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ABSTRACT

Intrahost interaction between pathogens and adaptive immunity produce unique scenarios when
evolution may be studied and tracked in real time. In this context the power of evolutionary and
phylogenetic analysis, mostly developed to study evolution on much larger scales, can be applied
to objects unusual for classical evolutionary biology. Development of immune repertoire
sequencing made possible to observe diversification of individual B cell lineages, occurred due
to the process of affinity maturation. Intrahost evolution of pathogens is more frequently studied,
however still attracts growing interest of the scientific community. Thus, such studies of
intrahost interaction are in intersection of several biology fields, including immunology,
virology, evolutionary and population genomics, and require understanding of observed
processes from different sides. Moreover, frequently in such works rethinking and modification
of classical evolutionary genomics approaches are required, which also make them
methodologically interesting. Therefore, when combined, these factors contribute to the growth,
development, practical importance, and immense interest in the relatively small field of intrahost

evolutionary analysis.

This thesis joins together two works, which both include evolutionary analysis of short-scale
intrahost interaction between the adaptive immunity and the pathogen. However these two
studies consider this interaction from opposite sides of the host-pathogen arms race. In the first
part (Chapter 3), we studied how B cell immunity may adapt to rapidly changing pathogens
using affinity maturation of B cell clonal lineages. To do so we analyzed longitudinal B cell
repertoires, sampled from peripheral blood of healthy volunteers three times within a year.
Peripheral blood was sorted on cell subsets of memory B cells, plasmablasts and plasma cells, so
observed B cell clonal lineages reflected both temporal and phenotypic dynamics of the lineage.
We revealed two functionally different types of B cell clonal lineages: the first type, belonging to
persisting memory and the second type of antibody-secreting lineages, involved in ongoing
immune response. Difference in lineage functioning resulted in different modes of selection,
shaping their evolution. Phylogenetic analysis provided evidence that these two functional states
may transit between each other depending on the antigen challenge, showing memory

reactivation followed by new cycles of affinity maturation.



The second part of the thesis (Chapter 4) investigates a case of long-term COVID-19 in an
immunocompromised host. In contrast there we tracked intrahost evolution of the pathogen and
studied the selection forces shaping its divergence from the initial virus. We revealed that almost
a third of SARS-CoV-2 changes prevent or reduce binding of known immunogenic CD8 T cell
epitopes to a patient's HLA allele. To the best of our knowledge this is the first evidence that the

T cell escape can be a driver of intra-host evolution of SARS-CoV-2.

Therefore, findings of this work shows that evolutionary analysis of host-pathogen interaction is
a powerful approach, which may shed light on various aspects of the functioning of the B cell

adaptive immunity and dynamics of pathological conditions.

Key words: Rep-Seq, immune repertoires, affinity maturation, B cell clonal evolution, intrahost

evolution, SARS-CoV-2, T cell immune escape
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CHAPTER 1: INTRODUCTION

The arms race of host-pathogen coevolution has been going on since the origin of life
(Tenthorey, Emerman, and Malik 2022). It is often described by the Red-Queen effect, named
after the famous state of the Red Queen to Alice from Lewis Carroll’s ‘Through the
Looking-Glass’: “It takes all the running you can do, to keep in the same place.” (Carroll 1871).
Both prokaryotes and eukaryotes have evolved defense mechanisms to secure cell integrity
(Dunin-Horkawicz, Kopec, and Lupas 2014; Desjardins, Houde, and Gagnon 2005). With the
development of multicellularity more than 600 million years ago specialized cellular lines
(amebocytes, hemocytes, coelomocytes) have diverged, aimed to fight microbes by phagocytosis
(Desjardins, Houde, and Gagnon 2005; Buchmann 2014). However, the trickiest part of defense
mechanisms in multicellular organisms is not how to fight pathogens, but how to distinguish
them from self cells and self intracellular structures. Thus the divergence of specialized
phagocytes was accompanied by the development of the whole system of pattern recognition
receptors (PRR), able to distinguish self from nonself by conservative features of pathogens such
as elements of bacterial or fungi cell walls or nucleic acids, unusual for eukaryotic cells (dSRNA)
(Buchmann 2014). Together with PRR the system of inner effector peptides and proteins were
developed, aimed to fight pathogens by themselves (antimicrobial peptides, fibrinogen-related
peptides, proteins of complement system) or orchestrate regulation of immune cells
(chemokines) (Fujita 2002; Emery, Dimos, and Mydlarz 2021; Buchmann 2014). All mentioned
innovations of immune defense belong to the branch of innate immunity, which possess effective
weapons to fight against nonself structures and use the most conservative features of pathogens

to distinguish between self and nonself molecules.

Concurrently pathogens didn't stand still either. They developed mechanisms to ease the invasion
to the host and escape or manipulate host immune response (Weitz et al. 2019; Lord and Bonsall
2021). In addition in this war pathogens have one specific advantage. Usually generation time of
pathogens is incomparably less than the generation time of the host. Therefore in general
pathogens may modify their recognition patterns much faster than the host may develop new
PRRs. Moreover pathogens have an opportunity to evolve right during contact with the host.
Host defense mechanisms by itself positively select those variants of pathogens, which are harder

to recognize. Such inequality in generation times and rate of evolution was compensated by the
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development of adaptive immunity 500-600 million years ago. In some literature this moment
was called “Immunological Big Bang” (Sirisinha 2014; Flajnik and Kasahara 2010). Adaptive
immunity is based on an absolutely innovative idea of pattern recognition. While innate
immunity develops new PRRs to enlarge the number of patterns, it can recognize (Q. Zhang,
Zmasek, and Godzik 2010), adaptive immunity aims to recognize any nonself molecule by
generating a huge diversity of immune receptors with the deletion of receptors with
self-recognition. The idea of adaptive immune receptors was independently developed several
times in the evolution of vertebrates. Mechanisms of generation of large diversity of immune
receptors can be roughly divided on RAG-independent, realized in jawless fishes (Boehm 2011;
Boehm, Iwanami, and Hess 2012), and RAG-dependent that is characteristic of most jawed
vertebrates (Cooper and Alder 2006). Anyway, large diversity of immune receptors may respond
promptly to changes of pathogens by activation of new lymphocytes with corresponding

receptors.

Hence, an arms race between host adaptive immunity and pathogens may be observed on a
microevolutionary scale. Pathogens may evolve right inside the host, trying to avoid recognition
by specific lymphocytes, constituting the adaptive immune response. Such alteration of pathogen
escape and involvement of new immune receptors was observed for several viruses such as HIV,
hepatitis and influenza. Moreover, the system of affinity maturation was developed in B
lymphocytes (McCarthy et al. 2019; Muecksch et al. 2021). In this process B cell receptors can
be additionally modified for high-affinity recognition of the antigen. In some cases, such in HIV
infected individuals, maturation of B cell receptors occurs throughout the whole infection period
following intrahost evolution of the pathogen (Nourmohammad et al. 2019; Bonsignori et al.

2017).

Thus host-pathogen coevolution may be observed and studied inside a single host on a short time
scale. The goal of this thesis is to study mechanisms of intrahost evolution of adaptive immunity
and pathogens using the power of approach of evolutionary genomics. To do this two different

study designs and datasets were used:

1. The first part of the thesis (Chapter 3) is devoted to the study of evolutionary dynamics of
affinity maturation in immune B cell repertoires. For this study peripheral blood samples

were taken from four healthy individuals three times within a year. B cells were sorted to
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three subsets: memory B cells, plasmablasts and plasma cells, and then full length
sequencing of immunoglobulin heavy chains was performed. For evolutionary and
phylogenetic analysis we used the most abundant B cell clonal lineages from joined
repertoires of all B cell subsets and time points, which contain at least 20 unique B cell
sequences. My contribution to this study is in the analysis of most abundant B cell
lineages of these repertoires with the focus on association between dynamics and
composition of B cell lineages and evolutionary regimes underlying their development.
For this goal I adapted common population genetics approaches to the specific features of
B cell clonal evolution and developed a pipeline, which can be used for evolutionary

analysis of B cell immune repertoires.

2. In the second part of the thesis (Chapter 4) coevolution is studied from the side of the
pathogen. There we analyze a case of long-term intrahost SARS-CoV-2 evolution in a
patient with non-Hodgkin lymphoma under rituximab therapy without therapy by
convalescent plasma. The patient has almost no B cell immune response and viral
infection is mostly restrained by cytotoxic T cells. Using phylogenetic analysis of viral
genome sequences we tracked how virus accumulated mutations, which prevent binding
of viral antigens to the patient’s HLA alleles. In this work I developed and performed an
analysis of mutations effect on antigen presentation both at individual and population
levels. As a result I predicted those mutations, which helped the virus to escape cytotoxic
T cells, which then were experimentally validated by my coauthors. I also analyzed the
effect of the patient's SARS-CoV-2 variant on CD8 T cell response in a general

population.

