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Abstract

Contemporary approaches in quantum algorithms development center around the so-
called variational model for quantum computation, wherein a classical co-processor
in tandem with a noisy intermediate-scale quantum (or NISQ) device, minimizes an
objective function to accomplish some computational task. Specifically, one prepares
a quantum state by applying a sequence of parameterized quantum gates onto some
initial, easy to prepare starting state. This parameterized state, called ansatz, is
then tuned iteratively via classical outer-loop optimization routines to minimize the
expected value of some classical cost function. The cost function ensures that the
relevant computation is realized when the iterative procedure attains the minimum.
In this thesis, we study Quantum Approximate Optimization Algorithm (QAOA),
a variational approach towards combinatorial optimization. By considering a noise-
less setting, we investigate fundamental effects which aid or limit the algorithm’s use
case. Firstly, we study the performance of QAOA applied to random instances of
constraint satisfiability. Here we discover an underparameterization effect, which we
call reachability deficits. Specifically, we observe the quality of approximations re-
turned by QAOA to inversely correlate with problem instances constrains-to-variable
ratio (called problem density). This effect limits shallow depth circuits to only ad-
dress low density sub-class of instances and forces the need for employing deeper
circuits. Secondly, we consider training QAOA circuits and show that the optimal
circuit parameters feature a concentration effect, called parameter concentrations.
We analytically demonstrate this effect for variational state preparation and recover
an inverse polynomial dependence on the problem size. Our results imply that an
initial guess for circuit parameters could be obtained by considering optimal param-
eters found at small problem sizes, thus allowing one to leverage this effect to reduce
the classical cost associated with circuit training. Finally, we attempt to address the
open problem of estimating the circuit depth needed for QAOA to succeed. We con-
jecture a logistic saturation behaviour for the circuit depth as a function of problem
density to recover 𝜖-tolerant approximations. We test our prediction against sim-
ulated data and find the model to be capable of describing the data within a 3𝜎
confidence. Based on this empirical approach, we also recover a linear trend for
circuit-depth scaling with respect to problem sizes, a result that presents optimistic
prospects for quantum advantage within the framework of QAOA.
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Introduction

General topical characterization

As information is necessarily represented in physical media, the laws of physics gov-

ern how information is processed. On the microscopic scale, quantum mechanics ulti-

mately dictate these laws, which differ considerably from classical physics describing

macroscopic systems. Such quantum systems are known to exhibit non-intuitive be-

haviors such as superposition and entanglement, which lack a local deterministic

description [5, 6]. Therefore, one might wonder how a model of computation based

on quantum mechanics, might behave. The fundamental building block of a quan-

tum computer are its information processing units, called qubits, and the relevant

operations that can be performed, called quantum gates. Mathematically, a qubit is

represented as a vector in a two-dimensional complex vector space, and a quantum

system described by 𝑛 such individual qubits collectively represents a state space

of dimension 2𝑛. Due to this curse of dimensionality, naively simulating quantum

systems on a classical computer becomes intractable [7, 8]. In contrast, a quantum

computer would circumvent this problem by naturally emulating quantum systems.

Such ideas were further formulated and developed in the work of David Deutsch [9]

—-what we now call the Church–Turing–Deutsch principle, which asserts that a uni-

versal (quantum) computing device can simulate any physical process. Therefore,

one would expect a quantum model of computation to be inherently more powerful

[10]. Although not formally proven, ample empirical evidence to support this claim.

Moreover, beyond simulating quantum physics, many computational problems ex-

ist that are believed to be beyond the scope of any classical computer [11]. These

problems arise in the form of e.g., combinatorics, groups or properties of graphs,

12



Introduction

etc. Early works of: Deutsch-Jozsa [12], Simon [13], Shor [14], and Grover [15]

provably demonstrate prospects for quantum advantage over best known classical

algorithms by elegantly designing quantum algorithms. However, realizing such al-

gorithms in this era of Noisy-Intermediate-Scale-Quantum (or NISQ) devices [16]

remains challenging due to the need for error correction [17, 18] and the limited

number of quantum operations that can be performed.

Motivated by these practical challenges, modern quantum programming revolves

around a new model for quantum computation called the variational model [19, 20].

Such models, partly inspired by machine learning [21–24], exploit a hybrid quantum-

classical approach. Unlike traditional algorithms, such as in Shor’s [14], variational

quantum algorithms (or VQAs) consist of an iterative procedure where parameter-

ized quantum circuits (sequences of quantum gates) are trained by an outer loop

classical optimization step in order to minimize an objective function. A typical ex-

ample of a VQA is the Quantum Approximate Optimization Algorithm (or QAOA),

designed to approximate solutions to combinatorial optimization problems [25–35].

Although VQAs have recently attracted wide-spread adoption due to resilience over

systematic limitations of near-term devices–variability in pulse timing and limited

coherence times [36–39], the prospects of employing such algorithms, even in the

noiseless setting, remain largely open. In this thesis, we explore this notion re-

stricted to QAOA.

Thesis goals

The main goal of this thesis is to study, in the noiseless setting, the algorithmic

performance of QAOA and to investigate fundamental effects which aid or limit

the algorithm’s use case for minimizing classical Ising Hamiltonians. To realize this

objective, we:

1. Study the algorithmic performance of QAOA on minimizing Ising Hamiltoni-

ans.

2. Interrelate and study different performance metrics that are widely used in

the literature.

13
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3. Study the limiting performance of fixed depth QAOA.

4. Study a folklore concentration effect for QAOA circuit parameters.

5. Study a predictive model for estimating circuit depth needed for QAOA to

succeed.

Statements defended

The thesis defends the following main claims:

1. The ratio of problem instances constraints to variables (called problem density)

induces underparameterization in fixed depth QAOA. This effect is termed as

reachability deficits. [1].

• QAOA on random MAX-3-SAT and random MAX-2-SAT instances ex-

hibits reachability deficits [1].

• Onset of deficits for QAOA on random MAX-3-SAT and random MAX-

2-SAT instances numerically coincide with the computational phase tran-

sition point at problem density 1 [1].

• QAOA on graph minimization problems – corresponding to minimizing

2-local Ising model with uniform random couplings drawn form {−1,+1},

exhibit reachability deficits [2].

2. The optimal parameters for the fixed depth QAOA admit a concentration effect

[3]. Specifically, concentrations imply that, given a set of optimal parameters

𝛽*
𝑛 and 𝛾*

𝑛, for 𝑛 qubits, a set of optimal parameters for 𝑛 + 1 qubits, 𝛽*
𝑛+1

and 𝛾*
𝑛+1 can be found such that:

⃒⃒
𝛽*
𝑛+1 − 𝛽*

𝑛

⃒⃒2
+
⃒⃒
𝛾*
𝑛+1 − 𝛾*

𝑛

⃒⃒2 ∼ poly−1(𝑛).

• Parameters concentrate for 𝑝 = 1, 2 QAOA on variational state prepara-

tion with concentration scaling [3]:

⃒⃒
𝛽*
𝑛+1 − 𝛽*

𝑛

⃒⃒2
+
⃒⃒
𝛾*
𝑛+1 − 𝛾*

𝑛

⃒⃒2 ∼ 𝑛−4,
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• Parameters concentrate for 𝑝 ≥ 3 depth QAOA on variational state prepa-

ration for up to 𝑝 = 5 and 17 qubits with observed scaling being the same

as for 𝑝 = 1, 2 [3].

3. The circuit depth required for QAOA to recover 𝜖 tolerant performance on

random MAX-2-SAT instances on up to 15 qubits can empirically be described

by a logistic function on problem density [4],

𝑝*(𝛼) ≈ 𝑝𝑚𝑎𝑥
1 + 𝑒−𝜅(𝛼−𝛼𝑐)

.

Scientific novelty

1. We discovered an effect, now called reachability deficits, which places a fun-

damental limitation on the performance of fixed depth QAOA, while prior

art such as in [26, 40] focused on showing performance advantage over clas-

sical algorithms by considering specific instances which allow for analytical

performance guarantees.

2. We identify low depth performance benefits of QAOA to only address instances

with low problem densities and observe such benefits to wane for densities be-

yond the computational phase transition point in combinatorial optimization

problems [41]. Such a categorization was previously unknown.

3. We develop a new type of concentration effect for optimal parameters and

prove its existence for the problem of variational state preparation.

4. We develop an empirical model based on the limiting performance of QAOA

which predicts the required circuit depth needed for QAOA to recover near

optimal solutions to problem instances of MAX-2-SAT.

Presentation and validation of the results

The main results compiled in this thesis are based on published articles in peer

reviewed journals. Some of the results have also been presented as posters at the
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following conferences:

1. International Conference on Quantum Technologies (July 12-16, 2021, Moscow)

2. International Conference on Quantum Technologies (July 15-19, 2019, Moscow)

Validity of the results are supported by numerical experiments and/or mathematical

proofs wherever applicable.
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Chapter 1

Concepts in quantum computation

This chapter reviews the basic concepts in quantum computation and introduces

the standard notation used throughout the thesis.

1.1 Definitions and notations

The fundamental building block in quantum computation is the notion of qubits,

objects which represent the state or configuration of a quantum mechanical system.

Mathematically, a qubit is represented as a two-dimensional vector in the complex

euclidean space, C2. A standard choice of basis, called the computational basis, in C2

are the orthonormal vectors, {|0⟩ , |1⟩}, following convention of the Dirac notation.

Remark 1.1. An arbitrary state |𝜓⟩ ∈ C2 admits a unique decomposition in the

computational basis as follows:

|𝜓⟩ = 𝑎 |0⟩+ 𝑏 |1⟩ , (1.1)

with 𝑎, 𝑏 ∈ C.

Similarly to the single-qubit case, the states of an 𝑛 qubit system are represented

by vectors in [C2]⊗𝑛. The computational basis vectors are then simply obtained via

the tensor product of individual basis vectors, {|0⟩ , |1⟩}⊗𝑛. The space of 𝑛 qubits

forms a finite-dimensional Hilbert space ℋ, when equipped with an inner-product.

17



Chapter 1. Concepts in quantum computation

Definition 1.1 (Inner-Product). The standard inner product is defined as:

⟨·|·⟩ : [C2]⊗𝑛 × [C2]⊗𝑛 → C,

⟨𝜑|𝜓⟩ =
2𝑛−1∑︁
𝑘=0

𝜑⋆𝑘𝜓𝑘.
(1.2)

Here, 𝜑𝑘, 𝜓𝑘 ∈ C are the coefficients in some basis decomposition of |𝜑⟩ and |𝜓⟩.

Remark 1.2. The 2-norm of a vector |𝜓⟩ ∈ ℋ denoted by ||𝜓||2 satisfies:

⃦⃦
𝜓
⃦⃦
2
=
√︀

⟨𝜓|𝜓⟩. (1.3)

Operations on qubits are prescribed by linear maps from a Hilbert space ℋ, onto

itself, denoted by ℒ(ℋ).

Remark 1.3 (Matrix representation of linear maps). For the finite-dimensional

Hilbert space ℋ, of dimension 𝑑, any linear map 𝐴 ∈ ℒ(ℋ) has a matrix represen-

tation:

𝐴 =
𝑑∑︁

𝑗,𝑘=1

𝑎𝑗𝑘|𝑗⟩⟨𝑘|, (1.4)

for an arbitrary choice of orthonormal basis {|𝑘⟩}𝑑𝑘=1 ∈ ℋ and 𝑎𝑗𝑘 being the matrix

elements of 𝐴.

Definition 1.2. Projectors, Unitaries, and Hermitian operators are defined as:

1. Projectors

𝑃 ∈ ℒ(ℋ) is a projector when 𝑃 2 = 𝑃 .

2. Unitaries

𝑈 ∈ ℒ(ℋ) is unitary when 𝑈 †𝑈 = 𝑈𝑈 † = 1.

3. Hermitian operators

𝐻 ∈ ℒ(ℋ) is Hermitian when 𝐻† = 𝐻.

Notice that the space of linear maps ℒ(ℋ) itself forms a Hilbert space when

equipped with an inner product.
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Chapter 1. Concepts in quantum computation

Definition 1.3 (Hilbert-Schmidt inner product). Similar to the standard inner

product, the Hilbert-Schmidt inner product for 𝐴,𝐵 ∈ ℒ(ℋ) is given by:

⟨𝐴|𝐵⟩𝐻𝑆 =
1

dim(ℋ)
Tr(𝐴†𝐵). (1.5)

From the definition of the Hilbert-Schmidt inner product, it can be seen that the

set of Pauli matrices along with the identity operator forms an orthogonal basis for

linear operators on a single qubit.

Definition 1.4 (Pauli Matrices). The three 2× 2 Pauli matrices X,Y,Z are:

𝑋 =

⎛⎝0 1

1 0

⎞⎠ , 𝑌 =

⎛⎝0 −i

i 0

⎞⎠ , 𝑍 =

⎛⎝1 0

0 −1

⎞⎠ .

Remark 1.4 (Eigenvalues and Eigenvectors of Pauli matrices). Pauli matrices have

the eigenvalues 𝜆 = ±1 and the eigenvectors corresponding to these eigenvalues are:

1. 𝑋 : |±⟩ = 1√
2
(|0⟩ ± |1⟩) corresponding to 𝜆 = ±1.

2. 𝑌 : |𝑦±⟩ = 1√
2
(|0⟩ ± 𝑖 |1⟩) corresponding to 𝜆 = ±1.

3. 𝑍 : |0⟩ and |1⟩ corresponding to 𝜆 = 1 and 𝜆 = −1 respectively.

For linear operators on 𝑛 qubits, an orthogonal basis set can be constructed by

the tensor product of Pauli matrices and the identity operator, {1, 𝑋, 𝑌, 𝑍}⊗𝑛. We

call such basis elements Pauli strings.

Definition 1.5 (Cardinality and Locality of linear operators). Given ℋ, the Hilbert

space of 𝑛 qubits and 𝐴 ∈ ℒ(ℋ), a basis decomposition of 𝐴, in terms of Pauli

strings, can be obtained as:

𝐴 =
∑︁
𝛼

𝑐𝛼

𝑛⨂︁
𝑘=1

𝜎𝛼𝑘
𝑘 , (1.6)

where 𝛼 ∈ {0, 1, 2, 3}×𝑛 and 𝜎𝛼𝑘
𝑘 represent the corresponding Pauli matrix according

to the labeling 𝜎0
𝑘 = 1𝑘, 𝜎

1
𝑘 = 𝑋𝑘, 𝜎

2
𝑘 = 𝑌𝑘 and 𝜎3

𝑘 = 𝑍𝑘. The cardinality, |𝐴|, is then

defined as the number of non-zero coefficients 𝑐𝛼 ∈ C in Eq. (1.6) and the locality

given by the maximum number of non-identity terms taken over the Pauli strings,
𝑛⨂︀
𝑘=1

𝜎𝛼𝑘
𝑘 .
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Chapter 1. Concepts in quantum computation

An implication of the basis decomposition in Eq. (1.6) is that the space of Hermi-

tian operators, denoted by hermC[2
𝑛] can be thought of as the real span over Pauli

strings.

Remark 1.5. The space of Hermitian operators in ℒ(ℋ) can be defined as:

hermC[2
𝑛] = spanR

{︂ 𝑛⨂︁
𝑘=1

𝜎𝛼𝑘
𝑘 |𝛼𝑘 ∈ {0, 1, 2, 3}

}︂
. (1.7)

Another important property to note is that every Hermitian operator, 𝐻 ∈

hermC[2
𝑛] gives rise to a unitary operator or sometimes called propagators via ex-

ponentiation.

Definition 1.6 (Matrix exponentiation). Given a matrix 𝐴 ∈ MatC[2
𝑛], the matrix

exponential of 𝐴, denoted by exp𝐴 is defined as a series sum:

exp𝐴 =
∞∑︁
𝑘=0

𝐴𝑘

𝑘!
. (1.8)

Definition 1.7 (Propagators). Given 𝐻 ∈ hermC[2
𝑛], the propagator of 𝐻 is defined

as:

𝑈(𝜃) = exp (−𝑖𝜃𝐻) , (1.9)

where 𝜃 ∈ [0, 2𝜋).

1.2 Quantum model of computation

Similar to classical computers, where computation is performed by transforming

input states of 𝑛 bits into outputs, quantum computers perform series of unitary

operations called quantum gates to transform input states of 𝑛 qubits. The entire

sequence of unitary operations along with the input state is what is referred to as a

quantum circuit.

Measurement in quantum mechanics prescribes that the quantum states upon

measurement collapse into eigenstates of some measurement observable, which are

Hermitian operators in ℒ(ℋ). Given a measurement observable 𝐴 ∈ hermC[2
𝑛] with
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Chapter 1. Concepts in quantum computation

eigenstates {|𝜆𝑘⟩}2
𝑛

𝑘=1 and the corresponding eigenvalues 𝜆𝑘, the measurement of a

state |𝜓⟩ =
2𝑛∑︀
𝑘=1

𝑐𝑘 |𝜆𝑘⟩ returns a measurement value 𝜆𝑘 with probability |𝑐𝑘|2 up

to some normalization
∑︀2𝑛

𝑘=1 |𝑐𝑘|
2. Therefore, it is convenient to introduce a unit

norm restriction on the Hilbert space ℋ, to represent the states of qubits. Unless

otherwise stated, in the thesis we shall make this restriction implicitly and define

the expected value of Hermitian operators with respect to a state |𝜓⟩ ∈ ℋ as:

Definition 1.8 (Expectation value). Given 𝐴 ∈ hermC[2
𝑛], the expected value given

a unit norm state |𝜓⟩ ∈ ℋ is defined as:

⟨𝜓|𝐴 |𝜓⟩ =
2𝑛∑︁
𝑘=1

𝜆𝑘 |𝑐𝑘|2 , (1.10)

where 𝜆𝑘 are the eigenvalues of 𝐴 and 𝑐𝑘 are the coefficients of |𝜓⟩ in the eigenbasis

of 𝐴.
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Chapter 2

Ising formulation of classical

optimization problems

In this chapter, we introduce classical combinatorial optimization problems and

show how finding solutions to problem instances are equivalent to minimizing Ising

Hamiltonians. This equivalence allows for a bridge between statistical physics and

computation, which is also briefly explored in the chapter.

2.1 Background

Computational complexity aims to classify problems according to their worst-case

resource usage [42]. Traditionally, in theoretical computer science, two important

classical complexity classes are P and NP. These classes separate decision problems:

P consists of the set of problems that can be solved in polynomial time on a classical

computer, whereas NP consists of problems which admit polynomial time verifica-

tion of candidate solutions. One of the most famous problems in computer science

is whether P ?
= NP [11, 43]. Not only is this question relevant to computer scien-

tists, answering this question has immense practical significance, as many real-world

problems inescapably belong to NP, problems such as in logistics, scheduling, and

drug manufacturing, to name a few [44–49].

Decades of research has been spent on attempting polynomial time algorithms

to solve the most difficult problems in NP, aptly named as NP-Complete problems.
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Chapter 2. Ising formulation of classical optimization problems

Such problems feature a sense of completeness as all problems in NP polynomially

reduced to an instance of NP-Complete problem [50]. Finding a polynomial time

algorithm for any one NP-Complete problem proves P = NP, yet no such algorithm

has ever been reported, leading to the wide spread belief that P ̸= NP. Furthermore,

many problems in physics are proven to be NP-Complete [41, 51]. This connection

to physics motivated several physics inspired algorithms such as simulated annealing

[52] and random walk algorithms [53] in hopes of solving NP-Complete problems.

Taking a step further, modern approaches, including quantum, rely on building

physical computing devices that bootstrap physics to naturally solve NP problems

[54–58]. Although such models were initially proposed as a way to outperform

classical computation, NP-Complete problems still remain out of reach and therefore

provide a good test bed to ascertain the computational power of these models.

2.2 Decision and optimization

We will start with the notion of NP-Decision problems [41]. Such problem instances

can be represented by pseudo-Boolean functions,

𝑓 : B×𝑛 −→ N0. (2.1)

Since these are NP-problems, we will demand that for all inputs 𝑦 ∈ B×𝑛, 𝑓(𝑦) can

be evaluated in poly(𝑛).

Definition 2.1 (NP-Decision problem). The task of a decision problem is to deter-

mine the promise i.e., deciding whether a given instance is:

YES instance =⇒ ∃ 𝑦 ∈ B×𝑛 | 𝑓(𝑦) = 0,

NO instance =⇒ ∀ 𝑦 ∈ B×𝑛 , 𝑓(𝑦) ≥ 1.

The optimization version of NP-Decision problem can be defined in a similar

manner.
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Definition 2.2 (Optimization version of NP-Decision problems). The task of an

optimization problem is to determine inputs:

𝑦⋆ ∈ arg min
𝑦∈B×𝑛

𝑓(𝑦).

Equivalently, optimization problems are sometimes stated as finding the minimum:

𝑓(𝑦⋆) = min
𝑦∈B×𝑛

𝑓(𝑦).

