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Abstract

Genome editing facilitated by CRISPR-Cas is a powerful tool for both fundamen-
tal investigations of biological reality and industrial applications of biotechnology.
Despite the illusory simplicity of a CRISPR-associated (Cas) protein cleavage ex-
periment, limitless amounts of experimental setups utilize Cas proteins as tools to
generate an immense pool of data that requires statistical analysis. Each step of any
experimental pipeline, starting from amplification to Next Generation Sequencing,
increases the amount of noise in resulting data sets which leads to the need for exten-
sive applications of advanced mathematical methods. This dissertation is devoted
to an investigation of CRISPR mechanisms and the development of tools ready to
use in biotechnological applications made possible by the careful employment of
Deep Neural Networks, Explainable Machine Learning, and Uncertainty Quantifica-
tion. While researching for the two projects in this dissertation (potential off-target
event detection and cleavage efficiency estimation), several state-of-the-art models
were developed for estimating the cleavage efficiency of a gRNA-Cas protein com-
plex. The accuracy of the models received additional biological validation through
an unsupervised rediscovery of a well-known factor that determines cleavage effi-
ciency (seed region importance). This rediscovery was made possible through recent
developments in the fields of Explainable Machine Learning and Neural Network In-
terpretation. Via the addition of prediction uncertainty as a novel axis for off-target
cleavage efficiency analysis, a previously unknown diversity of possible off-target
cleavage behavior was discovered, allowing for a new approach to select optimal
gRNA for gene editing experimentation. Additionally, this dissertation presents a
set of mathematical methods for supervised anomaly detection that helps accurately
recognize rare biological events. These methods were applied to CRISPR off-target
recognition and passed a careful comparison study. Due to their superior accuracy
and efficiency, these methods are a good addition to the tool set of an experimental
biologist.
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Chapter 1

Introduction

A number of valuable biotechnological tools starting from precise in vitro [6], ex

vivo [7] and in vivo [8] gene editing to DNA computing [9] could be achieved through

employing experimental setups derived from a kind of prokaryotic acquired immu-

nity system called CRISPR (Clustered Regularly Interspaced Short Palindromic Re-

peats) – Cas (CRISPR-associated). In these applications, an RNA-Guided Nuclease

(RGN) is used to bind (and, in many cases, cleave) a target DNA via the guidance

of a special guide RNA (gRNA). This binding and subsequent DNA cleavage are a

stochastic process and the exhaustive study of this process requires application of

statistical analysis and Machine Learning. CRISPR-Cas experiments are a source

of big data, so a researcher would benefit from Deep Learning to fully utilize the

information stored in its results.

The strength of base-pairing interactions can modulate the RGN binding affinity

and reduce off-target effects [10, 11]. Improvement in specificity, on-target cleav-

age efficiency, and reduction of off-target cleavage can be achieved through directed

engineering of the RGN or sgRNA, as well as modification of Cas-sgRNA delivery

methods. Improvements in each of these directions are crucial for the full realiza-

tion of the enormous potential of the RGN-based technologies [10, 11, 12], but this

dissertation is devoted purely to improvements in computational methods.

Overall, accurate estimation of Cas-protein cleavage efficiency is crucial for the

successful application of CRISPR-based technologies. Computational models can

provide valuable insight into the cleavage efficiency of a given gRNA-Cas complex. In
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Chapter 1. Introduction

recent years, deep learning methods have been applied to the estimation of CRISPR

cleavage efficiency [13]. By training the neural network on a large dataset of known

target sites and their corresponding cleavage efficiencies, it is possible to develop a

model that can accurately predict the cleavage efficiency for a given target site.

One advantage of using deep learning methods is that they can consider a wide

range of factors that may influence cleavage efficiency. For example, the model

can take into account the sequence context of the target site [14], the composition

and structure of the guide RNA [15], as well as chromatin accessibility [16]. This

can provide a more accurate prediction of cleavage efficiency than is possible using

simpler methods. The importance of sequence and non-sequence factors can be

highlighted with Explainable Machine Learning [17] which helps in rediscovery of

known and identification of novel biological results.

Another option to improve CRISPR-Cas experimental design is to employ ad-

vanced Machine Learning methods that go beyond point estimates of cleavage ef-

ficiency. One of such ways is Uncertainty Quantification [18] – analysis of Deep

Learning prediction errors. Addition of information regarding uncertainty is crucial

for careful planning of experiment because it allows to take the expected deviation

of real results from the prediction into account.

The results of the current dissertation are presented in three parts. First one

(Chapter 5) describes potential off-target event detection through investigation of

inequalities in coupling coefficients within Capsule Networks with dynamic routing.

This part arose mostly from experiments with off-target classification that lead to

decision to opt for routing-less Capsule Networks and hybrid Gaussian Process –

Hit-or-Miss capsule systems that are described in the second part (Chapter 6). The

third part (Chapter 7) presents the diversity of an off-target cleavage space that

was discovered through application of Uncertainty Quantification. Discussion of the

results and conclusion are presented in Chapter 8.
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Chapter 2

Background

2.1 Structure and evolution of CRISPR-Cas system

Clustered Regularly Interspaced Short Palindromic Repeats is a multifaceted system

present in over 50% of known bacteria and 90% of known archaea [19]. The system

is believed to be a part of bacterial acquired immunity because it provides the

functions of immunity memory and pathogen elimination [20]. The system consists

of a region of bacterial chromosome and/or plasmid, called CRISPR array, a set

of short non-coding RNAs and a set of proteins, called CRISPR-associated (Cas)

proteins. CRISPR array of a well-studied bacterium Staphilococcus pyogenes is

shown in Figure 2-1.

Figure 2-1: Genomic organization of type I-C and type II-A CRISPR-Cas loci in S.
pyogenes SF370 (image source [21]).

Evolutionary classification of CRISPR-Cas systems is an area of ongoing re-
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Chapter 2. Background

search. A best way to immerse oneself into its history is to read the series of

review papers by Evolutionary Genomics Research Group [22, 23, 24, 25, 26] which

is considered currently the main source for a birds-eye view on basic concepts of

CRISPR-Cas evolution.

According to the latest version of the classification [26], CRISPR-Cas systems

consist of two large classes, six types and over 30 subtypes with new subtypes being

discovered all the time (as shown in Figure 2-2). The current section is an attempt

to give a concise introduction into the topic and does not aim to cover all possible

aspects of CRISPR-Cas evolution, only highlight a number of interesting facets

within it.

Palindromic repeats (shown in Figure 2-1 as small black rectangles) that sep-

arate spacers from each other form a hairpin loop that helps in the biogenesis of

gRNAs [27]. Each spacer in the CRISPR array (shown in Figure 2-1 as diamonds

of various colors) correspond to a target sequence in the genome of some infectious

agents, for example, a phage or a plasmid. Such target sequence is called pro-

tospacer. Spacers can come from various sources, namely, genes encoding capsid

proteins or methyltransferases (as Figure 2-1 shows). Interestingly, the proportion

of spacers that match the protospacers from the open access genomic databases ex-

actly or near-exactly is quite small [28]. It means that for the majority of spacers in

a spacerome for a bacterium of interest, the question of spacer origin remains open.

Figure 2-2: Schematic representation of CRISPR-Cas evolutionary classification,
extracted from Figure 1 of [26].

CRISPR arrays can contain spacers that target the genome of the bacterium
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2.1. Structure and evolution of CRISPR-Cas system

itself. Self-targeting tends to be avoided [29, 30] but in some cases it may be a

form of gene expression regulation [31, 32] which shows that CRISPR systems have

functionality beyond acquired immunity [33, 34]. And indeed, a lot of exaptation

cases were found, such as a minimal type I-F CRISPR system recruited for propa-

gation of Tn7-like transposon [35] or a damaged variant of type I-E system involved

in signaling [36].

A special case of CRISPR-Cas system exaptation is dubbed “guns for hire” [37] -

a usage of Cas proteins, adaptation or interference modules, crRNAs and CRISPR

arrays by not only bacteria and archaea for defense but also by adversarial mobile

genetic elements (e.g. transposons, viruses, plasmids and so on) for attack. For ex-

ample, some viruses use mini-CRISPR arrays containing spacers that target related

viruses present in the same environment to stove off the competition [38]. There is

a substantial gene flow between bacteria and MGEs in both directions which leads

to a rich and complex arms race [39, 40].

Evolutionary classification of CRISPR systems largely depends on the type of

its interference unit [26]. There are two large classes: class 1 and class 2. For class

1 CRISPR systems, there are a number of Cas proteins needed to construct the

interference unit (see Figure 2-2 for the shortlist). In class 2, there is usually only

one multifunctional effector (Cas9. Cas12 or Cas13) that operates not only during

interference, but also participates in crRNA expression.

The machinery for three main stages (adaptation, expression and interference,

described in details in the next section) aside, CRISPR-Cas systems possess also

a number of accessory genes with functionality still under investigation, for exam-

ple CARF and non-CARF (CRISPR-associated Rossman Fold – a structural motif

responsible for DNA or RNA recognition [41]) accessory genes [42]. Some of such

proteins with unknown functions are predicted to be membrane-associated [43] which

is quite interesting because it might highlight another new function of CRISPR-Cas

system.

This dissertation is concerned with class 2 CRISPR-Cas systems that use Cas9

and Cas12a as interference proteins. There are a lot of known Cas9 orthologs that

have unique properties like activity at a high temperature, long PAM, small size and
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Chapter 2. Background

so on [44]. Cas12a was discovered more recently and is not studied as thoroughly

as Cas9. Class 2 systems were chosen for this research mostly due to their extreme

importance for biotechnological applications of CRISPR [45].

2.2 Immune response of CRISPR-Cas system

CRISPR system performs an immune response in three main stages – adaptation,

generation of CRISPR RNAs (crRNAs) and interference [46]. Different types of

CRISPR systems use different machinery for the immune response but all known

CRISPR systems follow this three-stage scheme:

Spacer acquisition or adaptation. Adaptation involves integration of for-

eign DNA fragments into the CRISPR array [47]. During this phase, the parts of

a pathogen (virus or plasmid) DNA are incorporated into the CRISPR array which

acts as a storage facility. This allows further use of genetic information for threat

recognition and elimination in the future. There are two kinds of adaptation – naive

and primed [47]. Naive spacer acquisition is running, when there is no suitable spac-

ers already present in the CRISPR array, when the pathogen is not known. Primed

spacer acquisition is running when there is already an interference process ongo-

ing. On a molecular level, naive adaptation involves the usage of Cas1-Cas2 protein

complex [47] which consist of the most conserved CRISPR-associated proteins Cas1

and Cas2 that occur virtually in every CRISPR system studied [48]. In addition to

Cas1-Cas2, adaptation heavily involves RecBCD protein and other genome mainte-

nance machinery [49, 50, 51]. Naive adaptation also requires RecBCD, but not as

a nuclease, but rather as a helicase [49], unlike in primed adaptation, where both

helicase and nuclease activity of Cas3 is needed [47]. The scheme for construction

of adaptation module is shown in Figure 2-3.

While naive adaptation uses doublestrand breaks produced by different events

like stalled replication forks or work of restriction endonucleases (Figure 2-3A),

primed adaptation uses doublestrand breaks produced by nuclease activity of Cas3

(Figure 2-3B) or Cas9 (Figure 2-3C). In class 2 systems, in addition to Cas9, acces-
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2.2. Immune response of CRISPR-Cas system

Figure 2-3: Different ways to construct the adaptation complex (image source [47]).
A naive adaptation. B primed adaptation in class 1 systems. C primed adaptation
in class 2 systems.

sory proteins like Cas4 or Csn2 also may be involved.

Biogenesis of crRNA. Before the effector complex can perform its main func-

tion, the RNAs that act as guides for CRISPR interference [52] have to be built. In

several stages, the genetic information stored during adaptation phase is recovered

from the CRISPR arrays starting from a long precursor RNA molecule (pre-crRNA)

followed by separation into several crRNAs each of which contains a single spacer.

There are a number of distinct crRNA biogenesis pathways which are specific for

different CRISPR systems [27] but careful introduction in crRNA production is out

of scope for the current dissertation.

Interference. Interference phase involves destruction of foreign DNA [53] us-

ing the crRNA constructed during the biogenesis. The interference mode is per-

formed when the adversarial DNA is caught in the cell. A single interference unit

consists of one or several Cas proteins and a number of auxiliary RNAs, one of

which, the CRISPR RNA (crRNA) is expressed out of a CRISPR array and should
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Chapter 2. Background

be complementary to the target inside the adversarial DNA. In Class 2 CRISPR sys-

tems, only one protein is responsible for interference. During the interference [54],

first, gRNA forms a complex with the effector protein, for example, Cas9. Then,

as gRNA-Cas9 complex binds to the target DNA, the complex undergoes confor-

mational changes, unwinds the target DNA, hybridizes the target DNA with the

complementary segment of the gRNA, and, in case of success, performs a double-

strand break in the target DNA. In case of immunity response, the fragments of the

target DNA are recognized by cellular machinery for DNA degradation [53], and in

case of gene editing, the double-strand break undergoes reparation and inclusion of

the DNA insert [55].

2.3 The molecular mechanism of target recognition

In class 2 CRISPR-Cas systems, interference is performed by a single protein, for

example Cas9 or Cas12a (also known as Cpf1 [56]). Effector in class 2 systems is

a multidomain protein that has the endonuclease activity used in the interference

phase and cuts the foreign DNA [26]. A single protein is the signature of class 2

CRISPR-Cas systems, while in class 1 the interference is performed by a combination

of several proteins instead [57].

Before we delve deep into the mechanism of CRISPR target recognition, let us

discuss the various RNAs that CRISPR system uses:

gRNA. A guide RNA is a molecule that is used for targeting the adversarial

DNA sequence during the interference phase of immune response. It consists of

two components, namely, the crRNA and tracrRNA, described below. The term

“gRNA” may be used interchangeably [58, 59] with the term “sgRNA” (single guide

RNA) but there is distinction in that “gRNA” is usually involved to denote the

“natural” combination of crRNA and tracrRNA that occurs during the formation

of the effector complex, while “sgRNA” denotes a synthetic combination of crRNA

and tracrRNA which exists as a single molecule at all times [60]. However, a single

guide RNA can emerge naturally and participate, for example, in regulation of Cas
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2.3. The molecular mechanism of target recognition

gene expression [32].

crRNA. A CRISPR RNA [61] is a short molecule that contains a sequence

that is complementary to the target DNA region (usually 17-20 base pairs long). It

is responsible for targeting the specific region in the DNA.

tracrRNA. A trans-activating CRISPR RNA [62] is a binding scaffold for Cas

effector. It induces the conformational change in the effector protein (e.g. Cas9)

thus enabling the binding of crRNA. Some class 2 effector proteins do not require

tracrRNA, for example, Cas12a [56].

When the gene editing experiment using CRISPR is being designed, the re-

searcher usually controls only the part that is complementary to target sequence in

crRNA and the rest is standard and depends on the Cas protein of choice. Structure

of the target site is shown in Figure 2-4 for two specific proteins of interest: Cas9

from S. pyogenes and Cas12a from Acidaminococcus sp.

Figure 2-4: Structure of target sites for SpCas9 and AsCas12a.

Protospacer-Adjacent Motif (PAM) is the binding site for an effector complex [63].

Each effector uses a unique PAM. We must note that the PAM is not a sequence,

but a set of sequences and different sequences from that set have different binding

probabilities [64]. Usually PAMs contain several fixed letters and some variable

ones, for example NGG - the Gs refer to guanines and N refers to any letter. PAM

may be located on different sides of the target - upstream or downstream. PAM

for SpCas9 is 5’-NGG-3’ with the target located on 5’ end. PAM for AsCas12a is

5’-TTTN-3’ with the target located on 3’ end.
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Chapter 2. Background

Seed region is the region of the sequence located adjacently to PAM, usually 5

base pairs long [54]. The mismatches in the seed region can drastically reduce the

efficiency of binding and subsequent cleavage. Importance of seed region is known

from the mechanics of progressive hybridization of crRNA fragment complementary

to the target DNA which linearly progresses to the end of the target through the seed

sequence [65]. If there is a mismatch in the seed, the local unwinding of the target

double strand DNA does not occur [66]. Mismatches in the rest of the sequence are

better tolerated than in the seed region, but still only the perfect match offers the

best results for targeting.

