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Abstract 

Searching for thermoelectric materials with high energy conversion efficiency is important 

to solve the energy and environment issues of our society. A good thermoelectric material 

requires high Seebeck coefficient and electrical conductivity, in combination with low 

thermal conductivity. These properties are interconnected with each other, which makes it 

difficult to improve the overall performance of a material. Studies of thermoelectric 

materials mainly rely on experiments. However, calculations, especially those based on 

first-principles methods, are becoming popular in the thermoelectric community because 

of convenience and low cost. The main difficulty of using calculation to study 

thermoelectric materials is how to calculate transport properties of a material, which means 

solving the Boltzmann transport equation for both electrons and phonons. Although there 

are many models for solving such problems, they are either too simple and narrow to 

calculate a wide range of materials, or too complex and time-consuming to do high-

throughput screening. In this work, we developed a computer program to calculate the 

thermoelectric transport properties of bulk materials on the basis of widely used models. 

Specifically, the electronic transport properties were computed using the generalized Kane 

band model and perturbation theory under the relaxation time approximation, whereas the 

lattice thermal conductivity was calculated using a modified Debye–Callaway model. The 

capability of the program was tested on a group of semiconductors, and the obtained results 

show reasonable agreement with experiment. The program works fast and is suitable for 

high-throughput screening. We used it to calculate the transport properties of 463 

chalcogenides taken from a database and found that 94 of them are promising n-type or p-

type materials, including six already well-known thermoelectric materials. We discuss 46 

novel compositions having the maximum figure of merit larger than 1, such as CoAsS-like 

compounds of p-type and CdSe2 of n-type, and show their thermoelectric transport 

properties in detail.  This study shows an efficient way to search for novel thermoelectric 

materials and expands the field of current research of thermoelectric materials.   
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1 Chapter 1. Introduction 

1.1. Thermoelectric Materials: An Overview 

Massive usage of fossil fuel has caused a lot of problems in the world, such as climate 

change, water and air pollution, and so forth. Meanwhile, the fossil fuel itself faces the 

increasing risk of being exhausted, as the world’s demand for energy keeps increasing. 

Finding alternative energy sources to enrich the current energy structure is the key for the 

human society to achieve sustainable development. Besides the widely explored renewable 

energy sources such as solar energy, wind, and nuclear energy, improving the utilization 

rate of the traditional energy sources is thought of as another type of “renewable energy”. 

A higher utilization rate not only means lower cost and improvement of the energy 

sustainability, it could also reduce the emission of greenhouse gases. For example, during 

the industrial production and use of automobiles, a large amount of energy is wasted as 

heat, which has a high use value, with the temperature of parts generating it usually lying 

between 400 ℃ and 1000 ℃ [1]. Thermoelectric technology aims to collect and reuse such 

kinds of waste heat, which, if reused fully, can bring considerable economic and 

environmental benefits.  

    Thermoelectric material is a functional material which can convert heat into electricity 

and vice versa, via the internal carrier movement [2,3]. The physical principles underlying 

the thermoelectric energy conversion are the Seebeck effect (thermoelectric generator) and 

the Peltier effect (thermoelectric refrigerator). As a simple schematic shown in Fig. 1.1, it 

can be considered as a circuit formed from two different conductors a and b (referred to as 

thermocouple legs in a thermoelectric device), which are connected electrically in series 

but thermally in parallel. Two junction points are A and B. Conductor b is divided into two 

parts (the breaking points are C and D) so that a voltmeter can be connected in the gap. 

Supposing a temperature difference ∆T is established between the two junctions while the 

two free ends of conductor b are maintained at the same temperature, the potential 

difference V will appear between points C and D. The differential Seebeck coefficient αab, 

is defined as the ratio of V to ∆T, 
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  

αab is considered positive if the electromotive force (EMF) tends to drive electric current 

through conductor a from the hot junction to the cold junction.  

    If a source of the EMF is connected to points C and D so as to drive electric current in 

the circuit in the clockwise direction, the Peltier coefficient is regarded as positive if 

junction A is heated and junction B is cooled. The relative Peltier coefficient πab is equal 

to the ratio of the rate of heating or cooling q at each junction to the electric current I: 

ab

q

I
 =

 

 

Figure 1.1. Diagram of the thermoelectric effect [2]. 

 

    For a thermoelectric material, no matter if it is used as a generator or refrigerator, the 

highest energy conversion efficiency at a given temperature T is quantified by its 

dimensionless figure of merit (ZT). ZT is defined as 𝑍𝑇 = 𝛼2𝜎𝑇/(𝜅e + 𝜅L), where α is the 

Seebeck coefficient, σ is the electrical conductivity, κe is the electronic thermal 

conductivity, and  κL is the lattice thermal conductivity. Particularly, α2σ is called the power 

factor (PF). To obtain high ZT, both α and σ must be maximized, whereas κe and κL need 

to be minimized. However, the interdependence of these parameters makes it challenging 

to improve an average ZT of a material, as shown in Fig. 1.2. For example, both α and σ 

are related with carrier concentration n. σ is proportional to n, while α is inversely 

proportional to n (the Pisarenko relation).  In addition, according to the Wiedemann-Franz 
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law, 𝜅e = 𝐿𝜎𝑇, where L is the Lorenz number. Thus, any method increasing σ will also 

increase κe.  

 

Figure 1.2. Schematic of the dependence of the electrical conductivity σ, Seebeck 

coefficient α, thermal conductivity κ, power factor α2σ, and figure of merit ZT on the 

concentration of free carriers [4]. 

 

    Although the Seebeck effect has long been applied to temperature measurement and 

detection of thermal radiation, it was not until the introduction of semiconductors as 

thermoelectric materials in the 1950s that thermoelectric devices for power generation and 

cooling with practical application value were produced. The first climax of thermoelectric 

research was triggered at that time. In 1954, Goldsmid discovered that a thermocouple 

composed of p-type bismuth telluride (Bi2Te3) and a negative thermoelement made from 

metallic bismuth (Bi) can produce a cooling effect of 26 K below room temperature [5]. 

Subsequent studies have shown that the alloy systems composed of Bi2Te3, Sb2Te3 and 

Bi2Se3 are ideal room temperature thermoelectric materials [6–10]. The best p-type 

composition is near (Sb0.8Bi0.2)2Te3, whereas the best n-type composition is near 

Bi2(Te0.8Se0.2)3. These alloy systems have low thermal conductivity, and their power factor 

can be improved by adjusting the carrier concentration. The maximum figure of merit ZT 

of these alloys is about 0.8 – 1.1. Thermoelectric materials used in the mid-temperature 
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range (500 – 900 K) are mainly based on group-Ⅳ tellurides, such as PbTe, GeTe and 

SnTe [6, 8, 11, 12]. Among them, alloys composed of PbTe and AgSbTe2 (also called 

“LAST”) have shown maximum ZT > 1 for both n-type and p-type materials [13,14]. 

Another p-type material (GeTe)0.85(AgSbTe2)0.15 (named “TAGS”) can exhibit a maximum 

ZT value larger than 1.2 [15], which has been successfully used in long-life thermoelectric 

generators. For thermoelectric devices working at high temperatures (> 900 K), Si-Ge 

alloys are typically used for both n-type and p-type legs [16]. However, because of high 

lattice thermal conductivity, their ZT values are relatively low. For n-type material, it is 

near 1 (900 K); for p-type material, 0.6 (900 K).  

    From 1960 to 1990, thermoelectric technology began to move from the laboratories to 

various practical application fields [17]. However, the research on thermoelectric materials 

themselves had stagnated, and the figure of merit ZT of thermoelectric materials had not 

made major breakthroughs. By the mid-1990s, two factors had led to a resurgence of 

thermoelectric research: first, people had gradually realized that fossil fuels will eventually 

be exhausted and their use had caused serious environmental problems, therefore finding 

alternative energy sources and energy protection had become the consensus of various 

countries; second, advances in science and technology such as the improvement of the 

theory of transport properties of mesoscopic systems, the rise of nanomaterials research, 

advanced synthesis techniques and analytical tools, had promoted the understanding of the 

structure–properties relations in materials. 

    In the past twenty years, major breakthroughs have been made in the field of 

thermoelectric research, not only discovering many new and efficient thermoelectric 

materials, but also greatly improving the performance of classic ones. The research of 

modern thermoelectric materials is based on two main ideas: one is to use low-dimensional 

materials, that is, to introduce nanostructures; the other is to develop new bulk materials 

with complex structures. The low-dimensional materials method is mainly based on two 

considerations: that a nanoscale structure can introduce quantum confinement effects to 

enhance the power factor PF, and that a large number of nano-level grain boundaries 

existing in these materials can effectively reduce thermal conductivity while having little 
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effect on the electrical conductivity [18,19]. The research of thermoelectric nanomaterials 

mainly includes two-dimensional quantum wells/superlattices [20], nanowires [21], 

quantum dots [22,23] and nanocomposites [24–27]. By exploring nanoscale effects, the 

thermoelectric properties of these materials have been greatly improved compared with 

traditional bulk thermoelectric materials. For example, for the quantum dot superlattices 

formed by PbTe and PbSe while adding Bi as an electron donor, the figure of merit ZT 

reached 1.6 and 3.5 at 300 K and 570 K, respectively [28]. On the other hand, guided by 

“phonon glass electron crystal” (PGEC) principle proposed by Slack [29], many new bulk 

materials with complex unit cells have been discovered to have enhanced thermoelectric 

performance. For example, in clathrates [30] and skutterudites [31,32] some structural sites 

in the unit cell are occupied by heavy atoms, which often have a large vibration amplitude 

and can be used as effective phonon scattering centers to reduce thermal conductivity. Zintl 

alloys [33] and anisotropic chalcogenides [34–36] have very low thermal conductivity due 

to strong anharmonicity. Particularly, single crystal of binary compound SnSe — an 

orthogonal crystal at room temperature — has an extremely low thermal conductivity (0.23 

W∙m-1∙K-1, at 900 K) due to strong anharmonicity and bond anisotropy in the lattice. The 

ZT value along the b axis could reach 2.6 at 900 K [36]. Although single crystal SnSe has 

a very good performance, its polycrystalline versions show much lower ZT, mainly due to 

much higher thermal conductivity in polycrystalline samples. This higher thermal 

conductivity is attributed to the presence of SnOx at grain boundaries and surfaces of 

polycrystalline SnSe samples [37]. Recently, Zhou et al. have developed an efficient two-

step process to minimize the presence of SnOx in SnSe, thus greatly reducing the thermal 

conductivity in polycrystalline samples [38]. Their samples show surprisingly high values 

of ZT — the maximum value is about 3.1 at 783 K and the average value is near 2 in the 

temperature range of 400 to 783 K. Besides SnSe, it was also reported that SnS0.91Se0.09 

has an average ZT ~ 1.25 in the range from 300 to 873 K [39]. This is achieved by 

optimizing the effective mass and carrier mobility synergistically, thus improving the 

power factor while keeping the relatively low lattice thermal conductivity. Beyond the 

PGEC concept, researchers have proposed a new strategy, named “phonon liquid electron 
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crystal” (PLEC), to further decrease κL below that of glass [40]. The representatives of such 

materials are Cu2-δX (X = S, Se, or Te) liquid-like ionic conductors [41,42]. These 

compounds have a rigid face-centered cubic sublattice X that provides a crystalline 

pathway for conducting electrons, whereas copper ions are disorderedly distributed around 

the X sublattice and have a liquid-like mobility. The transverse vibrational modes are 

inhibited, and heat-conducting phonons are strongly scattered. Therefore, the specific heat 

and thermal conductivity of these compounds could be limited to the liquid limit (two-

thirds of the value of the solid). Because of such exceptionally low values of the lattice 

thermal conductivity (0.2–0.5 W∙m-1∙K-1), their ZT values are high (1.1 – 1.7) in the high 

temperature range. With the improvement of synthesis methods and introduction of various 

engineering techniques, such as solid solution, porosity engineering and introducing 

additional graphene, the peak ZT values of Cu2X-based thermoelectric materials are 

currently higher than 2. In addition to the above materials, other widely studied 

thermoelectric materials include silicides [43], half-Heusler intermetallic compounds 

[44,45], and organic matters [46–48]. Those interested in the topic can refer to the excellent 

review articles [49–57].  

    In terms of application, limited by the low conversion efficiency (< 10%) of early 

thermoelectric materials, thermoelectric devices can only be used in such areas where 

reliability and simplicity are more demanding than cost and efficiency considerations. For 

example, all deep space probes launched by the United States in the last century were 

equipped with isotopic thermoelectric power generation devices, which use the heat 

generated by the decay of radioisotopes to generate electricity to power the probes. In 

recent years, with the advancement of technology, thermoelectric devices have found much 

wider applications [58,59], such as small and mobile refrigerators, automobile seat cooling 

devices, industrial electronic devices, micro self-powered wireless platforms, health 

monitoring and tracking systems, and so forth. However, there is still a lot of space for 

improvement.  Theoretically, if ZT could reach 3, thermoelectric home refrigerators would 

be competitive with traditional compressor-based refrigerators. If ZT could reach 4, then 

the energy conversion efficiency between heat and electricity would be around 30%, which 
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would be a very promising prospect for practical systems. Fortunately, from the viewpoint 

of thermodynamics, there is no limitation of the value of ZT [60].  

 

1.2. Computer Aided Discovery of Thermoelectric Materials 

From the definition of the figure of merit ZT, the performance of thermoelectric materials 

is mainly determined by the Seebeck coefficient, electrical conductivity, and thermal 

conductivity (including the electronic and lattice parts). Currently, these parameters can be 

calculated using modern first-principles methods. In this section, we review the methods 

for calculating these transport properties and works using these methods to screen 

thermoelectric materials.  

 

1.2.1. Electrical transport properties 

The electrical transport properties, such as the electrical conductivity, are fundamental in 

various scientific and technological applications. For example, a thermoelectric material 

should be a good conductor to have a high figure of merit, whereas other applications like 

piezoelectric materials require an insulator. Theoretically, electrical conductivity can be 

calculated using modern density functional theory (DFT) and density functional 

perturbation theory (DFPT). Currently, there are several software programs released for 

this purpose, such as BoltzTraP [61], BoltzWann [62], EPA [63], EPIC STAR [64], 

AMSET [65], PERTURBO [66] and elphbolt [67]. Among them, BoltzTraP and 

BoltzWann are based on the semiclassical transport theory with the constant relaxation 

time approximation (CRTA). They differ in the method of interpolating the bands: the 

former uses the Fourier expansion of the band energies with symmetry being kept by star 

functions, whereas the latter utilizes the maximally localized Wannier functions (MLWF) 

basis to interpolate the plane wave results. Although these calculations are easier and faster 

than a fully ab initio method, the CRTA itself is a rough approximation because the 

relaxation time, which is usually a function of the temperature and chemical potential, 

cannot be considered constant. EPA uses the electron-phonon averaged approximation to 

calculate the electron energy relaxation time induced by electron-phonon coupling. The 
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core idea of the EPA approximation is to change the complex momentum space integration 

in the relaxation time expression into an integration over energies through replacing 

momentum-dependent quantities with their energy-dependent averages. The program can 

be combined with BoltzTrap to calculate the electrical transport coefficients. The results 

of testing on half-Heusler compounds show reasonable agreement with experimental 

values at high temperatures. EPIC STAR uses the so-called “Energy-dependent Phonon- 

and Impurity-limited Carrier Scattering Time Approximation” method to evaluate the 

electronic relaxation time. The electron-phonon scattering process is split into two parts: 

the short-range scattering and the long-range scattering. The short-range electron-phonon 

interactions are described numerically using the generalized Eliashberg function 

𝛼2𝐹(𝐸,𝜔), which depends on both electron energy E and phonon frequency 𝜔. The long-

range polar-optical phonon scattering and impurity scattering are treated using analytical 

expressions. The whole calculating process is relatively fast and the time is mainly limited 

by the DFPT calculations. The method is validated on several representative 

semiconductors and shows quantitative agreement with experimental measurements for 

both polar and non-polar, isotropic and anisotropic materials. AMSET (Ab initio Scattering 

and Transport) calculates the scattering rates using the momentum relaxation time 

approximation (MRTA) for the Boltzmann transport equation (BTE). The method extends 

existing polar and non-polar electron-phonon coupling, ionized impurity, and piezoelectric 

scattering formulas for isotropic band structures to support anisotropic materials. The 

program has been tested on a wide range of semiconductors and agreement of mobility 

with experiment improved significantly (Spearman rank coefficient rs = 0.93), compared 

with the results obtained by BoltzTrap (rs = 0.52). PERTURBO uses a fully first-principles 

approach to calculate the electron-phonon coupling based on the DFPT and employs an 

iterative solution of the linearized Boltzmann transport equation. However, in order to 

make the calculations converge, the electron-phonon matrix elements need to be computed 

on extremely dense k- and q-point meshes in the Brillouin zone (BZ), usually having 

millions of points. Although it uses the Wannier interpolation to map matrix elements 

calculated on a coarse grid into a fine grid, still the multistep construction procedure for 
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the Wannier functions and a huge number of grid points makes such calculations too 

expensive. Therefore, this method has only been used to study highly symmetric systems 

with a small number of atoms [68–70]. The method implemented in elphbolt is even 

beyond that in PERTURBO — it solves the electron-phonon coupled BTEs using ab initio 

methods. Specifically, there exists a momentum-mixing between the electrons and the 

phonons in real transport situations, which cause both particles to move under the influence 

of external fields. Therefore, instead of only solving the transport equations for electrons, 

this program solves four transport equations for both electrons and phonons in electric and 

temperature gradient fields at the same time. Because of that, such calculations are 

prohibitively expensive even for very simple systems, such as Si [67]. Besides the 

mentioned methods of calculating the transport properties, there is another, much easier 

way based on the deformation potential theory.  

    In 1950, Bardeen and Shockley proposed the deformation potential theory to calculate 

mobilities in non-polar crystals [71], which is based on assumptions that the energy surface 

is isotropic, the electrons only interact with the acoustic phonon modes having long wave-

lengths, and the local deformations produced by the lattice waves are similar to those in 

homogeneously deformed crystals. Therefore, a matrix element of the interaction between 

electrons and phonons can be formulated with a key parameter, the deformation potential 

constant E1. This constant can be calculated from the variation in the energy band edges 

with the lattice constant. Later, Herring and Vogt had generalized this theory to include 

anisotropy in the scattering processes for semiconductors with multiple nondegenerate 

band edges [72]. The energy surface for each band edge point is assumed to be ellipsoidal, 

whereas the strength of the electron-phonon interaction is still characterized by the 

deformation potential constant. However, in this generalized method, there are two 

deformation potential constants, Ed and Eu, and they can be obtained from fitting 

experimental data. The authors applied this method to calculate charge carrier mobilities 

in n-type germanium and silicon, and the results were in reasonable agreement with the 

observations. Based on the generalized Kane band model and perturbation theory, Ravich 

et al. have developed a method to calculate the transport properties and analyzed the 
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experimental data in lead chalcogenides [73,74]. In this method, four scattering 

mechanisms, including acoustic phonon scattering, polar optical phonon scattering, 

impurity scattering, and collisions between carriers, are mainly considered, and all 

necessary parameters can be obtained from experiment. The calculated transport 

coefficients showed quite close agreement with the experimental values in a wide range of 

temperatures and carrier concentrations. Many applications have been developed in recent 

years on the basis of Ravich’s method [75–78], verifying its reliability. 

