0 =
1

2
, c1 = − 1

12
, c2 =

1

24
, c3 = − 19

720
. (5.26)

Combining (5.23) and (5.10) we get the normal ordered expression

(TT )(w) = T−(w)T (w) + TT+(w)− 1

6
T (w) +

i

2
∂wT (w) +

c

1440
, (5.27)

where T−(w) =
∑

k=1 e
ikwL̃−k and T+(w) =

∑
k=0 e

−ikwL̃k.
And, finally, for zero mode

Q̂3 = (TT )0 =

∮
dw

2π
(TT )(w) = 2

+∞∑
n=1

L̃−nL̃n + L̃2
0 −

1

6
L̃0 +

c

1440
=

= 2
+∞∑
n=1

L−nLn + L2
0 −

c+ 2

12
L0 +

c(5c+ 22)

2880
.

(5.28)

The result matches that one of [18]. The technique we have described here in principle
can be applied to a calculation of zero modes of any product of local operators.
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5.3 Quasi-primaries

In this section we list the explicit expressions for the zero modes of all quasi-primaries
from the vacuum family with the dimension less or equal to eight. Up to dimension
nine all quasi-primaries have even dimension. There is a unique operator of dimension
zero – the identity operator, which is a primary. There is also a unique quasi-primary
at level two, the stress-energy tensor T . Its zero mode is the CFT Hamiltonian – first
KdV charge Q̂1 = L0 − c/24. At level two there is also a unique quasi-primary

T2 = (TT )− 3

10
∂2T. (5.29)

Its zero mode is the first non-trivial KdV charge Q̂3 given by (5.28). At all other levels
the quasi-primaries are not unique and we organize them by dimension, nested powers
of T and orthogonality of Zamolodchikov metric.

5.3.1 Quasi-primaries of dimension 6

At level four there are two quasi-primaries,

B = (∂T∂T )− 4

5
(∂2TT )− 1

42
∂4T, (5.30)

and

D = (T (TT ))− 9

10
(∂2TT )− 1

28
∂4T +

93

70c+ 29
B. (5.31)

Zero mode of their combination D− 5(43+14c)
2(29+70c)

B is the KdV charge Q̂5, which was found
explicitly in [18]. To find the explicit form of B0 and D0 we introduce the “building
block”

(∂T∂T )0 = −(∂2TT )0 = 2
∞∑
n=1

n2L̃−nL̃n +
L̃0

60
− c

3024
, (5.32)

which is different from the quasi-primary B by a total derivative. Therefore

B0 =
9

5
(∂T∂T )0. (5.33)

Similarly, to calculate D0 we introduce

(T (TT ))0 =
∞∑

k,l=0

L̃−k−lL̃kL̃l + 2
∞∑

k=1,l=0

L̃−kL̃k−lL̃l +
∞∑

k,l=1

L̃−kL̃−lL̃k+l−

−
∞∑
n=1

L̃−nL̃n −
L̃2

0

2
+
cL̃0

480
+
L̃0

15
− c

3024
,

(5.34)

such that

D0 = (T (TT ))0 +
9

10
(∂T∂T )0. (5.35)
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5.3.2 Quasi-primaries of dimension 8

At level eight there are three quasi-primaries,

E = (∂2T∂2T )− 10

9
(∂3T∂T ) +

10

63
(∂4TT )− 1

324
∂6T, (5.36)

H = (∂T (∂TT ))− 4

5
(∂2T (TT )) +

2

15
(∂3T∂T )− 3

70
(∂4TT ) +

9(140c+ 83)

50(105c+ 11)
E ,(5.37)

and

I = (T (T (TT )))− 9

5
(∂2T (TT )) +

3

10
(∂3T∂T ) +

81(35c− 51)

100(105c+ 11)
E+

+
12(465c− 127)

5c(210c+ 661)− 251
H.

(5.38)

The “building block” for calculating E0 is

(∂2T∂2T )0 = −(∂3T∂T )0 = (∂4TT )0 = 2
∞∑
n=1

n4L̃−nL̃n −
L̃0

126
+

c

2880
, (5.39)

And therefore,

E0 =
143

63
(∂2T∂2T )0. (5.40)

There are two “building blocks” for H:

(∂T (∂TT ))0 = −
∞∑

k=0,l=0

klL̃−k−lL̃kL̃l + 2
∞∑

k=1,l=0

klL̃−kL̃k−lL̃l−

−
∞∑

k,l=1

klL̃−kL̃−lL̃k+l +
1

12
(∂T∂T )0 +

1

30

∞∑
n=1

L̃−nL̃n +
L̃2

0

60
− (5c+ 93)L̃0

15120
+

113c

1814400

(5.41)

and

(∂2T (TT ))0 = −
∞∑

k,l=0

l2L̃−k−lL̃kL̃l −
∞∑

k=1,l=0

(k2 + l2)L̃−kL̃k−lL̃l−

−
∞∑

k=1,l=1

k2L̃−kL̃−lL̃k+l +
7

120

∞∑
n=1

L̃−nL̃n −
L̃2

0

30
+

cL̃0

1512
+

61L̃0

7560
− 131c

1814400
.

(5.42)

The zero mode of H is

H0 = (∂T (∂TT ))0 −
4

5
(∂2T (TT ))0 +

7035c+ 13652

110250c+ 11550
(∂2T∂2T )0. (5.43)
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The expression for (T (T (TT )))0 is too bulky to write it twice. We do not write
it explicitly here, but simply mention that it can be obtained from the Virasoro al-
gebra expression for Q̂7, which we give explicitly in the next section, by subtracting
(∂2T∂2T )0 and (T (∂T∂T ))0 with proper coefficients, see equation (5.46). Thus, in lieu
of (T (T (TT )))0 we give explicitly the expression for (T (∂T∂T ))0,

(T (∂T∂T ))0 =
∞∑

k,l=1

(k + l)lL̃−kL̃−lL̃k+l +
∞∑

l=0,k=1

(k − l)kL̃−kL̃k−lL̃l+

+
∞∑

k,l=0

(k + l)kL̃−k−lL̃kL̃l +
∞∑

k=0,l=1

(k − l)kL̃−lL̃l−kL̃k−

−7

6

∞∑
n=1

n2L̃−nL̃n +
1

30

∞∑
n=1

L̃−nL̃n +
L̃2

0

60
+

cL̃0

3024
− L̃0

135
+

13c

86400
.

(5.44)

Finally, for the last quasi-primary at level 8 we have

I0 = (T (T (TT )))0 −
9

5
(∂2T (TT ))0 −

3

10
(∂2T∂2T )0 +

81(35c− 51)

100(105c+ 11)
E0+

+
12(465c− 127)

5c(210c+ 661)− 251
H0.

(5.45)

5.4 Expression for Q̂7

In this section we present the expression for Q̂7 in terms of Virasoro generators, which
we calculated by applying the technique described above. Then we test our result by
showing that it is consistent with the known spectrum Q̂7 at the leading 1/c order. We
further check at that our expression for Q̂7 vanishes as an operator for the (9, 2) minimal
model at the first dozen of descendant levels, as is predicted in [18, 34]. Finally, we
will show how to use commutativity of qKdV charges, known results about spectrum
in 1/c expansion and the constraints from the minimal models to get a shortcut for the
expression (5.47).

