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Abstract

B cells of late stages of differentiation - memory B-cells (Bmem),

along with antibody-secreting cells (ASCs) - plasmablasts (PBL) and

plasma cells (PL) are crucial for mounting an efficient immune

response. B-cell receptor (BCR) / produced antibody repertoires of

these subsets hold a spectrum of antigen specificities of humoral

immune response. In this study we aimed to characterize and

compare immunoglobulin heavy chain (IGH) repertoires of three cell

subsets (Bmem, PBL and PL) in human peripheral blood over the

course of one year.

Memory B cells (Bmem; CD19+ CD20+ CD27+ CD138-, plasmablasts

(PBL; CD20– CD19Low/+ CD27++ CD138–) and plasma cells (PL;

CD20– CD19 Low/+ CD27++ CD138+) were isolated from peripheral

blood of 6 volunteers in 3 time points using fluorescence activated

cell sorting. For each cell sample full-length IGH cDNA libraries for

next generation sequencing were obtained, incorporating molecular

barcodes for error correction and data normalization. IGH repertoires

were recovered using MiXCR. As a background for comparison we

used a set of IGH repertoires of naive B-cell subset (Gidoni et al.

2019) processed with the same protocol as the original data.

Distribution of isotypes within the repertoires of cell subsets was

strikingly different. IgM represented more than a half of the repertoire

in Bmem, while IgA was dominant in PBL and PL. The average

CDR3 length and the level of somatic hypermutation (SHM) were

significantly greater in ASCs than in Bmem. Despite these
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differences, IGHV gene segment usage in all three studied subsets

was similar, however diverged greatly from that of the naive B-cell

subset. Moreover, we clustered IGHV genes based on their

sequence similarity and observed that most IGHV segments in each

of the four major clusters behaved concordantly with other IGHV

segments in that cluster. Analysis of clonal overlaps between

repertoires from different time points and individuals revealed large

degree of privacy in repertoires of all subsets as well as stability of

Bmem repertoires - there was no significant difference in clonal

overlap between Bmem samples collected at the same day, 1 month

or 1 year, which was not the case for ASCs. Finally we observe an

excess of shared clonotypes between Bmem repertoires of unrelated

donors compared to naive and pre-immune in silico generated

repertoires. Our longitudinal analysis of IGH repertoires of Bmem,

PBL and PL highlights distinct features of these subsets. The

repertoire of Bmem subset is more stable over time, have more

inter-individually shared clonotypes, and is dominated by IgM

clonotypes. ASC subsets IGH bear signs of more active SHM, are

private and transient in peripheral blood with high prevalence of IgA.

The all three studied subsets concordantly differ from naive subset

by their IGHV-gene segment usage, suggesting an important role of

germline-encoded parts of the BCR for the initial recruitment of the

B-cells to immune response.

Finally, we developed a novel approach for inference of allelic

variants of V- and J-genes from adaptive immune receptor repertoire

sequencing data, which showed superior flexibility and sensitivity to

the existing tools.
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Chapter 1. Introduction

B cells play a crucial role in protection from various pathogens and

cancer cells as well as regulation of the immune response. The

structural diversity of B cell receptors (BCRs) is responsible for the B

cell-mediated immune system’s capacity to recognize a wide variety

of different antigens, and every individual harbors a large pool of

naive B cell clones, each with a unique BCR. Antigenic challenge

triggers the proliferation and maturation of naive B cells with cognate

BCRs, and the resulting progeny comprise a number of cell subsets

with differing functions and lifespans. During the affinity maturation

process, the initial structure of a given BCR can change at the

genomic level as a result of somatic hypermutation (SHM), a process

that accompanies B cell proliferation after antigen-specific activation.

Cells bearing BCRs with higher affinity to the antigen are favored

during the affinity maturation process, and produce signals that

stimulate further differentiation and expansion (De Silva and Klein

2015). Another process called class-switch recombination further

increases the dimensionality of the BCR space. The five main

classes, or isotypes, of antibodies (i.e., IgA, IgD, IgE, IgG, and IgM)

have different functions in the immune response (Stavnezer,

Guikema, and Schrader 2008; Vidarsson, Dekkers, and Rispens

2014), and isotype switching during clonal proliferation can thereby

change the functional capabilities of B cells and the antibodies they

produce. As a consequence, antigen challenge yields a population of

clonally related cells with different BCRs and functionalities.

Recently developed immune repertoire sequencing techniques
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provide valuable insights into the development and structure of B-cell

immunity with clonal-level resolution. Studies of B-cell receptor clonal

repertoires in health and disease have already provided valuable

insights in pathogenesis of various conditions and adaptive immunity

organization with important implications for treatment and vaccine

development. However, detailed characterization of dynamics of

BCR clonal repertoires of differentiated cell subsets of B-cell lineage

has been lacking until recently, while being of interest because these

subsets, in particular memory B cells, plasmablasts, plasma cells,

substantiate crucial part of human immune memory - both at humoral

and cellular level.

We have investigated immunoglobulin heavy chain repertoires from

memory B cells, plasmablasts, and plasma cells from peripheral

blood collected from generally healthy volunteers at three time points

over the course of a year. In order to obtain detailed and unbiased

repertoire data, we used advanced IgH repertoire profiling

technology that provides full-length IgH variable region sequences

with isotype annotation. Based on comparative and phylogenetic

analysis of the resulting data, we are able to describe the structure,

distinctive features, clonal relations, isotype distribution and temporal

dynamics of B cell subset repertoires.

We have also developed a novel tool for inferring allelic variants of V-

and J-genes from adaptive immune receptor repertoires which has a

number of substantial advantages compared to existing tools and

most importantly is significantly more sensitive.
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Chapter 2. Literature review

2.1 Adaptive immune responses

Human immune system protects our bodies from external and

internal threats, such as bacteria, viruses or fungi as well as cancer.

Two interdependent systems can respond to a threat - innate and

adaptive immunity. Innate immunity is the first line of defense after

the external barriers (skin, mucosa etc) were penetrated - it mounts a

broad initial response of low specificity via pattern recognition

receptors on innate immune cells, such as neutrophils,

macrophages, eosinophils and dendritic cells as well as through

humoral response predominantly via complement system1. Adaptive

immunity mounts a more specific and efficient response with T cells

and B cells. However, this response is rather slow on first encounter

to a specific pathogen. On the other hand, these cell subsets can

form immunological memory, granting a long-lasting and reliable

protection against already seen pathogens, both humoral and

cellular.

T cells may have very distinct functionalities, while the main

difference is between CD8+ and CD4+ T-cells. Primary function of

CD8+ cytotoxic T cells (killer T cells) is killing of infected or cancer

cells. CD4+ T cells have a much more diverse range of functions:

these T cells can either activate a particular mode of immune

response (helper T cells, Th) or suppress it (regulatory T cells, Treg).

For example, Th1 cells elevate intracellular killing mechanisms of

macrophages, while Th2 cells can enhance extracellular pathogen
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clearing. Follicular helper cells (Tfh) provide help for B-cell

differentiation to antibody-secreting cells (ASCs), and B-cell memory

formation (Crotty, 2019). ASCs secrete large amounts of

immunoglobulins which bind specifically to pathogens and their

toxins, resulting in neutralization and activation of the complement

system. Some of the ASCs can become long-living plasma cells (PL)

and reside in the specialized niches in the bone marrow for many

years, ensuring a long-lasting protection against repeated challenge

with the same pathogen.

2.2 B-cell differentiation to ASC and memory subsets

The initial diversity of B-cell receptors is immense, currently the

estimated lower bound is 1016 different variants (Briney et al., 2019;

Mora & Walczak 2018). Within this diversity the frequency of the

cells with a receptor specific to a particular antigen is extremely low.

Even within the memory B-cell compartment blood such frequency

hardly reaches 10-4 as detected by contemporary methods. Within

the naive B-cell subset one can expect even lower frequencies of

antigen-specific cells, as they have not undergone antigen-driven

clonal expansions. Initiation of the B-cell lineage immune response

requires that these rare antigen-specific cells encounter the antigen.

Secondary lymphoid tissues, such as lymph nodes (LNs), spleen or

Peyer patches, serve as major anatomical compartments for this

encounter. Lymphocytes from the blood are constantly recruited to

these organs for training in specialized compartments (lymphoid
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follicles), guided by a chemokine CXCL13, which is the ligand for

chemokine receptor CXCR15. The incoming antigens are also

delivered to these follicles - lymphoid tissues continually filter body

fluids to capture those antigens. (Cyster, 2010). Various cell types

handle the intact antigen to deliver it for the B-cells to encounter; e.g.

lymph node subcapsular sinus macrophages are the initial handlers

of the antigen in the LNs. The intact antigen is delivered to the

centers of lymphoid follicles where specialized stromal cells, called

follicular dendritic cells (FDCs) present the intact antigens to B-cells.

Antigen opsonization (either by antibodies or by complement) also

facilitates presentation of antigen on FDCs.(Allen and Cyster, 2008;

Heesters et al., 2014). FDCs along with other stromal cells within the

follicle also serve as the source of CXCL13. Besides lymphoid

stromal cells produce an important B-cell survival factor BAFF

(Cremasco et al., 2014; Rodda et al., 2018). In case the B-cell does

not encounter antigen after several hours it exits the lymphoid organ

due to sensing sphingosine-1-phosphate (S1P) with a S1PR1

receptor (Cyster and Schwab, 2012) and enters a circulatory fluid,

either blood (exiting from spleen) or lymphatic vessels (exiting from

LNs or Peyer patches). Then it travels to another lymphoid organ to

continue surveillance.

In case the contact between an antigen and a B-cell occurs.

The exact mechanism by which BCR binding to antigen initiates

downstream signaling is yet to be fully understood. One of the

current models propose that the BCR clustering on the membrane

may be the initiating event (Liu et al., 2016). Another model
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postulates that on the contrary the disruption of pre-existing BCR

clusters may have the leading role in signal initiation (Yang and Reth,

2016). The subsequent signaling relies on phosphorylation of IgM-

and IgD-associated Igα and Igβ molecules, which contain

intracellular ITAM motifs (Kurosaki et al., 2010; Yang and Reth,

2016). Stimulation of some co-receptors, e.g. toll-like receptors,

leads to signal amplification and alteration (Suthers and

Sarantopoulos, 2017). Another important co-receptor, CD19,

associates with IgM and IgD and triggers the PI3 kinase-Akt pathway

(Kurosaki et al., 2010). Initial BCR-signaling leads to multiple

changes in B-cell transcription program including enhancing

antigen-presenting capabilities, increasing chemokine receptors and

costimulatory molecules (CD80/86) expression. Next, internalization

of BCR with antigen occurs in clathrin-dependent way, also requiring

tyrosine phosphorylation in Igα and Igβ subunits by Src-family

kinases.(Hoogeboom and Tolar, 2016). Subsequent trafficking and

processing of the antigen in endosomes and, then, in lysosomes,

leads to antigen peptides presentation in the context of major

histocompatibility complex class II (MHC II) for receiving T-cell help.

The contact with the T-cell via cognate interaction of T-cell receptor

(TCR) and peptide-MHC complex (pMHC) is the requirement for

further activation of a B-cell, triggering cell proliferation and

differentiation. However, this requirement can be overcome in two

ways. First, in type 1 T-independent response signaling via

co-receptors (e.g. via TLRs) may serve as the “second signal”

necessary for further B-cell activation, proliferation and survival.