 

1.2.2. Lattice thermal conductivity 

Calculation of the lattice thermal conductivity is computationally demanding because it 

involves multiple-phonon scattering processes. Currently, the methods most commonly 

used in such calculations are based on solving the phonon Boltzmann transport equation 

(PBTE), for which the most conventional way is to use the relaxation time approximation 

(RTA) along with the Debye approximation. Such solution involves calculation of the 

phonon frequencies, group velocities, and harmonic and anharmonic interatomic force 

constants (IFCs) [79]. Although the density functional theory (DFT) is a convenient tool 

for accurately calculating the interatomic interactions in many cases, obtaining high-order, 

at least the third-order, force constants used in the description of anharmonicity in phonon–

phonon processes is still time-consuming. This approach has been implemented in several 

software packages, including Phono3py [80], ShengBTE [81], and ALAMODE [82]. 

Alternatively, the lattice thermal conductivity can be calculated directly using the 

temperature gradient from the nonequilibrium molecular dynamics (MD) simulation at a 

given heat current [83,84] or from the equilibrium MD simulations using the Green-Kubo 

method [85,86]. However, the MD simulations need a large unit cell to take into account 

the finite size effect and a long simulation time to converge the autocorrelation function. 

Moreover, these methods require very accurate force fields at specified conditions of 

temperature and pressure, which are usually lacking for most of inorganic compounds. 

Besides the methods mentioned above, some semi-empirical models could also be used. 

For example, as implemented in AFLOW-AGL [87], the lattice thermal conductivity can 
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be calculated using a model proposed by Slack [88]. The required input parameters are the 

Debye temperature and Grüneisen parameter, which can be calculated using the quasi-

harmonic Debye model. The predicted lattice thermal conductivities for compounds with 

different structural types have high correlation coefficients with the experimental ones 

(average 0.88). Another more widely used semi-empirical model is the Debye-Callaway 

model. 

    In 1959, Callaway proposed a solution for the PBTE based on three assumptions [89]: 

first, only four scattering mechanisms are considered, including point impurities (isotopes 

disorder), normal three-phonon processes, Umklapp processes and boundary scattering; 

second, all phonon scattering processes can be represented by frequency-dependent 

relaxation times; third, the crystal vibration spectrum is isotropic and dispersion-free. 

Based on this model, κL of germanium was calculated in the temperature range from 2 K 

to 100 K. The results showed reasonable agreement with experiment for both normal and 

single-isotope material. Asen-Palmer [90] modified the Debye-Callaway model by 

accounting for the contributions of longitudinal and transverse acoustic branches 

differently. In addition, this approach uses six freely adjustable parameters for longitudinal 

and transverse modes to include the anharmonic effect and contributions from the boundary 

and isotope scattering. Unfortunately, these models lack the predictive power because they 

incorporate parameters that are either fitted to experimental data or freely adjustable. 

Morelli et al. [91] modeled the lattice thermal conductivity and isotope effect in Ge, Si, 

and diamond using an approach similar to that of Asen-Palmer. However, they used the 

known phonon dispersion relations of these crystals to derive all the necessary parameters 

except the Grüneisen parameter. Recently, Zhang [92] has developed a first-principles 

Debye-Callaway approach where all the parameters (i.e., the Debye temperature θ, phonon 

velocity ν, and Grüneisen parameter γ) can be directly calculated from the vibrational 

properties of compounds within the quasi-harmonic approximation. 
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1.2.3. High-throughput screening for thermoelectric materials 

With the advance of theory and growth of computing power, materials research and 

discovery based on first-principles methods are becoming popular. This approach has been 

used in many research fields and led to interesting discoveries [93–95]. The first high-

throughput search for thermoelectric materials was done by Madsen using BoltzTrap [96]. 

In this work, transport properties of 570 Sb-containing compounds were assessed and 

LiZnSb was identified as a promising n-type candidate. Later, Yang et al. used the same 

method to study 36 half-Heusler (HH) compounds. On the basis of the calculated maximum 

power factors, the researchers suggested Co-, Rh- and Fe- based HHs as p-type, and 

LaPdBi as n-type prospective materials [97]. Zhu et al. used the same method to screen 

~9000 materials on the basis of the Materials Project database [98]. They identified trigonal 

and tetragonal TmAgTe2 as potential candidates with the ZT values around 1.8 at 600 K. 

Later the authors synthesized trigonal TmAgTe2 and showed, although it had a very low 

thermal conductivity, the highest ZT achieved was 0.35 because of the limited hole 

concentration. Carrete et al. have combined the Boltzmann transport theory with the 

constant mean free path approximation (CMFP) to study the thermoelectric properties of 

75 nanograined HH compounds [99]. Five candidates have been identified for room and 

high-temperature applications, respectively. Xi et al. have combined the Boltzmann 

transport theory with the constant electron-phonon coupling approximation (CEPC) to 

calculate the electrical transport properties of 161 p-type diamond-like chalcogenides 

[100]. They have found that vacancy-containing chalcogenides, such as CdIn2Te4 and 

ZnIn2Te4, could have high thermoelectric performance. One of the variations, 

Cd2Cu3In3Te8, was synthesized and showed ZT values above 1 at high temperatures.  

    Besides these works which calculate thermoelectric properties directly with all kinds of 

approximation, there are also other works based on semi-empirical models to screen the 

materials. For example, Toberer et al. have proposed the descriptor βSE to quantify the 

material’s potential for high ZT when appropriately doped [101]. βSE is composed of the 

room temperature intrinsic charge carrier mobility μ0 and lattice thermal conductivity κL, 

both of which can be computed using semi-empirical models. Tests showed that good 
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thermoelectric materials are correctly identified as those with large values of βSE. Using 

this descriptor, the researchers have studied the thermoelectric properties of 518 binary 

A1B1 compounds and 427 binary quasi-2D compounds successively, and found many 

promising candidates that had not been previously considered [102,103]. Jia et al. have 

proposed two descriptors — the electrical descriptor χ and the lattice anharmonicity 

descriptor γ — in order to characterize the power factor and lattice thermal conductivity, 

respectively [104]. χ can be calculated using the deformation potential theory and the rigid 

band approximation, while γ can be evaluated based on the variation of the elastic 

properties with the volume. The authors screened 243 binary semiconductor chalcogenides 

in the database using the two descriptors. 50 compounds have been identified as promising 

thermoelectric materials with both good electronic properties and low thermal 

conductivities. Among them, 9 p-type and 14 n-type materials were new.  

    The methods mentioned above have been widely used and led to many discoveries. 

However, some issues remain within them. For example, both CRTA and CMFP assume 

the electronic relaxation time is energy independent and has the same constant value for 

different materials. The accuracy of such assumptions has always been questioned. 

Moreover, in all of these high-throughput works, the lattice thermal conductivity values 

are either taken from experiments of already known materials or values calculated by 

simple and empirical models are used.  

 

1.3. Research Contents of This Work  

Thermoelectric researches have made great progress in recent decades. However, the 

current energy conversion efficiency and manufacture cost still do not support massive 

application. A material with a higher figure of merit and lower cost is always desirable. On 

the other hand, although several computational tools can be used currently to calculate the 

thermoelectric related transport properties, these tools are unsuitable for rapid screening of 

large databases of materials with the purpose of identifying promising candidates for more 

in-depth experimental analysis. Such calculations have to balance well between speed and 

accuracy. Therefore, the work in this thesis aims to achieve two goals: first, develop a 
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software program for calculating the transport properties quickly and accurately; second, 

screen materials in a database to find novel compounds with promising properties, thus 

providing guidance to the experiment. Specifically, the research contents of this work 

includes: 

1. Developing an algorithm for calculating the lattice thermal conductivity on the basis of 

the Debye-Callaway model;  

2. Developing an algorithm for calculating the electrical transport properties on the basis 

of Ravich’s model [73,74]; 

3. Using the developed software program to calculate the figure of merit ZT of 

chalcogenide compounds taken from the Materials Project database; 

4. Processing and analyzing data; 

5. Writing the thesis. 
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2 Chapter 2. Methodology 

This section introduces the mathematical model used in the research, including the models 

of the lattice thermal conductivity and electronic transport properties, the calculating 

procedures, their specific implementation in our AICON program, and the results of their 

testing on carefully selected sets of materials.  

 

2.1. Model of Lattice Thermal Conductivity 

2.1.1. Modified Debye-Callaway model 

The commonly used formulas of the Debye-Callaway model, which was proposed by 

Morelli [91], only include contributions from acoustic phonons (eq. 2.1b – 2.1c). We 

updated the formulas by adding the contribution from optical phonons, because they are 

important at high temperature and in compounds with complex structure (eq. 2.1e). The 

total lattice thermal conductivity κ is the sum of the contributions from the acoustic 

branches (one longitudinal κLA, two transverse κTA and κTA′) and one pseudo-optical branch 

κO: 

LA TA TA' O=    + + +  (..aa) 

1 2=   ( TA, TA', LA)i i i i  + =  (..ab) 

( )

( )

4

/3

1 0 2

e1

3 e 1

i

i x

T C

i i
x

x x
C T dx

 
 =

−
  (..ac) 

( )

( )
( )

( ) ( )( )

2

4

/

0 2

3

2 4

/

0 2

e

e 11

e3

e 1

i

i

i x

T C

x

i i i x

T C

i i x

N R

x x
dx

C T
x x

dx
x x










 

 
 
 
 
 −  =

−




 (..ad) 

( )
O

2 O

O B E O O

1
3 3 1

3

E R
C

N

N
p k f

V T


  



     = − +        
 (..ae) 

In these formulas, θi is the Debye temperature for each phonon branch, 𝐶𝑖 =

𝑘B
4/(2𝜋2ℏ3𝑣𝑖) and 𝑥 = ℏ𝜔/𝑘B𝑇, where ℏ is the Planck constant, kB is the Boltzmann 
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constant, ω is the phonon frequency, and νi is the phonon velocity for each branch; (𝜏𝑁
𝑖 )

−1
 

is the scattering rate of the normal phonon process, (𝜏𝑅
𝑖 )

−1
 is the total scattering rate of all 

the resistive scattering processes, and (𝜏𝐶
𝑖 )

−1
= (𝜏𝑁

𝑖 )
−1

+ (𝜏𝑅
𝑖 )

−1
. According to Callaway, 

(𝜏𝑅
𝑖 )

−1
 should be equal to the sum of the scattering rates of the phonon–phonon Umklapp 

scattering, isotope point defect scattering, and scattering on the crystal boundary. In our 

model, only the Umklapp scattering and isotope scattering are considered, so that (𝜏𝑅
𝑖 )

−1
=

(𝜏𝑈
𝑖 )

−1
+ (𝜏𝐼

𝑖)
−1

. For most practical applications like thermoelectricity, where the 

temperature is usually above 300 K, it is reasonable to omit boundary scattering because it 

becomes significant only at very low temperatures, usually tens of Kelvins. Further, p is 

the number of atoms in a primitive cell, thus 3p − 3 is the number of the optical phonon 

branches; N is the number of primitive cells (usually, N = 1), V is the volume of a primitive 

cell, νO is the average velocity of an optical phonon, ΘE is the Einstein temperature and the 

function fE is the so-called Einstein function.  

 

2.1.2. Phonon–phonon normal scattering 

Although the normal phonon scattering is not a resistive process, it can redistribute the 

momentum and energy among phonons and influence other resistive scattering processes 

(such as the Umklapp scattering). Following the approach of Asen-Palmer [90], the 

appropriate forms for the longitudinal and transverse acoustic phonons are 

( )
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k
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with magnitudes BN depending on the phonon velocity ν and Grüneisen parameter γ: 
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and 
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where M is the average atomic mass in the crystal and V is the volume per atom. A more 

general case and further discussion are included in the Appendix of Ref. [91]. For the 

optical branch, we assume the same formula as for the longitudinal acoustic branch because 

of simplicity and consistency.  

 

2.1.3. Phonon–phonon Umklapp scattering 

The phonon–phonon Umklapp processes dominate at high temperatures, following an 

exponential behavior. According to Morelli [91], the Umklapp scattering rate for the 

longitudinal and transverse acoustic phonons is: 
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

 
=

h
 (..ab) 

The Umklapp scattering rate thus depends on the Debye temperature, phonon velocity, and 

Grüneisen parameter of each branch. Again, we assume the optical branch to be described 

by the same formula as the longitudinal acoustic branch. 

 

2.1.4. Phonon–isotope scattering 

According to Klemens [105], the scattering rate of mass fluctuation due to the presence of 

isotopes should take the form 

( )
4

1
4 4B

4 34

i

I

i

Vk
x x T

 

− 
  =  h

 (..5) 

Therefore, the isotope scattering rate also depends on the phonon velocity. The mass 

fluctuation phonon scattering parameter Γ for a single element composed of several 

naturally occurring isotopes is 
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Here, mi is the atomic mass of the ith isotope and ci is the fractional atomic natural 

abundance. For a compound including N different elements,  
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where Mi (i = A, B, …) denotes the average atomic mass of element i. 

 

2.1.5. Specific heat 

The specific heat is usually calculated using the Debye model, which is only suitable for 

the acoustic branches. For structures whose primitive cell contains more than one atom (p 

> 1), a more accurate method would be using the Debye model for the acoustic branches, 

and approximating the optical branches using the Einstein model. Then, the specific heat 

is 
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where ΘD is the Debye temperature, ΘE is the Einstein temperature, N is the number of 

primitive cells, fD and fE are the Debye function and Einstein function respectively. In this 
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way, at high temperature T >> ΘE, fE is approaching 1, the contribution of each optical 

phonon branch to specific heat is kB/V, which is in consistent with classical Dulong-Petit 

law. At low temperature, T << ΘE, fE decreases exponentially, which means the optical 

phonons are hardly to be excited, thus their contribution to specific heat can be omitted. 

Such a way to process optical phonons is rarely used in previous methods.  

 

2.1.6. Debye temperature, Grüneisen parameter, and phonon velocity 

The lattice thermal conductivity is a function of the Debye temperature θi, Grüneisen 

parameter γi and phonon velocity νi of each phonon branch. These parameters can be 

readily obtained from Phonopy software using supercell method or finite displacement 

method[106]. For the branch Debye temperature, we selected the highest frequency of each 

branch to calculate θi: 

max

B

i
i

k


 =

h
 (..)) 

The Debye temperature ΘD in eq. (2.8a) could, in principle, be calculated from the specific 

heat at low temperatures or, equivalently, from the elastic constants. However, this 

determination is implicitly based on the assumption that acoustic frequencies depend 

linearly on the wave vector, and will overestimate the maximum acoustic frequency. Here 

we determine the Debye temperatures from the maximum θi of the three acoustic branches, 

which gives ΘD somewhat lower than standard values of the Debye temperature. 

    The phonon velocity and Grüneisen parameter of each branch are calculated using a two-

step averaging. The results of the Phonopy calculation of the phonon velocity and 

Grüneisen parameter are functions of the band index i and wave vector q: ν(i, q) and γ(i, 

q). The first average is taken within each high symmetry path of the same branch: 

( ) ( ), ,v i j v i= q  (..a0a) 

( ) ( )
22 , ,i j i =   q  (..a0b) 

where j denotes a different high symmetry path in each branch. The second average is taken 

from these high symmetry paths: 
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where mj is the multiplicity of each path, a value related to the symmetry of the structure. 

    We did not use all the optical branches in the thermal conductivity calculations. Instead, 

to correspond with the Einstein model and treat the optical branches’ contribution as a 

correction to the original Callaway model, we used a “pseudo-optical” branch, which is an 

average of all the optical branches. ΘE in eqs. (2.1e) and (2.8b) is the characteristic Einstein 

temperature of this “pseudo-optical” branch. 

 

2.2. Model of Electronic Transport Properties 

2.2.1. Semiclassical transport theory 

Electronic transport properties can be computed in the framework of the semiclassical 

BTE. Assuming the material is homogeneous and the relaxation time τ is independent of 

the direction of the crystal momentum k, when the external field is weak, according to the 

relaxation time approximation (RTA), all the transport coefficients can be expressed in 

terms of some averaged quantities, namely <τlzq> [73], 
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                                                                                                        (2.12) 

where 𝑓 = 1 (e(𝜀−𝜂)/𝑘B𝑇 + 1)⁄  is the Fermi-Dirac distribution function;  𝑧 = 𝜀 𝑘B𝑇⁄  is the 

reduced band energy, kB is the Boltzmann constant, T is the temperature; 𝑚𝑑0
∗ is the density 

of states (DOS) effective mass at the band edge, while 𝑚𝑑
∗  is the DOS effective mass at 

energy z; l and q are constants. The parameters τ, k and 𝑚𝑑
∗  are all functions of z, and their 

detailed expressions are given later.  
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Therefore, the formulas for the carrier mobility μ, carrier concentration n, electrical 

conductivity σ, Seebeck coefficient α, Hall factor A, Hall coefficient R, Lorenz number L0, 

and electronic thermal conductivity κe are: 
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 =                                                                                                                                         (2.13) 
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0e L T =                                                                                                                                            (2.20) 

where e is the elementary charge and ℏ is the Planck constant; ξ = η/kBT is the reduced 

chemical potential; 𝑚𝑐
∗ is the conductivity effective mass; K is the ratio of the effective 

mass 𝑚∥
∗ ∕ 𝑚⊥

∗ , reflecting the anisotropy of the band. 

