
 

 

Skolkovo Institute of Science and Technology 

 

 

 

 

 

PHOTON CORRELATIONS OF OPTICALLY TRAPPED POLARITON 

CONDENSATE 

 

Doctoral Thesis 

 

 

by 

 

 

STEPAN BARYSHEV 

 

 

DOCTORAL PROGRAM IN PHYSICS 

 

 

Supervisor 

Professor Pavlos Lagoudakis 

Co-Supervisor 

Dr. Anton Zasedatelev 

 

 

 

 

 

 

Moscow - 2022 

 

 

© Baryshev Stepan 2022 



2 

  

I hereby declare that the work presented in this thesis 

was carried out by myself at Skolkovo Institute of 

Science and Technology, Moscow, except where due 

acknowledgement is made, and has not been submitted 

for any other degree. 

 

Candidate (Stepan Baryshev) 

Supervisor (Prof. Pavlos Lagoudakis) 

Co-Supervisor (Dr. Anton Zasedatelev) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

  

Abstract 

 

Monatomic linear carbon chains, stabilized by gold nanoparticles attached to their 

ends and deposited on a solid substrate, were studied. Spectral features of straight chains 

containing from 8 to 24 atoms were observed. Low-temperature PL spectra revealed 

characteristic triplet fine structures that repeat themselves for carbon chains of different 

lengths. The triplet is invariably composed of a sharp intense peak accompanied by two 

broader satellites situated 15 and 40 meV below the main peak, interpreted as resonances 

for an edge-state neutral exciton and, positively and negatively charged trions, 

respectively. The time-resolved PL shows that the radiative lifetime of the observed 

quasiparticles is about 1 ns, and it increases with the increase of the length of the chain.  

At high temperatures a nonradiative exciton decay channel appears due to the 

thermal hopping of carriers between parallel carbon chains. Whilst structural traits of the 

structure would suggest the quantum nature the emission, no visible photon anti-

bunchings were observed during the investigation of the second-order coherence 

function. However, the laid groundwork has allowed for full polarization tomography of 

photon correlations in a spinor trapped exciton-polariton condensates. Conducted 

measurements revealed condensate pseudospin mean-field dynamics spanning from 

stochastic switching between linear polarization components, limit cycles, and stable 

fixed points and their intrinsic relation to the condensate photon statistics. During 

experiments we optically harness the cavity birefringence, polariton interactions, and the 

optical orientation of an incoherent exciton reservoir to engineer photon statistics with 

precise control. The results shown in this dissertation demonstrate a smooth transition 

from a highly coherent to a super-thermal state of the condensate polarization 

components.  

Looking further into photon statistical properties, the Hong-Ou-Mandel effect in 

optically trapped polariton condensate was studied in the trap ground state. The 

magnitude of the HOM effect for a circularly polarized condensate above threshold was 

revealed to be significantly lower compared to what is known for a single mode classical 

coherent light source. The two photon interference appeared to be affecting the intensity 

correlation function of the light with super-bunched photon statistics more strongly then 

the correlation function of the light with Poissonian photon statistics. Moreover, in the 

limit cycle regime of condensate pseudospin precession, the revival of the Hong-Ou-

Mandel effect was shown. 
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Glossary

AOM Acousto optic modulator
BEC Bose Einstein condensate
BS Beam splitter
CW Continuous wave
DBR Distributed Bragg reflector
HBT Hanbury Brwon and Twiss
HOM Hong Ou and Mandel
HWP Half waveplate
FWHM Full width at half maximum
LPB Lower polariton branch
PBS Polarizing beam splitter
PL Photoluminescence
QW Quantum well
QWP Quarter waveplate
SLM Spatial light modulator
TCSPC Time-correlated single photon counting
TRPL Time-resolved photoluminescence
UPB Upper polariton branch
VCSEL Vertical-cavity surface-emitting laser
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Chapter 1

Introduction

In the twenty-first century, the physical and chemical research communities were

paying close attention to several low-dimensional crystal forms made of carbon. The

electronic properties that are displayed by nanodiamonds, fullerenes, carbon nan-

otubes, and graphene, make them promising for a large range of applications in nano-

electronics and photonics (8). Realizing ideal one-dimensional crystals, monatomic

chains of sp-carbon, is one of the most difficult objectives for nano-fabrication tech-

nology. However, the traces of two stable allotropes of sp-carbon (polyyne and

cumulene) have been found in nature: in meteorite craters, interstellar dust, natural

graphite, and diamond mines (9; 10; 11). It appeared to be challenging to extract

freestanding carbon chains from natural sources because of the high chemical reac-

tivity of linear acetylenic carbon and its low stability at ambient temperature and

atmospheric pressure. Numerous attempts to artificially create polyyne chains have

had little to no success. Since one-dimensional atomic chains are typically unstable

in vacuum, their synthesis appears to be a tough problem as Landau theorem (12)

states that fluctuations obstruct the growth of perfect one-dimensional crystals. It

was shown that stabilization may be achieved by the use of heavy anchor atomic

groups (13). One-dimensional carbon crystals are expected to exhibit unique me-

chanical, optical, and electronic properties (14). According to recent theoretical

works (15), one-dimensional carbon chains could form the most robust of all known

crystals. Moreover, the mono-atomic carbon chain is seen to be one of the candidates

to observe features commonly present for quantum emitters, such as sub-Poissonian

13



Chapter 1. Introduction

photon statistics of the emitted light.

Photon statistics is of central importance in laser physics and quantum optics,

and serves as an essential toolbox for the characterization of optical sources ranging

from pure single-photon sources to super-thermal highly fluctuating light sources.

The photon distribution width in a laser defines its noise properties, whose under-

standing is at the heart of many applications such as laser cooling (16), precise inter-

ferometry (17), and optical communications, to name but a few (18). Alongside semi-

conductor optical microcavities in the weak (19) and strong-coupling regime (20),

particle statistics of heavily correlated many-body systems such as atomic (21) and

photonic Bose-Einstein condensates (22) retains strong interest.

While an ideal laser obeys the Poisson photon distribution, practical devices

usually suffer from excessive noise that broadens the distribution and affects phase

stability. Mode competition is one detrimental effect generating excessive, so-called,

super-Poisson noise in conventional semiconductor microcavity lasers (23; 24; 25).

On the other hand, stochastic mode switching allows for the study of the intriguing

phenomena of chaos in photonic systems (26) and opens the door for new optoelec-

tronic applications, such as, ghost imaging (27) and multi-photon microscopy (28)

with super-bunched light. Additionally, mode beating enables low-energy ultrafast

optical communications (29). The intrinsic linear mode-coupling usually dominates

over nonlinear effects in conventional microlasers, however, in semiconductor struc-

tures with strong light-matter interactions, this may not be the case.

Exciton-polaritons (here on polaritons) are bosonic quasiparticles originating

from strong light-matter coupling of excitons with photons in semiconductor micro-

cavities (30). They can undergo power-driven Bose–Einstein condensation (31) into

a spinor order parameter corresponding to the right-hand and left-hand circular po-

larization of the emitted light like, in a conventional semiconductor spin-laser (32).

The complex order parameter cannot be directly observed in a photoluminescence

(PL) experiment, however resolving PL in polarization bases gives access to the com-

ponents of the condensate psuedospin (Stokes) vector (33), providing the orientation

and the degree of of polarization, which will be discussed in Section 3.2.3. Besides

its fundamental importance, the spin degree of freedom is particularly attractive

14



Chapter 1. Introduction

for applications as a spintronic device (34). The exciton component makes the po-

lariton Bose gas inherently nonlinear due to pair-particle interactions, permitting

experimental observation of quantum correlations (35; 36) and superfluidity (37; 38).

Particle number fluctuations and statistics are intimately connected to the linewidth

of polariton condensates, playing an essential role in understanding the fundamen-

tal limits of their coherence properties (39). Today, polariton condensates offer

unprecedented all-optical control to build large interacting nonlinear networks (40),

and devices ranging from amplifiers (41; 42), transistors (43; 44; 45), tunnelling

diodes (46), routers (47; 48; 49), phase-controlled interferometers (50), topological

insulators (51), switches (52; 53; 54) to volatile memory elements (55). For polariton

condensates under resonant excitation, it has been shown, that the coherence time

reaches up to ∼ns in the optical-parametric-oscillation regime (56). However, un-

der non-resonant excitation and in the presence of an incoherent exciton reservoir,

the coherence time is limited to ∼ 10 − 100 ps (57; 58; 59; 60). The presence of an

exciton reservoir causes depolarisation (61), which was evidenced through spinor de-

phasing in second-order photon correlation measurements (62). With the possibility

of non-trivial photon statistics at hand, the exploration of two photon interference

as an effect for optically trapped polariton condensates was not yet conducted.

The effects of two photon interference are most pronounced for the non-classical,

quantum light sources. The magnitude of Hong-Ou-Mandel (HOM) effect is high-

est for a variety of the single photon sources, yielding high degree of photon anti-

bunching. Originally observed through the process of spontaneous parametric down

conversion (SPDC) (63; 64), the effect was later shown for quantum dots (65),

nitrogen-vacancy centers in diamonds (66), and trapped ions (67) and molecules (68).

Having a light source which ensures a high purity of photon indistinguishability is

absolutely crucial for many of the current applications of the HOM effect, such as,

precision measurements (69; 70), quantum state analysis (71), quantum communi-

cations (72; 73), quantum state engineering (74), quantum computation (75; 76; 77)

to have the light source which ensures high purity of the photon indistinguishability.

At the same time, the indistingushability measurements the imperfect single photon

sources conducted (78), demonstrating the limitations induced by noise and ways

15



Chapter 1. Introduction

to account for unwanted errors in applications. Moreover, a trace of effect under

discussion is present even for classical light sources such as, for example, the laser.

This thesis begins with an investigation into chains of sp-carbon by photon count-

ing in the time resolved photoluminescence. The spectral resolution of the setup

allowed for observation of lifetime decays of emission from chains with particular

numbers of atoms. Next, the theory and concepts of polariton condensation will

be presented, in particular the configuration of optically trapped polariton con-

densation, where the condensate is spatially separated from the exciton reservoir,

extending the coherence time to over two orders of magnitude (∼ 1 ns) compared

to the polariton lifetime (𝜏𝑝 = 6.5 ps). Such a long coherence time allowed for

study of spinor dynamics of the condensate, which is free from transient dynamics

under continuous wave nonresonant optical excitation, in contrast to short pulsed ex-

periments (62). Applying polarization resolved photon correlation tomography and

precise spectroscopy, enabled the unravelling of complex spinor condensate dynamics

and the connection to photon statistics. Through engineering of the photon statistics

of the spinor condensate, demonstration of the crossover from super-thermal photon

distribution to a highly coherent state will be shown. At the variety of the photon

statistical regimes, the observation of the Hong-Ou-Mandel effect was done for the

trapped polariton condensates in the ground state. The observations revealed the

different visibility of the effect when compared to what is known for the classical

light source, laser.

Chapter 1 - Introduction The introduction into the research topics is given and

the actuality of the conducted research is reflected.

Chapter 2 - TCSPC of linear carbon chains emission The first results of car-

bon mono-chains lifetime dynamics and presence of fine spectral structure at

liquid helium temperature.

Chapter 3 - Polaritons In Semiconductor Microcavities The general theory

of the polaritons and polariton condensates, as well as present our experimental

technique of characterization of polariton condensate.

16



Chapter 1. Introduction

Chapter 4 - Hanbury Brown and Twiss effect In this chapter, we go in-depth

on the photon statistics of the polariton condensate and show the non-trivial

dynamics of its spinor. We present the means of controlling the emitted photon

statistics by the variety of ways.

Chapter 5 - Hong Ou and Mandel effect We present the experimental obser-

vations of Hong-Ou-Mandel effect for the trapped polariton condensate and

give possible explanations of the observed behaviors.

Chapter 6 - Conclusion Finally, we discuss our key obtained results and the ex-

press ideas for future improvements.
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Chapter 2

TCSPC of linear carbon chains

emission

Nowadays, it goes without saying that, new materials bring the attention of the

scientific community. For the longest time, the only known structures made up

of carbon atoms were coal, graphite and diamonds. The discovery of fullerenes in

1985 (79; 80), carbon nanotubes in 1993 (81) and graphene in 2004 (82), caused the

methods of artificial synthesis evolved rapidly. However, it was not until 1969 (9),

that linear carbon chains were discovered in graphite gneiss. The two types of chains:

polyyne, which has alternating single and triple electronic bonds, and cumulene ,

which has consistent double bonds between neighbouring atoms, were shown to be

a direct band-gap semiconductor and a metal, respectively (83; 84). Recently, our

collaborators managed to synthesize such polyyne carbon chains and we were able

to study their spectral and temporal properties.

In this chapter, we are going to discuss the technique of time-correlated single

photon counting (TCSPC) in Section 2.1 and its application for the study of exciton

lifetimes in carbon chain-gold nanoparticle complexes in Section 2.3. The description

of the sample under investigation will be given in Section 2.2. The first investigation

of the temporal characteristics for polyyne chains, and through the experimental

investigation the existence of trions was shown at cryogenic temperatures.

18



Chapter 2. TCSPC of linear carbon chains emission 2.1. TCSPC technique

2.1 TCSPC technique

Time-correlated single photon counting (TCSPC) was used as a technique since

1960s where it has been exploited for the measurement of excited nuclear states (85;

86). It was an innovative way to measure a weak signal from a sample, and derive

its radiative decay time. This ensured it became an essential tool in the fields of

photonics and material sciences.

The basic principle of a TCSPC experimental set up is as follows: the sample is

irradiated with a short laser pulse, and then the time between the excitation pulse,

and the a photon emitted from the sample is measured on the detector at some later

time, 𝑡𝑑. By recording the delays 𝑡𝑑 between the trigger pulse and the detection event

for enough events we can accumulate a characteristic histogram. The photolumi-

nescence decay time, 𝑡𝑑𝑒𝑐𝑎𝑦, can be extracted from such histogram. The intensity of

the photoluminescence is chosen so that the detector is triggered by a single photon.

We rely on the probability distribution of the photon emission process, and thus

on the distribution of events of photon detection. As a result a histogram with the

number of detection events versus time can be plotted, similar to what is shown in

Figure 2-5. Typical fluorescence for commonly used fluorophores last from hundreds

of picoseconds to tens of nanoseconds. In order to recover not only fluorescence

lifetimes, but also the decay shape, which is done by multi-exponential fitting of the

decays, one must be able to temporally resolve the recorded signal at least to such

an extent, that the decay is represented by some tens of samples.

Typically, the time resolution for recording an analog signal is limited by the

bandwidth of the detector, which for an avalanche photodiode or APD is typically

limited to 50ps. The instrument response function (IRF) of such devices cannot

be shorter than a single electron response (SER). The IRF reflects how a infinitely

short signal is seen by the instrument, and SER is the actual detector output pulse

for a single photoelectron created through the process of effective photon absorption

and amplification through an avalanche process within the detector. The full width

at half maximum (FWHM) of a SER pulse is dependent on the detector structure,

but is typically on the scale of ns, which is very long compared to the width of

19



Chapter 2. TCSPC of linear carbon chains emission 2.2. Polyyne chains sample

Figure 2-1: Response of detector to infinitely short light pulses and IRF of TCSPC
system. Adopted from (87).

the excitation laser pulse. However, time resolution for TCSPC is much better than

nanoseconds, because the effective instances of photon arrival are derived from ar-

rival times of detection pulses and these times can be measured with higher accuracy,

compared to the width of the SER. The IRF of the whole TCSPC system, and not

just the detector, is thus limited to, so called, transit time spread (TTS), as schemat-

ically shown in Figure 2-1. The effect of TTS in APDs can be explained as different

conditions for the build-up of the carrier avalanche and different avalanche transit

times due to different depth of absorption from photon to photon. The typical IRF

of the TCSPC system that was used for the investigation of decay curves discussed

in this chapter and following correlation measurements in chapters 4 and 5, is 100𝑝𝑠.

The APDs may be refered to as a single photon avalanche diaodes, or SPADs, when

used as a photon-counters in, so-called, Geiger mode. In this mode, a photon can

trigger an avalanche of electrons of various magnitude, however, only the fact that

the avalanche was caused is important, as it indicates the event of photon detection.

2.2 Polyyne chains sample

The samples, provided by the group of Dr. Stella Kutrovskaya from Stoletov

Vladimir state university, were linear carbon chains with gold nanoparticles of

≈ 10𝑛𝑚 or ≈ 100𝑛𝑚 attached at both ends of the chain, deposited on top of

cover glass films. The size of the nanoparticles were estimated by TEM images

and near infrared transparency spectra (not shown). The sample was synthesized
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with the laser ablation from liquid (LAL) method (88). The laser processing re-

sulted in the formation of polyyne threads (89). The stabilisation of linear carbon

chains was achieved by adding spherical gold nanoparticles of nanoscale sizes to the

solution (90; 91). The methodology of fabrication of such nanoparticles has been de-

veloped in the past, with pionering reports found in Refs. (92; 93). The fabrication

process of carbon monochain samples is a sophisticated process and not the main

topic of this thesis, thus only a few details are given here. However, thorough ex-

planations are given in the supplementary material of Ref (4) where information on

dynamical light scattering and carbon chains with visibly attached gold nanoparticle

TEM images are presented.