Cas9 [67] and Cas12a [68] proteins both consist of six domains:

1. REC Lobe - Recognition lobe, consists of two subdomains, REC I and REC

II, that bind the DNA and regulate the NWH domain operation [69];

2. Bridge Helix - Domain that starts cleavage of the target DNA;

3. PAM Interacting Domain - Recognizes the PAM;

4. NWH - A nuclease domain of the HNH family, specific to Cas9;

5. RuvC - A nuclease domain of the RuvC family, present in both Cas9 and

Cas12a;

6. WED - A wedge domain, specific for Cas12a.

The way how AsCas12a works is currently considered to be according to the

following scheme (Figure 2-5).

First, AsCas12a binds with the target DNA in a random place and moves along

it in 1D. When it encounters PAM, it unwinds the DNA locally and pairs target

DNA near the PAM and gRNA forming an R-loop (a structure of two DNA strands

and one RNA molecule which is hybridized with one of the DNA strands). If the

R-loop is formed partially (length is less than 17 bp), the protein comes off the DNA,

otherwise it cleaves the DNA starting from the non-target strand. The presence of

PAM here is not needed, the DNA cleavage is PAM-independent, PAM only initiates
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2.3. The molecular mechanism of target recognition

Figure 2-5: Model for AsCas12a mechanism of action (image source [3]).

the formation of the R-loop. After the cleavage, AsCas12a drops the fragment

without PAM and protospacers and stays on the other fragment.

While the general mechanism of Cas9 operation is similar to the one described

above, the difference between Cas9 and Cas12a lie in what kind of double-strand

break they generate – Cas9 performs the break with blunt ends, while Cas12a makes

the break with sticky end. Sticky ends promote non-homologous end joining which

makes Cas12a more advantageous than Cas9 when the task is a knock-in experiment

(insertion of DNA at a specific site) [68]. Also Cas12a requires only crRNA without

tracrRNA [56].

To summarize, target recognition in CRISPR/Cas system is driven by formation

of R-loop, strand separation, PAM recognition and interaction with the target DNA

that is located near the PAM. This process evolved to differentiate between self

and non-self DNA to prevent autoimmune action while keeping DNA targeting as

effective as possible. Given there is enough Cas-protein in the cell and the target

region chromatin is in the accessible state, the main factors of a successful cleavage

are PAM recognition and target-gRNA matching.
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Chapter 2. Background

2.4 Evolution of bioinformatical tools for gRNA ac-

tivity evaluation

A useful lense to look at the spectrum of Computational Biology tools for gRNA se-

lection, is to view it as an evolutionary process that goes from simple rule-based sys-

tem towards complex artificial intelligences that provide information beyond cleav-

age probability.

One can distinguish the following five waves that form this evolution:

Rule-based systems. Within the rule-based framework, cleavage efficiency

of gRNA is inferred using a single rule or a set of rules that are relatively easy to

compute and self-explanatory. For example, the first rule-based systems, introduced

by Gagnon [70] and Wang [71], consider the GC-content of the gRNA as a primary

factor influencing cleavage efficiency. Gagnon et al. [70] reported positive correlation

of GC-content and indel frequency in zebrafish and Wang et al. [71] reported similar

results in human cells. According to them, an efficient gRNA for SpCas9 has guanine

near the PAM region and GC-content larger than 50%. Therefore, the algorithm

that Wang and Gagnon’s groups offer, may be summarized as follows: if GC-content

is higher than 0.5 and guanine is present in seed region and/or PAM, then the gRNA

is active. This rule provides a natural baseline for gRNA classification by efficiency,

but it is not enough for experimental design as GC-content does not correlate well

with efficiency – there is a significant positive correlation but also a lot of noise (for

example, Figure 2C from [72]). Application of machine learning helps address the

problem of accuracy by building constructs that correlate with cleavage efficiency

better and have narrow confidence intervals.

Classical Machine Learning systems. In this category, we include tools

that employ shallow models (e.g. Logistic Regression, Decision Trees, Support Vec-

tor Machines etc) to construct complicated rules, not readable by humans, but still

rather easy to interpret. Historically, it started with the usage of Support Vector

Machines by Wang et al. [71] and some other classical ML solutions used SVMs
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(e.g. geCRISPR [73], sgRNA Scorer 2.0 [74]) as well as gradient boosting [75] and

random forests [76].

Black-box Deep Learning systems. After the classical machine learning

systems were introduced, the next logical step is building the tools that employ

various kinds of artificial neural networks. Such tools gain an increase in accuracy,

but forfeit all semblance of explainability (hence, black-box). DeepCRISPR [77]

attempted to overcome the problem of black boxness with saliency maps, but they

did not use it in their gRNA design tool. DeepHF [78] used Shapley additive ex-

planations [79] for their XGBoost model but not for their CNN and RNN ones (see

Figure 2-6) for the same reason, and still did not provide explanation for every single

gRNA.

Figure 2-6: Analysis of feature importance associated with gRNA activity by Tree
SHAP. a–c Top 20% important features identified by Tree SHAP for WT-SpCas9,
eSpCas9(1.1), and SpCas9-HF1, respectively. The nucleotides, as well as their posi-
tion, were shown on the left. 𝐺𝐺19 means GG dimer start at position 19. 𝑇𝑚 means
melting temperature (image source [78]).

Currently, the bulk of the research is headed in this direction (e.g. usage of

transformers [80]), which raises a number of concerns related to the probability

that we have already reached the limit of model improvement and the reasonable

thing to do is to work on gathering better data and on adding new features to the

experimental design process.

White-box Deep Learning systems. White-box systems also use deep mod-

els, but, unlike the black-box ones, are equipped with a subsystem that highlight
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the important parts of the input. Those systems allow for an intelligent choice of

gRNA. Unfortunately, currently there is no open public solutions that employ white-

box system, except for the result of the current research. SeqCRISPR [81] claimed

to do that but there is still no peer reviewed publication, no openly accessible soft-

ware and since the method is based on word2vec-like [82] embeddings that offer

limited interpretability and explainability, it is questionable whether this approach

even works.

Uncertainty-aware and Explainable Deep Learning systems. Uncertainty-

aware and explainable systems are tools that use deep models, have an explanation

routine and also are augmented by a system for estimation of its own prediction

variance. Currently the only example is presented in the current dissertation.

The current state of affairs is that there is no toolkit that performs all nec-

essary tasks for gene editing experimental design, but instead the design pipeline

is constructed as a combination of several parts, and such combination requires or-

chestrating by a human. Here is the general outline of the process with examples of

popular tools and methods listed within each step:

1. Selection of the target – identification of the specific gene or genomic region

for editing. People use NCBI Gene [83], Entrez Gene [84], Ensembl [85] and

other similar tools;

2. (optional) Variant calling for the patient or subject – identification of

single nucleotide polymorphisms or larger variations in the gene of interest that

the patient has. Software like DeepVariant [86] may be applied but detailed

discussion of variant identification is out of scope of this dissertation;

3. gRNA selection – Search for the gRNAs that minimize number of off-targets

and maximize on-target cleavage probability. One can use the tools discussed

in the current section;

4. Validation and optimization – Verification of the gRNAs performance in

vitro using Tracking of Indels by DEcomposition (TIDE) [87], GUIDE-Seq [88]
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and other similar methods;

5. Selection of delivery method – Choosing how to deliver the components

into target cells, for example by lipofection [89], viral vectors [90, 91, 92] or

nanoparticles [93, 94, 95];

6. Experimental execution – Actual execution of a gene editing experiment

with selected gRNA and delivery method. One can use kits that many com-

panies like Thermo Fisher Scientific, Synthego and ODIN Inc. offer;

7. Analysis and validation of the result – Testing whether the experiment

worked and how well with DNA sequencing (Sanger, Next Generation Sequenc-

ing) and PCR-based methods.

The combination of these tools and methods allows researchers to effectively

design and execute their experiments. The human element is essential for orches-

trating the process and making informed decisions at each step. From the experi-

mental standpoint, it is hard to distinguish between binding and cleavage efficiency

for the experimental data do not offer the distinction between the case where the

binding happened, but cleavage has not, and the case where binding did not oc-

cur. Therefore in this dissertation we use the term “cleavage efficiency” even in

the cases where the cleavage is not supposed to happen (dCas9 gene expression

modulation experiments). Most deep learning approaches use one-hot encoding of

the sequence [14, 77, 78] while classical machine learning approaches may also rely

on feature design (e.g. geCRISPR [73] uses thermodynamic properties like melting

temperature of RNA, and sgRNA-DNA binding energy, and also structural features

like Shannon entropy). However, some deep learning approaches also use sequence

embeddings (e.g. [96]) and may incorporate additional non-sequential information

like chromatin accessibility (e.g. chromatin-based model of [14]). A thorough study

of input features can be found in a review work of [97], in the current work we have

used only one-hot encoding for sequence and only sequential features due to the

initial focus on studying the sequence feature influence on cleavage efficiency.

In conclusion, experimental verification of CRISPR cleavage efficiency is an im-

portant step in the development and application of CRISPR-based technologies. By
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combining computational and experimental methods, researchers can develop accu-

rate and reliable predictions of cleavage efficiency, supporting the development of

effective and precise genome editing tools.

2.5 In silico detection of a potential off-target event

Regarding the software for off-target analysis, there are two major directions. First

one is to improve fast search for slightly mismatched strings (usually no more than

four [98], five [99] or six [100] mismatches, and typically the input is given in a form

of a string mask [101, 102]) in a large genome. While the brute force string search

here is definitely a possibility (although such search is not recommended for genomes

of reasonable size), most innovations include either usage of hardware acceleration

(e.g. Cas-OffFinder [101]), performant implementations of fast string search with

precomputed indices (e.g. FlashFry [102]), or novel string search algorithms (e.g.

Crackling [103]).

Machine Learning-based evaluation of off-targets acts as a kind of a filter that

sifts through potential off-target sites found by other software in pursuit of a high

probability case. This dissertation offers two filters for the output of string search

algorithms – inequality-based Anomaly Detection and Uncertainty-Aware cleavage

efficiency prediction for pair of strings. The former essentially solves a binary classi-

fication problem (0 – no off-target, 1 – off-target) based on the class-wise inequality

in the latent space of neural network, while the latter solves a regression problem

(label is a real value of cleavage probability from 0 to 1) using an uncertainty-aware

modeling approach described in the next section.

Both solutions introduced in this dissertation are designed to be string search

agnostic and would work with any kind of previously developed solutions. The

models were tested with FlashFry [102] and Cas-OffFinder [101].
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2.6 Uncertainty Quantification in Machine Learn-

ing applied to Bioinformatics

Main overarching theme of this dissertation is making use of ways to evaluate model

prediction error for guidance in experimental design. Such error can emerge from a

number of diverse sources. The error of prediction can be described in the following

way:

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑏𝑖𝑎𝑠 + 𝐸𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐸𝑖𝑛𝑝𝑢𝑡 𝑛𝑜𝑖𝑠𝑒 + 𝐸𝑙𝑎𝑏𝑒𝑙 𝑛𝑜𝑖𝑠𝑒,

where different indices of 𝐸 denote different sources of error. Note that input noise

and label noise may lead to both increased bias and variance, but here it seems to

be useful to explicitly introduce them as separate entities.

Bias. Bias is an error that arises from the assumptions made to simplify the

problem and fit it into the model family of interest (e.g. linear regression, random

forest, gradient boosting,...). High bias leads to underfitting because the model

family is not strong enough to capture the correlations between input data and

label. For example, Rosenblatt’s single layer perceptron is unable to fit the Exclusive

Or (xor) problem no matter how the model is trained and will always give biased

answers (mathematical proof is given in [104]). An example more relevant to the

topic of this dissertation is the study of bias in translational bioinformatics [105]

that appears because the chosen family of models, Support Vector Machines, is not

strong enough to overcome the label imbalance. The authors had to change the

model family by adding Derivative Component Analysis to their SVM pipeline and

that model change did help in improvement of predictive performance.

Variance. The model’s reaction to small variations in the training data gives

rise to another component of error, the variance. High variance leads to overfitting

because for some models and some tasks it is much easier to fit the noise in the data

than to actually solve the problem. For example, the choice of biomarkers based

on transcriptomics data suffers a lot from small differences in gene expression levels

thus usage of a stable and robust method is of high importance [106]. What one
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would like to achieve is low bias and low variance, but this simplified description

does not include noise in data and label, which prevents acquiring the best results.

A common depiction of the bias-variance trade-off is shown in Figure 2-7 from [4]:

Figure 2-7: An illustration of bias-variance trade-off (image source [4]).

Input noise. An error that emerges because the data is imperfect is called

”input noise”. There are measurement errors, data collection and preprocessing

problems and so on. This part of the noise is not reducible by improvement in the

model alone, but rather through better data. A good illustration of input noise is

the field of microbiomics which has a lot of systematic errors introduced during the

collection of samples, sequencing, binning, genotyping and so on [107].

Label noise. An error that follows from mistakes and discrepancies in data

labeling is called ”label noise”. The labels that were assigned to examples in the
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dataset may be assigned incorrectly due to a systematic mistake during data collec-

tion, preprocessing or curation, inconsistency of label definition or a real ambiguity

in examples that belong to different classes. Case in point is classification of subtypes

for class C G protein-coupling receptors. GPCRs are membrane proteins involved in

a lot of signaling pathways, a good target for therapeutical interventions. Mislabel-

ing in training set can lead to the assignment of the wrong intervention. A study of

label noise in subtyping of GPCRs [108] revealed that most of label noise comes out

of expert-made mistakes and lack of correspondence between different conventions

regarding assignment of protein family label.

It is crucial to identify those errors during the development of a Machine Learn-

ing application if the goal is to build as accurate and robust a model as possible.

This is generalized in theory of Uncertainty Quantification (UQ). UQ is a methodol-

ogy to evaluate the confidence in model prediction which helps to determine whether

the model predictions could be trusted and to what extent. In regression, it is done

by computing confidence intervals for the predicted label. This is called conformal

prediction [109]. Conformal prediction is being currently applied in bioinformatics

setting, albeit rarely, for example in drug design [110] for modeling of ATP-binding

cassette transporters. An illustration of conformal prediction is given in Figure 2-8.

We find it useful to distinguish Uncertainty Quantification in Machine Learning in

Figure 2-8: An illustration of conformal prediction. Light blue regions show the
confidence intervals with 𝜇± 𝜎 and blue line shows the mean of predictions 𝜇.
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two broad categories:

Ensemble Methods. Main idea of ensemble methods is to train several mod-

els and use the sample variance of their predictions to compute confidence intervals.

For example, HatchEnsemble [111] uses the modified copies of the same seed model

(called HatchNets) obtained by application of function-preserving transformations

(ones that add new neurons to the network, but keep its output the same) followed

by retraining and corruption of parameters with random noise. The uncertainty es-

timations are given by standard deviation of outputs from a number of HatchNets.

Uncertainty-aware Models. Main idea of uncertainty-aware models is to

draw them from model families that are capable to grasp the uncertainty in data by

design. To illustrate this let’s consider a digital histopathology study [112] where

uncertainty-aware models allow for accurate discrimination between lung adenocar-

cinoma, squamous cell carcinoma and non-cancerous samples. Another example of

such models are Bayesian Machine Learning methods [113]. Basic idea of Bayesian

Machine Learning is to model the weights as random variables and infer their pos-

terior distributions from the data.

In the research that formed the foundation of the current dissertation, the

second approach, Uncertainty-aware Modeling, was used. We have applied Gaus-

sian Processes [114] with the kernel learned [115] by Capsule Networks [116] and

used the sample variance from Gaussian Process as a base for confidence intervals.

Confidence intervals showed the existence of different off-target classes and allowed

the exploration of this diversity. Uncertainty Quantification can be used to detect

anomalies and out-of-distribution examples. The inverse is also correct, a good

anomaly detection model is an implicit uncertainty quantifier. In the current re-

search, a method to detect anomalies that uses a measure that implicitly reflects

the uncertainty in the dataset was developed. This measure reflects on difference

between latent space representations of a frequently seen class and a rare one.
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2.7 Explainability and Interpretability in Machine

Learning applied to Bioinformatics

As Marcinkevics and Vogt put it [117], “interpretability and explainability have es-

caped universal definition”. Both in various literature, such as Gilpin et al. [118],

Ribeiro et al. [119] and Linardatos et al. [120], and during the conception of this

dissertation’s topics, the terms “Interpretable” and “Explainable” Machine Learn-

ing have been used interchangeably, nevertheless, interpretability and explainability

mean two different, albeit closely related, things. In this dissertation, the following

two working definitions are accepted:

• Interpretability – existence of a clear understanding what processes are per-

formed by all of the model’s internal parts regarding the domain where

the model is used ;

• Explainability – existence of a way to show what kind of inputs lead to what

kind of outputs.