 

2.2.2. Modified Kane band model 

In the Kane band model, the constant energy surface for any energy value is assumed to be 

ellipsoidal. It is also assumed that the longitudinal and transverse effective masses of 

electrons and holes are governed by the interaction of the lowest conduction band with the 

highest valence band, whereas the contributions of other bands are negligibly small. This 

model is also called “two-band” model. The relationship between the energy and crystal 

momentum is expressed as [73,74] 
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here εg is the band gap; 𝑘⊥and 𝑘∥ are the transverse and longitudinal components of the 

momentum k; 𝑚⊥0
∗  and 𝑚∥0

∗  are the transverse and longitudinal components of the 

effective mass tensor at the band edge. The part in parentheses indicates the 

nonparabolicity of the band. Then, the energy dependence of the effective mass is  
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with β = kBT/εg, i denotes ∥ or ⊥. The DOS effective mass is expressed as  
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where N is the degeneracy of the band due to the symmetry. The conductivity effective 

mass is 
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    When the effective mass is known, the value of the momentum k can be defined as 
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and the density of states is  
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                                                                         (2.26)                     

Although the model is called “two-band” model, sometimes bands besides the valence band 

maximum (VBM) and conduction band minimum (CBM) should also be considered. For 

example, in p-type PbTe, there is a second band near the VBM in energy and this band 

becomes dominant at high temperatures. In our model, one more band can be taken into 

account for n- or p-type situation if it exists. Such a second band is assumed to be 

independent of the CBM or VBM.  
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2.2.3. Scattering mechanisms for the relaxation time of electrons 

Three scattering mechanisms — acoustic phonon scattering, polar optical phonon 

scattering and ionized impurities scattering — are considered here, with corresponding 

relaxation times: τaco, τopt, τimp. The total relaxation time is the sum of these relaxation times 

according to Matthiessen’s rule: 

aco opt imp

1 1 1 1

   
= + +                                                                                                          (2.27) 

Here we only present the final expressions for each relaxation time and discuss the 

parameters involved and application range of each mechanism. Detailed derivations can be 

found in the literature [73,74]. 

2.2.3.1. Acoustic phonon scattering 

At high temperatures and carrier densities, scattering by acoustic phonons predominates. 

The strength of the acoustic phonon scattering can be represented by the deformation 

potential constants, and the corresponding relaxation time is almost isotropic. The main 

expression for this type of scattering was originally provided by Bardeen [71] and is widely 

used. Ravich added the effect of band nonparabolicity as well as the dependence of the 

matrix element of the interaction of carriers with the acoustic phonons on the energy in the 

nonparabolic region. The formula is given by [74] 
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                                                                                (2.28) 

where Ξ is the deformation potential constant; c is the elastic constant related with the 

longitudinal and transverse acoustic wave velocity. The factor in brackets describes the 

energy dependence of the squared matrix element of the electron-phonon interaction.  

2.2.3.2. Polar optical phonon scattering 

In a polar crystal, at some temperatures the polar scattering by long-wavelength 

longitudinal optical phonons shows approximately the same temperature dependence as 

the acoustic phonon scattering. The polar scattering is strongly inelastic at low 

temperatures. However, it can be regarded as almost elastic above the compound’s Debye 

temperature, and the relaxation time concept can be used. As in the case of the acoustic 
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phonon scattering, nonparabolicity should be allowed for. Moreover, free carriers, because 

of their high density in real applications, screen the electric field produced by optical 

vibrations in polar crystals. This screening effect reduces the strength of the polar scattering 

and should also be included. The formula for the polar scattering is [74] 
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where ε∞ and ε0 are the high-frequency and static dielectric constant; 𝛿 = (2𝑘𝑟∞)
−2 with 

the screening radius 𝑟∞ of the medium with ε∞,  
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                                                                                                                 (2.30) 

In the original formula proposed in ref. [74], the density of state in the above is ρ(ζ), which 

is a Fermi integral of ρ(z). However, we found that using ρ(ζ) would make the calculation 

of <τ> in eq. 2.12 extremely slow due to the appearance of double integrals. By changing 

to ρ(z), the results just have small difference, while the computing speed is improved 

several order of magnitude.  

2.2.3.3. Ionized impurities scattering 

Scattering by ionized impurities and vacancies is the dominant mechanism at very low 

(liquid helium) temperatures in highly degenerate samples, which is described by the 

formula [73] 
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where Φ(δ0) is the logarithmic factor: 
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with 𝛿0 = (2𝑘𝐹𝑟0)
−2 and r0 is the screening radius of a medium with the dielectric constant 

ε0. In highly degenerate samples,  
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where ρ(ζ) is the density of states at the reduced chemical potential ζ. kF is expressed in 

terms of the carrier concentration for one valley: 

1/3
2

F

3
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n
k

N

 
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 

                                                                                                                     (2.34)             

In the simplest case, the concentration of carriers is equal to the concentration of impurities. 

Note that τimp is a function of the chemical potential directly, which is different from τaco 

and τopt. In the implementation of this code, to get the total relaxation time, τaco and τopt are 

first added and applied in eq. (2.12) to transform to a function of the chemical potential, 

the results are then added to τimp.  

2.2.3.4. Deformation potential constant 

The deformation potential constant is a key parameter for the relaxation time of the acoustic 

phonon scattering. It can be calculated as: 

,i V

i

V

E

l


 =


                                                                                                                             (2.35)                                           

where ΔEi,V is the energy difference of the band edge i at different volume V; ΔlV is the  

dimensionless volumetric strain. When this strain is small, it can be assumed that the same 

band edge belonging to different volumes has the same reference energy; thus, these 

energies can be compared directly. For a given material, three calculations of the band 

energies are required: one at the equilibrium volume, the other two could be done at slightly 

smaller and larger volumes. Then, using our code, the calculations of the deformation 

potential constant of each band edge can be done automatically. 

2.2.3.5. Elastic constant 

The elastic constant c is also an important parameter for the relaxation time of the acoustic 

phonon scattering. Only the longitudinal acoustic wave was considered in Bardeen’s work, 

and this leads to a commonly underestimation of the scattering rate, thus, overestimation 

of mobility according to our test. Here we take into account contributions from both 

longitudinal and transverse acoustic waves. Using the Voigt−Reuss−Hill approximation 

[107−109], the bulk modulus B and shear modulus G can be calculated: 

( ) ( )= + + + + +V 11 22 33 12 23 319 2B C C C C C C                                                                         (2.36) 
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where C and S are the elastic constant matrix and its inverse matrix. Then the acoustic 

phonon velocity can be obtained: 
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where ρ is the mass density of the compound and vm is the average phonon velocity. The 

direction-averaged elastic constant c is calculated as 

2

mc v=                                                                                                                                 (2.45)  

2.2.3.6. Effective mass of the band edge 

Under an external electric field, the effective mass of a charge carrier is defined as: 
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where the indices i and j denote reciprocal components, and En(k) is the dispersion relation 

of the n-th band. The derivatives can be evaluated numerically, using the finite difference 

method. The explicit form of the right-hand-side symmetry tensor in eq. (2.46) is: 
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where second and mixed derivatives are evaluated on five-point stencil, with error of the 

order of O(h4). 

The above methods have been implemented in the Effective Mass Calculator (EMC) [110]. 

In our program, we modified the original EMC code to obtain the effective masses 

internally during the calculation of the transport coefficients. 

 

2.3. Implementation 

2.3.1. Workflow and technical issues 

The above models of the lattice thermal conductivity and electrical transport properties 

have been implemented in AICON program [111,112], which is written in Python3 

programming language. The program is open source under the GNU general public license 

version 3 (GPLv3). The current version is developed and maintained using Git and is 

accessible at https://github.com/Baijianlu/AICON2.git. The code can be run on computing 

clusters or a personal laptop. The program can be called from a command-line interface or 

from a script.  

    Fig. 2.1 shows the workflow of calculating the lattice thermal conductivity. The main 

inputs for AICON are POSCAR, band.yaml and gruneisen.yaml files generated using 

Phonopy combined with DFT software, from which AICON can extract the phonon 

dispersion curves, phonon velocities and mode Grüneisen parameters. Noting that the 

phonon curves and Grüneisen parameters should be calculated on high symmetry paths as 

AICON suggests. Additional settings, such as the temperature, can be specified as 

command-line arguments.  

    Fig. 2.2 shows the workflow of calculating the electrical transport properties. The band 

structure calculation at three different volumes is for determining the deformation potential 
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constants. The effective mass calculation is for determining effective masses at CBM and 

VBM (and the second band if it exists). The dielectric constant calculation is for 

determining the high-frequency and static dielectric constants. The elastic constant 

calculation is for determining elastic constant tensor. After these calculations are finished, 

the resulting files (such as vasprun.xml) should be collected in a directory and the naming 

rule should be exactly the same as the examples distributed with the program. Then, 

AICON can be called to calculate the transport properties either from a command-line or 

python script. Additional settings, such as the temperature and carrier concentration, can 

be specified at the same time.  

    The program stores results as pandas.DataFrame object, which is flexible and easy to 

manipulate, analyze, and plot the data. It can also be saved in any file format supported by 

pandas [113].  

    When calculating the transport properties using AICON, the most time is spent on those 

DFT calculations for obtaining key parameters. For example, at least 13 DFT calculations 

need to be done before calling AICON to calculate the electrical transport properties. 

Although each of these calculations is relatively simple, managing the workflow becomes 

an intensive task, which involves checking the results of each step and copying the 

necessary files from the last step. To alleviate this problem for high-throughput 

calculations, in AICON we also implemented automatic workflow tools based on 

pymatgen [114], Atomate [115] and FireWorks [116]. The users only need to provide 

structural files and some necessary settings for each DFT calculation, then the whole 

workflow can run automatically. Besides, it is convenient to build users’ own databases 

this way.  

    Installation and usage of AICON are documented in the user manual and examples 

distributed along with the source code package.  
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Figure 2.1. Workflow of the lattice thermal conductivity calculations using AICON. Gold 

boxes represent steps of the calculation, blue boxes for the results of these steps, and 

computer programs are denoted as black text outside of the box. 
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Figure 2.2. Workflow of the electrical transport properties calculation using AICON. Gold 

boxes represent steps of the calculation, and computer programs are denoted as black text 

outside of the box. 

 

2.3.2. Testing of the model of lattice thermal conductivity 

The model was tested on a data set containing 28 well-studied compounds. The list of 

materials includes semiconductors and insulators that belong to different structural 

prototypes, such as diamond, rocksalt, and fluorite. Meanwhile, to maximize the 

heterogeneity of the data set, materials are selected containing as many different elements 

as possible.  The comparison of the calculated and experimental values of κL is summarized 

in Table 2.1 and Fig. 2.3. Two statistical quantities are used to measure qualitative and 

quantitative agreement between the calculated and experimental results (Table 2.2). The 

Pearson correlation coefficient r, which is a measure of the linear correlation between two 

variables, X and Y, is 
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The root-mean-square relative deviation (RMSrD), which is a measure of the quantitative 

difference between two variables, is 

 

2

,

RMSrD
1

i i

i i

X Y

X Y

X

N

 − 
  
 =

−


                                                                                                        (2.47) 

Lower values of RMSrD indicate better agreement. 

    As shown in Table 2.2, the calculated results strongly correlate with experimental values 

(Pearson coefficient is 0.9999). However, the RMSrD value is rather large. In order to 

reduce the RMSrD value, we introduced a scale factor w, which can be obtained by doing 

the least squares fitting between the experimental and the calculated values (Fig. 2.3). The 

factor value we calculated is 0.6037. Therefore, the corrected lattice thermal conductivity 

can be calculated as, 

( )LA TA TA' Ow    =  + + +                                                                                          (..aa) 

    The calculated values of the lattice thermal conductivity taking into account the scale 

factor are listed in Table 2.1 as κcal cor. The Pearson correlation coefficient and RMSrD were 

again calculated and shown in Table 2.2. The r value doesn’t change, whereas the RMSrD 

value is reduced to 50.13%, much lower than that without scaling. The testing results 

suggest that it would be better to use this scaling factor if a compound has high lattice 

thermal conductivity, while not use it if its lattice thermal conductivity is already quite low 

(κcal < 2 W∙m-1∙K-1 at 300 K). In this way, the RMSrD could be reduced further to ~ 30%. 

Note that this scaling factor is just used to match the calculated results with experimental 

values as close as possible. The factor itself is flexible and the users can train their own 

values according to the materials they study.   

Fig. 2.4 – 2.6 show the calculated lattice thermal conductivity compared with the 

experimental values and other ab initio results for three typical compounds in a wide 

temperature range: (1) diamond, an insulator with very high thermal conductivity; (2) 
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silicon, the most studied semiconductor with medium values of thermal conductivity; (3) 

SnSe, an anisotropic crystal with extremely low thermal conductivity. These cases further 

validate the robustness and accuracy of our method. 

 

Table 2.1. Calculated and experimental lattice thermal conductivity [88,117,118] of the test 

compounds at 300 K (W∙m-1∙K-1). κexp is the experimental value, κcal is the calculated value 

without multiplying scale factor, κcal_cor is the calculated value with scaling 

Formula κexp κcal κcal_cor Formula κexp κcal κcal_cor 

C(Dia) ..00 3a5a.)0 .3.5.aa NaI a.a a.). a.aa 

Si aaa ..5.00 a35.a3 PbS ..) ..a) a.a. 

AgCl a 0.5) 0.3a RbBr 3.a a.55 0.)a 

BaO ..3 ).0) a..) RbI ..3 0.)) 0.a0 

CaO .) a).3a .).)) SrO a. .a.a. aa.)a 

KBr 3.a ..aa a.aa CdF. a.3 3.). ...5 

KCl ).a a ..a. SrCl. ..3 ..aa a.). 

KI ..a a..) 0.)a Mg.Si a..aa ...3a a3.a) 

LiF a).a .)..) aa.aa Mg.Ge a5.) 33.)a .0.a) 

LiH a5 55.a. 33..a Mg.Sn aa.a aa.0a ).a) 

MgO a0 a0a.3a a5.a. CaF. ).)a aa.)a )..a 

NaBr ..a 3.35 ..0. CeO. a0.a a3... ).)a 

NaCl ).a a.a) a.0a ZnO 3).5 3a.0a aa.)a 

NaF aa.5 .a.aa a..)) SnSe 0.) 0.3a 0.a) 

 

Table 2.2. Root mean square relative deviation (RMSrD) and Pearson correlations 

coefficient r for the calculated results 

 κcal κcal_cor 

r 0.)))) 0.)))) 

RMSrD a5.))% 50.a3% 
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Figure 2.3. Calculated lattice thermal conductivity versus the experimental values for test 

materials at 300 K. A red line shows the fitting values obtained by multiplying the 

calculated values by the scale factor w. 

 

 

Figure 2.4. Lattice thermal conductivity of diamond calculated using our method compared 

with the experimental and full ab initio calculation results. 
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Figure 2.5. Lattice thermal conductivity of Si calculated using our method compared with 

the experimental and full ab initio calculation results. 

 

 

Figure 2.6. Lattice thermal conductivity of SnSe calculated using our method compared 

with the experimental and full ab initio calculation results. 
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2.3.3. Testing of the model of electrical transport properties 

In order to further test the accuracy of our model, we calculated the carrier mobility and 

Seebeck coefficient for 17 common semiconductors and compared the results with the 

experimental values. The test set included both isotropic and anisotropic materials having 

a wide range of chemistries and doping polarities to make it representative. A summary of 

key parameters that we used for calculating the carrier transport properties are listed in 

Table 2.3. The range of temperatures and carrier concentrations at which the carrier 

mobility and Seebeck coefficient were calculated are listed in Table 2.4 and 2.5. 

    Fig. 2.7 shows the calculated mobilities compared with experimental values for the test 

set.  The calculated values agree reasonably with experiment across all materials, covering 

several orders of magnitude from 3 cm2/Vs for p-type CuAlO2 at 300 K to 1×104 cm2/Vs 

for n-type GaAs at 300 K. Most examples show a slightly larger difference at lower 

temperature, while the difference becomes smaller at higher temperature. The difference 

between calculation and experiment has several origins. From the aspect of the model, for 

example, for electron-acoustic phonon scattering, the deformation potential theory is a 

rough approximation because of its basic assumptions, such as isotropic crystal, elastic 

scattering. Also, we only consider three scattering processes. Other processes, such as 

scattering from grain boundary, could be important while not being included in our model.  

From the aspect of the experimental results, for example, the measured Hall concentration 

could be different from real carrier concentration. In addition, the carrier concentration 

could change with temperature, whereas we use a fixed value from the experimental 

measurement in calculation. Noting such an arrangement is reasonable, since for extrinsic 

semiconductor above certain temperature, the carrier concentration is decided by the 

concentration of donor or acceptor (suppose fully ionized), before the intrinsic excitation 

becomes dominant.  

    Fig. 2.8 shows the calculated Seebeck coefficients against those obtained 

experimentally. Again, reasonable agreement with experiment is achieved for these 

samples. The reasons for deviation between calculation and experiment are the same as the 

above.  
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Table 2.3. Key parameters of the test materials at the CBM and VBM: conductivity 

effective mass 𝑚𝑐
∗ , DOS effective mass 𝑚𝑑

∗ , deformation potential constant Ξ, band 

degeneracy N, band gap Eg, direction-averaged elastic constant c, high-frequency and static 

dielectric constants ε∞ and ε0 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

CuAlO. 
CBM 0.a)a 0.)a5 aa.)) a a.aa aa..50 5.a ).a 

VBM 5.0aa a).5a0 aa... a a.aa aa..50 5.a ).a 

CdS 
CBM 0.a.. 0.a.. a0..a a a.a0 .5.aa a.a a0.0 

VBM a.)00 a.)0a ).)5 a a.a0 .5.aa a.a a0.0 

CdSe 
CBM 0.05a 0.05a ).a) a 0.53 .a.3a a.a a... 

VBM a.5aa a.5a) )..a a 0.53 .a.3a a.a a... 

CdTe 
CBM 0.05. 0.05. aa..a a 0.5a a)..3 ).) a3.. 

VBM 0.5)a 0.5)a a.3a a 0.5a a)..3 ).) a3.. 

GaAs 
CBM 0.0a3 0.0a3 aa.0a a 0.aa 5a..3 aa.a a).3 

VBM 0.3aa 0.3aa a.a3 a 0.aa 5a..3 aa.a a).3 

GaN 
CBM 0.a5a 0.a5a a).a) a a.). aa0.a) a.0 a0.a 

VBM ..a.a ..a.) a0.a5 a a.). aa0.a) a.0 a0.a 

GaP 
CBM 0.a00 0.a00 a).)a a a.5a aa.0) a0.a a..a 

VBM 0.3)5 0.3)5 ).aa a a.5a aa.0) a0.a a..a 

InP 
CBM 0.03) 0.03) a5.)3 a 0.aa aa.aa a3.5 aa.. 

VBM 0.aaa 0.aaa a0..5 a 0.aa aa.aa a3.5 aa.. 