5.4.1 The result

Q̂7 is the zero mode of the operator [34]

J8 = (T (T (TT ))) +
c+ 2

3
(T (∂T∂T )) +

2c2 − 17c− 42

360
(∂2T∂2T ). (5.46)

In principle J8 (and higher densities J2n) can be determined by requiring commutativity
of Q̂7 with Q̂5 and Q̂3, however, the calculation is quite involved. Alternatively, one can
use the expression for the thermal correlation function 〈Q̂2n−1〉, which can be calculated
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using other means and fix the coefficients of J2n in this way. This was done for J8, J10

and J12 in [34]. However, for J14 and higher densities the number of independent
coefficients becomes too large to be uniquely fixed from the form of 〈Q̂2n−1〉 alone.

We find the following expression for Q̂7 in terms of the Virasoro algebra generators

Q̂7 =
∞∑

k,l,m=1

L−kL−lL−mLk+l+m +
∞∑

k,l,m=0

L−k−l−mLkLlLm+

+3
∞∑

k,l=1
m=0

L−kL−lLk+l−mLm + 3
∞∑
k=1
l,m=0

L−kLk−l−mLlLm+

8 + c

3

 ∞∑
k,l=1

(k + l)lL−kL−lLk+l +
∞∑
k=1
l=0

(k − l)kL−kLk−lLl

+

+
8 + c

3

 ∞∑
k,l=0

(k + l)kL−k−lLkLl +
∞∑
k=0
l=1

(k − l)kL−lLl−kLk

+

+
∞∑
n=1

(
c2 − c− 141

90
n4 − 7c+ 59

18
n2

)
L−nLn −

(
1

48
c2 +

53

360
c+

19

90

)
Q̃3−

−
(

1

6
c+ 1

)
Q̃5 −

c+ 6

6
L3

0 +
15c2 + 194c+ 568

1440
L2

0−

−(c+ 2)(c+ 10)(3c+ 28)

10368
L0 +

c(3c+ 46)(25c2 + 426c+ 1400)

24883200
.

(5.47)

This is one of the main results of this section. Here Q̃3 and Q̃5 are defined as parts of
Q̂3 and Q̂5 which annihilate the primary states, Q̃3 |∆〉 = 0 and Q̃5 |∆〉 = 0, namely,

Q̃3 = 2
∑

L−nLn, (5.48)

and

Q̃5 =
∞∑

k,l=0

L−k−lLkLl + 2
∞∑

k=1,l=0

L−kLk−lLl +
∞∑

k,l=1

L−kL−lLk+l +

+
∞∑
n=1

(
c+ 2

6
n2 − c

4
− 1

)
L−nLn − L3

0.

(5.49)

The expression (5.49) can also be represented in a slightly different way [18] using the
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following identity,
∞∑

k,l=0

L−k−lLkLl + 2
∞∑

k=1,l=0

L−kLk−lLl +
∞∑

k,l=1

L−kL−lLk+l =

∑
n1+n2+n3=0

: Ln1Ln2Ln3 : +
3

2

∑
n=1

n2L−nLn +
3

2

∑
r=1

L1−2rL2r−1.

(5.50)

5.4.2 The consistency check: 1/c expansion and the (9, 2) minimal model

In this section we perform two different consistency checks of the Virasoro algebra
expression for Q̂7 (5.47).

In section 3 the spectrum of all qKdV charges was calculated using semi-classical
quantization at the first few orders in 1/c expansion. This calculation did not rely on
the explicit form of Q̂2k−1 in terms of the Virasoro algebra generators, and hence can
be used to cross-check our result.

Leading 1/c spectrum of Q̂7 in terms of "free bosons" nk is given by (3.39) Q̂7 |λ〉 =

λ |λ〉, where

λ7 = ∆′4 + ∆′3

(
28
∑
k

nkk − 1

)
+ ∆′2c

(
7

3

∑
k

nkk
3 +

7

720

)
+

+∆′c2

(
7

90

∑
k

nkk
5 − 1

6480

)
+ c3

(
1

1080

∑
k

nkk
7 +

1

518400

)
+

+∆′2

(
98n2 − 77

∑
k

n2
kk

2 +
259

3

∑
k

nkk
3 − 77

∑
k

nkk
2 − 14

3

∑
k

nkk +
71

180

)
+

+∆′c

(
98

15

∑
k,l

k3lnknl −
56

15

∑
k

n2
kk

4 +
63

25

∑
k

nkk
5−

−56

15

∑
k

nkk
4 − 7

90

∑
k

nkk
3 +

49

1800

∑
k

nkk −
23

4320

)
+

+c2

(
7

180

∑
k,l

nknlk
3l3 +

7

90

∑
k,l

nknlk
5l − 7

120

∑
k

n2
kk

6 +
127

5400

∑
nkk

7

− 7

120

∑
k

nkk
6 +

7

21600

∑
k

nkk
3 − 1

6480

∑
k

nkk +
103

2073600

)
−

−504
∆′3

c

(∑
k

n2
k − 2

∑
k

nkk +
∑
k

nk

)
+O(c)

(5.51)

Using computer algebra one can check explicitly at first dozen of descendant levels that
this spectrum matches with the one following from (5.47).
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Another check is provided by [18, 34], which shows that for the minimal models
(2n+ 3, 2), n 6 1, the qKdV charges Qk with k divisible by 2n+ 1 vanish as operators.
Hence Q7 should vanish as an operator in the minimal model (9, 2), with n = 3 and
central charge c = −46/3. This minimal model includes primaries with the following
dimensions {∆k} = {0,−1/3,−2/3,−5/9}. Using computer algebra we have verified
that Q7 vanishes for all non-zero states of this model up to the descendant level twelve.

5.4.3 A shortcut

In this subsection we show how to get the Virasoro algebra expression for Q̂7 without
full explicit calculation of all involved commutators by exploiting the restrictions from
the commutativity of qKdV charges, 1/c expansion and the (9, 2) minimal model. Our
goal here will be to understand what kind of terms may appear in the Virasoro algebra
expression of Q̂7 and then fix the coefficients using the constraints.

We start from the last term of J8 (5.46):

A8 = (∂2T∂2T ). (5.52)

Substiting A8 into (5.10 - 5.12) we obtain∮
dw

2π
A8 ∼

∞∑
n=1

n4L−nLn + comm, (5.53)

where comm comes from the integral of the commutator in (5.10). Expressing the
commutator in terms of Virasoro generators we get [∂2T, ∂2T ] ∼ [Ln, Lm] ∼ Lk due to
Virasoro algebra. It is easy to see that the final answer for the zero mode should contain
only such operators that map states of level k to the states of level k. That means that
after integrating the commutator we can only get some function of L0. Therefore,∮

dw

2π
A8 ∼

∞∑
n=1

n4L−nLn + f(L0). (5.54)

Now we turn to the next term

B8 = (T (∂T∂T )). (5.55)

The term B8 contains nested normal ordering. We will deal with it subsequently,

(∂T∂T )(w) = ∂T∂T+ + ∂T−∂T +

∮
dz

2π

∞∑
k=0

ck
(
ei(z−w) − 1

)k
[∂T (z), ∂T (w)].(5.56)
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One can calculate the commutator and perform the integration (5.56) explicitly but we
just notice that the result of the integration can only contain terms with one stress-
energy tensor T or its derivatives and the terms like TT or T∂T are not present due
to Virasoro algebra, which means

(∂T∂T )(w) = ∂T (w)∂T+(w) + ∂T−(w)∂T (w) + f(T (w), ∂T (w), ∂2T (w)), (5.57)

where f(T, ∂T, ∂2T ) is some linear function of its arguments. Substituting (5.56) into
B8 we get

(T (∂T∂T )) = T−∂T∂T+ + ∂T∂T+T+ + T−∂T−∂T + ∂T−∂TT+ + comm. (5.58)

Here comm again denotes some expression associated with the commutators, which
we will not calculate explicitly. But let us notice again that it contains at most two
stress-tensors or its derivatives. The only expression that survives after integration of
such terms is proportional to ∼ L−nLn, namely∮

dz∂αT∂βT ∼
+∞∑
−∞

nα+βL−nLn. (5.59)

Counting the amount of dervatives and integrating (5.58) we obtain∮
dw

2π
B8 =

∞∑
k,l=1

(k + l)lL−kL−lLk+l +
∞∑
k=1
l=0

(k − l)kL−kLk−lLl+

+
∞∑

k,l=0

(k + l)kL−k−lLkLl +
∞∑
k=0
l=1

(k − l)kL−lLl−kLk+

+
∞∑
n=1

(
αn4 + βn2 + γ

)
L−nLn + f(L0),

(5.60)

where α, β, γ are some c-dependent coefficients and f(L0) is some function of c and
L0.