2.3 Vector space embedding

Consider the following maps between logical bits and qubits:

B −→ C2

× −→ ⊗.
(2.2)

Under this map, the pseudo-Boolean function in Eq. (2.1) induces an operator 𝐻𝑓 ∈

ℒ(ℋ) as:

𝐻𝑓 =
∑︁
𝑦∈B×𝑛

𝑓(𝑦)|𝑦⟩⟨𝑦|. (2.3)

In this thesis, we shall call such operators 𝐻𝑓 , as problem Hamiltonians. Notice that

under this vector space embedding [47, 59], optimization problems (minimization

or maximization with respect to appropriate sign change) as defined in Def. 2.2

interrelates Hamiltonian minimization as:

min
𝑦∈B×𝑛

𝑓(𝑦) ≡ min
|𝜓⟩∈ℋ

⟨𝜓|𝐻𝑓 |𝜓⟩ . (2.4)

2.4 Combinatorial optimization problems

We will briefly review some of the NP-Complete problems and their corresponding

NP-Hard optimization versions [41]. The thesis will explore these problems in the

context of QAOA [26], and therefore, we provide the explicit constructions of the
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considered combinatorial optimization problem instances into problem Hamiltoni-

ans.

2.4.1 Boolean satisfiability

Boolean satisfiability, or SAT, is the problem of determining satisfiability of Boolean

formulae. More specifically, one aims to decide whether a given formula can be

satisfied by assigning truth values to the variables. Limited to 𝑘-variables or literals

per clause, and expressed in the conjunctive normal form (CNF), 𝑘-SAT was proven

to be NP-Complete for 𝑘 ≥ 3 [60].

Example 2.1. Consider the following example of a 3-SAT instance with 2 clauses

and 5 variables:

𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥1 ∨ ¬𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥4 ∨ ¬𝑥5). (2.5)

This instance is satisfiable since variable assignment 𝑥1 = 1, 𝑥2 = 1, 𝑥3 = 0, 𝑥4 =

0, 𝑥5 = 0 output 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 1.

Definition 2.3 (Random 𝑘-SAT instances). Let 𝑋 denote the set of 𝑛 Boolean

variables, 𝑋 = {𝑥𝑗}𝑛𝑗=1. A random clause 𝐶𝑙 is then defined as the disjunction over

𝑘-tuples of random distinct literals chosen from 𝑋,

𝐶𝑙 =
𝑘⋁︁
𝑗=1

(𝑦𝑗)
𝑙𝑗 , (2.6)

where 𝑦𝑗 ∈ 𝑋 and 𝑙𝑗 ∈ {0, 1} references the negation of the variable 𝑦𝑗. 𝑘-SAT

instances are then constructed by the conjunction of 𝑚 such randomly chosen distinct

clauses,

𝑓(𝑥1, 𝑥2, . . . 𝑥𝑛) =
𝑚⋀︁
𝑙=1

𝐶𝑙. (2.7)

Remark 2.1 (Clause density). To study random instances of 𝑘-SAT, we introduce

an order parameter for instance generation called clause density which is defined as:

𝛼 =
𝑚

𝑛
, (2.8)
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where 𝑚 is the number of clauses in the 𝑘-SAT instance and 𝑛 is the number of

variables.

The optimization version of Boolean satisfiability, called maximum satisfiability

or MAX-𝑘-SAT, is the the canonical NP-Hard optimization problem (for 𝑘 ≥ 2)

[61]. Here, one seeks to determine variable assignments that maximize the number

of satisfiable clauses in a given instance.

Definition 2.4 (MAX-𝑘-SAT). Given a 𝑘-SAT instance with 𝑚 clauses and 𝑛 vari-

ables as in Eq. (2.7), let 𝑔(𝑥) be the pseudo-Boolean function obtained by replacing

the conjunction in Eq. (2.7) by the summation,

𝑔(𝑥) =
𝑚∑︁
𝑙=1

𝐶𝑙, (2.9)

where 𝑥 ∈ B×𝑛. MAX-𝑘-SAT aims to determine:

𝑥⋆ ∈ arg max
𝑥∈B×𝑛

𝑔(𝑥). (2.10)

In order to construct a problem Hamiltonian for MAX-𝑘-SAT, we consider the

following maps:

𝑥𝑗 −→ 𝑃 0
𝑗 , ¬𝑥𝑗 −→ 𝑃 1

𝑗 ,

∧ −→ +, ∨ −→ ⊗.
(2.11)

Here, 𝑃 1
𝑗 = (|1⟩⟨1|)𝑗 and 𝑃 0

𝑗 = (|0⟩⟨0|)𝑗 are rank one projectors acting on the

𝑗𝑡ℎ qubit. This construction ensures that each clause is mapped onto projectors,

𝑃𝛼𝛽···𝛾
𝑖𝑗···𝑘 = 𝑃𝛼

𝑖 ⊗𝑃 𝛽
𝑗 ⊗· · ·⊗𝑃 𝛾

𝑘 , which penalize unsatisfiable assignments 𝑥 ∈ B×𝑛 with

a penalty ⟨𝑥|𝑃𝛼𝛽···𝛾
𝑖𝑗···𝑘 |𝑥⟩ = 1.

The full Hamiltonian 𝐻SAT, is then constructed by summing over all the clauses in

the instance,

𝐻SAT =
𝑚∑︁
𝑙=1

𝒞𝑙{𝑃𝛼𝛽...𝛾
𝑖𝑗...𝑘 }, (2.12)

where 𝒞𝑙 assigns the value of 𝛼, 𝛽, · · · , 𝛾 ∈ {0, 1}, corresponding to the negation of

the literals indexed by 𝑖, 𝑗, · · · , 𝑘 ∈ {1, 2, · · · , 𝑛} in the 𝑙𝑡ℎ clause. Note that the
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minimization, min
|𝜓⟩∈ℋ

⟨𝜓|𝐻SAT |𝜓⟩ is equivalent to the maximization of Eq. (2.9).

Remark 2.2 (2-Local SAT Hamiltonians). The projectors appearing in Eq. (2.11)

can be decomposed into the Pauli basis as:

𝑃𝛼
𝑗 =

1

2
(1+ (−1)𝛼𝑍𝑗) . (2.13)

Considering 2-SAT instances and expanding Eq. (2.12) into the Pauli basis, one can

show that 𝐻2SAT admits a 2-local Hamiltonian of the form:

𝐻2SAT ∼
∑︁
𝑗<𝑘

𝐽𝑗𝑘𝑍𝑗𝑍𝑘 +
∑︁
𝑗

ℎ𝑗𝑍𝑗, (2.14)

with appropriate coefficients ℎ𝑗 and 𝐽𝑗𝑘.

2.4.2 Maximum cut

Given an undirected graph, maximum cut or MAX-CUT is the NP-Hard [62] opti-

mization problem of partitioning nodes into two complementary subsets (say 𝑆 and

𝑆 ′) in such a way that the number of edges between the two subsets are maximized,

commonly referred to as the MAX-CUT value of the graph.

Let 𝐺 = (𝑉,𝐸) denote a graph with a set of vertices 𝑉 (|𝑉 | = 𝑛) and edges 𝐸

(|𝐸| = 𝑚). To construct the pseudo-Boolean function for this problem, we introduce

binary variabels {𝑥𝑘}𝑛𝑘=1 to represent which subset vertex 𝑣𝑘 ∈ 𝑉 belongs in:

𝑥𝑘 =

⎧⎨⎩ 0 if 𝑥𝑘 ∈ 𝑆,

1 if 𝑥𝑘 ∈ 𝑆 ′.
(2.15)

Consider an edge ⟨𝑗, 𝑘⟩ ∈ 𝐸, we seek a pseudo-Boolean function such that equal

assignments, 𝑥𝑗 = 𝑥𝑘 = 1 or 0, do not contribute to the MAX-CUT value.

Remark 2.3 (Kernel embedding for equal assignments). Given an edge ⟨𝑗, 𝑘⟩ ∈ 𝐸,

the following pseudo-Boolean function embeds equal assignments, 𝑥𝑗 = 𝑥𝑘 = 1 or 0,

into its Kernel,

𝑔(𝑥𝑗, 𝑥𝑘) = 𝑥𝑗 + 𝑥𝑘 − 2𝑥𝑗𝑥𝑘. (2.16)
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Definition 2.5 (MAX-CUT). Given 𝐺 = (𝑉,𝐸) with set of vertices 𝑉 (|𝑉 | = 𝑛)

and edges 𝐸 (|𝐸| = 𝑚), a candidate cut value of 𝐺 for an assignment 𝑥 ∈ B×𝑛 is

given by:

𝑔(𝑥) =
∑︁

⟨𝑗,𝑘⟩∈𝐸

(𝑥𝑗 + 𝑥𝑘 − 2𝑥𝑗𝑥𝑘) . (2.17)

MAX-CUT aims to determine:

𝑥⋆ ∈ arg max
𝑥∈B×𝑛

𝑔(𝑥). (2.18)

In order to construct the problem Hamiltonian corresponding to Eq. (2.17), we

map binary variables 𝑥𝑗 −→ 1
2
(1+ 𝑍𝑗), where 𝑍𝑗 is the Pauli-Z matrix acting on

the 𝑗th qubit. The cut values as defined in Eq. (2.17) can then be recovered as the

expected value of the following 2-local Hamiltonian,

𝐻 =
1

2

∑︁
⟨𝑗,𝑘⟩∈𝐸

(1− 𝑍𝑗𝑍𝑘) . (2.19)

Note that maximizing the cut value in Eq. (2.17) is equivalent to minimizing
∑︀

⟨𝑗,𝑘⟩∈𝐸
𝑍𝑗𝑍𝑘

terms in Eq. (2.19).

2.4.3 Graph optimization

As a generalization to MAX-CUT, one may introduce constraints by imposing edge

weights prescribed by some matrix𝑊 ∈ R𝑛×𝑛 with elements 𝑤𝑗𝑘 = 𝑤𝑘𝑗 ̸= 0 ∀ ⟨𝑗, 𝑘⟩ ∈

𝐸. This optimization problem, sometimes called weighted MAX-CUT or in general

graph optimization involves maximizing the pseudo-Boolean function,

𝑔(𝑥) =
∑︁

⟨𝑗,𝑘⟩∈𝐸

𝑤𝑗𝑘 (𝑥𝑗 + 𝑥𝑘 − 2𝑥𝑗𝑥𝑘) , (2.20)

which is equivalent to minimizing a corresponding 2-local Hamiltonian,

𝐻 =
∑︁

⟨𝑗,𝑘⟩∈𝐸

𝑤𝑗𝑘𝑍𝑗𝑍𝑘. (2.21)

Remark 2.4 (Erdos-Renyi random graphs). A random graph instance corresponds
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to sampling from a uniform distribution over all possible graphs containing 𝑛-vertices

and 𝑚-edges. Similar to the clause density in the case of MAX-𝑘-SAT, an order

parameter for instance generation (called graph density) can be defined as:

𝛼 =
𝑚

𝑛
. (2.22)

2.5 Computational phase transitions

In physics, a phase transition corresponds to an abrupt, discontinuous change in the

macroscopic properties of a physical system. Here, we will explore a similar feature

in the context of combinatorial optimization problems called computational phase

transitions [41].

Computational complexity of solving NP-problems prescribe an exponential be-

havior for the asymptotic time complexity. This, however, is stated in terms of an

upper bound or a worst-case scenario considering all possible instances at problem

size 𝑛. For typical cases, one considers asymptotic behavior for time complexity

over random ensembles of instances generated according to some order parameter.

Computational phase transitions are then defined as abrupt changes in the asymp-

totic behavior of time complexity with respect to the appropriate choice of order

parameter.

Definition 2.6 (Easy and Hard instances). Regions of the ensemble space (typi-

cally characterized by an order parameter) of instances which require polynomially

increasing time complexity are categorized as Easy instances. Regions elsewhere,

instances are categorized as Hard.

2.5.1 Review of some computational phase transitions

1. 3-SAT is NP-Complete and features a computational phase transition with an

Easy-Hard-Easy pattern [63]. The best known lower and upper bounds for the

critical clause density are: 3.52 ≤ 𝛼𝑐 ≤ 4.53.

2. MAX-2, 3-SAT is NP-Hard and features a computational phase transition with
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an Easy-Hard pattern at critical clause density 𝛼𝑐 ≈ 1 [64].

2.6 Ising model

As was shown previously, we treat optimization of combinatorial problem instances

as Hamiltonian minimization and explored certain examples where instances map

onto 2-local Hamiltonians. Although these Hamiltonians are artificially constructed,

their form is similar to that of Hamiltonians of a physical system called the Ising

Model [65].

Ising model, initially proposed to explain the magnetic properties of materials,

consists of discrete variables or Ising spins arranged in a 𝑑- dimensional lattice. The

spins take binary values, 𝜎𝑘 ∈ {−1,+1}, representing the magnetic dipole moment

of a lattice site 𝑘, and are allowed to interact with neighboring spins via short range

dipole-dipole couplings. In the presence of an external applied magnetic field, the

model describes the energy of a configuration of spins 𝜎, via an Ising Hamiltonian,

𝐻(𝜎).

Definition 2.7 (Ising Hamiltonian). Given Λ, a 𝑑-dimensional lattice of Ising spins

𝜎𝑘, 𝑘 ∈ Λ, let ⟨𝑗, 𝑘⟩ represent pairs of neighboring spins and ℎ𝑗 be the external local

field applied to a site 𝑗. Then, for a configuration of spins 𝜎 = (𝜎𝑘)𝑘∈Λ, the energy

is given by:

𝐻(𝜎) =
∑︁
⟨𝑗,𝑘⟩

𝐽𝑗,𝑘𝜎𝑗𝜎𝑘 +
∑︁
𝑗

ℎ𝑗𝜎𝑗. (2.23)

Remark 2.5 (Interaction types). Based on the sign of the couplings 𝐽𝑗𝑘 in Eq. (2.23),

interactions can be of two types:

1) Ferromagnetic: Here 𝐽𝑗𝑘 < 0 and therefore parallel configurations of spins

lower the energy of the system.

2) Anti-Ferromagnetic: Here 𝐽𝑗𝑘 > 0 and therefore antiparallel configurations

of spins lower the energy of the system.

Each spin configuration 𝜎, constitutes a microstate for the physical system.
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Thermodynamics dictates, in equilibrium with a thermal bath at some fixed tem-

perature 𝑇 , microstates of the system are described by the Gibbs’s distribution:

𝜌(𝜎) =
1

𝒵
exp

(︂
− 1

𝑇
𝐻 (𝜎)

)︂
, (2.24)

where the partition function 𝒵 =
∑︀
𝜎

(︀
exp

(︀
− 1
𝑇
𝐻 (𝜎)

)︀)︀
.

Macroscopic properties such as energy density and magnetization per degree

of freedom, are then given by ensemble averages over microstates at some fixed

temperatute 𝑇 .

Remark 2.6 (Extremas). Based on the order parameter 𝑇 , we encounter two ex-

treme cases:

1) Temperature 𝑇 = ∞: The probability 𝜌(𝜎) becomes independent of the energy 𝐻(𝜎),

each microstate 𝜎 is equiprobable and the system is said to be in a disordered phase.

2) Temperature 𝑇 = 0: The probability 𝜌(𝜎) collapses into the global minima of 𝐻(𝜎), i.

e., the ground states. The system is frozen into these states.

2.7 Physics inspired algorithms for minimizing Ising

Hamiltonians

As one might infer from the physics of the Ising model, by tuning the inverse tem-

perature in Eq. (2.24), one can drive the system into its low-energy configuration.

Since solutions to combinatorial optimization problem instances map onto ground

states of some Ising type Hamiltonian, this idea, from a computational standpoint,

has been explored extensively to generate physics-inspired algorithms, albeit heuris-

tic, to approximate solutions to combinatorial problem instances. We review some

of these algorithms here as they motivate the main topic of this thesis, Quantum

Approximate Optimization Algorithm (explored in the forthcoming chapters).

2.7.1 Simulated annealing

Given a system specified by some Hamiltonian 𝐻(𝜎), simulated annealing aims to

prepare low-energy configuration of 𝐻(𝜎) [52]. The algorithm works by employing
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a stochastic dynamics governed by the master equation:

𝑑

𝑑𝑡
𝜌(𝜎, 𝑡) =

∑︁
𝜎′

𝑀(𝜎|𝜎′, 𝑡)𝜌(𝜎′, 𝑡). (2.25)

Here, 𝑀 is the matrix of transition probabilities 𝑝(𝜎|𝜎′, 𝑡), for a configuration 𝜎′ at

time 𝑡 to transition into 𝜎 and 𝜌(𝜎, 𝑡 = 0) is the initial distribution that is arbitrarily

set. In order for the system to equilibriate into the Gibbs distribution 𝜌𝑒𝑞(𝜎, 𝑡) =

1
𝒵 exp (−𝛽(𝑡)𝐻(𝜎)) at some inverse temperature 𝛽(𝑡), the dynamics prescribed by

𝑀 is artificially designed by forcing conservation of probabilities,

∑︁
𝜎

𝑝(𝜎|𝜎′, 𝑡) = 1, (2.26)

and a detailed balance condition,

𝑀(𝜎|𝜎′, 𝑡)𝜌𝑒𝑞(𝜎
′, 𝑡) =𝑀(𝜎′|𝜎, 𝑡)𝜌𝑒𝑞(𝜎, 𝑡). (2.27)

Given that the system evolves for a sufficient period of time, the probability dis-

tribution converges to the equilibrium distribution. By setting 𝛽(𝑡) = 𝛽 >> 1,

simulated annealing recovers low-energy configurations for 𝐻(𝜎).

2.7.2 Adiabaitic quantum computation

Here we shall explore another method to recover low-energy configurations of some

problem Hamiltonian. To establish how adiabatic quantum computation works [66,

67], we first recall the time evolution of a quantum mechanical system.

Given𝐻(𝑡), the Hamiltonian describing the system at a time 𝑡, the time evolution

of the physical state of the system is governed by the Schrödinger equation,

𝑖
𝑑

𝑑𝑡
|𝜓(𝑡)⟩ = 𝐻(𝑡) |𝜓(𝑡)⟩ . (2.28)

The quantum adiabatic theorem states that a system initially in its ground state

tends to remain in its low energy configuration if the time dependent Hamiltonian

varies slowly [68]. The theorem also provides a bound on the slowdown that is
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required. Adiabatic quantum computation takes advantage of this principle.

Consider 𝐻(𝑠) to be a time dependent Hamiltonian for 0 ≤ 𝑠 ≤ 1 and let |𝜑(𝑠)⟩

denote its ground state. The goal is to evolve an initial state |𝜓(0)⟩ = |𝜑(0)⟩ by

varying 𝐻(𝑠), 𝑠 : 0 −→ 1 slowly. This is done by introducing a delay factor 𝜏(𝑠)

into the Schrodinger equation such that,

𝑖
𝑑

𝑑𝑠
|𝜓(𝑠)⟩ = 𝜏(𝑠)𝐻(𝑠) |𝜓(𝑠)⟩ . (2.29)

If

𝜏(𝑠) >>

⃦⃦
𝑑
𝑑𝑠
𝐻(𝑠)

⃦⃦
2

𝑔(𝑠)2
, (2.30)

where 𝑔(𝑠) is the gap between the two smallest eigenvalues of 𝐻(𝑠), then the adia-

batic theorem states that |𝜓(1)⟩ ≈ |𝜑(1)⟩. In adiabatic quantum computation, 𝐻(𝑠)

is suitable parameterized such that H(0) is a Hamiltonian with an easy-to-prepare

known ground state and 𝐻(1) is the optimization problem instance. An example of

one such parameterization is the following:

𝐻(𝑠) = (1− 𝑠)𝐻𝑖𝑛𝑖𝑡 + 𝑠𝐻𝑓𝑖𝑛𝑎𝑙. (2.31)

In most cases, 𝑔(𝑠) is hard to determine for all 𝑠, therefore a constant delay factor

𝜏(𝑠) = 𝜏𝑐 ∈ 𝒪
(︂
Δ𝑚𝑎𝑥

𝑔2𝑚𝑖𝑛

)︂
, is used and Δ𝑚𝑎𝑥 = max

𝑠

⃦⃦ 𝑑
𝑑𝑠
𝐻(𝑠)

⃦⃦
2

and 𝑔𝑚𝑖𝑛 = min
𝑠
𝑔(𝑠).

2.8 Discussion

In this chapter, we explored several combinatorial optimization problems and es-

tablish how such problems can be formulated as finding the ground state energy of

the Ising model albeit with non-physical couplings. In its original formulation, the

simplistic model was introduced to explain the magnetic behavior of certain mate-

rials known as ferromagnets [65]. Such materials exhibit a phase transition: going

from a disordered phase into a ferromagnetic configuration, when cooled beyond

some critical temperature. It is well known that one of the hallmarks of success

in statistical mechanics is its ability to explain and predict this critical behavior.
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However, for more exotic materials–systems that exhibit frustrations and disorder-

a much richer and more complex behaviors are reported [69–71]. Such materials,

called spin glasses, currently push the limits of statistical mechanics theories and

hint towards the existence of a new phase of matter. Recent advancements such as

Replica-Symmetry-Breaking allude towards such exotic glassy phases [72], however,

a full description still proves to be challenging.

Spin glasses are also of particular interest in theoretical computer science. This

comes from the fact that finding the lowest energy configurations of spin glasses

is proven to be complete for the complexity class NP [62]. Since all problems in

NP reduce to an instance of any one NP-Complete problem [50], the physics of

driving spin glasses to their low energy configurations provides immense insights

into developing efficient algorithms for solving NP problems. Indeed, a wide variety

of physics inspired algorithms have been designed as a means for minimizing spin

glass problems [54–58, 73]. Even in quantum computation, this bridge between

statistical mechanics and computation is currently being explored in an attempt to

establish the Church–Turing–Deutsch principle [9]. It is expected that when more

powerful quantum computers are developed, a clear feature of supremacy will arise

from their ability to solve NP problems.
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Quantum approximate optimization

In this chapter, we introduce the Quantum Approximate Optimization Algorithm

(or QAOA) [26] and explore its use case as an algorithm to approximate ground

states of some problem Hamiltonian. The chapter begins by introducing a varia-

tional approach to Hamiltonian minimization and describes QAOA in this setting.