Second, in type 2 T-independent response binding of multivalent
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antigens such as polysaccharides on encapsulated bacteria or

polymeric proteins, by multiple BCRs on a B-cell can provide

sufficient signal for downstream activation. In case of T-dependent

response the “second signal” is provided by a CD4 helper T-cell,

which can interact with a B-cell at the edge of the B-cell follicle and

the T-cell zone. In order for such a rare event to occur (as both T-

and B-cells specific to a particular antigen are rare) B-cells

upregulate CCR7 and EBI2 - chemokine receptors guiding the

pre-activated B-cell to the interface. T follicular helper cells (Tfh

cells), which have been primed by antigen-presenting dendritic cells

serve as the major source of costimulatory and survival signals.

FDCs together with T- and B-cells form specialized structures within

the follicles called germinal centers (GCs). Tfh cells interacts with the

pre-activated B-cell by means of cognate recognition of pMHC with

cognate TCR, and also through interactions of costimulatory

molecules such as ICAM1–LFA1 and SLAM family members

(Akkaya et al. 2020,Crotty 2019). The “third signal” necessary for

B-cell fate progression are secreted signal molecules cytokines, e.g.

IL-21, which is necessary for maintenance of expression of crucial

GC B-cells transcription factor Bcl-6 and somatic hypermutations

(SHM). Naive B-cells entering the first phase GC reaction (phase 1)

appear to be multipotent and can commit to at least three major

fates. After differentiation to GC B-cells and acquiring SHMs they

can enter phase 2 of GC reaction and subsequently differentiate into

memory B-cells (Bmem) or long-lived plasma cells (LLPCs) (Cyster

& Allen 2019). Besides the possibility of generating memory B-cells

independently of GCs was shown in BCL-6 deficient mice (Toyama

21



et al. 2002). These cells, however, have limited ability to acquire

SHM in healthy donors (in contrast to ones affected to some of the

autoimmune disorders) and appear to be unable to become LLPCs

(Elsner & Shlomchik, 2020). The third possible fate for a naive B-cell

is to become a short-lived plasma cell residing primarily in medullary

cords of the red pulp of the spleen, with a lifespan limited to the

duration of the infection. In phase 2 of GC response happens upon

re-entry of GC B-cells to GCs. Here the B-cells continue to express

BCL-6 as well as sphingosine 1-phosphate receptor 2 (S1P2), which

ensures their retention in the GC (Green et al. 2011). In the GC dark

zone B-cells undergo proliferation and SHM and then enter the light

zone, where affinity selection happens. Again, one of three possible

fates await a B-cell: becoming either a long-lived plasma cell or a

memory B-cell, or dark zone re-entry as a GC B-cell for further

rounds of SHM and selection. Fourth possibility, which in fact awaits

the majority of the B-cells in GC reaction is undergoing apoptosis

(Anderson et al., 2009; Mayer et al., 2017).

It has been shown recently that GC reactions have temporal

switches which determine to which fate the B-cells commit. Bmem

are predominantly produced in the early GCs, while LLPCs emerge

very late in the GC responses (Weisel et al. 2016), which may

explain the observed higher levels of SHM in antibody-secreting cells

(ASCs) (Phad et al. 2022) and assume less mutated more broadly

reactive BCRs in Bmem compared to LLPCs.
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2.3 B-cells recognize antigens with a highly variable B-cell
receptor, generated in stochastic, albeit directed manner

Recognition of antigens by B-cells is mediated by the membrane

form of an antibody, also called B-cell receptor (BCR). DNA

sequence, coding for this receptor, can serve as a defining feature

for each clonotype in B-cell lineage.

In every human, there is an enormous diversity of these receptors,

and subsequently, of secreted antibodies. This diversity is generated

by three processes, complementing each other: V(D)J

recombination, somatic hypermutation, and class-switch

recombination.

An antibody consists of two heavy (H) and two light (L) chains, each

containing a variable domain, derived from DNA rearrangements. In

this process, called V(D)J recombination, one of V, D (only for

H-chain) and J segments is selected to form a mature BCR gene

(Figure 1). Initial combinatorial diversity (e.g. 46 V × 23 D × 6 J for

H-chain) is increased further by ‘junctional’ diversity, generated by

V(D)J junction joining (Lefranc & Lefranc, 2020). Hairpin, formed

between 5’ and 3’ ends of rearranging gene by ligation, can leave a

3’ palindromic overhang when resolved by nicking. Moreover, each

of the rearranging segments can lose several nucleotides during

recombination. Finally, terminal deoxynucleotidyl transferase, acting

in the process of DNA repair during recombination, can randomly

add non-germline coded nucleotides at junction sites (Tonegawa,

1983). Thus, the initial antibody repertoire potential diversity of more

than 1016 different variants is formed (Mora, 2018).
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Figure 1. B-cell receptor generation by DNA segments rearrangement (adapted from

Nemazee, 2017)

The second process, contributing to immunoglobulin repertoire

diversity is called class-switch recombination. The heavy chain of an

antibody contains a constant region, coded by one of the nine

consecutively located CH genes, located downstream of the VDJ loci

(Fig. 2). Extracellular signals, received upon exposure of B-cell to an

antigen, such as cytokines, produced by T-cells, promote excision of

one or several CH segments, allowing production of BCRs with

different constant part (Fc fragment of Ig). While the variable part of

an antibody defines its binding specificity, the Fc fragment sets the

isotype and, therefore, the functional characteristics of the resulting

immunoglobulin. For instance, the Cε segment is the one which is

utilized in the production of IgE antibodies, allowing them to bind to

Fcε receptors.

The final mechanism, affecting the diversity of Ig repertoire, is

somatic hypermutation (SHM). SHM occurs on the variable domain

genes of germinal center B-cells at a rate of approximately 10-3

alterations per base pair per cell division. SHM is the major

mechanism necessary for affinity maturation of an Ig repertoire in

response to the repeated immune challenge.
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Figure 2. Human IGH locus organization (adapted from Schroeder et al., 2010)

Taken together these three processes yield an astronomical potential

diversity of different antibodies. Taking into account the total number

of B-cells in the human body, estimated as 1–2 × 1011, it is clear that

in a single individual only a small fraction of the potential pool of

immunoglobulin variants is present (Mora, 2018).

2.4 Novel ways to study B-cell receptor repertoires were
developed with the emergence of next-generation sequencing

Development of next-generation DNA sequencing (NGS)

technologies in the last decade made high-throughput genomic

studies possible. However, the nature of BCR loci, with its mix of

highly variable regions and constant regions, hindered the

investigation of BCR repertoires in the early days of NGS. Not until

specialized techniques for library preparation for BCR repertoire

sequencing (He et al., 2018; Turchaninova et al., 2016) were

developed, it became
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Figure 3. Conventional workflow for high-throughput sequencing of immunoglobulin

repertoire (adapted from Georgio et al., 2014)

possible to fully utilize the power of NGS for research of adaptive

immunity.

A typical workflow for immunoglobulin repertoire sequencing

(repSeq) is similar to conventional approaches for amplicon

sequencing and includes several steps: cell isolation, template

purification, amplification, sequencing library preparation and

sequencing, data processing and data analysis (Figure 3, Georgio et

al., 2014). Nevertheless, several peculiar details should be carefully

considered.
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First of all, the most readily accessible source of B-cells in humans,

the peripheral blood, contains only about 2% of total B-cells in a

human body, while in the other body compartments, such as lymph

nodes or bone marrow from 17% to 28% of total number of B-cells

can be found. Moreover, the typical blood sample size hardly

exceeds 8 ml of blood, thus limiting the sampling depth (from 1-2 ×

109 of peripheral blood B-cells).

Second, heterogeneity of B-cell populations is the critical aspect,

which should be taken into account. Both functional and phenotypical

characteristics of B-cell subsets vary dramatically. Neglecting this

fact may lead to misinterpretation and biased or incorrect

conclusions. For instance, Ig-seq library preparation starting from

bulk RNA, isolated from peripheral blood mononuclear cells (PBMC),

will most likely result in a tangled data set. In such data set clonal

sequences from transient plasma cells and plasmablasts will be

overrepresented, some portion of clonal sequences, derived from the

most abundant memory B-cells will still be present, and little or no

sequences from low-frequency memory B-cells and naive B-cells will

be present. If replica blood sample is taken, the results will most

likely be incoherent between two replicas - in the absence of immune

challenge peripheral blood plasma cells are rare and most likely

clonally heterogeneous, but still yielding high copy number of Ig

mRNA, which is enough to introduce bias into clonal quantification.

This also leads to the third important consideration - whether to use

gDNA or mRNA as a template for Ig repSeq library preparation.

Genomic DNA may be a good choice, if clonal quantification is the
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primary goal of the research, however, there are several critical

drawbacks in this approach. Due to the several kB of the intron,

present in IGH C segment, it is impossible to infer isotype

information, using gDNA as a template - typical NGS read length

(max. 310 bp, paired reads for Illumina Hiseq) is not enough to cover

such long amplicons. PacBio and Nanopore (the sequencing

technologies with read-length long enough to overcome the problem)

have unacceptable error rate and very low output. After all,

gDNA-based protocols rely on multiplex PCR amplification, with

multiple primers, specific to V and J segments. The efficiency of

amplification is different for each primer, therefore clonotypes with

different VJ combinations are amplified unequally, resulting in biased

clonal proportions. Most of these problems are not relevant for the

modern mRNA-based protocols, utilizing 5’-RACE amplification with

the unique molecular identifier (UMI) and universal amplification

adapter incorporation by template switch (e.g. Turchaninova et al.,

2014). UMI labeling of initial cDNA molecules before PCR

amplification allows unbiased quantification BCR repertoire as well

as UMI-guided PCR error correction (Shugay et al., 2014; Ma & He

et al., 2018). Despite these advantages of RNA-based approaches,

significant variation of Ig mRNA copy number among various B-cell

subsets still remains a challenge. At least partially it can be resolved

by fluorescence- activated cell sorting (FACS) of cell subpopulations

with different Ig mRNA expression levels - PCs, plasmablasts,

memory and naive B-cells.
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Emerging single-cell sequencing technologies allow to study immune

repertoires at several additional layers of complexity. First, pairing of

heavy and light antibody chain sequences becomes available at

relatively high throughput. Second, the most advanced approaches

allow linking BCR sequences with transcriptomic profiles for each

particular cell. Besides, variation of Ig mRNA copy number variation

between different B-cell subsets which was mentioned as a

significant obstacle for clonal structure analysis in bulk RNA-based

repertoire sequencing approaches, is no longer a problem for single

cell sequencing assay. Despite these advantages, single-cell

sequencing is still an emerging technology with significantly lower

throughput and often prohibitive costs for studying larger cell

populations. These features make studying of particular small cell

populations of interest (e.g. tetramer-sorted antigen-specific B-cells)

the main target for single cell sequencing approaches at the

moment.

Thus, the choice of the particular approach for BCR repertoire

sequencing should depend on particular research goals and be

aligned with specific research questions.
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2.5 B-cell clonal memory in various B-cell subsets through the
length of high throughput BCR repertoire sequencing

Development of high-throughput DNA-sequencing methods allowed

studying diversity and clonal structure of immune repertoires at

unprecedented depth. Human bulk BCR repertoire characteristics,

such as clonal diversity, extent of clonal expansions, level of SHM

and degree of clonal sharing between were studied by multiple

studies (Briney et al. 2019; Soto et al. 2019; Shah et al. 2019;

Mandric et al. 2020; Yang et al. 2021). Those repertoire were also

studied at the level of different isolated B cell subsets: naïve,

marginal zone, switched and plasma cells (Ghraichy et al., 2021).

The most recent effort by Phad et al. revealed high degree of clonal

memory persistence in memory B-cells as well as clonal relatedness

of circulating plasmablasts to persisting memory clonal lineages by

means of high-throughput single-cell BCR repertoire sequencing of

multiyear serial samples from two healthy adult donors (Phad et al.

2022).