In the same manner one can deal with the term (T (T (TT )). As a result we get an
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expression for Q̂7 with some coefficients to fix. The expression is

Q̂7 =
∞∑

k,l,m=1

L−kL−lL−mLk+l+m +
∞∑

k,l,m=0

L−k−l−mLkLlLm+

+3
∞∑

k,l=1
m=0

L−kL−lLk+l−mLm + 3
∞∑
k=1
l,m=0

L−kLk−l−mLlLm+

8 + c

3

 ∞∑
k,l=1

(k + l)lL−kL−lLk+l +
∞∑
k=1
l=0

(k − l)kL−kLk−lLl

+

+
8 + c

3

 ∞∑
k,l=0

(k + l)kL−k−lLkLl +
∞∑
k=0
l=1

(k − l)kL−lLl−kLk

+

+
∞∑
n=1

(
αn4 + βn2

)
L−nLn + γQ̃3 + δQ̃5 + f(L0)

, (5.61)

where α, β, γ and δ are the coefficients dependent on central charge and f(L0) is some
polynomial of L0 and central charge.

The term f(L0) determines the value of Q̂7 on a primary state. That has been
previously calculated in the appendix B of [22]. The coefficients α and β can be found
from the commutativity constraint [Q̂3, Q̂7] = 0. From 1/c expansion of the spectrum
(5.51) we see that δ is at most linear polynomial in c, δ = δ1c + δ2 and γ is at most
quadratic polynomial in c, γ = γ1c

2 + γ2c+ γ3. The coefficients δ1, δ2 and γ1, γ2 can be
extracted directly from (5.51) and, finally, γ3 can be fixed by requiring that Q7 vanishes
acting on any descendant state of the (9,2) minimal model.

In this section we pedagogically developed and presented the machinery of calcu-
lating the zero modes of local operators in a 2d CFT on a cylinder. We focused on
the situation when the operators are from the vacuum family, i.e. are built from the
powers of stress-energy tensor and its derivatives. The explicit formulae obtained in
this section will be used in section 7 when will study spectral properties of the qKdV
hierarchy and Generalized Eigenstate Thermalization Hypothesis in 2d CFTs.

6 ETH and 2d CFT

In this section we discuss Eigenstate Thermalization Hypothesis (ETH) and its appli-
cability to 2d CFT. We start with brief introduction to a conventional formulation of
ETH for general quantum many-body systems in section 6.1. Then we discuss how

– 51 –



to formulate the hypothesis specifically for 2d CFTs, focusing on Virasoro descendants
of the "identity block" (6.2). In section 6.3 we show how ETH works in the limit of
infinite central charge c → ∞. In section 6.4 we outline non-perturbative nature of
ETH for sufficiently highly excited states.

6.1 Eigenstate Thermalization Hypothesis

During the last two decades there has been significant progress in understanding how
quantum statistical physics emerges from the dynamics of an isolated quantum many-
body system.

Eigenstate Thermalization Hypothesis (ETH), developed in the works of Deutsch
and Srednicki in the 90s [1, 2] is the idea that individual energy eigenstate of a suf-
ficiently complex “chaotic” many-body quantum system exhibits thermal properties.
ETH provides a mechanism explaining thermalization of isolated quantum systems.
During last decade extensive numerical studies have supported the expectation that
ETH is a general property of quantum many-body systems, unless the system exhibits
an extensive number of conserved quantities [3].

At the colloquial level the ETH promotes a highly excited energy eigenstate of a
quantum system to the “eigenstate ensemble” stating that the latter can describe ther-
mal properties of a quantum system in the same way as the conventional canonical and
micro-canonical ensembles. The discrepancy between e.g. expectation values of local
quantities in these different ensembles then would be suppressed in the thermodynamic
limit. Quantitatively, for a few-body operator O, ETH postulates that

〈Ei| O |Ej〉 = fO(E)δij + Ω−1/2(E)rij, E = (Ei + Ej)/2. (6.1)

Here |Ei〉 denotes an energy eigenstate, fO is a smooth function of E a Ω(E) = eS(E) is
the density of states of the full system. rij is a fluctuation matrix of order one. For a
general quantum many-body system entropy S(E) scales extensively with the volume
V of a system, which means that in thermodynamic limit V →∞ the statement (6.1)
simplifies to

〈Ei|O|Ei〉 = fO(Ei). (6.2)

In this limit a simple consequence of equivalence of ensembles gives

fO(Ei) =
1

Z(β)
Tr
(
Oe−βH

)
. (6.3)

6.2 ETH in 2d CFTs

It is not clear which CFTs can be considered as "chaotic". There should be enough
of "degrees of freedom" for some form of thermalization to occur. In 2d CFTs central

– 52 –



charge c plays the role of "degrees of freedom". So, one can expect that c � 1 CFTs
could thermalize.

Holographic CFTs are expected to be complex enough to exhibit thermalization
starting from a sufficiently excited pure state. On the dual gravity side this is a process
of black hole formation via gravitational collapse. Consequently holographic CFTs are
expected to exhibit eigenstate thermalization, at least in some form,

〈Ei|O|Ei〉 = fO(Ei) (6.4)

with fO being smooth. Operator-state correspondence allows reformulation (6.4) in
terms of OPE coefficients. Then it can be easily shown that the primary states and
the descendants can not both satisfy (6.4) with the same function fO.

It was proposed in [35] that the non-trivial content of ETH is not the equivalence
between individual eigenstates and thermal ensemble, but the equivalence of individual
eigenstates from a certain class with each other. Then the equivalence with the thermal
ensemble would follow automatically, provided the original class of eigenstates is wide
enough. This idea lead [36] to propose the following formulation of local ETH in CFTs:
(6.4) should apply to any local operator O but be limited only to primary (Virasoro-
primary in 2d) states |E〉. In this formulation fO is not necessarily related to thermal
expectation value of O. For conformal theories in d ≥ 3 it was further argued in [37]
that the primary states dominate the microcanonical ensemble and therefore in the
thermodynamic limit fO coincides with the conventional thermal expectation value of
O. The d = 2 case is a subject of discussion below.