The folding of chains, and formation of kinks occurs predominantly at the sin-

gle bonds, we observe spectral resonances from the straight chains, containing even

numbers of carbon atoms ranging from 8 to 24, which can be seen form the broad

peaks in 2-3(a). Typically, these are straight parts of longer linear chains attached by

both ends to golden nanoparticles. Thus, kinks separate each linear chain into sev-

eral straight parts. It is important to note also that if nanoparticles at the opposite

ends of a carbon chain are of different sizes, the difference of their work functions,

results in the charging of the carbon-nanoparticle complex that acquires a station-

ary dipole moment. The mentioned work function is formally known as an energy

required to remove an electron from a solid to a point in the vacuum immediately

outside the solid surface. For the gold particles, the energy can vary in the range

from 5.10 to 5.47 𝑒𝑉 , and also can be dependent on the cluster or, in the case of used

samples, on the particle (94; 95). The theoretical approach to describe the change of

work function would be to correlate the properties of the metal clusters to the prop-

erties of bulk. The idea is that the gold nanoparticle is a bulk material perturbed

by its surface and its size, approaching the bulk properties with increasing particle

size (94; 96), and with the particle of size of ≈ 10𝑛𝑚 having almost 30% of its atoms

on the surface (97). The difference in work function between different surfaces is

known to cause a non-uniform electrostatic potential in the vacuum within the vac-

uum chambers. This dipole polarisation provides a tool for the chain ordering via

an applied voltage (98) during deposition. The chains deposited were intentionally
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ordered by passing the solution through a stationary electric field, as demonstrated

in Figure 2-2(a). Figure 2-2(b), in the green highlighted area, shows the TEM image

of the central part of the bundle of parallel carbon chains of the length exceeding

≈ 40𝑛𝑚. Gold nanoparticles remained outside the frame of the image in this fig-

ure. The previous studies showed that an ensemble of carbon chains in a bundle

forms a kind of one-dimensional van der Waals crystal, where the distance between

neighboring chains exceeds the inter-atomic distance in a single chain by a factor of

3.6 (98). We note that only about one half of carbon bundles have gold nanoparti-

cles of significantly different sizes at their ends. These bundles are dipole polarized

due to the difference of the work function of gold nanoparticles. It was shown, and

will be discussed later, that these structures are hosts to positively and negatively

charged trions that manifest themselves in the low-temperature PL spectra. The

other half of carbon-metal nanostructures are formed with gold nanoparticles of the

same size. These are not polarized and not aligned by the electric field and mostly

host electrically neutral excitons, seen in Figure 2-2(b) in the red highlighted areas.

The difference between the two regimes is of stark contrast and clearly observed

from the TEM image.

2.3 Spectral and temporal characteristics

To understand these structures better the spectral and temporal characteristics were

measured. Initially, the PL spectra of the deposited polyyne chains shown in the

Figure 2-3 was obtained. The absorption spectra for similar structures has been

studied before (99), so excitation was performed quasi-resonantly, with a femtosec-

ond laser at wavelengths between 370 and 390 𝑛𝑚. As it can be seen from the

Figure 2-3(a) there are several distinct lines contributing to the integrated spectra.

These different peaks are due to contributions in the integrated PL from carbon

chains of different lengths. Here, it is possible to claim that most contribution is

coming from the chains of 8 - 18 atoms length (88). It was observed, that with

the increasing length of the chain, optical transitions shift to lower energies, as was

theoretically predicted, (99; 88). The energy gap between the highest occupied
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Figure 2-2: (a) Schematic illustration of the deposition method which produces
aligned carbon chains which are stabilised by gold nanoparticles at either end of
their chain. Due to the difference in work functions of gold nanoparticles attached
to the ends of a carbon chain, the connected structure becomes dipole polarised. The
external electric field orients the polarized chains, so that over a half of them appear
to be aligned when deposited on a substrate by sputtering. (b) High resolution
TEM image of bundles of carbon chains. In the green region chains appears to be
co-aligned with the applied external electric field 𝐸𝑒𝑥𝑡, while in the red they are
oriented semi-randomly. Adopted from Ref. (4).

molecular orbit (HOMO) and the lowers unoccupied molecular orbit (LUMO) de-

creases with chain length and shows a trend toward a finite gap of 0.48 eV with

increasing length of the carbon chains (88). However, as the temperature reaches

4K, a distinct fine splitting in the PL spectra is observed, clearly demonstrated in

Figure 2-3(b). Such a characteristic splitting can be seen for the 10, 12 and 14

atoms chains. The full width at half-maximum was determined as 3meV for the

narrowest and most dominant peak, and 15 and 25 meV for the peaks at lower

energies. It should be noted here, that lower energy peaks of these triplets are less

obviously stand out within the spectrum, and thus FWHM is defined with a bigger

error. Whilst there were many possible explanations for the above tripling of the

state, the prediction for the emergence of charged exciton complexes has prevailed.

Metal nanoparticles can support carbon chains with additional carriers, and from

theoretical modeling (3) based on the experimental observation, it was shown that

the tripling is due to the presence of a neutral exciting, and a positive and a negative

trion.

The temporal characteristics were measured at both cryogenic and room temper-
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Figure 2-3: (a) Spectra taken at temperatures from 90 to 50 𝐾. The laser excitation
wavelength is 390 nm, with intensity of 5 𝑚𝑊 and acquisition time of 10 𝑠. (b)
PL spectra taken at 4 𝐾. Red, blue, and black curves correspond to the excitation
wavelengths of 390, 380, and 370 𝑛𝑚, respectively. The acquisition time 40 𝑠.

atures, using time-resolved photoluminescence (TRPL), a TCSPC technique which

is spectrally resolved, as shown in Figure 2-5. Spectral band selection was achieved

with a variable liquid crystal spectral filter (VariSpec), and is presented in the insets

in Figure 2-5(a,c), with color coding. The high-temperature spectra show double-

exponential behavior, this reflects the interplay between nonradiative (due to carrier

thermal hopping between the neighboring chains) and radiative channels of the exci-

ton decay. On the other hand, low temperature TRPL exhibits a mono-exponential

decay with times of the order of 1𝑛𝑠, which is similar to the excitonic lifetimes of

the carbon nanotubes (100; 101). The lifetime is increased for the longer polyyne

chains and can be explained as behavior of dipole transition matrix elements. With

the measured time-resolved optical characteristics of excitons in carbon chains and

its found property to be dependent on the band-gap of the chain and the lengths of

straight parts of the chains, it can be practically applied as tool for fine tuning of the

radiative properties of such structures. The detailed exciton modeling with in-depth

explanation of the observed features in the emission spectra can be found in Ref. (3)

and the theoretical description of the radiative decays of excitons in kinked chains

can be found in Ref. (5). The calculation within the developed model showed that

excitons in the polyyne chains are characterized by the radiative lifetimes of the or-

der of 1 ns, that nicely agrees with the experimental data. Having obtained, within

the framework of the model, the correct order of magnitude for the radiative lifetime

for the experimentally observed lengths, the next step was to study the dependence
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Figure 2-4: (a, c) TRPL signal acquired at the room temperature and at 4 K,
respectively. The insets show the spectral bands that correspond to the TRPL
curves of parts a and c, respectively. The colors match shows the extracted decay
times of the TRPL signal taken at room temperature and cryogenic, respectively.
(b) Red and black points correspond to the deduced radiative decay time at the
room temperature (red) and helium temperature (black). The blue points show the
nonradiative decay times, extracted from the room temperature TRPL curves in
(a).

of the radiative lifetime on the band gap width. For that purpose the chain length

parameter was fixed, and a plot of the calculated exciton lifetime as a function of

the band gap value, which depends on the number of atoms in the linear parts of

polyyne chain between kinks in our experiments, was done. The derivation of the

master equation of the developed model was done by our collaborators, here we only

present results in Figure 2-5, which shows a dependence of the exciton radiative life-

time on the band gap for the chains of different length, and how it matches with the

experimentally obtained dynamics.
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Figure 2-5: The radiative decay time of excitons versus the band gap energy for dif-
ferent fixed distances between NPs 𝐿𝑐 = 40 nm, 60 nm, 80 nm, 100 nm respectively.
Stars display the experimental data. The best fit is achieved at chain length 𝐿𝑐 =
50 nm (shown by the dotted line). Adopted from Ref. (5)

2.3.1 Conclusion

To conclude this section, it should be underlined, that the triplet fine structure,

which is very well seen at cryogenic temperatures is essentially independent of the

length of the chain, while the absolute energies of the transitions increase for the

shorter chains. We show that the sharp peaks emerging at low temperatures in the

PL spectra of gold-stabilized carbon chains are indicative of the exciton and trion

transitions based on the edge electronic states in the chains. The time-resolved op-

tical response of excitons in carbon chains is found to be dependent on the band-gap

of the chain, and it is the lengths of the straight parts of the chains that provides a

control tool for fine tuning of the radiative properties of carbon chains. Moreover,

the observation of radiatively active excitons in these one dimensional carbon chains

is of a great fundamental interest. These observations demonstrate a high potential-

ity of synthesized polyyne chains for optoelectronic applications, especially in search

of nanolasing devises and single photon emitters. Since it might be possible to ob-

serve singular energy transitions from a gold NP - carbon monochain complex, the

photon statistics is expected to have sub-Poissonian distribution, bringing prove for

the emitter to be of quantum nature. In order to investigate such possible features,

measurements of second order coherence function would be the next logical step to
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look into.

The topic of second-order correlation functions is the main focus of this thesis.

The study of second-order coherence is fundamental to the classification of light

sources and is a useful measurement to determine light source photon noise and its

photon statistical properties. Therefore, in the following chapters an investigation

into the photon statistics of another light source with exceptional properties, that

of an optically trapped polariton condensate, will be undertaken.
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Chapter 3

Polaritons In Semiconductor

Microcavities

An optical cavity is an optical resonator, created with a set of mirrors to facilitate

the confinement of light, and a standing wave within the cavity. In this thesis, the

physics observed within the microcavity is discussed, which are typically on order of

micrometers wide. By choosing a proper intra-cavity material, such as quantum wells

(QW), and placing it at the anti-nodes of cavity standing wave, it is possible to reach

the strong coupling regime between the confined cavity mode and QW excitons. In

this regime, a new quasi-particle, known as an exciton-polariton emerges. This

particle, a short-lived mixture of light and matter, combines properties from both

particles: it has a light effective mass from the photon, whilst inheriting strong

nonlinearities from the exciton part - in short, it is the ideal hybrid.

In this chapter, we are going to discuss the fundamental physics behind the

process of light matter coupling in microcavities, and the specifics of the microcavity

used in this work for polarities condensation. We are going to succinctly discuss the

mechanism of polariton condensation, including the excitation methods, and the

polarisation properties. Then, the sample used throughout the experiments in this

thesis will be described. Finally, the experimental techniques used to create an

optically trapped polariton condensate will be explained.
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3.1 Coupling of light and matter

Depending on the technological application there have been developed various ge-

ometries of microresonators, such as micropillar cavities, microtoroid resonators and

photonic crystal cavities. The most common microcavity, however, is the planar

cavity comprising two parallel flat mirrors. Typically, the mirrors of these Fabry-

Perrot-type cavities are either formed by highly reflective metallic surfaces, or by

distributed Bragg reflectors (DBRs), i.e. periodically patterned two-dimensional

dieletric or semiconductor layers of alternating refractive index. While in the former

case the cavity modal field vanishes almost completely at the metallic surface, in

the latter case the electric field has a substantial penetration depth into the Bragg

mirror.

3.1.1 DBR

One of the key features of microcavity design is that the reflectivity properties of

the DBR structures can be changed by either varying the number of reflector layers,

or the refractive index difference between the periodically alternating materials. An

example of a DBR structure is shown in Figure 3-1(a), containing pairs of alternating

layers (shown in purple and blue) of different refractive index. The incident light

will be partially reflected, and partially transmitted through the structure. How

much of the light would be reflected or transmitted depends on range of parameters

such as the light’s frequency 𝜔 and its polarisation, the material of DBR’s, its

characteristic sizes, and the angle of incidence (102). The DBR’s refractive index

profile is schematically shown in Figure3-1(b), it is a periodic structure of alternating

layers made of materials of different refractive indices. Layers are designed to have

a thickness 𝑑𝑖 that equals a quarter wavelength of incoming light, i.e. 𝑑𝑖 = 𝜆0/4𝑛𝑖

with 𝑖 = 1, 2. The wavelength 𝜆0 corresponds to the light frequency 𝜔0 = 2𝜋𝑐/𝜆0,

for which the DBR structure is created, where 𝑛1, 𝑛2 are the refractive indices of

the DBR materials. When light is incident to the DBR structure, constructive

interference occurs, due to the design thickness, resulting in huge reflectivity for a

certain light frequency 𝜔0. The reflectivity spectrum of such a structure contains a
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stopband centred around 𝜔0 as depicted in Figure 3-1(c). The width of this stopband

Ω𝑆𝐵 is determined by the refractive index composition (102) as follows,

Ω𝑆𝐵 =
8𝑐 | 𝑛1 − 𝑛2 |
𝜆0(𝑛1 + 𝑛2)

, (3.1)

clearly as the contrast between the 𝑛1 and 𝑛2 gets bigger, Ω𝑆𝐵 increases as well.

Figure 3-1: (a) Scheme of the DBR with refractive index profile shown in (b). (c)
Reflectivity spectrum for light under normal incidence onto the structure.

3.1.2 Cavity

A microcavity can be engineered by adding an extra layer withing the DBR struc-

ture, as shown in Figure 3-2(a), where thickness and refractive index of the cavity

layer are labeled as 𝑑𝑐 and 𝑛𝑐. This extra layer works as an anomaly, a defect inside

a perfectly periodic structure. This effectively results if a new (confined) photonic

mode. The condition for resonance of the confined Fabry-Pérot modes can be written

as

𝜔𝑗 = 𝑗
𝜋𝑐

𝑛𝑐𝑑𝑐
, 𝑗 ∈ N+. (3.2)

.
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Here lets assume that the light incidence is normal, absorption is negligible and

the reflectivity of the DBR structure is high.

Figure 3-2: (a) Scheme of the microcavity structure with refractive index profile
shown in (b). The cavity mode with frequency 𝜔0 placed within the DBR stopband
results in a modification in the reflectivity spectrum depicted in (c).

The free spectral range (FSR) ∆𝜔, is an important characteristic of any res-

onator, and can be given as follows

∆𝜔 =
𝜋𝑐

𝑛𝑐𝑑𝑐
. (3.3)

In the case of thin resonators, which microcavities are, the FSR ∆𝜔 is usually

much bigger than the stopband width Ω𝑆𝐵 of the reflectors. Thus, giving us effec-

tively only one longitudinal mode that can exist within the microcavity.

The reflectivity spectrum of such a microcavity under normal incidence is schemat-

ically depicted in Figure 3-2(c). Here, lets once again, assume that light is at normal

incidence to the cavity. The mode with frequency 𝜔𝑐 results in diminished reflectiv-

ity about this frequency, and is due to resonant tunneling of photons through the

structure. For the cavity presented in Figure 3-2, the cavity resonance frequency 𝜔𝑐

is in the center of the reflectivity stop band and, this symmetric condition is realised

when the cavity thickness 𝑑𝑐 is chosen to be a multiple of a half-wavelength, i.e.

𝑑𝑐 = 𝑗𝜆0/2𝑛𝑐. Still the mirrors have some losses which cause spectral broadening of

the resonant mode as shown in Figure 3-2(c). It is an important characteristic of the
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microcavity, and is connected to lifetime 𝜏𝑐 of photons inside the cavity. Structural

defects and other effects can cause additional channels for photon lifetime relaxation.

A resonator with resonance frequency 𝜔𝑗 and spectral FWHM 𝛿𝜔𝑗 is characterised

by its quality factor 𝑄 (102), given by

Q =
𝜔𝑗

𝛿𝜔𝑗

. (3.4)

It serves as a gauge for the proportion between the energy lost during each oscillation

cycle, and therefore the energy remaining in the cavity. The cavity photon lifetime

𝜏𝑐 and energy loss are related, such that

𝜏c =
𝑄

𝜔𝑗

. (3.5)

Each cavity mode is defined by a wavevector k, taking lateral translational invariance

of the system into account, that exhibits continuous dispersion in transverse direc-

tions (𝑥 and 𝑦) but is quantized in longitudinal directions(𝑧). Denoting the lateral

wavevector as 𝑘‖, the cavity in-plane dispersion can be approximated as parabolic

for small angles of incidence,

𝜔j(k‖) = 𝜔𝑗

√︃
1 +

𝑘‖
2

𝜔𝑗
2𝑛𝑐

2/𝑐2
≈ 𝜔𝑗 +

~𝑘‖2

2𝑚𝑐

. (3.6)

Where 𝑚𝑐 = ~𝜔𝑗𝑛𝑐
2/𝑐2 the cavity effective photon mass (see reference (103) for

the derivation). As such, the effective photon mass in microcavities is very light and

typically in the order of 10−5𝑚𝑒, where 𝑚𝑒 is the free electron mass.

3.1.3 Excitons in quantum wells

In crystal solids, excitons are electrically neutral particles, created by the Coulomb

interaction of electrons and holes. When an electron in a bulk semiconductor is
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excited from the valence band to the conduction band through optical stimulation,

an exciton is produced. The particle wavefunction and energy spectra of excitons

resemble a bound electron-proton pair, and have a hydrogen atom-like structure

(103). For a bulk semiconductor with bandgap energy 𝐸𝑔, free excitons have the

energy dispersion relation

𝐸𝑛
𝑋,3𝐷(k) = 𝐸𝑔 −

𝑅0

𝑛2
+

~2𝑘2

2𝑀𝑋

, 𝑛 ∈ N+ (3.7)

where 𝑀𝑋 = 𝑚*
𝑒 + 𝑚*

ℎ is the sum of the effective electron and hole masses 𝑚*
𝑒 and

𝑚*
ℎ. The magnitude of the binding energy, 𝐸𝑛, is defined by the exciton Rydberg

energy 𝑅0, which also serves as a gauge for the quasi-thermal particle’s stability. It

is dependent on material properties such as the permittivity 𝜖 and reads as

𝑅0 =
2𝑒4𝑚𝑋

(8𝜋)2𝜖2~2
. (3.8)

The introduction of the exciton effective mass 𝑚𝑋 = 𝑚*
𝑒𝑚

*
ℎ/(𝑚

*
𝑒 + 𝑚*

ℎ) represents

the reduced mass of electron and hole. Due to their larger effective mass 𝑚𝑋 and

smaller permittivity 𝜖, wide-bandgap semiconductors such as 𝑍𝑛𝑂 (𝑅0 ≈ 62𝑚𝑒𝑉 ) or

𝐺𝑎𝑁(𝑅0 ≈ 26𝑚𝑒𝑉 ) typically have a larger Rydberg energy than, for instance, 𝐺𝑎𝐴𝑠

(𝑅0 ≈ 4.2𝑚𝑒𝑉 ) (103), this means that excitons in wide-bandgap semiconductors

can be stable at room-temperature (𝑘𝐵𝑇 ≈ 25𝑚𝑒𝑉 ).

An efficient potential well structure for electrons and holes is represented by a

quantum well (QW), which is a small layer of semiconductor sandwiched between

two alternative semiconductor layers with significantly different conduction valence

band energies. The 2D exciton dispersion relation is produced by the longitudinal

confinement of electrons and holes within the QW, which results in an additional

exciton confinement energy term (𝐸𝐶), such that
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𝐸𝑛
𝑋,2𝐷(k‖) = 𝐸𝑔 + 𝐸𝑐 −

𝑅0

(𝑛− 1/2)2
+

~2𝑘2‖
2𝑀𝑋

, 𝑛 ∈ N+. (3.9)

It’s crucial to keep in mind that the ground state binding energy (n = 1) of

excitons in QWs is 4 times higher than that of the bulk energy spectrum [3.7].