In summary, my thesis joins together two different but complementary studies, showing intrahost
evolution of B cell clonal lineages as a part of adaptive immunity and intrahost evolution of
SARS-CoV-2 escaping cytotoxic T cells. It uses classical approaches of evolutionary and
population genomics in analysis of evolutionary scenarios, happening before our eyes at small

time scales.
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CHAPTER 2: LITERATURE REVIEW
Principles of adaptive immunity

Antigen receptors of T and B lymphocytes

The main players of adaptive immunity are T and B lymphocytes, which together possess a huge
diversity of highly specific antigen receptors (Murphy and Weaver 2016; Kapila 2004). Antigen
receptors of T and B lymphocytes are close in their structures and have a common evolutionary
origin, however differ in their role in the immune response (Marchalonis, Jensen, and Schluter
2002). T cell receptors (TCRs) recognize short peptides of processed antigens, bound to the
major histocompatibility complexes (MHC) on the surfaces of other cells (Garcia and Adams
2005). T lymphocytes have two major classes, differing by the presence of CD4 or CDS8
co-receptor molecules on the T cell surface. The type of co-receptor molecule determines the
class of MHC with which the corresponding T cell may interact. Cytotoxic CD8 T cells
recognize peptides in the complex with MHC class I, which is an integral part of the surface of
any cell type with minor exceptions. Such recognition results in removal of infected or mutated
cells, presenting peptides of intracellular pathogens or of self-mutated proteins (Wong and Pamer
2003). CD4 T helper (Th) cells recognize peptides bound to MHC class II molecules, only
occurring on the surface of specialized immune cells, which together with CD4 T helpers
orchestrate the type and dynamics of immune response (Zhu, Yamane, and Paul 2010). It also

includes activation of B cells followed by production of immunoglobulins (Crotty 2011).

B cell receptors (BCRs) recognize intact antigens and exist in two forms: in the form of
membrane-bound receptor on the surface of B lymphocytes or in the form of soluble
immunoglobulins or antibodies. The membrane-bound form is necessary for signal pathways and
B cell fate decisions, such as differentiation in other B cell types or isotype switching. Soluble
antibodies are involved in direct fight with pathogens: they neutralize antigens, preventing their
functioning, form immune complexes (antigen-antibody complex) and invoke branches of innate

immunity.

Both TCRs and BCRs have two chains in their structure (af or ¢d chains in T cells and heavy

and light chains in B cells), which include a constant region conservative among all lymphocytes
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of the same type and a variable lymphocyte-specific region (Figure 2.1A). In the case of B cells,
the receptor is dimerised and consists of two heavy chains and two light chains of x or A type.
Conservative regions cover part of the receptor, conducting the signal from the antigen binding
site to the lymphocyte or other immune cell in the case of soluble immune complexes.
Immunoglobulins have five main classes of constant regions called isotypes: IgM, IgD, IgG, IgA
and IgE. They differ in distribution of immunoglobulin in the body and determine the reaction of

other immune cells recognising it.

The variability of antigen receptors of T and B lymphocytes is not uniform along the length of
the receptor amino-acid sequence (Figure 2.1B). Comparison of receptors reveals three
hypervariable regions, called cluster determination regions (CDRs). In the folded structure of the
receptor, both TCR and BCR, CDRs form hypervariable loops on the surface of the receptor
right at the antigen-binding site (Figure 2.1C). Thus high diversity of CDRs covers a huge
variety of antigens which immune receptors are able to specifically recognize. CDRs are
separated by framework regions (FWRs), which being much more conservative than CDRs, still
belong to the variable part of the receptor. FWRs play an important role in right orientation of
CDR loops to each other and to the antigen (Zhou et al. 2020).

Light antigesrl\t:inding Heavy Ant|body
chain  ————  chain
Vi ‘ \Zl %
Cu ChH B
T cell | Light-chain V region
- 50 |
receptor 100 | ]
antigen binding 4? 80 - é‘ 40 |
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Figure 2.1. Structure of lymphocyte antigen receptors. A: Schematic structures of T and B
cell receptors. Both receptors have two chains (@ and 8 or y and J chains in T cells and heavy
and light chains in B cells), which includes variable (V) and constant (C) regions; B: Distribution
of variability, derived from comparison of amino-acid sequences of BCR variable regions. There
are three hypervariable complementary-determining regions (CDRs), separated by more
conservative framework regions (FWRs); C: Position of CDR regions in the 3D structure of the
light immunoglobulin chain. They form hypervariable loops at the surface of the chain, where an

antigen-binding site takes place. The figure is adapted from (Murphy and Weaver 2016).

V(D)J recombination and diversity of antigen receptors

Such diversity of lymphocyte receptors is generated by the V(D)J recombination, followed by
the lymphocyte clonal selection (Roth 2014; Chi, Li, and Qiu 2020; Jung and Alt 2004; Schatz
and Ji 2011). Genes of TCR and BCR in immature lymphocytes are presented by the loci with
sets of variable (V), diversity (D) and joining (J) segments (Figure 2.2). Loci of a chain of TCRs
and heavy chain of BCRs include sets of segments of all three types. Loci of S chain and light

chains of BCRs are shorter and include V and J segments only.
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Figure 2.2. Schematic representations of V(D)J recombination of T and B cell receptors.

The figure is adapted from (Murphy and Weaver 2016).

For a complete development of antigen receptors these loci should undergo gene rearrangement,

resulting in a single segment of each of V, D and J types in TCR a (BCR heavy) chain and in a
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single segments of V and J types in TCR g (BCR light) chain (Figure 2.2). Such precision in the
set and order of segments in the resulting receptor is achieved by the 12/23 rule (Schatz and Ji
2011; Jung and Alt 2004). Each V, D and J segment in a loci is flanked by conserved heptamers,
called recombination signal sequences (RSS). There are two types of RSS, with 23-base-pair and
12-base-pair spacers. Recombination and joining of segments normally occurs between
segments, flanked by RSS of different lengths. The process is guided by the RAG 1/2
(recombination-activating gene) complex. It has two subunits with fidelity to different types of
RSS. Thus RAG 1/2 initiates the process of segment joining, binding to RSSs of different
lengths. The disposition of RSSs relative to VDJ segments in the receptor loci is organized in
such a way, that subject to 12/23 rule there is no way to rearrange the receptor gene with a wrong
segment composition. However, sometimes neighboring D segments can be recognized as a
single one, resulting in a phenomenon of ultralong antibodies, generated by VDDJ combination

of segments (Briney et al. 2019; Watson et al. 2006).

The part of diversity due to a random choice of segments in the process of VDJ rearrangement is
attributed to combinatorial diversity and is estimated as 5.8 X 10° in receptors of a8 T cells and
1.9X10° in immunoglobulins (Murphy and Weaver 2016). However there is another source of
diversity, which also makes a significant contribution to overall diversity of antigen receptors. It
is junctional diversity, which occurs at the borders of V(D)J segments. After the RAG 1/2
complex attaches to RSS sequences of two segments for following joining, it introduces
double-stranded breaks in DNA between the segment and its RSS. Breaks then are closed in
DNA hairpin ends. Next the complex of DNA-dependent protein kinase (DNA-PK) with Artemis
enzyme opens these hairpins at random sites by single-stranded cuts, generating palindromic P
nucleotides: a single-stranded tail from nucleotides of coding sequence followed by the
complementary nucleotides from the opposite DNA strand. The DNA repair system, trying to
restore DNA integrity, removes some nucleotides to pair single stranded tails together. At the
same time terminal deoxynucleotidyl transferase (TdT), an enzyme specific to the lymphoid cell
line, conversely adds random N nucleotides to the tails. As a result regions of nontemplate
random PNP nucleotides between V-D and D-J segments in TCR a (BCR heavy) chain or V-J
segments in TCR g (BCR light) chain appear. They become the most variable parts of receptors
and are located in the CDR3 region.
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Figure 2.3 VDJ segments are flanked by recombination-signal sequences (RSS), which
guides the order of segments due to V(D)J rearrangement of the receptor gene. The figure is

adapted from (Murphy and Weaver 2016).

Naturally so many random events in receptor gene rearrangement may lead to the formation of
unproductive gene sequences with frame shifts or inability to fold in the functional protein. In
such cases lymphocytes undergo VDJ recombination one more time in the homologous
chromosome. If the second try appears to be unproductive as well, such lymphocytes go to
apoptosis. DNA-sequences of BCRs revealed that most functional lymphocytes have an
unproductive rearrangement on the second chromosome together with the functional BCR
(Nourmohammad et al. 2019; Murphy and Weaver 2016). After VDJ rearrangement all
lymphocytes go through clonal selection, where receptors with potential autoreactivity are also

directed to apoptosis (Murphy and Weaver 2016; Roth 2014; Jung and Alt 2004).

Affinity maturation of B cells

Affinity maturation (AM) is a part of the B cell immune response, which results in multifold
improvement of specific B cell receptor (BCR) in its ability to recognize and bind the antigen
(Teng and Papavasiliou 2007; Heesters et al. 2016; Chi, Li, and Qiu 2020). It occurs with
T-dependent activation of B cells and is based on an evolutionary process consisting of repetitive
cycles of somatic hypermutations (SHM) and clonal selection (Murphy and Weaver 2016; Kapila
2004).
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B cell response starts from highly-specific recognition of the antigen by naive B cell, which
triggers internalization of the antigen bound to the BCR. Next internalized antigen should be
enzymatically processed and attached to MHC class I molecules for further antigen presentation
(Heesters et al. 2016). Such B cells move in the lymph node to the border of B cell follicle and T
cell zone, where they may interact with CD4 follicular helper T cells (Tth cell), already
differentiated in response to the same antigen (Crotty 2011). Specific recognition of MHC
II:peptide complex by Tth cell induces production of various cytokines in Tth cell and expression
of activatory ligands on its surface. It results in activation of the B cell, its further proliferation
and differentiation. From this moment the BCR, involved in the primary recognition of the
antigen, is present on membranes of numerous B cells, which altogether compose a B cell clone.
Part of the clone forms a so-called primary focus. Some B cells move away from lymphoid
follicles and differentiate into antibody-secreting cells (ASC): plasmablasts (PBL) or plasma
cells (PL). Most B cells, involved in the primary focus, will not become long-living cells and
eventually die. They are aimed to provide fast primary humoral response until high-affinity

antibodies are formed.