In the latter chapters that describe the results of research, we use the former defini-

tion when appropriate, but keep in mind, that in the published paper, the language

related to explainability and interpretability may differ.

Explainability refers to knowledge of causality between the inputs for the model

and its outputs – one should not mix it with causality between the inputs and

the labels, which is an entirely different field of research (a thorough review of

causality in ML can be found in [121]). In explainability, we do not model the data

generation process, but rather we build a simplified version of the model itself, the

one that humans can understand, This also should not be mistaken for mechanistic

interpretability, which attempts to reverse engineer the computations performed by

a black-box model accurately [122] while within the context of explainability we are

content with catching local influences of feature on prediction.

Interpretability refers to knowledge of internal processes inside the model and

their link to the model’s meaning in a greater scale of it’s application. For example,

having a completely interpretable model of protein folding means knowing that a
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certain module performs a computation of secondary structure, while submodules

within the secondary structure module perform identification of alpha helices and

beta sheets, etc.

A model thus can be neither interpretable nor explainable, or both interpretable

and explainable, or either interpretable or explainable – this is determined by model

design. Unfortunately, complete interpretability in case of Bioinformatics seems to

be currently unabtainable. In various cases of Computer Vision, one can show that,

for example, lower layers of a neural network capture simple shapes [123, 124, 125].

The verification of that fact is quite easy, for human visual cortex essentially evolved

to solve Computer Vision tasks – one can plot the weights and see for oneself whether

the simple shape hypothesis is correct. But humans did not evolve to solve problems

of Bioinformatics and visual cortex cannot help with it. Therefore in our research,

we opt for interpretability in a rather more narrow sense, let’s call it “instrumental

interpretability” – it is defined as the former but without the domain part. We can’t

really know what each part of a model does regarding to the meaning of the task, but

at least we can design models with predictable behavior regarding the operations

that convert input to output. Following the aforementioned protein folding example,

instrumentally interpretable method would have the module intended to perform

a known operation on its input, for example mapping the input data to a lower

dimensional space. From that standpoint, the models designed for this dissertation

have the property of instrumental interpretability – for each module we do know

what it does and based on this knowledge we can anticipate the results.

With explainability, the situation is more clear. There are a number of ways to

highlight the part of input relevant to the prediction of a label. Some methods are

dependent on knowledge of the model’s internal structure (e.g. [126, 127, 128] thus

blending two former definitions in one, and some are model-agnostic (e.g. [79, 129,

130, 131]). In this dissertation, we use a model-agnostic method, Accumulation of

Local Effects [132], which is explained in details in the “Methodology” chapter.
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Thesis objectives

The main goal of this dissertation is to build explainable models for estimation

of on-target and off-target CRISPR-Cas cleavage efficiency, identify the sequence

determinants of cleavage efficiency and explore the diversity of potential cleavage

events. The aims of this dissertation are subdivided into the following groups:

• Construction of classification model for Cas9 off-target events;

• Construction of uncertainty-aware machine learning model for regression of

cleavage efficiency for Cas9 and Cas12a proteins;

• Exploration of sequence determinants of cleavage efficiency for several Cas9

orthologs and AsCas12a;

• Characterization of diversity for off-target events in Cas9 and Cas12a cleavage

in Homo sapiens.
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Chapter 4

Materials and Methods

This chapter is largely based on papers that constitute the current dissertation –

“Measuring internal inequality in capsule networks for supervised anomaly detec-

tion” [2] published in Scientific Reports and “Uncertainty-aware and interpretable

evaluation of Cas9–gRNA and Cas12a–gRNA specificity for fully matched and par-

tially mismatched targets with Deep Kernel Learning” [1] published in Nucleic Acids

Research. The contributions for the first paper are as follows – I (together with my

supervisor) have developed the main concept, designed the study and wrote the

main manuscript text. I also have performed all computational experiments. The

contribution of authors for the second paper are as follows: E.S., S.A.S. and I devel-

oped the concepts and designed the study. E.V.K., M.P., A.Y.O., S.A.S. and K.V.S.

supervised the research. I have designed the methods and performed all analyses.

E.S., S.A.S. and I wrote the manuscript, which was read, edited and approved by

all authors.

4.1 Problem setups

CRISPR-Cas off-target event detection. We use the models to estimate

the probability of an off-target event from a pair of sequences. One sequence in the

pair is sgRNA, and the other one is the target DNA. Each sequence is a string over

an alphabet of 4 symbols (A, T, G and C), 20-23 symbols long. sgRNA and target

DNA have six or less mismatches, at least one mismatch. The problem is the task
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of binary classification, with labels of 0 – no cleavage and 1 – off-target cleavage.

In the current dissertation, the problem of off-target event detection is solved by

the anomaly detection pipeline described in sections 4.2.3, 4.4 and 4.5 of “Materials

and Methods” and the results are presented in chapter 5. The solutions are based

on data that are described in “Description of the dataset and preprocessing routine”

(subsection 4.2.2) of “Materials and Methods”.

CRISPR-Cas cleavage efficiency prediction. We use the GuideHOM fam-

ily of models to predict cleavage efficiency from sequences. Cleavage efficiency is a

real number usually ranging from 0 to 1. It can be slightly greater than 1 or smaller

than 0 (depends on the dataset), but for the purpose of prediction, we scale and

shift the labels so the maximum is 1 and minimum is 0. The sequences are strings

over an alphabet of 4 symbols (A, T, G and C), 20-23 symbols long, as in previous

problem setup. The problem is the task of regression which we solve using a neural

network-enhanced Gaussian process. We provide the solution that, unlike others,

not only gives a point estimate of the cleavage efficiency, but, for the first time,

also gives the confidence interval for it. In the current dissertation, the problem

of cleavage efficiency prediction is solved by the GuideHOM pipeline described in

sections 4.6, 4.7, 4.8, and 4.9 of “Materials and Methods” and the results are pre-

sented in chapters 6 and 7. The solutions are based on data that are described in

sections “Description of the dataset and preprocessing routine” (subsection 4.2.1) of

“Materials and Methods” chapter.

4.2 Description of the datasets and preprocessing

routines

4.2.1 Data collection and preprocessing for CRISPR-Cas cleav-

age efficiency prediction

For on-target Cas9 cleavage efficiency prediction, we used three non-overlapping

datasets, geCRISPR, DeepCRISPR and DeepHF. The geCRISPR dataset [73] con-
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sists of 4569 experimentally verified gRNAs for Cas9 derived from Homo sapiens,

Danio rerio, Mus musculus and Xenopus tropicalis. DeepCRISPR dataset [77] con-

sists of 16492 experimentally verified gRNAs for Cas9 derived from four human cell

lines (hela, hl60, hct116, hek239t). DeepHF [78] provides the data for SpCas9 (55604

sequences) and two high fidelity orthologs: SpCas9HF1 (56888 sequences) and eSp-

Cas9 (58617 sequences). For prediction of Cas9 efficiency with mismatched gRNA

and target sequences, we used the dataset of Jost et al [5] with 26248 gRNA-target

pairs. For on-target Cas12a cleavage efficiency prediction, we used the DeepCpf1 [14]

dataset that consist of 20506 experimentally verified gRNAs for Cas12a. For Cas12a

off-target prediction, we used the dataset of [133] with 1565 gRNA-target pairs. Be-

fore training the neural networks, we used one-hot encoding on every sequence in

the on-target datasets, as shown in Figure 4-2A. For the off-target datasets (Cas12a

off-target dataset [133], Jost et al [5]), the encoding algorithm was used twice, that

is, once on the guide, and the second time, on the target, so that the output is a

two-channel image (2, 4, 𝑁) where 𝑁 is the length of the input sequences. For the

on-target datasets, the algorithm was applied only once, so that the output is a

(4, 𝑁) image.

4.2.2 Data collection and preprocessing for CRISPR-Cas9

off-target event detection via anomaly detection

Off-target cleavage in CRISPR/Cas9-based gene editing can lead to various unfore-

seen consequences. For a design of gene editing experiment it is of high importance

to select such gRNAs that minimize the probability of Cas9 performing doublestrand

cleavage in a wrong place (off-target effect). To do so using Machine Learning, a

dataset of gRNA-target pairs is used. The dataset of CRISPR-Cas9 off-targets taken

from the work of Peng et al. [100] consists of 215 low-throughput off-target pairs,

527 high-throughput off-target pairs and a negative subset of 408260 pairs. The low

and high throughput pairs are labeled 1 and the negative subset thus 0. Each pair

is two strings of “A”, “T”, “G” and “C” symbols. We convert pairs into images using

the following preprocessing routine:
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1. One-hot encode the target string (which is 23 nucleotides long) to get 𝐼1;

2. One-hot encode the gRNA string (which is also 23 nucleotides long) to get 𝐼1;

3. Join the encodings to get a tensor of size (2, 4, 23).

We do not use the pairs that have more than 6 mismatches (since the off-target

cleavage is considered to be impossible in that case) so the final dataset consists of

615 anomalous pairs (off-targets) and 26038 normal pairs from negative subset.

4.2.3 Benchmarks for Anomaly Detection unrelated to off-

target detection

MNIST-like Benchmarks

The studies [134, 135] we base our work on (further described in the next section)

are conceptually similar but they offer different ways to measure the performance of

the anomaly detection metrics. We first considered an experiment inspired by the

work of Piciarelli et al. [134] which is organized following the model generation

procedure for Diverse Outlier setup:

1. Extract all examples of class 𝑖 from the training set with 𝑁 classes, and assign

the label 𝑙 = 0;

2. Randomly extract 𝐴 examples of any other class and assign the label 𝑙 = 1;

3. Train a model to classify the data into two classes.

We apply this procedure to all classes in the datasets and to the fractions of 10%,

1% and 0.1% so we get 4×3×10 = 120 models to test our results on. This procedure

gives us the coherent normal subset and a diverse subset of outliers. Approach based

on the work of Li et al. [135] is the reverse one in nature – we use a single class for our

anomaly label and all other classes we consider normal, so our normal set is diverse

and anomalous set is coherent. We train the models following a model generation

procedure for Diverse Inlier setup. This gives us another 120 models to test:
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1. Extract all examples of class 𝑖 from the training set with 𝑁 classes and assign

the label 𝑙 = 1;

2. Randomly extract 𝐴 examples of all other classes and assign the label 𝑙 = 0;

3. Train a model to classify the data into two classes.

We use MNIST [136], FashionMNIST [137], KuzushijiMNIST [138] and CIFAR10 [139]

with the diverse outlier and diverse inlier setups to make a comparison of the pro-

posed methods, the previous studies [135, 134] and the baselines. Each dataset

except CIFAR10 has 60000 single-channel images of (28,28) size that are separated

into 10 classes. CIFAR10 has 60000 images with 3 channels and (32,32) size, also

separated into 10 classes.

Malignant Skin Lesion Classification

The HAM10000 [140] dataset contains high-quality photos of 7 skin lesion types

three of whom are malignant. The dataset contents are shown on Table 4.1: Inspired

Table 4.1: Detailed information on classes for HAM10000 dataset.

Skin lesion type # Images Is malignant?
Melanoma 1113 Yes
Basal cell carcinoma 514 Yes
Dermatofibroma 115 No
Melanocytic nevus 6705 No
Vascular lesion 142 No
Benign keratosis-like 1099 No
Intraepithelial carcinoma 327 Yes

by the anomaly-based cancer detection pipeline [141], we consider malignant skin

lesions anomalies, aberrations of the correct skin cell life-cycle and while benign

skin lesions are also a kind of an aberration, we consider them a base for the normal

classes in our experiments. From this dataset we derive four experiments:

1. Diverse normal set, diverse anomalous set: all malignant types as an anomaly

set, all benign types as a normal set;
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2. Diverse normal set, homogeneous anomalous set: melanoma (the most com-

mon skin cancer) images as an anomaly set, all benign types as a normal

set;

3. Homogeneous normal set, diverse anomalous set: all malignant types as an

anomaly set, melanocytic nevus (the most common benign lesion, a birthmark)

images as a normal set;

4. Homogeneous normal set, homogeneous anomalous set: melanoma vs melanocytic

nevus.

4.2.4 Description of genome analysis pipeline

Input: the raw sequence data, downloaded from the UCSC genome browser and

respective annotation. Output: the list of possible gRNAs with computed average

cleavage efficiency, standard deviation. The input is downloaded with the following

options: Chromosome - Download FASTA, Visible range (while whole chromosome

is opened in the browser); Annotation - Download csv. The pipeline proceeds as

follows:

1. the genes are extracted from the chromosome sequence according to the an-

notation using a BioPython-based script;

2. Cas-Offinder [101] is used for each separate gene.fasta to produce a list of po-

tential targets. The mask is NNNNNNNNNNNNNNNNNNNNNRG for Cas9,

TTTNNNNNNNNNNNNNNNNNNNNN for Cas12a. The result is saved in

.tsv files, one for each gene;

3. for each Cas-Offinder output, the model is used. For each target sequence, the

model computes the average cleavage efficiency and standard deviation (or just

the cleavage efficiency in case of [5]). If the model requires two sequences, the

input target is duplicated to form (4, 𝑁, 2) vector, so the input sequence acts

as both gRNA and target;

4. the guides are sorted by cleavage efficiency in descending order. Each result

is saved in a table that combines CasOffinder output and model output.
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For this analysis we use the best performing Cas9 and Cas12a on-target models.

The results are available at a dedicated Zenodo repository, consult the ”Code and

data availability” of [1] section for details.

4.3 Description of hardware and software used in

the studies

For all experiments shown in this dissertation, we have used laptop Alienware 17

R5 with Intel Core i7-8750H, 8 Gb VRAM NVIDIA GeForce GTX 1070 Mobile,

24 Gb GDDR5 RAM. All experiments were performed under Linux environment,

Ubuntu 21.10 with kernel 5.13.0-52. The following Table 4.2 includes the versions

of all libraries that were used for this dissertation.

Table 4.2: Detailed information on libraries.

Library Version Description Citation
Pytorch 1.11.0 Deep learning framework [142]
Torchvision 0.12.1 Computer Vision primitives for Pytorch [143]
Pytorch Lightning 1.8.6 High-level wrapper for Pytorch [144]
Einops 0.4.1 Tensor manipulation library [145]
Alibi 0.9.3 Algorithms for Explainable ML [146]
GPytorch 1.4.0 Gaussian Processes implementation [147]
Biopython 1.74.0 Bioinformatical algorithms in Python [148]
Matplotlib 3.6.3 Scientific visualization [149]
Numpy 1.21.6 Numerical computations and linear algebra [150]
Scipy 1.10.1 Statistical computations in Python [151]
Scikit-Learn 1.2.2 Classical machine learning in Python [152]
Weblogo 3.6.0 Visualization of logo sequences [153]

4.4 Supervised anomaly detection baselines

Within the supervised framework, a model for anomaly detection is trained to dis-

criminate normal examples from the anomalous ones. It has a certain advantage in

the discrimination ability over the model within the unsupervised framework and

in cases where the anomalies are rather homogeneous, it usually performs the best.

One of the basic methods in supervised anomaly detection using deep learning is
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Negative Learning (NL [154]) – to distinguish between the outliers and the nor-

mal data points, one uses the reconstruction error of autoencoder that is trained

to reconstruct normal data points perfectly while failing to reconstruct the outliers.

