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Abstract 

 

Heavy oil and bitumen resources are the most abundant hydrocarbon energy 

source worldwide. However, thermal enhanced oil recovery (EOR) methods are 

frequently applied to enhance their mobility and production due to their high 

viscosity. In addition, owing to the chemical dissimilarity of oils and various 

temperatures these oils are exposed to, as well as LF-NMR equipment limitations, 

the commonly used models fail to perform at a satisfactory level, making them 

impractical for use in heavy oil and bitumen reservoirs, and in environments with 

large temperature oscillations (e.g., mechanical systems). Information about the 

distribution of oil viscosity within the reservoir can be used to help the 

management of the thermal EOR project. Nuclear magnetic resonance (NMR) 

downhole tools provide a non-destructive way to determine the oil viscosity 

without recovering samples (core or produced oil) from the wellbore.  

 

A new analytical NMR viscosity model was developed and tested on a suite of 23 

Canadian heavy oils recovered from different reservoirs. The model was based on 

two NMR parameters – T2 logarithmic mean and relative hydrogen index. 

Subsequently, the model was tested on a single bitumen sample at a temperature 

range from 26-200 ℃. Results were compared to nine well-known NMR viscosity 

models from the literature, and in both cases, the enhanced model scored the most 

favorable statistical scores in this study. Furthermore, a simple model 

optimization procedure was presented, employing nonlinear least squares (NLS) 

regression. Experiments were carried out at temperatures corresponding to those 

in the hot steam injection EOR treatments. The same methodology can be 

extended for use in cyclic solvent injection (CSI), where the NMR model can detect 

oil viscosity changes when the solvent vapor dissolves into the oil. 

 

To make the viscosity prediction even more successful, we developed a 

framework that combines supervised learning algorithms with domain 

knowledge for synthesizing new features using only one NMR parameter – the T2 
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logarithmic mean. Two principal methods were considered, support vector 

regression (SVR) and gradient boosted trees (GBRT). Models were trained using 

the experimental data from our previous studies and literature data combining 

conventional oils, heavy oils, and bitumens from various reservoirs in Canada and 

the USA. The models' performance was compared against four other intelligent 

algorithms and four well-known empirical NMR models against which the SVR and 

GBRT-based models achieved the highest statistical scores. The proposed 

framework can also be applied to determine other physicochemical properties of 

oils by LF-NMR, where supervised learning is usually impractical due to the 

limited volume of data. 

 

Finally, water saturation determination is among the most challenging tasks in 

petrophysical well-logging, which directly impacts the decision-making process in 

hydrocarbon exploration and production. However, quantification of oil and water 

volumes is problematic when their NMR signals are not distinct. We developed 

two machine learning frameworks to predict relative water content in oil-sand 

samples using LF-NMR spin-spin (T2) relaxation and bulk density data to derive a 

model based on Extreme Gradient Boosting. The NMR T2 distributions were 

obtained for 82 Canadian oil-sands samples at ambient and reservoir 

temperatures (164 data points). The actual water content was determined by 

Dean-Stark extraction. The statistical scores confirm the strong generalization 

ability of the feature engineering LF-NMR model and indicate that this approach 

can be extended for the improved in-situ water saturation evaluation by LF-NMR 

and bulk density measurements. 
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Chapter 1 INTRODUCTION 

In this work, we studied unconventional reservoirs, namely oil sands, heavy oils, 

and bitumens. These hydrocarbons represent the most abundant unconventional 

hydrocarbon resources worldwide. Due to their high viscosity, thermally 

enhanced oil recovery (EOR) methods are often required for their production, 

followed by extensive refining processes for their downstream distribution. 

Therefore, the breakeven price for their production is very high, which stimulates 

the major oil producers to constantly invest in developing new technologies to 

decrease their exploration and recovery prices. In petrophysical well-logging, this 

involves optimizing and developing new methods for the improved in-situ 

characterization of these hydrocarbons.  

 

In light of the foregoing, I focused my research on advancing conventional and 

establishing new analytical and data-driven methods for in-situ characterization 

of heavy oil and bitumen resources, primarily from LF-NMR measurements. The 

heavy oil viscosity and reservoir fluid saturation distributions are two principal 

factors considered for the recovery of these resources. Therefore, this thesis aims 

to develop new workflows and models for predicting oil viscosity and water 

saturations from LF-NMR data. 
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1.1. Heavy oil and bitumen resources 

Bitumens and heavy oils usually form deposits in shallower geological settings, 

where due to the cold temperatures and a lack of the caprocks, they are being 

subjected to bacterial biodegradation. The depth of these deposits usually does 

not exceeds 4 km, while the temperatures are most often lower than 80 ℃1. In 

such conditions, the biodegradation process spans over geological periods, where 

hydrocarbon-degrading bacteria use lighter oil fractions for the metabolic 

processes, which gradually reduces the viscosity, initial mass, and gas-to-oil ratio 

(GOR) of the oil.  

 

Figure 1: Estimated worldwide heavy oil reserves by Country (copyright Schlumberger). 

Heavy oil and bitumen are among the most abundant hydrocarbon resources 

worldwide. They are principally different from other hydrocarbon resources 

because of their high viscosity, density, and increased concentration of heavy 

components such as asphaltenes, resins, and wax. Along with these components, 

heavy oils and bitumens often contain various heavy metals, sulfur, and nitrogen. 

Due to these properties, their economic value is considerably smaller than their 

lighter counterparts, as their recovery and refinement require the application of 
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costly technologies and time-demanding processing. However, their large in-place 

volumes and high oil market prices allow their profitable extraction and 

refinement, so major oil companies are acquiring licenses for their development 

as an alternative to the diminishing conventional oil resources. 

Studies estimate that heavy oil and bitumen reserves today amount to about 55% 

of the total world reserves (nearly 9 trillion barrels), while the most extensive 

deposits were found in Canada, Venezuela, and Russia1.  

 

1.2. Enhanced Oil Recovery (EOR) methods for heavy oil fields 

As heavy oils and bitumens have distinctively high viscosities, their recovery from 

the reservoir rocks is often aided with the use of various thermal Enhanced Oil 

Recovery (EOR) techniques such as hot steam injection or in-situ combustion via 

injection wells, where the heat exchange process reduces oil viscosity in the 

formation of interest2. In heavy oil reservoirs, the viscosity may vary up to a 

hundred times in vertical and horizontal directions. Therefore information about 

the spatial distribution of viscosity can affect not only the well placement and 

injection or production rates but mathematical reservoir simulations as well3. 

 

In literature, the EOR methods are generally divided into two groups: cold and 

thermal production. The cold production methods are economically and 

technically convenient recovery methods; however, they are limited to shallow 

deposits since they involve open-pit mining. Waterflooding was also occasionally 

used with some success, but in fields where oil viscosity was not more than 100 

cP, the sweeping efficiency of the waterfront reduces with an increase of viscosity, 

most notably due to the viscous fingering1. Vapor-assisted extraction (VAPEX) is 

another cold production method that proved efficient. It is based on miscible 

solvent vapor injection into parallel stacked horizontal wells. The miscible solvent 

vapor is injected into the upper well, where the vapor chamber is produced 

around the well. This causes the dilution of solvent vapor into surrounding heavy 

oil and bitumen, which leads to viscosity reduction and drainage of the 
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hydrocarbons to the extraction well beneath, with the help of gravity. This process 

is energy efficient since it is not based on thermal exchange and does not require 

the infrastructure for generating hot steam or water.  

 

In thermal methods, on the other hand, increasing the temperature in the well or 

reservoir causes viscosity to decrease, thus improving the heavy oil and bitumen 

mobility. For instance, in the steam-assisted gravity drainage (SAGD), the 

placement of the injection and producer wells is almost identical to the one in the 

VAPEX method; however, instead of the solvent vapor, hot steam is injected. After 

the hydrodynamic linking between wells is obtained by the initial steam treatment 

of both wells, the injection of steam is continued in the injection well, where 

hydrocarbons are affected by the steam expansion. The temperatures of this 

treatment can reach over 200 ℃, thus initiating a highly mobile gravitational 

drainage of bitumen and heavy oil towards the underlying producing well. In 

addition to the SAGD, cyclic steam stimulation (CSS) is used, where one well is 

used for injection and production. In this approach, hot steam is injected into the 

targeted formation and left to soak up and warm the oil, followed by the 

production cycle. Another well-known thermal method is in-situ combustion (ISC) 

or fireflooding, where an oxidizing gas (i.e., air) is injected into the formation, 

which causes the ignition of heavy oil in-situ. In this set-up, the portion of the 

hydrocarbon’s heavier components is utilized as a fuel for further propagation of 

the combustion front, where exothermal reaction heats the surrounding rocks and 

thus lowers the oil viscosity. An added benefit of ISC is that the heavier 

components are being consumed due to the thermal cracking, which results in 

upgraded oil.  

 

The success of the EOR project in heavy oil and bitumen deposits is primarily 

dictated by the initial viscosity of the hydrocarbons and their spatial distribution 

in the field. In steam EOR, for instance, monitoring of the steam front is often 

performed using periodic or permanent four-dimensional (4D) seismic surveying 

by collecting pressure and fluid saturation data within the field4. Monitoring based 
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on logging is also commonly implemented by fiber-optic distributed temperature 

sensing (DTS), which provides constant temperature monitoring along the 

wellbore. NMR measurements have been considered for monitoring the fluid 

saturation changes and wettability alteration assessing4,5. If this technology is 

used for reservoir monitoring, NMR logging could also be used as a continuous, 

non-invasive option for monitoring viscosity variations and changes due to 

temperature changes in the reservoir. 

 

1.3. NMR theory review 

1.3.1. Spin-lattice (T1) and spin-spin (T2) relaxation 

The hydrogen atom in its core contains a single proton with a positive charge (H+). 

Protons have spins and they exhibit magnetic behavior, which is why the 

orientation of their spins can be manipulated by introducing an external magnetic 

field. For instance, if a magnetic field (B0) is introduced to the H+ proton-containing 

system, the proton spins will tend to align along the direction of the B0 field due to 

their magnetic field. The quantum theory posits that the protons will reconfigure 

to a low or high energy state in such a setup. At this point, the difference between 

the number of protons in high and low energy states will generate the total or bulk 

magnetization M0 that NMR tools can measure. 

 M0 = N
γ2ℏ2I(1 + I)

3(4π2)kT
B0 (1) 

where N is the number of protons for unit volume, I is the quantum spin number, 

T is the temperature in Kelvins, and k and ℏ are Boltzmann’s and Planck’s 

constants, respectively. The polarization of protons is not immediate but instead 

grows by a specific time constant. This constant is called spin-lattice or 

longitudinal relaxation time (T1). As the polarization is exponential, and under the 

assumption that the polarization orientation transpires along the z-axis in 3D 

space, then: 
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 Mz(t) = M0 (1 − e
−t
T1) (2) 

where t is polarization time, and Mz(t) is polarization magnitude along the z-axis 

at the time t. The T1 time represents a moment at which ~63% of the 

magnetization is reached. At three T1, about 95% of magnetization is reached.  

 

Figure  2: Flowchart of a typical NMR relaxation experiment, illustrating the 

proton polarization steps 

For nuclear magnetic resonance to occur, it is necessary to perform the pulse 

tipping of the protons. While protons are polarized along the B0, an additional 

short radio-frequency oscillating pulse (B1) is applied to the system. The B1 

Larmor frequency (f) must correspond to the Larmor frequency of the spins to 

achieve the resonance. The tipping angle (θ) is defined as:  

 θ = γB1τ (3) 

where τ is the period when the B1 is applied to the system. The tipping angle can 

be controlled by both B1 and τ. In practice, the first B1 pulse tips the proton system 

into the perpendicular plane (x, y) relative to the B0 (z), thus θ = 90o. At this point, 

the protons are precessing about B0 and are in phase, and the NMR device can 

detect their signal. However, immediately as the B1 stops, the protons start to 

dephase due to the B0 magnetic-field inhomogeneity and molecular tumbling, 
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usually at an exponential rate. Therefore their signal decays at the particular time 

constant (T2*) and is called free induction decay (FID). 

 

Fortunately, the dephasing due to the B0 inhomogeneity can be reversed by adding 

the B1 pulse (θ = 180o) after τ time elapsed from the first pulse (θ = 90o). The 

second pulse flips the protons, which reverses the dephasing process, meaning 

that the protons will return to the same phase after τ time elapsed from the second 

pulse. This subsequent pulse is referred to as a ‘refocusing pulse.’ When spins 

return to the same phase, the ‘spin echo’ signal is produced. The NMR device can 

be configured to produce a series of refocusing pulses, thus generating a series of 

spin echoes. This series or sequence of refocusing 180o pulses is known as Carr-

Purcell-Meiboom-Gill (CPMG) pulse sequence, while the recorded sequence of 

echoes is called the ‘spin echo train’ 6.  

 

Although the CPMG pulse sequence can reverse the effect of B0 field 

inhomogeneity, the dephasing of spins due to molecular tumbling and diffusion is 

irreversible. Since the dephasing is mainly due to the interaction of spins, the 

decay of magnetization in the horizontal plane (x, y) is called spin-spin relaxation, 

or transversal relaxation, as the magnetization is in the transversal plane relative 

to B0. The time constant associated with the decay rate is T2 relaxation time.  

 Mxy(t) = Mxy(0) e
−t
T2 (4) 

where Mxy(0) is magnetization magnitude at t=0. According to Equation 4, for one 

T2 time constant, the magnitude of Mxy will drop to ~37% of its initial value, and 

after three T2 constants to ~95%. 

 

1.3.2. CPMG pulse sequence configuration and NMR data processing 

The CPMG pulse sequence consists of a 90° initial pulse that tips the polarized 

protons into an x, y-plane, followed by several refocusing 180° pulses. The quality 

of the obtained CPMG decay data, its inversion, and the quality of interpretation 
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are strongly dependent on the configuration of the CPMG sequence. The principal 

controlling parameters include the time between two pulses or echo spacing (TE), 

the polarization time or waiting time (TW), the number of pulses or the number 

of echoes (NE), and a number of CPMG trains (NT).  

 

Setting an NMR tool to a short echo spacing (TE) will influence the signal-to-noise 

ratio (SNR) twofold; first, the density of spin-echoes within a train will increase; 

second, the echoes will be recorded earlier. Consequently, this leads to increased 

SNR. However, the experiment time will increase proportionally when the number 

of echoes (NE) increases. The same is true for the number of trains (NT) and 

waiting time (TW). It should be noted that TW should be configured according to 

the sample or reservoir interval and the purpose. If the goal is to characterize 

heavy oil and clay-bound water, the TW can be decreased since protons will return 

to equilibrium much faster than pure water or light oil.  

 

The representation of the decaying echo train in the time domain is usually 

obtained by the Laplace Inverse Transform (ILT)7, whereas the output of a T2 

distribution is obtained (Figure 3). However, the inversion of the NMR signal 

represents the ill-posed problem since minor perturbations (i.e., noise) in the 

measurements can substantially impact the T2 distribution form, that is, the 

stability of the solution. A stable and unique solution can be obtained if the 

inversion of the signal is performed numerically. In such a case, the representation 

of the T2 decay is achieved from echo-fitting. To simplify the echo-fitting, the 

discretization of the T2 decay signal can be performed, where the predefined 

number of discrete T2i relaxation times correspond to individual exponential 

decay. Then, the set of echo trains can be expressed as a system of linear equations 

where each equation corresponds to an individual echo train. Since the fitting is 

performed to the sum of multi-exponentials, the stable solution can be obtained 

by solving non-negative least squares. The standard approaches are Lawson-

Hanson and Tikhonov regularization8.  
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Figure  3: (A) Raw T2 NMR relaxation data and (B) T2 data after inversion. 

 

1.4. Oil viscosity 

1.4.1. Conventional measurements of oil viscosity  

Viscosity is a physical fluid property that reflects the amount of internal friction of 

a fluid. In other words, the fluid's viscosity indicates the magnitude of the 

resistance to flow. Mobilizing a fluid requires a certain amount of force, and the 

rate of change of the induced deformation can be measured in function of time. In 

fluids, since viscous forces control the flow velocity, we measure the flow velocity 

for the applied amount of force or applied amount of shear stress. Bryan et al., in 
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their work, link the relationship of rheological viscosity measurements with 

Eyring’s theory of viscosity, which is also consistent with the Bloembergen-

Purcell-Pound (BPP) NMR relaxation model9,10. As the fluid undergoes shearing 

deformation, the rate of shearing is proportional to the applied shear stress 

(Equation 5). 

 τ =  η ∙  γ (5) 

where τ presents the amount of shear stress applied to the fluid, γ stands for the 

shear rate, and η is the fluid viscosity. Based on the Eyring’s theory of viscosity, 

molecules in fluids are structured in lattices, while intermolecular space remains 

vacant but not spacious enough for other molecules to shift through readily11. 

However, if force is applied, the molecules will reconfigure their positions until 

the vacant space becomes large enough for another molecule to enter.  Eyring 

proposed an analytical model for such behavior (Equation 6) 

 𝜂 = (
𝛿

𝑎
)

2

∙
𝑁ℏ

𝑉
∙ 𝑒(

∆𝐺0
𝑅𝑇

) (6) 

where δ is intermolecular layer distance, a is the distance between the vacant 

space and a molecule, N is Avogadro’s number, ℏ is Planck’s constant, and V is a 

fluid's molar volume G0 activation energy, R is the universal gas constant, and T is 

the absolute temperature. Heavy oils and bitumens comprise long chain-like 

molecules, cyclic paraffin, and branches originating from heavy components. To 

mobilize these molecules, more activation energy is required (G0) since the 

attractive forces of surrounding molecules hinder the movement of molecules 

attempting to occupy the vacant space. In rheological measurements of heavy oils 

by a cone and plate viscometers, this resistance to flow translates to high shear 

stresses. From Equation 6, it can be observed that the temperature is in an 

exponential relationship with viscosity. If we apply heat to the heavy oil, the heavy 

components will gain more energy while the intermolecular distance will increase, 

enabling the less restricted motion of molecules. This is also consistent with 

rheological viscosity measurements, where for fixed shear stress and with an 

increase in temperature, we observe increased shear rate9. Equation 6 can be re-

written by substituting constants (Equation 7). 



30 

  

 η = A ∙ e(
Ea
RT

) (7) 

where A is a constant and Ea is the viscous free energy of activation. In this 

Arrhenius-type equation, the values of Ea and A vary for different oil samples. 

These variations are associated with molecular weight variation of different oil 

components and their chemical composition and structure11. These variations 

may be substantial since the composition of heavy oils and bitumen, in particular, 

can be significantly different, indicating that derivation of the general viscosity 

model is challenging.  