To study algorithmic performance, different metrics are widely used in the literature.

The chapter includes a brief review of the important ones and provides a theorem

for interrelating different performance metrics. Since the algorithm was inspired by

adiabatic quantum computation and, in principle, can approximate any adiabatic

evolution in the infinite depth limit [66], a brief overview of the relation between

these two approaches is elaborated next [67]. Finally, the chapter ends by recov-

ering the well-known Grover’s unstructured database search [15] in the variational

framework.

3.1 Background

To fundamentally understand what can and cannot be achieved in a prescribed

model of computation, one has to invoke the notion of universality [9]. Simply

stated, universality refers to the ability to perform or realize arbitrary operations.

In the case of classical computers, a model of computation is said to be universal if

it can be shown, within the constraints of the model, that any arbitrary input bit-

string can be transformed into any given output bitstring [74, 75]. Universality for
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quantum computers can analogously be defined. The standard model for universal

quantum computation is based on the gate model or circuit model, where opera-

tions are performed as a sequence of unitaries or gates selected from a universal set

[10, 76, 77]. Though universal, practical realizations of this model feature limited

capabilities owing to systematic constraints such as noise and low coherence times.

Such devices, called Noisy-Intermediate-Scale-Quantum devices (NISQ), therefore

possess very limited capabilities [16–18]. Another approach towards universality is

in the setting of adiabatic quantum computation [78]. Though discussed briefly in

the previous chapter, the general framework can be extended into what is known as

the ground state model of computation, wherein the ground state of some suitable

Hamiltonian corresponds to the output of a quantum circuit. Therefore, universal-

ity can be argued by considering Hamiltonian minimization via adiabatic evolution

as a means to prepare the output of any given quantum circuit [79]. Furthermore,

this approach naturally provides a path towards solving a wide class of NP-Hard

combinatorial optimization problems [67]. However, the need for designing physical

systems capable of realizing such artificial Hamiltonians poses a significant develop-

mental challenge.

Considering the best of both approaches, a new model of quantum computing

originates, known as the variational model [19, 20, 80]. This model exploits a hybrid

setup of a quantum processor coupled to an outer-loop classical optimization routine.

More specifically, a NISQ device is programmed to prepare a family of parameter-

ized quantum states called ansatz [26, 81, 82]. The ansatz are then measured in the

Pauli basis to compute the expected value of some Hamiltonian to be minimized.

If the class of Hamiltonians is restricted to polynomially bounded cardinality, then

a classical computer can recover expected values efficiently from the measurement

statistics. These values are then passed onto an iterative classical optimization rou-

tine which variationally adjusts the ansatz to obtain an approximate minimum for

the expected value. Such an approach allows for alleviating some of the system-

atic limitations of the NISQ devices and overcomes the need for designing artificial

systems described by programmable Hamiltonians. Moreover, variational models

have recently been shown to also admit universality and therefore have promising
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prospects in the NISQ era of quantum computing [27, 28, 79].

3.2 Variational approach to Hamiltonian minimiza-

tion

Consider a problem Hamiltonian 𝐻. We wish to approximate the ground state

of 𝐻. This can be done variationally on a quantum computer by constructing

parameterized quantum states called ansatz [26, 81, 82]. Typically, one achieves

this by applying a sequence of parameterized unitaries or gates onto some initial

state.

Definition 3.1 (Ansatz). Given a sequence of parameterized unitaries {𝑈𝑘(𝜃𝑘)}𝑝𝑘=1,

𝜃𝑘 ∈ R that can be realized, and for some fixed circuit depth 𝑝 ∈ N, an ansatz state

is defined as the parameterized quantum state:

|𝜓(𝜃)⟩ =
𝑝∏︁

𝑘=1

𝑈𝑘(𝜃𝑘) |0⟩⊗𝑛 . (3.1)

By varying over the parameter space, 𝜃 ∈ R×𝑝, one can generate a variational

state space as:

Ω =
⋃︁
𝜃

{︂
|𝜓 (𝜃)⟩

}︂
. (3.2)

Note that in general Ω ⊆ ℋ, where ℋ is the Hilbert space of 𝑛-qubits. The

variational approach involves searching for the ground state of 𝐻 in the variational

state space Ω, by minimizing the expected value of the Hamiltonian:

min
𝜓∈Ω

⟨𝜓|𝐻 |𝜓⟩ ≥ min
𝜑∈ℋ

⟨𝜑|𝐻 |𝜑⟩ . (3.3)

Such a minimization can be performed via a hybrid classical-quantum feedback

loop. Specifically, one starts with a guess for variational parameters 𝜃, and prepares

the state according to Eq. (3.1). Measurement of this state allows for computing

the objective function in Eq. (3.3) which is then passed onto a classical outer-loop
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optimizer. The routine terminates with the optimizer returning a set of optimal

parameters 𝜃⋆, which then allows for preparing a candidate ground state |𝜓(𝜃⋆)⟩.

The challenge in the variational approach is to construct variational state spaces

that are expressive enough to approximate the true ground state of 𝐻.

3.3 Quantum approximate optimization algorithm

QAOA [26] is an instance of the class of variational quantum algorithms. Here, we

describe how the algorithm works.

Given an optimization problem instance and its corresponding problem Hamil-

tonian 𝐻, the usual QAOA procedure is as follows:

1. Generate ansatz states, |𝜓(𝛾,𝛽)⟩ on a quantum computer, where

𝛾 = (𝛾1, 𝛾2, · · · , 𝛾𝑝) and 𝛽 = (𝛽1, 𝛽2, · · · , 𝛽𝑝) are tunable real parameters

over some fixed range. The state is prepared by applying a sequence of 2p-

parameterized unitary gates acting on the reference state |+⟩⊗𝑛, which is the

symmetric superposition of all 2𝑛 computational basis states.

|𝜓(𝛾,𝛽)⟩ =
𝑝∏︁

𝑘=1

𝑈(𝛾𝑘, 𝛽𝑘) |+⟩⊗𝑛 , (3.4)

where

𝑈(𝛾𝑘, 𝛽𝑘) = exp(−𝑖𝛽𝑘𝐻𝑥) · exp(−𝑖𝛾𝑘𝐻). (3.5)

The Hamiltonian 𝐻𝑥 =
𝑛∑︀
𝑘=1

𝑋𝑘, is called the mixer Hamiltonian and performs

a mixing of phases propagated by 𝐻; typically a diagonal matrix in the com-

putational basis. A convention we follow throughout the thesis is to call 𝑝, the

QAOA depth.

2. Measurement of the state in Eq. (3.4) is performed to compute the expected

value, ⟨𝜓(𝛾,𝛽)|𝐻 |𝜓(𝛾,𝛽)⟩. This is an approximation which can be calculated

efficiently on a classical computer.

3. Steps 1 and 2 are repeated, and a classical optimization algorithm is used to as-

sign a set of optimal parameters, 𝛾* and 𝛽* that minimize ⟨𝜓(𝛾,𝛽)|𝐻 |𝜓(𝛾,𝛽)⟩.
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|𝜓(𝛾*,𝛽*)⟩ then recovers a ground state approximation for 𝐻.

Remark 3.1 (Improving approximations). Standard fixed ranges for the parameters

are 𝛾𝑘 ∈ [0, 2𝜋), and 𝛽𝑘 ∈ [0, 𝜋] for all 𝑘 = 1, 2, · · · , 𝑝. It can be seen that QAOA

approximations improve with the QAOA depth 𝑝 as:

⟨+|⊗𝑛𝐻 |+⟩⊗𝑛 =
1

2𝑛
Tr(𝐻) ≤ ⟨𝜓|𝐻 |𝜓⟩𝑝=1 ≤ ⟨𝜓|𝐻 |𝜓⟩𝑝=2 · · ·

· · · ≤ ⟨𝜓|𝐻 |𝜓⟩𝑝=𝑙 ≤ ⟨𝜓|𝐻 |𝜓⟩𝑝=𝑙+1 ,

(3.6)

where we make use of the notation:

⟨𝜓|𝐻 |𝜓⟩𝑝=𝑙 ≡ min
𝛾,𝛽

⟨𝜓(𝛾,𝛽)|𝐻 |𝜓(𝛾,𝛽)⟩ , (3.7)

and 𝛾 ∈ [0, 2𝜋)×𝑙 and 𝛽 ∈ [0, 𝜋)×𝑙.

Note that though approximations improve with QAOA depth, there are two main

challenges: 1) it comes at the cost of classically optimizing over an exponentially

increasing parameter space and 2) deeper circuits are limited to noise in practical

implementations. Therefore, in most cases, the QAOA depths are fixed and studied

in a low depth setting.

Remark 3.2 (Variations–Quantum Alternating Operator Ansatz [83]). Standard

implementation of QAOA relies on constructing ansatz via an alternating sequence

as shown in Eq. (3.5), with 𝐻𝑥 =
∑︀
𝑘

𝑋𝑘 and some problem Hamiltonian say 𝐻𝑧.

Note that for phase mixing, the commutator [𝐻𝑥, 𝐻𝑧] ̸= 0. In this regard, QAOA

ansatz can be generalized into:

|𝜓(𝛾,𝛽)⟩ =
𝑝∏︁

𝑘=1

𝑈(𝛾𝑘, 𝛽𝑘) |𝜑⟩ , (3.8)

where

𝑈(𝛾𝑘, 𝛽𝑘) = exp(−𝑖𝛽𝑘𝐻1) · exp(−𝑖𝛾𝑘𝐻2). (3.9)

In this construction, the commutator [𝐻1, 𝐻2] ̸= 0 and |𝜑⟩ is chosen to be the ground

state of 𝐻1. Such a construction is still valid for QAOA and is termed Quantum
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Alternating Operator Ansatz.

3.4 Performance metrics

Here, we briefly review some of the metrics used to study the algorithmic perfor-

mance of QAOA.

Definition 3.2 (Error in Approximations). Given a problem Hamiltonian 𝐻, whose

ground states we wish to approximate using 𝑝-depth QAOA, a metric to assess the

algorithmic performance is given by error in approximation:

𝑓 = min
𝜓∈Ω

⟨𝜓|𝐻 |𝜓⟩ −min
𝜑∈ℋ

⟨𝜑|𝐻 |𝜑⟩ . (3.10)

Here, Ω represents the variational state space available for a 𝑝-depth QAOA ansatz,

Ω =
⋃︁
𝛾,𝛽

{︂
|𝜓(𝛾,𝛽⟩

}︂
. (3.11)

QAOA exactly recovers the ground states whenever 𝑓 = 0.

Definition 3.3 (Residual Energy). Given a problem Hamiltonian 𝐻, whose ground

states we wish to approximate using 𝑝-depth QAOA, let 𝐻min and 𝐻max represent

the ground state energy and maximal excited state energy of 𝐻. The residual energy

is then defined as:

𝐸res =
⟨𝜓(𝛾,𝛽)|𝐻 |𝜓(𝛾,𝛽)⟩ −𝐻𝑚𝑖𝑛

𝐻𝑚𝑎𝑥 −𝐻𝑚𝑖𝑛

. (3.12)

QAOA exactly recovers the ground states whenever 𝐸res = 0.

Definition 3.4 (Approximation Ratio). Given a problem Hamiltonian 𝐻 > 0,

whose ground states we wish to approximate using 𝑝-depth QAOA, let 𝐻min rep-

resent the ground state energy of 𝐻. The approximation ratio is then defined as:

𝑟 =
𝐻min

⟨𝜓(𝛾,𝛽)|𝐻 |𝜓(𝛾,𝛽)⟩
. (3.13)

QAOA exactly recovers ground states whenever 𝑟 = 1
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Definition 3.5 (Success Probability or Ground State Overlap). Given a problem

Hamiltonian 𝐻, whose ground states we wish to approximate using 𝑝-depth QAOA,

let {|𝑔𝑠𝑘⟩}𝑑𝑘=1 be the set of possibly 𝑑-degenerate ground states of 𝐻. Then the ground

state space overlap is given by,

𝜂 =
𝑑∑︁

𝑘=1

|⟨𝜓 (𝛾,𝛽) |𝑔𝑠𝑘⟩|2 . (3.14)

QAOA exactly recovers the ground states whenever 𝜂 = 1.

Note that the metrics, error in approximations and the residual energy are triv-

ially related by the unit normalization given by 𝐻max − 𝐻min. Moreover, this nor-

malization cannot be calculated a priori without a brute-force search for 𝐻max and

𝐻min.

Another important caveat to note is that although Defs. 3.2, 3.3 and 3.4 are

indeed valid performance metrics to study QAOA, they do not directly indicate

proximity (in terms of a distance metric) to the true ground state space of 𝐻.

Ground state overlap circumvents this issue; however, one cannot calculate Eq. (3.14)

in an actual experiment as it requires knowledge of the set of possibly 𝑑-degenerate

ground states of 𝐻.

Taking these into account, we formulate a relation between the ground state

overlap and the error in approximations.

Theorem 3.1 (Stability of approximations [79]). Let 𝐻 ≥ 0 be an optimization

problem instance with 1) 𝑑-degenerate ground state energy, 𝜆0 2) minimal spectral

gap, Δ and 3) maximal excited state energy, 𝜆𝑚𝑎𝑥. Then, for any ground state

approximation, |𝜓⟩ satisfying ⟨𝜓|𝐻 |𝜓⟩ ≤ Δ, the error in approximations and ground

state overlap satisfy:

1− ⟨𝜓|𝐻 |𝜓⟩ − 𝜆0
Δ

≤ 𝜂(𝜓) ≤ 1− ⟨𝜓|𝐻 |𝜓⟩ − 𝜆0
𝜆𝑚𝑎𝑥 − 𝜆0

. (3.15)

Proof. The Hamiltonian in its eigenbasis can be expressed as,

𝐻 = 𝜆0

𝑑∑︁
𝑗=1

|𝜑𝑗⟩⟨𝜑𝑗|+
∑︁
𝑘>𝑑

𝜆𝑘|𝜑𝑘⟩⟨𝜑𝑘|. (3.16)
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Here, we reorder the eigenbasis so that 𝜆0 < 𝜆1 ≤ · · ·𝜆𝑘 · · · ≤ 𝜆𝑚𝑎𝑥. Consider the

expectation value of the Hamiltonian on an arbitrary state |𝜓⟩,

⟨𝜓|𝐻 |𝜓⟩ = 𝜆0

𝑑∑︁
𝑗=1

|⟨𝜑𝑗|𝜓⟩|2 +
∑︁
𝑘>𝑑

𝜆𝑘|⟨𝜑𝑘|𝜓⟩|2. (3.17)

Assuming the gap Δ = 𝜆1 − 𝜆0, is known,

⟨𝜓|𝐻 |𝜓⟩ = 𝜆0

𝑑∑︁
𝑗=1

|⟨𝜑𝑗 |𝜓⟩|2 +
∑︁
𝑘>𝑑

𝜆𝑘 |⟨𝜑𝑘|𝜓⟩|2

≥ 𝜆0

⎛⎝ 𝑑∑︁
𝑗=1

|⟨𝜑𝑗 |𝜓⟩|2
⎞⎠+ (𝜆0 +Δ)

(︃∑︁
𝑘>𝑑

|⟨𝜑𝑘|𝜓⟩|2
)︃

= 𝜆0

⎛⎝ 𝑑∑︁
𝑗=1

|⟨𝜑𝑗 |𝜓⟩|2
⎞⎠+ (𝜆0 +Δ)

⎛⎝1−
𝑑∑︁
𝑗=1

|⟨𝜑𝑗 |𝜓⟩|2
⎞⎠

= 𝜆0 +Δ

⎛⎝1−
𝑑∑︁
𝑗=1

|⟨𝜑𝑗 |𝜓⟩|2
⎞⎠ .

(3.18)

Rearranging the terms then gives the required lower bound as:

𝑑∑︁
𝑗=1

|⟨𝜑𝑗|𝜓⟩|2 ≥ 1− ⟨𝜓|𝐻 |𝜓⟩ − 𝜆0
Δ

. (3.19)

For the upper bound, we substitute for each excited state energies 𝜆𝑘 in Eq. (3.17)

by 𝜆𝑚𝑎𝑥,

⟨𝜓|𝐻 |𝜓⟩ ≤ 𝜆0

𝑑∑︁
𝑗=1

|⟨𝜑𝑗|𝜓⟩|2 + 𝜆𝑚𝑎𝑥
∑︁
𝑘>𝑑

|⟨𝜑𝑘|𝜓⟩|2

= 𝜆0

(︃
𝑑∑︁
𝑗=1

|⟨𝜑𝑗|𝜓⟩|2
)︃

+ 𝜆𝑚𝑎𝑥

(︃
1−

𝑑∑︁
𝑗=1

|⟨𝜑𝑗|𝜓⟩|2
)︃
.

(3.20)

Rearranging the terms now gives the required upper bound as:

𝑑∑︁
𝑗=1

|⟨𝜑𝑗|𝜓⟩|2 ≤ 1− ⟨𝜓|𝐻 |𝜓⟩ − 𝜆0
𝜆𝑚𝑎𝑥 − 𝜆0

. (3.21)

�
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3.5 Recovering adiabatic evolution

Although QAOA is introduced in the thesis as a variational approach to Hamil-

tonian minimization, the algorithm was originally inspired by adiabatic quantum

computation [26, 67]. It can be shown that in the limit of QAOA depth 𝑝 → ∞,

QAOA has the potential to recover any adiabatic evolution. This is particularly

important as adiabatic evolution guarantees exact recovery of ground states, albeit

with long adiabatic evolution times. Here, we describe how a discretization of adi-

abatic evolution results in a form that resembles the QAOA ansatz. We also derive

how the errors scale in this approximation, thus providing an upper bound on the

circuit depth of QAOA to approximate a given adiabatic evolution [67].

Consider a problem Hamiltonian 𝐻𝑧, whose ground states we wish to prepare.

In adiabatic quantum computing, one considers the time evolution of the ground

state of some easy-to-prepare initial Hamiltonian 𝐻𝑥. To describe this evolution we

recall the Schrödinger equation with a time-dependent Hamiltonian,

𝐻(𝑡) =

(︂
1− 𝑡

𝑇

)︂
𝐻𝑥 +

𝑡

𝑇
𝐻𝑧, (3.22)

with 𝑡 ∈ [0, 𝑇 ] and 𝑇 ∈ 𝒪
(︂
Δ𝑚𝑎𝑥

𝑔2𝑚𝑖𝑛

)︂
to satisfy adiabatic theorem. Evolution of the

ground state of 𝐻𝑥, say |𝜑(0)⟩ under 𝐻(𝑡) is then given by:

𝑖
𝑑

𝑑𝑡
|𝜑(𝑡)⟩ = 𝐻(𝑡) |𝜑(𝑡)⟩ . (3.23)

Solution of the time dependent Schrödinger equation in Eq. (3.23) is given by

the time evolution operator,

|𝜑(𝑇 )⟩ = 𝑈(𝑇 ) |𝜑(0)⟩ , (3.24)

where

𝑈(𝑇 ) = 𝒯

{︃
exp

(︂
−𝑖
∫︁ 𝑇

0

𝐻(𝑡)𝑑𝑡

)︂}︃
. (3.25)

Here, 𝒯 is the time ordering operator. By the adiabatic theorem, |𝜑(𝑇 )⟩ is guaran-

teed to be a close approximation to the ground state of 𝐻𝑧. Therefore, the goal is
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to obtain an explicit form for 𝑈(𝑇 ) as a QAOA sequence. To do this, we consider a

series of approximations. First, we remove time ordering by discretizing 𝑡 : 0 → 𝑇

into a total of 𝑚 steps with Δ𝑡 =
𝑇

𝑚
. Eq. (3.25) then can be approximated as:

𝑈 ′(𝑇 ) =
𝑚∏︁
𝑘=1

exp {−𝑖𝐻 (𝑘Δ𝑡)Δ𝑡},

=
𝑚∏︁
𝑘=1

exp

{︂
−𝑖𝐻 ′

𝑘

(︂
𝑇

𝑚

)︂}︂
.

(3.26)

Here,

𝐻 ′
𝑘 =

(︂
1− 𝑘

𝑚

)︂
𝐻𝑥 +

𝑘

𝑚
𝐻𝑧. (3.27)

To estimate the errors in approximating 𝑈(𝑇 ) via 𝑈 ′(𝑇 ), we use the following

lemma from [67]:

Lemma 3.1. Let 𝐻(𝑡) and 𝐻 ′(𝑡) be two time-dependent Hamiltonians for 0 ≤ 𝑡 ≤ 𝑇 ,

and let 𝑈(𝑇 ) and 𝑈 ′(𝑇 ) be the respective unitaries that they induce. If the difference

between the Hamiltonians is limited by
⃦⃦
𝐻(𝑡) − 𝐻 ′(𝑡)

⃦⃦
2
≤ 𝛿 ∀𝑡, then the distance

between the induced transformations is bounded by
⃦⃦
𝑈(𝑇 )− 𝑈 ′(𝑇 )

⃦⃦
2
≤

√
2𝑇𝛿.