At the same time another part of proliferating B cells stay at the lymphoid follicle together with
associated Tth cells and continue to proliferate, forming a germinal center (GC). GCs are the
structures in which affinity maturation occurs. They develop during the first days of immune
response and may still be present there in a month after the immune response starts. Activated B
cells, involved in affinity maturation, repetitively migrate between two GC functional zones:
dark and light ones (Figure 2.4A). In the dark zone a special enzyme, activation-induced
cytidine deaminase (AID), introduces somatic hypermutations (SHMs) in the sequence of BCR
genes (Chi, Li, and Qiu 2020). Deamination of cytosine leads to the formation of uridine in the
DNA sequence, which results in the activation of various branches of DNA repair systems and
substitution of C:G nucleotide pair (Figure 2.4B). By some estimates, 1% of SHM cases result in
formation of indels (Teng and Papavasiliou 2007). Next the B cell with modified BCR moves to
the light zone, where it can survive for a very limited amount of time: it should get a survival
signal from the associated CD4 Tth cell and come back to the dark zone or leave the germinal
center. To do this, the B cell should bind and internalize the antigen, present in the limited
amount on the surface of follicular dendritic cells (FDCs). Next, to get a survival signal B cell

presents its epitopes in the complex with MHC II molecules to the corresponding Tth cell. In the
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Figure 2.4 Schematic representation of affinity maturation. A: Model of affinity maturation

in GC. Selection I - the step of initial recognition of the antigen by BCR with affinity, sufficient
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for antigen binding and internalization; Selection II - B lymphocytes present processed antigens
on MHC class II molecules on the T-B cell border of GC, get costimulatory signals and enter
dark zone of GC for proliferation and somatic hypermutations; Selection III - BCRs with
different SHMs compete for limited amount of antigen on the surface of FDCs; Selection IV -
BCRs with the best affinity faster get survival signal from limited amount of Tth cells and
continue affinity maturation or leave the germinal centers. Cells that do not receive a survival
signal undergo apoptosis; B: Deamination of cytosine by AID enzyme and induction of uracil in
DNA sequence is followed by activation of different DNA-repair pathways, leading to transition
(green) or transversion (blue) mutations. Panel A is adapted from (Heesters et al. 2016) and B

from (Teng and Papavasiliou 2007).

case of negative effects of BCR changes on its binding affinity to the antigen, there will be no
internalized epitopes to present and B-Tth cross-recognition would not happen. In the absence of
a survival signal B cells undergo apoptosis. Clonal selection intensifies as the number of
involved B cells grows, since they start to compete with each other for the limited amount of the
antigen and limited number of Tth cells (Heesters et al. 2016). Therefore, if at the beginning of
affinity maturation, clonal selection removes BCR variants that are unable to recognize the
antigen, in later stages selection removes receptor variants that cannot bind antigen fast enough
or have intermediate affinity. As a result of this process, a primary activated B cell gives rise to a
B cell clonal lineage, composed of genetically close but different by accumulated SHMs B cell
clones (Tas et al. 2016).

Evolutionary analysis of B cell clonal lineages

Introduction to immune repertoires

Immune repertoire is a collective diversity of B cell and T cell receptors in the organism, which
is characterized by multifactorial and dynamic structure (Minervina, Pogorelyy, and Mamedov
2019). With development of high throughput sequencing it became possible to study immune
repertoires on an unprecedented level (Liu and Wu 2018; Teraguchi et al. 2020). The group of
techniques and its variations, used for sequencing of TCRs and BCRs, is called Rep-Seq
(repertoire sequencing). Clonotypes refer to distinct B(T)CR sequences, which can exhibit

significantly varied frequencies within the overall diversity of receptors. In case of BCR
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repertoires, clonotypes may be assigned to clonal groups or clonal lineages - sets of BCR
sequences, originated from a single B cell and diversified due to accumulation of SHMs

(Imkeller and Wardemann 2018).

Both genomic DNA (gDNA) and messenger RNA (mRNA) can be used for repertoire library
preparation, however the choice depends on the purpose of the research (Liu and Wu 2018).
gDNA libraries are easier to prepare and much better represent real proportions of lymphocytes,
since the amount of gDNA per cell is not affected by varying expression levels of antigen
receptors in different cellular subtypes. On the other hand, gDNA libraries include both
productive and unproductive sequences of receptors, which can not always be distinguished by
the nucleotide sequence only. gDNA libraries are usually based on the multiplex PCR
amplification, using a set of specific primers for V or J genes (Klarenbeek et al. 2010). Different
efficiencies and possible cross-reactivity of multiplex primers bias resulting libraries, which is
especially the case for BCR repertoires because of SHM changes (Imkeller and Wardemann

2018).

Protocols for mRNA libraries possess more freedom to reduce the effect of primer bias. A widely
used technique is 5’ rapid amplification of ¢cDNA ends (5'RACE) (Scotto—Lavino, Du, and
Frohman 2006). It starts from reverse transcription (RT) of mRNA with primers, specific for
constant C-gene regions of T(B)CRs in the 3" end of mRNA. In the end of RT additional
nucleotides are added to the 3' cDNA end through the template-switch process (Mamedov et al.
2013). In another variant of 5’RACE the RNA ligase adds a linker to the 3' end of cDNA after
RT. One way or another B(T)CRs can be amplified using C-gene and the universal linker primers
(Gao and Wang 2015; Heather et al. 2016). Thus nowadays both multiplex PCR and 5'RACE

techniques are widely adapted in the study of immune repertoires.

Furthermore such high diversity of B(T)CRs with drastically different concentrations of separate
sequences greatly complicates detection of PCR and sequencing errors. This problem is
especially important for the study of BCR repertoires, since variants created by affinity
maturation are hard to distinguish from imperfections of sequencing protocols. To deal with this
complication, a type of Rep-seq protocols with barcoding of clonotypes by unique molecular
identifier (UMI) sequences were developed (Rosati et al. 2017; Shugay et al. 2014). In the
example of MIGEC protocol, presented on the Figure 2.5, UMIs are introduced in cDNA
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sequences via the template switch at the end of RT (Figure 2.5). In further analysis, resulting
sequences are distributed to molecular identifier groups (MIGs) - groups of sequences with the
same UMI. Most PCR errors appear in late stages of amplification and such variants have low
frequency in MIG. So the first stage of error correction is based on identification of the dominant
sequence variant in each MIG (Figure 2.5B). In the second stage of error correction those
MIGs, presented by a single UMI, are filtered together with MIGs, where frequencies of two

variants are comparable and the presence of dominant sequence is unclear.

Rep-Seq with specific amplification of antigen receptor sequences belong to the target
technologies. Besides this immune repertoires can be extracted from the bulk RNA-Seq or
Single-Cell sequencing data (Song et al. 2021, 4). Naturally the level of resolution of immune
repertoires from bulk RNA is significantly lower than in case of target protocols, however with
the amount and availability of open source RNA-seq data this opportunity may also be important

for some research goals.

Single-Cell sequencing allows to track chain pairing in antigen receptors: heavy and light in
BCRs and « and 8 or y and J in TCREs. It also allows to annotate clonotypes by phenotypes of T
and B cells and to understand the type of immune response, in which particular clonotypes are
involved. There are variations of Single-Cell protocols with additional enrichment of VDJ
sequences of the data for immune profiling (Xu et al. 2022; R. D. Lee et al. 2021). Such an
approach is now widely implemented in cancer research, where the structure and phenotype
distribution of tumor infiltrating repertoires are promising predictive biomarkers for disease

progression and efficiency of the therapy (Valpione et al. 2021).

Apart from specific features of sequencing procedure the post-analysis of immune repertoires
may be also a challenging task. Clonotypes of repertoires are defined by the set of V(D)J
segments, used in the gene rearrangement, as well as by nontemplate nucleotides, randomly
inserted or deleted in junctions between them. Therefore determination of particular V(D)J
segments, from which the clonotype was constructed, are particularly important for repertoire
structure analysis (Odegard and Schatz 2006; Liu and Wu 2018). While the V and J segments are
long enough to be definitely determined, the D segment may be just 12 nucleotides long (Homo
sapiens IGHD7-27*01). Moreover, random events in junctions between segments due to VDJ

rearrangement of @ TCR or heavy BCR chains may lead to a complete loss of D specific features
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necessary for its recognition. In addition, VDJ genes are among the most variable genes in the

human genome, and the diversity of VDI alleles in the human population is dramatically poorly

described (Mikocziova, Greiff, and Sollid 2021). Thus typically VDJ segments are determined to

an accuracy of the segment gene family. In the case of BCRs, where clonotypes are additionally

modified by SHMs, recognition of V(D)J segments with separation of SHM variants from

germline VDI alleles are even more challenging.
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Figure 2.5. The scheme of the MIGEC pipeline (Shugay et al. 2014). A: The pipeline of
UMI-based B(T)CR library preparation; B: The procedure of error correction in molecule

identifier groups (MIGs).

Nowadays there are a bunch of bioinformatic tools, trying to solve these tasks. Some of them,
such as MiXCR, pRESTO and TRUST4, are able to work with different types of sequencing
pipelines, including bulk and target RNA-Seq, as well as Single-Cell protocols (Bolotin et al.
2015; Vander Heiden et al. 2014; Song et al. 2021). There are also special tools for identification
of novel VDJ gene alleles, such as TigGER (Gadala-Maria et al. 2015) and IgDiscover (Corcoran
et al. 2016). Immcantation framework, developed by AIRR (Adaptive Immune Receptor
Repertoire) community, provides a whole ecosystem of tools for repertoire post processing. It
includes tools of analysis of SHMs (SHazaM) and phylogenetic analysis of B cell lineages
(dowser), physicochemical properties of antigen receptors (alakazam) and many others (Stern et
al. 2014; Yaari et al. 2013; Gadala-Maria et al. 2015; 2015; Gupta et al. 2015). The Immunarch
R package is also one of the useful repertoire post processing tools (Popov 2022). Thus the field
of immune repertoires and community of scientists, involved in such types of studies, rapidly

develop and greatly improve tools for the AIRR research.