1.4.2. Oil viscosity by LF-NMR measurements 

The oil is a blend of a diverse range of liquid hydrocarbons with inconsistent 

molecular structure 12. When it has a higher proportion of complex high molecular 

weight compounds such as asphaltenes and resins, oil viscosity will be higher, 

signifying that viscosity reflects oil's chemical complexity13. This natural 

inconsistency of oil compositions elicits a constant demand for the development 

of new techniques for their efficient characterization. In recent years, the wave of 

innovation has led to the application of low-field nuclear magnetic resonance (LF-

NMR) tools to characterize hydrogen-bearing liquids due to their ability to rapidly 

convey a series of contactless, non-invasive experiments. 

 

To relate a fluid viscosity to NMR relaxation, it is necessary to comprehend and 

model the molecular interactions. Equations 6 and 7 demonstrate that viscosity 

can be expressed without macroscopic flow or shearing (Equation 5). These 

findings are consistent with a theoretical Bloembergen-Purcell-Pound (BPP) NMR 

relaxation model, associated Debye-Einstein-Stokes spherical molecules model, 

which anticipates different rotational correlation times (τc) for various molecule 

sizes 10,14,15. The correlation time represents the mean time required for a 

molecule to rotate one radian and is a crucial parameter for determining 

microviscosity. It is also a fundamental component of the BPP relaxation model. 
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Based on this relationship, one can study the association of T2 relaxation with 

viscosity15. The physics of this relationship is discussed in section 2.2 (Fuel).  

 

As previously mentioned, the T2 relaxation distribution after mathematical 

inversion can be represented in a time domain. Distributions of T2 relaxation 

between different fluids can be compared using a mean T2 distribution time, such 

as T2 logarithmic mean (T2lm). When fluids are measured in a bulk state, the 

primary relaxation mechanism will be bulk relaxation (T2B), which is due to the 

energy exchange of the H spins and diffusion. Straley et al.16 and Coates et al.6 have 

experimentally shown that the T2B is proportional to the ratio of temperature (T) 

and viscosity (η): 

 T2B ∝
η

T
 (8) 

Since the relaxation times of light oils, water and gases have long relaxation times, 

and high viscosity fluids such as heavy oils have short relaxation times, the T2B and 

T2lm can be correlated with oil viscosity16–18. Although this relationship is used as 

a foundation for nearly all existing NMR viscosity models, it only works well for 

the light and medium viscous oils (~1-800 сP)19 composed of lighter 

hydrocarbons with a more straightforward chemical structure. In the case of 

heavier oils, the T2 relaxation deviates from the classical BPP model, and the 

relationship described in Equation 8 alters significantly.  

In the past 30 years, many analytical NMR viscosity models have been proposed 

for characterizing crude oil. However, the reports in the literature show 

inconsistency in the prediction accuracy of these models due to three main 

reasons: use of the light oil NMR models for the prediction of heavy oil 

viscosity16,18,20,21, use of models (including heavy oil models) without prior tuning 

for a given reservoir or a suit of oils, and due to use of ambiguous mathematical 

procedures for model tuning3,22,23. Moreover, there were several attempts to 

develop a “universal model” for in-situ heavy oil viscosity prediction aiming to 

estimate viscosity in the formations with weak prior knowledge about the oil 

properties22–25. These models have default parameters derived for heavy oils from 
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a particular oil field. However, when applied to different heavy oils, they generate 

significant prediction errors, in some cases over a factor of three23. To develop a 

universal analytical NMR viscosity model for systems with oils of various 

compositions would be contradictory to Debye-Stokes-Einstein’s findings stating 

that different correlation times are expected for different molecule sizes 14. 

However, for the order-of-magnitude in-situ viscosity evaluation, existing 

analytical models can be improved to a degree where more reliable estimates can 

be utilized to optimize the decision-making process for viscosity variation 

monitoring during EOR projects.  

 

Although LF-NMR technology has been proved to be a viable tool for observing 

differences in variable viscosity oils, numerous constraints arise as a consequence 

of not only the embedded chemical complexity of oils and limitations of LF-NMR 

devices but also from analytical tools and models used for the interpretation of 

experimental results 23,25–29. Since the former two are technologically challenging 

to change, one can attempt to improve the analytical tools and frameworks using 

new mathematical approaches. In such circumstances, the supervised learning 

(SL) methods have been proven helpful in developing more reliable mathematical 

models in many relevant fields such as fuel processing, petrophysical studies of 

porous mediums, and oil viscosity monitoring equipment in mechanical systems 

30–34. 

1.4.3. LF-NMR oil viscosity measurements in other industrial fields 

The application of NMR viscosity models is not relevant only for petrophysical 

well-logging. One potential application is in fuel processing, where there has been 

a surge for the last few years in the development of fast methods for the 

characterization of petroleum fractions by LF-NMR35. Among many studied 

physicochemical properties, the oil viscosity showed to be of the principal 

importance in determining the rate of interaction with fuel during combustion 

processes in internal combustion engines 36,37. In these studies, the LF-NMR 

predictive models were typically derived using multivariate calibration with 
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partial least squares (PLS) regression or artificial neural networks (ANN), which 

proved efficient. However, in nonlinear datasets, the reports in the literature show 

that PLS did not provide satisfactory accuracy, whereas ANN tended to overfit the 

data, thus leading to poor model generalization38,39. In the LF-NMR examination of 

petroleum fractions, this nonlinearity can occur due to their chemical intricacy, 

leading to the degradation of model forecasting performance14. 

 

Moreover, in mechanical systems (tribosystems), viscosity reflects the oil's 

capacity to render the sufficient thickness of the lubricating film between the 

surfaces exposed to friction. In order to efficiently buffer the rate of machinery 

wear, the oil selection is made under the speed-load and temperature conditions 

of the system40. The prevention of malfunctions in tribosystems is usually 

performed by monitoring oil viscosity, where its relative increase may indicate 

excessive oxidation or contamination of the oil by other fluids. In contrast, its 

decrease may indicate the beginning of a thermal cracking process, occurring at 

high temperatures41. In earlier studies, LF-NMR measurements were proposed as 

an alternative to conventional monitoring approaches that involve direct-contact 

instruments based on vibration, acoustic, and micro-displacement methods 34. In 

circumstances where these instruments would be difficult to utilize, the LF-NMR 

tools could be used instead for non-invasive, real-time viscosity monitoring34,42,43. 

As the operating conditions of these systems may lead to significant oil viscosity 

fluctuations, the robust data-driven or analytical NMR model could be used to 

measure the fluctuations accurately and, in that manner, help in the early 

detection of equipment failure. 
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1.5. Water saturation 

1.5.1. Water saturation by resistivity measurements 

One of the primary purposes of petrophysical formation evaluation is the 

quantification of hydrocarbon and water saturations. To properly evaluate the 

volume of hydrocarbons, it is necessary to determine water saturation 

beforehand, since generally: 

  𝑆𝑜 = 1 − 𝑆𝑤 (9) 

where So is oil saturation and Sw is water saturation. Conventionally, in well-

logging practice, the water saturation was determined using resistivity logs, and 

depending on the reservoir type, resistivity data would be used in combination 

with other standard logs such as density (RHOB) and neutron (NPHI)44. The 

widely used empirical model for water saturation estimation in conventional 

hydrocarbon reservoirs was developed by Archie45 (Equation 12).  

 F =
R0

Rw
=  

a

φm
 (10) 

 Ir =
Rt

R0
=  

1

Sw
n

 (11) 

 Sw = √
aRw

Rtφm

n

 (12) 

In Equation 10, F is a formation factor, R0 fully water-saturated rock resistivity, Rw 

brine resistivity, φ fractional porosity, a and m are tortuosity coefficient and 

cementation exponent, respectively. In Equation 11, Ir is the resistivity index, Rt is 

rock resistivity, R0 is the resistivity of fully water-saturated rock resistivity, Sw is 

fractional water saturation of the formation, and n is the saturation exponent. 

Finally, Equation 12 presents Archie’s water saturation model, which is obtained 

by combining Equations 10 and 11. The m, n, and a are known as rock resistivity 

parameters. While most of the parameters can be obtained from conventional logs, 

particular attention is required to calibrate a, m, n. These are obtained from 

laboratory-controlled resistivity tests and subsequent least squares regression.  
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Archie’s equation was successfully used in systems with simple, uniform pore 

space saturated by water46. However, issues arise in reservoirs with large 

amounts of clay-bound and capillary-bound water, strong variations of salinity 

with depth, and formations containing clays or conductive minerals such as 

pyrite47,48. This is also true for Canadian oil-sands49. In these terms, the presence 

of bound water and clays will cause the underprediction of OOIP, while the 

variable salinity can cause either overprediction or underprediction of OOIP.  

 

1.5.2. Water saturation by LF-NMR measurements – T2 cutoff 

approach 

Since the LF-NMR tools measure the response H+ protons of the fluids and are 

therefore lithology-independent, most of the issues relevant for resistivity logging 

can be avoided. Another advantage of NMR measurements is differentiating 

between irreducible water saturation (capillary and clay bound water) and 

producible fluids. The primary assumption is that larger pores are saturated by 

producible fluids, where the flow can occur in the presence of pressure gradient, 

while smaller pores contain fluids trapped by capillary forces or are bound within 

the lattice of clay minerals. If this condition is true, a T2 cutoff value (location in T2 

distribution) can be defined, separating the T2 distribution to signals 

corresponding to clay-bound, capillary-bound and producible fluids. Integration 

of the separated regions can be performed and related to producible and bound 

fluid volumes.  Straley et al.,16 were the first to empirically identify the universal 

T2 cutoffs for clay-bound water at 3 ms in conventional sandstones. The cutoff 

value was determined by comparing the clay-bound water calculated from the 

ratio of cation exchange capacity and pore volume (Qve) with cumulative T2 

distribution porosity, using sandstone core plugs from 45 American and European 

oilfields. To evaluate the producible porosity or free-fluid index (FFI), it was 

necessary to perform NMR T2 measurements on core samples in two states – 

cleaned and fully saturated state (Sw 100%) and after centrifuging to the 



36 

  

irreducible water saturation (Swirr). These experiments were performed for the 

suit of 86 sandstone samples, and the universal cutoff was found to be at 33 ms16.  

 

Figure 4: An example of the determination of T2 cutoff value by LF-NMR and centrifuge. 

The orange curve presents the T2 distribution of the 100% water-saturated sample (Sw 

100%). The purple curve presents the T2 distribution of the sample centrifuged to 

irreducible water saturation (Swirr). 

 

Although these universal cutoff times work for conventional sandstone reservoirs 

where porosity and permeability are generally uniform, many recent studies have 

shown that T2 cutoff values vary dramatically for reservoirs of other lithologies, 

such as shales, carbonates, oil-sands, coals, and tight sandstones50. In addition, 

even if the T2 cutoffs are determined experimentally, it is not recommended to use 

a single T2 cutoff for the same well or oilfield since the T2 distribution can vary 

drastically both vertically along the well and laterally, which would potentially 

cause erroneous estimation of OOIP50.  
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1.5.3. Water saturation by LF-NMR measurements in oil-sands 

The T2 cutoff determination for oil-sands is even more problematic for two 

principal reasons. First, the centrifuging to Swirr cannot be adequately performed 

since the sand exposed to severe centrifugal forces will lose its structure and 

native filtration properties, rendering the subsequent NMR experiments 

inadequate. Second, the heavy oil and bitumen in oil-sands have a fast T2 

relaxation time and produce a signal in the same region as capillary and clay-

bound water, causing a significant overlap. One of the well-known approaches that 

had considerable success in addressing this effect is based on NMR spin-spin 

relaxation (T2) distribution peak deconvolution51. The concept behind this 

approach is that viscous bitumen relaxes faster in an NMR distribution than 

surface-bound water, so early T2 signals are attributed to bitumen, and later T2 

signals correspond to the water saturation in the rock.  

 

Assuming that the oil-sands are largely water-wet, water will generally be found 

in the corners of connected sand grains and potentially as a thin film over the grain 

surface. The principal relaxation mechanism of hydrogen protons in high viscosity 

oils and bitumen would be bulk relaxation, while water would strongly influence 

surface relaxation, with bulk relaxation playing a minor role in the water T2 values. 

Bulk relaxation and surface relaxation times of water and oils are unique for the 

most part, that is, the oil molecules generally relax quicker relative to the water 

molecules. When the NMR T2 distribution contains discrete oil and water 

responses (Figure 5A), a simple cutoff method can be applied to separate their 

amplitudes and quantify their volumes.  
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Figure  5: Representative NMR T2 distributions of two oil-sand samples. (A) An example 

of distinct oil and water signals where a simple cutoff method can be used for oil-water 

separation. (B) An example of NMR T2 distribution with overlapped oil and water signals 

where deconvolution with T2 cutoff cannot provide a satisfactory solution. Black vertical 

dashed lines present potential cutoff times. DS-w and DS-o are percentages of water and 

oil by Dean-Stark, respectively, relative to solids. 

However, in fines and clays, where pores are tiny, the water protons relax faster 

due to the surface relaxation at the water-rock interface, thus generating the signal 

in the fast-relaxing part of distribution where it can overlap with the signal 

originating from heavy oil and bitumen (Figure 5B). In addition to that, the 
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diffusion coupling effect may further decrease the interpretability of the oil and 

water signals. This effect occurs in saturated and connected micro- and 

macropores when water is in diffusional exchange, causing the change in the 

relationship between T2 relaxation and pore size distribution52. In strong 

diffusive-coupling conditions, macro- and micropore water signals will merge into 

a single peak, rendering the single T2 cutoff and deconvolution approach 

inaccurate53. Another limitation of this approach is that it requires the separate 

determination of water and oil NMR amplitudes and the independent 

measurement of their volume or mass.  

 

Alternative methods involve 2D LF-NMR measurements, where instead of using 

one NMR parameter (i.e., T2 relaxation), additional parameters are employed (i.e., 

T1 relaxation or diffusion) to obtain so-called 2D NMR maps54–56, which can 

theoretically help to separate these overlapping bitumen and water signals. 

Application of 2D maps showed considerable success in fluid saturation 

evaluation, compared to 1D T2 relaxation distribution analysis, since T1 relaxation 

or diffusion of reservoir fluids can be sufficiently different, thus enabling relatively 

simple separation of their signals. Unfortunately, 2D NMR is slower and more 

expensive to run, and there can still be instances where these signals are not 

distinct, in which case estimation of fluid types and fluid volumes can be 

challenging and require advanced analysis involving blind-source signal 

separation (BSS), clustering algorithms, and a certain degree of knowledge in 2D 

NMR maps interpretation57. 
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Chapter 2 Heavy oil viscosity prediction at high temperatures 

by low-field NMR relaxometry and nonlinear least squares 

 

2.1. MOTIVATION 

Evaluation of crude oil viscosity from LF-NMR data has been proven to be a viable 

alternative to laborious and time-consuming conventional measurements, which 

require sample recovery. However, this work shows that for most heavy oil 

correlations10,12–14, accuracy degrades dramatically with the temperature 

increase, making them unreliable for continuous viscosity monitoring in oil wells. 

Another problem commonly seen in practice is vertical and horizontal anisotropy 

of the oil viscosity within the same heavy oil reservoir and sometimes the same 

well3,59, meaning that the NMR model must be robust enough to provide 

satisfactory predictions within the group of the chemically different heavy oil 

samples.  

In this work, we derived a new enhanced NMR viscosity model and three key 

improvements: 

 Enhanced prediction of viscosity for the suite of 23 heavy oils with varied 

dynamical viscosities (70–21,600 cP) in comparison to the models 

published in literature; 

 Enhanced prediction of  viscosity for the JC bitumen sample at elevated 

and high temperatures (26-200 ℃), for viscosity range from 10 to 

170,000 cP, in comparison to the models published in literature; 

 Nonlinear least squares regression procedure for obtaining the optimal 

fitting parameters of NMR viscosity models (tuning); 

 

Two separate datasets of dynamic viscosities (η) were created from rheological 

experiments: viscosities of 23 various heavy oil samples at 30 ℃ and 50 ℃, and 

viscosities of a single bitumen oil sample at high temperatures (26-200 ℃). For 

NMR viscosity prediction, spin-spin relaxation time (T2-relaxation) and relative 

1
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hydrogen index (RHIv) were used as model inputs, while model tuning was 

achieved by NLS regression. To quantify the effect of tuning on the reduction of 

prediction errors for our dataset, we evaluated the performance of models both in 

their default form (reported fitting parameters) and after tuning by NLS 

regression.  

Model performance was evaluated using root mean square error (RMSE), 

maximum absolute error (MaAE), and adjusted coefficient of determination (adj. 

R2). 

2.2. THEORY AND EXPERIMENTS 

2.2.1. SPIN-SPIN RELAXATION (T2) 

As mentioned before, the oil reservoirs contain various fluids rich in hydrogen. 

Modern LF-NMR logging devices measure the response of H+ protons in fluids and 

provide information about petrophysical properties of rocks and physiochemical 

properties of fluids in-situ. In the case of hydrocarbons, the rate of T2 relaxation 

shows a strong correlation with viscosity, which is why T2 relaxation was used as 

a theoretical foundation for nearly all NMR viscosity models. Since the relaxation 

times of oil vary significantly with its chemical composition and temperature, a T2 

logarithmic mean relaxation time is calculated to characterize the whole NMR 

spectra: 

 
T2lm=Exp [∑

Ai

A
⋅ ln(T2i)] (13) 

where Ai is the amplitude from i-th corresponding T2i response.  
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2.2.2. MOLECULAR SIZE AND INTRAMOLECULAR DISTANCE 

Dynamic viscosity correlation with T2-relaxation time can be inferred from 

Bloembergen-Purcell-Pound’s (BPP) model, describing T1 and T2-relaxation rate 

dependency with dipole-dipolar interaction10: 

 1

T1
 = C (

τc

1+ω0
2 τc

2
+

4τc

1+4ω0
2 τc

2
) (14) 

 1

T2
 = C (
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2
τc+

5

2
 

τc

1+ω0
2 τc

2
+

4τc

1+4ω0
2 τc

2
) (15) 

 
C = 

3

10
(

μ
0

4π
)

ℏ2γ4

b6  
(16) 

where τc is molecule correlation time, and ω0 is a Larmor frequency. The 

parameter C is defined for the ½ spin by gyromagnetic ratio γ, the magnetic 

permittivity of space μ0, reduced Planck constant ℏ, and interproton distance b.  

Molecular collisions lead to a time-dependent change in molecule orientation and 

interproton distances. From Equation 14 and Equation 15, it is evident that proton 

relaxation rates are primarily influenced by correlation time for the liquid 

substance. Random change of the molecule orientation can be described by a 

rotational diffusivity Dr, a function of viscosity, temperature, and molecular size. 