Involvement of B-cell mediated immunity was also studied in patients

with different pathologies helping to reveal mechanisms of the

diseases (Bashford-Rogers et al. 2019; S. C. A. Nielsen et al. 2020;

Gaebler et al. 2021; Sakharkar et al. 2021).

Longitudinal analysis of repertoires at different timepoints has made

it possible to study the dynamics of B cell response following

antigenic challenge or therapy (Laserson et al. 2014; Davydov et al.

2018; Horns et al. 2019; Nourmohammad et al. 2019; Hoehn et al.

2021). Reconstruction of BCR evolution in B cell clonal lineages and
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phylogenetic analysis can reveal which evolutionary forces

predominate at different stages of clonal lineage development. De

Bourcy et al. recently reported on age-related differences in the

structure of clonal lineages, somatic hypermutagenesis and affinity

maturation processes, and differences in recall response of

persisting lineages upon vaccination depending on CMV

seropositivity status (de Bourcy et al. 2017). Other studies have

described in detail the action of positive selection in the evolution of

clonal lineages in vaccination and chronic HIV infection (Bonsignori

et al. 2017; Horns et al. 2019; Nourmohammad et al. 2019). Reports

have also described persisting clonal lineages which are

predominantly represented by cells with IgM/IgD isotypes, and which

demonstrate signs of neutral evolution (Horns et al. 2019). Wu et al.

observed the clonal stability of plasma cells in bone marrow (Wu et

al., 2016), representing the largest fraction of ASCs in the human

body. Comparison of BCR repertoires between different cell subsets

also makes it possible to investigate factors governing the functional

assignment of B cells during proliferation, and thereby to understand

fundamental aspects of B cell immunity. For example, recent studies

have described differences in BCR repertoires of IgM and switched

memory B cells as well as the complex interplay between CD27high

and CD27low B-cell memory subsets, showing the complex nature of

B cell immune memory (Wu et al. 2010; Grimsholm et al. 2020).
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2.6 Inference of allele variants of V- and J-genes from adaptive
immune receptor repertoires remains a challenge

The allelic diversity of V- and J-genes underlies the overall diversity

of immune repertoires, and was shown to have functional impact on

immune response in humans. Analysis of the adaptive immune

repertoires and most importantly the downstream analysis of

immunoglobulin repertoires also heavily depends on accurate allele

calling and genotyping, e.g. for somatic hypermutations

quantification and lineage trees construction. Adaptive immune

repertoire sequencing (AIRR-seq) can be a very powerful technology

for getting biological insights about the organization and the

dynamics of the adaptive immunity as demonstrated in previous

sections. Ability to precisely call known allelic variants and infer novel

ones from the same AIRR-seq could add another angle to the

analyses and also improve accuracy of many existing downstream

approaches. There are several published approaches to the problem

of genotyping and allelic inference of V- and J-genes from AIRR-seq

data (Table 1, numbers 2-5), however each one of them has some

crucial limitations. TIgGER (Gadala-Maria et al., 2015) and Partis

(Ralph et al., 2017) are based on the same idea that allelic mutations

show a very distinctive pattern over the background of SHMs,

therefore requiring SHMs to be present in the dataset for reliable

inference. This is not the case for many datasets, most obviously for

T-cell receptor repertoire data and naive B-cell repertoires. On the

other hand, IgDiscover (Corcoran et al., 2016), a very robust and

reliable tool for novel allele inference, requires only data without
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hypermutations thus excluding the majority of immunoglobulin

repertoire datasets. Another algorithm, ImPre (Zhang et al., 2016), in

theory could overcome these obstacles, however it is no longer

supported, last code commit in the online repository

(github.com/zhangwei2015/IMPre) dates back to 7 years ago; we

were not able to run the tool to perform the analysis.

Table 1. Tools for inference of novel alleles and genotyping from AIRR-seq data
and their characteristics.

# Tool name Year

Supported

chain

type(s)

Supporte

d gene

type(s)

Programmin

g

language(s)

Suitable for

inference

from

unmutated

repertoires

Suitable for

inference

from

hypermutate

d repertoires

Works with

the

minimal

starting

reference

1 MiStrainer 2023

IGH, IGK,

IGL, TRA,

TRB

V, J Java, Kotlin Yes Yes Yes

2 TIgGER 2015
IGH, IGK,

IGL
V R No Yes No

3
IgDiscove

r
2016

IGH, IGK,

IGL, TRA,

TRB

V, D, J Python Yes No No

4 Partis 2019
IGH, IGK,

IGL
V

C,C++,Perl,

Python
No Yes No

5 ImPre 2016

IGH, IGK,

IGL, TRA,

TRB

V, J C,Perl Yes Yes No

33



Another issue common for all of the existing tools is that all of them

are quite demanding to the depth of AIRR-seq data for the reliable

inference (e.g. IgDiscover recommends at least 750,000 sequencing

reads per individual library), while such depth of sequencing creates

stiff economical constraints and the most of the publicly available

AIRR-seq datasets do not reach such depth. Thus there is an

evident need for more sensitive and flexible novel tools addressing

the same question of V- and J-gene genotyping from AIRR-seq data.

Here we present MiStrainer, a tool developed for this task which

lacks the above mentioned limitations - it allows allelic inference and

genotyping from both hypermutated and non-hypermutated

repertoires and has much milder requirements for the depth of

sequencing. Another important aspect is that the algorithm performs

well starting with the minimalistic gene reference library with only one

allele of each gene present and even sparser. This peculiar feature

makes the tool especially useful for studying allelic diversity in novel

species where the reference gene libraries are sparse and usually

incomplete.
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Chapter 3. Methodology

3.1 Study design, cohort, cells, and timepoints

Blood samples from six (4 males and 2 females) young and

middle-aged donors (23, 27, 27, 33, 33, and 39 y.o.) without severe

inflammatory diseases, chronic or recent acute infectious diseases,

or vaccinations were collected at three time points (T1 - 0, T2 - 1

month, T3 - 12 months) (Figure 4); donor details and the number

cells collected for each time point and cell subset are provided in

Table 2. Four donors suffered allergic rhinitis to pollen, and two also

suffered from food allergy. Informed consent was obtained from each

donor. The study was approved by the Ethical Committee of Pirogov

Russian National Research Medical University, Moscow, Russia. At

each time point, 18–22 mL of peripheral blood was collected in BD

Vacuette tubes with EDTA. Peripheral blood mononuclear cells were

isolated using Ficoll gradient density centrifugation. To isolate

subpopulations of interest, cells were stained with anti-CD19-APC,

anti-CD20-VioBlue, anti-CD27-VioBright FITC, and

anti-CD138-PE-Vio770 (all Miltenyi Biotec) in the presence of FcR

Blocking Reagent (Miltenyi Biotec) according to the manufacturer’s

protocol, and then sorted using fluorescence-activated cell sorting

(FACS; BD FacsAria III, BD Biosciences) into the following

populations: memory B cells (Bmem; CD19+ CD20+ CD27+ CD138-,

plasmablasts (PBL; CD20– CD19Low/+ CD27++ CD138–), plasma cells

(PL; CD20– CD19 Low/+ CD27++ CD138+). For each donor at T1, one

replicate sample of each cell subpopulation was collected. At T2 and
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T3, two replicate samples were collected ( to50 × 103 100 × 103

Bmem, to PBL, to PL per1 × 103 2 × 103 0. 5 × 103 1 × 103

sample).

Figure 4. Study design. Peripheral blood from six donors was sampled at three time

points: T1 - initial time point, T2 - 1 month and T3 - 12 months after the start of the

study. At each time point, we isolated PBMCs and sorted memory B cells (Bmem:

CD19+ CD20+ CD27+), plasmablasts (PBL: CD19low/+ CD20- CD27high CD138-) and

plasma cells (PL: CD19low/+ CD20- CD27high CD138+) in two replicates using FACS. For

each cell sample, we obtained IGH clonal repertoires by sequencing respective cDNA

libraries covering full-length IGH variable domain.
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Table 2. Donor demographics and cell samples size. Several values in table cells

separated by a semicolon represent replicates collected for corresponding donor, time

point and cellular subset. AR - allergic rhinitis; FA - food allergy; HD - healthy donor.

Number of cells per sample

Time point T1 T2 T3

Donor ID Age Sex Status Bmem PBL PL Bmem PBL PL Bmem PBL PL

D01 27 F AR n/a n/a n/a
50,300;

55,400

2,100;

2,100

1,020;

1,010

50,000;

50,000

1,000;

1,000

500;

500

IM 39 M AR,FA 186,572 2,200 129
69,900;

68,400

2,000;

2,486
920

50,000;

50,000

2,000;

2,000

1,000;

1,000

MRK 27 M AR 143,162 5,336 251
51,700;

50,600

2,130;

2,020

1,000;

1,035

50,000;

50,000

1,000;

1,000

400;

200

AT 23 M AR,FA 101,400 7,200 1,800
50,600;

57,400
2,520 800

50,000;

40,800

1,000;

1,000

400;

400

IZ 33 M HD 101 800 3,900 850
50,500;

56,300

1,140;

1,840

1,050;

625

50,000;

50,000

2,000;

2,000

200;

200

MT 33 F HD n/a n/a n/a n/a n/a n/a
50,000;

50,000

1,000;

1,000
400
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3.2 IGH cDNA libraries and sequencing

IGH cDNA libraries were prepared as described previously

(Turchaninova et al. 2016) with several modifications. Briefly, we

used a rapid amplification of cDNA ends (5’ RACE) approach with a

template-switch effect to introduce 5’ adaptors during cDNA

synthesis. These adaptors contained both unique molecular

identifiers (UMIs), allowing error-correction, and sample barcodes

(described in Zvyagin et al. 2017), allowing us to rule out potential

cross-sample contaminations. In addition to a universal sequence for

annealing the forward PCR primer, we also introduced a 5' adaptor

during the reverse transcription (RT) reaction, which allowed us to

avoid using multiplexed forward primers specific for V segments,

thereby reducing PCR amplification biases. Multiplexed

C-segment-specific primers were used for RT and PCR, allowing us

to preserve isotype information. Prepared libraries were then

sequenced with an Illumina HiSeq 2000/2500, (paired-end, 2 x 310

bp).

3.3 Sequencing data pre-processing and repertoire
reconstruction

Sample demultiplexing by sample-barcodes introduced in the 5'

adapter and UMI-based error-correction were performed using

MIGEC v1.2.7 software (Shugay et al. 2014). For further analysis, we

used sequences covered by at least three sequencing reads.

Alignment of sequences, V-, D-, J-, and C-segment annotation, and
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reconstruction of clonal repertoires were accomplished using MiXCR

v3.0.10 (Bolotin et al. 2015) with prior removal of the

primer-originated component of the C-segment. We defined

clonotypes as a unique IGH nucleotide sequence starting from the

framework 1 region (FR1) of the V segment to the end of the J

segment, and taking into account isotype. Using TIgGER

(Gadala-Maria et al. 2015) software, we derived an individual

database of V gene alleles for each donor and realigned all

sequences for precise detection of hypermutations. For analysis of

general repertoire characteristics (isotype frequencies, SHM levels,

CDR3 length, IGHV gene usage, and repertoire similarity metrics) we

used samples covered by at least 0.1 cDNA molecules per cell for

Bmem, and at least 5 cDNA per cell for PBL and PL.