Since in our case,
⃦⃦
𝐻(𝑡)−𝐻 ′

𝑗(𝑡)

⃦⃦
2
, where 𝑗(𝑡) =

⌈︂
𝑡𝑚

𝑇

⌉︂
is equal to

1

𝑚

⃦⃦
𝐻𝑧−𝐻𝑥

⃦⃦
2
∈ 𝒪

(︂
𝑝𝑜𝑙𝑦 𝑛

𝑚

)︂
, the errors caused in the discretization step is bounded

by 𝒪

(︃√︂
𝑇 · 𝑝𝑜𝑙𝑦 𝑛

𝑚

)︃
.

Now we will consider on top of the discretization, a second approximation for

𝑈 ′(𝑇 ), 𝑈 ′′(𝑇 ) by using the Baker-Campbell-Hausdorff [84] formula which induces

errors as: ⃦⃦
exp (𝐴+𝐵)− exp𝐴 · exp𝐵

⃦⃦
2
∈ 𝒪

(︀⃦⃦
𝐴𝐵
⃦⃦
2

)︀
. (3.28)

Applying this formula to Eq. (3.26) and simplifying we get,

𝑈 ′′(𝑇 ) =
𝑚∏︁
𝑘=1

exp

{︂
−𝑖 𝑇
𝑚

(︂
1− 𝑘

𝑚

)︂
𝐻𝑥

}︂
· exp

{︂
−𝑖 𝑇
𝑚

(︂
𝑘

𝑚

)︂
𝐻𝑧

}︂
. (3.29)

The errors caused in using the Baker-Campbell-Hausdorff formula in this specific
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case are bounded by the following,

⃦⃦
𝑈 ′(𝑇 )− 𝑈 ′′(𝑇 )

⃦⃦
2
∈ 𝒪

(︂
𝑇 2

𝑚
𝑝𝑜𝑙𝑦 𝑛

)︂
. (3.30)

Since this error is larger than what we get from discretization, the total error in

approximating 𝑈(𝑇 ) is given by:

⃦⃦
𝑈(𝑇 )− 𝑈 ′′(𝑇 )

⃦⃦
2
∈ 𝒪

(︂
𝑇 2

𝑚
𝑝𝑜𝑙𝑦 𝑛

)︂
. (3.31)

Therefore, setting 𝑚 ∼ 𝒪 (𝑇 2 𝑝𝑜𝑙𝑦 𝑛), one can bound the errors and recover the

adiabatic evolution given by 𝑈(𝑇 ). Note that immediately from Eq. (3.29), one

can see that the explicit form resembles that of QAOA ansatz as in Eq. (3.9) with

QAOA depth 𝑝 = 𝑚,𝛽𝑘 =
𝑇

𝑚

(︂
1− 𝑘

𝑚

)︂
and 𝛾𝑘 =

𝑇

𝑚

(︂
𝑘

𝑚

)︂
.

3.6 Variational Grover search

Here we recover Grover’s search algorithm in the variational approach. Grover’s

search relates to searching an index from an unstructured database of size 𝑁 = 2𝑛

[15].

Definition 3.6 (Unstructured search). Consider an unstructured database 𝑆 indexed

by {0, 1}×𝑛. Let 𝑓 : {0, 1}×𝑛 → {0, 1} be a Boolean function (aka. black box) such

that:

𝑓(𝑗) =

⎧⎪⎨⎪⎩1 iff 𝑗 = 𝜔

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3.32)

Find 𝜔 ∈ {0, 1}×𝑛.

Consider this problem in the variational approach. To begin with, we shall

construct a problem Hamiltonian for the search problem as defined in Def. 3.6.

Remark 3.3. Let 𝐻𝑧 = 1−|𝜔⟩⟨𝜔| for some 𝜔 ∈ {0, 1}×𝑛. The expected value of 𝐻𝑧

is minimized by |𝜔⟩. For any other state |𝜓⟩ ≠ 𝜔, ⟨𝜓|𝐻𝑧 |𝜓⟩ = 1− |⟨𝜓|𝜔⟩|2 > 0.
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To construct the ansatz state, we choose 𝐻2 = (|+⟩⟨+|)⊗𝑛, 𝐻1 = |𝜔⟩⟨𝜔| and the

initial state |𝜑⟩ = |+⟩⊗𝑛. Therefore for a 𝑝-depth quantum circuit, we create the

variational ansatz as:

|𝜓(𝛾,𝛽)⟩ =
𝑝∏︁

𝑘=1

exp {−𝑖𝛽𝑘𝐻2} · exp {−𝑖𝛾𝑘𝐻1} |+⟩⊗𝑛 , (3.33)

and then perform min
𝛾,𝛽

⟨𝜓(𝛾,𝛽)|𝐻𝑧 |𝜓(𝛾,𝛽)⟩.

Since both the mixer and the problem Hamiltonians 𝐻2 and 𝐻1 are projectors,

we can simplify the unitaries in Eq. (3.33) as:

exp {−𝑖𝛾𝑘𝐻1} = exp {−𝑖𝛾𝑘|𝜔⟩⟨𝜔|}

= 1+
(︀
𝑒−𝑖𝛾𝑘 − 1

)︀
|𝜔⟩⟨𝜔|,

𝑒𝑥𝑝{−𝑖𝛽𝑘𝐻2} = exp
{︀
−𝑖𝛽𝑘 (|+⟩⟨+|)⊗𝑛

}︀
= 1+

(︀
𝑒−𝑖𝛽𝑘 − 1

)︀
(|+⟩⟨+|)⊗𝑛 .

(3.34)

Now let us look at the transformation of the initial state |+⟩⊗𝑛 by one layer of the

quantum circuit.

|𝜓(𝛾, 𝛽)⟩ =
(︀
1+

(︀
𝑒−𝑖𝛽 − 1

)︀
(|+⟩⟨+|)⊗𝑛

)︀
·
(︀
1+

(︀
𝑒−𝑖𝛾 − 1

)︀
|𝜔⟩⟨𝜔|

)︀
|+⟩⊗𝑛 , (3.35)

which simplifies as:

|𝜓(𝛾, 𝛽)⟩ = 𝐴 |𝜔⟩+ 𝐵√
𝑁 − 1

∑︁
𝑦 ̸=𝜔

|𝑦⟩ , (3.36)

for appropriate coefficients 𝐴,𝐵. Since the input state |+⟩⊗𝑛 also admits a form sim-

ilar to Eq. (3.36), a two dimensional representation for this unitary transformation

can be constructed as:

|𝜓(𝛾, 𝛽)⟩ =𝑀(𝛾, 𝛽)

⎡⎣𝐴0

𝐵0

⎤⎦ , (3.37)
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where, 𝐴0 and 𝐵0 are the coefficients of |+⟩⊗𝑛 written in the form of Eq. (3.36) and

𝑀(𝛾, 𝛽) =

⎡⎢⎣𝑒−𝑖𝛾
(︂
1 +

(𝑒−𝑖𝛽−1)
𝑁

)︂
,

(︀
𝑒−𝑖𝛽 − 1

)︀ √
𝑁−1
𝑁

𝑒−𝑖𝛾
(︀
𝑒−𝑖𝛽 − 1

)︀ √
𝑁−1
𝑁

, 1 +
(︀
𝑒−𝑖𝛽 − 1

)︀
𝑁−1
𝑁

⎤⎥⎦ . (3.38)

In general, one can write a 𝑝-depth ansatz state as:

|𝜓(𝛾,𝛽)⟩ = 𝐴𝑝 |𝜔⟩+𝐵𝑝
1√

N − 1

∑︁
𝑦 ̸=𝜔

|𝑦⟩ , (3.39)

where the amplitudes of one step can be related to the amplitudes of the next step

via the recursive application of 𝑀 .

Consider a single layer of the ansatz as in Eq. (3.37), minimizing 𝐻𝑧 corresponds

to maximizing overlap with the |𝜔⟩ as:

min
𝛾,𝛽

⟨𝜓(𝛾, 𝛽)|𝐻𝑧 |𝜓(𝛾, 𝛽)⟩ = max
𝛾,𝛽

|⟨𝜔|𝜓(𝛾, 𝛽)⟩|2 . (3.40)

The explicit form of this inner product is given by:

⟨𝜔|𝜓(𝛾, 𝛽)⟩ = 𝑒−𝑖𝛾

(︃
1 +

(︀
𝑒−𝑖𝛽 − 1

)︀
𝑁

)︃
𝐴0 +

(︀
𝑒−𝑖𝛽 − 1

)︀ √𝑁 − 1

𝑁
𝐵0. (3.41)

Note that by taking the absolute value, and since 𝐴0, 𝐵0 ∈ R+, we obtain,

|⟨𝜔|𝜓(𝛾, 𝛽)⟩| ≤

⃒⃒⃒⃒
⃒
(︃
1 +

(︀
𝑒−𝑖𝛽 − 1

)︀
𝑁

)︃ ⃒⃒⃒⃒
⃒ · 𝐴0 +

⃒⃒⃒ (︀
𝑒−𝑖𝛽 − 1

)︀ ⃒⃒⃒
·
√
𝑁 − 1

𝑁
𝐵0, (3.42)

which is independent of 𝛾. Therefore, by taking maximization over 𝛽 we obtain,

max
𝛽

|⟨𝜔|𝜓(𝛾, 𝛽)⟩| ≤ max
𝛽

⃒⃒⃒⃒
⃒
(︃
1 +

(︀
𝑒−𝑖𝛽 − 1

)︀
𝑁

)︃ ⃒⃒⃒⃒
⃒ · 𝐴0

+max
𝛽

⃒⃒⃒ (︀
𝑒−𝑖𝛽 − 1

)︀ ⃒⃒⃒
·
√
𝑁 − 1

𝑁
𝐵0.

(3.43)

Since the second term in Eq. (3.43) is weighted with a factor of
√
𝑁 − 1 which is
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dominant in terms of maximization,

argmax
𝛽

|⟨𝜔|𝜓(𝛾, 𝛽)⟩| = 𝜋. (3.44)

Substituting 𝛽 = 𝜋 in Eq. (3.41), we immediately recover,

argmax
𝛾

|⟨𝜔|𝜓(𝛾, 𝛽)⟩| = 𝜋. (3.45)

In terms of optimal unitaries, we obtain 𝑈1 = exp {−𝑖𝜋𝐻1} = 1 − 2|𝜔⟩⟨𝜔| and

𝑈2 = exp {−𝑖𝜋𝐻2} = 1−2·(|+⟩⟨+|)⊗𝑛. Note that these are exactly Grover’s original

search and diffusion operators [15], recovered in the variational approach.

To recover Grover’s speedup, we set 𝛾𝑘 = 𝛽𝑘 = 𝜋 ∀ 𝑘 ∈ [1, 𝑝]. Then the matrix

𝑀 becomes,

𝑀 =

⎡⎣ 2−𝑁
𝑁

−2
√
𝑁−1
𝑁

2
√
𝑁−1
𝑁

2−𝑁
𝑁

⎤⎦ , (3.46)

This can be written as a rotation with cos(𝜃) =
2−𝑁

𝑁
, and sin(𝜃) =

2
√
𝑁 − 1

𝑁
.

The initial state |+⟩⊗𝑛 can also be written in terms of 𝜃 as:

|+⟩⊗𝑛 = sin(𝜃/2) |𝜔⟩+ cos(𝜃/2) |𝑌 ⟩ , (3.47)

where |𝑌 ⟩ is the unit norm state, |𝑌 ⟩ = 1√
𝑁 − 1

∑︀
𝑦 ̸=𝜔

|𝑦⟩. After 𝑝 iterations the state

becomes:

|𝜓𝑝⟩ = sin ((𝑝+ 1/2) 𝜃) |𝜔⟩+ cos ((𝑝+ 1/2) 𝜃) |𝑌 ⟩ , (3.48)

and the probability of measuring |𝜔⟩ is

|⟨𝜔|𝜓𝑝⟩|2 = sin2 ((1/2 + 𝑝) 𝜃) , (3.49)
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which is maximal for

sin2 ((1/2 + 𝑝) 𝜃) = 1 (3.50)

(1/2 + 𝑝) 𝜃 = 𝜋/2 (3.51)

𝑝 =
𝜋

2𝜃
− 1

2
(3.52)

𝑝 =
𝜋

4 arcsin

(︂
1√
𝑁

)︂ − 1

2
. (3.53)

For 𝑁 ≫ 1, arcsin

(︂
1√
𝑁

)︂
≈ 1√

𝑁
, thus (3.53) becomes 𝑝 ≈ 𝜋

4

√
𝑁 , recovering

Grover’s scaling for circuit depth.

3.7 Discussion

In this chapter, we introduced a variational approach to Hamiltonian minimization

and explored the connection between adiabatic quantum computation and QAOA.

A point of discussion is that, we assumed the adiabatic time 𝑇 , is known. In general,

𝑇 depends on the minimum gap of the parameterized Hamiltonian 𝐻(𝑡), and one

of the major drawbacks of adiabatic quantum computation is that this gap can

vanish exponentially in the number of qubits [85]. Although, in principle, QAOA

can recover adiabaticity with 𝑝 → ∞, the hope is that QAOA can make use of

non-adiabatic pathways to minimize 𝐻𝑧.

Yet another area of rapid development is in ansatz design. Specifically, in QAOA,

ansatz are constructed by an alternating sequence of two non-commuting propaga-

tors. Recent approaches such as in [30], the specific choice of the mixing Hamiltonian

is motivated by leveraging additional information such as symmetries of the ground

states and/or hard constraints that are imposed by the specific optimization prob-

lem. In such cases, the generated variational state space only consists of feasible

states. Therefore, faster convergence may be expected if the QAOA mixers are

designed specifically with respect to the optimization problem.
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Underparameterization effects in

QAOA

In this chapter, we introduce and investigate the limiting performance for QAOA

circuits when minimizing random instances of MAX-SAT as well as optimization

problems on graphs. In both cases, our results indicate problem density-induced

underparameterization in QAOA circuits, an effect which we call reachability deficits

[1]. The chapter first defines reachability deficits before moving onto describing the

numerical study done to assess performance of fixed-depth QAOA circuits applied

to MAX-SAT instances where reachability deficits were first discovered. We next

analytically show the existence of this effect for 𝑝 = 1 QAOA, considering instances

of MAX-CUT on triangle-free 𝑑 regular graphs. To further motivate our results, the

chapter also includes numerical demonstrations of reachability deficits for random

graph optimization problems [2].

4.1 Background

QAOA is an instance of the class of variational algorithms, specifically designed

to solve instances of combinatorial optimization problems [26]. The algorithm has

been shown to approximate solutions to problems such as MAX-CUT [40], perform

Grover’s search algorithm [24, 86], and execute optimal protocols for quantum con-

trol [87]. Recent milestones include: experimental demonstration of 3𝑝-QAOA using

50



Chapter 4. Underparameterization effects in QAOA

twenty-three qubits [36], universality results [27, 28], as well as several results that

aid and improve the original implementation of the algorithm [29–31]. Owing to this

rapid development, QAOA has become a cornerstone of contemporary quantum al-

gorithms development with growing range of applications. Despite these successes,

the algorithm indeed has limitations.

Recent findings suggest that randomly parameterized quantum circuits suffer

from barren plateaus resulting in an exponentially low probability of finding correct

solutions [88, 89]. This finding applies to variational algorithms in general, and

therefore, one might expect them in QAOA as well. Another potential weakness of

the variational approach and, by extension, to QAOA, is the classical optimization

step. Specific to QAOA, recent results show that classical algorithms in certain

restrictive settings can outperform depth 1 QAOA [90], forcing the need for em-

ploying higher depth versions. Immediately, such a requirement comes at the cost

of classically optimizing several parameters simultaneously, and therefore, quickly

becomes cumbersome beyond low depth. Such optimizations alone may themselves

be NP-Hard computationally [91]. Furthermore, due to this optimization step, an-

alytical approaches to understand performance guarantees only describe QAOA in

restrictive settings such as: limited to specific instances e.g. fully connected graphs

and/or single depth [33–35]. Despite these challenges, provable advantages such as

recovering a near-optimal query complexity in Grover’s search [86] and pathways

towards quantum advantage [32] have been reported, yet an understanding of the

ultimate limitations of the algorithm remains largely open.

4.2 Reachability deficits

In the variational approach, a parameterized quantum circuit (or variational circuit)

of some depth 𝑝, can prepare states from a variational state space,

Ω𝑝 =
⋃︁
𝜃

{︁
|𝜓(𝜃)⟩

}︁
, (4.1)
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with |𝜓(𝜃)⟩ given by Eq. (3.1). Note that this variational state space for low depths

𝑝, may not cover the whole Hilbert space, and therefore minimization over Ω does

not guarantee convergence to the exact ground state energy.

Definition 4.1 (Underparameterization). Let Ω𝑝 represent the variational state

space accessible for a parameterized quantum circuit of depth 𝑝. Given some problem

Hamiltonian to be minimized 𝐻, the circuit is underparameterized, whenever:

min
𝜓∈Ω

⟨𝜓 (𝜃)|𝐻 |𝜓 (𝜃)⟩ −min
𝜑∈ℋ

⟨𝜑|𝐻 |𝜑⟩ > 0 =⇒ Ω𝑝 ⊂ ℋ. (4.2)

Based on our empirical finding, we observe that for QAOA circuits of some fixed

depth 𝑝, and for problem Hamiltonians of density 𝛼, the accessible variational state

space shows a nontrivial dependence on problem density 𝛼, causing a density-induced

underparameterization. This effect is termed reachability deficit [1].

Definition 4.2 (Reachability deficits). Given some problem Hamiltonian 𝐻 (𝛼), on

𝑛 qubits and of density 𝛼, let Ω represent the variational state space accessible for a

𝑝-depth QAOA circuit:

Ω =
⋃︁
𝛾,𝛽

{︁
|𝜓(𝛾,𝛽)⟩

}︁
, (4.3)

where |𝜓(𝛾,𝛽)⟩ as in Eq. (3.4). Reachability deficits are 𝛼 induced underparameter-

ization:

min
𝜓∈Ω

⟨𝜓|𝐻 (𝛼) |𝜓⟩ −min
𝜑∈ℋ

⟨𝜑|𝐻 (𝛼) |𝜑⟩ > 0. (4.4)

4.3 Performance of QAOA applied to MAX-SAT

To study the performance of QAOA on Boolean Satisfiability, we select 2 and 3-SAT

instances as our testbed. The choice of studying these two classes separately is moti-

vated by the fact that any 𝑘-SAT instance can be Karp reduced to a 3-SAT instance

with polynomial overheads, while reduction to 2-SAT requires exponential overheads

in auxiliary variables. The classical complexity class for the decision versions of these

two problems are also different, while 2-SAT is in P, 3-SAT is NP-Complete. Al-

though QAOA aims to approximate solutions to the optimization versions of these

52



Chapter 4. Underparameterization effects in QAOA

problems (MAX-SAT), which is NP-Hard for both cases, MAX-2-SAT only requires

2-local terms in the construction of its equivalent problem Hamiltonian whereas

MAX-3-SAT necessitates the use of 3-local terms. It is worthwhile to study whether

the algorithmic behavior of QAOA is sensitive to the locality of the problem Hamil-

tonian. One would expect such a difference, as the variational state space (as in

Eq. (3.2)) generated in each of these cases may be different.

Furthermore, both problems feature a computational phase transition at clause

density 𝛼𝑐 ∼ 1, with an Easy-Hard pattern, and it is well known that classical

SAT solvers require increasing resources when solving instances beyond 𝛼𝑐 ∼ 1 [61].

Though witnessed in classical algorithms, the signature of such phase transitions in

quantum algorithms remains an open area of interest.

4.3.1 Numerical details

Here, we briefly go through the numerical details of the study. For an elaborate

description on the software code emulating QAOA and the optimization heuristics

used, we ask the reader to refer to the appendix.

1. To study the performance of QAOA, we initially generate random instances

of 2 and 3-SAT according to Eq. (2.7). The problem Hamiltonians are then

constructed according to the embedding schemes as described in Section 2.4.1.

These Hamiltonians have the form:

𝐻2SAT =
∑︁
𝑗<𝑘

𝐽𝑗𝑘𝑍𝑗𝑍𝑘 +
∑︁
𝑗

ℎ𝑗𝑍𝑗, (4.5)

and

𝐻3SAT =
∑︁
𝑗<𝑘<𝑙

𝐼𝑗𝑘𝑙𝑍𝑗𝑍𝑘𝑍𝑙 +
∑︁
𝑗<𝑘

𝐽𝑗𝑘𝑍𝑗𝑍𝑘 +
∑︁
𝑗

ℎ𝑗𝑍𝑗. (4.6)

2. In generating instances, we fix the number of variables to 𝑛 = 10 and increase

the clause density 𝛼 by 1
10

for the range 𝛼 ∈ [0.1, 4.0].
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3. To study average performance, we use the error in approximation, 𝑓 , as defined

in Def. 3.10 and consider a statistic of 300 random instances for densities

𝛼 ∈ [0.1, 4.0] for 2-SAT as well as 3-SAT.

4. Corresponding to each instance, a problem Hamiltonian 𝐻SAT, is constructed

and a standard QAOA circuit with depths 𝑝 ∈ {4, 8, 12} is initialized with

random initial parameters 𝛾 and 𝛽 as:

|𝜓(𝛾,𝛽)⟩ =
𝑝∏︁

𝑘=1

exp {−𝑖𝛽𝑘𝐻𝑥} · exp {−𝑖𝛾𝑘𝐻𝑆𝐴𝑇} |+⟩⊗𝑛 , (4.7)

where we use the standard driver and ranges, 𝐻𝑥 =
𝑛∑︀
𝑗=1

𝑋𝑗, 𝛾𝑘 ∈ [0, 2𝜋) and

𝛽𝑘 ∈ [0, 𝜋].