Additionally, the exciton oscillator strength 𝑓 in QWs is higher than in bulk due

to the enhanced spatial overlap of the electron and hole wavefunctions in confined

systems (103). The oscillator strength is a dimensionless quantity that describes

the probability of photon absorption and emission as well as the effective coupling

between light and the optically active exciton mode. As a result, low-dimensional

structures like QWs are the ideal platforms for researching excitonic events at ele-

vated temperatures and with improved optical transitions.

3.1.4 Strong coupling and exciton-polaritons

The interplay of photonic and electrical modes within a system is essential for opto-

electronic applications and devices. One can incorporate an active medium, in the

form of a semiconductor QW structure, into the cavity layer for the proposed planar

cavity, which results in optically active and confined excitonic modes. A schematic of

the microcavity structure, containing coupled photon and exciton modes, is depicted

in Figure 3-3(a) and (b). The coupling strength of cavity photons and QW excitons

is characterised by their interaction energy ~Ω𝑅, where the Rabi frequency Ω𝑅 de-

scribes the rate at which energy is exchanged between the photonic and excitonic

modes. Assuming normal incidence, Fig 3-3(c) depicts the microcavity reflectivity

spectrum of a strongly coupled cavity. Here, the degeneracy between the bare cav-

ity and QW exciton energies is lifted, and two new resonances, split by the Rabi

frequency Ω𝑅, appear. The hybridized exciton-polariton modes of the system re-

semble these resonances. The energy repulsion of two connected resonators can be

explained in terms of two linearly coupled harmonic oscillators as detailed in the

following. The coupled exciton-photon Hamiltonian 𝐻 can be expressed as (102)
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𝐻 =
∑︁
𝑘‖

𝐸𝐶(𝑘‖)𝐶
†
𝑘‖
𝐶𝑘‖ +

∑︁
𝑘‖

𝐸𝑋(𝑘‖)𝑋
†
𝑘‖
𝑋𝑘‖ +

~Ω𝑅

2

∑︁
𝑘‖

[𝐶†
𝑘‖
𝑋𝑘‖ + 𝐶𝑘‖𝑋

†
𝑘‖

]. (3.10)

where 𝐸𝐶(𝑘‖) and 𝐸𝑋(𝑘‖) denote the cavity mode and QW exciton mode energy

dispersion relations, respectively, with details given in Eqs. 3.6 and 3.9. The first two

terms in 3.10 represent the bare cavity and bare exciton energies with photon and

exciton field operators 𝐶𝑘‖ and 𝑋𝑘‖ , respectively. The third term describes exciton-

photon interactions, represented by absorption and emission cycles at frequency Ω𝑅.

Since there is no mixing of inplane wavevectors 𝑘‖ present in 3.10, the Hamil-

tonian H can be split into the sum, 𝐻 =
∑︀

𝑘‖
𝐻𝑘‖ , where each term 𝐻𝑘‖ can be

written in matrix notation,

𝐻𝑘‖ =

⎡⎢⎢⎢𝐸𝐶(𝑘‖) ~Ω𝑅/2

~Ω𝑅/2 𝐸𝑋(𝑘‖)

⎤⎥⎥⎥ . (3.11)

Figure 3-3: Strong coupling of photon and QW exciton modes. (a) Schematic of
the microcavity structure with refractive index profile shown in (b). (c) Reflectivity
spectrum for normal incidence. Strong coupling of photon mode and excitonic mode
result in the formation of two polaritonic resonances, which are split by the Rabi
frequency.

Diagonalisation of the Hamiltonian 𝐻𝑘‖ , then yields the eigenstates: the upper

(UPB) and lower (LPB) polariton branches, represented as
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|𝐿𝑃𝑘‖⟩ = 𝑐𝑘‖|𝐶𝑘‖⟩ − 𝜒𝑘‖|𝑋𝑘‖⟩, (3.12)

|𝑈𝑃𝑘‖⟩ = 𝜒𝑘‖ |𝐶𝑘‖⟩ + 𝑐𝑘‖|𝑋𝑘‖⟩. (3.13)

The mixing coefficients 𝑐𝑘‖ and 𝜒𝑘‖ denote the so-called, Hopfield coefficients.

Their squared norms, |𝑐𝑘‖|2 and |𝜒𝑘‖|2, represent the photonic and excitonic com-

ponent for each branch, respectively. Furthermore, the dispersion relation for each

polariton branch is given by

𝐸𝑈𝑃,𝐿𝑃 (𝑘‖) =
1

2
[𝐸𝐶(𝑘‖) + 𝐸𝑋(𝑘‖) ±

√︁
[𝐸𝐶(𝑘‖) − 𝐸𝑋(𝑘‖)]2 + ~2Ω2

𝑅]. (3.14)

While the uncoupled bare exciton and cavity modes might be in resonance at

some inplane wavevector 𝑘‖, i.e. 𝐸𝐶(𝑘‖) = 𝐸𝑋(𝑘‖), the new eigenstates of the system

experience a repulsion, yielding an anti-crossing in the dispersion split by the Rabi

energy ~Ω𝑅. The spectral repulsion and hybridisation of exciton and cavity modes

are schematically illustrated in Figure 3-4. The flatness of the bare exciton energy

branch 𝐸𝑋(𝑘‖) seems to be dispersion-less because of the heavy effective mass of

excitons compared to cavity photons.

The Hopfield coefficients for the lower polariton branch are given by

|𝑐𝑘‖|2 =
𝐸𝑈𝑃 (𝑘‖)𝐸𝑋(𝑘‖) − 𝐸𝐿𝑃 (𝑘‖)𝐸𝐶(𝑘‖)

[𝐸𝐶(𝑘‖) + 𝐸𝑋(𝑘‖)]
√︀

[𝐸𝐶(𝑘‖) − 𝐸𝑋(𝑘‖)]2 + ~2Ω2
𝑅

(3.15)

|𝜒𝑘‖|2 =
𝐸𝑈𝑃 (𝑘‖)𝐸𝐶(𝑘‖) − 𝐸𝐿𝑃 (𝑘‖)𝐸𝑋(𝑘‖)

[𝐸𝐶(𝑘‖) + 𝐸𝑋(𝑘‖)]
√︀

[𝐸𝐶(𝑘‖) − 𝐸𝑋(𝑘‖)]2 + ~2Ω2
𝑅

(3.16)

The coherent superposition of the exciton mode and bare photonic mode, with

mixing parameters defined by 3.12 and 3.15 results in polaritons, which are hybrid

quasi-particles. As said above, cavity photons are characterized by a small effective

mass 𝑚*
𝑐 ≈ 10−5𝑚𝑒 and a short lifetime 𝜏𝑐 ≈ 1 − 100ps, stemming from the quality

factor of the cavity, while semiconductor excitons, such as in GaAs, have a larger
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effective mass 𝑚*
𝑋 ≈ 0.2𝑚𝑒 and longer radiative lifetime 𝜏𝑋 ≈ 0.1 − 1𝑛𝑠. The

characteristics of polaritons can be adjusted by varying their respective Hopfield

coefficients, which can be achieved by shifting the cavity mode with respect to the

exciton. For this purpose, microcavities are often fabricated with a wedge in the

thickness of the cavity layer, allowing for experimental access to different exciton-

photon detunings, ∆ = 𝐸𝐶(0) − 𝐸𝑋(0), and experimental tuning of the polariton

Hopfield coefficients. The illustrated energy dispersion in Figure 3-4 represents the

case when ∆ = 0. Regardless of the detuning parameter, for large emission angles

the upper (lower) polariton branch will asymptotically tend to the photonic (exciton)

mode, which is expressed by its Hopfield coefficient |𝜒|2 → 1. Experimental results

presented in this thesis are obtained using a negatively detuned microcavity, as the

LP particles with small in-plane wavevector 𝑘‖ ≈ 0 have a large photonic component,

whilst LP particle at large wavevectors are dominantly excitonic.

Figure 3-4: The process of polariton condensation. Strong coupling of cavity pho-
tonic and excitonic mode get split into two new lower- and upper-polaritonic modes
near 𝑘 ≈ 0. The LP branch polaritons scatter, and dissipate through interations
with phonons down to the bottleneck region of the dispersion curve. The particles
then scatter into low energy condensate state through polariton-polariton interac-
tions.

It should be noticed here that by embedding multiple QWs within the micro-

37



Chapter 3. Polaritons In Semiconductor Microcavities 3.2. Condensation of exciton-polaritons

cavity at the anti-nodes of the cavity electric field distribution helps to increase the

Rabi splitting Ω𝑅 and decreases the exciton density per QW. This is necessary, to

improve the stability of cavity polariton, and lower the particle density to avoid the

Mott transition, and enable polariton condensation to be possible.

Importantly, the energy level repulsion described in 3.14, occurs however weak

the interaction term ~Ω𝑅 is. The cavity mode and exciton mode, denoted by the

terms 𝛾𝑐 and 𝛾𝑥, will both always have a finite linewidth-broadening dissipation

term present in any practical realization. The coherent superposition of exciton and

photon mode as in 3.12, can then only occur, when the coupling term is larger than

any dephasing mechanism. In other words, the coupled-mode frequency splitting

Ω𝑅 should be larger than the bare mode linewidths, i.e. Ω𝑅 > 𝛾𝑐, 𝛾𝑥. In the strong

coupling regime the energy transfer rate Ω𝑅 between bare cavity and exciton modes

is larger than the particle loss rates. In order to accurately capture the dynamics

of a system characterized by a Hamiltonian with large off-diagonal coupling terms

in quantum mechanics one must diagonalize the system. The polariton modes are

then emerge as the new eigenstates of the system. When the energy transfer rate is

slower than the respective exciton and photon decay rates, Ω𝑅 < 𝛾𝑐, 𝛾𝑥, the system

is said to be weakly coupled. A VCSEL can be represented by a microcavity that

operates in the weak coupling regime. If that is the case, perturbative methods can

be used to analyze the dynamics of the system.

3.2 Condensation of exciton-polaritons

Bose-Einstein condensation (BEC) of ultra cold atomic gases (104; 105), the super-

fluid phase transition of liquid helium (106; 107), the non-equilibrium phase transi-

tion of photons in a laser are some examples of bosonic phase transitions with the

emergence of a macroscopically coherent state. General criteria of a bosonic conden-

sate, whether in thermal equilibrium or not, were outlined by Penrose and Onsager

(108), and Yang (109). Being bosonic quasi-particles, microcavity polaritons are

capable of undergoing bosonic phase transitions, with the emergent macroscopic

occupation of a single-particle quantum state. Due to the link between quantum
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mechanical wave dynamics and experimental accessibility on a macroscopic scale,

such macroscopic quantum phenomena have drawn interest from many different

fields in physics and chemistry.

3.2.1 Mechanism of polariton condensation

The process condensation of exciton-polaritons happens in the following way. Exter-

nal source creates a population of polaritons, which mostly occupy LP branch of the

energy-momentum dispersion in case of our sample. Subsequently, two mechanisms

lead polaritons into condensation: exciton-photon scattering and polariton-polariton

scattering. The LP branch polaritons scatter and energy dissipate down through in-

teraction with phonons. This persists to the momenta for which exciton and photon

energy difference is comparable to the Rabi splitting Ω𝑅, where the photonic frac-

tion of the polariton becomes significant. At this point, scattering rates are reduced

due to a decrease in density of states and due to a decrease of the excitonic Hopfield

coefficient |𝜒|2. Moreover, polariton lifetimes are greatly reduced at small momenta

due their growing photonic component |𝑐|2, generally preventing the polariton gas

from reaching thermal equilibrium. The accumulation of excitonic particles figura-

tively speaking, leads to a bottle neck for the polaritons. From this point the second

cooling mechanism dominates, with polaritons interacting with other polaritons in

the reservoir, causing some polaritons to scatter to lower energies, closer to 𝑘 = 0,

and the other polariton to higher moments, as per momentum conservation. In the

end, a macroscopic population is created at momenta close to 𝑘 = 0 through the

process of stimulated scattering. The schematic representation of this effect can be

seen in Figure 3-4.

Due to the light effective mass of the polaritons, 𝑚𝑝 ≈ 10−5𝑚𝑒, polaritons are

looked upon as a good platform to study macroscopic quantum phenomena at ele-

vated temperatures. However, polaritons have been shown to have a short life time

of (1 − 100𝑝𝑠) before they decay. Therefore, reaching thermal equilibrium is rarely

possible, and for that reason, an out-of-equlibrium macroscopic occupation of the

single state is termed "polariton lasing". In recent works, however, long lifetimes of

polaritons in high Q-factor microcavities were achieved, observing BEC of optically
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trapped polaritons in thermal equilibrium (110). Although there is a debate about

the terminology for the coherent source of light created by the mechanisms described

above (111; 112; 113), a very good comparison of the photon laser, polariton laser

and polariton BEC is given in Reference (114). As such, in this work let us call the

coherent many-body state as "polariton condensate". We will discuss this matter

in more details in Chapter 4 of this thesis, however, it is reasonable to mention here

that the polariton condensate can be excited resonantly or off-resonance, in other

words - incoherently. In order to study the second order coherence properties of the

condensate with minimal inherited coherence from the excitation source, the off-

resonant excitation was utilized throughout the course of this work. The polariton

condensates formed in this way have several properties important to this work::

• Long-range spacial coherence across the system above condensation threshold.

• Narrowing of the emission linewidth at threshold, thus increase of temporal

𝑔(1) coherence.

• Spectral blue-shift of the LP branch as well as condensate line with increasing

excitation. Evidence of polariton repulsive nonlinear interactions (115).

• Condensation trapping with an optically engineered potential.

3.2.2 Confinement of polariton condensates

Incoherent pumping allows for the shaping of potential landscape for the polaritons,

and the creation of optical traps through excitonic reservoir. The open-dissipative

Gross-Pitaevskii equation for the polariton condensate can be written in the follow-

ing manner:

𝑖~
𝛿Ψ𝐿𝑃

𝛿𝑡
= [− ~2

2𝑚𝐿𝑃

∇2
⊥ + 𝑔𝑐𝑛𝑅(r, 𝑡) + 𝑖

~
2

(𝑅𝑛𝑟(R, 𝑡) − 𝛾)]Ψ𝐿𝑃

𝛿𝑛𝑅

𝛿𝑡
= −(𝛾𝑒𝑥 +𝑅|Ψ𝐿𝑃 |2)𝑛𝑅(r, 𝑡) + 𝑃 (r)

(3.17)

where Ψ𝐿𝑃 is the condensate wavefunction, 𝑛𝑅 is the reservoir density, 𝑃 (r) is the

spatially modulated excitation rate, 𝛾 and 𝛾𝑒𝑥 are the loss rates of polaritons and
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reservoir excitons respectively, 𝑅 is the stimulated scattering rate with 𝑔𝑐 and 𝑔𝑅 be-

ing polariton-polariton and polariton-exciton interactions respectively (116). Even

in the simplest case of Gaussian single spot pumping, the condensation can occur

near the pumping spot through gain-induced self-trapping (117).

Currently there are a variety of methods for polariton trapping. Some of them

are trapping polaritons through its photonic component, for example, using a cavity

masking technique (118) or etched micro pillar cavities of controlled diameter (60).

In this dissertation however, confinement through the polaritons excitonic reservoir,

similarly to Ref. (119) was utilized. By structuring the excitation light beam, an en-

gineered reservoir density distribution 𝑛𝑅(r) induces a repulsive potential, effectively

creating a trap for polaritons. Moreover, it was shown that, polariton interactions in

a trapping potential can be significantly enhamced (120). The temporal coherence

of such trapped polariton condensates have been studied with the respect of the

confining trap size. Furthermore, a comparison of the second order coherence func-

tion for a trapped polariton condensate versus a ballistically expanding polariton

condensate was performed at phase transition point, i.e. at threshold (121).

3.2.3 Polarization of polariton condensate

Polarization of light can be described using a set of values 𝑆0, 𝑆1, 𝑆2 and 𝑆3 called

Stokes parameters. These parameters are commonly combined into a vector, known

as the Stokes vector. The vector can be normalized on its 𝑆0 parameter, which

represents the total light intensity. Now, the three-dimensional Cartesian space in

which normalized Stokes vector can be plotted directly to, is called Poincare sphere.

Each axis, of this space, passes through pair of poles, which represent sets of the

orthogonal polarisations of light. The length of the Stokes vector, represents the

degree of light polarisation, and the trajectory of the vector on Poincare sphere

depicts how the polarisation state of light evolves.

The polarisation of polariton condensate allows for access to the condensate spin,

since right- and left-circularly polarised photons are coupled almost exclusively to

spin-up and spin-down optically active reservoirs, respectively. Accordingly, po-

lariton condensates can be expressed by a spinor order parameter Ψ = (𝜓+, 𝜓−)𝑇
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with spin-up and spin-down polaritons (𝜓±) correspond to right- and left-circularly

polarised light respectively. The spin physics for the polariton condensate is often

described by the pseudospin formalism (122; 33). Where the polarisation of the

condensate emitted light directly relates to the polariton spin structure, thus the

emission Stokes vector S becomes a measure of polariton pseudospin. The particle

number of the polariton condensate, and the normalized components of the Stokes

vector can be given as follows:

𝑆0 = |𝜓+|2 + |𝜓−|2,

𝑆1 = 2𝑅𝑒(𝜓*
+𝜓−)/𝑆0,

𝑆2 = −2𝐼𝑚(𝜓*
−𝜓+)/𝑆0,

𝑆3 = (|𝜓+|2 − |𝜓−|2)/𝑆0.

(3.18)

Although, a great deal of the condensate excitation regimes requires a compre-

hensive analysis of the physics leading to the formation of polarization, for this

thesis, we will focus on the regime where condensation occurs in the groundstate of

the optically induced trap, at momenta 𝑘 ≈ 0 and without any higher order trap

modes being excited (7). This is the common measurement regime throughout this

thesis, unless mentioned otherwise.