PbS 
CBM 0.0aa 0.a)a a0.3a a 0.a5 aa.)a a5.) 3a).3 

VBM 0.0a) 0.a)5 a3.5. a 0.a5 aa.)a a5.) 3a).3 

PbTe 

CBM 0.03. 0.0a) a0..a a 0.a3 3..a3 .a.3 aaa.0 

VBM 0.03) 0.a0a a..a0 a 0.a3 3..a3 .a.3 aaa.0 

VSB 0.a50 a.).a aa.33 a. 0..a 3..a3 .a.3 aaa.0 

SiC 
CBM 0..)3 0.aaa a0.aa 3 a.3) .3a.a3 ).0 a0.3 

VBM 0.5)3 0.5)3 aa.0a a a.3) .3a.a3 ).0 a0.3 

SnO. 
CBM 0.aa3 0.aa3 .0.5) a 0.a3 aa) a.a a... 

VBM a.aaa a.aa) aa.3a a 0.a3 aa) a.a a... 

SnSe 
CBM 0.a)3 0.35. a.)0 . 0.5a .3.)a aa.a 3a.) 

VBM 0..)a 0.5.a aa.)0 . 0.5a .3.)a aa.a 3a.) 

ZnO 
CBM 0.a3. 0.a3. a0.0) a 0.). 5).)0 5.3 a0.a 

VBM ..)5) ..)aa a.5a a 0.). 5).)0 5.3 a0.a 

ZnS 
CBM 0.aaa 0.aaa a3.3a a ..0a aa.3. 5.) ).3 

VBM 0.).0 0.).0 ).0a a ..0a aa.3. 5.) ).3 

ZnSe 
CBM 0.0a) 0.0a) a..0a a a.aa 3).aa ).a a0.) 

VBM 0.a3a 0.a3a a.a5 a a.aa 3).aa ).a a0.) 

Bi.Te3 
CBM 0.3)3 0.a3a a3.0a . 0.aa5 .)..a 3).0 )a.a 

VBM 0.0). 0.3)a a3.aa a 0.aa5 .)..a 3).0 )a.a 
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CSB 0.05a 0.a)5 a0..) a 0.aa. .)..a 3).0 )a.a 

VSB 0.05) 0.5a. a...a a 0.aaa .)..a 3).0 )a.a 

 

Table 2.4. Temperature and doping conditions used for calculating the carrier mobility 

Materials Doping T (K) n (cm-3) Exp. Ref. 

CuAlO. p-type 300–a30 a.3×a0a) [a.a] 

CdS n-type a00–a00 5.0×a0a5 [a.5] 

CdSe n-type .00–a.00 a.0×a0a) [a.a,a.)] 

CdTe n-type .00–a.00 a.0×a0a5 [a.a,a.)] 

GaAs n-type 300–a000 3.0×a0a3 [a30] 

GaAs p-type 300–a00 a.a×a0a) [a3a] 

GaN n-type a50–500 3.0×a0aa [a3.] 

GaP n-type a00–500 3.0×a0aa [a33] 

InP n-type a00–)00 a.5×a0aa [a3a] 

PbS n-type 300–)00 3.a×a0a) [a35] 

PbTe n-type 300–a00 a.a×a0a) [))] 

PbTe p-type 300–a00 a.a×a0.0 [a3a] 

SiC n-type a00–)00 a.0×a0a5 [a3)] 

SnO. n-type 300–)00 a.0×a0a) [a3a] 

SnSe p-type 300–)00 3.3×a0a) [3a] 

ZnO n-type 300–000 a..×a0aa [a3)] 

ZnS n-type 300–a50 a.0×a0aa [aa0] 

ZnSe n-type .00–a300 a.0×a0a5 [aaa] 

Bi.Te3 n-type 300–500 3.3×a0a) [aa.] 

Bi.Te3 p-type .00–500 a.a×a0a) [aa3] 

 

Table 2.5. Temperature and doping conditions used for calculating the Seebeck coefficient 

Materials Doping T (K) n (cm-3) Exp. Ref. 

CdS n-type a00–300 ..a×a0a5 [aaa] 

GaAs n-type a00–)50 3.5×a0a) [aa5] 

GaAs p-type 300–)00 a.a×a0a) [a3a] 

GaN n-type a00–300 a.3×a0a) [aaa] 

InP n-type a50–)00 ..a×a0a) [aa)] 

PbS n-type 300–a00 ..5×a0a) [aaa] 

PbTe n-type 300–a00 a.a×a0a) [))] 

PbTe p-type 300–a00 a.a×a0.0 [a3a] 

SnO. n-type 300–a00 a..×a0aa [aa)] 

SnSe p-type 300–)00 3.3×a0a) [3a] 

ZnO n-type .00–a000 5..×a0a) [a50] 
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Figure 2.7. Calculated and experimental carrier mobility values for the test materials at 

temperatures and carrier concentrations specified in Table 2.4. 
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Figure 2.8. Calculated and experimental Seebeck coefficient values for the test materials 

at temperatures and carrier concentrations specified in Table 2.5. 
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2.3.4. Testing of the figure of merit 

The above shows the tests for model of lattice thermal conductivity and model of electronic 

transport properties, respectively. However, the thermoelectric figure of merit is the 

combination of these quantities; thus, how accurate of the program for this combinatorial 

property? we calculated the figure of merit for 3 well-known thermoelectric materials and 

compared the results with the experimental values. The Table 2.6 lists the compounds and 

their experimental conditions.  

    Fig. 2.9 shows the calculated figure of merit compared with experimental values for the 

testing set. The situation could be quite different for different compounds. For example, 

for PbTe, the calculated ZT matches with the experimental values quite well for both n-

type and p-type transport. For SnSe, the calculation agrees with the experiment well below 

)00 K. Above )00 K, the difference becomes larger. That’s because, first, SnSe goes 

through a phase transition from α-phase (s.g. Pnma) to β phase (s.g. Cmcm) at around 700 

K; second, the concentration of holes increases due to the thermal excitation instead of the 

constant value (3.3e17 cm-3) used in the calculation. However, if using a higher hole 

concentration (5e18 cm-3, from the experimental measurement) for α-phase SnSe, the 

calculated ZT is close to the average experimental values measured along different 

directions in the high temperature range. Thus, the calculation is still reasonable. For 

Bi2Te3, ZT is overestimated greatly by the calculation. It is mainly because our calculated 

lattice thermal conductivity is much lower than that from the experiment (for example, Cal. 

0.36 W∙m-1∙K-1 versus Exp. 1.7 W∙m-1∙K-1, at 300 K).  Moreover, Bi2Te3 is a typical narrow-

gap semiconductor, in which both electrons and holes are excited at an elevated 

temperature. It has been shown in experiment that the concentrations of both electrons and 

holes increase greatly above 300 K [143]. This bipolar effect diminishes the Seebeck 

coefficient and increases the electronic thermal conductivity. In our method, this bipolar 

effect is not included, and the trends at higher temperatures cannot be correctly reflected. 

Therefore, this case reminds us, for a compound with narrow bandgap and very low lattice 

thermal conductivity (< 1 W∙m-1∙K-1 at 300 K), its figure of merit values are most probably 

being overestimated by our methods.  
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Table 2.6. Temperature and doping conditions used for calculating the figure of merit  

Materials Doping T (K) n (cm-3) Exp. Ref. 

PbTe n-type 300–a00 a.a×a0a) [))] 

PbTe p-type 300–a00 a.a×a0.0 [a3a] 

SnSe p-type 300–)00 
3.3×a0a) 

5.0×a0aa 
[3a] 

Bi.Te3 n-type 300–500 3.3×a0a) [aa.] 

Bi.Te3 p-type .00–500 a.a×a0a) [aa3] 
 

 

 

Figure 2.9. Calculated and experimental figure of merit for the test materials at 

temperatures and carrier concentrations specified in Table 2.6.  
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3 Chapter 3. Screening For Thermoelectric Materials 

In this chapter, we applied the methods introduced in the Chapter 2 to search for promising 

thermoelectric materials among the structures taken from a database. An overview of the 

calculation results and a list of all promising compounds are presented here.  

 

3.1. Structures and First-Principles Settings 

All structures were taken from the Materials Project database [151] on the basis of five 

search criteria: (1) S, Se and Te as anions; (2) the band gap should be larger than 0 eV but 

smaller than 1.2 eV, because good thermoelectric materials are usually narrow gap 

semiconductors; (3) the energy above the convex hull line should be less than 0.1 eV per 

atom to ensure the structure is thermodynamically stable or at least potentially 

synthesizable in experimental conditions; (4) belonging to cubic, tetragonal and 

orthorhombic crystal system; (5) nonferromagnetic phase, because the band structures of  

ferromagnetic phases need a special consideration within the DFT and are thus unsuitable 

for an automatic approach like the one used here. These criteria resulted in over 1000 

entries out of the database. Currently, 463 structures (127 cubic, 336 tetragonal and 

orthorhombic) have been sent to run the transport properties calculation. In the future, more 

compounds, belonging to hexagonal or other low symmetrical crystal system, will also be 

calculated.  

    All first-principles calculations were performed using the Vienna Ab initio Simulation 

Package (VASP) with the Perdew–Burke–Ernzerhof generalized gradient approximation 

(PBE–GGA) and the projector augmented wave (PAW) pseudo-potentials [152–154]. For 

structure relaxation, the plane wave kinetic energy cut-off was set to 600 eV and the 

Brillouin zone was sampled using Γ-centered meshes with the reciprocal-space resolution 

of .π × 0.03 Å−1. Kohn–Sham equations were solved self-consistently with the total energy 

tolerance of 10−7 eV/cell and structures were relaxed until the maximum force became 

smaller than 10−3 eV/Å. The dielectric constants were calculated using the DFPT [155], 

and the elastic constants were calculated using the finite difference method as implemented 

in VASP. To obtain the deformation potential constants of a compound, three band 
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structure calculations were run: one at the equilibrium volume, the other two at volumes 

larger by 0.1% and 0.2%. For compounds containing heavy atoms (Z > 80), the spin-orbit 

coupling (SOC) effect was included in all band-related calculations. 

    The phonon related properties, including the phonon frequency, phonon velocity, and 

the Grüneisen parameter, were calculated using Phonopy package [156] combined with 

VASP. The forces were calculated for a minimal set of supercells with the atomic 

displacements generated by Phonopy, and then collected to obtain the second-order 

interatomic force constants (IFCs). In order to calculate the Grüneisen parameter, three 

phonon calculations have to be run: one at the equilibrium volume, the other two at slightly 

smaller (-0.4%) and larger (+0.4%) volumes.  

 

3.2. Overview of the Results 

For some structures, the calculations could fail because of various reasons. For example, 

since GGA is known to underestimate the band gap, the calculated band gaps of some 

structures with very small gap values could be zero. In addition, the eigenvalues of the 

elastic constant matrix of some compounds have negative values. Such structures were just 

discarded. Finally, the complete calculations of the electronic transport properties were 

finished for 361 compounds (94 cubic, 267 tetragonal and orthorhombic). 

    Fig. 3.1 shows the maximum power factor with respect to the carrier concentration 

reaching this maximum value for the 361 compounds in the temperature range from 300 K 

to 1000 K. A compound is thought as promising if its maximum power factor is larger than 

10 μW∙cm-1∙K-2 (above the red line) and it will go forward for the lattice thermal 

conductivity and figure of merit calculations. In total, we found 94 possible candidates for 

either n-type or p-type thermoelectric materials. Among them, PbTe, PbS, PbSe, GeTe, 

SnTe and SnSe are already well-known thermoelectric materials; our calculations show 

high power factor values for these compounds, which validates our methods. 
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Figure 3.1. Maximum power factor as a function of the corresponding carrier concentration 

for the studied compounds in the temperature range from 300 K to 1000 K for (a) n-type 

and (b) p-type transport. Some compounds with high power factor are marked. 

 

    Let’s look at some statistical data of these 361 compounds to have an overall impression 

about what they are. In Fig. 3.2, we grouped the compounds according to their (1) 

composition, (2) number of atoms in the primitive cell, and (3) crystal system. The 



65 

 

statistical data shows that compounds with high power factor tend to have a simple 

structure: most of the promising candidates are binary or ternary compounds with number 

of atoms in a primitive cell less than 20. Moreover, half of the promising compounds have 

cubic symmetry (47 cubic vs 47 tetra. & ortho.), although the proportion of cubic 

compounds among all compounds is much smaller (94 cubic vs 267 tetra. & ortho.).   

 

Figure 3.2. The number of calculated compounds in different classifications: (a) by the 

number of chemical elements in the composition; (b) by the number of atoms in the 

primitive cell; (c) by the crystal system. 

 

    In Table 3.1, all novel compounds we found promising to be good thermoelectric 

materials are listed with their thermoelectric properties. The lattice thermal conductivity 

and figure of merit data of some compounds are missing in the table, because there is 

serious imaginary frequency in their phonon spectrum. Therefore, these compounds are 

dynamically unstable at least at 0 K and our model cannot calculate their lattice thermal 

conductivity properly. However, this doesn’t mean these compounds cannot exist, since 
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they could become stable and their phonon spectrum could have no minus frequency at 

high temperature. A representative compound like this is cubic-GeTe, it is unstable and its 

phonon spectrum has serious imaginary frequency at 0 K, However, it becomes stable and 

was also verified to have high figure of merit in experiment at high temperature. We still 

mark these compounds as promising due to their high power factor values. 

 

Table 3.1. Novel compounds found to be good thermoelectric materials. Maximum power 

factor and figure of merit were calculated within temperature range from 300 K to 1000 K 

Formula Entry id 

E_above 

_hull 

(eV) 

Doping 
PFmax 

(μW∙cm
-a∙K-.) 

κL,300K 

(W∙m-a∙K-a) 
ZTmax 

CoaPaSea 
mp-

a..a0aa 
0.033 p a0a.3a ....3 0.)) 

PaRhaSea 
mp-

aa0.53a 
0 p a05.5a aa.a0 a..a 

AsaRhaSea 
mp-

a..a).a 
0 p a03..) aa.aa a.a3 

CoaAsaSea 
mp-

a..a03a 
0.0a3 p a0a.)a a3.30 a..5 

CoaPaSa 
mp-

a..a003 
0 p a0a.50 3..aa 0.)) 

SbaTeaIra 
mp-

aa0.a30 
0 p )a.aa a0.03 a.a3 

CoaAsaSa 
mp-

aa3a3 
0.00a p )0.5a a5.aa a.aa 

BiaIraSea 
mp-

aa03..a 
0 p )3..) a.)) a.aa 

BiaTeaIra 
mp-

a..)3). 
0.0)3 p )a.a) ).a3 0.)a 
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(Continued)       

Hg.AlaSea 
mp-

aa035a0 
0.0a. p a).). 5.)a a.a3 

SbaTeaRha 
mp-

a.a)a5a 
0 p a5.a0 ).a. 0.a5 

SnaPtaSea 
mp-

a.aa).a 
0 p a3... a.3a a.5a 

Ge5TeaSea 
mp-

a..a35a 
0.03a n, p 

a..03(n) 

aa.0.(p) 
  

MgaTea 
mp-

a00a)aa 
0.0a5 n, p 

a3.).(n) 

5..55(p) 
a..a 

0.)a(n) 

a.3.(p) 

CoaSbaSa 
mp-

aa0.aa3 
0.0aa p 5a.a) a0.35 0.)) 

GeaTeaPta 
mp-

a..a3)3 
0 p a5.5a ).a0 0.a3 

Hg.InaSa 
mp-

..35a 
0 p aa.0a ..)) a.30 

Mg.CoaSa 
mp-

a3)0)a) 
0.0). n, p 

.a.5a(n) 

aa.)a(p) 
.0.33 

0..5(n) 

0..0(p) 

NbaSbaTea0 
mp-

5a)5)a 
0 p 3).a3 5..a a.aa 

LiaCoaSa 
mp-

aa)a))a 
0.05 p a).a3 )..a 0.a) 

Al5CuaSea 
mp-

3)a05 
0.0. p 35.5a a... 0.a0 

Ba.HfaSa mp-)3.a 0 n, p 
aa.aa(n) 

3a.0a(p) 
0.a) 

..a3(n) 

3.)0(p) 

BiaRhaSea 
mp-

aa0a)a5 
0 p .)..a a.05 0.3. 
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(Continued)       

Ba.ZraSa mp-3aa3 0.00a n, p 
a3.)a(n) 

.).aa(p) 
0.aa 

3.3.(n) 

a.aa(p) 

BaaHf3Sa0 
mp-

aaa)a5a 
0.0. n, p 

a..5a(n) 

.).a.(p) 
  

Cd.InaSeaSa 
mp-

a..a)aa 
0.03. p .)..) ..53 a.a. 

Mg.InaSea 
mp-

a00a03a 
0.03a p .a.)a a.aa 0.aa 

Pb.S. 
mp-

a0aaaa5 
0.03) n, p 

aa.aa(n) 

.a.50(p) 
a.)3 

..a0(n) 

..0a (p) 

RuaSa mp-.030 0 p .5.aa .a.a. 0..0 

DyaAsaSea 
mp-

aa0.)5. 
0 n, p 

50.)5(n) 

.5..a(p) 
..)) 

....(n) 

0.a)(p) 

Pb.Se. 
mp-

a0a3a)0 
0.05. n, p 

3)..5(n) 

.3.a.(p) 
a.aa 

..aa(n) 

...a(p) 

BaaZr3Sa0 
mp-

aaaa3 
0.0.a n, p 

a0.5.(n) 

....0(p) 
  

FeaSa mp-..a 0.00a p .0.a) 3..a0 0.aa 

Ba3Zr.S) mp-)a)) 0.0a. n, p 
aa..3(n) 

a).)0(p) 
  

Er.Se3 
mp-

a..550a 
0.0a. p a).5) a.aa 0.3a 

BaaZraSaa 
mp-

55aa). 
0.0a) n, p 

aa.03(n) 

a).a0(p) 
  

CeaSe. 
mp-

a0a0.5a 
0.0aa p a).3a 5.aa 0.aa 

YaPtaSaa 
mp-

a.a5)aa 
0.0aa p a).00 a..5a 0.3a 
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(Continued)       

RuaSeaSa 
mp-

a.a)50a 
0.0a) p aa.). .a.). 0.a3 

Zn.CoaSa 
mp-

aa00a0a 
0.0a) n, p 

.3.3)(n) 

aa.5a(p) 
aa..5 

0.aa(n) 

0.0a(p) 

DyaPaSa 
mp-

aa).aa5 
0 n, p 

a0.5.(n) 

a).a3(p) 
...) 

a.aa(n) 

a..a(p) 

Ge.S. 
mp-

a.)a0 
0.0aa n, p 

a3.a3(n) 

a).a5(p) 
  

CoaAsaSa mp-aa.) 0.00a p aa.)a .0..) 0..5 

RuaSea mp-a).. 0 p aa.a5 .0.3. 0.0) 

BiaTeaRha 
mp-

a..)a.a 
0 p a5.)a 5.a3 0.a5 

Sn.S. 
mp-

55)a)a 
0.0a5 p a5.aa   

EraAsaSea 
mp-

a.a30aa 
0 n, p 

.3.a5(n) 

aa.)3(p) 
3.a5 

0.3.(n) 

0.aa(p) 

SnaTeaPb3 
mp-

a.aa).5 
0.00a p aa.aa   

EraTeaAsa 
mp-

a.a.a3a 
0 p aa.aa ..aa 0.)a 

GeaTea 
mp-

a0a0a5) 
0.053 n, p 

.).55(n) 

a3.a)(p) 
a.aa 

..)a(n) 

a.)0(p) 

DyaTeaAsa 
mp-

a.a.a03 
0 p a3..0 3.3) 0.aa 

RbaAcaTe. 
mp-

aa.))) 
0 n, p 

a3.5a(n) 

a3.aa(p) 
0.aa 

..)3(n) 

..).(p) 

BaaAg.GeaSa mp-)3)a 0 p a..aa   

       



70 

 

(Continued)       

KaAcaTe. 
mp-

aa3)a0 
0 n, p 

aa.05(n) 

a..aa(p) 
0.a. 