By employing a Debye-Stokes-Einstein (DSE) model for spherical molecules, we 

can express τc as 

 
τc=

1

6Dr
 

 
(17) 

 
Dr=

kT

8πηa3
 

 
(18) 

where k is Boltzmann constant, a is the radius of the spherical particle and η is the 

dynamic viscosity of the medium. The BPP model and DSE equations were 

developed for pure homogeneous substances, while crude and heavy oils have a 

complex chemical composition and molecular structures that contain multiple 

bonds, chains, solid asphaltene agglomerates, and clusters. Consequently, we can 

anticipate variability in molecule sizes and interproton distances, which causes 

fluctuation of parameters a and b (Equation 17 and Equation 18). In that sense, for 



43 

  

any universal NMR viscosity model, discrepancies in predictive ability will grow 

with the complexity of the chemical composition 14,24,61. 

 

2.2.3. T2-RELAXATION MECHANISMS IN HEAVY OILS  

The total T2 relaxation represents the sum of three relaxation components62: 

 1

T2
=

1

T2bulk
+

1

T2surface
+

1

T2diffusion
 (19) 

The total spin-spin relaxation is governed by a sum of bulk relaxation T2bulk, 

relaxation influenced by the pore surface T2surface, and relaxation caused by the 

gradients of magnetic field T2diffusion (Equation 19). In the case of water-wet porous 

media, surface relaxation is dominant for water and bulk relaxation for oil. 

According to the nuclear spin relaxation theory63, there are two extreme cases:  

1. Fast motion or extreme narrowing case (ωτc≪1), characteristic for 

small molecules, low viscosities, or high temperatures. In such cases, 

T1≈T2 (Figure 6).  

2. Slow-motion case (ωτc≫1) characteristic for relaxation of large 

molecules in high viscous substances or at low temperatures.  

In both cases, the 1/T2 relaxation rate is proportional to correlation time τc and 

η/T ratio, respectively. 
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Figure  6: T1 (black) and T2 (red) dependence on correlation time (τc), according to the 

BPP relaxation model. 

Equations 14-18 describe the molecular relaxation processes governed by a single 

exponential function which explains why the viscosity models for short 

correlation times (Figure 6) provide sufficiently accurate predictions for light 

oils16,18,20,21. Solid-like components in heavy oils induce various relaxation rates as 

opposed to light oils, and the cumulative spin-echo decay can exhibit non-

exponential behavior. This behavior can be approximated by the stretched-

exponential function, also known as the Kohlrusch-Williams-Watts function25: 

 G(τ)=〈F(0)2〉e-(τ
τc⁄ )

γ

 (20) 

Function F(t) is a time-dependent function of molecule location and orientation. 

G(τ) describes a relationship between function F(t) in different time steps, and β 

is a stretch parameter (0≤β≤1). Equation 20 does not have an analytical Fourier 

transform, but a modified Cole-Davidson function approach23,64 can be used 

instead.  

 
T2bulk~ (

𝜂

𝑇
)

−𝛽

 (21) 

This approach was confirmed to be effective by several authors3,15,23,65. It should 

be noted that T1 dependence on correlation time also does not follow the classical 
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BPP model for heavy oils and bitumen in the slow-motion case, which was 

experimentally proved by several authors15,66, most recently by Singer et al.27. In 

Figure 6, instead of the anticipated increase, T1 plateaus to 3 ms value on a 

frequency-normalized scale for various viscosity samples. The authors explained 

the observed plateau effect by combining the dipole-dipole interaction model for 

intramolecular interactions and the modified Lipari-Szabo model for internal 

motions of the non-rigid structure. 

 

2.2.4.   ECHO SPACING (TE) AND RELATIVE HYDROGEN INDEX (RHIV) 

Due to the presence of solid-like components in heavy oils (e.g., paraffin and 

asphaltene), the T2-relaxation is often so fast that many LF-NMR logging tools 

cannot measure the whole relaxation spectrum the sample15,23,67. The parameter 

that expresses the NMR tool’s signal sampling rate is known as echo spacing (TE), 

where TE ≥ 0.1 ms. Consequently, for heavy oils with a very short mean T2 

relaxation time (T2lm), the logging devices cannot capture the fast-relaxing part of 

the NMR T2 distribution. The result is that the tools fail to accurately reflect the 

actual number of hydrogen atoms (HI) and output HI that is too small since part 

of the fast-relaxing signal is not measured. Many authors tried to address this issue 

by adjusting TE using correction coefficient or integrating some form of hydrogen 

index into the model 9,22,23,58,67,68. 
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Figure  7: NMR signal amplitude of a single bitumen sample (JC bitumen) in the function 

of the temperature. The slope of the NMR signal decreases with temperature rise, and 

approximately at >100 ℃, the slope becomes negative due to the Curie effect. 

From Figure 8, it can be observed that at temperatures above 100 ℃, the NMR 

amplitude decreases. This is known as a Curie effect66,69, where magnetization loss 

(NMR signal loss) occurs due to the high temperature of the sample. One of the 

means to account for this loss is the implementation of the relative hydrogen index 

(RHI). The RHI represents the relative amount of measured (detectable) hydrogen 

protons by the NMR device in the oil sample. It is expressed as the ratio of oil and 

water NMR signal amplitudes per unit mass70. In the case of using NMR tools at 

elevated temperatures, it is compulsory to implement temperature correction for 

RHI to account for the magnetization loss: 

 RHI= (
A0mw

Awm0
) (

T(°K)

Tamb(°K)
) (22) 

where Ao and Aw are the amplitudes of the oil and water signal respectively, mo and 

mw are masses of oil and water respectively, T and Tamb are the temperatures of 

the oil sample in kelvins. If the RHI is normalized to the sample volume, a relative 



47 

  

hydrogen index for a defined sample volume can be obtained (RHIv). This 

normalization is consistent with Curie’s expression for magnetic susceptibility, 

where magnetization is expressed per unit volume68. Also, RHIv is more suitable 

for application to well logs because the NMR tool detects a defined volume of the 

formation58. Burcaw et al. proposed a simple approach for conversion of RHI to 

HI58:   

 RHI𝑣=
ρ

o

ρ
w

⋅RHI (23) 

where ρo and ρw are densities of oil and water, respectively. Note that Equation 23 

should be valid under the assumption that sample volume change due to the 

temperature change is negligible. It should also be noted that Equation 23 

represents the hydrogen proton response detected by the NMR device, and it is 

not to be associated with a true HI of the sample.  

 

 

Figure  8: Relative hydrogen index for a defined volume of JC bitumen sample in the 

function of temperature with implemented correction (red) and without correction for 

the Curie effect (black).  
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HI reflects the number of H protons in a liquid, which is a finite value. However, in 

Figure 8, it is evident that even with Curie correction, RHIv for JC bitumen changes 

with the temperature. This is due to the hardware limitation of the LF-NMR tools 

and in the presence of solid-like components (e.g., asphaltenes), which relax faster 

than an echo spacing (TE), which essentially means that for heavy oils and 

bitumens, a significant part of oil signal (i.e., H protons) remains invisible in the T2 

distribution19,69,71. 

 

2.2.5.   ENHANCED NMR VISCOSITY MODEL  

The RHIv works as a correction factor by compensating the magnetization loss 

(Curie effect) at high temperatures. The RHIv also accounts to a degree for the long 

TE, meaning that the correction coefficient for the TE term is redundant. For 

longer correlation times characteristic for very viscous oils (ωoτc>>1), the right 

addend in Equation 24 contains the stretching parameter d (or β in Equation 21), 

which accounts for non-exponential relaxation, i.e., the power-law relationship 

with T2lm. Lastly, the enhanced model contains a T2lm term, inversely proportional 

to viscosity, which properly works for light oils. This model is expected to mitigate 

the following known pitfalls in NMR viscosity prediction:  

 Magnetization loss due to the high temperature (Curie effect). 

 Long echo times (TE) which hinder the detection of solid-like components 

in heavy oils. 

 Non-exponential relaxation (i.e., glass transition) in viscous oils where 

ωoτc>>1. 

Taking into account Equations 15-23, an analytical form of the enhanced NMR 

viscosity prediction model can be derived as:  

 η=
a

HIb T2lm

+ c T2lm
 -d  (24) 

where a, b, c, and d are obtained from the NLS regression. The left-hand addend of 

Equation 24 is adapted from the Bryan et al. model9, which correlates measured 

hydrogen content and T2 logarithmic mean with oil viscosity.  
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2.2.6. PREPARATION OF OIL SAMPLES 

Twenty-three heavy oils were analyzed in this study. All the samples were 

recovered from different oil formations and wells from the heavy oil reservoirs in 

Alberta, Canada. All the samples except one were previously used in another NMR 

study by Bryan et al.,72, and the same methodology was used for sample 

preparation as described previously. Oil samples were extracted from the core 

samples by spinning in the Ultracentrifuge Beckman 18-M at 15,000 rpm at 40 °C 

for approximately 60 minutes. After extraction, the water content levels were 

reduced below 1.0 wt% using decantation with gravitation for one hour.  

The JC bitumen selected for the high-temperature tests had a residual emulsified 

water content of the oil determined using the Dean-Stark distillation method. The 

emulsified water and solid impurities were removed from the oil through a 

proprietary oil-cleaning system developed by the In-Situ Combustion Research 

group at the University of Calgary. Following the cleaning procedure, the 

emulsified water content was 0.78 wt%. 

1
Highlight
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Figure  9: Flowchart representation of experimental program for 23 heavy oil samples 

and JC bitumen sample 

 

2.2.7. RHEOLOGICAL MEASUREMENTS – 23 HEAVY OIL SAMPLES 

Rheological measurements were executed on 23 heavy oils to obtain a reference 

dataset compared with predictions from NMR viscosity models. Previous studies 

have shown that cone and plate rotational viscometers provide higher accuracy in 

measuring viscous fluids than glass-capillary and oscillating-piston viscometers72. 

The Brookfield DV-II-Pro cone and plate viscometer was used, which meets ASTM 

D4287 industry standard for oil viscosity measurement73. As previously described 

by Bryan et al.24, the cone diameter was 12 mm with an angle of 1.5°. Shear rate 
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accelerated from 0.8 s-1 to 100 s-1 while shear stress was continuously logged. 

Three milliliters (3 ml) of oil were used for each experiment at two fixed 

temperatures – 30 °C and 50 °C. By measuring at two temperatures rather than 

one, we increased the number of data points. However, four heavy oils had a 

limited supply, and their measurements were taken only at 50 °C, making 42 data 

points in total. The viscosity was expressed as a ratio between shear stress and 

shear rate. 

 

2.2.8. RHEOLOGICAL MEASUREMENTS AT HIGH TEMPERATURE– JC BITUMEN 

The most viscous heavy oil sample (JC bitumen) was selected for assembling the 

high-temperature viscosity dataset. Since Brookfield DV-II-Pro viscometer is 

equipped with a thermal bath, measurements were made from 30 °C to 80 °C on 

every 5 °C making 11 data points. For the reliability of the measurements, the 

experiment was repeated three times at each temperature. Extrapolation of 

viscosities to from 26 ℃ to 200 ℃ was carried out using the dynamic viscosity 

model for gas-free Athabasca bitumens defined by Khan et al.11: 

 ln ln (η ) = A· ln(Tabs) + B  (25) 

where A and B are empirical constants calculated as a slope and intercept of 

absolute temperature and measured dynamic viscosity, respectively. The 

relationship between JC bitumen viscosity and temperature is depicted in Figure 

10.  
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Figure  10: Dynamic viscosity of JC bitumen in 26 ℃ – 200 ℃ temperature range. 

Extrapolation was used for temperatures above 80 ℃ and interpolation between 26 ℃ 

and 80 ℃. 

 

2.2.9. NMR EXPERIMENTS – 23 HEAVY OIL SAMPLES 

The suite of 23 samples was tested as a part of the previous two studies by Bryan 

et al.,24,70. The NMR experiments were carried out at 30 ℃ and 50 ℃ using a 1.1-

MHz LF-NMR Corespec 1000TM relaxometer. The Carr-Meiboom-Purcell-Gill 

(CPMG) pulse sequence parameters were tuned to reduce the effect of the 

temperature decrease within a single experiment – TE was 0.3 ms, with 2,600 

pulses and a wait time 2,400 ms. Measured data were transformed into T2 

relaxation distribution in the time domain using NNLS inversion software 

ExpFit70. To be consistent with the rheological viscosity dataset, the two samples 
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left out from viscosity measurements at 30 ℃ were also left out from NMR 

measurements at 30 ℃. In total, 42 data points were obtained. 

2.2.10. NMR EXPERIMENTS AT HIGH TEMPERATURE – JC BITUMEN  

NMR experiments on the JC bitumen were carried out at the temperature range 

from 26 °C to 200 °C using a 2.66-MHz LF-NMR PERM Labmeter. The sample was 

stored in a polyether-ether-ketone (PEEK) thermoplastic polymer vessel with an 

integrated non-magnetic thermocouple for continuous temperature logging. The 

vessel with the oil was heated in the oven up to 200 °C and then inserted into the 

NMR device. The highest cooling temperature gradient occurred at 170-200 oC 

(~0.7 oC/min). CPMG sequence was configured to ensure that one NMR 

experiment was executed in no more than 1 minute with SNR>100; TE was 0.24 

ms, the number of pulses was 5,000, and the wait time was 5,000 ms. Experiments 

were performed automatically consecutively until the sample reached ambient 

temperature. A total of 136 data points were used for the regression analysis.  

 

It should be noted that PEEK plastic can produce an NMR signal in some instances, 

and its contribution depends on the shape of the vessel, whether it was extruded 

or molded, and whether PEEK contains impurities. In this study, the PEEK signal 

can be observed on NMR spectra, between T2 ~ 10-20 ms, and it represents <1% 

of the total signal produced by the bitumen sample, which is why it was evaluated 

that it is negligible. Similar reports can be found in the literature74. 

 

2.2.11. NONLINEAR LEAST SQUARES (NLS) REGRESSION – MODEL TUNING 

The NLS regression was performed in Origin Pro software version 2018b to tune 

the NMR models, that is, to obtain optimal values for their empirical constants 

(parameters). Where it was possible, the data population were split into the 

calibration set and the prediction set in the proportion of 70-30%, respectively, 

minimizing the overfitting. A calibration set was used to tune the model 
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parameters and subsequently applied to the prediction set. The model calibration 

was evaluated by comparing predicted NMR viscosity with rheological viscosity.  

 

The NLS regression was performed using Levenberg – Marquardt (M-L) iteration 

algorithm75. 

 β̂ 𝑎𝑟𝑔𝑚𝑖𝑛β S(β) ≡  𝑎𝑟𝑔𝑚𝑖𝑛β  ∑[𝑦𝑖 − 𝑓(𝑥𝑖, β)2]

𝑚

𝑖=1

 (26) 

where β = (β1, β2,…, βi) are fitting parameters to be obtained from the minimization 

of the sum of the squared residuals S(β) from fitted model f(xi, β) for the given set 

of independent variables (xi) and target output (yi). This is a step-wise (iterative) 

approach, where initial parameter values are set manually. To avoid convergence 

to a local minimum, different initial parameters were used and constrained to a 

specific range in some instances. For each new iteration, the parameter vector β is 

updated by the new estimate β + δ, where δ can be linearly approximated from 

function f (xi, β + δ) as: 

 𝑓(𝑥𝑖, β + δ) ≈ 𝑓(𝑥𝑖, β) + 𝐽𝑖δ  (27) 

where Ji is a gradient of function f with respect to parameter vector β: 

 𝐽𝑖= 
𝜕𝑓(𝑥𝑖, β)

𝜕β
 (28) 

Like in Tikhonov regularization, a damping factor λ is added to regulate the 

reduction rate of S and for more efficient discovery of a gradient direction. For the 

initialization of L-M, the λ was set to 0.001, and after each successive iteration was 

automatically increased or decreased by a factor of 10 relative to the gradient 

direction, depending on whether the squared residuals were reduced or 

increased. The L-M algorithm converges when the sum of squared residuals 

remains unchanged relative to the set tolerance or is equal to zero. The 

convergence criterion was set to χ² <1·10-3.  

 

The results of NLS tuning were assessed using root mean square error (RMSE). 

(Equation 29). RMSE is a useful statistic for evaluating model prediction accuracy 

based on the new data. 
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 RMSE= √
∑ (Pi- Oi)

2n
i=1

n
 (29) 

where Pi is the predicted value, Oi is the observed value, and n is the number of 

samples.  

 

In the existing literature, the NMR model accuracy is usually assessed visually on 

cross-plots relative to the prediction bands and by comparing coefficients of 

determination - R2 3,22,25,65,67,70. In this study, an adjusted coefficient of 

determination and standard coefficient of determination is used for the evaluation 

of prediction variation captured by the model 

 R̄2= 1 − (1 − R2) ⋅
n − 1

n − p − 1
 (30) 

 R2= 1 −
SSres

SStot
 (31) 

where R̄2 is the adjusted coefficient of determination (COD), n is the number of 

observations, and p is the number of independent variables (inputs). The standard 

COD (R2) is calculated as a difference between the unity and ratio of the sum of 

squared prediction residuals (SSres) and the total sum of squared residuals (SStot). 

Since viscosity may vary up to six orders of magnitude in thermal EOR projects, 

besides using RMSE and R2, the maximum absolute error (MaAE) of the 

predictions was calculated as an additional statistical metric. The MaAE 

represents the maximum absolute difference between predicted and observed 

viscosity values. RMSE and MaAE are negatively-oriented statistics expressed in 

source units (i.e., centipoises.) 
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2.3. RESULTS AND DISCUSSION 

 

2.3.1. NMR VISCOSITY PREDICTION – 23 VARIOUS HEAVY OIL SAMPLES 

The models tested in this study are listed in Table 1, describing input parameters 

and the number of fitting (free) parameters.  