3.4 Repertoire characteristics analysis

Isotype frequencies, rate of SHM, and CDR3 lengths were

determined using MiXCR v3.0.10 (Bolotin et al. 2015). For

calculation of background IGHV gene segment usage and number of

shared clonotypes, we utilized data derived from Gidoni et al. 2019

(European Nucleotide Archive accession number ERP108501)

representing naive B cell IGH repertoires, where the IGH cDNA

libraries were prepared using 5’RACE-based protocol similar to the

protocol used in the current study. We used repertoires containing

more than 5,000 clonotypes and processed them in the same way as

our data, 20 repertoires in total. IGHV gene frequencies were

calculated as the number of unique clonotypes to which a particular

IGHV gene was annotated by MiXCR divided by the total number of
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clonotypes identified in the sample. To assess IGHV gene segments

over- and under-represented in studied subsets, we utilized edgeR

package v0.4.4 (Robinson et al., 2010b) with the ‘trended’ dispersion

model using trimmed mean of M values method for normalization

(Robinson et al., 2010a). To evaluate pairwise similarity between

repertoires based on IGHV gene segment frequency distributions,

we utilized Jensen-Shannon divergence, calculated using the

following formula:

where P and Q represent distributions of IGHV gene segment in two

repertoires, and pi and qi represent frequencies of individual member

i (IGHV gene segment). In silico repertoires used for the calculation

of background clonal overlap (each repertoire contained 5000

clonotypes) were generated with OLGA software v1.0.2 (Sethna et

al. 2019) under standard settings utilizing the built-in model. For

clonal overlap calculation, we downsized repertoires to a fixed

number of clonotypes. For Fig. 12,13 , the 14,000 most abundant

clonotypes were considered in Bmem, 600 in PBL, and 200 in PL.

Cell samples with smaller numbers of clonotypes were excluded

from comparisons: IM T1 repl. 1, MRK T1 repl. 1, MRK T3 replicate

2, IZ T3 replicates 1,2; all from PL subset. For Fig. 14, we

considered 5,000 clonotypes for all cell subsets. Clonotypes with

identical CDR3 amino acid sequence and the same IGHV gene

segment detected in both analyzed samples were considered
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shared. Clonotypes shared between repertoires of at least two

individuals were termed as public.

3.5 Statistical analysis and plotting

Statistical analysis was performed utilizing R programming language

(R Core Team, 2018) and ggpubr v0.4.0. Plots were generated using

ggplot2 package v3.3.4 for R (Wickham, 2016) .

3.6 Allele variants detection algorithm

The algorithm utilizes alignment and clonotype assembly information

from the upstream repSeq data processing, specifically mutation

calls from reference V- and J-gene reference library for BCR or TCR

clonotypes and V- and J-gene annotations, readily available after

running ‘analyze’ command of MiXCR software (Bolotin et al. 2015).

The clonotype definition for the purpose of allele inference may vary

depending on the region covered by sequencing; the approach was

tested for clonotypes defined by the unique full length nucleotide

sequence of variable region of BCR and TCR. Clonotype definition

by a shorter nucleotide sequence spanning from the beginning of

Complementarity Determining Region 1 (CDR1) to the end of

Framework region 4 (FR4) was also tested with only differences in

allelic mutations in the region left out from the full-length region

(Framework region 1).
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Then allele inference for V- and J- proceeds separately but in the

same manner. For simplicity here we demonstrate the further steps

of inference for V-genes:

1. Clonotypes are grouped by the annotated V-gene segments.

2. For each mutation from the corresponding V-gene in the

reference library within the group, including insertions and

deletions, we define a set of clonotypes which contain this

mutation.

3. The mutations are filtered using a threshold on the diversity of

the combinations of J-genes and CDR3-lengths of clonotypes

containing that mutation. The mutations that do not have

sufficient diversity of J-genes and CDR3-lengths are then

removed from each of the clonotype’s mutation sets, thus

reducing the noise. However this step is not alone sufficient for

separating allelic mutations from SHMs due to presence of both

hot-spot hypermutations and PCR and sequencing errors.

4. Then clonotypes are further grouped by these filtered mutation

sets, including empty mutation sets, representing alleles

already present in the starting library. The diversity of J-genes

and CDR3 lengths combinations within each of these groups is

determined along with the number of clonotypes containing no

mutations in J-gene (after filtering at step 3). Mutation sets are

then filtered by thresholds of these two parameters, resulting in

a list of allele candidates.
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5. Clonotypes are then assigned to the closest allele candidates

by comparing their sets of mutations. Candidates are then

sorted by the score which is calculated by the number of

combinations of different J-genes with the number of different

CDR3 lengths and the number of clonotypes containing no

mutations in J-gene (after filtering at step 3) in clonotypes

assigned to these candidates. Formula for the score:

𝑠𝑐𝑜𝑟𝑒 =  𝑁
𝐽𝑔𝑒𝑛𝑒−𝐶𝐷𝑅3𝑙𝑒𝑛

+  2 · 𝑁
𝑛𝑎𝑖𝑣𝑒𝐵𝑦𝐽𝑔𝑒𝑛𝑒

 

Where is the number of combinations of different𝑁
𝐽𝑔𝑒𝑛𝑒−𝐶𝐷𝑅3𝑙𝑒𝑛

J-genes with the number of different CDR3 lengths; 𝑁
𝑛𝑎𝑖𝑣𝑒𝐵𝑦𝐽𝑔𝑒𝑛𝑒

- number of clonotypes with no mutations in J-gene after

filtering.

6. All candidates that have the score calculated above no less

than 35% of the maximum score in that V-gene group are then

selected for the resulting subject-specific gene set library.

The same process is then applied to J-gene alleles, but the diversity

is calculated for V-genes as well as the number of clonotypes with

V-genes containing no mutations is considered at steps at 4 and 5.

3.7 Allele variants detection benchmarking

IGH repertoire sequencing data from Watson et al, 2022 were

obtained upon request to authors along with the donor genotype

reconstructed using Pacific Biosciences long-read sequencing in the

original study. Initial processing of the raw files in fastq format was
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performed using MiXCR v4.2.0 (Bolotin et al. 2015) upstream

pipeline ‘analyze’ command. Importantly, for the alignment step and

V- and J-gene annotation we used a custom minimalistic gene set

library with only one allelic variant per V- and J-gene, derived from a

custom public genome reference to match the one used for the

long-read assembly (Rodriguez et al. 2020) MiXCR built-in

capabilities for downsampling capabilities were utilized to retrieve

clonotypes derived from a fraction of reads. To test the sensitivity of

the tools we downsampled the dataset to 500 000, 100 000, 50 000

and 10 000 sequencing reads aligned to the V-, D- and J-region

reference library (command example for downsampling to 10 000

aligned reads: ‘mixcr downsample --downsampling

count-reads-fixed-100000 input_file’). For inferring the alleles with

the comparison tool, TIgGER (Gadala-Maria et al., 2015) we utilized

function MiXCR function ‘exportAirr’ which exports the clonotype sets

in format suggested by Adaptive Immune Receptor Repertoire

Community (Rubelt et al. 2017). For the full dataset and

downsampled ones the algorithm described in the previous section

as well as TIgGER v1.0.1 were used for allelic inference and

genotyping. The resulting sets of allele sequences were exported

from both tools in fasta format and exactly matched with the

sequences of the alleles present in the genotype of the donor and

the number of matches was determined. Importantly, due to the fact

that IGH repertoire sequencing data utilized for comparison was

derived using 5’RACE-based technology, inference could be

performed only for expressed V- and J-gene alleles. Thus we

excluded those alleles from comparison which had less than 10
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clonotypes assigned to it, when utilizing the same MiXCR v4.2.0

upstream pipeline, but with allele-resolved V- and J-gene reference

library (IGHV4-28*01, IGHV3-38*02, IGHV1-58*02, IGHV4-4*01).
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Chapter 4. Results

4.1 IGH repertoire sequencing statistics and analysis depth

We collected peripheral blood from six healthy donors at three time

points, where the second sample was collected one month after the

first, and the third was collected 11 months after that (Fig. 4; Table
2). These samples were subjected to fluorescence-activated cell

sorting to isolate memory B cells (Bmem: CD19+ CD20+ CD27+),

plasmablasts (PBL: CD19low/+ CD20- CD27high CD138-) and plasma

cells (PL: CD19low/+ CD20- CD27high CD138+) (Fig. 5A). Most of the

cell samples were collected and processed in two independent

replicates (Supplementary Data SD1). For each cell sample, we

obtained IGH clonal repertoires using a 5’-RACE-based protocol,

which allows unbiased amplification of full-length IGH variable

domain cDNA while preserving isotype information, with subsequent

unique molecular identifier (UMI)-based sequencing data

normalization and error correction (Turchaninova et al. 2016; Shugay

et al. 2014). From a total of 83 cell samples, we obtained 1.06 x 107

unique IGH cDNA molecules, each covered by at least three

sequencing reads, representing 8.4 x 105 unique IGH clonotypes

(Supplementary Data SD1). An IGH clonotype was defined as a

unique nucleotide sequence spanning from the beginning of IGH V

gene framework 1 to the 5’ end of the C segment, sufficient to

determine isotype. The number of unique clonotypes (i.e., species

richness) depended on the number of cells per sample (Fig. 5B),
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even after data normalization by sampling an equal number of

unique IGH cDNA sequences. To characterize the number of distinct

IGH clonotypes in each cell subset, we selected the samples with the

most common number of sorted cells for each sample set. The

median number of clonotypes was 20,072 (14,572–32,806, n = 14)

per 5 x 104 memory B cells, 628 (528–981, n = 8) per 1 x 103

plasmablasts, and 800 (623–1,183, n = 9) per 1 x 103 plasma cells.

Rarefaction analysis in the Bmem subpopulation (Fig. 5B, left)

revealed an asymptotic increase of species richness that did not

reach a plateau, indicating that the averaged species richness can

only serve as a lower limit of sample diversity estimation. For all

samples of PBL and PL subpopulations, species richness curves

plateaued, meaning that we had reached sufficient sequencing depth

to evaluate the clonal diversity of the sorted cell samples (Fig. 5B
center and right).
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Figure 5. A: FACS gating strategy and the frequencies of studied cell subsets for

representative peripheral blood sample (donor IZ time point T3): Memory B-cells

(Bmem: CD19+ CD20+ CD27+), plasmablasts (PBL: CD19low/+ CD20- CD27high CD138-)

and plasma cells (PL: CD19low/+ CD20- CD27high CD138+); B: Rarefaction curves by IGH

cDNA molecules. From each repertoire a defined number of unique IGH cDNA

molecules was sampled and the number of unique IGH clonotypes was determined.

Each line represents a single sample. Samples with representative cell number (5x104

Bmem, 1x103 PBL, 1x103 PL) are shown in black, samples of other sizes - in grey.
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4.2 B cell subsets display both divergent and similar
characteristics in their IGH repertoires

First, we aimed to characterize features of the IGH repertoires of the

Bmem, PBL, and PL subset based on several key properties: usage

of germline encoded IGHV segments, clonal distribution by isotypes,

rate of SHM in CDR1-2 and FWR1-3, and features of the

hypervariable CDR3 region. The proportion of overall clonal diversity

occupied by the five major IGH isotypes was strikingly different

between Bmem cells and antibody-secreting cells (ASCs; i.e., PBL

and PL). IgM represented more than half of the repertoire in Bmem,

while IgA was dominant in PBL and PL (Fig. 6, Supplementary
Data SD2). The second most prevalent isotype in ASCs was IgG,

which was also less abundant in Bmem compared to IgA. IgD

represented a substantial part of the Bmem clonal repertoire, while <

1% clonotypes of ASCs expressed IgD. The proportion of each

isotype varied between donors and time points, but IgM and IgA or

IgA and IgG consistently remained the most abundant isotypes in

Bmem cells or ASCs, respectively (Fig. 6A, 6B, Supplementary
Data SD2). In all studied subsets, the isotype distribution in terms of

number of unique clonotypes roughly mirrored the isotype

distribution based on the number of IGH cDNA molecules, indicating

absence of large clonal expansions or differences in IGH expression

level distorting abundance of isotypes. This could not be determined

by sequencing of bulk PBMCs, as higher levels of IGH expression by

ASCs can change the isotype proportions and thereby bias the

quantification of clonotype abundance (Supplementary Fig. 6A).
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The obtained IGH isotype distributions based on unique clonotypes

roughly correspond to the distribution of IGH isotypes typically

detected by flow cytometry of the same subsets (Perez-Andres et al.

