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Reviewer’s Report 

Vladimir’s thesis is on the development and applications of machine learning and Bayesian methods 
to problems of numerical linear algebra. The main focus is on the solution of large sparse linear 
systems via iterative techniques. The typical source of such systems is local (e.g., finite difference, 
finite element, finite volume) PDE discretization, so the choice of the systems to solve arises from 
practical engineering problems. Since any iterative method is essentially a consistent and convergent 
fixed-point iteration, the work can be alternatively described as a study of how contraction maps that 
approximate the solution to the linear system can be constructed using machine learning and 
Bayesian statistics. To achieve this goal the author considers a diverse set of techniques including 
belief propagation algorithm (Chapter 2), hierarchical Bayesian modeling (Chapter 3), variational 
approximation (Chapter 4), unsupervised learning (Chapters 6 and 7), convolutional neural networks 
(Chapter 7), reinforcement learning (Chapter 8). New and improved algorithms for the solutions of 
linear systems are proposed and benchmarked against the state-of-the-art techniques including 
preconditioned Krylov subspace methods and geometric multigrid. 
 
The main text is split into two parts and an appendix. The first and the second parts are on Bayesian 
statistics and machine learning methods respectively. Alternatively, the first part is on the analytic 
construction of fixed points, whereas the second part is on the numerical construction, i.e., via 
learning and/or optimization. The appendix contains the proofs of the results given in the main text as 
well as supplementary information on iterative methods and PDE used to showcase the performance.  
 



The first part contains three chapters on belief propagation, probabilistic numerical approaches, and 
“hidden representation” (this term is introduced by the author of the thesis). Below I describe the 
content and original contributions of these three chapters. 
 
The chapter on Belief propagation contains an explanation of how Pearl’s belief propagation applied 
to the Gaussian Markov random field can be generalized to non-symmetric linear systems. To 
achieve this author explores the connection between walks on the graph and the solution to the linear 
system given by the convergent Neumann series. He also proposes a block version of the same 
algorithm using generalized belief propagation and considers both iterative techniques in the context 
of the multigrid method. For all algorithms, sufficient condition for convergence and consistency is 
established. The presented results appear to be on par or better than the state-of-the-art relaxation 
techniques (Jacobi iteration, color relaxation schemes, ILU, polynomial relaxations) as shown on the 
array of test problems.  
 
The chapter on probabilistic numerical approaches is mostly on uncertainty quantification. The 
author starts with the general description of the reinterpretation of Krylov subspace methods as a 
statistical inference that was proposed in prior works and shows how to construct prior distribution to 
have a posterior distribution with a meaningful covariance matrix (i.e., well-calibrated uncertainty). 
To achieve this, Vladimir employs a hierarchical Bayesian model and empirical uncertainty 
calibration. It is shown in this part, that based on statistics (uncertainty quality measures) proposed in 
previous works, the current approach comes with much better uncertainty calibration both for 
conjugate gradient (symmetric case) and GMRES (symmetric and non-symmetric cases). In addition, 
it is shown how probabilistic projection methods can be applied to PDE-constrained optimization 
problems. 
In the last chapter of the first part author described his own more general approach to uncertainty 
calibration that is more flexible than the current probabilistic projection techniques described in the 
previous chapter. In short, this approach is based on the so-called indifference principle to assign 
probabilities combined with symmetry transformations. 
 
First, for a given numerical algorithm one needs to find transformations that leave the exact solution 
invariant but perturb the approximate solution. The author shows that it is easy to come up with these 
transformations for many numerical algorithms including interpolation, differentiation, finding 
dominant eigenvalue, and solution of ODEs. After the transformations are found, one can use the 
indifference principle to assign probabilities and use the resulting uncertainty to characterize the error 
of the method in probabilistic terms. The whole approach is developed for the case of linear systems 
with the use of multivariate normal models and variational inference. Empirical results are also 
given, including the algorithm that speeds up classical iterations using well-calibrated uncertainty. 
The second part contains chapters on a generalization of BPX, neural multigrid architectures, and the 
use of reinforcement learning for the online optimization of iterative methods. 
 