 

Table 1: Tested literature NMR viscosity correlations 

Model Input data Fitting parameters 

Straley, 1997 T2lm 2 

LaTorraca, 1999 T2lm, TE, T 2 

Bryan, 2003 T2lm, RHI 2 

Nicot, 2007 T2lm, proton radius (a), 

inter proton distance (b) 

1 

Burcaw, 2008 T2lm, HI 3 

Cheng, 2009 T2lm 3 

Ahmed, 2014 T2lm, TE, T 2 

Musin, 2016 T2lm 3 

Sandor, 2016 T2lm, TE, T 2 

Markovic, 2019 T2lm, RHIv 4 

Figure 11 shows NMR viscosity predictions and observed viscosity for a suite of 

23 heavy oil samples at 30 ℃ and 50 ℃ with viscosities ranging from 70 – 21,600 

cP. The NMR viscosity predictions generated by nine well-known literature 

models by Ahmed et al.22, LaTorraca et al.67, Sandor et al.23, Bryan et al.9, Burcaw 

et al.58, Cheng et al.25, Nicot et al.15, Straley et al.16, and Musin et al.3. Predictions 

made by the enhanced model are shown in Figure 11j. To emphasize the effect of 

tuning, predictions were produced with NLS tuned parameters (red) and with 

default model form, where used parameter values were reported by the authors 

(black). The analytical form of models with fitting parameters obtained by NLS is 

depicted in the lower right corners. The NLS regression was applied without 
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splitting the data into the calibration and prediction sets due to the small number 

of data points (42 in total). Since the oils were sampled from different locations, 

independent variables (T2lm and RHIv) show high variability compared to JC 

bitumen dataset. This is also reflected in varied adj. R2 scores (Figure 12a), 

indicating that models captured different amounts of variability related to the 

response variable (i.e., viscosity).  Compared statistical scores are shown in Figure 

12. 

 

Figure 11 shows that models by Burcaw et al., and Musin et al., do not contain 

predictions from the default configuration (black points) because their authors 

did not propose parameter values explicitly. Moreover, Figure 11 shows that 

generally, model predictions improve after NLS regression compared to the 

predictions generated by general model forms to various extent. However, in 

Figure 12, the effect of tuning and variation in prediction accuracy between 

models is clearly illustrated. For example, Bryan et al. show RMSE and MaAE 

scores to be 4.5 and 8 times lower after tuning, respectively, while adj. R2 score is 

marginally increased.  

 

Heavy oil models by LaTorraca et al., Ahmed et al., and Sandor et al. show a similar 

performance since they are based on TE correction and temperature. Sandor et al., 

and Ahmed et al., proposed multiple models in their work, but for this work were 

selected the ones with the highest reported score. After tuning, the model by 

Sandor et al. (Figure 11c) shows that most predictions fall within a factor of one 

and two at the viscosity range between 30 and 3,000 cP. However, at viscosities 

>3,000 cP, predictions scatter into a factor of two and three, causing the inflation 

of RMSE and MaAE scores. (Figure 12). The models by LaTorraca et al. and Ahmed 

et al. have less variance in >3,000 cP domain after tuning but tend to overpredict 

viscosity in the <6,000 cP domain, with most predictions falling within a factor of 

two and three. This is due to the cost function minimization, where the iteration 

algorithm minimizes larger squared errors in the higher viscosity domain at the 

expense of accuracy in the <6,000 cP domain. 
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Figure  11: Rheological viscosities compared to NMR viscosities of 23 heavy oils. The 

Markovic et al. (j) model demonstrates the highest accuracy. A solid black line (x=y) 

presents a perfect prediction.  

The models by Nicot et al., and Cheng et al. are heavy oil models, while Straley et 

al. is a light oil model. All three are based on the power-law T2lm, which accounts 

for long TE (echo spacing) and have similar performance. Figure 11 and Figure 12 

show that the models are affected by NLS to a different extent but generally 

achieve considerably improved scores after NLS. Most of the predictions in the 

>600 cP domain fall within a factor of one and two. Recall that Nicot et al., Cheng 

et al., and Straley et al. models produce large prediction residuals in the domain 

<600 cP after tuning. Again, this is caused by minimizing squared errors in the 

higher viscosity domain at the expense of accuracy in the lower viscosity domain. 

This issue can be solved either by constraining fitting parameters to a specific 

range, at the expense of the accuracy at higher viscosities, or by using these models 

for oilfields or wells where the viscosity oscillates no more than three orders of 

magnitude.  

 

Figure 12 shows the segregation of the three models (Markovic et al., Bryan et al., 

and Burcaw et al.), which perform substantially better than the remaining seven 

based on all three statistics. Predictions by Markovic et al. fall within a factor of 

one and two along with the whole range, with only four exceptions in the <600 cP 

domain. The most accurate predictions are distributed in the >1,000 cP domain. 

Also, Bryan et al. and Burcaw et al. perform almost on par with the enhanced 

model. The new model has a marginally better score than the latter two. This 

marginal improvement is due to the power-law parameter, which was not 

considered in the models by Bryan et al., and Burcaw et al.  
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Figure  12: Compared bar chart of adjusted R2 (a), Root-MSE (b), and MaAE (c) for tuned 

and default NMR model predictions of 23 heavy oils. Markovic et al. model demonstrate 

the highest accuracy.  

These results demonstrate that the integration of RHIv, into the correlation, 

substantially improves the prediction accuracy of heavy oil models in the 70–

21,600 cP viscosity range at 30 ℃ and 50 ℃, especially in the >3,000 cP domain, 

as demonstrated by correlations from Bryan et al., Burcaw et al., and the newly 

proposed model from Markovic et al. (Figure 11d, Figure 11e, Figure 11j). This 

finding complements the adj. R2 scores in Figure 12a show that these three models 

have the highest explained variability (>96 %). In addition to the RHIv, the 

enhanced model contains the power-law term in T2lm, which marginally improves 

prediction capacity by rectifying the non-exponential relaxation effect of heavy 

components, for which T2lm and measured RHIv cannot account. 

In conclusion, the new model (Markovic et al.) achieved the most favorable 

statistical scores, while the models by Sandor et al., Bryan et al., Burcaw et al., and 

Musin et al. have satisfactory performance only after the NLS regression. The 

prediction capacity of the models in high temperatures is discussed in the 

following section. 

 

2.3.2. NMR VISCOSITY PREDICTION AT HIGH TEMPERATURES – JC BITUMEN 

To validate the enhanced NMR viscosity model for use in steam EOR projects, it 

was necessary to examine how its prediction capacity is affected by the 

temperature increase, by testing it on a JC bitumen sample, with a viscosity range 

of 10–170,000 cP, for the temperature range 26–200 ℃. Apart from the enhanced 

model, five literature correlations were selected to compare based on their 

performance in the previous section. These are Straley et al., Cheng et al., Bryan et 

al., Burcaw et al., and Sandor et al. To avoid overfitting, the JC bitumen dataset was 

divided into the training set the test set in proportions of 70–30%, respectively. 
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Figure  13: T2 distribution curves of a single bitumen sample (JC bitumen) in the function 

of temperature. 

Figure 13 presents the T2 spectrum of JC bitumen, in the time domain, obtained 

using Tikhonov regularization9. The NMR relaxation spectra shift to the right-hand 

side (slow-relaxing part) with increasing temperature, and the NMR signal 

amplitude varies with temperature. The distribution curve at 200 ℃ shows four 

distinct peaks, which might indicate oil separation to several relaxometry 

components, possibly heavy and light fractions of the bitumen76.  
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Figure  14: Rheological viscosities compared to NMR viscosities for the JC bitumen 

dataset. The temperature scale (top axis) is shown for clarity. A solid black line (x=y) 

presents a perfect prediction. 
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Figure 14 compares predicted and observed viscosity over the 26–200 ℃ 

temperature range. The predictions were generated from three model 

configurations: using default parameter values (black), using parameters from the 

previous section (magenta), and applying the NLS regression to the JC bitumen 

training set to calculate the new parameter values (red). The models in the 

analytical form after NLS regression are depicted in the lower right-hand corners 

of the plots.  

 

Figure 15 shows three statistical scores used to compare the model forecasting 

performance. Note that the y-axis in Figure 15a is truncated for convenience. The 

first observation comes from Figure 15a, where high adj. R2 scores indicate a low 

variability of response data (i.e., viscosity predictions), which was expected since 

only one sample was analyzed. However, the RMSE scores in Figure 15b and MaAE 

scores in Figure 15c show that NMR models achieve substantially different scores. 

In this way, using the adj. R2 alone for the model performance evaluation is not 

sufficient.  

 

The majority of the predictions by the Sandor et al. model (Figure 14f) fall outside 

the prediction bands for all three configurations. After NLS tuning, the model 

improves accuracy in the >10,000 cP domain. It should be noted that Sandor et al., 

for the given dataset, cannot be used with default fitting parameters because the 

denominator in this correlation becomes negative for the high values of the T2lm, 

(i.e., high viscosities). This limitation was addressed by changing the constant in 

the denominator from -0.69 to -0.3 for NLS tuned predictions. Due to the absence 

of predictions for the mentioned interval, Figure 15 only contains statistics of 

Sandor et al. correlation for the predictions generated after NLS tuning (see Figure 

14f).  
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Figure  15: Compared bar chart of adjusted R2 (a), Root-MSE (b), and MaAE (c) of NMR 

model predictions for JC bitumen using three model configurations. The model by 

Markovic et al. demonstrates the highest accuracy after NLS regression. 

The Cheng et al. model (Figure 14e) with default fitting parameters reproduces 

the most accurate predictions compared to the other two correlations with default 

parameters by Bryan et al. and Straley et al., whose predictions fall within a factor 

one and two in the 10–10,000 cP interval. Accuracy deteriorates at >10,000 cP, 

which induces high RMSE and MaAE scores (Figure 15b, 15c, Cheng). In 

comparison, Cheng et al. underpredicts the viscosity <1,000 cP domain after 

tuning, especially in the 10–60 cP interval where predictions approach 0 cP, while 

accuracy is improved in the >10,000 cP domain. As expected, similar prediction 

behavior is exhibited by the model from Straley et al. This behavior can be 

attributed to the Curie effect and NLS regression.  

 

The Curie effect manifests through NMR signal loss with temperature increase. 

Figure 7 shows that the slope of the JC bitumen NMR signal gradually decreases 

with rising temperature until the inflection point at 100 ℃, after which the slope 

becomes negative. This effect is illustrated in a varying degree for all models in 

Figure 14 (particularly in Figure 14d, 14e in the <1,000 cP, or >70 ℃ domains); 

Sandor et al. overpredict the viscosity in this domain due to the TE coefficient, 

which overcompensates for Curie effect. However, the tuning process affects this 

further. During NLS regression, the iteration algorithm minimizes the squared 

residuals in the domain where the highest errors occur (i.e., >10,000 cP), causing 

the prediction accuracy to decline in the 10–1,000 cP range. After NLS tuning, this 

shift in accuracy explains why all models work better in the high viscosity domain.  

 

The combination of heavy oil chemical complexity, signal loss due to long TE (i.e., 

echo spacing), and the Curie effect represent the main challenge for developing a 

single NMR model for predicting viscosity in both low and high viscosity systems 

and for the same oil (JC bitumen) at various temperatures. Each heavy oil and 

bitumen component relaxes exponentially, resulting in a complex total echo decay 



67 

  

depending on temperature and each component’s phase state. The proposed 

enhanced model addresses these problems by integrating the RHIv and T2lm 

power-law term into the correlation. Stretched-exponential derived power-law 

term considers a smooth distribution of relaxation times for fast-relaxing 

components. The RHIv compensates for signal loss since it is in the corrected form 

while simultaneously accounting for the long echo times (TE). The power-law 

term in these conditions has two functions: it improves the accuracy in the >1,000 

cP domain, and it supplements the measured RHIv at high temperatures (>100 ℃) 

in correcting the predictions in the <1,000 cP domain (e.g., Bryan et al., vs. 

Markovic et al. in >100 ℃ domain in Figure 14, red points).  

 

Compared to literature models, statistical scores in Figure 14 demonstrate the 

improved prediction capacity of the new NMR model across the entire viscosity 

and temperature range. Alternatively, the accuracy of any model presented in this 

paper can be improved for datasets with smaller viscosity and temperature ranges 

using the NLS regression or by splitting the calibration set into two or three 

subsets (e.g., low, medium, and high viscosity subsets), and performing NLS 

regression individually for each subset.  

 

2.4. SUMMARY 

This study demonstrates that LF-NMR relaxometry can be applied not only for 

viscosity prediction in a broad viscosity range but also at a broad range of 

temperatures (26-200 ℃). The results show that published NMR viscosity models 

cannot accurately predict heavy oil viscosity at this range of temperatures. The 

enhanced NMR model was associated with an NLS regression (tuning) and used to 

predict the viscosity of two distinct datasets: a 23 heavy oils at 30℃ and 50℃ from 

several wells and reservoirs in Alberta and a single bitumen sample (JC bitumen 

dataset) at 26–200 ℃. The prediction quality was evidenced by the root mean 

square error (RMSE), maximum absolute error (MaAE), and adjusted coefficient 

of determination (adj. R2). The new model scored an RMSE of 1,286 cP for the JC 
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bitumen sample compared to the RMSE of 23,837 cP generated by the first runner-

up model in default calibration from the literature. For the suite of 23 heavy oils, 

the enhanced model scored an RMSE of 2,036 cP compared to the RMSE of 15,934 

cP generated by the first runner-up literature model. The results also indicate that 

the new heavy oil NMR viscosity model can be configured for monitoring purposes 

in high-temperature conditions for order-of-magnitude viscosity monitoring.  

 

Lastly, low-field NMR measurements are fast and non-destructible. The NMR 

equipment can be used in-situ in observation wells, online, or inline for the heavy 

oil viscosity monitoring during a thermal EOR project with a 200 ℃ upper-

temperature limit, which corresponds to steam injection temperatures. 
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Chapter 3  IMPROVED OIL VISCOSITY CHARACTERIZATION BY LOW-FIELD 

NMR USING FEATURE ENGINEERING AND SUPERVISED LEARNING 

ALGORITHMS 

 

3.1. MOTIVATION 

In the previous section, it was shown that LF-NMR data could be used for viscosity 

evaluation of various crude oils by using the enhanced NMR viscosity model, 

which can account for chemical complexity and a wide span of temperatures with 

the help of NMR derived parameters such as relative hydrogen index (RHIv) and 

T2 logarithmic mean. However, the determination of RHI or RHIv requires a 

recovery of the representative oil sample from the given formation, preferably 

with preserved gas content, for subsequent laboratory measurements, which is 

often a technically challenging and expensive task77,78. Moreover, oil saturation 

volumes must be determined independently, which is necessary to normalize the 

measured oil NMR response by the amplitude of an equal quantity of water 24. 

Unfortunately, in the circumstances like these, the empirical NMR models without 

RHI do not perform satisfactorily for predicting accurate viscosities in heavy oil 

and bitumen systems79,80,81. The theoretical and empirical evidence presented in 

previous sections shows that T2-relaxation strongly correlates with oil viscosity 

16,21. However, in heavier, more viscous oils, the T2 relaxation behavior deviates 

from conventional models, changing the T2 correlation with viscosity. Although 

studies are being conducted to understand better the underlying physics of H 

proton relaxation behavior in heavy oils26,27, there is enough scientific evidence to 

confirm that these variations are associated with the presence of heavy 

components and their complex molecular structures (e.g., asphaltenes and 

resins)14. 

 

This work introduced a supervised learning framework to improve the oil 

viscosity characterization by LF-NMR relaxometry, using only a single NMR 

1
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parameter – T2 logarithmic mean. Although the emphasis has been made on 

gradient boosting regression trees (GBRT)82 and support vector regression 

(SVR)83, a several other machine learning algorithms were tested as well, 

including decision trees (DT)84, random forests (RF)85, and k-nearest neighbors 

(KNN)86. Multiple linear regression (MLR)87 also used.  A feature engineering (FE) 

approach was integrated to maximize the forecasting capacity of the models by 

deriving new features using the empirical findings from the NMR oil 

characterization domain 88. The study results indicate that this strategy can be 

successfully applied even to small datasets. As most of the underlying 

mathematical principles of tested algorithms are substantially different, we could 

observe the study task from different perspectives. The database used for 

calibration of models in the study was formed from the previously published LF-

NMR crude oil data, containing over 130 light and heavy oil samples recovered 

from various reservoirs in Canada and the USA9,66,79. The study was segmented 

into two stages. In the first stage, the preprocessing of data was performed 

together with feature engineering, which enabled the appropriate training of 

models. The generalization ability of the models was assessed by the K-fold cross-

validation, while model performance was recorded using several statistical 

metrics. In the second stage, the performance of models was compared against 

another four well-known empirical NMR viscosity models that were trained using 

the same framework. The code and the data have been uploaded to GitHub 

repository and are available for use.  

 

3.2. METHODOLOGY 

3.2.1. GRADIENT BOOSTED REGRESSION TREES  

In supervised learning, gradient boosting represents an ensemble (additive) 

model that can be used for solving supervised regression and classification 

problems. The main idea is to derive a model from a set of weak learners, typically 

decision trees (DTs) or their simplified versions known as decision tree stumps. 

1
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The construction of the viscosity model 𝜂̂ = 𝐹(𝑥), evolves in sequences or 

boosting iterations (m). For each iteration, a new decision tree (h) is added to the 

existing model to minimize the loss function further. This way, an updated and 

improved version of the model is obtained 𝐹𝑚+1(𝑥). This process is repeated until 

the specified number of boosting iterations is reached 84,89,90.  

As the goal is to estimate the vector of viscosities η from the training set (𝑥), which 

consists of input features from the Table 2, and Table 3, the model can be 

expressed in the forward stage-wise form as: 

 𝐹𝑚(𝑥𝑖) =  𝐹𝑚−1(𝑥𝑖) + ℎ𝑚(𝑥𝑖) = 𝜂𝑖  (32) 

where ℎ𝑚(𝑥𝑖) is the underlying model at m-th iteration for i-th observation. This 

equation can be rewritten as: 

 ℎ𝑚(𝑥𝑖) = 𝜂𝑖 − 𝐹𝑚(𝑥𝑖) (33) 

From Equation 33, it can be observed that each added h is fitted to prediction 

residuals. In gradient boosting regression, the residuals are integrated into the 

concept of negative gradients, enabling the use of other loss functions such as 

absolute loss and Huber loss84. When dealing with datasets with a large number 

of outliers, the commonly used squared error loss function 𝐿 = 𝛴(𝑦𝑖 − 𝐹(𝑥𝑖))2 will 

emphasize the larger residuals. Absolute loss function is not squaring the errors 

𝐿 = 𝛴|(𝑦𝑖 − 𝐹(𝑥𝑖)|, making it therefore more resistant to outliers. The negative 

gradient with an absolute loss function can be denoted as: 

 −
𝜕𝐿 (𝜂𝑖 , 𝐹𝑚−1(𝑥𝑖))

𝜕𝐹𝑚−1(𝑥𝑖)
=  𝑠𝑖𝑔𝑛 (𝜂𝑖 −  𝐹𝑚−1(𝑥𝑖)) (34) 

Since the loss function is minimized by adding a new DT and fitting it to 𝐹𝑚−1. The 

number of DTs can become excessively large, which can result in overfitting the 

training data. To prevent it, a shrinkage coefficient (𝜈) is introduced in the 

calculation of 𝐹𝑚(𝑥), which gauges the contribution of each tree ℎ𝑚(𝑥𝑖).  