2010).

Figure 6. Isotype frequencies in studied subsets. A: Isotypes frequencies in

studied cell subsets as well as in bulk PBMCs averaged across all obtained samples.

Left panel - isotype frequencies calculated as a number of IGH clonotypes (full-length

unique nucleotide sequence) with specific isotype divided by total number of

clonotypes. Right panel - isotype frequencies calculated as a number of cDNA

molecules in isotype divided by total number of cDNA molecules. B: Isotype

frequencies for by unique clonotypes, comparison of cell subsets. The numbers at the

bottom of the plots represent the number of samples in the corresponding group, and

the median measurements from each cell type. Comparisons between subsets were

performed with two-sided Mann-Whitney U test. * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤

10-3, **** = p ≤ 10-4
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The level of SHM was on average significantly higher in ASC

subsets, reflecting that PBLs and PLs are enriched for clones that

have undergone affinity maturation (Fig. 7). The switched isotypes

(IgG, IgA) had higher average levels of SHMs in the Bmem subset

compared with IgM and IgD isotypes. Interestingly, the SHM level of

IgD clonotypes in ASC subsets was significantly higher compared

with Bmem. The average number of SHMs for IgE clonotypes did not

differ significantly between cell subsets, but was significantly higher

compared to the level of SHM detected for IgM and IgD clonotypes in

Bmem (Fig. 7). Of note, the rate of SHM in PBLs was higher than

that in PLs in clonotypes from the three most abundant isotypes (i.e.,

IgM, IgA and IgG).
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Figure 7. Distribution of the number of somatic hypermutations identified per 100

bp length of IGHV segment for clonotypes within each particular isotype. The numbers

at the bottom of the plots represent the number of clonotypes in the corresponding

group, pooled from all donors, and the median measurements from each cell type.

Comparisons between subsets were performed with two-sided Mann-Whitney U test.

* = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 10-3, **** = p ≤ 10-4.

We also compared the distributions of the lengths of the

hypervariable CDR3 region between IGH clonotypes in different cell

subsets. PBLs had significantly longer CDR3 regions compared to

Bmem cells on average in every isotype except for IgE (Fig. 8).

Differences for IgE isotype, however, could not be reliably assessed

due to low number of clonotypes. Of note, the average CDR3 length
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in PL clonotypes was significantly higher compared to Bmem for IgA

and IgD, but not for the other isotypes.

Figure 8. Distribution of CDR3 length of clonotypes in each cell subset by
isotype; the numbers at the bottom of the plots represent the number of clonotypes in

the corresponding group, pooled from all donors, and the median measurements from

each cell type. Comparisons between subsets were performed with two-sided

Mann-Whitney U test. * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 10-3, **** = p ≤ 10-4
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IGHV gene segment usage was roughly similar between Bmem,

PBL, and PL cells from all donors, indicating generally equal

probabilities of memory-to-ASC conversion for B cells carrying BCRs

encoded by distinct gene segments (Fig. 9,10). This distribution

differed significantly between the studied cell subsets and naive B

cells (based on data from Gidoni et al. 2019). We observed high

concordance in terms of under- or overrepresentation of specific

IGHV gene segments in repertoires of all antigen-experienced B cell

subsets compared to naive B cells; Pearson correlation coefficients

for the fold-change of IGHV gene segment usage frequencies were

0.95 for Bmem and PBL, 0.96 for Bmem and PL, and 0.98 for PBL

and PL (p < 0.01 for all pairs). Moreover, IGHV gene segment under-

or overrepresentation clearly depended on the given gene sequence.

We clustered IGHV genes based on their sequence similarity, and

observed that most IGHV segments in each of the four major

clusters behaved concordantly with other segments in that cluster

(Fig. 9). This effect was also observed at the level of individual

repertoires (Fig. 10) with discrepancies that could probably be

attributed to genetic polymorphism of the IGH loci of particular

donors.
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Figure 9. IGHV gene frequencies in studied cell subsets. Distributions of average

IGHV gene frequencies based on the number of clonotypes in naive B cells (data from

Gidoni et al. 2019), Bmem, PBL, and PL repertoires are shown at the top. Colored

squares on heatmap indicate significantly different (false discovery rate, FDR < 0.01)

frequencies for IGHV gene segments in corresponding B cell subsets compared to

naive B cell repertoires. Color intensity reflects the magnitude of the difference (FC =

fold change). Only V genes represented by more than two clonotypes on average are

shown, data normalization was performed using trimmed mean of M values method

(Robinson, 2010a). IGHV gene segments are clustered based on the similarity of their

amino acid sequence, as indicated by the dendrogram at the bottom.
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Figure 10. Heatmap of IGHV frequencies enrichment for individual donors.
Colored squares on heatmap indicate significantly different (false discovery rate less

than 0.01) IGHV-gene segments by their frequency in corresponding B-cell subsets

than in publicly available naive B-cell repertoires (Gidoni et al. 2019). Color intensity

reflects magnitude difference (FC=fold change). Only V-genes which were

represented by more than 2 clonotypes on average are shown. IGHV-gene segments

are ordered by the similarity of their amino acid sequence, as indicated by the amino

acid similarity dendrogram at the bottom.

These observations highlight the differences in general

characteristics of IGH repertoire between the Bmem and ASC

subsets, and demonstrate similarity of IGHV gene usage that differs

from that in naive B cells.

4.3 Memory B cell repertoires are stable over time and contain a
large number of public clonotypes

We further studied the similarity of IGH clonal repertoires of B cell

subsets across time points and between individuals, evaluating
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repertoire stability (i.e., distance between different time points) and

degree of individuality (i.e., distance between repertoires from

different donors). We evaluated repertoire similarity at two levels of

IGH sequence identity: frequency of clonotypes with identical

nucleotide sequence-defined variable regions (FR1–4), and number

of clonotypes with identical CDR3 amino acid sequences, IGHV

gene segments, and isotypes.

Figure 11. Bmem, PBL, and PL IGH repertoire stability over time by IGHV gene
usage. Distance between repertoires obtained at different time points from the same

or different donors as calculated by Jensen-Shannon divergence index for IGHV gene

frequency distribution. either in repertoires from only one donor (private) or in at least

two donors (public). For normalization in Bmem repertoires of 14 000 most abundant

clonotypes were considered, in PBL - 600, in PL - 200. Each dot represents a pair of

repertoires of the corresponding type; N indicates the number of pairs of repertoires in

the group. Comparisons were performed with two-sided Mann-Whitney U test. * = p ≤

0.05, ** = p ≤ 0.01, *** = p ≤ 10-3, **** = p ≤ 10-4.
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Both metrics showed significantly higher inter-individual differences

compared to the divergence of repertoires derived from the same

donor, reflecting the fact that IGH repertoires of Bmem, PBL, and PL

subsets are private to a large degree (Fig. 11, 12). We observed

identical clonotypes in the repertoires of PBL and PL collected at

different time points, whereas the repertoire similarity was much

lower compared to that between replicate samples, reflecting the

transient nature of PBL and PL populations in peripheral blood.

Notably, we observed lower clonal overlap in PBL and PL for more

distant time points (separated by 11 or 12 months) than those that

are closer together (1 month) (Fig. 13).

Figure 12. Bmem, PBL, and PL IGH repertoire stability over time by number of
shared clonotypes. Number of shared clonotypes between pairs of repertoires from

the same or different donors and time points. For data normalization, we assessed the

most abundant 14,000 Bmem, 600 PBL, and 200 PL clonotypes. Each dot represents

a pair of repertoires of the corresponding type; N indicates the number of pairs of

repertoires in the group. Comparisons were performed with two-sided Mann-Whitney

U test. * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 10-3, **** = p ≤ 10-4.
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The dissimilarity between samples collected on the same day versus

1 month or even 1 year later was much lower for Bmem,

demonstrating the high stability of the clonal repertoire and long-term

persistence of IGH clonotypes in these cells (Fig. 13).

Figure 13. IGH repertoire similarity within subpopulations of B-cell lineage.
Number of shared clonotypes between pairs of repertoires from the same donor and

same or different time points. “Same time point” represents replicate samples derived

from the same blood draw, “close time points” - samples were collected with approx. 1

month interval, and “distant time points” - samples were collected with approx. 1 year

interval. either in repertoires from only one donor (private) or in at least two donors

(public). For normalization in Bmem repertoires of 14 000 most abundant clonotypes

were considered, in PBL - 600, in PL - 200. Each dot represents a pair of repertoires

of the corresponding type; N indicates the number of pairs of repertoires in the group.

Comparisons were performed with two-sided Mann-Whitney U test. * = p ≤ 0.05, ** =

p ≤ 0.01, *** = p ≤ 10-3, **** = p ≤ 10-4.
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To better describe the inter-individual IGH repertoire convergence,

we analyzed the number of IGH amino acid clonotypes shared

between different donors (i.e., public clonotypes) among 5000 most

expanded clonotypes in each Bmem repertoire, assuming that

functional convergence could be detected amongst the most

abundant clonotypes due to clonal expansions in response to

common pathogens. Indeed, the average number of shared

clonotypes in Bmem was significantly higher between fractions of the

most abundant clonotypes compared to randomly-sampled

clonotypes (Fig. 14), as well as when compared to the most

abundant clonotypes shared by two naive repertoires (from Gidoni et

al. 2019) or to pre-immune IGH repertoires obtained by in silico

generation using OLGA software (Sethna et al. 2019) (Fig. 14).

60

https://www.zotero.org/google-docs/?J34gmK
https://www.zotero.org/google-docs/?J34gmK
https://www.zotero.org/google-docs/?nWAfBW


Figure 14. Degree of repertoire sharing between unrelated repertoires. The

average number of shared clonotypes between repertoires from pairs of unrelated

donors for the most abundant Bmem clonotypes, randomly-selected Bmem

clonotypes, most abundant clonotypes from naive repertoires of unrelated donors

(from Gidoni et al. 2019), or from synthetic repertoires generated with OLGA software;

each repertoire in comparison was represented by a fixed number of clonotypes

(5000), either most abundant, randomly selected or generated where indicated. Each

dot represents a pair of repertoires of the corresponding type; N indicates the number

of pairs of repertoires in the group. Comparisons were performed with two-sided

Mann-Whitney U test. * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 10-3, **** = p ≤ 10-4.
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Public clonotypes were also hypermutated, although the rate of SHM

was slightly lower compared to that in clonotypes specific to one

donor (private) (Fig. 15). These observations indicate functional

convergence in Bmem repertoires, which is presumably driven by

exposure to common pathogens. Of note, the extent of clonal

overlap was significantly higher between naive repertoires than for in

silico-generated repertoires, indicating functional convergence even

in pre-immune repertoires.

​​

Figure 15. Rate of SHM in private and public clonotypes. Distribution of the

number of somatic hypermutations identified per 100 bp length of IGHV-segment for

clonotypes detected either in repertoires from only one donor (private) or in at least

two donors (public). For normalization in Bmem repertoires of 14 000 most abundant

clonotypes were considered, in PBL - 600, in PL - 300. Each dot in each plot

represents a pair of repertoires of corresponding type, numbers below each box

indicate the number of pairs of repertoires in the group. Comparisons were performed

with Mann-Whitney test, notation of the level of significance is the following: * - p ⋜

0.05, ** - p ⋜ 0.01, *** - p ⋜ 10-3, **** - p ⋜ 10-4.
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Furthermore, the distance between V segment usage distributions in

Bmem repertoires was not significantly different compared to that in

naive B cells repertoires. That indicates that the higher clonotype

sharing seen in Bmem cells cannot be attributed to lower diversity in

IGHV germline usage (Fig. 16). The same analysis in PBL and PL

subpopulations for the 600 and 200 most abundant clonotypes

respectively yielded no shared clonotypes between repertoires of

different donors, demonstrating no detectable convergence at this

sampling depth.