Negative learning-based anomaly detection does suffer from inability to reconstruct

normal data points though. To overcome this issue, the work of Yamanaka et al. [155]

introduces the Autoencoding Binary Classifiers (ABC) which extend the negative

learning approach by providing lower and upper boundaries on the loss function with

respect to the reconstruction errors. NL and ABC will be used in our work as the

baselines. The main idea of negative learning [154] is to permanently damage the

reconstructive ability of an autoencoder by forcing it to maximize the reconstruction

error on anomalous samples while minimizing it on normal ones. As an autoencod-

ing model, the work of Munawar et al. [154] uses Restricted Boltzmann Machine

with a visible layer and a hidden layer. The network is trained using single-step

contrastive divergence [156]:

𝛿𝑤 = 𝜎[[(𝑣ℎ)𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − (𝑣ℎ)𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑]],

where 𝑣 is the visible layer, ℎ is the hidden layer, 𝜎 is the sign and 𝛿𝑤 is the gradient

of weights. For positive learning stage, 𝜎 = 1, for negative - 𝜎 = −1. During one

training pass, the positive learning is done first, on all positive examples, then the

negative learning is done on all negative examples. Autoencoding Binary Classifier

uses the following loss, constrained in case of anomalous input:

𝐿𝐴𝐵𝐶(𝑋, 𝑌 ) = 𝑌𝑀𝑆𝐸(𝑋, 𝑋̂)− (1− 𝑌 ) log
(︁
1− 𝑒−𝑀𝑆𝐸(𝑋,𝑋̂)

)︁
.

The logarithm term caps the loss for the 𝑌 ≥ 1. Additionally, the ABC paper [155]

uses multilayer perceptrons instead of RBMs for architecture and gradient descent

instead of CD for training algorithm. Capsule networks were already used for

anomaly detection in the works of Piciarelli et al. [134] and Li et al [135]. The first

paper considers supervised anomaly detection setup while the second one proceeds

with an unsupervised formulation. They propose anomaly and normality metrics

respectively, that are based on usage of regularizing decoder and the difference be-

tween the estimated probabilities of normal and anomalous class. In our paper we
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show that those metrics are a direct consequence of internal inequality of “assets” in

Capsule Network representations. The probabilities and reconstruction errors are on

the end of the pipeline and a lot of information that help distinguish the anomalies

from normal data is lost during the process of their computation. We compare our

work with both previous studies [135, 134] and a few baselines (NL and ABC). Our

working hypothesis implies that the information ignored when the probabilities are

computed helps detect anomalies better. We also compute all available anomaly

metrics and show that our work provides the best results in most cases. The work

of Piciarelli et al. [134] proposes the following anomaly measure:

𝐴(𝑋, 𝑋̂, 𝑌𝑛𝑜𝑟𝑚𝑎𝑙, 𝑌𝑎𝑛𝑜𝑚𝑎𝑙𝑦) = 𝑌𝑛𝑜𝑟𝑚𝑎𝑙 − 𝑌𝑎𝑛𝑜𝑚𝑎𝑙𝑦 +𝑀𝑆𝐸(𝑋, 𝑋̂), (4.1)

where 𝑋 is the input image, 𝑋̂ is its reconstruction, 𝑌𝑛, 𝑛 ∈ {𝑛𝑜𝑟𝑚𝑎𝑙, 𝑎𝑛𝑜𝑚𝑎𝑙𝑦}

– the norm of capsule output vectors. It is based on the observation that for an

anomaly the difference between probabilities for each class tends to be less drastic

than for a normal example. Additionally, this paper [134] proposes filtering the

anomaly class from the input to the reconstruction so the reconstruction network

is trained to reconstruct only normal images. We include this feature to every

experiment with Capsule Network. The work of Li et al. [135] provides two metrics.

The first one, given by Eq (4.2), is the largest probability of a class:

𝑁𝑃𝑃 (𝑌 ) = max
𝑖=1,...,𝑁𝑆

𝑌𝑖, (4.2)

where 𝑌 is the vector of norms of the capsule output vectors and 𝑁𝑆 is the number

of output capsules. Eq (4.2) is introduced under the assumption that for a normal

example there would be only one capsule with the norm close to 1 and for an outlier

both of capsules would be close to each other. Hence, for normal images the results

of Eq (4.2) would be close to 1, but for an outlier they would be close to 0.5. The

authors of the previous work [135] normalize MSE by the euclidean norm of inputs in

Eq (4.3), because the MSE is dependent on the number of non-background pixel in

input and reconstruction and the authors tried to invent a metric that is unaffected

45



Chapter 4. Materials and Methods

by this issue.

𝑁𝑅𝐸(𝑋, 𝑋̂) =
𝑀𝑆𝐸(𝑋, 𝑋̂)√︀∑︀𝑛

𝑖=1𝑋
2
𝑖

, (4.3)

where 𝑋 is an input image and 𝑋̂ is the reconstruction computed by the recon-

struction subnetwork. We compare the proposed methods with a selected set of

previous works [154, 155] because those works provide clear, simple and accurate

approaches that are similar enough to ours so the design of a comparison study is

pretty straight-forward.

4.5 Capsule Networks as an ensemble of weak learn-

ers

The main difference of Capsule Networks from conventional architectures is the out-

put. The output is not probabilities of classes, but rather vectors with information

on learned features. This is achieved through combining the output of different

small models and summarizing their decisions. There are two types of capsules,

primary and secondary, so Capsule Networks are inherently two-layered. Class cap-

sules perform prediction based on information from all primary capsules combined.

The output of primary capsule acts as an asset for a class capsule 𝑁 in a way that it

enlarges or shrinks its output vector, giving a large or small probability of an exam-

ple belonging to class 𝑁 . Different primary capsules are of different value for class

capsule 𝑁 and the vectors of class capsules act as a kind of summary statistics over

the distribution of primary capsule contributions. We hypothesize that the distribu-

tion of the “values” in case of a normal example will be different than in case of an

anomalous one, so we can detect anomalies based on that difference. The architec-

ture of Capsule Networks proposed by Sabour et al. [157] is shown in Figure 4-1. In

case of image classification, capsule networks process the input image in three steps:

preprocessing, routing and reconstruction. Preprocessing in our setting consists of

a 2D convolutional layer followed by an activation function (ReLU or ELU in our

experiments). It is followed by a number of 2D convolutional layers of 𝑁𝑓 filters,

which produces the output of size (𝑁𝑓 , output width 𝑤 and output height ℎ). The
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4.5. Capsule Networks as an ensemble of weak learners

Figure 4-1: Capsule Networks architecture. Primary capsules are formed out of
a convolutional layer set. Those layers have the same input and their output is
combined for routing. The decoder is not shown. Architecture for MNIST-like
experiments is shown here and the changes we made for different cases are described
in the respective sections.

outputs of every convolutional layer are joined together and flattened out to form a

tensor of size (number of primary capsules 𝑁𝑃 = 𝑁𝑓 ×𝑤× ℎ, dimension of primary

capsule output 𝑂𝑃 ). Then the squash activation function is applied element-wise

separately for each element in batch and for each 2D convolutional layer:

𝑆(𝑥) =
‖𝑥‖2

1 + ‖𝑥‖2
𝑥

‖𝑥‖
, (4.4)

where 𝑥 is the input to the squash activation, e.g. output of the preprocessing

stage. The outputs of primary capsules are then fed into 𝑁𝑆 secondary or class

capsules (in our setting 𝑁𝑆 = 2) and we enter the stage of routing. The routing is

an iterative algorithm and the following steps describe a single iteration. Usually

the routing is repeated for 3 iterations. During the routing we first compute the

coupling coefficients – tensor 𝑐 of shape (𝑁𝑃 , 𝑁𝑆, 𝑂𝑆). For each secondary capsule

𝑗 we compute the prior probability of coupling for all primary capsules and save

it into the coupling coefficient table. We will use the following key constructions

below:

1. 𝑐𝑖𝑗 – a slice of tensor 𝑐 that corresponds to primary capsule 𝑖 and secondary
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capsule 𝑗;

2. 𝑊𝑖𝑗 – the corresponding slice of the weight tensor;

3. 𝑢𝑖 – an output of primary capsule 𝑖.

Then for each secondary capsule 𝑗 we compute unsquashed secondary capsule output

using the product of the weight tensor slice that corresponds to the primary capsule

𝑖 and secondary capsule 𝑗 and the outputs of the primary capsules 𝑢𝑖:

𝑠𝑗 =

𝑁𝑃∑︁
𝑖=1

𝑐𝑖𝑗 ⊙ (𝑊𝑖𝑗𝑢𝑖),

where ⊙ denotes elementwise multiplication. The outputs of secondary capsules are

computed as in case of primary ones, by the squashing function (see Eq (4.4)) for

every secondary capsule 𝑗:

𝑣𝑗 = 𝑆(𝑠𝑗), 𝑗 = 1, . . . , 𝑁𝑆.

The “agreement” is computed by scalar multiplication of outputs from secondary

capsule 𝑗 with the product of weights and primary capsule outputs that correspond

to primary capsule 𝑖 and the secondary capsule, and at the end of the routing itera-

tion the routing table is updated. To get the probabilities of classes for an example,

we should compute the Euclidean norm of the vectors we get from secondary cap-

sules:

𝑃 (𝑌 = 𝐶𝑗) =
exp(‖𝑣𝑗‖)∑︀𝑁𝑆

𝑘=1 exp(‖𝑣𝑘‖)
,

where 𝐶𝑗 is the class label that corresponds to 𝑗-th class capsule. We can train the

network with any kind of classification objective but following Sabour et al. [157]

we use margin loss:

𝐿𝑘 = 𝑇𝑘𝑅𝑒𝐿𝑈(𝑚+ − 𝑌𝑘)
2 + 𝜆(1− 𝑇𝑘)𝑅𝑒𝐿𝑈(𝑌𝑘 −𝑚−)2,

where 𝑘 is the number of output capsule, 𝑇𝑘 = 1 if the k-th capsule denotes the

class that corresponds to the real label and 0 otherwise, 𝑚+, 𝑚− and 𝜆 are hyper-

parameters, 𝑌𝑘 is the norm of the 𝑘-th capsule output vector. As a regularization,
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like in the original paper [157], the additional reconstruction subnetwork 𝑅 is used:

𝑋̂ = 𝑅(𝑣𝑗).

So the total loss we optimize is:

𝐿𝑡𝑜𝑡𝑎𝑙 =
𝑁∑︁
𝑘=1

𝐿𝑘 + 𝛼𝑀𝑆𝐸(𝑋, 𝑋̂),

where 𝛼 > 0 is a hyperparameter chosen to balance the involvement of reconstruction

loss. Most of the learning happens when the weights of the class capsule layer

are adjusted via gradient descent during the backward pass. The adjustment is

based on the output of the layer during the forward pass. The forward pass is

computed iteratively, according to the equations above. The usual way to train

capsule networks is not easy: one needs to use a non-standard loss and an additional

decoder for regularization, but the most interesting computations happen within the

coupling coefficients.

4.6 Deep Kernel Learning for cleavage efficiency es-

timation

We developed a deep kernel learning model, named GuideHOM (Guide Hit-Or-Miss).

GuideHOM employs a Hit-Or-Miss capsule network as an intermediate feature ex-

tractor built upon a preprocessing module and a Gaussian Process to estimate the

distribution of the cleavage efficiency of RGN programmed with a given gRNA. The

estimation is based on the representation produced by the Hit-Or-Miss capsules to

predict on-target and off-target cleavage efficiency using gRNA spacer sequence fea-

tures (see Figure 4-2A for example of a single input encoding). In GuideHOM, we

implemented two preprocessing approaches that differed in terms of the prediction

strategy and the analyzed datasets. The first approach predicts the on-target cleav-

age efficiency based on the gRNA spacer sequence only, under the assumption that

the target sequence is its exact complement. The second approach aims to estimate

the cleavage efficiency based on the mismatching gRNA spacer-target pairs. We
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Figure 4-2: The GuideHOM architecture. (A) The input: one or two one-hot
encoded sequences. To predict on-target cleavage efficiency based only on gRNA, we
use the 1D convolutional or recurrent preprocessing modules, and to predict cleavage
efficiency based on mismatched gRNA and target sequences, we use 2D convolutional
preprocessing. (B) The structure of Hit-or-Miss capsule layer; 5 capsule layers are
used in the Hit-or-Miss network. (C) Schematic illustration of the GuideHOM
architecture. See ”Materials and Methods” for more details.

assume that all sequences in the genome that match a particular gRNA are cleaved

with the same efficiency although this is unlikely to hold precisely, for example,

due to differences in chromatin accessibility. However, in this work, we do not

use chromatin accessibility or data on other potential contributing factors, relying

solely on the gRNA and target sequences. The model is a deep neural network that

consists of three modules: (i) preprocessing subnetwork that extracts low-level se-

quence features using either a 1D or 2D convolutional layer followed by Leaky ReLU

(the Rectified Linear Unit, a commonly used activation function) or an LSTM layer

(Long Short Term Memory layer); (ii) encoder subnetwork that extracts high-level

sequence features from preprocessed inputs using a set of Hit-or-Miss capsules [157],

and (iii) a set of Gaussian Processes [158] that estimate cleavage efficiency based on
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the extracted features computed by the encoder subnetwork (Figure 4-2C). The se-

quences are encoded in an one-hot fashion as shown in Figure 4-2A: each nucleotide

𝑖 is replaced by a vector of 4 components with the i-th component being equal to 1

and every other component set to zero. For gRNA preprocessing, the final, machine-

readable input is an array of size (4, 𝑁), where N is the length of gRNA spacer; for

gRNA-target preprocessing, the final input is an array of size (2, 4, 𝑁). To predict

on-target cleavage efficiency based only on gRNA, we use the 1D convolutional or

recurrent preprocessing modules. To predict cleavage on- and off-target efficiencies

based on gRNA and target sequences we use 2D convolutional preprocessing. For a

gRNA-target pair, our model estimates the lower and upper bounds of the cleavage

efficiency. The recurrent layer is not used for the case with two sequence inputs, in

order to minimize unnecessary complexity in the setup. The same architecture and

training routine were used for all datasets with minor modifications to accommodate

different lengths of the input data (for example, the geCRISPR dataset provides gR-

NAs with 20 nucleotide spacer lengths only, compared to DeepCRISPR, DeepHF

and DeepCpf1 that provide 23nt). The simplest use case of the GuideHOM model is

shown in Figure 4-3. As can be seen from Figure 4-3, the choice between gRNA and

gRNA-target preprocessing module depends only on the input data in the dataset,

whereas the rest of the workflow remains the same: preprocessing, computation of

HOM representations, sampling the cleavage efficiency distribution, computation of

mean cleavage efficiency and its variance. The general architecture is shown in Fig-

ures 4-2B and 4-2C, and the dataset-specific changes are described in Supplementary

Table 1 of [1].

4.6.1 Preprocessing subnetwork

The preprocessing subnetwork provides the extraction of low-level sequence features

on the level of k-mers. For the experiments in this work, we used three types of pre-

processing subnetworks: (i) 1D convolutional, (ii) 2D convolutional and (iii) LSTM-

based. An 1D convolutional preprocessing subnetwork consists of a 1d CoordConv

layer [159] followed by Leaky ReLU activation. The 2D convolutional layer is the

same but with 2d convolutions. We use CoordConv instead of convolutions because
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Figure 4-3: The UML (Unified Modeling Language) sequence diagram of a single in-
put use case for the GuideHOM architecture. First, the user supplies the model with
an input through the Dataset object. The Dataset object supplies the preselected
preprocessing module with one-hot encoded sequence or pair. Either of the prepro-
cessing modules supplies the HOM capsule layer with the preprocessing output. The
HOM capsule layer computes coordinates of gRNA/gRNA pairs in the guide space,
then, sends the coordinates to the Gaussian Process. The Gaussian Process samples
activities from the approximate distribution it has learnt, computes the mean and
variance, then, sends the outputs back to the user.

it is shown to work better on one-hot encoded data [159]. The LSTM preprocessing

consists of four consecutive LSTM layers.

4.6.2 Encoder subnetwork

The encoder is used to learn patterns based on the sets of k-mers and to present the

learned patterns in a concise manner as a matrix of real numbers. The encoder con-

sists of a number of Hit-Or-Miss capsules [116] applied to the preprocessed input in

parallel. Each Hit-Or-Miss capsule is a linear layer followed by batch normalization
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to accelerate the learning process, and sigmoid activation to constrain the output

between 0 and 1. Hit-Or-Miss capsule 𝑖 encodes the difference between an input

example and a center of the space of possible outputs:

𝑂𝑖(𝑋) = 𝐶 − Sigmoid(BatchNorm𝑖(Linear𝑖(𝑋))),

where 𝐶 = [0.5, 0.5, ...0.5]. In case of classification, when Hit-or-Miss capsules are

optimized with their special Centripetal loss, the perfect “hit” is the vector filled

with zeros, and the wrong answers accumulate large “misses”. In our case, we did

not use the classification (centripetal) loss and classification setup, so the “misses”

simply encode the position of the input in the space of all possible inputs, not

necessarily the class vectors. Consult the Supplementary Table 1 of [2] for details

for the structure and parameters used in the encoder subnetwork.