5. To find optimal angles,

(𝛾⋆,𝛽⋆) ∈ arg min
(𝛾,𝛽)

⟨𝜓(𝛾,𝛽)|𝐻SAT |𝜓(𝛾,𝛽)⟩ , (4.8)

we use a heuristic optimization strategy motivated by layer-wise training [92]

and choose the Limited Broyden–Fletcher–Goldfarb–Shanno method (L-BFGS-

B) [93] to find optimal parameters during each step of the heuristic strategy.

6. Once the optimization terminates, the error in the approximation is calculated,

and the entire process is repeated for the next instance in the statistic.

4.3.2 Empirical observations

Here, we compile a list of empirical observations based on our numerical results (see

Fig. 4-1 and Fig. 4-2).

1. The average performance (quantified by the error in approximation) for fixed

depth QAOA becomes increasingly worse for clause densities 𝛼 > 𝛼𝑐 for both

MAX-2-SAT and MAX-3-SAT.

2. Though increasing depth versions achieve better performance, the trend of

worsening approximations for clause densities 𝛼 > 𝛼𝑐 is still reflected.
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3. For low density instances, 𝛼 < 𝛼𝑐, 𝑝 = 4 QAOA exactly recovers the ground

states for both MAX-2-SAT and MAX-3-SAT

4. The exhibited point for 𝛼𝑐, based on our numerical investigation, coincides

with the algorithmic phase transition point, 𝛼𝑐 ∼ 1, for both MAX-2-SAT and

MAX-3-SAT.
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Figure 4-1: 𝑓(𝛼) as defined in Def. 3.10 vs clause density for 2-SAT for differing
QAOA depths. Data points show the average value obtained over 300 randomly
generated instances for 𝑛 = 10 with error bars indicating the standard deviation.
Plots also show improved performance for higher depths. Figure reprocessed from
[1].

0 1 2 3 4 5
clause density,

0.00

0.25

0.50

0.75

1.00

1.25

1.50

f(
)

p = 4
p = 8
p = 12

Figure 4-2: 𝑓(𝛼) as defined in Def. 3.10 vs clause density for 3-SAT for differing
QAOA depths. Data points show the average value obtained over 300 randomly
generated instances for 𝑛 = 10 with error bars indicating the standard deviation.
Plots also show improved performance for higher depths. Figure reprocessed from
[1].
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4.4 Reachability deficits in triangle free regular graphs

In this section, we analytically demonstrate the existence of reachability deficits for

the case of 𝑝 = 1 QAOA when applied to the problem of MAX-CUT on triangle-

free 𝑑 regular graphs. To show the existence, we first derive an explicit formula for

the expected value of the MAX-CUT Hamiltonian [40], which we can analytically

optimize to recover the optimal expected value. On the basis of this expression, we

prove the existence of the effect.

Consider a graph 𝐺(𝑉,𝐸) with a set of vertices 𝑉 (|𝑉 | = 𝑛) and edges 𝐸.

Maximizing the cut value of 𝐺 corresponds to minimizing an Ising Hamiltonian of

the form:

𝐻 =

|𝐸|∑︁
⟨𝑗,𝑘⟩=1

𝑍𝑗𝑍𝑘. (4.9)

For 𝑝 = 1 QAOA, the generated ansatz takes the form:

|𝜓(𝛾, 𝛽)⟩ = exp(−𝑖𝛽𝑘𝐻𝑥) · exp(−𝑖𝛾𝑘𝐻) |+⟩⊗𝑛 ,

= 𝑈𝛾 · 𝑈𝛽 |+⟩⊗𝑛 ,
(4.10)

where 𝐻𝑥 =
𝑛∑︀
𝑘=1

𝑋𝑘. The expected value of the MAX-CUT Hamiltonian with respect

to the ansatz state in Eq. (4.10), is then given by:

⟨𝜓(𝛾, 𝛽)|𝐻 |𝜓(𝛾, 𝛽)⟩ =
|𝐸|∑︁

⟨𝑗,𝑘⟩=1

⟨𝜓(𝛾, 𝛽)|𝑍𝑗𝑍𝑘 |𝜓(𝛾, 𝛽)⟩

=

|𝐸|∑︁
⟨𝑗,𝑘⟩=1

𝐹𝑗,𝑘(𝛾, 𝛽).

(4.11)

Consider a single term in the expansion of Eq. (4.11) and dropping the ⊗𝑛 notation,

𝐹𝑗,𝑘(𝛾, 𝛽) = ⟨+|𝑈 †
𝛾 · 𝑈

†
𝛽 · 𝑍𝑗𝑍𝑘 · 𝑈𝛽 · 𝑈𝛾 |+⟩ . (4.12)

Note that in the expression above, terms in 𝑈𝛾 and 𝑈𝛽 that do not have support

over qubit indices 𝑗 or 𝑘, commute and cancel off. Therefore, when calculating the

expected value over the edge ⟨𝑗, 𝑘⟩, only nodes connected to qubits 𝑗 or 𝑘 or both
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need to be accounted for. Thus, for 𝑝 = 1 QAOA, the expected value over an edge

⟨𝑗, 𝑘⟩ only requires knowledge of the subgraph structure generated by nodes one edge

distance away from 𝑗 and 𝑘. This reasoning can be generalized for arbitrary depth 𝑝,

where contributing subgraphs are generated by including nodes that are 𝑝-distance

away from 𝑗 and 𝑘. Corresponding to different edges in 𝐺, different subgraph types

would be generated, enumerating all such subgraph types then allows for an easy

calculation of the expected value in Eq. (4.11) as:

⟨𝜓(𝛾, 𝛽)|𝐻 |𝜓(𝛾, 𝛽)⟩ =
∑︁
𝑔

𝑤(𝑔)𝐹𝑔(𝛾, 𝛽), (4.13)

where the sum is taken over subgraph types and 𝑤(𝑔) corresponds to the frequency

of each type 𝑔.

Here, our aim is to generate an explicit formula for the expectation value in

Eq. (4.12) in terms of the parameters 𝛾 and 𝛽. For simplicity, we drop the indices

on 𝐹 in Eq. (4.12),

𝐹 (𝛾, 𝛽) = ⟨+|𝑈 †
𝛾 · 𝑈

†
𝛽 · 𝑍𝑗𝑍𝑘 · 𝑈𝛽 · 𝑈𝛾 |+⟩ . (4.14)

To proceed, we make use of the following identities:

𝑈 †
𝛽 · 𝑍𝑗 · 𝑈𝛽 = cos (2𝛽) · 𝑍𝑗 + sin (2𝛽) · 𝑌𝑗. (i1)

𝑈 †
𝛽 · 𝑌𝑗 · 𝑈𝛽 = cos (2𝛽) · 𝑌𝑗 − sin (2𝛽) · 𝑍𝑗. (i2)

𝑒𝑖𝛾𝑍𝑗 ·𝑍𝑚 · 𝑌𝑗 · 𝑒−𝑖𝛾𝑍𝑗 ·𝑍𝑚 = cos (2𝛾) · 𝑌𝑗 + sin (2𝛾) ·𝑋𝑗𝑍𝑚. (i3)

𝑒𝑖𝛾𝑍𝑗 ·𝑍𝑚 ·𝑋𝑗 · 𝑒−𝑖𝛾𝑍𝑗 ·𝑍𝑚 = cos (2𝛾) ·𝑋𝑗 − sin (2𝛾) · 𝑌𝑗𝑍𝑚. (i4)
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Consider some Hamiltonian 𝐻𝑗 of the form:

𝐻𝑗 = 𝑍𝑗 ⊗
𝑑∑︁

𝑚=1

𝑍𝑚, (4.15)

by repeatedly applying Eqs. (i3), (i4), one can obtain an expansion in terms of

Pauli strings:

𝑒𝑖𝛾𝐻𝑗 ·𝑌𝑗 · 𝑒−𝑖𝛾𝐻𝑗 =
𝑑∑︁

𝑘=0

(−1)(⌈
𝑘
2⌉+1) (cos (2𝛾))𝑑−𝑘 · (sin (2𝛾))𝑘 ·𝑋𝑘

𝑗 ·𝑌 𝑘+1
𝑗

{︀
𝑍𝑚
}︀𝑘
, (i5)

where we use the notation to denote 𝑘-local 𝑍-Pauli strings,

{︀
𝑍𝑚
}︀𝑘

=
𝑑∑︁

𝑖1<𝑖2<···<𝑖𝑘

𝑍𝑖1 · 𝑍𝑖2 · · ·𝑍𝑖𝑘 . (4.16)

Similarly,

𝑒𝑖𝛾𝐻𝑗 ·𝑋𝑗 · 𝑒−𝑖𝛾𝐻𝑗 =
𝑑∑︁

𝑘=0

(−1)⌈
𝑘
2⌉ (cos (2𝛾))𝑑−𝑘 · (sin (2𝛾))𝑘 ·𝑋𝑘+1

𝑗 · 𝑌 𝑘
𝑗

{︀
𝑍𝑚
}︀𝑘
. (i6)

From these identities one can see that under the transformations by the unitaries

𝑈𝛾 and 𝑈𝛽, the operator 𝑍𝑗𝑍𝑘 in Eq. (4.14) turns into a sum of Pauli strings over

which the expectation value with respect to |+⟩ can be taken. Next, we do this

systematically.

Consider the unitary transformation by 𝑈𝛽,

𝑈 †
𝛽 · 𝑍𝑗𝑍𝑘 · 𝑈𝛽 =cos2 (2𝛽) · 𝑍𝑗𝑍𝑘 + sin2 (2𝛽) · 𝑌𝑗𝑌𝑘

+ cos (2𝛽) sin (2𝛽) [𝑍𝑗𝑌𝑘 + 𝑍𝑘𝑌𝑗] .
(4.17)

Next, we apply the unitary transformation by 𝑈𝛾 to Eq. (4.17). Note that 𝑈𝛾 =

𝑈̃𝛾𝑒
−𝑖𝛾𝑍𝑗 ·𝑍𝑘 , therefore, by using Eqs. (i3) and (i4) we have,
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𝑈 †
𝛾 · 𝑈

†
𝛽 · 𝑍𝑗𝑍𝑘 · 𝑈𝛽 · 𝑈𝛾 =cos2 (2𝛽) · 𝑍𝑗𝑍𝑘 + sin2 (2𝛽) · 𝑈̃ †

𝛾𝑌𝑗𝑌𝑘𝑈̃𝛾 +

cos (2𝛽) sin (2𝛽) ×[︁
cos (2𝛾)

(︁
𝑍𝑗 ⊗ 𝑈̃ †

𝛾𝑌𝑘𝑈̃𝛾

)︁
+ sin (2𝛾)𝑈̃ †

𝛾𝑋𝑘𝑈̃𝛾

+ cos (2𝛾)
(︁
𝑍𝑘 ⊗ 𝑈̃ †

𝛾𝑌𝑗𝑈̃𝛾

)︁
+ sin (2𝛾)𝑈̃ †

𝛾𝑋𝑗𝑈̃𝛾

]︁
.

(4.18)

Before simplifying this expression further, we take the expected value with respect to

|+⟩. Note that only Pauli stings containing pure 𝑋 can contribute to the expected

values since ⟨+|𝑍 |+⟩ = ⟨+|𝑌 |+⟩ = 0 and ⟨+|𝑋 |+⟩ = 1. Taking these into

account, we have

𝐹 (𝛾, 𝛽) = sin2 (2𝛽) ⟨+| 𝑈̃ †
𝛾𝑌𝑗𝑌𝑘𝑈̃𝛾 |+⟩ +

cos (2𝛽) sin (2𝛽) sin (2𝛾) ×[︁
⟨+| 𝑈̃ †

𝛾𝑋𝑗𝑈̃𝛾 |+⟩+ ⟨+| 𝑈̃ †
𝛾𝑋𝑘𝑈̃𝛾 |+⟩

]︁
.

(4.19)

First, we evaluate ⟨+| 𝑈̃ †
𝛾𝑋𝑗𝑈̃𝛾 |+⟩. Note that only terms that have support on

qubit 𝑗 can contribute, and the rest of the terms commute and cancel. Therefore,

we can simplify 𝑈̃𝛾 = 𝑒−𝑖𝛾𝐻𝑗 , where 𝐻𝑗 = 𝑍𝑗 ⊗
𝑑𝑗−1∑︀
𝑚=1

𝑍𝑚. Where 𝑑𝑗 is the degree of

the node 𝑗 in the graph 𝐺. Now we can apply Eq. (i6) directly and see that the only

term that can contribute is when 𝑙 = 0 in Eq. (i6). Therefore,

⟨+| 𝑈̃ †
𝛾𝑋𝑗𝑈̃𝛾 |+⟩ = (cos (2𝛾))𝑑𝑗−1 , (4.20)

and similarly,

⟨+| 𝑈̃ †
𝛾𝑋𝑘𝑈̃𝛾 |+⟩ = (cos (2𝛾))𝑑𝑘−1 . (4.21)

Now we evaluate ⟨+| 𝑈̃ †
𝛾𝑌𝑗𝑌𝑘𝑈̃𝛾 |+⟩. To do this we first factor 𝑈̃𝛾 = 𝑈̂ · 𝑒−𝑖𝛾𝐻𝑗𝑘 ,

where 𝐻𝑗𝑘 contains terms that have support on both qubits 𝑗 and 𝑘 and therefore

60



Chapter 4. Underparameterization effects in QAOA

has the form,

𝐻𝑗𝑘 = 𝑍𝑗 ⊗
𝑡∑︁

𝑚=1

𝑍𝑚 + 𝑍𝑘 ⊗
𝑡∑︁

𝑚=1

𝑍𝑚

= (𝑍𝑗 + 𝑍𝑘)⊗ 𝑍𝑚,

(4.22)

where 𝑡 is the number of triangles formed by the edge ⟨𝑗, 𝑘⟩ in the corresponding

𝑝 = 1 subgraph. We make use of this factorization to simplify the calculation of

⟨+| 𝑈̃ †
𝛾𝑌𝑗𝑌𝑘𝑈̃𝛾 |+⟩. Notice that,

𝑒𝑖𝛾𝐻𝑗𝑘𝑌𝑗𝑌𝑘𝑒
𝑖𝛾𝐻𝑗𝑘 =

(︁
𝑒𝑖𝛾𝑍𝑗𝑍𝑚 · 𝑌𝑗 · 𝑒−𝑖𝛾𝑍𝑗𝑍𝑚

)︁
⊗
(︁
𝑒𝑖𝛾𝑍𝑘𝑍𝑚 · 𝑌𝑘 · 𝑒−𝑖𝛾𝑍𝑘𝑍𝑚

)︁
. (4.23)

Therefore, we can use Eq. (i5) on both sides of the tensor product. By grouping

Pauli strings free of 𝑍 terms we can get a simplified expression for Eq. (4.23) in the

form:

𝑒𝑖𝛾𝐻𝑗𝑘𝑌𝑗𝑌𝑘𝑒
𝑖𝛾𝐻𝑗𝑘 =

𝑡∑︁
𝑘=0

(︀
cos2 (2𝛾)

)︀𝑡−𝑘 · (︀sin2 (2𝛾)
)︀𝑘 ×

(𝑋𝑗𝑋𝑘)
𝑘 · (𝑌𝑗𝑌𝑘)𝑘+1 + 𝐴(𝑍𝑚),

(4.24)

where 𝐴(𝑍𝑚) is the operator composed of all other terms that contain free 𝑍 terms.

Now we can apply the rest of the unitary 𝑈̂ , to recover,

⟨+| 𝑈̃ †
𝛾𝑌𝑗𝑌𝑘𝑈̃𝛾 |+⟩ =

𝑡∑︁
𝑘=0

(︂
𝑡

𝑘

)︂(︀
cos2 (2𝛾)

)︀𝑡−𝑘 · (︀sin2 (2𝛾)
)︀𝑘 ×

⟨+| 𝑈̂ † (𝑋𝑗𝑋𝑘)
𝑘 · (𝑌𝑗𝑌𝑘)𝑘+1 𝑈̂ |+⟩ +

⟨+| 𝑈̂ †𝐴(𝑍𝑚)𝑈̂ |+⟩ .

(4.25)

Note that ⟨+| 𝑈̂ †𝐴(𝑍𝑚)𝑈̂ |+⟩ = 0 since the operator contains free 𝑍 terms and the

only term that does not add 𝑍 terms when transformations under 𝑈̂ is when 𝑘 = 0
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in Eqs. (i5) and (i6). Therefore, Eq. (4.25) further simplifies into,

⟨+| 𝑈̃ †
𝛾𝑌𝑗𝑌𝑘𝑈̃𝛾 |+⟩ = (cos (2𝛾))𝑑𝑖+𝑑𝑗−2(𝑡+1) ×

𝑡∑︁
𝑘=0

(︂
𝑡

𝑘

)︂(︀
cos2 (2𝛾)

)︀𝑡−𝑘 · (︀sin2 (2𝛾)
)︀𝑘 ×

(𝑋𝑗𝑋𝑘)
𝑘 · (𝑌𝑗𝑌𝑘)𝑘+1 ,

= (cos (2𝛾))𝑑𝑖+𝑑𝑗−2(𝑡+1)
𝑡∑︁

𝑘=odd

(︂
𝑡

𝑘

)︂(︀
cos2 (2𝛾)

)︀𝑡−𝑘 · (︀sin2 (2𝛾)
)︀𝑘

=
1

2
(cos (2𝛾))𝑑𝑖+𝑑𝑗−2(𝑡+1) ·

(︀
1− cos𝑡 (4𝛾)

)︀
.

(4.26)

Finally, substituting these into Eq. (4.14) we obtain the expression,

𝐹 (𝛾, 𝛽) =
1

2

[︁
sin2 (2𝛽) ·

(︀
1− cos𝑡 (4𝛾)

)︀
· (cos (2𝛾))𝑑𝑖+𝑑𝑗−2(𝑡+1)

+ sin (4𝛽) · sin (2𝛾)
(︁
(cos (2𝛾))𝑑𝑗−1 + (cos (2𝛾))𝑑𝑘−1

)︁]︁
.

(4.27)

If we consider 𝑑 regular, triangle-free graphs, then the full expression for the

expected value of the MAX-CUT Hamiltonian can be calculated as:

⟨𝜓(𝛾, 𝛽)|𝐻 |𝜓(𝛾, 𝛽)⟩ = |𝐸|
2

(cos (2𝛾)𝑑−1 · sin (2𝛾) · sin (4𝛽) , (4.28)

which has one set of optimal parameters as:

argmin
(𝛾,𝛽)

⟨𝜓(𝛾, 𝛽)|𝐻 |𝜓(𝛾, 𝛽)⟩ =
(︂
1

2
arctan

(︂
1√
𝑑− 1

)︂
,
𝜋

8

)︂
. (4.29)

Substituting Eq. (4.29) in Eq. (4.28), we obtain the optimal value,

⟨𝜓(𝛾⋆, 𝛽⋆)|𝐻 |𝜓(𝛾⋆, 𝛽⋆)⟩ = |𝐸|
2

1√
𝑑

(︂
𝑑− 1

𝑑

)︂ 𝑑−1
2

. (4.30)
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Since in the limit 𝑑→ ∞,
(︂
𝑑− 1

𝑑

)︂𝑑−1

→ 1

𝑒
,

⟨𝜓(𝛾⋆, 𝛽⋆)|𝐻 |𝜓(𝛾⋆, 𝛽⋆)⟩ > |𝐸|
2

1√
𝑑 · 𝑒

. (4.31)

For a triangle-free 𝑑-regular graph with |𝐸| edges, the error in approximation be-

comes,

𝑓(𝛼, 𝑛) = 𝛼 · 𝑛
(︂
1− 1

2
√
𝑑 · 𝑒

)︂
> 0, (4.32)

thereby proving the existence of reachability deficits for 𝑝 = 1 QAOA circuits.

4.5 Reachability deficits in graph optimization

In this section, we numerically investigate the performance for QAOA on graph

optimization problems. Since such optimization problem instances also embed into

2-local Ising Hamiltonians, one would expect the performance of a 𝑝-depth QAOA

to be similar to what was observed for MAX-2-SAT. Instead of clause density as the

order parameter of choice to study typical case performance, for graph instances we

make use of the graph density i.e., the ratio of number of edges to node count in a

given graph. Although there are several models to generate random instances, we

use the Erdos-Renyi random graph model, where graphs with 𝑛 nodes and 𝑚 edges

are sampled from a uniform distribution over all possible graphs with 𝑛 nodes and 𝑚

edges. In general, with appropriate edge weights and Ising spin encoding, minimiza-

tion on graphs can represent solving a family of NP-Hard optimization problems

such as MAX-CUT, Vertex Cover, and Maximum Independent Set, to name a few.

In addition to studying QAOA performance on random graph instances, we also

study QAOA on restrictive instances such as 3-regular graphs, planar grids, and

non-planar fully connected graphs. The motivation for performing this restrictive

study is that, unlike MAX-2-SAT instances which are hard to grasp in terms of their

random problem structure, graph instances feature a certain level of ease in imposing

structural constraints. These may include, bounded degree, topology (planar or non-

planar graphs), and connectivity. Such constraints are practically important from a
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hardware standpoint since current quantum processors have limited capabilities in

realizing arbitrary instances [36].

4.5.1 Numerical details

Here, we briefly go through the numerical details of the study. For an elaborate

description on the software code emulating QAOA and the optimization heuristics

used, we ask the reader to refer to the appendix.