It has been observed that depending on the excitation polarization, the incident

laser power required for obtaining polariton condensation at the nonlinearity, was

different. Moreover, the circularly excited polariton condensates were seen to emit

co-circularly polarized light, whilst linearly polarized excitation appears to create

condensates with a degree of polarization, 𝐷𝑂𝑃 =
√︀
𝑆2
1 + 𝑆2

2 + 𝑆2
3 ≈ 0, right af-

ter condensation threshold. The threshold drift can be explained as with purely

circularly polarized excitation the same-spin Coulomb interactions dominate over

opposite spin interactions (123; 124). A circular polarized excitation beam results

in a dominantly spin up, or down, populated reservoir of incoherent excitons, de-

pending on direction of the polarization rotation, which will reach threshold den-

sity sooner and undergos stimulated scattering into a co-circularly polarized con-

densate (125; 126). The DOP of circularly pumped condensate remains close to

unity mainly dictated by the 𝑆3 component, for the range of powers up to 2𝑃𝑡ℎ,
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after which opposite circular component appear to influence the polarization, de-

creasing the value of the 𝑆3 with the degree of linear polarization (DLP) staying

𝐷𝐿𝑃 =
√︀
𝑆2
1 + 𝑆2

2 ≈ 0. Interestingly, the polarization of the condensate emitted

light right above threshold when pumped with linear polarization appears to be un-

polarized through in the integrated polarimetry measurements, similarly as to below

condensation threshold. However, all other signs of condensation, such as linewidth

narrowing and blue shift of LPs were shown in this regime. Intensifying the excita-

tion density leads to an increase of the DLP, and emergence of a linear component

with determined orientation. The orientation of this component is dependent on

the location on the sample. This effect is attributed to a joint effect of sample lo-

cal birefringence induced in-plain polarization splitting and increasing condensate

nonlinearity (33) resulting in condensate pseudospin pinning. The absence of this

pinning in the region of lower powers, with 𝐷𝑂𝑃 ≈ 0 is due to low nonlinearity of

the condensate because of low occupation, making the polarization weakly pinned.

For the elliptically polarized excitation, the condition of tilted limit cycle regime

can be fulfilled. This effect can be viewed as periodic precession of the condensate

pseudospin around some effective magnetic, emergent due to structural and pump in-

duced energy splittings in the system, discussed in more detail in 4, which manifests

itself as an effective depolarization of the condensate emitted light, when measured

with a time resolution less then the cycle period. The pseudospin in this regime

undergoes mixture of pump- and self-induced Larmor precessions, overcoming the

pinning effect, as was also predicted theoretically (33).

3.3 Experimental methods

In order to breath life into the ideas, an experimental setup to characterize the QWs

embedded microcavity was built. As time passed, the setup which started form

clear optical table, had become more complicated and sophisticated, constantly im-

proving and facilitating more and more capabilities. Here, we will discuss general

implemented methods of creating a trapped polariton condenste and its character-

ization. In chapters 4 and 5 we will go into detail on the HBT and HOM interfer-
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ometry, respectively, which was implemented to study the second-order coherence

of the polariton condensate and its emission indistingushability.

3.3.1 Sample

The microcavity with embedded QWs sample on which all of the experiments where

done was developed in the Sheffield National Center for 𝐼𝐼𝐼 − 𝑉 technologies. The

substrate is a 𝐺𝑎𝐴𝑠 wafer which supports sets of DBRs, the bottom DBR consists

of 26 pairs and the top DBR of 23 pairs of 𝐺𝑎𝐴𝑠 and 𝐴𝑙𝐴𝑠0.98𝑃0.02. The intracavity

layer consists of three pairs of 𝐼𝑛0.08𝐺𝑎0.92𝐴𝑠 QWs within the 𝐺𝑎𝐴𝑠 spacer located

in the anti-nodes of the standing wave, with two more QWs in the top and bottom

node. The schematic representation of the sample is shown in Figure 3-5. There

is a slight wedge of the intracavity layer allowing for tuning of the cavity photonic

mode detuning to the excitonic mode by scanning along the wedged direction of the

sample surface. During the experiments, the sample was mounted in a closed-cycle

cryostat and cooled down to the temperature of 𝑇 = 4𝐾. The specially designed

coldfinger mount allowed for the detection from wafer side and from DBR side of

the sample.

3.3.2 Experimental setup

The scheme of the experimental setup is shown in Figure 3-6(a). The single mode,

narrow light continuous wave (CW) Ti:Sapphire laser (M-squared SOLSTIS, later

swapped to Matisse-CR) was primarily used for the experiments. Tuned to the

wavelength (𝜆𝑒𝑥 783𝑛𝑚), which corresponds to the second Bragg minimum of the

cavity band to the high energy edge of the reflectivity stopband, for non-resonant

excitation of QW excitons, resulting in the emergence of the upper (UP) and lower

(LP) polariton branches. Notably, the transmission of the laser light through the

sample on this wavelength is almost non-existent due to the absorption of the light

by the GaAs substrate, and therefore the necessity of spectral filtering in the trans-

mission path is absent. However, in the reflection path, a lowpass dichroic mirror

was used to reflect only the condensate emission. The CW excitation was temporally
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Figure 3-5: Microcavity sample with embedded QWs. Adopted from the (127)

modified by acousto optical modulator (AOM) with square shape pulses working at

a 1 kHz frequency with a 10% duty cycle, which was done primarily not to overheat

the sample.

As an experimental side note, that might be useful for anyone opting to conduct

similar research, I would point out the following nuance. The AOM modulates

the signal on macroscopic times if compared to that of TCSPC electronics and

detectors. Because of that, when compared to the un-modulated signal, the detectors

might get over-saturated with the number of incoming photons, if the beam is not

attenuated equally to the modulation duty cycle. Unfortunately, the effect of over-

saturation does not visually presents itself during the measurement of the second-

order coherence function, and can lead to the false values of accumulated statistics.

The spatial shaping of the excitation beam profile is done by incorporating a

spacial light modulator (SLM). An algorithm developed in our lab, and described in

Ref (115) allowed for shaping the excitation beam profile into virtually any shape.

The laser beam, with transverse Gaussian distribution, is directed to the liquid

crystal based matrix of the SLM. An analytically calculated 2D Fourier image, e.g.
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Figure 3-6: (a) General scheme of the experimental setup. The sample is excited
with a single mode CW laser. The excitation is temporally modulated with AOM
and spatially modulated with SLM. Excitation beam polarization is modulated with
QWP. Characterization of polariton condensate dispersion is done on camera (1) and
shown in (d). Characterization of momentum space image is done on camera (2)
and shown in (f). Characterization of the real space image is done on camera (3)
and shown in (e). (b) Example of the calculated hologram applied onto the SLM.
(c) Example excitation beam profile forming an annular optical trap. (d) Disper-
sion image LP branch below condensation threshold (left) and above condensation
threshold in optical trap (right). (e) Momentum space image of the condensate in
optical trap. (f) Real space image of the condensate in optical trap.

shown in Figure 3-6(b), to create the desired pump profile, such as Figure 3-6(c), is

applied onto the SLM and the liquid crystal screen reorders itself to form a hologram.

This hologram deflects the beam and forms the desired image in the focal plane of the

first lens (L1). By the means of lenses (L1 and L2) and high numerical aperture (NA)

microscope objective, the designed pump profile is projected onto the plane in which

sample is located inside of the cryostat. The pump profile for optical trapping of the
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polariton condensates, for this work, was formed into the annular trap of ≈ 10𝜇𝑚

in diameter, similar to Figure 3-6(c). Due to a technical requirement, SLM is only

able to shape/alter horizontally polarised light, therefore a PBS was installed right

before the device, to prevent overheating of the l+iquid crystal screen. However,

as it was discussed in Section 3.2.3 the ability to tune the excitation polarization

is essential for the investigation of the condensate and thus, an important piece of

the excitation scheme is a quarter waveplate (QWP), which was used to tune the

excitation beam polarization ellipticity.

In order to study the polariton condensate in the trap ground state, it is necessary

to track the energy-momentum dispersion of the condensate PL, as well as the

condensate momentum space image. The momentum-space Fourier image of the

trapped condensate is reflected from the sample, transmitted through the optical

system with lenses (L3 and L4), and projected on to cameras (1) and (2). For the

dispersion imaging, light travels through the high resolution spectrometer, which has

spectral resolution of ≈ 30𝜇𝑒𝑉 , resulting is the images shown in Figure 3-6(d). In

this figure, example dispersions of the LP branch when pumped before condensation

threshold, (left), and for the case of pumping above condensation threshold in the

trapping potential (right), with condensation happening near 𝑘 ≈ 0. The example

momentum space image of trapped condensate can be seen in Figure 3-6(e), with

the most of polaritons occupying the center of the momentum space close to 𝑘 ≈ 0.

Real space imagining of the excitation beam profile onto the sample is essential

in order to avoid any unnecessary experimental errors, such as, asymmetry of the

trapping potential, which can break the system U(1) symmetry (2), or additional

excitation spots within the trapping potential due to due to aberrations or being at

an incorrect focal plane, which can lead to polarization imprinting by the excitation

beam (61). Furthermore, observation of the condensate formed within the optical

trap, after non-linear growth in intensity, is important in order to determine the

condensation threshold, which changes depending on excitation pump profile (128).

An example of the condensate image above the threshold is presented in 3-6(e).

Visible fringes are due to the known effect of optical etaloning.
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3.3.3 Integrating polarimetry

The Stokes polarimeter, is an experimental setup allowing for the measurement of

all Stokes parameters simultaneously, allowing for the extraction of direction and

length of the Stokes vector S = (𝑆1, 𝑆2, 𝑆3). The parameters correspond to the

horizontal-vertical (𝑆1), diagonal-antidiagonal (𝑆2), and right-, left-hand circular

(𝑆3) polarization of the emitted cavity light of the condensate PL. With four detec-

tors, and division of the incoming PL with beam splitters, followed by pre-aligned

polarization optics as shown in Figure 3-7 the direction and length of Stokes vec-

tor as well as its trajectory, can be plotted, given that the Stokes parameters are

calculated as follows

𝑆1 =
𝐼𝐻 − 𝐼𝑉
𝐼𝐻 + 𝐼𝑉

=
𝐼1 − 𝐼2
𝐼1 + 𝐼2

,

𝑆2 =
𝐼𝐷 − 𝐼𝐴
𝐼𝐷 + 𝐼𝐴

=
4𝐼3 − (𝐼1 + 𝐼2)

𝐼1 + 𝐼2
,

𝑆3 =
𝐼𝜎+ − 𝐼𝜎−

𝐼𝜎+ + 𝐼𝜎−
=

4𝐼4 − (𝐼1 + 𝐼2)

𝐼1 + 𝐼2
.

(3.19)

Figure 3-7: Schematic of the experimental setup and polarimeter. AOM, SLM,
PBS, and BS stand for acousto-optic modulator, spatial light modulator, polarizing,
and nonpolarized beamsplitter, respectively. 𝑝45 is a linear polarizer with the axis
rotated 45∘ with the respect to the horizontal axis. Adopted from Ref. (7)
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Here, 𝐼𝐻,𝑉,𝐷,𝐴,𝜎(±) correspond to the derivable intensity for each of the polarization

poles of the Poincare sphere, and 𝐼1,2,3,4 denote the light intensity signal recorded

with each detector marked on the Figure 3-7. This polarimeter was carefully cali-

brated with a laser tuned to the emission line of the polariton condensate to account

for any spectral-related technical errors. As the condensate PL intensity, especially

below condensation threshold is quite low, a set of lock-in amplifiers was used to

enhance the signal-to-noise ratio. Normally, the temporal resolution of the detection

scheme of this design is limited by the detector rise and dead times. But in this

case, lock-ins were the most constraining element due to 100ms integration time.

The integrated polarization maps of condensate PL measured by my colleague

with this polarimeter showed several distinct regimes of the polariton condesate

behavior, and how the condensate degree of polarization (DOP) depends on the

excitation power and excitation polarization (7).

Here I note that the I was not the primary investigator for optically trapped

condensate integrated polarimetry, and that the polarimeter was developed by my

colleague and co-author.
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Chapter 4

Hanbury Brown and Twiss effect

Experiments conducted by Robert Hanbury Brown and Richard Quintin Twiss

in 1956 (129; 130), as well as, development of a new class of light emitters by

Arthur Leonard Schawlow and Charles Townes(131), sparked an interest for pho-

ton statistics in the scientific community. The classical interpretation was sufficient

to describe the statistical properties of conventional light sources, as well as for

coherent light(132; 133). However, with the development of quantum-mechanical

theory(134; 135), a new type of light source was predicted. Rapid development of

experimental techniques brought different regimes of photon statistics which can be

found from various light sources: bunched, random, and anti-bunched.

In this chapter, a brief theoretical introduction into the formation second-order

coherence formulas will be given in both the frameworks of semiclassical and quan-

tum theories of light. Following this, an overview of the existing work which has been

done on the photon statistics and correlation measurements in polariton condensates

in a variety of structures, will be given. Finally, the experimental methodology used

to measure the photon statistics from optically trapped polariton condensates and

their spinor dynamics will be shown, and the results discussed.
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4.1 Theory of optical coherence

4.1.1 Semiclassical theory

To discuss statistical properties of the light sources, a suitable approach would be the

use of the semiclassical theory of light, in which we treat light fields classically, but

interaction of photons with detectors in a quantum sense (136). In the framework

of this theory, light is represented by a random complex analytic signal 𝑉 (𝑥), where

𝑥 is a space-time coordinate (r, 𝑡). The optical intensity is given by 𝐼(𝑥) = |𝑉 (𝑥)|2,

and so, the fluctuations of light are characterized by 𝑉 (𝑥) and its stochasticity (137).

Lets introduce important descriptors of light at the point 𝑥, probability density 𝑃 (𝐼),

mean value ⟨𝐼⟩, and variance 𝑉 𝑎𝑟(𝐼). Two correlation functions can characterise

the fluctuations at space-time coordinates 𝑥1 and 𝑥2

𝐺(1)(𝑥1, 𝑥2) = ⟨𝑉 *(𝑥1)𝑉 (𝑥2)⟩,

𝐺(2)(𝑥1, 𝑥2) = ⟨𝐼(𝑥1)𝐼(𝑥2)⟩.
(4.1)

However, these amplitude and intensity correlation functions usually are presented

in the following normalised form, and commonly called the degrees of first- and

second-order coherence functions

𝑔(1)(𝑥1, 𝑥2) = 𝐺(1)(𝑥1, 𝑥2)/
√︀

[⟨𝐼(𝑥1)⟩⟨𝐼(𝑥2)⟩],

𝑔(2)(𝑥1, 𝑥2) = 𝐺(2)(𝑥1, 𝑥2)/[⟨𝐼(𝑥1)⟩⟨𝐼(𝑥2)⟩].
(4.2)

The degrees of coherence, in the frame work of semiclassical theory, are required to

satisfy the following inequalities:

0 ≤ |𝑔(1)(𝑥1, 𝑥2)| ≤ 1,

𝑔(2)(𝑥1, 𝑥2) ≥ 1,

𝑔(2)(𝑥1, 𝑥2) ≤ [𝑔(2)(𝑥1, 𝑥1)𝑔
(2)(𝑥2, 𝑥2)]

1/2.

(4.3)

If we consider the probability of photoelectron registration after a photon is absorbed

at the detector, in an increment of an area ∆𝐴, and time increment ∆𝑇 , around time-

space point 𝑥, it would be described as 𝜂𝐺(1)(𝑥, 𝑥)∆𝐴∆𝑇 = 𝜂⟨𝐼(𝑥)⟩∆𝐴∆𝑇 (138),
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where 𝜂 represent the detector quantum efficiency. Furthermore, the probability

of a two photo event joint detection at points 𝑥1 and 𝑥2 would be described as

𝜂2𝐺(2)(𝑥, 𝑥)(∆𝐴∆𝑇 )2. Then the 𝑔(2)(𝑥1, 𝑥2), as the normalized intensity correlation

function, represents the probability of joint photoevent detection in point 𝑥1 and

𝑥2, normalised by the marginal probabilities of a single event occurring in either

𝑥1 or 𝑥2. The 𝑥1 and 𝑥2 being space-time points, function 𝑔(2)(r1, t, r2, t + 𝜏) can

be measured with the two photodetectors in places r1 and r2 with the 𝜏 delayed

coincidence counting of photoelectrons.

The mean photon number, and the variance, can be calculated through relations

derived by L. Mandel (139) and B. Saleh (137) and expressed through 𝑔(1) and 𝑔(2)

in the following order:

⟨𝑛⟩ = 𝜂

∫︁
𝐷

𝐺(1)(𝑥, 𝑥)𝑑𝑥,

𝑉 𝑎𝑟(𝑛) = ⟨𝑛⟩ + ⟨𝑛⟩2[𝑔(2)(𝑥, 𝑥) − 1].

(4.4)

The probability distribution of photon detection for the classical coherent light if

given by a Poissonian distribution with the following equation:

𝑝(𝑛) =
⟨𝑛⟩𝑛𝑒𝑥𝑝(−⟨𝑛⟩)

𝑛!
, (4.5)

with fluctuation variance equal to mean photon number 𝑉 𝑎𝑟(𝑛) = ⟨𝑛⟩. This is a

feature of a commonly used source of coherent light, the laser, above lasing threshold.