4.6.3 Gaussian Process

For prediction of the cleavage efficiency, we use a model called Gaussian Process

(GP). A Gaussian process is a probability distribution over possible functions that

fit a set of points:

𝑓(𝑥) = 𝐺𝑃 (𝑚(𝑥), 𝑘(𝑥, 𝑥′)),

where 𝑥 and 𝑥′ are the pair of inputs, 𝑓(𝑥) is the function we would like to fit, 𝑚(𝑥)

- mean function and 𝑘(𝑥, 𝑥′) - covariance function, such as:

𝑚(𝑥) = E[𝑓(𝑥)],

𝑘(𝑥, 𝑥′) = E[(𝑓(𝑥)𝑚(𝑥))(𝑓(𝑥𝑗)𝑚(𝑥′))].

Mean and covariance functions denote the priors of the distribution over functions.

By setting mean and covariance, we choose a set of functions that are used for

inference. We fit the Gaussian Process by selecting from a prior distribution only

those functions that agree with the observations. This is achieved via optimizing the

parameters of the covariance function, the mean function and the encoder neural

network using gradient descent. We obtain actual predictions of a value by sampling
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the Gaussian Process. Covariance function specifies the covariance between pairs of

random variables and mean function specifies the base level of the predicted value.

As our loss function we use Evidence Lower Bound [160]:

𝐸𝐿𝐵𝑂(𝑞) = E[log 𝑝(𝑥|𝑧)]− KL(𝑞(𝑧)||𝑝(𝑧)),

where 𝑥 is the observed cleavage efficiency, 𝑧 is the latent variable (representation

computed by the neural network), 𝑝(𝑥|𝑧) is the conditional distribution of cleavage

efficiency given the latent variable, 𝑞(𝑧) is the variational distribution of the latent

variable, 𝑝(𝑧) is the prior distribution of the latent variable, KL is their Kullback-

Leibler divergence. It is a ”natural” loss function for deep Gaussian processes that,

in our case, can be efficiently computed and optimized via gradient descent using

GPytorch primitives. For the gradient descent, we use Adam [161] with starting

learning rate 𝜆0 = 0.01. We schedule our learning rate to decrease by multiplying

it by 0.9 every tenth epoch. The model is trained for 60 epochs. Such step wise re-

duction helps in convergence towards good local minima of the loss function surface.

We also experiment with additional, more traditional loss, Mean Squared Error, so

for a number of experiments (in the Supplementary Table 3 of [1] and everywhere

else referred as “E+M”), the loss is as follows:

𝐿𝑜𝑠𝑠𝐸+𝑀(𝑞, 𝑦, 𝑦) = 𝐸𝐿𝐵𝑂(𝑞) + 𝛼𝑀𝑆𝐸(𝑦, 𝑦),

where 𝑦 is the optimization target, 𝑦 is the prediction, that is, the mean of a sample

from GP and 𝛼 = 0.5. Gaussian Processes can be nested just as linear layers in

neural networks. Our network consists of two layers with a linear and constant

mean. The output shape of the first layer is 2, and the second process used the

previous output as input and outputs the 1d distribution. The scheme is similar to

a fully connected neural network, but outputs not a single number but a distribution

that can be sampled. After the sampling, we compute the mean prediction and the

confidence interval, which is the uncertainty-aware prediction of cleavage efficiency

we aim at obtaining.
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4.7 Clustering and motif analysis of the guide space

Agglomerative clustering was performed using SciPy library [151], with default set-

tings, max_d of 2 and criterion ”distance”. To draw the motif logos, the webl-

ogo [153] library was used.

4.8 Performance metrics for regression and quality

of confidence intervals

To analyze the performance of the regression models, we use three classical metrics -

determination coefficient (𝑟2), Pearson and Spearman correlation coefficients (PCC

and SCC respectively), computed using Scikit-Learn library. To understand whether

the confidence intervals the model gives is acceptable, we compute how many real

labels for examples from the test set lie between the predicted label and predicted

standard deviation:

𝜌(𝑌, 𝑌 , 𝜎,𝑀) =

∑︀𝑁
𝑖=0 𝐼(𝑌𝑖 ∈ [𝑌𝑖 −𝑀𝜎𝑖, 𝑌𝑖 +𝑀𝜎𝑖)

𝑁
,

where 𝑁 is the test set size, 𝐼 is the indicator function which is 1 if the argument

is true and 0 otherwise, 𝑀 ∈ [1, 2, 3]. We compute 𝜌 for one, two and three stan-

dard deviations and check whether the values are close to 68%, 95% and 99.7%

respectively. We denote those values as 𝜌68, 𝜌95 and 𝜌99.7.

4.9 Explanation for cleavage efficiency machine learn-

ing models

To explain the predictions of the model, the Accumulated Local Effects (ALE, [132])

are computed, Python library alibi [146] is used. ALEs are computed over 𝑀 ran-

domly generated synthetic gRNAs (or gRNA-target pairs, depends on the model)

that are flattened into (𝑀, 4𝑁) or (𝑀, 4×2𝑁) matrix. The model requires (𝑀, 2, 4, 𝑁)

or (𝑀, 4, 𝑁), where N is the length of the input, so an intermediate class to reshape

the inputs is used. M in our work is set to 10000. The resulting ALE values have
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the shape of (4𝑁,𝐴,𝐵) where A is the number of feature intervals, in our case,

2 for 0 and 1 of one-hot encoded nucleotides, and B is the number of prediction

targets, again, 2 in our case, corresponding to mean efficiency and variance. We are

interested only in the component of features that corresponds to the values of 1,

because we would like to see the importance of a presence of a certain nucleotide on

a certain position. The heatmaps are constructed from the ALE explainer class, first

and second components of the vector that corresponds to the value 1 of features for

mean efficiency and variance respectively. See the Figure9.ipynb, SupplementaryFig-

ure1.ipynb, SupplementaryFigure2.ipynb and reproduce_explanations.py notebooks

and scripts from [2]. For logo sequences, constructed out of ALE values, the softmax

with additional temperature parameter is calculated:

𝑦𝑖(𝑋, 𝑡) =
exp(𝑋𝑖

𝑡
)∑︀𝑁

𝑗=1 exp(
𝑋𝑗

𝑡
)
,

where t is temperature parameter, the less temperature is, the more distinct the

output probabilities are, 𝑋𝑖 are the features that correspond to i-th nucleotide out

of four, i and j are the counters. Softmax is applied along the nucleotide axis, the

resulting matrix is of (4, 𝑁) size, and if we sum the vector along the first axis, we

get the vector of N ones. We use weblogo [153] to draw the resulting sequences.
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Chapter 5

Inequality in capsule networks for

detection of potential off-target

events

5.1 Introduction to the project

This chapter is based on one of the papers that constitute the current dissertation –

“Measuring internal inequality in capsule networks for supervised anomaly detection”

[2] published in Scientific Reports. My contributions in this project are as follows:

I (together with my supervisor) have developed the main concept, designed the

study and wrote the main manuscript text. I also have performed all computational

experiments.

The problem of anticipating rare events is of high interest to the modern techno-

logical society. A lot of problems people face, like bank fraud [162], structural defects

in materials [163], early development of diseases [141], and manipulation of public

opinion in social networks [164], boil down to knowing what a typical behavior for

a system is and what is not.

Anomaly detection is the process of examining data to determine where the

aberrations lie. Usually, this involves analyzing how well the parts of the system

are performing to understand what the normal behavior consists of. Sometimes

there is also some degree of knowledge about abnormal behavior. In this paper,
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we use the common notion of anomaly in machine learning – an instance of data

that is rare and deviates a lot from other, more prevalent ones. Anomaly detection

is essential for analysis of almost any complex data. In bioinformatics, one can

consider prediction of protein-protein interactions and CRISPR off-target cleavage

prediction. In computer vision there are various cases of defect detection. All these

tasks require a deep neural network-based solution due to the data complexity.

Anomaly detection then can be supervised or unsupervised [165] depending on

whether the examples of atypical behavior are available. Each kind has its benefits

and limitations: supervised anomaly detection methods tend to be more accurate

with the known anomalies than the unsupervised ones, but also tend to miss the

anomalies never observed before [155].

This project is concerned with supervised anomaly detection, which deals with

the classification problems of a very abundant normal class and a scarce anoma-

lous class. It is a case of highly imbalanced binary classification. We focus on the

problems with relatively complex data such as images or DNA sequences, which

are best solved with Deep Learning methods. Given that the anomalous class is

usually infrequent (1%-0.01%, mere hundreds of examples), commonly used deep

learning methods tend to perform poorly. Supervised anomaly detection via deep

neural networks usually employs carefully crafted augmentation [166], complex ar-

chitectures [167], GAN-based generation [168], and other tricks aimed to expand the

number of anomalous examples.

In this project, we present a different approach, based on Capsule Networks with

dynamic routing [157]. A capsule network consists of grouped neurons that output

vectors encoding parameters of an object or a part of an object. The key difference

between Capsule and Convolutional Neural Networks is the output: while Convo-

lutional Networks output a vector of 𝑁 class probabilities (where 𝑁 is the number

of classes), Capsule Networks output a matrix that consists of 𝑁 vectors. These

vectors are called capsules and encode the learned representation of an object given

it belongs to a corresponding class. The class probabilities are computed by taking

the vector norms. Low-level primary capsules that represent parts of an object feed

their output to class capsules that represent the object as a whole. Parts from an
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object of a rare class are rarely present in an object of a more common class. If

the network detects parts that do not fit into a common class, then the low-level

primary capsules that correspond to these parts are triggered and therefore con-

tribute to prediction of the object being an anomaly. A method to detect anomalies

with Capsule Networks would benefit from exploiting this “part-whole” relationship

expressed in dynamics of primary capsules voting for a class.

Previous works [135, 134] on supervised anomaly detection with capsule net-

works use the reconstruction ability and class probabilities to separate outliers from

inliers, while the methods proposed in this work are based on the evaluation of

unequal response of the routing mechanism to normal and aberrant inputs. Class

probability is given by the computation of class capsule output via routing. Rout-

ing by agreement has an intrinsic property of polarization [169] – convergence on a

single route from primary to class capsules. This property gives rise to inequality

between a well-predicted and poorly predicted class in case of class imbalance. We

can measure such discrepancy using economic inequality metrics, such as Gini [170]

and Palma [171] coefficients. Our main contributions can be summarized as follows:

1. We propose a new approach for supervised anomaly detection using capsule

networks;

2. We suggest a new application of economic inequality metrics to machine learn-

ing which also allows investigating internal mechanisms of capsule networks;

3. We perform a comprehensive review and comparison of different capsule network-

based anomaly detection methods on standard benchmarks and real-world

data, which confirms state-of-the-art performance of the proposed methods;

4. We use the developed methods to build a new approach towards detection of

potential CRISPR-Cas off-target events using supervised anomaly detection.

5.2 Main idea

Both previous studies [134, 135] base their work on the differences between estimated

class probabilities and reconstruction subnetwork. We do not use reconstructions in
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our method while it could indeed help in a real-life application. Instead, we focus

on the estimation of class probabilities. In capsule network setting, the probabili-

ties are formed by softmax of capsule output vector norms. Output vectors provide

information beyond class probability, according to the original Capsule Networks pa-

per [157], they capture interpretable properties like thickness of stroke, localization

and shape. This information gets lost when we compute the norm.

To gather as much information as possible, we dive deeper into the routing

mechanics. Coupling coefficients 𝑐, computed from the routing table, contain all

the information about the way primary and class capsules would route for a given

example. We base our research on the assumption that the couplings on normal and

anomalous capsule show different results when encountering an abundant class of

examples and a rare one.

To do the classification, we ideally need a summary statistic for the couplings.

Let 𝑐𝑗 be a part of coupling table 𝑐 that corresponds to 𝑗-th secondary capsule. It

is a tensor of size (𝑁𝑃 , 𝑂𝑆) where 𝑁𝑃 is the number of primary capsules, 𝑂𝑆 is the

dimension of class capsule output vector. For each secondary capsule 𝑗 we first sum

the respective couplings along the 𝑂𝑆 axis:

𝑀𝑗 =

𝑂𝑆∑︁
𝑙=1

𝑐𝑙𝑗,

where 𝑐𝑙𝑗 is a vector of dimension 𝑁𝑃 obtained as a slice of tensor 𝑐 for secondary

capsule 𝑗 and its output dimension 𝑙 ∈ 1, 𝑁𝑆. The distribution of 𝑀𝑗 for different

cases is shown on the Fig 5-1. This vector can be interpreted as a vector of total

contributions of primary capsules to the 𝑗-th secondary capsule results. Those con-

tributions due to polarization property of capsule networks would be highly inequal

in case the network is well-trained. Fig 5-1 clearly shows the change in the distribu-

tions for both normal and anomalous capsules that can be captured by inequality

measures discussed below.

To evaluate an internal inequality in capsule networks, we require a short de-

tour to econometrics. Income inequality in economics is measured by a number of

statistical criteria [171]. Most popular, the ones we use here, are Gini [170] and
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Figure 5-1: An example of coupling coefficients distributions 𝑀𝑗 for the data from
KuzushijiMNIST. The histograms of 𝑀𝑗 for normal and anomalous capsules in nor-
mal and anomalous cases are shown with specified Gini and Palma coefficients. Note
the difference between the distributions for normal (a) and anomalous (b) capsules
in the normal case and the anomalous one. Normal capsule only mildly captures
the difference between the samples. We use the couplings of anomalous capsule to
compute Gini and Palma coefficients to capture this more pronounced difference for
anomalous capsule. Note that on the plot, the distribution for the logarithm of the
summed couplings are shown, but the values of Gini and Palma coefficients given
are computed on the summed couplings without the logarithm.

Palma [172] coefficients. Gini coefficient is

𝐺𝑖𝑛𝑖(𝑍) =

∑︀𝑛
𝑖=1(2𝑖− 𝑛− 1)𝑍𝑖

𝑛
∑︀𝑛

𝑖=1 𝑍𝑖

, (5.1)

where 𝑛 is the sample size, 𝑖 is the number of example in the sample and 𝑧𝑖 is the

value. Gini coefficient ranges from 0 to 1 and the value for the most inequal case

(only one non-zero example) is 1.

More recently, Palma [172] coefficient started to displace Gini as a go-to measure

of income inequality:

𝑃𝑎𝑙𝑚𝑎(𝑍) =
𝑄90(𝑍)

𝑄40(𝑍)
, (5.2)

where 𝑄90 and 𝑄40 are the 90-th and 40-th percentiles respectively. Key assump-

tion behind Palma coefficient is that the tails of income distribution contribute to

inequality the most and the middle ground remains relatively stable over time. This

assumption makes Palma coefficient work rather well in case of yearly assession of

economic inequality of countries. We hypothesise that Palma coefficient would work

better than Gini because the assumption holds in our case due to polarization.
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Now we are equipped to apply income inequality metrics to Capsule Networks.

The first proposed criterion is based on Gini coefficient, see Eq (5.1):

𝐺𝑖𝑛𝑖(𝑀𝑗) =

∑︀𝑁𝑃

𝑘=1(2𝑘 −𝑁𝑃 − 1)𝑀𝑗𝑘

𝑁𝑃

∑︀𝑁𝑃

𝑘=1 𝑀𝑗𝑘

.

The second criterion is based on Palma coefficient and is computed according to

Eq (5.2):

𝑃𝑎𝑙𝑚𝑎(𝑀𝑗) =
𝑄90(𝑀𝑗)

𝑄40(𝑀𝑗)
.

Coming back to the example from Fig 5-1, we clearly see that both Gini and Palma

coefficients allow to capture the difference in distribution for anomalous capsule.

We use both of these criteria as a measure of data point “outlierness” and compute

the AUC directly. It is possible to use Logistic Regression or any other classification

model (SVM, XGBoost, Random Forest, ...) based on the value of Gini, Palma or

both and also consider adding other features derived from the data or reconstruction

properties, but we defer it to future work. We use Adam optimizer [161] with default

settings and train-test splits defined according to Section 4.2.3 of Chapter 4.