In 2d we need to distinguish two cases: when O is a Virasoro descendant of identity
or not. In the former case the local ETH (6.4) is automatic – the corresponding heavy-
heavy-light OPE coefficient is fixed by Virasoro algebra and is a smooth function of
E, dimension of the Virasoro primary state |E〉. In the latter case, when fO is not a
descendant of identity, there are no known explicit examples when (6.4) is satisfied with
a smooth Oeth(β). There is a general expectation though that this is the case for certain
large central charge theories, including holographic CFTs. In d = 2 thermal expectation
value of any such O is zero (because thermal cylinder is conformally flat). It is therefore
often assumed that in sufficiently complex 2d theories corresponding heavy-heavy-light
OPE is suppressed by the dimension of the heavy operator. Dominance of the vacuum
conformal family or the “identity block" in the OPE of two heavy primaries is an
underlying assumption in many works on large central charge theories in the context
of ETH and thermalization

Leaving aside the behavior ofO outside of vacuum conformal family, below we focus
on the case when O is a Virasoro descendant of identity. Local ETH (6.4) is automatic
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in this case, but function fO a priory has no interpretation in terms of thermal physics.
A natural question then would be to compare fO with thermal expectation value of the
operator O,

Oth(β) =
1

Z(β)
Tr(O e−βH). (6.5)

It was expected that at infinite central charge locally eigenstate is equivalent to the
thermal ensemble [38], which is indeed the case, fO = Oth. At the same time fO and
Oth do not match at the subleading order in 1/c [37, 39–42]. A possible explanation
of this discrepancy is that the “eigenstate ensemble” |E〉 has positive value of qKdV
charges and hence should be compared not with (6.5) but with the full Generalized
Gibbs Ensemble

OGGE(β, µi) =
1

Z(β, µi)
Tr(O e−βH−

∑
k µ2k−1Q̂2k−1), (6.6)

with the fugacities µi chosen to match quantum numbers of |E〉. This is the comparison
performed below.

6.3 Comparison at infinite central charge

From now on we restrict to the case when |E〉 is a heavy scalar Virasoro primary. To
achieve finite energy density and thus finite effective temperature in the thermodynamic
limit the dimension E should scale as `2,

`→∞, E/`2 = fixed. (6.7)

A Virasoro descendant of identity O can be either a quasi-primary or a total derivative.
In the latter case by Lorentz invariance fO = OGGE = 0. When O is a quasiprimary of
dimension 2k, Oeth is non-trivial in the thermodynamic limit (6.7) only if O includes
(T . . . (TT ))︸ ︷︷ ︸

k times

. One can always choose a basis at the level 2k such that a unique quasi-

primary with non-vanishing expectations value (6.4) in the thermodynamic limit is the
density of KdV charge O = J2k [37],

Q̂2k−1 ≡
∫ `

0

du J2k. (6.8)

To investigate the equality of the eigenstate and generalized Gibbs ensembles we com-
pare

〈E|J2k|E〉 =
1

`
〈E|Q̂2k−1|E〉 =

(
E

`2

)k
, E, `→ +∞, (6.9)
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and

〈J2k〉GGE =
1

`
〈Q̂2k−1〉GGE ≡ −

1

`
∂µ2k−1

logZ, (6.10)

for k ≥ 2. For k = 1 the equality between 〈E|T |E〉 and 〈T 〉GGE,

E = 〈H〉GGE (6.11)

is the relation which defines effective temperature β in terms of E/`2. The expectation
values (6.9) satisfy 〈E|J2k|E〉 = 〈E|J2|E〉k, q1 ≡ T . Therefore for the equality between
the eigenstate and generalized Gibbs ensembles to hold it is necessary for the GGE
partition function to satisfy (4.26). This is the case at leading order in central charge
for any values of µ2k−1 as discussed in section 4.2. Hence we establish that for the
descendant of identity O = J2, at leading order in central charge expectation value
in a primary state is the same as in the generalized Gibbs ensemble for any choice of
µ2k−1. The same conclusion, about the equivalence of the eigenstate and the GGE for
any choice of µ2k−1 also trivially applies to all other descendants of identity, because
for them at leading order in central charge both (6.4) and (7.40) are zero. Equivalence
for all µ2k−1 is consistent with the holographic interpretation that at infinite central
charge classical black hole in AdS3 is dual to (4.1) for any values of µ2k−1 [43]. Also
see [44] for bulk interpretation of the KdV charges in terms of boundary gravitons.

6.4 Discrepancy at finite central charge

At finite central charge the relations (4.26) are not automatically satisfied. Using the
expansion (4.31), at leading order in 1/c one finds from (4.27,4.28),

2(f0 + 3t3∂t3f0 + 5t5∂t5f0 + . . . )(f1 + 3t3∂t3f1 + 5t5∂t5f1 + . . . ) + ∂t3f1 = 0,(6.12)

3(f0 + 3t3∂t3f0 + 5t5∂t5f0 + . . . )2(f1 + 3t3∂t3f1 + 5t5∂t5f1 + . . . ) + ∂t5f1 = 0,(6.13)

. . .

In principle one can hope these equations would specify a set of t2k−1 such that
(6.12,6.13,. . . ) are satisfied, which would ensure equivalence between the eigenstate
and generalized Gibbs ensembles at the level of the expectation values of J2k at first
subleading order in 1/c. It should be noted though that the equations (6.12,6.13,. . . )
have no small parameter, because when written in terms of variables t2k−1 they are c-
independent. Thus one would need to know full function f1(t3, t5, . . . ) to find a possible
solution. In this sense the problem of matching fugacities µ2k−1 to a primary state is
non-perturbative, i.e. it requires knowledge of free energy at all orders in µ2k−1, even
for large c [37].
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We will postopone this discussion and its physical implication to the next section.
Here we will just give a simple argument that shows that a solution of (6.12) and more
generally of (4.26) does not exist in general for finite but large c if we restrict ourself
to a finite number of Q2k−1 charges in GGE ensemble.

Let us compare (6.9) with (6.10) for Q̂3 by calculating the difference between the
two,

`−1
(
〈Q̂3〉GGE − 〈E|Q̂3|E〉

)
= `−1

(
〈Ql

3〉GGE + 〈Q̃3〉GGE
)
−
(
E

`2

)2

. (6.14)

Using explicit expression for Q̂3 (4.13) we find that in the thermodynamic limit the
expectation value of Q̂3 is given by the saddle point,

`−1〈Q̂3〉GGE =

(
E∗

`2

)2

+O(1/`). (6.15)

The saddle point value E∗ = ∆∗ + n∗ is equal to the energy E of state |E〉 due to
(6.11). The values of ∆∗, n∗ should be determined from the full effective action L+ L̃
(4.18), (4.32). Both ∆∗ and n∗ scale with the system size as ∼ `2. Furthermore, up
to 1/c corrections ∆∗ ≈ E∗ = E and therefore ∆∗/`2 is a positive number in the
thermodynamic limit. Using (6.14) and (6.15) we find the discrepancy between the
eigenstate and GGE expectation values to be

`−1
(
〈Q̂3〉GGE − 〈E|Q̂3|E〉

)
= `−1〈Q̃3〉GGE = (6.16)

e−L̃(∆∗,n∗)

` P (n∗)

∑
{m}=n∗

〈mi,∆
∗|Q̃3e

−µ3Q̃3−µ5Q̃5−...|mi,∆
∗〉.

So far we are interested in the leading in c behavior of (6.16) we can substitute Q̃3 by
a lower-triangular matrix c Q̃c

3 + ∆∗Q̃∆
3 , Q̃5 can be substituted by the lower-triangular

c2Q̃cc
5 + c∆∗Q̃c∆

5 + (∆∗)2Q̃∆∆
3 , and so on. Then average of ∆∗Q̃∆

3 is simply equal to
4∆∗n∗/`3, while the average of c Q̃c

3 can be rewritten as an average over Young tableaux,

〈Q̃c
3〉GGE =

e−L̃(∆∗,n∗)

6 `3P (n∗)

∑
{m}=n∗

(∑
i

m3
i

)
e
−µ3
`3

( c6
∑
im

3
i+4∆∗n∗)−µ5

`5

(
c2

72

∑
im

5
i+...

