
Skolkovo Institute of Science and Technology

STATISTICAL INFERENCE AND MACHINE

LEARNING IN NUMERICAL LINEAR

ALGEBRA

Doctoral Thesis

by

VLADIMIR FANASKOV

DOCTORAL PROGRAM IN MATHEMATICS AND MECHANICS

Supervisor
Associate Professor Aslan Kasimov

Moscow – 2022

©Vladimir Fanaskov 2022

I hereby declare that the work presented in this the-
sis was carried out by myself at Skolkovo Institute of
Science and Technology, Moscow, except where due
acknowledgement is made, and has not been submit-
ted for any other degree.

Vladimir Fanaskov

Aslan Kasimov

Abstract

We explore how data-driven approaches can help to enhance iterative methods used
to solve linear problems. More specifically, we are interested in linear problem
Ax = b where A is a large sparse square matrix typically originated from finite
difference or finite element discretization of a partial differential equation. Partial
differential equations that we consider are mainly relevant to the different subfields of
computational continuum mechanics that include mass and heat transfer, resolution
of boundary layers, a vibration of thin plates, propagation of acoustic waves, the
flow of incompressible fluid, etc. On the side of data science, we use Bayesian data
analysis (Part I) and machine learning (Part II). In the first part, we study three
topics: belief propagation algorithms, probabilistic projection methods, probabilis-
tic uncertainty quantification for deterministic algorithms. In the second part, we
consider the automatic construction of solvers and preconditioners by unsupervised
training, neural network architecture for multigrid methods, and online optimization
of iterative methods with the help of reinforcement learning. All our approaches
are illustrated on a large set of physically relevant linear problems. The results
demonstrate that data-driven approaches can be superior to classical methods from
numerical linear algebra.

Publications

[Fan21a] Vladimir Fanaskov. “Neural Multigrid Architectures”. In: 2021 Inter-
national Joint Conference on Neural Networks (IJCNN). 2021, pp. 1–8.
doi: 10.1109/IJCNN52387.2021.9533736.

[Fan21b] Vladimir Fanaskov. “Uncertainty calibration for probabilistic projec-
tion methods”. In: Statistics and Computing 31.5 (2021), pp. 1–17. doi:
https://doi.org/10.1007/s11222- 021- 10031- 9. url: https:

//link.springer.com/article/10.1007/s11222-021-10031-9.

[OF21] Ivan Oseledets and Vladimir Fanaskov. “Direct optimization of BPX
preconditioners”. In: Journal of Computational and Applied Mathemat-
ics (2021), p. 113811. doi: https://doi.org/10.1016/j.cam.2021.
113811. url: https://www.sciencedirect.com/science/article/
pii/S0377042721004337.

[Fan22] Vladimir Fanaskov. “Gaussian belief propagation solvers for nonsym-
metric systems of linear equations”. SIAM Journal on Scientific Com-
puting. 2022. url: https://epubs.siam.org/doi/abs/10.1137/
19M1275139.

3

https://doi.org/10.1109/IJCNN52387.2021.9533736
https://doi.org/https://doi.org/10.1007/s11222-021-10031-9
https://link.springer.com/article/10.1007/s11222-021-10031-9
https://link.springer.com/article/10.1007/s11222-021-10031-9
https://doi.org/https://doi.org/10.1016/j.cam.2021.113811
https://doi.org/https://doi.org/10.1016/j.cam.2021.113811
https://www.sciencedirect.com/science/article/pii/S0377042721004337
https://www.sciencedirect.com/science/article/pii/S0377042721004337
https://epubs.siam.org/doi/abs/10.1137/19M1275139
https://epubs.siam.org/doi/abs/10.1137/19M1275139

Conference presentations
• V. Fanaskov. “Neural multigrid architectures”, International Joint Conference

on Neural Networks, 2021

• V. Fanaskov. “Iterative Methods in the Multi-Armed Bandit Setting”, SIAM
Conference on Applied Linear Algebra, 2021

• V. Fanaskov. “Using Dynamic Mode Decomposition to speed up Approximate
Bayesian Computing for PDE-based generative models”, Machine Learning
Summer School, 2019

• V. Fanaskov. “Reinforced linear algebra”, Gen-Y, 2019

http://IJCNN.org
http://IJCNN.org
https://www.siam.org/conferences/cm/conference/la21
https://www.siam.org/conferences/cm/conference/la21
https://mlss2019.skoltech.ru
https://mlss2019.skoltech.ru
http://gen-y.skoltech.ru

Contents

1 Introduction 11
1.1 What this thesis is about . 11
1.2 Classical iterative methods . 12

1.2.1 Relaxation methods . 12
1.2.2 Projection methods . 13
1.2.3 Multigrid . 13

1.3 Model equations . 14
1.3.1 Finite difference discretization 14
1.3.2 Finite element discretization 15
1.3.3 Poisson equation . 16
1.3.4 Mixed derivative . 17
1.3.5 Anisotropic problems . 17
1.3.6 Helmholtz equation . 18
1.3.7 Convection-diffusion problems 18
1.3.8 Biharmonic equation . 19
1.3.9 Diffusion with discontinuous coefficients 19
1.3.10 Implicit scheme for the heat equation 20

1.4 Outline of the thesis . 20
1.4.1 Gaussian belief propagation 20
1.4.2 Probabilistic projection methods 21
1.4.3 Hidden representation . 21
1.4.4 Black-box optimization of BPX preconditioners 22
1.4.5 Neural multigrid architectures 22
1.4.6 Relaxation methods in the multi-armed bandit setting 23

5

I Statistical inference 24

2 Linear problems and statistical inference 25

3 Gaussian belief propagation 28
3.1 Linear problems and multivariate normal distribution 28
3.2 Belief propagation . 30
3.3 Gaussian belief propagation . 32

3.3.1 Message update rules for Gauss-Markov models 32
3.3.2 Elimination perspective . 35
3.3.3 Gaussian belief propagation for non-symmetric linear systems 37
3.3.4 Statistical interpretation of belief propagation for non-symmetric

linear systems . 41
3.4 Generalized Gaussian belief propagation 42

3.4.1 Set-decompositions and the region graph 42
3.4.2 Message update rules for the generalized Gaussian belief prop-

agation . 44
3.4.3 Elimination perspective . 46
3.4.4 Generalized Gaussian belief propagation for nonsymmetric lin-

ear systems . 47
3.5 Gaussian belief propagation as a smoother for multigrid method . . . 49

3.5.1 Gaussian belief propagation in the error correction scheme . . 50
3.5.2 Reducing computational complexity 52

3.6 Numerical examples . 54
3.6.1 Notes about solvers and smoothers 55
3.6.2 Summary of results . 56

4 Probabilistic projection methods 62
4.1 Projection methods and statistical inference 62
4.2 Fixing prior distribution . 64

4.2.1 General form of prior distribution 64
4.2.2 Uncertainty calibration for abstract projection methods 65
4.2.3 Construction of covariance matrices 67

4.3 Difficulties with probabilistic projection methods 68
4.3.1 Uncertainty calibration for Krylov subspace methods 69
4.3.2 Comparison with [Rei+20] . 73

4.4 Numerical examples . 76
4.4.1 Comparison with [Bar+19] . 76
4.4.2 Comparison with [Rei+20] . 81

6

4.4.3 Uncertainty quantification for PDE-constraint optimization . . 82

5 Hidden representation 85
5.1 Probability, uncertainty and numerical methods 85
5.2 Uncertainty is in the representation 86

5.2.1 Transformation-based examples 89
5.2.2 Examples based on the hidden subgrid dynamics 94

5.3 Iterative methods for sparse linear systems 97
5.3.1 Variational approximation . 100

5.4 Probabilistic instationary Richardson iteration 101
5.4.1 The covariance matrix is intractable 103
5.4.2 Concentration of measure and alignment 105
5.4.3 Algorithm . 107
5.4.4 Connection with other iterative methods 108
5.4.5 Calibration of the uncertainty 109
5.4.6 Acceleration of iteration by projection 112

II Machine learning 113

6 Linear problems and machine learning 114

7 Black-box optimization of BPX preconditioners 116
7.1 Automatic construction of preconditioners and solvers 116

7.1.1 Direct optimization of spectral radius 117
7.1.2 Direct optimization of spectral condition number 119

7.2 Modified BPX preconditioners . 122
7.3 Numerical examples . 124

7.3.1 Poisson equation . 125
7.3.2 Helmholtz equation . 126
7.3.3 Anisotrpoic Poisson equation 126
7.3.4 Biharmonic equation . 126
7.3.5 Convection-diffusion equation 127
7.3.6 Diffusion with discontinuous coefficients 127
7.3.7 Mixed derivative . 131
7.3.8 Implicit scheme for heat equation 131

7

8 Neural multigrid architectures 132
8.1 Multigrid and neural networks . 132
8.2 Matrix-free multigrid architecture . 133
8.3 Loss function and training . 136
8.4 Restriction on architecture for linear iterative methods 137
8.5 Architectures and the baseline solver 140

8.5.1 LMG . 141
8.5.2 s1MG(rs) . 141
8.5.3 s1MG(s) . 142
8.5.4 s3MG(s) . 142
8.5.5 U-Net . 142
8.5.6 fMG . 143

8.6 Numerical examples . 143
8.6.1 Poisson equation . 143
8.6.2 Anisotropic Poisson equation 144
8.6.3 Mixed derivative . 145
8.6.4 Influence of smoother’s stencil size 145

9 Relaxation methods in the multi-armed bandit setting 147
9.1 Adaptive linear solvers . 147
9.2 Reinforcement learning . 148

9.2.1 Markov Decision Processes . 149
9.2.2 Multi-armed bandits . 149

9.3 Linear iterative methods and reinforcement learning 151
9.4 Linear iterative methods and bandits 152

9.4.1 Naive ε-greedy algorithm . 153
9.4.2 Restarted ε-greedy algorithm 155
9.4.3 Arm exclusion with Bauer-Fike upper bound 157
9.4.4 Rediscretization . 159

9.5 On convergence of proposed algorithms 160
9.6 Numerical examples . 161

Conclusion 164

III Proofs 166

10 Gaussian belief propagation 167
10.1 Theorem 3.3.1 . 167

8

10.2 Theorem 3.3.2 . 169
10.3 Theorem 3.4.1 . 172
10.4 Theorem 3.4.2 . 173

10.4.1 Walk structure on a tree . 174
10.4.2 Walk-sums and the graph refinement 176

11 Probabilistic projection methods 179
11.1 Lemma 4.2.1 . 179
11.2 Lemma 4.2.2 . 180
11.3 Lemma 4.2.3 . 180
11.4 Theorem 4.2.2 . 180
11.5 Lemma 4.2.4 . 181
11.6 Theorem 4.2.3 . 181
11.7 Theorem 4.2.4 . 182
11.8 Lemma 4.3.1 . 182
11.9 Lemma 4.3.2 . 183
11.10Lemma 4.3.3 . 183
11.11Lemma 4.3.4 . 184
11.12Lemma 4.3.5 . 185
11.13Lemma 4.3.6 . 185
11.14Theorem 4.3.1 . 186
11.15Lemma 4.3.7 . 186
11.16Lemma 4.3.8 . 186

12 Hidden representation 188
12.1 Proposition 5.4.1 . 188
12.2 Proposition 5.4.2 . 188
12.3 Proposition 5.4.3 . 189
12.4 Proposition 5.4.4 . 189
12.5 Proposition 5.4.5 . 190
12.6 Proposition 5.4.6 . 191
12.7 Proposition 5.4.7 . 192
12.8 Proposition 5.4.8 . 192

13 Black-Box optimization of BPX preconditioners 193
13.1 Proposition 7.2.1 . 193
13.2 Drichlet-Neumann boundary conditions 194
13.3 Neumann-Dirichlet boundary conditions 195
13.4 Neumann-Neumann boundary conditions 195

9

13.5 Drichlet-Dirichlet boundary conditions 196

14 Neural multigrid architectures 198
14.1 Proposition 8.4.1 . 198

Bibliography 200

10

Chapter 1

Introduction

1.1 What this thesis is about

When one needs to solve a large sparse linear system, i.e., to find x such that

Ax = b, A ∈ RN×N , x, b ∈ RN , (1.1)

the best option often is to resort to iterative techniques [Saa20], [Hac16].
The important class of iterative methods is given by fixed-point iterations with

linear contraction mapping. The method is defined by the pair of matrices N and
M and the so-called first normal form [Hac16, Equation (2.8)] of these iterations
reads

xn+1 = Mxn +Nb, M = I −NA. (1.2)

The latter condition ensures that the fixed point is given by the exact solution of
Eq. (1.1). We also require that ‖M‖ < 1 in some norm, for iterations defined in
Eq. (1.2) to be convergent.

Properly designed iterative methods offer many benefits including

1. O(N) memory footprint;

2. possibility to exploit initial guess;

3. O(N) computational complexity per iteration;

4. opportunity to stop iterations and use approximate solution.

However, there are two principal questions regarding Eq. (1.2) and other iterative
methods:

11

1. How to construct an efficient iterative method?

2. How to decide when the approximation xn is accurate enough to stop the
iterations?

These two questions are not novel and were extensively studied in the literature.
The main goal of the present thesis is to research them from the perspective of
Bayesian statistics and machine learning.

The structure of the rest of the introduction is as follows. In Section 1.2 we
provide examples of classical iterative methods. The performance of novel iterative
methods introduced in the thesis is compared against those well-established classical
techniques throughout the thesis. Section 1.3 contains examples of sparse linear
problems Eq. (1.1) later used for tests of iterative methods. In the last Section 1.4
we sketch the structure and the results of the thesis along with the methods from
Bayesian statistics and machine learning that we use.

1.2 Classical iterative methods

The assortment of iterative methods is vast. Here we briefly describe three major
classes of those methods: relaxation, projection, and multigrid.

1.2.1 Relaxation methods

To describe relaxation methods we use second normal form [Hac16, Equation (2.10)]
of iterations:

xn+1 = xn +N (b−Axn) . (1.3)

Observe, that if we take N = A−1, the iterative method converges after a single
iteration. So, the one way to construct good iterative method is to pick N ' A−1.
Relaxation methods use fairly unsophisticated approximations toA−1 [Saa20, p. 4.1]:

Modified Richardson — N = θI, for some θ ∈ R.

Jacobi — N = D−1, where D is a diagonal part of A.

Gauss-Seidel — N = ∆−1, where ∆ is the upper or the lower triangular part
of A.

We also define successive over-relaxation method (SOR):

xn+1 = ωxGS + (1− ω)xn, xGS = xn + ∆−1 (b−Axn) , ω ∈ R. (1.4)

12

It is also possible to define block variants of relaxation methods [Saa20, p. 4.1.1]. In
this case, the matrix A is partitioned on submatrices, and the methods above use
subblocks, e.g., the Jacobi method uses diagonal blocks in place of the diagonal of
the matrix A.

1.2.2 Projection methods

The other way to approximately solve Ax = b,A ∈ Rn×n is to start from the initial
guess x0, choose two subspaces K,L spanned by columns of matrices V ,W ∈ Rn×m,
m ≤ n and enforce Petrov–Galerkin condition: x̃ = x0 + δ, δ ∈ K, b −Ax̃ ⊥ L.
For suitably chosen subspaces, the new approximation reads

x̃ = x0 + V
(
W TAV

)−1
W T (b−Ax0) . (1.5)

Different choices of V ,W lead to different projection methods, amongst which are
conjugate gradient algorithm, generalized minimum residual method, and others
[Saa03].

Approximation Eq. (1.5) makes sense only if W TAV is invertible. Two most
widely used cases are W = V for A > 0 and W = AV for general nonsingular
matrix A [Saa03, Propostion 5.1].

When W is chosen as explained above, projection method is completely specified
by the choice of V . The most powerful and robust projection methods are con-
structed based on Krylov subspace Km (A, r0) = span

(
r0,Ar0, . . . ,A

m−1r0

)
, where

r0 = b −Ax0 and x0 is an initial guess. Namely, columns of V are chosen in such
a way that Km (A, r0) = span(V).

So one can show that GMRES [Saa03, Algorithm 6.9] is the projection method
with Km (A, r0) = span(V) and W = AV , whereas conjugate gradient [Saa03,
Algorithm 6.16] is the projection method with Km (A, r0) = span(V) and W = V .
Other projection methods can be constructed based on different choices of W and
V (see, for example, [Saa03, Chapter 7]).

1.2.3 Multigrid

The most straightforward view on the geometric multigrid is to describe it as an
acceleration scheme for classical iterative methods. For completeness, we briefly
recall the main ideas.

The multigrid consists of four essential elements: a projection operator IV
′

V :
V → V

′
(V , V

′
are linear spaces) that reduces the number of degrees of freedom,

an interpolation operator IV
V ′

: V
′ → V that acts in the ”inverse” way, a smoothing

13

operator SV : V → V which is usually a classical relaxation method, and a set of
linear operators AV ′ that approximate A on coarse spaces V

′
. What we describe

next is a two-grid cycle.

• For the current approximation xn of solutions of Ax = b, one performs several
relaxation steps x = Sν (xn, b,A).

• Then, based on properties of S, the linear space V
′

and the transfer operator

IV
′

V : V → V
′

are constructed. The purpose of this space is to represent the
residual r = b−Ax and an error e = xexact−x accurately using fewer degrees
of freedom

∣∣V ′∣∣ < |V |.
• Having the space V

′
, one constructs an operator A

′
that approximates A and

solves the error equation A
′
e
′
= IV

′

V r.

• The error, after projection back to V , gives the next approximation to the
exact solution, xn+1 = Sµ

(
xn + IV

V ′
e
′
, b,A

)
.

The multigrid utilizes a two-grid cycle to solve the error equation A
′
e
′
= IV

′

V r itself.
It produces the chain of spaces (grids in the geometric setup), projection operators
that allow moving between them, and a set of approximate linear operators. For
more details, we refer the reader to other resources: a simple introduction to geo-
metric multigrid can be found in [Saa03, ch. 13], for the algebraic multigrid a recent
review [XZ17], physical considerations about algebraic multigrid can be found in the
introduction of [RSB11], and among other books on the subject, [TOS00] provides a
comprehensive introduction for practitioners.

1.3 Model equations

Here we gather partial differential equations that are frequently used as test prob-
lems. The section includes the description of discretization as well as background
information such as applications of given equation and numerical difficulties associ-
ated with it.

1.3.1 Finite difference discretization

We use uniform 1D grid (or mesh) inside the interval x ∈ [0, 1]:

M1D
l =

{
xlj = j

/
2l : j = 0, 1, . . . , 2l − 1, 2l

}
, (1.6)

14

where grid spacing is h = 2−l. In 2D grid is build as a direct product of two 1D
meshed:

M2D
l = M1D

l ⊗M1D
l =

{(
xlj, y

l
k

)
=
(
j
/

2l, k
/

2l
)

: j, k = 0, 1, . . . , 2l − 1, 2l
}
. (1.7)

The finite difference approximation on the uniform grid is defined either with Taylor
series [LeV07, Chapter 1] or using polynomial interpolation [CF13, Section 11.2]. To
give an example of finite difference approximation, consider function u(x, y) with at
least two derivative and 2D grid with fixed l. Second order finite difference approxi-
mation to Laplace operator reads:

−
(
∂2
x + ∂2

y

)
u(x, y)

∣∣
x=xi,y=yj

' 2ui,j − ui+1,j − ui,j+1 − ui−1,j − ui,j−1

h2
, (1.8)

where ui,j = u(xi, yj). For more extended discussion of finite difference method
consult [Col12], [LeV07], [Ise09a].

1.3.2 Finite element discretization

For finite element discretization we define meshes the same way as for finite difference
method (see (1.6), (1.7)). For a given 1D mesh with fixed l, we define a set of basis
functions φli(x) = φl(x−xi), i = 0, . . . , 2l, which are rescaled and translated copies of a
tent function φl(x) =

(
1 + x

/
2l
)

Ind
[
−1
/

2l ≤ x ≤ 0
]
+
(
1− x

/
2l
)

Ind
[
0 < x ≤ 1

/
2l
]
,

where Ind [x] is 1 if x holds and 0 otherwise. Basis functions
{
φLi (x) : i = 0, . . . , 2L

}
are used to perform standard finite element discretization [Cia02] for x ∈ [0, 1].

For example, consider second-order boundary value problem

− d

dx

(
g(x)

d

dx
u(x)

)
= f(x), x ∈ [0, 1] , u(0) = u(1) = 0. (1.9)

Given mesh Ml we consider the following approximation for u(x):

u(x) ' û(x) =
2l−1∑
j=1

φli(x)ui. (1.10)

To find unknown coefficients ui we enforce PDE in a weak form:

xi+1∫
xi−1

dxg(x)
d

dx
φli(x)

d

dx
û(x) =

xi+1∫
xi−1

dxφli(x)f(x). (1.11)

15

Petrov-Galerkin condition Eq. (1.11) allows us to form system of linear equations
that can be used to find ui.

For higher dimensions, we use Ml and φli that are direct products of unidimen-
sional meshes and basis functions. More details on finite element method can be
found in [Cia02], [ZTZ13].

1.3.3 Poisson equation

Poisson equation appears in a variety of contexts, from continuum mechanics [PTA12,
Sections 4.3, 5.1] to electrodynamics [Jac99, Section 1.7]. It is also a standard test
equation for multilevel solvers and preconditioners [TOS00, Section 1.4]. The con-
tinuum boundary value problem reads

− ∂2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
= f(x), x, y ∈ [0, 1]2 , u(x, y)|∂Γ = 0, (1.12)

here Γ represents a domain, and ∂Γ is a boundary. We use second-order finite
difference discretization in D = 1 and D = 2 given by stencils

sP (3)FD =
1

h2

[
−1 2 −1

]
, (1.13)

sP (5)FD =
1

h2

 −1
−1 4 −1

−1

 , (1.14)

Beside that we also consider finite element discretization:

sP (3)FEM =
1

h

[
−1 2 −1

]
, (1.15)

sP (9)FEM =
1

3

−1 −1 −1
−1 8 −1
−1 −1 −1

 , (1.16)

We also employ a high order compact scheme known as Mehrstellen [Col12, Table
VI]. Mehrstellen discretization corresponds to the stencil

sP (M) =
1

6h2

−1 −4 −1
−4 20 −4
−1 −4 −1

 , (1.17)

16

which can be used to construct a fourth and sixth-order accurate approximation
to the Poisson equation if boundary conditions and right-hand side are sufficiently
smooth [Ros75].

Finally, for some solvers we consider four-order discretization with nine-point
stencil (see [TOS00, Section 5.4])

sP (9) =
1

12h2


1
−16

1 −16 60 −16 1
−16

1

 . (1.18)

1.3.4 Mixed derivative

Another problem of interest is a Poisson equation with mixed derivative

− ∂
2u(x, y)

∂x2
− ∂

2u(x, y)

∂y2
−2τ

∂2u(x, y)

∂x∂y
= f(x), x, y ∈ [0, 1]2 , u(x, y)|∂Γ = 0. (1.19)

For |τ | > 1 the equation becomes hyperbolic, which poses challenges to standard
multigrid components (see [TOS00, Section 7.6]). For this problem we use only
standard bilinear finite element and second-order finite difference approximations.

1.3.5 Anisotropic problems

Anisotropic version of Poisson equation

− ∂2u(x, y)

∂x2
− ε∂

2u(x, y)

∂y2
= f(x), x, y ∈ [0, 1]2 , u(x, y)|∂Γ = 0, (1.20)

arises naturally in computational fluid dynamics when a refined or stretched grid is
used to resolve a boundary layer, shock, or some other singularity [Lis17, Chapter
4], [TOS00, Section 5.1.2]. Parameter ε can also be related to the anisotropy of the
physical system. For example, a crystal’s permittivity can depend on the direction
[New05, Chapter 9], so electrostatic boundary-value problems lead to an anisotropic
Poisson equation. We also consider anisotropy along different direction

− ε∂
2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
= f(x), x, y ∈ [0, 1]2 , u(x, y)|∂Γ = 0, (1.21)

17

and anisotropy that varies in space

−g1(x, y)
∂2u(x, y)

∂x2
− g2(x, y)

∂2u(x, y)

∂y2
= f(x), x, y ∈ [0, 1]2 , u(x, y)|∂Γ = 0,

gi(x, y) =

{
(2− i)σ + (i− 1), if (x− 0.5)(y − 0.5) ≥ 0;

(i− 1)σ + (2− i), if (x− 0.5)(y − 0.5) < 0.

(1.22)

Again standard finite element and finite difference discretizations are used.

1.3.6 Helmholtz equation

Helmholtz equation

− ∂2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
− k2u(x, y) = f(x), x, y ∈ [0, 1]2 , u(x, y)|∂Γ = 0, (1.23)

appears in the context of wave propagation problems [Erl08, Section 2.1]. For exam-
ple, the Helmholtz equation needs to be solved at each time step in the semi-implicit
discretization of governing equation of non-hydrostatic weather prediction models
[Ste+03, Section 4.1].

Because of the term −k2u(x, y), bilinear finite element discretization can result
in an indefinite matrix, especially for large k. However, the value of k can not be
arbitrary on a given grid because of the pollution problem [BS97]. More precisely,
unless k2h is sufficiently small, the solution to a discrete problem is of no use because
it does not approximate an exact solution. Given that we usually fix k2h = const and
chose h to have reasonable number of wavelength per h and avoid indefinite linear
problems.

1.3.7 Convection-diffusion problems

When convective transport is present, the original diffusion equation needs to be
modified as follows

−∂
2u(x, y)

∂x2
−∂

2u(x, y)

∂y2
+vxu(x, y)+vyu(x, y) = f(x, y), x, y ∈ [0, 1]2 , u(x, y)|∂Γ = 0.

(1.24)
The presence of vx and vy results in nonsymmetric matrix. Since we employ bi-
linear finite element or standard finite difference discretization both of which are
centered difference approximation, the stability restriction is given by Peclet condi-
tion max (|vx|, |vy|) ≤ 2

/
h.

18

1.3.8 Biharmonic equation

The only fourth-order equation we consider is biharmonic:

∂4

∂x4
u(x, y) + 2

∂2

∂x∂y
u(x, y) +

∂4

∂y4
u(x, y) = f(x, y),

x, y ∈ [0, 1]2 , u(x, y)|∂Γ = 0, ∂nu(x, y)|∂Γ = 0,

(1.25)

here ∂n is a derivative along the normal direction to the boundary ∂Γ. Applications
of the Biharmonic equation include a description of fluid flows [CLL04], vibrating
plates, Chladni figures [GK12], gravitation theory, and quantum mechanics [MLH18,
Introduction]. To discretize this equation, we use centered second-order finite differ-
ence approximation given by a 13 point stencil

sBH =


1

2 −8 2
1 −8 20 −8 1

2 −8 2
1

 , (1.26)

which should be modified appropriately near the boundaries [TCK92, Section 4] (see
also [GM79] and [Bra66]).

1.3.9 Diffusion with discontinuous coefficients

In some situations, diffusion coefficient a(x, y) in equation

− ∂

∂x

(
a(x, y)

∂u(x, y)

∂x

)
− ∂

∂y

(
a(x, y)

∂u(x, y)

∂y

)
= f(x, y), x, y ∈ [0, 1]2 , u(x, y)|∂Γ = 0,

(1.27)
is discontinuous along some curve or surface inside the computational domain. For
example, this is the case in reservoir simulation [TOS00, Section 7.7.1], and the
description of the neutron diffusion [Alc+81]. For our experiments, we take

a(x, y) = g(x) + g(y), g(x) = σ−1Ind
[
x < 1

/
2
]

+ σInd
[
x ≥ 1

/
2
]
, (1.28)

where σ is a parameter that controls the magnitude of the jump. The discretization
in use is, again, finite element method.

19

1.3.10 Implicit scheme for the heat equation

We also consider “algebraic” equation that comes from the trapezoidal discretization
(in time) of the heat equation

∂u(x, y, t)

∂t
=
∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2
, x, y ∈ [0, 1]2 , t ∈ [0,+∞) ,

u(x, y, t)|t=0 = φ(x, y), u(x, y)|∂Γ = 0.

(1.29)

Let A be a matrix that corresponds to a spatial FEM discretization of the right-hand
side operator. It results in a system of ordinary differential equations

dui(t)

dt
=
∑
j

Aijuj(t), ui(0) = φi. (1.30)

Application of the trapezoidal rule leads to an unconditionally stable iteration∑
j

(
I − µ̃

2
A

)
ij

un+1
j =

∑
j

(
I +

µ̃

2
A

)
ij

unj (1.31)

known as Crank-Nicolson scheme [Ise09b, Section 16.4]. Here µ̃ = ∆t is related to the

Courant number µ = ∆t/∆x2. Since matrix
(
I − µ̃

2
A
)

is symmetric positive definite

for µ̃ ≥ 0 that needs to be inverted during each iteration, we test our preconditioner
on this problem.

1.4 Outline of the thesis

Here we describe the results of the dissertation in a non-technical way with an em-
phasis on concepts rather than technical details and their relations to two questions
raised in Section 1.1.

1.4.1 Gaussian belief propagation

In this part, we describe a construction of iterative techniques based on statistical
inference.

More precisely, this is done by first observing that marginal distributions of cer-
tain multivariate normal distributions (with parameters depending on A, b) can
be used to find the solution to Eq. (1.1). After that one can apply statistical al-
gorithms to approximate marginal distributions. So the techniques from statistics
induce iterative method Eq. (1.2). These ideas are summarized is [Bic08], [She+08].

20

The problem is the described technique only works for symmetric positive definite
matrices A. Our contribution (see [Fan22]) is the generalization of this approach to
non-symmetric matrices. Along the way, we also prove the sufficient convergence
condition, build block-version of the same algorithm and define a multigrid method
based on proposed iterations.

This chapter demonstrates that statistical inference can supply novel iterative
methods competitive with classical iterations.

1.4.2 Probabilistic projection methods

This part deals with the second question, i.e., how to decide when to stop iterations.
The question is answered based on a probabilistic approach.

Namely, the uncertainty about the true solution on iteration step n is summarized
by a probability density over the approximate solution on this step. One of the
benefits of expressing uncertainty as the probability is the fact, that uncertainties
from other sources (for example, uncertainty about parameters of PDE) can be
combined with the ones that originated from the iterative approximation of the
exact solution.

The method is based on the relation between projection method Eq. (1.5) and pa-
rameters of the conditional distribution of certain multivariate normal model [Hen15],
[Coc+19a], [Bar+19].

The main downside of the articles mentioned above is that the normal models
proposed there are either unable to reproduce the projection method Eq. (1.5) or
lead to uncertainty that is poorly calibrated. Our contribution (see [Fan21b]) is
the corrected multivariate normal model with fairly good uncertainty calibration.
We also demonstrate the application of the proposed approach to PDE-constrained
optimization.

The results of this part indicate that statistical techniques can be used to pro-
vide probabilistic estimation of error for iterative method. As such, probabilistic
projection methods can in principle be used to derive stopping criteria for iterative
implementation of projection methods Eq. (1.5).

1.4.3 Hidden representation

This chapter continues the topic of probabilistic error analysis for iterative methods.
Here we propose an original scheme to quantify error for a large class of numerical
methods using probability theory.

21

The main idea is to concoct transformations with two properties. First, they
preserve the exact solution (since the solution is the same we can interpret these
transformations as the change of the representation for the same problem, hence
the name “hidden representation”). Second, they do not preserve the approximate
solution. We show that it is fairly simple to construct such transformations. In fact,
almost any change of representation possesses the desired properties.

When the transformations are found, one parametrizes them and puts some prob-
ability distribution over the parameters. By construction, this scheme guarantees
convergence of measure to Dirac delta function when the approximate solution con-
verges to the exact one.

The idea of hidden representation is demonstrated on a large set of scientific
problems and developed in detail for iterative methods. This way we construct
the instationary probabilistic Richardson method. This method returns probability
distribution over the approximate solution which can be used to analyze the error
of approximation and derive stopping criteria. We also show how well-calibrated
uncertainty of probabilistic Richardson method can be used to speed up the iterative
technique.

1.4.4 Black-box optimization of BPX preconditioners

Here we return to the construction of iterative methods. This time we focus on
preconditioners, i.e., on numerically attractive approximations to N = A−1 with
good regularity properties.

To approach the problem, we combine modified version of multilevel precondi-
tioners [BPX90] (known as BPX preconditioners) with stochastic gradient-based op-
timization of suitably introduced loss function that approximates condition number
of matrix NA.

The techniques introduced in this section show how machine learning techniques
(stochastic optimization, unsupervised training) allow for a black-box construction
of optimal preconditioners. Comparison of learned preconditioners with BPX pre-
conditioners shows that machine learning is a valuable tool for the construction of
iterative techniques.

The chapter is based on the article [OF21]

1.4.5 Neural multigrid architectures

In this chapter, we continue to develop unsupervised learning techniques for the
construction of iterative methods.

22

This time we introduce the special architecture that can emulate geometric multi-
grid. As explained in Section 1.2.3, multigrid consists of a few components that
introduce a significant leeway in the whole scheme. The introduced architecture
along with the stochastic optimization technique allows tuning these components
simultaneously to produce a multigrid solver with a faster convergence rate.

In this chapter, we also study the generalization capabilities of the proposed
architecture and show that our neural networks generalize much better than the
other related architectures.

The material of this chapter is based on the article [Fan21a].

1.4.6 Relaxation methods in the multi-armed bandit setting

Two previous chapters emphasize static picture, i.e., the solver is constructed during
the “offline stage” and later applied to the desired problem. In the present section,
this restriction is lifted and the solver adapts itself to the problem simultaneously to
the construction of an approximate solution.

This is achieved by combining online optimization techniques from reinforcement
learning with the classical estimation of the spectral radius of the error propagation
matrix.

The capabilities of this approach are demonstrated for relaxation techniques
(SOR, Richardson) and geometric multigrid method.

23

Part I

Statistical inference

24

Chapter 2

Linear problems and statistical
inference

Statistical inference is a set of techniques to determine free parameters of statistical
model based on data. As an example consider classical regression model

p (y|x,β) = N
(
βTφ(x), σ2

)
, (2.1)

where variance σ2 is known, x is explanatory variable and φ(x) is a vector of “fea-
tures” (for example, we can take φ(x)T =

(
1 x

)
), and β is a conformable vector

of parameters subject to inference. For fixed β, regression model prescribes relation
between variables y and x. On the other hand if the relation between y and x is
known at N ≥ 1 points, we can ask for β that support available data. One way to
uniquely fix parameters β is a maximal likelihood principle

β? = arg max
β

N∏
i=1

p (yi|xi,β) . (2.2)

It is well known that maximal likelihood solution β? will be the same as the one
obtained with ordinary least squares [TB97, Lecture 11].

One can consider ordinary list squares as a form of interpolation and justifies the
technique without statistics or probability theory. However, probabilistic reinterpre-
tation allows for substantial generalizations. The first natural step is to perform a
fully Bayesian analysis. For that one can introduce prior distribution for parameters
β and find posterior given available data [Gel+13, Chapter 14]. The posterior distri-
bution for β contains more information compared to point estimate. That includes,

25

for example, correlations between different components of β and the spread of prob-
ability density function for each component. Next, one can select different proba-
bilistic model for likelihood, prior and hyperprior. The choice of probabilistic models
can have dramatic consequences. For example, if we take Student’s t-distribution
to model likelihood, we gain robustness against outliers [Gel+13, Section 17.6]. So
the behaviour of the model with Student’s likelihood differs substantially from the
normal likelihood. Prior distribution is important too. Normal distribution for
each component of β with shared variance corresponds to L2 regularization, whereas
Cauchy prior provides L1 regularization [Tib96], [Bis06a, Chapter 3]. The later
choice promotes sparsity, so one can select only a few most important component of
β and nullify all the rest. Again, the Cauchy prior leads to quite different inference
compared to the normal prior.

As we have seen on the example of ordinary least squares, probabilistic model can
enrich underlying deterministic method with useful features, that are not apparent
in the original formulation. The goal of this chapter is a similar reinterpretation
of linear problem Ax = b as statistical inference for suitably chosen probabilistic
model. For now suppose that we have a probabilistic model that can be used to
perform inference on the solution of linear problem. What can we gain from the
reinterpretation?

First, we can apply Bayesian analysis and obtain a distribution over solutions of
Ax = b. This distribution can be used to perform probabilistic error analysis. We
can also apply statistical decision theory, and combine the uncertainty about exact
solution with other uncertainties in a meaningful way. More details can be found in
contributions on probabilistic numerical methods [HOG15], [OS19], [Coc+19b].

Second, researchers in statistics developed a large set of algorithms to perform ex-
act or approximate inference. To name a few, variational message passing [WBJ05],
[Bis06a, Section 10.4.1], belief propagation [YFW03], [Bis06a, Section 8.4.1], expec-
tation propagation [Min13]. So using the duality between statistical inference and
the solution of linear problems we can explore the set of novel algorithm unknown
to numerical linear algebra community.

Both of these routes are explored in the present part. In Chapter 3 we start by
extending belief propagation (and generalized belief propagation) to non-symmetric
linear systems and use it as a smoother in multigrid scheme. Next in Chapter 4
we consider probabilistic interpretation for general projection methods. Here we
introduce novel prior distribution that results in reasonable posterior and can be
used to calibrate uncertainty. At the end, in Chapter 5, we explore a completely new
way to introduce probabilistic model for given numerical algorithm. Our approach
relies on symmetry transformation and indifference principle. This allows us to

26

introduce probabilistic model in a more natural way without resorting to “epistemic
uncertainty”.

27

Chapter 3

Gaussian belief propagation

3.1 Linear problems and multivariate normal dis-

tribution

A basic problem of numerical linear algebra is to solve a linear equation Ax = b with
an invertible matrix A. The textbook technique is the LU decomposition, equivalent
to Gaussian elimination [GV12, ch. 3]. However, when A is large and sparse, algo-
rithms that exploit sparsity are used instead of direct elimination [DRS16]. Among
iterative methods for sparse systems, one can mention classical relaxation techniques
such as Gauss-Seidel (GS), Jacobi, Richardson, and projection methods such as con-
jugate gradient, GMRES, biconjugate gradient, and others [SV01; Saa20].

An easy way to understand the projection methods is to reformulate the origi-
nal equation as an optimization problem [She+94]. For example, for a symmetric
positive-definite matrix A, one has

x? = arg min
x

(
xTAx

2
− xTb

)
. (3.1)

Such a reformulation allows one to apply new techniques and leads to methods of
steepest descent, conjugate directions, and cheap and efficient conjugate gradient
[HS+52].

Another reformulation of the problem is known, but is less explored. It also
goes back to Gauss and his version of elimination. To derive an LU solution of
Ax = b, one can consider the probability density function p(x) of multivariate
normal distribution

p(x) ∼ exp

(
−xTAx

2
+ bTx

)
. (3.2)

28

We can consider the first component x1 of x and integrate it out in Eq. (3.2) (a process
called “marginalization”). The resulting marginal distribution for the remaining
components x2, x3, . . . is again multivariate normal, but with the covariance matrix
given by the Schur complement of A11

1 and the mean vector modified accordingly,
i.e.

A22 ← A22 −
A21A12

A11

, b2 ← b2 −
A21b1

A11

. (3.3)

It is well known that the LU decomposition consists of the very same steps [Ste98].
When x1 is not a scalar, but a subset of variables, marginalization of multivariate
normal distribution results in a block LU decomposition.

Thus, the most popular direct technique for the solution of linear equations with
dense matrices is intimately connected with the marginalization problem, which be-
longs to the class of inference problems. Recently, many other intriguing connections
between statistical inference and linear algebra have been pointed out. For instance,
in [Coc+19a], [Hen15], and [Bar+18], the authors provide a method to recover the
Petrov-Galerkin condition from the Bayesian update and construct a Bayesian ver-
sion of the conjugate gradients. Paper [Owh17] constructs a state-of-the-art multi-
grid solver using game theory and statistical inference. These works demonstrate
that ideas from statistical inference allow for new and useful insights into problems
of linear algebra. It is thus reasonable to explore how other inference algorithms
are translated to the realm of numerical linear algebra. Among them are expecta-
tion propagation [Min01], Markov chain Monte Carlo, mean field, other variational
Bayesian approximations [Bis06b, chapters 8, 10], [WJ+08], and belief propagation
with its generalized counterparts. The latter two are the focus of this chapter.

We start to study the reformulation of linear problem as inference problem (3.2)
in Section 3.2 with a discussion of general belief propagation algorithm. Next, in
Section 3.3 we continue with a specialized version of the algorithm tailored to multi-
variate normal models, its connection with elimination, Monte Carlo linear algebra
and the extension to non-symmetric matrices. Later, in Section 3.4 we extend the
discussion on block version. In Section 3.5 we analyse Gaussian belief propagation
in the context of multigrid. Section 3.6 contains comparison of belief propagation
with other well-established projection and relaxation techniques.

1In the article we use boldface for matrices or matrix blocks, and regular font for scalar values
and matrix components. In this case A11 is an element of the matrix A in the first row and the
first column, and A22 is a square matrix that contains all elements of A excluding the first row and
the first column.

29

x1 x2 x3

x4 x5

x6

(a)

x1 x2 x3

x4 x5 x6

x7 x8 x9

(b)

Figure 3.1: (a) – Bayesian network, (b) – Markov random field. Bayesian network
specifies conditional dependence between variables and Markov random field restricts
the functional form of the distribution. Details can be found in Section 3.2.

3.2 Belief propagation

Most probabilistic models can be completely specified by a joint distribution of ran-
dom variables (see examples in [Gel+14, Chapters 5, 15, 16]). It is often the case
that the joint distribution is factorized on groups of independent or conditionally
independent random variables. A convenient way to specify this kind of indepen-
dence using graphs is called graphical model. Two most widely used instances of
graphical models are Bayesian networks (directed graphs) and Markov random field
(undirected graphs).

An example of Bayesian network is in Fig. 3.1a. The directed graph, specifies the
following functional form of joint distribution

p(x1, . . . , x6) = p(x6|x4, x5)p(x5|x3)p(x4|x1, x2)p(x1)p(x2)p(x3). (3.4)

So we can see that Bayesian network specifies conditional dependence among
random variable. It is known that arbitrary Bayesian network can also be represented
as a Markov random field [KF09, Chapter 4]. So in what is following we consider
only the later. More details about Bayesian networks can be found, for example, in
[Bis06b, Chapter 8], [Pea88, Chapter 3], [KF09, Chapter 3].

An example of Markov random field is depicted in Fig. 3.1b. The undirected graph
itself only restricts the functional form of the joint distribution. To completely specify
the joint distribution one needs to supply the set of non-negative integrable function
that define functional dependence between variables ψij(xi, xj) and dependence on
individual variables φi(xi). Given these functions we can write joint probability

30

density function in the following form:

p(x1, . . . , x8) =ψ14(x1, x4)ψ12(x1, x2)ψ23(x2, x3)ψ36(x3, x6)ψ69(x6, x9)

ψ58(x5, x8)ψ78(x7, x8)ψ47(x4, x7)
9∏
i=1

φi(xi).
(3.5)

For a general pairwise Markov random field the situation is analogous. First, we need
to define a graph Γ. The graph Γ is the set of edges E and vertices V . Each vertex
i corresponds to the random variable xi (discrete or continuous), and each edge
corresponds to interactions between variables. The set of non-negative integrable
functions {φi, ψij} together with the graph Γ completely specifies the form of the
probability density function of a pairwise Markov random field

p(x) =
1

Z

∏
i∈V

φi(xi)
∏

(ij)∈E

ψij(xi, xj) ≡
1

Z
exp (−E(x)) . (3.6)

Here, Z is a normalization constant known in statistical physics as a partition func-
tion [Set21, Chapter 6]. The second equation in (3.6), that is, the Boltzmann (or
Gibbs) distribution [Set21, Chapter 6], should be considered as a definition of energy
E(x). Since all functions ψ and φ are non-negative, it is always possible to introduce
E(x).2

Markov random fields are used to model a wide class of system. In physics all
lattice models including Ising, Potts, six-vertex, Heisenberg chains can be presented
in form (3.6) where xi are often discrete variables [Set21, Chapter 8]. Markov random
field can be used to perform image de-noising [Bis06b, Chapter 8.3.3], extracting
messages from error-correction codes [YFW03, Section 1.4]. Object matching, edge
detection and other tasks in computer vision can also be performed using Markov
random field [Li09].

When probabilistic model is specified, a common task in the inference process is
a computation of a partial distribution (or a marginalization) pr(xr) =

∑
x\xr p(x)

possibly given values of some other variables pr(xr|xo = y) =
∑

x\xr p(x|xo = y) (in-

tegrals replace sums if x ∈ RN). The marginalization is, in principle, straightforward
operation. However, as exemplified in [Bis06b, Chapter 8.4.1], a naive summation
for a chain with N sites (Fig. 3.1b shows the chain with N = 9 sites) where each ran-
dom variable has K states requires O(KN) operations. This cost can be dropped to

2Note, that the parallel to statistical physics is rather deep and heavily exploited in graphical
models. The main tools are Bethe approximation to free energy, Kikuchi approximation, cluster
variation method (see [Pel05], [YFW01b], [YFW05]).

31

O(NK2) if one exploits the structure of the underlying graph. Typically, one wants
to obtain marginal distribution for a set of variables (see [YFW03, Section 1.1] for
a medical example). Good news is all marginal distributions pi(xi) can be found
simultaneously with the same cost O(NK2), using belief propagation, introduced by
Pearl [Pea88].

Pearl’s algorithm operates with local messages that spread from node to node
along the graph edges, and beliefs (approximate or exact marginals) are computed as
a normalized product of all incoming messages after the convergence. More precisely,
belief propagation consists of (i) the message update rule

mij(xj)←
∑
xi

φi(xi)ψij(xi, xj)
∏

k∈N(i)\j

mki(xi), (3.7)

where mij is a message from node i to node j and N(i) is the set of neighbors3 of
the node i, and (ii) the formula for marginals

bi(xi) ∼ φi(xi)
∏

k∈N(i)

mki(xi). (3.8)

Despite the fact that (3.7) and (3.8) can be justified only when graph Γ has no
loops (see [Pea88]) 4, belief propagation was successfully applied on networks with
loops [FM98]. The resulting algorithm is sometimes called loopy belief propagation
[MWJ13].

With that we close the short reminder on graphical models and belief propagation.
More specialised version of graphical models and the belief propagation algorithms
will be used in the later sections to solve large sparse linear systems.

3.3 Gaussian belief propagation

3.3.1 Message update rules for Gauss-Markov models

Gauss-Markov model is a Markov random field with multivariate normal joint dis-
tribution (3.6). More formally, given any A > 0 and conformable vector b ∈ RN

3Here we work with a pairwise Markov random field, so there is a underlying undirected
graph Γ = {V, E}. For such graph, the number of neighbors for node i is defined as N(i) =
{j : j ∈ V,∃(i, j) = (j, i) ∈ E}.

4We are going to show how rules (3.7) can be derived for Gauss-Markov model in the next
section.

32

we construct undirected graph Γ with the set of vertices V corresponding to compo-
nents of bi, i = 1, . . . , N , and the set of edges E corresponding to nonzero elements
Aij, i 6= j. More specifically, edge eij from vertex i to vertex j 6= i appears in E iff
Aij 6= 0. Having this graph we can write a joint probability density function:

p(x) =
1

Z

∏
i∈V

exp

(
−1

2
Aiix

2
i + bixi

) ∏
(ij)∈E

exp (−Aijxixj)

=
1

Z
exp

(
−xTAx

2
+ bTx

)
= N

(
x|A−1b

mean
, A−1

covariance
matrix

)
.

(3.9)

For the Gauss-Markov model, marginal distributions are known explicitly. For indi-
vidual components of the vector x, which is distributed according to (3.9), one can
obtain distributions in closed form

pi(xi) = N
(
xi|
(
A−1b

)
i
,
(
A−1

)
ii

)
≡ N (xi|µi, βi) . (3.10)

From (3.10) we can see that mean values stacked in vector µ provide solution for
linear problem Aµ = b. Since belief propagation can be used to obtain marginal
distributions it was proposed to use Perl’s algorithm to solve linear problems [Bic08],
[She+08].

Although, for continuous random variables the problem of marginalization and
the algorithm of belief propagation are harder in general, it is not the case for the
normal distribution. Namely, for the Gauss-Markov model, one can parameterize
messages in the form of the normal distribution

mji(xi) ∼ exp

(
−Λji (xi − µji)2

2

)
, (3.11)

and derive message update rule directly from (3.7) using message parametrization
and definition of ψ and φ given in (3.9). However, to gain additional intuition we use
only (3.8) and consistency condition. Consider two variables xi and xj, such that
Aij 6= 0. According to (3.8) the joint probability density function is multivariate
normal

b (xi, xj) = N
((

xi
xj

)∣∣∣∣m,Σ

)
, Σ−1m =

(
bi +

∑
k∈N(i)\j Λkiµki

bj +
∑

k∈N(j)\i Λkjµkj

)
,

Σ−1 =

(
Aii +

∑
k∈N(i)\j Λki Aij
Aji Ajj +

∑
k∈N(j)\i Λkj

)
.

(3.12)

33

Joint probability density (3.12) also prescribes probability density functions for in-
dividual variables:

b(xi) = N (xi|m11,Σ11) , b(xj) = N (xj|m22,Σ22) . (3.13)

On the other hand, we can compute probability density function for xj applying (3.8)
directly, which gives

b(xj) = N (xj|m,Σ) ,
m

Σ
= bj +

∑
k∈N(i)

Λkjµkj, Σ = Ajj +
∑
k∈N(j)

Λkj. (3.14)

Since b(xj) is the same in (3.13) and (3.14) we conclude that m22 = m and Σ = Σ22.
We see that (3.13) does not contain Λij, µij as well as Λji, µji, so from (3.14) we
can find, for express, Λji and µji as a function of other messages and interpret this

relation as an update rule. Namely, we supplement messages with a superscript Λ
(k)
ji ,

µ
(k)
ji that correspond to iteration k and from consistency condition m22 = m, Σ = Σ22

find the following update rules:

µ
(n+1)
ji =

bj +
∑

k∈N(j)\i
Λ

(n)
kj µ

(n)
kj

Aji
, Λ

(n+1)
ji = − AijAji

Ajj +
∑

k∈N(j)\i
Λ

(n)
kj

;

µ
(n)
i =

bi +
∑

j∈N(i)

Λ
(n)
ji µ

(n)
ji

Aii +
∑

j∈N(i)

Λ
(n)
ji

, β
(n)
i = Aii +

∑
j∈N(i)

Λ
(n)
ji .

(3.15)

From the derivation of the update rules it is clear that the only role of messages is
to enforce consistency condition, that is, to make sure that b(xi, xj) =

∫
dxib(xi, xj).

These update rules correspond to the fully parallel schedule such that at the cur-
rent iteration step, each node sends messages to all its neighbors based on messages
received at the previous step. Equations for the mean and precision should be put
to use only after saturation according to some criteria, for example |µ(n+1) − µ(n)| ≤
tolerance, and the same for Λ. Rules (3.15) are collectively known as Gaussian belief
propagation (GaBP).