Figure 16. Similarity of repertoires between unrelated repertoires by IGHV gene
usage. Inter-individual distance between distributions of V genes in repertoires,
calculated as Jensen-Shannon divergence indices for the pairs of repertoires depicted
in Fig 15. Each dot represents a pair of repertoires of the corresponding type; N
indicates the number of pairs of repertoires in the group. Comparisons were
performed with two-sided Mann-Whitney U test. * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤
10-3, **** = p ≤ 10-4.
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Finally, we found that public clonotypes were more likely to be

detected than private ones in samples collected at different time

points (Fig. 17), again suggesting persistent memory to common

antigens. Thus the results demonstrate the level of stability of

memory B-cell receptor repertoires and extent of clonal sharing in

repertoires of unrelated donors, which might be attributed to

exposure to common antigens.

Figure 17. Persistence of private and public clonotypes. Fraction of persistent

clonotypes detected at more than one time point among clonotypes detected in

repertoires from only one donor (private) or in at least two donors (public). Each dot

represents the fraction of persistent clonotypes from one donor. N indicates the

number of repertoires in the group. Comparisons were performed with two-sided

Mann-Whitney U test. * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 10-3, **** = p ≤ 10-4.
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4.4 Novel approach for V- and J-gene allele variants inference
and genotyping

Inference of V- and J-gene allelic variants from a typical repSeq data

remains a challenge; currently available tools lack flexibility and have

crucial limitations related to requirements for sampling and

sequencing depth. Thus we developed a novel algorithm which

allows V- and J-gene allele inference from immune receptor

repertoire sequencing data containing both non- and hypermutated

receptor sequences using a minimalistic starting with a reference

library with only one allelic variant per each gene.

First steps of the algorithm are common for processing repertoire

sequencing data and include sequence alignment and annotation

with the initial V-, D- and J-gene segment reference library, followed

by assembly of clonotypes. By the end of upstream processing each

clonotype has an annotation of a V- and J-gene segment and most

importantly a defined set of mutations which differentiates that

clonotype sequence from the reference sequence of the

corresponding V- or J-gene segment.

Then the algorithm separately infers alleles for V- and J-genes.

Below we provide the description for V-gene allele inference:

1) Clonotypes are grouped by the V-gene segments.

2) For each mutation within the group, including insertions and

deletions, we define a set of clonotypes which contain this

mutation.
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3) The mutations are filtered based on the diversity of the

combinations of J-genes and CDR3-lengths of clonotypes

containing that mutation. The mutations that do not have

sufficient diversity of J-genes and CDR3-lengths are then

removed from each of the clonotype’s mutation sets.

4) Then clonotypes are further grouped by these “thinned”

mutation sets, including “empty” mutation sets. The diversity of

J-genes and CDR3 lengths combinations within each of these

groups is determined along with the number of clonotypes

containing no mutations in J-gene after filtering at step 3.

Mutation sets are then filtered by thresholds of these two

parameters, resulting in a list of allele candidates.

5) Clonotypes are then assigned to the closest allele candidates.

Candidates are then sorted by the score which represents the

linear combination of the number of different J-genes and the

number of different CDR3 lengths in clonotypes assigned to

these candidates.

6) Candidates with the score not lower than 0.35 of the maximum

score are then selected for the subject-specific gene set library.

This stepwise approach based sequential filtering first on the level of

individual mutation and then on the level of mutation sets

dramatically reduces noise introduced by SHM and sequencing and

PCR-errors. The threshold of 0.35 for the final alleles filtering was

initially chosen from a theoretical consideration of possible

distributions of expressed alleles for a V-gene allowing the presence
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of three allelic variants due to possible V-gene duplications. This was

then corroborated by examining empirical score distributions for

alleles in repertoire sequencing of IGH repertoire of a healthy donor

with known genotype; in this case the donor was different from the

one in the benchmarking of the algorithm.

This approach allows both to infer novel (undocumented) V- and

J-gene alleles and to perform genotyping with high sensitivity and

precision.

4.5 Benchmarking of the for V- and J-gene allele variants
inference and genotyping

To assess the performance of the developed algorithm we utilized

publicly available dataset (Rodriguez et al. 2022) containing both

AIRR-seq data and highly reliable genotyping data of the IGH locus

reconstructed using Pacific Biosciences HiFi long-read sequencing.

The AIRR-seq data was represented by an IGH repertoire of

unsorted PBMCs from a healthy individual and therefore we limited

our comparison to tools which were suitable for this type of data, i.e.

excluding IgDiscover, which requires unmutated datasets for correct

performance. As mentioned above ImPre is no longer supported,

while the run time of Partis exceeded two weeks on a

high-performance cluster which appears to be prohibitive for

real-world applications. Thus, for the comparison we utilized

TIgGER, which is also the most widely cited tool for the task.

Upstream analysis, including sequence alignment to reference V-

and J-gene library and defining the full-length clonotypes, was
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identical for both tools (see Methods section). For the alignment step

and V- and J-gene annotation we used a custom minimalistic gene

set library with only one allelic variant per V- and J-gene, derived

from a custom public genome reference to match the one used for

the long-read assembly (Rodriguez et al. 2020). To test the

sensitivity of the tools we also downsampled the dataset to 500 000,

100 000, 50 000 and 10 000 sequencing reads aligned to the

VDJ-region. Then we performed allele variants inference and

genotyping with both tools and compared the resulting individualized

V- and J-gene libraries with the accurate genotype inferred utilizing

NGS long-read sequencing (Rodriguez et al. 2022).

68



Figure 18. Detection of the allele variants of V-genes depending on expression
of the V genes and allelic imbalance. Each dot represents a V-gene allele present in

the donor's genotype confirmed by long-read sequencing. The upper row represents

detection by the original algorithm, the lower - allele detection by golden standard tool

TIgGer. Columns represent different depths of downsampling by number of aligned

reads, from right to left: full set (1 071 532), 500 000, 100 000, 50 000, 10 000. V

gene, and allele frequencies for each facet were calculated using the full set of reads

and allele-resolved V- and J-gene reference library. Alleles, excluded due to low

expression (<10 clonotypes), are represented as empty crossed dots.
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The AIRR-seq data which we used for the comparison was 5’RACE

derived therefore our analysis was limited only to expressed alleles,

so we excluded those alleles which had less than 10 IGH clonotypes

assigned to it utilizing allele-resolved reference (see Methods

section). The allele detection depended on the expression of the V

genes and allelic imbalance (Fig. 18). None of the tools yielded

false-positive alleles, so no SHM was mistakenly recognized as an

allelic mutation.However, out of 20 alleles which were not present in

the initial reference library, TIgGER managed to detect only 8 (40%,

Table 3), while our algorithm identified 19 (95%, Table 3). While our

approached failed to detect the allele with significant allelic

imbalance (IGHV1-2*05), TIgGER showed no apparent preference

for detecting or missing alleles with low expression or allelic

imbalance. Interestingly, downsampling up to less than one tenth of

the aligned reads (100 000) had no effect on the allele detection by

MiStrainer.

Tool

Number of reads for downsampling
Number of inferred alleles

Full sample
(1 071 532
reads)

500k 100k 50k 10k

MiStraine

r 19 (95%) 19 (95%) 19 (95%) 18 (90%) 14 (70%)

TIgGER 8 (40%) 8 (40%) 6 (30%) 5 (25%) 0 (0%)

Table 3. Detection of the allele variants of V-genes depending on depth of
sequencing. Number and fraction of detected alleles out of 20 alleles present in

donor’s genotype confirmed by long-read sequencing and absent in the initial

reference library gene set.
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Even when downsampled to 10 000 aligned reads the majority of

alleles (70%) were identified (Table 3, row 1). TIgGer on the contrary,

was much more sensitive to the number of reads in the input library

(Table 3, row 2). Thus we demonstrate superior sensitivity of our

approach which allows using datasets with shallow sequencing

depth for inference of allelic variants for the majority of the V- and

J-genes.
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Chapter 5. Discussion and recommendations

Using advanced library preparation technology, we performed a

longitudinal study of BCR repertoires of the three main

antigen-experienced B cell subsets — memory B cells, plasmablasts,

and plasma cells — from peripheral blood of six donors, sampled

three times over the course of a year. We analyzed these repertoires

from two conceptually different but complementary points of view.

We compared various repertoire features between the cell subsets,

including clonotype stability in time and convergence between

individuals.

Comparative analysis of the cell subsets revealed significant

differences in IGH isotype distribution, rate of SHM, and CDR3

length. IgM clonotypes predominated in the Bmem subset, whereas

in ASCs the switched isotypes IgA and IgG together represented

>80% of repertoire diversity on average. As expected, classical

switched isotypes have higher rates of SHM, and the rate of SHM in

ASCs is in general higher than in Bmem. This is concordant with

previous observation of Bmem being predominantly produced in the

early GCs, while LLPCs emerge very late in the GC responses

(Weisel et al. 2016), which may explain the observed higher levels of

SHM in antibody-secreting cells (ASCs) (Phad et al. 2022) and

assume less mutated more broadly reactive BCRs in Bmem

compared to LLPCs. The IgD isotype in Bmem cells showed

similarities to IgM, where most IgD clonotypes had low levels of

SHM, although there was a fraction of heavily-mutated clonotypes.

On average, IgD-switched PL and PBL had a comparable level of
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SHM with IgG- and IgA-expressing ASC clonotypes. Notably, the

level of SHM and CDR3 length in PBL on average exceeded that of

PL in IgM, IgA, and IgG isotypes. We hypothesize that such PBLs

with heavily hypermutated BCRs could be the subset of B cell

progeny that continue to acquire mutations after optimal affinity has

been achieved, while another part of the clonal progeny is committed

to a long-lived PL fate and acquires the CD138 marker characteristic

of this cell subset (Garimilla et al. 2019).

While different in many aspects, immune-experienced B cell subsets

are similar — and concordantly distinct from naive B cells — in terms

of IGHV gene segment usage. Moreover, we observed that the

correlated enrichment or depletion in V segment usage frequency

generally coincides with the level of sequence similarity of the V

segments. Most IGHV-3 family members were observed more

frequently in antigen-experienced B cells compared to naive subsets

in all donors and time points, while most of the other V genes that

are well-represented in the naive subset decreased in frequency.

These differences in V usage frequencies between naive and

antigen-experienced B cell subsets have also been reported in

several previous studies, even though different FACS gating

strategies were used (Mitsunaga and Snyder 2020; Ghraichy et al.

2021). Our findings further support the idea that initial recruitment of

B cells to the immune response is in many cases determined by the

germline-encoded parts of the BCR, presumably CDR1 and CDR2.

Previous studies have shown high levels of convergence in IGHV

usage between B cell clonotypes specific for particular pathogens or
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self-antigens (Peng et al. 2019; Galson et al. 2015; Bashford-Rogers

et al. 2019).