Here, we have assumed that the measurement time-spatial domain D is sufficiently

small to support ⟨𝑛⟩ = 𝜂𝐴𝑇 ⟨𝐼(𝑥)⟩. Here D is the domain of integration for the total

energy collected by the detector an lies within the boundaries of 𝑡 ∈ [0, 𝑇 ], 𝑟 ∈ 𝐴 and

bears technical limitations of measuring apparatus. An important characteristic of

the light source, stems from the relation between the mean photon number and its

variance, called the Fano factor:

𝐹𝑛(D) =
𝑉 𝑎𝑟(𝑛)

⟨𝑛⟩
. (4.6)

For coherent light 𝐹𝑛(D) = 1, but when the intensity fluctuations rise, and the

variance becomes 𝑉 𝑎𝑟(𝑛) > ⟨𝑛⟩, then the 𝐹𝑛(D) > 1, and light is said to have super-
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Poissonian statistics. Analogously, with 𝑉 𝑎𝑟(𝑛) < ⟨𝑛⟩, the 𝐹𝑛(D) < 1, and light

has sub-Poissonian statistics - a state which cannot be true within the framework of

semiclassical theory (137; 139). However, this relation is admitted in the quantum

theory of light. The Fano factor is shown to be realated to the normalised coincidence

rate 𝑔(2)(𝑥1, 𝑥2) is a following manner:

𝐹𝑛(D) − 1 =
< 𝑛 >

𝐷2

∫︁
𝐷

∫︁
𝐷

[𝑔(2)(𝑥1, 𝑥2) − 1]𝑑𝑥1𝑑𝑥2 (4.7)

4.1.2 Non-classical photon statistics

The quantum theory of coherence treats both the photons and the interaction of the

photons and detectors in a quantum sense. Now, the description of the photon has

positive and negative positive and negative frequency parts of field operators 𝐸̂+(x)

and 𝐸̂−(x), when describing the amplitude and intensity correlation functions (135;

134). The first- and second-order coherence functions correspond to the expectation

values

𝐺(1)(𝑥1, 𝑥2) = 𝑇𝑟{𝜚𝐸̂+(𝑥1)𝐸̂
−(𝑥2)},

𝐺(2)(𝑥1, 𝑥2) = 𝑇𝑟{𝜚𝐸̂−(𝑥1)𝐸̂
−(𝑥2)𝐸̂

+(𝑥2)𝐸̂
+(𝑥1)}

(4.8)

where 𝜚 is the field density operator. The more common normalised functions

𝑔(1)(𝑥1, 𝑥2) and 𝑔(2)(𝑥1, 𝑥2) are derived similarly to their classical counterparts. The

probability distribution of photoelectron counts collected within the space-time do-

main D in this frameworks is described as

𝑝(𝑛) = ⟨: 𝑊̂
𝑛𝑒𝑥𝑝(−𝑊̂ )

𝑛!
:⟩ (4.9)

where

𝑊̂ = 𝜂

∫︁
𝐷

𝐸̂−(𝑥)𝐸̂+(𝑥)𝑑𝑥 (4.10)

Here, : : denotes normal and time ordering. The mean photon number as well

as the Fano factor can be calculated from the coherence functions similarly to the

semiclassical approach, shown in equations 4.4 and 4.7.
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The difference between the correlation functions emergent from the two schools

of theoretical approaches lies in the procedure of calculation and the physical in-

terpretation. In semiclassical theory the 𝑔(2)(𝑥1, 𝑥2) characterises the normalised

coincidence rate for joint photoevent at 𝑥1 and 𝑥2. Yet, in the framework of quan-

tum theory, it is no longer defined as a normalised statistical intensity correlation

function. Thus, it is no longer limited by the classical constrains if equation 4.3,

and can dip below unity, identifying the presence of the photon anti-bunching effect.

However, the correlation function still has to be non-negative at all points (135).

4.2 Second-order correlation of condensate

The coherence properties of a light source is a crucial characteristic, which deter-

mines its applicability. Since the 1980s there has been pioneering work in strongly

coupled microcavities, which led to the appearance of polariton condensation in a

variety of different systems, with electrical and optical methods of excitation. One

of the first indications of the phase transition from a classical thermal state, to a

quantum-mechanical pure state of exciton-polaritons was observed in a GaAs mul-

tiple quantum well microcavity, from the decrease of the second-order coherence

function (140), followed by a measurement of the second-order coherence function

in a CdTe-based microcavity (141). These works, demonstrated the diversity of

the obtained results, for example, the decrease of photon bunching as a function

of excitation pump power in the former case, or the initial decrease and eventual

growth of the bunching in the latter case, pointed towards the richness of light-

matter physics. Much of the following research was aimed towards harnessing the

coherence properties and photon statistics of polaritonic systems.

It is necessary to discuss here the peculiarities of different methods that have

been used in order to obtain a full picture of polariton condensate second-order

coherence.

Let us first look at the temporal properties of the excitation source. The correla-

tion functions obtained from pulsed and continuous wave (CW) excitation lasers are

very different. When pulsed excitation is applied, the time resolution of the modern
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TCSPC detection scheme does not usually play role (unless it is longer than the time

between the subsequent excitation laser pulses). The photons are emitted within a

small time after pulse arrival, giving much higher coincidence rate compared to CW

excitation, thus lowering the acquisition time, and consequently raising signal-to-

noise ratio (141; 59). The value 𝑔(2)(0) can be easily extracted from the correlation

function obtained with pulsed excitation (39). However, pulsed excitation has its

shortcomings as well. When photons emitted from the sample enter the HBT in-

terferometer, they all contribute to the general photon statistics and, importantly,

to the correlation value at zero-time delay, regardless of which time they originate

from, the condensate build-up, the emission during the condensed state, or from the

time after the pulse where the condensate is decaying. These time periods may have

different statistical properties (142), which need to be accounted for when evaluat-

ing the value of the 𝑔(2)(0) in the HBT scheme. CW excitation, on the other hand,

continuously maintains the condensate density during excitation, and only has tran-

sient states at the rising/falling edges of a macroscopic time modulation, with, for

example, AOM, which only influences the statistics in a minuscule way. Moreover,

if the second-order coherence time is greater than the time resolution of detection

scheme, with CW excitation, it is still possible to extract the second-order coherence

time. Additionally, judging from the best-fit-function of the measured 𝑔(2)(𝜏) the

emission line broadening mechanisms can be studied, which may be unreachable

through usual spectroscopic methods (143).

As was previously discussed in Chapter 3, the profile of the excitation beam,

as well as the trapping method, influences the underling physics of polariton con-

densation. Besides other measurable manifestations, it reflects in the condensate

coherence. Here, let us consider three distinct ways of creating a polariton conde-

sate: excitation of a planar microcavity with a gaussian shaped pump without any

confining potential; excitation of an etched microcavity with gaussian shaped pump

and with spatial confining potential in the form of a pillar; and lastly, excitation of

a planar microcavity with a pump profile in the shape of an annular trap.

In the first and second scenarios, the polariton condensation happens on top of

the pumping spot, thus overlapping with the incoherent hot-exciton reservoir, which
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leads to faster decoherence. The reported increase of the 𝑔(2)(0) with pump power

in planar GaAs- and CdTe-based samples, was also due to the continuous dispersion

of polaritons, all of which can contribute to the condensation process and lead to

mode competition, unavoidably bringing additional intensity noise and convoluted

the coherence. However, if spacial confinement occurs, and it is sufficient to make

polaritons condense into a single mode, the decrease of 𝑔(2)(0) towards unity can be

observed (60).

In the third case, the incoherent exciton reservoir, as the source of ballistically

expanding polaritons, is spatially separated from the region where the condensation

occurs. This excitation geometry allows for minimization of the decoherence through

interaction with the reservoir (1; 121).

It was previously shown, that for a quasi-resonant excitation of polariton con-

densates, statistical properties are drastically different when compared to those of

non-resonantly pumped condensates (144). The 𝑔(2)(0) appears to be close to unity

for the range of powers from below to above condensation threshold in a etched

cavity pillar structure, whilst for the planar microcavity, the 𝑔(2)(0) reaches values

as high as 1.75 at condensation threshold, with rapid decrease to unity at higher

powers.

Yet another degree of freedom that requires consideration is excitation polar-

ization. As was discussed in the Section 3.2.3, for implemented methods of creat-

ing polariton condensates, (and was not discussed but mentioned for many other

methods of condensate excitation), the pump polarization plays a crusial role in

condensate formation. In the work of Sala et.al. (62), it was shown that whilst

the polariton laser presents a degree of second-order coherence close to unity, the

individual polarisation components might posses different photon statistics.

Using methods of correlated photon counting, the signs of a polariton block-

ade was recently shown for the cavity-polaritons in the semiconductor microstruc-

tures (145) and fiber-cavity polaritons (146). As authors claim, if the interaction-

induced energy shift is larger than the polariton linewidth withing the highly con-

fined potential, then the system is said to be in the polariton blockade regime,

manifesting itself as photon anti-bunching effect, lowering of 𝑔(2)(𝜏) function val-
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ues for delays 𝜏 smaller than the polariton lifetime. This modest demonstration of

quantum correlations, demonstrates the possibility for polaritonic system to exhibit

pure quantum behaviors.

4.2.1 Hanbury-Brown and Twiss interferometry of trapped

polariton condensate

The scheme for the second-order coherence measurements and the full polarization

tomography on photon correlations in a spinor exciton-polariton condensate is shown

in Figure 4-1. The classic HBT interferometer, Figure 4-1 (a), was built to record

the condensate second-order coherence function. The operation of the intensity

interferometer is based on the same principal that was discussed in Section 2.1,

but instead of a "start" (or "stop") electric trigger signal from the laser, a photon

detection on another single photon avalanche diode (SPAD) is utilized. As such,

the light emitted from the condensate goes through the detection scheme, and gets

split on the 50:50 BS. Photons arriving into the BS have the same probability to

be transmitted or reflected. SPADs are positioned in the reflected and transmitted

paths and when a photon is detected, send an electrical pulse and, with use of

the time-correlated single photon counting (TCSPC) electronics, the coincidence

counting was realized. This way, the joint detection of the photon arrival on the

SPADs can be plotted versus the delay time.

In order to record the photon statistics of spinor polarization projections, an

advanced scheme was devised. With the replacement of the 50:50 BS with the polar-

izing BS (PBS), and inserting a pre-aligned HWP or QWP before the PBS, the sep-

aration between horizontal/vertical, diagonal/anti-diagonal and right circular/left

circular polarization projections respectively can be achieved, and intensity correla-

tions for different polarization projections were measured, as schematically presented

in Figure 4-1(b). Correlators 1 and 2 are used to count time resolved coincedences

of joint photon detection for pair-orthogonal spinor projections of the polariton con-

densate, whilst correlator 3 is utilized for the simultaneous cross-correlation mea-

surements between the projections.

57



Chapter 4. Hanbury Brown and Twiss effect 4.2. Second-order correlation of condensate

Figure 4-1: (a) Simple scheme of HBT interferometer to measure second-order coher-
ence function of the confined polariton condensate. (b) Triple HBT interferometer
setup for polarization resolved intensity correlation of pseudo-spin projection mea-
surements as well as cross-correlation measurement.

As the condensate forms in the center of the optical trap its overlap with the

photoexcited reservoir of uncondensed excitons is minimized, see bottom panel of

Figure 4-2(a). During the experiments, the statistical information of the Stokes

vector S = (𝑆1, 𝑆2, 𝑆3) was extracted, which correspond to the horizontal-vertical

(𝑆1), diagonal-antidiagonal (𝑆2), and right-, left-hand circular (𝑆3) polarization of

the emitted cavity light, as presented in Figure 4-2(b). Orthogonal polarisation

components are mapped on the different pseudospin projections of the polariton

condensate and defined as,

S =
1

2
Ψ†𝜎Ψ, (4.11)

with 𝜎 being the Pauli matrix vector. A polarization resolving Hanbury-Brown-

Twiss (HBT) intensity interferometer (ℐ𝑖) enables direct measurement of second-

order photon auto- and cross-correlation functions,

𝑔
(2)
𝑖,𝑗 (𝜏) =

⟨𝑎†𝑖 (𝑡)𝑎
†
𝑗(𝑡+ 𝜏)𝑎𝑗(𝑡+ 𝜏)𝑎𝑖(𝑡)⟩

⟨𝑎†𝑖 (𝑡)𝑎𝑖(𝑡)⟩⟨𝑎
†
𝑗(𝑡+ 𝜏)𝑎𝑗(𝑡+ 𝜏)⟩

, (4.12)

where 𝑎†𝑖 and 𝑎𝑖 are the photon creation and annihilation operators for given polar-
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izations 𝑖, 𝑗 denoted horizontal (H), vertical (V); diagonal (D), antidiagonal (AD);

and left-circular (LC), right-circular (RC), and 𝜏 is the time-delay between pho-

ton detection events. The angled brackets ⟨.⟩ indicate time-average over millions of

condensate realizations (i.e., the system is ergodic). In the following, we have im-

plemented a polarization-resolving multi-channel HBT intensity interferometer to

measure second-order auto- and cross-correlations between the pseudospin projec-

tions, as schematically illustrated in Figure 4-2(c).

Figure 4-2: (a) Schematic presentation of the annular optical trap (upper panel) and
condenasate emission (lower pannel). White dashed line outlines the optical trap.
(b) Poincaré sphere showing three sets of the condensate pseudospin projections
onto Stokes vectors. (c) HBT interferometers ℐ1 (black box) and ℐ2 (red box) are
dedicated to measure intensity auto-correlation for orthogonal pseudospin projec-
tions indicated by black and red arrows respectively (e.g. ℐ1 measures 𝑔(2)ℎ,ℎ(𝜏) and
ℐ2 measures 𝑔(2)𝑣,𝑣(𝜏)). At the same time ℐ3 (green box) measures cross-correlation
between these projections (i.e. 𝑔(2)ℎ,𝑣(𝜏)).

4.2.2 Pseudospin projection photon bunching

As a logical first step stemming from the known literature, the second-order coher-

ence 𝑔(2)(0) of a CW pumped, optically trapped polariton condensate was measured.
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Figure 4-3(a) shows the second-order correlation function in the absence of polar-

ization filtering, at the condensation threshold (𝑃 = 𝑃𝑡ℎ), and above threshold

(𝑃 = 1.31𝑃𝑡ℎ) for horizontally polarized excitation. We can see a small photon

bunching 𝑔(2)(0) ≈ 1.04 at threshold, with 𝜏𝑐 = 220 ps second-order correlation time

derived from a Gaussian fit to the data, (blue line). Increasing the excitation density

above condensation threshold drives the condensate towards a highly coherent state

as evidenced by the disappearance of photon bunching on top of the shot noise level,

𝑔(2)(0) ≃ 1, in agreement with previous studies (141; 39; 147). For the condensate

in the ground state of the optical trap any measurable deviations from the coher-

ent state with increasing pump power up to 3.5𝑃𝑡ℎ were not observed. Similarly,

the tuning of the excitation polarization had no major effect on the photon statis-

tics, with it staying highly coherent above the threshold with only a slight photon

bunching at the threshold.

Further on, as described above the polarisation filtering was used to detect the

photon statistics of the Stokes parameters. For pumping levels above condensation

threshold, wherein the polariton condensate is, as was established, highly coherent,

1.31𝑃𝑡ℎ, the polarisation filtered photon statistics on the circular components, 𝑆3,

for both co-, and cross-circular detection, is Poissonian as shown in Figure 4-3(b).

However, the 𝑆1,2 projections obey super-Poisson photon distribution, 𝑔(2)𝑖,𝑖 (0) > 1,

as shown for different linear polarization components in Figure 4-3(c,d). This ex-

cess noise is attributed to a random orientation of the condensate pseudospin in

the equatorial plane of the Poincaré sphere, due to the spontaneous breaking of

the U(1) symmetry (148; 149; 58) from realization to realization. Moreover, with

no additional mechanism distinguishing between different linear polarizations of the

pseudospin one can intuitively expect it to be walking randomly in the equato-

rial plane due to polariton-polariton interactions (150), which would lead to equal

bunching amplitudes for all linear polarisations.

The observation of unequal bunching between the linear polarisation components

is attributed to structural disorder induced birefringence in the microcavity, which

breaks the planar symmetry (151). This leads to a linear polarization energy split-

ting analogous to an in-plane effective magnetic field, Ω‖(r) = (Ω𝑥,Ω𝑦)
𝑇 , that varies
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Figure 4-3: (a) second-order correlation function of the condensate, measured with-
out polarization filtering at 𝑃 = 𝑃𝑡ℎ and 𝑃 = 1.31𝑃𝑡ℎ. Blue line is a Gaussian
fit. (b-d) 𝑔(2)𝑖,𝑖 (𝜏), 𝑔(2)𝑗,𝑗 (𝜏), and 𝑔

(2)
𝑖,𝑗 (𝜏) at 𝑃 = 1.31𝑃𝑡ℎ for LC-RC, H-V, and D-AD

polarizations respectively (letter "x" denoting cross correlation).

randomly across the sample. It was theoretically predicted that polariton-polariton

interactions align (pin) the condensate pseudospin parallel to the field (33; 152; 7),

which leads to the unequal bunching between the different linear polarizations, 𝑆1,2

observed in Figure 4-3(c,d).

Analysis of photon cross-correlations in this pinned regime gives important in-

sight into the complex dynamics of the pseudospin. Panels (c,d) in Figure 4-3 reveal

anti-correlated photon fluctuations between orthogonal projections. This means

that fluctuations in one projection inevitably induce fluctuations in the orthogo-

nal one. Namely, the anti-correlated behavior 𝑔(2)𝑖,𝑗 (0) < 1 corresponds to temporal
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switching of the pseudospin direction in the equatorial plane from being parallel to

anti-parallel with Ω‖(r). Such switching events can be understood as mode com-

petition between two fixed point attractors in the pseudospin phase space, with

the pinned S ‖ Ω‖ attractor being much stronger than the anti-parallel −S ‖ Ω‖

attractor (153). In later section 4.2.4, we have show that the switching between

parallel and anti-parallel alignment of the pseudospin occurs randomly in time. The

switching strongly affects the photon statistics of the linearly polarized projections,

especially those which are orthogonal to the pinning field. Indeed, we can observe

the highest value of 𝑔(2)𝑖,𝑖 (0) in Figure 4-3(c,d) for horizontal and anti-diagonal pro-

jections. For the chosen sample location, corresponding to the data in Figure 4-3,

Ω‖(r) causes the pseudospin to become pinned between the diagonal and vertical

projections.

These experiments show a significant effect of nonlinear dynamics on the photon

statistics, which can be controlled through the power of the optical excitation. Here

lets note that the photon auto-correlation 𝑔(2)𝑖,𝑖 (0) at zero time delay relates directly

to the variance 𝜎𝑖2 and mean value 𝑛𝑖 of the photon distribution according to

𝑔
(2)
𝑖,𝑖 (0) = 1 +

𝜎𝑖
2 − 𝑛𝑖

𝑛𝑖
2

. (4.13)

Figure 4-4(a) shows that with increasing pump power we can observe an increase

of 𝑔(2)𝐻,𝐻(0) (black circles) that corresponds to photon distribution broadening (not

shown). While the horizontal component experiences very strong photon number

fluctuations with 𝑔
(2)
𝐻,𝐻(0) ≈ 1.9 at 𝑃 ≈ 1.5𝑃𝑡ℎ, approximating the statistics of

thermal light, 𝑔(2)(0) = 2, the vertical component is in a highly coherent state,

𝑔
(2)
𝑉,𝑉 (0) ≈ 1.02, as shown by the red circles of Figure 4-4(a). This dependence

originates from the large difference in populations between H and V projections

and the stochastic switching of the pseudospin, as schematically shown in Figure 4-

4(b). The interdependence of the H and V projections is evidenced by their cross-

correlation measurement, 𝑔(2)𝐻,𝑉 (0), which exhibits an anti-correlation with the V

projection, as shown by the green circles of Figure 4-4(a).