)
−...

+O(c0).

In the thermodynamic limit this is equal to a (n∗)2/`3, where a is some non-negative
function of µ3, µ5, . . . . When all µ2k−1 = 0, it reduces to a0 = 2/5, (4.39). Thus we
finally have

`−1
(
〈Q̂3〉GGE − 〈E|Q̂3|E〉

)
=
a (n∗)2 + 4∆∗n∗

`4
+O(c0). (6.17)
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The important point here is that the discrepancy (7.42) can be zero if and only if
n∗ = 0. The value of n∗ can be interpreted as the effective level of Virasoro descendants
which give main contribution to the partition function. It is a priory expected that
the discrepancy between the primary state and the GGE would vanish if n∗ = 0, i.e. if
primaries dominate the partition sum. The non-trivial result here is that (7.42) vanishes
only if n∗ = 0.

It is easy to see that primaries do not dominate the partition sum because of the
factor P (n) accounting for the exponential growth of the number of descendants with
n. Using (4.18), (4.41), (4.42), (4.53) the effective action for n can be rewritten in
terms of the variable n = n/`2 which remains finite in the thermodynamic limit,

Leff(n) = `

(
π

√
2n

3
− L

)
, (6.18)

L = (β + 6µ3∆∗/`2 + . . . )n + µ3(1 + ca0 + b0 + . . . )n2 +O(n5/2).

Since L(n) admits an expansion in powers of n starting from one, n = 0 can not be a
solution of ∂Leff/∂n = 0 and the maximum of Leff is achieved at positive n = n∗/`2.
From here it follows that for large c both 〈Q̂3〉GGE and 〈E|Q̂3|E〉 scale as c2, while their
difference is non-zero and scales as c. This proves (6.9) and (6.10) for Q̂3 are always
different for large but finite c for any values of µ2k−1. A similar argument would also
apply to Q̂5 and higher charges.

This argument shows that elimination of discrepancy between (6.9) and (6.10) is
not possible on pertubative level for all sufficiently excited states. We will discuss
validity Generalized ETH and its nuances in the next section.

7 Generalized Eigenstate Thermalization Hypothesis

In this section we formulate Generalized ETH for 2d CFTs and analytically verify it. In
the simplest form Eigenstate Thermalization Hypothesis requires the expectation value
of some appropriate (often taken to be local) observable O in a many-body eigenstate
|Ei〉 to be a smooth function of energy,

〈Ei|O|Ei〉 = fO(Ei). (7.1)

Qualitatively, eq.(7.1) postulates that energy is the only thermodynamically relevant
quantity, which completely specifies local properties of an eigenstate. The condition
(7.1) may apply to all or most eigenstates, in which case it is referred as strong or
weak ETH. The eigenstate thermalization ensures equivalence between the expectation
value in the eigen-ensemble, fO(Ei), and thermal expectation value of O in the Gibbs
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ensemble, fO(Ei) = Tr
(
e−βHO

)
/Z, where the effective temperature β is fixed through

the energy balance relation, Ei = Tr
(
e−βHO

)
/Z [45].

When the system is integrable, with an extensive number of conserved charges
Q̂i, ETH does not apply, as we have seen. Accordingly emerging equilibrium can be
different from the Gibbs state. In this case it is believed that the equilibrium can be
described by the Generalized Gibbs Ensemble (GGE), which includes an infinite tower
of conserved charges [46]. Validity of the GGE has been related to the generalized
eigenstate thermalization [6–8], which generalizes (7.1) to include an infinite number
of conserved quantities,

〈Ei|O|Ei〉 = fO(Qk(Ei)). (7.2)

Here |Ei〉 is a mutual eigenstate of the Hamiltonian and charges Q̂k, Qk(Ei) are the
eigenvalues of Q̂k associated with |Ei〉, and function fO is assumed to be a smooth func-
tion of all of its arguments. Similarly to (7.1), at the qualitative level, (7.2) postulates
that charges Q̂k form a complete set of thermodynamically relevant quantities which
fully specify local properties of an eigenstate. Provided (7.2) applies to most states, it
ensures equivalence between the generalized microcanonical ensemble and GGE, estab-
lishing validity for the latter to describe emerging equilibrium e.g. following a quantum
quench [6].

At the same time emergence of thermal equilibrium is not universal. Previously
it was shown that the values of different local quantities measured in the individual
energy eigenstates differ from their thermal counterparts, unless central charge is taken
to be infinite [36, 39–42, 47–50].

By analogy with the integrable lattice models it is natural to expect that locally
equilibrium states can be described in terms of the GGE, which includes all local qKdV
charges. Indeed, emergence of exactly such qKdV GGE was analytically shown for a
special family of so-called Cardy-Calabrese initial states [4, 51].

In the context of integrable systems the question which quantities should be in-
cluded in the GGE is far from being trivial. Early studies in the context of XXZ and
Lieb-Liniger models have shown that a full set of extensive local charges does not spec-
ify local properties of eigenstates, signaling failure of generalized ETH [52, 53]. These
works raised an important question of the validity of the GGE to describe an emerging
equilibrium following a quantum quench [54–56]. A resolution comes from the fact
that besides local conserved quantities these models give rise to quasi-local conserved
charges [5]. Taking them into account restores validity of the GGE [57]. Following stud-
ies in the context of integrable field theoretic models, both free and interacting ones,
have decisively established that adding quasi-local charges is necessary to accurately
describe the after-quench equilibrium state [58–63]. These findings raise an important
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question emphasized in [51] if the set of local qKdV charges is generally sufficient to
describe equilibrium in large c 2d CFTs, or it should be extended by non-local or per-
haps some new local charges [64]. In this section we show that at large c, 2d CFTs
satisfy generalized eigenstate thermalization (7.2) with the local qKdV charges forming
a complete set and ambiguously specifying local properties of the eigenstates.

Our consideration below applies to all large central charge theories with c � 1.
In the case theory admits a gravity dual, many aspects can be interpreted holograph-
ically. Below we provide holographic interpretation when available without requiring
the holographic description to exist.

7.1 Setup

Two-dimensional conformal field theories admit a split into non-interacting sectors of
left and right movers. For simplicity we only discuss one sector explicitly, while all
results automatically extend to the full theory. As previously, we consider 2d CFT on
a circle of the circumference ` in a mutual eigenstate of all charges Q2k−1,

|E〉 = |{mi},∆〉, E = Q1 = (∆ +
∑

mi)/`, (7.3)

labeled by the primary state ∆ and the set of integers {mi} [65]. The set {mi} we will
parametrize using free boson representation where an integer nk for k = 1, 2, . . . In the
thermodynamic limit ` → ∞ “energy” Q1 and all other qKdV charges are assumed to
scale with the system size to yield finite charge densities q2r−1 = Q2r−1/`. In terms of
∆, nk this implies scaling

∆ ∼ `2,
∑
k

nk k
2r−1 ∼ `2r. (7.4)

In what follows we restrict the discussion to the eigenstates (7.3) with the density
charges q2r−1 = 〈E|Q̂2r−1|E〉/` which additionally satisfy

q2r−1

qr1
= 1 +O(1/c). (7.5)

Here and below the CFT central charge c is assumed to be large. Holographically, this
regime corresponds to a quasi-classical black hole in AdS3, where one in the RHS of
(7.5) corresponds to classical gravity, while O(1/c) term is due to quantum corrections
[29, 43, 44, 65]. In terms of ∆, nk an exponential majority of states in the generalized
microcanonical ensemble specified by q2k−1 subject to (7.5) will satisfy∑

k nk k
2r−1

∆r
= O(1/cr). (7.6)
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Typicality of (7.6) is justified in the following subsection. In fact (7.6) may apply to
all states in the generalized microcanonical ensemble (7.5), yielding strong version of
the generalized ETH in 2d CFTs. To verify that one would need to know full spectrum
of qKdV charges, going beyond currently known leading 1/c expansion.