In Chapter 6 Vladimir describes how to construct multilevel preconditioners using unsupervised 
learning. He introduces a general black-box optimization technique that leverages stochastic trace 



approximation of Gelfand’s formula with Richardson iterations. This allows to sidestep estimation of 
lower eigenvalue and at the same time is equivalent to the optimization of the condition number of 
the preconditioned system. It is shown empirically that the new loss function is better than the usual 
one used in optimal circulant preconditioners which leads to the increase in the condition number 
after training. The scheme is applied to generalized BPX preconditioners proposed by the author. The 
chapter is concluded by numerical benchmarks on a large set of physically-relevant linear systems. 
Results indicate that learning of optimal preconditioners is feasible and leads to improved condition 
numbers. 
 
The next chapter is on similar black-box techniques but for multigrid solvers. This time the loss is a 
stochastic trace approximation of the spectral radius of the error propagation matrix. This kind of 
optimization is not new per se, but the author introduced several novelties. First, Vladimir proposed a 
new convolution-based architecture that seamlessly blends U-net operator-free neural networks with 
multigrid solvers. The main problem is that current ML frameworks work poorly with sparse 
matrices especially when they need to be recomputed on coarse grids during each iteration. Since the 
new architecture completely avoids recomputing sparse matrices, it leads to an order of magnitude 
faster training and allows for more flexibility in the sizes of projection and relaxation stencils. 
Second, Vladimir explains how serialization can be used to achieve practical architectures that 
generalize on finer meshes after training on a coarse grid. 
 
Chapter 8 is on how to use k-armed bandits to accelerate iterative methods. Here the author motivates 
the problem when the linear system needs to be solved repeatedly with the different right-hand sides. 
This problem can be used for online optimization with reinforcement learning. However, it is shown 
that naive applications of algorithms such as epsilon-greedy k-armed bandit fall short to achieve 
optimal relaxation parameters. Vladimir replaces this algorithm with the variant that uses restarted 
power iterations and shows that it has much better performance. The chapter contains a number of 
numerical experiments demonstrating the feasibility of the approach, but lacks analytical results on 
convergence or its rate. 
 
Overall I found the thesis to be well-structured and to contain many novel ideas. The results are 
theoretically and/or numerically justified, and most of them are published in several high-ranking 
journals such as SIAM Journal on Scientific Computing, Statistics and Computing, Journal of 
Computational and Applied Mathematics and reported at two leading international conferences 
International Joint Conference on Neural Networks, SIAM Conference on Applied Linear Algebra. 
The practical applications of the proposed algorithms are mainly to PDEs from continuum mechanics 
and are considered throughout the text.  
 
A few minor issues I suggest addressing before the defense are as follows. 
 
First, the belief propagation for nonsymmetrical systems in the second chapter lacks statistical 
interpretation. Surely, it is impossible to construct a normal Markov random field with a non-
symmetric matrix. I suggest adding a brief discussion of the interpretation or the lack of it. 



 
Second, Chapter 7 is a little light on considered architectures. It seems that the main advantage of the 
method is flexibility, so I suggest performing more experiments for architectures with more 
aggressive coarsening and larger interpolation/relaxation stencils. 
 
Third, Chapter 8 contains incomplete results  and lacks theoretical justifications. I understand that in 
general, it is a difficult task to provide guarantees for online optimization of the solver for a 
sufficiently general linear system, but I suggest the author give a short discussion with possible lines 
of attack on the problem, or some back-of-the-envelope estimations, or heuristics explanations on 
why algorithms are going to converge. The later ones are present to some extent but I believe it is 
better to have them gathered in a separate section. 

Provisional Recommendation 

I recommend that the candidate should defend the thesis by means of a formal thesis defense. 

 