Evolution of the pseudospin and corresponding intensity fluctuations are quali-
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Figure 4-4: (a) Measured (circles) and theoretical (solid lines) 𝑔
(2)
𝐻,𝐻(0) (black),

𝑔
(2)
𝑉,𝑉 (0) (red) and 𝑔

(2)
𝐻,𝑉 (0) (green) power dependencies for linearly polarized exci-

tation. Error bars for the experimental data are smaller than the size of the circled
markers. (b) Schematic representation of the in-plane magnetic field (orange ar-
row denoted as Ω‖) and the polarization of different photon occurrences (black
transparent arrows). When pinned, the pseudospin is dominantly orientated paral-
lel Ω‖ (indicated by big number of co-oriented arrows) whereas random switching
events change the pseudospin to anti-parallel direction (indicated as few anti-parallel
arrows), corresponding to anticorrelated event between linear polarization compo-
nents. Color scale represents total correlation photon count rate.

tatively reproduced by a stochastic generalized Gross-Pitaevskii mean-field model in

the truncated Wigner approximation (154; 33) as shown with solid lines in Figure 4-

4(a). Note that near the condensation threshold, where time resolution severely

limits correlation measurements, such standard mean-field theories fail to describe

high-order correlations (155; 156). At higher powers the calculated 𝑔(2)𝐻,𝐻(0) exceeds

the experimental values due to the monotonic increase of the vertically polarized

condensate population. This overestimation in modeling can be countered by in-

cluding small polarization ellipticity in the beam as detailed in a later section.

4.2.3 Self-induced Larmor precession

In this section, we will see the results of investigation into how the pseudospin dy-

namics under elliptically polarized pumping affect the photon statistics. In this

case, the exciton reservoir which provides gain to the condensate becomes spin-

imbalanced (optically oriented) and follows the laser circular polarization to some
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degree. The stimulated nature of polariton scattering into the condensate preserves

the exciton spin resulting in a condensate that is co-circularly polarized with the

laser (157; 158). Due to strong anisotropic particle interactions, such spin population

imbalance in both the condensate and the reservoir results in a nonlinear effective

out-of-plane magnetic field Ω⊥ = Ω𝑧ẑ that gives rise to self-induced Larmor pre-

cession (159; 160; 161; 150; 162; 163) driving self-sustained periodic orbitals in the

dynamical equations of motion. This field can be written as Ω𝑧 ∝ 𝛼𝑆3+𝑔(𝑋+−𝑋−),

where 𝛼 denotes the polariton-polariton interaction strength, 𝑔 the polariton-exciton

interaction strength, and 𝑋± are the exciton reservoir spin populations. Excitation

of the reservoirs in the unbalanced fashion, with elliptically polarized pumping, pro-

vides more gain to one of the spins, and effectively splits the energy of the system for

𝜎±, as if there is an effective magnetic field present. The sign and the magnitude of

Ω𝑧 can be controlled through the polarisation ellipticity 𝜖 of the pump laser (164; 7).

Figure 4-5 shows 𝑔(2)𝐻,𝐻(𝜏) at 𝑃 = 3.5𝑃𝑡ℎ for excitation polarization ellipticity

varying from 0 (top) to 0.361 (bottom). Under linearly polarized excitation (𝜖 = 0)

horizontal pseudospin projection gives 𝑔(2)𝐻,𝐻(0) ≈ 2.4 with correlation time 𝜏𝑐 = 9.2

ns. We would like to point out that the data presented in Figure 4-5 was obtained

at a different sample location than those in Figs. 4-3 and 4-4, which results to quan-

titative differences due to different strengths and direction of the effective fields

Ω‖(r1) ̸= Ω‖(r2). For ellipticities 𝜖 > 0.021 we have observed an oscillatory be-

havior in the photon correlations, evidencing the self-sustained Larmor precession

of the pseudospin due to the combined effects of the nonlinear field Ω⊥ and the

linear birefringent field Ω‖. The Larmor precession drives harmonic photon number

oscillations between the orthogonal components in antiphase, which is evidenced

by the photon cross-correlations 𝑔(2)𝐻,𝑉 in the bottom panel of Figure 4-6(a). To il-

lustrate these dynamics, the simulation of the condensate pseudpospin trajectories

for the case of 𝜖 = 0.028. Figure 4-6(b) shows the trajectory of the pseudospin

on the Poincaré sphere. Assuming that the in-plane birefringent field is weak com-

pared to the out-of-plane field (i.e., |Ω⊥| > |Ω‖|) the precession frequency of the

pseudospin is approximately dictated by the population imbalance of excitons and

polaritons (163). In Figure 4-6(c) we plot the oscillation frequency from 𝑔
(2)
𝐻,𝐻(𝜏)
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Figure 4-5: Photon statistics engineering with excitation ellipticity. 𝑔
(2)
𝐻,𝐻(𝜏) at

pump power 𝑃 = 3.5𝑃𝑡ℎ for a range of ellipticities 𝜖. Data for 𝜖 = 0 and 0.007 are
fitted by an exponential function (red line) 𝑔(2)𝐻,𝐻(𝜏) = 1+(𝑔

(2)
𝐻,𝐻(0)−1)𝑒−2|𝜏 |/𝜏𝑐 , data

for higher ellipticity are fitted with a product of a Gaussian function and a cosine
function 𝑔

(2)
𝐻,𝐻(𝜏) = 1 + cos (𝜔𝜏)(𝑔

(2)
𝐻,𝐻(0) − 1)𝑒−𝜋(𝜏/𝜏𝑐)2 where 𝜏𝑐 is correlation (i.e.,

dephasing) time.

and the experimentally measured energy splitting between the two counter-circular

polarisation components. Our numerical simulations of the splitting show excellent

agreement with the experiment.

While the frequency of the 𝑔(2)𝐻,𝐻(𝜏) oscillations is increasing linearly with the

pump ellipticity their amplitude drops to zero at high ellipticity as the pseudospin

becomes predominantly aligned towards circular projections (i.e., |S| ≈ |𝑆3|) con-

verging to a stable fixed point solution close to the poles of the Poincaré sphere.

Thus, the effective out-of-plane magnetic field Ω⊥ mitigates the role of the in-plane

effective field Ω‖ leading to the suppression of photon noise in the horizontal pro-

jection. Figure 4-5 demonstrates the effect of gradual decrease in 𝑔
(2)
𝐻,𝐻(0) with
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Figure 4-6: (a) 𝑔(2)𝐻,𝐻(𝜏) (black), 𝑔(2)𝑉,𝑉 (𝜏) (red), and 𝑔(2)𝐻,𝑉 (𝜏) (green) at 𝑃 = 3.5𝑃𝑡ℎ, 𝜖 =
0.028. (b) Calculated normalized pseudospin precession trajectory and its projection
into equatorial plane of the Poincaré sphere. (c) Oscillation frequency of 𝑔(2)𝑖,𝑗 (𝜏) (blue
triangles) plotted alongside with energy splitting (green circles) between LC and RC
polarized condensate. Solid red line represent simulated results. (d) Experimental
(triangles) and simulated (solid line) 𝑔(2)𝐻,𝐻(0) (black) and 𝑔

(2)
𝑉,𝑉 (0) (red) for different

pump ellipticities.

increasing ellipticity. In Figure 4-6(d) we plot 𝑔(2)𝐻,𝐻(0) and 𝑔(2)𝑉,𝑉 (0) and observe that

the photon bunching is approaching unity with increasing ellipticity. Therefore a
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delicate control over the exciton and polariton spin-imbalance offers a full range

of tuneability in photon statistics spanning from super-thermal at 𝜖 ∼ 0 to super-

Poissionian distributions, and highly coherent states at large 𝜖 > 0.2. Lets note here

that in the presence of a finite |Ω‖|, we have always observed the reported behavior

of the correlation functions.

As one can imagine, we can manipulate the exciton reservoir spin population 𝑋±

not only by changing the pump ellipticity, but also by varying the excitation pump

power. With increasing pump density the discrepancy between reservoir population

becomes gradually more significant even in the case of slight epllipticity of pump

polarization. This effect leads to an increase of the effective out-of-plane magnetic

field Ω⊥ and acceleration of Larmor precessions as evidenced in Fig 4-7. Here, with

a set initial pump polarization ellipticity, we can observe the change of correlation

function oscillation frequency with excitation density.

Figure 4-7: Condensate 𝑔(2)𝐻,𝐻(0) with the respect to excitation power. With the
presence of small ellipticity, the imbalance between the reservoirs becomes higher
with increasing pump power, giving rise to accelerating precessions.

4.2.4 Polarization switching and pinning

In Figure 4-8 we have shown the polarization resolved 1 𝜇s long time series of conden-

sate emission at 𝑃 = 1.6𝑃𝑡ℎ. While the mean condensate polarization is dominantly

pinned to the vertical projection, we have observed abrupt and completely random in

time condensate emission polarization switching events (indicated by green shaded
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areas). This type of behavior is present in many instances (not shown here) and the

number of switching events is random within the pulse.

As discussed before, emergence of finite cavity birefringence and the effective in-

plane magnetic field Ω‖ is location sensitive. Hence, in Figure 4-9 we have presented

𝑔
(2)
𝐻,𝐻(𝜏), 𝑔(2)𝑉,𝑉 (𝜏) and 𝑔

(2)
𝐻,𝑉 (𝜏) data taken from the different point on the sample at

𝑃 = 1.48𝑃𝑡ℎ. One may notice that the amplitude of the bunching, 𝑔(2)𝑖,𝑖 (0), is different

from what is presented in the Figure 4-4(a) for the same power. In Figure 4-10(a) we

have shown power dependence for the 𝑔(2)𝐻,𝐻(0) and 𝑔(2)𝑉,𝑉 (0), similar to what we have

presented in Figure 4-4(a). We would note here that the measurements in Figs. 4-9

and 4-10 are performed at a different sample location than those in Figs. 4-3,4-4 and

4-5,4-6 which is the reason for some quantitative, but not qualitative differences.

Figure 4-8: Measured time series (1 𝜇s excitation pulse) for condensate H (black)
and V (red) polarized emission. Here, we have observed switching (highlighted with
pale green rectangles) of intensity between the polarizations which contribute to the
large values of 𝑔(2)𝐻,𝐻(0).

As long as a finite birefringent field exists Ω‖ then one can expect the nonlinearity

of the condensate dynamics to pin the pseudospin parallel to this field. The results

in Figure 4-10(a) indicate the expected behavior with power, i.e. decrease of 𝑔(2)𝑉,𝑉 (0)

(red circles) to unity for 𝑃 > 1.35𝑃𝑡ℎ as more polaritons in the condensate become

vertically polarized while 𝑔(2)𝐻,𝐻(0) (black circles) increases. Imposed onto the plot, in

green triangles, is the 𝑆1 Stokes component power dependence which shows how one

of the polarizations (vertical, in our case) becomes dominant in the system. From

the measured DOP in Figure 4-10(b) we can see that the emitted condensate light,

right after the condensation threshold, is unpolarized and starts to become polarized

68



Chapter 4. Hanbury Brown and Twiss effect 4.2. Second-order correlation of condensate

Figure 4-9: Second-order correlation function of the condensate, measured with
polarization filtering at 𝑃 = 1.48𝑃𝑡ℎ. 𝑔

(2)
𝐻,𝐻(𝜏) (black), 𝑔(2)𝑉,𝑉 (𝜏) (red), and 𝑔

(2)
𝐻,𝑉 (𝜏)

(green).

Figure 4-10: (a) Experimentally measured 𝑔
(2)
𝐻,𝐻(0) (black circles) and 𝑔

(2)
𝑉,𝑉 (0) (red

circles) power dependence and corresponding time-integrated 𝑆1 component (green
triangles). (b) Corresponding power dependence of the condensate DOP. Pale yellow
background highlights the pump power range without polarization pinning (low
DOP).

after 𝑃 = 1.35𝑃𝑡ℎ when the pinning effect kicks in (7).

4.2.5 Dynamical mean field equations

The dynamics of the spinor polariton condensate order parameter is modeled through

a set of stochastic driven-dissipative Gross-Pitaevskii equations (Langevin type equa-

tions) coupled to spin-polarized rate equations describing excitonic reservoirs 𝑋±

feeding the two spin components 𝜓± of the condensate. The stochastic part of our

model (𝜃±) was formulated in Refs. (33; 154) in the truncated Wigner approxima-
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tion, which becomes valid above condensation threshold with large particle numbers

in the condensate ⟨𝑛⟩ ≫ 1, such that stimulated effects dominate over spontaneous

scattering events. We would point out that a more accurate treatment of dissipative

many-body quantum systems involves writing a density matrix for the polariton

field governed by appropriate master equations (165). This approach is beyond the

scope of this work where our modeling concerns the limit of large particle numbers,

where we show that complex nonlinear mean-field forces have quite dramatic effects

on the emitted photon statistics. The model reads:

𝑖
𝑑𝜓𝜎

𝑑𝑡
=

1

2

[︁
𝜈𝑉𝜎 + 𝑖 (𝑅1𝑋𝜎 +𝑅2𝑋−𝜎 − Γ)

]︁
𝜓𝜎 − 𝜈

Ω𝑥

2
𝜓−𝜎 + 𝜃𝜎(𝑡), (4.14a)

𝑑𝑋𝜎

𝑑𝑡
= −

[︀
Γ𝑅 +𝑅1(|𝜓𝜎|2 + 1) +𝑅2(|𝜓−𝜎|2 + 1)

]︀
𝑋𝜎 + Γ𝑠(𝑋−𝜎 −𝑋𝜎) + 𝑃𝜎,

(4.14b)

𝑉𝜎 = 𝛼1|𝜓𝜎|2 + 𝛼2|𝜓−𝜎|2 + 𝑔1

(︂
𝑋𝜎 +

𝑃𝜎

𝑊

)︂
+ 𝑔2

(︂
𝑋−𝜎 +

𝑃−𝜎

𝑊

)︂
. (4.14c)

Here, 𝜎 ∈ {+,−} are the two spin indices, 𝛼1,2 denotes the same-spin (triplet) and

opposite-spin (singlet) polariton-polariton interaction strengths and 𝑔1,2 are the cor-

responding interactions with the reservoir, 𝑅1,2 is the rate of stimulated same-spin

and opposite-spin scattering of polaritons into the condensate, and Γ is the polari-

ton decay rate, Γ𝑅 and Γ𝑠 describe the decay rate and spin relaxation of reservoir

excitons. In principle, scattering from the reservoirs to the condensate should be

dominantly spin-preserving (𝑅1) but in the presence of a (effective) magnetic field

(Ω𝑥) one needs to account for the possibility that particles from the opposite-spin

reservoir can scatter (𝑅2) into the condensate (150; 166). Some studies work under

the approximation that in optical traps the condensate is so well separated from the

background reservoir and that blueshift coming from polariton-exciton interactions

can be discarded, but recent studies (167) have shown that the reservoir is actually

not so distant from the condensate and therefore additional polariton condensate

blueshift coming from this background reservoir (𝑔1,2) should be taken into account.

For all results presented, we have chosen 𝛼2 = −0.2𝛼1 and 𝑔2 = −0.2𝑔1 (168). We

also include an energy dampening parameter 𝜈 = 1 − 𝑖𝜈 ′ according to the Landau-

Khalatnikov approach (33). Finally, spin-mixing (spin-relaxation) between the reser-
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voirs (Γ𝑠) should be taken into account as it can be evidenced as depolarization in the

cavity photoluminescence below condensation threshold (169; 170; 58; 164; 171; 172).

It is naturally quite challenging to understand the full picture of which parameters

contribute to different observed effects in experiment and thus we attempt at being

as inclusive as possible of different physical mechanisms.

Although the experiment deals with a birefringent field Ω‖ = (Ω𝑥,Ω𝑦)
𝑇 at a

specific angle we will, without any loss of generality, take the splitting to be between

horizontal 𝜓𝐻 = (𝜓+ + 𝜓−)/
√

2 and vertical 𝜓𝑉 = (𝜓+ − 𝜓−)/
√

2 polarized modes

represented by Ω𝑥 > 0 and Ω𝑦 = 0. The strength of the white complex-valued noise

𝜃𝜎(𝑡) is determined by the scattering rate of polaritons into the condensate,

⟨𝜃𝜎(𝑡)𝜃𝜎′(𝑡′)⟩ = 0, ⟨𝜃𝜎(𝑡)𝜃*𝜎′(𝑡′)⟩ =
𝑅1𝑋𝜎 +𝑅2𝑋−𝜎

2
𝛿𝜎𝜎′𝛿(𝑡− 𝑡′). (4.15)

The active reservoir 𝑋𝜎, which feeds the condensate with particles, is driven by

a background of high momentum inactive excitons 𝑃𝜎 which do not satisfy energy-

momentum conservation rules to scatter into the condensate. Assuming the simplest

type of rate equation describing the conversion of optical excitation power into an

inactive reservoir in the continuous wave regime we write:

𝑑𝑃𝜎

𝑑𝑡
= −(𝑊 + Γ𝐼)𝑃𝜎 + Γ𝑠(𝑃−𝜎 − 𝑃𝜎) + 𝐿𝜎. (4.16)

Here, 𝑊 is a phenomenological spin-conserving redistribution rate of inactive exci-

tons into active excitons and Γ𝐼 is the nonradiative exciton decay rate. Since these

inactive excitons also experience spin relaxation Γ𝑠 the polarization of 𝑃𝜎 will not

coincide with that of the incident optical excitation. As the experiment is performed

in the continuous-wave regime we can immediately solve the steady state solution

of Eq. (4.16) and plug it into Eqs. (4.14). For optical excitation parameterized as

L = 𝐿(cos2 (Θ), sin2 (Θ))𝑇 where 𝐿 is the power of the optical excitation and Θ can

be understood as a quarter waveplate angle in the experimental setup which deter-

mines the polarization of the incident light, since depending on the QWP orientation

the polarisation ellipticity of the excitation beam can be tuned, effectively changing

the pumping power for 𝑋𝜎 reservoirs, we can write the background inactive reservoir
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as, ⎛⎝𝑃+

𝑃−

⎞⎠ =
𝐿

𝑊 + 2Γ𝑠

⎛⎝𝑊 cos2 (Θ) + Γ𝑠

𝑊 sin2 (Θ) + Γ𝑠

⎞⎠ . (4.17)

Here, we have neglected Γ𝐼 since we assume nonradiative losses are much slower

than the redistribution rate of excitons 𝑊 ≫ Γ𝐼 .