We further analyzed the repertoire similarity of cell subsets over time

and between individuals. Intuitively, the Bmem subset is the most

stable over time, showing less repertoire divergence and a greater

number of shared clonotypes between sampling time points in the

same individuals. Our finding expands the recent observation of

Bmem subset stability in elderly donors (Phad et al, 2022) on a

larger cohort of donors of younger age. Compared to intra-individual

sharing, we detected a very small number of common clonotypes in

Bmem cells. Those clonotypes have comparable levels of SHM to

private ones, assuming a germinal center-dependent origin. Two

recent studies on extra-deep repertoires of bulk peripheral blood B

cells reported 1–6% (Soto et al. 2019) or ~1% (Briney et al. 2019)

shared V-CDR3aa-J clonotypes between pairs of unrelated donors,

with lower repertoire convergence for class-switched clonotypes

shown in the latter study. Using the same method, we similarly

measured 0.06% repertoire overlap in the Bmem subset.

Complementing the model proposed by Briney et al. — wherein IGH

repertoires are initially dissimilar and then homogenize during B cell

development before finally becoming highly individualized after

immunological exposure — we found a significantly higher number of

shared clonotypes between IGH repertoires among the most

abundant Bmem clonotypes, indicating functional convergence

presumably due to exposure to common environmental antigens.

The latter is further supported by the higher number of persisting
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Bmem clonotypes observed among public clonotypes compared to

private ones.

There were two important limitations in the conducted studies. First,

only two of the donors were female, thus there was a considerable

gender bias in the study which should be addressed in future

studies. Second, having naive B-cell repertoires sequenced would

add more credibility in the analysis compared to utilization of external

datasets. However in the dataset used, repertoire sequencing was

performed using a 5’RACE-based approach very similar to ours,

which limits the possible biases introduced by potential batch effects.

Finally, we have developed a novel approach for inferring novel

allelic variants of V- and J-genes for construction of individualized

reference libraries, which were shown to be important for

downstream analysis of the adaptive immune receptor repertoires

(Gadala-Maria et al., 2015). Our approach has a number of

advantages including the ability to be used on both hypermutated

and non-hypermutated data and also low requirements for the

completeness of the starting library of V- and J-gene allelic variants.

It was tested using an AIRR-seq dataset coupled with the accurate

genotype of the donor, reconstructed using a NGS long-read

technology, and could perform well even at the depth of 100 000

reads aligned to the reference. Despite promising results we

consider further validation of the algorithm necessary, especially

utilizing datasets from donors with non-caucasian origin. Further

directions of this study would also include investigating the allelic

diversity in human population and its impact on development of

various diseases.
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Appendices

Supplementary Data SD1.

Sequencing statistics for all samples in the study

ID Donor
Time

point

Cell

subset

Replicat

e label

Number

of sorted

cells

Total

sequenc

ing

reads

Total

UMIs

identifie

d

Oversequen

cing

threshold

(MIGEC)

Number of

unique IGH

cDNA molecules

IGH

clonotype

s

AT_T1_Bme

m_1 AT T1 Bmem 1 101 400 789 962 183 522 3 45 611 26 264

AT_T1_PBL_

1 AT T1 PBL 1 7 200

4 093

824 266 448 4 120 200 3 304

AT_T1_PL_1 AT T1 PL 1 1 800

2 375

939 250 581 3 116 700 1 975

AT_T2_Bme

m_1 AT T2 Bmem 1 50 600

1 108

213 91 975 4 44 065 21 311

AT_T2_Bme

m_2 AT T2 Bmem 2 57 400 970 185 72 073 4 34 567 19 426

AT_T2_PBL_

1 AT T2 PBL 1 2 520

1 334

248 83 646 4 47 569 1 391

AT_T2_PL_1 AT T2 PL 1 800

1 584

476 104 166 4 63 796 686

AT_T3_Bme

m_1 AT T3 Bmem 1 50 000 852 735 55 667 4 31 270 16 480

AT_T3_Bme

m_2 AT T3 Bmem 2 40 800

1 179

541 29 503 8 10 294 7 308

AT_T3_PBL_

1 AT T3 PBL 1 1 000 892 947 37 707 4 20 500 628

AT_T3_PBL_

2 AT T3 PBL 2 1 000 614 693 23 220 6 7 726 981

AT_T3_PL_1 AT T3 PL 1 400 564 322 14 671 6 7 387 157

AT_T3_PL_2 AT T3 PL 2 200 559 237 14 668 6 5 720 229

D01_T2_Bm

em_1 D01 T2 Bmem 1 50 300

1 213

467 138 253 3 74 269 25 096

86



D01_T2_Bm

em_3 D01 T2 Bmem 3 55 400

1 405

674 126 501 3 62 296 24 946

D01_T2_PBL

_1 D01 T2 PBL 1 2 100

1 443

850 189 645 3 86 415 1 083

D01_T2_PBL

_2 D01 T2 PBL 2 2 100

1 494

871 192 790 3 76 577 1 330

D01_T2_PL_

1 D01 T2 PL 1 1 020

1 088

070 224 037 3 79 751 1 019

D01_T2_PL_

2 D01 T2 PL 2 1 010 860 382 252 380 3 67 242 840

D01_T3_Bm

em_1 D01 T3 Bmem 1 50 000 501 375 111 232 3 26 642 14 572

D01_T3_Bm

em_2 D01 T3 Bmem 2 50 000 657 227 114 142 3 37 675 18 832

D01_T3_PBL

_1 D01 T3 PBL 1 1 000 559 732 93 005 3 37 336 720

D01_T3_PBL

_2 D01 T3 PBL 2 1 000

1 046

599 87 976 4 39 947 602

D01_T3_PBL

_3 D01 T3 PBL 3 1 000

1 686

059 136 467 4 64 365 671

D01_T3_PL_

1 D01 T3 PL 1 500 658 225 70 016 3 37 749 297

D01_T3_PL_

2 D01 T3 PL 2 500 676 981 100 252 3 47 630 450

IM_T1_Bme

m_1 IM T1 Bmem 1 186 572

4 749

335 168 413 6 107 678 58 370

IM_T1_PL_1 IM T1 PL 1 129 610 230 11 803 8 4 748 71

IM_T2_Bme

m_1 IM T2 Bmem 1 69 900 770 829 293 287 3 33 415 18 977

IM_T2_Bme

m_2 IM T2 Bmem 2 68 400

1 599

771 333 319 3 80 817 32 575

IM_T2_PBL_

1 IM T2 PBL 1 2 000

2 497

522 576 024 3 167 286 1 809

IM_T2_PBL_

3 IM T2 PBL 3 2 486

1 859

211 433 510 3 138 552 1 519
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IM_T2_PL_2 IM T2 PL 2 920

1 034

501 198 676 3 65 247 883

IM_T3_Bme

m_1 IM T3 Bmem 1 50 000 753 205 76 005 3 31 868 17 241

IM_T3_Bme

m_2 IM T3 Bmem 2 50 000 587 810 81 367 3 28 486 16 374

IM_T3_PBL_

1 IM T3 PBL 1 2 000

1 890

905 73 810 6 37 633 1 140

IM_T3_PBL_

2 IM T3 PBL 2 2 000

1 660

572 64 768 6 31 294 1 074

IM_T3_PL_1 IM T3 PL 1 1 000

1 323

995 48 189 6 24 131 648

IM_T3_PL_2 IM T3 PL 2 1 000

1 688

147 40 890 8 17 015 623

IZ_T1_Bme

m_1 IZ T1 Bmem 1 101 800

3 343

261 155 571 6 75 849 45 699

IZ_T1_PBL_

1 IZ T1 PBL 1 3 900

2 524

536 123 589 4 66 047 1 533

IZ_T1_PL_1 IZ T1 PL 1 850

2 203

302 98 341 4 59 518 725

IZ_T2_Bme

m_1 IZ T2 Bmem 1 50 500

2 038

213 158 150 4 61 519 29 479

IZ_T2_Bme

m_2 IZ T2 Bmem 2 56 300

1 754

528 150 761 4 71 961 32 211

IZ_T2_PBL_

1 IZ T2 PBL 1 1 140 396 294 40 934 3 20 687 670

IZ_T2_PBL_

2 IZ T2 PBL 2 1 840

2 070

821 96 511 4 46 777 1 074

IZ_T2_PL_1 IZ T2 PL 1 1 050

1 422

734 90 373 4 50 559 647

IZ_T2_PL_2 IZ T2 PL 2 625

1 927

504 38 262 8 12 112 478

IZ_T3_Bme

m_1 IZ T3 Bmem 1 50 000

1 258

639 140 436 3 69 643 31 358

IZ_T3_Bme

m_2 IZ T3 Bmem 2 50 000

1 267

287 184 493 3 88 524 32 806
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IZ_T3_PBL_

1 IZ T3 PBL 1 2 000

1 595

607 108 325 4 47 087 924

IZ_T3_PBL_

2 IZ T3 PBL 2 2 000

1 717

640 112 206 6 25 034 1 049

IZ_T3_PL_1 IZ T3 PL 1 200 658 983 58 323 3 31 681 205

IZ_T3_PL_2 IZ T3 PL 2 200 799 307 60 330 4 20 208 227

MRK_T1_Bm

em_1 MRK T1 Bmem 1 143 162

3 497

861 202 489 4 110 734 53 191

MRK_T1_PL

_1 MRK T1 PL 1 251 947 060 18 357 8 7 247 121

MRK_T2_Bm

em_1 MRK T2 Bmem 1 51 700

1 492

681 138 361 3 75 438 31 960

MRK_T2_Bm

em_2 MRK T2 Bmem 2 50 600

1 467

925 116 428 4 43 879 21 619

MRK_T2_PB

L_1 MRK T2 PBL 1 2 130

1 901

745 174 345 3 94 195 1 294

MRK_T2_PB

L_3 MRK T2 PBL 3 2 020

1 864

752 313 948 3 144 008 1 194

MRK_T2_PB

L_4 MRK T2 PBL 4 2 000

1 398

793 54 776 6 16 234 1 430

MRK_T2_PL

_1 MRK T2 PL 1 1 000

1 265

223 106 033 3 61 553 774

MRK_T2_PL

_2 MRK T2 PL 2 1 035

1 273

643 113 246 3 62 750 800

MRK_T2_PL

_3 MRK T2 PL 3 1 000

1 993

922 181 675 3 109 307 1 183

MRK_T3_PL

_1 MRK T3 PL 1 400 912 109 36 495 4 22 164 305

MT_T3_Bme

m_1 MT T3 Bmem 1 50 000

1 399

198 64 019 4 30 257 16 718

MT_T3_Bme

m_2 MT T3 Bmem 2 50 000

1 249

421 96 955 4 33 399 17 639

MT_T3_PBL

_1 MT T3 PBL 1 1 000

1 265

498 34 101 6 16 036 528

89



MT_T3_PBL

_2 MT T3 PBL 2 1 000 961 889 22 404 6 7 946 554

MT_T3_PL_

1 MT T3 PL 1 400 896 245 29 748 6 16 312 309

IM_T1_PBL_

1 IM T1 PBL 1 2 200

5 344

878 33 943 23 5 308 195

MRK_T1_PB

L_1 MRK T1 PBL 1 5 336

2 709

667 33 059 16 4 212 361

MRK_T3_Bm

em_1 MRK T3 Bmem 1 50 000

1 507

115 14 740 16 2 708 1 490

MRK_T3_Bm

em_2 MRK T3 Bmem 2 50 000

21 137

727 90 400 32 4 211 2 198

MRK_T3_PB

L_1 MRK T3 PBL 1 1 000

1 413

106 7 541 23 812 41

MRK_T3_PB

L_2 MRK T3 PBL 2 1 000

3 264

160 10 592 23 1 334 42

MRK_T3_PL

_2 MRK T3 PL 2 200 796 898 4 262 23 708 9

D01_T1_Btot

_1 D01 T1 Btot 1 219 500

3 313

035 789 196 3 139 368 48 527

D01_T1_Btot

_2 D01 T1 Btot 2 218 000

2 751

033 708 236 3 108 404 39 786

MT_T3_pbm

c_1 MT T3 pbmc 1 - 62 807 14 850 1 13 460 7 787

MT_T3_pbm

c_2 MT T3 pbmc 2 - 187 107 5 357 8 3 670 2 823

D01_T3_pb

mc_1 D01 T3 pbmc 1 - 322 891 60 352 1 51 894 24 715

D01_T3_pb

mc_2 D01 T3 pbmc 2 - 283 987 84 417 1 71 370 38 358

Total

143 099

899

10 641

534 - 4 067 593 836 938
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Supplementary Data SD2.