Peculiarities of B cell clonal phylogeny

Immune repertoires of antigen-experienced B cells are structured in lineages, originating from a
single naive B cell. Lineages diversify due to the process of affinity maturation after a single or
several antigen challenges (Tas et al. 2016). In their recent study Yermanos and colleagues
introduced the term antibody forest, reflecting this structure (Yermanos et al. 2020). Indeed each
B cell clonal lineage has the history of its evolution, which is tracked on the phylogenetic tree.
Thus phylogenetic trees of all lineages in a repertoire compose a forest. Common evolutionary
biology tools and pipelines can be applied to antibody forests as well, however some specific

features of B cell clonal evolution should be taken into account to design the analysis.

The first peculiarity is that mutation rate in B cell clonal lineages (in fact the rate of SHM) is
relatively high and according to some estimates riches 10 mutations per base per cell division.
Such value exceeds the spontaneous mutation rate in somatic cells by a factor of 10° (Odegard

and Schatz 2006). The only organisms with comparable mutation rates are RNA viruses, which
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can change with 10 - 10* substitutions per nucleotide per cell infection (Duffy 2018; Peck and
Lauring 2018; Drake and Holland 1999). The distribution of variability in BCRs is not uniform
and most of the density of SHMs falls into the CDR3 region. CDR3 also possesses high
junctional diversity, since it includes nontemplate nucleotides between V(D)J segments. These
two facts together complicates the procedure of clonal lineage assignment: clonotypes, which
differ because of two independent recombination events from the same V(D)J segments, should

be distinguished from SHM differences (Odegard and Schatz 2006).

To deal with the problem of clonal group assignment, there is an approach of clonal group
similarity threshold determination, realized in the ChangeO toolkit of the Immcantation
framework (Gupta et al. 2015). The approach is based on the distribution of DNN (distances to
the nearest neighbor) in the repertoire. The nearest neighbor in the repertoire is the clonotype
with the minimal number of nucleotide differences from the set of clonotypes with the same VDJ
segments and the same CDR3 length. The distribution of distances to such neighbors appears to
be bimodal: in average clonotypes of the same lineage differing by SHMs are less distant from
each other than clonotypes, originating from very similar but independent VDI rearrangements
(Figure 2.6). Thus the border between these two modes can be used as the maximum threshold
of the clonal group similarity. The Change-O tool may use different distance models depending

on the needs of the user.

The procedure of clonal group assignment usually is based on the following criteria: 1.
clonotypes of the same lineage should be rearranged from the same VDJ segments; 2. should
have CDR3s of the same length; 3. should satisfy a determined similarity threshold. Similarity
threshold varies between studies, however it usually falls in the range of 80-90% (Hoehn et al.
2021; Horns et al. 2019; Nourmohammad et al. 2019). The recent study revealed that moderate
changes in lineage criteria affect the distribution of sizes of antibody trees, but does not influence

biological conclusions from the data analysis (Yermanos et al. 2020).

Another specific feature of B cell phylogenies is that antibody trees can be rooted by the
germline sequence of the corresponding VDJ segments (Odegard and Schatz 2006; Barak et al.
2008). The primary BCR sequence, from which the lineage evolution starts, can not be fully
determined, because of nontemplate nucleotides in the junctions between V(D)J segments.

Nevertheless, even in the case of short BCR clonotypes the germline V(D)J positions comprise a
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significant part of the clonotype and may define the direction of clonal evolution on the
phylogeny (Yermanos et al. 2020). Rooting of B cell phylogenies by V(D)J germline constructs
allows to track the order of SHM occurrence and branching events in the lineage, so it is widely
used in clonal lineage analysis (Nourmohammad et al. 2019; Hoehn et al. 2021; Horns et al.

2019; Yermanos et al. 2020; Kréutler et al. 2020; Yaari et al. 2013).

Density
N
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0.00 0.25 0.50 0.75
Distance

Figure 2.6. The bimodal distribution of distances to the nearest neighbor in a repertoire, which
allows to determine the threshold of clonal group similarity. The figure is adapted from (Gupta et
al. 2015).

Analysis of longitudinal repertoire data revealed that the dynamics of SHM accumulation is not
linear and rarely corresponds to the timeline of clonotype sampling dates. Indeed affinity
maturation and SHM accumulation do not proceed permanently with the constant rate and
depend on antigen challenges. Following this logic Hoehn and colleagues developed a criteria to
distinguish vaccine-responding B cell lineages from vaccine-independent: the timeline of
clonotype sampling in vaccine-responding B cell lineages is correlated with the number of
accumulated SHMs (Hoehn et al. 2021). Thus early clonotypes are located closer to the root of
the tree, when clonotypes from later time points tend to sit on longer branches (Figure 2.7A:B).
In vaccine-independent lineages the time point of the clonotype sequence is unrelated to the

clonotype position on the lineage phylogeny (Figure 2.7C:D).

The feature of B cell clonal lineages to include both terminal and internal node sequences of

phylogenetic tree is often noted (Davidsen and Matsen 2018; Barak et al. 2008; Odegard and
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Schatz 2006). Indeed not all B cells in the lineages accumulate SHMs with the same rate and
after cellular division one of daughter B cells may ‘fix’ the sequence of the BCR and proliferate
further without introduction of new changes in its antigen receptor. At the same time progenitors
of its sister cell will still diversify due to affinity maturation. Thus in the sample of BCRs from a

single lineage, one may observe both ancestral and descendant BCR sequences of lineage

phylogeny.

Another feature, which is also frequently mentioned in the literature, is the mutational signature
of the AID enzyme, which produces the diversity of BCRs for selection due to affinity
maturation. It defines the probability distribution of SHMs to occur in different nucleotide

contexts (Teng and Papavasiliou 2007; Pettersen et al. 2015; Rogozin et al. 2016).

Fortunately, evolution of B cells is not unique within the context of these factors. When sampling
viral populations, some sequences also appear in the internal nodes of the tree due to interrupted
epidemiological chains (Komissarov et al. 2021; Klink et al. 2021; Hall, Woolhouse, and
Rambaut 2016). Specific mutational signatures and the role of certain enzymes in mutagenesis
and in population evolution is well described for viruses and tumor cells (Graudenzi et al. 2021;
Yi et al. 2021) and tumors (Y.-A. Kim et al. 2021; Koh et al. 2021). Modern phylogenetic tools,
based on maximum likelihood or bayesian approach, take into account both varying mutation
rate on different phylogenetic branches and population-specific patterns of mutagenesis

(Drummond et al. 2006; Yang 2006; Nei and Kumar 2000).

One more specific feature of B cell phylogeny is that BCR diversification simultaneously occurs
on both productive and unproductive rearrangements. Unproductive V(D)J rearrangements
accumulate SHMs together with their homologous BCRs with the only difference - SHMs in
unproductive sequences have no effect on B cell fitness and fate. Thus they accumulate neutrally
at the rate of the mutational process itself and hitchhike together with its productive neighbor.
Therefore in the case of gDNA based Rep-Seq unproductive BCRs may be used for estimation of
SHM rate or for estimation of the dN/dS values (the ratio of nonsynonymous to synonymous
changes) in sequence evolution in the absence of selection. Several studies used unproductive
sequences as a neutral baseline for productive BCRs, evolving under action of natural selection

(McCoy et al. 2015; Nourmohammad et al. 2019).
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Figure 2.7 Example of vaccine-responding (A) and vaccine-independent (C) B cell lineage
phylogenies. The color of leaves on the tree corresponds to the sampling time of the clonotype.
The gray dot corresponds to the germline root of the B cell tree; B and D: Correlation between
the rate of accumulated SHMs in clonotype and its sampling time of trees from A and D panels;

The figure is adapted from (Hoehn et al. 2021).
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Studies of B cell clonal evolution

In an increasing number of works, BCR repertoires are studied with the use of techniques of
populational genetics. Commonly such studies are focused not on a whole BCR repertoires, but
on the most abundant B cell lineages. Here are several examples of how evolutionary analysis of
B cell lineages may be used to address questions about the work of B cell adaptive immunity.
Horn and colleagues observed B cell clonal lineages after influenza vaccination (Horns et al.
2019). In their work, peripheral blood of 5 healthy adults was sampled nine times from the fifth
day before the vaccine induction to the eleventh day after. Among the most abundant clonal
lineages, authors distinguished persistent and vaccine-responsive ones by the dynamics of their
fraction in repertoire through time. In persistent lineages there was a predominance of clonotypes
with IgM or IgD isotypes, when vaccine-responsive lineages were mostly composed of switched
IgA or IgG ones. Using models of Kingman (Kingman 1982) and Bolthausen-Sznitman
coalescence (Bolthausen and Sznitman 1998; Neher, Kessinger, and Shraiman 2013) they
simulated scenarios of neutral evolution, neutral evolution with expanding population and
adaptive evolution for populations of sizes, same to sizes of B cell lineages. They revealed that
distributions of SHMs in persistent lineages are well described by a neutral model, while

vaccine-responsive lineages fit well the dynamics predicted by the model of adaptive evolution.

Furthermore, the authors have shown that vaccine-responsive lineages expanded more on the
seventh day after vaccination. They also revealed affinity-enhancing and affinity-diminishing
mutations, analyzing changes in branching rate on B cell phylogenetic trees and using the
principle described in (Neher, Russell, and Shraiman 2014). An excess of affinity-enhancing
mutations occurred in the CDR3 region of the BCR, when affinity-diminishing mutations were

mostly revealed in the CDR1 and CDR2 regions.