Determining the parameters of Eq. (4.14) poses a challenge since they will depend

in a complicated way on both sample and excitation properties. To overcome this, we

implement a random walk algorithm which, in each step, calculates the root-mean-

square-error between the data from experiment and simulation. The algorithm starts

from a random set of parameters (appropriately bounded to remain physical) and

repeatedly takes a random step forward in parameter space which is kept if the error

is lowered. If the error rises, the step is discarded (go back to previous step) and a

new random step is tested. Performing 500 random initializations in the parameter

space, with each taking 300 random steps, we determine a set of parameters best

fitting the experimental results. The parameters used throughout the manuscript

are given in units of Γ except of 𝜈 ′ which is dimensionless: Γ𝑅 = 1.6; Γ𝑠 = 0.19;

𝑊 = 0.156; 𝑅1 = 0.0032; 𝑅2 = 0.0027; 𝛼1 = 0.00015; 𝑔1 = 0.00097; 𝜈 ′ = 0.077.

For Figure 4-4(a) and 4-6(c,d) we have set Ω𝑥 = −0.057 and −0.0072 respectively

as they correspond to different sample locations. This set of parameters are of the

typical values for our sample, and has been used for our previous works in which they

nicely matched the theoretical predictions with the observed experimental results.

The theoretical pump threshold value for linearly polarized excitation corresponds

to a threshold laser power 𝐿 defined as 𝑃𝑡ℎ = 𝑃±(𝐿𝑡ℎ),

𝐿𝑡ℎ =
2ΓΓ𝑅

𝑅1 +𝑅2 + 𝜈 ′(𝑔1 + 𝑔2)(1 + Γ𝑅/𝑊 )
. (4.18)

Disclaimer: the author contributed in developing the mathematical model for the

simulation discussed above by discussion with the Helgi Sigurdsson and providing

experimental data to check the simulation performance.
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4.2.6 Influence of residual ellipticity

In this section we investigate the effects of small detrimental ellipticity in the exci-

tation laser, and how it affects our results presented in Figure 4-4. In Figure 4-11(a)

we show the calculated zero time delay second-order correlation functions between

the linear polarization components (horizontal and vertical specifically) averaged

over 100 different realizations of the condensate (i.e., Monte-Carlo sampling) where

each realization is integrated over 10 ns. The whole lines are the same as in Figure4-

4(a) corresponding to a linearly polarized excitation Θ = 45∘ whereas the dashed

lines represent simulation with a slight ellipticity Θ = 46∘ (or alternatively, QWP

angle of 1∘). The circle markers are experimental data. In Figure 4-11(b) we show

the corresponding time-integrated pseudospin components. As expected, for a finite

ellipticty we see that circular polarization builds up with growing power due to the

power-dependent spin imbalance increasing in the reservoirs which provides differ-

ential gain and blueshift to the spins 𝜓±. The increase of the condensate circular

polarization 𝑆3 is accompanied by a decrease in the vertical linear polarization (i.e.,

𝑆1 becomes less negative) which results in reduction of the 𝑔(2)𝐻,𝐻(0) as evident from

the black dashed line in Figure 4-11(a).

Figure 4-11: (a) 𝑔(2)𝐻,𝐻(0) (black), 𝑔(2)𝑉,𝑉 (0) (red) and 𝑔
(2)
𝐻,𝑉 (0) (green) power depen-

dencies. Experimentally measured (circles) and theoretically obtained data with
purely linearly polarized excitation (solid line) and with slightly elliptically polar-
ized excitation (dashed line). (b) Theoretically obtained time integrated pseudospin
parameters with purely linearly (solid line) polarized excitation and slightly elliptical
(dashed line) excitation polarization.
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4.2.7 Single mode laser vs Polariton condensate

Comparison between the polarization resolved photon statistics of an optically trapped

polariton condensate versus a single mode laser (in our case M-squared Ti-Sapphire

laser with < 50 kHz linewidth when cavity locked) is a great way to show the princi-

pal difference between these light sources. Polarization resolved HBT measurements

for light from a single mode laser with horizontal polarization was conducted. The

results are shown in Figure 4-12. Above threshold, the total condensate intensity

follows Poissonian statistics, see Figure 4-3(a) similar to what is known for single

mode lasers. However, when we compare polarization resolved photon statistics of

a single mode laser to the condensate statistics presented, we see a clear difference.

Photon statistics for the laser do not depend on which polarization basis we resolve

it, contrary to the case with the optically trapped polariton condensate. This indi-

cates that the condensate spinor has rich dynamics, whilst single mode laser spinor

is stationary.

Figure 4-12: Comparison between experimentally measured polarization resolved
𝑔
(2)
𝑖,𝑖 (𝜏) for (H - horizontal, V - vertical, D - diagonal, AD - anti-diagonal, RC - right

circular, LC - left circular) polarization projections of a horizontally polarized single
mode laser (dashed lines with markers). The laser correlation results are compared
against the condensate 𝑔(2)𝐻,𝐻(𝜏) and 𝑔

(2)
𝑉,𝑉 (𝜏) pumped also with a linearly polarized

laser at 𝑃 = 1.5𝑃𝑡ℎ (dashed lines).

4.2.8 Effect of the trap geometry

It was found out, that another way to manipulate the photon statistics is to change

the optical trapping potential. Furthermore, we can break U(1) symmetry by mak-
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ing the optical trap elongated in some direction. If we would avoid sample locations

with structural strains, as can be judged by looking at integrated polarimetry mea-

surements, which shows us elevated DOP, and find the place on the sample where the

internal strain is small when pumped linearly, meaning that integrated 𝐷𝑂𝑃 ≈ 0,

we can observe the change within the photon statistics by changing the symmetry

of the optical trap. Figure 4-13 shows change in the photon statistics 𝑔(2)𝐻,𝐻(𝜏), for

traps schematically illustrated in the insets. By mere rotation of the elongated trap,

we show control of the photon noise present in the system. The direction of linear

polarization seems to follow the minor axis of the elliptical trapping potential. This

effect can be caused by photonic TE-TM splitting influencing trapped polaritons,

which results in fine splitting in the potential trap transverse modes (2). The devel-

oped model describes the effective magnetic field, emerged from TE-TM splitting

acting on the polariton pseudospin and for the trap ground state reads as:

Ωtrap ≃ −~𝑚|∆|𝛿𝜔
2

⎛⎜⎜⎜⎝
cos (2𝜃min)

sin (2𝜃min)

0

⎞⎟⎟⎟⎠ . (4.19)

Here, 𝑚 is polariton effective mass, 𝜃min is the angle of the trap minor axis from

the horizontal, and 𝛿𝜔 = |𝜔𝑥 − 𝜔𝑦| ∝ |𝑎−1 − 𝑏−1| is the absolute difference between

the trap oscillator frequencies along the major and the minor axis. It is necessary to

point out that the minus sign in Eq. (4.19) is written explicitly because the splitting

∆ < 0 in our sample (173).

4.2.9 The correlation function decay curve

The second-order correlation function for the thermal light sources with Lorentzian

or Gaussian spectra can be calculated with following equations

𝑔(2)(𝜏) = 1 + (𝑔(2)(0) − 1)𝑒−2𝜏/𝜏𝑐 ,

𝑔(2)(𝜏) = 1 + (𝑔(2)(0) − 1)𝑒−𝜋(𝜏/𝜏𝑐)2 ,
(4.20)

where 𝜏𝑐 is correlation time. The different shape of the coherence decay function is

attributed to the variety of the line broadening mechanisms. In our experiment we
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Figure 4-13: Control over the photon statistics by changing the trap geometry. In
the middle panel (red) 𝑔(2)𝐻,𝐻(0) when optical potential is a symmetric ring. In the
top panel, 𝑔(2)𝐻,𝐻(0) of condensate excited with horizontally elongated optical trap.
In the bottom panel, 𝑔(2)𝐻,𝐻(0) trap is rotated orthogonal to the case of the top panel.

observe the transition of second-order coherence function curvature with the respect

to pump power, as shown in figure 4-14. Just above condensation threshold 𝑔2(𝜏)

decays exponentially with 𝜏𝑐, indicating Lorentzian spectral line shape emission.

With increased polariton density, we observe change of the 𝑔2(𝜏) decay to Gaussian.

Previous studies (174; 175) describe the transition to a Gaussian decay. With the

introduction of a polariton-polariton interaction term, two limiting cases of weakly-

and strongly-interacting regimes were described. In weakly-interacting regime used

theoretical fit boils down to Schawlow-Townes formula, with exponential decay of

𝑔2(𝜏). In strongly-interacting regime polariton-polariton interactions along with

shot noise of condensate brings in Gaussian broadening into the system (39). In

our experiment, we look at 𝑔2ℎ,ℎ(𝜏) for horizontally polarized light, which as previ-

ously discussed strongly bunched due to the pinning of vertical component, and the

transition to Gaussian decay happens at 𝑃 = 1.135𝑃𝑡ℎ without bringing a decrease

in correlation time for this non-pinned polarization component. In addition, we see

resurgence of strictly exponential decay after pump power reaches 𝑃 = 1.4𝑃𝑡ℎ and
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reappearance of Gaussian decay after 𝑃 = 2.43𝑃𝑡ℎ. The decrease in coherence time

happens at around 𝑃 = 1.95𝑃𝑡ℎ mark, as shown in Figure 4-14(e). The results of the

𝜒2 test for the fit certainty is shown in the Figure 4-14(f). The theoretical modeling

for this data was not yet done, thus here we present only the results of experimental

data analysis.

Figure 4-14: (a-d) 𝑔2ℎ,ℎ(𝜏) is fitted with exponential (red) and Gaussian (green)
functions for pump powers 𝑃 = 1.35𝑃𝑡ℎ, 𝑃 = 1.51𝑃𝑡ℎ, 𝑃 = 2.05𝑃𝑡ℎ and 𝑃 = 3.24𝑃𝑡ℎ

respectively. (e) Correlation time power dependence extracted from 𝑔2ℎ,ℎ(𝜏) function
best-fit function. Blue points represent exponential and red points Gaussian fit. (f)
𝜒2-test results to determine the best-fit function.
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4.2.10 Conclusion

In summary, it was shown that whilst trapped polariton condensate PL above con-

densation threshold obeys a coherent photon statistics, its spinor projections may

demonstrate a statistical bunching of photons. Demonstrated spinor precessions and

spontaneous polarization switching regimes depending on the excitation parameters.

Influence of the optical trap geometry on the photon statistics is shown as well. The

variety of achievable photon statistical regimes encourage to explore the properties

of trapped polariton condensate further, bringing us to the next chapter, where we

explore Hong-Ou-Mandel effect of such condensates.
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Chapter 5

Hong-Ou-Mandel effect

A great advance in physics which signaled a new discrete jump in the understanding

of nature was the observation of two-photon interference. Although several groups in

the late 1980s (176; 177; 178) were competing to prove, arguably, the most quantum

phenomena, in the literature, the works of Chung Ki Hong, Zheyu Ou and Leonard

Mandels are commonly recognized (179). The essence of their findings can be de-

scribed as following: if two indistinguishable photons enter a lossless 50:50 beam

splitter simultaneously at the two input ports, they will always leave the beam

splitter jointly from one, or the other output port. This results in the so-called

"HOM dip" in the measured intensity correlation function between the two output

ports of the beam splitter.

In this chapter a brief theoretical introduction to the Hong-Ou-Mandel (HOM)

effect will be given, followed by a comparison of the effect for non-classical and classi-

cal light sources. Next, an outline of the experimental procedure for HOM detection

in polariton condensates will be given. Concluding the chapter, we will discuss the

observations seen in the experimental data taken for the polariton condensate in the

HOM interferometer, in different regimes of photon on statistics.
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5.1 Theory of Hong-Ou-Mandel effect

5.1.1 Beam splitter action

A seemingly simple optical device - the optical beam splitter (BS) - is an essential

element for observing the HOM effect. It is a device with two inputs (𝑎 and 𝑏), and

two outputs (𝑐 and 𝑑). When light enters a BS, it will be split into a transmitted

and reflected path, depending on the transmittance 𝑡 and reflectance 𝑟 complex

parameters. Here we should note that a real BS will have some absorption, but for

the sake of simplicity we consider it to be lossless here. Taking initially a classical

approach, the 50:50 BS, which we are going to consider from now on, has |𝑡| = |𝑟| =

1/
√

2. For this type of BS the electric field at output ports 𝑐 and 𝑑 can be described

as with electric field in input ports 𝑎 and 𝑏, such that

𝐸𝑐 = (𝐸𝑎 + 𝐸𝑏)/
√

2,

𝐸𝑑 = (𝐸𝑎 − 𝐸𝑏)/
√

2.
(5.1)

Note that here we have a phase relation between transmitted and reflected beam,

resulting in ±𝜋/2 phase shift between them, stemming from energy conservation for

such optical device.

The quantum description of light passing through the BS is done with bosonic

creation and annihilation operators (𝑎̂† and 𝑎̂). These operators obey the commuta-

tion relations [𝑎̂𝑖, 𝑎̂
†
𝑗] = 𝛿𝑖𝑗 and describe the electromagnetic fields in mode 𝑖, where

𝛿𝑖𝑗 is the Kronecker delta. The creation operator acting on the vacuum in this case

can be represented as follows

(𝑎̂†𝑖 )
𝑛|0⟩ =

√
𝑛!|𝑛⟩𝑖. (5.2)

.

Here |0⟩ and |𝑛⟩𝑖 represent the vacuum and n-photon in mode 𝑖 states, respec-
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tively. Accordingly, the 50:50 BS action in terms of these operators will be⎧⎪⎨⎪⎩𝑎̂ = 1√
2
(𝑐+ 𝑑)

𝑏̂ = 1√
2
(𝑐− 𝑑),

(5.3)

which is a back transformation in which we present input annihilation operators

with output annihilation operators.

5.1.2 Two-photon interference

Let’s assume two photons enter the system, one at each input of the 50:50 BS, and

these photons are distinguishable from each other. The distinguishability may come

from various characteristics, such as energy, polarization, temporal incidence, or

spacial mode overlap. We can write down the initial state as

|𝜓𝑖𝑛⟩ = |1⟩𝑎,𝐻 |1⟩𝑏,𝑉 = |𝐻⟩𝑎|𝑉 ⟩𝑏 = 𝑎̂†𝐻 𝑏̂
†
𝑉 |0⟩. (5.4)

.

Here we consider the situation where we have horizontally polarized light present at

port 𝑎, |𝐻⟩𝑎 and vertically polarized light at port 𝑏, |𝑉 ⟩𝑏. Incorporating this into

equation 5.3, we get the following result

𝑎̂†𝐻 𝑏̂
†
𝑉 |0⟩

BS−→ 1

2
(𝑐†𝐻 + 𝑑†𝐻)(𝑐†𝑉 − 𝑑†𝑉 )|0⟩ =

1

2
(𝑐†𝐻𝑐

†
𝑉 − 𝑐†𝐻𝑑

†
𝑉 + 𝑐†𝑉 𝑑

†
𝐻 − 𝑑†𝐻𝑑

†
𝑉 )|0⟩. (5.5)

From equation 5.5, an intuitive result is evident, which explains where photons

entering from different inputs will exit the system. When both photons leave the

BS from the same port pertain to the first and fourth terms, whilst when the two

photons exit from different exits corresponds to the second and third terms.

Now when light has the same polarization, for example Horizontal. We can

rewrite Eq. 5.5 with just index 𝐻, or omit this index completely. The equation now

reads
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𝑎̂†𝑏̂†|0⟩ BS−→ 1

2
(𝑐†𝑐† −���𝑐†𝑑† +���𝑐†𝑑† − 𝑑†𝑑†)|0⟩ =

1√
2

(|2⟩𝑐 − |2⟩𝑑). (5.6)

This gives destructive interference for the two photons exiting from different ports

and constructive interference for them exiting from the same port, and is the essence

of the two-photon interference of indistinguishable photons. As a side note, if we run

the similar analysis for the fermions, e.g. electrons, , we find that that |1⟩𝑎|1⟩𝑏
BS−→

|1⟩𝑐|1⟩𝑑, meaning that we will have particles exciting different ports rather then the

same one.

5.1.3 HOM of non-classical and classical light

The effect of two photon interference is most pronounced for non-classical, quantum

light sources. A visibility of the "HOM dip", which can be defined as

𝑉𝐻𝑂𝑀 = 1 − 𝑃𝑐𝑜𝑖𝑛

𝑃𝑑𝑒𝑡1𝑃𝑑𝑒𝑡2

, (5.7)

where, 𝑃𝑐𝑜𝑖𝑛 is the total coincidence probability corresponding to the joint photon

detection on both detectors, whilst 𝑃𝑑𝑒𝑡1 and 𝑃𝑑𝑒𝑡2 are the total probabilities of

SPADs register the photon detection (180). We can relate we values on intensity

correlation function, which are obtained through the measurements, by normalizing

the function on the count values corresponding to the delay times 𝜏 >> 0. This

delay, 𝜏 , should be long enough so that the correlation function comes to a plateau,

indicating absence of any correlations. This way we obtain a function of normalized

coincidence counts, which value at 𝜏 = 0 is effectively equal to 1 − 𝑉𝐻𝑂𝑀 .

The visibility of HOM dip 𝑉𝐻𝑂𝑀 = 100%, was shown for a variety of single pho-

ton sources. However, the theoretical prediction of the HOM dip visibility for laser

light has been shown to be 𝑉𝐻𝑂𝑀 = 50% (181), verified by experiments exploring two

photon interference for the classical light sources (182; 183). However, in order to

observe the “HOM dip”, the lasers entering port 𝑎 and 𝑏 of the BS have to be phase
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unrelated. This requirement stems from the nature of the “HOM dip” dynamics,

which are dictated by the mutual phase coherence between paths 𝑎 and 𝑏; therefore,

if the coherence is too high, the “dip” becomes incredibly broad and the dynamics

are too slow to be observed, as shown in Ref. (182; 184). This simplest solution is to

use two independent lasers (185; 186; 183), and alternative is to split the laser into

two paths and introduce dephasing into one or both of the paths (184; 182). It was

shown for the case of single laser, that the dynamics of HOM slope is too long to be

visible with standard intensity correlation measurements however, by controlling the

added phase noise for the beam at one of the entrance ports, the dip became resolv-

able through the experiment. In these experiments, the photons entering the beam

splitter were sharing the same characteristics - laser frequency stabilization, spacial

matching, and polarization filtering ensured that the degree of indistingushability

was as high as possible. However, due to the Poissonian statistics that the laser

obeys, random correlations lead to an increase in coincidence counts at zero-time

delay, resulting in decreased visibility of the HOM dip.