5.3 Performance on CRISPR-Cas off-target event

detection

For the CRISPR off-target task we get the best results with Palma (0.9631± 0.0125

AUROC, 0.6876 ± 0.0264 average precision) and Gini (0.9666 ± 0.0118 AUROC,

0.6571±0.0318 average precision) coefficients and the worst results with ABC and NL

(0.5314±0.0134, 0.5147±0.0483 AUROC respectively, and whopping 0.0271±0.0007,

0.0264±0.0044 average precision respectively). Normalized reconstruction error 𝑁𝑟𝑒

again performs worse than its 𝑁𝑝𝑝 pair – 0.6756± 0.0372 AUROC, 0.2725± 0.0328

average precision, and 0.9147 ± 0.0144 AUROC, 0.304 ± 0.0701 average precision

respectively, but anomaly score and plain capsules give not the worst, but the average

quality in AUROC – 0.6131 ± 0.0471 and 0.7518 ± 0.0404 respectively, while in

average precision, plain capsules score below Gini and Palma only (0.4059± 0.034).

Anomaly score performs in average precision similarly to AUROC – slightly worse
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than 𝑁𝑟𝑒 (0.2535 ± 0.0327). The advantage of inequality-based measures over the

rest is clearly seen.

5.4 Performance on computer vision benchmarks

5.4.1 MNIST-like Benchmarks

We measure the performance using the AUROC metrics. For each dataset and

outlier fraction we compute AUROCs for all classes (10 values), then we report

average AUROC and the standard deviation. We denote performance of the capsule

network without any additional metrics as “Plain”, non-capsule baselines as NL and

ABC, anomaly score as A, normality scores as 𝑁𝑝𝑝 and 𝑁𝑟𝑒. The results for diverse

outliers are shown in Table 5.1.

The proposed methods, either Palma or Gini outperforms other metrics and

baselines in 1% and 10% cases for diverse outliers for both AUROC and average

precision (shown in Supplementary Table 1 of [2]). For CIFAR10, Palma and Gini

also perform the best in 0.1% case. This is probably due to loss of information after

computing the norms according to Eqs (4.1) and (4.2). For 1% KMNIST and 1%

CIFAR10 case, Palma and Gini respectively come second to 𝑁𝑝𝑝. In MNIST and

FMNIST 0.1% though (in AUROC, and for KuzijishiMNIST additionally in average

precision), Palma and Gini perform way worse than anomaly score and both normal-

ity scores. Overall, as the number of anomalous examples grows, the performance of

normality measures decreases, performance of anomaly measure increases slightly,

and performance of Palma and Gini increases by a large margin.

For diverse inlier settings, Palma and Gini coefficients outperform almost every-

thing for all cases except CIFAR10 0.1% and 1%, KuzijishiMNIST 0.1% in which

Gini and Palma coefficients respectively perform the second best to 𝑁𝑝𝑝 (Table 5.2

and Supplementary Table 2 of [2]). As in the diverse outlier settings, the proposition

of the previous study [134] that plain capsule network performs poorly for anomaly

detection stands. As in the diverse outlier case, Palma and Gini coefficients are very

close to each other.
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Table 5.1: AUROCs for diverse outlier setup (fractions 0.1%, 1% and 10%).

0.1%, mean ± std 1%, mean ± std 10%, mean ± std Dataset
Palma 0.6488 ± 0.0598 0.7213 ± 0.0644 0.8313 ± 0.0473
Gini 0.6494 ± 0.0604 0.7217 ± 0.0646 0.8322 ± 0.0471
Plain 0.5000 ± 0.0000 0.5003 ± 0.0009 0.6372 ± 0.0635
A 0.5813 ± 0.1159 0.5856 ± 0.1207 0.6084 ± 0.0985
𝑁𝑝𝑝 0.6487 ± 0.0755 0.7369 ± 0.0644 0.7915 ± 0.0581 CIFAR10
𝑁𝑟𝑒 0.5851 ± 0.1085 0.5908 ± 0.1198 0.6159 ± 0.0944
ABC 0.6407 ± 0.0714 0.6426 ± 0.0772 0.6489 ± 0.0707
NL 0.5000 ± 0.0811 0.5000 ± 0.0811 0.5000 ± 0.0812
Palma 0.8387 ± 0.0876 0.9795 ± 0.0123 0.9805 ± 0.0221
Gini 0.8366 ± 0.0883 0.9819 ± 0.0131 0.9984 ± 0.0007
Plain 0.5767 ± 0.0660 0.8633 ± 0.0584 0.9821 ± 0.0060
A 0.9253 ± 0.0522 0.9545 ± 0.0313 0.9541 ± 0.0392
𝑁𝑝𝑝 0.9144 ± 0.0644 0.9528 ± 0.0297 0.7479 ± 0.0929 MNIST
𝑁𝑟𝑒 0.9618 ± 0.0235 0.9806 ± 0.0130 0.9896 ± 0.0087
ABC 0.8169 ± 0.1073 0.8102 ± 0.1051 0.8293 ± 0.1063
NL 0.4943 ± 0.1723 0.4947 ± 0.1714 0.4942 ± 0.1716
Palma 0.7458 ± 0.0489 0.9109 ± 0.0299 0.9679 ± 0.0217
Gini 0.7446 ± 0.0494 0.9096 ± 0.0301 0.9757 ± 0.0154
Plain 0.5048 ± 0.0098 0.6642 ± 0.0692 0.9071 ± 0.0362
A 0.7585 ± 0.0764 0.7881 ± 0.0572 0.7870 ± 0.0764
𝑁𝑝𝑝 0.8417 ± 0.0486 0.9316 ± 0.0247 0.7931 ± 0.0548 KMNIST
𝑁𝑟𝑒 0.8645 ± 0.0547 0.8923 ± 0.0461 0.9066 ± 0.0391
ABC 0.6025 ± 0.1122 0.6049 ± 0.1127 0.6180 ± 0.1215
NL 0.5000 ± 0.1078 0.5000 ± 0.1072 0.5000 ± 0.1067
Palma 0.8388 ± 0.1134 0.9390 ± 0.0467 0.9602 ± 0.0340
Gini 0.8419 ± 0.1119 0.9392 ± 0.0468 0.9784 ± 0.0271
Plain 0.5759 ± 0.1172 0.8027 ± 0.0797 0.9210 ± 0.0554
A 0.8914 ± 0.0609 0.9090 ± 0.0570 0.9087 ± 0.0820
𝑁𝑝𝑝 0.8792 ± 0.0567 0.8834 ± 0.0836 0.7453 ± 0.1117 FMNIST
𝑁𝑟𝑒 0.9153 ± 0.0666 0.9195 ± 0.0715 0.9080 ± 0.0875
ABC 0.7921 ± 0.1595 0.7921 ± 0.1588 0.7933 ± 0.1611
NL 0.5000 ± 0.2215 0.5000 ± 0.2218 0.5000 ± 0.2207

5.4.2 Malignant Skin Lesion Classification

This constitutes the first application of supervised anomaly detection with capsule

networks to a real-world non-benchmark dataset. Following footsteps of Quinn et

al. [141], we consider that anomaly detection can facilitate the search for actual

biological anomalies – malignant skin lesions. The main conceptual difference from

this work [141] (apart from using photos instead of transcriptomics data) is that we
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Table 5.2: AUROCs for diverse inlier setup (fractions 0.1%, 1% and 10%).

0.1% mean ± std 1% mean ± std 10% mean ± std Dataset
Palma 0.6985 ± 0.0570 0.7980 ± 0.0624 0.9068 ± 0.0413
Gini 0.6982 ± 0.0575 0.7984 ± 0.0622 0.9084 ± 0.0413
Plain 0.5000 ± 0.0000 0.5131 ± 0.0157 0.7060 ± 0.0768
A 0.5111 ± 0.1465 0.5217 ± 0.1388 0.6329 ± 0.1361
𝑁𝑝𝑝 0.7013 ± 0.0465 0.8157 ± 0.0587 0.8341 ± 0.0284 CIFAR10
𝑁𝑟𝑒 0.5113 ± 0.1419 0.5223 ± 0.1347 0.6397 ± 0.1250
ABC 0.5230 ± 0.118 0.5335 ± 0.1163 0.5195 ± 0.1051
NL 0.5000 ± 0.0812 0.5000 ± 0.0812 0.5000 ± 0.0811
Palma 0.9849 ± 0.0080 0.9981 ± 0.0043 0.9697 ± 0.0035
Gini 0.9848 ± 0.0081 0.9981 ± 0.0012 0.9997 ± 0.0002
Plain 0.8039 ± 0.0727 0.9634 ± 0.0138 0.9928 ± 0.0031
A 0.9508 ± 0.0342 0.9898 ± 0.0080 0.9819 ± 0.0442
𝑁𝑝𝑝 0.9496 ± 0.0568 0.6210 ± 0.1288 0.3073 ± 0.0997 MNIST
𝑁𝑟𝑒 0.9593 ± 0.0248 0.9920 ± 0.0052 0.9939 ± 0.0111
ABC 0.5420 ± 0.2011 0.5398 ± 0.2025 0.5598 ± 0.1960
NL 0.5048 ± 0.1731 0.5028 ± 0.1722 0.5061 ± 0.1723
Palma 0.9067 ± 0.0282 0.9771 ± 0.0125 0.9925 ± 0.0053
Gini 0.9066 ± 0.0285 0.9771 ± 0.0125 0.9934 ± 0.0056
Plain 0.6029 ± 0.0322 0.8303 ± 0.0288 0.9558 ± 0.0159
A 0.7611 ± 0.0875 0.8908 ± 0.0389 0.9501 ± 0.0294
𝑁𝑝𝑝 0.9248 ± 0.0268 0.8451 ± 0.0402 0.5218 ± 0.0594 KMNIST
𝑁𝑟𝑒 0.8147 ± 0.0670 0.9286 ± 0.0242 0.9784 ± 0.0119
ABC 0.5000 ± 0.1279 0.5000 ± 0.1279 0.5000 ± 0.1279
NL 0.5000 ± 0.1071 0.5000 ± 0.1074 0.5000 ± 0.1077
Palma 0.9289 ± 0.0424 0.9617 ± 0.0265 0.9480 ± 0.0582
Gini 0.9284 ± 0.0426 0.9661 ± 0.0296 0.9891 ± 0.0136
Plain 0.6517 ± 0.1410 0.8076 ± 0.1266 0.9376 ± 0.0525
A 0.7474 ± 0.1705 0.8192 ± 0.1257 0.8527 ± 0.0923
𝑁𝑝𝑝 0.8762 ± 0.1262 0.7358 ± 0.2231 0.5970 ± 0.2339 FMNIST
𝑁𝑟𝑒 0.7374 ± 0.2045 0.7989 ± 0.1598 0.8427 ± 0.1199
ABC 0.5515 ± 0.2192 0.5499 ± 0.2133 0.5775 ± 0.2011
NL 0.5000 ± 0.2215 0.5000 ± 0.2208 0.5000 ± 0.2214

actually use the examples of such anomalies – the detection is not unsupervised.

The results, as Table 5.3 shows, are rather similar to the results on the MNIST-

like benchmarks (Tables 5.1 and 5.2). Palma and Gini outperform every other metric

by a large margin and provide almost the same performance. For the case B, diverse

outliers and homogeneous inliers, Gini outperforms Palma, but not very much. The

𝑁𝑝𝑝 measure performs close to Palma and Gini, while the rest is far behind.

Analysis of average precision (Supplementary Table 3 of [2]) for this task also
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Table 5.3: AUROCs for HAM10000 with the following setups: A – diverse outliers,
diverse inliers, B – diverse outliers, homogeneous inliers, C – homogeneous outliers,
homogeneous inliers, D – homogeneous outliers, diverse inliers.

A B C D
Palma 0.7348 ± 0.0160 0.7312 ± 0.0137 0.7880 ± 0.0165 0.7532 ± 0.0209
Gini 0.7347 ± 0.0157 0.7312 ± 0.0137 0.7883 ± 0.0163 0.7528 ± 0.0207
Plain 0.5000 ± 0.0000 0.5000 ± 0.0000 0.4996 ± 0.0005 0.5000 ± 0.0000
A 0.5693 ± 0.0120 0.5815 ± 0.0216 0.5846 ± 0.0129 0.5953 ± 0.0247
𝑁𝑝𝑝 0.6950 ± 0.0055 0.7204 ± 0.0120 0.7468 ± 0.0099 0.7406 ± 0.0152
𝑁𝑟𝑒 0.5675 ± 0.0122 0.5945 ± 0.0200 0.5848 ± 0.0132 0.6079 ± 0.0234
ABC 0.5456 ± 0.0027 0.5888 ± 0.0300 0.5710 ± 0.0076 0.6066 ± 0.0016
NL 0.5865 ± 0.0030 0.5908 ± 0.0046 0.6173 ± 0.0037 0.6269 ± 0.005

show clear superiority of Gini and Palma over the other metrics, closely mirroring

the AUROC results, but the difference here is also more pronounced, because every

metric except for Gini and Palma scores only about 2% more on average than the

respective proportion of the positive class (anomaly). Such result is close to the one

we would expect from a degenerate model that outputs 1 regardless of the input.
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Chapter 6

Uncertainty-aware and Explainable

Machine Learning for gRNA

selection

This chapter is based on one of the papers that constitute the current dissertation –

“Uncertainty-aware and interpretable evaluation of Cas9–gRNA and Cas12a–gRNA

specificity for fully matched and partially mismatched targets with Deep Kernel

Learning” [1] published in Nucleic Acids Research. The contribution of authors

are as follows: E.S., S.A.S. and I developed the concepts and designed the study.

E.V.K., M.P., A.Y.O., S.A.S. and K.V.S. supervised the research. I have designed

the methods and performed all analyses. E.S., S.A.S. and I wrote the manuscript,

which was read, edited and approved by all authors.

6.1 GuideHOM provides acceptable confidence in-

tervals and accurate and reliable predictions of

on-target cleavage efficiency

In our study, combination of Hit-Or-Miss networks [116] and Deep Gaussian Pro-

cesses [158] helps to augment the point estimates of cleavage efficiency with the in-

formation on prediction uncertainty. To our knowledge, this is the first application
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of uncertainty-aware machine learning for CRISPR cleavage prediction efficiency.

Using the confidence intervals derived from the model helps to overcome the prob-

lem of noisy and biased training data. We attempt to replicate the results of each

original study from which we extracted datasets used to train the GuideHOM model.

It allows us to systematically compare its performance with the original models.

We use the same data for training and testing as the original works in cases where

the actual training and testing sets are available and the same train-test split ratio

in other cases. Table 6.1 shows the train-test splits corresponding to each analyzed

dataset. The confidence intervals GuideHOM provides tend to be acceptable (see

Figure 6-1C for visual explanation): the frequency of the real value Y present within

the confidence intervals (with confidence level 𝛼) computed on the corresponding

test sets was, for all cases, close to the preset confidence level (𝛼 = 𝜎, 2𝜎, 3𝜎). As

the loss function, we use ELBO (Evidence Lower Bound [160]) or a sum of ELBO

and a half of MSE (Mean Squared Error). For example, the frequencies of the real

values in 𝑌𝑚𝑒𝑎𝑛 ± 𝜎, 𝑌𝑚𝑒𝑎𝑛 ± 2𝜎, 𝑌𝑚𝑒𝑎𝑛 ± 3𝜎 for a model trained with minimizing

ELBO as an optimization objective are 0.7535, 0.9422 and 0.9835, respectively, as

estimated on the respective validation set. The full table of confidence intervals for

all trained models is given in Supplementary Table 3 of [1].

Table 6.1: Train-test splits for all datasets.

Dataset Train Test Validation Cell line/species
geCRISPR 0.9 (3258) 0.1 (361) Separate set (520) Homo sapiens, Danio

rerio, Mus musculus,
Xenopus tropicalis

DeepHF wt 0.765 (42538) 0.085 (4727) 0.15 (8341) HEK239T, HeLa
DeepHF SpCas9HF1 0.765 (43520) 0.085 (4836) 0.15 (8534) HEK239T, HeLa
DeepHF eSpCas9 0.765 (44843) 0.085 (4983) 0.15 (8793) HEK239T, HeLa
DeepCpf1 1 (20506) - 3 separate sets HEK239T, hct16
Jost et al 0.8 (20999) 0.2 (5249) - K562, Jurkat
DeepCRISPR 0.8 (13194) 0.2 (3298) Separate sets HEK239T, HeLa,

hl60, hct16
Cas12a off-target 0.8 (1252) 0.2 (313) - HEK239T

According to the learning curves (Figure 6-1A), only about 30% of the DeepHF [78]

and Cas9 gRNA-target pair [5] datasets provide sufficient data for the model to
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reach results comparable to the original models. The Cas9 gRNA-target pair model

reaches lower levels of uncertainty while having less data to train on, which im-

plies a lower noise level in Jost et al [5] dataset (Figure 6-1B) because most of the

uncertainty in the output comes from label noise in the dataset [173, 174].