As we already mentionned, belief propagation was designed to give an exact an-
swer if Γ has no loops. In the presence of loops, the result appears to be approximate
if delivered at all. In the case of GaBP, the situation is more optimistic. We briefly
recall some useful facts about GaBP that we discuss later in more detail. If GaBP
converges on the graph of arbitrary topology, the means are exact, but variances

34

5
M53

3 4

M54

1

M31

2

M32

(a)

3

1

M31

2

M32 5

M35

4

M54

(b)

Figure 3.2: Both (a) and (b) sketch the graph, corresponding to the matrix A from
equation (3.16). We use Mji to represent the pair of messages (Λji, µji) (see equation
(3.19)) from the node i to j. Figures (a) and (b) show different order of elimination.
For example, in case of (a) one first exclude x1 and x2 from the equation for x3 and
then solve resulting equation to obtain x5.

can be incorrect [WF00]. The best sufficient condition for convergence of the Gauss-
Markov model with symmetric positive-definite matrix can be found in [MJW06], we
discuss it later in greater detail. The fixed point of GaBP is unique [Hes04]. On the
tree, GaBP is equivalent to the Gaussian elimination [PK04].

In the derivation of GaBP rules we relied on the definition of the Markov random
field (3.9) which is valid only for A > 0. This fact makes extension of GaBP on
non-symmetric case conceptually nontrivial. The way to go is to relate GaBP rules
with Gaussian elimination that can be applied to arbitrary matrix. This is done in
the next section.

3.3.2 Elimination perspective

The connection of GaBP with Gaussian elimination was explored in [PK04]. Ideas
of this section are similar in spirit, but the presentation is more straightforward and
after appropriate modifications applies to non-symmetric matrices as well.

To illustrate the main ideas, consider a linear problem Ax = b with the matrix
and right-hand side defined as

A =


A11 0 A13 0 0
0 A22 A23 0 0
A31 A32 A33 0 A35

0 0 0 A44 A45

0 0 A53 A54 A55

 , b ∈ R5. (3.16)

35

For simplicity, require that A be positive definite and that all elements of A, not
explicitly indicated as zeros, are nonzero.

To obtain GaBP rules, we introduce a graph of the matrix (3.16) the same way
as this has been done in Section 3.3.1.

Suppose we want to calculate variable x5. To do it, we exclude variables x1, x2

from the equation for x3 and then eliminate variables x3, x4 from the equation for
x5 (

A33 −
A31A13

A11

− A32A23

A22

)
︸ ︷︷ ︸

=Ã33

x3 + A35x5 = b3 −
A31b1

A11

− A32b2

A22︸ ︷︷ ︸
=b̃3

; (3.17a)

(
A55 −

A53A35

Ã33

− A54A45

A44

)
x5 = b5 −

A53b̃3

Ã33

− A54b4

A44

. (3.17b)

Fig. 3.2a captures this particular elimination order. In the same vein, to find x3 one
may follow the order presented in Fig. 3.2b. The resulting equations are(

A55 −
A54A45

A44

)
︸ ︷︷ ︸

=Ã55

x5 + A53x3 = b5 −
A53b4

A44︸ ︷︷ ︸
=b̃5

; (3.18a)

(
A33 −

A35A53

Ã55

− A31A13

A11

− A32A23

A22

)
x3 = b3 −

A31b1

A11

− A32b2

A22

− A35b̃5

Ã55

. (3.18b)

From these calculations, one can make two observations:

1. In the course of elimination one successively changes the diagonal elements Ajj
and the right-hand side bj.

2. The exclusion schemes in figures 3.2a and 3.2b share the same computations.
For example, terms A31A13

/
A11, A32A23

/
A22 and A54A45

/
A44 appear on the

way to equation (3.18b) as well as to (3.17b). It would be more advantageous
to reuse the same computations, not to redo them each time one needs to
eliminate a variable.

The first observation suggests that one can introduce corrections to the diagonal
terms and bj, that come from the elimination of variable i. For the sake of conve-
nience, we denote them Λij and µijΛij, respectively. For example, equation (3.17a)
becomes

(A33 + Λ13 + Λ23)x3 + A35x5 = b3 + Λ23µ23 + Λ13µ13. (3.19)

36

Since corrections are the same for any order of elimination, to reuse them, we can
regard Λij and µij as a message that node i sends to node j along the edge of the
graph. Once computed, these messages are in use in expressions like (3.19) and
(3.20). To complete rewriting the elimination in terms of messages, one needs to
introduce the rules to update messages when a new variable is excluded. To derive
the rules, we rewrite equation (3.17b) using the definition of messages

(A55 + Λ35 + Λ45)x5 = b5 + Λ35µ35 + Λ45µ45. (3.20)

Now, the elimination step that leads from (3.17a) to (3.17b) can be written in the
form of a message update rule using the definition of Λ35, Λ35µ35 and (3.19):

Λ53 = − A35A53

A33 + Λ31 + Λ32

, µ53 =
b3 + Λ31µ31 + Λ32µ32

A35

. (3.21)

It is easy to see that one needs to accumulate all messages from neighbors of i except
for j to send the message from node i to node j. The solution can be computed from
all incoming messages as follows

xj =

bj +
∑

k∈neighbours of j

Λkjµkj

Ajj +
∑

k∈neighbours of j

Λkj

. (3.22)

Note that (3.18) and (3.17) have exactly this form. Equations for the update of
messages that we deduced in this section coincide with the GaBP update rules given
by (3.15), which are derived from the probabilistic perspective below.

To summarize, the GaBP rules can be understood as a scheme that propagates
messages on the graph, corresponding to the matrix of the linear system under con-
sideration. These messages, namely Λji and µji, represent the corrections to the
diagonal terms of matrix A and to the right-hand side b, resulting from the elimi-
nation of variable xi from the j-th equation, Ajjxj + Ajixi + · · · = bj.

Unlike the discussion in Section 3.3.1, all reasoning above can be applied to non-
symmetric matrices as well. This is done in the next section.

3.3.3 Gaussian belief propagation for non-symmetric linear
systems

As was explained in the previous section, the GaBP rules can be understood as
corrections to the right-hand side and the diagonal elements of the matrix under
successive elimination of variables. It means that in principle, one can apply the

37

A =


6 0.3 0 0.7
0 5 0.5 0

0.3 0 7 0.4
0.2 0 0.1 6



(a)

2

1

3

4

0.5

0.3

0.2

0.7

0.40.1
0.3

(b)

14 123 34

1 4 3

(c)

Figure 3.3: The figure exemplifies the correspondence between nonsymmetric matrix
A given in (a), a directed graph in (b); (c) contains a region graph corresponding to
the partition P = {{1, 2, 3} , {1, 4} , {3, 4}} (see Section 3.4). Note that the direction
of edge eij corresponds to the entry Aji. In Algorithm 1 we use graph to represent
a sparsity pattern of A and do not use directed weighted graphs. Weights on this
figure are given for the sake of illustration.

rules to solve at least some nonsymmetric systems. However, there are two problems
specific to nonsymmetric case. First, it is possible to have Aij = 0 and Aji 6= 0. In
this case, rules (3.15) lead to singularity as Aij appears in the denominator. Since
parametrization of messages is not unique both from the elimination and probabilistic
perspectives, it is possible to define new set of messages Λ̃ and m as follows m

(n)
ji ≡

µ
(n)
ji Λ

(n)
ji , Λ̃

(n)
ji ≡ Λ

(n)
ji

/
Aji. Note that this reparametrization has a problem in that

it is not one-to-one if Aji = 0. However, quick look at the equations (3.17), (3.18)
makes clear that indeed it is possible to define messages in that way. That is, if
Ajk = 0, one does not need to eliminate xk from the second equation so the message
Λkj is indeed zero.

Second, the undirected graph used to derive rules (3.15) is unsuitable for non-
symmetric matrices. To establish rules for given nonsymmetric matrix A ∈ RN×N ,
we construct a directed graph with N vertices v ∈ V corresponding to the variables
x1, . . . , xN and the set of directed edges E . The edge pointing from the vertex j to
the vertex i belongs to the set of edges iff Aij 6= 0, i.e. Aij 6= 0 ⇔ eji ∈ E . The
example is given in Fig. 3.3. We also define a set of in-neighbors and out-neighbors
as Nin(i) = {k : k ∈ V , eki ∈ E} and Nout(i) = {k : k ∈ V , eik ∈ E}. For example,
Nin(1) = {2, 4} and Nout(1) = {3, 4} for the matrix in Fig. 3.3.

The direction of edges is chosen to coincide with a flow of messages. Indeed,
from Section 3.3.2 we known that for variable xi the elimination of variable xj can

38

Algorithm 1 GaBP for a nonsymmetric linear system.

1: Input: invertible matrix A, vector b.
2: Output: approximate solution x.

3: Form directed graph G = {V , E} based on A, initialize Λ̃ = 0, m = 0.
4: while not converge do
5: for j ∈ V do
6: m = bj, Λ = Ajj
7: for k ∈ Nin(j) do

8: m = m+mkj, Λ = Λ + Λ̃kjAkj
9: end for

10: xj = m
/

Λ
11: for k ∈ Nout(j) do

12: Λ̃jk = −Akj
/(

Λ− Λ̃kjAkj

)
, mjk = Λ̃jk (m−mkj)

13: end for
14: end for
15: end while

be regarded as a message sent from j to i that contains Aij, which, according to our
definitions, is related to the directed edge eji. This observations allows us to put
forward a modified form of update rule:

m
(n+1)
ji = Λ̃

(n+1)
ji

bj +
∑

k∈Nin(j)\i

m
(n)
kj

 , Λ̃
(n+1)
ji = − Aij

Ajj +
∑

k∈Nin(j)\i
Λ̃

(n)
kj Akj

, (3.23)

and the expression for the approximate solution

µ
(n)
i =

bi +
∑

j∈Nin(i)

m
(n)
ji

Aii +
∑

j∈Nin(i)

Λ̃
(n)
ji Aji

, β
(n)
i = Aii +

∑
j∈Nin(i)

Λ̃
(n)
ji Aji. (3.24)

Note, that m
(n+1)
ji in (3.23) corresponds to the edge (j, i) of directed graph Γ. The

form of update that put more emphasis on the structure of the underlying directed
graph appears in Algorithm 1.

Algorithm 1 is sequential, but can run in parallel after some modifications. Par-
allel version can be discussed in two context.

39

The first parallel version is related to the order of message update. In Algorithm 1
index j in the first for-loop (line 5) also defines the iteration number (n) in rules
(3.15). That is, vertex k = 2 receives messages from j = 1 if there is an edge (1, 2).
Saying another way, messages are used immediately after they are updated. Instead

of the “in-place” update of messages we can write the new messages Λ̃
(n+1)

, m(n+1)

in different containers. The resulting algorithm is related to Algorithm 1 as Jacobi
iteration is related to Gauss-Seidel iteration.

The other option is to consider parallel version of Algorithm 1 with no modifica-
tion. To do that, one needs to use specific techniques for parallel computations on
graphs. Relevant details can be found in [Gon+12]. We further discuss the parallel
properties of solvers in Section 3.6.1.

The stopping criteria, not specified in Algorithm 1, can be chosen in many differ-
ent ways. For example, it is possible to use some norm of residual, e1 ≡

∥∥b−Ax(n)
∥∥,

or e2 ≡ max (e3, e4) ,, where e3 ≡
∥∥m(n+1) −m(n)

∥∥, e4 ≡
∥∥∥Λ̃(n+1) − Λ̃(n)

∥∥∥ and stop

when ei ≤ tolerance, i = 1, . . . , 4.
Note that the update of Λ̃ decouples from the one for m. So it is possible

to construct an algorithm that computes only messages Λ̃ and returns diagonal
elements for the inverse matrix. Later, these messages can be used in the course of
all successive iterations if one resorts to the error correction scheme. We discuss how
the algorithm of this kind can be utilized to decrease the number of floating point
operations in the context of a multigrid scheme.

Two classical theorems from GaBP theory, summarized below, can be readily
established for nonsymmetric matrices.

Theorem 3.3.1. If there is N ∈ N such that m
(N+k)
ij = m

(N)
ij , Λ̃

(N+k)
ij = Λ̃

(N)
ij for all

eij ∈ E and for any k ∈ N, then µ
(N+k)
i = µ

(N)
i = (A−1b)i.

The analogous result for symmetric matrices first appeared in [WF00]. In Sec-
tion 10.1, we show how to extend the proof for the nonsymmetric case.

Theorem 3.3.2. If Aii 6= 0 ∀i, |̃R|ij := (1− δij) |Aij ||Aii|
5, and ρ(|̃R|) < 1, then the

Algorithm 1 converges to the solution x = A−1b for arbitrary b.

Sufficient condition for symmetric positive-definite matrices was established in
[MJW06]. Section 10.2 contains the proof with necessary modifications that holds
for nonsymmetric matrices. It should be noted that we do not provide a necessary
and sufficient condition for GaBP convergence or the convergence rate. The reason

5Here |̃R|ij are matrix elements of the matrix |̃R| and δij are elements of diagonal matrix.

40

is that unlike classical linear iterative methods like Gauss-Seidel and Jacobi GaBP
can not be presented in a form x(n+1) = Mx(n) + Nb. We will see in Section 3.5
that GaBP modifies matrices M and N . Namely, GaBP can be presented as x(n) =
M (n)x(0) +N (n)b, where M (n) and N (n) depend on entries of A, iteration n and do
not depend on x(0). As such, standard tools for analysis of iterative method can not
be applied. We further discuss the matter in Section 3.5.

To make connections with the classical theory of iterative methods, we give an-
other less general sufficient condition.

Corollary 3.3.1. If A is an M-matrix (defined in the proof below, see also [Saa03,
Definition 1.30, Theorem 1.31]), Algorithm 1 converges to the solution x = A−1b
for any b.

Proof. A is an M -matrix if ρ(I−D−1A) < 1, Aij ≤ 0, i 6= j and Aii > 0, where D

is a diagonal of A. It means that R̃ = I−D−1A =
∣∣∣R̃∣∣∣ and ρ

(∣∣∣R̃∣∣∣) < 1.

3.3.4 Statistical interpretation of belief propagation for non-
symmetric linear systems

We showed that it is possible to generalize the belief-propagation algorithm to non-
symmetric linear systems. The problem is that we lost the probabilistic interpretation
in the process. Indeed, with non-symmetric matrix A we can not appeal to the
Gauss-Markov models because the covariance matrix should be symmetric positive-
definite. Here we discuss how to regain probabilistic interpretation from the Monte
Carlo method for matrix inversion described in [FL50].

The algorithm described in [FL50] works as follows. First, one picks values vij,
and probabilities pij ≥ 0 such that vijpij = δij − Aij,

∑
j pij < 1. Next, simulate a

random walk on a graph corresponding to Aij. We start from vertex i and moves to
vertex j 6= i with probability pij, and vertex j = i with probability 1−

∑
j pij. The

weight of the walk is a random variable z:

z =

{
0, end vertex is not j;

vii1vi1i2 . . . vikj
/

(1−
∑

i pji) , for walk i→ i1 → · · · → ik → j.
(3.25)

It is shown in [FL50] that mean value of z is ((I − A)−1)ij if eigenvalues of I − A
lays inside the unit circle on the complex plain.

In the same way, one can relate the i-th component of the solution of a linear
system with the random walk on a graph.

41

Now, the message update rules that we derived were inspired by the relation be-
tween Gaussian elimination and GaBP but the formal proof relays on the connection
between parameters of the messages and walks on graphs. So to regain a probabilistic
interpretation of belief propagation, one needs to show

1. the relation between z and messages;

2. that z6 is normally distributed at least for large enough walks.

The first part is somewhat technical and closely related to proofs of GaBP con-
vergence from this chapter. The second part is non-trivial, but we expect it to hold
from results similar to the central limit theorem. Currently, we do not have formal
proof and leave it to further research.

3.4 Generalized Gaussian belief propagation

Many different schemes that extend belief propagation and GaBP have been devel-
oped [YFW03], [EGG12], [SWW04], [Min01], [EMK06]. In this section we are going
to consider generalized belief propagation proposed in [YFW03] and subsequently
developed in [YFW01a], [YFW01b] ,[YFW05]. This new algorithm is significantly
more accurate [YFW05, Fig. 15] than Pearl’s algorithm, but at the same time it can
be computationally costly. The goal of the section is to show how particular versions
of generalized GaBP can be used as a solver for non-symmetric linear systems.

3.4.1 Set-decompositions and the region graph

Generalized GaBP is a generalization of GaBP in the same sense in which the block
Jacobi method is a generalization of Jacobi iteration (see Section 1.2.1 for a discussion
of block relaxation method). In case of GaBP the analog of blocks is given by a set-
decomposition. Namely, having variable set S = {1, . . . , N} we define a collection
of subsets P = {Si : i = 1, . . . , p} such that Si ⊂ S, and ∪pi=1Si = S. In principle,
GaBP can be applied with a sufficiently general set-decomposition, but the rules for
message update becomes cumbersome (see [YFW05] for details). Because of that we
consider only partitions that obeys the following rules:

1. For arbitrary k = 1, . . . , p there is no l = 1, . . . , p, l 6= k such that Sk ⊂ Sl.

6Or related random variable, for example, corresponding to the sum of closed walks on the
graph.

42

2. For arbitrary i = 1, . . . , p, j = 1, . . . , p the intersection is not in the set decom-
position Si ∩ Sj /∈ P .

3. If Aij 6= 0 there is a subset in P that contain both i and j, i.e., ∃k : {i, j} ⊂ Sk.

4. The intersection of two arbitrary subsets αjk ≡ Sj ∩ Sk can not be a subset of
any other distinct intersection αlm, i.e., ∀j = 1 . . . , p, ∀k = 1, . . . , p there is no
l = 1, . . . , p, m = 1, . . . , p such that (Sj ∩ Sk) ⊂ (Sl ∩ Sm) given that among
Sj, Sk, Sl, Sm there are at least three distinct subsets.

A set-decomposition is called admissible if it obeys the rules above. We postpone
the intuitive explanation of these technical requirements till the next section where
the consistency condition will be introduced.

To exemplify the application of rules above, we consider five set-decompositions
for the matrix given in Fig. 3.3:

P1 = {{1, 2, 3} , {1, 4} , {3, 4} , {1, 3}} , P2 = {{1, 2, 3} , {1, 3, 4} , {1, 3}} ,
P3 = {{1, 2} , {1, 4} , {3, 4} , {2, 3}} , P4 = {{1, 2} , {1, 3} , {2, 3, 4} , {1, 3, 4}} ,
P5 = {{1, 2, 3} , {1, 3, 4}} .

(3.26)

Set-decomposition P1 breaks the first rule, because {1, 3} ⊂ {1, 2, 3}. If one removes
set {1, 3} the decomposition becomes valid. The second set-decomposition P2 is not
apt because the intersection of the first and the second sets gives the third set. Set-
decomposition P3 is not valid according to the third criteria, because it does not
contain a set that includes {1, 3} as a subset, despite the fact that A31 6= 0. The
fourth set decomposition P4 violates the rule four, because {1, 3}∩{2, 3, 4} = {3} ⊂
{3, 4} = {1, 3, 4} ∩ {2, 3, 4}. The last decomposition P5 is admissible. In a more
general versions of GaBP described in [YFW05] all set-decompositions excluding P2

can be used.
Besides set-decomposition we need to define a region graph. For a given admissi-

ble set-decomposition P we define a collection of all intersections of subsets from P ,
i.e., LP = {S1 ∩ S2 : S1 6= S2, S1 ∈ P , S2 ∈ P}. Next, we define a set of vertices VR
such that there is a one-to-one correspondence between each set from P ∪ LP and a
given vertex, i.e., if v ∈ VR there is S ∈ P ∪ LP such that v ∼ S. Finally, we define
a set of directed edges ER such that eij ∈ ER iff Sj ⊂ Si. So, we call a directed graph
R = {VR, ER} a region graph of a given admissible set-decomposition. The region
graph is illustrated in Fig. 3.3c.

For convenience we also define two additional sets:

43

1. P (i) ≡ {vj : vj ∈ VR, eji ∈ ER} is a set of parents of vertex i ∈ VR.

2. C(i) ≡ {vj : vj ∈ VR, eij ∈ ER} is a set of child of vertex i ∈ VR.

For example, for a region graph in Fig. 3.3c we can find C(1) = {∅}, P (1) =
{{1, 4} , {1, 2, 3}}, C(123) = {{1} , {3}}.

We use the same notation for the variable sets:

1. P (a) ≡ {b : a 6= b, a ⊂ b, b ∈ P ∪ LP}.

2. C(a) ≡ {b : a 6= b, b ⊂ a, b ∈ P ∪ LP}.

Lastly, for a variable set b ∈ P ∪ LP we define a block matrix Ab : (Ab)ij =
Aij, i, j ∈ b. So, for the other variable set c we can find (Ab)c = Ab∩c. The last
expression is defined iff b ∩ c 6= ∅. The same notation is used for vectors.

3.4.2 Message update rules for the generalized Gaussian be-
lief propagation

In this section we suppose that a pairwise Markov random field (3.9) is given along
with its graph Γ = {V , E} (see Section 3.3.1). Besides that we use an arbitrary
admissible set-decomposition P .

As we discussed in Section 3.3.1, messages for GaBP enforces consistency, i.e.,
ensures that b(xj) =

∫
dxib(xi, xj). Based on this idea the messages are defined

for a generalized GaBP (see [YFW05, equation 114]). Namely, variables in the set
a receives message from variables in the set b iff a ⊂ b, because in this case we
should have b(xa) =

∫
dxb\ab(xb). So, messages propagate along edges of region

graph defined in the previous section. Following the case of GaBP we parametrize
messages from b to a as multivariate normal variables

mba(xa) ∼ exp

(
−(xa − µba)

T Λba (xa − µba)
2

)
. (3.27)

Each message is uniquely defined by the precision matrix Λba and the mean vector
µba.

We also define a belief for a set of variables a from the intersection a ∈ LP as

b(xa) ∼
∏
i∈a

φi(xi)
∏

i,j∈a, (i,j)∈E

ψi(xi, xj)
∏

b∈P (a)

mba(xa), (3.28)

44

and a belief for a set of variables c from the set-decomposition f ∈ P :

b(xf) ∼
∏
i∈f

φi(xi)
∏

i,j∈f, (i,j)∈E

ψi(xi, xj)
∏

d∈P (a)\f, a∈C(f)

mda(xa). (3.29)

Note that variables f does not receive messages directly because there is no d such
that c ⊂ d. However, because f and d may contain joint a, belief b(xf) depends on
messages sent from d to a.

Suppose a ⊂ f , then a consistency condition is simply b(xa) =
∫
dxf\ab(xf).

Since all variables are multivariate normal, we can derive a compact expression for
belief (3.28):

b(xa) = N (xa |Σaµa,Σa) , Σ−1
a = Aa +

∑
d∈P (a)

Λda, µa = ba +
∑
d∈P (a)

Λdaµda.

(3.30)

The expression for (3.29) is slightly more complex:

b(xf) = N
(
xf
∣∣Σfµf ,Σf

)
,

∀a ∈ C(f) :
(
Σ−1
f

)
a

= Af∩a +
∑

d∈P (a)\f

Λda, µf∩a = bf∩a +
∑

d∈P (a)\f

Λdaµda(
Σ−1
f

)
f\∪a∈C(f)a

= Af\∪a∈C(f)a, µf\∪a∈C(f)a
= bf\∪a∈C(f)a.

(3.31)

From the standard identities for multivariate normal distribution we can conclude
that the consistency condition gives (Σf)a = Σa and

(
Σfµf

)
a

= Σaµa. So, intro-
ducing the iteration index n, we obtain the following message update rules

Λ
(n+1)
fa = Λ

(n)
fa +

((
Σ

(n)
f

)
a

)−1

−Λ(n)
a ,

Λ
(n+1)
fa µ

(n+1)
fa = Λ

(n)
fa µ

(n)
fa +

((
Σ

(n)
f

)
a

)−1 (
Σ

(n)
f µ

(n)
f

)
a
− µ(n)

a ,
(3.32)

where Λ(n)
a =

(
Σ(n)
a

)−1

, Σ(n)
a with µ

(n)
a are defined as in (3.30), and Σ

(n)
f with µ

(n)
f

are as in (3.31).
We want to emphasize three points about message update rules (3.32). First,

in case P consists of all sets {i, j} : Aij 6= 0, rules (3.32) reduces to (3.15) (see
[YFW03]). Second, to compute updated messages one needs to perform three po-

tentially computationally intensive operations: solve linear system Σ
(n)
f µ

(n)
f , find a

diagonal subblock of the inverse matrix
(
Σ

(n)
f

)
a

and invert this subblock. To still

45

have a complexity O(N) per iteration we must restrict ourselves with a particular
partitions for which matrices Σf has simple structure that enables us to perform
above operations with reasonable computational complexity. In what is following we
will chose f in such a way that Σ

(n)
f is a tridiagonal matrix. Third, the validity of the

presented rules for nonsymmetric linear problems does not follow from the derivation
above. In the two following sections we will show that (3.32) can be applied to the
nonsymmetric problems as well.

On this stage it is appropriate to clarify the meaning of requirements for set-
decomposition given in Section 3.4.1. The first requirement simply reduces the num-
ber of unnecessary operations. When we computed a distribution p(xf) of larger
set f we do not need to send a message to the subset u, because the computation
of p(xu) is trivial. The same is true for the second condition, because we obtain
a distribution for the intersection of two sets as a byproduct of rules (3.32). The
third condition ensures that partition captures the whole structure of A. Suppose
the third condition fails for some pair i, j : Aij 6= 0. This would mean that Aij
never appears in rules (3.32), so we can not guaranty that marginal distribution are
correct. The last condition allows us to obtain compact update rules (3.32) (see
[YFW05] for more general result).

3.4.3 Elimination perspective

To motivate the applicability of (3.32) to a nonsymmetric system we consider the
following block matrix, right-hand side vector, and the solution vector

A =

A11 A12 0
A21 A22 A23

0 A32 A33

 , b =

b1

b2

b3

 , x =

x1

x2

x3

 . (3.33)

If A33 is invertible we can exclude x3 from the second equation and obtain the
modified system

A =

(
A11 A12

A21 Ã22

)
, b =

(
b1

b̃2

)
, Ã22 = A22 −A23A

−1
33A32, b̃2 = b2 −A23A

−1
33 b3.

(3.34)

Now, let α and β be variable sets, such that xα =
(
x1 x2

)T
and xβ =

(
x2 x3

)T
.

It is easy to find the first messages from β to β ∩ α are

Λβ β∩αµβ β∩α =
(
A22 −A23A

−1
33A32

)(
B−1

(
b2,
b3

))
β∩α
− b2 = −A23A

−1
33 b3

Λβ β∩α = B−1
β∩α −A22 = −A23A

−1
33A32, B =

(
A22 A23

A32 A33

)
,

(3.35)

46

Algorithm 2 Generalized GaBP for a nonsymmetric linear system.

1: Input: invertible matrix A, vector b, admissible set-decomposition P .
2: Output: approximate solution x.

3: Form region graph R = {VR, ER} based on A and P , initialize Λe = 0, µe = 0
for all e ∈ ER.

4: while not converge do
5: for v ∈ VR, C(v) 6= ∅ do
6: mv = bv, Λv = Av

7: for u ∈ C(v) do
8: mu = bu, Λu = Au

9: for y ∈ P (u)\v do
10: mu = mu +myu, Λu = Λu + Λyu

11: end for
12: (mv)u = (mv)u +mu, (Λv)u = (Λv)u + Λu

13: end for
14: xv = Λ−1

v mv, Λv = Λ−1
v

15: for u ∈ C(v) do
16: Λvu = ((Λv)u)

−1 −Λu, mvu = ((Λv)u)
−1 (xv)u −mu

17: end for
18: end for
19: end while

where we use zero starting messages, equation (3.32) and standard formulæ for block
matrix inverse.

As we can see, messages coincides with corrections that the second equation
receives when the third variable is eliminated. Since Gaussian elimination works
for non-symmetric matrices, the results of this section suggests that we can use
generalized GaBP for non-symmetric matrices.

3.4.4 Generalized Gaussian belief propagation for nonsym-
metric linear systems

Based on considerations above we formally define Algorithm 2. A few comments
are in order. First, line 14 of Algorithm 2 contains Λ−1

v which should not be consid-
ered literally. Because only diagonal subblocks of Λ−1

v are used later, it is preferable
to compute and store only them. Second, Algorithm 2 is sequential. The most nat-

47

ural parallelization strategy is to compute mu such that C(u) = ∅ and after that
update messages from v : C(v) 6= ∅. We use this strategy in line GaBP smoothers in
Section 3.6. Third, the computational complexity of Algorithm 2 strongly depends
on set-decomposition P and matrix A. We provide estimates for a concrete partition
in Section 3.6.1.

The Algorithm 2 can be justified theoretically on the basis of the following two
theorems.

Theorem 3.4.1. If there is N ∈ N such that m
(N+k)
e = m

(N)
e , Λ

(N+k)
e = Λ

(N)
e

for all e ∈ ER and for any k ∈ N, then for each set v : C(v) 6= ∅ we obtain
Λ−1
v mv = (A−1b)v (see Algorithm 2 for details).

That is, the steady state of the message flow, if it exists, corresponds to the exact
solution. The proof is given in Section 10.3.

For the sufficient condition for convergence we need to construct a particular
block matrix based on set-partition P and matrix A. First, we define a set of
variable subsets

F ≡ L ∪
{
S\ ∪a∈C(S) a : S ∈ P

}
. (3.36)

Using F , we form a partition of the matrix A and the right-hand-side vector b

A =

Aii Aij . . .
Aji Ajj . . .

...
...

. . .

 ,b =

bi
bj
...

 , (3.37)

where each diagonal block corresponds to the element of the set F . We also define

Ãij = A−1
ii Aij ≡ Iij − R̃ij;

∥∥∥R̃∥∥∥
ij
≡
∥∥∥R̃ij

∥∥∥ , b̃i = A−1
ii bi. (3.38)

Note that the first equality after the semicolon in the preceding equation contains a

definition of matrix
∥∥∥R̃∥∥∥, which depends on the operator norm ‖·‖ (see [HJ13, ch.

5, Definition 5.6.3]).
The following statement gives sufficient conditions for convergence.

Theorem 3.4.2. If for matrix (3.37) which is based on partition (3.36) det Aii 6=
0 ∀i and ρ

(∥∥∥R̃∥∥∥) < 1 in some operator norm, then two-layer generalized GaBP

(Algorithm 2) converges to the exact solution x = A−1b.

The proof of this theorems appears in Section 10.4. From the second part of the
argument in Section 10.4.2, one can deduce the following

48

Corollary 3.4.1. Generalized GaBP (Algorithm 2) converges whenever GaBP con-
verges (Theorem 3.3.2) and all submatrices corresponding to the large blocks are
invertible (see equations (3.36), (3.37)).

The opposite does not hold. For example, consider a matrix

A =



10 1.5 2 2 0 2 0
2 4 2.5 0 2 0 0
2 3 5 0 0 0 1
2 0 0 10 0.5 1 0
0 2 0 0.5 5 0 1
2 0 0 1 0 7 1
0 0 1 0 1 1 2


=

A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,

A11 ∈ R3×3, A22 ∈ R2×2, A33 ∈ R2×2.

(3.39)

In this case, the spectral radius of matrix
∣∣∣R̃∣∣∣ defined in Theorem 3.3.2 equals ∼

1.03 and GaBP diverges7. On the other hand, the spectral radius of
∥∥∥R̃∥∥∥ defined

by (3.38) and the partition given in (3.39) is smaller than one in l∞ and spectral
norms [HJ13, Examples 5.6.5, 5.6.6] (see https://github.com/VLSF/GaBPsolvers for
further details).

3.5 Gaussian belief propagation as a smoother for

multigrid method

As explained in Section 1.2.3, where an introduction to multigrid method is given,
the smoother should be a mapping S : xn → xn+1. Although GaBP is not of this
form, one can use an error correction scheme as explained in Algorithm 3. The part
“Apply k sweeps of Algorithm 1” means that one should replace a while-loop with
for-loop specifying k iterations. In the next two subsections we analyze properties of
GaBP in the error-correction regime (Algorithm 3) and estimate its computational
complexity.

7Note that the divergence of GaBP does not follow from
∣∣∣R̃∣∣∣ > 1 as Theorem 3.3.2 provides only

sufficient conditions. For this particular case, the pathological behavior of GaBP follows from the
numerical experiment (see https://github.com/VLSF/GaBPsolvers for details).

49

https://github.com/VLSF/GaBPsolvers
https://github.com/VLSF/GaBPsolvers

Algorithm 3 GaBP as a smoother.

Compute a residual rn = b−Axn.
Apply k sweeps of Algorithm 1 or 2 to the linear system Ae = rn.
Perform an error correction xn+1 = xn + eµ.

3.5.1 Gaussian belief propagation in the error correction
scheme

As we discussed in Section 3.3.3 GaBP modifies error propagation matrix M which
makes the analysis of convergence nontrivial. Because in Algorithm 3 we performs
a fixed predetermined number of sweeps, it is possible to exclude messages and find
explicit representation of GaBP smoother. For convenience we write S

(k)
GaBP(x, b,A)

as a shortcut for k iterations of Algorithm 1 applied as a smoother Algorithm 3.
Besides sequential version of GaBP (Algorithm 1) we also consider a parallel version.
In the parallel variant we compute all incoming messages simultaneously and do not
transverse the graph node by node. The difference between sequential and parallel
GaBP is similar to the difference between multiplicative and additive solvers. For
the parallel version of Algorithm 1 the following result holds

Lemma 3.5.1. Parallel GaBP with k = 1, 2 iterations is equivalent to the following
linear iteration

S
(k)
parallel GaBP(x, b,A) = x+D(B(k)A)−1B(k)(b−Ax) (3.40)

where D(B(k)A) is a diagonal part of B(k)A, B(1) = I, and B(2) = 2I−AD(A)−1.

We see that k = 1, 2 sweeps of parallel GaBP coincides with preconditioned
Jacobi iteration where matrix B(k) serves as preconditioner. It is certainly possible
to exclude messages for k > 2 but the resulting smoother can not be represented in
a compact form. From the result Lemma 3.5.1 and the standard multigrid theory
[TOS00, Sections 2.1.2 and 4.3] we can conclude that smoothing properties of parallel
GaBP are poor. For the sequential version of Algorithm 1 the following result holds

Lemma 3.5.2. Sequential GaBP with k = 1 iteration is equivalent to the following
linear iteration

S
(1)
sequential GaBP(x, b,A) = x+L(C)−1(b−Ax), (3.41)

where L(C) is a lower-triangular (diagonal is included) part of C, Cij = Aij for
i 6= j, and the diagonal elements of C are defined recursively as

i = 1 : C11 = A11; i > 1 : Cii = Aii −
∑
j<i

AijAji
/
Cjj. (3.42)

50

(a) (b)

Figure 3.4: Convergence histories for different anisotropies: (a) Second derivative
along y is multiplied by ε = 10−5 (see (1.20)) (b) Second derivative along x is
multiplied by ε = 10−8 (see (1.21)). In both cases, the fine grid consists of (25 −
1) points, and the coarsest grid consists of (23 − 1) points along each coordinate
line. GaBP (k), k = 1, 2, 3 refers to Algorithm 3 with k sweeps, line-x GS (1) and
line-y GS (1) are block Gauss-Seidel smoother. We can see that depending on the
direction of anisotropy either line-x GS (1) or line-y GS (1) stagnates, whereas GaBP
remains efficient.

So one sweep of sequential GaBP resembles Gauss-Seidel iteration but with mod-
ified lower part of matrix A. Note, that (3.41) can not be regarded as a Gauss-Seidel
method with left preconditioner because the residual is not modified. It is also easy
to see that the diagonal of C is exactly the same as the diagonal of U in incomplete
LU decomposition with zero fill-in (ILU(0) in what is following) [CP15]. As we will
see momentarily, this form of C explains a robustness of GaBP.

To observe practical implications of the difference between GaBP and Gauss-
Seidel, we consider the matrix following from standard finite difference approximation
of the elliptic boundary value problems (1.20) and (1.21).

We solve the resulting linear problem with geometric multigrid with one pres-
moothing and one postsmoothing steps (see Section 3.6 for the detailed description of
the multigrid used). We use two two types of smoothers: line Gauss-Seidel smoothers
[TOS00, p. 5.1.3], and GaBP. In Fig. 3.4a we can see the results for equation (1.20)
with ε = 10−5, and in Fig. 3.4b the results for equation (1.21) with ε = 10−8 are given.
There are three thing we want to stress. First, from results in Fig. 3.4 we can see
that GaBP is robust, unlike line Gauss-Seidel smoothers the performance of which
depends on the direction of anisotropy. Second, with the increase of anisotropy, con-

51

vergence of GaBP improves. This can be explained as follows. Recall, that GaBP
coincides with Gaussian elimination when the graph of a matrix is a tree. When
we increase anisotropy, lines decouple from each other, which removes loops from
the graph, so GaBP becomes an exact solver. Third, from convergence histories of
GaBP we can observe a number of iterations m corresponding to the sharp drop
of the relative error. Namely, m ' 16, m ' 8, m ' 5 for GaBP (1), GaBP (2),
GaBP (3) respectively. To explain this behavior we recall, that for anisotropic equa-
tion under consideration GaBP essentially performs Gaussian elimination. As such,
after the first presmoothing step of GaBP (1) we obtain an almost exact solution in√
N points corresponding to variables u(x1, 1− h) or u(1− h, x2) (depending on the

direction of the anisotropy), where h is a grid spacing and N is a total number of un-
known. After the first postsmoothing step of GaBP (1) we will recover u(x1, 1− 2h)
or u(1 − 2h, x2) almost exactly. Since the grid consists of 25 − 1 points in each
direction, elimination recovers almost correct solution after m ' [(25 − 1)/2] = 16
iteration. The same analysis works for GaBP (2) and GaBP (3). From this behavior
we expect that the convergence rate of GaBP will deteriorate with the increase of
number of variables N , and will improve with the increase of the anisotropy. We
further study the anisotropic problem in Section 3.6.

The results obtained in this section suggest a way to analyze the smoothing
properties of GaBP. The strategy is to, first, exclude messages and present GaBP in
the form of standard smoother x(n+1) = x(n) +N

(
b−Ax(n)

)
. After that, local (or

rigorous) Fourier analysis can be performed the same way as it is done for other linear
iteration (see, for example, [TOS00, Chapter 4, Section 7.5]). Having the assurance
that GaBP smoother can be analyzed by standard means, we do not pursue this
topic further.

3.5.2 Reducing computational complexity

The number of floating point operations per iteration for Algorithm 1 and Algo-
rithm 2 depends on the graph of the matrix A and the set-decomposition P . As
an example we compute the number of floating point operations in Algorithm 1 in
case A corresponds to the operator with the five-point stencil, i.e., the standard sec-
ond order discretization of Laplace operator. For convenience, we split Algorithm 1
(sequential version) into three parts:

• Accumulation stage. Λ and m are computed (line 8).

• Update stage. New messages Λ̃ and m are constructed from the previous ones
(line 12).

52

Solver
Computational complexity per N

five-point stencil nine-point stencil
GaBP 12m+ 12 24m+ 20
Jacobi 9m 17m

Chebyshev m ≥ 2 16(m− 2) + 25 24(m− 2) + 41
line GaBP 22m+ 11 22m+ 19

Gauss-Seidel 9m 17m
alternating zebra GS 26m 42m

ILU(0) 9m+ 11 17m+ 19

Table 3.1: Table contains computational complexity of GaBP (error correction
scheme) with precomputed Λ messages, and other relaxation schemes. Number
of sweeps in m, number of variables in N , matrix A corresponds to five-point or
nine-point stencil. Details on solvers can be found in Section 3.5.2, Section 3.6.1 and
Table 3.2.

• Termination stage. The final answer m/Σ is obtained (line 10).

We also neglect all effects from boundaries. Under these assumptions, the number
of floating point operations for the single sweep GaBP is

#GaBP(1) = 10N︸︷︷︸
r=b−Ax0

+ 2N + 4N︸ ︷︷ ︸
accumulate

+ 4N + 6N︸ ︷︷ ︸
update

+ N︸︷︷︸
terminate

+ N︸︷︷︸
+x0

= 28N. (3.43)

Here we take into account that we do not need to receive messages from nodes that
we have not visited yet, nor send messages to already visited nodes.

In the context of multigrid, it is important to have a cheap smoother, so to
reduce computational complexity we precompute all required messages Λ̃, which
depend only on the matrix A and not on the right-hand-side vector. The number of
operations is modified as follows

#GaBP(1) = 10N︸︷︷︸
r=b−Ax0

+ 2N︸︷︷︸
accumulate

+ 4N︸︷︷︸
update

+ N︸︷︷︸
terminate

+ N︸︷︷︸
+x0

= 18N. (3.44)

Here we used the fact that some messages are absent or need not be computed.
In Table 3.1, where computational complexity for the solvers is listed, we compute
number of operations for the worst case scenario.

53

3.6 Numerical examples

We consider linear systems of equations arising from finite difference and bilinear
finite element discretizations of elliptic equations with smooth coefficients in two
space dimensions. Model equations are given in Section 1.3. The multigrid solver
is constructed as follows. The finest uniform grid along x direction contain 2J + 1
points GJ =

{
ih : h = 2−J , i = 0, . . . , 2J

}
. The coarsening scheme is such that the

next grid GJ−1 contains each second point. The full grid is a direct product of two
unidimensional grids. The coarsest grid always contains 25 points in total. We use
LU as a solver on the coarsest grid. As transfer operators we choose full weighting
restriction [TOS00, eq. 2.3.3] and bilinear interpolation [TOS00, eq. 2.3.7]. We
always use a V -cycle. The number of sweeps for pre- and postsmoothing steps is
the same an given in brackets, for example, “ILU(0) (2)” refers to two sweeps of
incomplete LU. Properties of smoothers are collected in Table 3.1, Table 3.2.

We also list results for multigrid used as a preconditioner. We test CG and
GMRES.

As a performance measure for multigrid we use ρ̂ = N̂

√∥∥∥e(N̂)
∥∥∥
∞

/
‖e(0)‖∞, where

e(N̂) is an error on iteration N̂ , which is chosen such that ρ̂N̂ ≤ 10−10. The same N̂
is used to compare the efficiency of preconditioners.

Following [Hac16, (2.31a)] we define effective amount of work Eff ≡ NsolverNeff ,
where Nsolver estimates the number of floating-point operations per N performed by
solver, and Neff is a reference number of iterations chosen as Neff ≡ −1

/
log10 ρ̂ for a

solver andNeff ≡ N̂ for a preconditioner.8 For multigridNsolver ≡
∑∞

k=0 (2Ns + δ)
/

4k =
4 (2Ns + δ)

/
3, where δ (21 for five-point stencil, 29 for nine-point stencil) is the num-

ber of operations needed for error-correction, projection, interpolation, and Ns can
be found in Table 3.1. For stand-alone solvers we use Nsolver = Ns

/
m.

Table 3.3, Table 3.4, Table 3.5, Table 3.6, Table 3.7 contain results (spectral
radius ρ ∈ [0, 1), which is located in the upper half of each cell, and the effective
amount of work which is situated in the lower half of each cell) for multigrid used as
a stand-alone solver (the left part of the table) as well as a preconditioner (the right
part of the table). Table 3.8 contains results for stand-alone solvers.

54

Solver
Independent

points Reference

parallel GaBP N Algorithm 1
Jacobi, Chebyshev N [Saa03, Eq. (4.5)], [Bra+15, Algorithm 3.1]
red-black schemes N

/
2 [TOS00, equation (2.1.11), Remark (2.1.1)]

four color schemes N
/

4 [TOS00, Remark (5.4.5)]

line GaBP
√
N Algorithm 2, Section 3.6.1

alternating zebra GS
√
N
/

2 [TOS00, Section 5.1, 5.2]

sequential GaBP, GS ≤
√
N Algorithm 1, [Saa03, Eq. (4.8)]

ILU(0) ≤
√
N [CP15, Algorithm 1], [TOS00, Section 7.5]

Table 3.2: In this table we collect degree of parallelism of smoothers. First column
contain the names of the solvers. Second column lists number of operations that can
be performed in parallel for a linear operator with five-point stencil on the square 2D
grid with N points in total (see Section 3.6.1 for details). The last column contain
a reference, where the precise information about the smoother can be found.

3.6.1 Notes about solvers and smoothers

The computational complexity of solvers is given in Table 3.1. The degree of par-
allelism is estimated in Table 3.2. To exemplify how these numbers are computed
consider a Gauss-Seidel iteration for a linear operator with five-point stencil on square
grid with N points in total. For each sweep we start by obtaining the value of vari-
able (i, j) = (1, 1). After that, we can compute variables (i+ 1, j), (i, j + 1). On the
next step we can obtain variables with coordinates (i+ 2, j), (i+ 1, j + 1), (i, j + 2),
and so on. This means at best we have

√
N number of points we can process in

parallel.
We would like to add that there are various parallel versions of classical algo-

rithms. For example, it is possible to construct a parallel version of Gauss-Seidel
method [Ada+03] and cyclic reduction [GG97] for a parallel solution of tridiagonal
linear systems (e.g., in application to line smoothers).

Polynomial smoothers require λmax and λmin. Following [Ada+03] we use λmax =
1.1ρ(A) and λmin = 0.3ρ(A) where ρ(A) is a maximal eigenvalue estimated with
projection method.

Line GaBP is an example of generalized GaBP smoother. The set-decomposition

8Note, that our definition of Eff is suitable for comparison of solvers with solvers and precondi-
tioners with preconditioners. It is meaningless to use Eff (as it is defined here) to compare solver
with preconditioner.

55

ρ̂
Eff

N̂
Eff

smoother
/
J 4 5 6 7 4 5 6 7

Gauss-Seidel (3) .79
977

.94
3721

.98
11397

.99
22911

20
1468

40
2908

310
22348

150
10828

GaBP (3) .03
102

.08
142

.32
315

.6
703

10
1308

10
1308

40
5148

90
11548

zebra line GS (2) 0
0

0
0

0
0

0
0

2
305

2
305

4
583

4
583

line GaBP (2) 0
0

0
0

0
0

0
0

5
761

5
761

6
908

3
468

red-black GS (3) .78
927

.93
3173

.98
11397

.99
22911

20
1468

40
2908

120
8668

340
24508

red-black GaBP (3) .48
489

.84
2060

.95
7003

.97
11793

20
2588

40
5148

80
10268

200
25628

ILU(0) (2) 0
0

0
0

0
0

0
0

4
337

2
183

6
492

4
337

Chebyshev (4) .85
2550

.95
8080

.97
13607

.97
13607

30
4588

60
9148

170
25868

>500
>76028

Chebyshev (8) .75
2807

.92
9684

.96
19780

.97
26509

20
6481

40
12935

90
29068

300
96828

Table 3.3: Poisson equation (1.12), finite difference, conjugate gradient.

which defines this solver consists of all horizontal and vertical lines. For example,
on grid with 3 points in each direction the set-decomposition used in Algorithm 2 is
P = {{1, 2, 3} , {4, 5, 6} , {7, 8, 9} , {1, 4, 7} , {2, 5, 8} , {3, 6, 9}}.

3.6.2 Summary of results

Poisson equation

The results for this classical test problem (1.12) are given in Table 3.3. We can see
that red-black GaBP has better convergence rate than other solvers. The closes two
are zebra line Gauss-Seidel and ILU(0). From the comparison of the effective amount
of work, we can conclude that red-black Gauss-Seidel is slightly more efficient than
red-black GaBP.

Large mixed derivative

In this section we discuss (1.19) with τ = 1− δ/2. When δ ≥ 0 is small, the equation
almost losses the ellipticity which presents challenges for classical multigrid compo-
nents. From the convergence rates presented in Table 3.4 we can see that sequential
GaBP versions are more robust. Indeed, for GaBP and four-color GaBP the conver-
gence rates are better than the ones for Gauss-Seidel and four-color Gauss-Seidel.
These results become less pronounced for larger grids. Comparing Eff, we conclude
that GaBP is more efficient than Gauss-Seidel, and four-color GaBP is more efficient
on the smallest grid but loses its advantage on larger grids. It is also interesting that

56

ρ̂
Eff

N̂
Eff

smoother
/
J 4 5 6 7 4 5 6 7

Gauss-Seidel (2) .52
455

.73
946

.85
1832

.92
3572

20
1852

20
1852

30
2759

50
4572

GaBP (2) .34
470

.54
822

.75
1761

.85
3117

20
3665

20
3665

30
5479

50
9105

zebra line GS (2) .27
462

.52
925

.72
1841

.82
3048

13
2951

20
4519

20
4519

40
8999

line GaBP (2) .54
772

.73
1512

.83
2554

.89
4084

20
3399

20
3399

30
5079

50
8439

four-color GS (2) .56
514

.71
870

.83
1598

.89
2555

19
1761

20
1852

30
2759

50
4572

four-color GaBP (2) .31
433

.57
901

.75
1761

.85
3117

10
1852

20
3665

30
5479

40
7292

ILU(0) (2) .13
203

.4
452

.6
811

.78
1668

10
1452

17
2441

20
2865

30
4279

Chebyshev (4) .49
891

.72
1935

.84
3645

.88
4971

20
4785

20
4785

40
9532

50
11905

Chebyshev (8) .32
1075

.6
2398

.76
4464

.85
7537

10
4972

20
9905

30
14839

40
19772

Table 3.4: Mixed derivative (1.19) with τ = 1 − δ/2, δ = 0.01, finite difference,
restarted GMRES (10).

line GaBP seems to be preferable over zebra line GS as a preconditioner for J = 7
even though it is inferior as a solver. Overall, for this problem all smoothers perform
poorly. Incomplete LU shows the best convergence rate, but Chebyshev (8) is more
preferable because of the excellent parallelelism.

Boundary layer

For small ε in (1.24) with vx = vy = 1/ε we have advection-dominated diffusion. The
results are presented in Table 3.5. All smoothers are reasonable for this problem.
We can see that sequential GaBP produces a slightly better convergence rate than
Gauss-Seidel. The same is true for line versions because line GaBP is more parallel
than line Gauss-Seidel. Overall, it is reasonable to use either Chebyshev or any of
the red-black smoothers for this problem. Incomplete LU, having the smallest Eff,
is also an option but looks less attractive because of the poor parallelism.

Anisotropic Poisson

Here we continue the study of anisotropic problem Eq. (1.21) that we mentioned in
Section 3.5.1. The standard approach is to use semi-coarsening, but we will continue
to use full-coarsening to investigate the effect of the smoother.