In the regime of “quasi-classical gravity” (7.6), c� 1, expectation values of qKdV
charges are determined by (3.40),

`2q1 = ∆ +
∑
k

nkk, (7.7)

`4q3 = ∆2 +
∑
k

nk

(
6∆k +

c k3

6

)
+O(c0), (7.8)

. . .

`2rq2r−1 = ∆r +
∑
k

nk p2r−1(c,∆, k) +O(cr−2), (7.9)

where p2r−1(c,∆, k) are some known polynomials of degree 2r − 1 which include only
odd powers of k.

7.2 Explicit GETH calculation

Because of translational invariance the expectation value of a full derivative O = ∂O′ in
energy eigenstate will vanish. Hence it suffices to consider expectation values 〈E|O|E〉
only when O is a quasi-primary operator. Below we consider the case when O belongs
to the vacuum family, i.e. it is a Virasoro descendant of the identity. To streamline
the notations we introduce 〈O〉 ≡ 〈E|O|E〉. It is convenient to parametrize O by its
dimension (level). At the levels 2 and 4 there are unique quasi-primaries in the vacuum
family,

O2 = T, O4 = T 2 − 3

10
∂2T. (7.10)

Thus expectation values of O2,4 are identically equal to charge densities q1, q3 [37]. At
the level 6 there are two quasi-primaries (we always choose quasi-primaries in the basis
which diagonalizes Zamolodchikov metric)

O(1)
6 = T 3 − 9

10
(T∂2T ) +

4

35
∂4T +

93

70c+ 29
O(2)

6 , (7.11)

O(2)
6 = (∂T∂T )− 4

5
(T∂2T ) +

23

210
∂4T. (7.12)

The expectation value of the combination O(1)
6 + 5

9
c

12
O(2)

6 is identically equal to q5.
Similarly to (7.7-7.9), at leading order the expectation value of O(2)

6 has the form of a
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polynomial in ∆ and odd powers of k,

〈O(2)
6 〉 =

9

5

∑
k

nk

( c
6
k5 + 4∆k3

)
+O(c0). (7.13)

It is possible to use (7.7-7.9) to express any term of the form
∑

k nk k
2r−1 via q2j−1,

j ≤ r, but a priori the result would also depend on ∆. Thus, at leading order in 1/c,
expectation values ofO(i)

6 are some functions of ∆ and q2r−1. Remarkably, because of the
non-trivial cancellations the final result is ∆-independent, and can be expressed solely in
terms of q2r−1. To simplify the answer we introduce dimensionless ratio q2k−1 = q2k−1/q

k
1

such that δq2k−1 ≡ q2k−1 − 1 is of order 1/c. Then O(i)
6 measured in units of energy

density q1 is given by

q−3
1 〈O

(1)
6 〉 = 1 + 3 δq3 +O(1/c2), (7.14)

q−3
1 〈O

(2)
6 〉 =

9

5

12

c
(δq5 − 3 δq3) +O(1/c3). (7.15)

As we see different quasi-primaries have different scaling with c. Our calculation applies
to leading 1/c behavior of each quasi-primary, except for a special one, which includes
maximal power of T without derivatives. The expectation value of that quasi-primary
starts with O(c0) and our result applies to the first two terms in 1/c expansion.

The possibility to express eigenstate expectation value 〈O〉 as a polynomial in q2j−1

extends to all higher levels. For an operator of dimension 2r the answer only depends
on q2j−1 for j ≤ r. We write down explicit expressions for all operators up to level
10 in terms of q2j−1 in the next section. Our results establish generalized eigenstate
thermalization for vacuum block observables in large c CFTs.

That expectation value 〈O〉 of an operator of dimension 2r only includes qKdV
charges q2j−1 up to the same dimension j ≤ r can be interpreted as a manifestation of
locality. It is analogous to the observation in the context of integrable lattice models
that to describe equilibrium state locally, at the length scales not exceeding some
distance a, it is only necessary to include local and quasi-local charges in the GGE
with the support within a [66, 67].

7.3 Expectation value of quasi-primaries in eigenstates

In this section we list the explicit expressions for the eigenstate expectation values of
all quasi-primaries up to level ten in terms of qKdV charges.
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7.3.1 Level 6

There is are two quasi-primaries

O(1)
6 = T 3 − 9

10
(T∂2T ) +

4

35
∂4T +

93

70c+ 29
O(2)

6 , (7.16)

O(2)
6 = (∂T∂T )− 4

5
(T∂2T ) +

23

210
∂4T. (7.17)

In the limit (7.6) they can be simplified to

O(1)
6 = T 3 +O(1/c), (7.18)

O(2)
6 =

9

5
(∂T∂T ) +O(1/c). (7.19)

In units of the energy density their expectation values are

q−3
1 〈O

(1)
6 〉 = 1 + 3 δq3 +O(1/c2), (7.20)

q−3
1 〈O

(2)
6 〉 =

9

5

12

c
(δq5 − 3 δq3) +O(1/c3). (7.21)

7.3.2 Level 8

There are three quasi-primaries at level 8,

O(1)
8 = T 4 +O(1/c), (7.22)

O(2)
8 =

9

5
(T (∂T∂T )) +O(1/c), (7.23)

O(3)
8 =

143

63
(∂2T∂2T ) +O(1/c). (7.24)

In the units of energy density at leading order they are

q−4
1 〈O

(1)
8 〉 = 1 + 6 δq3 +O(1/c2), (7.25)

q−4
1 〈O

(2)
8 〉 =

9

5

12

c
(δq5 − 3 δq3) +O(1/c3), (7.26)

q−4
1 〈O

(3)
8 〉 =

143

63

180

c2
(δq7 − 4 δq5 + 6 δq3) +O(1/c4).

7.3.3 Level 9

There are no quasi-primaries of odd dimension smaller than nine. At level nine there
is a unique quasi-primary O9, which has zero expectation value, as well as all higher
odd-dimensional quasi-primaries, due to parity.
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7.3.4 Level 10

There are four quasi-primaries at level 8. In the limit (7.6) up to some additional
factors they are

O(1)
10 = T 5 +O(1/c), (7.27)

O(2)
10 = (T (T (∂T∂T ))) +O(1/c), (7.28)

O(3)
10 = (T (∂2T∂2T )) +O(1/c), (7.29)

O(4)
10 = (∂3T∂3T ) +O(1/c). (7.30)

In terms of energy density their expectation values are

q−5
1 〈O

(1)
10 〉 = 1 + 10 δq3 +O(1/c2), (7.31)

q−5
1 〈O

(2)
10 〉 =

1

c
(δq5 − 3 δq3) +O(1/c3), (7.32)

q−5
1 〈O

(3)
10 〉 =

180

c2
(δq7 − 4 δq5 + 6 δq3) +O(1/c4), (7.33)

q−5
1 〈O

(4)
10 〉 =

3024

c3
(δq9 − 5 δq7 + 10 δq5 − 10 δq3) +O(1/c5).