The use of the laser HOM interference shown to be a potential tool for appli-

cations in quantum communication systems and measurement device independent

quantum key distribution (MDI-QKD) protocols (187; 188; 189). The two photon

interference with classical light were also performed using two statistically dissimilar

photon sources (190; 191).

5.2 Experimental results

In order to study polariton condensate photon indistinguishably, an optical setup

depicted in Figure 5-1, was realized. Condensate emission was collected in trans-

mission geometry, from the substrate side of the sample was sent into the HOM

interferometer and was initially split into two paths: Path 1 couples directly into

the single mode fiber leading to input 1 of the fiber 50:50 BS, whilst Path 2 passes

through an optical delay before being coupled into input 2 of the fiber 50:50 BS. The

fibre BS the has two outputs coupled into single mode fibres leading to SPADs. The

SPADs are once again connected to the TCSPC electronics to detect joint photon

83



Chapter 5. Hong-Ou-Mandel effect 5.2. Experimental results

arrival. It is useful to note here, that by blocking one of the entrances to the fiber

BS, we effectively obtain a scheme of HBT interferometry with polarization filtering.

To ensure photon indistinguishability was as high as possible, co-orientated po-

larisers (P) were installed before the fibre inputs on both paths to ensure that

the light entering each port had the same polarisation. However, due to the non-

polarisation maintaining structure of the single mode fibers, this was not enough to

ensure that on the BS, the polarisation of light from both paths would be identical.

Therefore, an additional set of polarisation optics (HWP and QWP) were installed

after the prealigned polarizer in Path 1. The polarisation matching of both paths

was measured by coupling light from the fibre BS into the Stokes polarimeter, previ-

ously shown in Figure 3-7, which revealed that the light polarisation was altering in

the fibre. To correctly tune the polarisation, we first record the Stokes parameters

from Path 2, from one of the outputs. Then, the HWP and QWP were iteratively

adjusted on Path 1 to match the Stokes vector from Path 2, thus ensuring the polar-

isation of the light is identical at the BS from both paths. Due to the both outputs

being common to both inputs, it is only necessary to perform this procedure for one

of either output.

5.2.1 Laser HOM effect

Our previous investigation of polariton condensate polarization properties using the

polarimeter and time integrated Stokes parameters measuring techniques (7) showed

that in parameter space near condensation threshold and with nearly linearly po-

larized excitation condensate appears to be emitting unpolarized light 𝐷𝑂𝑃 ≈ 0.

There are two explanations for this phenomena. On one hand, light can have a

𝐷𝑂𝑃 ≈ 1 but due to rapid and spontaneous change of the polarization direction we

cannot resolve the exact polarization due to integrating nature of the measurement

averaging the true values. On the other hand, condensate can truly emit unpolar-

ized light, with some parts of it emit photons differently, similarly to what we would

have for a hot-body. To determine this effect and to study indistingushability of

condensate emitted photons in general, the scheme described in 5-1 was developed.

As discussed in Chapter 4, a starting point for an experiment involving a purely
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Figure 5-1: (a)Scheme for measuring HOM of optically confined polariton conden-
sates. (b-c) Calibration of the setup through polarimeter to compensate for polari-
sation drifting within the fibres leading to fiber BS.

Figure 5-2: Hong-Ou-Mandel effect measured for two independent lasers. (a) Shows
the normalized coincidences and dynamics of the HOM effect, for different laser
detunings ∆𝜔, caused by thermal drift of the laser cavities. (b) The effect of the
polarization degree of freedom on the "HOM dip" visibility. When polarization of
two lasers become orthogonal to each other visibility become 𝑉𝐻𝑂𝑀 ≈ 0.
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quantum effect, is to establish whether the experimental setup works as intended.

For that matter, as a method of setup calibration a known from the literature

result was obtained. The Hong-Ou-Mandel effect for two classical sources: two

independent Ti:Sapphire CW lasers, coupled into the fiber BS, was measured and

is shown in Figure 5-2(a). The observed result was photon anti-correlation, as was

expected from reference (185). The result when lasers had the smallest frequency

difference (blue, 35 MHz) shows a visibility of 𝑉𝐻𝑂𝑀 ≈ 40%, and the longest time

dynamics, as seen but the width of the dip. The visible oscillations in the correlation

function in the Figure 5-2(a) correspond to the evolving energy shift between the

lasers. For incoming photons with detuned frequencies, the effect on the HOM

dip visibility and shape has already been observed and discussed in the literature.

It manifests itself as a lower visibility at the 𝜏 = 0, a narrower dip in time, and

oscillations within the envelope of the HOM dip with the frequency equal to the

photon frequency difference. The frequency drift in this experiment is unavoidable

and happens due to the thermal expansion of one of the laser cavities.

The experimental observation of the HOM effect can be affected by variety of

parameters and factors (180). As such, in order to have the polarisation parameter

controlled, a pair of co-oriented polarizers were setup before each of the coupling

inputs into the fiber BS. The data acquired from the HOM interferometer as a

function of polarisation mis-match is shown in Figure 5-2(b). For this measurement

an additional HWP was introduced, allowing for rotation of the linear polarisation

of one of the lasers prior to coupling into the BS. Through the rotation of the

HWP, we were effectively changing the distinguishability of the photons through

polarisation state, which affected the visibility of the dip in zero-time delay. As the

result, the HOM dip becomes barely visible when the light entering the BS inputs

is orthogonally polarised, and had the highest visibility when the light entering the

BS inputs is co-polarised. The oscillations that are present in the map shown in

Figure 5-2(b) are once again, due to the evolving energy shift between the two laser

sources.
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5.2.2 Condensate HOM effect

In Chapter 4, it was discussed that the condensate photon statistics can differ greatly

to the photon statistics of a laser, especially when polarization filtering takes place in

the detection scheme. For this reason, , to establish a base level experiment for the

condensate, the initial measurement was prepared with strictly circularly polarized

excitation, and with the pump power shortly above the condensation threshold at

𝑃 = 1.1𝑃𝑡ℎ. In this regime, the condensate emits mostly co-circularly polarized light

as evidenced from our previous investigations (7) and from the literature (192; 125),

and additionally it seems to follow Poissonian photon statistics. Taking this into

consideration with other properties, such as, the seemingly single mode emission,

and the extended first-order spatial and temporal coherence; it would appear the

ground state condensate emits light which has similar properties to a laser. Now,

as was mentioned above, we have used two phase independent lasers to calibrate

the setup and achieve a reasonable HOM dip visibility. However, in similar fashion

a single laser can be implemented, if the phase uncertainty between the two paths

is achieved. For the condensate, the phase becomes uncertain outside this first-

order coherence time 𝜏 (1)𝑐 ≈ 200𝑝𝑠, which is much shorter than for a single mode

CW laser. For that reason, we use the delay-line in one of the paths (Path 2), in

order to implement a time delay between the two paths at the fibre BS and access

statistics outside of the phase coherence time. The dependence of the dip visibility

as a function of the optical delay between Path 1 and Path 2 of the interferometer

setup, is shown in Figure 5-3(a). It was observed, that the dip starts to emerge once

the time delay is greater than the coherence time of the condensate.

In Fig 5-3(b), the profile of correlation function value at 𝜏 = 0 is presented, giving

a maximum dip visibility of only 𝑉 ≈ 15%. To understand the dependence of "HOM

dip" versus the optical delay between the paths, a first order coherence measurement

was performed using the a time-delay Michelson interferometer equipped with a

retro reflector on the time-delayed arm, the result of which is shown in Figure 5-

3(c). The first-order coherence function here is extracted by analyzing the fringe

pattern visibility of condensate interfering with itself. The value at zero-time delay

is lower than unity is due to the fact, that within the region of interest of the
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Figure 5-3: (a) Normalized correlation function map with the respect to optical delay
∆𝑡 and electrical delay 𝜏 for the condensate PL excited with circularly polarized
pump at 𝑃 = 1.1𝑃𝑡ℎ. (b) Extracted normalized coincidence counts at 𝜏 = 0 versus
optical time delay ∆𝑡. (c) Corresponding visibility of first order coherence fringes
of the condensate interfering with itself with the respect to ∆𝑡.

interference pattern, the fringe visibility is different at the central area and outer

area of the observed pattern. Due to the outer parts of the pattern contribute with

lower visibility of the fringes, the coherence function value gets artificially lowered.

However, it does not play a significant role for this investigation. We note here,

that HOM dip for the condensate is not visible at the zero-time delay between two

paths, where the phase coherence is maximum. From the analogy for the laser light

we would expect to observe relatively broad HOM dip at this point, which becomes

narrower as we move out of the temporal coherence region through the process of

scanning of the delay line.

An example of a HOM dip, measured with the delay line in path 2 positioned
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way out of the condensate coherence time (𝑃 = 1.1𝑃𝑡ℎ, circularly polarized excita-

tion), is shown in Figure 5-4(a) (red markers). The black markers display the HBT

measurement for the same parameter space, and was done by blocking one of the

entrance ports to the fiber BS. Since all discussed properties of the condensate are

very similar to that of the single mode laser, the low visibility of the HOM dip is

unique for the condensate. If we consider the random spatial-mode fluctuation of

polariton condensates, whilst it would contribute randomly to the photon statistics

in 𝑔(2)(𝜏) HBT measurements, without delivering any particular features into the

intensity correlation function; for the measurement of the HOM effect, it can be

seen as imperfect spatial mode matching condition, and contribute to the elevated

coincidences at zero-time delay, and therefore, lowering the effective dip visibility.

Figs. 5-4(b-d) represent how the dip dynamics differ with the respect to the

diameter of the condensate trapping potential. Here, the condensate is still in the

ground state for all the different trap sizes, however, it is known that as the trap

size increases, polaritons tend to condense into the excited states, which brings more

complex dynamics for the consideration (193). This effect provides an upper limit

for the size of the optical confinement, in order to remain within the same regime

of condensate in the ground state. The visible difference of temporal slope, along

the 𝜏 axis here can be attributed to the change of mutual linewidth of the light

entering the fiber BS with the variation of the trapping potential size, as was shown

for first-order coherence for optically trapped condensates (121).

However, and interesting evolution of this effect was observed, for the same con-

ditions as in Figure 5-4(a), but when the condensate being excited with linearly

polarised light. Again, selecting a part of the sample where strain induced birefrin-

gence causes emission predominantly in the direction of effective in-plane magnetic

field Ω‖, similarly to top panel of Figure 4-5, the photon statistics get significantly

more affected by the presence of HOM effect. In Figs. 5-5 we show the photon statis-

tics measured in the HBT configuration of the setup (one path blocked) with black

line, whilst red line indicates correlations measured for the HOM interferometer con-

figuration. The value of the correlation function at 𝜏 = 0 gets significantly lowered

in the HOM configuration. This effect is visibly more enhanced, affecting the photon
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Figure 5-4: "HOM dip" for circularly excited polariton condensate at 𝑃 = 1.1𝑃𝑡ℎ.
(a) Example HOM dip (red), outside of the condensate coherence time and con-
densate HBT (black). (b-d) "HOM dip" with the respect to optical delay ∆𝑡 and
electrical delay 𝜏 for traps of different sizes, 14𝜇m, 10𝜇m and 9𝜇m respectively.

statistics of super-bunched light comparably stronger, then what we see for the light

with Poissonian photon statistics, when we pump the sample with circular light.

Figure 5-5: Correlation functions measured in the HBT (black) and HOM (red)
interferometer configurations. Difference between correlation function values at 𝜏 =
0 are 𝛿 = 0.76 and 𝛿 = 0.74 with excitation polarization ellipticity 𝜖 ≈ 0.01 (left)
and 𝜖 ≈ 0 (right) respectively.
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Let us now consider the case, when the cavity is pumped with elliptically polar-

ized light, and the emergent out-off plane magnetic field Ω⊥ is enough to send the

condensate pseudospin into precession. For this case, we have observed the periodic

revival of the HOM effect, when delay line is scanned. Due to the inherent oscillating

photon statistics present within the condensate as the spin processes, the process

of scanning the delay on one of the paths effectively bring the oscillations in and

out of phase on the fiber BS. A similar effect was observed through the macroscopic

modulation of the CW signal with square pulses, when the HOM effect for a laser

light source was studied (194). Figure 5-6 shows example maps with the HOM re-

vival. As expected the frequency of the revivals were affected by the frequency of

the pseudospin precessions, which increases in frequency from figure (a), to (c). In

the same way as before, the precession frequency is set through the variation of the

pump polarization ellipticity.

Figure 5-6: The revival of HOM dip visibility. The intensity oscillations in two
paths of the HOM interferometer induced by the pseudospin precession come in
phase and out of phase with the scanning of the optical delay ∆𝑡. This causes the
periodic change of HOM visibility 𝑉𝐻𝑂𝑀 through-out the scanning process. (a-c)
Maps corresponding to the cases when precession period is ≈ 354, 305 and 200𝑝𝑠,
induced by different excitation polarization ellipticities, respectively.
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Figure 5-7 shows how one of the maps HOM dip revival period corresponds to

the fast oscillations of the condensate pseudospin. In Figure 5-7(c) the extracted

period of precessions yields 𝑇 = 300𝑝𝑠, and this value directly corresponds to the

half period of dip revival that can be extracted from the map, and seen in Figure 5-

7(b). Moreover, due to the high precision of the delay line, through the revival of

the HOM dip, it becomes possible to observe the high frequency precession intensity

fluctuations which can no longer be extracted with the HBT setup due to limited

time resolution. This is demonstrated from the data recorded in Figure 5-6(c).

While for the other maps in this figure, HBT measurements still provide us with the

extractable oscillation data, the same measurements done in the regime of panel (c)

are limited by the TCSPC time resolution, thus the oscillations are not detectable

above the noise level. However, from the maps we can still indirectly tell that the

precession period is 𝑇 ≈ 200𝑝𝑠.

Figure 5-7: HOM dip revival period corresponds to the pseudospin precession fre-
quency. (a) HOM revival map, with the (b) extracted along 𝜏 = 0 revival half-period
of ≈ 150𝑝𝑠. It corresponds to the pseudospin full cycle period of 300𝑝𝑠, revealed
through HBT measurements at the same regime, although, it is also visible in HOM
scheme as a ripple in the revival map, with (c) showing example zoomed slice of the
map.
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5.2.3 Conclusion

The HOM effect observed for the classical light source - a single mode laser, yielding

the intensity correlation function dip visibility approaching 𝑉𝐻𝑂𝑀 ≈ 50%, is in a

stark difference to the results obtained for the optically trapped polariton conden-

sate, prepared in the most close to a laser regime, giving visibility of 𝑉𝐻𝑂𝑀 ≈ 15%.

With flexible tuning of the condensate excitation parameters, a superthermal pho-

ton statistics of polariton condensate PL can be reached. For this regime a signif-

icantly enhanced, when compared to the case of coherent photon statistics, HOM

effect is observed, drastically decreasing the intensity correlation function magni-

tude. Putting the condensate into spinor precessing regime reveal periodic revivals

of the HOM effect, allowing to observe the spinor precession on the frequencies for

which TCSPC time resolution is not enough. The theoretical framework as well as

publications regarding these new observations of HOM effect in trapped polariton

condensates is under preparation at the moment.

93



Chapter 6

Concluding Remarks And Future

Perspectives

For the investigation into polyyne chains, we have shown that the sharp peaks

emerging at low temperatures in the PL spectra of gold-stabilized carbon chains are

indicative of the exciton and trion transitions, based on the edge electronic states in

the chains. The triplet fine structure, that is very well seen at cryogenic temperature,

is essentially independent of the length of the chain, whilst the absolute energies of

the transitions increase for shorter chains. This observation demonstrates a potential

within of synthesized polyyne chains for optoelectronic applications, especially in

nanolasing and single photon emitters. Single molecule single photon sources are

of high interest (68) however, the initial data for the intensity correlation function

did not provide the characteristic photon anti-bunching. Further improvement of

sample deposition could potentially allow for extraction of oriented chains of specific

length, or tweezing out a singular chain could prove to be a step towards realizing

a quantum emitter.

In the work for optically trapped polariton condensates we have realized multi-

dimensional photon correlation tomography of spinor polariton condensate across its

full polarization basis. The findings demonstrate extremely long spinor dephasing

time of 𝜏𝑐 = 9.2 ns and the unique nonlinear mean field dynamics of the conden-

sate pseudospin on the photon statistics with tunable crossover from super-thermal

photon distribution to a coherent state. Such long dephasing time, 103 more than
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the polariton lifetime, allows the observed photon statistics to become influenced

by the nonlinear dynamical timescales of the coherent (mean-field) condensate. We

identify stochastic linear polarization switching due to the inherent cavity birefrin-

gence resulting in polarisation sensitive photon bunching, and self-induced Larmor

precessions in the GHz frequency range visible as oscillations in the linear polarised

photon 𝑔(2)𝑖,𝑗 (𝜏) persistent for more than 10 ns. Our findings allow for the evaluation

of the noise characteristics of spin-polarised polariton lasers, as well as, pave the

way towards exploiting nonlinear mean-field dynamics of strongly non-equilibrium

bosonic systems to fine control their photon statistics.

Trapped polariton condensates, in this sense, are a promising platform to study

the quantum effects of light sources with non-trivial and controllable photon statis-

tics. The experiments on the visibility of the Hong-Ou-Mandel effect revealed yet

new differences between the a polariton condensate, or polariton laser, and tradi-

tional laser light. Low visibility of the HOM dip raises the question of the condensate

spatial stability, whilst the increased effectiveness for the super-bunched light point

towards a high dependance on the photon temporal correlation. The revivals of the

HOM effect show an exciting way to further increase the frequency range of intensity

oscillation research. The theoretical modeling of the shown results, would reveal the

underlining physics for the photon statistical properties of the trapped condensates.

Many of the research results in this thesis can be explored further. Studying

these effects for polaritons in the trapped excited states (195), assessing a system

of multiple trapped polariton condensates could reveal exciting new properties to

study (196). The realization of the feedback, into spontaneously emergent polariza-

tion modes can be interesting to research system chaotical behavior (26).
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