For this problem ILU(0) and line smoothers are essentially the exact solvers,
so they produce almost correct solution after a single iteration. This is indicated
by ρ̂ = 0, Eff = 0 in Table 3.6 where the convergence rates for this problem are

57

ρ̂
Eff

N̂
Eff

smoother
/
J 4 5 6 7 4 5 6 7

Gauss-Seidel (2) .02
45

.05
58

.06
62

.07
66

9
460

10
508

10
508

10
508

GaBP (2) .007
58

.03
81

.04
89

.05
95

10
988

10
988

10
988

10
988

zebra line GS (2) .004
70

.01
83

.02
98

.02
98

10
1415

16
2247

9
1276

9
1276

line GaBP (2) .02
103

.05
134

.06
143

.06
143

10
1495

10
1495

10
1495

9
1348

red-black GS (2) .06
62

.06
62

.06
62

.05
58

20
988

20
988

10
508

13
652

red-black GaBP (2) .05
95

.05
95

.05
95

.05
95

10
988

11
1084

20
1948

11
1084

ILU(0) (2) .0006
33

.005
46

.01
53

.01
53

5
415

7
569

20
1575

10
801

Chebyshev (4) .16
226

.07
156

.08
164

.1
180

10
1548

10
1548

10
1548

10
1548

Chebyshev (8) .02
206

.02
206

.03
230

.03
230

10
3255

10
3255

10
3255

10
3255

Table 3.5: Boundary layer (1.24) with vx = vy = ε−1, ε = 0.05, finite difference,
restarted GMRES (10).

ρ̂
Eff

N̂
Eff

smoother
/
J 4 5 6 7 4 5 6 7

Gauss-Seidel (3) .79
977

.94
3721

.98
11397

.99
22911

20
1468

40
2908

310
22348

150
10828

GaBP (3) .03
102

.08
142

.32
315

.6
703

10
1308

10
1308

40
5148

90
11548

zebra line GS (2) 0
0

0
0

0
0

0
0

2
305

2
305

4
583

4
583

line GaBP (2) 0
0

0
0

0
0

0
0

5
761

5
761

6
908

3
468

red-black GS (3) .78
927

.93
3173

.98
11397

.99
22911

20
1468

40
2908

120
8668

340
24508

red-black GaBP (3) .48
489

.84
2060

.95
7003

.97
11793

20
2588

40
5148

80
10268

200
25628

ILU(0) (2) 0
0

0
0

0
0

0
0

4
337

2
183

6
492

4
337

Chebyshev (4) .85
2550

.95
8080

.97
13607

.97
13607

30
4588

60
9148

170
25868

>500
>76028

Chebyshev (8) .75
2807

.92
9684

.96
19780

.97
26509

20
6481

40
12935

90
29068

300
96828

Table 3.6: Anisotropic Poisson equation Eq. (1.21) with ε = 10−6, finite difference,
restarted GMRES (10)

58

ρ̂
Eff

N̂
Eff

smoother
/
J 4 5 6 7 4 5 6 7

Gauss-Seidel (2) .04
93

.1
129

.23
203

.54
483

6
583

7
673

8
764

10
945

GaBP (2) .03
144

.08
201

.21
325

.49
710

6
1127

7
1308

8
1489

10
1852

zebra line GS (2) .03
172

.06
215

.2
376

.56
1043

5
1159

6
1383

7
1607

9
2055

line GaBP (2) .23
324

.23
324

.23
324

.52
728

9
1551

9
1551

10
1719

11
1887

four-color GS (2) .02
76

.07
112

.22
197

.55
498

5
492

6
583

7
673

9
855

four-color GaBP (2) .02
129

.07
190

.21
325

.49
710

5
945

8
1489

9
1671

12
2215

ILU(0) (2) .013
95

.06
147

.14
211

.49
581

4
604

5
745

5
745

8
1169

Chebyshev (4) .03
181

.09
264

.16
347

.52
972

5
1225

6
1463

7
1700

9
2175

Chebyshev (8) .016
296

.07
461

.18
714

.54
1988

5
2505

6
2999

7
3492

8
3985

Table 3.7: Helmholtz equation (1.23) with k2h = 0.1, finite element, conjugate
gradient

summarized. GaBP clearly presents the best alternative among the other solvers,
at least when the grid size is not too large. We can see that, as was expected,
the convergence rate deteriorates when J increases. Nevertheless, this deterioration
is less pronounced than the decline of ρ̂ for other points smoothers. Analysis of
Eff shows that among the “exact” solvers line GaBP seems to be preferable as a
preconditioner. Again, ILU(0) has the smallest Eff but can not be effectively run in
parallel.

Helmholtz

Here we consider finite elements diszretization of Helmholtz equation (1.23) with
fixed k2h. The condition k2h = const means a fixed number of wavelength per grid
spacing, this allows us to avoid the pollution effect [BS97]. Table 3.7 indicates that
for the largest grid ILU(0), four-color GaBP and GaBP has the same (smallest) con-
vergence rate. Among color smoothers (and overall), Gauss-Seidel has the smallest
Eff. It is also the best preconditioner. Comparison of line smoothers reveals that
GaBP is more efficient than Gauss-Seidel both as a solver and a preconditioner.

Testing GaBP as a stand-alone solver

To compare GaBP with classical iteration we use two equations. The first one is a
Mehrstellen discretization (1.17). The second equation is the anisotropic equation
with space-dependent coefficients (1.22).

59

The results for both equations are given in Table 3.8.
Convergence rates for Mehrstellen discretization indicate that four-color Gauss-

Seidel is the most cost-efficient solver. One can see that GaBP solvers result in a
faster convergence rate for the smaller grids. However, the increased cost of GaBP
solvers makes them less preferable. Interestingly, on the finest grid line GaBP seems
to be more efficient than zebra line GS.

For the anisotropic problem, the most efficient solver is either line GaBP or zebra
line GS. The latter one has smaller Eff, but since parallel properties of line GaBP
are superior, this difference is mitigated, and line GaBP is at least as efficient as
line GS. We also would like to mention that sequential GaBP outperforms sequential
Gauss-Seidel on the finest grid. The same is true for red-black versions, although
the difference is negligible.

Discussion

We have seen that for all test problems, GaBP smoothers results in solvers with
smaller or similar ρ̂ compared to classical smoothers. However, GaBP can be less
efficient because the presence of messages leads to an increased number of floating-
point operations. Two other trends are evident. First, GaBP has advantages in
situations when there are weakly linked small clusters of variables. Second, for large
grids, GaBP smoothers resemble the classical ones. The situation is less clear for the
generalized GaBP solvers and smoothers because their performance depends on the
set-decomposition P .

Set-decomposition for generalized GaBP is not a well-studied subject. Contribu-
tions [YFW05], [Wel04] contain some general recommendations on the construction
of set-decomposition. The technique of embedded trees [SWW04] is also related
to the choice of good set-decomposition. To the best of our knowledge, the litera-
ture completely lacks results on the influence of set-decomposition on the quality of
generalized GaBP smoother. We leave this topic for further research.

60

ρ̂
Eff , Mehrstellen ρ̂

Eff , Poisson
smoother

/
J 3 4 5 6 3 4 5 6

Jacobi .89
336

.94
633

.96
959

.96
959

.91
220

.96
508

.98
1026

.98
1026

Gauss-Seidel .81
186

.92
469

.95
763

.95
763

.84
119

.94
335

.96
508

.98
1026

GaBP (2) .76
243

.89
573

.94
1079

.95
1302

.71
121

.86
275

.94
670

.95
808

zebra line GS .70
271

.87
694

.94
1563

.95
1885

.70
168

.71
175

.80
268

.88
468

line GaBP (2) .83
389

.92
870

.94
1172

.96
1777

.71
185

.82
319

.89
543

.92
759

color GS .81
186

.92
469

.94
633

.96
959

.84
119

.93
286

.96
508

.98
1026

color GaBP (2) .76
243

.91
708

.94
1079

.96
1636

.70
116

.86
275

.94
670

.96
1015

Table 3.8: Mehrstellen discretization (1.17) and anisotropic Poisson equation (1.22)
with ε = 10−3, finite difference.

61

Chapter 4

Probabilistic projection methods

4.1 Projection methods and statistical inference

Projection methods briefly described in Section 1.2.2 is versatile and reliable way
to construct approximate solutions. Projection methods are known to be related to
the best approximation with orthogonal polynomials (symmetric Lanczos algorithm
[Saa03, Section 6.6.2]), Gaussian elimination (conjugate direction method [She+94,
Section 7.2]) and minimization problem (conjugate gradient method [Hac16, Section
10.1.4], [She+94, Section 3]). These connections are important because they can be
used to gain additional understanding, estimate convergence, construct new proofs.

Recently additional interpretation emerged. A series of papers starting with
the work on probabilistic reconstruction of quasi-Newton methods [HK13] led to
Bayesian projection methods [Hen15], [Coc+19a], [Bar+19]. By probabilistic pro-
jection method we mean a construction of appropriate prior distribution p(x) and in-
formation operator I(A, b) in such a way that the posterior distribution p (x|I(A, b))
reproduces the result of a given projection method as it’s mean, and reflects uncer-
tainty about the true solution A−1b in a meaningful way (see Section 4.2.2 for a
discussion on what constitutes a well-calibrated posterior distribution). The pro-
gram of probabilistic reconstruction was successful to some extent. In particular, in
[Coc+19a] and [Bar+19], the authors proved the following general result:

Theorem 4.1.1. Let detA 6= 0, p(x) = N (x|x0,Σ0) and ym = STmAx, where
Sm ∈ Rn×m,m ≤ n is a full-rank matrix. The mean of conditional distribution
p(x|ym = STmb) = N (x|xm,Σm) reproduces projection method (1.5) for three choices
of prior distribution and search directions Sm:

1. Σ0 = V V T and Sm = W result in xm = x̃, Σm = 0;

62

2. In case A is symmetric positive definite, the choice Σ0 = A−1, Sm = V results

in xm = x̃|W=V , Σm = A−1 − V
(
V TAV

)−1
V T ;

3. Σ0 =
(
ATA

)−1
, Sm = AV result in xm = x̃|W=AV , Σm =

(
ATA

)−1 −

V
(

(AV)T AV
)−1

V T .

We can see that Sm and Σ0 can be chosen in such a way that the mean of
posterior distribution reproduces the wide class of projection methods. Although
the correctness of mean vectors is reassuring, the main novelty of the probabilistic
projection methods in the case of multivariate normal model is a covariance matrix
that encodes the uncertainty about the solution. Unfortunately, all three posterior
covariance matrices are not apt for different reasons. The first option leads to trivial
uncertainty, while the other two are too expensive to compute because posterior co-
variances contains unknown A−1. Moreover, as shown in [Bar+19] and [Coc+19a],
posterior distributions of the last two choices are poorly calibrated for Krylov sub-
space methods. Further examination of priors reveals that they do not have free
parameters, which renders uncertainty calibration impossible.

In the present chapter we address these problems. Namely, we propose an ex-
tension of the covariance matrix Σ0 = V V T that maintains the same mean of
conditional distribution, but introduces a nontrivial covariance Σm. The main idea
behind our construction stems from the observation made in [Bar+19], that the first
prior distribution is a probability density of random variable x = x0 + V v, were
p(v) = N (v|0, I). Perhaps it is not surprising that the posterior uncertainty is triv-
ial, since the prior distribution puts no probability mass on the part of space where
a projection method is not allowed to operate. Naturally, we seek a prior of the form
x = x0 +V v+Y y, p(y) = N (y|0, I), and restrict Y to have meaningful mean and
posterior covariance matrix.

In Section 4.2.1, we completely characterize all possible choices of Y . Sec-
tion 4.2.2 contains a discussion of uncertainty calibration for abstract projection
methods. A practical inexpensive construction of covariance matrix in terms of pro-
jectors is presented in Section 4.2.3. In Section 4.3 we argue that realistic Krylov
subspace methods elude rigorous probabilistic interpretation. Given the popular-
ity of Krylov subspace methods, we explain how uncertainty can be calibrated for
them in Section 4.3.1. In Section 4.3.2 we compare our approach with the related
ones, including recently introduced in [Rei+20], [WH20], as well as [Coc+19a] and
[Bar+19]. In Section 4.4 we perform a comparative study of different uncertainty
calibration procedures on a several test problems that include a large family of small
dense matrices, large and medium sparse matrices from SuiteSparse Matrix Col-

63

lection https://sparse.tamu.edu, a finite-difference discretization of biharmonic
equation and a PDE-constrained optimization problem.

4.2 Fixing prior distribution

4.2.1 General form of prior distribution

In this section, we establish a sufficiently general form of Σ0 that leads to nontrivial
uncertainty for probabilistic projection methods. We start by stating three lemmas
and then gather all results in Theorem 4.2.1.

Lemma 4.2.1. Let V and W lead to a well-defined projection method (1.5), p(x) =
N (x|x0,Σ0), ym = STmAx, p(x|ym = STmb) = N (x|xm,Σm). If we take covariance
matrix Σ0 = V V T +Ψ and search directions Sm = W , where Ψ satisfies W TAΨ =
0, Ψ ≥ 0, the resulting mean and covariance matrix are xm = x̃ from (1.5) and
Σm = Ψ.

As the following result shows, matrix Ψ exists under mild conditions.

Lemma 4.2.2. For invertible A ∈ Rn×n and full-rank W ∈ Rn×m, m ≤ n, there
exists a full-rank Y ∈ Rn×k, k ≤ n −m for which W TAY = 0. As such, we can
take Ψ = Y GY T for any conformable G > 0.

Next, we show that Ψ can be chosen to have Σ0 > 0, given W TAV is invertible.
To demonstrate that we need to prove that for a well-defined projection method it
is always possible to supplement m vectors V ?i with n−m vectors Y n−m to form a
basis for Rn. Indeed, if this is the case, Σ0 = V V T + Y GY T > 0 since it is clearly
positive semidefinite for any G > 0, and there is no x such that xTΣ0x = 0 because
Range (V) ∪ Range (Y) = Rn.

Lemma 4.2.3. If V and W lead to a well-defined projection method (1.5), m linearly
independent vectors V ?i along with n −m linearly independent Y ?i : W TAY = 0
form basis for Rn.

We summarize all results of this section in the following statement:

Theorem 4.2.1. Let the following be true:

1. MatrixA is invertible, W ,V ∈ Rn×m are full-rank matrices, and detW TAV 6=
0;

64

https://sparse.tamu.edu

2. Solution of Ax = b is a normal random variable with probability density func-
tion p(x) = N (x|x0,Σ0);

3. Covariance matrix Σ0 has a form Σ0 = V V T + Y GY T , where Range (Y) =
Null

(
W TA

)
and G ≥ 0;

4. Random variable y = W TAx represents information available to a projection
method.

Then under these conditions p(x|y = W Tb) = N (x|x̃,Y GY T), where x̃ is defined
by (1.5).

The proposed covariance matrix has a clear geometric meaning. It is easy to see
that x from Theorem 4.2.1 can be represented as a sum of two independent random
variables x = x0 + V v + Y G1/2y, where p(v) = N (v|0, I) and p(y) = N (v|0, I).
So, the part V V T corresponds to the vector that is sampled from Range(V), whereas
the second part Y GY T accounts for the subspace Null(W TA) in accordance with
Petrov-Galerkin condition W T (b − Ax̃) = W TA(A−1b − x) = 0. Thanks to
Lemma 4.2.3 we known that sampling x we can reproduce any vector from Rn,
so prior distribution is suitable for an arbitrary right-hand side. Adjusting G ≥ 0
we can control how x is distributed in Range (Y) (see Lemma 4.2.4 for a quantita-
tive result). On the other hand it is not possible to control the distribution inside
Range (V). This does not pose any problem, since as a result of projection process,
the solution vector is completely defined within subspace Range (V).

4.2.2 Uncertainty calibration for abstract projection meth-
ods

To be useful in practical applications (for example, in probabilistic decision theory,
sensitivity analysis and others) probability density function produced by probabilistic
projection methods should be meaningfully related to the actual error. In [Coc+19a]
authors propose a statistical criterion for uncertainty calibration: “When the UQ is
well-calibrated, we could consider x? [the solution A−1b] as plausibly being drawn
from the posterior distribution N (xm,Σm).” Based on this statements authors sug-
gest a test statistic Z(x?) ≡ ‖x? − x̃‖2

Σ†m
∼ χ2

n−m. In what follows we refer to Z(x?)
as Z−statistic. We now show that, according to this definition, the prior proposed
in Theorem 4.2.1 provides a perfect uncertainty calibration.

Theorem 4.2.2. Let x? = x0 +V v+Y G1/2y, where v and y are independent ran-
dom variables, v has arbitrary distribution and p(y) = N (y|0, I). Under conditions
of Theorem 4.2.1, a posterior distribution is well-calibrated:

65

v1

v2

v3

2v3

u1

u2

P⊥ui, i = 1, 2
θ1

θ2

Figure 4.1: The figure demonstrates how the acute angle θi, i = 1, 2 between sub-
space spanned by v1 and v2 and ui, i = 1, 2 depend on the vector ui = v1 +v2 + iv3.
The angles can be computed as cos(θi) = uTi P⊥ui

/
uTi ui. Lemma 4.2.4 is a proba-

bilistic counterpart of this situation. Namely, by rescaling eigenvectors of covariance
matrix one can influence the distribution of the angle between the error and a given
subspace.

1. p
(
x|y = W T (Ax0 +AV v0)

)
= p(x?|v = v0)

2. ‖x? − x̃‖2

(Y GY T)
† ∼ χ2

n−m

Note, that this result is also correct for all priors proposed in Theorem 4.1.1.
This is because all methods are fully Bayesian when W and V do not depend on x.
As we discuss in Section 4.3, this is not true for Krylov subspace methods like CG
and GMRES.

Having a well-calibrated posterior probability, we turn to the choice of a prior
distribution. Since with G, we can always perform a change of basis in Null

(
W TA

)
;

we consider it to be fixed and describe how the rescaling of basis vectors influences
an error vector.

Lemma 4.2.4. Let in addition to conditions of Theorem 4.2.1 columns of matrix
Y be orthonormal, and the exact solution be x? = x0 + V δ1 + Y G1/2δ, where

66

δ1, δ are standard multivariate normal random variables. The choice G = s2Ip×p ⊕
I(n−m−p)×(n−m−p), s ∈ R leads to cos (θ) = 1

/(
1 + n−m−p

s2p
z
)

, where θ is an acute an-

gle between the error ẽ = x?−x̃ and span {Y ?i : i = 1, . . . , p}; z is F -distributed with
numerator n−m− p and denominator p (see Fig. 4.1 for geometric interpretation).

With this result we can easily construct probabilistic bounds. For example, iden-
tity P (cos(θ) ≥ 1− ε) = P (z ≤ s2pε/ ((1− ε)(n−m− p))) allows to choose s that
guaranties ẽ to be located within a p-dimensional subspace with prescribed proba-
bility.

4.2.3 Construction of covariance matrices

So far, we discussed only a general form of a covariance matrix. The most straight-
forward way to construct it explicitly is to compute a basis for Null

(
W TA

)
with

SVD and choose positive semidefinite G according to some criteria. This can be
problematic for two reasons. First, SVD incurs additional O (nm2) floating-point
operations [TB97]. Depending on the situation, this can be manageable. The sec-
ond and more serious problem is that we need to store a dense n× (n−m) matrix.
Iterative methods are useful only when A is sparse and large, so as a rule, we do
not have the luxury to store (n−m) vectors forming a basis for Null

(
W TA

)
. The

following result resolves these issues.

Theorem 4.2.3. Let conditions of Theorem 4.2.1 be fulfilled. For P 1 = I −
V
(
W TAV

)−1
W TA the following statements are true:

1. Matrix P 1 is a projection operator.

2. Range(P 1) = Null
(
W TA

)
3. General form of covariance matrix from Lemma 4.2.2 is Σ0 = V V T +P 1GP

T
1 ,

G ≥ 0.

We would like to point out that it is natural to use projector P 1 to quantify un-
certainty. It is known from general theory of iterative methods (see [Hac16, Chapter
2]) that linear iteration of the form x(n+1) = x(n) +N [A]r(n) ≡M [A]x(n) +N [A]b,
where M [A] and N [A] are matrices depending on A such that the consistency

condition M [A] + N [A]A = I holds. In our case N [A] = V
(
W TAV

)−1
W T

approximates A−1, and P 1 = M [A] = I −N [A]A quantifies how well this is done.
To compute projection operator P 1 from Theorem 4.2.3, one need not perform

more complex operations that are required for projection method itself: matrices W

67

and V are available as a byproduct of Arnoldi or Lanczos processes and W TAV
usually has a special form (Hessenberg or tridiagonal). Moreover, to store P 1, we

need to keep matrices W , V , and
(
W TAV

)−1
, that is 2nm + m2 floating-point

numbers in the worst case, which is much better than n2 −mn in situations when
m� n.

Covariance matrix in Theorem 4.2.3 contains projection operator P 1 which is
not orthogonal. Later we will see that orthogonal projectors are more suitable in the
context of statistical inference, so we formulate a result similar to Theorem 4.2.3 but
with an orthogonal projector.

Theorem 4.2.4. Let P 2 = Y
(
Y TY

)−1
Y T , where columns of Y are k = n − m

linearly independent vectors from Null
(
W TA

)
. If W and V result in a well-defined

projection method, the following is true:

1. P 2 is an orthogonal projector on Null
(
W TA

)
.

2. Covariance Σ0 = V V T +P 2GP
T
2 , G ≥ 0, leads to posterior N (·|x̃,P 2GP

T
2),

under linear observations and conditions defined in Theorem 4.2.1.

Note that to compute P 2 one need no explicitly form the orthonormal basis
for Null

(
W TA

)
, which is not feasible in typical practical situations when n � 1

and m � n. In place of that, one can use Ỹ ∈ Rn×m with columns such that

Range
(
Ỹ
)

= Range
(
ATW

)
. Since Range

(
ATW

)
⊥ Null

(
W TA

)
we conclude

that P 2 = I − Ỹ
(
Ỹ

T
Ỹ
)−1

Ỹ
T

. Unlike Y , computation of Ỹ is feasible. More-

over, for some projection method Ỹ can be available as a byproduct of the method
itself. For example, vectors from Range

(
ATW

)
are available in case of Lanczos

biorthoganolization (see [Saa03, Subsection 7.2]). These vectors are discarded when
only the solution of the linear system is of interest, however as we see from Theo-
rem 4.2.4 they can be used to construct a covariance matrix. Conjugate gradient
iteration provides the other example. In this case A > 0 and W = V , so the
residuals can be used to form orthonormal basis for Range (AV).

4.3 Difficulties with probabilistic projection meth-

ods

The validity of Theorem 4.1.1 and Bayesian conjugate gradient Method proposed in
[Coc+19a], as well as all results of the present paper, depend on the assumption that

68

the joint distribution of x and ym is a multivariate normal. This fact can be shown via
computation of characteristic function if search directions Sm and prior covariance
matrix Σ0 are independent of x. When Krylov subspace Km (A, b) is used to build
Sm, as it is done in almost all Krylov subspace methods, information ym becomes a
nonlinear function of x, and the joint distribution of ym and x is not a multivariate
normal. This implies that algorithms based on Theorem 4.1.1 and Bayesian conjugate
gradient cannot stand as probabilistic Krylov subspace methods. Moreover, even
when Sm is unrelated to x, as in the Lanczos biorthogonalisation algorithm, V , that
still depends on x, is not allowed to appear in prior covariance matrix Σ0. These
restrictions render probabilistic Krylov projection methods incorrect. We can think
of three possible solutions to this problem.

The first solution is to focus on projection methods that do not use Km (A, b) to
construct approximate solution. For example, a two-grid operator in the Algebraic
Multigrid (AMG) framework has the same form as a projection method (1.5), given
V is a matrix of interpolation operator and W is a matrix of restriction operator.
The same is true for Gauss-Seidel method, which is equivalent to the sequence of
projection steps with L = K = span {ei} repeated for i = 1, . . . , n until convergence.

Another way is to use Arnoldi or Lancsoz processes to build basis in Km (A,ρ),
where ρ is independent of b. For this kind of projection processes, probabilistic
methods are rigorously justified. On the downside, there are few theoretical results
and estimations available from numerical linear algebra. One can also expect a de-
terioration of the convergence rate. In addition to that, memory-friendly algorithms
like Conjugate Gradient should be rederived (if this is possible at all), because they
explicitly rely on the fact that the first search direction is parallel to an initial residual
vector.

Finally, it is possible to apply the results obtained under the assumption that
W and V are independent of x to actual Krylov subspace methods and try to tune
prior probability to get well-calibrated uncertainty. We consider this option in the
next section.

4.3.1 Uncertainty calibration for Krylov subspace methods

For Krylov subspace methods, uncertainty is poorly calibrated. In the present sec-
tion we put forward a statistical procedure that allows us to adjust a single scalar
parameter in such a way, that Z−statistic as well as S−statistic (to be defined) are
well-calibrated.

Before the main results we prove the following supplementary lemma.

69

Lemma 4.3.1. Let p(s|α, β) = IG (s|α, β) be the inverse-gamma distribution, and
p(x|s,Σ,µ) = N (x|µ, sΣ), Σ ≥ 0, then

p(x|Σ,µ, α, β) =

∫
dx p(x|s,Σ,µ)p(s|α, β)

= St2α

(
x

∣∣∣∣µ, βαΣ

)
.

(4.1)

The first result is based on the rescaling of the full covariance matrix from The-
orem 4.2.1 as proposed in [Coc+19a].

Lemma 4.3.2. Let conditions of Theorem 4.2.1 be fulfilled. For covariance matrix
Σ0 = s

(
V V T + Ψ

)
, s > 0, W TAΨ = 0, Ψ ≥ 0; and prior p(s|α, β) = IG (s|α, β)

the following is true:

1. Probability density function p
(
s|W TAx = W Tb

)
is the inverse-gamma distri-

bution with α̃ = α +m/2, β̃ = β + δTδ/2, δ =
(
W TAV

)−1
W T (b−Ax0).

2. Predictive distribution for x|W TAx = W Tb is multivariate Student distribu-

tion St2α̃

(
x|x̃, β̃

α̃
Ψ
)

.

Lemma 4.3.2 is straightforward from the point of view of the implementation, be-

cause approximate solution (1.5) is x̃ = x0+V δ, where δ =
(
W TAV

)−1
W T (b−Ax0),

scalar ‖δ‖2
2, required for uncertainty calibration, can be readily computed for arbi-

trary projection method. Common factor s appears in Lemma 4.3.2 because if we
take Σ0 = V V T + sΨ, posterior distribution for the scale p

(
s|W TAx = W Tb

)
coincides with IG (s|α, β), that is available information is insufficient to fix the scale.
Since a scale of an error can be completely unrelated to the L2 norm of projection
of A−1b on V , additional information can be valuable to tune s. This is explored in
the following result.

Lemma 4.3.3. Let conditions of Theorem 4.2.4 be fulfilled and G = sI for s >
0, so Σ0 = V V T + sP 2, the solution is a multivariate normal variable p(x) =
N (x|x0,Σ0). For a prior distribution p(s|α, β) = IG(s|α, β) and i.i.d. observations
X?i, i = 1, . . . , k of random variable P 1(x− x0) (here P 1 is as in Theorem 4.2.3)
the following is true:

1. Posterior distribution of s|X is IG(s|α̃, β̃), where α̃ = α + k(n − m)
/

2, β̃ =

β + tr
(
XTX

)
/2.

70

2. Predictive distribution of x|W TAx = W Tb,X is St2α̃

(
x
∣∣∣x̃, β̃α̃P 2

)
.

The reason why we take P 1x as an additional observation to fix the scale is that
an exact solution has a representation x? = (I − P 1)x? + P 1x

?. If x0 = 0 the
first term (I − P 1)x? = x̃, so P 1x

? is an error. To collect independent sample xP
we need to run the same projection method second time, starting from a sample x?

from a prior distribution that we presume to be available. As a result, application
of Lemma 4.3.3 doubles (for k = 1) numerical costs of any projection method. This
is summarized in Algorithm 4.

Algorithm 4 Uncertainty calibration.

1: Input: distributions for exact solution p(x?), x? ∈ Rn; a projection method
V ,W ← Proj (A, b,m); a number of search directions m; parameters of inverse-
gamma distribution α, β; a number of observations k; statistic either S or Z.

2: Output: modified parameters of inverse-gamma distribution α̃, β̃.

3: α̃ = α + k(n−m)
/

2, β̃ = β
4: for i = 1 : k do
5: x? ∼ p(x?), b = Ax?

6: V ,W ← Proj (A, b,m)

7: x? ←
(
I − V

(
W TAV

)−1
W TA

)
x?

8: if statistic = Z then
9: δ = (x?)T (x?)

10: end if
11: if statistic = S then
12: δ = (x?)T A (x?)
13: end if
14: β̃ = β̃ + δ/2
15: end for

Note, that prior from Lemma 4.3.3 leads to simple form of Z−statistic Z(x?) =

‖x? − xm‖Σ†m
, where x? = x0 + V δ1 + s1

/
2P 2δ2 is an exact solution, Σ†m and xm

are posterior covariance matrix and posterior mean vector respectively and δi, i =
1, 2 are standard multivariate normal random variables. Indeed, because P 2 is an
orthogonal projector P †2 = P 2. Moreover, an error x?−xm belongs to Range(P 2) =
Range(P 1) which follows from the fact that x? − xm = P 1(x? − x0). So we can
conclude that test statistic is simply a squared L2 norm of the error ‖x? − xm‖2

2. In

71

light of this observation, Algorithm 4 simply samples an error from a known x? and
use its squared L2 norm to estimate an error for a given right-hand side b for which
the exact solution is unknown.

Both Lemma 4.3.2 and Lemma 4.3.3 are designed for test Z−statistic. Recently
[Rei+20] propose a different test statistic S(x) = (x− xm)T A (x− xm), where x
is drawn from a posterior distribution given linear observations as in Theorem 4.2.1.
In what is following we call this random variable S−statistic. To calibrate the scale
for S−statistic we use the following result.

Lemma 4.3.4. LetA > 0, W = V , columns of Y in Theorem 4.2.1 areA−orthogonal,
i.e., Y TAY = I and G = sI, s > 0. Let Z?i, i = a, . . . , k be a set of i.i.d. observa-
tions of random variable A1/2P 1(x−x0) (here P 1 is as in Theorem 4.2.3). For the
prior distribution p(s) = IG(s|α, β) under condition of Theorem 4.2.1 the following
is true:

1. Posterior distribution of s|Z is IG
(
s|α̃, β̃

)
, α̃ = α + k(n − m)

/
2, β̃ = β +

tr
(
ZTZ

) /
2.

2. Predictive distribution of x|W TAx = W Tb,Z is St2α̃

(
x
∣∣∣x̃, β̃α̃Y Y T

)
.

The uncertainty calibration is summarized in Algorithm 4. As explained in the
next result, the covariance matrix from Lemma 4.3.4 leads to simple S−statistic.

Lemma 4.3.5. Under conditions of Lemma 4.3.4 distribution of S(x) = (x −
x̃)A(x− x̃) is the same as distribution of sχ2

n−m.

Note, that zTz from Lemma 4.3.4 is an independent sample from eTAe, where
e is a current error vector. So, if α = β = 0, mean value of s is approximately∑k

i=1 e
T
i Aei

/
(k(n−m)), so S−statistic takes a form

S(x) ' 1

k

(
k∑
i=1

eTi Aei

)
χ2
n−m

(n−m)
. (4.2)

Since E
[
χ2
n−m

]
= n−m we can expect that S−statistic is well calibrated.

Comparison of uncertainty calibration provided by Lemma 4.3.2, Lemma 4.3.3
and Lemma 4.3.4 appears in Section 4.4.

72

Algorithm 5 Conjugate gradient.

1: Input: positive definite matrix A, right-hand side b, initial guess x, number of
sweeps m.

2: Output: approximate solution x.

3: r0 = b−Ax
4: v1 = r0

5: for i = 1 : m do
6: ηi = vTi Avi
7: γi = rTi−1ri−1

/
ηi

8: xi = xi−1 + γivi
9: ri = ri−1 − γiAvi

10: δi = rTi ri
/
rTi−1ri−1

11: vi+1 = ri + δivi
12: end for
13: x = xm

4.3.2 Comparison with [Rei+20]

In recent contribution [Rei+20], authors explore related ideas to the construction of
probabilistic projection methods. In this section we show that the covariance matrix
introduced in [Rei+20, Definition 3.1] corresponds to a particular choice of Y and
G in Theorem 4.2.1, we formulate a conjecture about optimality of the low-rank
posterior in [Rei+20], and comment on uncertainty calibration adopted in [Rei+20].

Covariance matrix

In [Rei+20] authors propose to use the following covariance matrix:

Σ0 =
m+d∑
i=1

(
γi ‖ri−1‖2

2

)
ṽi (ṽi)

T , ṽi = vi
/√

ηi (4.3)

where ηi, vi, ri are as in Algorithm 5, and d� n−m is a small number of additional
CG iterations used to calibrate uncertainty. For this covariance matrix they show
that posterior covariance after projection on the first m search directions reads

Σm =
m+d∑
i=m+1

(
γi ‖ri−1‖2

2

)
ṽi (ṽi)

T . (4.4)

73

We are going to show that covariance matrix (4.3) is in line with Theorem 4.2.1.
We start with the following supplementary result.

Lemma 4.3.6. Mean vector x̃ in Theorem 4.2.1 does not depend on the choice of
bases in subspaces Range (V), Range (W).

Now, we show that the following result holds.

Theorem 4.3.1. For A > 0 let Y , G and V = W be chosen as follows. Columns
of Y ∈ Rn×(n−m) are search directions ṽi = vi

/√
ηi, i = m + 1, . . . , n, matrix

G ∈ R(n−m)×(n−m) is diagonal with elements Gii = γi ‖ri−1‖2
2, i = m + 1, . . . , n,

where vi and η, ri, γi are defined by Algorithm 5. Columns of matrix V form a basis
for Krylov subspace Km (A, r0) = Span

{
r0,Ar0, . . . ,A

m−1r0

}
.

Let the solution to Ax = b be a normal random variable with probability density
function p(x) = N (x|x0,Σ0), where Σ0 = V V T + Y GY T .

Under this condition the mean of posterior distribution p(x|W TAx = W Tb)
coincides with projection method (1.5) (and with the output of Algorithm 5 in exact
arithmetic), and the covariance matrix is Y GY T =

∑n
i=m+1

(
γi ‖ri−1‖2

2

)
ṽi (ṽi)

T .

From Theorem 4.3.1 we can conclude that the covariance from [Rei+20] can be
considered as a special case of general result given in Theorem 4.2.1.

Before the comparison on uncertainty calibration we want to discuss a low-rank
approximation (4.4) to a full-rank matrix Σm from Theorem 4.3.1. Is it the “best”
low-rank approximation? We believe, that in some sense it is. To motivate this we
start with a supplementary statement.

Lemma 4.3.7. For A > 0 we define the following operator norm ‖B‖A,A−1 ≡
supx ‖Bx‖A

/
‖x‖A−1. If B =

∑K
j=1 djuju

T
j where d1 ≥ d2 ≥ · · · ≥ dK > 0, K ≤ n

and uTj Auk = δjk, the operator norm of B is ‖B‖A,A−1 = d1.

Next we extend a well-known optimal low-rank approximation result on norm
‖·‖A,A−1 .

Lemma 4.3.8. Let B be the same as in Lemma 4.3.7, and Bm =
∑m

j=1 djuju
T
j , m <

K. Then
‖B −Bm‖A,A−1 = inf

rankC≤m
‖B −C‖A,A−1 = dm+1.

Lemma 4.3.8 implies that approximation (4.4) is optimal (best d−rank approxi-
mation) in ‖·‖A,A−1 norm if γi ‖ri−1‖2

2 , i = 1, . . . , n form a non-increasing sequence.
Unfortunately, this is not the case, because ‖ri‖ can increase in the course of itera-
tions.

74

0 50 100 150 200 250
iteration

10 9

10 7

10 5

10 3

10 1

101

103

105

i||
r i

1||
2 2 i = 92

i = 96

i = 110

i = 160
i = 165

i = 178

Figure 4.2: Figure demonstrates γi ‖ri−1‖2
2 for matrix bcsstm07 from SuiteSparse

matrix collection.

However, because ‖ri‖ → 0 in exact arithmetic, it seems, we still can obtain
an optimal low rank approximation for an appropriate choice of d in (4.4). This is
exemplified in Fig. 4.2. Evidently, if m = 91 for d ≤ 4 we obtain optimal d−rank
approximation to the whole covariance matrix Σm from Theorem 4.3.1. However if
we take 4 < d < 8 we achieve no improvement over d = 4 because the next peak
i = 110 has larger γi ‖ri−1‖2

2. Less favourable situation occurs when m = 159. In
this case all d < 5 does not result in optimal d−rank approximation, and d = 5 gives
an optimal 1−rank approximation. Based on these observations we formulate the
following conjecture.

Conjecture 4.3.1. For almost any positive definite matrix A ∈ Rn×n, for any
iteration m ≤ n, there is a d(m) � n and r(d) ≤ d(m) such that a covariance

matrix Σm =
∑m+d(m)

i=m+1

(
γi ‖ri−1‖2

2

)
ṽi (ṽi)

T is an optimal r(d)−rank approximation

to the full covariance matrix Σ̃m =
∑n

i=m+1

(
γi ‖ri−1‖2

2

)
ṽi (ṽi)

T with respect to the
operator norm ‖·‖A,A−1.

Note, that the conjecture, if correct, merely ensures an optimality of approxima-
tion (4.4) to the full covariance matrix. Conjecture 4.3.1 does not tell whether the
full matrix is optimal for uncertainty quantification in some (yet undefined) sense.

Comparison of uncertainty calibration

Unlike previous works [Bar+19], [Coc+19a] in article [Rei+20] authors focus on A-
norm of error. For this choice it is easy to construct an underestimate for an error

75

‖x? − xm‖2
A using information, available as a byproduct of Algorithm 5. Namely,

this is done by the following expression [Rei+20, p. 4.1], [HS+52, Theorem 5:3]

‖x? − xm‖2
A − ‖x

? − xm+d‖2
A =

m+d∑
m+1

γi ‖ri−1‖2
2 , (4.5)

from which we conclude that

‖x? − xm‖2
A ≥

m+d∑
m+1

γi ‖ri−1‖2
2 . (4.6)

The advantage of a posterior covariance matrix defined by (4.4) is that to compute
it one needs to perform a few additional iterations of conjugate gradient and store
A-orthogonal directions vi and scales γi ‖ri−1‖2

2. So the estimation of Σm is cheap
and justified by (4.6). However, in our opinion there are several disadvantages. First,
even when ‖ei‖A is small ‖ei‖ can remain large in the subspace corresponding to
small eigenvalues of A. Second, (4.6) provides only underestimate, which can be
misleading in case of slow convergence (see Fig. 4.5 for an example of this behavior
for biharmonic equation).

Our approach to uncertainty calibration is based on Lemma 4.3.4 and Algorithm 4
with statistic = S. Algorithm 4 simply performs an additional run of a projection
method (conjugate gradient in this case) for a known x?, and records ‖x? − xm‖2

A.
This norm is then used as an estimation for an error with a target right-hand side b
for which x? is unknown. We will see that this approach leads to more reasonable S-
statistic. The obvious disadvantage is a much higher cost of uncertainty calibration.
However, our approach can be cheaper in case one needs to solve a set of linear
equation with different right-hand sides and the same matrix A (Section 4.4 contain
a relevant example).

4.4 Numerical examples

Julia [Bez+17] code that reproduces experiments in this section is available at https:
//github.com/VLSF/BayesKrylov.

4.4.1 Comparison with [Bar+19]

To assess the uncertainty calibration, we compare theoretical distributions for test
statistics with empirical probability density functions averaged over many matrices.

76

https://github.com/VLSF/BayesKrylov
https://github.com/VLSF/BayesKrylov

0.000

0.005

0.010

0.015

0.020

0.025

0.030

pr
ob

ab
ilit

y
de

ns
ity

 fu
nc

tio
n

VVT + sP2
s(VVT + P2)
A 1 or A 1A T

2
95

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

pr
ob

ab
ilit

y
de

ns
ity

 fu
nc

tio
n

VVT + sP2
s(VVT + P2)
F(95, 95)
F(95, 5)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

||p
p t

ar
ge

t||
1

s(VVT + P2), A 1, A 1A T

VVT + sP2, point
VVT + sP2, hierarchical
perfect UQ

0 50 100 150 200 250 300
point estimation

0.000

0.005

0.010

0.015

0.020

0.025

0.030

pr
ob

ab
ilit

y
de

ns
ity

 fu
nc

tio
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
hierarchical modelling

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

pr
ob

ab
ilit

y
de

ns
ity

 fu
nc

tio
n

10 20 30 40 50
m = rank V

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

||p
p t

ar
ge

t||
1

m = rank V = 5 m = rank V = 5

CG
GM

RES

Figure 4.3: Figures demonstrate theoretical test statistics and empirical distributions
for different prior distributions. Common legends for each column appear in the
first row. The legend provides specifications of covariance matrices. For example,
s
(
V V T + P 2

)
refers to posterior described in Lemma 4.3.2 with Ψ = P 2. The first

two columns contain point estimation and hierarchical modelling for five projection
steps. The first row presents results related to the conjugate gradient method and the
second to GMRES. In the last column we show how L1 norm of the difference between
empirical pe and target pt (χ2 or F as explained in Section 4.4) distributions changes
with the number of projection steps. Perfect uncertainty calibration corresponds to
zero value of discrepancy. The worst possible mismatch corresponds to L1 norm of
the error equals two. Overall we can see that the method proposed in Lemma 4.3.3
provides a reasonable uncertainty for both projection processes.

77

Note, that unlike S−statistic, Z−statistic for perfectly calibrated uncertainty does
not depend on the matrix for both point estimation and hierarchical modelling.
This makes averaging over A legitimate. Details of this procedure are summarized
in Algorithm 6.

Algorithm 6 UQ assessment.

1: Input: Distributions for matrix p(A); exact solution p(x?); number of search
directions m; projection method V ,W ← Proj (A, b,m),; number of samples N ;
statistics p(z)← Stat(e1, . . . , eN); number of matrices M .

2: Output: test statistic.

3: for i = 1,M do
4: Ai ∼ p(A)
5: for j = 1, N do
6: x?j ∼ p(x?)
7: bij = Aix

?
j

8: V ij,W ij ← Proj (Ai, bij,m)

9: x̃ij = V ij

(
W T

ijAiV ij

)−1
W T

ijbij
10: eij ← x̃ij − x?j
11: end for
12: end for
13: p(z)← Stat(e11, . . . , eNN)

Details on components of Algorithm 6 are as follows:

p(A): To draw symmetric positive definite matrices A = UDUT we sample stacked
eigenvectors U from uniform distribution over O(n), and eigenvalues from ex-
ponential distribution with scale s̃.

p(x?): As a distribution of exact solution we take standard multivariate normalN (·|0, I)
as in [Coc+19a].

Proj : Two projection processes are used. The first one withW = V =
(
b̃ Ab̃ · · · Am−1b̃

)
,

b̃ = b
/
‖b‖2 is equivalent to conjugate gradient in exact arithmetic. The sec-

ond one with W = AV , and V =
(
b̃ Ab̃ · · · Am−1b̃

)
, b̃ = b

/
‖b‖2 is

equivalent to GMRES under the same condition.

78

Stat : For distribution p(x) = N (x|µ,Σ), rank(Σ) = n − m test statistic is z =
(x− µ)T Σ† (x− µ) ∼ χ2

n−m, and for multivariate Student distribution Stν (µ,Σ),

test statistic is z = (x− µ)T Σ† (x− µ) /(n−m) ∼ F (n−m, ν).

In all experiments, the size of the problem is n = 100, the scale is s̃ = 10,
number of matrices M = 500, number of samples is N = 20. We also take G = I,
α = β = 01 in both Lemma 4.3.2 and Lemma 4.3.3, and use Algorithm 4 with
statistic = Z and k = 1, i.e., a single additional sample, to calibrate uncertainty.
Results of Lemma 4.3.2 and Lemma 4.3.3 are used in two regimes. The first one
is point estimation. In this case parameters α̃, β̃ of inverse-gamma distribution
are used to find a mean value E[s] = β

/
(α − 1), and this mean value is used as

a scale in covariance matrix sP 2. As a result, the statistic Z(x) is compared with
∼ χ2

n−m. The second one is a hierarchical modelling. In this case s is marginalized
(as in second parts of Lemma 4.3.2 and Lemma 4.3.3) and the resulting statistic
Z(x) is compared with F (n − m, 2α̃). More precisely, according to Lemma 4.3.2
for prior with covariance matrix s(V V T + P 2) and no additional observations the
target distribution is F (n−m, 2α+m) = F (n−m,m), whereas Lemma 4.3.3 implies
that for prior with covariance matrix V V T +sP 2 and k additional observations (see
Algorithm 4) we should use F (n −m, 2α + k(n −m)) = F (n −m, k(n −m)) as a
target distribution.

As a distance between distributions we choose standard L1 norm d(p1, p2) ≡∫
dx |p1(x)− p2(x)| approximated by central Riemann sum. Probability density is

computed with RBF kernel density estimator.
The results are presented in Fig. 4.3 (k = 1 in Algorithm 4) and Fig. 4.4 (k =

1, 5, 25 in Algorithm 4). From data presented on Fig. 4.3 it follows, that covariance
matrices A−1, A−1A−T and s(V V T + P 2) (Lemma 4.3.2 with Ψ = P 2) fail to
provide meaningful uncertainty calibration. The only reasonably tuned variant is
given by covariance V V T + sP 2 (Lemma 4.3.3), where s is fixed with additional
observation Px. We can also see that the hierarchical modelling is marginally better
than the point estimation. Fig. 4.4 describes how uncertainty calibration depends on
the number of observations k. We can see that when k increases, the calibration for
point estimation slightly improves, whereas the increase in k leads to the degradation
of uncertainty calibration for the hierarchical modelling. Nowhere the convergence to
theoretical distribution is observed when k is increased. This pathological behaviour
supports the discussion in Section 4.3, where we state that probabilistic projection
methods in they current form are unsuitable for Krylov subspace methods.

1Note that the choice α = β = 0 leads to the improper prior. In the present case the posterior
distribution is always proper, so noninformative prior seems harmless. Moreover, s is a scale
parameter so p(s) ∝ s−1 is a reasonable choice (see [Gel+13, Section 2.8]).

79

0 50 100 150 200 250 300

0.000

0.005

0.010

0.015

0.020

0.025

0.030

pr
ob

ab
ilit

y
de

ns
ity

 fu
nc

tio
n

2
95

k = 1
k = 25

0.8

0.9

1.0

1.1

1.2

1.3

1.4

||p
p t

ar
ge

t||
1

k = 1
k = 5
k = 25

k = 1
k = 5
k = 25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

pr
ob

ab
ilit

y
de

ns
ity

 fu
nc

tio
n

F(50, 50)
F(50, 25 × 50)
k = 1
k = 25

10 20 30 40 50
m = rank V

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

||p
p t

ar
ge

t||
1

10 20 30 40 50
m = rank V

point estimation hierarchical modelling

CG
GM

RES

Figure 4.4: Figures summarize the dependence of proposed uncertainty calibration
(Algorithm 4) on the number of additional observations k. First row corresponds to
results for conjugate gradient iteration and the second row – for GMRES iteration.
The second and the third columns, which contain point estimation and hierarchical
modelling, respectively, share common legends that appeared in the first row. Graphs
in these last two columns show how L1 norm of the difference between empirical pe
and target pt (χ2 or F as explained in Section 4.4) distributions changes with the
number of projection steps for k = 1, 5, 25 additional observations in Algorithm 4.
Figures in the first column allow for visual inspection of empirical and target distri-
butions for Z-statistic. Namely, for CG, we sketch the probability density function of
Z-statistic for point estimation in the first row (the target distribution is χ2), whereas
the second row contains the same quantity but for hierarchical modelling (the target
distribution is F). We can see that for point estimation, additional observations
marginally improve uncertainty calibration, whereas, for hierarchical modelling, the
situation is reversed. We conclude that, first, it makes little sense to use k > 1 for
the chosen family of linear systems. Second, such behaviour clearly indicates that
the chosen statistical model is inadequate for Krylov subspace methods.

80

10 16

10 13

10 10

10 7

10 4

10 1

102

105

(x
x

)T A
(x

x
)

S-statistic
error

10 6

10 4

10 2

100

102

104

10 29

10 24

10 19

10 14

10 9

10 4

101

0 50 100 150 200 250 300 350 400
iteration

10 14

10 11

10 8

10 5

10 2

101

104

(x
x

)T A
(x

x
)

0 200 400 600 800 1000 1200
iteration

10 3

10 1

101

103

105

0 10 20 30 40 50 60
iteration

10 24

10 20

10 16

10 12

10 8

10 4

100

104

BayesCG
VV

T+
sP

2
bcsstm07 Biharmonic shallow_water2

Figure 4.5: Figures demonstrate exact error eTmAem on iteration m, and samples
from S−statistic for three matrices. First row corresponds to uncertainty calibra-
tion proposed in [Rei+20]. Second row shows samples from S−statistic calibrated
according to Algorithm 4 with statistic = S. We can see that the statistical un-
certainty calibration proposed in this article leads to better uncertainty in all three
cases.

4.4.2 Comparison with [Rei+20]

In this case, we use Algorithm 4 with statistic = S and k = 1. Note, that because
for large m the effect of rounding errors is significant, we use conjugate gradient
to compute projection operator P1. If one computes P1 as in Algorithm 4, it gives
an underestimation of error for large m, because in this case methods based on
projection method (1.5) converge much faster than the conjugate gradient as defined
in Algorithm 5.

For a given matrix A > 0 we compare uncertainty calibration as follows. For
method described in [Rei+20] we sample δ from N (·|0,Σm), where Σm is a posterior
covariance matrix (4.4) and plot l = 100 samples from S−statistic δTAδ for m in
regular intervals (each 10 or each 20 iterations). For our approach we use Algorithm 4

with statistic = S and k = 1, take E[s] = β̃
/

(α̃−1) and sample from E[s]χ2
n−m, which

is equivalent to S−statistic as explained in Lemma 4.3.5. Results for test problems
can be found in Fig. 4.5. Overall, we can see that our approach leads to much

81

better uncertainty calibration in all cases. The price for it is much more expensive
uncertainty calibration than the one adopted in [Rei+20]. Results for individual
matrices are discussed below.

We use three positive definite matrices A:

bcsstm07

The first example is a symmetric positive definite n = 420 matrix from SuiteSparse
Matrix Collection: https://sparse.tamu.edu/HB/bcsstm07.

From the first column of Fig. 4.5 we can conclude that the method of [Rei+20]
leads to underestimation for approximately an order of magnitude for each iteration.
Our approach gives almost exact error estimation in this case.