Isotype frequencies per sample

ID

Isotype frequency by number of unique nucleotide
sequences (clonotypes)

Isotype frequency by number of identified IGH
cDNA molecules

IgM IgD IgG IgE IgA IgM IgD IgG IgE IgA

AT_T1_Bme

m_1 62,60% 10,50% 8,70% 0,00% 18,10% 66,22% 6,99% 7,17% 0,16% 19,46%

AT_T1_PBL_

1 4,03% 0,54% 32,96% 0,12% 62,35% 5,67% 0,07% 22,18% 0,11% 71,99%

AT_T1_PL_1 7,90% 0,50% 36,30% 1,70% 53,60% 15,85% 0,16% 22,03% 0,99% 60,98%

AT_T2_Bme

m_1 53,00% 11,10% 12,90% 0,00% 22,90% 60,20% 6,80% 9,30% 0,10% 23,70%

AT_T2_Bme

m_2 54,70% 10,10% 12,10% 0,00% 23,00% 57,20% 6,60% 9,30% 0,00% 27,00%

AT_T2_PBL_

1 5,10% 0,43% 30,12% 0,22% 64,13% 7,01% 0,24% 20,55% 0,07% 72,14%

AT_T2_PL_1 8,60% 0,44% 31,05% 0,73% 59,18% 12,13% 0,08% 19,78% 0,43% 67,58%

AT_T3_Bme

m_1 48,40% 7,00% 13,70% 0,00% 30,90% 52,80% 4,40% 9,50% 0,00% 33,30%

AT_T3_Bme

m_2 51,30% 5,70% 11,00% 0,00% 31,90% 47,50% 4,30% 9,40% 0,00% 38,80%

AT_T3_PBL_

1 3,98% 0,48% 23,73% 0,16% 71,66% 5,69% 0,01% 17,05% 0,24% 77,00%

AT_T3_PBL_

2 5,70% 0,00% 20,30% 0,10% 73,90% 7,20% 0,00% 13,00% 0,00% 79,70%

AT_T3_PL_1 16,60% 0,00% 23,60% 0,00% 59,90% 24,00% 0,00% 14,00% 0,00% 61,00%

AT_T3_PL_2 19,20% 0,40% 17,90% 0,40% 62,00% 25,23% 0,72% 11,54% 0,28% 62,24%

D01_T2_Bme

m_1 34,36% 7,83% 24,25% 0,00% 33,56% 46,00% 4,00% 16,00% 0,00% 34,00%

D01_T2_Bme

m_3 36,30% 7,50% 23,40% 0,00% 32,80% 40,50% 3,80% 16,70% 0,00% 38,90%
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D01_T2_PBL

_1 3,90% 0,70% 34,80% 0,00% 60,60% 5,90% 0,40% 26,40% 0,00% 67,30%

D01_T2_PBL

_2 3,90% 1,10% 36,00% 0,00% 59,00% 8,10% 0,50% 26,40% 0,00% 65,00%

D01_T2_PL_

1 8,90% 0,40% 29,60% 0,00% 61,00% 16,89% 0,39% 16,19% 0,00% 66,52%

D01_T2_PL_

2 8,60% 1,00% 32,90% 0,00% 57,60% 17,50% 0,60% 15,30% 0,00% 66,60%

D01_T3_Bme

m_1 41,30% 6,60% 16,40% 0,00% 35,70% 44,50% 4,30% 13,00% 0,20% 38,00%

D01_T3_Bme

m_2 35,74% 7,10% 22,18% 0,01% 34,98% 40,70% 4,50% 17,50% 0,30% 37,00%

D01_T3_PBL

_1 2,22% 0,83% 40,14% 0,14% 56,67% 3,11% 0,33% 31,93% 0,04% 64,58%

D01_T3_PBL

_2 2,20% 1,00% 37,20% 0,00% 59,60% 2,00% 0,50% 37,70% 0,00% 59,80%

D01_T3_PBL

_3 1,60% 0,60% 40,20% 0,00% 57,50% 1,49% 0,76% 39,58% 0,00% 58,17%

D01_T3_PL_

1 4,71% 0,67% 55,56% 1,35% 37,71% 8,00% 0,10% 46,60% 1,10% 44,20%

D01_T3_PL_

2 3,33% 0,44% 54,67% 0,89% 40,67% 6,37% 0,20% 44,46% 0,69% 48,28%

IM_T1_Bmem

_1 53,21% 8,32% 19,69% 0,00% 18,78% 62,70% 5,20% 15,00% 0,00% 17,20%

IM_T1_PL_1 18,00% 0,00% 35,00% 0,00% 46,00% 39,30% 0,00% 29,20% 0,00% 31,50%

IM_T2_Bmem

_1 67,90% 3,20% 6,00% 0,00% 22,90% 68,80% 1,90% 5,00% 0,00% 24,30%

IM_T2_Bmem

_2 54,10% 6,20% 14,90% 0,00% 24,70% 59,40% 2,90% 9,70% 0,00% 28,00%

IM_T2_PBL_

1 21,30% 0,20% 34,40% 0,00% 44,20% 37,00% 0,00% 16,00% 0,00% 47,00%

IM_T2_PBL_

3 22,40% 0,20% 31,90% 0,00% 45,50% 36,00% 0,00% 15,00% 0,00% 48,00%

IM_T2_PL_2 20,00% 0,10% 28,50% 0,00% 51,30% 28,20% 0,00% 19,60% 0,00% 52,20%
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IM_T3_Bmem

_1 63,20% 6,90% 10,20% 0,00% 19,70% 63,10% 4,10% 9,50% 0,00% 23,30%

IM_T3_Bmem

_2 65,90% 6,60% 8,10% 0,00% 19,40% 64,40% 4,10% 8,20% 0,00% 23,40%

IM_T3_PBL_

1 4,70% 0,20% 49,60% 0,00% 45,50% 6,60% 0,00% 34,90% 0,00% 58,60%

IM_T3_PBL_

2 6,10% 0,00% 51,90% 0,00% 42,10% 9,00% 0,00% 35,00% 0,00% 56,00%

IM_T3_PL_1 9,26% 0,00% 45,06% 0,00% 45,68% 12,00% 0,00% 28,00% 0,00% 60,00%

IM_T3_PL_2 11,10% 0,00% 40,10% 0,00% 48,80% 14,20% 0,00% 23,30% 0,00% 62,50%

IZ_T1_Bmem

_1 74,70% 12,40% 1,90% 0,00% 11,00% 76,40% 8,20% 2,10% 0,00% 13,30%

IZ_T1_PBL_1 5,70% 0,40% 10,60% 0,00% 83,40% 6,70% 0,01% 6,12% 0,00% 87,17%

IZ_T1_PL_1 22,30% 1,20% 11,40% 0,10% 64,80% 34,97% 0,02% 5,67% 0,05% 59,29%

IZ_T2_Bmem

_1 68,80% 12,10% 3,30% 0,00% 15,80% 72,60% 6,50% 2,90% 0,00% 18,00%

IZ_T2_Bmem

_2 68,60% 11,70% 3,50% 0,00% 16,20% 72,20% 5,90% 3,10% 0,00% 18,90%

IZ_T2_PBL_1 8,50% 0,10% 13,00% 0,00% 78,40% 11,90% 0,00% 7,60% 0,00% 80,60%

IZ_T2_PBL_2 9,30% 0,00% 11,70% 0,00% 79,00% 11,50% 0,00% 9,80% 0,00% 78,60%

IZ_T2_PL_1 22,10% 0,62% 15,92% 0,15% 61,21% 30,55% 0,01% 10,42% 0,09% 58,92%

IZ_T2_PL_2 19,90% 0,20% 17,80% 0,20% 61,90% 27,53% 0,01% 13,93% 0,17% 58,36%

IZ_T3_Bmem

_1 70,60% 10,00% 3,60% 0,00% 15,70% 76,80% 5,10% 2,40% 0,00% 15,70%

IZ_T3_Bmem

_2 70,90% 9,70% 3,10% 0,00% 16,20% 76,80% 4,10% 2,00% 0,00% 17,10%

IZ_T3_PBL_1 14,10% 1,00% 10,00% 0,00% 75,00% 20,00% 0,00% 6,10% 0,00% 73,80%

IZ_T3_PBL_2 15,10% 0,40% 10,60% 0,00% 74,00% 21,70% 0,00% 6,30% 0,00% 72,00%

IZ_T3_PL_1 36,60% 2,40% 4,40% 0,50% 56,10% 44,32% 0,02% 3,30% 0,18% 52,19%

IZ_T3_PL_2 51,50% 0,40% 5,30% 0,00% 42,70% 59,10% 0,00% 2,70% 0,00% 38,20%

MRK_T1_Bm

em_1 51,43% 16,87% 15,44% 0,00% 16,26% 63,99% 10,62% 9,78% 0,00% 15,61%
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MRK_T1_PL_

1 12,40% 5,00% 43,80% 0,00% 38,80% 19,00% 3,00% 34,00% 0,00% 45,00%

MRK_T2_Bm

em_1 47,00% 11,80% 21,30% 0,00% 20,00% 48,10% 6,20% 18,20% 0,10% 27,50%

MRK_T2_Bm

em_2 54,39% 12,86% 12,90% 0,01% 19,85% 54,80% 7,60% 10,90% 0,00% 26,70%

MRK_T2_PB

L_1 6,30% 0,50% 25,50% 0,00% 67,70% 7,50% 0,10% 14,80% 0,00% 77,60%

MRK_T2_PB

L_3 5,60% 0,20% 27,10% 0,00% 67,10% 4,70% 0,00% 17,30% 0,00% 78,10%

MRK_T2_PB

L_4 4,50% 0,10% 27,20% 0,00% 68,20% 5,10% 0,00% 19,10% 0,00% 75,80%

MRK_T2_PL_

1 8,91% 0,78% 39,41% 0,13% 50,78% 13,71% 0,31% 23,70% 0,08% 62,20%

MRK_T2_PL_

2 8,00% 0,38% 38,62% 0,50% 52,50% 12,71% 0,34% 21,61% 0,31% 65,03%

MRK_T2_PL_

3 8,11% 0,42% 40,66% 0,17% 50,63% 9,90% 0,16% 25,05% 0,06% 64,84%

MRK_T3_PL_

1 7,50% 0,30% 32,50% 0,00% 59,70% 12,90% 0,20% 22,90% 0,00% 64,00%

MT_T3_Bme

m_1 55,80% 6,00% 12,50% 0,00% 25,70% 53,80% 4,10% 13,20% 0,00% 28,90%

MT_T3_Bme

m_2 56,40% 6,10% 12,80% 0,00% 24,60% 57,90% 3,70% 10,60% 0,00% 27,80%

MT_T3_PBL_

1 3,22% 2,65% 17,99% 0,00% 76,14% 3,60% 1,30% 18,00% 0,00% 77,10%

MT_T3_PBL_

2 3,20% 2,00% 22,90% 0,00% 71,80% 5,70% 1,70% 19,60% 0,00% 73,00%

MT_T3_PL_1 4,90% 2,30% 31,70% 0,00% 61,20% 6,90% 1,30% 23,50% 0,00% 68,20%
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