The problem of finding BCRs with the best affinity in the lineage was raised in another work of
Ralph and Matsen (Ralph and Matsen 2020). The study is based on a dataset with measured
neutralization ability of different BCR variants of the same lineage. Antibody neutralization
activity is well correlated with its affinity and may be used as a quantitative representative of the
BCR fitness. Authors tested several phylogenetic metrics, as a predictor of the BCR fitness,
including the Hamming distance of the sequence from the germline, the local branching index on

phylogenetic tree and the number of accumulated SHMs. The local branching index together
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with the amino-acid distance of the sequence from the lineage consensus have shown best
results. Indeed consensus of the lineage is close to the sequence with the maximum local
branching index, so these two metrics are meaningfully close. These observations are well
consistent with the previous article of Horns et al. and pipelines developed for fitness prediction

in viral populations (Neher, Russell, and Shraiman 2014).

In another study of Nourmohammad et al. there was a longitudinal analysis of B cell clonal
lineages of HIV infected individuals without treatment and with interrupted ART-therapy
(Nourmohammad et al. 2019). Here BCR repertoires were sequenced from gDNA and authors
used lineages of unproductive BCR sequences as a baseline for SHM rate. BCR lineages of HIV
infected individuals also carried the signature of positive selection, which was correlated with the
viral load in patients with interrupted ART-therapy. In addition, authors developed a beautiful
pipeline to analyze effects of clonal interference in longitudinal BCR repertoires, based on
likelihood dN/dS ratios for mutations with different frequency dynamics. The effect of clonal
interference was pronounced the most in CDR3 region and slowed down the fixation of the most

beneficial BCR variants.

Phylogenetic tools can also be used for reconstruction of the course of events in the lineage, such
as isotype switching. In his other work, Horns and colleagues have shown that B cells with close
BCR sequences tend to switch in the same clonotype, however they lose coherence in isotype
switching with BCR diversification (Horns et al. 2016). Thus in general the process of isotype
switching is B cell specific and is not defined uniformly for the whole lineage. Also the feature
of isotype to switch in a particular order in most cases should be reflected in the order of isotypes
on lineage phylogeny and can be used as the quality control of reconstructed phylogeny

(Davidsen and Matsen 2018).

In addition to isotypes, B cell lineages can be annotated by the tissue of sampling or by a
particular cell type, from which clonotype was obtained. Hoehn and colleagues have shown
memory reactivation of B cell lineages due to influenza revaccination: clonotypes of resting
memory gave rise to a clade of clonotypes from the germinal center (Hoehn et al. 2021). Such
observations lead to the conclusion that a new antigen challenge is able to force B cell immune

memory to start new cycles of affinity maturation and readapt to evolved antigen.
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Tracking of evolution of B cell clonal lineages is also a promising approach in the investigation
of B cell lymphomas (Kiippers 2005). The group of Rachael J.M. Bashford-Rogers published
several studies, devoted to the analysis of B cell repertoires of patients with chronic lymphocytic
leukemia (CLL) and follicular lymphoma (FL) (Bashford-Rogers et al. 2013; Petrova et al.
2018). They have shown that malignant lineage usually arises from a single B cell clonotype,
which remains the dominant clonotype with the disease progression. However it diversifies with
time, producing numbers of subclones and forming the malignant lineage, occupying almost a
whole B cell repertoire of the patient (Bashford-Rogers et al. 2013). They also detected the case

of the CLL patient with two independent malignant lineages.

CLL malignant B cell lineages strongly differ from both B cell lineages of healthy individuals
and other non-malignant lineages of same patients.They were predominantly composed of IgM
isotypes, which is unusual for diversified lineages in healthy repertoires. They also possessed an
unprecedentedly high number of accumulated SHMs in comparison with IgM clonotypes of
healthy repertoires (Petrova et al. 2018). The landscape of isotype switching in malignant B cell
lineages dramatically differs from healthy lineages as well: the switch from IgM/D to IgA1/2
predominates in malignant lineages, when in healthy B cell clonal lineages the switch frequency
from IgM/D is almost equally distributed between IgA1/2 and IgGl/2. However authors
observed no association between frequency of isotype switching in the malignant lineage and its

relative size in B cell repertoire.

Viral escape from the adaptive immunity

Viral ways to escape adaptive immune response

The development of such a complex and beautiful system of adaptive immunity would be
unnecessary without the adaptive evolution on the other side of the host-pathogen universe.
Throughout their whole history, pathogens elaborate new tricks to avoid mechanisms of host
immune defenses. Such an arm race spurs the rate of adaptation in both pathogens and the host,
so in some cases it becomes possible to observe host-pathogen coevolution in a real time. In this

context viruses, as the most fast-evolving organisms, are of particular interest.

Viruses are a huge and diverse group of organisms, which use replication systems of host living

cells for the production of new viral particles. Viral escapology includes a whole set of strategies
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to deceive and avoid host defenses. Roughly these strategies may be grouped in a ‘camouflage
and sabotage’ and ‘speed and shape-change’ principles (Lucas et al. 2008). The ‘camouflage and
sabotage’ strategy is more common in DNA-based viruses with large genomes, which possess
enough space to encode highly-evolved molecules allowing viruses to persist in the host
imperceptibly for the immune system. Herpesviruses are a good example of ‘camouflage’
principle: their double-stranded DNA genomes may include over 200 viral proteins and have
slow rates of replication. However many of these proteins are aimed at hiding from the immune
system by latency in the form of episomal DNA (Connolly, Jardetzky, and Longnecker 2021).
Thus after primary infection such viruses may persist for decades with no special damage to the

host organism.

‘Speed and shape-change’ are usually short RNA-based viruses. They have no capacity to
develop complex hiding mechanisms, however high rates of their replication allow them to
rapidly modify their antigens, which target adaptive immune response (Lucas et al. 2008). Such
modifications may include both changes of antibody binding sites to escape B cell immunity or
changes of viral epitopes, presented on MHC molecules for T cells. In the case of B cell escape
only structural and envelope proteins can be involved. Escape from neutralizing antibodies was
described for many fast-evolving viruses including HIV-1 (Meijers et al. 2021; X. Wei et al.
2003; Dingens et al. 2019), Hepatitis B and C viruses (Lazarevic et al. 2019; von Hahn et al.
2007), influenza (Krammer 2019; Gentles et al. 2020; Leon et al. 2017), SARS-CoV-2
(Chakraborty et al. 2022; Hu et al. 2022; Weisblum et al. 2020; Harvey et al. 2021), LCMV
(Eschli et al. 2007; Ciurea et al. 2001) and many others. In cases of chronic viral infections such
host-pathogen coevolution may be tracked inside a single host: viral immunoediting of
antibody-binding sites is followed by affinity maturation of corresponding B cell lineages with
the adaptation of BCRs to changes in the antigen (Bonsignori et al. 2017; Muecksch et al. 2021).
In cases of short-term viral infections with high transmissivity such as flu or COVID-19 some of
antibody escape variants turn out to be universal, recurrently appear in various hosts and rapidly
spread in a host population. Dynamics of such variants are tracked with an unprecedented

precision during the current pandemic of SARS-CoV-2 (WHO 2022).

Escape from the T cell adaptive immunity implies prevention of recognition of the MHC:epitope

complex by activated T cell clones, which can be done on different stages of presentation of viral
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peptides. First, viruses may change proteasomal cleavage sites used for intracellular generation
of viral epitopes during antigen processing (Allen et al. 2004; Draenert et al. 2004; Kimura et al.
2005). However this strategy is not reliable, since peptides may naturally degrade and the epitope
of concern may time to time appear in the intercellular matrix. Next, viruses can modify anchor
positions in peptide antigens, which is used for binding to MHC molecules. In such a case
activated T cell clones would be unable to recognize corresponding antigens because of their
absence on a surface of infected cells. And the last escape modification may affect epitope
immunogenicity - ability to be recognized by the specific T cell receptor. According to some
estimates TCRs are able to recognize just a half of viral epitopes, presented on MHC complexes.
Bronke and colleagues have shown that HIV effectively uses all these strategies, however
prevention of epitope binding to MHC molecules is the most reliable escape mechanism (Bronke

et al. 2013). In addition to viruses the same tactics are used by tumor cells (Marty et al. 2017).

Since escape ways from T cell clones are highly dependent on the set of HLA alleles of a
particular individual, the existence of universal T cell escape viral variants is under question.
However the distribution of HLA allele frequencies is not uniform and usually every human
population has highly frequent HLA alleles, which would be present in almost a half of
individuals (Buhler and Sanchez-Mazas 2011; Mardstica et al. 2022). Therefore escape from the

most frequent HLA alleles can be considered as universal to some extent.

SARS-CoV-2, a novel coronavirus

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in December
2019 and was declared as pandemic on March 11, 2020 (Halaji et al. 2021; Mendiola-Pastrana et
al. 2022). SARS-CoV-2 belongs to coronaviruses, the highly diverse family of enveloped
positive single-stranded RNA viruses, infecting mammals and avian species. By the beginning of
the pandemic, there were eight strains of coronaviruses known to infect humans, two of which,
SARS-CoV in 2002 and MERS-CoV (Middle East respiratory syndrome coronavirus) in 2012,
had caused severe outbreaks (Feng et al. 2009; Zumla, Hui, and Perlman 2015). A SARS-CoV-2
infection results in a coronavirus disease 2019 (COVID-19), which in most cases flows
asymptomatically or as mild respiratory pathology; however, in a minor fraction of cases, the
immune response to SARS-CoV-2 provokes hyperinflammation, leading to systemic multi-organ

collapse (Mendiola-Pastrana et al. 2022).
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The SARS-CoV-2 genome is about 30 kb long and encodes 29 genes. SARS-CoV-2 virion
consists of four structural proteins (N, E, M and S). The positively-charged N (nucleocapsid)
protein is responsible for a tight packaging of the viral RNA genome inside the nucleocapsid
structure. E (envelope) and M (membrane) proteins together with the S (spike) protein
incorporate in a lipid bilayer and form a viral envelope. The S proteins form trimmers, which
stick out the membrane as corona-like “spikes”. SARS-CoV-2 enters human cells using the
Receptor Binding Domain (RBD) of these outside parts of the S proteins through the
angiotensin-converting enzyme 2 (ACE2) on the host cell surfaces. After entry to the host cell,
two large open reading frames (ORFla and ORFIb) are immediately translated into two
polyproteins, which are then post-translationally processed in a set of individual nonstructural
(nsp) proteins. Nsp proteins are in charge of formation of the viral replication and transcription
complex and include RNA dependent RNA polymerase and exonuclease, responsible for

high-fidelity replication (Robson et al. 2020).