 𝐹𝑚(𝑥𝑖) =  𝐹𝑚−1(𝑥𝑖) + 𝜈ℎ𝑚(𝑥𝑖) (35) 

This coefficient is also known as the "learning rate," and its optimal value can be 

estimated using some of the parameter search techniques 91.  It should be noted 

that learning rate 𝜈 is in the strong inverse relationship with number of DTs, that 

is the number of boosting iterations (M). Usually, lower values of 𝜈 lead to a 
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smoother convergence if used with larger values of M 84. A more detailed 

explanation of gradient boosting concepts can be found elsewhere 82,89,90,92. 

3.2.2.  SUPPORT VECTOR MACHINES FOR REGRESSION (SVR) 

The SVR is a sophisticated and straightforward supervised learning (SL) algorithm 

used in classification and regression tasks. The SVR is based on the structural risk 

minimization (SRM) principle, which was confirmed to have better performance 

compared to empirical risk minimization (ERM) used, for instance, in neural 

networks. In simpler terms, SRM prevents the overfitting of the model by 

balancing two inversely related hyper-parameters and consequently making a gap 

between the training set errors and test set errors smaller while reducing model 

complexity. In contrast, in ERM, a single objective minimizes the training error. 

What made support vector machines so famous was the introduction of kernels – 

the arbitrary functions whose purpose is to map the dot product of input features 

into the higher-dimension feature space. This functionality enables the utilization 

of hyperplanes, which are particularly useful in non-linear classification problems. 

Fortunately, the same concept was generalized for regression tasks 93. In addition, 

SVR has been proven to be an effective method even in application to small 

datasets, which is a necessary implication for the task at hand. 

In terms of viscosity prediction by NMR parameters, SVR has to be associated with 

our input features (T2lm, TE, and T) and output vector η (Tables 2 and 3). Suppose 

we arrange all the preprocessed input features in a matrix form as 𝑥 =

[𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛], where xn are column vectors of inputs. The measured viscosity 

instances can be rewritten into a response vector 𝜂 = [𝜂1, 𝜂2, 𝜂3, … , 𝜂𝑛]. Thus the 

dataset can be defined then as {(𝑥𝑖, 𝜂𝑖)}𝑖=1
𝑛 . Where n is the number of oil samples. 

The support vector machine regression between input and response vector can be 

written as:  

 𝜂: 𝑓(𝑥) = 𝑊 ·  𝜙(𝑥) + 𝑏  (36) 

Here, 𝜙(𝑥) is the interpretation of an input matrix x in the higher-dimension space, 

while W and b are weight vector and bias terms. The latter two are obtained by 

minimizing the risk function: 
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 𝑀𝑖𝑛: 
‖𝑊‖2

2
 +  𝐶

1

𝑛
∑ 𝐿𝜀(𝜂𝑖

𝑛

𝑖=1

, 𝑓(𝑥𝑖))  (37) 

   

 
𝐿𝜀(𝜂𝑖 , 𝑓(𝑥𝑖)) {

0                            𝑖𝑓 |𝜂𝑖 −  𝑓(𝑥𝑖)| ≤ 𝜀
|𝜂𝑖 −  𝑓(𝑥𝑖)| − 𝜀                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   
 (38) 

where, the ||W|| term is a magnitude of a vector of feature weights, which reduces 

the function's sensitivity to the perturbations in input x (i.e., flatness), thus 

gauging the robustness of a model. The right-hand side term quantifies the 

prediction error, measured by the 𝐿𝜀 loss function (Equation 38). The magnitude 

of residuals |𝜂𝑖 −  𝑓(𝑥𝑖)| is compared with the predefined value of ε, so that the 

residuals smaller than ε are ignored, but residuals larger than ε are 

penalized. Since any ε can be defined, the C parameter is introduced to regulate 

the tradeoff between the flatness of the 𝑓(𝑥𝑖) and penalty size for residuals larger 

than ε 93. The optimization of Equations 37 and 38 can be simplified by introducing 

slack variables (𝜉𝑖, 𝜉𝑖
∗) instead of prediction residuals 83: 

 𝑀𝑖𝑛: 
‖𝑊‖2

2
 +  𝐶

1

𝑛
∑(𝜉

𝑛

𝑖=1

+ 𝜉∗)  (39) 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {

𝜂𝑖 −  𝑊 ·  𝜙(𝑥𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖                        

 𝑊 · 𝜙(𝑥𝑖)  + 𝑏 − 𝑌𝑖 ≤ 𝜀 + 𝜉𝑖
∗,   𝑖 = 1, … , 𝑛

𝜉𝑖 ≥ 0                    𝜉𝑖
∗ ≥ 0                  

   

 

(40) 

 

To find the local minimum with respect to the given constraints, one can introduce 

Lagrange multipliers, in which case Equation 36 is transformed into:  

 𝜂: 𝑓(𝑥) = ∑(𝛼 −  𝛼𝑖
∗) · 𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏

𝑛

𝑖=𝑖

  (41) 

where 𝛼 and 𝛼𝑖
∗ are Lagrange multipliers and 𝐾(𝑥𝑖 , 𝑥𝑗) is the kernel function, 

which maps the input features into the higher-dimension space. Further details 

about support vector machine regression can be found elsewhere 83,93. 
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3.2.3. DATABASE OF RHEOLOGICAL AND NMR MEASUREMENTS 

The oil data were collected from our previous research and other published works 

9,66,79. In all studies, the experimental procedure was similar: the dynamic viscosity 

of oils was determined using conventional laboratory instruments (i.e., cone and 

plate rheometers), whereas the T2-relaxation spectra of the samples were 

obtained after raw materials data mathematical inversion from the measurements 

made by LF-NMR relaxometers. For this study, 282 data points were used for 

model development.  

 

3.2.4. PREPROCESSING AND ANALYSIS OF THE DATASET 

The preprocessing and analysis of all rheological and NMR data were performed 

using Python environment version 3.7.2 with the scikit-learn package and 

OriginPro 2019b 91. The feature dataset consists of T2lm, TE, and T, while viscosity 

observations were stored as output vectors.  The data was divided into the 

training set and a test set in the 3:1 proportion, respectively. This way, we 

obtained a training set of 211 data points and a test set (unseen data) of 71 data 

points, which was used to estimate model accuracy only. 

 

3.2.5. FEATURE ENGINEERING AND TRANSFORMATION 

Feature engineering (FE) is a process in which domain knowledge is applied to 

perform appropriate transformations of the inputs and to extract new information 

from their known empirical relationships. This strategy proved to be effective in 

reducing the complexity of SL models, which in turn led to an increase in 

prediction performance 88. In our case, this entailed: (1) the transformation of 

inputs T2lm, TE, T, and target output η, and (2) deriving new inputs from empirical 

relationships of T2lm, TE, and T with target output η. 

 

Table 2 shows that the ranges of inputs and outputs are out of scale, which implies 

that a particular transformation should be applied to normalize the data. Also, the 
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observed viscosity data has a long-tailed distribution as it is skewed to the right-

hand side of Figure 16a, with over 95 % of samples distributed between 0.8 – 

100,000 cP range. In the field of statistics, the observations outside three standard 

deviations (outliers) typically degrade the forecasting performance of the models 

and can be, therefore, omitted 94. In our case, however, the outliers correspond to 

extra-heavy oils and bitumens (e.g., > 180,000 cP). In practice, the natural 

reservoirs in which these oils reside are often thermally treated in order to 

facilitate their recovery 95. Therefore, if these samples were omitted from the 

training data, the valuable information about their T2-relaxation behavior at high 

temperatures would be lost. This information was preserved by applying a simple 

logarithmic transformation to all features, which normalized the distribution of 

the data. The effect of log-transformation is illustrated in Figure 16b, on the 

example of target output η. Also, the log-transformation reduced nonlinearity of 

the dataset, which, in theory, should improve the performance of the SL regression 

models, which are efficient in solving linear problems (i.e., multiple linear 

regression and support vector regression).  

 

Table 2: Descriptive statistics of input variables (features) and observations of oil 

viscosity η. 

Input features Units Range/values Mean 
Standard 

deviation 

Dynamic viscosity (η) cP 0.87- 867,634 12,978 61,373 

T2 logarithmic mean (T2lm) ms 0.23-1239.9 59.4 165.6 

Echo-spacing (TE) ms [0.1, 0.24, 0.3] - - 

Temperature (T) K 299.15-468.15 337.4 45.1 
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Figure  16: Distribution of oil viscosity η before (a), and after the log transformation (b). 

 

In the second stage, we derived the new features by employing the findings from 

previous studies23,25,96. To evaluate the importance of newly derived features, we 

employed the GBRT algorithm.  One of the benefits of ensemble models such as 

GBRT is their capability of feature ranking by their relative contribution to the 

prediction accuracy, thus making the interpretation and selection of new features 
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more convenient. It should be noted that there are some downsides to feature 

ranking. For instance, two or more features may have a comparable correlation 

with the output. During feature ranking, one feature will be assigned a higher rank, 

which will lead others to get a lower rank, thus potentially leaving out a strong 

predictor 97. Figure 17a shows the ranking of the seven new features, alongside 

with T2lm, TE, and T, with the bottom ones being the most relevant. The ranking is 

achieved by assessing the reduction of the training error generated from splitting 

the nodes of the DTs. Therefore, the features which reduce the training error more 

frequently during splitting will be ranked higher. Note in Figure 17a that T2lm-

related features (log(T2lm)/TE, log(T2lm), and T2lm) capture most of the variability 

(~72 %), while T-derived features (log(T)/TE, log(T), and T) capture about 25% 

of the variability. This variability distribution was expected, considering that the 

T2lm strongly correlates with η, whereas T2-related features become more 

important at high temperatures when severe NMR signal loss occurs.  

 

In contrast, the TE-related features (1/TE, log(TE)/TE, TE, and log(TE)) affect 

prediction accuracy negligibly, with each being less than 1%. This is because the 

NMR measurements used as inputs for this study were all acquired to optimize the 

signal of fast relaxing fluids, i.e., through the use of small TE values.  If this dataset 

were to be expanded to systems with larger TE values (0.6 – 1.2 ms), TE's impact 

would be higher. Within this dataset, the impact of TE was removed from further 

consideration. However, even with the perceived insignificance of TE, it should be 

noted that features that include the TE in the denominator demonstrate higher 

relevance (e.g., log(T)/TE and log(T2lm)/TE). Figure 17b illustrates the relative 

importance of the remaining six features used for the training of the SL models. 

Finally, Table 3 summarizes the statistical description of log-transformed 

viscosity (i.e., target output) and engineered inputs used for SL viscosity 

forecasting alongside original features (T2lm, TE, and T). 
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Figure  17: Relative feature importance (ranking) by GBRT model of all input features, 

(a) before, and (b) after removal of redundant TE-derived features with less than <1% 

relative contribution. 
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Table 3: Descriptive statistics of engineered features used for training of SL models 

Engineered features Range Mean 
Standard  

deviation 

Log(η)* -0.1372-13.6735 6.0015 2.9336 

Log(T2gm) -1.4696 - 7.1227 2.0813 1.9129 

Log(T) 5.7009 - 6.1487 5.8132 0.1248 

Log(T)/TE  19.04 - 57.14 34.55 16.25 

Log(T2gm)/TE -14.69 - 71.22 14.74 19.23 

*- target output  

3.2.6. EVALUATION METRICS 

Five statistical metrics were chosen for the evaluation of the prediction 

performance of the models, including root mean square error (RMSE), mean 

absolute error (MAE), mean square logarithmic error (MSLE), mean absolute 

percentage error (MAPE), and adjusted coefficient of determination (R̄2). All 

metrics are negatively oriented statistical measures (i.e., smaller values are 

favorable), except R̄2, which is positively oriented.  

 

The RMSE is regularly employed in scientific studies to evaluate model 

performance 36,98. In this study, the RMSE is the square root of the average of 

squared differences between predicted viscosity and observed viscosity and is 

expressed in the centipoises: 

 RMSE= √
1

𝑛
 ∑  (𝜂𝑖 − 

𝑛

𝑖=1

𝜂̂𝑖)
2  (42) 

where n is a number of samples, 𝜂𝑖 is a predicted and 𝜂̂𝑖 is the observed viscosity. 

However, this metric can be sensitive to outliers, which can inflate the value of 

RMSE 99. To address this issue, MAE is introduced for the calculation of averaged 

prediction errors of the models, in centipoises: 

 MAE=
1

𝑛
∑  |𝜂𝑖 − 

𝑛

𝑖=1

𝜂̂𝑖| (43) 
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In contrast to RMSE, MAE does not square the differences between predicted and 

observed viscosity, making MAE less sensitive to outliers 100. In this manner, the 

MAE score gives less weight to the large prediction residuals and, therefore, can 

be used as a control measure in RMSE interpretation. The shared disadvantage of 

RMSE and MAE is that both metrics do not provide any information about 

percentual differences between predictions and observations. MSLE accounts for 

this by associating squared differences between log-scaled predictions and 

observations: 

 MSLE= 
1

𝑛
 ∑  (𝑙𝑜𝑔(𝜂𝑖 + 1) − 𝑙𝑜𝑔(

𝑛

𝑖=1

𝜂̂𝑖  + 1))2 (44) 

In this manner, the MSLE avoids the heavy penalization of prediction errors in the 

high viscosity domain, as is the case with RMSE and MAE. Instead, it considers the 

relative percentual difference between observation and prediction rather than the 

size of their residual101. In addition to MSLE, MAPE illustrated the relative 

percentual difference between sums of errors. MAPE represents the mean of the 

sums of absolute percentage errors of viscosity predictions. This metric enabled a 

more intuitive interpretation of the model forecasts since the errors are expressed 

in percentages102: 

 MAPE=
1

𝑛
∑  

𝑛

𝑖=1

|
𝜂𝑖 − 𝜂̂

𝑖

𝜂̂
| · 100% (45) 

Lastly, the proportion of model variance is typically expressed by the coefficient 

of determination (R2) which is a standard measure of goodness-of-fit for the 

regression models: 

 R2= 1 −
∑  (𝜂𝑖 − 𝑛

𝑖=1 𝜂̂𝑖)2

∑  (𝜂𝑖 − 𝜂̅ 𝑛
𝑖=1 )2

= 1 −
SSres

SStot
 (46) 

Although this metric provides a fast and straightforward evaluation, it might 

inflate due to the addition of new variables obtained from feature engineering. 

This inflation is a well-known problem that can be addressed by adding a term 

that penalizes the score with each additional predictor 103: 
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 R̄2= 1 − (1 − 𝑅2) ⋅
𝑛 − 1

𝑛 − 𝑝 − 1
 (47) 

where p is a number of features. Note that R̄2 < R2. 

 

3.2.7. GBRT OPTIMIZATION 

As mentioned in section 3.2.1, a choice of an arbitrary differentiable loss function 

('loss' parameter), can be made according to the statistical properties of the 

dataset. The NMR viscosity dataset contains a substantial number of outliers, 

which implied using an outlier-resistant loss function, such as the least absolute 

deviation (LAD)94. To test this premise, 5-fold cross-validation was executed for 

four commonly used loss functions: Huber loss, least squares, least absolute 

deviation, and quantile loss. The rest of the parameters and hyper-parameters 

were fixed to default values. Based on the lowest mean validation error, it was 

found that the GBRT configuration with LAD loss function generated the most 

stable predictions in terms of all error metrics (Table 4). 

 

Table 4: Results of four loss functions used for optimizing the model performance after 

5-fold cross-validation. The LAD function exhibits the best performance based on MAEcv, 

RMSEcv, MSLEcv, R̄2cv cross-validation (CV) scores.  

Test scores 
'Loss' parameter 

LAD Huber LS Quantile 

MAEcv 6332 7319 9072 6969 

RMSEcv 17,714 22,289 34,305 29,480 

MSLEcv 0.198 0.251 0.26 0.464 

R̄cv
2

 0.58 0.348 -0.54 -0.14 

The 'criterion' parameter can be determined in the same manner. This parameter 

allows a user to select the function that will estimate the DT node split quality. 

Usually, in regression tasks with DTs, the difference between the observed and 

predicted value is quantified by mean squared error (MSE). Subsequently, the 

node splitting for a particular DT will be achieved so that the lowest MSE value is 
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obtained. Since MSE heavily penalizes outliers, MAE was expected to perform the 

splitting task more efficiently (Table 5).  

 

Table 5: Results of three commonly used loss functions for estimating the node splitting 

quality after 5-fold cross-validation. The MAE function performs optimal splitting based 

on MAEcv, RMSEcv, MSLEcv, R̄2cv cross-validation (CV) scores. 

Test scores 
'Criterion' parameter  

MAE MSE Friedman-MSE 

MAEcv 3666 5756 5757 

RMSEcv 9925 16286 16287 

MSLEcv 0.149 0.183 0.183 

R̄cv
2

 0.86 0.66 0.64 

The next step was to find the optimal hyper-parameter values for the GBRT model. 

According to 84,92, five hyper-parameters have a considerable impact on GBRT 

model performance:  

 Number of trees (M): maximum number of estimators or boosting 

iterations (n_estimators). 

 Learning rate (ν): shrinkage coefficient, which regulates the individual tree 

prediction contribution, where each tree is being scaled by 0 < ν < 1. 

 Subsample (λ): the proportion of the data for fitting to the individual trees. 

 Max depth (J): maximum depth (size) of a tree. This value constrains the 

number of nodes in the tree.  

 Max features (ψ): number of features used in the search for the optimal 

split of a tree node.  

Mathematically speaking, these hyper-parameters are mutually dependent (also 

observable from Equation 35), which is why it was required to use a more 

sophisticated optimization technique other than pure trial-and-error. Therefore, 

these were evaluated simultaneously with the help of GridSearchCV (GS-CV), an 

exhaustive search cross-validation algorithm available in a scikit-learn package 91. 
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From the computer science standpoint, this metaheuristic approach iteratively 

optimizes an algorithm by searching for an appropriate combination of hyper-

parameters in multidimensional real-valued parameter space (grid), relative to 

some measure of accuracy (e.g., R2). This approach captures the interaction 

between the hyper-parameters, therefore significantly reducing the optimization 

time. However, due to discrete data (i.e., TE) and other distributions in the input 

data, the grid-search optimization may fail to discover the best hyper-parameter 

configuration, even with the appropriate transformations applied to the dataset. 

Also, with a growing number of hyper-parameters, its' utilization becomes 

computationally intensive. Hence, optimization was assessed further using error 

curves. Table 6 shows the hyper-parameters and their value range, which were 

optimized using the GS-CV approach. Recall that 'loss' and 'criterion' parameters 

were fixed according to results in Tables 4 and 5.  