Figure 6-1: Models learning curves on different datasets. (A) Learning curves for
indicated models/datasets are shown. Dashed lines indicate the performance of pre-
vious tools (DeepHF, DeepCpf1 and so on). The line for Cas12a off-target dataset is
not shown since only classification models for this dataset are published. (B) Reduc-
tion of uncertainty dependent on the training set size. The models for DeepHF and
DeepCpf1 shown here are CNN-based and were trained to minimize ELBO+MSE.
The Cas9 gRNA-target pair model was also trained to minimize ELBO+MSE. (C)
The output of trained model. The dots denote examples from the validation set. For
each input example, the model outputs a sample of predictions, the mean of which
is shown as the orange line, and the standard deviation gives the possible range of
errors. 68% of all real activities lie in the blue area between the orange and blue lines
– for 68% examples, the real cleavage efficiency is no more than one predicted stan-
dard deviation larger or smaller than the predicted mean cleavage efficiency. 27%
of real activities lie in the green area – only 27% of examples have the real cleavage
efficiency larger or smaller than the predicted mean cleavage efficiency for more than
one predicted standard deviation. 4.7% of real activities lie in the red area – for
4.7% examples, the real cleavage efficiency is larger or smaller than the predicted
mean cleavage efficiency for more than two predicted standard deviations. The rest
0.3% are the ones that have the real cleavage efficiency larger or smaller than the
predicted mean cleavage efficiency for more than 3 predicted standard deviations.

The same performance dynamics is observed for all analyzed datasets: after the

training sample size grows to about 10,000 gRNAs, the performance converges at

a plateau so that the additional improvement is negligible. Uncertainty reduction

follows a similar course: the smallest mean standard deviation is achieved near the

10,000 gRNAs mark and remains approximately constant with larger training sets.

These observations suggest that for this version of the GuideHOM architecture,
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Table 6.2: Performance on benchmark datasets for on-target cleavage efficiency
prediction.

Dataset Model Metric Value
DeepHF wildtype [78], RNN Hold-out SCC 0.8555
DeepHF wildtype [78], RNN 10-fold CV SCC NA
DeepHF wildtype This study, C E Hold-out SCC 0.8392
DeepHF wildtype This study, C E 10-fold CV SCC 0.8066
DeepHF eSpCas9 [78], RNN Hold-out SCC 0.8491
DeepHF eSpCas9 [78], RNN 10-fold CV SCC NA
DeepHF eSpCas9 This study, R E Hold-out SCC 0.8220
DeepHF eSpCas9 This study, R E 10-fold CV SCC 0.6927
DeepHF SpCas9-HF1 [78], RNN Hold-out SCC 0.8512
DeepHF SpCas9-HF1 [78], RNN 10-fold CV SCC NA
DeepHF SpCas9-HF1 This study, R E+M Hold-out SCC 0.8364
DeepHF SpCas9-HF1 This study, R E+M 10-fold CV SCC 0.7900
geCRISPR V520 [73], mono binary Hold-out PCC 0.6700
geCRISPR V520 [73], mono binary 10-fold CV PCC 0.6800
geCRISPR V520 This study, C E+M Hold-out PCC 0.6055
geCRISPR T3619 This study, C E+M 10-fold CV PCC 0.5926
DeepCpf1 H1 [14] Hold-out SCC 0.7600
DeepCpf1 H1 This study, R E Hold-out SCC 0.7283
DeepCpf1 H2 [14] Hold-out SCC 0.7400
DeepCpf1 H2 This study, C E+M Hold-out SCC 0.7184
DeepCpf1 H3 [14] Hold-out SCC 0.5800
DeepCpf1 H3 This study, R E Hold-out SCC 0.5478
DeepCpf1 train [14] 10-fold CV SCC NA
DeepCpf1 train This study, C E+M 10-fold CV SCC 0.5165

collecting datasets of more than 10,000 gRNAs yields diminishing returns in terms

of the model accuracy, so a better strategy is to focus on the reduction of the label

noise. However, the cut-off may have to be re-accessed depending on the type of

gRNA library used, i.e., those targeting intronic, exonic regions, high/low expressed

genes etc. The performance of the method for on-target cleavage efficiency prediction

on benchmark datasets tends to be close to that of the best original point estimate

models (Table 6.2; GuideHOM models are denoted as follows: preprocessing module

(C for CNN or R for RNN), loss function (E for ELBO or E+M for ELBO+MSE); see

the “Deep Kernel Learning for cleavage efficiency estimation” section of “Materials

and methods” chapter for more information. Wang et al. [78] and Kim et al. [14]

did not perform 10-fold cross validation, which is indicated as ”NN” - not applicable
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– in Table 6.2.

Table 6.3: Comparison of model predictions of the on-target cleavage efficiency for
the AsCas12a subset.

Model 𝜌68 𝜌95 𝜌99.7 PCC SCC 𝑟2

DeepCpf1 R E:H1 0.69 0.95 1.00 0.74 0.73 0.55
DeepCpf1 C E+M:H2 0.68 0.93 0.99 0.72 0.72 0.52
DeepCpf1 C E:H1 0.67 0.93 0.99 0.73 0.72 0.53
DeepCpf1 C E:H2 0.68 0.93 0.99 0.71 0.71 0.51
DeepCpf1 C E+M:H1 0.67 0.93 0.99 0.72 0.71 0.52
DeepCpf1 R E:H2 0.71 0.95 1.00 0.71 0.71 0.51
DeepCpf1 R E+M:H1 0.70 0.96 1.00 0.72 0.70 0.52
DeepCpf1 R E+M:H2 0.72 0.95 1.00 0.67 0.66 0.45
DeepCpf1 R E:H3 0.27 0.67 0.95 0.51 0.55 0.26
DeepCpf1 C E:H3 0.25 0.63 0.92 0.50 0.53 0.25
DeepCpf1 C E+M:H3 0.24 0.62 0.91 0.49 0.51 0.24
DeepCpf1 R E+M:H3 0.31 0.73 1.00 0.42 0.46 0.18
Cas12a pair E 0.59 0.87 0.96 0.57 0.57 0.32
Cas12a pair E+M 0.59 0.86 0.96 0.56 0.57 0.31

The performance of all trained models is given in Supplementary Table 3 of [1].

Although in the original work on DeepHF datasets, the RNN-based models have

been found to be superior to CNN-based ones [78], in our analysis, this distinction

was not as pronounced. Some CNN-based GuideHOM models outperform RNN-

based ones: for example, for the wildtype, the CNN-based model performs better.

From the performance of the best models, it becomes clear that a combination of

ELBO and MSE loss functions performs better than ELBO only. Let us consider

the following use case: we would like to choose a model for gRNA selection for

asCas12a editing experiment in human HEK239T cell line. We aim at maximizing

the on-target efficiency but are not interested in minimizing the off-target effect. In

Table 6.3, we provide a subset of performance measures for this case.

As it can be seen from Table 6.3, we have a choice between models trained on

DeepCpf1 and on Cas12a gRNA-target pair set. All DeepCpf1-based models show

acceptable confidence intervals and good 𝑟2, Pearson and Spearman Correlation

Coefficients.

For this test case, we are not interested in off-target effects, therefore DeepCpf1

R E is the model of choice (it outperforms all others on H1 and H3 datasets in
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Spearman Correlation Coefficient). We also can use all good models as an ensemble,

which will result in an improvement of 1-2% in the correlations at the excess of

increased uncertainty since we would have to sum the variances to get the correct

uncertainty estimation.

Table 7.1 shows the results for the Jost et al. dataset, where the difference

between E+M and E only is negligible. Compared with the model [5], changed

accordingly to reflect the difference in the input size (we used as input 23 nt sequence,

including the gRNA spacer and PAM, whereas in the Jost et al. [5] analysis, 2

upstream and 1 downstream flanking nucleotides were also included, resulting in

the input size of 26 nt), the performance improves from 0.617 to 0.625. For the

purpose of the comparison, we modify the original code from the supplementary

file [5] by taking the sequence parts from second to 24-th nucleotide and changing

the input size to (4, 23, 2) instead of (4, 26, 2). A 2D visualization of GuideHOM

representations allows for intuitive design for gene editing and modulation of gene

expression experiments. The representation computed by the Hit-or-Miss layer can

be interpreted as either coordinates of a gRNA in the space of all possible gRNAs

or a gRNA/target pair in the space of all possible gRNA/target pairs depending

on the model (the former is for RNN and 1D-CNN models, and the latter is for

2D-CNN models used for the Cas9 and Cas12a gRNA-target pair sets). Due to the

gradient descent optimization, the sequences in such a space are arranged according

to sequences and cleavage efficiencies (similar sequences are expected to occupy a

compact subspace of the guide space). The dimensionality of such a guide space is

determined by the number and output dimensionality of the HOM capsule layers.

2D visualization of the guide space provides actionable insights into the variety

of functional gRNAs available for a gene of interest. Figure 6-2 presents an example

of the guide space for LOC440792 gene. The representation of the guide space (Fig-

ure 6-2A) as a scatter plot with mean cleavage efficiency denoted as the point color

is more visually appealing and intuitive than spreadsheets that are commonly used

for the same purpose. On the scatter plot, the most efficient sequences are clustered

together with sub clusters formed according to different sequence determinants of

cleavage efficiency (Figure 6-2B). An example of a sequence motif associated with
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Figure 6-2: 2D visualization of the guide space with NCVis. The active and inactive
gRNAs scatter around the plane according to their mean cleavage efficiency (A)
and cluster into small subgroups based on the sequence determinants of cleavage
efficiency (B). The color gradient at (A) denotes mean efficiency (yellow – the
largest, purple – the smallest). Color of the dots denotes the cluster label at (B).
One of the groups is shown as red dots and the sequence logo of that cluster is
shown in the inset of (B). A path along the gradient of color (red lines in panel (A)
gives a functional set of gRNAs sufficient for modulation of gene expression (C).
The numbers at the plot (A) and at the plot (C) denote the same gRNAs. The
gRNA sequences are shown in the Supplementary Table 4 of [1]. For this figure, the
DeepHF Cas9 C E wildtype model was used.

one such cluster is shown in Figure 6-2B. The sequence determinants are specific for

each cluster, which implies no simple linear dependency of cleavage efficiency and/or

the cleavage efficiency variance on the sequence motifs. While efficient gRNAs share

some common features, such as high GC content, there is no single unifying mo-
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tif. Instead, any nucleotide change increases, decreases or, in some cases, does not

perceptibly affect the efficiency. Visual arrangement allows for quick search for

most efficient gRNA or a functional gRNA sets. Different functional sets of gRNAs

can be found by following the color gradient from the most efficient to the least

efficient (from purple to yellow dots in Figure 6-2A). An example of this path is

shown in Figure 6-2A (numbers in boxes denote the number of gRNAs in the gRNA

set, the same numbers correspond to cleavage efficiency distributions in Figure 6-

2C). The set of gRNAs from Figure 6-2C found by following the color gradient of

the gRNA space visualization, that has the required properties - gRNAs with all

range of cleavage efficiency values, can be used to study the metabolic pathway re-

sponsible for hyperprolinemia (since the LOC440792 is associated with it, https:

//www.genecards.org/cgi-bin/carddisp.pl?gene=LOC440792) by performing in

vitro experiments with each of the gRNAs and measuring the levels of proline. All

sequences from this set are presented in the Supplementary Table 4 of [1]. All logo

sequences for the identified clusters are presented in Zenodo repository.

The clustering and cleavage efficiency gradients in the 2D visualization of the

guide space are apparently agnostic to the method of visualization. We experimented

with PCA (Figure 6-3A), UMAP [175] (Figure 6-3B) and NCVis [176] (Figure 6-

3C), and the results are qualitatively the same: each visualization method yields

partitioning of the gRNAs into motif-dependent subclusters, and the color gradient

is sufficient for delineating a functional set of gRNAs.

For all visualizations in Figures 6-2 and 6-3 (except for D and E where we use

test set of Cas9 off-target dataset [5]), we use the LOC440792 gene (2781 gRNAs)

and the GuideHOM DeepHF wildtype C E+M model. The visualizations are not

supervised with respect to either the average cleavage efficiency or the standard

deviation, therefore representations encoded in the outputs of capsule network are

enough to produce the scattering of gRNAs on the plot by color, which shows once

again that the model has learned the representations related to cleavage efficiency.

In addition to reproducing the training routines from previous studies, we con-

ducted a 10-fold cross-validation analysis. Most of the previous studies we based

our work on did not perform 10-fold cross validation, so that we cannot compare our
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Figure 6-3: 2D visualization of the guide space with different visualization methods:
(A) PCA, (B) UMAP, (C) NCVis. All views illustrate the same properties. Pre-
dictions vs observed activities for (D) GuideHOM and (E) Jost et al. models. (F)
ROC curves of the GuideHOM and the Jost et al. model [5] on the dataset of Peng
et al. [100]. For this figure, the DeepHF Cas9 C E wildtype model was used.

performance with that reported in these studies without reproducing them in their

entirety, which is outside of the scope of this work. The cross validation results are

available in Supplementary table 7 of [1]. Under the 10-fold cross validation scenario,

the values of quality metrics tend to be smaller than in the hold-out dataset case by

about 0.05 (e.g. DeepHF wildtype CNN ELBO reaches 0.8392 for the hold-out and

0.8066 on average in 10-fold CV, with standard deviation of 0.0216). The largest

gap was observed for the Cas12a off-target model, which, in the10-fold CV, on av-

erage, does not yield acceptable confidence intervals with respect to 𝑝68, 𝑝95 and

𝑝99.7. This could be explained by the small size of the dataset, which only includes

1597 gRNA-target pairs, less than half of the next smallest dataset, geCRISPR,

with 3619 gRNAs. For the rest of the models, the confidence intervals, on average,

remain acceptable. There is also a substantial gap in the performance between the
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RNN and CNN-based models for the geCRISPR dataset, with RNN ELBO and

RNN ELBO+MSE performing worse than the CNN counterparts (Pearson corre-

lation 0.3882 and 0.4403 versus 0.5946 and 0.5926). The remaining models do not

yield significant differences in performance either between RNN and CNN or be-

tween ELBO and ELBO+MSE. Overall, the cross validation study shows that the

GuideHOM architecture is robust to overfitting provided there is enough data to

train it on.

6.2 Explainable machine learning demonstrates the

sequential preferences for on-target and off-target

cleavage

We use the Accumulated Local Effects (ALE [132]) to explain predictions of trained

models. A single ALE value shows the influence of a feature towards the output of

the network. In case of one-hot encoded features, it shows the impact of presence and

absence of a feature. ALE is a black-box explanation method that requires very few

assumptions about the model, so it is perfect for our case, with model that predicts

not only the cleavage efficiency, but also its variance. We compute the influences

for all nucleotides towards mean efficiency and variance, plot the heatmaps and logo

sequences of the resulting matrices. The logo sequences and heatmaps show the

preferences for gRNA sequence in on-target cleavage (Figure 6-4) and gRNA-target

pair in off-target cleavage (Supplementary Figure 1 for Cas9 and Supplementary

Figure 2 for Cas12a from [1]). The region of about 4-5 nt located near the PAM is

more important for the prediction than the rest of the sequence. This holds for both

Cas9 and Cas12a – for Cas9 it is located on the 3’ end, and for Cas12a it is located

on 5’ end. The mechanics of PAM and target recognition implies the importance

of the seed region. The recognition of target starts from PAM and goes towards

the end of the target through the seed region. If there is a mismatch in the seed

region, the cleavage is highly unlikely. Our model captures the importance of seed

region without any additional supervision from the user. We didn’t indicate it in
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Figure 6-4: Explanations for Cas9 and Cas12a on-target models shows the impor-
tance of seed region which is located at the right hand side for Cas9 (A) and (C),
and at the left hand side for Cas12a (E) and (G), for the prediction of cleavage
efficiency. The same importance is observed for the variance of predictions (B) and
(D) for Cas9, (F) and (H) for Cas12a). The models used are DeepHF WT C E
and DeepCpf1 C E.

any way (a possible way to indicate would be to give the network a mask in addition

to the sequence, which we didn’t do), the model had to learn it on its own to use in

cleavage efficiency prediction.