During the SARS-CoV-2 pandemic, the scientific community has detected an enormous number
of viral mutations (Shu and McCauley 2017; Knorre et al. 2021; Gangavarapu et al. 2022;
Tsueng et al. 2022; Hodcroft Emma 2020). On average each nucleotide position of SARS-CoV-2
genome has at least one mutation (J. Chen, Wang, and Wei 2021). Such variability in
SARS-CoV-2 population arises from a large number of factors, such as infidelity of replication
and transcription of the viral genome (V’kovski et al. 2021; J. Chen, Wang, and Wei 2021), viral
and host-viral recombination (Turakhia et al. 2022; Wertheim et al. 2022), host editing (Gribble
et al. 2021) and so on. However, the nspl4 enzyme together with RNA-dependent RNA
polymerase (nspl2) possess a proofreading activity, which distinguishes SARS-CoV-2 from
other RNA viruses, such as flu and HIV, making its mutation rate somewhat slower (1x107
substitution/site/year) (Astuti and Ysrafil 2020; Koyama, Platt, and Parida 2020). Evolutionary
forces, including random genetic drift, gene flow and natural selection (J. Chen, Wang, and Wei
2021) together with epidemiological factors, influencing dynamics of viral population size and
ways of variant migration (Komissarov et al. 2021; Klink et al. 2021), shapes dynamics of this
diversity. Thus, many variants demonstrated rapid global or local increase in their frequency in a
viral population, suggesting probable beneficial effects on the fitness of the virus. For example,
the famous S:D614G mutation was detected at early 2020 for the first time and was already

present in all viral sequences until June of 2020. On the contrary, some variants were replaced by
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other variants shortly after their emergence. However their actual effect on viral phenotype and

key factors, affecting their dynamics, is not always clear.

SARS-CoV-2 variants, which possess mutations with known effect according to the World
Health Organization, such as increase of viral transmissivity, immune or diagnostic escape or
association with the higher risk of COVID-19 severity belong to the group of VOI (Variants of
Interest) (Hodcroft Emma 2020; WHO 2022). VOI, which became responsible for new
COVID-19 waves, and in some cases globally displaced all other SARS-CoV-2 variants, are
called VOCs (Variants of Concern). During the SARS-CoV-2 pandemics there were several
waves, named after letters of the Greek alphabet: Alpha, Beta, Gamma, Delta, Theta, Epsilon,
Kappa, Lambda, Mu and Omicron (Dutta 2022). Interestingly, many mutations characterizing
these VOCs are recurrent and arose independently in different VOC lineages. For example,
modification of residues 452 or 501 of the RBD domain in Spike protein, resulting in significant
increase of viral transmissivity (J. Chen et al. 2020), is present in most SARS-CoV-2 lineages.
S:L452 is present in Lambda (S:L452Q) and Delta (S:L452R), while S:N501Y is present

simultaneously in Alpha, Beta, Gamma and Omicron (Hodcroft Emma 2020).

The first SARS-CoV-2 variant, which became the first globally circulating strain, differed from
the Wuhan virus by a single S:D614G amino-acid substitution (Korber et al. 2020). S:D614G
independently occurred in different parts of the world and spread globally. It is located outside
the RBD region and improves viral replication (Plante et al. 2021). The next Alpha variant
(B.1.1.7) emerged in the United Kingdom in September 2020 and already accumulated 23
mutations, including S:D614G. Among other notable mutations there were two deletions in the S
protein: S:A69-70HV and S:del144 144. Both of them are highly recurrent and were detected in
other VOCs and individual patients. S:A69-70HV is also one of mutations from the AF
combination, associated with the outbreak in mink farms (Oude Munnink et al. 2021). In general,
the Alpha variant was characterized by higher transmissivity and higher risk of severe
COVID-19 than the original virus (Lyngse et al. 2021). At the same time there was an outbreak
of Beta variant (B.1.351) in South Africa, detected in May 2020 for the first time. The next
Gamma variant (P.1) emerged in Brazil with the first documented sample, dated by November

2020. Both Beta and Gamma variants demonstrated reduction of neutralizing activity of mAb
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and convalescent plasma (X. Chen et al. 2021; Souza et al. 2021), however their outbreaks

mostly affected regions of their emergence and were not global.

In contrast, the next Delta variant (B.1.617.2), while started in India in October 2020, rapidly
became a predominant variant in most countries. It includes 32 mutations, 12 of which are in the
Spike. S:L452R and S:T478K mutations in RBD region with TI9R, G142D, D614G, P681R,
157del, R158G, 156del, and D950N were shown to increase Delta transmissivity in two times in
comparison with Alpha variant (Chakraborty et al. 2022). Some of them, such as S:L.452R, have
a pleiotropic effect on viral phenotype, including both increase of viral infectivity and escape
from neutralizing antibodies (Deng et al. 2021). Specific feature of the Delta variant is its high
disease severity, caused by more stable interaction of the RBD domain with ACE2, resulting in
more effective entry into lung cells. The Delta variant has a 108% higher risk of hospitalization

than the original virus and a 133% higher risk of mortality (Shiehzadegan et al. 2021).

Later, in November 2021, another highly divergent Omicron variant (B.1.1.529) was detected in
South Africa, which became the most fast-spreading virus ever discovered (S. Kim et al. 2021).
Omicron’s genome accumulated 50 mutations with the most part of them (32) in S protein. Many
of these mutations match with mutations of previous SARS-CoV-2 variants, suggesting that
Omicron grouped properties of previous waves all together. Several studies reported that
S:N679K, S:N501Y, S:P681H, S:N679K, and S:D614G changes in RBD region increase viral
transmissibility, which exceeds transmissibility of the most aggressive previous Delta variant by
a factor of 2.5-3.5 times (Gong et al. 2021). Deletions in ORF1a protein (L3674-, S3675-, and
G3676) were shown to prevent destruction of viral components by intercellular innate immunity
(Walls et al. 2020). Moreover, the Omicron variant possesses a much higher replication rate;
however replication of the Omicron variant is more effective in the upper respiratory tract and
less effective in lung tissues, which decreases the risk of COVID-19 severity (Mohapatra et al.
2022).

Intrahost evolution of SARS-CoV-2

A whole set of studies are devoted to the effects of mutations of major SARS-CoV-2 VOCs on
viral fitness, which in general results in improvement of viral transmissivity and replication rates,

escape from innate immunity and modification of binding sites of neutralizing antibodies (J.
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Chen et al. 2020; Gong et al. 2021). Many of these mutations, possessing beneficial effects on
viral fitness and being positively selected, occurred independently in several SARS-CoV-2
strains and in individual patients with long-term COVID-19 (Figure 2.1). Intuitively, one would
expect that at least a part of such mutations should be fixed gradually in the viral population, as it
was with the first globally circulating S:D614G variant. However, most SARS-CoV-2 strains
rapidly arised from a highly diverged variant, different from all other known variants by its own
specific set of accumulated mutations. Such dynamics of SARS-CoV-2 evolution gives the
reason to hypothesize that major SARS-CoV-2 strains accumulated their mutations in individual
patients and not in the global population (Kupferschmidt 2021). In this context, the cases of
long-term COVID-19, when viral evolution inside a single host can be tracked for some period

of time, become of particular interest (Table 3.1).

Typically, viral RNA can be extracted from airway fluids, blood and feces between 3 and 46 days
after symptom onset (Fu et al. 2020; Qian et al. 2020), however usually on 8th day infectious
SARS-CoV-2 particles are already absent (Wolfel et al. 2020). The condition of long-term
COVID-19 is characterized by a long period of not just viral RNA shedding, resulting in positive
PCR tests, but also by the presence of infectious viral particles. In some cases such a period of
viral persistence can take several months or even a year (Williamson et al. 2021; Monrad et al.
2021; Cunha et al. 2021; Borges et al. 2021) and can be separated by intervals of negative PCR
tests as in case from (Sepulcri et al. 2021). In some cases such a long period of viral persistence
is caused by the reinfection on the background of primary disease (Tillett et al. 2021;
Prado-Vivar et al. 2021; Mulder et al. 2021). However, in most cases the track of viral evolution
confirms that viral particles, detected after negative PCR test periods, belong to the same
evolutionary track of the original infection (Avanzato et al. 2020; Kemp et al. 2020; Cele et al.
2021).