Biharmonic equation

For the second test problem we take biharmonic equation (1.3.8). Results are in
the second column of Fig. 4.5. The condition number is large and the convergence
is extremely slow. As a result, uncertainty calibration from [Rei+20] is poor. For
example at m = 1200 the exact error norm is about ' 10−3, whereas an estimation
is ' 10−6. Our statistical uncertainty calibration results in a mild overestimation of
the exact error, which is better than the uncertainty from [Rei+20].

shallow water2

The third example is symmetric positive definite n = 81920 matrix from SuiteSparse
matrix collection: https://sparse.tamu.edu/MaxPlanck/shallow_water2.

Last column of Fig. 4.5 provides a summary of results. The convergence is good
and for all practical purposes both our approach and the method from [Rei+20]
provide a reasonable estimation of error. The only difference is that our approach
leads to smaller variance of the test statistic.

4.4.3 Uncertainty quantification for PDE-constraint optimiza-
tion

As a last example we consider an optimal heating problem. Consider a diffusive heat
transfer [PTA12, Section 5.1.3] from four point heat sources with unit heat fluxes in

82

https://sparse.tamu.edu/HB/bcsstm07
https://sparse.tamu.edu/MaxPlanck/shallow_water2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
r

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

lo
ss

m = 20

exact
VVT + sPT

2
95%, Chebyshev

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
r

m = 30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
r

m = 50

Figure 4.6: Figures demonstrate comparison of exact loss function (4.10) with an
estimation obtained from probabilistic projection method from Theorem 4.2.4 with

W = V =
(
b̃ Ab̃ · · · Am−1b̃

)
, b̃ = b

/
‖b‖2 for m = 20, 30, 50. Shaded region

is enclosed by curves µm(r) ± σm(r), where µm(r) is an approximate mean value of
L(r) and σm(r)2 is approximate variance, both estimated using 30 samples from the
posterior distribution specified in Theorem 4.2.4.

simple geometry

− ∂2T (x, y)

∂x2
− ∂2T (x, y)

∂y2
=

4∑
i=1

δ(x− xi)δ(y − yi),

x, y ∈ Γ ≡ [0, 1]2 , T (x, y)|∂Γ = 0,

(4.7)

where xi, yi are located in vertices of the square:

x1 = r cos
(
π
/

4
)
, y1 = r sin

(
π
/

4
)

;

x2 = −r cos
(
π
/

4
)
, y2 = r sin

(
π
/

4
)

;

x3 = −r cos
(
π
/

4
)
, y3 = −r sin

(
π
/

4
)

;

x4 = r cos
(
π
/

4
)
, y4 = −r sin

(
π
/

4
)
.

(4.8)

We consider the following PDE-constrained optimization problem

min
r

∫
dxdy (T (x, y)− Ttarget)

2 s.t. T (x, y) solves (4.7). (4.9)

Physically, the solution to the problem (4.9) is a distribution of sources that results
in a smallest deviation of temperature field from the target temperature.

We use the finite element method (see Section 1.3.2) to discretise equation (4.7).
As a result we obtain linear problem At = b(r). A discrete counterpart of the

83

continuous PDE-constrained optimization problem (4.9) reads

min
r

1

(2L − 1)2 ‖t− Ttarget‖2
2 s.t. At = b(r). (4.10)

To test the uncertainty calibration, we approximate a solution of linear system

using probabilistic projection method with W = V =
(
b̃ Ab̃ · · · Am−1b̃

)
, b̃ =

b
/
‖b‖2 and sample t̃ from the posterior distribution. This procedure turns loss

function L(r) into a random variable.
The resulting uncertainty and the loss function are depicted in Fig. 4.6. We

take L = 6, so the size of the matrix is n = 3969, Ttarget = 0.5, and access three
approximate solutions using rank(V) ≡ m = 20, 30, 50. In each case we retrieve 30
samples from L(r) and estimate mean µm(r) and variance σ2

m(r). The shaded region
in Fig. 4.6 lies in-between curves µm(r) ± 5σm(r). According to the Chebyshev
inequality it contains a given sample from L(r) with probability 0.96. In addition to
µm(r) and variance σ2

m(r), Fig. 4.6 contains an “exact” loss function obtained from
(4.10), where linear system is solved with LU decomposition. Note, that since for
all r the same linear system is solved, we perform the uncertainty calibration (using
E[s] from Lemma 4.3.3) only once. So, the present example demonstrates that our
uncertainty calibration can be cheaper than the one, proposed in [Rei+20].

From Fig. 4.6 we can see that the uncertainty calibration is not ideal. For exam-
ple, in the case m = 30 the exact value of L(r) is confidently rejected for r ≤ 0.2 and
0.3 ≤ r < 0.5, the same is true for m = 20 for r ≤ 0.5. Despite this fact, we argue
that the present uncertainty is useful. Observe, that for m = 20 the largest value
σ20(r) resides in the region that corresponds to the smallest value of the exact loss.
This fact can be exploited as follows. A natural way to perform a PDE-constrained
optimization is to fit a surrogate model [PWG18, Section 5], using multifidelity Gaus-
sian process (see [KO00] for a well-known example of a multifidelity model). The
most widely used exploration rules (see [Sha+15, Section IV]) are directly related
to the variance σ(r), which contains σm. To exemplify, the well known principle
coined “optimism in the face of uncertainty” (see [LS20, Section 7.1]) used in the
construction of UCB exploration rules, prescribes to choose the next point accord-
ing to arg min (µm(r)− σm(r)). As such, with the present uncertainty calibration
Gaussian process favours a correct region for the further exploration.

84

Chapter 5

Hidden representation

5.1 Probability, uncertainty and numerical meth-

ods

Probability theory provides natural way to make qualitative statement about un-
certain outcome of any experiment for which a complete specification of relevant
conditions that can influence the outcome are not available. As it has been realized
by some researches already in 1970, the experiment can be computational as well
[OS19]. By computational experiment we mean arbitrary algorithm that provides an
approximate answer to a given numerical task. So, if we treat numerical experiments
as being uncertain, the goal is to provide probability distribution over outcomes, in
place of a single approximation (known as point estimation in statistical literature).
The role of probability distribution is to capture uncertainty about the approxima-
tion made. So, the goal is not unlike a usual error estimation that should accompany
any reasonable algorithm (see [Ske86], [CF13] for the examples).

Numerical methods that output distribution in place of a point estimation were
coined probabilistic numerical methods (PN) [HOG15]. The primary goal of the PN
methods is not to speed up computations or approximate some object of interest,
but rather to quantify epistemic uncertainty that comes from discretization or the
early stopping of the algorithm [HOG15], [Coc+19b]. By now, PN algorithms are
available for numerical integration [Bri+19], solution of ODEs [SDH14], numerical
linear algebra [Bar+18], optimization [HK13], PDE solution [Owh15], and other
problems (see [OS19; Coc+19b] for a more detailed account).

In recent work [Coc+19b] authors provided a formal definition of PN method.
Among other things, this work discusses the update of the distribution, consistency

85

when different PN methods are combined and general existence results. The approach
that is advocated in [Coc+19b] is to postulate random nature of the desired answer

from the start. For example, one should formally treat number
∫ b
a
dxf(x) as random

even if f(x) is fixed completely known (that is, one provides a way to compute
f(x) for all relevant x with any prescribed tolerance) deterministic function. As a
justification for this approach authors [Coc+19b] rely on specific interpretation of
probability as epistemic uncertainty.

In the present section we propose completely different approach that can turn
the output of arbitrary black-box function into the distribution. Our approach is
based on symmetry transformations and indifference argument. Namely, we find
transformations of input data that preserve an exact answer to a given problem
and simultaneously disturb the output of a given algorithm. Next we introduce
probability distribution over these transformations using indifference argument. As
a result we obtain probability distribution over output of arbitrary deterministic
algorithm. The scheme is fully described in Section 5.2. Examples of distribution
obtained this way appear in Section 5.2.1. In Section 5.3 we apply proposed approach
to general linear iterative methods. And in Section 5.4 we construct am inexpensive
variational approximation to a preconditioned Richardson iteration.

5.2 Uncertainty is in the representation

This section contains a general description of the procedure that allows us to intro-
duce a subjective distribution over the input of numerical schemes, which in turn
can transform the broad class of classical numerical methods into PN algorithms.
As the first illustration of definitions to appear shortly, we will use systems of linear
equations.

Let A ∈ RK×K , detA 6= 0, b ∈ RK and

Ax = b (5.1)

is a linear problem we want to solve. In principle, the solution is known

x = A−1b, (5.2)

and can be made explicit via, for example, singular value decomposition. However,
in some situations, one is forced to use an approximate solution, for instance, the
generic projection method of the form

x̃ = x0 + S
(
RTAS

)−1
RT (b−Ax0) ,

R ∈ RK×L, S ∈ RK×L, det
(
RTAS

)
6= 0.

(5.3)

86

P Q

P
′

Q
′

f

φξgξ

f

(a)

P̂ Q̂
Q̂
′′

P̂
′

Q̂
′

f̂

φξ
gξ

f̂

(b)

Figure 5.1: On (a) is a commutative diagram that represents an invariance of the
exact problem with respect to the pair of transformations gη, φη. Whereas (b) ex-

emplifies the situation in which the approximation f̂ (i.e., a particular numerical
method) fails to be invariant under the same pair of transformations. See Section 5.2
for the detailed explanation.

Concrete expressions for R and S depend on the matrix A and the projection
method. Usually, columns of R and S form a basis for some Krylov subspace. All
projection methods also involve the inversion of the matrix, but since M � N , the
complexity of the problem is lower.

Now, we are ready to introduce a few concepts that we need for the subjective
distribution over the space of solutions.

1. Let P be all information needed to define a particular problem.

For (5.1) one can see that P = (A, b).

2. The exact solution for a particular problem instance (or representation) P in
explicit or implicit form is denoted by f (P) = Q.

For the system of linear equations, the implicit form is given by (5.2). The
explicit form would be, for example, the condensation-based Cramer’s rule
[HA12], or the Gaussian elimination with pivoting via LU decomposition [TB97,
Lecture 20].

3. We also define a family of functions gξ : P → P
′
, parameterized by ξ, that

transform one problem instance to another within a chosen class of problems.

For (5.1) we can consider transformation gU ,V : (A, b) →
(
V −1AU ,V −1b

)
,

where U ,V ∈ RK×K , detU 6= 0, detV 6= 0.

87

4. Now, we introduce another transformation φξ : Q → Q
′

over the solutions
f (P) that combined with gξ restores the solution to the initial problem, that is
f (P) = φξ (f (gξ (P))). For the transformation gU ,V : (A, b)→

(
V −1AU ,V −1b

)
the complementary one is φU ,V : f (P)→ Uf (P).

Fig. 5.1a illustrates the commutative diagram that contains elements we have
just described. In words, to apply our approach, one first needs to find a family of
transformations that leave the problem invariant.

Next, we define a set of analogous concepts for the numerical algorithm employed
to solve the problem.

• Let P̂ be the information used by the algorithm.

For the projection method (5.3), one has Y = (A, b,x0).

• We let f̂
(
P̂
)

= Q̂ to denote the numerical solution, i.e. the approximation to

the solution of the problem: P̂ ' P ⇒ f̂
(
P̂
)
' f (P).

In the context of the projection method, (5.3) is an example of an approxima-
tion to (5.2).

Note that it is often possible to find such a pair of transformations gξ, φξ that

the exact solution P remains invariant, whereas approximate one P̂ is not. More
precisely in previously defined terms, the condition reads

Qξ ≡ φξ (f (gξ (P))) = f (P) but Q̂ξ ≡ φξ

(
f̂
(
gξ

(
P̂
)))

6= f̂
(
P̂
)
. (5.4)

The same idea is represented schematically on Fig. 5.1.
Since, by construction, gξ and φξ change the representation of the problem P and

do not change the solution f (P) which is the only thing of interest at the end of the
day, one can introduce a distribution over the set of transformations p (ξ). Should
(5.4) be satisfied, p (ξ) in turn induces a pair of distributions

p (Qξ) = δ (Qξ − f (P)) and p
(
Q̂ξ

)
6= δ

(
Q̂ξ − f̂

(
P̂
))

, (5.5)

the first of which is trivial, as one expects, given this is a completely deterministic
quantity, and the second one is nontrivial by construction of symmetry transforma-
tions.

Regardless of the choice of a particular representation P̂ , the same algorithm f̂
is applied to solve the problem. Since information about symmetry transformations

88

gξ and φξ is not accessible to algorithm f̂ , we propose to call the presented scheme
the method of hidden representation and use the term hidden representation for the
corresponding prior distribution.

To completely specify the hidden representation, distribution p(ξ) and the choice
of functions gξ, φξ if there are many, should be chosen based on an application at
hand. At the present stage, we do not have a general recipe about how to achieve
a reasonable uncertainty quantification for an arbitrary problem. However, in Sec-
tion 5.3, Section 5.4 we construct a hidden representation and calibrate uncertainty
for iterations that solve linear problem (5.1). Section 5.2.1 also contains several
examples of gξ, φξ for a number of well-known numerical methods.

Also note that by construction, if it is possible to describe ξ as a measurable
space, the consistency and convergence for a method f̂ ensures the concentration of
the probability measure p (Qξ). As such, the method is asymptotically consistent for
any well-defined distribution.

5.2.1 Transformation-based examples

In this section, we demonstrate that it is relatively easy to find suitable symmetry
transformations for a large class of numerical problems. Empirically computed distri-
butions and experiments that demonstrate the concentration of measure for the algo-
rithms in this section can be found in https://github.com/VLSF/HiddenRepresentation.
The same repository also contains examples of the consequences of hidden represen-
tation for conjugate gradient and “not-a-knot” cubic splines which are not included
here.

Trapezoidal rule

A definite integral of the form

Q (a, b, f(x)) ≡
b∫

a

f(x)dx, (5.6)

can be approximated numerically by, for instance, trapezoidal rule [Tai94]

Q (a, b, f(x), N) =
b− a
N

(
N−1∑
i=1

f

(
a+ (b− a)

i

N

)
+
f(a) + f(b)

2

)
. (5.7)

89

https://github.com/VLSF/HiddenRepresentation

0.0 0.2 0.4 0.6 0.8 1.0
original uniform grid

0.0

0.2

0.4

0.6

0.8

1.0

tra
ns

fo
rm

ed
 g

rid

x0 = 0.6, = 2.5

N(y|x0,)

(a)

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
value of the integral

0

5

10

15

20

pr
ob

ab
ilit

y
de

ns
ity

= 0.5, = 0.5
10 points
20 points

(b)

Figure 5.2: (a) – two-parameter grid transformation defined by (5.10); (b) – the
resulting distribution (kernel estimation of the probability density function) of the
value of the integral.

The original problem is invariant under the invertible change of variables x = gξ(y)
in a sense that

b∫
a

f(x)dx =

g−1
ξ (b)∫

g−1
ξ (a)

f (gξ (y)) |∂ygξ(y)| dy. (5.8)

However, it is quiet obvious that, in general, approximation (5.7) is not invariant
under the same transformation

Q (a, b, f(x), N) 6= Q
(
g−1
ξ (a), g−1

ξ (b), |∂xgξ(x)| f (gξ(x)) , N
)
. (5.9)

It means that the distribution over the parameter ξ will induce distribution over
(5.7).

As an example of parametric transformation, we consider the popular grid stretch-
ing method [Lis17, ch. 4]. Without loss of generality, we can assume that the func-
tion is defined on the interval [0, 1]. The following two-parameter grid transformation
concentrates nodes near the point x0

N (y|x0, ξ) =

x0

(
1− E

(
1− y

x0

∣∣∣ ξ)) , if y ∈ [0, x0] ;

x0 + (1− x0)E
(
y−x0
1−x0

∣∣∣ ξ) , if y ∈ [x0, 1] ,
E (y|ξ) =

eξy − 1

eξ − 1
,

(5.10)
where ξ controls the degree of grid concentration. The example of the transformed
grid appears in Fig. 5.2a.

90

0.2 0.1 0.0 0.1 0.2 0.3
(exact N)/

0

2

4

6

8

10

12

pr
ob

ab
ilit

y
de

ns
ity

N = 10 iterations
N = 400 iterations

(a)

4 2 0 2 4
x50

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 5.3: (a) – probability density function for the difference between the exact
leading eigenvalue and the approximated one rescaled by ε (see (5.16) and (5.17) for
the problem and similarity transformation respectively), (b) – probability density
function for x50 from (5.18) applied to (5.19).

As an integrand, we take the function

f(x) =

(
x− 1

2

)√
20

π
exp

(
−40

(
x− 1

2

)2
)
, (5.11)

and, keeping ξ = 10, draw x0 from a Beta distribution

p(x0|α, β) =
xα−1(1− x)β−1

B(α, β)
. (5.12)

As we discussed earlier, the result of numerical integration is not invariant under
the transformation (5.10). As a consequence, the probability density of the value
of the integral under the prior distribution (5.12) is nontrivial. The kernel density
estimation is shown in Fig. 5.2b. Since Beta distribution is broad for chosen values
of hyperparameters, the resulting grid either resolves the region where the function
is negative or the region where the function is positive, hence there are two distinct
peaks. The probability density function for a trapezoidal rule with 20 points also
shows that peaks become less prominent if one refines the grid. One can expect
the distribution to converge to delta function as we further increase the number of
points.

Leading eigenvalue by power iteration

The power iteration is an iterative method that allows approximating a leading, i.e.,
of the largest absolute value, eigenvalue and correspondent eigenvector. For conver-

91

gence conditions and the rate of convergence, see, for instance, [Saa20, Algorithm
4.1]. The iteration scheme starts from the initially chosen vector v0 and successively
computes updates using the following two formulae

vn = Avn−1

/
‖Avn−1‖∞ , (5.13)

λn =
(vn,Avn)

(vn,vn)
. (5.14)

We will use power iteration to find only the leading eigenvalue. Let λNit
(A,v0)

correspond to the Nit steps of power iteration (5.14) starting from v0. The spectrum
of matrix A remains the same under the similarity transformation(

V −1AV
) (
V −1x

)
= λ

(
V −1x

)
. (5.15)

However, it is easy to see that the scalar product (x,x) is not invariant under the
change of basis with V −1 unless V is an orthogonal matrix. Hence, if one chooses
the arbitrary distribution over invertible matrices (at least some of which are not
orthogonal) pv(V), it induces the probability distribution over the leading eigenvalues
computed with (5.14).

As an example, consider a toy problem

A = vvT + (1 + ε)uuT ,v =
1√
2

(
1
−1

)
,u =

1√
2

(
1
1

)
. (5.16)

We apply transformed (5.15) power iteration (5.14) to the problem (5.16), using

V =

(
a 0
0 1

)(
cosφ − sinφ
sinφ cosφ

)
, p(φ) = Ind

[
φ ∈

[
0,
π

2

]]
. (5.17)

So the transformation performs rotation on a random angle and the rescaling along
the new first axis. The result for ε = 10−2, a = 1/2 appears in Fig. 5.3a. One can
see the measure concentration as the number of iteration increases.

Newton’s method

Newton’s method is a widely known technique for the solution of nonlinear algebraic
equations of the form g(x) = 0. For a scalar equation, the single iteration reads

xn+1 = xn − g(xn)

g′(xn)
. (5.18)

92

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

f(x
)

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

f(x
)

(b)

Figure 5.4: Figures provide an example of the hidden representation applied to the
interpolation problem. In (a) one can see curves that result from (5.22) applied to
(5.24), and in (b) a result for the derivative of the Lagrange polynomial, i.e., the
application of (5.23) to the same problem (5.24). Solid dots correspond to the true
values of the function and derivative.

It is always possible to transform the initial equation using any function fξ(x) (one-
parameter family with different functions corresponding to different ξ) that is defined
over the range of g, fξ(x) = 0 ⇔ x = 0 and f

′
(x) 6= 0∀x. Under this condition

any root of the original equation g(x) = 0 is also a root of the modified equation
fξ(g(x)) = 0. So it is clear that any distribution over ξ does not affect the exact
solution.

Nevertheless, it does affect the solution after a finite number of iterations. As an
example, we consider

g(x) = (x− 2)(x+ 3), fξ(y) =
eξy − 1

eξ − 1
, p(ξ) = N(0, 0.1), (5.19)

where N (0, 0.1) stands for the Normal distribution with zero mean and σ = 0.1.
Fig. 5.3b shows the distribution over x50.

Interpolation and differentiation

Suppose one is given a value of some function in K distinct points

{f(xi)}i=1,K (5.20)

93

and is asked to restore missing values of the function in-between. One solution of
this simple interpolation problem is to use the Lagrange polynomial

f̂(x) =
K∑
i=1

f(xi)pi(x), pi(x) =
∏
k 6=i

x− xk
xi − xk

. (5.21)

Now, suppose we knew the values of a function at all points of the interval of interest,
i.e. f(x). In this case, the trivial transformation with arbitrary invertible function
g−1
ξ (gξ (f(x))) changes nothing. In particular, the original data (5.20) remain intact.

On the other hand, this transformation leads to the modification of (5.21) that reads

f̂ξ(x) ≡ g−1
ξ

(
K∑
i=1

gξ (f (xi)) pi(x)

)
6= f̂(x). (5.22)

Again, the distribution over ξ results in the distribution over f̂ξ(x). Since the problem
of numerical differentiation is intertwined with the problem of interpolation, the
ordinary chain rule

d

dx
f(x) =

d

dx
gξ (f(x))

/ d

dy
gξ (y)

∣∣∣∣
y=f(x)

, (5.23)

allows one to compute a derivative of f(x) from the interpolation of the function
gξ (f(xi)). Figs. 5.4a and 5.4b show samples from the resulting distribution over
(5.22) with

f(x) = 1 + cos (πx) , gξ(y) = exp (−ξy) , p(ξ) = Ind [ξ ∈ [−1, 3]] , (5.24)

for the Lagrange interpolation through 10 known values of the function on the uni-
form grid on [−1, 1].

5.2.2 Examples based on the hidden subgrid dynamics

Here we consider simplified approach, where the only one transformation is required.
Code for these examples can be found in the same repository.

Polynomial approximation

Suppose we are presented with a function f(x) on the interval [x, x+ ∆x]. One
of the simplest way to approximate the function is to use first-order polynomial
approximation

[f]approximate (ξ) =
1

∆x
f(x)(x+ ∆x− ξ) +

1

∆x
f(x+ ∆x)(ξ − x). (5.25)

94

Now we can alter the continuous approximation problem by adding and subtracting
known function g(x). This gives us expression [f − g]approximate (ξ) + g(x). In is clear
that if approximation step is exact, function g(x) does not matter, so the transfor-
mation we described can be considered as a symmetry of continuous problem. Now,
the trick is to choose g(x) in such a way, that [f − g]approximate (ξ) = [f]approximate (ξ).
This can be easily done based on classical error analysis. For example, we can take
g(x) = ε(x+ ∆x− ξ)(ξ − x)f

′′
(x)/2 (see, for example, [Hol16, Theorem 5.2]), which

is the reminder for the Lagrange interpolation multiplied by parameter ε. With this
choice of g(x) we obtain the following approximation

[f]approximate (ξ) =
1

∆x
f(x)(x+ ∆x− ξ) +

1

∆x
f(x+ ∆x)(ξ − x)

−ε(x+ ∆x− ξ)(ξ − x)f
′′
(x)/2.

(5.26)

Since function g(x) is identically zero on the grid with spacing ∆x, we call this
construction “hidden subgrid dynamics”. Now, if one takes ε to be random variable,
Eq. (5.26) becomes random function which approximate sufficiently smooth function
f(x) arbitrary well when ∆x→ 0.

In Fig. 5.5 we provide the example of polynomial approximation for the function
f(x) = exp (sin (3πx))+exp (− cos (πx)). For this example we take ε ' N (0, σ2), σ2 =
0.2, and as f ′′(x) we use the exact derivative (example with approximate derivative
appears in Section 5.2.2). As we can see, the uncertainty provided by the method
is quite reasonable. The main reason for that is the connection with classical error
estimation. It is interesting to note that random function in Fig. 5.5 are not smooth.
This problem can be fixed if one resorts to a higher order method or Hermite inter-
polation.

Differentiation and integration

Once the polynomial approximation is known, it can be used to define integration
and differentiation. The derivative of 5.26 reads[

f
′
]

approximate
(ξ) =

1

∆x
(f(x+ ∆x)− f(x))− ε∆x

2
f
′′
(x), (5.27)

and the integration yields

∫ x+∆x

x

dξ [f]approximate (ξ) =
∆x

2
(f(x) + f(x+ ∆x))− ε∆x

3

12
f
′′
(x). (5.28)

95

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1

2

3

4

5
stochastic part
interpolated
ground truth

(a)

0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
groud truth
interpolated
probability density

(b)

Figure 5.5: Interpolation Eq. (5.26) applied to the function f(x) = exp (sin (3πx)) +
exp (− cos (πx)). In (a) one can see the random functions, piecewise linear interpo-
lation and the original function, computed on the fine mesh. In (b) the distribution
for [f]approximate (4/9) is given as well as the exact value of the function.

Example of the resulting distributions can be found in Fig. 5.6. Two comments
are in order. First, again, the uncertainty is reasonable. Second, the distribution for
approximate

∫ 1

−1
dx f(x) is clearly well approximated by a normal density. This can

be expected from central limit theorem.

Solution of the initial value problem

Again, polynomial interpolation allows us to derive a scheme for the solution of the
boundary value problem:

1

∆t
(f(t+ ∆t)− f(t)) = u(f(t), t) + ε

∆t

2
f
′′
(t). (5.29)

Note that even when ε is a random variable, Eq. (5.29) is not stochastic differential
equation. Even if ε has stable distribution (normal, for example), the power of ∆t is
wrong. For Eq. (5.29) to be stochastic, one need to have equation like df = ∆t1/2ε
[Ste13, Section 2.1]. The fact that Eq. (5.29) is not stochastic differential equation
is an advantageous. The desirable property of random discretization is to have
diminishing effect of randomness when ∆t → 0. In contrast to that, stochastic
differential equation remain stochastic when ∆t→ 0.

To use equation Eq. (5.29) we need to introduce approximation for f
′′
(t). When

one-sided first-order finite difference approximation is used we obtain the scheme

96

30 20 10 0 10 20

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
groud truth
approximate
probability density

(a)

5.0639 5.0640 5.0641 5.0642 5.0643 5.0644 5.0645
0

100

200

300

400

500

600

700

800 groud truth
approximate

(b)

Figure 5.6: Differentiation Eq. (5.27) and integration Eq. (5.28) applied to the func-
tion f(x) = exp (sin (3πx)) + exp (− cos (πx)). In (a) one can see the value if the
derivative as well as the distribution at x = 4/9. In (b) one can find the exact value

of the integral
∫ 1

−1
dx f(x) and the distribution of approximate values.

fi+1 = fi + ∆t u(fi, ti) + +
ε

2
(fi−2 − 2fi−1 + fi) , f0 = f(0). (5.30)

We apply this scheme to the problem ḟ(t) = f(t), f(0) = 1. The results can be
found in Fig. 5.7. This time the uncertainty is clearly poorly calibrated, but still
there is non-vanishing overlap between the probability density and the value of exact
solution. Overall, we can see that the proposed method is biased. It tends to produce
underestimation to the exact solution.

5.3 Iterative methods for sparse linear systems

Results from the previous section show that the symmetry itself is not difficult to
find. However, the resulting distribution is intractable in most cases. Of course,
the distribution can be computed using some sampling technique. However, it does
not seem to make much sense to use an exhaustive sampling to quantify uncertainty
which results from the finite amount of computation or approximation made for ba-
sic numerical tasks such as integration or the solution of linear systems. In place of
uncertainty quantification, the very same computational resources can be more rea-
sonably used to improve the numerical approximation itself. After the introduction
of hidden representation for linear problems, we address this issue in Section 5.3.1.
The variational approximation allows one to reduce the numerical cost in comparison

97

1.5 1.6 1.7 1.8 1.9 2.0
t

4

5

6

7

8

f(t
)

approximate
ground truth

(a)

2.67 2.68 2.69 2.70 2.71 2.72 2.73 2.74 2.75
0

25

50

75

100

125

150

175

200 groud truth
approximate

(b)

Figure 5.7: Finite difference approximation Eq. (5.30) applied to the problem ḟ(t) =
f(t), f(0) = 1. In (a) random trajectories are given. In (b) the histogram for t = 1
is given.

to sampling. Since the resulting algorithm (given in Section 5.4) is still not efficient
from the point of view of storage and numerical complexity, we propose further mod-
ifications in Section 5.4.1. For all iterations, necessary and sufficient (or sufficient)
conditions for measure concentration along with the “uncertainty quantification” re-
sults are given in Section 5.4.2. Section 5.4.4 explains the formal way to extend the
uncertainty quantification results derived for probabilistic instationary Richardson
to an arbitrary iterative method.

Consider the following transformation of the linear problem (5.1):

x̃ = U−1x, Ã = V −1AU , b̃ = V −1b, (5.31)

where detV 6= 0 and detU 6= 0. If one solves the resulting linear system

Ãx̃ = b̃, (5.32)

and then switches back to the original basis, the result will coincide with (5.2), i.e.

UÃ
−1
b̃ = A−1b. (5.33)

Thus, (5.31) and (5.33) correspond to the symmetry transformations gξ and φξ,
respectively.

Now, as an approximate solution to (5.32), we consider an arbitrary iterative
scheme, for example, the multigrid or conjugate gradient method. It is well known

98

[Hac16, Sections 2.2.1 and 2.2.2] that a general iterative method can be presented in
its first or second normal form:

x̃(n+1) = M̃x̃(n) + Ñ b̃, (5.34)

x̃(n+1) = x̃(n) + Ñ r̃(n), r̃(n) = b̃− Ãx̃(n); (5.35)

det Ñ 6= 0, I = M̃ + ÑÃ. (5.36)

The last line assures that the steady state is unique and coincides with the solution of
Ax = b, i.e., the method is consistent. As a rule, matrices M̃ and Ñ are nonlinear
functions of Ã, so the wide class of distributions over U and V produce a nontrivial
distribution over xn+1 the same way as we saw in Section 5.2.1. To see the effect of
the change of bases explicitly, we will write (5.34) and the resulting xn+1 for Jacobi
iteration.

DefineD(A) to be a matrix functions that extract the diagonal part, i.e. D(A)ij ≡
Aijδij. The matrix form of Jacobi iteration reads

x̃n+1 =

(
I −

(
D
(
Ã
))−1

Ã

)
x̃n +

(
D
(
Ã
))−1

b̃. (5.37)

Transformation to the original bases gives

xn+1 =
(
I −U

(
D
(
V −1AU

))−1
V −1A

)
xn +U

(
D
(
V −1AU

))−1
V −1b. (5.38)

It is evident that U and V are explicitly presented in the expression for xn+1 unless
both of them are diagonal matrices. In the latter case, (5.38) reduces to the ordinary
Jacobi iteration [Saa20, Section 4.1].

We regard formulae like (5.38) obtained from (5.34) as a law for xn+1 given xn,
i.e., should p (U ,V) be the probability density function of U and V , the conditional
probability p (xn+1|xn) is

p
(
xn+1|xn

)
=

∫
dUdV p (U ,V) δ

(
x(n+1) −UM̃U−1x(n) −UÑV −1b

)
, (5.39)

where M̃ and Ñ are matrices that were used in the solution of (5.32) and then
transformed back to the original basis in a full analogy with Jacobi iteration (5.38).

Usually, the iterative method (5.34) is applied repeatedly until some convergence
criterion is met. Considered from this perspective, the method of hidden represen-
tation allows translating an arbitrary iterative method to the random process with
discrete-time. For such situations, one needs to define a filtration (for example, see

99

[CE15, Section 3.1]) and establish convergence in probability in some form. It is
likely that the proof of this kind will include tail bounds for eigenvalues like ones
discussed in [Tro19, Section 1.1.1] combined with necessary and sufficient conditions
for convergence of the underlying iterative method. We choose a different route to
follow: we construct a variational approximation based on a multivariate normal
distribution for xn, derive updates for the mean vector and covariance matrix, and
prove measure concentration for these deterministic update rules. This is explained
in detail in the next two subsections.

5.3.1 Variational approximation

Let Un and V n be random matrices that perform transformations during the step
n and pn (Un,V n) be a joint probability density function. We also define iteration
matrices from (5.34) after two symmetry transformations:

Mn ≡ UnM̃ (Un,V n,A)U−1
n , Nn ≡ UnÑ (Un,V n,A)V −1

n . (5.40)

The law of xn+1 given xn becomes

xn+1 = Mnx
n +Nnb. (5.41)

The quantity of interest that contains all the relevant information about random
process is a probability density function for the approximate solution xn given the
deterministic starting point, i.e. the distribution p (xn|x0). In what follows, we drop
x0 and simply write p (xn). Since in general this distribution is not easy to obtain
from transition probabilities (5.39), we resort to the approximation of the form

p (xn) = N (xn|µn,Σn) , (5.42)

where the right hand side stands for the probability density function of the multi-
variate normal distribution with mean µn and covariance matrix Σn. To find the
connection between parameters of the distributions in successive iteration steps, one
can use

p
(
xn+1

)
=

∫
dxnp

(
xn+1|xn

)
p (xn) , (5.43)

100

and the fact that (5.42) is fully specified by its first two moments. These two facts
allow us to relate µn+1 with µn:

µn+1 ≡
∫
dxn+1p

(
xn+1

)
xn+1 =

=

∫
dUndV ndx

ndxn+1p (xn) pn (Un,V n) δ
(
xn+1 −Mnx

n −Nnb
)
xn+1

= EUn,V n [Mn]µn + EUn,V n [Nn] b. (5.44)

The same reasoning leads to the update for covariance matrix:

Σn+1 ≡
∫
dxn+1p

(
xn+1

)
xn+1

(
xn+1

)T − µn+1
(
µn+1

)T
=

= EUn,V n

[
MnΣ

nMT
n + (Mnµ

n +Nnb) (Mnµ
n +Nnb)

T
]
− µn+1

(
µn+1

)T
.

(5.45)

Together with the initial delta distribution µ0 ≡ x0, Σ0 = 0 that provides initial
conditions, (5.44) and (5.45) constitute a closed iterative scheme that defines multi-
variate normal distributions over each subsequent approximation to exact solution.

The precise form of the updates (5.44), (5.45) depends on the iterative method
M,N and the set of joint distributions pn (Un,V n). To obtain an explicit form, one
needs to specify them, and then compute (or approximate) expected values of some
nonlinear functions ofUn,V n. Even though this problem is somewhat easier than the
computation of the probability density function p (xn+1) directly from pn (Un,V n)
and (5.41), it is still often not possible to obtain the closed form of the updates
because (5.41) is a nonlinear matrix function with respect to Un and V n. In the
next section, we consider the Richardson iteration and the set of matrix normal
distributions pn (Un,V n) for which update rules (5.44), (5.45) can be written in an
explicit form.

5.4 Probabilistic instationary Richardson iteration

In this section, we confine our attention to the Richardson iteration, for which Ñ = I,
so the law for xn+1 given xn is

xn+1 = xn +Un (V n)−1 (b−Axn) . (5.46)

101

We also choose Un ≡ I and require that (V n)−1 have a normal distribution (see
[GN18, Definition 2.2.1]), i.e.

pn
(
(V n)−1) = N

(
(V n)−1

∣∣∣Rn, Σ̃n ⊗ Ψ̃n

)
, (5.47)

where Rn and Σ̃n ⊗ Ψ̃n are mean and covariance, respectively, and ⊗ stands for
Kronecker product. The following proposition characterises probabilistic Richardson
iteration.

Proposition 5.4.1. Let Un and V n be independent, Un ≡ I ∀n, the law of xn+1

given xn is fixed by (5.46), probability density function of (V n)−1 is given by (5.47),
then (5.44) becomes

µn+1 = µn +Rn (b−Aµn) = (I −RnA)µn +Rnb, (5.48)

and (5.45) leads to

Σn+1 = (I −RnA) Σn (I −RnA)T +Σ̃n

(
tr
(
ΣnAT Ψ̃nA

)
+ (rn)T Ψ̃nr

n
)
, (5.49)

where rn = b−Aµn.

Updates (5.48), (5.49) should be supplemented with initial conditions Σ0 = 0,

µ0 = x0 and an explicit definition of Rn, Ψ̃n, Σ̃n for each step. We discuss different
choices in the sections that follow.

We point out here a few immediate consequences of the form of (5.48), (5.49).
First, the update for mean (5.48) coincides with the instationary preconditioned
Richardson iteration with a new preconditioner for each step. Second, iteration
(5.49) preserves positive definiteness, as stated in the following proposition.

Proposition 5.4.2. If Σ0 = 0, µ0 = x0, Ψ̃n > 0, Σ̃n > 0, then for the updates
defined by (5.48), (5.49), Σn > 0 for all n ≥ 1. In addition, if at least one matrix is

positive semidefinite, i.e., Ψ̃n ≥ 0 or Σ̃n ≥ 0, or both, than Σn ≥ 0 for all n ≥ 1.

Finally, one can formulate the following uncertainty quantification result valid
for a finite iteration step.

Proposition 5.4.3. For positive definite matrices Ψ̃n > 0, Σ̃n > 0, the following
inequality holds:

tr
(
Σn+1

(
Σ1
)−1
)

tr

(
Σ̃n

(
Σ̃0

)−1
) >

(rn)T Ψ̃nr
n

(r0)T Ψ̃0r0
. (5.50)

Asymptotic results are formulated in Section 5.4.2.

102

Algorithm 7 Low-rank probabilistic Richardson.

1: Given µn, Σn =
∑L

i=1 λ
n
i u

n
i (uni)T , and the linear system {A, b}.

2: Choose Σ̃n ≡
∑Ln

i=1 σ
n
i v

n
i (vni)T , Ψ̃n ≡ ψT

nψn and Rn.

3: rn = b−Aµn
4: µn+1 = µn +Rnr

n

5: βn = ‖Ψnr
n‖2

2

6: αn = 0
7: for i = 1, L do
8: ũni = Auni
9: αn ← αn + λni ‖Ψnũ

n
i ‖

2
2

10: ũni ← uni −Rnũ
n
i

11: end for

12: V =

 | | | |
ũn1 . . . ũnL vn1 . . . vnLn
| | | |

; {Q,R} ← QR (V)

13: D =

(
diag ({λni }) 0

0 diag ({(αn + βn)σni })

)
; D ← RDRT

14:

{
{ṽi}i=1,L+Ln

,
{
λ̃i

}
i=1,L+Ln

}
← Spectral decomposition (D)

15: Pick M leading eigenvalues
{
λn+1
i

}
=
{
λ̃i

}
i=1,L

.

16: Keep corresponding eigenvectors {ṽi}i=1,L.

17:

 | |
un+1

1 . . . un+1
L

| |

 = Q

 | |
ṽ1 . . . ṽL
| |


18: Σn+1 =

∑L
i=1 λ

n+1
i un+1

i

(
un+1
i

)T
5.4.1 The covariance matrix is intractable

The usual situation for an iterative method to be an algorithm of choice is when A
is large and sparse. Under these circumstances, there are two common arguments
against naive LU. The first one is that the O (K3) operations are needed to solve
the problem with K degrees of freedom. The second one is the presence of fill-in:
in practically interesting problems, K can be so large that it is impossible to store
∼ K2 elements for lower and upper triangular factors of the decomposition.

103

One can raise the same objections against the update rule for covariance matrix
(5.49). First, the explicit product of matrices is present in (5.49) which corresponds

to the roughly O (K3) operations per iteration. Second, even if Σ̃n and Rn are
sparse, after a few iterations Σn becomes dense. We propose two modifications to
make (5.49) tractable. Throughout this section we take Ψ̃n = I for brevity, see

Section 5.4.3 for the algorithm with arbitrary Ψ̃n.
The first one is to restrict the rank of the update and consider matrix Σ̃n of

a special form. For arbitrary matrix B, we define [B]L to be the best approxi-
mation in L2 operator norm to B among all matrices of rank up to L. Taking
Σ̃n =

∑Mn

i=1 σ
n
i u

n
i (uni)T we introduce the low-rank approximate update for the co-

variance matrix

Σn+1 =
[
(I −RnA) Σn (I −RnA)T + Σ̃n

(
tr
(
AΣnAT

)
+ ‖rn‖2

2

)]
L
. (5.51)

For this form of update it is convenient to store L eigenpairs of Σn and update
them during each iteration. This can be done either via Bunch–Nielsen–Sorensen
algorithm [GE94], or through QR factorization of {uni ,vni } (see Section 5.4.3 for

details), where uni and vni are eigenvectors of Σ̃n and Σn respectively. The cost of
both options is roughly O

(
(Ln + L)2N

)
for L � K, Ln � K, and in addition to

µn one needs to store LK + L scalars.
The other possibility is to consider the diagonal approximation. For arbitrary

square matrix B, we define D(B)ij = Bijδij. Taking D
(
Σ̃n

)
= Σ̃n we introduce

the following approximate update for the covariance matrix

Σn+1 = D
(

(I −RnA) Σn (I −RnA)T
)

+ Σ̃n

(
tr
(
AΣnAT

)
+ ‖rn‖2

2

)
. (5.52)

In case (I −RnA) and A are sparse matrices, the cost of update is O (K). If any
one of them is dense, this form of update becomes computationally expensive. Also,
the diagonal of Σn, i.e. N additional scalars, needs to be stored. This modification is
less interesting, because it provides poor directional information. We do not consider
this update rule in what follows.

Results of this section put some restrictions on possible form of Σ̃n and Ψ̃n. In the
next section, we further restrict (see Proposition 5.4.4 – Proposition 5.4.7) covariance
matrices to ensure convergence of iteration. Yet, even after that, the scheme remains
flexible enough to permit quantification of uncertainty. The discussion on concrete
choices of Σ̃n and Ψ̃n appears in Section 5.4.2.

104

5.4.2 Concentration of measure and alignment

In this section, we characterize the asymptotic behavior of probabilistic Richardson
iteration. Since, according to our interpretation, one cannot control the input co-
variance matrix Σ0 ≡ 0, in the following proposition, we consider Σ̃0 and µn as a
starting point of the stationary algorithm.

Proposition 5.4.4. Let in (5.48), (5.49) ∀n ≥ 1 Σ̃n ≡ Σ̃, and ∀n Ψ̃n ≡ Ψ̃, Rn ≡
R, detR 6= 0, then the iterative method given by (5.48), (5.49) converges to Σn = 0,

µn = A−1b for the arbitrary input b, Σ̃0, µ
0 ≡ x0 iff

ρ (I −RA) < 1,

ρ

(
(I −RA)⊗ (I −RA) + vec

(
Σ̃
)

vec
(
AT Ψ̃A

)T)
< 1.

(5.53)

This proposition mimics classical necessary and sufficient convergence results
available in the literature (the definition of convergence [Hac16, Definition 2.6], and
the theorem on the convergence of linear iterative methods [Hac16, Theorem 2.16]).

The stationary iterations can be too restrictive from the point of view of uncer-
tainty quantification. The following result gives a sufficient condition for convergence
of the instationary iterative scheme.

Proposition 5.4.5. If lim
n→∞

Rn = R, and lim
n→∞

Σ̃n = Σ̃, lim
n→∞

Ψ̃n = Ψ̃:

ρ (I −RA) < 1,

ρ

(
(I −RA)⊗ (I −RA) + vec

(
Σ̃
)

vec
(
AT Ψ̃A

)T)
< 1,

(5.54)

the iterative method given by (5.48), (5.49) converges to Σn = 0, µn = A−1b for

arbitrary input b, Σ̃0, µ
0 ≡ x0.

In both Proposition 5.4.4, Proposition 5.4.5 the first lines of equations (5.53),
(5.54) represents standard requirements familiar from the analysis of classical itera-
tive methods. The second line of (5.53) or (5.54) is a consequence of the distribution
over representations of the problem: variance matrices have a direct impact on the
distribution of the spectrum of Ã, hence affect the convergence. In general, it is more
convenient to have just one convergence criterion to check. The following proposition
gives a practical way to drop the second condition in Proposition 5.4.5.

105

Proposition 5.4.6. Provided the following conditions are met

lim
n→∞

Rn = R : ρ (I −RA) < 1,

lim
k→∞

Σ̃k = 0
(

or lim
k→∞

Ψ̃k = 0
)
,

∃C : ∀n
∥∥∥Ψ̃n

∥∥∥ < C (
or ∃C : ∀n

∥∥∥Σ̃n

∥∥∥ < C) ;

(5.55)

the iterative method given by (5.48), (5.49) converges to Σn = 0, µn = A−1b for

arbitrary input b, Σ̃0, µ
0 ≡ x0.

That is, if the uncertainty in the choice of representation vanishes in the course
of iterations, and the underlying linear method converges, the probabilistic scheme
converges as well. This condition provides a very convenient way to guarantee that
the scheme converges, and at the same time, one keeps full control over uncertainty
in the non-asymptotic regime.

All statements so far characterize the original iteration scheme, which we found to
be impractical because the covariance matrix becomes dense. The next proposition
elaborates on the relationship between the convergence of the approximate scheme
and the exact one.

Proposition 5.4.7. If Ψ̃n, Σ̃n, Rn are chosen in a way that iterations (5.48), (5.49)
converge, the low-rank iterations (5.51) induced by the same sequence of matrices
converge as well.

One of the interesting features of the probabilistic numerical methods in linear
algebra is that besides the scalar proxies of uncertainty like ‖b−Axn‖2

2 they provide
directional information through the eigenvectors of covariance matrix Σn. The simple
alignment result can be found below.

Proposition 5.4.8. Let Rn ≡ R, the iteration matrix is symmetric M ≡ I −RA.
We represent M using spectral theorem M = SDST , denote i-th column of S as
Si?, and express the covariance matrix in basis {Si?}i: Σn ≡

∑
i,j σ

n
ijSi? (Sj?)

T .

Then for instationary iterations with Σ̃0 = Σ̃, det
(
Σ̃
)
6= 0, Ψ̃0 = Ψ̃, det

(
Ψ̃
)
6= 0,

and Σ̃n = Ψ̃n = 0 for n ≥ 1, one has

|λk| ≤ |λi| , |λl| < |λi| =⇒ lim
n→∞

σnkl
σnii

= 0. (5.56)

So in the absence of control (Σ̃n = Ψ̃n = 0 for n ≥ 1), eigenvectors of Σn align
with the subspace, corresponding to the leading eigenvectors of the iteration matrix.

106

This is reasonable behavior, taking into account that the components of the error
lying in the same subspace have the slowest rate of decay asymptotically. In the
presence of control, one can actively influence the direction of uncertainty by the
suitable choice of Σ̃ and Ψ̃ on each stage.

5.4.3 Algorithm

We put forward the general algorithm corresponding to (5.51) with arbitrary Ψ̃n,

Σ̃n and Rn. As discussed before, iterative methods are considered in the context
of large sparse linear systems, so in the construction of the algorithm we follow two
principles:

• Matrix-matrix products are forbidden.

• It is not possible to store more than O(K) floats.

To fulfill the first requirement we demand Σ̃ and Ψ̃ to be of special form

Σ̃n ≡
Ln∑
i=1

σni v
n
i (vni)T , Ψ̃n ≡ ψT

nψn, (5.57)

where ψn is a matrix of the same shape as Ψ̃n, and {σni ,vni } is an eigenpair of Σ̃n.

In addition, we store Σn in the same form as Σ̃n.
The second requirement is addressed by the low-rank approximation (5.51), the

convergence of which is characterised in Proposition 5.4.7.
he body of Algorithm 7 provides the set of instructions for the update of a mul-

tivariate normal distribution, corresponding to the current iteration step. We would
like to make a few comments. First, in the description of the algorithm we put
two additional horizontal lines (one of which separates mean update from the up-
date of the covariance matrix) to improve readability. Second, even though we write
expressions like Σn =

∑L
i=1 λ

n
i u

n
i (uni)T , one should not compute them explicitly, in

place they are expected to be stored like a set of vectors {uni } and real numbers {λni }.
Also, Algorithm 7 contains two decomposition: QR (line 12) that involve Ln+L vec-
tors from RK , and eigendecomposition (line 14) of the matrix from R(Ln+L)×(Ln+L).
The first operation is O(K (Ln + L)2) and the second is O((Ln + L)3). Given that
L� K, Ln � K, both of these operations are tractable for large sparse matrices.

The discussion about the precise choice of Ψ̃n, Σ̃n can be found in Section 5.4.5,
but the development is at a preliminary stage: we are not in a position to give precise
statements on the uncertainty quantification for finite n, even though we do provide
some heuristics.

107

0.0

0.2

0.4

0.6

0.8

1.0

||en||2/ tr(n)
cos()

0.0

0.2

0.4

0.6

0.8

1.0

1 25 50 75 100
iteration

0.2

0.4

0.6

0.8

1.0

1.2

1 25 50 75 100
iteration

1 25 50 75 100
iteration

Richardson
Jacobi

Gauss-Seidel

s = 0.01 s = 1 s = 100

Figure 5.8: Results of uncertainty calibration (5.63) for random matrices (5.64).
Thick lines represent empirical mean, shaded region covers (empirical mean) ±√

(empirical variance). Details are given after (5.64).

5.4.4 Connection with other iterative methods

It is known, that any iterative method can be seen as a transformed (preconditioned)
version of the Richardson scheme [Hac16, Proposition 5.44]. Namely, if one compares
the second normal form of arbitrary iteration xn+1 = xn+N itr

n with the Richardson
scheme xn+1 = xn+rn, it is evident that they coincide in case one applies the later to
the transformed system NAx = Nb. Since all linear iterations can be presented in
the second normal form, it is possible to interpret the stationary Richardson scheme
with Rn ≡ R = N it as a probabilistic counterpart of a given iterative method.

For example, consider the splitting ofA into the diagonalD, the upper triangular
−E, and the lower triangular −F parts, i.e., A ≡ D −E − F . Then, the iteration
matrices of Gauss-Seidel and Jacobi methods are defined by

NGS = (D −E)−1 , N Jacobi = D−1. (5.58)

Therefore, one can run Algorithm 7 with Rn ≡ R = NGS or Rn ≡ R = NGS

and call the resulting iteration “probabilistic Gauss-Seidel” or “probabilistic Jacobi”

108

methods. The same idea can be used to obtain “probabilistic multigrid” or “proba-
bilistic projection methods”.

However, note that probabilistic algorithms obtained from the Algorithm 7 in
the way just described, do not coincide with the ones stemming from the hidden
representation applied for these methods (for example, this should be evident for the
Jacobi iteration given by (5.38)). Nevertheless, for relaxation methods or restarted
projection methods (restarted FOM, one-dimensional methods such as steepest de-
scent, minimal residual, etc.), these tactics produce a controllable distribution over
approximate solution. On the other hand, methods like conjugate gradient or GM-
RES update Nn for each iteration and obtain solution from the same starting vector,
so they are effectively “one-shot methods”, i.e., if one tries to transform them as
Gauss-Seidel or Jacobi, they will correspond to the single iteration and the resulting
covariance matrix will be trivial Σ1 = Σ̃0 (r0)

T
Ψ̃0r

0. To get a nontrivial result for
GMRES or conjugate gradient, one needs to obtain an explicit form of (5.44), (5.45)
or other variational approximation directly for these iterations.