..a)(n) 

...a(p) 

Ga.HgaTea 
mp-

a..aa3) 
0.0a. p a..5a 3.0. 0.aa 

SnaPbaS5 
mp-

a.aa)5a 
0.0. p a..3a   

CsaAcaTe. 
mp-

aa3)a0 
0 n, p 

a0.35(n) 

a....(p) 
0.aa 

..aa(n) 

3.0)(p) 

GeaTe.Pba 
mp-

a..a3aa 
0.0aa n, p 

a0.33(n) 

a...0(p) 
  

ZraFeaTea 
mp-

)aaaa) 
0.0a) n, p 

.5.3)(n) 

aa.a5(p) 
aa.). 

0.a3(n) 

0..3(p) 

TiaFeaTea 
mp-

)aaa)3 
0 n, p 

a...)(n) 

aa.50(p) 
aa.3) 

0..a(n) 

0..a(p) 

InaAcaTe. 
mp-

aaaaa0 
0 n, p 

.).a3(n) 

a0.a)(p) 
0.)) 

..))(n) 

a.a)(p) 

CaaIn.Tea 
mp-

a))0). 
0.0aa p a0.a. a.0) a.3) 

CdaTeaSe3 
mp-

a..a)aa 
0.00) p a0.a3 0.a. a.aa 

BaaCu.Se. 
mp-

a0a3) 
0.03) p a0.35 0.a3 a.a3 

TlaAcaTe. 
mp-

aa50.a 
0 n, p 

3a.0a(n) 

a.)a(p) 
0.)3 

a..)(n) 

a.3a(p) 

ScaCoaTea 
mp-

)aaa)a 
0.00a n 33.aa a..5a 0.5) 

GaaAcaTe. 
mp-

aaaaaa 
0 n, p 

.).5a(n) 

).aa(p) 
0..0 

a.))(n) 

3.05(p) 
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(Continued)       

Ga.Te5 mp-.3)a 0 n .5.a. a.5a ..5a 

BiaSeaSa 
mp-

a..)50a 
0.0.3 n ...a.   

CdaSea 
mp-

a0)5a)3 
0 n .a.)) ..0a a.35 

Ba.Tea mp-.a50 0 n a).0a ...) 0.a5 

BiaSbaSea. 
mp-

a..)50a 
0.0a5 n aa.a)   

EraPaSa 
mp-

aa)a5)a 
0 n aa.)a   

Dya.CuaSe.a 
mp-

a..5aaa 
0.0.) n a3.a5   

Ba5HfaSa3 
mp-

55)03. 
0.0.a n a3.a)   

Sn.Pb.Sa 
mp-

a.aa)5a 
0.0aa n a3.5. 0.3a 3.)3 

CuaSbaSea 
mp-

.033a 
0 n a..a. ..3a a.0) 

BiaSea. 
mp-

.3aaa 
0.0.a n a..))   

GeaSea mp-)00 0 n a..5a 0.aa 3.a) 

BaaCuaTea 
mp-

30a33 
0.0a) n a..a. 0.35 3.a0 

EraTea. 
mp-

aaaa3 
0 n aa.))   

CaaSnaSa. 
mp-

aaaaaa 
0.0)a n a0.)) a.a) a.3a 
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(Continued)       

GeaSe.S. 
mp-

a..a3)a 
0.00a n a0.). 0.a0 3.3a 

CsaCuaBia0S.0 
mp-

aa)aa) 
0.0aa n a0.aa 0... 3.)a 

Sn.Se. 
mp-

a.a))3 
0.0)a n a0.aa   

Sn.Ge.Sea 
mp-

a.aaa35 
0.00) n a0.aa 0... a.3a 

Cs.Hg.Sb.Sea 
mp-

a..5)3a 
0.0.3 n a0.30   

NaaAcaTe. 
mp-

aa50aa 
0 n, p 

)..)(n) 

)..a(p) 
a..a 

0.))(n) 

0.a)(p) 

 

The PBE functional is known to usually underestimate the band gap value, which has a 

profound impact on the electronic transport properties in our model. In order to explore the 

influence of a more accurate band gap on the thermoelectric transport properties, we 

selected two representative compounds, Co4As4S4 and Cd4Se8, and recalculated their band-

structure-related key parameters, including the band gap, deformation potential constant, 

and band effective mass, using the modified Becke–Johnson (MBJ) method [157,158]. The 

MBJ potential in combination with LDA-correlation yields band gaps with an accuracy 

similar to hybrid functional, but computationally less expensive (although still expensive 

than PBE functional). Then, their electronic transport properties were calculated on the 

basis of the newly obtained parameters. Compared with the PBE approach, the MBJ 

method yields larger values of the band gap for both compounds: 1.18 eV (MBJ) vs 0.85 

eV (PBE) for Co4As4S4 and 1.47 eV (MBJ) vs 0.58 eV (PBE) for Cd4Se8. Fig. 3.3 shows 

the power factor for Co4As4S4 and Cd4Se8 calculated using the PBE and MBJ parameters; 

the use of MBJ parameters results in larger power factor values for both compounds. For 

example, the maximum PF value for Co4As4S4 is 99.11 μW∙cm-1∙K-2 (MBJ) vs 90.58 
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μW∙cm-1∙K-2 (PBE); for Cd4Se8, it is 23.50 μW∙cm-1∙K-2 (MBJ) vs 21.77 μW∙cm-1∙K-2 

(PBE). As can be seen, the gain is quite small using a more accurate gap value. Moreover, 

the main function of band gap in our model is indicating the band nonparabolicity, as shown 

in the eq. ...a. The larger the band gap, the closer the energy band to single parabolic band 

model. Usually, single parabolic band model tends to underestimate the scattering rate of 

carriers because it doesn’t involve the interaction from other energy bands. In our 

relaxation time model, we only consider acoustic phonon, polar optical phonon and ionized 

impurity scattering processes, while other scattering processes, such as nonpolar optical 

phonon scattering, inter-valley scattering, grain boundary, are omitted. Therefore, we 

intentionally hope the nonparabolicity could be stronger so that the scattering rate of the 

current implemented model could be larger to offset the deficiency of the model itself.  By 

this way, the calculated transport properties could be closer to the experimental values. 

Therefore, the PBE method is still the best choice providing a balance between accuracy 

and speed.  
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Figure 3.3. Power factor of Co4As4S4 and Cd4Se8 calculated using the PBE and MBJ 

parameters. 

 

3.3. Simple Indicator for Screening for Thermoelectric Materials 

It would be convenient to have some simple indicators that help quickly evaluate the 

thermoelectric performance of a material. Recently, researchers have begun to use some 

easily obtained properties, such as the average atomic mass, volume per atom, and 

electronegativity, combined with machine learning models to predict the figure of merit or 

other complex properties [159–161]. The key to success for such a method is identifying 

easy to calculate properties which are most relevant to the complex properties of interest.  

    In Fig. 3.4, the materials under study are presented according to their average atomic 

mass and the number of atoms in the primitive cell, which are two commonly used 

indicators. Materials with a high power factor are found all across this chemical space, 

showing quite a high diversity. Thus, these two properties are not an ideal index.  
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Figure 3.4. Maximum power factor values, represented by color for (a) n-type and (b) p-

type transport, of the studied compounds in the chemical space defined by the average 

atomic mass and the number of atoms in the primitive cell. 

 

What simple properties are strongly correlated with the thermoelectric properties, such 

as the power factor? As shown in Section 2.2, the effective mass (m*) appears in many 

places and is the key parameter to determine the scattering rate of each scattering process 

involved. According to single parabolic band approximation, the Seebeck coefficient is 

proportional to the density of states effective mass 𝑚𝑑
∗  [74],  

( )
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whereas the carrier mobility is inversely proportional to the conductivity effective mass 

𝑚𝑐
∗  (eq. 2.13). 𝑚𝑑

∗  can be increased either by increasing band degeneracy N or by 

increasing 𝑚∥
∗𝑚⊥

∗2  (eq. 2.23). However, increasing the latter will also increase 𝑚𝑐
∗  (eq. 

2.24). Therefore, the ideal situation would be the band degeneracy N is very large while 

𝑚∥
∗ and 𝑚⊥

∗  keep small. In this case, a material should have large power factor. This is 

possible if the conduction band or valence band locates along specific directions in 

Brillouin zone for those high-symmetrical compounds (such as cubic ones), or make 

several different bands converge to the same energy level. Fig. 3.5 shows the maximum 

power factor values in the chemical space defined by 𝑚𝑑
∗  and 𝑚𝑐

∗. At similar values of 𝑚𝑑
∗ , 

a material with smaller 𝑚𝑐
∗ tends to have a higher power factor; at similar 𝑚𝑐

∗ values, a 
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material with larger 𝑚𝑑
∗  tends to have higher power factor. The maximum power factor 

plotted against 𝑚𝑑
∗ 𝑚𝑐

∗⁄  for the studied compounds (Fig. 3.6) shows a generally rising trend, 

which is clearer for p-type transport than n-type transport because of higher Pearson 

correlation coefficient (0.5857 for p-type transport vs 0.4030 for n-type transport). By 

adding one more parameter 𝜅L,300𝐾 at the denominator, Fig. 3.7 shows the maximum figure 

of merit plotted against 𝑚𝑑
∗ (𝑚𝑐

∗𝜅L,300𝐾)⁄  for the promising compounds. There is also a 

clear trend that the higher the 𝑚𝑑
∗ (𝑚𝑐

∗𝜅L,300𝐾)⁄ , the higher the maximum figure or merit. 

The Pearson correlation coefficient for n-type transport is 0.7977, while that is 0.6220 for 

p-type transport. However, such a correlation coefficient is still a bit low and these 

parameters cannot be used directly to predict figure of merit values. Nevertheless, we 

believe that using these three parameters or the indicators most related with them as an 

input in a machine learning model could results in a high-accuracy prediction of the figure 

of merit.  

 

Figure 3.5. Maximum power factor values, represented by color for (a) n-type and (b) p-

type transport, of the studied compounds in the chemical space defined by the density of 

states effective mass 𝑚𝑑
∗  and conductivity effective mass 𝑚𝑐

∗. 
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Figure 3.6. Maximum power factor versus 𝑚𝑑
∗ 𝑚𝑐

∗⁄  for the studied compounds. 

 

 

Figure 3.7. Maximum figure of merit versus 𝑚𝑑
∗ (𝑚𝑐

∗𝜅𝐿,300𝐾)⁄  for the studied compounds. 
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4 Chapter 4. Promising Thermoelectric Materials 

The novel compounds we found as promising and most interesting thermoelectric materials 

are introduced in detail in this chapter, with their crystal structures, band structures, and 

transport properties (mainly the power factor, lattice thermal conductivity, and figure of 

merit) displayed and analyzed. Other information can be found in Appendix.  

 

4.1. X4Y4Z4 (X = VIII B; Y = IV A, V A; Z = VI A) 

Compounds with this chemical formula, including RhAsSe, RhSbTe, IrSbTe, IrBiSe, 

IrBiTe, RhBiSe, RhBiTe, CoAsS, CoAsSe, CoPS, CoPSe, RhPSe, CoSbS, PtSnSe, and 

PtGeTe, were found to be good p-type thermoelectric materials because of their large 

power factor. These compounds have the same structure (space group P213) and belong to 

the pyrite structure type, as shown in Fig. 4.1. The transition metal X atoms are bonded to 

six Y and Z atoms, forming a distorted octahedron, whereas the Y (Z) atoms are tetrahedral, 

being bound to three X atoms and one other Z (Y) atom. 

 

Figure 4.1. Crystal structure of RhAsSe. 

 

    Fig. 4.2 shows the band structures of these compounds, taking RhAsSe, CoAsS, 

CoAsSe, and PtSnSe as examples. They are all indirect gap semiconductors, with the 
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CBMs located along the Γ–R or Γ–M or Γ–X paths. However, the energy difference among 

these conduction bands is quite small, and they are probably all involved in electronic 

transport. Moreover, the CBMs of these compounds are quite flat, implying large effective 

masses. On the contrary, their VBMs are well-defined and located along the Γ–M path. 

Besides, the VBMs are dispersive and the corresponding effective masses are expected to 

be small. The merit of RhAsSe and other compounds belonging to this group is that the 

degeneracy of points along the Γ–M path is large (N = 12). Therefore, for p-type 

conduction, these compounds have a large DOS effective mass but small conductivity 

effective mass (see Table 4.1). This will lead to large power factor values.  

 

Figure 4.2. Band structures of (a) RhAsSe, (b) CoAsS, (c) CoAsSe, and (d) PtSnSe. The 

CBM and VBM are shown by red and green dots, respectively. 

 

Table 4.1. Key parameters for p-type transport: conductivity effective mass 𝑚𝑐
∗ , DOS 

effective mass 𝑚𝑑
∗ , deformation potential constant Ξ, band degeneracy N, band gap Eg, 

direction-averaged elastic constant c, high-frequency and static dielectric constants ε∞ and 

ε0 
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 𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 
CoAsS 0.5a.a ..a5.a a3.5a a. 0.a5 a3).a0 .a.)) 3a.)a 

CoAsSe 0.aaa3 ..a)a5 a..a5 a. 0.a) a.a.aa .a..) 3a.55 

CoPS 0.aaa. ..)a5) aa.a) a. a.aa aaa.aa .a.a0 .).0. 

CoPSe 0.a3a) ..aaaa a3.50 a. 0.aa aa..05 .a.aa 3a.aa 

CoSbS 0.53a5 ..)aa5 aa.)3 a. 0.55 a05..0 .a.5a 3a.a) 

RhPSe 0.3a05 ..a)a) a3.)a a. a.aa a.a.03 a).)) .a.0. 

RhAsSe 0.3)a. ..0a53 a..)) a. 0.a3 a0).aa ...0a .).0a 

RhBiSe 0.35a5 a.)a5) a3..5 a. 0.a3 )a.aa 3a.5a aa.)0 

RhBiTe 0..))a a.5a)) a3.a) a. 0.0) a).aa aa.)) 53.)) 

RhSbTe 0..).) a.a533 aa.aa a. 0.3) aa.a3 .a.a3 3a.3. 

IrBiSe 0.3a0a a.)a50 a..)a a. 0.3a )0.aa .5.)0 3a.50 

IrBiTe 0.3a5. a.)a)5 a3.33 a. 0.33 a).55 .a.a) 3a..3 

IrSbTe 0.30a5 a.a5)) aa..0 a. 0.)0 a0..0. .0.)3 .).a. 

PtSnSe 0.3.0a a.).aa a3.a) a. 0.a. )3..) .).aa 3a.3a 

PtGeTe 0..30) a.a3.) a5.aa a. 0.a) aa.a0 33.aa aa.)a 

 

    In order to explore the origin of high band degeneracy and low band effective mass of 

the VBMs of these compounds, we also calculated the orbital-projected band structures for 

them using LOBSTER program with the pbeVaspFit2015 basis set [162–164]. For 

example, in CoPS (Fig. 4.3a), the VBM includes contributions from all three types of 

atoms; the orbital-projected band structure mainly consists of the 3d and 4p orbitals of Co, 

3p orbital of P, and 3p orbital of S. The variation of the effective mass of the VBMs for 

these compounds could be partly explained by the amount of contributions from these 

orbitals. For example, in the series CoPS–CoAsS–CoSbS, the effective mass increases as 

Table 4.1 shows. A comparison of the orbital-projected band structures of these compounds 

(Fig. 4.3) shows that the contribution of the 3d orbital of Co increases while those of the p 

orbital of sulfur and Y-type atom decrease as the Y atom changes from P to Sb. Since d 

electrons are more localized than p electrons, the effective mass is supposed to be heavier. 
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Figure 4.3. Orbital-projected band structure of (a) CoPS, (b) CoAsS, and (c) CoSbS. 

 

    Fig. 4.4 shows the power factor as a function of temperature and carrier concentration 

for this group of compounds. The power factor of these compounds is extremely high in a 

wide range of temperatures and carrier concentrations. The maximum values of some of 

them, such as CoAsSe, CoPS, CoPSe, RhPSe, and RhAsSe, could be even higher than 100 

μW∙cm-1∙K-2. For comparison, the maximum power factor of the state-of-the-art 

thermoelectric materials, such as Bi2Te3 and PbTe, is usually 30–50 μW∙cm-1∙K-2. As 

explained above, such a large power factor is due to the special characteristics of their band 

structures: large 𝑚𝑑
∗  around the VBM resulting from high degeneracy, but small 𝑚𝑐

∗ for 

each carrier pocket. Therefore, they could achieve both a high Seebeck coefficient and high 

electrical conductivity. 
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Figure 4.4. Power factor at varying temperatures and carrier concentrations for (a) CoAsS, 

(b) CoAsSe, (c) CoPS, (d) CoPSe, (e) CoSbS, (f) PtSnSe, (g) RhAsSe, (h) RhPSe, (i) 

IrBiSe, and (j) IrSbTe, (k) RhSbTe, (l) IrBiTe, (m) RhBiSe, (n) RhBiTe, (o) PtGeTe. 