During the pandemic, a whole set of case studies, describing long-term COVID-19 has been
reported (Table 3.1). Such cases are reported for individuals with various immune conditions.
Long-term COVID-19 may occur in people with usual immune status and may last up to 112
days (Agarwal et al. 2020; Tillett et al. 2021; Prado-Vivar et al. 2021; Voloch et al. 2021).
However, the most impressive duration of viral persistence is documented for

immunosuppressed patients and may reach a whole year (Monrad et al. 2021; Sepulcri et al.
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2021; Cunha et al. 2021). The reasons for immune system suppression in described cases are
different. Mostly it is caused by B-cell depleted treatment, needed to cure hematological
malignancies (Avanzato et al. 2020; Hueso et al. 2020; Reuken et al. 2021; Betrains et al. 2021;
Monrad et al. 2021; Leung et al. 2022; Borges et al. 2021) or autoimmune disorders (Choi et al.
2020; Islam et al. 2021; Zabalza et al. 2021). The lack of humoral adaptive immunity certainly is
positively associated with the longevity of COVID-19 (Fu et al., 2020).

Viral persistence is accompanied by intrahost evolution and accumulation of changes in the viral
genome. Unfortunately, not all studies of long-term COVID-19 focus on dynamics of viral
evolution and publish viral sequences (Table 3.1). Even fewer reports include the analysis of
mutation effects on the fitness of the virus and the host immune system. Nevertheless, based on
the available data, some conclusions can be drawn. The first one is that the number of
accumulated changes in the viral genome dramatically varies between patients and is poorly
associated with the duration of viral persistence. For example, in the case described by (Mukhina
et al., 2022), the virus gained 5 SNPs over a period of 216 days, while in the case from (Choi et
al., 2020) there were 29 SNPs and 2 deletions detected as a result of viral persistence during 154
days. Obviously, comparison of different cases may be biased by differences in technical details
of the analysis. These may include differences in determination of duration of COVID-19,
differences in detection of changes in viral genome from sequencing data, as well as differences
in determination of the genome sequence of the ancestral virus, which became a source of the
infection. Nonetheless, dramatic variability of evolutionary rate between different cases implies
that individual features of a patient's immune system and used therapy largely determine the
dynamics of viral evolution. Also individual mutations gained by the virus may affect mutation

rate of the viral population in the particular host.

In several reports some additional analysis of viral evolution was done. In the study of
Williamson et al., 2021 authors observed an increase of viral evolutionary rate after the injection
of convalescent plasma. They explain this effect by viral escape from neutralizing antibodies,
since mutations were shown to have such an effect in other studies. In another study of (C. Y.
Lee et al. 2021) authors analyzed a huge cohort of 382 patients with hematological malignancies
and prolonged COVID-19. They revealed that in a group with higher mortality and higher
severity of COVID-10 there was an elevated dNdS.
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Long-term COVID-19 is also repeatedly described for HIV positive individuals (Cele et al. 2021;
Karim et al. 2021; Cunha et al. 2021). In general, the prevalence of SARS-CoV-2 cases among
HIV infected individuals is the same as in the general population (Mirzaei et al. 2021; Guo et al.
2020). However, such an estimate does not take into account asymptomatic cases of COVID-19
and HIV infected individuals with unknown HIV status (Mirzaei et al. 2021). The nature of
immunosuppression in HIV infected individuals is different from immunosuppression resulting
from B-cell depleted therapy, but has some common features (Ambrosioni et al. 2021). HIV
infection comes with the reduction of CD4 T cells, which are involved in activation of B cell
response and production of neutralizing antibodies (Spinelli et al. 2021). Thus, the branch of
humoral adaptive immunity is weakened in HIV infected individuals, as it happens after B-cell
depleted therapy. It manifests itself in weaker and delayed response for various vaccines, such as
pneumococcal, influenza and hepatitis B vaccines, in HIV infected individuals even on the
background of ART therapy (Geretti and Doyle 2010). Much weaker response to SARS-CoV-2
vaccines, developed by Moderna and Pfizer, than in the general population was detected as well
(Wang 2021). Severity of COVID-19 in HIV positive patients strongly depends on the level in
CD4 T cell counts reduction and is less likely in patients receiving ART (Geretti and Doyle
2010; Tesoriero et al. 2021).

Thus, longevity of viral persistence in HIV infected individuals is comparable with B-cell
depleted patients and can also reach almost a year (Karim et al. 2021). Two studies revealed that
the virus acquired mutations, helping escape neutralizing antibodies (Cele et al. 2021; Karim et
al. 2021). Moreover, part of acquired mutations in the patient, described in (Cele et al. 2021),
matched mutations of VOCs, especially in the RBD region of S protein, which are known as
variants increasing viral transmissivity. Thus, development of SARS-CoV-2 strains could be
associated with the involvement of an HIV positive immune system. The fact that 25 out of the
overall 38 millions HIV positive people live in sub-Saharan Africa, with the most of those not
receiving ART, together with the fact that two of major SARS-CoV-2 strains appeared in South
Africa, support this hypothesis.
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Table 3.1. The summary of case reports of long-term COVID-19 in patients with various health

conditions.
Immune
# of Comments escape
Study Cohort (# of patients) | Days | mutations
(Agarwal et al. usual (851) >=28 no data 99 of 851 patients no data
2020) shed viral RNA after
4 weeks from initial
diagnosis
(Tillett et al. usual (1) 49 10 and 13 reinfection no data
2021) SNPs
(Gao and Wang usual (22) 50-112 | 0-3 SNPs | long-term COVId is no data
2015) associated with low
viral load and
decreased
pathogenicity
(Prado-Vivar et usual (1) 84 1 SNP in reinfection no data
al. 2021) each
infections
(Voloch et al. usual (33) ~18 on| 0-7SNPs | revealed common no data
2021) average mutational profiles,
associated with RdRp
mutational error
spectrums
(Avanzato et al.| Chronic Lymphocytic 70 12 SNPs; | shedding viral RNA no data
2020) Leukemia (1) 3del  |uoto 105 days; CCP
(Hueso et al. | Diffuse Large Bcell | 7-83 no data [anti-CD20 treatment no data

2020; Betrains
et al. 2021)

Lymphoma (5), Chronic
Lymphocytic Leukemia
(3), Mantle Cell
Lymphoma (3),
Follicular Lymphoma
(3), Waldenstrom
Macroglobulinemia (1),
Marginal Zone
Lymphoma (1),

Multiple Sclerosis (1)

(rituximab); intact
T-cell immunity and
lack of neutralizing

antibodies; CCP
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(Reuken et al. | Follicular Lymphoma | ~120 [ 12 SNPs |anti-CD20 treatment no data
2021) (1) (rituximab); CCP;
elevated fraction of
CDS8 T cells and
diminished fraction
of CD4 T cells
(Sepulcri et al. Non-Hodgkin 238 18 anti-CD20 treatment no data
2021) Lymphoma (1) amino-acid | (rituximab); CCP
changing
SNPs
(Williamson et [ Chronic Lymphocytic | 197 14 SNPs; | anti-CD20 treatment | no data, but
al. 2021) Leukemia (1) 3 del (rituximab); CCP; |mutations with|
virus evolved rapidly| known effect
between day 58 and | are detected
155 (increasing
transmissivity
and escaping
neutralizing
antibodies)
(Monrad et al. | Chronic Lymphocytic | 333 |8 SNPs and CCP cscape frpm
2021) Leukemia (1) 3 del in neutralizing
Spike antibodies
(Leung et al. B-cell acute 97 6 SNPs, no CCP no data
2022) lymphoblastic leukemia 1 del
(1
(C.Y. Lee et al. elevated dNdS in the no data
2021) 368 lymphoid >30 | 18 patients | group with higher
malignancies days | sequenced mortality
(Borges et al. Inon-Hodgkin 6 15 snp +3 no CCP no data
2021) lymphoma months del
(Mukhina et al. [Mantle Cell Lymphoma| 216 5SNPs |[anti-CD20 treatment |  no data
2022) (1) (rituximab); no CCP
(Choi et al. Severe 29 SNPs; | anti-CD20 treatment no data
2020) Antiphospholipid 154 2del | (rituximab); no CCP
Syndrome (1)
(Islam et al. |Metabolic Syndrome (1 72 no data no CCP no data
2021)
23 sequenced time | escape from
(Kemp et al. B-cell depleted (1) 101 | >30SNPs | . -
points over 101 days,| neutralizing
2020) little evolutionary antibodies

change in first 65
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days, but more after

the start of CCP
treatment
(Khatamzas, B-cell depleted (1) 154 16 SNPs; anti-‘CDZO no data
Rehn, et al. 1 del . _antlbody
2021) obinituzumab; CCP
(Mulder et al. Waldenstrom 59 10 SNps | anti-CD20 therapy, no data
2021) Macroglobulinemia (1) CCP, reinfection
(Zabalza et al. | Multiple Sclerosis (48) | no data| no data |anti-CD20 treatment; no data
2021) patients after the
treatment are less
likely to generate
antibody response
(Weigang et al. Kidney transplant 105 34 SNPs, Immunosupp regsive escape ,fr,om
2021) recipient (1) 7 del treatment (tacrolimus,| neutralizing
p mycophenolate antibodies
mofetil, prednisone),
CCP
(Karim et al. HIV (1) 216 18 antiretroviral escape from
2021) amino-acid | treatment failure neutralizing
changing antibodies
SNPs, 2 del
(Cunha et al. usual (2), HIV (1) 232 | ~20 SNPs no data no data
2021)
(Cele et al. HIV (1) 123 15 ART therapy and | escape from
2021) amino-acid [sWitch to dolutegravir| neutralizing
changing based therapy; many | antibodies,
SNPs. 1 del mutations match with| including
S 1 € mutations of VOCs, vaccine
especially in RBD induced

region of S protein
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Figure 2.1. Concordant origin of spike mutations in notable COVID-19 variants and
reported cases of persistent COVID-19. Shown are the locations of mutations in the amino
acid sequence encoded by the spike gene. Rows, from top to bottom: VOCs Delta (B.1.617.2),
Beta (B.1.351), Alpha (B.1.1.7); Cluster 5 variant; immunosuppressed individual with persistent
infection for 290 days (Williamson et al., 2021); three patients with acute lymphoblastic
leukemia who were persistently positive for SARS-CoV-2 (Truong et al., 2021);
immunosuppressed individual treated with immunoglobulin (Sepulcri et al. 2021);
immunosuppressed individual treated with convalescent plasma (Khatamzas et al. 2021);
immunosuppressed individual treated with convalescent plasma (Kemp et al. 2020);
immunosuppressed individual treated with Regeneron monoclonal antibody cocktail (Choi et al.
2020; only those mutations present at the final timepoint (T3, day 152) are shown);
immunocompromised patient without convalescent plasma treatment (Borges et al., 2021);
immunocompromised individual treated with convalescent plasma (Avanzato et al. 2020);
immunosuppressed individual not treated with convalescent plasma or antibodies (patient S, this
study). Triangles, point mutations; rectangles, deletions. Bright colors represent mutations
observed in at least two studies. Mutations labeled on top in black were observed in multiple
lineages/experiments, among those, mutations that are present in Patient S are highlighted with

bold font.
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CHAPTER 3: MEMORY PERSISTENCE AND DIFFERENTIATION INTO
ANTIBODY-SECRETING CELLS ACCOMPANIED BY POSITIVE
SELECTION IN LONGITUDINAL BCR REPERTOIRES