5.4.5 Calibration of the uncertainty

Note that in this and the following section, we use rescaled errors and residuals, i.e.,
‖en‖ ← ‖en‖

/
‖e0‖ and ‖rn‖ ← ‖rn‖

/
‖r0‖.

To measure how well uncertainty is calibrated, we introduce two geometric crite-
ria:

• The trace of the covariance matrix should provide the correct scale, i.e., the
extent to which the obtained solution deviates from the exact. So the first
measure is

c ≡ ‖en‖2

(√
tr (Σn)

)−1

, (5.59)

where c > 1 corresponds to the underestimation of the L2 norm of error, c < 1
– to overestimation, and c = 1 – to the correct scale.

• The error should lie in the space of eigenvectors of the covariance matrix. More
precisely, let {uni }i=1,L be the set of eigenvectors of Σn. We define a projector
on the row space of the covariance matrix

V ≡

 | |
un1 . . . unL
| |

 , P V ≡ V V T . (5.60)

109

0.2

0.4

0.6

0.8

1.0

||en||2/ tr(n)
cos()

0.2

0.4

0.6

0.8

1.0

1 25 50 75 100
iteration

0.2

0.4

0.6

0.8

1.0

1.2

1 25 50 75 100
iteration

1 25 50 75 100
iteration

Richardson
Jacobi

Gauss-Seidel

s = 0.01 s = 1 s = 100

Figure 5.9: Results of uncertainty calibration (5.62) for random matrices (5.64).
Thick lines represent empirical mean, shaded region covers (empirical mean) ±√

(empirical variance). Details are given after (5.64).

Now, a good way to measure how well the error can be represented by L
available vectors is

cos (θ) ≡
∣∣∣(en)T P V e

n
∣∣∣ / ‖en‖2

2 . (5.61)

The closer cos (θ) to 1, the better span
(
{uni }i=1,L

)
is aligned with the error

vector. Note, that for L ∼ K this requirement is trivial, but for L � K it
is hard to expect to have cos (θ) ∼ 1 unless the vectors are tuned in a special
way.

In Section 5.4.2, we proved a few asymptotic results. However, for the design
of a well-calibration method the transient dynamics is more relevant. To avoid a
complicated pseudospectrum analysis, we simplify the iterations for Σn by taking
Σ̃n = Ψ̃n = 0, n ≥ L starting from some small iteration number L. Proposition 5.4.8
guarantees that in this situation the cosine of the acute angle between subspace
spanned by eigenvectors of covariance matrix Σn and error vector en approaches
zero for large n.

110

10 15

10 12

10 9

10 6

10 3

100
||en||2
||rn||2

1 125 250 375 500
iteration

10 6

10 4

10 2

100

1 125 250 375 500
iteration

1 125 250 375 500
iteration

Gauss-Seidel + projection
Gauss-Seidel

s = 0.01 s = 1 s = 100

Figure 5.10: Acceleration of Gauss-Seidel iteration by repeated projections on the
low-dimensional subspace of covariance matrix eigenvectors. Projection step is ap-
plied each 20 iterations. Average convergence factor for top row ' 0.89, and
for bottom row ' 0.99. Matrices are drawn from (5.64), uncertainty calibra-
tion is (5.63). Thick lines represent the empirical mean, shaded regions cover
(empirical mean) ±

√
(empirical variance). The dimension of the problem, number

of samples and other details are given after (5.64).

The first scheme that we propose reads

Σ̃0 =
L∑
i=1

σiσ
T
i , Ψ̃0 = αI; Σ̃j = Ψ̃j = 0, ∀j > 0, (5.62)

where σi = xi/ ‖xi‖2 and each component of xi is drawn from standard normal
distribution. The choice of α is discussed below.

For the second scheme, we take Ψ̃n ∼ A−TA−1 and approximate unknown term
‖en‖2

2 by the rescaled residual:

Σ̃j =
L∑
i=1

ri
(
ri
)T /∥∥ri∥∥2

2
, j ≤ L; Σ̃j = 0, ∀j > L;

Σn+1 =

[
(I −RA) Σn (I −RA)T +

Σ̃n

rank Σn+1

(
tr (Σn) + α ‖rn‖2

2

)]
L

.

(5.63)

To fix α for both methods, we run each of them on homogeneous problemAx = 0
starting from a random initial guess x0. Since we know the exact solution of the

111

homogeneous equation, we can explicitly compute the error and estimate α from
a few iterations. In experiments below, we use three iterations for (5.62) and 13
iterations for (5.63).

To evaluate the uncertainty quantification schemes (5.62) and (5.63) we sample
random matrices

A = QDQT , (5.64)

where Q is uniformly distributed over O(N), Dij = δijdi and each di have p.d.f.
f(d) = s exp(−d/s). Numerical results are presented on Section 5.4.5 and Sec-
tion 5.4.3 for (5.62) and (5.63) respectively. The dimension of each problem is 100,
for scales of exponential distribution s ∈ {0.01, 1, 100} three classical iteration
methods are used. Jacobi and Richardson are applied with the optimal relaxation
parameter. To produce each subfigure, we average over 100 runs, rank L of the
covariance matrix Σn is 10 in all experiments

Overall we can see that even simple uncertainty calibration schemes result in con-
servative estimation of L2 error norm and correctly approximated low-dimensional
subspace that captures error direction. These results persist for various condition
numbers, iterative methods, and scales of Aij. Scheme (5.62) results in better pre-
diction of error norm, whereas (5.63) provides better directional information.

5.4.6 Acceleration of iteration by projection

As a rule, error estimations can be used to improve accuracy [Ske86]. Both un-
certainty calibration strategies (5.62) and (5.63) estimate low-dimensional subspace
span {x : (I −RA)x ' 0} which can accurately approximate en for large n. So to
exploit this approximation we resort to ordinary error correction scheme. That is,
we perform a few iterations of basic iterative method and then use eigenvectors of
covariance matrix to find the best error vector in the least square sense. Note that
multigrid follows a similar strategy, but in place of a small number of dense vectors,
a large number of sparse vectors is used on par with recursion. Section 5.4.5 shows
the results of an error-correction scheme. As we can clearly see from this exam-
ple, the other end of the probabilistic Richardson iteration is the acceleration of an
underlying iterative method. Better uncertainty quantification will lead to a faster
algorithm.

112

Part II

Machine learning

113

Chapter 6

Linear problems and machine
learning

In this part we study how machine learning can aid numerical linear algebra. We can
think of two principal objections one may raise against the use of machine learning
in this context.

The first objection is that machine learning is typically applied in the situation
when the problem at hands can not be formalized well in familiar mathematical
terms, so the construction of the algorithm is not obvious. To give an example, object
recognition problem (cats, dogs, cars, digits, etc) is notoriously difficult to formalize,
yet neural networks manage to achieve human and superhuman performance on
certain task of this kind [KSH12], [CMS12], [Rus+15]. In contrast to the hard-to-
formalized problems, linear problem Ax = b is formalized perfectly well. Moreover,
well-known classical algorithm that can solve this problem (for example, Gaussian
elimination) are readily available. So why use machine learning?

The problem is that direct methods are typically scales as O (N3), where N is
a number of unknown. On the other hand iterative methods can potentially have
O(N) complexity for sparse linear problems. The problem is, the construction of
efficient iterative method requires a specification of error propagation matrix M
(see Section 1.2.1) with small spectral radius or a good preconditioner for projection
methods (see Section 1.2.2). Since there are no general recipes on the construc-
tion of those objects, researchers proposed a set of heuristics of different generality
(geometric and algebraic multigrid Section 1.2.3, filterring, circulant and other pre-
conditioners Section 7.1.2). On the other hand, for any given error propagation
matrix M or preconditioner one can estimate the efficiency of the resulting iterative
method. Performance measures of this kind (see Section 7.1.1, Section 7.1.2) can

114

serve as loss functions. This mean, machine learning approaches like optimization of
hyperperameters [Li+17], Bayesian optimization [Sha+15], [Fra18], online learning
and optimization [Sha+11], k-armed bandits [LS20] become relevant. Moreover, as
was shown by [Gre+19a], [Luz+20] not merely the optimization and heuristic search
but also the generalization is possible.

The second objection is that machine learning itself relies heavily on numerical
linear algebra. Examples being PCA [Shl14], Gaussian processes [Ras03], ordinary
least squares [Bis06a, Chapter 3], EM for Gaussian mixtures [Bis06a, Chapter 9], etc.
That is, algorithm of numerical linear algebra are in some sense more elementary.
So it is not obvious that one can benefit from machine learning when it comes to
underlying linear algebra algorithms.

The second objection forces us to give up on attempts to use machine learning
to solve linear problem. In place of that we use machine learning to construct an
algorithm, i.e., solver, itself. The example of a general endeavour of this kind would
be program synthesis [GPS+17]. Since our goal is more modest, we typically form
a parametric family of solvers or preconditioners and are trying to learn optimal
parameters with machine learning approaches. This way, machine learning is used
on the preparation step. So ones the algorithm is prepared, it can be used to solve
linear problem, or family of linear problem with to additional computations compare
to standard iterative methods.

The rest of the present part provides more examples of how machine learning
can be used in numerical linear algebra. Namely, we start in Chapter 7 with a
general explanation of unsupervised training suitable for the construction of solvers
and preconditioners for numerical linear algebra. The whole endeavor is based on
the introduction of appropriate stochastic losses and the minimization of them with
gradient-based methods. That is, we apply classical approaches from machine learn-
ing to the construction of preconditioners. The models for preconditioners under
the study are given by parametric families of generalized BPC multilevel precondi-
tioners with overall architectures resembling U-Net. Next, in Chapter 8 we study
the connection between multigrid and neural networks. In this chapter, we apply
techniques from Chapter 7 to access the generalization capabilities of proposed ap-
proaches. That is, we show that one can train (perform optimization) on problems
with a small number of unknowns and later use the same method on problems with
a large number of unknowns without the loss in performance. Finally, in Chapter 9
we turns to the online setup. Namely, we show that it is possible to improve the
iterative method on the flight using auxiliary information available as a byproduct of
iterations. This is done with a help of k-armed bandits and Bayesian optimization.

115

Chapter 7

Black-box optimization of BPX
preconditioners

7.1 Automatic construction of preconditioners and

solvers

In this part, we consider two optimization problems. The first one is the optimization
of a parametric family of preconditioners for a modified Richardson method applied
to the matrix A : AT +A > 0, that is,

ωopt, θopt = arg min
ω,θ

ρ (I − θB(A, ω)) , (7.1)

where B(A, ω) = B(ω)A (or B(A, ω) = B(ω)AB(ω)) is a family of linear systems
preconditioned from the left (or in a symmetric fashion), ρ is a spectral radius,
and ω is a set of real numbers. Problem (7.1) corresponds to a direct optimization
of asymptotic convergence speed of a preconditioned Richardson method [Hac16,
Section 2.2.5]. It is known that arbitrary linear iterative method can be considered
as a preconditioned Richardson iteration [Hac16, Proposition 5.44.]. So problem
(7.1) can be seen an optimization of convergence speed of arbitrary linear iteration.

The second related problem is the optimization of the condition number

ωopt = arg min
ω
λmax (B(A, ω))

/
λmin (B(A, ω)) , (7.2)

where λmax and λmin are the smallest and the largest eigenvalues, andA is symmetric
positive definite.

In both problems we follow the approach adopted in [KDO20] and further gen-
eralized in [Gre+19b], [Luz+20]. That is, we introduce a stochastic loss function

116

that approximates an objective function – spectral radius or a condition number
– and perform a direct gradient-based optimization. The details can be found in
Section 7.1.1 and Section 7.1.2.

For B(ω) we use a modified BPX [BPX90] preconditioner. General multilevel
preconditioner operates on a chain of linear spaces V1 ⊂ V2 ⊂ · · · ⊂ VL, where
Vl, 1 ≤ l ≤ L is formed as a linear combination of the set of functions φlk(x), k =
1, . . . , Nl. In the context of a finite element method, φlk(x) is a tent function located
at vertex k of a grid with the diameter of a cell' const 2−l (grid corresponding to Vl+1

is constructed from l-th grid by, for example, subdivision of coarse triangulation, see
i.e. [Zha92, Section 2]). BPX preconditioners were developed for an elliptic problem

−
D∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
u(x) = f(x), (7.3)

with homogeneous Dirichlet boundary conditions and uniformly symmetric posi-
tive definite aij(x). For equation (7.3) and a nested set of finite element spaces
span

{
φlk : k = 1, . . . , Nl

}
, original BPX and preconditioner reads

BBPX(ω)[v] =
L∑
l=1

Nl∑
k=1

(
v, φlk

)
φlk, (7.4)

where (ψ, χ) =
∫
ψ(x)χ(x)dx is a L2 scalar product. To introduce additional param-

eters to BPX preconditioner and later use them in optimization of condition number
we replace tent function with empirical basis functions φ̃lk, l = 1, . . . , L − 1 and in-
troduce scalars α̃l, l = 1, . . . , L− 1 that weight contributions from individual spaces
Vl, that is

BBPX(ω)[v] =
L∑
l=1

α̃l

(∑
k

(
v, φ̃lk

)
φ̃lk

)
. (7.5)

The details of the parametrisation and more convenient form of preconditioners (7.5)
are given in Section 7.2.

Together φ̃lk and α̃l form a set of parameters ω in problems (7.1), (7.2). The
results of the optimization can be found in Section 7.3.

7.1.1 Direct optimization of spectral radius

Problem (7.1) can be viewed in the context of a general search for better linear
iterative methods. As explained in Section 1.2.1, an arbitrary consistent iterative

117

method can be written in a form

xn+1 = M(ω,A)xn +N (ω,A)b, I −M(ω,A) = N (ω,A)A. (7.6)

The efficiency of the method can be characterised by spectral radius ρ (M (ω,A)),
because it quantifies an asymptotic convergence rate in a following sense. Let en be

an error vector on step n, ‖·‖ is arbitrary norm and ρm+k,m =
(∥∥em+k

∥∥/ ‖em‖)1
/
k

is a geometric mean of a one-step error reduction factor ρm+1,m. It is known that
limk→∞maxx0 {ρm+k,m(x0)} = ρ(M (ω,A)) (see [Hac94, Remark 2.22]). That is,
ρ (M (ω,A)) characterises a geometric mean of an error reduction per iteration in
the worst case. Because of that it is a custom to use ρ (M(ω,A)) as an objective
function. For example, classical schemes like SOR and instationary Richardson it-
eration were optimized analytically [Had00], [Hac94, chapters 4, 8] and numerically
[Man78], [Rei66], to achieve better ρ (M(ω,A)). More modern attempts include
optimization of multigrid with local Fourier analysis [Bro+20] and directly [SKK19],
[Luz+20], [Gre+19b], [KDO20].

To apply gradient-based optimization to (7.1) we need a differentiable approxi-
mation to the spectral radius. We consider three options.

The first one is an approximation of ρ(A) by Gelfand formula [Koz09] ρ(A) =

limk→∞
∥∥Ak

∥∥1/k
combined with a stochastic trace approximation [AT11]:

ρ(A) ' ρ1(A, k,Nbatch) ≡

(
1

Nbatch

Nbatch∑
j=1

∥∥Akzj
∥∥2

2

)1
/

2k

,

∀j : P ((zj)i = ±1) = 1
/

2, ∀i, j : zi, zj are independent.

(7.7)

More details about this approach can be found in [KDO20].

The second option is based on ρ(A) = limk→∞
(∥∥em+k

∥∥/ ‖em‖)1
/
k
, em+l =

Alem, see [Hac94, Remark 2.22 (b)] for details. This gives us another approximation

ρ(A) ' ρ2 (A, k) ≡
(∥∥Akz

∥∥
2

/
‖z‖2

)1
/
k
, (zi)j ∼ N (0, 1). (7.8)

Approximation (7.8) does not contain averaging, but we can introduce Nbatch the
same way as in (7.7). That gives us the following the last approximation

ρ(A) ' ρ3 (A, k,Nbatch) ≡ 1

Nbatch

Nbatch∑
j=1

(∥∥Akzj
∥∥

2

/
‖zj‖2

)1
/
k
,

∀j : (zj)i ∼ N (0, 1), ∀i, j : zi, zj are independent.

(7.9)

118

Algorithm 8 Minimization of L1 (7.10).

Input: matrix A > 0, parametric family of preconditioners B(A, ω) : B(A, ω) >
0, stochastic gradient-based optimizer ω ← O (ω, ∂ω (loss function)) (f.e., ADAM,
[KB14]), batch size Nbatch, number of matrix-vector products k, number of epochs
Nepochs, number of iterations for inner loop Ninner, estimator of the spectral radius
m ∈ {1, 2, 3}.

for i = 1 : Nepochs do
for j = 1 : Ninner do
ρm, ∂θρm ← AD ρm (I − θB(A, ω), k,Nbatch) // AD – automatic differentia-
tion
θ ← O (θ, ∂θρm)

end for
L1, ∂ωL1 ← AD ρm (I − θB(A, ω), k,Nbatch)
ω ← O (ω, ∂ωL1)

end for

The resulting loss will measure how well matrix A damps nonzero initial vectors
on average. We observed that introduction of Nbatch > 1 in (7.9) leads to better
convergence.

With approximations ρi (A, k,Nbatch) , i = 1, 2, 3 we can use forward mode auto-
matic differentiation [RLP16] and standard optimizers [Goo+16, Section 8.3] to solve
problem (7.1). The resulting algorithm coincides with Algorithm 8 with Ninner = 1.

7.1.2 Direct optimization of spectral condition number

Unlike problem (7.1) the optimization of the condition number is not straight-
forward. The main problem is the presence of λmin which is not readily available.
The standard way to resolve this issue is to substitute spectral radius with more
amenable loss. For example, objective functions ‖R−A‖ and

∥∥I −R−1A
∥∥ (here

R is an easy invertible approximation to A) were used to construct optimal circulant
[Cha88], [Tyr92], [Str86] and sparse approximate inverse [GH97], [CS98] precondi-
tioners. It is known that for nonsymmetric matrices optimization of

∥∥I −R−1A
∥∥ can

fail to deliver good preconditioner [CS94]. The same is true for symmetric positive
definite matrices as illustrated on Fig. 7.1.

For symmetric positive definite matrices, one can construct a loss function that
leads to a direct minimization of the spectral condition number. It is well known

119

Figure 7.1: Comparison of three loss functions. The first column shows how the
value of the loss function changes in the course of iterations, graphs in the second
column demonstrate an evolution of condition number. The first row corresponds
to the Frobenius norm ‖I −B(ω)A‖ used as a loss function, the second row shows
minimization of L1 by Algorithm 8 (Ninner = 1), the last row shows minimization of
L2 by Algorithm 9. For the last two cases, we used (7.7) to approximate spectral
radius. It is clear that the decrease of both losses L1 and L2 lead to a smaller spectral
condition number, whereas smaller Frobenius norm does not lead to a better spectral
condition number. In all cases we use modified BPX preconditioner (7.15) as B(ω)
and FEM discretization (see Section 7.2) of Poisson equation Section 1.3.3 in D = 1.

120

that for arbitrary positive definite matrix C, optimal spectral radius of I − θC is
(λmax(C)− λmin(C))

/
(λmax(C) + λmin(C)). Using this fact, we can consider the

following loss function

L1(ω) = ρ (I − θopt(ω)B(A, ω)) , θopt(ω) = arg min
θ
ρ (I − θB(A, ω)) . (7.10)

Evidently, the minimization of (7.10) is equivalent to the minimization of the
expression (κ(B(A, ω))− 1)

/
(κ(B(A, ω)) + 1), where κ is the spectral condition

number. That means we constructed an optimization problem equivalent to (7.2)
but without λmin. A procedure for minimization of loss (7.10) is summarised in
Algorithm 8. The inner loop finds θopt for each ω and the outer loop optimizes ω. If
an inner loop is reduced to a single iteration as it is done in many other situations
(for example, generalized policy iteration [SB98, Section 4.6], and full approximation
scheme [TOS00, Section 5.3.1] follow the same pattern), we obtain an algorithm that
minimizes spectral radius for modified Richardson scheme.

Another equivalent loss function is

L2(ω) = ρ

(
I − 1

ρ(B(A, ω))
B(A, ω)

)
. (7.11)

Indeed, ρ (I −B(A, ω)/ρ(B(A, ω))) = 1 − λmin(B(A, ω))
/
λmax(B(A, ω)), which

means that a minimization of (7.11) is equivalent to minimization of 1−1
/
κ(B(A, ω)).

Gradient-based optimization can be applied to (7.11) directly, but we can exploit a
special structure of the problem to shorten the computation graph. Using a chain
rule we get

∂

∂ωi
ρ

(
I − 1

ρ(B(A, ω))
B(A, ω)

)
=

(
∂

∂ωi
ρ (I − θB(A, ω))

)∣∣∣∣
θ=ρ(B(A,ω))−1

−
(
θ2 ∂

∂θ
ρ (I − θB(A, ω))

)∣∣∣∣
θ=ρ(B(A,ω))−1

∂

∂ωi
ρ(B(A, ω)).

(7.12)

This leads to Algorithm 9. The performance of these two loss function is illustrated
on Fig. 7.1. In our experiments, we find little difference between Algorithm 8 and
Algorithm 9. Because of that, we mainly use Algorithm 8, which requires a single
computation of a gradient with respect to ω. However, unlike L1 loss function L2 is
defined in terms of ρ in closed form, i.e., without an additional optimization problem,
so it can be more advantageous in situations when a family of preconditioners is
learned for a set of related linear equations, as it is done in [Gre+19b] for the multigrid
solver.

We summarize the results of this section in the following statement.

121

Algorithm 9 Minimization of L2 (7.11).

Input: symmetric positive definite matrix A > 0, parametric family of pre-
conditioners B(A, ω) : B(A, ω) > 0, stochastic gradient-based optimizer ω ←
O (ω, ∂ω (loss function)) (f.e., ADAM, [KB14]), batch size Nbatch, number of
matrix-vector products k, number of epochs Nepochs, estimator of the spectral
radius m ∈ {1, 2, 3}.

for i = 1 : Nepochs do
θ ← 1

/
ρ1 (B(A, ω), k,Nbatch)

ρm, ∂ωρm ← AD ρm (B(A, ω), k,Nbatch) // AD – automatic differentiation
L2, ∂ωL2, ∂θL2 ← AD ρm (I − θB(A, ω), k,Nbatch)
ω ← O (ω, ∂ωρm − θ2∂θL2∂ωL2)

end for

Proposition 7.1.1. Let A > 0 and B(ω) > 0 for all ω. For left B(A, ω) = B(ω)A,
symmetric B(A, ω) = B(ω)AB(ω) and right B(A, ω) = AB(ω) preconditioners the
following three optimization problems are equivalent:

• minω ρ (I − θopt(ω)B(A, ω)), where θopt(ω) = arg minθ ρ (I − θB(A, ω)) – loss
function (7.10)

• minω ρ
(
I −B(A, ω)

/
ρ(B(A, ω))

)
– loss function (7.11)

• minω
(
λmax(B(A, ω))

/
λmin(B(A, ω))

)
7.2 Modified BPX preconditioners

We already specified algorithms that can be used to optimize condition number
(optimization problem (7.2)). In this section, we describe a parametric family of
positive definite preconditioners that we use in optimization.

To obtain a convenient form of BPX preconditioner, we introduce a hierarchy of
meshes

Ml =
{
xlj = j

/
2l : j = 0, 1, . . . , 2l − 1, 2l

}
, l = 1, . . . , L (7.13)

such that each next mesh contains a previous one, that is, Ml ⊂Ml+1. For each mesh,
we define a set of basis functions φli(x) = φl(x− xi), i = 0, . . . , 2l, which are rescaled
and translated copies of a tent function φl(x) =

(
1 + x

/
2l
)

Ind
[
−1
/

2l ≤ x ≤ 0
]

+(
1− x

/
2l
)

Ind
[
0 < x ≤ 1

/
2l
]
, where Ind [x] is 1 if x holds and 0 otherwise. Basis

122

functions
{
φLi (x) : i = 0, . . . , 2L

}
are used to perform standard finite element dis-

cretization [Cia02] of elliptic problem (7.3) for x ∈ [0, 1]. For higher dimensions, we
use Ml and φli that are direct products of unidimensional meshes and basis functions.

In article [BK20], authors show that for equation (7.3) in D = 1 with uniform
Dirichlet boundary condition at x = 0 and uniform Neumann boundary condition at
x = 1 discretized as we just described, BPX preconditioner has the following form

B =
L∑
k=1

αkB
L
kB

k
L, B

L
l = I l ⊗ ηL−l + Sl ⊗

(
ξL−l − ηL−l

)
,Bl

L =
(
BL
l

)T
, αk = 1

(ηk)i = i/2k, (ξk)i = 1, (Sl)ij = δij+1, (I l)ij = δij, i, j = 1, . . . , 2l.

(7.14)

If D = 2 matrices Bk
L are replaced with Bk

L ⊗ Bk
L and αk are with ratio of grid

spacings hL
/
hk. The proof of the optimality of symmetric preconditioner (7.14) can

be found in [BK20, Appendix A].
It is easy to see that components of ηL−l and ξL−l−ηL−l contains scalar products(

φL, φl
)
. Using this observation, one can extend (7.14) on other boundary conditions:

Proposition 7.2.1. For equation (7.3) in D = 1 discretized with linear finite ele-
ments, symmetric BPX preconditioner has a form B =

∑L
k=1 αkB

L
kB

k
L, where ma-

trices Bk
L depend on boundary conditions as follows:

• Dirichlet-Neumann: BL
l = I l ⊗ ηL−l + Sl ⊗

(
ξL−l − ηL−l

)
;

• Neumann-Dirichlet: BL
l = I l⊗ηrL−l+(Sl)

T⊗
(
ξL−l − ηrL−l

)
, (ηrk)i = (ηk)2k−i+1 ;

• Neumann-Neumann: BL
l =

(
1 01×2l

el ⊗
(
ξL−l − ηL−l

)
I l ⊗ ηL−l + Sl ⊗

(
ξL−l − ηL−l

)) ;

• Dirichlet-Dirichlet: BL
l =

[
I l ⊗ ηL−l + Sl ⊗

(
ξL−l − ηL−l

)]
last row and column are removed

.

All boundary conditions are uniform and vectors ξL−l,ηL−l are defined as in (7.14).

Based on (7.14) and Proposition 7.2.1, we put forward the following parametriza-
tion

B̃ =
L∑
k=1

(α̃k)
2 B̃

L

k B̃
k

L, B̃
L

l = I l ⊗ η̃L−l + Sl ⊗ ξ̃L−l,
(
ξ̃L−l

)
2l

= 0, η̃0 = 1, α̃L = 1,

(7.15)

123

where α̃k, η̃L−k and ξ̃L−k are free parameters that correspond to ω in Algorithm 8
and Algorithm 9. Chosen parametrization differs from (7.14) in two respects. First,

we use ξ̃L−k in place of ξ̃L−k− η̃L−k. Since both η̃L−k and ξ̃L−k are free parameters,

both options lead to the same family of preconditioners. Second, we use (α̃k)
2 in

place of α̃k. This choice among with conditions η̃0 = 1 and α̃L = 1 guarantee that

B̃ is positive definite regardless of the choice of other parameters. Indeed, B̃ has a

form I +
∑L−1

k=1 (α̃k)
2
(
B̃
k

L

)T
B̃
k

L, that is, the sum of positive definite and positive

semidefinite matrices. Because of that, conditions of Proposition 7.1.1 apply and we
can use parametric family (7.15) to optimize condition number with Algorithm 8 and

Algorithm 9. The last condition
(
ξ̃L−l

)
2l

= 0 ensures that basis functions on level l

have the same support as the ordinary tent functions.

7.3 Numerical examples

Here we present the results of the optimization for a set of test problems. For all
equations we use a symmetric form of both BPX (7.14) and modified BPX (7.15)
preconditioners. To access the results of optimization we list three related numbers:
ρ = λmax (I − θoptBAB) – a spectral radius of the optimal Richardson iteration for
a given preconditioner, κ = λmax(BAB)

/
λmin(BAB) – spectral condition number,

and N – the number of iteration needed to drop an error by 0.1 with the optimal
modified Richardson iteration in an arbitrary chosen norm, i.e.,

∥∥en+N
∥∥/ ‖en‖ ≤ 0.1.

The number of iterations N is computed as
⌈
−1
/

log10 ρ
⌉
, where d·e is the ceiling

function. 1

In all cases, we use Dirichlet boundary conditions. Value of L fixes the number
of points along each direction to be 2L − 1.

For all examples we employed Algorithm 8 with the loss function (7.9) (Nbatch =
10, k = 10), ADAM optimizer [KB14], Nepoch = 500, Ninner = 1. Initial parameters

α̃, η̃, ξ̃ of the modified BPX preconditioner (7.15) were chosen such that the resulting

matrix B̃ coincides with the BPX preconditioner (7.14).
All algorithms were implemented in Julia [Bez+17] and available in a public

repository https://github.com/VLSF/neuralBPX. In Fig. 7.3, Fig. 7.4, Fig. 7.5 one
can find ρ = λmax (I − θoptBAB) – a spectral radius of optimal Richardson iteration
for a given preconditioner, κ = λmax(BAB)

/
λmin(BAB) – spectral condition number,

1This definition of N guarantees
∥∥en+N

∥∥/ ‖en‖ ≤ 0.1 for normal iteration matrix M(ω,A). If
M(ω,A) is not normal, N holds as an estimation (see the discussion in Section 7.1.1 after equation
(7.6)).

124

https://github.com/VLSF/neuralBPX

(a) Basis function (b) Basis function

Figure 7.2: Optimal basis functions for (a) – 1D Poisson equation (1.12), and (b) –
biharmonic equation (1.25)

and N – the number of iteration needed to drop an error by 0.1 in the arbitrary norm,
i.e.,

∥∥en+N
∥∥/ ‖en‖ ≤ 0.1. Examples of optimal basis functions are in Fig. 7.2.

7.3.1 Poisson equation

We can see on Table 7.3a that for the 2D Poisson equation optimization successfully
decreases the condition number. Moreover, it seems to grow slower compared to
the original BPX preconditioner as the number of points increases 2. To assess the
contribution of the optimized basis functions, we perform additional optimization
in D = 1 with fixed basis functions. Results, given in Table 7.3c, indicate that
optimization of the basis function leads to twice as small spectral radius compare
to the situation when only scales are being optimized. The basis function itself is
depicted in Fig. 7.2a. We can see that it is self-similar and seems to be well defined
(in a sense that a subsampled basis function for L1 > L2 is a good basis function for
L2). We can deduce that this function is a limit of some subdivision scheme [Rio92],
but we could not reliably define subdivision weights from our numerical experiments.

2To estimate the growth rate we fit data using ordinary least squares with the model κ(L) =
c1 + c2L. For BPX preconditioner (c1, c2) = (0.792, 1.196), and for the optimized BPX (c1, c2) =
(1.164, 0.264).

125

7.3.2 Helmholtz equation

Table 7.4b contains the results for Helmholtz equation (1.23) with k2h equal to 0.01
and 0.1. The results are similar to the one for the Poisson equation. However, if
we further increase the number of points or k, the resulting matrix becomes indef-
inite, and the optimization breaks down. That means that with our approach, we
cannot construct preconditioners for the Helmholtz equation. It is known that pre-
conditioners for the Helmholtz equation significantly differ from preconditioners for
Poisson-like equations (see [Erl08] for the review), so this result is not surprising.

7.3.3 Anisotrpoic Poisson equation

Table 7.4a contains the results for anisotropic Poisson equation (1.20) with ε equal to
10 and 100. To cope with the anisotropy, we apply semicoarsening [TOS00, Section
5.1]. Without semicoarsening a “projector” on the grid Mk×Mk (Mk is as in (7.13))

reads B̃k
L ⊗ B̃k

L. For semicoarsening the hierarchy of grids is modified, that is, in
place of Mk ×Mk we project on Mmin(k−s,0) ×Mk, where s quantifies the extent to
which the grid along one direction is denser than a grid in the other direction. With
this modification, a preconditioner itself takes a form

B̃s =
L∑
k=1

(α̃k)
2
(
B̃L

min(k−s,0) ⊗ B̃L
k

)(
B̃

min(k−s,0)
L ⊗ B̃k

L

)
. (7.16)

As a result, the coarsening is delayed for y because ε > 1 in (1.20), i.e., y is a direction
of the strong coupling. Note that in Table 7.4a we compare (7.16) with original BPX
preconditioner. If semicoarsening is applied to the BPX preconditioner, the weights
αk need to be modified. Original weights αk combined with semicoarsening lead to
worse performance. We can see that the optimization was able to fix the weights
correctly. Moreover, comparing to semicoarsening applied in the context of filtering
preconditioners [TCK92] we were able to perform more aggressive coarsening, i.e.,
to decrease the number of floating-point operations.

7.3.4 Biharmonic equation

Results for the biharmonic equation are given in Table 7.4c. We can see that the
BPX preconditioner is relatively inefficient. It was able to substantially decrease
the condition number compared to the original matrix (this condition number is not
listed), but still, the condition number is large and grows like κL+1 ' 4κL. Condition
number for the optimized BPX preconditioner is not only smaller but grows like

126

κL+1 ' 2κL. The basis function on Fig. 7.2b does not seem to be stable in this
case. Authors in [TCK92] were managed to obtain a better preconditioner for the
biharmonic equation using larger filters. The same applies to the case of multigrid
solvers, where orders of interpolation ni and restriction nr operators should fulfill
ni+nr > nl [TOS00, Remark 2.7.1], where nl is the order of the linear operator (4 in
the case of biharmonic equation). Given that, we can suggest that by increasing the
basis function’s support, one can achieve a better condition number. We will study
this elsewhere.

7.3.5 Convection-diffusion equation

Convection-diffusion equation leads to a non-symmetric matrix. Because of this, we
do not list spectral condition number in Table 7.3b. Here optimization results in
about twice as efficient solver, but the improvement becomes less pronounced for
larger convection coefficient values.

7.3.6 Diffusion with discontinuous coefficients

Because neither BPX nor modified BPX account for the variation of coefficients, we
used a rescaled version of preconditioner

B̃r =
L∑
k=1

(α̃k)
2 B̃L

kD
(
Bk
LAB

L
k

)−1/2
B̃k
L, (7.17)

where D(·) denotes the diagonal part of the matrix. For the original BPX precon-
ditioner we again insert a diagonal part in-between “projectors” and use αk as in
(7.14). Results are given in Table 7.5c. It is evident that it is enough to recover
the correct scales α̃k. This was achieved by optimization which produces a good
preconditioner regardless of scale.

The other option would be to perform a Jacobi preconditioning step

A→D(A)−1/2AD(A)−1/2 (7.18)

as explained in [Bre97, discussion after equation (5.2)] and (in relation to diffusion
with discontinuous coefficients) in [Wat15, Section 3.1]. If this kind of rescaling is
performed, BPX becomes a reasonable preconditioner, and optimization leads to
results similar to the observed ones for the Poisson equation.

127

Bilinear FEM Mehrstellen
BPX optimized BPX BPX optimized BPX

L ρ κ N ρ κ N ρ κ N ρ κ N
3 .621 4.277 5 .314 1.915 2 .62 4.269 5 .427 2.488 3
4 .701 5.678 7 .386 2.259 3 .7 5.678 7 .448 2.621 3
5 .746 6.867 8 .432 2.523 3 .746 6.867 8 .454 2.666 3
6 .774 7.866 10 .46 2.706 3 .774 7.867 10 .472 2.791 4

(a) Poisson 2D, (1.12)

vx = −vy = 1
/
h vx = −vy = 2

/
h vx = −vy = 3

/
h

BPX
optimized

BPX BPX
optimized

BPX BPX
optimized

BPX
L ρ3 N ρ3 N ρ3 N ρ3 N ρ3 N ρ3 N
3 .629 5 .398 3 .787 10 .574 5 .855 15 .693 7
4 .741 8 .554 4 .830 13 .711 7 .869 17 .743 8
5 .797 11 .649 6 .864 16 .737 8 .872 17 .785 10
6 .829 13 .690 7 .874 18 .743 8 .874 18 .792 10

(b) Convection-diffusion, (1.24)

BPX
φi are fixed

optimized BPX optimized BPX
L ρ κ N ρ κ N ρ κ N
3 .611 4.138 5 .483 2.866 4 .332 1.994 3
4 .696 5.58 7 .554 3.484 4 .357 2.109 3
5 .744 6.81 8 .599 3.983 5 .367 2.159 3
6 .774 7.845 9 .629 4.389 5 .37 2.174 3
7 .794 8.718 10 .651 4.724 6 .373 2.19 3
8 .809 9.456 11 .667 5.003 6 .377 2.21 3

(c) Poisson 1D, (1.12)

Table 7.3: Comparison of three metrics for classical BPX preconditioners and opti-
mized BPX preconditioners for selected equations. Spectral radius of error propaga-
tion matrix I −NA (N is BPX preconditioner A is a matrix of the original linear
operators) denoted by ρ, condition number of preconditioned matrix κ, and number
of iterations needed to drop and error by a factor of 10.

128

ε = 10 ε = 100

BPX
s = 1

optimized BPX BPX
s = 2

optimized BPX
L ρ κ N ρ κ N ρ κ N ρ κ N
3 .919 23.7 28 .592 3.9 5 .974 75.5 87 .679 5.235 6
4 .956 44.1 51 .625 4.339 5 .991 216.1 249 .704 5.763 7
5 .967 60.3 70 .653 4.766 6 .996 468.4 540 .71 5.9 7
6 .973 72.4 84 .68 5.25 6 .997 753.1 867 .754 7.145 9

(a) Anisotropic Poisson, (1.20)

k2h = 0.01 k2h = 0.1
BPX optimized BPX BPX optimized BPX

L ρ κ N ρ κ N ρ κ N ρ κ N
3 .621 4.277 5 .316 1.922 2 .621 4.277 5 .316 1.922 2
4 .701 5.678 7 .385 2.254 3 .701 5.678 7 .385 2.254 3
5 .746 6.867 8 .431 2.515 3 .746 6.867 8 .431 2.515 3
6 .774 7.866 10 .457 2.685 3 .774 7.866 10 .457 2.685 3

(b) Helmholtz, (1.23)

BPX optimized BPX
L ρ κ N ρ κ N
3 .878 15.367 18 .846 11.984 14
4 .96 48.717 57 .878 15.33 18
5 .988 167.576 193 .899 18.9 22
6 .997 617.095 711 .945 35.073 41

(c) Biharmonic, (1.25)

Table 7.4: Comparison of three metrics for classical BPX preconditioners and opti-
mized BPX preconditioners for selected equations. Spectral radius of error propaga-
tion matrix I −NA (N is BPX preconditioner A is a matrix of the original linear
operators) denoted by ρ, condition number of preconditioned matrix κ, and number
of iterations needed to drop and error by a factor of 10.

129

τ = 0.5 τ = 0.9
BPX optimized BPX BPX optimized BPX

L ρ κ N ρ κ N ρ κ N ρ κ N
3 .68 5.255 6 .45 2.638 3 .817 9.93 12 .697 5.599 7
4 .751 7.044 9 .511 3.086 4 .89 17.24 20 .814 9.781 12
5 .79 8.51 10 .553 3.479 4 .922 24.787 29 .864 13.752 16
6 .813 9.685 12 .577 3.731 5 .935 29.933 35 .894 17.811 21

(a) Mixed derivative, (1.19)

µ̃ = h
/

2 µ̃ = 2
/
h

BPX optimized BPX BPX optimized BPX
L ρ κ N ρ κ N ρ κ N ρ κ N
3 .908 20.7 24 .067 1.144 1 .641 4.57 6 .307 1.89 2
4 .979 94.2 109 .033 1.069 1 .729 6.38 8 .391 2.29 3
5 .995 407.7 470 .016 1.033 1 .789 8.47 10 .505 2.92 4
6 .99 1702.6 1961 .017 1.031 1 .845 11.88 14 .709 5.88 7

(b) Crank-Nicolson, (1.31)

σ = 10 σ = 100

BPX (r)
optimized
BPX (r) BPX (r)

optimized
BPX (r)

L ρ κ N ρ κ N ρ κ N ρ κ N
3 .727 6.3 8 .657 4.8 6 .753 7.1 9 .614 4.2 5
4 .898 18.5 22 .616 4.2 5 .912 21.8 26 .692 5.5 7
5 .964 54.8 64 .652 4.8 6 .97 66.6 77 .739 6.7 8
6 .986 145.2 168 .744 6.8 8 .989 187.0 216 .809 9.5 11

(c) Discontinuous diffusion, (1.27)

Table 7.5: Comparison of three metrics for classical BPX preconditioners and opti-
mized BPX preconditioners for selected equations. Spectral radius of error propaga-
tion matrix I −NA (N is BPX preconditioner A is a matrix of the original linear
operators) denoted by ρ, condition number of preconditioned matrix κ, and number
of iterations needed to drop and error by a factor of 10.

130

7.3.7 Mixed derivative

Results can be found in Table 7.5a. We can see that optimization is better for smaller
values of τ , but when τ becomes closer to one, optimization deteriorates.

7.3.8 Implicit scheme for heat equation

Results are in Table 7.5b. We study problem (1.31) in two regimes. The first
one corresponds to small time steps µ̃ = h

/
2 used when the transient dynamic

is of interest. In this case I −
(
µ̃
/

2
)
A ' I so the preconditioner is not needed.

As a result, BPX applied in a naive manner increases the condition number. The
alternative solution would be to apply BPX preconditioner to the second matrix only,
i.e., I −

(
µ̃
/

2
)
BAB, which solves this problem. However, the goal was to access the

optimization, so we keep this experiment. In the other regime µ̃ = 2
/
h and one is

interested in steady-state. In this situation, optimization again helps to decrease the
spectral condition number. The last regime related to the elliptic equation with a
linear source (different sign compare to the Helmholtz equation) for which a robust
preconditioner was constructed in [GO95] with the help of a sophisticated subspace
splitting technique.

131

Chapter 8

Neural multigrid architectures

8.1 Multigrid and neural networks

As explained in Section 1.2.3 multigrid is not a concrete solver but rather a set
of techniques, universal in some sense, used to construct linear solvers. This fact
paired with an excellent performance of multigrid on a wide set of problems leads
to the spread of multigrid-inspired algorithms in other fields of science, including
data science. The two evident examples are U-Net [RFB15] and Res-Net [He+16].
The former based on the repeated convolutions and downsampling operators followed
by the set of convolutions with upsampling, while the later is based on the error-
correction scheme – the idea that the error equation can be easier to solve in some
circumstances.

The adoption of multigrid in data-science followed by the tendency to use data-
driven approaches in the construction of multigrid solvers.1 In particular, in [Gre+19a]
authors proposed to use deep Res-Net to learn the part of projection operator with
smoother being fixed in a fully unsupervised manner. Later authors of [Luz+20] ex-
tended the results into algebraic setting using graph neural networks. These articles
firmly demonstrate that machine learning is a valuable tool for the construction of
multigrid solvers.2 In both [Gre+19a] and [Luz+20] authors use neural network as

1Other approaches to the automatic constriction of multigrid exist. Related areas include Boot-
strap AMG [Bra+11], optimization based on local Fourier analysis [WJ05], and evolutionary com-
putation [SKK19].

2Arguably, in both cases scalable solvers are obtained in part because authors utilize ready-
made coarsening strategies and robust smoother. Namely, in [Gre+19a] a strategy from algebraic
multigrid (AMG) is used to restore the solution on the fine grid in such a way that b − Ax = 0
for red points in a red-black pattern, and in [Luz+20] authors completely rely on AMG coarsening
strategy.

132

an external tool and do not exploit the fact that multigrid itself can be considered as
a form of neural network. In [Hsi+19] authors perform at attempt to construct linear
solver based on unmodified U-Net. In this part we extend ideas from [Hsi+19] pro-
viding a convenient matrix-free multigrid architecture that contains only convolution
layers.

The rest of the section is organized as follows. Section 8.2 contains the explanation
how basic operations related to multigrid can be considered as layers in the neural
network. The loss function that we use for unsupervised training is described in
Section 8.3. Further in Section 8.4 we explain that it is impossible to keep both fixed
architecture and a fast convergence speed of an iterative method. This result rules
out approaches like [Hsi+19] that rely on fixed architecture. To resolve the issue,
in Section 8.5 we propose architectures with the serialization of layers. The other
architectures that roughly correspond [Hsi+19] and [KDO20] are described in the
same section. All architectures are compared in Section 8.6.

Our implementation based on TensorFlow [Aba+16] as well as all results pre-
sented in this section are available in https://github.com/VLSF/nmg.

8.2 Matrix-free multigrid architecture

To describe our architecture, we need to introduce a few matrices. For each level k ≥
1 we use Ak,P k to describe matrix of linear operator and the restriction matrix. If
the Pertov-Galerking condition is used the following relation holdsAk+1 = P kAkP

T
k .

For level k = 1, matrix A1 should be given either explicitly or as a linear operator,
i.e., the black-box function that computes A1x for any given x suffices.

On each level k we need to implement two-grid cycle as neural network. There
are four operations we need to consider: computation of residual rk ≡ bk −Akxk,
restriction Prk, prolongation (interpolation) P Tek, and smoothing N krk.

The simplest operations are restriction and prolongation that can be considered
convolution with at least one stride > 1, and a transpose to this operation.

Computation of the residual is straightforward too. Because Ak+1 = P kAkP
T
k ,

any product can be computed recursively:

Amxm =

(∏
l=m−1,...,1

P l

)
A1

(∏
l=1,...,m−1

P T
l

)
xm. (8.1)

This procedure is illustrated for k = 3 on Fig. 8.1a.
The situation with smoothers is less straightforward. Not all smoothers can be

considered in a matrix-free framework. For example, Gauss-Seidel smoother explic-

133

https://github.com/VLSF/nmg

x3

w2 w1 A1 w1 w2

A3x3

(a) Computation of A

w̃1
w1

w̃2 w̃2

w1
w̃1

(b) U-Net architecture

Figure 8.1: (a) – Ai+1 = P iAiP
T
i , product A3x3 can be computed as a set of convo-

lutions (dashed lines), and transposed convolutions (solid lines), and an application
of operator on the fine grid (double line); wi corresponds to convolution kernels;
(b) – U-Net architecture with two layers, convolutions with all strides equal 1 are
denoted by double lines (they correspond to smoothing in multigrid architecture),
the single line represents convolution with at least one stride > 1, dashed line is a
transpose to this operation, a curved line is a skip connection (copy and add).

itly requires a lower triangular part of the matrix, which can be hard to extract.
However, there is a family of smoothers, known as polynomial smoothers [Ada+03,
Section 3], that are better suited for our purposes. Polynomial smoothers take a
form

x(n+1) = x(n) + p(A)
(
b−Ax(n)

)
, p(A) =

D∑
i=0

αiA
i, (8.2)

where αi, i = 0, . . . , D are parameters of the smoother chosen based on matrix A.
Since (8.2) contains only vector-matrix products, we can apply the smoother using
(8.1).

As a rule, polynomial smoothers are applied to the matrix with 1 on diagonal,
i.e., the diagonal rescaling D(A)−1 is explicitly introduced. We hide this additional
factor in convolution operation.

Algorithm 10 specifies the smoothers that we use. In lines 2 and 5, Ak(x) uses
kernels wi, fine-grid operator A and should be computed as in (8.1), convw̃i−1

in line
4 should preserve the size of the input vector, so all strides equal 1.

To summarize, for a given level k, we implement a two-grid cycle as a convolu-
tional neural network with the following adjustments:

134

Algorithm 10 Polynomial smoothing.

1: Input: xk, bk, kernels wi, i = k−1, . . . , 1 corresponding to convolutions P l, l =
k − 1, . . . , 1, fine grid operator A, kernels w̃j, j = 0, . . . , D that are used to
compute p(A).

2: r ← bk −Ak(x)
3: for i = 1 : (D + 1) do
4: xk ← xk + convw̃i−1

(r)
5: r ← Ak(r)
6: end for

1. wk, sk are kernel and strides (at least one stride should be > 1) that implement
convolution and transposed convolution that corresponds to P and P T ;

2. w̃
(i)
k , i = 0, . . . , D are kernels that are used in Algorithm 10 that constitutes

the pre- and post-smoothing steps in the two-grid cycle;

3. all convolutions are with zero biases and without nonlinearities,

4. any matrix-vector product is computed according to (8.1) (see also Fig. 8.1a).

The whole multigrid architecture can be constructed by recursive application
of two-grid layers. To imitate matrix inversion on the coarsest grid, we use a few
additional convolutions.

The presence of residuals makes it hard to draw the resulting architecture. But,
in general, a neural network that imitates multigrid resembles U-Net [Hsi+19]. The
one crucial difference is that U-Net contains only one ascending and one descending
branches, whereas our architecture contains an additional Λ-shaped network at each
place where the residual bk −Akxk is needed.

Our approach offers the following advantages:

• Currently, no major machine learning framework supports sparse-sparse matrix
multiplication, so PAP T can not be computed efficiently.

• The architecture is agnostic to the sparsity pattern ofA and P so that they can
be changed easily. This can be especially useful when graph neural networks
are used to learn the coarsening strategy.

• Since the network consists of convolution layers, one can benefit from using
GPU.

135

• There is a one-to-one correspondence between some multigrid schemes and
proposed architecture. This improves interpretability.

The main disadvantage is the additional operations we need to perform to com-
pute Akxk. However, on modern GPUs, training on matrices with n = (25 − 1)

2

takes a few minutes, so the overhead seems to be justified by the overall convenience
of the architecture.

8.3 Loss function and training

As explained in Section 7.1.1 spectral radius of the error propagation matrix is a
good target for optimization. We ones again use stochastic estimation of spectral
radius

ρ(B) ' ρ1(B, k,Nbatch) ≡

(
1

Nbatch

Nbatch∑
j=1

∥∥Bkzj
∥∥2

2

)1
/

2k

, (8.3)

where B is an arbitrary matrix, and each zj, j = 1, . . . , Nbatch is a random vector
with components i.i.d. according to Rademacher distribution. In all our experiments
we use k = Nbatch = 10.

Since Eq. (8.3) contains only a repeated application of matrix B it is enough
to have a black-box implementation of Bz. So the optimization with Eq. (8.3) is
straightforward.

However, we are not interested in the optimization per se. The optimization was
already performed, for example, in [KDO20]. The difference between training and
optimization is that the former includes some form of generalization (or interpolation,
or extrapolation) whereas the later does not [Goo+16, Chapter 5]. We can think of
three situations that constitute training of linear solver:

1. Suppose there is a systematic way to produce related linear systems Ah based
on parameter h, where matrices Ah differ by size.3 In this case it is reasonable
to train on small matrices and test on larger matrices. The training scheme is
useful if the spectral radius remains small when the size of the matrix increases.