1. To study the performance of QAOA, we initially generate graph instances.

Specifically, 4 families are considered:

(a) 𝐺𝑛,𝑚 for fixed 𝑛. Random instances are generated by initializing an empty

graph on the vertex set of size |𝑉 | = 𝑛. Then, 𝑚 edges are constructed in

such a way that all possible
(︀(𝑛2)
𝑚

)︀
choices are equally likely with random

weights drawn from {−1,+1}.

(b) 3-regular graphs. A 3-regular graph, also known as a cubic graph, is when

each node in the graph has degree equal to 3. The density of the generated

instance in this case is constant (𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 1.5) since the number of edges

required for constructing a 3-regular graph is given by 3× 𝑛
2
, for even 𝑛.

Here, we also choose random weights drawn from {−1,+1}

(c) 2-D grid graphs. These graphs are interesting mainly because of the

inherent hardware connectivity of Google’s Sycamore. Such graphs are

generated by constructing a 𝑁 × 𝑁 square grid and randomly deleting

nodes on the boundaries to construct a random grid instance with 𝑛 ≤ 𝑁2

nodes. Unlike the case of regular graphs, 2-D grid graphs do not share a

constant density across the generated instance. The maximum number of

edges in a square/partially square grid is given by ⌊2𝑛−2
√
𝑛⌋. Therefore,

at most density of such instances is bounded above by 2.0 with random

weights drawn from {−1,+1}

(d) Fully connected. These graphs are highly non-planar and are constructed

by considering all possible
(︀
𝑛
2

)︀
edges with scaled random weights drawn
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from {−1,+1} with a factor 1√
𝑛
. These graphs have the maximum possi-

ble density of 𝑛−1
2

and are commonly called instances of the Sherrington-

Kirckpactric model.

The problem Hamiltonians are then constructed according to the embedding

schemes described in Section 2.4.3. These Hamiltonians have the form:

𝐻 =
∑︁

⟨𝑗,𝑘⟩∈𝐸

𝑤𝑗𝑘𝑍𝑗𝑍𝑘. (4.33)

2. We generate a statistic of 300 random instances for node sizes 𝑛 = 10 up to

20 for each of the graph families.

3. To study performance, we make use of the standard metrics described in Sec-

tion. 3.4.

4. Corresponding to each instance in the graph family, a problem Hamiltonian 𝐻,

is constructed and a standard QAOA circuit with depths 𝑝 = 3 is initialized

with random initial parameters 𝛾 and 𝛽 as:

|𝜓(𝛾,𝛽)⟩ =
𝑝∏︁

𝑘=1

exp {−𝑖𝛽𝑘𝐻𝑥} · exp {−𝑖𝛾𝑘𝐻} |+⟩⊗𝑛 , (4.34)

where we use the standard driver and ranges, 𝐻𝑥 =
𝑛∑︀
𝑗=1

𝑋𝑗, 𝛾𝑘 ∈ [0, 2𝜋) and

𝛽𝑘 ∈ [0, 𝜋).

5. To find optimal angles,

(𝛾⋆,𝛽⋆) ∈ argmin
(𝛾,𝛽)

⟨𝜓(𝛾,𝛽)|𝐻 |𝜓(𝛾,𝛽)⟩ , (4.35)

we use a heuristic optimization strategy motivated by layer-wise training and

we choose the limited Broyden–Fletcher–Goldfarb–Shanno method (L-BFGS-

B) to find optimal parameters during each step of the heuristic strategy.

6. Once the optimization terminates, performance metrics are calculated, and

the whole process is repeated for the next instance in the statistic.
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4.5.2 Empirical observations

Here we compile a list of empirical observations based on our numerical results (see

Fig. 4-3 to Fig. 4-8 )

1. QAOA on random graph instances generated at varying densities exhibits

reachability deficits.

2. The effect of reachability deficits is visually suppressed in the approximation

ratio.

3. 𝑝 = 3 QAOA recovers exact solutions for random instances generated below

the densities of 0.5.

4. Although increasing depths achieve better performance, approximations worsen

for instances beyond density 0.5.

5. Absence of topology-dependent performance bias that can be attributed sta-

tistical relevance when comparing random graphs generated at approximately

the same densities with the restrictive graph instances.
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Figure 4-3: Average approximation ratios versus qubit count 𝑛, for the three families
of graphs: (i) planar grid graphs (blue), (ii) 3-regular graphs (orange), and (iii) SK
model or complete graphs (green). Each data point represents the average perfor-
mance of depth 𝑝 = 3 QAOA over statistics of 300 randomly generated instances
with error bars indicating the standard deviation. Figure reprocessed from [2].
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Figure 4-4: Success probability versus qubit count 𝑛 for the three families of graphs:
(i) planar grid graphs (blue), (ii) 3-regular graphs (orange), and (iii) SK model or
complete graphs (green). Each data point represents the average performance of
depth 𝑝 = 3 QAOA over statistics of 300 randomly generated instances with error
bars indicating the standard deviation. Figure reprocessed from [2].
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Figure 4-5: Error in approximations versus graph density for depth 𝑝 = 3, 6, 9
QAOA. Each data point represents the average performance over statistics of 300
uniform random graph instances, 𝐺𝑛,𝑚 with nodes 𝑛 = 10 and error bars indicating
the standard deviation. Figure reprocessed from [2].
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Figure 4-6: Success probability versus graph density for depth 𝑝 = 3, 6, 9 QAOA.
Each data point represents the average performance over statistics of 300 uniform
random graph instances, 𝐺𝑛,𝑚 with nodes 𝑛 = 10 and error bars indicating the
standard deviation. Figure reprocessed from [2].
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Figure 4-7: Comparing (top) error in approximation and (bottom) success proba-
bility of the three graph families. For even numbers of qubits, the left vertical pair
represents the planar grid to random graph comparison, and the right vertical pair
represents the 3-regular to random graph comparison. For odd numbers of qubits,
the grid to random graph comparison is shown (since 3-regular graphs can be gen-
erated only with an even number of nodes). Each data point represents the average
performance of depth 𝑝 = 3 QAOA over statistics of 300 randomly generated in-
stances. By comparison, we do not observe any topology related biases in QAOA
performance that can be of statistical relevance. Figure reprocessed from [2].
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Figure 4-8: Performance landscape for depth 𝑝 = 3 QAOA on uniform random
graph instances 𝐺𝑛,𝑚, across varying graph densities, and for graphs with 10 up to
20 nodes. Contours represent polynomial fits of average error in approximations over
statistics of 300 instances generated for each density and node count. We observe
a rapid fall-off region in approximation quality experienced beyond intermediate-
density and low instance sizes. Figure reprocessed from [2].
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4.6 Discussion

QAOA has been applied many times throughout the literature, and many findings

report its surprising success. However, findings to date appear to be implicitly

constrained to instances of low problem density (the ratio of instances constraints

to variables). Hence, the considered instances are not representative of statistically

likely examples and are only representative of the low-density subset. It is precisely

this low-density subset that does not exhibit reachability deficits.

Considering random instances of the satisfiability problem, we observe: instances

with relatively low clause density require low-depth QAOA circuits, whereas for high-

density instances, larger depth is required in order to approximate the minimum.

The exhibited point of this crossover further correlates with the algorithmic phase-

transition point for the considered combinatorial optimization problem. This feature

is reminiscent of the behavior of increasing computational resources required for clas-

sical algorithms attempting solutions for problem instances beyond the algorithmic

phase transition [94]. Such transitions seem to be a priori different; in physics, one

is the onset of non-trivial macroscopic collective behavior in a system composed of a

large number of elements that follow simple microscopic laws [95], and in computer

science, one is the computational difficulty existing in a solution search process.

However, computational difficulty is reflected both in solving problem instances and

in simulating physical processes at such critical points [96, 97]. Furthermore, such

algorithmic transitions are widely believed to be a common feature for NP problems

[41], leading us to believe that our results extend beyond satisfiability. Indeed, by

considering optimization problems on graphs where the problem density is given

by the ratio of graph edges to graph nodes (called graph density), we empirically

observed similar findings and were able to analytically demonstrate the existence of

reachability deficits, albeit for a statistically insignificant case. Therefore, we are

motivated to generalize the effect of reachability deficits as a fundamental limitation

for QAOA.
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Concentration effects in QAOA

In this chapter, we consider effects related to training QAOA circuits i.e., in finding

optimal parameters at fixed circuit depth. The chapter first introduces and formal-

izes what are known as concentration effects in QAOA [33, 35, 98, 99]. We then

review the result of instance concentrations [33] for 𝑝 = 1 QAOA circuits in mini-

mizing the Sherrington-Kirckpactric model before describing our analytical results

on parameter concentrations [3] for 𝑝 = 1, 2 QAOA on the problem of variational

state preparation. The chapter will then include some numerical results on parame-

ter concentrations before closing with a discussion on the prospects of reducing the

classical computational cost by leveraging concentrations.

5.1 Background

Variational algorithms consist of an outer-loop classical optimization step that as-

signs parameters to a quantum circuit in order to minimize an objective Hamiltonian.

This classical step involves finding the minima of a high-dimensional landscape pos-

sibly plagued with local minimas [100]. As such, gradient-free and gradient-based

methods are utilized to achieve convergence to the global minimum. Specifically,

in the case of QAOA, a 𝑝-depth ansatz is prescribed by a total of 2𝑝 variational

parameters. Therefore, by increasing depth, one encounters an exponentially large

parameter space when searching for a candidate optimum. Furthermore, due to the

phenomenon of barren plateaus [88, 89], gradient-based optimizers may end up fail-
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ing at the task. Owing to these challenges, training parameterized quantum circuits

in itself is an active area of research. Several strategies have been proposed to alle-

viate some of the challenges in training parameterized circuits [25, 29, 31, 101, 102].

Although they work for specific cases, these heuristic strategies may be suboptimal

[103].

A different approach to reducing the complexity associated with the classical

optimization step in QAOA is by leveraging concentrations [33, 35, 98, 99]. Con-

centrations arise in the literature as folklore: Though mentioned in numerical and

even analytical studies [98, 99, 101], their precise definition, scaling behavior, and

analytic prediction are lacking. State-of-the-art analytical approaches were based

on the fully connected Sherrington-Kirkpatrick model. For general depth 𝑝, it was

shown that QAOA becomes instance independent in the infinite system size limit

(𝑛 → ∞) [33]. Although this result applies to concentrations with respect to in-

stances, the scaling behavior of optimal parameters was not addressed. In addition

to instance concentrations, several numerical studies report distributions over opti-

mal parameters even when QAOA is considered on random instances [29, 99, 104].

Furthermore, such distributions have been empirically shown to behave non-trivially

with respect to 𝑛, and therefore, add to the folklore of concentrations.

5.2 Concentration effects in QAOA

Definition 5.1 (Instance Concentration). Let Γ represent a problem class, and let

𝐻𝑔 represent the corresponding problem Hamiltonians for random instances 𝑔 ∈ Γ

with fixed problem size |𝑔| = 𝑛. For QAOA circuits of fixed depth 𝑝 ∈ N, instances

concentrate whenever:

lim
𝑛→∞

E𝑔
[︀
⟨𝜓 (𝛾,𝛽)|𝐻 2

𝑔 |𝜓 (𝛾,𝛽)⟩
]︀
− E 2

𝑔 [⟨𝜓 (𝛾,𝛽)|𝐻𝑔 |𝜓 (𝛾,𝛽)⟩] = 0. (5.1)

Definition 5.2 (Parameter Concentration). Let Γ represent a problem class, and let

𝐻𝑔 represent the corresponding problem Hamiltonians for random instances 𝑔 ∈ Γ.

For QAOA circuits of fixed depth 𝑝 ∈ N, given (𝛾*
𝑛, 𝛽*

𝑛) ∈ argmin
𝛾,𝛽

⟨𝜓(𝛾,𝛽)|H𝑔 |𝜓(𝛾,𝛽)⟩.

73



Chapter 5. Concentration effects in QAOA

Parameters concentrate whenever:

∀ (𝛽*
𝑛,𝛾

*
𝑛) ∃

(︀
𝛽*
𝑛+1,𝛾

*
𝑛+1

)︀
:⃒⃒

𝛽*
𝑛+1 − 𝛽*

𝑛

⃒⃒2
+
⃒⃒
𝛾*
𝑛+1 − 𝛾*

𝑛

⃒⃒2 ∼ poly−1 (𝑛) .
(5.2)

5.3 Instance concentration in SK model

In this section, we review the calculation done in [33] which analytically demon-

strates the effect of instance concentration for the case of 𝑝 = 1 QAOA on the

Sherrington-Kirckpactric model.

SK model [105] is a mean-field approach to spin glasses. Here, we consider a

system of 𝑛-spins with all-to-all connectivity. The associated Hamiltonian for such

a system is described by:

𝐻𝑆𝐾(𝜎) =
1√
𝑛

∑︁
𝑗<𝑘

𝐽𝑗𝑘𝜎𝑗𝜎𝑘, (5.3)

where 𝜎 ∈ {−1, 1}×𝑛 represents a spin configuration and the couplings 𝐽𝑗𝑘, are

drawn independently from a normal distribution with mean 0 and variance 1. An

interesting problem in this regard is to calculate the minimum energy density in the

thermodynamic limit of 𝑛 → ∞. This quantity has been shown to exist [72] and,

when calculated numerically, gives:

lim
𝑛→∞

min
𝜎

𝐻𝑆𝐾(𝜎)

𝑛
= −0.7631. (5.4)

Though this celebrated result allows one to know the exact minimum in the ther-

modynamic limit, the associated spin configuration that attains this optima is hard

to find using known methods of optimization. A few notable results include 1) Zero

temperature simulated annealing does not promise recovery of the exact low-energy

configurations [106] and 2) semidefinite programming methods recover spin config-

urations with energy density
𝐻𝑆𝐾(𝜎)

𝑛
≈ − 2

𝜋
[107]. Knowing these results, one can

ask how well does QAOA perform in this setting? As was shown in [33], 𝑝 = 11

depth QAOA outperforms standard semidefinite programming. Here, instead, we
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review their result specific to an effect in QAOA, called instance concentrations.

To begin with, we consider the typical performance of 𝑝 = 1 depth QAOA on

instances of the SK-model as in Eq. (5.3).

Definition 5.3 (Typical Performance of SK instances). Given a 𝑝-depth QAOA

circuit as in Eq. (3.4), let 𝐻 represent an instance of the SK-model with ran-

dom couplings 𝐽 drawn independently from the standard normal distribution (as

in Eq. (5.3)). The typical performance is then defined as expected value, with respect

to 𝑝-depth QAOA ansatz, averaged over instance:

E𝐽

[︂
⟨𝜓 (𝛾,𝛽)| 𝐻

𝑛
|𝜓 (𝛾,𝛽)⟩

]︂
. (5.5)

In order to obtain a closed form expression for Eq. (5.5) at 𝑝 = 1, we consider

the moment generating function,

𝐹 (𝑡) = E𝐽

[︁
⟨𝜓 (𝛾,𝛽)| 𝑒𝑖𝑡

𝐻
𝑛 |𝜓 (𝛾,𝛽)⟩

]︁
. (5.6)

Note that,

− 𝑖
𝑑

𝑑𝑡
𝐹 (𝑡)

⃒⃒⃒⃒
𝑡=0

= E𝐽

[︂
⟨𝜓 (𝛾,𝛽)| 𝐻

𝑛
|𝜓 (𝛾,𝛽)⟩

]︂
, (5.7)

and similarly,

− 𝑑2

𝑑𝑡2
𝐹 (𝑡)

⃒⃒⃒⃒
𝑡=0

= E𝐽

[︃
⟨𝜓 (𝛾,𝛽)|

(︂
𝐻

𝑛

)︂2

|𝜓 (𝛾,𝛽)⟩

]︃
. (5.8)

Explicit expressions for Eqs. (5.7),(5.8) is what we need to prove instance concen-

trations for 𝑝 = 1 QAOA.

5.3.1 Explicit form for moment generating function

Consider 𝐹 (𝑡) for 𝑝 = 1 in Eq. (5.6) and working in the spin basis, 𝑧 ∈ {−1,+1}×𝑛,
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𝐹 (𝑡) =
∑︁
𝑧𝑚

E𝐽

[︁
𝑒𝑖𝑡

𝐻
𝑛
(𝑧𝑚) ⟨+| 𝑒𝑖𝛾

𝐻
𝑛 · 𝑒𝑖𝛽𝐻𝑥 |𝑧𝑚⟩ ⟨𝑧𝑚| 𝑒−𝑖𝛽𝐻𝑥 · 𝑒−𝑖𝛾

𝐻
𝑛 |+⟩

]︁
=

1

2𝑛

∑︁
𝑧𝑚,𝑧1,𝑧2

E𝐽

[︀
𝑓(𝑧𝑚, 𝑧1, 𝑧2) ⟨𝑧1| 𝑒𝑖𝛽𝐻𝑥 |𝑧𝑚⟩ ⟨𝑧𝑚| 𝑒−𝑖𝛽𝐻𝑥 |𝑧2⟩

]︀
.

(5.9)

Here 𝑧𝑚, 𝑧1, 𝑧2 ∈ {−1, 1}×𝑛 and we make use of the standard QAOA circuit with

𝐻𝑥

𝑛∑︀
𝑘=1

𝑋𝑘. Next, we simplify the exponent, 𝑓(𝑧𝑚, 𝑧1, 𝑧2),

𝑓(𝑧𝑚, 𝑧1, 𝑧2) = exp

{︂
𝑖

(︂
𝑡

𝑛
𝐻 (𝑧𝑚) + 𝛾

[︀
𝐻
(︀
𝑧1
)︀
−𝐻

(︀
𝑧2
)︀]︀)︂}︂

. (5.10)

Substituting the explicit form for the energies from Eq. (5.3), we obtain,

𝑓(𝑧𝑚, 𝑧1, 𝑧2) = exp

{︃
𝑖√
𝑛

∑︁
𝑗<𝑘

𝐽𝑗𝑘

(︂
𝑧𝑚𝑗 𝑧

𝑚
𝑘 · 𝑡

𝑛
+ 𝛾

[︀
𝑧1𝑗 𝑧

1
𝑘 − 𝑧2𝑗 𝑧

2
𝑘

]︀)︂}︃
. (5.11)

Note that since we work in the spin basis and sum over all possible strings 𝑧𝑚, 𝑧1, 𝑧2,

we can redefine 𝑧1 → 𝑧1.𝑧𝑚 and 𝑧2 → 𝑧2.𝑧𝑚, then we obtain,

𝑓(𝑧𝑚, 𝑧1, 𝑧2) = exp

{︃
𝑖√
𝑛

∑︁
𝑗<𝑘

𝐽𝑗𝑘𝑧
𝑚
𝑗 𝑧

𝑚
𝑘

(︂
𝑡

𝑛
+ 𝛾

[︀
𝑧1𝑗 𝑧

1
𝑘 − 𝑧2𝑗 𝑧

2
𝑘

]︀)︂}︃

= exp

{︃
𝑖√
𝑛

∑︁
𝑗<𝑘

𝐽𝑗𝑘

(︂
𝑡

𝑛
+ 𝛾

[︀
𝑧1𝑗 𝑧

1
𝑘 − 𝑧2𝑗 𝑧

2
𝑘

]︀)︂}︃

=
∏︁
𝑗<𝑘

exp

{︂
𝑖√
𝑛
𝐽𝑗𝑘

(︂
𝑡

𝑛
+ 𝛾

[︀
𝑧1𝑗 𝑧

1
𝑘 − 𝑧2𝑗 𝑧

2
𝑘

]︀)︂}︂
(5.12)

Here, 𝐽𝑗𝑘 = ±𝐽𝑗𝑘. Since E𝐽 [· · · ] = E𝐽 [· · · ], we drop the tilde notation and make

the substitution in Eq. (5.9). Simplifying this expression, we obtain,

76



Chapter 5. Concentration effects in QAOA

𝐹 (𝑡) =
∑︁
𝑧1,𝑧2

E𝐽

[︀
𝑓(𝑧1, 𝑧2)

]︀
⟨𝑧1| 𝑒𝑖𝛽𝐻𝑥 |1⟩ ⟨1| 𝑒𝑖𝛽𝐻𝑥 |𝑧2⟩

=
∑︁
𝑧1,𝑧2

∏︁
𝑗<𝑘

E𝐽

[︂
exp

{︂
𝑖√
𝑛
𝐽𝑗𝑘

(︂
𝑡

𝑛
+ 𝛾

[︀
𝑧1𝑗 𝑧

1
𝑘 − 𝑧2𝑗 𝑧

2
𝑘

]︀)︂}︂]︂
×

𝑔⋆𝛽
(︀
𝑧1
)︀
.𝑔𝛽
(︀
𝑧2
)︀
,

(5.13)

or in simplified notation,

∑︁
𝑧1,𝑧2

∏︁
𝑗<𝑘

E𝐽

[︂
exp

{︂
𝑖√
𝑛
𝐽𝑗𝑘

(︂
𝑡

𝑛
+ Φ𝑗𝑘

(︀
𝑧1, 𝑧2

)︀)︂}︂]︂
𝑔⋆𝛽
(︀
𝑧1
)︀
.𝑔𝛽
(︀
𝑧2
)︀
, (5.14)

where,

𝑔⋆𝛽
(︀
𝑧1
)︀
= (cos (𝛽))#1 in 𝑧1

. (𝑖 sin (𝛽))#−1 in 𝑧1

, (5.15)

and,

Φ𝑗𝑘

(︀
𝑧1, 𝑧2

)︀
= 𝛾

[︀
𝑧1𝑗 𝑧

1
𝑘 − 𝑧2𝑗 𝑧

2
𝑘

]︀
. (5.16)

Now we take the averaging over instances, E𝐽 [· · · ]. Note that E𝐽𝑗𝑘
[︀
𝑒𝑖𝐽𝑗𝑘𝑥

]︀
=

𝑒−𝑥
2/2, substituting the result, we obtain,

𝐹 (𝑡) =
∑︁
𝑧1,𝑧2

∏︁
𝑗<𝑘

exp

{︃
−1

2𝑛

(︂
𝑡

𝑛
+ Φ𝑗𝑘

)︂2
}︃
𝑔⋆𝛽
(︀
𝑧1
)︀
.𝑔𝛽
(︀
𝑧2
)︀

=
∑︁
𝑧1,𝑧2

exp

{︃
−1

2𝑛

∑︁
𝑗<𝑘

Φ2
𝑗𝑘 −

𝑡

𝑛

∑︁
𝑗<𝑘

Φ𝑗𝑘 −
𝑡2

𝑛3

(︂
𝑛

2

)︂}︃
𝑔⋆𝛽
(︀
𝑧1
)︀
.𝑔𝛽
(︀
𝑧2
)︀
.