 

    However, the problem with these compounds is that they also have high lattice thermal 

conductivity, as shown in Fig. 4.5. Because of that, their figure of merit values are not 

much larger than those of the state-of-the-art thermoelectric materials (Fig. 4.6). Still, some 

of them could have figure of merit values above 1 at high temperatures, such as CoAsS, 

CoAsSe, PtSnSe, RhAsSe, RhPSe, IrBiSe, and IrSbTe. Furthermore, there are ways to 

reduce the lattice thermal conductivity of these compounds. For example, by alloying to 

form compounds like CoP(As,Sb)S(Se) that could reduce the lattice thermal conductivity 

efficiently while retaining the high power factor. Therefore, this group of compounds is 

quite promising for thermoelectric applications. 
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Figure 4.5. Lattice thermal conductivity of the selected compounds. 
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Figure 4.6. Figure of merit at varying temperatures and carrier concentrations for (a) 

CoAsS, (b) CoAsSe, (c) CoPS, (d) CoPSe, (e) CoSbS, (f) PtSnSe, (g) RhAsSe, (h) RhPSe, 

(i) IrBiSe, and (j) IrSbTe, (k) RhSbTe, (l) IrBiTe, (m) RhBiSe, (n) RhBiTe, (o) PtGeTe. 
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4.2. CdSe2 

The structure of CdSe2 has a space group Pa-3 (Fig. 4.7), with the unit cell containing 12 

atoms (4 Cd and 8 Se). It is a pyrite-type structure. Cd atoms occupy the corner and face 

center of the unit cell, each of them forming an octahedron with six Se atoms around. 

Different octahedrons are connected by one Se atom. Our calculations show that this 

compound is a promising n-type thermoelectric material. Interestingly, we found an 

independent preprint also declares that this CdSe2 is a good thermoelectric material [165]. 

Below, we compare our results with those from the previous study.  

 

Figure 4.7. Crystal structure of CdSe2. 

 

    In the band structure of CdSe2, its VBM is located at the Γ point, whereas the CBM is 

along the Γ–R path (Fig. 4.8). The orbital projected band structure of CdSe2 shows that 

both Cd and Se contribute to the formation of the CBM (Fig. 4.9), which is mainly 

composed of the 5s orbital of Cd and 4p orbital of Se. The CBM is dispersive and has a 

small conductivity effective mass 𝑚𝑐
∗ = 0.41𝑚𝑒  (0.43me in ref. [165]). The band 

degeneracy N of CBM is 8 and the density of states effective mass 𝑚𝑑
∗ = 1.64𝑚𝑒 . 

Therefore, CdSe2 could also have both a high Seebeck coefficient and high electrical 

conductivity. 
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Figure 4.8. Band structure of CdSe2. 

  

 

Figure 4.9. Orbital-projected band structure of CdSe2. 
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Table 4.2. Key parameters for n-type transport 

 𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 
CdSe. 0.aa a.aa a0.a) a 0.5a .3.)a aa.aa a).)0 

 

    Fig. 4.10 shows the calculated power factor, lattice thermal conductivity, and figure of 

merit of CdSe2 at different temperatures and carrier concentrations for n-type transport. 

The power factor is generally high in a wide temperature range (Fig. 4.10a), whereas the 

lattice thermal conductivity is low, especially at high temperatures (Fig. 4.10b). Therefore, 

the figure of merit ZT can be larger than 1 at high temperatures (Fig. 4.10c). Our figure of 

merit is generally in close agreement with the results from ref. [165]. The maximum ZT 

value at 900 K is 1.22 at a concentration of 1.70 × 1020 cm-3 according to our calculations, 

while it is 1.16 at 1.91 × 1020 cm-3 according to ref. [165]. However, the power factor and 

lattice thermal conductivity values calculated in this work are higher than those in ref. 

[165]. For example, at 300 K, the maximum power factor is 21.77 μW∙cm-1∙K-2 (9.7 

μW∙cm-1∙K-2 in ref. [165]) and lattice thermal conductivity is 2.06 W∙m-1∙K-1 (0.)5 W∙m-

1∙K-1 in ref. [165]). In the end, both studies independently prove that pyrite CdSe2 has a 

high ZT and is a promising thermoelectric material. 
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Figure 4.10. Thermoelectric properties of CdSe2 for n-type transport. (a) power factor, (b) 

lattice thermal conductivity, and (c) figure of merit. 

 

4.3. MAcTe2 (M = Ⅰ A or Ⅲ A) 

Compounds with this chemical formula, including NaAcTe2, KAcTe2, RbAcTe2, CsAcTe2, 

GaAcTe2, InAcTe2 and TlAcTe2, could be both good n-type and p-type thermoelectric 

materials. These compounds have the same structure (space group Fm-3m), as shown in 

Fig. 4.11.  
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Figure 4.11. Crystal structure of GaAcTe2. 

 

    Fig. 4.12 shows the band structures of these compounds. Those in which M belongs to 

group ⅢA are indirect gap semiconductors. Their CBMs are located along the Γ–X path 

(N = 6), whereas their VBMs can be at the high symmetry X or L point (X: N = 3, L: N = 

4). The compounds in which M belongs to group ⅠA are direct gap semiconductors. Their 

band extrema can be located at either the X or Γ point. These band extrema are dispersive; 

thus, the carrier mobilities are relatively high. There are multiple extrema near the band 

gap for either n-type or p-type conductance, and the energy difference among these bands 

is small (for example, VBMs at X and L for M = ⅢA or VBMs at X and Γ for M = ⅠA). 

Therefore, they all are probably involved in electronic transport at a certain chemical 

potential.  
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Figure 4.12. Band structures of (a) GaAcTe2, (b) InAcTe2, (c) TlAcTe2, (d) NaAcTe2, (e) 

KAcTe2, (f) RbAcTe2, and (g) CsAcTe2. 
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Table 4.3. Key parameters for n-type and p-type transport 

 
 𝑚𝑐

∗ 

(me) 

𝑚𝑑
∗   

(me) 
Ξ (eV) N 

Eg 

(eV) 
c 

(GPa) 
ε∞ ε0 

GaAcTe. 
CBM 0.a.) 0.a5) ).)a a 

0.a) .0.a) a).5. a3..a) 
VBM 0.355 a..a) ).)) 3 

InAcTe. 

CBM 0.a.a 0.aa0 a0.aa a 
0.3a 

.a.). aa.0a )5.5a VBM 0...a 0.5)a aa.a) a 

VSB 0.3a3 a.5.a a0..a 3 0.55 

TlAcTe. 
CBM 0.a30 0.aa) a0.0a a 

0.5a .).3a a5.a) aa.a0 
VBM 0.a.5 ..0)) a0.a3 3 

NaAcTe. 
CBM 0.3a) 0.))a a.5a 3 

0.5a a5.)5 ).aa 3a.53 
VBM 0.3aa a.a5) ).3a 3 

KAcTe. 
CBM 0.3a) 0.)a) a..a 3 

0.a. .5.a) a.a) .).30 
VBM 0.3a) 0.))) a.aa 3  

RbAcTe. 

CBM 0.3a) 0.)3a a.aa 3 
0.a) 

.5.0a a.a. .).3a 
VBM 0.3a0 0.)5a a.)a 3 

CSB a.a)5 a.a)5 3.). a 0.)) 

VSB ..aa0 ..aa0 a..0a a 0.)5 

CsAcTe. 

CBM a.5a5 a.5a5 a.). a 
0.)) 

...03 a.)) 3a.a. 
VBM a..03 a..03 ).3) a 

CSB 0.3.) 0.aa. a.aa 3 0.a) 

VSB 0..)a 0.a)a a.)a 3 0.a3 

 

    Fig. 4.13, 4.14 and 4.15 show the power factor, lattice thermal conductivity, and figure 

of merit for this group of compounds. Their power factor is generally high, as indicated by 

their band structures. At the same time, their lattice thermal conductivity is extremely low: 

for most of them it is already lower than a W∙m-1∙K-1 at room temperature. Therefore, these 

compounds have quite large ZT values in a wide range of temperatures and carrier 

concentrations.  However, radioactive element Ac that they contain makes it impractical to 

manufacture devices based on these compounds. 
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Figure 4.13. Power factor at varying temperatures and carrier concentrations for (a, b) 

GaAcTe2, (c, d) InAcTe2, (e, f) TlAcTe2, (g, h) NaAcTe2, (i, j) KAcTe2, (k, l) RbAcTe2, 

and (m, n) CsAcTe2. 
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Figure 4.14. Lattice thermal conductivity of MAcTe2 type compounds. 
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Figure 4.15. Figure of merit at varying temperatures and carrier concentrations for (a, b) 

GaAcTe2, (c, d) InAcTe2, (e, f) TlAcTe2, (g, h) NaAcTe2, (i, j) KAcTe2, (k, l) RbAcTe2, 

and (m, n) CsAcTe2. 

 

4.4. X2Y4Z8 (X = II A or II B, Y = III A, Z = VI A) 

Compounds with this chemical formula include Hg2Al4Se8, Cd2In4Se4S4, Hg2In4S8, and 

Mg2In4Se8. They have the same structure, with a space group Fd-3m (Fig. 4.16). Each atom 

of group III A forms a distorted octahedron with six atoms of group VI A, whereas each 

atom of group II A or II B forms a tetrahedron with four atoms of group VI A. The band 

structures of this group of compounds are shown in Fig. 4.17. The compounds in which X 

belongs to group II B are indirect gap semiconductors, with the CBMs located at the Γ 

point, whereas their VBMs are located along the Γ–K path (N = 12). Meanwhile, there is a 

second valence band along the L–U path with the energy very close to the VBM (N = 24). 

Mg2In4Se8 is a direct gap semiconductor with band extrema at the Γ point; it also has a 

second valence band along the Γ–K path with the energy close to the VBM (N = 12). 

Because the VBMs and second valence bands in these compounds seem quite flat, the 

mobility of hole is expected to be low. However, high band degeneracy can lead to a large 

DOS effective mass, therefore, a high value of the Seebeck coefficient is expected.   
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Figure 4.16. Crystal structures of (a) Hg2Al4Se8 and (b) Mg2In4Se8. 

 

 

Figure 4.17. Band structures of (a) Hg2Al4Se8, (b) Cd2In4Se4S4, (c) Hg2In4S8, and (d) 

Mg2In4Se8. The CBM and VBM are shown by red and green dots, respectively. 
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Table 4.4. Key parameters for p-type transport 

 
 𝑚𝑐

∗ 

(me) 

𝑚𝑑
∗  

(me) 

Ξ 

(eV) 
N 

Eg 

(eV) 
c 

(GPa) 
ε∞ ε0 

Hg.AlaSea 
VBM 0.aa) a.a)5 ).aa a. 0.3a 

35.aa aa.aa ...a) 
VSB 0.5aa a.aa. ).aa .a 0.a5 

Cd.InaSeaSa 
VBM a.05) a.5a. ).aa a. 0.3a 

.).3a a.)a aa.aa 
VSB a.300 aa.5a. ).3a a. 0.a0 

Hg.InaSa 
VBM 0.aa. a.)aa a0.a0 a. 0.3a 

30..) a0.aa .a.)a 
VSB 0.)a. aa.))) a0.3a .a 0.33 

Mg.InaSea 
VBM 5.50) 5.50) a.5) a 0.). 

.a.a) a.0. aa.5a 
VSB 0.aaa a..a) a.a5 a. 0.)a 

 

    Our calculations show that this group of compounds can have high power factor for p-

type transport (Fig. 4.18), whereas their lattice thermal conductivity is relatively low (Fig. 

4.19). Therefore, the figure of merit can exceed 1 at high temperatures (Fig. 4.20).  

 

Figure 4.18. Power factor at varying temperatures and carrier concentrations for (a) 

Hg2Al4Se8, (b) Cd2In4Se4S4, (c) Hg2In4S8, and (d) Mg2In4Se8. 
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Figure 4.19. Lattice thermal conductivity for this group of compounds. 

 

 

Figure 4.20. Figure of merit at varying temperatures and carrier concentrations for (a) 

Hg2Al4Se8, (b) Cd2In4Se4S4, (c) Hg2In4S8, and (d) Mg2In4Se8.  
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4.5. Nb6Sb4Te10 

This compound has a structure with space group I-43m, as shown in Fig. 4.21. Each Te 

atom forms a tetrahedron with three Nb atoms and one Sb atom around it. The band 

structure (Fig. 4.22) shows that it is an indirect gap semiconductor with the CBM at the P 

point and the VBM located along the H–N path with high degeneracy N = 12. As a results, 

the DOS effective mass at the VBM is large (Table 4.5).   

 

Figure 4.21. Crystal structure of Nb6Sb4Te10. 

 

 

Figure 4.22. Band structure of Nb6Sb4Te10. 

 

Table 4.5. Key parameters for p-type transport 

 𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 
NbaSbaTea0 0.a)) 5.a3a a3.a0 a. 0.aa a).3) .3.). .)..a 
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The calculations show that this compound is a good p-type thermoelectric material. The 

thermoelectric properties of this compound for p-type transport are shown in Fig. 4.23. 

Because of its large power factor and relatively low lattice thermal conductivity, the 

maximum ZT value can exceed 1 at high temperature. 

 

 

Figure 4.23. Thermoelectric properties of Nb6Sb4Te10 for p-type transport. (a) power factor, 

(b) lattice thermal conductivity, and (c) figure of merit. 

 

4.6. MgTe 

This compound has a rocksalt structure with space group Fm-3m, same as PbTe (Fig. 4.24). 

Its band structure (Fig. 4.25) shows that it is an indirect gap semiconductor. The CBM, 

located at X point (N = 3), is dispersive, therefore 𝑚𝑐
∗ is small. The VBM is along Γ–K 

path (N = 12) and is flat, resulting in large 𝑚𝑑
∗ . Our calculation show that this compound 

has a high power factor for both n- and p-type transport, especially for p-type (Fig. 4.26). 

The maximum figure of merit for p-type transport can exceed 1 at high temperatures.  
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Figure 4.24. Crystal structure of MgTe. 

  

 

Figure 4.25. Band structure of MgTe.  

 

Table 4.6. Key parameters for n-type and p-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

MgTe 
CBM 0..a0 0.aaa a0.a3 3 

0.a3 3a.5a a.). .5..5 
VBM 0.aa3 5...0 ).5a a. 
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Figure 4.26. Thermoelectric properties of MgTe for n-type and p-type transport. (a, b) 

power factor, (c) lattice thermal conductivity, and (d, e) figure of merit. 
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4.7. Dy8P8S8 

This compound adopts a layered orthorhombic structure with a space group Pnma (Fig. 

4.27). There are two-atom-thick DyS slabs (along the a-b plane) with strong Dy–S bonding 

within the plane of the slabs. Each Dy (or S) atom is bonded to five neighboring S (or Dy) 

atoms in a distorted zig-zag-type structure. The P atoms form zigzag chain along the a axis 

direction within the a-b plane. The bond length of P-P atoms is about 2.23 Å, prerequisite 

of a single P-P bond. Therefore, one of the structural units is the 1(P
-1) chain anion, and the 

compound can be rationalized as Dy3+P-1S-2. The band structure shows that it is an indirect 

gap semiconductor with the CBM at the Y point (N = 1) and VBM at the T point (N = 1). 

It has a second valence band along the Y–Γ path with the energy very close to the VBM 

(N = 2). our calculations show that this compound is a promising thermoelectric material 

for both n- and p-type transport. Although its power factor values are not very high, the 

lattice thermal conductivity is quite low (Fig. 4.29). Therefore, the figure of merit for both 

n-type and p-type transport could be above 1. 

 

Figure 4.27. Crystal structure of Dy8P8S8. 
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Figure 4.28. Band structure of Dy8P8S8.  

  

Table 4.7. Key parameters for n-type and p-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

DyaPaSa 

CBM 0.a)a 0.a)a a.a) a 

0.30 )..a) a3.a) .a.00 VBM 0.3a5 0.a)a a.a3 a 

VSB 0.)3a a.aaa a.a) . 
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Figure 4.29. Thermoelectric properties of Dy8P8S8 for n-type and p-type transport. (a, b) 

power factor, (c) lattice thermal conductivity, and (d, e) figure of merit.  

 

4.8. SnSe-like compounds  

SnSe is a well-known thermoelectric material and has been deeply studied. It is natural to 

think that compounds composed of nearby elements in the periodic table and having similar 

crystal structure should also have good thermoelectric performance. Our calculation did 

find such compounds. Compounds having the similar crystal structure as the low 

temperature α-phase SnSe (space group Pnma) include Sn2Ge2Se4, Ge4Se2S2, Ge4Se4, 

Sn2Pb2S4, Ge4Te4. The structures of these compounds are shown in Fig. 4.30. The unit cell 

contains eight atoms (four atoms of group IVA and four of group VIA). The atoms of 

groups IVA and VIA are connected with strong heteropolar bonds to form the crystalline 

layers. In each layer, an atom of group IVA (or VIA) is bonded to three neighboring atoms 

of group VIA (or IVA) in a distorted zig-zag structure. The adjacent layers along the c-axis 

are weakly bonded by a combination of the van der Waals forces and electrostatic 

attractions. The band structures of these compounds (Fig. 4.31) show multiple band valleys 

in both the conduction band and valence band near the band gap, suggesting a potential to 

improve the power factor. Their CBMs can be located along several different high-

symmetry paths. However, the degeneracy of the CBM point is always equal to 2. Their 

VBMs are usually along the Γ–Y line. Our calculations show that these compounds are 

better to be n-type thermoelectric materials than p-type. However, Ge4Te4 is both a good 

n-type and p-type material. Their figure of merit values can exceed 1 in a wide range of 
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temperatures and carrier concentrations, as shown in Fig. 4. 34. Although the power factor 

is not as high as in the cubic materials introduced above (Fig. 4.32), these compounds have 

extremely low lattice thermal conductivity (Fig. 4.33). Except Ge4Te4, the lattice thermal 

conductivity of these compounds at 300 K is already lower than 0.5 W∙m-1∙K-1, close to the 

amorphous limit. Such a low lattice thermal conductivity is mainly due to their large 

Grüneisen coefficients within three acoustic phonon branches (Table 4.9), which indicates 

strong intrinsic anharmonicity.  

 

Figure 4.30. Crystal structures of (a) Sn2Ge2Se4 and (b) Ge4Se2S2.  
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Figure 4.31. Band structures of (a) Sn2Ge2Se4, (b) Ge4Se2S2, (c) Ge4Se4, (d) Sn2Pb2S4, and 

(e) Ge4Te4. 

  

Table 4.8. Key parameters for this group of compounds 

 
 𝑚𝑐

∗ 

(me) 

𝑚𝑑
∗  

(me) 

Ξ 

(eV) 
N 

Eg 

(eV) 
c 

(GPa) 
ε∞ ε0 

Sn.Ge.Sea 
CBM 0..5) 0.a3. ).05 . 0.a) 

a).)a aa.33 3a.aa 
CSB 0.3)) 0.a33 a..5 . 0.). 