2. Suppose there is a systematic way to produce related linear systems Aε based
on parameter ε, where matrices Aε have the same size.4 In this case we train

3The discretization of PDEs is a relevant example. In this case h is a grid spacing.
4Here the example may be the set of heat conductivity problems (1.27) on a fixed mesh, where

k(x, y) is a random function, that is conductive properties of the medium change from problem to
problem.

136

(a) Receptive field and refinement

x

φ(x)

(b) Locality of the right-hand side

Figure 8.2: (a) – the figure shows how the receptive field of fixed architecture with
only local layers (shaded) changes after refinement. Since convolutions are performed
on discrete data, information from the dot in the middle can spread over the smaller
region (enclosed by the circle) in physical space. This limits the ability to generalize
for a neural network with fixed architecture; (b) – when delta-function is presented
as a right-hand side of a continuous problem, the weak form results in a sparse right-
hand side because only a small number of (shaded) tent functions feels the presence
of the source (denoted by a point).

on Aεi , i = 1, . . . , K for some small K and hope that spectral radius remains
small for unseen ε.

3. Combination of the above.

We will concentrate on the first scenario in what is following.

8.4 Restriction on architecture for linear iterative

methods

Standard machine learning pipeline consists of choosing an appropriate architecture,
training (supervised or unsupervised) with a given loss function, and applying trained
model to unseen data [Goo+16, Chapter 11]. In this section, we argue that this
approach is insufficient for training5 specific neural networks if we are to use them
as iterative methods.

To make an argument, we consider the following boundary value problem:

∆u(x, y, z) = −δ(x)δ(y)δ(z), u(x, y, z)|x2+y2+z2=R2 = 0, (8.4)

5As defined in Section 8.3.

137

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG
3 0.11 0.047 0.046 0.028 0.50 0.031
4 0.13 0.051 0.050 0.035 0.54 0.034
5 0.15 0.057 0.058 0.041 0.58 0.037

6 0.16 0.19 0.066 0.050 0.92 0.37
7 0.17 0.58 0.073 0.059 − 0.80
8 0.19 − 0.080 0.065 − −
9 0.20 − 0.088 0.073 − −
10 0.21 − 0.094 0.083 − −
11 0.23 − 0.10 0.092 − −

Figure 8.3: 5-point stencil, Poisson equation (1.14), ρ (I −NA).

that is, a 3D Poisson equation with a point source at the origin, considered inside
a sphere of radius R. The solution is easily obtained from Green function [Jac99,
Section 1.10]

u(x, y, z) =
1

4π

(
1√

x2 + y2 + z2
− 1

R

)
. (8.5)

One way to solve (8.4) numerically is to use finite element method (see Sec-
tion 1.3.2). For a suitable defined mesh (for example the mesh as in Fig. 8.2a can be
used), we introduce a set of piecewise linear functions φi(x, y, z) that possess cardinal-
ity property: φi(xj, yj, zj) = δij, where (xj, yj, zj) is a fixed grid point. The solution
is approximated as u(x, y, z) =

∑
i φi(x, y, z)ui, and PDE is enforced in a weak form

by Petrov-Galerkin condition
∫
dxdydz φi(x, y, z) (∆u(x, y, z) + δ(x)δ(y)δ(z)) = 0.

That gives us a system of linear equations with sparse matrix and sparse right-hand
side. The sparsity of the right-hand side is illustrated by Fig. 8.2b.

Let U be a space of functions on a finite 3D grid with spacing ' H, and N be a

linear neural network U N→ U that acts like linear operator on space U . Let uk ∈ U
be a function equals 1 at point k and 0 at all other points. Because the grid is finite,
it is possible to find a minimal radius Rk such that all nonzero elements of N (uk) are
inside the ball with radius Rk centered at point k. We define the radius of influence
of a given network N as

rH(N) = max
k
Rk.

The example of this radius is given in Fig. 8.2a for convolution with 5× 5 kernel.
Now, if refinement is performed and the architecture of the network does not

contain dense layers, the radius of influence shrinks as explained in the same Fig. 8.2a.

138

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG
3 0.16 0.058 0.069 0.042 0.53 0.030
4 0.22 0.063 0.073 0.041 0.58 0.031
5 0.25 0.070 0.079 0.049 0.62 0.038

6 0.28 0.081 0.088 0.086 − 0.54
7 0.30 0.33 0.096 0.11 − 0.89
8 0.32 0.82 0.10 0.12 − −
9 0.35 − 0.11 0.13 − −
10 0.37 − 0.12 0.14 − −
11 0.40 − 0.13 0.15 − −

Figure 8.4: 9-point stencil, Poisson equation (1.18), ρ (I −NA).

This fact is used to prove the following statement.

Proposition 8.4.1. Let AH be a matrix of linear problem (8.4) obtained using finite
element method on a given grid with spacing ' H. Let N be a neural network, that
consists on finite number of (local) convolutional layers6, and used as N in linear
iterative method xn+1 = xn + Nrn. Suppose that the network has been trained to
provide a good convergence for grid H, that is, ρ(I −NHAH) = ε� 1. It is always
possible to find a grid with spacing ' h < H such that ρ(I −N hAh) is arbitrary
close to 1.

The proposition above holds for networks that consist of (local) convolutional
layers. We exclude networks with dense and nonlocal layers because they require
' O(N2) (N is a number of inputs) flops, which is unacceptable for iterative methods.
On the other hand, convolutional neural networks require ' O(N) flops and can be
applied on grids with different sizes and geometries.

Our “radius of influence” is similar to the “domain of dependence” used to analyze
convergence of numerical methods [LeV07, Section 10.7]. Also, there is an evident
parallel with CFL condition [CFL67].

It is easy to see that the “no-go” result below immediately follows from Proposi-
tion 8.4.1.

Corollary 8.4.1. Let AH be a matrix of linear problem (8.4) obtained using finite
element method on a given grid with spacing ' H. Let N be a neural network,
that consists of finite number of (local) convolutional layers. It is not possible to

6We exclude nonlocal convolutions based on graph Laplacian as in [Bru+14].

139

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG
3 0.073 0.030 0.036 0.022 0.40 0.017
4 0.094 0.034 0.041 0.028 0.44 0.019
5 0.11 0.041 0.048 0.02 0.60 0.022

6 0.12 0.13 0.058 0.042 0.96 0.52
7 0.13 0.40 0.065 0.051 − 0.99
8 0.14 0.78 0.071 0.057 − −
9 0.15 0.99 0.077 0.063 − −
10 0.16 − 0.083 0.069 − −
11 0.17 − 0.090 0.076 − −

Figure 8.5: Mehrstellen discretization (1.17), ρ (I −NA).

have ‖I −N hAh‖ ≤ ε � 1, with ε independent on h < H. In other words, it is
impossible to uniformly approximate inverses to Ah using fixed architecture with local
layers.

Proof. Since ρ(I −N hAh) ≤ ‖I −N hAh‖ for any matrix norm, the statement can
be proven by contradiction.

Despite the fact that we showed the result for a particular elliptic equation with
a particular right-hand side, the main fact that we used is that A−1

h is nonlocal. For
example, Ah from Proposition 8.4.1 is equivalent to N with a single convolutional
layer. Nonlocality of A−1

h is shared by all elliptic equations so propositions like
Proposition 8.4.1 holds for them too.

We would like to add that, it is known that neural network can approximate
arbitrary nonlinear operator [CC95]. The corollary above does not contradict this
result because it is restricted to neural networks with a fixed number of layers.

The results of this section implies that fixed architectures like [Hsi+19] are not
going to work. This problem is addressed in the next section.

8.5 Architectures and the baseline solver

According to the result in the previous section, it is necessary to enlarge the network
when we refine the grid. The simplest strategy is a serialization of layers. By
serialization, we mean that an additional layer uses parameters from a previous
layer. Here we formulate a few concrete architectures that we are going to compare
in Section 8.6.

140

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG
3 0.23 0.071 0.076 0.047 0.65 0.060
4 0.29 0.076 0.085 0.048 0.70 0.067
5 0.31 0.084 0.093 0.054 0.76 0.075

6 0.33 0.31 0.10 0.066 − 0.39
7 0.36 0.74 0.11 0.089 − 0.74
8 0.38 − 0.12 0.10 − −
9 0.41 − 0.13 0.11 − −
10 0.44 − 0.15 0.12 − −
11 0.47 − 0.16 0.13 − −

Figure 8.6: Anisotropic Poisson equation (1.21) with ε = 2, ρ (I −NA).

8.5.1 LMG

As a baseline model we use multigrid with linear interpolation and two pre-smoothing
and two post-smoothing Jacobi sweeps with ω = 4/5 (this ω is optimal for five-point
discretization of Poisson equation in 2D [TOS00, Section 2.1.2]). Linear interpolation
means that P corresponds to convolution with strides (2, 2) with the kernel

klinear =
1

2

1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

 . (8.6)

8.5.2 s1MG(rs)

The name of the model derived from the fact that it is a neural multigrid (MG)
architecture with a single serialized layer (s1), which contain adjustable restriction
and smoothing operators (rs), with weights w and w̃ respectively. To have the
same number of floating-point operations as a baseline model, we use smoothing
(Algorithm 10) with D = 0. Both w and w̃ represents kernels of sizes 3× 3, which
initially coincide with linear interpolation (8.6). Convolutional layer with kernel w
has strides (2, 2), and the layer with kernel w̃ has strides (1, 1). For this model,
we use exact matrix inversion as a coarse-grid correction. This is possible because
we can always stack enough layers to have a single unknown on a coarse grid for
considered model problems.

141

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG
3 0.59 0.40 0.44 0.42 0.91 0.44
4 0.73 0.42 0.47 0.42 0.99 0.47
5 0.81 0.49 0.53 0.49 − 0.53

6 0.88 − 0.59 0.53 − −
7 0.94 − 0.63 0.57 − −
8 − − 0.68 0.61 − −
9 − − 0.73 0.65 − −
10 − − 0.78 0.70 − −
11 − − 0.83 0.75 − −

Figure 8.7: Anisotropic Poisson equation (1.21) with ε = 10, ρ (I −NA).

8.5.3 s1MG(s)

This model is the same as the previous one but with two differences. First, the
restriction operator is fixed to be linear interpolation (8.6), and only the smooth-
ing operator is learned. Second, we explicitly incorporate diagonal rescaling with
D(A)−1 on each level. This is possible because restriction operators are fixed, so all
diagonal can be computed in advance.

8.5.4 s3MG(s)

The model is the same as a previous one, but now we train three distinct layers with
w̃1, w̃2, w̃3. The serialization is performed as follows:

layer 1 : w̃1; layer 2 : w̃2; layer 3 : w̃3;

layer 4 : w̃1; layer 5 : w̃2; layer 6 : w̃3;

layer 7 : w̃1; . . .

(8.7)

8.5.5 U-Net

This is an attempt to reproduce results from [Hsi+19].7 We use architecture pre-
sented in Fig. 8.1b, but with 5 layers. U-Net is used as N in linear iteration (8.6).
Parameters for all layers are distinct, and no serialization is performed.

7Which is nontrivial because the code is absent and the architecture of the model is unspec-
ified. We cannot also use results from the article because they are scarce, and authors measure
performance relative to the multigrid method, which they did not bother to describe in detail.

142

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG
3 0.11 0.040 0.049 0.029 0.49 0.043
4 0.14 0.049 0.056 0.032 0.54 0.048
5 0.15 0.061 0.065 0.037 0.58 0.054

6 0.17 0.27 0.073 0.045 0.88 0.34
7 0.18 0.67 0.081 0.052 − 0.78
8 0.19 − 0.088 0.062 − 0.98
9 0.21 − 0.095 0.072 − −
10 0.22 − 0.10 0.083 − −
11 0.24 − 0.11 0.092 − −

Figure 8.8: Equation with mixed derivative (1.19) with τ = 1
/

4, ρ (I −NA).

8.5.6 fMG

This is another model without serialization. We use 5 layers with distinct restriction
w and smoothing w̃ operators. Two convolutions are used as a coarse grid correction.
All kernels are initialised as bilinear interpolation (8.6).

8.6 Numerical examples

For all discrete equations we perform a rescaling of linear operator as follows

A→D(A)−1/2AD(A)−1/2. (8.8)

8.6.1 Poisson equation

Results are presented in Fig. 8.3, Fig. 8.4, Fig. 8.5. For all discretizations of the
Poisson equation, we can see that architectures U-Net, fMG, and s1MG(rs) fail to
provide a good solver for J ≥ 6.

Presumably, the spectral radius of error propagation matrices corresponding to
U-Net and fMG architectures deteriorates because neural networks have fixed sizes.

This explanation does not work for s1MG(rs) because of the serialization per-
formed. We can conjure that because both restriction and smoothing operators are
optimized, s1MG(rs) is getting tuned to the spectrum of the matrix with n = (25−1)2,
since the spectrum changes when J increases, the solver ceases to be efficient. It is
evident from other examples that the naive serialization does not seem to work when
both restriction and smoothing operators are optimized.

143

J LMG s1MG(rs) s1MG(s) s3MG(s) U-Net fMG
3 0.24 0.097 0.15 0.055 0.51 0.062
4 0.35 0.11 0.16 0.071 0.56 0.069
5 0.41 0.12 0.19 0.087 0.61 0.082

6 0.46 0.24 0.23 0.19 0.79 0.33
7 0.50 − 0.25 0.25 0.99 0.72
8 0.54 − 0.28 0.28 − 0.98
9 0.59 − 0.31 0.30 − −
10 0.63 − 0.33 0.33 − −
11 0.68 − 0.36 0.35 − −

Figure 8.9: Equation with mixed derivative (1.19) with τ = 3
/

4, ρ (I −NA).

The only two solvers (besides a baseline model) that retain their efficiency are
s1MG(s) and s3MG(s). The latter is better than the former for five-point and
Mehrstellen discretizations, but for the long stencil s1MG(s) is superior.

We can conclude that for the Poisson equation, U-Net is the weakest model, fMG
and s1MG(rs) fail to generalize on the test set, and both s1MG(s) and s3MG(s) can
generalize and outperform a baseline model on a test set.

8.6.2 Anisotropic Poisson equation

Fig. 8.6, Fig. 8.7 contain the results. For equation (1.21), the trend is largely the
same. That is, fMG, s1MG(rs) and U-Net lose their efficiency, s1MG(s) and s3MG(s)
are robust and outperform a baseline model.

It is instructive to discuss results for anisotropic equation with ε = 10. First,
we can see that all solvers are relatively inefficient. The reason is a full coarsening
that we applied. If one uses semicoarsening instead, the results would be the same
as for the isotropic Poisson equation. Because of the full coarsening, the U-Net
solver fails already on a train set. If one further increases ε, our networks would
not be able to provide efficient solvers unless strides are chosen appropriately. If
strides and sizes of filters are considered as hyperparameters, it should be possible
to apply Bayesian optimization [Sha+15], reinforcement learning [Li+18], or genetic
programming [SKK19] to construct optimal solver.

144

stencil size = 4 stencil size = 5 stencil size = 6
J s1MG(s) s3MG(s) s1MG(s) s3MG(s) s1MG(s) s3MG(s)
3 0.033 0.025 0.031 0.026 0.019 0.020
4 0.034 0.023 0.030 0.024 0.025 0.020
5 0.039 0.026 0.035 0.027 0.032 0.022

6 0.051 0.037 0.051 0.044 0.040 0.036
7 0.063 0.047 0.063 0.057 0.047 0.051
8 0.073 0.055 0.074 0.065 0.053 0.061
9 0.083 0.065 0.082 0.071 0.059 0.066
10 0.092 0.072 0.092 0.078 0.064 0.072
11 0.10 0.079 0.10 0.085 0.069 0.078

Figure 8.10: The effect of smoother’s stencil size on the spectral radius of error
propagation matrix ρ (I −NA) for 5-point stencil Poisson equation (1.14).

8.6.3 Mixed derivative

Results are given in Fig. 8.8, Fig. 8.9. Equation with mixed derivative changes type
from elliptic to hyperbolic when τ crosses 1. It is interesting to look at how our
models behave when τ approach 1.

For τ = 1/4 architectures s1MG(s), s3MG(s) produces more efficient solvers than
the standard multigrid with two Jacobi sweeps. On the other hand, U-Net is of no
use even on the test set, and fMG and s1MG(rs) deteriorate rapidly for J > 5.

We can see that for τ = 3/4 s3MG(s) performs substantially better than s1MG(s)
on the train set. However, on the test set, it results in only a marginally smaller
spectral radius. This means that the training and serialization strategies are not
ideal. It should be possible to use additional parameters of s3MG(s) more efficiently.
Other architectures behave similarly to the case τ = 1/4.

8.6.4 Influence of smoother’s stencil size

Our implementation of operator-based multigrid is sufficiently flexible to perform
experiments with multigrid components of variable sizes. To demonstrate this, we
show the learning results for multigrids with progressively large stencils of smoothing
operators.

In Fig. 8.10 one can find results for Poisson equation with 5-point stencil (1.14).
In all the experiments, we used 400 loss evaluations. As we can see, the increase
in the stencil size for relaxation operator clearly improves convergence rate. For

145

stencil size = 4 stencil size = 5 stencil size = 6
J s1MG(s) s3MG(s) s1MG(s) s3MG(s) s1MG(s) s3MG(s)
3 0.26 0.30 0.32 0.22 0.18 0.16
4 0.28 0.34 0.46 0.38 0.30 0.23
5 0.36 0.39 0.52 0.45 0.37 0.31

6 0.41 − 0.56 0.52 0.50 0.45
7 0.44 − 0.61 0.55 0.80 0.66
8 0.48 − 0.64 0.59 0.90 0.88
9 0.51 − 0.69 0.63 0.99 −
10 0.55 − 0.74 0.68 − −
11 0.59 − 0.79 0.72 − −

Figure 8.11: The effect of smoother’s stencil size on the spectral radius of error
propagation matrix ρ (I −NA) for anisotropic Poisson equation (1.21) with ε = 10.

s1MG(s) we have 30% improvement and for s3MG(s) we observe 15% improvement
on grid with J = 11.

In Fig. 8.11 one can find results for anisotropic Poisson equation (1.21) with
ε = 10. Here we can observe a few peculiar features. First, the improvement for
s1MG(s) is still about 30% whereas for s3MG(s) we observe very little improvement.
Second, the models are seized to be robust: both s1MG(s) and s3MG(s) fail to
generalize for some stencils (the former one for stencil size 6, and the latter one for
stencil sizes 4 and 6).

We also should note that we performed a set of experiments with more aggres-
sive coarsening. In all cases tried, we failed to train a neural multigrid solver that
converges and generalizes.

146

Chapter 9

Relaxation methods in the
multi-armed bandit setting

9.1 Adaptive linear solvers

An introduction of successive over-relaxation (see Eq. (1.4)) [You54] was a decisive
moment for the numerical linear algebra community. It was believed before that an
efficient linear solver is hard or impossible to construct on a digital computer.1 To
efficiently apply SOR to a given problem, it is crucial to have an accurate approxi-
mation to the optimal over-relaxation parameter ω. Research on the topic splits into
two directions. The first one is to derive the convenient form of ω for a restricted class
of matrices [Had00]. The other opportunity is to start with some ω and gradually
move toward optimal value based on the efficiency of iteration [Rei66], [UNK94].

The main deficiency of the first approach is a scarcity of general results. Even

1Quote from David Young [You87]: “Not too long after I began my work, Sir Richard Southwell
visited Birkhoff at Harvard. One day when he, Birkhoff, and I were together, I told him what I
was trying to do. As near as I can recall, his words were “any attempt to mechanize relaxation
methods would be a waste of time.” This was somewhat discouraging, but my propensity for making
numerical errors was so strong that I knew that I would never be able to solve significant problems
except by machines. Thus, though discouraged, I continued to work.”

Quote from Radii Fedorenko has the same vibes [Fed62]: “Our method has been described as
relaxational for the following reason. In the literature, a relaxation method is usually described
thus: the calculator, having obtained an approximate solution of the system and having computed
its discrepancy, changes the approximate solution in such a way that the discrepancy is made to
vanish where it is large without at the same time being increased at other points; naturally, this
procedure is the more successful, the more experienced the calculator. Evidently, the “experience”
of the calculator here consists of skill in solving “by eye” a system with a discrepancy as the
right-hand side. We have tried to transfer this operation to the digital computer.”

147

when the results are available, optimal ω known for the overspecialized linear problem
is not that attractive from the perspective of applications. The generalization of the
second approach, that is, adaptation based on the empirical output from the solver,
seems more universally applicable. The goal of the present part is to build a general
framework that allows for the online adaptation of parametric families of the linear
solver.

Of course, SOR and other classical relaxation methods became less relevant with
the advent of efficient preconditioners for projection methods [Saa20], [Saa19], and
multigrid method [TOS00]. Fortunately, the methods that we develop in this part
can be used to optimize smoothers and projection operators for multigrid, sparse
approximate inverses, filtering preconditioners, modified BPX preconditioners, and
any other parametric family of linear solvers with a modest set of free parameters.

To achieve this goal, we render parametric linear iteration in terms of reinforce-
ment learning or online optimization. That is, we introduce a loss function that can
be computed with a little additional cost as a byproduct of iteration and use this
loss function to guide the optimization process. We start with ε−greedy algorithm
for multi-armed bandit [LS20] with fixed discretization, showing the inconsistency
of the standard version of the algorithm, and introduce a few improved versions.
In particular, we develop 1) restarted multi-armed bandit which produces a con-
sistent estimation of spectral radius; 2) fidelity-based algorithm for arm-exclusion
using Bauer-Fike upper bound [Saa11, Theorem 3.6]; 3) rediscretization strategy
that allows “off the grid” convergence to the best arm. The resulting algorithms are
compared on random linear systems as well as on different versions of second-order
elliptic equations.

9.2 Reinforcement learning

Reinforcement learning (RL) is a process when an agent changes her course of ac-
tions guided by feedback from the environment [SB98, Section 1.1]. The initial
development of the field was inspired by observations of how people and other ani-
mals learn. In particular, the notion of reinforcers and reward signals was developed
in the school of behavioral psychology (see [Maz17] for a general introduction, and
[Sut84] for the connection with reinforcement learning) and later lifted to the level
of individual neurons and neural circuits [NA19]. To exemplify, Rescorla–Wagner
model [Maz17, Chapter 4], [NA19, p. 135] describes learning process in the same
fashion as temporal-difference learning algorithms [Sut88].

Nowadays, reinforcement learning is a mature field with well-defined mathemati-
cal formalism. A comprehensive introduction to the subject can be found in [SB98].

148

In this part, we give only a brief description of relevant mathematics and solution
techniques used in the context of reinforcement learning.

9.2.1 Markov Decision Processes

Mathematical description of reinforcement learning can be effectively summarised by
Markov Decision Processes (MDP). In the discrete setting MDP is fully specified by
a transition function

p
(
s
′
, r
∣∣∣ s, a) , s′ , s ∈ S, r ∈ R, a ∈ A(s), (9.1)

that is the conditional probability to receive reward r and transfer from state s to
state s

′
if the action a is chosen, where the sets of states S and actions A(s) for given

state are finite.
When transition function Eq. (9.1) is given, the agent is described by a policy

function 0 ≤ π(a|s) ≤ 1 :
∑

a π(a|s) = 1 ∀s, which prescribes what action a to
undertake in state s. The policy with a transition function generates a trajectory
(or history)

(S0, A0) , (S1, A1, R1) , . . . , (SN−1, AN−1, RN−1) , (SN , RN) , (9.2)

that is, a record of states agent encountered Si, actions she performed Ai, and rewards
Ri she received during interaction with the environment. Trajectory Eq. (9.2) can be
infinite (see [SB98, Section 3.3]), but for convenience we consider finite trajectories
that ends after N actions. Different policies generate different trajectories, and the
preferable (optimal) policy π? is the one, that generates the largest mean cumulative
reward (also known as return)

G0(π, p) = E

[
N∑
i=1

Ri

]
π,p

, π? = arg max
π

G0(π, p). (9.3)

MDP is a rather abstract framework that can be applied to a variety of situation,
including playing complex games [Mni+13], [Sil+17], [Ber+19], learning coarsening
strategies for multigrid [Tag+21], turbulence modelling [NLK21], self-driving cars
[Dua+20], etc. More examples can be found in [Fra+18, Section 1].

9.2.2 Multi-armed bandits

Multi-armed bandit (or k-armed bandit) provides the simplest nontrivial case of
MDP. In this particular situation, MDP consists of a single state s and k ≥ 2 actions.

149

This means the agent only needs to decide which action to take, so the trajectory
Eq. (9.2) reduces to the sequence of actions and rewards. The goal of the agent is to
maximize the cumulative reward received after taking N actions. The challenge, as
usual, is to balance exploration and exploitation. Exploration consists of estimation
of the mean reward of each action, which is not known a priori. Exploitation consists
of choosing optimal action as often as possible. Exploration and exploitation are in
conflict. When the agent explores a lot, she is at risk of choosing non-optimal actions
too often, when the agent only exploits she is at risk of never discovering true optimal
action.

There is a large set of algorithms that can balance exploration and exploitation for
k-armed bandits (see [LS20]). Here we are interested in the simplest one, known as
ε−greedy. The agent, following ε−greedy strategy, chooses the best action (according
to her current estimation) with probability 1−ε, and random action with probability
ε for some small ε < 1. The reward of action i is estimated as an empirical average of
all rewards received when choosing i. The procedure is summarized in Algorithm 11.

Algorithm 11 ε−greedy k−armed bandit

1: Input: ε < 1 – probability to perform exploration, k−armed bandit, N – number
of rounds.

2: Reward estimation and number of visits Ri = 0, ni = 0, i = 1, . . . , k.
3: for j = 1, N do
4: e ∼ Uniform [0, 1]
5: if e > 1− ε then
6: i = random {1, . . . , k}
7: else
8: i = arg maxj Rj

9: end if
10: Take action Ai receive reward r
11: Ri ← Ri + (r −Ri)

/
max(ni, 1), ni ← ni + 1

12: end for

In the later sections, we will show how to adapt this algorithm to the online opti-
mization of the relaxation method. Our main focus is on the definition, construction,
and estimation of the reward signal. The way how exploration and exploitation are
balanced is less important. As a replacement to ε−greedy strategy, it is definitely
possible to use, for example, upper-confidence bound [ACF02], or strategies from
Gaussian Optimization [Sha+15].

150

9.3 Linear iterative methods and reinforcement

learning

Reinforcement learning is not something typically used in numerical linear algebra,
so we discuss the motivation and prototypical linear problem we are going to solve.

There are plenty of situations in scientific computing when precisely the same
linear system (or a family of related linear systems) is solved repeatedly for different
right-hand sides. The following list contains a few relevant examples:

1. Chorin’s projection method [Cho67].

In this splitting scheme, the Poisson equation needs to be solved during each
time step to recover pressure from auxiliary velocity.

2. Crank-Nicholson scheme for heat equation Section 1.3.10.

As in the case of any implicit scheme, one needs to solve a linear system to
obtain an approximation for the next time step.

3. Quasi-geostrophic omega equation [BS10].

This anisotropic elliptic equation is solved during time marching when weather
forecasts are performed.

4. PDE constrained optimization [Bie+03].

In this scenario, one requires to solve the same PDE for different input data
(boundary conditions, initial conditions, right-hand-side, values of parameters,
etc), which typically requires the solution of linear systems. See [RDW10] for
a concrete example where the constraints are formed by elliptic PDE.

There is also a simple example of this situation in the present thesis. Namely,
the optimal heating problem discussed in Section 4.4.3 leads to the situation
when the heat equation needs to be solved multiple times.

5. Inverse problems [Tar05].

The usual strategy to solve inverse problems includes Monte Carlo techniques
[Tar05, Chapter 2], which require repeated solutions to forward problems. In
the case of certain discretization of PDE, this, again, leads to large sparse linear
systems.

6. More examples can be found in literature on Krylov subspace recycling tech-
niques (see [Par+06] and references therein).

151

We hope the reader is convinced that in many practical applications the same
linear system is often needed to be solved more than once. The general strategy in
this scenario is to use some additional information to tune the linear solver. More
precisely, when a solver is applied to a linear system, it is usually possible to measure
its efficiency. For example, one can use a number of iterations needed to drop the
norm of the residual by an order of magnitude. This measure of efficiency in its
turn can be used to tune the free parameters of the solver (for example, relaxation
parameters in SOR and projection weights in multigrid) to improve the speed of con-
vergence. This online optimization problem is formulated below in a more abstract
setting.

Problem 9.3.1 (Online optimization of iterative solver). Let M (θ) be a para-
metric family of linear iterative methods (see Section 1.2.1), Ax = b(ω) (possibly
A(ω)x = b(ω)) is a parametric family of linear equations, and N(θ) is a number
of iteration (in a worst case scenario) of iterative method with parameter θ needed
to obtain relative error ε. Linear problems are presented according to some un-
known schedule ω1, ω2, . . . , ωK. The goal is to find a schedule θ1, θ2, . . . , θK such that∑K

i=1 N(θi) is as small as possible.

As we mentioned in Section 9.1, the specialized adaptive algorithms of this kind
are already presented in the literature. The main feature of algorithms we will
describe in the next section is that they can be applied more broadly and do not
depend explicitly on the nature of the underlying iterative method.

9.4 Linear iterative methods and bandits

In this section, we build a few specialized bandit algorithms of increasing sophistica-
tion, but first, we explain what is the set of actions, episodes, and the reward signal
for the task described in Problem 9.3.1.

As we explained in Section 7.1.1 the classical measure of convergence speed for
linear iterative method is a spectral radius of error propagation matrix ρ(M(θ)).
Because of that it is naturally to use approximation to 1

/
ρ(M(θ)) as a reward

signal. How this approximation is computed is explained in the next sections.
Having a reward signal, we switch to the definition of actions and episodes. From

now on we suppose that the space of parameters θ is discretized, so we have θi, i =
1, . . . , K iterative solvers to choose from. These constitute actions. In Problem 9.3.1
we are repeatedly presented with a right-hand sides, so we are, in principle, at liberty
to pick new θi for each new iteration. For simplicity we consider a set-up when we

152

Term Definition
Action The choice of parameter θ that specifies linear solver M (θ).
Episode K iterations with chosen solver until either relative residual is

smaller then ε or the maximal number of iterations Kmax is
reached.

Reward signal Estimation of spectral radius of error propagation matrix ρ(M).

Table 9.1: Definition of action, episode and reward signal for Problem 9.3.1

pick one θi for each new right-hand side. These parameters is used for K iterations
until the relative residual is small enough, that is

∥∥b−AxK∥∥/ ‖b−Ax0‖ ≤ ε < 1.
These K iterations constitute a single episode.

Definitions are summarized in Table 9.1.

9.4.1 Naive ε-greedy algorithm

To adopt Algorithm 11 we need to define how the reward should be computed. One
simple solution is to look at the quantity

ρ̂m+k,m =

(∥∥xm+k − xm
∥∥

‖xm − xm−1‖

)1/k

, (9.4)

which is known to converge to ρ(M) (for almost all starting error vectors) if 1 does
not belongs to the spectrum of M (see [Hac16, Exercise 2.33]).

Eq. (9.4) can be used to construct iterative method that computes reward signal
as explained in Algorithm 12. Now, when the reward signal is available, we can
use it to balance exploration and exploitation according to Algorithm 11. Empirical
evaluation and discussion of the resulting algorithm can be found in the section
below.

Experiment

To illustrate typical behavior of Algorithm 12 combined with Algorithm 11, we per-
form a series of experiments on small randomly generated linear systems. The precise
form of each matrix A reads

A = I +BBT ∈ R100×100, (9.5)

where each element Bij is nonzero with probability p = 0.2, and the value of each
nonzero element Bij is drawn from uniform distribution on the interval [0, 1].

153

Algorithm 12 Iterative solver with convergence speed estimation.

1: Input: M(θ) – error propagation matrices that define the family of iterative
methods, x – initial guess, b – right-hand side, A – matrix, δ – tolerance, Kmax

– maximal number of iterations.
2: Output: x – approximate solution to Ax = b, ρ̂(θ) – spectral radius estimation

of error propagation matrix M (θ).

3: y = M (θ)x+N (θ)b.
4: δ0 = ‖x− y‖, x = y
5: r0 = ‖b−Ax‖, Nit = 1
6: while r > δ or Nit ≤ Nmax do
7: x←M(θ)x+N (θ)b
8: r ← ‖b−Ax‖

/
r0, Nit ← Nit + 1

9: end while
10: y = M (θ)x+N (θ)b.
11: δ1 = ‖x− y‖, x = y

12: ρ̂(θ) =
(
δ1

/
δ0

)1/Nit

To test ε−greedy bandit we drew 50 matrices Eq. (9.5) and run Algorithm 12
combined with Algorithm 11 for 2000 episodes. Results are given in Fig. 9.1. The
details of the experiment is as follows. Tolerance δ was chosen to be 10−5, probability
of exploration ε = 0.1, and the number of actions is 35. For Jacobi method relaxation
parameter θ was taken from uniform discretization of the interval [1/λmin, 1/λmax),
where λmin, λmax are extreme eigenvalues of the matrix D(A)−1A, D(A) is the
diagonal of A. For SOR relaxation parameter θ is chosen from the uniform grid on
the interval (0, 2). Since all matrices are positive-definite, both methods converge
for all values of θ.

We can conclude from the result Fig. 9.1, that the additional cost incurred by
computation of Eq. (9.4) is negligibly small in comparison with other operations,
performed by the iterative method. This is clear from the wall-clock time measured
for the adaptive algorithm and the non-adaptive one. We can see that the adaptive
Jacobi method is 23% faster than the non-adaptive, whereas adaptive SOR is 66%
faster. So in this case adaptation is well-justified.

However, we can see from the last figure in Fig. 9.1, that the accuracy of spectral
radius estimation hardly improves over time. This is the case because our estimation
of the spectral radius is biased. Namely, when we apply Algorithm 12, we always per-
form a fixed number of iterations, so the distance between the exact spectral radius

154

0 250 500 750 1000 1250 1500 1750 2000
round

102

3 × 101

4 × 101

6 × 101

wa
ll-

clo
ck

 ti
m

e,
 m

s
Jacobi

random action
56.3 ms
Bandit
43.4 ms

0 250 500 750 1000 1250 1500 1750 2000
round

101

102

wa
ll-

clo
ck

 ti
m

e,
 m

s

SOR
random action
46.8 ms
Bandit
15.8 ms

0 250 500 750 1000 1250 1500 1750 2000
round

10 2

10 1

100

m
ea

n
ac

cu
ra

cy
 in

 n

or
m

Jacobi
SOR

Figure 9.1: Comparison of adaptive (see Algorithm 12 in combination with Algo-
rithm 11) and classical versions (random action is taken for each episode) of Jacobi
and SOR iterations. First two plots contain average time needed to drop L2 norm
of initial residual by 10−5. For each method, the mean execution time is specified
with the dashed line in the legend. The last graph shows the maximal (among 35
arms) absolute discrepancy between estimated spectral radius and the exact one. All
results are averaged over 50 random linear systems Eq. (9.5).

and our estimate never significantly decreases. Obviously, the statistical averaging
in Algorithm 11 (see line 11) is not going to improve accuracy. That is why we put
“naive” in the title of this section. To improve on this simple approach we need to
reconsider how spectral radius is estimated. This is done in the next section.

9.4.2 Restarted ε-greedy algorithm

The main reason why Algorithm 12 fails to provide a convergent estimation of the
spectral radius is that it always starts afresh. We solve this problem by making
exploration and exploitation asymmetric. Now, the exploration step only estimates
spectral radius and never improves the current estimation to the exact solution,
whereas the exploitation step is used to actually solve the linear system and never
provides an estimate of the spectral radius. Our approach is summarized in Algo-
rithm 13

For simplicity, we use power iteration [Saa11, Algorithm 4.1] to estimate leading
eigenvalue and eigenvector (line 9 in Algorithm 13). Albeit the convergence of power
iterations is in general not impressive [Saa11, Theore, 4.1], we find it work sufficiently
well to illustrate all features of Algorithm 13. In any case, almost arbitrary method
for eigenvalue estimation can be used in Algorithm 13. The only requirement is that
it should be possible to stop and later restart this method.

155

Algorithm 13 Restarted ε−greedy algorithm.

1: Input: M(θ) – error propagation matrices that define the family of iterative
methods, θj, j = 1, . . . , k – discretization of parameter space, Nrounds – number
of rounds, bi, i = 1, . . . , Nrounds – right-hand sides for each round, A – matrix, δ –
tolerance, Kmax – maximal number of iterations, ε – probability of exploration, K
– number of iteration allowed for eigenpair estimation, E(s, λ,K) – algorithm for
eigenpair estimation that takes approximate leading eigenpair s, λ and provide
improved estimation of eigenpair using K iterations.

2: Output: xi – approximate solutions to Ax = bi, ρ̂(θj) – approximate spectral
radii of error propagation matrices M(θj).

3: Randomly initialize leading eigenvectors for each arm vj
4: Initialize approximate spectral radii for each arm ρ̂(θj) = 0.
5: for i = 1, . . . , Nrounds do
6: e ∼ Uniform [0, 1]
7: if e > 1− ε then
8: i = random {1, . . . , k}
9: Improve eigenpair estimation vj, ρ̂(θj)← E(vj, ρ̂(θj), K).

10: end if
11: k = arg minj ρ̂(θj)
12: Solve linear system for current round with relaxation method M(θk).
13: end for

Experiment

The experiments with Algorithm 13 were performed using the same setting that we
described after Eq. (9.5). Additional parameter K (the number of iteration of power
series) is chosen to be 10.

The results are presented in Fig. 9.2. Two differences are evident. First, we can
see that for SOR the improvement on the average is much smaller than in Fig. 9.1.
This behavior is due to the poor convergence of the power iteration, which fails
to estimate spectral radius sufficiently fast. However, from the second figure of
Algorithm 13 we can see that the wall-clock time needed for the adaptive method
steadily declines. After a few more thousand rounds we expect to see the same
improvement as in the case of the naive Bandit algorithm. Second, the accuracy of
spectral radius estimation is improving with time (see the last figure in Fig. 9.2).
Power iteration converges for the chosen family of random linear systems, so we can
expect to obtain spectral radius with arbitrary accuracy after a sufficient number of

156

0 250 500 750 1000 1250 1500 1750 2000
round

102

3 × 101

4 × 101

6 × 101

wa
ll-

clo
ck

 ti
m

e,
 m

s
Jacobi

random action
62.7 ms
Bandit
49.0 ms

0 250 500 750 1000 1250 1500 1750 2000
round

102

wa
ll-

clo
ck

 ti
m

e,
 m

s

SOR
random action
47.9 ms
Bandit
45.4 ms

0 250 500 750 1000 1250 1500 1750 2000
round

100

m
ea

n
ac

cu
ra

cy
 in

 n

or
m

Jacobi
SOR

Figure 9.2: Comparison of adaptive (see Algorithm 13) and classical versions (random
action is taken for each episode) of Jacobi and SOR iterations. For each method,
the mean execution time is specified with the dashed line in the legend. The setup
is the same as in Fig. 9.1.

rounds.

9.4.3 Arm exclusion with Bauer-Fike upper bound

In the previous section, we constructed a consistent estimation of the spectral radius.
However, we have seen that this estimator converges slower than the naive bandit
algorithm. There are two natural strategies to improve the situation.

The first one is to simply combine the naive approach with the restarted one.
Namely, we can start with Algorithm 12 when no information about eigenvector of a
given arm is available and later switch to Algorithm 13. The resulting combined al-
gorithm has straightforward properties so we do not provide benchmarks and further
details.

The second strategy is to use confidence intervals for eigenvalues to completely
exclude suboptimal arms as soon as possible. This can be done with Bauer-Fike
upper bound [Saa11, Theorem 3.6] which states that for diagonalisable matrix A
holds ∣∣∣λ− λ̃∣∣∣ ≤ ‖X‖2∥∥X−1

∥∥
2

∥∥∥Aũ− λ̃ũ∥∥∥
2

‖ũ‖2

, (9.6)

where X diagonalizes A, λ̃ and ũ is approximate eigenpair and λ is the exact eigen-
value.

Evidently, Eq. (9.6) is a posteriori error estimate that is easy to compute if the
condition number of X is known. For Hermitian matrices A situation is especially
simple since X is unitary, so the condition number is 1. In this case situation

157

Algorithm 14 Arm exclusion with Bauer-Fike upper bound.

1: Input: approximate eigenpairs λ̃i, ũi, i = 1, . . . , N , Hermitian matrix A.
2: Output: set S ⊂ {1, . . . , N} of arms that contains the optimal one.

3: iopt = arg minj λ̃j

4: λu.b.
min = λ̃iopt +

∥∥∥Aũiopt − λ̃ioptũiopt∥∥∥/∥∥ũiopt∥∥
5: S = {iopt}
6: for i = 1, . . . , N , i 6= iopt do

7: λl.b.
i = λ̃i +

∥∥∥Aũi − λ̃iũi∥∥∥/ ‖ũi‖
8: if λl.b.

i ≤ λu.b.
min then

9: S ← S ∪ {i}
10: end if
11: end for

simplifies [Saa11, Corollary 3.3]:

∣∣∣λ− λ̃∣∣∣ ≤
∥∥∥Aũ− λ̃ũ∥∥∥

2

‖ũ‖2

. (9.7)

Result Eq. (9.7) can be improved (see [Saa11, Section 3.2.2]) but as we will see it is
already sufficient for efficient arm exclusion algorithm.

The algorithm itself is given in Algorithm 14 and consists of comprising of upper
bounds for the currently optimal arm with lower bounds for suboptimal arms.

Experiment

We benchmark Eq. (9.7) on random matrices Eq. (9.5) in the same setup described
after Eq. (9.5). The results are in Fig. 9.3.

As we can see, Bayer-Fike bound successfully excludes almost all arms after 2000
rounds. This mean (on average) at the end adaptive algorithm Algorithm 13 chooses
only between two arms that are indistinguishable close to each other. The accuracy of
estimate (Fig. 9.3 last figure) reaches much lower values in comparison with algorithm
without arm exclusion (Fig. 9.2) because, when forlorn arms are excluded, algorithm
can allot more resources to the remaining ones.

158

0 250 500 750 1000 1250 1500 1750 2000
round

102

wa
ll-

clo
ck

 ti
m

e,
 m

s
random action
52.5 ms
Bandit
40.1 ms

0 250 500 750 1000 1250 1500 1750 2000
round

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

su
rv

iv
ed

 a
rm

s

0 250 500 750 1000 1250 1500 1750 2000
round

10 2

10 1

100

m
ea

n
ac

cu
ra

cy
 in

 n

or
m

Figure 9.3: Benchmark of restarted ε−greedy bandit Algorithm 13 combined with
Bauer-Fike arm exclusion Algorithm 14. The first figure shows wall clock time for
adaptive algorithm and for the solver that chooses random arm for each round. For
each method, the mean execution time is specified with the dashed line in the legend.
Second figure contains the average number of arms survived after exclusion step. The
third figure contains accuracy of eigenvalue estimation.

9.4.4 Rediscretization

When Algorithm 14 excludes all but one arm, Algorithm 13 has nothing to explore
and improve anymore, so the estimation of spectral radius becomes unnecessary.
At this stage, we can recall we performed discretization of the continuous space of
actions. This implies our estimation of the best action is (in the worst case) the
discretization step away from the genuinely optimal action.

So when resources for explorations are exhausted, we can perform rediscretization.
Namely, if θi is the last remaining arm after Algorithm 13 with Algorithm 14, we can
substitute the initial set of arms with uniform discretization of interval [θi−1, θi+1]
that contains optimal arm.

Experiment

We use random matrices Eq. (9.5) to exemplify the performance of rediscretization
strategy. The results are in Fig. 9.4.

We can see that the distance to the optimal arm is steadily decreasing. When
the arms are closer to each other, algorithm Algorithm 13 needs more time to distin-
guish between them, that is why the distance on the right graph in Fig. 9.4 slowly
saturates. Also, it is interesting to look at the walk-clock time (left panel in Fig. 9.4).
The algorithm with rediscretization demonstrates a profound slowdown around 750
episode. The reason for that is, on average 750 is the episode when rediscretiaza-
tion occurs. At first, it seems rediscretization should not have this effect, because
after it all arms are sufficiently close to the optimal one, so the solution should be

159

0 250 500 750 1000 1250 1500 1750 2000
round

102
wa

ll-
clo

ck
 ti

m
e,

 m
s

random action
45.8 ms
Bandit
54.5 ms

0 250 500 750 1000 1250 1500 1750 2000
round

10 3

10 2

di
st

an
ce

 to
 th

e
be

st
 a

rm

Figure 9.4: Benchmark for composition of Algorithm 13 with Algorithm 14 and redis-
cretization (see Section 9.4.4). For each method, the mean execution time is specified
with the dashed line in the legend. Number of arms is 20 for each discretization.
Original spacing of the grid in the space of actions is ' 10−2.

obtained with fewer iterations. The effect can be explained by two factors. First,
we used optimistic initialisation (line 4 in Algorithm 13). Second, we used priority
exploration (not shown in the algorithms above) of arms with zero spectral radii. So,
when rediscretization is done, the adaptive algorithm performs extensive exploration
which leads to low iteration count but high collateral costs associated with spectral
radii estimation. That is why wall-clock time increases after rediscretization. It is
easy to come by with the algorithm without this undesired behavior, but in this case,
convergence to the correct arm is delayed and more rounds are needed to obtain the
result evident from the right figure in Fig. 9.4.

9.5 On convergence of proposed algorithms

We will not attempt to provide rigorous proof of convergence and convergence speed
in this section. This task is beyond the scope of the current research. However, we
will outline what can be done to establish convergence of proposed algorithms.

First, one needs to establish whether the estimate of the spectral radius con-
verges, which is related to the reward in our case. All the novel algorithms (e.g.,
Algorithm 13) proposed in this section rely on the power iteration. The convergence
of the power iteration is well understood (see [Saa11, Theorem 4.1]), so the sufficient
condition for convergence is easy to obtain for an individual arm. However, it can be
hard to obtain convergence for a set of arms. To do that, one needs to have results
like the theorem of Young for SOR (see [Hac16, Theorem 4.27]), i.e., the result on
how the spectrum of error propagation matrix depends on the relaxation parameter

160

(see also [Hac16, Section 4.6.4] for the discussion on how this information can be
used to construct adaptive iterative method).

The second ingredient is the convergence of exploration-exploitation scheme (see
[ACF02] for the variant of ε−greedy bandit). Unfortunately, this is not possible to
apply those results directly to relaxation techniques, because the rewards of the arms
are not random variables. One way around could be to use Bauer-Fike upper bound
Eq. (9.6) and model approximate eigenvalue λ̃ as a uniformly distributed random
variable inside the interval defined by the right-hand side of Eq. (9.6).

Lastly, to prove the convergence of the rediscretization approach, one needs to
know the local and global properties of the function ρ(ω) (e.g., Lipshitz constant,
smoothness). Similar regularity criteria plays important role in the convergence
results for bandits with continuous action spaces [MCP14].

With all the mentioned results combined one should be able to prove the conver-
gence of Algorithm 13 and other algorithms in this part.

9.6 Numerical examples

To show typical behaviour of proposed algorithms we on more serious examples, we
perform a series of tests with geometric multigrid method. In all tests we optimize
pre- and post-smoothing relaxation parameter in Jacobi iterations. As a stopping
criteria we used the drop of relative residual below 10−10. Equations used include
5-point Eq. (1.14) and Mehrstellen Eq. (1.17) discretisations of Poisson equation,
Poisson equation with mixed derivative Eq. (1.19) with 2τ = 2 − η, anisotropic
Poisson equation Eq. (1.21) with anisotropy parameter η. To measure the perfor-
mance of algorithms we use wall-clock time and average spectral radius defined as∑

θ p(θ)ρ(M (θ)).
The first portion of results is shown in Fig. 9.5. We can see (first two columns

Fig. 9.5) that both adaptive algorithm consistently produces a better average spectral
radius for different problem sizes J . For all problems, the average spectral radius
weakly depends on J and slowly saturates.

In the last columns of Fig. 9.5 we can see that the same is true for anisotropy
parameters η. However, the efficiency of both adaptive and non-adaptive iterations
decreases profoundly for small η. The reason for that is not the inefficiency of the
adaptive algorithm but the absence of good solvers among the presented ones, i.e.,
it is not enough to tune the relaxation parameter to improve the convergence speed
for these equations.

Second portion of results is presented in Fig. 9.6. From Fig. 9.6b we can conclude
that typically average wall-clock time is going to increase when the number of arms

161

0.15

0.20

0.25

0.30

0.35

0.40

av
er

ag
e

sp
ec

tra
l r

ad
iu

s
Poisson, 5-point stencil Poisson, mehrstellen

0.25 0.50 0.75 1.00 1.25 1.50 1.75
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Poisson + 2
xy

3 4 5 6 7
J

0.20

0.25

0.30

0.35

0.40

0.45

0.50

av
er

ag
e

sp
ec

tra
l r

ad
iu

s

Poisson + 2
xy, 9-point stencil

naive greedy Bandit
restarted greedy Bandit
random action

3 4 5 6 7
J

Anisotropic Poisson = 0.25

0.1 0.2 0.3 0.4 0.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Anisotropic poisson,

Figure 9.5: Results for Algorithm 13 with arm exclusion Algorithm 14 for four test
problems. First two columns show the dependence of average spectral radius on the
number of unknowns N = 2J . Last column shows the dependence on the degree
of anisotropy (for anisotropic equation) and the strength of mixed terms (for the
equation with ∂2

xy). Smaller values of η correspond to a more wayward equation.
Number of arms is 50 for all experiments.

naive restarted
Poisson-5 0.51 0.44

Mehrstellen 0.49 0.41
∂2
xy 0.64 0.82

Anisotropic 0.48 0.49

(a)

10 20 30 40 50
number of arms

0.40

0.45

0.50

0.55

0.60

re
la

tiv
e

wa
ll-

clo
ck

 ti
m

e

Poisson-5, 1000 rounds
naive greedy Bandit
restarted greedy Bandit

10 20 30 40 50
number of arms

Mehrstellen, 2000 rounds

(b)

Figure 9.6: Relative wall-clock time (normalized on the average time needed for
algorithm that chooses random action) for maximal number of rounds (left) and as
a function of the number of arms.

162

is increased. This is because for the fixed number of episodes adaptive algorithm
needs to spend more time finding the optimal arm. The situation can be improved
with rediscretization approach described above.

Fig. 9.6a demonstrates that Algorithm 13 is not uniformly better than Algo-
rithm 12 when wall-clock time is considered. Again, the reason is the fixed number
of rounds Nr. When Nr →∞ we can expect the performance of restarted Bandit to
excel the performance of Algorithm 12, because the former is consistent whereas the
later is not.

163

Conclusion

To summarize, we discuss the advantages and limitations of approaches (statistical,
and machine learning) advocated in the thesis.