(5.17)

To evaluate the sum in Eq. (5.17), it is convenient to introduce a new basis. The

authors in [33] call this a configuration basis. The motivation for this choice of basis

is as follows:
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Given 2 spin configurations 𝑧1 and 𝑧2, consider the sum,

∑︁
𝑗<𝑘

Φ𝑗𝑘

(︀
𝑧1, 𝑧2

)︀
=
𝛾

2

(︃∑︁
𝑗,𝑘

𝑧1𝑗 𝑧
1
𝑘 −

∑︁
𝑗,𝑘

𝑧2𝑗 𝑧
2
𝑘

)︃

=
𝛾

2

⎡⎣(︃∑︁
𝑗

𝑧1𝑗

)︃2

−

(︃∑︁
𝑗

𝑧2𝑗

)︃2
⎤⎦

=
𝛾

2

[︃(︃∑︁
𝑗

𝑧1𝑗 + 𝑧2𝑗

)︃(︃∑︁
𝑗

𝑧1𝑗 − 𝑧2𝑗

)︃]︃
.

(5.18)

From the form of this function, we only require knowledge of 4 numbers: {𝑛++, 𝑛+−, 𝑛−+, 𝑛−−},
to evaluate

∑︀
𝑗<𝑘

Φ𝑗𝑘 (𝑧
1, 𝑧2). Here, 𝑛++ corresponds to the number of positions (taken

in order) along 𝑧1 and 𝑧2 whenever 𝑧1𝑗 = 𝑧2𝑗 = +1 and similarly for 𝑛+− where we

count positions along 𝑧1 and 𝑧2 whenever 𝑧1𝑗 = +1 and 𝑧2𝑗 = −1. Therefore,

instead of summing all possible spin configurations for 𝑧1 and 𝑧2, we sum over

{𝑛++, 𝑛+−, 𝑛−+, 𝑛−−} accounting for multiplicities due to permutations. Note that

a valid configuration, {𝑛𝑎}, 𝑎 ∈ {++,+−,−+,−−} necessarily satisfies
∑︀
𝑎

𝑛𝑎 = 𝑛.

Eq. (5.17) then becomes,

𝐹 (𝑡) =
∑︁
{𝑛𝑎}

(︂
𝑛

{𝑛𝑎}

)︂
exp

⎧⎨⎩−1

2𝑛

∑︁
𝑗<𝑘

Φ2
𝑗𝑘 ({𝑛𝑎})−

𝑡

𝑛

∑︁
𝑗<𝑘

Φ𝑗𝑘 ({𝑛𝑎})−
𝑡2

𝑛3

(︂
𝑛

2

)︂⎫⎬⎭∏︁
𝑎

𝐺𝑛𝑎
𝑎 ,

(5.19)

where, 𝐺++ = cos2 𝛽, 𝐺+− = 𝐺−+ = 𝑖 cos 𝛽 sin 𝛽 and 𝐺−− = sin2 𝛽.

5.3.2 Evaluation of moments

To arrive at the explicit expression, we evaluate −𝑖 𝑑
𝑑𝑡
𝐹 (𝑡)

⃒⃒⃒⃒
𝑡=0

and − 𝑑2

𝑑𝑡2
𝐹 (𝑡)

⃒⃒⃒⃒
𝑡=0

.

E𝐽

[︂
⟨𝜓 (𝛾, 𝛽)| 𝐻

𝑛
|𝜓 (𝛾, 𝛽)⟩

]︂
=
𝑖2𝛾

𝑛2

∑︁
{𝑛𝑎}

(︂
𝑛

{𝑛𝑎}

)︂
(𝑛++ − 𝑛−−) (𝑛+− − 𝑛−+) ×

exp

[︂
−2𝛾2

𝑛
(𝑛++ + 𝑛−−) (𝑛+− + 𝑛−+)

]︂∏︁
𝑎

𝐺𝑛𝑎
𝑎 ,

(5.20)

which can be further simplified by grouping 𝑛+−+𝑛−+ = 𝑡 and 𝑛+++𝑛−− = 𝑛−𝑡,
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E𝐽

[︂
⟨𝜓 (𝛾, 𝛽)| 𝐻

𝑛
|𝜓 (𝛾, 𝛽)⟩

]︂
=
𝑖2𝛾

𝑛2

𝑛∑︁
𝑡=0

(︂
𝑛

𝑡

)︂
exp

[︂
−2𝛾2

𝑡 (𝑛− 𝑡)

𝑛

]︂
×

∑︁
𝑛+−+𝑛−+=𝑡

(︂
𝑛

𝑛+−, 𝑛−+

)︂
(𝑛+− − 𝑛−+)𝐺

𝑛+−
+− 𝐺

𝑛−+

−+ ×

∑︁
𝑛+++𝑛−−=𝑛−𝑡

(︂
𝑛− 𝑡

𝑛++, 𝑛−−

)︂
(𝑛++ − 𝑛−−)𝐺

𝑛++

++ 𝐺
𝑛−+

−− .

(5.21)

For the inside summands we make use of the following identity,

∑︁
𝑎+𝑏=𝑛

(︂
𝑛

𝑎, 𝑏

)︂
(𝑎− 𝑏)𝑥𝑎𝑦𝑏 = 𝑛 (𝑎− 𝑏) (𝑎+ 𝑏)𝑛−1 , (5.22)

therefore upon simplification we arrive at the final expression as,

E𝐽

[︂
⟨𝜓 (𝛾, 𝛽)| 𝐻

𝑛
|𝜓 (𝛾, 𝛽)⟩

]︂
=
𝑛− 1

𝑛
𝛾 exp

(︂
−2𝛾2

𝑛− 1

𝑛

)︂
sin (4𝛽), (5.23)

when taking the thermodynamic limit 𝑛→ ∞,

lim
𝑛→∞

E𝐽

[︂
⟨𝜓 (𝛾, 𝛽)| 𝐻

𝑛
|𝜓 (𝛾, 𝛽)⟩

]︂
= 𝛾 exp

(︀
−2𝛾2

)︀
sin (4𝛽). (5.24)

A similar calculation can be done for the second moment [33] which results in,

lim
𝑛→∞

E𝐽

[︃
⟨𝜓 (𝛾, 𝛽)|

(︂
𝐻

𝑛

)︂2

|𝜓 (𝛾, 𝛽)⟩

]︃
= 𝛾2 exp

(︀
−4𝛾2

)︀
sin2 (4𝛽), (5.25)

which is the squared first moment. This then establishes instance concentration for

𝑝 = 1 QAOA.
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5.4 Parameter concentrations in variational state

preparation

Variational state preparation can be stated as follows: let |𝑡⟩ be a 𝑛-qubit target

state in the computational basis. The task is to variationally prepare a candidate

state |𝜓(𝛾,𝛽)⟩ with high overlap with |𝑡⟩. Note that this problem can be viewed as

an optimization problem:

Definition 5.4 (Variational state preparation). The optimization task in variational

state preparation is to maximize the overlap between the candidate state |𝜓(𝛾,𝛽)⟩

and the target state |𝑡⟩ given by |⟨𝑡|𝜓(𝛾,𝛽)⟩|2. This is equivalent to the minimization

of the problem Hamiltonian 𝐻𝑡 = 1− |𝑡⟩⟨𝑡|,

min
𝛾,𝛽

⟨𝜓(𝛾,𝛽)|𝐻𝑡 |𝜓(𝛾,𝛽)⟩ = 1−max
𝛾,𝛽

|⟨𝑡|𝜓(𝛾,𝛽)⟩|2 . (5.26)

Theorem 5.1 (Parameter concentration in variational state preparation). Let |𝑡⟩ ∈

[C2]
⊗𝑛 be an 𝑛 qubit target state in the computational basis. For depth 𝑝 = 1, 2,

parameters concentrate as:

⃒⃒
𝛽*
𝑛+1 − 𝛽*

𝑛

⃒⃒2
+
⃒⃒
𝛾*
𝑛+1 − 𝛾*

𝑛

⃒⃒2
= 𝒪

(︂
1

𝑛4

)︂
. (5.27)

Proof. We start by calculating the parameters that deliver maximum for the overlap

function |⟨𝑡|𝜓(𝛾, 𝛽)⟩|2.

5.4.1 Parameter concentration at p=1

Consider 𝑝 = 1 QAOA ansatz:

|𝜓(𝛾, 𝛽)⟩ = 𝑒−𝑖𝛽𝐻𝑥𝑒−𝑖𝛾|𝑡⟩⟨𝑡| |+⟩⊗𝑛 . (5.28)
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The required amplitude can be calculated as,

𝑔1(𝛾, 𝛽) = ⟨𝑡|𝜓(𝛾, 𝛽)⟩

=
1√
2𝑛

[︀
𝑒−𝑖𝛽𝑛 + cos𝑛 𝛽(𝑒−𝑖𝛾 − 1)

]︀
. (5.29)

which then gives the explicit overlap function:

𝐹1(𝛾, 𝛽) =
1

2𝑛
[︀
1 + 2 cos𝑛 (𝛽) (cos (𝛾 − 𝑛𝛽)− cos (𝑛𝛽))

+ 2 cos2𝑛 (𝛽) (1− cos 𝛾)
]︀
. (5.30)

We are now concerned with parameters that maximize Eq. (5.30), and therefore

conditions 𝜕𝛾𝐹1(𝛾, 𝛽) = 𝜕𝛽𝐹1(𝛾, 𝛽) = 0 must be satisfied. From these conditions,

we can arrive at two equations:

tan 𝛾 =
sin𝑛𝛽

cos𝑛𝛽 − cos𝑛 𝛽
, (5.31)

tan
𝛾

2
=

cos(𝑛𝛽 + 𝛽)

2 cos𝑛 𝛽 sin 𝛽 − sin(𝑛𝛽 + 𝛽)
. (5.32)

Merging Eq. (5.31) and Eq. (5.32) we get:

cos𝑛 𝛽 sin 2𝛽 − sin(𝑛+ 2)𝛽 = 0. (5.33)

Substituting Eq. (5.33) into Eq. (5.32), one can relate optimal parameters as 𝛾 =

𝜋 − 2𝛽.

We now consider solutions for Eq. (5.33). For a given 𝑛, it can be rewritten as a

polynomial equation of power 𝑛 which does not have solutions in radicals. However,

we see that for 𝑛→ ∞, 𝛽 =
𝜋

𝑛
+𝒪(𝑛−2). We find the correction to this asymptotic

solution as 𝛽 =
𝜋

𝑛
+ 𝛿𝛽, and calculate 𝛿𝛽 = −4𝜋

𝑛2
up to second order in 1/𝑛. Thus,
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for the optimal parameters, we get:

𝛽* =
𝜋

𝑛
− 4𝜋

𝑛2
+𝒪(𝑛−3), (5.34)

𝛾* = 𝜋 − 2𝜋

𝑛
+

8𝜋

𝑛2
+𝒪(𝑛−3). (5.35)

Therefore,

⃒⃒
𝛽*
𝑛+1 − 𝛽*

𝑛

⃒⃒2
+
⃒⃒
𝛾*𝑛+1 − 𝛾*𝑛

⃒⃒2 ≈
≈ 5𝜋2

(𝑛+ 4)2(𝑛+ 5)2
= 𝒪

(︂
1

𝑛4

)︂
, (5.36)

which establishes parameter concentration for 𝑝 = 1.

5.4.2 Parameter concentration for p=2

We repeat the process for 𝑝 = 2. The ansatz in this case is:

|𝜓(𝛾1, 𝛽1, 𝛾2, 𝛽2)⟩ =

𝑒−𝑖𝛽2ℋ𝑥𝑒−𝑖𝛾2|𝑡⟩⟨𝑡|𝑒−𝑖𝛽1ℋ𝑥𝑒−𝑖𝛾1|𝑡⟩⟨𝑡| |+⟩⊗𝑛 . (5.37)

The corresponding amplitude can be expressed in terms of the amplitude at 𝑝 = 1

from Eq. (5.29):

𝑔2(𝛾1, 𝛽1, 𝛾2, 𝛽2) =

𝑔1(𝛾1, 𝛽1 + 𝛽2) + 𝑔1(𝛾1, 𝛽1) cos
𝑛 𝛽2(𝑒

−𝑖𝛾2 − 1). (5.38)

To find the parameters that maximize overlap 𝐹2(𝛾1, 𝛽1, 𝛾2, 𝛽2), we set the gra-

dients to zero and obtain a set of four equations. Even though in this case the

variables do not separate, it can be seen that for 𝑛→ ∞, solutions behave as:

𝑛𝛽*
𝑖 → 𝜋, 𝛾*𝑖 → 𝜋. (5.39)

Assuming 𝑛≫ 1 and corrections to be of the next order in 1/𝑛, we again search
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for parameters as 𝛽𝑖 =
𝜋

𝑛
+ 𝛿𝛽𝑖 and 𝛾 = 𝜋 + 𝛿𝛾𝑖 and obtain optimal parameters as:

𝛽*
2 =

𝜋

𝑛
− 4𝜋

𝑛2
+𝒪(𝑛−3), (5.40)

𝛾*2 = 𝜋 − 2𝜋

𝑛
+𝒪(𝑛−2), (5.41)

𝛽*
1 =

𝜋

𝑛
+𝒪(𝑛−3), (5.42)

𝛾*1 = 𝜋 +𝒪(𝑛−2). (5.43)

Therefore,

⃒⃒
𝛽*
𝑛+1 − 𝛽*

𝑛

⃒⃒2
+
⃒⃒
𝛾*
𝑛+1 − 𝛾*

𝑛

⃒⃒2
= 𝒪

(︂
1

𝑛4

)︂
, (5.44)

which establishes parameter concentration for 𝑝 = 2. �

5.4.3 Numerical results for 𝑝 ≥ 3

Although the method described for obtaining optimal parameters can be extended

for higher depths 𝑝 ≥ 3, the sets of equations that describe zero gradients may not

be trivially simplified. A strategy then is to consider the limit 𝑛 → ∞ and find

corrections to the first-order solutions, as we did in the case of 𝑝 = 2. Interestingly,

we numerically see that for up to 17 qubits and 𝑝 = 5, the optimal solutions behave

as:

𝑛𝛽𝑖 → 𝜋, 𝛾𝑖 → 𝜋. (5.45)

We expect it to be a general feature for this problem, and therefore to obtain cor-

rections one can Taylor-expand the overlap function around low-order solutions as

in Eq. (5.39) up to second order in 1/𝑛. This simplified expression is of a quadratic

form and thus can be maximized to obtain corrections. For any finite region in 𝑛,

we see that such optimal parameters can be well approximated by the functions,

𝛽 =
𝜋

𝑎1𝑛+ 𝑎2
, 𝛾 = 𝑏1𝜋 − 𝑏2𝛽, (5.46)
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where the fitting constants 𝑎1,2 and 𝑏1,2 are region specific.

In the following, we present our numerical results for 𝑝 = 5. Figure 5-1 shows

the optimal parameters calculated numerically for the last layer. The optimal pa-

rameters at depth 1 − 5 are fit according to Eq. (5.46) and the corresponding fit

constants appear in Table 5.1.

According to fitting curves which accurately describe the numerical data, pa-

rameter concentration is evident and is the same as in Eq. (5.44). We also plot

our numerical data in Figure 5-2 to visually illustrate the phenomenon of parameter

concentration.

𝑎1 𝑎2 𝑏1 𝑏2
𝛽1,𝛾1 1.04 0.92 1.06 2.07
𝛽2,𝛾2 0.98 1.23 1.05 2.04
𝛽3,𝛾3 0.94 1.58 1.05 1.96
𝛽4,𝛾4 0.88 2.32 1.03 1.83
𝛽5,𝛾5 1.09 5.25 1.0 2.0

Table 5.1: Parameters 𝑎1,2 and 𝑏1,2 according to fitting functions (5.46).
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Figure 5-1: Comparison of numerical results (dots) and our fitting for optimal pa-
rameters (lines) 𝛽5 (bottom;orange), 𝛾5 (top;blue) with respect to the number of
qubits 𝑛. The dots represent the parameters obtained numerically via maximization
of the overlap function. Figure reprocessed from [3].
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Figure 5-2: Parameter concentrations visualized for 𝑝 = 5 depth QAOA and vary-
ing number of qubits n. Two symmetric branches of optimal parameters are well
distinguished. Parameter concentration is seen within each of the branches. Figure
reprocessed from [3].

5.5 Discussion

Our work on concentrations begins with a rigorous definition of parameter concen-

trations. This definition is motivated by how the effect can be leveraged for efficient

training. Different approaches claim concentrations in the QAOA literature, yet our

results have a clear distinction. Specifically, [33] analytically addresses what we call

instance concentration in the case of the Sherrington-Kirkpatrick model. Here, the

variance in the objective function value vanishes in the infinite size limit (𝑛→ ∞),

and therefore QAOA becomes instance independent. However, the result alone does

not predict nor address the behavior of optimal parameters.

Numerically in [99] it is seen that the optimal parameters at each depth 𝑝, are

distributed over a small range when considering randomly generated MAX-CUT

instances on 3-regular graphs. Furthermore, this distribution became narrower as

the system size increased. The authors in [99] explain their numerical observation

via reverse causal cone i.e. the subgraphs effectively contributing to the objective
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function when taken over a particular edge. Since in the limit 𝑛 → ∞, the likely

subgraphs are trees, the optimal parameters for QAOA on such subgraphs become

optimal for the entire graph. However, the scaling behavior (if any) for the optimal

parameters towards the infinite 𝑛 limit still remain lacking.

Although our results on parameter concentration apply to the specific case of

variational state preparation, wherein only a unique set of optimal parameters is

addressed at each 𝑛, their scaling behavior is fully understood due to our analytical

result. Furthermore, we expect our results to be applicable in more general settings

which would imply that the distribution of optimal parameters with respect to in-

stances are only slightly sensitive if 𝑛 is large. This implication can be leveraged to

reduce the training cost of finding optimal parameters. In particular, our observed

concentrations scale as 𝒪 (𝑛−4), which implies that optimal parameters also have a

limit as 𝑛 → ∞. Therefore, one can train on a finite fraction of 𝑤 ≪ 𝑛 qubits and

perform a polynomially restricted training over optimal parameters at 𝑤 qubits to

recover optimal parameters for 𝑛 qubits. However, to fully exploit this approach,

further investigation is needed.
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Chapter 6

Circuit depth scaling in QAOA

In this chapter, we propose a predictive model motivated by numerous empirical

findings that aims to ascertain the critical depth required for QAOA to succeed

in recovering 𝜖 tolerant performance. The chapter begins with a conjecture called

logistic saturation that postulates the behavior of critical QAOA depth to scale

logistically with problem density for MAX-2-SAT. The chapter then describes the

numerical study, which we use to test the accuracy of the predictive model. Finally,

we close with a brief discussion on how such empirical models may expose critical

depth scaling with respect to problem size for general combinatorial optimization

problems which is currently out of scope beyond specific cases which are statistically

underrepresentative.

6.1 Background

The circuit structure of QAOA resembles a discretized version of adiabatic evo-

lution and can approximate adiabatic evolution with 𝒪(1) errors when the depth

𝑝 ∼ (𝑇 2 · 𝑝𝑜𝑙𝑦(𝑛)) (seen in Chapter 3) [67]. However, when considering variational

minimization, this result on depth only provides an upper bound to approximate

ground states of some objective Hamiltonian. Shorter depth circuits have indeed

been shown to offer some benefits such as: recovering solutions to low-density in-

stances of combinatorial optimization problems [1, 2], guarantying cut that is at

least 0.6924 of the optimal cut for specific MAX-CUT instances [26], and recov-
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ering near-optimal query complexity for Grover’s search [24, 86]. Beyond com-

binatorial optimization and short depths, promising results such as prospects for

quantum supremacy and universality have been proven in the framework of QAOA

[27, 28, 32, 79], making the approach a promising model for NISQ era quantum

computing.

Although several advantages have been reported [24, 26, 32, 40, 86, 87, 108–110],

effects that limit the performance of QAOA have also been discovered [1, 2, 103].