 

Table 6: GBRT hyper-parameter optimization by grid-search based on 5-fold cross-

validation 

GBRT hyper-parameters 
Value 

range/method 

Optimal values Score 

n_estimators (M) [1-500] [220] RMSE: 8704 

learning_rate (ν) [0.01-1.0] [0.03] MAE: 3377 

subsample (λ) [0.1-1.0] [1.0] MSLE: 0.136 

max_depth (J) [1-8] [4] MAPE: 29 

max_features (ψ) [auto, sqrt, log2] [log2] R̄2: 0.91 



84 

  

 



85 

  

Figure  18: The test set GBRT model performance in terms of least absolute deviations 

(LAD) for various learning rates (a), and subsample sizes (b) relative to the number of 

trees M. Bottom plot (c) illustrates the model accuracy evaluation as a function of M, in 

terms of MAE, RMSE, and MSLE. 

Figure 18a shows how the GBRT model deviance evolves with different learning 

rates (ν) as a function of a number of trees M. The GBRT loss is expressed in the 

least absolute deviations. Larger values of ν (e.g., ν=1) lead to faster convergence, 

that is, smaller values of M are needed for the deviance to converge.  However, 

when a value is decreased (ν=0.01), the contribution of every additional estimator 

is reduced further, leading M to increase to ensure smooth convergence, which 

also means an increase in computational cost. Since the apparent tradeoff exists 

between these two parameters, the parameter grid-search cross-validation was 

used as a strategy for obtaining their appropriate values. 

 

Additionally, subsampling λ is a parameter that enforces the variance reduction of 

the sample population. In GBRT applications for large datasets, this technique 

proved helpful for improving computing performance and accuracy 84. Figure 18b, 

however, shows that no subsampling (λ =1) leads to the smoothest and lowest 

deviance for the given input, possibly due to the small number of data points. Also, 

alternating the λ parameter has only a minor effect on deviance magnitude. In fact, 

the variations are so minor that one must zoom in on the y-axis to observe this 

behavior (note y-axis scales of Figure 18a and 18b). 

 

Finally, the maximum depth of all trees was restricted to the same size (J=4), as 

determined by the GS-CV, which agrees with recommendations in literature 84.  

The optimal number of features for the best split of the tree node was found to be 

ψ=2 (i.e., max_features = "log2"). It should be noted that the value of the latter has 

the least impact on the prediction performance of the GBRT model, and therefore, 

using the default value (i.e., "auto") is also acceptable. 
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3.2.8. SVR OPTIMIZATION 

In Equation 41, the term K (xi, xj) represents the kernel function. The standard 

kernel functions used in SVR are linear, polynomial, sigmoid, and Gaussian. The 

NMR input parameters are in the nonlinear relationship with the oil viscosity; 

therefore, the kernel must capture this relationship once the input features are 

mapped into a higher dimension space. In these circumstances, the Gaussian, or 

radial basis function (RBF) kernel has proven to be effective 104. From Equation 

40, the kernel function can be expressed as: 

  𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (𝛾 · ‖𝑥𝑖 − 𝑥𝑗‖
2

)  
 

(48) 

where 𝛾 is the width hyper-parameter of the RBF kernel. Hence, there are three 

main hyper-parameters which need to be optimized: 

 Gamma (γ): RBF kernel specific parameter which defines the support 

vector's radius of impact. 

 Epsilon (ε): the insensitivity radius-ε within which the prediction residuals 

are ignored (loss=0). This value controls the number of support vectors 

(SVs) and the smoothness of the function. 

 Regularization parameter (C): hyper-parameter, which affects the size of 

the penalty applied to model predictions. If too large, the model may store 

an excessively large number of SVs and cause overfitting.   

Literature findings show that the behavior of these hyper-parameters is 

interrelated, which should be considered during their optimization93. Thus, the 

GS-CV approach was used to simultaneously approximate C, ε, and RBF kernel 

parameter 𝛾 (Table 7). Also, their in-depth assessment was performed from the 

analysis of the error curves (Figure 19).  
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Table 7: SVR hyper-parameter optimization by grid-search based on 5-fold cross-

validation 

SVR hyper-parameters Range/method Optimal values Score 

Gamma (𝛾) 

 

['scale', 0.1-1·10-5] 

 

[5·10-4] 

 

RMSE: 8704 

MAE: 3377 

Epsilon (𝜀) [1-1·10-5] 

 

[1·10-4] MSLE: 0.136 

MAPE: 29  

Regularization (C) [1-500] [25] R̄2: 0.91 

1
Highlight
what basis function and degree was chosen? 
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Figure  19: Test set SVR model performance in terms of log-normalized RMSE for 

various values of ε (a), and γ (b) with respect to regularization C. Bottom plot (c) 

illustrates the accuracy of optimized SVR model as a function of C, in terms of three 

error metrics; log(RMSE), log(MAE) and MSLE.  

Figure 19a presents how SVR model prediction accuracy behaves for various 

values of radius-ε in the function of C. For the ε=10-4 obtained by GS-CV, it was 

found that the SVR model utilized over 70 % of the data samples as support 

vectors, which indicates overfitting 105. For values of ε=10-3 and ε=10-2, the 

deviance converged smoothly at C=30. The number of SVs was reduced by 

increasing ε to 10-3 (Figure 19a, black) while preserving nearly identical accuracy.  

 

Figure 19b shows deviance for the fixed ε and various radii of individual SV impact 

γ. The smoothest convergence and lowest deviation are achieved when 𝛾=' scale,' 

which is the value when an inverse of the number of features is scaled by their 

standard deviation. Interestingly, the GS-CV obtained γ= 5·10-4, but according to 

its' plot (black curve), the deviance converges when C>50, at which point the SVR 

model attempts to perfectly predict each entry from the training set (hard-margin 

SVM behavior). Since this might lead to overfitting and increased model 

complexity, the γ was set to '0.001.'  

 

As a final step, the model with fixed ε and γ hyper-parameters was evaluated in 

Figure 19c, where three metrics were utilized to evaluate the tuned SVR model. 

While both RMSE and MAE follow the same decreasing trend, the MSLE error 

decreases until the C=12 inflection point, after which it starts increasing. This 

behavior is due to the inflation of residuals in the low viscosity domain. To restrict 

the further growth of residuals and to preserve the overall model performance, 

the regularization was set to C=25, in line with the grid-search results (see Table 

7).  
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3.3. RESULTS AND DISCUSSION 

This section is divided into two parts. In the first part, we compare SVR and GBRT 

model performance against four other popular regression models, whereas in the 

second part, a performance of four well-known empirical NMR viscosity models 

was considered. The models are compared using the five error metrics introduced 

in chapter 2.7. Also, the cross-plots with predicted and observed viscosities are 

provided for the in-depth analysis. 

 

3.3.1. SUPERVISED LEARNING MODELS  

The performance of the GBRT and SVR was evaluated against an additional four 

SL algorithms, including multiple linear regression (MLR) 87, K-nearest neighbors 

(K-NN) 86, decision trees (DTs) 84, and random forests (RF) 85. Their optimization 

was performed with GS-CV, similarly as for GBRT and SVR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
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Table 8: GS-CV hyper-parameter optimization results for all supervised learning 

algorithms which were tested in this work. 

Model Hyper-parameters Range/method 
Optimal 

values 

Decision trees 

(DTs) 84 

criterion ['mse', 'mae'] ['mse'] 

max_features 

max_depth 

min_samp_leaf 

min_samp_split 

splitter 

[1, 2, 3, 'sqrt', 'log2', 'auto'] 

[1-4] 

[1-4] 

[1-4] 

[‘best’, ‘random’] 

[3] 

[4] 

[3] 

[2] 

[‘best’] 

K-Nearest 

Neighbors 

(KNN) 86  

n_neighbors [1-50] [3] 

weights ['uniform', 'distance'] ['uniform'] 

algorithm ['ball_tree', 'kd_tree', 'brute'] ['ball_tree'] 

p [1, 2]  [1] 

Random forests 

(RF) 85 

n_estimators [1-80] [7] 

criterion ['mse', 'mae'] ['mae'] 

Support vector 

machines for 

regression 

(SVR) 93 

gamma ['scale', 0.0005-0.1] [0.01] 

epsilon [1-0.0001] [0.0001] 

C  [1-500] [20] 

Gradient 

boosted 

regression 

trees (GBRT) 84 

loss ['ls', 'lad', 'huber', 'quantile'] [‘lad’] 

n_estimators [1-500] [220] 

criterion ['mse',' mae',' friedman_mse'] ['mae'] 

learning_rate [0.01-0.1] [0.03] 

max_features [auto, sqrt, log2] [log2] 

max_depth [1-8] [4] 

subsample [0.1-1.0] [1.0] 
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Figure  20: Comparison of NMR SL viscosity model predictions and observations. Note 

that the grayscale points are predictions of models generated without FE, while warm 

color points are predictions with FE. Lighter colors indicate lower temperatures (from 
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25 ℃/299 K), and more intense, darker colors indicate higher temperatures (up to 200 

℃/466 K). GBRT and SVR models with integrated FE demonstrate the best performance. 

 

 

Figure  21: Compared statistical scores of SL models without FE (a) and SL models with 

integrated FE (b). SVR-FE and GBRT-FE demonstrate the best statistical performance. 

When Figures 19 and 20 are examined together, one can note that the overall 

performance of each model improves after the integration of FE. This effect is, 

however, not proportionally pronounced for all models. For instance, the MLR-FE 

model's prediction variance has reduced dramatically after employing FE (Figure 

21b). Interestingly, for GBRT and RF models, the variance-reducing effect from FE 
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is much smaller than in the latter's case (Figures 19e and 19c). The same 

observation applies to the DT model, the base estimator of GBRT, and RF models 

(Figure 20a).  

 

This difference in performance comes from the difference in the underlying 

mathematical principles of these models. As the MLR model is linear, the 

nonlinearity reduction from the log transformation naturally improved the 

model's generalization and stability. Additionally, the integration of new features 

reduced the variance of the predictions, which resulted in a further shrinking of 

residuals. A similar is valid for the SVR model, though to a smaller extent (Figure  

20f) 106. However, in the case of RF, GBRT, and DT models, the log transformation 

did not impact the performance because the background tree-branching process 

does not rely on numerical values of the features but instead uses the rank of the 

features, which remained the same after transformations 84. Thus, the variance 

reduction came solely from capturing more variability from the new features 

derived in the second step of FE. Furthermore, when we compare the DT scores in 

Figure 21, with those by GBRT, we observe a massive gap in performance, which 

perfectly illustrates the advantage of ensembles of DTs over a single DT. One of the 

reasons for the poor performance of single DT models is their 'habit' of overfitting 

the training data, making them unstable with unseen data. Therefore, ensembles 

of DTs generate a variance that minimizes the overfitting 84.  

 

Lastly, the KNN is a simple algorithm where the output values are forecasted based 

on the similarity between the input features. This similarity is calculated as a 

distance (e.g., Euclidian, Manhattan, etc.) from k-instances, defined by the user 86. 

Feature engineering improves KNN scores almost proportionally to RF and GBRT 

models, however not enough to minimize the large residuals in the high viscosity 

domain, which causes the RMSE and MAE scores to rise (Figures 20a and 20b).  

 

Another remark is that the significant temperature variations seem to have a 

negligible effect on the performance of all supervised learning algorithms. The 
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predictions in the highest temperature domain overlap with the x=y line in all six 

cases, demonstrating that each algorithm has appropriately captured the 

relationship between observed oil viscosity and NMR signal loss that occurs at 

high temperatures. In comparison, empirical models tested in this work16,23,25,96, 

exhibit poor performance in these conditions 79, as seen in the following chapter. 

 

3.3.2. EMPIRICAL NMR MODELS  

The performances of GBRT-FE and SVR-FE models are compared with four well-

known empirical NMR viscosity models based on T2lm, TE, and T. These models 

were developed by Straley et al. 16., Nicot et al. 96, Cheng et al. 25, and Sandor et al. 

23. Previous research showed that tuning by non-linear least squares (NLS) 

improves the performance of empirical models 79. However, the viscosity dataset 

in the present study has long-tailed distribution with many outliers at higher 

viscosities, which dominate the sum of squares minimization, thus ultimately 

leading to erroneous model fit and misleading statistical scores 107,108. Hence, the 

model fitting was performed using the orthogonal distance regression (ODR), 

proved to be a successful technique for dealing with outliers 109. Figure 22 and 

Figure 23 demonstrate the superior performance of both SVR-FE and GBRT-FE 

models in terms of all statistical metrics. The curvature of the viscosity forecasts 

by empirical models in Figure 22 reflects the combined influence of NMR signal 

loss due to the Curie effect, which occurs at high temperatures, and fast relaxation 

by solid-like components in heavy oil, which led to poor model generalization.  
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Figure  22: Performance comparison of empirical NMR viscosity models (a, b, c, and d) 

with SVR-FE (e) and GBRT-FE (f) models. GBRT-FE and SVR-FE demonstrate 

significantly better performance. 
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Figure  23: Compared statistical scores of four empirical NMR viscosity models and SVR-

FE and GBRT-FE supervised learning models in terms of RMSE, MAE, and MSLE. SVR-FE 

and GBRT-FE demonstrate significantly better statistical performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 

  

3.3.3. SVR-FE VS. GBRT-FE 

When cross-plots from Figure 20 and Figure 21 are analyzed along with scores in 

Figure 22, Figure 23, one can conclude that SVR-FE and GBRT-FE models have 

superior test performance than any other SL model. For instance, in the case of 

MLR-FE, K-NN-FE, and RF-FE, the SVR-FE model, on average, scores 2.5 times 

lower RMSE and MAE, while GBRT-FE achieves nearly two times lower scores. 

When their performance is compared to empirical models, the difference in 

performance is even more substantial; the SVR-FE model has about 4.5 times 

lower RMSE and MAE scores, whereas GBRT-FE achieves nearly 3.5 times lower 

scores.  

 

The principal difference in the performance of these two models is related to their 

precision (i.e., variance), which is evidenced by their different MSLE and MAPE 

scores. For instance, the SVR-FE model has a better MSLE score than empirical 

models (~4.5 times lower) but compared to SL models, KNN-FE and RF-FE 

marginally outperform SVR-FE. The same is true for MAPE scores and percentage 

error box plots when further examined in Figure 24. The GBRT-FE model, on the 

other hand, scored the best MSLE and MAPE scores in this work. These results 

imply that SVR-FE has the highest accuracy but somewhat lower precision (i.e., 

variance), relative to GBRT-FE, KNN-FE, and RF-FE models. For more convenience, 

all evaluation scores are summarized in Table 9. 
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Figure  24: Percent error box plots (a) and MAPE scores (b) for six supervised learning 

models with feature engineering, and four empirical models. Note that in the plot (a) the 

y-axis is in log-scale. GBRT-FE model demonstrates the best performance in terms of 

MAPE. 
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Table 9: Compared view of statistical scores for all SL and empirical models. Bolded 

values correspond to the best score. 

Model 
Test scores 

RMSE (сP) MAE (сP) MSLE MAPE (%) R2 

DT 20,712 7968 0.368 55 0.49 

MLR 30,282 10,858 3.443 282 -0.08 

KNN 25,044 8642 0.369 47 0.26 

RF 21,725 6989 0.293 44 0.63 

SVR 26,266 7858 0.749 93 0.40 

GBRT 10,587 3331 0.168 32 0.85 

DT-FE 20688 7409 0.359 55 0.49 

MLR-FE 15,808 5447 0.319 56 0.70 

KNN-FE 14,559 4182 0.210 39 0.74 

RF-FE 18,285 5979 0.232 43 0.79 

SVR-FE 5418 1671 0.257 50 0.96 

GBRT-FE 8704 3377 0.136 29 0.91 

Straley 28,910 9638 1.014 54 0.58 

Sandor 25,012 8066 0.831 50 0.83 

Nicot 21,489 7306 0.712 67 0.46 

Cheng 21,371 7085 0.990 95 0.59 

 

3.3.4. PHYSICAL IMPLICATIONS OF SVR-FE AND GBRT-FE PERFORMANCE 

From the physical point of view, meaningful insight can be extracted from the 

models' fundamental understanding. Although SVR-FE is moderately stable and 

achieves good accuracy, it struggles with capturing additional variability from the 

oil samples' diverse chemical compositions. This behavior can be observed in 

Figure 20f, where SVR-FE predictions favor the high-temperature heavy oil 

sample over the other samples. This occurs due to the structural risk minimization 

principle, which balances model complexity to avoid overfitting the training data 

and ensures the best possible generalization of new data. In other words, the 

model can be adapted to perform with more precision, but that would likely 
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deteriorate its generalization ability. However, two possible strategies could 

rectify this; firstly, SVR heavily relies on feature engineering, which implies that 

the SVR training on a set of lighter or more chemically alike oils would improve 

the forecasts' precision by preserving good generalization. The second strategy 

would be to expand the database by adding more NMR data from new samples. 

 

On the other hand, GBRT-FE effectively handles the discrepancies from chemically 

diverse set oil samples and a wide span of temperature and viscosity. This is due 

to its stage-wise estimator addition principle, where overfitting is controlled by 

tuning the learning rate and restriction of tree sizes. In this way, the GBRT hyper-

parameters limit individual trees' contribution, but by adding many estimators, 

the model manages to "learn" nuanced relationships that stem from mixed oil 

chemistry, thus outperforming the SVR approach. As a result, GBRT-FE achieves 

the best tradeoff between variance and bias for the task at hand at a negligible 

increase in computational costs. 

 

On another note, models presented in this study have certain limitations 

originating from (a) NMR hardware configuration and (b) data availability. 

a) One of the limitations of the presented SL models is that they were trained 

on NMR oil data acquired with echo-spacing (TE) ranging from 0.1-0.3 ms. 

Thus, the NMR data acquired using older NMR tools where echo-spacing 

(TE) values are hardware-limited to longer TE (0.3-1.2 ms) might have less 

reliable predictions. Reliability might be particularly problematic for heavy 

oils and bitumens, where due to the fast relaxation of solid-like 

constituents, the NMR device fails to measure the whole T2-relaxation 

spectra, which would cause the models to underpredict the real viscosity 

23,67,96. However, by adding new NMR data to the dataset acquired using 

longer TE, preferably from heavy oil samples, the SL algorithm could 

capture the relationship between long TE and viscosity, compensating for 

the undetected part of the T2 spectra.   
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b) Small datasets are very common in petrophysics, especially NMR data, due 

to the confidentiality regulations of oil companies and high well-logging 

costs, making the application of artificial intelligence challenging. 

Additional data acquired from heavier oils and at various temperatures 

would make these models more robust to the chemical diversity of oils and 

various temperature conditions. 