Statistical approaches

As we have seen, probabilistic numerical methods provide a unique new way to
think about numerical algorithms. They are backed by powerful approaches used in
Bayesian statistics and Bayesian decision theory. This allows for the development of
new algorithms that, in some cases, are superior to classical ones [Owh15].

The main feature of these algorithms is the uncertainty about the exact solu-
tion encoded as a posterior distribution. This distribution can be used to solve
inverse problems and forward problems with uncertain parameters (see [Coc+19b],
[Coc+19a], [HOG15]). In the latter case, uncertainties can be meaningfully combined
with standard rules of probability.

On the downside, the interpretation of the uncertainty is still vague. Probability
theory used to quantify epistemic uncertainty focuses on the set of rules that ensures
consistency. This means the manipulations with probabilities are uniquely fixed. On
the other hand, the probability distribution is not uniquely prescribed. There is no
agreement on how one should specify it so that it can be seen as subjective. This
poses difficulties for uncertainty quantification.

Another problem is the high numerical cost of probabilistic numerical methods
([Owh15] provide notable exception). It is not always clear that these additional costs
are justified. One way to justify them is to argue that well-calibrated probabilities
can be combined. However, to the best of our knowledge, current literature lacks
definitive examples that show how uncertainty can be combined in computational
pipelines.

To recapitulate, probabilistic numerical approaches are often theoretical in spirit.
They are seldom numerically attractive in comparison with classical methods. The

164

probability distribution provided by those methods is an interesting object to study
because it provides an alternative to classical error estimation techniques which quite
often result in pessimistic estimates.

Machine learning approaches

The machine learning approaches are more practical and traditionally oriented to-
ward improvement in a given benchmark. This way it is possible to construct highly
optimized solvers that beat classical algorithms. This was demonstrated in many
research manuscripts (e.g., [Hsi+19], [Li+20], [Gre+19a]) including the present one.
In our opinion, highly customized solvers are valuable for applications where the
same linear system should be solved again and again. One of the examples is the
weather forecast. Even a slight optimization of linear solvers in this computationally
intensive field can save a lot of energy.

The tendency toward improvement in a given benchmark quite often masks that
machine learning approaches tend to be brittle. This brittleness manifests itself in
two forms.

First, when parameters of the problem shows “extreme” behaviour (large wavenum-
bers in Helmholtz problem, large anisotropy coefficient, large jump in the diffusion
coefficient) the learning/optimization becomes unreliable and inefficient (see contin-
uation method in [KDO20], discussion in Section 8.6.4). These kind of problems are
usually solved by “hybrid” approaches, when classical technique aid machine learn-
ing to avoid difficulties with recalcitrant problem (e.g., rescaling in Section 7.3.6,
AMG interpolation in [Gre+19a]). Hybrid approaches are legitimate, but being ad
hoc only masks the problem.

Second, machine learning approaches often lead to solvers that generalize poorly
on the out-of-distribution data. Examples for multigrid are given in Chapter 8. The
same was recently demonstrated for neural operators [FO22]. The solution here is,
again, to apply hybrid approaches with the same downsides as before.

Despite all the mentioned difficulties, we remain optimistic. Both probabilistic
numerical methods and machine learning for numerical linear algebra (and scientific
computing in general) approaches are in their infancy. We are definite we will see a
lot of new fruitful ideas in years to come.

165

Part III

Proofs

166

Chapter 10

Gaussian belief propagation

10.1 Theorem 3.3.1

Here, following [WF00] we prove Theorem 3.3.1. That is, if there is a steady state
under mapping (3.23), the solution given by the GaBP rules is exact.

We note that the proof in [WF00] also holds for the nonsymmetric case. We
present a slightly different version of their reasoning, without referencing graphical
models for normal distribution.

The first concept that we need is a computation tree, which captures the order of
operations under the GaBP iteration scheme. The computation tree contains copies
of vertices and edges of the graph corresponding to A. The matrix is supposed to be
fixed so the computation tree depends on the root node i and the number of steps
n. We denote it by Tn(xi). To obtain Tn(xi) from Tn−1(xi), we consider each vertex
m ∈ VTn−1(xi) that has no incidence edges, find the corresponding variable on the
graph of A, add to Tn−1(xi) copies of each neighbour k of m such that ekm ∈ EA
except for l for which eml ∈ ETn−1(xi). The example of the tree T3(x1) is in Fig. 10.1c,
the T2(x1) in the dashed box exemplifies the recursion process.

By the construction of the computation tree, the following proposition is true.

Proposition 10.1.1. If x
(n)
i is the solution on the n-th step of the Algorithm 1, then

it coincides with the one obtained after the elimination of all variables but xi (the
root) from the computation tree Tn(xi).

To relate the matrix B of the computation tree Tn(xi) to the matrix A, we define
the matrix O [WF00, eq. 15] that connects original variables with copies

y = Ox,d = Ob, (10.1)

167


∗ ∗ ∗ 0
0 ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 ∗


(a)

1 2

3 4

(b)

1 y1

3 y2 2 y3

2y4 4 y5 3y6 4 y7

4 y8 1y9 4 y10

T2(x1)

(c)

Figure 10.1: (a) – matrix with nonzero elements denoted by ∗; (b) – directed graph
corresponding to the matrix. Note that by our convention eij agrees with Aji not
Aij; (c) – computation tree of depth 3 for the first node T3(x1) generated by a flood
schedule. The subtree inside the box is T2(x1).

or, more precisely, yj is a copy of xi ⇒ Oji = 1 and
∑
i

Oji = 1. For example, matrix

O for the tree in Fig. 10.1c is

OT =


1 0 0 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 1 0
0 0 0 0 1 0 1

 . (10.2)

Now it is not hard to establish the connection between B and A [WF00, eq. 17]

BO + E = OA, (10.3)

where E is nonzero only for the subset of variables that n steps away from the root
node on the computation tree Tn(xi). The final part of the proof depends on the
following statement [WF00, Periodic beliefs lemma].

Proposition 10.1.2. If there is N ∈ N such that m
(N+k)
e = m

(N)
e , Λ̃

(N+k)
e = Λ̃

(N)
e

for all e ∈ E and for any k ∈ N, then it is possible to construct an arbitrary large
computation tree TM(xi) for any root node xi such that Oµ(N) = B̃−1d̃. Where

B̃ij 6= Bij and d̃i 6= di only for i = j that are M steps away from the root node.

The crucial part here is that not only the solution for the root node coincides
with the steady state solution of GaBP, but also the same is true for all the variables
on the modified computation tree.

168

The proof is as follows. First, following the recursion procedure, we construct a
computation tree of desired depth M . Then we continue to grow the tree till the
subtrees of nodes M steps away from the root reach the depth N which corresponds
to the steady state of GaBP. Now, elimination of subtrees results in the desired
modified tree with the matrix B̃ and the right-hand side d̃.

Since we can construct an arbitrary modified computation tree, we can always
get for arbitrary large M

B̃O = OA for the first M rows. (10.4)

And we know that by construction of the modified computation tree

B̃Oµ(N) = d̃. (10.5)

So we conclude that

OAµ(N) = Ob for the first M rows. (10.6)

Note, that OTO is a diagonal matrix that counts the number of copies of each
variable, therefore we can always choose M large enough to make det

(
OTO

)
6= 0

and Aµ(N) = b which means that the iterative scheme defined by the Algorithm 1
is consistent.

10.2 Theorem 3.3.2

Here we present the version of the proof from [MJW06] that extends to nonsymmetric
matrices. Our modifications are relatively minor, but for the sake of logical coherence,
we reproduce here the minimal set of arguments from [MJW06] tuning definitions
and proposition when needed.

The whole idea of the proof [MJW06] is to relate GaBP operations with the
recursive update of the weights of walks on the graph, corresponding to the matrix A.
For the start, we define a walk w as a an ordered set of vertices w =

(
i1, i2, . . . , il(w)

)
where l(w) is a length of the walk w and ∀k < l(w) ⇒ eikik+1

∈ E . Each walk
possesses a weight

φ(w) = Ail(w)il(w)−1
· · ·Ai3i2Ai2i1 . (10.7)

Note that the order is backward, which is a consequence of our definition of the
directed graph. For the symmetric matrix, when the order is not essential, the
equation (10.7) coincides with the weight defined in [MJW06, p. 3.1]. Now, if we

169

have a system Ax = b, we can rescale it using b̃j = bj/Ajj. This procedure is valid
for any A with nonzero diagonal and results in the equivalent system

Ãx = b̃, Ãij = δij + (1− δij)
Aij
Aii
≡ δij − R̃ij (10.8)

It is possible to represent the solution of (10.8) in the form of Neumann series (see

[HJ13, ch. 5]) because ρ
(
R̃
)
< 1 and therefore

Ã−1 =
(
I− R̃

)−1

=
∞∑
n=0

R̃n. (10.9)

However, for being able to rearrange terms in the sum as necessary, which is sufficient
to rewrite the inverse matrix using walks, one needs to require absolute convergence

which is ρ(|̃R|) < 1. Having this condition it is not hard to prove [MJW06, Propo-
sition 1, Proposition 5]

Proposition 10.2.1. If ρ(|̃R|) < 1, then

Ã−1
ij =

∑
w:j→i

φ(w), x?i ≡
(
Ã−1b̃

)
i

=
∑
k∈V

∑
w:k→i

φ(w)̃bk.

Here, by w : j → i we mean the set of walks which start from the vertex j and

end at the vertex i. If one defines [MJW06, p. 3.2] sets of single-visit k
\i→ i and

single-revisit i
\i→ i walks by all walks which are not visiting the node i in between

given start and end points, the sum over walks can be decomposed [MJW06, eq. 12,
13, Proposition 9]

x?i =

b̃i +
∑
k∈V

b̃k ∑
w:k
\i→i

φ(w)

/1−
∑
w:i
\i→i

φ(w)

 . (10.10)

The decomposition follows from ”topological” considerations alone which depend
only on the structure of walks and not on the particular definition of the weight.
The last result that we need is [MJW06, Lemma 18]

Proposition 10.2.2. For each finite length walk k → j on directed graph of the
matrix A there is n and unique walk on the computation tree Tn(xi).

170

Now, if we can relate update rules (3.23) with the recursive structure of walks on
a tree, the proof of the Theorem 3.3.2 is done.

On the tree, for each vertex i, the sum over single-revisit walks splits into sums
over subtrees Tk∪i, which are maximal connected parts that contain i and among
N(i), only k. Then ∑

w:i
\i→i

φ(w) =
∑
k∈N(i)

∑
w:i
\i→i

w∈Tk∪i

φ(w), (10.11)

but the sums over subtrees Tk∪i can be written as a sum over Tk\i ≡ Tk∪i\ {i},∑
w:i
\i→i

w∈Tk∪i

φ(w) =
R̃kiR̃ik

1−
∑

w:k
\k→k

w∈Tk\i

φ(w)
=

R̃kiR̃ik

1−
∑

m∈N(k)\i

∑
w:k
\k→k

w∈Tm∪k

φ(w)
, (10.12)

where we used [MJW06, eq. 12, Proposition 9]∑
w:k→k

φ(w) =
1

1−
∑

w:k
\k→k

φ(w)
. (10.13)

Using the definition of R̃, it is easy to see that if one denotes

− Aii
Aki

∑
w:i
\i→i

w∈Tk∪i

φ(w) = Λ̃ki, (10.14)

then the update rule (10.12) coincides with the one for Λ̃ in (3.23). Note that (10.14)
is well defined because ifAki = 0, there is no contribution from this particular subtree,
and we do not need to use the walk from there. In the same vein, the sum in the
numerator of (10.10) can be decomposed

∑
k∈V

b̃k ∑
w:k
\i→i

φ(w)

 =
∑

m∈N(i)

∑
k∈Tm∪i

b̃k ∑
w:k
\i→i

w∈Tm∪i

φ(w)

 . (10.15)

Again, using the sum over subtrees Tk\i

∑
k∈Tm∪i

b̃k ∑
w:k
\i→i

w∈Tm∪i

φ(w)

 = R̃im

∑
k∈Tm\i

b̃k ∑
w:k→m
w∈Tm\i

φ(w)

 , (10.16)

171

1 2 3

4 5 6

7 8 9

A B

C

(a)

A

B

C

(b)

A\B

B

C\B

A\CC\A

B\AB\C

T2

(c)

Figure 10.2: (a) – partition of the original graph on large regions; (b) – flat repre-
sentation of the two-layer region graph; (c) – computation tree for the generalized
GaBP.

decomposition on single-visit walks [MJW06, eq. 13] and equations (10.14), (10.12),
we obtain

mmi

Aii
≡
∑

k∈Tm∪i

b̃k ∑
w:k
\i→i

w∈Tm∪i

φ(w)

 =

=
Λ̃miAmm
Aii

b̃m +
∑

l∈N(m)\i

∑
k∈Tl∪m

b̃k ∑
w:k
\m→m

w∈Tl∪m

φ(w)


 .

(10.17)

The parameterization introduced in (10.17) leads to the same update rule for m as
in (3.23). With that, the sufficient condition, given in Theorem 3.3.2, is established.

10.3 Theorem 3.4.1

Here we prove that the generalized GaBP is consistent. The idea of the proof is
the same as for the regular GaBP. One needs to relate, considering the operations of
generalized GaBP, equations that the generalized GaBP solves during the N -th step,
with the original system of linear equations, and then to show that those systems
coincide for a sufficiently large N if steady state exists.

172

To do so, we introduce a flat region graph. The flat region graph is an undirected
graph {V , E}, where V is the set of large regions (collections of variables in set-
decomposition P) and

(
L,L

′) ∈ E if L and L
′

has at least one common child. The
example is in Fig. 10.2b.

Now one can introduce the computation tree exactly in the same way as for GaBP.
The only difference is that, because of an overlap between large regions, when we
add a leaf node, we include overlapping variables to the root node. An example of
the computation tree T3(B) as well as the T2(B) is in Fig. 10.2c. By construction of
the computation tree, we know that the following is true.

Proposition 10.3.1. Elimination of all the variables on the computation tree TN(B)
leads to the solution xB that coincides with the one on the N-th step of generalized
GaBP.

The relation between the matrix B, corresponding to the computation tree, and
the original matrix A is the same as in the equation (10.3) if one introduces the
matrix O

Oij =

{
1 if yi is the copy of xj,

0 otherwise.
(10.18)

Here, x are variables on the graph of matrix A, and y are the ones on the computation
tree.

Having the same relation between A and B, we can repeat the rest of the proof,
using the same arguments as in Section 10.1. So it follows that generalized GaBP is
consistent and Theorem 3.4.1 is true.

10.4 Theorem 3.4.2

In this section, we present a sufficient condition for the convergence of the two-layer
generalized GaBP.

The proof consists of two parts. In the first one, we show that single-visit and
single-revisit walks on a tree possess the same update rules as generalized GaBP
messages. In the second part, we show that it is always possible to reorganize walks
on the graph coming from the partition F (see equations (3.36) and (3.37)) to restore
each walk on a computation tree.

173

10.4.1 Walk structure on a tree

To complete the first part, we define for a given partition F (equation (3.36)) of a
matrix A the weight of a walk w = (i1i2 . . . iL) by the product of matrices

φ(w) = R̃iLiL−1
· · · R̃i3i2R̃i2i1 . (10.19)

In the view of the standard result [Ama+05, ch. 8, Theorem 8.9] on absolute conver-
gence in complete finite metric spaces it is possible to rearrange terms of the sum,
such that we can formulate the following statement.

Proposition 10.4.1. If ρ
(∥∥∥R̃∥∥∥) < 1, then

(
Ã−1

)
ii

=
∞∑
n=0

(
R̃n
)
ii

=
∑
w:i→i

φ(w), xi ≡
∑
j∈V

(
Ã−1

)
ij

b̃j =
∑
j∈V

∑
w:j→i

φ(w)b̃j.

Here we used the same definition for the set of walks as in the Section 10.2.
Again, [MJW06, eq. 12, 13] allows us to rewrite the diagonal blocks of the inverse
matrix and the solution vector using single-visit and single-revisit walks

(
Ã−1

)
ii

=

Iii −
∑
w:i
\i→i

φ(w)

−1

,

xi =
(
Ã−1

)
ii

b̃i +
∑
j∈V

∑
w:j
\i→i

φ(w)b̃j

 .

(10.20)

On the tree we can split the sums over contributions from subtrees Tk∪i for each
k ∈ N(i). Therefore, from comparison with Algorithm 2, we can deduce that∑

j∈Tk∪i

∑
w:j
\i→i

w∈Tk∪i

φ(w)b̃j = (Aii)
−1 mki,

∑
w:i
\i→i

w∈Tk∪i

φ(w) = − (Aii)
−1 Λki. (10.21)

Messages in Algorithm 2 propagate along edges of the region graph, whereas messages
that we have just defined flow along edges of a graph of the matrix R̃. To have a more
straightforward connection between them, we consider R̃ as a matrix originates from
the computation tree itself. Under this set of circumstances, there is a one-to-one
correspondence between messages (10.21) and the ones in Algorithm 2.

174

For single-revisit walks, one has∑
w:i
\i→i

w∈Tk∪i

φ(w) = (Aii)
−1 Aik

∑
w:k→k
w∈Tk\i

φ(w) (Akk)
−1 Aki =

= (Aii)
−1 Aik

Ikk −
∑
w:k
\k→k

w∈Tk\i

φ(w)


−1

(Akk)
−1 Aki ⇒

⇒ Λki = −Aik

Akk +
∑

m∈N(k)\i

Λmk

−1

Aki.

(10.22)

Consider the following matrix

X Aik

Aki

(
Akk +

∑
m∈N(k)\i

Λmk

)
−1

ii


−1

−X = Λki, (10.23)

where X is arbitrary conformable invertible matrix. Equation (10.23) has precisely
the same form as a Λvu in line 16 of Algorithm 2. Using standard identities for block
matrix inversion one can easy convince herself that (10.23) provides the same update
rule as (10.22).

For single-visit walks, we have∑
j∈Tk∪i

∑
w:j
\i→i

w∈Tk∪i

φ(w)b̃j = − (Aii)
−1 Aik

∑
j∈Tk\i

∑
w:j→k
w∈Tk\i

φ(w)b̃j =

= − (Aii)
−1 Aik

Ikk −
∑
w:k
\k→k

w∈Tk\i

φ(w)


−1
b̃k +

∑
j∈Tk\i

∑
w:j
\k→k

w∈Tk\i

φ(w)b̃j

 ,

(10.24)

or using (10.21), we get

mki = −Aik

Akk +
∑

m∈N(k)\i

Λmk

−1bk +
∑

p∈N(k)\i

mpk

 . (10.25)

175

i

j

k

(a)

i1i2

j

k

(b)

Figure 10.3: (a) – graph of the matrix A, each node corresponds to the diag-
onal block; (b) – refined version of (a), submatrix Aii is split by four blocks
Ai1i1 ,Ai1i2 ,Ai2i1 ,Ai2i2 .

Now, consider the expression

∆i ≡


X Aik

Aki

(
Akk +

∑
m∈N(k)\i

Λmk

)
−1(

y
bk +

∑
p∈N(k)\i

mpk

)
i

, (10.26)

where X is arbitrary conformable invertible matrix and y is arbitrary conformable
vector. Equation (10.26) corresponds to (xv)u in line 16 of Algorithm 2. Note that
the first matrix in equation (10.23), i.e., Λki +X, is analogous to ((Λv)u)

−1 in line
16 of Algorithm 2. Using standard identities for block matrix inversion we find

(Λki +X) ∆i − y = mki, (10.27)

which finishes the proof of updated rules (3.32).

10.4.2 Walk-sums and the graph refinement

The second part of the proof establishes the connection between sets of walks on
the graph of the matrix R̃ and walks on the computation tree. First, for the matrix
(3.37) we split a single region i into two parts i1 and i2

A =


Ai1i1 Ai1i2 Ai1j . . .
Ai2i1 Ai2i2 Ai2j . . .
Aji1 Aji2 Ajj . . .

...
...

...
. . .

 ,b =


bi1
bi2
bj
...

 . (10.28)

176

The transformation of the graph is in Fig. 10.3. We refer to this procedure as to the
elementary refinement of the region i. From the construction of the refined matrix
A, the following proposition holds.

Proposition 10.4.2. There is a one-to-one correspondence between walks on the
graph of R̃ and the one obtained by the elementary refinement of the region i excluding
three situations: 1) walk crosses i, 2) walk ends at i, 3) walk starts at i.

We discuss each of these situations separately. First, we need to introduce a new

notation. Let k
M−→ l be the set of walks, where each walk starts from k, ends at l

and newer leaves the subset M . It is easy to see that on the refined graph

φ
(
k
{i1,i2}−→ l

)
=
(
(Aii)

−1)
lk

Akk, where l, k = {i1, i2} . (10.29)

• Walk on R̃ that crosses i has a form wcross = (. . . jik . . .) (see Fig. 10.3a). The
weight of this walk is

φ(wcross) = · · · (Akk)
−1 Aki (Aii)

−1 Aij · · · . (10.30)

On the refined graph we can consider the set of all walks that coincides with
w outside i. The sum of weight of all these walks is

φ(w)refined =
∑

l,k∈{i1,i2}

· · · (Akk)
−1 Aklφ

(
l
{i1,i2}−→ k

)
(All)

−1 Alj · · · . (10.31)

We see that due to equation (10.29), weights are the same.

• Walk on R̃ that ends at i has a form wend = (. . . ji) and a weight

φ(w) = (Aii)
−1 Aij · · · . (10.32)

On the refined graph we have two set of walks

φ(w)prefined =
∑

l∈{i1,i2}

φ
(
l
{i1,i2}−→ p

)
(All)

−1 Alj · · · , p ∈ {i1, i2} (10.33)

that can be combined to have the same weight. Namely, using (10.29) we find
that [

(Aii)
−1 Aij · · ·

]
l?

=
(
φ(w)lrefined

)
?
, l = {i1, i2} . (10.34)

177

• Walk on R̃ that starts at i has a form wstart = (ij . . .) and a weight

φ(wstart) = · · · (Ajj)
−1 Aji. (10.35)

It is possible to relate this walk to two sets of walks w1 = (i1j . . .), w2 =
(i2j . . .) on the refined graph multiplying by the corresponding inverse matrices(

φ(wstart) (Aii)
−1)

?l
=

∑
k={i1,i2}

(
φ(wk)φ

(
l
{i1,i2}−→ k

)
(All)

−1
)
?
, (10.36)

where l = {i1, i2}. The re-weight is needed because the original linear system
and the refined one are multiplied by different block diagonal matrices and
have different inverses.

We know the following two propositions to be true.

Proposition 10.4.3. Any computation tree can be, by the set of elementary refine-
ments, turned to a computation tree of GaBP under a proper schedule (see discision
before [MJW06, Lemma 18]) operating on the graph of the matrix (3.37) partitioned
according to F .

Proposition 10.4.4. For each walk on the graph of the matrix (3.37), there is a
unique walk on a sufficiently large computation tree formed by a proper schedule.

Hence for each walk on the computation tree, it is always possible to find a
unique set of walks on the graph of the matrix (3.37) that has the same weight
after the multiplication by an appropriate inverse matrix (see (10.36). It allows
us to conclude that if it is possible to define a walk-sum for matrix (3.37) (see
proposition Proposition 10.4.1), walk-sum on the computation tree converges too, so
Theorem 3.4.2 is proven.

178

Chapter 11

Probabilistic projection methods

11.1 Lemma 4.2.1

General result [Bar+19] for mean and covariance are

xm = x0 + Σ0A
TSm

(
STmAΣ0A

TSm
)−1

STm (b−Ax0) ,

Σm = Σ0 −Σ0A
TSm

(
STmAΣ0A

TSm
)−1

STmAΣ0.

Matrix Σ0A
TSm and its transpose appear frequently in xm and Σm. For a chosen

covariance matrix Σ0 this combination has a simple form

Σ0A
TSm =

(
V V T + Ψ

)
ATW = V

(
V TATW

)
, (11.1)

where the second equality follows from the condition W TAΨ = 0. Using this form
of Σ0A

TSm we find(
STmAΣ0A

TSm
)−1

=
(
V TATW

)−1 (
W TAV

)−1
. (11.2)

This implies that the second part of the covariance matrix simplifies as follows

Σ0A
TSm

(
STmAΣ0A

TSm
)−1

STmAΣ0 = V V T , (11.3)

from which we conclude that

Σm = V V T + Ψ− V V T = Ψ. (11.4)

In the same vein, using

Σ0A
TSm

(
STmAΣ0A

TSm
)−1

STm = V
(
W TAV

)−1
W T (11.5)

we can obtain xm = x0 + V
(
W TAV

)−1
W T (b−Ax0) for the mean vector.

179

11.2 Lemma 4.2.2

Note, that
∣∣Null

(
W TA

)∣∣ = n−
∣∣Range

(
ATW

)∣∣ = n−m. The last equality follows

from the fact that AT is invertible, so W and ATW has the same rank. From this
we conclude that there are exactly n − m linearly independent vectors that span
Null

(
W TA

)
. Stacking k ≤ n−m of them together we can construct Y .

11.3 Lemma 4.2.3

It is easy to see that W TAV is invertible iff no vector from AK = Range (AV)
is orthogonal to L = Range (W). Vectors Y ?i, where i ≤ n − m, form basis for
Null

(
W TA

)
, whereas m vectors V ?i /∈ Null

(
W TA

)
, hence V ?i ∈ Range

(
ATW

)
.

By definition V ?i are linearly independent, so they form a basis for Range
(
ATW

)
.

According to a fundamental result of linear algebra Rn = Null
(
W TA

)
∪Range

(
ATW

)
,

which means columns of V and Y form a basis for Rn.

11.4 Theorem 4.2.2

1. Both random variables are normal, so it is sufficient to demonstrate that first
two moments are equal. Substitution of b = AV v0 +Ax0 into the definition of
general projection method (1.5) gives us x0 +V v0 which is a mean of random
variable x? given v = v0. Covariance matrices coincide as a consequence of
Theorem 4.2.1 and definition of x?.

2. After the projection step, arbitrary sample of random variable v is completely
specified, because V v ∈ Range(V). Namely, x̃ = x0 + V v, which implies
p(x? − x̃) = N (·|0,Y GY T). Now, since Y GY T is positive semidefinite, it is
always possible to find a full-rank matrix X ∈ Rn×k, where k = rank(Y GY T)
such that XXT coincides with Y GY T . It is easy to check that(

Y GY T
)†

=
(
XXT

)†
= X

(
XTX

)−2
XT . (11.6)

Since x?−x̃ = Xδ, where δ is a standard multivariate normal random variable,
we can find that test statistic

‖x? − x̃‖2

(Y GY T)
† = δTXTX

(
XTX

)−2
XTXδ = δTδ (11.7)

follows χ2
n−m distribution.

180

11.5 Lemma 4.2.4

Since x? = x0 + V δ1 + Y G1/2δ, where δ1 and δ are independent standard mul-
tivariate normal variables, an error ẽ after the projection step (1.5) is Y G1/2δ.
Using the definition of the acute angle θ (see Fig. 4.1), and orthogonal projector
P⊥ =

∑p
i=1 Y ?iY

T
?i on subspace spanned by vectors Y ?i, i = 1, . . . , p we can show

that

cos(θ) =
ẽT
(∑p

i=1 Y ?iY
T
?i

)
ẽ

ẽT ẽ

=
s2
∑p

i=1 δ
2
i∑n−m−p

i=p+1 δ2
i + s2

∑p
i=1 δ

2
i

=
1

1 +
χ2
n−m−p
s2χ2

p

(11.8)

Since z =
(
pχ2

n−m−p
)
/
(
(n−m− p)χ2

p

)
is F -distributed (see Chapter 13 in [Kri16])

the proof is complete.

11.6 Theorem 4.2.3

1. It is enough to demonstrate that I−P 1 is a projection operator. Indeed, if this
is the case, P 1 is a projection operator too since (I − P 1)2 = I − P 1 implies

that P 2
1 = P 1. Using I − P 1 =

(
W TAV

)−1
W TA for (I − P 1)2 we find

V
(
W TAV

)−1
W TAV

(
W TAV

)−1
W TA

= V
(
W TAV

)−1
W TA = I − P 1,

(11.9)

so I − P 1 is a projection operator.

2. It is easy to see that W TAP 1 = 0. Indeed,

W TA
(
I − V

(
W TAV

)−1
W TA

)
= W TA−W TA = 0

(11.10)

From W TAP 1 = 0 we have Range(P) ⊆ Null(W TA). On the other hand
W TAx = 0 ⇒ P 1x = x, so Null(W TA) ⊆ Range(P). From two inclusions
we conclude that Range(P) = Null(W TA).

3. Any Ψ ≥ 0 from Lemma 4.2.2 has a form Y Y T where columns of Y belong to
Null(W TA). This fact follows from spectral decomposition of Ψ, Ψ ≥ 0 and

181

W TAΨ = 0. Since Range(P 1) = Null
(
W TA

)
we know that P 1Y = Y . This

allows us to take G = Y Y T for which the covariance matrix reads

Σ0 = V V T + P 1Y (P 1Y)T

= V V T + Y Y T = V V T + Ψ.
(11.11)

So with the appropriate choice of G we can reproduce arbitrary covariance
matrix from Lemma 4.2.2.

11.7 Theorem 4.2.4

1. P 2
2 = Y

(
Y TY

)−1
Y TY

(
Y TY

)−1
Y T = P 2, so P 2 is a projection operator.

Next, P T
2 = P 2 so P 2 is an orthogonal projector. Finally, Range(P 2) =

Null
(
W TA

)
by definition of Y .

2. From Range(P) = Null(W TA) it follows that W TAP 2 = 0, and Σ0A
TW =

V V TATW . Since the proof of Lemma 4.2.1 relies only on the fact that
W TAΨ = 0, we can substitute Ψ by P 2 and obtain the same result. With
that we conclude that the posterior distribution has a probability density
N (·|x̃,P 2GP

T
2).

11.8 Lemma 4.3.1

The result is a slight generalisation of a standard Bayesian hierarchical modelling
for multivariate normal distribution [BS09]. Using definition of inverse-gamma dis-
tribution and probability density function of multivariate normal distribution we
obtain

p(x|s,Σ,µ)p(s|α, β) =
βα

Γ(α)
s−(α+1) exp(−β

/
s)

exp
(
−(x− µ)TΣ†(x− µ)

/
(2s)

)
(2πs)k

/
2
√

detD
Ind
[
UTx 6= UTµ

]
=

βα

Γ(α)

Γ(α)

β
α

IG
(
s|α, β

)
Ind
[
UTx 6= UTµ

]
(2π)k

/
2
√

detD
,

(11.12)

where α = α + k
/

2, β = β + (x − µ)TΣ†(x − µ)
/

2. Probability density function

IG
(
s|α, β

)
disappears after integration, and it is easy to see that the remaining

factors form St2α

(
x
∣∣µ, β

α
Σ
)
.

182

11.9 Lemma 4.3.2

1. We define random variable z = W TAx. Since x = x0 +s1/2V δ1 +s1/2Ψ1/2δ2,
where δi, i = 1, 2 are independent standard multivariate normal random vari-
ables and W TAΨ1/2 = 0, probability density function for z reads

p(z) = N
(
z|W TAx0, sW

TAV
(
W TAV

)T)
. (11.13)

Using definition of posterior distribution we find

p
(
s|W TAx = W Tb

)
∝ p(z = W Tb)IG(s|α, β)

∝ s−m
/

2 exp
(
−δTδ

/
(2s)

)
s−(α+1) exp

(
−β
/
s
)
,

(11.14)

where δ =
(
W TAV

)−1
W T (b−Ax0). From the last line we can identify

parameters of the posterior distribution α̃ = α +m/2, β̃ = β + δTδ/2.

2. Predictive distribution is

p
(
x
∣∣W TAx = W Tb

)
=

∫
ds p

(
x
∣∣W TAx = W Tb,x0, sΣ0

)
p(s|α, β),

(11.15)

where the first factor under the integral is multivariate normal N (x|x̃, sΨ)

(see Theorem 4.2.3), and the second is IG(s|α̃, β̃). Using the result from

Lemma 4.3.1 we obtain St2α̃

(
x|x̃, β̃

α̃
Ψ
)

as a predictive distribution.

11.10 Lemma 4.3.3

1. We define random variable z = P 1(x−x0). To find probability density function
of z we use three facts. First, P 1V = 0, which follows from definition of P 1.
Second, because Range(P 2) = Range(P 1), we conclude that P 1P 2 = P 2.
Finally, x = x0 + s1/2V δ1 + s1/2P 2δ2, where δi, i = 1, 2 are independent
standard multivariate normal distributions. Using these three facts we find
p(z) = N (z|0, sP 2). Now, it is easy to find a posterior distribution

p(s|X) ∝

(
k∏
i=1

p (zi = X?i)

)
p(s|α, β) ∝ exp(−β

/
s)

s−(α+1)s−k(n−m)/2 exp

(
−

k∑
i=1

XT
?iP

†
2X?i

/
(2s)

)
.

(11.16)

183

Because P 2 is orthogonal projector P †2 = P 2. In addition to that, X?i belongs
to Range(P 1), so each term of the quadratic form simplifies XT

?iP
†
2X?i =

XT
?iX?i. Using the definition of inverse-gamma distribution we can identify

new parameters α̃ = α + k(n−m)
/

2, β̃ = β + tr
(
XTX

)
/2.

2. Predictive distribution is

p
(
x
∣∣W TAx = W Tb,X

)
=

∫
ds p

(
x
∣∣W TAx = W Tb,x0, sΣ0

)
p(s|X),

(11.17)

where the first factor under the integral is multivariate normal N (x|x̃, sP 2)

(this follows from Theorem 4.2.4 with G = sI), and the second is IG
(
s|α̃, β̃

)
.

Using the result from Lemma 4.3.1 we confirm that the predictive distribution

is St2α̃

(
x|x̃, β̃

α̃
P 2

)
.

11.11 Lemma 4.3.4

1. We define random variable z = A1/2P 1(x − x0). To find probability density
function of z we use three facts. First, P 1V = 0, which follows from definition
of P 1. Second, because Range(P 1) = Range(Y), we conclude that P 1Y =
Y . Finally, x = x0 + V δ1 + s1/2Y δ2, where δi, i = 1, 2 are independent
standard multivariate normal random variables. Using these three facts we

find a probability density function p(z) = N
(
z|0, sA1/2Y Y TA1/2

)
. It is easy

to see that P 3 = A1/2Y Y TA1/2 is an orthogonal projector. Indeed, from
A−orthogonality we conclude that

P 2
3 = A1/2Y Y TAY Y TA1/2 = P 3. (11.18)

The orthogonality P T
3 = P 3 follows from AT = A. Now, it is easy to find a

posterior distribution

p(s|Z) ∝

(
k∏
i=1

p (zi = Z?i)

)
p(s|α, β) ∝ exp(−β

/
s)

s−(α+1)s−k(n−m)/2 exp

(
−

k∑
i=1

ZT
?iP

†
3Z?i

/
(2s)

)
.

(11.19)

184

Using that P †3 = P 3 (P 3 is an orthogonal projector) and that z ∈ Range(A1/2Y)
(this follows from Range(P 1) = Range(Y)) we simplify quadratic formZT

?iP
†
3Z?i =

ZT
?iZ?i. Using the definition of inverse-gamma distribution we can identify new

parameters α̃ = α + k(n−m)
/

2, β̃ = β + tr
(
ZTZ

) /
2.

2. Predictive distribution is

p
(
x
∣∣W TAx = W Tb,Z

)
=

∫
ds p

(
x
∣∣W TAx = W Tb,x0, sΣ0

)
p(s|Z),

(11.20)

where the first factor under the integral is multivariate normal N
(
x|x̃, sY Y T

)
(this follows from Theorem 4.2.1 with G = sI), and the second is IG

(
s|α̃, β̃

)
.

Using the result from Lemma 4.3.1 we confirm that the predictive distribution

is St2α̃

(
x|x̃, β̃

α̃
Y Y T

)
.

11.12 Lemma 4.3.5

Distribution of x − x̃ is N (·|0, sY Y T), so x − x̃ = s1/2Y δ1, where δ1 is standard
multivariate normal variable. Using this we find S(x) = sδT1Y

TAY δ1 = sδT1 δ1,
where the last equality follows from A−orthogonality of columns of Y .

11.13 Lemma 4.3.6

Let columns of Ṽ and W̃ be new bases in subspaces Range (V) and Range (W). It
is always possible to find invertible square matrices G1, G2 that perform a change
of bases, i.e., V = Ṽ G1 and W = W̃G1. After the substitution of Ṽ and W̃ in
(1.5) yields

x̃ = x0 + Ṽ G1

(
GT

2 W̃
T
AṼ G1

)−1

GT
2 W̃

T
(b−Ax0)

= x0 + Ṽ
(
W̃

T
AṼ

)−1

W̃
T

(b−Ax0) .

So the mean vector does not depend on the choice of basis.

185

11.14 Theorem 4.3.1

By construction ṽi, i = 1, . . . ,m form an A-orthogonal basis for Km (A, r0). Using

Lemma 4.3.6 we can transform matrix V , such that columns of new matrix Ṽ are
ṽi, i = 1, . . . ,m.

To apply Theorem 4.2.1 we need to check that Range(Y) = Null(W TA). Indeed,
if y ∈ Range(Y) it has a form y =

∑n
i=m+1 yiṽi, we can see that W TAy = V TAy =

0, because ṽTi Aṽj = 0 for i = 1, . . . ,m, j = m + 1, . . . , n. This means Range(Y) ⊂
Null(W TA). Now, if y ∈ Null(W TA) it is A-orthogonal to the first m vectors ṽi,
because ṽi, i = 1, . . . , n form a complete set1, we conclude that y ∈ Range(Y) and
Null(W TA) ⊂ Range(Y).

Because, Range(Y) = Null(W TA) we can apply Theorem 4.2.1 which gives us
(1.5) as mean and Y GY T as a covariance matrix.

11.15 Lemma 4.3.7

Let columns of U be uj, j = 1, . . . , K and D be a diagonal matrix with Djj = dj.
Using the definition we get

sup
x

√
xTUDUTAUDUTx√

xTA−1x
= sup

y

√
yTAUD2UTAy√

yTAy
,

where we used A-orthogonality and define y = A−1x. Now, without the loss of
generality we take y = Uα to obtain

‖B‖A,A−1 = sup
α

√
αTD2α√
αTα

= d1.

11.16 Lemma 4.3.8

From Lemma 4.3.7 we know that ‖B −Bm‖A,A−1 = dm+1. For the second part we
use a proof by contradiction from [TB97, Theorem 5.8].

Suppose that there is C, rank(C) ≤ m for which the norm of the difference
is smaller, i.e., ‖B −C‖A,A−1 < dm+1. Because C has rank m there is a n − m
dimensional subspace R ⊂ Rn : ∀r ∈ R⇒ Cr = 0. This implies

‖Br‖A,A−1 = ‖(B −C) r‖A,A−1

≤ ‖B −C‖A,A−1 ‖r‖A−1 < σm+1 ‖r‖A−1 .

1We do not consider “lucky breakdowns” [Saa03, Section 6.3.1]

186

We know that in the subspace R̃ spanned by uj, j = 1, . . . ,m + 1 the norm of the

matrix B fulfills ‖Br̃‖A,A−1 ≥ dm+1 ‖r̃‖A−1 . Because for these subspaces
∣∣∣R̃∣∣∣ +

|R| = n + 1, there is a vector that belongs to both of them. Thus by contradiction
‖B −C‖A,A−1 ≥ dm+1, and the bound is attained by Bm.

187

Chapter 12

Hidden representation

12.1 Proposition 5.4.1

From Eq. (5.41) and condition Un ≡ I we conclude that iteration matrices are
Nn = (V n)−1 and Mn =

(
I − (V n)−1A

)
. In this proof be E we denote the average

with respect to the distribution Eq. (5.47). For arbitrary N ×N matrices C, D the
following averages are known

[GN18, p. 2.3.2] :

E
[
C (V n)−1D

]
= CRnD, E

[
C (V n)−T D

]
= CRT

nD;

[GN18, Theorem 2.3.5] :

E
[
(V n)−1C

(
(V n)−1)T] = tr

(
CT Ψ̃n

)
Σ̃n +RnC (Rn)T .

(12.1)

With (12.1) one can easily obtain (5.48), (5.49) from (5.44), (5.45) respectively after
straightforward algebraic manipulations.

12.2 Proposition 5.4.2

It is evident that for arbitrary A and Rn, if Σn > 0 (or Σn ≥ 0)

(I −RnA) Σn (I −RnA)T ≥ 0. (12.2)

Hence, it is enough to show that tr
(
ΣnAT Ψ̃nA

)
+ (rn)T Ψ̃nrn > 0 (or ≥ 0). Be-

cause in this case the left-hand side of (5.49) will be the sum of positive semi-definite

188

and positive-definite (or positive semi-definite) matrices. If Ψ̃ > 0 (or Ψ̃ ≥ 0) the

last term is positive (or non-negative) for non-zero residual, i.e. (rn)T Ψ̃nrn > 0

(or ≥ 0). For the term tr
(
ΣnAT Ψ̃nA

)
we will use the following representation

[GN18, Theorem 1.2.22] vec (A)
(
Σn ⊗ Ψ̃n

)
(vec (A))T . It is known [GN18, Theo-

rem 1.2.21] that the Kronecker product of two positive definite (or positive definite
and positive semi-definite) matrices are positive definite (or positive semi-definite)
so the trace is positive (or non-negative). Now, since the after the first iteration

Σ1 = Σ̃0 (rn)T Ψ̃0rn we conclude that for all subsequent iterations with nonzero

residuals Σn > 0 if Ψ̃n > 0, Σ̃n > 0 (or Σn ≥ 0 if Ψ̃n ≥ 0, Σ̃n ≥ 0).

12.3 Proposition 5.4.3

After the single iteration Σ1 = Σ̃0 (rn)T Ψ̃0rn, so

tr
(
Σn+1

(
Σ1
)−1
)

=

tr

((
Σ̃0

)−1

(I −RnA) Σn (I −RnA)T
)

(r0)T Ψ̃0r0

+

tr

((
Σ̃0

)−1

Σ̃n

)
(r0)T Ψ̃0r0

(
tr
(
ΣnAT Ψ̃nA

)
+ (rn)T Ψ̃nrn

)
. (12.3)

Using the representation tr
(
CTD2CD1

)
= (vec(C))T DT

1 ⊗D2vec(C) (for refer-

ences see the proof for Proposition 5.4.2), the fact that the following matrices Σ̃0,

Σ̃n, Σn, Ψ̃n are positive definite, and the statement that the Kronecker product
preserve positive definiteness, we conclude that

tr

((
Σ̃0

)−1

(I −RnA) Σn (I −RnA)T
)
≥ 0, tr

(
ΣnAT Ψ̃nA

)
> 0. (12.4)

So, we can drop two first terms and recover (5.50).

12.4 Proposition 5.4.4

Observe that iterations for mean

µn+1 = µn +R (b−Aµn) , (12.5)

189

is a preconditioned Richardson iterations scheme, that decouples from iterations for
covariance matrix. Hence the standard necessary and sufficient condition [Hac16,
Theorem 2.16] applies, which gives us the first condition ρ (I −RA) < 1. To obtain
the second condition we apply vec operation to (5.49) (see [GN18, Definition 1.2.6
and Theorem 1.2.22])

vec
(
Σn+1

)
=

(
(I −RA)⊗ (I −RA) + vec

(
Σ̃
)

vec
(
AT Ψ̃A

)T)
vec (Σn) +

+ vec
(
Σ̃
)

(rn)T Ψ̃rn. (12.6)

Since (12.6) has the same form as (12.5), the same necessary and sufficient condition
applies, which finishes the proof.

12.5 Proposition 5.4.5

Let ‖·‖R,A is the operator norm for which ‖I −RA‖R,A < 1. Note, that such
norm always exists if ρ (I −RA) < 1 (see [Hac16, Lemma B.26] for the proof). Let
en = A−1b− µn, then

en+1 = (I −RnA) en. (12.7)

For convergence it is sufficient to show that lim
n→∞

‖en‖ = 0 for some norm. Since

lim
n→∞

Rn = R exists the sequence of matrices Ln:

I −RnA = I −RA+Ln, lim
n→∞

‖Ln‖ = 0, (12.8)

for arbitrary operator norm. Using the basic inequalities of operator norms, we
obtain: ∥∥en+1

∥∥
R,A
≤
(
‖I −RA‖R,A + ‖Ln‖R,A

)
‖en‖R,A . (12.9)

From the convergence of Ln we can conclude that ∀ε ∃N(ε) : ∀n ≥ N(ε) ⇒
‖Ln‖R,A ≤ ε. By construction ‖I −RA‖R,A < 1, so it is always possible to

find ε that ensures αn ≡
(
‖I −RA‖R,A + ‖Ln‖R,A

)
< 1 for all n > N . Tak-

ing α = sup {αn} which is smaller than one by construction (note, that αn →
‖I −RA‖R,A < 1), we can conclude that

∀K ⇒ 0 ≤
∥∥eN+K

∥∥
R,A
≤ αK

∥∥eN∥∥
R,A

, (12.10)

which establishes the convergence.

190

The proof for variance follows the same tactics. Let en ≡ vec (Σ)n, bn =

vec
(
Σ̃n

)
(rn)T Ψ̃nr

n,

Mn ≡
(

(I −RnA)⊗ (I −RnA) + vec
(
Σ̃n

)
vec
(
AT Ψ̃nA

)T)
,

M ≡
(

(I −RA)⊗ (I −RA) + vec
(
Σ̃
)

vec
(
AT Ψ̃A

)T)
,

(12.11)

and ‖·‖M is the norm in which ‖M‖M < 1. Using the representationMn = M+Y n

with ‖Y n‖ → 0, we construct the analogous bound for covariance matrix

0 ≤
∥∥en+1

∥∥
M
≤ (‖M‖M + ‖Y n‖M) ‖en‖M + ‖bn‖M . (12.12)

From convergence of bn, Y n and ‖M‖M < 1 one can infer the convergence of
‖en+1‖M the same way as it was done in the first part of the proof. Namely, it is
always possible to choose sufficiently large N , that ∀n ≥ N (‖M‖M + ‖Y n‖M) =
γ < 1 and in the same time ‖bn‖M < ε for any desired ε. From that we can find the
upper bound

∥∥eN+n
∥∥
M
≤ Kn

∥∥eN∥∥
M

+ ε
n∑
k=1

Kk−1 = Kn
∥∥eN∥∥

M
+ ε

1−Kn

1−K
, (12.13)

and take the limit:
0 ≤ lim

n→∞
‖en‖M ≤

ε

1−K
. (12.14)

Since ε is arbitrary lim
n→∞

en = 0.

12.6 Proposition 5.4.6

Since limk→∞ Σ̃k = 0 and ∃C : ∀n
∥∥∥Ψ̃n

∥∥∥ < C we can conclude that

lim
n→∞

(
(I −RnA)⊗ (I −RnA) + vec

(
Σ̃n

)
vec
(
AT Ψ̃nA

)T)
=

= (I −RA)⊗ (I −RA) . (12.15)

Since ρ ((I −RA)⊗ (I −RA)) = ρ (I −RA)2 < 1, all conditions of Proposi-
tion 5.4.5 are met, so the convergence follows.

191

12.7 Proposition 5.4.7

Updates for the mean vectors are identical. The only part we need to prove is the
convergence of variance iterations. Let Σn represents the convergent sequence arises
from the original iterations (5.49), and En the sequence produced by the low-rank

iterations with the same matrices Σ̃n, Ψ̃n, Rn. The strategy is to bound En by Σn.
After a single step one has

Σ1 = Σ̃0

(
r0
)T

Ψ̃0r
0, E1 =

[
Σ̃0

]
L

(
r0
)T

Ψ̃0r
0 =⇒ Σ1 ≥ E1. (12.16)

Let Σn+1 = Gn (Σn) represents the update of covariance (5.49), then En+1 =
[Gn (En)]L. Suppose, on the step n the following condition holds Σn ≥ En. We
know that iterations preserve positive definiteness, so

Gn (Σn)−Gn (En) = Gn (Σn −En)|rn=0 ≥ 0. (12.17)

In addition it is evident that Gn (En) ≥ [Gn (En)]L = En+1, so we can write

Σn ≥ En ⇒ Σn+1 ≥ En+1. (12.18)

Equation (12.16) form the base case and (12.18) is the step, so we can conclude
that by inductive argument Σn ≥ En ∀n. That allows us to construct the following
bounds

0 ≤ En ≤ Σn =⇒
(

lim
n→∞

Σn = 0⇒ lim
n→∞

En = 0
)
. (12.19)

12.8 Proposition 5.4.8

The result can be readily established from the chosen schedule. The form of iterations
for n > 1 becomes

Σn+1 = MΣnMT = SDSTΣnSDST ⇒ STΣn+1S = DSTΣnSD. (12.20)

Taking into account that D is a diagonal matrix, we find how σij evolve

σnij = λiλjσ
n−1
ij . (12.21)

The desired limit is an immediate consequence of (12.21).

192

Chapter 13

Black-Box optimization of BPX
preconditioners

13.1 Proposition 7.2.1

For D = 1 we define a set of meshes by xlj = j
/

2l, where j = 0, 1, . . . , 2l − 1, 2l, and
l = Lm, Lm+1, . . . , LM−1, LM . For each level l a standard basis in FE space is formed
by tent functions φli(x) = φl(x−xi), where φl(x) =

(
1 + x

/
2l
)

Ind
[
−1
/

2l ≤ x ≤ 0
]
+(

1− x
/

2l
)

Ind
[
0 < x ≤ 1

/
2l
]
. The standard form of BPX preconditioner is

Bu =

LM∑
l=Lm

2l∑
k=0

(
φlk, u

)
φlk. (13.1)

So we can rewrite Eq. (13.1) using downsampling, that is, computation of (φl−1
k , u)

from
(
φlk, u

)
, and interpolation. Both operations are represented by matrix

P l−1
l =


1 1/2

1/2 1 1/2 . . .
1/2 1 1/2

...
. . .

 , P l−1
l ∈ R(2l−1+1)×(2l+1), (13.2)

and its transpose in case of interpolation. It is clear that if we define Bl
LM

=

P l
l+1P

l+1
l+2 · · ·P

LM−2
LM−1P

LM−1
LM

for Lm ≤ l < LM , BLM
LM

= I, and BLM
l =

(
Bl
LM

)T
, BPX

preconditioner will be represented by the following matrix

B =

(
LM∑
k=Lm

BLM
k Bk

LM

)
S, (13.3)

193

where Sij = 2−LM
6

(4δij + δi+1j + δi−1j) , S ∈ R(2LM+1)×(2LM+1) is used to obtain(
φLMk , u

)
from vector uj that appears in u =

∑2LM

j=0 ujφ
LM
j . We need to show that

matrix Bk
LM

has a particular form for chosen boundary conditions. Below we demon-
strate this by induction for all standard boundary conditions in 1D.