Taking into account the energy error in approximation as a performance metric, we

[1, 2] demonstrated reachability deficits. Deeper circuits therefore become a neces-

sity and hence come with overheads in classical outer-loop optimization. Although

approaches such as layerwise training aim to reduce this classical computational

cost, such strategies have been shown to be suboptimal [103]. Other approaches

aimed at reducing the classical computation cost exploit what are known as con-

centration effects [3, 33, 99, 111]. Although these effects allow one to heuristically

guess near-optimal parameters at fixed depth and for increasing number of qubits,

they fail to address the depth required to guarantee fixed performance. Even while

neglecting the computational cost in outer loop optimization, a general theory that

addresses the required depth needed for QAOA to succeed remains open.

6.2 Logistic saturation

As a brief background, we return to the variational state space available for a 𝑝-

depth QAOA circuit. Given some problem Hamiltonian H, on 𝑛 qubits and problem

density 𝛼, the variational state space available for QAOA is described by:

Ω =
⋃︁
𝛾,𝛽

{︁
|𝜓 (𝛾,𝛽)⟩

}︁
, (6.1)

with |𝜓(𝛾,𝛽)⟩ given by Eq. (3.4). We have explored that density induces under-

parameterization in QAOA. For the case of MAX-2-SAT, it was shown that for

instances beyond 𝛼𝑐 ∼ 1, QAOA suffers reachability deficits. Although better per-

formance is achieved at the cost of increasing QAOA depth, a similar trend is re-
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flected for deficits. Here, we investigate the depth required to guarantee an 𝜖 tolerant

performance.

Definition 6.1 (Critial depth). Given some fixed tolerance on performance, 𝜖 > 0.

For QAOA on instances characterized by density 𝛼, and problem size 𝑛, the critical

depth 𝑝* is defined as:

𝑝⋆ = min{𝑝 | f(𝛼, 𝑛) ≤ 𝜖}. (6.2)

Conjecture 6.1 (Logistic Saturation). Critical depth 𝑝⋆, depends on clause density

𝛼, for MAX-2-SAT instances as:

𝑝*(𝛼) ≈ 𝑝𝑚𝑎𝑥
1 + 𝑒−𝜅(𝛼−𝛼𝑐)

, (6.3)

where 𝛼𝑐 is the critical density, 𝜅 the logistic growth rate, and 𝑝𝑚𝑎𝑥 the saturation

value.

6.3 Numerical study on the predictive model

Here, we briefly review the numerical details of the study. For an elaborate descrip-

tion of the software code emulating QAOA and the optimization heuristics used, we

ask the reader to refer to the appendix.

1. To study the performance of QAOA, we initially generate random instances

of 2-SAT for problem sizes 𝑛 = 5 up to 15 qubits according to Eq. (2.7).

The problem Hamiltonians are then constructed according to the embedding

schemes as described in Section 2.4.1:

H =
∑︁
𝑗<𝑘

𝐽𝑗𝑘𝑍𝑗𝑍𝑘 +
∑︁
𝑗

ℎ𝑗𝑍𝑗, (6.4)

for appropriate choice of coefficients 𝐽𝑗𝑘 and ℎ𝑗.

2. In generating instances, we fix the number of variables and increment the

clause density 𝛼 by 1
𝑛

for the range 𝛼 ∈ [1/𝑛, 4.0].
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3. To study average performance, we make use of error in approximation, 𝑓

as defined in Def. 3.10 and consider a statistic of 300 random instances for

densities 𝛼 ∈ [1/𝑛, 4.0] and for qubits 𝑛 = 5 up to 15.

4. Corresponding to each instance, a problem Hamiltonian 𝐻SAT, is constructed,

and a standard QAOA circuit with depths 𝑝 = 1 is initialized with random

initial parameters 𝛾 and 𝛽 as:

|𝜓(𝛾,𝛽)⟩ =
𝑝∏︁

𝑘=1

exp {−𝑖𝛽𝑘𝐻𝑥} · exp {−𝑖𝛾𝑘𝐻SAT} |+⟩⊗𝑛 , (6.5)

where we use the standard driver and ranges, 𝐻𝑥 =
𝑛∑︀
𝑗=1

𝑋𝑗, 𝛾𝑘 ∈ [0, 2𝜋) and

𝛽𝑘 ∈ [0, 𝜋).

5. As a threshold for performance 𝜖 = 0.3 is chosen. By Theorem 3.1, this

threshold guarantees a minimum success probability of 0.7.

6. Considering each instance, the algorithm is run with incremental depths of 1

until 𝑝⋆ as defined in Eq. (6.2) is attained.

7. To find the optimal angles at each depth 𝑝, in the routine,

(𝛾⋆,𝛽⋆) ∈ argmin
(𝛾𝛽)

⟨𝜓(𝛾,𝛽)|H |𝜓(𝛾,𝛽)⟩ , (6.6)

we use a heuristic optimization strategy motivated by layerwise training and

employ the Limited Broyden–Fletcher–Goldfarb–Shanno method (L-BFGS-B)

to find optimal parameters during each step of the heuristic strategy.

8. Once 𝑝 = 𝑝⋆ is attained the entire process is repeated for the next instance in

the statistic.

9. The average 𝑝⋆ is calculated once the statistics are collected and the procedure

is repeated for different densities and qubit counts.

10. The data for average 𝑝⋆ is then fitted against the logistic function as described

in Eq. (6.3). We calculate the 3𝜎 confidence interval for the estimated mean

and compare the predictive model against the numerical data.
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6.3.1 Empirical observations

1. Considering up to 15 variables and clause density up to 4 we observe that

our proposed model as in Eq. (6.3) describes the data within a 3𝜎 confidence

interval (see Fig. 6-1).

2. We recovered the scaling of critical depth with respect to problem size, which

illustrates a linear trend in our considered range of problem sizes (see Fig. 6-2).

6.4 Discussion

QAOA is among the most studied gate-based approaches for combinatorial opti-

mization in NISQ era devices. Although analytical techniques address QAOA at low

depth or in the adiabatic limit, 𝑝→ ∞, understanding performance at intermediate

depths remains largely open. Furthermore, problem density induces underparame-

terization and limits the performance of fixed depth QAOA. An open question in

this regard is the depth required for QAOA to succeed. Additionally, by treating

the circuit depth of QAOA as a computational resource, it becomes paramount in

complexity studies to know the scaling of depth with respect to problem size. Under-

standing these open problems paves the way towards identifying quantum advantage

in QAOA.

We introduced a methodology based on a predictive model that aims to address

these open problems. Furthermore, we recovered, for the first time, the scaling of

critical depth with respect to problem size, which illustrates a linear trend in our

considered range of problem sizes. Although this finite range is insufficient to assert

quantum advantage, we anticipate future work to test the accuracy of the presented

model over comprehensive ranges of densities and problem sizes.
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Figure 6-1: Average critical depth 𝑝* versus clause density. Data points represent the
average 𝑝* calculated according to Eq. (6.2) across problem density for MAX-2-SAT
with tolerance 𝜖 = 0.3. Colors correspond to different problem sizes 𝑛 = {5, 10, 15}
with errorbars representing 3𝜎 for the estimated mean. Solid curves represent the
least squares fit of the data to the predictive model as described in Eq. (6.3).

6 8 10 12 14
n

2

4

6

8

pa
ra

m
et

er
s

pmax

c

Figure 6-2: Fitting parameters versus number of qubits for QAOA on MAX-2-SAT
with tolerance 𝜖 = 0.3. Note that the recovered critical density 𝛼𝑐 ≈ 1, and growth
rate 𝜅, show very little variability with respect to number of qubits. In contrast,
the the saturation value 𝑝𝑚𝑎𝑥 illustrates a linear trend in the considered range of 5
to 15 qubits.
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The modern approach in the development of quantum algorithms is centered on

the variational model of quantum computation, wherein a hybrid architecture, com-

posed of a classical coprocessor and a near-term quantum device, is exploited to

realize ground state quantum computing. In this framework, for classical combi-

natorial optimization tasks, QAOA [26] is among the most studied with promising

prospects in near-term applications [1, 19, 20, 25–35]. Although recent milestones

such as experimental demonstration [36, 37, 112, 113], universality results [27, 28],

and prospects for quantum supremacy [32] add to this active interest, many open

questions remain regarding the applicability of this approach. In this thesis, we

unravel some of it’s prospects in the NISQ era of quantum computing.

To begin with, one of the open questions within the framework of QAOA is

whether quantum advantage over classical algorithms can be attained by near-term

devices? By considering a single depth setting and for specific instances, initial re-

sults indeed report an optimistic prospect for QAOA. However, the hope of achieving

quantum advantage via shallow-depth circuits were quickly questioned when clas-

sical algorithms capable of outperforming low-depth QAOA were developed [90].

Furthermore, owing to the black-box nature of the classical outer-loop optimization

in variational algorithms, analytical techniques quickly become out of scope, leaving

open the question of performance benefits (if any) for QAOA with higher depths

and on general problem instances such as in the case of constraint satisfiability.

Here, we identify and reveal a fundamental limitation for QAOA caused by a

density induced underparameterizarion, an effect we term – reachability deficits.

Specifically, when considering the ratio of problem instances constraints to vari-

ables, clause density in the case of satisfiability instances, and graph density in the
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case of random graphs, we observe the limiting performance of fixed depth QAOA

to correlate inversely with problem density [1, 2]. For relatively low problem density

instances, a shallow-depth QAOA circuit is able to recover exact solutions to prob-

lem instances. We suspect that it is this low-density subset of problem instances

that could be addressed by current NISQ devices [36]. Reachability deficits necessi-

tate the need for employing deeper circuits to address real-world problem instances,

typically belonging to the high-density subset. Therefore, practical advantage over

classical optimization algorithms may only be achieved via QAOA with hundreds of

qubits and, in the worst case, exponentially increasing circuit depth [38]. Such re-

source requirements are definitely beyond the current scope of NISQ, even excluding

the need for error correction and hardware-specific circuit compilations [38].

Another interesting area of consideration in variational algorithms and, by exten-

sion, in QAOA, is training parameterized quantum circuits using a classical outer-

loop optimization routine. As such, gradient-based and gradient-free methods are

employed to iteratively adjust the circuit parameters to attain convergence to the

optimum of some objective function. However, this step is challenging beyond low

depth, because of an exponentially increasing parameter space to search for an opti-

mum. Furthermore, it is known that for random initialization of circuit parameters

and for certain objective functions, variational algorithms may suffer from barren

plateaus [88, 89]. Therefore, gradient-based methods may end up failing at the task.

Owing to this, several strategies have already been explored in hopes of reducing

the training complexity associated with variational algorithms. Some of which in-

clude circuit re-parameterization, layer-wise training, and even noise-assisted train-

ing [25, 29, 31, 101–103, 114]. Specifically, in the case of QAOA, strategies that

employ machine learning models are of particular interest [99]. The motivation

behind such strategies is the ample empirical evidence of non-trivial co-relations

and/or behaviors for optimal circuit parameters. A milestone result in this regard

is on concentrations [33, 35, 98], which may be at the heart of these observed non-

trivialities.

Here, we identify a subtle effect of concentrations in optimal circuit parameters,

an effect we term as parameter concentrations. Specifically, considering QAOA on
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the problem of variational state preparation, we analytically demonstrate that for

𝑝 = 1, 2, given a set of optimal parameters for 𝑛 qubits, a set of optimal parameters

for 𝑛 + 1 qubits can always be found within a distance bounded by some inverse

polynomial in 𝑛 [3]. As a consequence, one can leverage parameter concentrations

to perform polynomially restrictive training over optimal parameters found at small

qubit counts to find optimal parameters for instances with large number of qubits.

Such a strategy reduces the training cost and is therefore of practical importance.

Finally, one of the most tantalizing open problems in QAOA is estimating the

circuit depth needed for the algorithm to succeed, i.e. recovering approximations

close to the global optimum of some problem Hamiltonian and the scaling of this

critical depth as a function of problem size. One could argue that the required

circuit depth is related to the adiabatic time, since QAOA can be thought of as a

discretized adiabatic evolution [67]. However, it is not necessary that QAOA follows

an adiabatic pathway due to the freedom of arbitrarily changing circuit parameters

via the classical outer loop optimization step. Forcing adiabaticity results in opti-

mal circuit parameters to follow a smooth schedule; however, evidence in violation

of adiabatic schedules has been reported [115]. At most, the adiabatic time pro-

vides a loose upper bound on the required circuit depth given some tolerance on

approximations. Moreover, even in the case of adiabatic quantum computation, it

remains unclear how one would estimate the adiabatic time for general NP-Hard

optimization problems such as in constraint satisfiability.

Here, we attempt to address part of this open problem for the case of MAX-

2-SAT by proposing a predictive model based on the conjecture that the critical

depth required for QAOA to guarantee an 𝜖-tolerant performance grows as a logistic

function on the problem density [4]. We observe that our predictive model is well

within the confidence of the simulated data. Also, based on the predictive model,

we recovered a linear scaling for critical depth with respect to problem size in our

considered dataset. Although our results are not enough to assert any quantum

advantage, it provides an empirical means to be tested on larger problem sizes to

recover and verify this linear scaling. This will pave a path towards identifying the

algorithmic complexity associated with QAOA, a problem of paramount interest
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which is currently out of scope.

In the thesis, we explored QAOA in a noiseless setting; however, NISQ devices

are prone to systematic errors and control limitations [16–18, 58, 116]. Since the

classial outer-loop optimization is operationally a black-box, one might expect the

variational method to overcome some of the systematic limitations of NISQ. There-

fore, it is interesting to perform similar studies and extend our inquiry to noisy

regimes. Unsurprisingly, progress in this direction has started to appear in the lit-

erature [117]. On the limitation of reachability deficits, an important insight gained

is on the expressiveness of the constructed variational state space itself. Unlike vari-

ational algorithms such as Variational Quantum Eigensolver (or VQE), where the

ansatz construction is problem agnostic [19, 20], the variational state space generated

by QAOA is problem specific, potentially hindering the approach. In fact, deviating

from typical construction and making the QAOA problem agnostic as VQE, recent

results suggest the possibility of improvement [118]. Whether such improvements

can free alternating ansatz designs from reachability deficits? is another interest-

ing future scope. From an information theory perspective, recent advances have

been made using ideas borrowed from tensor networks [119]. An interesting tool

to study variational ansatz is to consider their most rank-efficient matrix product

state approximations [120]. This technique allows for a straightforward inquiry into

the potential bipartite entanglement that can be generated by variational circuits.

Such studies enable and provide a means to probe the role of entanglement in the

variational method, an area that is yet to be explored.

Results

1. QAOA on random MAX-3-SAT and random MAX-2-SAT instances exhibits

reachability deficits [1].

2. Onset of deficits for QAOA on random MAX-3-SAT and random MAX-2-SAT

instances numerically coincide with the computational phase transition point

at problem density 1 [1].
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3. QAOA on graph minimization problems – corresponding to minimizing 2-local

Ising model with uniform random couplings drawn form {−1,+1}, exhibits

reachability deficits [2].

4. Parameters concentrate for 𝑝 = 1, 2 QAOA on variational state preparation

with concentration scaling [3]:

|𝛽*
𝑛+1 − 𝛽*

𝑛|2 + |𝛾*
𝑛+1 − 𝛾*

𝑛|2 = 𝒪
(︀
𝑛−4
)︀
,

5. Parameters concentrate for 𝑝 ≥ 3 depth QAOA on variational state prepara-

tion for up to 𝑝 = 5 and 17 qubits with observed scaling being the same as for

𝑝 = 1, 2 [3].

6. The circuit depth required for QAOA to recover 𝜖 tolerant performance on

random MAX-2-SAT instances on up to 15 qubits can empirically be described

by a logistic function on problem density [4].
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Appendix A

QAOA software implementation

The numerical results complied in the dissertation are based on data generated by

an in-house implementation of QAOA. We perform a ideal state-vector emulation

using the standard packages and libraries of Python, specifically NumPy and SciPy.

A.1 Ansatz implementation

Let us recall a depth 𝑝, QAOA ansatz |𝜓 (𝛾,𝛽)⟩, we wish to implement:

|𝜓(𝛾,𝛽)⟩ =
𝑝∏︁

𝑘=1

𝑈(𝛾𝑘, 𝛽𝑘) |+⟩⊗𝑛 , (A.1)

where

𝑈(𝛾𝑘, 𝛽𝑘) = exp(−𝑖𝛽𝑘H𝑥) · exp(−𝑖𝛾𝑘H). (A.2)

The Hamiltonians H𝑥 =
𝑛∑︀
𝑘=1

𝑋𝑘, is the mixer Hamiltonian and H the objective

Hamiltonian to be minimized; typically diagonal in the computational basis.

1. Plus state: The initial state in Eq. (A.1) is trivially implemented as a NumPy

1D array of ones of size 2𝑛 and shape (2𝑛, 1). The array is then multiplied by

the normalization factor,
1√
2𝑛

and stored in the memory.

2. Action of exp(−𝑖𝛾𝑘H): Since H is diagonal, the matrix exponential is trivially

calculated and stored in the memory as a NumPy 1D array of size 2𝑛 and shape
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(2𝑛, 1). The action of exp(−𝑖𝛾𝑘H) on a state can then be implemented as an

element-wise multiplication of 2 1D arrays.

3. Action of exp(−𝑖𝛽𝑘H𝑥): Observe that:

exp(−𝑖𝛽𝑘H𝑥) =
𝑛∏︁
𝑗=1

(cos (𝛽𝑘)1− 𝑖 sin (𝛽𝑘)𝑋𝑗) , (A.3)

where

𝑋𝑗 = 11 ⊗ · · ·𝑋𝑗 · · · ⊗ 1𝑛. (A.4)

Matrices of the kind in Eq. (A.4) are permutation matrices and therefore

the action of such matrices on a state can easily be realized using array re-

orderings. Action of exp(−𝑖𝛽𝑘H𝑥) can therefore be realized sequentially as in

Eq. (A.3) using appropriate scalar multiplications,array additions and array re-

orderings without the need for matrix multiplication or matrix exponentiation.

For a given set of parameters (𝛾,𝛽), |𝛾| = |𝛽| = 𝑝, steps 2 and 3 can repeatedly be

applied to create ansatz state as in Eq. (A.1) which is then stored in the memory

as a 1D array of size 2𝑛 and shape (2𝑛, 1).

A.2 Layerwise heuristic optimization strategy

The classical step in variational algorithms and thus for QAOA is the outer-loop

optimization routine. This classical-quantum feedback loop iteratively adjusts the

circuit parameters thereby allowing for a solution search process over the variational

state space (see Eq. (3.3)). In QAOA, a 𝑝-depth ansatz is prescribed by a total of 2𝑝

variational parameters. By increasing depth, one encounters an exponentially large

parameter space in searching for a candidate optimum. Therefore naively searching

for global optima quickly becomes challenging. Furthermore, due to the phenomenon

of barren plateaus [88, 89], gradient based optimizers may end up failing at the task.

Owing to these factors, in our software implementation of QAOA, we explore a

heuristic optimization strategy motivated by layer-wise training. Consider a fixed

depth 𝑝 ∈ N:
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Appendix A. QAOA software implementation

1. Start with layer 𝑙 = 1. Using best out of 50 random initial guesses {(𝛾1, 𝛽1}, the

standard L-BFGS-B optimizer (a finite-difference based gradient optimizer)

from SciPy finds optimal parameters:

(𝛾⋆1 , 𝛽
⋆
1) ∈ arg min

(𝛾1,𝛽1)
⟨𝜓(𝛾1, 𝛽1)|H |𝜓(𝛾1, 𝛽1)⟩ . (A.5)

2. Considering the next layer 𝑙 = 2, and using 25 random guesses {(𝛾2, 𝛽2)}, we

again search for optimal parameters:

(𝛾⋆2 , 𝛽
⋆
2) ∈ arg min

(𝛾2,𝛽2)
⟨𝜓(𝛾⋆1 , 𝛾2, 𝛽⋆1 , 𝛽2)|H |𝜓(𝛾⋆1 , 𝛾2, 𝛽⋆1 , 𝛽2)⟩ . (A.6)

3. Using the layerwise trained parameters, (𝛾⋆1 , 𝛾
⋆
2 , 𝛽

⋆
1 , 𝛽

⋆
2) as an initial guess(︀

𝛾1,2, 𝛽1,2
)︀
, we perform a round of simultaneous optimization to yield new

parameters:

(︀
𝛾⋆1,2, 𝛽

⋆
1,2

)︀
∈ arg min

(𝛾1,2,𝛽1,2)
⟨𝜓(𝛾1,2, 𝛽1,2)|H |𝜓(𝛾1,2, 𝛽1,2)⟩ . (A.7)

4. Steps 2 and 3 are then repeated for subsequent layers, following the procedure

of concatenating simultaneously optimized parameters and layerwise trained

parameters as initial guesses until the required depth 𝑙 = 𝑝 is attained.

A.3 Software benchmarks

Here we benchmark the time to construct the full state-vector by our implemen-

tation of QAOA. We consider 5 upto 15 qubits and QAOA depths of upto 50 to

assess the run-time of the implementation. Since the implementation avoids matrix

multiplication and exponentiation, the run-times scales linearly with QAOA depth,

𝑝 and exponentially with problem sizes, 𝑛 . The exponential behaviour is expected

due to array sizes scaling as 2𝑛 in memory.
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Figure A-1: Run-time (in seconds) for generating the full state-vector as a function
of QAOA depth, 𝑝 and problem size, 𝑛. Dots represent average times computed for
a statistic of 100 cases at each depth and problem size.
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