Importance heatmaps for efficiency and variance tend to mirror each other, not

exactly, but very close. For example, in Cas9 (Figure 6-4A and B), the Gs and

Cs in the seed region are very important for efficiency, but for variance, Ts and

As are more important. Basically, if a gRNA has Cs and Gs in the seed region,

the variance will be low, but the cleavage efficiency will be rather high. However,

this holds poorly for Cas12a. In Figure 6-4E and F, in two first letters of the seed,

both variance and efficiency matrices value As and Gs, and undervalues Ts. The

rest of the seed and the rest of the sequence after the seed have the same overall

importance. For mismatching gRNA-target pairs (Supplementary Figure 1 of [1])

in Cas9, the mismatches in PAM are very important, as important as in the seed
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region. The lack of importance for Ts in the seed region for Cas12a is also reproduced

in Cas12a off-target model despite using different datasets (Supplementary Figure 2

of [1]). The same holds for Gs and Ts in seed region of Cas9 (Supplementary Figure

1 of [1]). It shows that models learn the same features from different datasets of the

same Cas effector – those features are not dataset-specific, but Cas effector-specific.
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Chapter 7

Uncertainty Quantification highlights

the hidden diversity of off-target

events

This chapter is based on one of the papers that constitute the current dissertation –

“Uncertainty-aware and interpretable evaluation of Cas9–gRNA and Cas12a–gRNA

specificity for fully matched and partially mismatched targets with Deep Kernel

Learning” [1] published in Nucleic Acids Research. The contribution of authors

are as follows: E.S., S.A.S. and I developed the concepts and designed the study.

E.V.K., M.P., A.Y.O., S.A.S. and K.V.S. supervised the research. I have designed

the methods and performed all analyses. E.S., S.A.S. and I wrote the manuscript,

which was read, edited and approved by all authors.

7.1 GuideHOM solves off-target cleavage regression

with acceptable confidence intervals

Our approach allows not only for the prediction of the on-target cleavage efficiency

based on a single gRNA but also, with minimal changes to the architecture (see

”Materials and Methods”), for the prediction of off-target cleavage efficiency from

a pair of a gRNA and the target. For the Cas9 gRNA-target pair dataset [5], we
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train the model on 80% of the training set and test it on the remaining 20%. We

found an 𝑟2 value of 0.625, as compared with 0.617 in the original study, and an

acceptable confidence interval (0.7176 on 𝑌𝑚𝑒𝑎𝑛+𝜎, 0.9124 on 𝑌𝑚𝑒𝑎𝑛+2𝜎, 0.9804 on

𝑌𝑚𝑒𝑎𝑛 + 3𝜎). The prediction plots for the test set are shown in Figure 6-3D and E.

The original Cas9 gRNA-target pair model [5] is obtained by slightly modifying the

supplementary file in Jupyter Notebook. The sgRNA and genome target sequences

are trimmed to remove the first two and one last nucleotides (the flanks) in order

to leave only the gRNA and the PAM. The parameter input_shape in the model

definition is changed to (4, 23, 2).

Table 7.1: Comparison of the results for the subset from [5] study.

Metric Jost et al. E Jost et al. E+M
𝜌68 0.7222 0.7125
𝜌95 0.9208 0.9155
𝜌99.7 0.9838 0.9828
PCC 0.7849 0.7805
SCC 0.7003 0.6982
𝑟2 0.6161 0.6192

The model trained on the Cas9 gRNA-target pair dataset provides Cas9 cleav-

age efficiency estimates for guide and target pairs with small numbers of mismatches

between the guide and the target. This information can be used to solve the off-

target classification task using the Peng et al. [100] classification dataset to test our

models. We compared the performance of our models with that of the reproduced

Jost et al. model and obtain a better AUROC of 0.7528 (the Jost et al. model

scored 0.6777). The ROC curves for these models are shown in Figure 6-3F. For

the test, we removed from the Peng et al. dataset all pairs that have more than

6 mismatches to reduce the number of negatives. According to the ROC curves,

our model tends to produce fewer false positives for low decision thresholds. We

next trained a regression model for Cas12a gRNA-target pair dataset. We split the

dataset of [133] into 90% for training and 10% for testing. We obtain Spearman

Correlation Coefficient of 0.6 and a borderline acceptable confidence interval (0.58

on 𝜎, 0.86 on 2𝜎, 0.95 on 3𝜎). The variability and lower correlation are likely due

to the small dataset size of only 1565 gRNA-target pairs. We did not use the PAM
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information because all sequences in the dataset contained the TTTA PAM but

use additional flank region so the overall input length is 23. The limitations of the

Cas12a gRNA-target pair dataset are also reflected in the corresponding learning

curves (Figure 4-2A and B). The learning curve and mean standard deviations con-

verge towards 0.6 and 0.2, respectively, and are comparable to the results obtained

with other small samples, such as the DeepCpf1 set, but the correlation (Spearman

Correlation Coefficient) is weaker than that for DeepHF. To our knowledge, this is

the first attempt at off-target cleavage efficiency regression for asCas12a and the

performance of the model is promising.

7.2 Diversity of CRISPR off-target effect predic-

tions demonstrated by analysis of gRNA-target

pairs

We analyze an empirically validated sgRNA library for 2400 genes that are essential

for robust cell growth [5]. The consistency and slight but significant superiority of

results obtained with our method compared to those in the original study (𝑟2 value

of 0.625 versus 0.617 for the Jost et al. model, as shown in Section 7.1) supports the

utility of our approach. As an example of a practical application, we provide the top

5 gRNAs with mean and variance values for each gene in the Homo sapiens reference

genome (hg38) chromosome 22. An example of the output for gene SERPIND1 is

shown in Table 7.2. We suppose that the gRNAs could be used right away to plan

the CRISPR/Cas9 gene editing experiment with the gene SERPIND1.

Table 7.2: Example of top 5 gRNAs for Cas9. The model is DeepHF WT R E.

Start Sequence Strand Mean Variance
5273 GGATCAGCTAGAGAAAGGAGGGG + 0.9344 0.0122
12819 CAGCGGCATGAACCCCACCGTGG - 0.9310 0.0120
10683 TCATGGCAGAAAGAATGGAGAGG + 0.9230 0.0119
7403 GTGTGTGGACAGATCAGGAGGGG - 0.9264 0.0119
4807 AGAGACAAAGTTCCCACCAGGGG - 0.9260 0.0119

Cas-OFFinder [101] was used to make a list of potential targets. A detailed
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description of the pipeline used for human genome analysis is presented in ”Materials

and Methods”. To apply our approach for prediction of mismatched gRNA cleavage

efficiency and search of sgRNAs with systematically modulated activities, we analyze

1000 random gRNAs which are extracted from the top 10 highly efficient gRNAs

(see Supplementary Table 5 of [1] for the 1000 extracted). For each of these gRNAs,

all possible off-targets with no more than 6 mismatches are selected from human

chromosome 22. The mean cleavage efficiency and cleavage efficiency variance are

computed using the GuideHOM model trained on the Cas9 gRNA-target dataset

(CNN ELBO) for each identified off-target gRNA-target pair.

The inclusion of uncertainty estimates in the off-target analysis provides for

two orthogonal axes that characterize off-target properties: cleavage efficiency and

stability of prediction, where cleavage efficiency shows how probable is the cleavage of

the DNA strand with this particular target and this particular gRNA, and prediction

variance shows how robust the prediction of cleavage efficiency is. Figure 7-1A shows

that most of the predicted off-targets (74%) have low cleavage efficiency (less than

0.15) but there is a minority of highly efficient off-targets (26%) that should be

avoided for any application that depends on the minimization of off-target effects.

Most off-targets (82%) have small variance (less than 0.015, see Figure 7-1B, they

differ from the predicted mean cleavage efficiency only by 0.1223 at worst, with

the probability of 0.65), so there is a negligible chance that these off-targets are

incorrectly predicted. However, a minority of the off-targets with large variance

(18%) should be removed from experimental validation because gRNAs with such

cleavage efficiency variance on off-targets can be problematic in the experiments

(the real cleavage efficiencies of these gRNAs can differ from the predicted mean so

much that one can not be sure in the quality of the cleavage efficiency prediction

even with the confidence intervals taken into account).

Most off-targets with cleavage efficiency variance less than 0.015 and mean cleav-

age efficiency less than 0.15 are located in the left bottom corner of the plot on

Figure 7-1C. For gene editing, only the gRNAs with the smallest number of off-

targets with high prediction variance and the highest on-target cleavage efficiency

should be selected. For gene expression modulation, a set of gRNAs that produce
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7.2. Diversity of CRISPR off-target effect predictions demonstrated by analysis of gRNA-target
pairs

Figure 7-1: Analysis of off-targets in Chromosome 22 shows the existence of dif-
ferent off-target categories: (A) distribution of mean off-target cleavage efficiency
for real known values extracted from the training set (pink) and for predictions for
Chromosome 22 (blue) with cleavage efficiency threshold of 0.15. (B) distribution
of off-target cleavage efficiency variance for Chromosome 22 with prediction variance
threshold of 0.015. (C) Mean vs Variance plot for off-targets from gRNAs extracted
from top 10 of different Chromosome 22 genes with indicated cleavage efficiency and
prediction variance thresholds. (D) Distributions for proportions of off-targets with
low efficiency (green) and off-targets with low prediction variance (pink) for 1000 of
top10 gRNAs.

off-targets with chosen levels of prediction variance can be used. In this case, the

low variance of the off-target effect allows the selection of a suitable set of gRNAs

with predictable results. For each of 1000 randomly selected highly efficient gRNA,

the proportions of the different kinds of off-targets are shown in the Supplemen-

tary table 6 of [1]. Figure 7-1D shows that most gRNAs have largely off-targets

with both low cleavage efficiency and low prediction variance (the mean fraction of
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Chapter 7. Uncertainty Quantification highlights the hidden diversity of off-target events

off-targets with low cleavage efficiency is 0.80, with the standard deviation of 0.13,

and the mean fraction of off-targets with low prediction variance was 0.62, with the

standard deviation of 0.17). However, for some gRNAs, many off-targets with high

cleavage efficiency and high prediction variance were identified (on average, the pro-

portion of both off-targets with high cleavage efficiency and low prediction variance

and off-targets with low cleavage efficiency and high prediction variance is 58% with

14% standard deviation, and there is an insignificant amount of the off-targets that

both have high cleavage efficiency and high prediction variance, only 23 gRNA out

of 1000 have them, there are only 56 such off-targets out of 1994178 total. Such

properties would exclude the gRNAs from the candidate pool for an experiment.

The proportion of off-targets with low cleavage efficiency and low prediction vari-

ance can be used to select gRNA for different types of experiments because the

off-targets with low cleavage efficiency and low prediction variance are distributed

differently for different gRNAs. Thus, the results show that our approach is useful

for the prediction of mismatched gRNA cleavage efficiency and evaluation of system-

atically attenuated gRNAs that can be used to control gene expression, from tuning

biochemical pathways to identifying suppressors for diseases and stress conditions.
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Chapter 8

Discussion and conclusions

This dissertation focuses on the application of advanced machine learning tech-

niques, including uncertainty quantification and neural network interpretation, to

study CRISPR-Cas behavior. The primary objective of this research is to explore

how the knowledge of prediction error and dependencies of the model output on its

input can help address questions regarding the behavior of the modeled biological

system. The motivation behind this approach is not only to enhance the accu-

racy of predictive modeling and facilitate better decision-making during experiment

design but also to understand the extent to which advanced methods can extract

information from a crude data-driven model of a biological process.

Advanced machine learning methods that transcend simple classification and re-

gression setups are becoming increasingly prevalent in biology. These methods have

been utilized in various contexts, such as genomics, drug discovery, and protein

function prediction. As the size of biological datasets and the complexity of experi-

mental setups increase, there is an increasing need for more sophisticated statistical

methods. Consequently, machine learning has emerged as a crucial tool for modern

biologists, with each machine learning method providing a trainable mathematical

model for a biological system of interest.

However, the cognitive approaches of machine learning specialists and biologists

differ significantly, encompassing dissimilarities in setting research goals, formulating

hypotheses, and designing studies. Modern machine learning focuses on achieving

state-of-the-art performance on benchmark datasets, adhering to stringently defined
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Chapter 8. Discussion and conclusions

tasks and performance metrics. The ultimate objective is to devise a method capable

of extracting the most information from unstructured data. An interesting caveat

is that models may learn the data noise specific to the training set, rather than a

useful signal, and from a purely machine learning perspective, there is no straight-

forward means of escaping this issue. In contrast, a biologist’s perspective prioritizes

converging different methods towards a common output, rather than solely pursu-

ing state-of-the-art performance for its own sake. A biologist is more concerned

with addressing a wide range of biological questions, rather than merely chasing the

highest performance benchmarks.

One notable outcome of this dissertation was the unsupervised rediscovery of seed

region importance in CRISPR-Cas interference. This result exhibited conservation

across different datasets and was distinct for both Cas effector classes employed

in the study. Such rediscoveries serve as valuable means to verify the validity of

a machine learning model, and the pursuit of rediscovering known behavior for

various tasks can establish a robust meta-approach for building trainable models of

biological systems, thereby mitigating potential pitfalls in the process. A promising

direction for future research involves identifying potential rediscovery targets when

encountering new problems, shifting from explainable to verifiable machine learning.

While state-of-the-art results may be beneficial, the primary interest for a com-

putational biologist in a model lies not only in its ability to perform the intended

task but also in its capacity to provide information about the behavior aspect closely

related to the intended task, even if it is not present in the training set. Another

significant result of this dissertation is the revelation of off-target event diversity.

The number of potential off-target sites for a gRNA is known to be insufficient

for selecting an optimal gRNA. The introduction of an additional axis, prediction

variance, offers a new method for filtering promising candidates.

Designing gene editing experiments with improved on-target efficiency and min-

imized off-target effects relies on deep and intricate understanding of CRISPR-Cas

system behavior. The dissertation aimed to study CRISPR-Cas mechanics using

Neural Network Interpretation and Uncertainty Quantification while building tools

to facilitate experimental design around this understanding. There are two projects
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that constitute this dissertation:

1. Off-target cleavage event recognition based on capsule networks with dynamic

routing by agreement with anomaly detection using internal inequality analysis

similar to economical studies of income inequality;

2. Deep Kernel Learning-based methods for estimating confidence intervals in

gRNA-target cleavage efficiency

The main conclusions of these projects are as follows:

1. Deep Kernel Learning-based methods for gRNA-target cleavage efficiency es-

timation were introduced. DKL offers advantages over basic deep learning in

CRISPR-mediated target cleavage efficiency estimation because it includes ex-

plicit modeling of prediction uncertainty which is used to improve gene editing

design by supplying the researcher with an additional way to select the best

gRNAs for the experiment;

2. Uncertainty quantification with Deep Kernel Learning has helped to highlight

a hidden diversity of off-target events in Homo sapiens. Four types of off-

targets, previously unknown, were characterized and guidelines for using this

knowledge for gene experiment design were formed;

3. Using Explainable Machine Learning methods (Accumulated Local Explana-

tions), known behavior of Cas proteins, their dependence on the seed region

in the target DNA, was independently rediscovered;

4. Several effector- and cell line-specific models based on publicly available datasets

was constructed, including AsCas12a and SpCas9 as well as several high fidelity

orthologs (SpCas9 HF-1, eSpCas9), with focus on human cell lines (HeLa,

HL60, Hek293t);

5. A set of novel anomaly detection methods presented in this dissertation ex-

tended the previous works on supervised anomaly detection with the parallels

between economic inequality and inequality in response to rare and familiar

examples within the internal mechanisms of capsule networks. This lead to the
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Chapter 8. Discussion and conclusions

development of a novel method to detect off-target events in CRISPR-Cas9

gene editing.

Overall, the methods introduced in this dissertations can aid molecular biologists

and bioinformaticians in understanding complex mechanics of CRISPR-Cas systems,

detection and analysis of rare events in biological processes, and design of more

efficient gene editing experiments.
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