13.2 Drichlet-Neumann boundary conditions

In this case value on the left boundary is fixed, so we have 2l points on level l and
BLM
l reads

BLM
l = Il ⊗ ηLM−l + Sl ⊗ (ξLM−l − ηLM−l) , (13.4)

where (ηk)i = i/2k, (ξk)i = 1, i = 1, . . . , 2k and (Sl)ij = δij+1, (Il)ij = δij, i, j =

1, . . . , 2l.

Base: for l = LM − 1 we have BLM
LM−1 = ILM−1 ⊗

(
1/2
1

)
+ SLM−1 ⊗

(
1/2
0

)
, that

is precisely PLM
LM−1 that has a form

PLM
LM−1 =



1/2
1

1/2 1/2
0 1
0 1/2 . . .
0 0
...

. . .


(13.5)

Induction step: suppose for LM − l+ 1 the result holds. For LM − l we will have

BLM
LM−l = BLM

LM−l+1P
LM−l+1
LM−l = (ILM−l+1 ⊗ ηl−1 + SLM−l+1 ⊗ (ξl−1 − ηl−1))PLM−l+1

LM−l

=
([
ILM−l+1P

LM−l+1
LM−l

]
⊗ ηl−1 +

[
SLM−l+1P

LM−l+1
LM−l

]
⊗ (ξl−1 − ηl−1)

)
(13.6)

The first term can be simplified

PLM−l+1
LM−l ⊗ ηl−1 = ILM−l ⊗

((
1/2
1

)
⊗ ηl−1

)
+ SLM−l ⊗

((
1/2
0

)
⊗ ηl−1

)
(13.7)

The second term can be transformed using

SLM−l+1P
LM−l+1
LM−l = ILM−1 ⊗

(
0

1/2

)
+ SLM−1 ⊗

(
1

1/2

)
(13.8)

194

With that we obtain

ILM−l ⊗
((

0
1/2

)
⊗ (ξl−1 − ηl−1)

)
+ SLM−l ⊗

((
1

1/2

)
⊗ (ξl−1 − ηl−1)

)
. (13.9)

It is easy to see that

(
1

1/2

)
⊗ ξl−1 −

(
1/2
1/2

)
⊗ ηl−1 = ξl − ηl and

(
0

1/2

)
⊗ ξl−1 +(

1/2
1/2

)
⊗ ηl−1 = ηl which completes the proof.

13.3 Neumann-Dirichlet boundary conditions

In this case value on the right boundary is fixed, so we have 2l points on level l and
BLM
l reads

BLM
l = Il ⊗ ηrLM−l + (Sl)

T ⊗
(
ξLM−l − ηrLM−l

)
, (13.10)

where (ηrk)i = (ηk)2k−i+1.
In this case the results follows from the one for Dirichlet-Neumann boundary

conditions. Indeed, it is evident that for a chosen FE space



1
1/2 1/2
0 1
0 1/2 . . .
0 0
...

. . .


ij

=



1/2
1

1/2 1/2
0 1
0 1/2 . . .
0 0
...

. . .


2L−i+1,2L−1−j+1

, (13.11)

so we need to flip both indices in all interpolation matrices. This is equivalent to the
flip of both indices in the final result for Dirichlet-Neumann boundary conditions,
which gives Eq. (13.10).

13.4 Neumann-Neumann boundary conditions

In this case both left and right boundaries contribute to the degrees of freedom, so
there are 2l + 1 points on level l. It is not hard to show that

BLM
l =

(
1 01×2l

el ⊗ (ξLM−l − ηLM−l) Il ⊗ ηLM−l + Sl ⊗ (ξLM−l − ηLM−l)

)
, (13.12)

195

where (ek)i = δi1, i = 1, . . . , 2k.
An explicit form of BLM

LM−1 can be obtained from the result of essential-natural
BCs

BLM
LM−1 =



1
1/2 1/2
0 1
0 1/2 . . .
0 0
...

. . .


≡ P̃LM

LM−1 =

(
1 0LM−1

eLM
/

2 PLM
LM−1

)
. (13.13)

It is easy to see that P̃LM
LM−1P̃

LM−1
LM−2 =

(
1 0LM−2

eLM/2 + PLM
LM−1eLM−1/2 PLM

LM−1P
LM−1
LM−2

)
.

From that we can conclude that block 2, 2 indeed the same as we claimed above.
The only nontivial block is 2, 1. We prove its form by induction.

Base: For PLM
LM−1 the result is established.

Induction step: suppose for LM − l+ 1 the result holds. For LM − l we will have

BLM
LM−l = BLM

LM−l+1P̃
LM−l+1
LM−l

=

(
1 01×2LM−l+1

eLM−l+1 ⊗ (ξl−1 − ηl−1) ILM−l+1 ⊗ ηl−1 + SLM−l+1 ⊗ (ξl−1 − ηl−1)

)
·
(

1 0LM−l
eLM−l+1

/
2 PLM−l+1

LM−l

)
. (13.14)

From that we can find that 2, 1 block is eLM−l+1⊗ (ξl−1 − ηl−1) + eLM−l+1⊗ ηl−1

/
2 +

e2
LM−l+1 ⊗ (ξl−1 − ηl−1)

/
2 first 2LM components of this expressions are the same as(

1
1/2

)
⊗ξl−1−

(
1/2
1/2

)
⊗ηl−1 which is ξl−ηl. The whole block will be eLM−l⊗(ξl−ηl),

which completes the proof.

13.5 Drichlet-Dirichlet boundary conditions

In this case both left and right boundaries are absent, so each level has 2l− 1 points
we just take result for essential-natural BCs and delete the last row and the last
column

BLM
l = [Il ⊗ ηLM−l + Sl ⊗ (ξLM−l − ηLM−l)]remove last row and last column

=
[
I2l×(2l−1) ⊗ ηLM−l + S2l×(2l−1) ⊗ (ξLM−l − ηLM−l)

]
remove last row

. (13.15)

196

An explicit form of BLM
LM−1 can be obtained from the result of essential-natural BCs.

Namely, we consider a submatrix as explained below

BLM
LM−1

2LM×2LM−1

=


. . .

...
. . . 1/2

1
1/2 1/2

1

 =

(
P̃LM
LM−1 ẽrLM

/
2

0̃LM−1
1

)
. (13.16)

Here all variables with wave, i.e., 0̃k, have dimension 1 × (2k − 1) not 1 × 2k. We
know that if we apply a chain of operators on the left-hand side, we obtain a result
for essential-natural BCs. On the other hand, if we multiply two operators on the
right, we get(

P̃LM
LM−1 ẽrLM

/
2

0̃LM−1
1

)(
P̃LM−1
LM−2 ẽrLM−1

/
2

0̃LM−2
1

)
=

(
P̃LM
LM−1P̃

LM−1
LM−2 P̃LM

LM−1ẽ
r
LM−1

/
2 + ẽrLM

/
2

0̃LM−2
1

)
. (13.17)

So we see that the structure of the matrix is preserved and in block 1, 1 we will
accumulate the product of interpolation operator. As such, it is enough to delete the
last row and the last column from the already known result.

197

Chapter 14

Neural multigrid architectures

14.1 Proposition 8.4.1

Without loss of generality we can assume that for grid H the radius of influence
rH(N) is smaller than a grid size in a physical space, which is R for our problem.
For h = H

/
2p, p > 1 the radius of influence is rh(N) = rH(N)/2p. Let bh be a

discrete right hand side corresponding to a delta function in (8.4). If we start from
zero initial guess x(0) = 0, an estimation to the initial error in L2 norm reads

h3
∥∥e(0)

∥∥2

2
' 4π

∫ R

0

dr r2u(r)2 = R
/

(12π), (14.1)

and a lower bound on error for step n = K (Krh (N) < R) reads

h3
∥∥e(K)

∥∥2

2
≥ 4π

∫ R

Krh(N)

dr r2u(r)2 =

=
(
R
/

(12π)
)(

1− Krh (N)

R

)3

.

(14.2)

To derive (14.2), we assumed that our iterative method recovers the exact solution
for all points that the network reached. Note that this argument is valid only because
bh is a sparse vector.

From
∥∥e(n+1)

∥∥ ≤ ρ (I −NA)
∥∥e(n)

∥∥ we conclude

ρ(I −N hA)K ≥
∥∥e(K)

∥∥
2

/∥∥e(0)
∥∥

2
≥
(

1− Krh (N)

R

)3/2

. (14.3)

198

Because rh can be arbitrary small for sufficiently small h = H/2p, the expression
in the brackets above can be arbitrary close to 1, which signifies arbitrary slow
convergence.

199

Bibliography

[FL50] George E Forsythe and Richard A Leibler. “Matrix inversion by a Monte
Carlo method”. In: Mathematics of Computation 4.31 (1950), pp. 127–
129.

[HS+52] Magnus Rudolph Hestenes, Eduard Stiefel, et al. Methods of conjugate
gradients for solving linear systems. Vol. 49. 1. NBS Washington, DC,
1952.

[You54] David Young. “Iterative methods for solving partial difference equations
of elliptic type”. In: Transactions of the American Mathematical Society
76.1 (1954), pp. 92–111.

[Fed62] Radii Petrovich Fedorenko. “A relaxation method for solving elliptic
difference equations”. In: USSR Computational Mathematics and Math-
ematical Physics 1.4 (1962), pp. 1092–1096.

[Bra66] James H Bramble. “A second order finite difference analog of the first
biharmonic boundary value problem”. In: Numerische Mathematik 9.3
(1966), pp. 236–249.

[Rei66] John K Reid. “A method for finding the optimum successive over-
relaxation parameter”. In: The Computer Journal 9.2 (1966), pp. 200–
204.

[Cho67] Alexandre Joel Chorin. “The numerical solution of the Navier-Stokes
equations for an incompressible fluid”. In: Bulletin of the American
Mathematical Society 73.6 (1967), pp. 928–931.

[CFL67] R. Courant, K. Friedrichs, and H. Lewy. “On the partial difference equa-
tions of mathematical physics”. In: IBM J. Res. Develop. 11 (1967),
pp. 215–234. issn: 0018-8646. doi: 10.1147/rd.112.0215. url: https:
//doi.org/10.1147/rd.112.0215.

200

https://doi.org/10.1147/rd.112.0215
https://doi.org/10.1147/rd.112.0215
https://doi.org/10.1147/rd.112.0215

[Ros75] J Barkley Rosser. “Nine-point difference solutions for Poisson’s equa-
tion”. In: Computers & Mathematics with Applications 1.3-4 (1975),
pp. 351–360.

[Man78] Thomas A Manteuffel. “Adaptive procedure for estimating parameters
for the nonsymmetric Tchebychev iteration”. In: Numerische Mathe-
matik 31.2 (1978), pp. 183–208.

[GM79] Murli M Gupta and Ram P Manohar. “Direct solution of the bihar-
monic equation using noncoupled approach”. In: Journal of Computa-
tional Physics 33.2 (1979), pp. 236–248.

[Alc+81] Raymond E. Alcouffe et al. “The multi-grid method for the diffusion
equation with strongly discontinuous coefficients”. In: SIAM Journal
on Scientific and Statistical Computing 2.4 (1981), pp. 430–454.

[Sut84] Richard Stuart Sutton. “Temporal credit assignment in reinforcement
learning”. PhD thesis. University of Massachusetts Amherst, 1984.

[Ske86] Robert D Skeel. “Thirteen ways to estimate global error”. In: Numerische
Mathematik 48.1 (1986), pp. 1–20.

[Str86] Gilbert Strang. “A proposal for Toeplitz matrix calculations”. In: Stud-
ies in Applied Mathematics 74.2 (1986), pp. 171–176.

[You87] David M Young. “An historical review of iterative methods”. In: Pro-
ceedings of the ACM conference on History of scientific and numeric
computation. 1987, pp. 117–123.

[Cha88] Tony F Chan. “An optimal circulant preconditioner for Toeplitz sys-
tems”. In: SIAM journal on scientific and statistical computing 9.4
(1988), pp. 766–771.

[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. The Morgan Kaufmann Series in Representation and
Reasoning. Morgan Kaufmann, San Mateo, CA, 1988, pp. xx+552. isbn:
0-934613-73-7.

[Sut88] Richard S Sutton. “Learning to predict by the methods of temporal
differences”. In: Machine learning 3.1 (1988), pp. 9–44.

[BPX90] James H Bramble, Joseph E Pasciak, and Jinchao Xu. “Parallel multi-
level preconditioners”. In: Mathematics of Computation 55.191 (1990),
pp. 1–22.

[Rio92] Olivier Rioul. “Simple regularity criteria for subdivision schemes”. In:
SIAM Journal on Mathematical Analysis 23.6 (1992), pp. 1544–1576.

201

[TCK92] Charles H Tong, Tony F Chan, and CC Jay Kuo. “Multilevel filter-
ing preconditioners: Extensions to more general elliptic problems”. In:
SIAM Journal on Scientific and Statistical Computing 13.1 (1992), pp. 227–
242.

[Tyr92] Evgenij E Tyrtyshnikov. “Optimal and superoptimal circulant precon-
ditioners”. In: SIAM Journal on Matrix Analysis and Applications 13.2
(1992), pp. 459–473.

[Zha92] Xuejun Zhang. “Multilevel Schwarz methods”. In: Numerische Mathe-
matik 63.1 (1992), pp. 521–539.

[CS94] Edmond Chow and Yousef Saad. “Approximate inverse preconditioners
for general sparse matrices”. In: Res. Rep. UMSI 94.1.01 (1994).

[GE94] Ming Gu and Stanley C Eisenstat. “A stable and efficient algorithm for
the rank-one modification of the symmetric eigenproblem”. In: SIAM
journal on Matrix Analysis and Applications 15.4 (1994), pp. 1266–
1276.

[Hac94] Wolfgang Hackbusch. Iterative solution of large sparse systems of equa-
tions. Vol. 95. Springer, 1994.

[She+94] Jonathan Richard Shewchuk et al. An introduction to the conjugate gra-
dient method without the agonizing pain. 1994.

[Tai94] Mary M Tai. “A mathematical model for the determination of total area
under glucose tolerance and other metabolic curves”. In: Diabetes care
17.2 (1994), pp. 152–154.

[UNK94] Masataka Usui, Hiroshi Niki, and Toshiyuki Kohno. “Adaptive Gauss-
Seidel method for linear systems”. In: International Journal of Com-
puter Mathematics 51.1-2 (1994), pp. 119–125.

[CC95] Tianping Chen and Hong Chen. “Universal approximation to nonlinear
operators by neural networks with arbitrary activation functions and its
application to dynamical systems”. In: IEEE Transactions on Neural
Networks 6.4 (1995), pp. 911–917.

[GO95] Michael Griebel and Peter Oswald. “Tensor product type subspace split-
tings and multilevel iterative methods for anisotropic problems”. In:
Advances in Computational Mathematics 4.1 (1995), p. 171.

[Tib96] Robert Tibshirani. “Regression shrinkage and selection via the lasso”.
In: Journal of the Royal Statistical Society: Series B (Methodological)
58.1 (1996), pp. 267–288.

202

[BS97] Ivo M Babuska and Stefan A Sauter. “Is the pollution effect of the FEM
avoidable for the Helmholtz equation considering high wave numbers?”
In: SIAM Journal on numerical analysis 34.6 (1997), pp. 2392–2423.

[Bre97] Marian Brezina. “Robust iterative methods on unstructured meshes”.
PhD thesis. University of Colorado at Denver, 1997.

[GG97] Walter Gander and Gene H. Golub. “Cyclic reduction—history and ap-
plications”. In: Scientific computing (Hong Kong, 1997). Springer, Sin-
gapore, 1997, pp. 73–85.

[GH97] Marcus J Grote and Thomas Huckle. “Parallel preconditioning with
sparse approximate inverses”. In: SIAM Journal on Scientific Comput-
ing 18.3 (1997), pp. 838–853.

[TB97] Lloyd N. Trefethen and David Bau III. Numerical linear algebra. Soci-
ety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1997, pp. xii+361. isbn: 0-89871-361-7. doi: 10.1137/1.9780898719574.
url: https://doi.org/10.1137/1.9780898719574.

[CS98] Edmond Chow and Yousef Saad. “Approximate inverse preconditioners
via sparse-sparse iterations”. In: SIAM Journal on Scientific Computing
19.3 (1998), pp. 995–1023.

[FM98] Brendan J Frey and David JC MacKay. “A revolution: Belief propaga-
tion in graphs with cycles”. In: Advances in neural information process-
ing systems. 1998, pp. 479–485.

[Ste98] Gilbert W Stewart. Matrix Algorithms: Volume 1: Basic Decomposi-
tions. Vol. 1. Siam, 1998.

[SB98] Richard S Sutton and Andrew G Barto. Introduction to reinforcement
learning. Vol. 135. MIT press Cambridge, 1998.

[Jac99] John David Jackson. Classical electrodynamics. 1999.

[Had00] A Hadjidimos. “Successive overrelaxation (SOR) and related methods”.
In: Journal of Computational and Applied Mathematics 123.1-2 (2000),
pp. 177–199.

[KO00] Marc C Kennedy and Anthony O’Hagan. “Predicting the output from
a complex computer code when fast approximations are available”. In:
Biometrika 87.1 (2000), pp. 1–13.

[TOS00] Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller. Multi-
grid. Elsevier, 2000.

203

https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1137/1.9780898719574

[WF00] Yair Weiss and William T Freeman. “Correctness of belief propagation
in Gaussian graphical models of arbitrary topology”. In: Advances in
neural information processing systems. 2000, pp. 673–679.

[Min01] Thomas P Minka. “Expectation propagation for approximate Bayesian
inference”. In: Proceedings of the Seventeenth conference on Uncertainty
in artificial intelligence. Morgan Kaufmann Publishers Inc. 2001, pp. 362–
369.

[SV01] Yousef Saad and Henk A Van Der Vorst. “Iterative solution of linear
systems in the 20th century”. In: Numerical Analysis: Historical Devel-
opments in the 20th Century. Elsevier, 2001, pp. 175–207.

[YFW01a] Jonathan S Yedidia, William T Freeman, and Yair Weiss. “General-
ized belief propagation”. In: Advances in neural information processing
systems. 2001, pp. 689–695.

[YFW01b] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Bethe free
energy, Kikuchi approximations, and belief propagation algorithms. Tech.
rep. TR2001-16. Cambridge, MA 02139: MERL - Mitsubishi Electric
Research Laboratories, May 2001.

[ACF02] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time anal-
ysis of the multiarmed bandit problem”. In: Machine learning 47.2
(2002), pp. 235–256.

[Cia02] Philippe G Ciarlet. The finite element method for elliptic problems.
SIAM, 2002.

[Ada+03] Mark Adams et al. “Parallel multigrid smoothing: polynomial versus
Gauss-Seidel”. In: J. Comput. Phys. 188.2 (2003), pp. 593–610. issn:
0021-9991. doi: 10.1016/S0021-9991(03)00194-3.

[Bie+03] Lorenz T Biegler et al. “Large-scale PDE-constrained optimization: an
introduction”. In: Large-Scale PDE-Constrained Optimization. Springer,
2003, pp. 3–13.

[Ras03] Carl Edward Rasmussen. “Gaussian processes in machine learning”. In:
Summer school on machine learning. Springer. 2003, pp. 63–71.

[Saa03] Yousef Saad. Iterative methods for sparse linear systems. Second. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, 2003,
pp. xviii+528. isbn: 0-89871-534-2. doi: 10.1137/1.9780898718003.
url: https://doi.org/10.1137/1.9780898718003.

204

https://doi.org/10.1016/S0021-9991(03)00194-3
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003

[Ste+03] J Steppeler et al. “Review of numerical methods for nonhydrostatic
weather prediction models”. In: Meteorology and Atmospheric Physics
82.1 (2003), pp. 287–301.

[YFW03] Jonathan S Yedidia, William T Freeman, and Yair Weiss. “Understand-
ing belief propagation and its generalizations”. In: Exploring artificial
intelligence in the new millennium 8 (2003), pp. 236–239.

[CLL04] Guo Chen, Zhilin Li, and Ping Lin. A fast finite difference method for
biharmonic equations on irregular domains. Tech. rep. North Carolina
State University. Center for Research in Scientific Computation, 2004.

[Hes04] Tom Heskes. “On the uniqueness of loopy belief propagation fixed points”.
In: Neural Computation 16.11 (2004), pp. 2379–2413.

[PK04] Kurt Hermann Plarre and PR Kumar. “Extended message passing al-
gorithm for inference in loopy Gaussian graphical models”. In: Ad Hoc
Networks 2.2 (2004), pp. 153–169.

[SWW04] Erik B Sudderth, Martin J Wainwright, and Alan S Willsky. “Embedded
trees: Estimation of Gaussian processes on graphs with cycles”. In: IEEE
Transactions on Signal Processing 52.11 (2004), pp. 3136–3150.

[Wel04] Max Welling. “On the choice of regions for generalized belief propaga-
tion”. In: Proceedings of the 20th conference on Uncertainty in artificial
intelligence. AUAI Press. 2004, pp. 585–592.

[Ama+05] Herbert Amann et al. Analysis. Vol. 1. Springer, 2005.

[New05] Robert E Newnham. Properties of materials: anisotropy, symmetry,
structure. Oxford University Press on Demand, 2005.

[Pel05] Alessandro Pelizzola. “Cluster variation method in statistical physics
and probabilistic graphical models”. In: Journal of Physics A: Mathe-
matical and General 38.33 (2005), R309.

[Tar05] Albert Tarantola. Inverse problem theory and methods for model param-
eter estimation. SIAM, 2005.

[WJ05] Roman Wienands and Wolfgang Joppich. Practical Fourier analysis
for multigrid methods. Vol. 4. Numerical Insights. With 1 CD-ROM
(Windows and UNIX). Chapman & Hall/CRC, Boca Raton, FL, 2005,
pp. xiv+217. isbn: 1-58488-492-4.

[WBJ05] John Winn, Christopher M Bishop, and Tommi Jaakkola. “Variational
message passing.” In: Journal of Machine Learning Research 6.4 (2005).

205

[YFW05] Jonathan S Yedidia, William T Freeman, and Yair Weiss. “Construct-
ing free-energy approximations and generalized belief propagation al-
gorithms”. In: IEEE Transactions on information theory 51.7 (2005),
pp. 2282–2312.

[Bis06a] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[Bis06b] Christopher M. Bishop. Pattern recognition and machine learning. In-
formation Science and Statistics. Springer, New York, 2006, pp. xx+738.
isbn: 978-0387-31073-2. doi: 10.1007/978-0-387-45528-0.

[EMK06] Gal Elidan, Ian McGraw, and Daphne Koller. “Residual Belief Prop-
agation: Informed Scheduling for Asynchronous Message Passing”. In:
Proceedings of the Twenty-Second Conference on Uncertainty in Arti-
ficial Intelligence. UAI’06. Cambridge, MA, USA: AUAI Press, 2006,
pp. 165–173. isbn: 0-9749039-2-2.

[MJW06] Dmitry M Malioutov, Jason K Johnson, and Alan S Willsky. “Walk-
sums and belief propagation in Gaussian graphical models”. In: Journal
of Machine Learning Research 7.Oct (2006), pp. 2031–2064.

[Par+06] Michael L Parks et al. “Recycling Krylov subspaces for sequences of
linear systems”. In: SIAM Journal on Scientific Computing 28.5 (2006),
pp. 1651–1674.

[LeV07] Randall J. LeVeque. Finite difference methods for ordinary and par-
tial differential equations. Steady-state and time-dependent problems.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2007, pp. xvi+341. isbn: 978-0-898716-29-0. doi: 10 . 1137 / 1 .

9780898717839.

[Bic08] Danny Bickson. “Gaussian belief propagation: Theory and aplication”.
In: arXiv preprint arXiv:0811.2518 (2008).

[Erl08] Yogi A Erlangga. “Advances in iterative methods and preconditioners
for the Helmholtz equation”. In: Archives of Computational Methods in
Engineering 15.1 (2008), pp. 37–66.

[She+08] Ori Shental et al. “Gaussian belief propagation solver for systems of
linear equations”. In: Information Theory, 2008. ISIT 2008. IEEE In-
ternational Symposium on. IEEE. 2008, pp. 1863–1867.

206

https://doi.org/10.1007/978-0-387-45528-0
https://doi.org/10.1137/1.9780898717839
https://doi.org/10.1137/1.9780898717839

[WJ+08] Martin J Wainwright, Michael I Jordan, et al. “Graphical models, expo-
nential families, and variational inference”. In: Foundations and Trends®
in Machine Learning 1.1–2 (2008), pp. 1–305.

[BS09] José M Bernardo and Adrian FM Smith. Bayesian theory. Vol. 405.
John Wiley & Sons, 2009.

[Ise09a] Arieh Iserles. A first course in the numerical analysis of differential
equations. Second. Cambridge Texts in Applied Mathematics. Cam-
bridge University Press, Cambridge, 2009, pp. xx+459. isbn: 978-0-521-
73490-5.

[Ise09b] Arieh Iserles. A first course in the numerical analysis of differential
equations. Cambridge university press, 2009.

[KF09] Daphne Koller and Nir Friedman. Probabilistic graphical models. Adap-
tive Computation and Machine Learning. Principles and techniques.
MIT Press, Cambridge, MA, 2009, pp. xxxvi+1231. isbn: 978-0-262-
01319-2.

[Koz09] Victor Kozyakin. “On accuracy of approximation of the spectral radius
by the Gelfand formula”. In: Linear Algebra and its Applications 431.11
(2009), pp. 2134–2141.

[Li09] Stan Z. Li. Markov random field modeling in image analysis. Third.
Advances in Pattern Recognition. With forewords by Anil K. Jain and
Rama Chellappa. Springer-Verlag London, Ltd., London, 2009, pp. xxiv+357.
isbn: 978-1-84800-278-4.

[BS10] Sean Buckeridge and Robert Scheichl. “Parallel geometric multigrid for
global weather prediction”. In: Numerical Linear Algebra with Applica-
tions 17.2-3 (2010), pp. 325–342.

[RDW10] Tyrone Rees, H Sue Dollar, and Andrew J Wathen. “Optimal solvers for
PDE-constrained optimization”. In: SIAM Journal on Scientific Com-
puting 32.1 (2010), pp. 271–298.

[AT11] Haim Avron and Sivan Toledo. “Randomized algorithms for estimating
the trace of an implicit symmetric positive semi-definite matrix”. In:
Journal of the ACM (JACM) 58.2 (2011), pp. 1–34.

[Bra+11] A. Brandt et al. “Bootstrap AMG”. In: SIAM J. Sci. Comput. 33.2
(2011), pp. 612–632. issn: 1064-8275. doi: 10.1137/090752973. url:
https://doi.org/10.1137/090752973.

207

https://doi.org/10.1137/090752973
https://doi.org/10.1137/090752973

[RSB11] Dorit Ron, Ilya Safro, and Achi Brandt. “Relaxation-based coarsening
and multiscale graph organization”. In: Multiscale Modeling & Simula-
tion 9.1 (2011), pp. 407–423.

[Saa11] Yousef Saad. Numerical methods for large eigenvalue problems: revised
edition. SIAM, 2011.

[Sha+11] Shai Shalev-Shwartz et al. “Online learning and online convex opti-
mization”. In: Foundations and trends in Machine Learning 4.2 (2011),
pp. 107–194.

[CMS12] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. “Multi-column deep
neural networks for image classification”. In: 2012 IEEE conference on
computer vision and pattern recognition. IEEE. 2012, pp. 3642–3649.

[Col12] Lothar Collatz. The numerical treatment of differential equations. Vol. 60.
Springer Science & Business Media, 2012.

[GK12] Martin J Gander and Felix Kwok. “Chladni figures and the Tacoma
bridge: motivating PDE eigenvalue problems via vibrating plates”. In:
SIAM Review 54.3 (2012), pp. 573–596.

[GV12] Gene H Golub and Charles F Van Loan. Matrix computations. Vol. 3.
JHU press, 2012.

[Gon+12] Joseph E Gonzalez et al. “Powergraph: Distributed graph-parallel com-
putation on natural graphs”. In: 10th {USENIX} Symposium on Oper-
ating Systems Design and Implementation ({OSDI} 12). 2012, pp. 17–
30.

[HA12] Ken Habgood and Itamar Arel. “A condensation-based application of
Cramer’s rule for solving large-scale linear systems”. In: Journal of Dis-
crete Algorithms 10 (2012), pp. 98–109.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances
in neural information processing systems 25 (2012), pp. 1097–1105.

[EGG12] Yousef El-Kurdi, Dennis Giannacopoulos, and Warren J Gross. “Re-
laxed Gaussian belief propagation”. In: 2012 IEEE International Sym-
posium on Information Theory Proceedings. IEEE. 2012, pp. 2002–2006.

[PTA12] Richard H Pletcher, John C Tannehill, and Dale Anderson. Computa-
tional fluid mechanics and heat transfer. CRC press, 2012.

208

[CF13] Robert M. Corless and Nicolas Fillion. A graduate introduction to nu-
merical methods. From the viewpoint of backward error analysis, With a
foreword by John Butcher. Springer, New York, 2013, pp. xl+868. isbn:
978-1-4614-8453-0. doi: 10.1007/978-1-4614-8453-0.

[Gel+13] Andrew Gelman et al. Bayesian data analysis. CRC press, 2013.

[HK13] Philipp Hennig and Martin Kiefel. “Quasi-Newton methods: a new di-
rection”. In: J. Mach. Learn. Res. 14 (2013), pp. 843–865. issn: 1532-
4435.

[HJ13] Roger A. Horn and Charles R. Johnson. Matrix analysis. Second. Cam-
bridge University Press, Cambridge, 2013, pp. xviii+643. isbn: 978-0-
521-54823-6.

[Min13] Thomas P Minka. “Expectation propagation for approximate Bayesian
inference”. In: arXiv preprint arXiv:1301.2294 (2013).

[Mni+13] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”.
In: arXiv preprint arXiv:1312.5602 (2013).

[MWJ13] Kevin Murphy, Yair Weiss, and Michael I Jordan. “Loopy belief propa-
gation for approximate inference: An empirical study”. In: arXiv preprint
arXiv:1301.6725 (2013).

[Ste13] Sergey S Stepanov. Stochastic world. Springer, 2013.

[ZTZ13] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The finite element
method: its basis and fundamentals. Seventh. Elsevier/Butterworth Heine-
mann, Amsterdam, 2013, pp. xxxviii+714. isbn: 978-1-85617-633-0. doi:
10.1016/B978-1-85617-633-0.00001-0.

[Bru+14] Joan Bruna et al. “Spectral networks and locally connected networks on
graphs”. English (US). In: International Conference on Learning Rep-
resentations (ICLR2014), CBLS, April 2014. 2014.

[Gel+14] Andrew Gelman et al. Bayesian data analysis. Third. Texts in Statistical
Science Series. CRC Press, Boca Raton, FL, 2014, pp. xiv+661. isbn:
978-1-4398-4095-5.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[MCP14] Stefan Magureanu, Richard Combes, and Alexandre Proutiere. “Lips-
chitz bandits: Regret lower bound and optimal algorithms”. In: Confer-
ence on Learning Theory. PMLR. 2014, pp. 975–999.

209

https://doi.org/10.1007/978-1-4614-8453-0
https://doi.org/10.1016/B978-1-85617-633-0.00001-0

[SDH14] Michael Schober, David K Duvenaud, and Philipp Hennig. “Probabilis-
tic ODE solvers with Runge-Kutta means”. In: Advances in neural in-
formation processing systems. 2014, pp. 739–747.

[Shl14] Jonathon Shlens. “A tutorial on principal component analysis”. In:
arXiv preprint arXiv:1404.1100 (2014).

[Bra+15] James Brannick et al. “Local Fourier analysis of multigrid methods with
polynomial smoothers and aggressive coarsening”. In: Numer. Math.
Theory Methods Appl. 8.1 (2015), pp. 1–21. issn: 1004-8979. doi: 10.
4208/nmtma.2015.w01si.

[CP15] Edmond Chow and Aftab Patel. “Fine-grained parallel incomplete LU
factorization”. In: SIAM J. Sci. Comput. 37.2 (2015), pp. C169–C193.
issn: 1064-8275. doi: 10.1137/140968896.

[CE15] Samuel N Cohen and Robert James Elliott. Stochastic calculus and ap-
plications. Vol. 2. Springer, 2015.

[Hen15] Philipp Hennig. “Probabilistic interpretation of linear solvers”. In: SIAM
J. Optim. 25.1 (2015), pp. 234–260. issn: 1052-6234. doi: 10.1137/
140955501. url: https://doi.org/10.1137/140955501.

[HOG15] Philipp Hennig, Michael A Osborne, and Mark Girolami. “Probabilistic
numerics and uncertainty in computations”. In: Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 471.2179
(2015), p. 20150142.

[Owh15] Houman Owhadi. “Bayesian numerical homogenization”. In: Multiscale
Modeling & Simulation 13.3 (2015), pp. 812–828.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convo-
lutional networks for biomedical image segmentation”. In: International
Conference on Medical image computing and computer-assisted inter-
vention. Springer, [Cham]. 2015, pp. 234–241.

[Rus+15] Olga Russakovsky et al. “Imagenet large scale visual recognition chal-
lenge”. In: International journal of computer vision 115.3 (2015), pp. 211–
252.

[Sha+15] Bobak Shahriari et al. “Taking the human out of the loop: A review
of Bayesian optimization”. In: Proceedings of the IEEE 104.1 (2015),
pp. 148–175.

[Wat15] Andrew J Wathen. “Preconditioning”. In: Acta Numerica 24 (2015).

210

https://doi.org/10.4208/nmtma.2015.w01si
https://doi.org/10.4208/nmtma.2015.w01si
https://doi.org/10.1137/140968896
https://doi.org/10.1137/140955501
https://doi.org/10.1137/140955501
https://doi.org/10.1137/140955501

[Aba+16] Martin Abadi et al. “TensorFlow: A system for large-scale machine
learning”. In: 12th {USENIX} symposium on operating systems design
and implementation ({OSDI} 16). 2016, pp. 265–283.

[DRS16] Timothy A Davis, Sivasankaran Rajamanickam, and Wissam M Sid-
Lakhdar. “A survey of direct methods for sparse linear systems”. In:
Acta Numerica 25 (2016), pp. 383–566.

[Goo+16] Ian Goodfellow et al. Deep learning. MIT press Cambridge, 2016.

[Hac16] Wolfgang Hackbusch. Iterative solution of large sparse systems of equa-
tions. Second. Vol. 95. Applied Mathematical Sciences. Springer, [Cham],
2016, pp. xxiii+509. isbn: 978-3-319-28483-5. doi: 10.1007/978-3-
319-28483-5.

[He+16] Kaiming He et al. “Deep residual learning for image recognition”. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 770–778.

[Hol16] Mark H Holmes. Introduction to scientific computing and data analysis.
Vol. 13. Springer, 2016.

[Kri16] K. Krishnamoorthy. Handbook of statistical distributions with applica-
tions. Second. CRC Press, Boca Raton, FL, 2016, pp. xxvi+398. isbn:
978-1-4987-4149-1.

[RLP16] J. Revels, M. Lubin, and T. Papamarkou. “Forward-Mode Automatic
Differentiation in Julia”. In: arXiv:1607.07892 [cs.MS] (2016).

[Bez+17] Jeff Bezanson et al. “Julia: a fresh approach to numerical computing”.
In: SIAM Rev. 59.1 (2017), pp. 65–98. issn: 0036-1445. doi: 10.1137/
141000671. url: https://doi.org/10.1137/141000671.

[GPS+17] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. “Program
synthesis”. In: Foundations and Trends® in Programming Languages
4.1-2 (2017), pp. 1–119.

[Li+17] Lisha Li et al. “Hyperband: A novel bandit-based approach to hyperpa-
rameter optimization”. In: The Journal of Machine Learning Research
18.1 (2017), pp. 6765–6816.

[Lis17] Vladimir D Liseikin. Grid generation methods. Springer, 2017.

[Maz17] JE Mazur. Learning and behavior (Eight ed.) 2017.

211

https://doi.org/10.1007/978-3-319-28483-5
https://doi.org/10.1007/978-3-319-28483-5
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671

[Owh17] Houman Owhadi. “Multigrid with rough coefficients and multiresolution
operator decomposition from hierarchical information games”. In: SIAM
Review 59.1 (2017), pp. 99–149.

[Sil+17] David Silver et al. “Mastering chess and shogi by self-play with a general
reinforcement learning algorithm”. In: arXiv preprint arXiv:1712.01815
(2017).

[XZ17] Jinchao Xu and Ludmil Zikatanov. “Algebraic multigrid methods”. In:
Acta Numerica 26 (2017), pp. 591–721.

[Bar+18] Simon Bartels et al. “Probabilistic linear solvers: A unifying view”. In:
arXiv preprint arXiv:1810.03398 (2018).

[Fra+18] Vincent François-Lavet et al. “An introduction to deep reinforcement
learning”. In: arXiv preprint arXiv:1811.12560 (2018).

[Fra18] Peter I Frazier. “A tutorial on Bayesian optimization”. In: arXiv preprint
arXiv:1807.02811 (2018).

[GN18] Arjun K Gupta and Daya K Nagar. Matrix variate distributions. Vol. 104.
CRC Press, 2018.

[Li+18] Lisha Li et al. “Hyperband: A Novel Bandit-Based Approach to Hyper-
parameter Optimization”. In: Journal of Machine Learning Research
18.185 (2018), pp. 1–52. url: http://jmlr.org/papers/v18/16-
558.html.

[MLH18] Man Kwong Mak, Chun Sing Leung, and Tiberiu Harko. “Solving the
nonlinear biharmonic equation by the Laplace-Adomian and Adomian
Decomposition Methods”. In: arXiv preprint arXiv:1810.09544 (2018).

[PWG18] Benjamin Peherstorfer, Karen Willcox, and Max Gunzburger. “Survey
of multifidelity methods in uncertainty propagation, inference, and op-
timization”. In: Siam Review 60.3 (2018), pp. 550–591.

[Bar+19] Simon Bartels et al. “Probabilistic linear solvers: a unifying view”. In:
Stat. Comput. 29.6 (2019), pp. 1249–1263. issn: 0960-3174. doi: 10.
1007/s11222- 019- 09897- 7. url: https://doi.org/10.1007/

s11222-019-09897-7.

[Ber+19] Christopher Berner et al. “Dota 2 with large scale deep reinforcement
learning”. In: arXiv preprint arXiv:1912.06680 (2019).

[Bri+19] François-Xavier Briol et al. “Probabilistic integration: A role in statis-
tical computation?” In: Statistical Science 34.1 (2019), pp. 1–22.

212

http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
https://doi.org/10.1007/s11222-019-09897-7
https://doi.org/10.1007/s11222-019-09897-7
https://doi.org/10.1007/s11222-019-09897-7
https://doi.org/10.1007/s11222-019-09897-7

[Coc+19a] Jon Cockayne et al. “A Bayesian conjugate gradient method (with dis-
cussion)”. In: Bayesian Anal. 14.3 (2019), pp. 937–1012. issn: 1936-
0975. doi: 10.1214/19-BA1145. url: https://doi.org/10.1214/19-
BA1145.

[Coc+19b] Jon Cockayne et al. “Bayesian probabilistic numerical methods”. In:
SIAM Review 61.4 (2019), pp. 756–789.

[Gre+19a] Daniel Greenfeld et al. “Learning to Optimize Multigrid PDE Solvers”.
In: Proceedings of the 36th International Conference on Machine Learn-
ing. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 2415–
2423. url: http://proceedings.mlr.press/v97/greenfeld19a.

html.

[Gre+19b] Daniel Greenfeld et al. “Learning to optimize multigrid PDE solvers”.
In: International Conference on Machine Learning. PMLR. 2019, pp. 2415–
2423.

[Hsi+19] Jun-Ting Hsieh et al. “Learning Neural PDE Solvers with Convergence
Guarantees”. In: International Conference on Learning Representations.
2019. url: https://openreview.net/forum?id=rklaWn0qK7.

[NA19] Emre O Neftci and Bruno B Averbeck. “Reinforcement learning in artifi-
cial and biological systems”. In: Nature Machine Intelligence 1.3 (2019),
pp. 133–143.

[OS19] Chris J Oates and Timothy John Sullivan. “A modern retrospective
on probabilistic numerics”. In: Statistics and Computing 29.6 (2019),
pp. 1335–1351.

[Saa19] Yousef Saad. “Iterative methods for linear systems of equations: A brief
historical journey”. In: Brenner, SC, Shparlinski, I., Shu, C.-W., Szyld,
DB (eds.) 75 (2019), pp. 197–216.

[SKK19] Jonas Schmitt, Sebastian Kuckuk, and Harald Köstler. “Optimizing Ge-
ometric Multigrid Methods with Evolutionary Computation”. In: arXiv
preprint arXiv:1910.02749 (2019).

[Tro19] Joel A Tropp. “Matrix Concentration & Computational Linear Alge-
bra”. In: (2019).

213

https://doi.org/10.1214/19-BA1145
https://doi.org/10.1214/19-BA1145
https://doi.org/10.1214/19-BA1145
http://proceedings.mlr.press/v97/greenfeld19a.html
http://proceedings.mlr.press/v97/greenfeld19a.html
https://openreview.net/forum?id=rklaWn0qK7

[BK20] Markus Bachmayr and Vladimir Kazeev. “Stability of low-rank ten-
sor representations and structured multilevel preconditioning for elliptic
PDEs”. In: Foundations of Computational Mathematics (2020), pp. 1–
62.

[Bro+20] Jed Brown et al. “Tuning Multigrid Methods with Robust Optimiza-
tion”. In: arXiv preprint arXiv:2001.00887 (2020).

[Dua+20] Jingliang Duan et al. “Hierarchical reinforcement learning for self-driving
decision-making without reliance on labelled driving data”. In: IET In-
telligent Transport Systems 14.5 (2020), pp. 297–305.

[KDO20] Alexandr Katrutsa, Talgat Daulbaev, and Ivan Oseledets. “Black-box
learning of multigrid parameters”. In: Journal of Computational and
Applied Mathematics 368 (2020), p. 112524.

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge
University Press, 2020.

[Li+20] Zongyi Li et al. “Fourier neural operator for parametric partial differ-
ential equations”. In: arXiv preprint arXiv:2010.08895 (2020).

[Luz+20] Ilay Luz et al. “Learning algebraic multigrid using graph neural net-
works”. In: International Conference on Machine Learning. PMLR. 2020,
pp. 6489–6499.

[Rei+20] Tim W Reid et al. “A Probabilistic Numerical Extension of the Conju-
gate Gradient Method”. In: arXiv preprint arXiv:2008.03225 (2020).

[Saa20] Yousef Saad. “Iterative methods for linear systems of equations: A
brief historical journey”. In: 75 years of mathematics of computation.
Vol. 754. Contemp. Math. Amer. Math. Soc., Providence, RI, 2020,
pp. 197–215. doi: 10.1090/conm/754/15141. url: https://doi.org/
10.1090/conm/754/15141.

[WH20] Jonathan Wenger and Philipp Hennig. “Probabilistic Linear Solvers for
Machine Learning”. In: arXiv preprint arXiv:2010.09691 (2020).

[Fan21a] Vladimir Fanaskov. “Neural Multigrid Architectures”. In: 2021 Inter-
national Joint Conference on Neural Networks (IJCNN). 2021, pp. 1–8.
doi: 10.1109/IJCNN52387.2021.9533736.

[Fan21b] Vladimir Fanaskov. “Uncertainty calibration for probabilistic projec-
tion methods”. In: Statistics and Computing 31.5 (2021), pp. 1–17. doi:
https://doi.org/10.1007/s11222- 021- 10031- 9. url: https:

//link.springer.com/article/10.1007/s11222-021-10031-9.

214

https://doi.org/10.1090/conm/754/15141
https://doi.org/10.1090/conm/754/15141
https://doi.org/10.1090/conm/754/15141
https://doi.org/10.1109/IJCNN52387.2021.9533736
https://doi.org/https://doi.org/10.1007/s11222-021-10031-9
https://link.springer.com/article/10.1007/s11222-021-10031-9
https://link.springer.com/article/10.1007/s11222-021-10031-9

[NLK21] Guido Novati, Hugues Lascombes de Laroussilhe, and Petros Koumout-
sakos. “Automating turbulence modelling by multi-agent reinforcement
learning”. In: Nature Machine Intelligence 3.1 (2021), pp. 87–96.

[OF21] Ivan Oseledets and Vladimir Fanaskov. “Direct optimization of BPX
preconditioners”. In: Journal of Computational and Applied Mathemat-
ics (2021), p. 113811. doi: https://doi.org/10.1016/j.cam.2021.
113811. url: https://www.sciencedirect.com/science/article/
pii/S0377042721004337.

[Set21] James P. Sethna. Statistical mechanics. Second. Vol. 14. Oxford Master
Series in Physics. Entropy, order parameters, and complexity. Oxford
University Press, Oxford, 2021, p. 464. isbn: 978-0-19-886525-4.

[Tag+21] Ali Taghibakhshi et al. “Optimization-Based Algebraic Multigrid Coars-
ening Using Reinforcement Learning”. In: Advances in Neural Informa-
tion Processing Systems 34 (2021).

[Fan22] Vladimir Fanaskov. “Gaussian belief propagation solvers for nonsym-
metric systems of linear equations”. SIAM Journal on Scientific Com-
puting. 2022. url: https://epubs.siam.org/doi/abs/10.1137/
19M1275139.

[FO22] Vladimir Fanaskov and Ivan Oseledets. “Spectral Neural Operators”.
In: arXiv preprint arXiv:2205.10573 (2022).

215

https://doi.org/https://doi.org/10.1016/j.cam.2021.113811
https://doi.org/https://doi.org/10.1016/j.cam.2021.113811
https://www.sciencedirect.com/science/article/pii/S0377042721004337
https://www.sciencedirect.com/science/article/pii/S0377042721004337
https://epubs.siam.org/doi/abs/10.1137/19M1275139
https://epubs.siam.org/doi/abs/10.1137/19M1275139

	Introduction
	What this thesis is about
	Classical iterative methods
	Relaxation methods
	Projection methods
	Multigrid

	Model equations
	Finite difference discretization
	Finite element discretization
	Poisson equation
	Mixed derivative
	Anisotropic problems
	Helmholtz equation
	Convection-diffusion problems
	Biharmonic equation
	Diffusion with discontinuous coefficients
	Implicit scheme for the heat equation

	Outline of the thesis
	Gaussian belief propagation
	Probabilistic projection methods
	Hidden representation
	Black-box optimization of BPX preconditioners
	Neural multigrid architectures
	Relaxation methods in the multi-armed bandit setting

	I Statistical inference
	Linear problems and statistical inference
	Gaussian belief propagation
	Linear problems and multivariate normal distribution
	Belief propagation
	Gaussian belief propagation
	Message update rules for Gauss-Markov models
	Elimination perspective
	Gaussian belief propagation for non-symmetric linear systems
	Statistical interpretation of belief propagation for non-symmetric linear systems

	Generalized Gaussian belief propagation
	Set-decompositions and the region graph
	Message update rules for the generalized Gaussian belief propagation
	Elimination perspective
	Generalized Gaussian belief propagation for nonsymmetric linear systems

	Gaussian belief propagation as a smoother for multigrid method
	Gaussian belief propagation in the error correction scheme
	Reducing computational complexity

	Numerical examples
	Notes about solvers and smoothers
	Summary of results

	Probabilistic projection methods
	Projection methods and statistical inference
	Fixing prior distribution
	General form of prior distribution
	Uncertainty calibration for abstract projection methods
	Construction of covariance matrices

	Difficulties with probabilistic projection methods
	Uncertainty calibration for Krylov subspace methods
	Comparison with A probabilistic numerical extension of the conjugate gradient method

	Numerical examples
	Comparison with Probabilistic linear solvers: a unifying view
	Comparison with A probabilistic numerical extension of the conjugate gradient method
	Uncertainty quantification for PDE-constraint optimization

	Hidden representation
	Probability, uncertainty and numerical methods
	Uncertainty is in the representation
	Transformation-based examples
	Examples based on the hidden subgrid dynamics

	Iterative methods for sparse linear systems
	Variational approximation

	Probabilistic instationary Richardson iteration
	The covariance matrix is intractable
	Concentration of measure and alignment
	Algorithm
	Connection with other iterative methods
	Calibration of the uncertainty
	Acceleration of iteration by projection

	II Machine learning
	Linear problems and machine learning
	Black-box optimization of BPX preconditioners
	Automatic construction of preconditioners and solvers
	Direct optimization of spectral radius
	Direct optimization of spectral condition number

	Modified BPX preconditioners
	Numerical examples
	Poisson equation
	Helmholtz equation
	Anisotrpoic Poisson equation
	Biharmonic equation
	Convection-diffusion equation
	Diffusion with discontinuous coefficients
	Mixed derivative
	Implicit scheme for heat equation

	Neural multigrid architectures
	Multigrid and neural networks
	Matrix-free multigrid architecture
	Loss function and training
	Restriction on architecture for linear iterative methods
	Architectures and the baseline solver
	LMG
	s1MG(rs)
	s1MG(s)
	s3MG(s)
	U-Net
	fMG

	Numerical examples
	Poisson equation
	Anisotropic Poisson equation
	Mixed derivative
	Influence of smoother's stencil size

	Relaxation methods in the multi-armed bandit setting
	Adaptive linear solvers
	Reinforcement learning
	Markov Decision Processes
	Multi-armed bandits

	Linear iterative methods and reinforcement learning
	Linear iterative methods and bandits
	Naive epsilon-greedy algorithm
	Restarted epsilon-greedy algorithm
	Arm exclusion with Bauer-Fike upper bound
	Rediscretization

	On convergence of proposed algorithms
	Numerical examples

	Conclusion

	III Proofs
	Gaussian belief propagation
	GaBP consistency
	GaBP convergence
	Generalized GaBP consistency
	Generalized GaBP convergence
	Walk structure on a tree
	Walk-sums and the graph refinement

	Probabilistic projection methods
	Extended prior
	Existence of prior
	Coverage of prior
	Perfect uncertainty calibration
	Alignment
	Simplified uncertainty
	Orthogonal projector
	Hierarchical modelling
	Cheap UQ
	Expensive UQ
	Covariance for Reid
	Simplified S-statistic
	Invariance
	Equivalence with Reid
	New norm
	Trefethen

	Hidden representation
	Probabilistic Richardson iteration
	Positive definiteness
	Finite time UQ
	Necessary and sufficient
	Sufficient
	Practical sufficient
	Approximate sufficient
	Alignment

	Black-Box optimization of BPX preconditioners
	BPX matrix
	Drichlet-Neumann boundary conditions
	Neumann-Dirichlet boundary conditions
	Neumann-Neumann boundary conditions
	Drichlet-Dirichlet boundary conditions

	Neural multigrid architectures
	Rho refinement

	Bibliography