7.4 Typicality of “quasi-classical gravity” regime

In this section we discussed mutual eigenstates of qKdV hierarchy which additionally
satisfy the set of condition (7.6). We refer to this set of conditions as the “quasi-classical
gravity” regime without actually requiring the underlying theory to be holographic.
Below we show that among the states from the microcanonical ensemble satisfying (7.5)
an exponential majority of states satisfy (7.6). Furthermore, most CFT eigenstates
satisfy (7.5).

We start with the microcanonical ensemble specified by the mean energy density
q1 = Q1/`, `→∞. Up to the terms negligible in the thermodynamic limit “energy” is
a sum of the primary dimension ∆ and the descendant level n,

Q1 =
∆ + n

`
, n =

∑
k

nk k. (7.34)

For large ∆ → ∞ density of primaries is given by the Cardy formula P∆ ∝ eπ
√

2c∆/3

while the density of descendants is controlled by the number of integer partitions,
Pn ∝ eπ

√
2n/3. Thus, typical state has

∆

`2
∼ q1

(
1− 1

c

)
,

n

`2
∼ q1

c
, (7.35)

with the deviations being exponentially suppressed as we have seen in section 4.
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Next, we impose an additional condition from (7.5), q3/q
2
1 − 1 = O(1/c). Taking

into account that in the thermodynamic limit `→∞

q3 =
Q3

`
=

∆2 + 6∆n+ c
6

∑
k nk k

3

`4
, (7.36)

and using (7.35), we find ∑
k nk k

3

∆2
∼ O(1/c2), (7.37)

in full agreement with (7.6).
As a next step we impose q5/q

3
1 − 1 = O(1/c) and using

q5 =
Q5

`
=

∆3 + 15∆2n+ 5c
6

∆
∑

k nk k
3 + c2

72

∑
k nk k

5

`3
,

as well as (7.35,7.37), we find ∑
k nk k

5

∆3
∼ O(1/c3), (7.38)

again, in full agreement with (7.6). Continuing this logic, we find that an exponential
majority of states in the generalized microcanonical ensemble (7.5) satisfy (7.6). The
inverse is obviously correct as well: all states satisfying (7.6) automatically satisfy (7.5).

Current theoretical limitations do not allow us to analyze qKdV eigenstates which
do not satisfy (7.5). Nevertheless most states in the CFT spectrum automatically
belong to the generalized microcanonical shell (7.5). To see that, we return to the
condition (7.35), which is typical for all states withing the microcanonical shell specified
by the energy density q1. In section 4.3.3 we have calculated mean value of

∑
k nk k

3

keeping n fixed, which turned out to be equal to 2/5n2, while the standard deviation
is 1/

√
n ∝ 1/` suppressed. Thus, typical states with the specified energy density

automatically satisfy (7.37). More generally, using the computational technique from
the section 4.3.3 one can see that the mean value of∑

k nk k
2p−1

np
, p ≥ 1, (7.39)

is of order one in the limit `→∞, while the standard deviation is always 1/
√
n ∝ 1/`

suppressed. Using (7.35) one readily sees that most qKdV eigenstates satisfy (7.5).

7.5 Beyond 1/c and holography

Our results capture only leading order in 1/c. It remains an open question to find exact
expressions for the eigenstate expectation values in terms of the qKdV charges, as was
recently done for a particular family of integrable spin models [68, 69].
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Generalized eigenstate thermalization implies validity of the qKdV Generalized
Gibbs Ensemble

ρ = exp

{
−
∑
k

µ2k−1Q2k−1

}
/Z, µ1 ≡ β, (7.40)

to describe local properties of individual energy eigenstates, provided chemical poten-
tials µ2k−1 are tuned to match values of the eigenstate charges

` q2k−1 = 〈Ei|Q2k−1|Ei〉 = Tr(ρQ2k−1). (7.41)

Provided q2k−1 a chosen to represent charge densities of some non-equilibrium initial
state |Ψ〉, a standard argument would consequently equate the GGE expectation values
of local operators with those in the diagonal ensemble of |Ψ〉, written in the eigenbasis
(7.3). In most cases the latter would be equal to the expectation values in state |Ψ〉
upon equilibration. It should be noted though that left and right Hamiltonians Q1, Q̄1

are highly degenerate, and therefore validity of the diagonal ensemble to describe local
physics upon equilibration may be violated.

It remains an open question to establish existence of µ2k−1 which would solve (7.41)
for any given set of q2k−1. Using explicit form of the generalized partition function in
the large c limit (4.90) we can find, up to O(1/c2) corrections,

δq2k−1 =
q2k−1

qk1
− 1 = (7.42)

24k

c

∫ ∞
0

dκκ [(2k − 1)2F1(1, 1− k, 3/2,−κ2)− 1]

e2πκγ − 1
,

γ =
∞∑
j=1

µ̃2j−1j(2j − 1)σj−1/2
2F1(1, 1− j, 3/2,−κ2),

where µ̃2k−1 =
√

6
π
ck−1µ2k−1 and σ(µ̃2k−1) is positive and satisfies∑

k=1

k µ̃2k−1 σ̃
k−1/2 = 1. (7.43)

From here it follows that when all chemical potentials are positive q2k−1 satisfy an
infinite series of inequalities (see next subsection 7.5.1)

q3

q2
1

− 1 ≤ 22

5c
+O(1/c2),

q5

q3
1

− 1 ≤ 302

21c
+O(1/c2),

. . . (7.44)
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Figure 2. Plot of q2k−1/q
k
1 − 1 in the units of 1/c as a function of τ = β(π2/(6cµ3))

1/3 for
k = 2, 3. It approaches zero as |τ |−3 for all k when τ → −∞. The opposite limit τ → ∞
corresponds to the Gibbs ensemble, q1 ∼ β−1, µ3 → 0, and c(q2k−1/q

k
1 − 1) for k = 2, 3

approach 22/5 and 302/21 correspondingly.

Thus GGE emerging after equilibration of some general initial state will have to include
negative chemical potentials, unless all inequalities (7.44) are satisfied.

To match GGE to a primary state all qKdV densities should be related to each other
via q2k−1 = qk1 [37]. This is only possible if the integral in (7.42) vanishes, which requires
γ to be infinite. This is consistent with the observation of [65] that an ensemble with
any finite number of non-zero µ2k−1 can not describe primary states. This is because
in full generality q2k−1 ≥ qk1 and hence primary states are at the boundary of the phase
space of q2k−1’s. It is nevertheless possible to describe them in the limit, via a GGE
with at lest some coefficients approaching infinity. The simplest scenario is to consider
µ3 > 0 and arbitrary β ≡ µ1, while all other chemical potentials are identically zero.
Then in the limit τ = β(6/π2cµ3)1/3 → −∞, for all k, q2k−1/q

k
1 − 1 will vanishes as

∼ |τ |−3, as is shown for k = 2, 3 in Fig. 2.
With just two chemical potentials β, µ3 being non-zero the values of q2k−1/q

k
1 −

1 is confined to be between zero and their thermal (Gibbs ensemble) values. This
constraint is removed already after turning on one more additional chemical potential.
For example by taking β, µ5 > 0 and µ3 < 0 one can fine-tune function γ to become
arbitrarily small for some positive value of κ, leading to the divergence of the integral
in (7.42) and violating quasi-classical regime (7.5).