 

3.4. SUMMARY 

In this study, we used SVR and GBRT algorithms to develop NMR models for oil 

viscosity prediction using NMR T2-relaxation time, echo-spacing and temperature 

as an input, and dynamic oil viscosity as the target output. Also, a strategy to 

reduce the variance of the forecasts was introduced, where domain knowledge 

was used to implement feature engineering. Model performance was assessed 

against four other popular SL algorithms and another four analytical models from 

the literature. The SVR-FE and GBRT-FE have achieved statistically most favorable 

scores in the study in terms of five error metrics: RMSE, MAE, MSLE, MAPE, and 

R̄2.  

 

In summary, GBRT-FE demonstrated the best overall generalization ability, thus 

producing predictions with a well-balanced variance-bias tradeoff. Consequently, 

the use of GBRT-FE might prove as a viable solution in circumstances where a wide 

span of oil types (light oils, heavy oils, and bitumens) is being tested at various 

temperatures. Environments like these correspond to heavy oil reservoirs 

undergoing or being screened for thermal treatment and other EOR approaches 

such as solvent injection or a miscible gas injection 110. On the other hand, the SVR-

FE model exhibited a high accuracy but could not account for the variability 

originating from the diverse chemical composition of the oils at the level that the 

GBRT-FE model did. These findings indicate that SVR-FE would be a better choice 

when sets of chemically more similar oils are being studied (e.g., only light or only 

heavy oils) at various temperatures. In such conditions, the variance of SVR-FE 
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predictions would reduce to the degree where high accuracy and precision come 

into play, such as in laboratory NMR characterization of petroleum fractions or 

contactless non-invasive oil viscosity monitoring in mechanical systems. 

 

Finally, the proposed strategy for supervised learning application proved to be 

effective even for a small dataset, suggesting that this approach can be extended 

to characterize other physicochemical properties of oils, fuels, and petroleum 

distillates researchers work with relatively smaller datasets. 
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Chapter 4  APPLICATION OF XGBOOST MODEL FOR IN-SITU WATER 

SATURATION DETERMINATION IN CANADIAN OIL-SANDS BY LF-NMR AND 

DENSITY DATA  

 

4.1. MOTIVATION 

As discussed in section 1.5.3, the main issues related to the determination of water 

content in oil-sands by LF-NMR are: 

 Insufficient understanding of dominating T2 relaxation mechanism in fine 

pore-space saturated by fluid (T2 bulk + T2 surface);  

 The diffusive-coupling phenomenon associated with the water relaxation 

between macro- and micro-pores, and; 

 Resultant overlapping of water and oil signals in T2 distribution. 

As these issues are intertwined, the determination of T2 cutoffs for splitting the T2 

distribution to producible and bound fluids and interpretation of fluid types 

becomes a laborious task in which seemingly minor errors can lead to erroneous 

predictions of water saturation and, therefore of OOIP. 

 

In this work, we postulated that the combination of LF-NMT T2 data and bulk 

density data could be used to effectively separate the contributions of oil and 

water signals to a degree at which an accurate determination of relative water 

fraction is possible. For model derivation, two machine learning approaches based 

on Extreme Gradient Boosting (XGB) were employed. The first modeling approach 

is based on a feature engineering process that reduces the number of inputs while 

maximizing model generalization capacity. This was achieved by deriving new 

features using empirical knowledge from the T2 distribution analysis domain and 

a feature extraction technique based on information theory. In contrast, the 

second approach considers as input the whole NMR T2 distribution of the sample, 

aiming to preserve all available information originating from fluids residing in the 

sample pore space. The dataset comprised 82 oil-sands core samples recovered 
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from northern Alberta in Canada. Water content percentage relative to of the total 

mass of the sample was determined by Dean-Stark extraction (%DS-w). The model 

training and prediction test scores of the models were evaluated using three 

statistical metrics and a leave-one-out cross-validation (LOOCV). These scores 

were compared with water content predictions based on the previously published 

deconvolution approach51. 

4.2. THEORY 

4.2.1. LF-NMR MEASUREMENTS FOR WATER SATURATION DETERMINATION  

Three main processes comprise the total T2 relaxation; bulk relaxation, surface 

relaxation, and diffusion relaxation due to the gradient in a magnetic field. In this 

work, the benchtop LF-NMR relaxometer was used in which the gradient is absent, 

thus the diffusion term can be neglected. 

T2B represents the relaxation occurring in bulk fluids or fluids in large pores, and 

T2S quantifies the relaxation of fluids in smaller pores. Also, ρ2 is T2 surface 

relaxivity, and S/V is a ratio of the fluid volume and surface of the pore. Each of 

these mechanisms will contribute to the total relaxation in varied proportions 

depending on reservoir rock properties and physicochemical properties of the 

fluids, such as rock wettability, pore size and pore surface area, fluid viscosity and 

chemical composition.   

4.2.2. XGBOOST PRINCIPLES 

XGBoost stands for Extreme Gradient Boosting (XGB), and it presents an 

implementation of the gradient boosting decision trees111. The main principle of 

gradient boosting is to utilize the individual weak learner, such as a decision tree, 

and in a stage-wise manner, add iteratively new trees, to minimize further the 

objective function. This process continues for the specified number of boosting 

iterations, after which the prediction model is obtained in a final form. The 

 1
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algorithm uses gradient descent to minimize the objective function by finding the 

direction of the “steepest” descent. XGBoost, on the other hand, employs several 

improvements resulting in better overall generalization and computational speed. 

Some of the key advantages are using second-order gradients, which contribute to 

a better understanding of the direction of the loss function minimum, and 

enhanced regularization techniques such as lasso regression (L1) and ridge 

regression (L2) which reduce the model complexity and overfitting. The XGBoost 

model can be expressed as: 

where ŷi is predicted Dean-Stark water content (%DS-w), xi is a vector of input 

features and fk is a tree at the k-th instance. A new tree ft is added iteratively by 

minimizing the objective function as:  

where L presents the specified loss function, yi is observed %DS-w in a sample, ŷi(t-

1) + ft(xi) is the predicted %DS-w at the t-1 iteration, and Ω is a regularization term, 

or a penalty function. Regularization term can be denoted as:  

where γ is L1 and λ is L2 regularization parameters, T is the number of leaf nodes 

in a tree, and wj are the weights of leaves. The addition of new trees ft is performed 

in a stage-wise manner such that the loss between the prediction and observation 

is minimized, with respect to the regularization term Ω to prevent the overfitting 

and gauge the model complexity. Smaller values of Ω enable the better 

generalization of a tree. The detailed mathematical description of the XGBoost 

algorithm and additional tuning and regularization parameters is available 

elsewhere111. 

 

 
𝑦̂𝑖 = ∑ 𝑓𝑘

𝐾

𝑘=1

(𝑥𝑖) (51) 

 
𝑓𝑡 = ∑ 𝐿(𝑦𝑖 , 𝑦𝑖

(𝑡−1)
+  𝑓𝑡(𝑥𝑖)) +  Ω(𝑓𝑡) 

𝑛

𝑖=1

 (52) 
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4.3. METHODOLOGY 

4.3.1. EXPERIMENTAL PROCEDURE AND DATA PREPROCESSING 

Oil-sand samples were collected in northern Alberta in Canada from a single 

delineation well. Two sets of 82 whole core samples were recovered. The first set 

was used for laboratory LF-NMR measurements, and a second set represented 

sister samples used in Dean-Stark extraction for determining the relative fraction 

of water, oil, and solids. Samples for NMR experiments were stored in glass vials 

and measured using a Corespec 1000TM benchtop LF-NMR relaxometer at 

reservoir temperature (6 ℃) and ambient temperature (25 ℃). The Carr-Purcell-

Meiboom-Gill (CPMG) pulse sequence was used for obtaining T2-relaxation 

distribution. The CPMG parameters were predetermined after a series of test NMR 

experiments on different oil-sand samples. There were two aspects which had to 

be taken into account. The first was to tune the CPMG parameters to detect the fast 

relaxing heavy oil and clay-bound water signals. This was achieved by setting the 

shortest echo time TE that the equipment allowed (0.2 ms). The second aspect was 

achieving a lower signal-to-noise ratio (SNR) to simulate the well-logging in-situ 

NMR tool output by reducing the number of trains, which in turn resulted in a 

noisier signal. After trial rounds of measurements, the following parameters 

produced optimal T2 distribution and SNR (Table 10). 

 

Table 10: Optimal CPMG pulse sequence parameters for detection of fast relaxing clay-

bound water and heavy oil signals. 

CPMG pulse parameters Values 

Echo time, TE (ms) 0.2 

Number of pulses, Np  5000 

Wait time/post train delay (ms) 6500 

Number of trains, NT 10 

 

For the dataset, the range of SNR varied from 5 to 56, with an average of 23. The 

ExpFit in-house software for multi-exponential analysis of the NMR signal was 
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used. The representation of the signal after Inverse Laplace Transform (ILT) was 

obtained using Tikhonov regularization112. The practice has shown that the 

regularization parameter helps avoid oscillations in solution associated with noise 

and provides smooth T2 distributions8. The regularization parameter can be 

determined by direct and indirect methods such as Butler-Reed-Dawson, L-curve, 

or generalized cross-validation8. In the case of oil-sands, after initial analysis, the 

regularization parameter was determined directly and α=0.05 was found to 

provide the most stable solution for most samples. The density values of these 

samples were measured beforehand by X-ray Computed Tomography (X-ray CT) 

using GE 9800 CT scanner as a substitute for the density logging data. 

 

The experimental program for Dean-Stark extraction, LF-NMR measurements, 

and X-ray CT density measurements is illustrated in the flowchart (Figure 25). 

 

Figure  25: Flowchart representing the experimental program for oil-sands samples by 

X-Ray CT, LF-NMR T2 measurements, and Dean-Stark extraction. 

The final size of the dataset comprised 164 data points – 82 T2 distributions at 

ambient temperature and 82 T2 distributions at reservoir temperature, with 

corresponding density data and Dean-Stark sample composition. To compare the 
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performance of machine learning models with the well-known peak 

deconvolution approach, the prediction of water content by LF-NMR 

measurements was also performed using the T2 cutoff approach developed by 

Bryan et al. 51.  

 

The data processing and model training was performed in Python 3.9 

environment, while figures were produced using OriginPro 2019b software. For 

XGBoost model development and training, the dataset was randomly split into a 

training set and a test set in 0.25:0.75 proportion, respectively. To ensure the 

reproducible split of the data, a random split seed was fixed to random_state = 2. 

The XGBoost models were optimized using Bayesian Optimization (BO), while the 

training quality was evaluated by leave-one-out cross-validation (LOOCV). The 

forecasting performance of the models was evaluated using three error metrics 

and residual distribution analysis. These steps will be discussed in detail in the 

following sections.  

 

4.3.2. XGBOOST MODEL BASED ON FEATURE ENGINEERING (XGB-FE) 

Feature engineering (FE) is a process in a part of a machine learning pipeline 

where domain knowledge is utilized to extract the most relevant information from 

the raw data. In this work, we used feature engineering to extract information 

from the NMR T2-relaxation distribution. The complete FE model derivation 

procedure is illustrated in Figure 26.  
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Figure  26: Flowchart for XGB-FE model development. 

In petrophysics, the T2-relaxation is regularly analyzed by geoscientists to 

determine fluid saturations in reservoirs, differentiate between different types of 

fluids, study pore size distribution, and evaluate the physicochemical properties 

of fluids. However, depending on the task, some parts of the T2 distribution may 

have more relevance than others. In the context of studying the water content in 

oil-sands by NMR, we use feature engineering to reduce the amount of 

unnecessary information while preserving the data carrying the most information 

about the water in samples. A time-domain distribution of the T2-relaxation was 

obtained by processing the spin-echo signal decay using a mathematical inversion. 

As the T2 distribution has a form of a continuous function, the discretization was 

performed for data binning which simplifies the input of data into the machine 

learning model. After the discretization, the T2 data was presented as a frequency 

distribution by 52 bins, with each bin corresponding to a particular T2i relaxation 

time in milliseconds. We defined five new NMR T2 features to limit the number of 

inputs.  

 

As the T2 distribution of relaxation times is represented on the semi-logarithmic 

scale, the standard parameter for representing the average T2 relaxation is T2 

logarithmic mean (T2lm): 
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𝑇2𝑙𝑚 = 𝑒𝑥𝑝 [∑

𝐴𝑖

𝐴
⋅ 𝑙𝑛(𝑇2𝑖)] 

 
(54) 

where Ai is an amplitude at the corresponding T2i bin, and A is a total NMR 

amplitude. Empirical evidence shows the strong relationship between viscosity of 

fluids and T2lm, implying that in a water-oil system where distribution tends to be 

multimodal due to their different relaxation properties, the T2lm provides a better 

measure of central tendency favoring both fast and slow relaxing parts of the 

distribution.  

 

To account for the variation in T2 distribution (i.e. narrow vs. wide peaks), the T2 

standard deviation was defined as: 

 𝑇2𝑠𝑡𝑑 = √
∑(𝐴𝑖 −  𝜇)

𝑁
 (55) 

where μ is the T2 distribution mean, and N is the number of the T2 bins.  

 

The T2p was defined as a location of a maximum value (peak) of the T2 amplitude 

on T2i axis. This parameter is used in the petrophysical practice for the separation 

of bound and producible fluids and fluid typing since T2p gives an indication of 

whether the largest amplitude portion of the signal corresponds to low or high T2 

values. 

 𝑇2𝑝 = max (𝑓(𝑇21
), … , 𝑓(𝑇2𝑛

)) (56) 

Intelligent algorithms like XGBoost have gained popularity due to their ability to 

generalize complex data dependencies in large datasets and achieve state-of-the-

art forecasting results. However, a small dataset is used in this study, where the 

overlapping of water and oil T2 signals are likely to remain hidden or poorly 

represented. So, instead of allowing the algorithm to search through the whole 

NMR T2 distribution, we can ‘show’ it where to look for the patterns and changes 

in the amplitude. One of the essential parts of the T2 distribution in sandstones is 

the empirical clay-bound water T2 cutoff located at 3 ms, which presents the 

boundary between capillary-bound and clay-bound fluids in a water-saturated 

core6,113. In order to capture the possible T2 response of clay-bound water and 
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monitor its signal variation with different training samples, we defined a T2 bound 

fluid (T2bf) interval as: 

However, this parameter cannot be used on its own to describe the changes in 

water content since the oil signal may also be located in the relevant interval. The 

true T2 cutoff value in petrophysical practice is usually determined by performing 

lab tests on the saturated core samples (i.e., centrifuging), and even then, the use 

of a fixed or averaged T2 cutoff value leads to the erroneous prediction of 

producible fluids. Instead, we attempt to obtain insights into the true T2 cutoffs 

using a feature extraction technique called Mutual Information (MI) regression, 

based on the information entropy between variables. In classical regression 

analysis, statistical tests like F-test are carried out to study the degree of the linear 

association or continuous analysis of covariance (CANOVA) for the non-linear 

association between variables. However, mutual information is not ‘concerned’ 

whether the variables have apparent linear correlation or covariance of zero, and 

they may still be stochastically dependent. This is the case in studying the changes 

in the conditional probability of one variable when another is modified114. In other 

words, by using MI regression, one can measure the level of association of the 

specific parts of T2 distribution with the target output (i.e., water content by Dean-

Stark), regardless of their correlation or covariance. The score is measured in 

natural units of information or ‘nats’ based on natural logarithms and powers of e. 

The MI regression was performed on the training set using a Python library 

sklearn.feature_selection class mutual_info_regression.  

 𝑇2𝑏𝑓 = ∑ 𝐴𝑖

3.0(𝑚𝑠)

0.1(𝑚𝑠)

  (57) 
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Figure  27: The mutual information regression results applied to the training set T2 

distributions of the oil-sand samples relative to the Dean-Stark water content (DS-w). 

The shaded area presents the continuous cluster of T2 responses with a strong mutual 

association with DS-w, which were used to calculate the T2 cutoff range parameter – T2cr.  

Figure 27 shows the relative mutual information scores of T2 responses, where 

higher values indicate a stronger association with water content by Dean-Stark. 

For this dataset, the responses from 1.99-6.30 ms have the highest association 

with the water signal and form a continuous cluster between 100 and 101 decades 

along the T2 semi-log scale, suggesting that most theoretical T2 cutoff values lie in 

this interval. Therefore, the T2 cutoff range (T2cr), was defined as:  

 𝑇2𝑐𝑟 = ∑ 𝐴𝑖

6.30(𝑚𝑠)

1.99 (𝑚𝑠)

  (58) 

As previously mentioned, the T2 surface relaxation and diffusive coupling play a 

vital role in identifying clay-bound water, which causes the overlapping of the 

water and oil signals. Unfortunately, to determine their contribution, a sample 

recovery for the subsequent lab experiments is required. However, a common 

practice in well-logging is to combine NMR and bulk density logs to improve 

interpretation. Therefore, the bulk density was used as an additional parameter 

which we postulate is associated with T2 surface relaxation and diffusive coupling.   
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Figure  28: The diagonal correlation matrix shows the linear dependence between six 

input features with Dean-Stark water content (DS-w). Scores represent Pearson’s 

correlation coefficient and are color-coded (heatmap). 
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Figure  29: Mutual information regression scores for five NMR parameters and bulk 

density (input features) relative to the Dean-Stark water content (DS-w). 

The correlation matrix (Figure 28) shows the linear dependence between the 

input features and target output. According to the Pearson score, T2 cutoff range 

and T2 peak, and T2 logarithmic mean features exhibit the strongest positive 

correlation with the water content by Dean-Stark (DS-w). The T2 standard 

deviation shows a moderate degree of positive correlation, while T2 bound fluid 

and density features show moderate to low negative correlation with DS-w. 

Interestingly, when compared with mutual information scores from Figure 29, it 

can be observed that all features are ranked by score accordingly to Pearson’s 

scores except for density which has the highest MI score (0.86 nats), indicating its 

strong stochastic (nonlinear) dependence with DS-w, thus justifying integration of 

density measurements into the model. Therefore, the XGB-FE model was 

developed using the six features presented in Table 11. 

 

Table 11: Descriptive statistics of six input features used for XGB-FE model 

development. 

Statistic T2std 

(a.u.) 

T2p 

(ms) 

T2lm 

(ms) 

T2cr 

(a.u.) 

T2bf 

(a.u.) 