GeaSe.S. 
CBM 0.33a 0.5)5 )..a . a.a. 

a).aa a3.0) .a.)0 
CSB 0..)a 0.)aa ).a0 a a.a) 

GeaSea CBM 0..5a a..3) ).aa . 0.a) a).a. aa.a) ...a) 

Sn.Pb.Sa 
CBM 0..00 0.3.) a..0 . 0.a3 

.0.a. a..)a 3a.3a 
CSB 0..33 0.3)a a.)5 . 0.). 

GeaTea 
CBM 0.a3a 0...) ).)) . 

0.a5 
3a.0a 50..0 aa).aa VBM 0.0aa 0..a5 aa.aa . 

CSB 0.aaa 0..)a ).aa . 0.aa 
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Figure 4.32. Power factor at varying temperatures and carrier concentrations for (a) 

Sn2Ge2Se4, (b) Ge4Se2S2, (c) Ge4Se4, (d) Sn2Pb2S4, and (e, f) Ge4Te4. 
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Figure 4.33. Lattice thermal conductivity of this group of compounds.  

  

Table 4.9. Phonon properties of three acoustic branches for this group of compounds. ν is 

the phonon velocity, γ is the Grüneisen parameter 

 νTA νTA’ νLA γTA γTA’ γLA 

Sn.Ge.Sea a55...a .333.a. 30a5.)a 5..3 3.)) 3.)5 

GeaSe.S. .a)a.)0 .0.a.00 3.3a..) 5.a) 3.3) 3.0a 

GeaSea 3aaa.aa aaaa..5 30a).aa 5.0a a.0a ..aa 

Sn.Pb.Sa aa53.aa .05)..) .aa3.0a a.aa ..a) ..)a 

GeaTea a)aa..5 .a)a..) 3aaa.)) 3.aa ..)a ..3) 
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Figure 4.34. Figure of merit at varying temperatures and carrier concentrations for (a) 

Sn2Ge2Se4, (b) Ge4Se2S2, (c) Ge4Se4, (d) Sn2Pb2S4, and (e, f) Ge4Te4.  

 

    Besides the compounds having the similar structure as α-phase SnSe, we also found 

compounds having the similar crystal structure as high temperature β-phase SnSe (space 

group Cmcm). These compounds include Pb4Se4, Pb4S4 and their structures are shown in 

Fig. 4.35. The unit cell also contains eight atoms (four atoms of group IVA, and four of 

group VIA) and adopts a double-layered structure. However, different from the α-phase 

structure, within each layer of the β-phase, one atom of group IVA (or VIA) is instead 

bonded to five neighboring atoms of group VIA (or IVA) in a less distorted structure. The 

band structures of these compounds (Fig. 4.36) show that they are direct gap 

semiconductors with the band extrema along the T–Y path (N = 2). Similar to the α-phase 

structure, there are multiple band valleys in both conduction and valence bands near the 

band gap. Our calculations show that these compounds are excellent n-type and p-type 

thermoelectric materials, their figure of merit could be higher than 1 in a wide range of 
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temperatures and carrier concentrations. This is mainly due to their high power factor and 

relatively low lattice thermal conductivity.   

 

Figure 4.35. Crystal structures of (a) Pb4Se4 and (b) Pb4S4.  

 

 

Figure 4.36. Band structures of (a) Pb4Se4 and (b) Pb4S4.  

 

Table 4.10. Key parameters for n-type and p-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

PbaSea 

CBM 0.aa0 0..a5 ).)) . 
0.5a 

)a.a) aa.a. aa5.)) 
VBM 0.a5. 0.3)) ...aa . 

CSB 0..3. 0.a3. a.a) . 0.a0 

VSB 0.aaa 0.3)a ).a) . 0.aa 

PbaSa 

CBM 0.aaa 0.3.3 a.a0 . 
0.). 

a3).a. a..a0 aaa).3 VBM 0..aa 0.535 a0..3 . 

CSB 0.aa) 0.3aa a.5. . 0.)) 
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Figure 4.37. Power factor at varying temperatures and carrier concentrations for (a, b) 

Pb4Se4 and (c, d) Pb4S4. 

 

 

Figure 4.38. Lattice thermal conductivity of this group of compounds.  

  

Table 4.11. Phonon properties of three acoustic branches for this group of compounds 
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 νTA νTA’ νLA γTA γTA’ γLA 

PbaSea a0a5.)3 a)aa.53 .53).)0 a.a5 ...a a.3a 

PbaSa a)a.)) a)0).)a .)3a..a a.a) ..)a a.)) 

 

 

 

Figure 4.39. Figure of merit at varying temperatures and carrier concentrations for (a, b) 

Pb4Se4 and (c, d) Pb4S4. 

 

4.9. Cu4Sb4Se8 and Ba4Cu8Te8 

These two compounds have a similar orthorhombic structure with a space group Pnma 

(Fig. 4.40). In Cu4Sb4Se8, the Cu and the Sb atoms connect with each other through the Se 

atoms. If viewing the structure along the a axis, these atoms form distorted rings and the 

hollow extends along the a axis. In Ba4Cu8Te8, the Cu atom connects with four nearest 

neighboring Te atoms in a tetrahedral coordination. Again, if viewing the structure along 

the a axis, the Cu and Te atoms form distorted rings and the hollow extends along the a 

axis. The difference for Ba4Cu8Te8 is, the Ba atoms are distributed inside the hollow space. 
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This structure is beneficial for impeding the transport of phonons, and therefore is expected 

to have lower lattice thermal conductivity compared with Cu4Sb4Se8. The band structures 

of these compounds are shown in Fig. 4.41. For Cu4Sb4Se8, the CBM is located along the 

R–T path (N = 2) and there are multiple valleys in the conduction band. For Ba4Cu8Te8, 

the CBM is located along Γ–Z path (N = 2) and there is a second conduction band along 

the Γ–Y path with almost the same energy as the CBM (N = 2). Our calculations show that 

these two compounds are promising n-type thermoelectric materials.  Their power factor 

values are similar, with the maximum values just above a0 μW∙cm-1∙K-2 (Fig. 4.42). There 

is a significant difference in the lattice thermal conductivity κL, whose value for Ba4Cu8Te8 

is almost one fifth that of Cu4Sb4Se8 (Fig. 4.43). In Ba4Cu8Te8, the phonon velocities are 

lower than those in Cu4Sb4Se8, and the Grüneisen parameters of two acoustic branches in 

Ba4Cu8Te8 are two times larger than those in Cu4Sb4Se8 (Table 4.13). Therefore, the 

structure of Ba4Cu8Te8 has stronger anharmonicity, indicating Ba atoms as efficient 

scattering centers. The figure of merit ZT of Ba4Cu8Te8 is almost three times larger than 

that of Cu4Sb4Se8 (Fig. 4.44), which is mainly due to its much lower lattice thermal 

conductivity.  

 

Figure 4.40. Crystal structures of (a) Cu4Sb4Se8 and (b) Ba4Cu8Te8.  
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Figure 4.41. Band structures of (a) Cu4Sb4Se8 and (b) Ba4Cu8Te8.  

  

Table 4.12. Key parameters for n-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

CuaSbaSea 
CBM 0.aa3 0.)a) ).)a .  0.5a 

3...) a).a0 3).a5 
CSB 0.3.) 0.5a) a0.a3 . 0.55 

BaaCuaTea 
CBM 0.a3. 0.)30 ).)a . 0.a0 

a).)) a..a) .0.00 
CSB 0.33a 0.a0. a.30 . 0.a0 

 

  

Figure 4.42. Power factor at varying temperatures and carrier concentrations for (a) 

Cu4Sb4Se8 and (b) Ba4Cu8Te8. 
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Figure 4.43. Lattice thermal conductivity of this group of compounds.  

  

Table 4.13. Phonon properties of three acoustic branches for this group of compounds 

 νTA νTA’ νLA γTA γTA’ γLA 

CuaSbaSea a))0.a3 a)aa.a) 3).).aa a0.55 a... a.00 

BaaCuaTea aaaa.3) aaaa.)) 3aa..00 5..a ..55 ..)) 

 

 

Figure 4.44. Figure of merit at varying temperatures and carrier concentrations for (a) 

Cu4Sb4Se8 and (b) Ba4Cu8Te8. 
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4.10. Cs6Cu4Bi10S20 

This compound has an orthorhombic structure with a space group Pnnm (Fig. 4.45) and the 

unit cell containing 40 atoms. The Bi, S, and Cu atoms are interconnected with each other 

to form a framework, whereas the Cs atoms are distributed in the voids of this framework. 

In the band structure of this compound (Fig. 4.46), the CBM is located along the Γ–Y path 

(N = 2), while the VBM is along the Γ–Z path (N = 2). The conduction and valence bands 

are much more flat along the Γ–Y and Γ–Z paths than that along the Γ–X path. The Γ–X, 

Γ–Y, and Γ–Z paths correspond to the a, b and c directions of the lattice, therefore, the 

transport properties in this material are expected to be highly anisotropic. Our calculation 

shows that this compound is an outstanding n-type thermoelectric material. Although the 

power factor is not very high, the lattice thermal conductivity is extremely low, reaching 

the so-called “amorphous limit” (Fig. 4.47). Such a low lattice thermal conductivity is 

mainly due to the very strong anharmonicity inside the lattice. This leads to the figure of 

merit values above 1 in a wide range of temperatures and carrier concentrations.  

 

Figure 4.45. Crystal structure of Cs6Cu4Bi10S20. 
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Figure 4.46. Band structure of Cs6Cu4Bi10S20.  

  

Table 4.14. Key parameters for n-type transport 

 𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 
CsaCuaBia0S.0 0.a0a a.5aa 5.)) . 0.50 aa.)5 ).0a 55.a) 

 

 

 

 

Figure 4.47. Thermoelectric properties of Cs6Cu4Bi10S20 for n-type transport. (a) power 

factor, (b) lattice thermal conductivity, and (c) figure of merit.  
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4.11. Ca4Sn4S12 

This compound has an orthorhombic structure with a space group Pnma, (Fig. 4.48). The 

Sn atom is bonded to six nearest neighboring S atoms to form an octahedron, and the Ca 

atom is connected with three nearest S atoms to form a tetrahedron. The octahedron shares 

one S corner with the neighboring tetrahedron. In the band structure (Fig. 4.49), the CBM 

is located along the Γ–Y path, whereas the VBM is along the Γ–X path, both having a band 

degeneracy N = 2. Multiple valleys are seen near the band gap. Our calculations show that 

this compound is a good n-type thermoelectric material. It has high power factor and 

relatively low lattice thermal conductivity. Therefore, its figure of merit can exceed 1 at 

high temperatures.  

 

Figure 4.48. Crystal structure of Ca4Sn4S12. 
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Figure 4.49. Band structure of Ca4Sn4S12.  

  

Table 4.15. Key parameters for n-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

CaaSnaSa. 
CBM 0.a50 0.))) a.)) . 0.)5 

.).)5 ).0a .3.5) 
CSB 0.aaa 0.).3 a.3) . 0.aa 

 

 

 

Figure 4.50. Thermoelectric properties of Ca4Sn4S12 for n-type transport. (a) power factor, 

(b) lattice thermal conductivity, and (c) figure of merit.  
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4.12. Ba2ZrS4 and Ba2HfS4 

These two compounds have a tetragonal structure with a space group I4/mmm (Fig. 4.51) 

and the unit cell containing 14 atoms. Each transition metal atom (Zr and Hf) is surrounded 

by six nearest neighboring S atoms to form an octahedron. In the band structures of these 

compounds (Fig. 4.52), the CBMs are at the Γ point, while the VBMs are at the X point (N 

= 2). Besides, there are multiple valleys near the band gap in the valence band. Our 

calculations show that these two compounds are excellent thermoelectric materials for both 

n-type and p-type transport. Their figure of merit could be higher than 1 in a wide range of 

temperatures and carrier concentrations, which is mainly due to their high power factor and 

quite low lattice thermal conductivity. 

 

Figure 4.51. Crystal structures of (a) Ba2ZrS4 and (b) Ba2HfS4. 
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Figure 4.52. Band structures of (a) Ba2ZrS4 and (b) Ba2HfS4.  

  

Table 4.16. Key parameters for n-type and p-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

Ba.ZrSa 

CBM 0..aa a.00. 5.0) a 
0.a3 

3a.a) ).aa 5).a) VBM 0.aa) ..a53 a.3a . 

VSB 0.aa) 3..53 a.35 a 0.aa 

Ba.HfSa 
CBM 0..aa 0.)0a a.50 a 

0.a) 
a0.a5 a.)a 3a.a) VBM 0.a)) ..aaa 5.a) . 

VSB 0.a)a 3..)a 5.)a a 0.aa 
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Figure 4.53. Power factor at varying temperatures and carrier concentrations for (a, b) 

Ba2ZrS4 and (c, d) Ba2HfS4. 

  

 

Figure 4.54. Lattice thermal conductivity of this group of compounds. 
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Figure 4.55. Figure of merit at varying temperatures and carrier concentrations for (a, b) 

Ba2ZrS4 and (c, d) Ba2HfS4. 

 

4.13. Ga2Te5 

This compound has a tetragonal structure with a space group I4/m (Fig. 4.56). The Ga atom 

is bonded to four nearest neighboring Te atoms to form a tetrahedron. In the band structure 

of this compound (Fig. 4.57), the CBM is located along the X–P path and is dispersive with 

a band degeneracy N = 4. The VBM is located at the X point (N = 2). Our calculations 

show that this compound is an outstanding n-type thermoelectric material having a 

relatively high power factor and quite low lattice thermal conductivity. The figure of merit 

can exceed 1 in a wide range of temperatures and carrier concentrations.  

 

 

Figure 4.56. Crystal structure of Ga2Te5.  
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Figure 4.57. Band structure of Ga2Te5.  

 

Table 4.17. Key parameters for n-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

Ga.Te5 
CBM 0.aaa 0.aa. a.)a a 0.)a 

a).)0 a3.)3 ...a. 
CSB 0..aa 0.aa) a.aa . a.00 

 

 

 

Figure 4.58. Thermoelectric properties of Ga2Te5 for n-type transport. (a) power factor, (b) 

lattice thermal conductivity, and (c) figure of merit.  
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4.14. BaCu2Se2 

This compound has a tetragonal structure with a space group I4/mmm and the unit cell 

containing 10 atoms. Each Cu atom is bonded to four nearest neighboring Se atoms to form 

a tetrahedron. These tetrahedrons connect with each other by sharing one edge, forming a 

Cu–Se layer. The layers of Ba and Cu–Se atoms are alternately stacked along the c-axis. 

The band structure of this compound (Fig. 4. 60) shows that it is a direct gap semiconductor 

with the CBM and VBM located at the Γ point. Meanwhile, it has a second valence band 

along Y1–Z path (N = 4). Our calculations show that this compound is a promising p-type 

thermoelectric material whose figure of merit can exceed 1 in a wide range of temperatures 

and carrier concentrations, which is mainly due to its very low lattice thermal conductivity.   

 

Figure 4.59. Crystal structure of BaCu2Se2. 

  

 

Figure 4.60. Band structure of BaCu2Se2. 
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Table 4.18. Key parameters for p-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

BaCu.Se. 
VBM 0..aa 0.))a ).5. a 0.3) 

30.)5 a..aa 30.)5 
VSB a.0.) ..)aa ).)) a 0.aa 

 

 

Figure 4.61. Thermoelectric properties of BaCu2Se2 for p-type transport. (a) power factor, 

(b) lattice thermal conductivity, and (c) figure of merit.  

 

4.15. CaIn2Te4 

This compound adopts a tetragonal structure with a space group I422 (Fig. 4.62) and the 

unit cell containing 14 atoms. The In atom is bonded to four nearest neighboring Te atoms 

to form a tetrahedron. These tetrahedra are connected in chains along the c-axis, while Ca 

atoms are distributed in the empty space among the tetrahedron chains. The band structure 

of this compound (Fig. 4.63) shows that it is an indirect gap semiconductor with the CBM 

at the M point and the VBM at the Γ point. Meanwhile, there is a second valence band 
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locating along the Γ–X path with the energy 0.01 eV lower than the VBM (N = 4). Our 

calculations show that this compound is a promising p-type thermoelectric material (Fig. 

4.64) having a relatively low lattice thermal conductivity, whose figure of merit can exceed 

1 at high temperatures.  

 

Figure 4.62. Crystal structure of CaIn2Te4. 

 

 

Figure 4.63. Band structure of CaIn2Te4. 

  

Table 4.19. Key parameters for p-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

CaIn.Tea 
VBM 0..a) 0.a33 a0..5 a 0.a5 

aa.)a a0.aa 5a.a0 
VSB 0.aa) a.a.) a0.aa a 0.aa 
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Figure 4.64. Thermoelectric properties of CaIn2Te4 for p-type transport. (a) power factor, 

(b) lattice thermal conductivity, and (c) figure of merit. 

 

4.16. Discussion 

The above sections introduce part of the promising thermoelectric materials founded in this 

work. From their data of structure and transport properties, we can get some clues about 

what makes a good thermoelectric material. For cubic compounds, due to their high 

symmetry, the conduction band or valence band along specific directions in the Brillouin 

zone could have high band degeneracy, which means there will be multiple carrier pockets 

involved in transport process. In this case, the DOS effective mass for conduction band or 

valence band could be large, while the conductivity effective mass of carriers could keep 

small. Therefore, both Seebeck coefficient and electrical conductivity of them could be 

high, leading to a high power factor. Meanwhile, if the cubic compounds contain some 

heavy elements, such as in MAcTe2-like compounds, the phonons could be efficiently 

scattered and their lattice thermal conductivity could be greatly reduced. For tetragonal and 
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orthorhombic compounds, the band degeneracy of their conduction or valence bands is not 

large (N < 4) because of their lower symmetry. Thus, the power factor of these compounds 

is not as high as that of cubic compounds. However, the tetragonal and orthorhombic 

compounds have much more chance to have low lattice thermal conductivity. According 

to our calculation, those materials, such as SnSe-like compounds, Ba4Cu8Te8, 

Cs6Cu4Bi10S20, have their κL as low as the amorphous limit. Such a low κL originates from 

their structure: they are anisotropic, contain layers or voids with heavy atoms (such as Ba, 

Cs) loosely bonded to surrounding atoms. Thus, these compounds have strong 

anharmonicity intrinsically in their lattice. In order to accurately calculate their κL, in 

principle the high order interaction beyond three-phonon process should be included. 