From the holographic point of view equilibration in field theory is associated with
the formation of a black hole in AdS3, a background dual to the GGE (7.40). Conserved
qKdV charges correspond to the black hole soft hair, which are only visible at quantum
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level. At the level of classical gravity c→∞ all qKdV charges are related, q2k−1 = qk1 .
Accordingly there is a unique classical BTZ black hole family of solutions parametrized
by q1, q̄1 [43, 44]. It is an important question to understand the regime q2k−1 6= qk1
holographically, by including quantum gravity corrections into consideration. This,
in particular, should provide holographic interpretation to negative temperature and
other chemical potentials, which will necessarily appear starting from a general initial
state.

In this section we have only considered local probes O from the vacuum block. In
case O is a non-trivial Virasoro primary, or its descendant, it will have zero expectation
value in the GGE (7.40) for any values of µ2k−1. This is because in the thermodynamic
limit ` → ∞ geometry degenerates into a cylinder, which is conformally flat. Thus,
to satisfy any version of eigenstate thermalization the eigenstate expectation value
〈E|O|E〉 must simply vanish. In terms of the CFT data, this means most or all heavy-
heavy-light Operator Product Expansion coefficients must approach zero when the
dimension of heavy operators grows to infinity. If that is the case, generalized eigenstate
thermalization will be trivially satisfied. It remains an outstanding problem to establish
if large central charge chaotic CFT, in particular those with gravity duals, exhibit this
behavior.

7.5.1 GGE with positive chemical potentials

For any positive integer j hypergeometric function 2F1(1, 1− j, 3/2,−κ2) is polynomial
in κ2 with non-negative coefficients which starts with one,

2F1(1, 1− j, 3/2,−κ2) = 1 +
2

3
(j − 1)κ2 + . . . (7.45)

Hence it is a monotonically increasing function of κ which satisfies 2F1(1, 1−j, 3/2,−κ2) ≥
1. From here it follows that when all chemical potentials are non-negative, function γ
defined in the equation (7.42) satisfies

γ ≥
∞∑
j=1

µ̃2j−1j(2k − 1)σj−1/2 ≥
∞∑
j=1

µ̃2j−1jσ
j−1/2 = 1.

Thus at leading order in 1/c, q2k−1/q
k
1 − 1 is bounded from above by its value in the

Gibbs ensemble,

δq2k−1 ≤ (7.46)
24k

c

∫ ∞
0

dκκ [(2k − 1)2F1(1, 1− k, 3/2,−κ2)− 1]

e2πκ − 1
=

k

c

(
k−1∑
p=0

6(2k − 1)Γ(k)Γ(1/2)

Γ(p+ 3/2)Γ(k − p)
(−1)p+1ζ(−1− 2p)− 1

)
.
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This yields 22/5 for k = 2, 302/11 for k = 3, 2428/75 for k = 4, and so on.

7.5.2 GGE with two non-zero chemical potentials

To gain better intuition it is instructive to consider the generalized ensemble which
includes only two charges, the conventional Hamiltonian of CFT H ≡ Q1 and Q3,

ρ = exp (−βH − µ3Q3) /Z. (7.47)

To assure convergence we must require µ3 > 0 while β can be arbitrary. It is convenient
to parametrize β, µ3 in terms of

τ = β

(
6

π2cµ3

)1/3

, (7.48)

and energy density q1 = −`−1 ∂ lnZ
∂β

, such that

β = q
−1/2
1

(
cπ2

6

)1/2 τ

(
3

√
τ 3 + 3

(√
6τ 3 + 81 + 9

)
− τ
)

√
6 6

√
τ 3 + 3

(√
6τ 3 + 81 + 9

) ,

µ3 = q
−3/2
1

(
cπ2

6

)1/2

(
3

√
τ 3 + 3

(√
6τ 3 + 81 + 9

)
− τ
)3

6
√

6
√
τ 3 + 3

(√
6τ 3 + 81 + 9

) .

Then δq2k−1 only depends on τ ,

γ = 1 +

21/2 (κ2 + 1)

(
3

√
τ 3 + 3

(√
6τ 3 + 81 + 9

)
− τ
)3

33/2

√
τ 3 + 3

(√
6τ 3 + 81 + 9

) ,

δq2k−1 = (7.49)

24k

c

∫ ∞
0

dκ κ [(2k − 1)2F1(1, 1− k, 3/2,−κ2)− 1]

e2πκγ − 1
.

When τ approaches minus infinity while q1 is kept fixed,

β ∼ −q−1/2
1

(
cπ2

6

)1/2

|τ |3/22−1/2, (7.50)

µ3 ∼ q
−3/2
1

(
cπ2

6

)1/2

|τ |3/22−3/2, (7.51)

and we find that cδq2k−1 approaches zero as 1/|τ |3. We plot δq2k−1 ≡ q−k1 q2k−1 − 1 in
the units of 1/c as a function of τ for k = 2, 3 in Fig. 2 in the main text.
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8 Conclusions and Discussion

Here we just outline major results we obtained and mention some open problems.
Major mathematical component of this thesis is the spectrum of quantum KdV

charges (3.39). We obtained this spectrum via a classical computation and careful
consideration of quantum corrections. As we mentioned, ad hoc "quantization" (3.38)
does not fully work and the data of "energies" of primary states is required to fully
fix the quantum spectrum. However, it is not clear how to extend this "algorithm"
to all orders in central charge c. It is may be enough to just know the "energies" of
primary states at the relevant order in c in appropriate form, as we have seen at several
first orders in 1/c. Therefore, the question of establishing this "algorithm" in general
remains open. Even more generally, one could ask whether it is possible to somehow
"deform" the naive quantization scheme (3.38) in order to obtain full quantum spectrum
without prior knowledge of primary states "energies".

Another mathematical result of this thesis is the partition function of GGE at
leading relevant order in 1/c. We only computed this partition function at first non-
trivial order, where the sum consists of "free bosons" with nontrivial "masses". An
obvius, though a tedious task would be to try to extend this computation further in
1/c given the known spectrum (3.39), where these bosons start to "interact". Another,
perhaps, more attractive task is to find modular properties of this partition function.
Standard partition function of 2d CFT is modular invariant. GGE partition function,
at least naively, does not hold this property. This leaves a question how GGE partition
function transforms under the action of modular group. See [34] and [70] for relevant
discussion. Quantitative answer to this question would probably not only help to
calculate GGE partition function non-perturbatively in 1/c but also would give some
physical insights in the context of thermalization. Another possible implication is
related to new stringent constraints on CFT spectrum via modular bootstrap.

On the physical side of the project, our main result is the methodology to analyt-
ically access properties of individual mutual eigenstates of the qKdV hierarchy in 2d
CFTs. To the best of our knowledge, our work is the very first analytic proof of ETH in
spatially-extended systems, with all previous works (with a very few exceptions) being
numerical. However, some details remain unknown. Firstly, the set of states which
oblige strong version of GETH is only established at large c limit. We expect that
strong version of GETH does not necessary holds at finite central charge. Perhaps,
some sort of a weaker version could be applied. In general, which 2d CFTs should be
considered "chaotic" and which should not remains open. It is plausible that detailed
analysis of thermalization of 2d CFTs beyond large c limit could shed some light on the
"space of 2d CFTs" in that sense. Finally, holographic interpretation and implications
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are far from complete and the implications of ETH in the context of Black Hole physics
are still largely unknown. Holographically, GGE states correspond to BTZ black holes
states. Logically one could develop a theory of generalized hydrodynamics describing
long-wave dynamics of states locally deviating from the GGE. This description should
be valid both field theory, and in the bulk, where it would describe the dynamics near
a black hole background.
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