ρ 

(kg/m3) 

Count 164,0 164,00 164,00 164,00 164,00 164,00 

Mean 0,016 11,57 1,84 0,18 0,31 1626 

Std 0,005 4,54 1,22 0,13 0,10 80 

Min 0,006 1,00 0,32 0,00 0,10 1442 

25% 0,013 8,00 0,90 0,07 0,23 1581 

50% 0,016 13,00 1,61 0,18 0,30 1634 

75% 0,019 15,25 2,49 0,29 0,38 1677 

Max 0,032 20,00 8,59 0,50 0,54 1842 
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4.3.3. XGBOOST MODEL BASED ON THE FULL T2 RELAXATION DISTRIBUTION 

(XGB-FS) 

The second modeling method facilitates the complete sample T2 distribution. 

There are two main incentives for this approach. First, the T2 relaxation 

distribution contains a large amount of information about the fluids residing in 

the pore space, indicating that using a single or even a few features to characterize 

the whole distribution may lead to significant information loss and, therefore to 

poor model forecasting performance65. By using the entire T2 distribution, 

variations such as changes in slope or local minima can implicitly be used to help 

separate oil and water signals. Secondly, predictions generated by the full-T2 

distribution model provide a good baseline for comparison with the feature 

engineering and conventional deconvolution approaches. Therefore, the input 

features were arranged as X = [A1, A2, A3,…, A52, ρi], where Ai is the i-th column 

vector of the amplitudes at the corresponding T2i bin, and ρi is a column vector of 

density measurements. The water content by Dean-Stark (DS-w) was arranged 

as Y = [DS-w1, DS-w2,…, DS-wn] , thus defining the dataset as {(𝑋𝑖, 𝑌𝑖)}𝑖=1
𝑛  where 𝑛 is 

the number of oil-sands samples. The complete XGB-FS model derivation  

the procedure is illustrated in Figure 30. 

 

 

Figure  30: Flowchart for XGB-FS model development. 
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4.3.4. MODEL OPTIMIZATION 

The XGBoost algorithm contains many hyperparameters which enable fine model 

tuning. From the standpoint of statistical learning, the tuning usually involves the 

use of iterative algorithms which search for a suitable combination of 

hyperparameters in real-valued parameter space relative to the specified measure 

of model forecasting performance (e.g., mean squared error). However, as the 

number of parameters grows, the optimization becomes computationally 

expensive due to the combinatorial explosion, making the manual optimization or 

exhaustive grid searching techniques inefficient. In contrast, Bayesian 

Optimization (BO) sets a probabilistic approach where each successive 

combination of hyper-parameters is selected based on the information obtained 

in the previous optimization step, thus avoiding the redundant calculations for 

unlikely parameter combinations and reducing the number of required iterations 

to reach the global minimum of the objective function.  

 

The BO was performed in Python using scikit-optimize package class 

skopt.BayesSearchCV. The hyper-parameters and their optimal values are 

presented in Table 12. 

 

Table 12: Results of Bayesian Optimization with 5-fold cross-validation, for XGB-FS and 

XGB-FE models. 

XGBoost 

hyperparameters 

Search range XGB-FS  

optimal  

XGB-FE  

optimal 

n_estimators [50-1000] [650] [300] 

learning_rate [0.004-0.1] [0.008] [0.053] 

subsample [0.7-1.0] [0.7] [0.6] 

max_depth [6-12] [8] [7] 

objective [‘squared_error’, 

‘pseudo_huber’] 

[‘pseudo_huber’] [‘squared_error’] 

grow_policy [‘depthwise’, ‘lossguide’] [‘lossguide’] [‘lossguide’] 

booster [‘gbtree’, ‘dart’] [‘gbtree’] [‘gbtree’] 
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4.3.5. PERFORMANCE METRICS AND MODEL VALIDATION  

The forecasting performance of the models was evaluated using three 

performance metrics, including coefficient of determination (R2), root mean 

squared error (RMSE), and mean absolute error (MAE). The R2 is the positively 

oriented metric used in regression for representing the amount of model variance, 

and how well the model predictions generalize the observations. However, R2 

alone does not provide information on prediction errors. The RMSE is another 

regularly employed error metric, used alongside R2, but under the assumption that 

residuals follow the normal distribution115. As a result of the heavy penalization 

of larger residuals, the RMSE is a convenient metric for revealing the differences 

in performance between multiple models with normally distributed residuals. At 

the same time, large residuals can cause the inflation of the RMSE score, which is 

why MAE can be used for additional evaluation. The MAE measures the mean 

magnitude of model prediction errors, but in contrast to RMSE, the errors are not 

squared. Therefore RMSE scores are always greater or equal to MAE scores. These 

two metrics can be used together to estimate the variation in errors, where RMSE 

= MAE indicates no variation in the magnitude of prediction residuals. Recall that 

both RMSE and MAE are negatively oriented scores expressed in %DS-w. 

 R2 = 1 −
∑  (yi − n

i=1 ŷi)
2

∑  (yi − y̅ n
i=1 )2

  (59) 

 RMSE = √
1

n
 ∑  (yi − 

n

i=1

ŷi)
2  (60) 

 MAE =
1

n
∑  |yi − 

n

i=1

ŷi| (61) 

where 𝑦𝑖  is predicted %DS-w, 𝑦̂𝑖 is observed %DS-w, 𝑦̅ the sample mean, and n 

presents the number of samples.  

 

1
Highlight
are you sure.. please check and confirm. .. the errors are being squared,,,, for small errors, sqauring leads to very small value

1
Highlight
explain what you mean.. 



119 

  

The further model performance evaluation and validation were performed using 

leave-one-out cross-validation (LOOCV) due to its convenience for use on small 

datasets (Figure 33). Cross-validation is a resampling method in which the sample 

subsets are drawn repeatedly from the training set, followed by model refitting 

for each subset, thus providing information on model fitting variability. In LOOCV, 

the samples are drawn for one observation at a time, while the rest of the data is 

used for model training. Therefore, this process has a number of iterations equal 

to the number of samples, making it computationally expensive for large datasets.  

In addition to LOOCV, the permutation tests were conducted to assess the 

significance of 5-fold cross-validated model prediction scores with 150 random 

permutations. This enabled the evaluation of the statistical significance of model 

predictions and their inputs by a permutation test P-value. 

 

4.4. RESULTS  

In this section, the performance of three models is presented, including the XGB-

FE model based on the XGBoost algorithm with feature engineering, the XGB-FS 

model based on the XGBoost algorithm using the whole sample T2 distribution, 

and a peak deconvolution approach (Bryan et al7). To assess the model 

performance in more detail, residual plots (Figures 30-2, 30-5, and 30-8) and 

quantile-quantile plots (Figures 30-3, 30-6, and 30-9) are used for the analysis of 

the residual normality, and model variance and bias. All results are summarized in 

Figures 30-32. 

 

Analysis and comparison of error statistics, cross-plots, and distribution of 

residuals indicate that the XGB-FE model achieves the highest accuracy and 

generalization ability in the prediction of water content in oil-sand samples. Figure 

31-1 shows that apart from slight overprediction in the 3-5% DS-w range, all XGB-

FE predictions spread along the x=y line with low variance, achieving the highest 

R2 score in the study (R2=0.90). Figure 31-2 shows the constant low variance of 

the residuals, indicating that the model inputs capture variation in the data 
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correctly. Finally, the Q-Q plot (Figure 31-3) confirms the residual normality and 

thereby the underlying assumption that XGB-FE model residuals follow the normal 

distribution (low bias, low variance). Finally, the XGB-FE model achieves 1.5-3 

times lower RMSE and MAE scores compared to the XGB-FS and Bryan et al.7 

models indicating the best generalization ability of the three. 
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Figure 31: Evaluation of XGB-FE, XGB-FS, and Bryan et al.7, performance by cross-plots 

between the model predictions and observed saturation in %DS-w (1, 4, 7), distribution 

of regular residuals (2, 5, 8), and quantile-quantile plots for comparing distributions 

between predictions and observations and evaluating normality of residuals (3, 6, 9). 
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Figure  32: Comparison of RMSE and MAE test prediction scores for the three models 

(‘random_state=2’). 

As for the XGB-FS model predictions, Figures 30-4, 30-5, and 30-6 show a similar 

residual distribution to XGB-FE (normality and bias). However, the residual 

variance is increased but constant, therefore achieving a somewhat lower R2 score 

(R2=0.85) and 1.5 times higher RMSE and MAE than XGB-FE. From Figure 31-7, it 

can be observed that the Bryan et al.7 model generally tends to underpredict the 

water content in samples. In addition, Figures 30-8 and 30-9 show inflated but the 

constant variance in the distribution of residuals, while residual normality still 

holds with some local perturbing. As a result, Bryan et al.7 model RMSE and MAE 

scores are the highest (Figure 32).  
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Figure  33: Leave-one-out cross-validation (LOOCV) scores for XGB-FS and XGB-FE 

machine learning models for the training set with fixed random split seed 

‘random_state=2’. Note y-axis was truncated for convenience.  

 

4.5. DISCUSSION 

The two machine learning models in this study were designed to test two principal 

hypotheses. First, to confirm that the integration of density measurements into 

the machine learning models can help separate the contribution from overlapping 

oil and water signals. Second, to show that the derivation of new LF-NMR T2 

features can improve the generalization ability of the machine learning model to 

the degree that can enable the accurate forecasting of water content by LF-NMR 

in oil wells (in-situ).  

 

 

 

 

 

 

1
Highlight
how do you prove generalization on a small set.. it is not a robust claim... which figure shows comparison for test data



124 

  

Table 13: Comparison of XGB-FS model performance with and without bulk density 

parameter. 

XGB-FS 

Statistic 
wo/ 

Density 
w/ Density 

RMSE (%DS-w) 1.08 0.96 

MAE (%DS-w) 0.86 0.79 

R2 0.72 0.85 

 

Table 14: Comparison of XGB-FE model performance with and without bulk density 

parameter.  

XGB-FE 

Statistic 
wo/ 

Density  
w/ Density 

RMSE (%DS-w) 0.91 0.67 

MAE (%DS-w) 0.73 0.53 

R2 0.81 0.90 

 

Bulk density measurements are used together with LF-NMR measurements in 

petrophysical practice to improve the interpretation of well logs19,116. LF-NMR 

measures the response of the fluids in the rock pore space, therefore carrying 

information about the fluids and pore size distribution of the rock. On the other 

hand, density logging equipment measures the response of the solids (rock 

matrix) together with fluids. The two are related in terms of T2 surface relaxation, 

which depends on the rock pore to surface ratio with the fluid volume and the 

diffusive-coupling effect. This dependence can also be observed from the 

prediction test scores of the XGB-FS and XGB-FE models with and without bulk 

density as one of the model inputs. Prediction scores from Tables 13 and 14 

indicate that models achieve better scores with the integration of bulk density, 

1
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therefore confirming the relationship between Dean-Stark water content and 

density discovered by mutual information regression.   

 

To affirm the second hypothesis: when XGB-FS and XGB-FE are compared (Figure 

31), it can be observed that XGB-FE achieves better performance, especially in 

terms of prediction variance. The XGB-FE variance reduction supports two 

premises. First, the engineered features properly capture all the relevant 

information from the T2 distribution, indicating negligible information loss. 

Secondly, in the feature engineering case, the XGBoost algorithm generalized the 

variability in the data with the output more effectively, suggesting that for smaller 

datasets, the appropriate feature engineering enables the XGBoost algorithm to 

discover dependencies within the data more effectively than for a large number of 

raw information (53 features in case of XGB-FS). In other words, the new features 

contain all the relevant parts of the T2 distribution compressed into a few values, 

which ultimately reduces the XGB-FE model complexity and enables better 

generalization of the relationship between inputs and a target variable (DS-Sw).  

 

According to Figure 29, along with a bulk density (MI=0.86 nats), the T2 cutoff 

range feature ranks second by MI score (0.60 nats), indicating the variability of the 

sum of T2 responses between 1.99 – 6.30 ms has a strong relationship with water 

signal. The location of the T2 peak (T2p), T2 standard deviation of the spectrum 

(T2std), and T2 logarithmic mean (T2lm) achieve similar MI scores (0.27 and 0.30 

nats, respectively), signifying that these features alone do not capture enough 

information about the water content. Finally, the sum of T2 responses 

representative of the empirical clay-bound water part of the T2 distribution (0.1-

3.0 ms) shows the least association with the target (DS-w). Although these features 

alone cannot explain variance in data effectively, their mutual interaction can 

improve it. Since MI does not consider this mutual interaction between features 

relative to the target output, the correlation matrix can be used. For instance, 

Figure 28 shows that the T2cr vs. T2p and T2cr vs. T2lm have a strong positive 

correlation (0.76 and 0.63, respectively), while T2bf vs.T2lm have a moderate 

1
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negative correlation. These interactions are likely to be generalized in the XGB-FE 

model training process, thus explaining improved performance. Furthermore, the 

permutation test score of XGB-FE using 150 permutations generated a P-value of 

0.001, compared to the XGB-FS P-value of 0.007. In both cases, the P-value is well 

below 0.05, showing a very low likelihood of obtaining such model performance 

purely by chance. 

 

As for the deconvolution approach (Bryan et al.7), the main challenge lies in 

separating overlapping fluid contributions in T2 distribution. Even under the 

assumption that T2 cutoff and deconvolution are performed such that a precise 

distinction between fluid signals is possible, the issue of how to associate the 

amplitudes with respect to mass persists. This approach leads to underprediction 

of water content for the given dataset, indicating that the oil and water signals are 

not sufficiently separated. The machine learning-based approach is more robust 

because it removes the necessity to manually identify peak separation and the 

errors associated with visually separating oil and water signals, especially in the 

case of NMR measurements acquired at low SNR. 

 

It is essential to point out the limitations of these models, which are related to 

reservoir lithology (a) and SNR of the measurements (b): 

(a) The models presented in this study were derived for the oil-sands 

reservoir, so their application is limited only to similar reservoir types. 

However, the presented approach can be extended for use in other types 

of oil reservoirs under the assumption that a sufficiently large amount 

of observations is available. 

(b) The SNR achieved by the benchtop LF-NMR relaxometers can be up 

to 30 times higher than the SNR values obtained using well-logging 

tools. In this study, the NMR signal-to-noise ratio was, on average 20, 

which can still be considered high relative to the logging tools where the 

SNR of 3-5 is considered satisfactory117. Although the recent research 

demonstrated that the XGBoost algorithm is sufficiently robust even 

1
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with noisy data118, an additional validation using the data obtained by 

the LF-NMR logging tools would be desirable. It is worth noting that, in 

lower SNR samples, the deconvolution approach will be even more 

challenging, and the value of using just the general properties of the T2 

distribution and XGBoost may be even further enhanced. 

 

As a follow-up study, the procedures for NMR measurements with a controlled 

saturation and desaturation of samples, similar to those reported in recent 

literature56, would enable deeper sensitivity analysis of the features derived in this 

work and further improvement XGB-FE model. In such a setup, the Dean-Stark 

measurements could be replaced by the more cost and time-effective mass-volume 

measurements, ultimately allowing the collection of a larger database, at which 

point the application of artificial neural networks (ANNs) would be possible.   

 

It is also worth noting that logging equipment configuration can be substantially 

different from desktop NMR relaxometers, which may cause inconsistencies 

between NMR T2 distributions obtained in the lab and the field. This can cause the 

variable performance of proposed NMR data-driven model, which is why the 

parameters of the NMR logging device, such as TW, TE and number of trains, 

should be relatively consistent to the values reported in this study. 

 

4.6. SUMMARY 

This study presents the approach which integrates extreme gradient boosting with 

LF-NMR measurements and bulk density data for the water saturation 

determination in oil-sands. Two models were developed using full NMR T2 

distribution (XGB-FS), and feature engineering (XGB-FE). It is concluded that; 

 Feature engineering can effectively extract vital information from NMR T2 

distribution using domain knowledge and mutual information regression. 

 Integrating bulk density data as a model input notably improves the XGB-

FS and XGB-FE forecasting performance. 
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 XGB-FE achieved RMSE = 0.67%, MAE = 0.53% and R2 = 0.90 in predicting 

relative water content by Dean-Stark, a substantial improvement compared 

to deconvolution method.  

These results suggest that the XGB-FE model can be extended for the improved in-

situ water saturation determination.  
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Chapter 5 CONCLUSIONS 

 

This thesis focuses on nonlinear problems in petrophysical logging, such as 

characterization of bitumen and heavy oil viscosity and water saturation 

quantification, on the example of Canadian oil-sands by LF-NMR relaxometry data. 

To model the relationship between the NMR outputs and experimental data and, 

we employed various statistical and machine learning tools, which reduced 

uncertainties associated with data interpretation and enabled us to capitalize on 

new, previously unknown relationships. In conclusion, we found that: 

 Heavy oil and bitumen viscosity can be analytically approximated from T2 

relaxation data, even in the high-temperature conditions, by integrating T2 

logarithmic mean, relative hydrogen index per unit volume (RHIv), and 

power-law corrected T2lm. The statistical scores of the new analytical 

model demonstrate a superior generalization ability compared to all 

approaches in the literature to date.  

 Machine learning-based modeling (gradient boosting and support vectors 

in particular) using only one NMR parameter (T2lm) can provide highly 

accurate predictions of oil viscosity. These models work well even for a set 

of chemically diverse light, heavy and extra-heavy oils. It also overcomes 

issues related to NMR hardware limitation (finite echo spacing), 

magnetization loss at high temperatures (Curie effect), and additional costs 

and uncertainties associated with the determination of RHIv. 

 The Extreme Gradient Boosting algorithm can be utilized for improved 

water and oil saturation evaluation with only T2 relaxation and bulk 

density data required as an input. This approach bypasses issues stemming 

from a poor understanding of dominating T2 relaxation processes in micro 

and macro-pores, diffusive coupling, and consequential oil and water signal 

overlapping. It also does not require determining the T2 cutoff value and 

associated laboratory tests. 
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Even though a large number of experimental data was used for this work 

(hundreds of observations), the obtained datasets are considered small from the 

machine learning point of view (tens of thousands of observations). This work 

demonstrates that even relatively small datasets such as those characteristic for 

petrophysical laboratory tests can be used for machine learning modeling by 

performing feature engineering, given that the understanding of the problem and 

associated processes are sufficiently understood.  

 

This work also lays the foundations for further research. The following 

recommendations can be made: 

 

1. The integration of bulk density measurements into the machine learning 

models for viscosity determination to perform additional validation for in-

situ applications. 

2. Additional LF-NMR and bulk density measurements (dataset expansion) 

would further improve the understanding of T2 surface relaxation and 

diffusive coupling in connected micro- and macropores. This would also 

enable us to use artificial neural networks with more success.  

3. The combination of other conventional logging data with NMR data for 

machine learning modeling shows excellent potential for other in-situ 

applications such as rock wettability characterization or quantification of 

saturates, aromatics, resins, and asphaltenes in hydrocarbons.  
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