However, such a calculation is always time-consuming. In our model, the overall 

anharmonicity is mainly reflected by the value of phonon velocity and Grüneisen 

coefficient. It seems our model tend to underestimate κL of those compounds with strong 

anharmonicity (as shown in Fig. 2.6, 4.33, 4.43, 4.47b), mainly because the calculated 

Grüneisen coefficients are quite large (Table 1 in Ref. [111], Table 4.9, 4.13). More 

accurate κL could be obtained if the accuracy of Grüneisen coefficients can be improved. 

Furthermore, for the convenience of experimental verification, 10 compounds 

introduced in the previous sections, which we think as the most promising thermoelectric 

materials, are selected and shown in Table 4.20. Experimental investigation on these 

compounds is strongly encouraged. 

 

Table 4.20. The most promising thermoelectric compounds founded in this work, expecting 

for experimental verification 

Formula 
Crystal 

system 
Stability doping 

Including 

toxic 

element 

Including 

expensive 

element 

PFmax 

(μW∙cm-

a∙K-a) 

κL,300K 

(W∙m-

a∙K-a) 

ZTmax 

CoaPaSa Cubic Stable p No No a0a.50 3..aa 0.)) 

SnaPtaSea Cubic Stable p No Yes a3... a.3a a.5a 

CdaSea Cubic Stable n Yes No .a.)) ..0a a.35 

Hg.InaSa Cubic Stable p Yes No aa.0a ..)) a.30 
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NbaSbaTea0 Cubic Stable p No Yes 3).a3 5..a a.aa 

DyaPaSa 
Orthor-

hombic 
Stable n, p No No 

a0.5. 

(n) 

a).a3 

(p) 

...) 

a.aa 

(n) 

a..a 

(p) 

GeaSea 
Orthor-

hombic 
Stable n No No a..5a 0.aa 3.a) 

CuaSbaSea 
Orthor-

hombic 
Stable n No No a..a. ..3a a.0) 

Ba.HfaSa Tetragonal Stable n, p No No 

aa.aa 

(n) 

3a.0a 

(p) 

0.a) 

..a3 

(n) 

3.)0 

(p) 

Ga.Te5 Tetragonal Stable n No Yes .5.a. a.5a ..5a 
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5 Chapter 5. Conclusions 

We developed a powerful computer program AICON for calculating the transport 

properties of bulk semiconductors, including the phonon transport properties and electronic 

transport properties. The algorithm for the phonon transport properties is based on the 

Debye–Callaway model. Going beyond the original Callaway model, we also took into 

account the contribution from optical phonons. Our method factors in the phonon-phonon 

normal scattering, Umklapp scattering, and isotope scattering processes; all the necessary 

parameters, including the phonon velocity, Grüneisen parameter, and Debye temperature, 

can be calculated using first-principles methods. The algorithm for the electronic transport 

properties is based on the generalized Kane band model and perturbation theory in the 

framework of the relaxation time approximation. We reoptimized the original formulas to 

achieve highly efficient numerical calculations. In this method, we take into account three 

scattering mechanisms for electrons: acoustic phonon scattering, polar optical phonon 

scattering, and ionized impurity scattering. All key input parameters, such as the 

deformation potential constants, effective mass, and dielectric constants, can be calculated 

using first-principles methods. The capabilities of the phonon transport model and 

electronic transport model were tested on a group of common semiconductors and 

insulators, respectively. The reviewed cases proved the robustness and accuracy of our 

method. What’s more, we also implemented an automatic workflow tool so that the users 

only need to provide structural files and some necessary settings for each DFT calculation, 

then the whole workflow can run and check automatically.  

    We used AICON to find promising thermoelectric materials among the structures 

extracted from a database. Totally, we have screened 463 compounds and 361 of them (94 

cubic, 267 tetragonal and orthorhombic) finished the complete processes of electronic 

transport properties calculation. Among them, 94 compounds (47 cubic, 47 tetragonal and 

orthorhombic) were identified as having high power factor (PF > a0 μW∙cm-1∙K-2) for 

either n-type or p-type transport, including six already well-known thermoelectric 

materials. The statistical analysis of the obtained data shows that 𝑚𝑑
∗ 𝑚𝑐

∗⁄  can be a good 

indicator for the power factor, and 𝑚𝑑
∗ (𝑚𝑐

∗𝜅𝐿
300𝐾)⁄  is a good indicator for the figure of 
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merit. Thus, we can use these simple parameters for a fast evaluation of the thermoelectric 

performance of a compound. Among the novel thermoelectric materials with cubic 

structure, we found CoAsS-like compounds, Hg2Al4Se8, Cd2In4Se4S4, Hg2In4S8, 

Mg2In4Se8, Nb6Sb4Te10 and others as promising p-type thermoelectric materials; CdSe2, 

MgTe and other compounds were found as promising n-type materials. These compounds 

have very high power factor values comparable with or even exceeding those of the state-

of-the-art thermoelectric materials, and normal lattice thermal conductivity. They can have 

the figure of merit larger than 1 at high temperatures, which can be further improved by 

reducing the lattice thermal conductivity. For compounds with tetragonal and 

orthorhombic structure, the representative ones include SnSe-like compounds, Cu4Sb4Se8, 

Ba4Cu8Te8, Cs6Cu4Bi10S20 and others for n-type transport; BaCu2Se2 and CaIn2Te4 for p-

type transport; Ba2ZrS4 and Ba2HfS4 for both n-type and p-type transport. These 

compounds have relatively high power factor and very low lattice thermal conductivity, 

therefore their figure of merit can exceed 1 in a wide range of temperatures and carrier 

concentrations. We found that for cubic structures, good thermoelectric performance is 

usually due to high power factor. Their band extrema (CBM and VBM) are usually located 

along a high-symmetry path; thus, the bands involved in transport have a large band 

degeneracy. Because of high band degeneracy, cubic structures can have both high Seebeck 

coefficient and high electrical conductivity, leading to a high power factor. For tetragonal 

and orthorhombic structures, good thermoelectric performance is usually due to their low 

lattice thermal conductivity. These compounds are usually highly anisotropic and have 

intrinsically large anharmonicity in their structures, reflected by their large Grüneisen 

parameter. The methods used in this work can also be applied in other fields where the 

transport properties of semiconductors need to be calculated. 
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7 Appendices 

A1. X4Y8 (X = VIII B, Y = VI A) 

Compounds with this chemical formula include Fe4S8, Ru4S8, Ru4Se8, Ru4Se4S4. These 

compounds have the same structure with a space group Pa-3 (Fig. A1). Each atom of group 

VIIIB forms an octahedron with six atoms of group VIA. Their band structures are shown 

in Fig. A2. Our calculations show that this group of compounds can have high power factor 

for p-type transport. However, their lattice thermal conductivity can also be high, therefore 

the figure of merit is not large.  

 

Figure A1. Crystal structure of pyrite Fe4S8. 
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Figure A2. Band structures of (a) Fe4S8, (b) Ru4S8, (c) Ru4Se4S4, and (d) Ru4Se8. The CBM 

and VBM are shown by red and green dots, respectively. 

 

Table A1. Key parameters for p-type transport 

 𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 
FeaSa a.a30 a.).. a3.5a a 0.a. a)a.a5 .a..a .a.3a 

RuaSa 0.)a) 3.a.. a3.a) a 0.a0 aa..5a aa.a5 .0.)0 

RuaSeaSa a.a.) a.03) a3.aa a 0.3) aa0.aa aa..5 .3.aa 

RuaSea a.0a) 3.)). a...0 a 0..) a.5.a5 a).5a .5.)a 
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Figure A3. Power factor at varying temperatures and carrier concentrations for (a) Fe4S8, 

(b) Ru4S8, (c) Ru4Se4S4, and (d) Ru4Se8. 

 

 

Figure A4. Lattice thermal conductivity of this group of compounds. 
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Figure A5. Figure of merit at varying temperatures and carrier concentrations for (a) Fe4S8, 

(b) Ru4S8, (c) Ru4Se4S4, and (d) Ru4Se8.  

 

A2. ScCoTe, TiFeTe and ZrFeTe 

These three compounds have the same crystal structure with a space group F-43m, (Fig. 

A6). Their band structures are shown in Fig. A7. Our calculations show that they are 

promising n-type thermoelectric materials. 
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Figure A6. Crystal structure of ScCoTe. 

 

Figure A7. Band structures of (a) ScCoTe, (b) TiFeTe, and (c) ZrFeTe. The CBM and 

VBM are shown by red and green dots, respectively. 

 

Table A2. Key parameters for n-type transport 

 𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 
ScCoTe 0.aa3 3..a. aa.)) a 0.aa a).)5 aa.0) .5.)a 

TiFeTe 0.a)a a.a5) a..5) 3 0.)a a0..5a .a.3a 3a..) 

ZrFeTe 0.a30 3...a aa.5a a a.aa a00.5) .0..a 3a..3 
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Figure A8. Power factors at varying temperatures and carrier concentrations for (a) 

ScCoTe, (b) TiFeTe, and (c) ZrFeTe. 

 

Figure A9. Lattice thermal conductivity of this group of compounds. 



160 

 

 

Figure A10. Figure of merit at varying temperatures and carrier concentrations for (a) 

ScCoTe, (b) TiFeTe, and (c) ZrFeTe. 

 

A3. Mg2Co4S8 and Zn2Co4S8 

These two compounds have the same crystal structure with a space group Fd-3m (Fig. 

A11). Their band structures are shown in Fig. A12. Our calculations show that these 

compounds have a high power factor for both n- and p-type transport. However, their lattice 

thermal conductivity is also high, therefore the figure of merit is low. 
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Figure A11. Crystal structure of (a) Mg2Co4S8 and (b) Zn2Co4S8. 

 

 

Figure A12. Band structures of (a) Mg2Co4S8 and (b) Zn2Co4S8. The CBM and VBM are 

shown by red and green dots, respectively. 

 

Table A3. Key parameters for n-type and p-type transport 

 
 𝑚𝑐

∗ 

(me) 

𝑚𝑑
∗  

(me) 

Ξ 

(eV) 
N 

Eg 

(eV) 
c 

(GPa) 
ε∞ ε0 

Mg.CoaSa 
CBM 0.5a3 a.)aa aa.)0 a 

0.)) 5).a. a5.a) aa.aa 
VBM a.)aa aa.a). a0.)a a. 

Zn.CoaSa 
CBM 0.5aa a.aaa a..)a a 

0.a) )a.a) a).3) aa.a) 
VBM a.))5 a..0a0 a..0) a. 
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Figure A13. Power factor at varying temperatures and carrier concentrations for (a, b) 

Mg2Co4S8 and (c, d) Zn2Co4S8. 

 

2  

Figure A14. Lattice thermal conductivity of this group of compounds. 
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Figure A15. Figure of merit at varying temperatures and carrier concentrations for (a, b) 

Mg2Co4S8 and (c, d) Zn2Co4S8. 

 

A4. Al5CuSe8 

This compound has a structure with a space group F-43m (Fig. A16). Our calculations 

show that it is a promising thermoelectric material for p-type transport.  

 

Table A4. Key parameters for p-type transport 

 𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 
Al5CuSea 0.)aa 5.a0a ).aa a. 0.50 a5.5a a.aa a3.aa 
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Figure A16. Crystal structure of Al5CuSe8. 

 
Figure A17. Band structure of Al5CuSe8. 
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Figure A18. Thermoelectric properties of Al5CuSe8 for p-type transport. (a) power factor, 

(b) lattice thermal conductivity, and (c) figure of merit. 

 

A5. CeSe2 

This compound has a structure with a space group Fd-3m (Fig. A.19). Our calculations 

show that it is a promising thermoelectric material for p-type transport. 

 
Figure A19. Crystal structure of CeSe2. 

 

 
Figure A20. Band structure of CeSe2. 
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Table A5. Key parameters for p-type transport 

 𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 
CeaSea 0.aa. 5.)aa ).55 a. 0.a) .a.a0 a).aa 3..aa 

 

 

 
Figure A21. Thermoelectric properties of CeSe2 for p-type transport. (a) power factor, (b) 

lattice thermal conductivity, and (c) figure of merit. 

 

A6. Y4Pt4S14 

This compound has a structure with a space group Fd-3m (Fig. A22). Our calculations 

show that it is a promising thermoelectric material for p-type transport. 
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Figure A22. Crystal structure of Y4Pt4S14. 

 

 
Figure A23. Band structure of Y4Pt4S14. 

 

Table A6. Key parameters for p-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

YaPtaSaa 
VBM 0.aaa a..a. a0.aa 3 0.3a 

a3.a) aa.)5 ...a) 
VSB a.3a5 ).033 a0.a) a. 0.50 
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Figure A24. Thermoelectric properties of Y4Pt4S14 for p-type transport. (a) power factor, 

(b) lattice thermal conductivity, and (c) figure of merit. 

 

A.7. Li4Co4S8 

This compound has a structure with a space group Fd-3m (Fig. A25). Our calculations 

show that it is a promising thermoelectric material for p-type transport. 

 

 
Figure A25. Crystal structure of Li4Co4S8. 
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Figure A26. Band structure of Li4Co4S8. 

 

Table A7. Key parameters for p-type transport 

 𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 
LiaCoaSa a.))3 a..3)5 a0.)5 a. 0.a3 aa.)) a).a. .a..a 

 

 

 
Figure A27. Thermoelectric properties of Li4Co4S8 for p-type transport. (a) power factor, 

(b) lattice thermal conductivity, and (c) figure of merit. 

 

A8. Ba2Te4 
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Figure A28. Crystal structure of Ba2Te4. 

 

Figure A29. Band structure of Ba2Te4. 

 

Table A8. Key parameters for n-type transport 

 𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 
Ba.Tea 0.3a5 a..)5 ).3a a 0.3a .0.)) a.a3 a3.3a 
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Figure A.30. Thermoelectric properties of Ba2Te4 for n-type transport. (a) power factor, (b) 

lattice thermal conductivity, and (c) figure of merit. 

 

A9. Er4As4Se4 
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Figure A31. Crystal structure of Er4As4Se4. 

 

Figure A32. Band structure of Er4As4Se4. 

 

Table A9. Key parameters for n-type and p-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

EraAsaSea 
CBM 0.0.3 0.0aa )..0 . 

0.0. aa.0) aa.a3 a).aa 
VBM 0.0.5 0.0aa ).aa . 
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Figure A33. Thermoelectric properties of Er4As4Se4 for n-type and p-type transport. (a, b) 

power factor, (c) lattice thermal conductivity, and (d, e) figure of merit. 

 

A10. Dy4As4Se4 

 

Figure A34. Crystal structure of Dy4As4Se4. 

 

Figure A35. Band structure of Dy4As4Se4. 
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Table A10. Key parameters for n-type and p-type transport 

 
 𝑚𝑐

∗ 

(me) 

𝑚𝑑
∗  

(me) 

Ξ 

(eV) 
N 

Eg 

(eV) 
c 

(GPa) 
ε∞ ε0 

DyaAsaSea 
CBM 0.03a 0.0)3 a.a3 . 

0.0) aa.5a .a.a0 33.a) 
VBM 0.03a 0.0). )..a . 
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Figure A36. Thermoelectric properties of Dy4As4Se4 for n-type and p-type transport. (a, b) 

power factor, (c) lattice thermal conductivity, and (d, e) figure of merit. 

 

 

A11. Er2Se3 

 

Figure A37. Crystal structure of Er2Se3. 

 

Figure A38. Band structure of Er2Se3. 

 

Table A11. Key parameters for p-type transport 

 𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 
Er.Se3 0.5a) a.3a) ).)a a 0..3 53.a) )..) a).0a 
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Figure A39. Thermoelectric properties of Er2Se3 for p-type transport. (a) power factor, (b) 

lattice thermal conductivity, and (c) figure of merit. 

 

A12. Co4As4S4 

 

Figure A40. Crystal structure of Co4As4S4. 
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Figure A41. Band structure of Co4As4S4. 

 

Table A12. Key parameters for p-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

CoaAsaSa 
VBM 0.).a a.a3a a3.)a . 0.)a 

a3).3) .a.a0 3a.3) 
VSB 0.)0) a.)aa a3.5a . 0.)5 

 

 

 

Figure A42. Thermoelectric properties of Co4As4S4 for p-type transport. (a) power factor, 

(b) lattice thermal conductivity, and (c) figure of merit. 
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A13. Er4Te4As4 

 

Figure A43. Crystal structure of Er4Te4As4. 

 

Figure A44. Band structure of Er4Te4As4. 

 

Table A13. Key parameters for p-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

EraTeaAsa 
VBM 0.30a ..).a a0.a) . 0..5 

aa.0a .5.)) 33.5a 
VSB 0.a)3 0.aa. ).)a a 0.3a 
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Figure A45. Thermoelectric properties of Er4Te4As4 for p-type transport. (a) power factor, 

(b) lattice thermal conductivity, and (c) figure of merit. 

 

A14. Dy4Te4As4 

 

Figure A46. Crystal structure of Dy4Te4As4. 
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Figure A47. Band structure of Dy4Te4As4. 

 

Table A14. Key parameters for p-type transport 

 
 𝑚𝑐

∗ 

(me) 

𝑚𝑑
∗  

(me) 

Ξ 

(eV) 
N 

Eg 

(eV) 
c (GPa) ε∞ ε0 

DyaTeaAsa 
VBM 0.3aa 3.a)) a0.a3 . 0... 

a0..3 .)..a 3a.)a 
VSB 0.aa3 0.aa) ).)a a 0..a 

 

 

Figure A48. Thermoelectric properties of Dy4Te4As4 for p-type transport. (a) power factor, 

(b) lattice thermal conductivity, and (c) figure of merit. 
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A15. Ga2HgTe4 

 

Figure A49. Crystal structure of Ga2HgTe4. 

 

Figure A50. Band structure of Ga2HgTe4. 

 

Table A15. Key parameters for p-type transport 

  𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 

Ga.HgTea 
VBM 0.5a) 0.5a) a0.aa a 0.33 

5..a. aa.3a .a.5a 
VSB 0.33a ..0.) ).a3 . 0.5. 
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Figure A51. Thermoelectric properties of Ga2HgTe4 for p-type transport. (a) power factor, 

(b) lattice thermal conductivity, and (c) figure of merit. 

 

A16. Cd4TeSe3  

 

Figure A52. Crystal structure of Cd4TeSe3. 
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Figure A53. Band structure of Cd4TeSe3. 

 

Table A16. Key parameters for p-type transport 

 𝑚𝑐
∗ (me) 𝑚𝑑

∗  (me) Ξ (eV) N Eg (eV) c (GPa) ε∞ ε0 
CdaTeSe3 0.a.a 0.)a. ).aa a 0.3. .a.5) a0.). aa.)a 

 

 

 

Figure A54. Thermoelectric properties of Cd4TeSe3 for p-type transport. (a) power factor, 

(b) lattice thermal conductivity, and (c) figure of merit. 