In this Chapter we study the complex system of host-pathogen interaction from the side of the
host. Being much simpler in their structure, pathogens have dramatically shorter generation times
than their hosts, which enables them to develop new adaptive features relatively fast. Adaptive
immunity possesses two mechanisms to respond promptly for such fast changes. The first
mechanism encapsulates the whole idea of adaptive immunity: large pre-generated diversity of B
and T cell receptors allows the inclusion of a new B or T cell clone in ongoing immune response
at any moment. Thus any changes in a pathogen, hiding it from existing B and T responding

clones will produce new antigens and evoke new clonal expansion.

The second mechanism is specific for B cell response. In addition to pre generated diversity of B
cell receptors B cell clones can evolve during the interaction with the antigen in the process of
affinity maturation. The structure of immune repertoires and phylogenies of B cell clonal
lineages as its part contain the history of encounters with antigens. In this Chapter we focus on
most abundant B cell clonal lineages, assigned from immunoglobulin heavy chain repertoires
from memory B cells, plasmablasts, and plasma cells from peripheral blood collected from
generally healthy volunteers at three time-points over the course of a year. By evolutionary and
phylogenetic analysis of such lineages we study mechanisms, staying behind the intrahost

adaptation of B cell immune response.

Methods

Donors, cells, and timepoints

Blood samples from six (4 males and 2 females) young and middle-aged donors (27, 27, 33, 33,
and 39 y.o.) without severe inflammatory diseases, chronic or recent acute infectious diseases, or
vaccinations were collected at three time-points (T1 - 0, T2 - 1 month, T3 - 12 months); donor
details and the number cells collected for each time point and cell subset are provided in
Supplementary Table A-1. Four donors suffered allergic rhinitis to pollen, and two also suffered

from food allergy. Informed consent was obtained from each donor. The study was approved by
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the Ethical Committee of Pirogov Russian National Research Medical University, Moscow,
Russia. At each time point, 18-22 mL of peripheral blood was collected in BD Vacuette tubes
with EDTA. Peripheral blood mononuclear cells were isolated using Ficoll gradient density
centrifugation. To isolate subpopulations of interest, cells were stained with anti-CD19-APC,
anti-CD20-VioBlue, anti-CD27-VioBright FITC, and anti-CD138-PE-Vio770 (all Miltenyi
Biotec) in the presence of FcR Blocking Reagent (Miltenyi Biotec) according to the
manufacturer’s protocol, and then sorted using fluorescence-activated cell sorting (FACS; BD
FacsAria III, BD Biosciences) into the following populations: memory B cells (Bmem; CD19"
CD20" CD27' CD138, plasmablasts (PBL; CD20- CD19"** CD27"" CD138"), plasma cells
(PL; CD20" CD19 "** CD27" CD138"). For each donor at T1, one replicate sample of each cell

subpopulation was collected. At T2 and T3, two replicate samples were collected (50 X 10° to

100 x 10° Bmem, 1 x 10°to 2 x 10° PBL, 0.5 x 10° to 1 x 10° PL per sample).

IGH cDNA libraries and sequencing

IGH cDNA libraries were prepared as described previously (Turchaninova et al. 2016) with
several modifications. Briefly, we used a rapid amplification of cDNA ends (RACE) approach
with a template-switch effect to introduce 5° adaptors during cDNA synthesis. These adaptors
contained both unique molecular identifiers (UMIs), allowing error-correction, and sample
barcodes, allowing us to rule out potential cross-sample contaminations. In addition to a
universal sequence for annealing the forward PCR primer, we also introduced a 5' adaptor during
the reverse transcription (RT) reaction, which allowed us to avoid using multiplexed forward
primers specific for V segments, thereby reducing PCR amplification biases. Multiplexed
C-segment-specific primers were used for RT and PCR, allowing us to preserve isotype
information. Prepared libraries were then sequenced with an Illumina HiSeq 2000/2500,

(paired-end, 2 x 310 bp).

Sequencing data pre-processing and repertoire reconstruction

Sample demultiplexing by sample-barcodes introduced in the 5' adapter and UMI-based
error-correction were performed using MIGEC v1.2.7 software (Shugay et al. 2014). For further
analysis, we used sequences covered by at least two sequencing reads. Alignment of sequences,

V-, D-, J-, and C-segment annotation, and reconstruction of clonal repertoires were accomplished
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using MiXCR (Bolotin et al. 2015) with prior removal of the primer-originated component of the
C-segment. We defined clonotypes as a unique IGH nucleotide sequence starting from the
framework 1 region of the V segment to the end of the J segment, and taking into account
isotype. Using TIgGER (Gadala-Maria et al. 2015) software, we derived an individual database
of V gene alleles for each donor and realigned all sequences for precise detection of
hypermutations. For analysis of general repertoire characteristics (isotype frequencies, SHM
levels, CDR3 length, IGHV gene usage, and repertoire similarity metrics) we used samples
covered by at least 0.1 cDNA molecules per cell for Bmem, and at least 5 cDNA per cell for
PBL and PL.

Assignment of clonal lineages

Change-O v0.4.4 (Gupta et al. 2015) was utilized to assign clonal groups, defined as groups of
clonotypes with the same V segment, CDR3 length, and at least 85% similarity in CDR3
nucleotide sequence. Before clonal group assignment, we excluded all clonotypes with counts
equal to 1. Clonal groups represent observed subsets of clonal lineages originating from a single
BCR ancestor, so for simplicity, we use the term ‘clonal lineages’. To study evolutionary
dynamics of clonal lineages, we joined all replicas, three time-points (T1, T2, and T3), and cell
subsets for each patient into a single dataset and excluded clonotypes that were presented by a
single UMI. Phylogenetic analysis was performed on four patients for whom we had samples at
all time-points, and on clonal lineages containing at least 20 unique clonotypes as in

(Nourmohammad et al. 2019).

Clusterization of clonal lineages in HBmem and LBmem clusters

We performed principal component analysis on six scaled variables of clonal lineage
composition: fractions of Bmem, PBL, and PL, and fractions of IgM, IgG, and IgA. The IgE
isotype was not detected in clonal lineages involved in phylogenetic analysis, so we did not
include it as a variable. HBmem and LBmem clusters were defined using the K-means clustering

algorithm.
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Metric of persistence of clonal lineages

We estimated the frequency of a clonal lineage in the repertoire at a given time-point as the ratio
of the number of unique clonotypes in the clonal lineage detected at this time-point to the overall
number of unique clonotypes detected at this time-point. If the clonal lineage was not detected at
some time-point, we assigned its frequency to pseudocount, as it would be a single clonotype
detected from this time-point. To estimate persistence of clonal lineage frequency in the

repertoire over time we defined the persistence metric:

where f is the maximum frequency of the clonal lineage in the three time-points and f = are its
max LJ

frequencies in the other two (Figure 3.2D). Persistence is equal to 1 if the frequency remains
consistent at all three time points. If a clonal lineage was detected just once in the experiment
and frequencies at other two time points were assigned to pseudocounts, the persistence

approaches zero.

Reconstruction of clonal lineage germline sequence

We used MiXCR-derived reference V, D, and J segment sequences to reconstruct IGH germline
sequences for each clonal lineage, concatenating only those sequence fragments which were
present at CDR3 junctions of original MiXCR-defined clonotypes. Thus, random nucleotide
insertions were disregarded, making them appear as gaps in the alignment of lineage clonotypes
with the germline sequence. We excluded them from all parts of the phylogenetic analysis where

germline sequence was required.

Reconstruction of clonal lineage phylogeny and MRCA

For phylogenetic analysis of clonal lineages, we aligned clonotypes with reconstructed germline
sequences using MUSCLE version 3.8.31 with 400 gap open penalty (Edgar 2004). Next, we
reconstructed the clonal lineage’s phylogeny with RAXML version 8.2.11, using the
GTRGAMMA evolutionary model and germline sequence as an outgroup, and computed

marginal ancestral states (Stamatakis 2014). The ancestral sequence of the node closest to the
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root of the tree, represented by the germline sequence, is the MRCA of the sampled clonotypes.
It can match the germline sequence or differ by some amount due to SHM, reflecting the starting
point of subsequent evolution of observed clonotypes. This allowed us to distinguish between
SHMs fixed in the clonal lineage on the way from the germline sequence to the MRCA
(G-MRCA SHMs) versus polymorphisms within the observed part of lineage. The G-MRCA
p-distance in Figure 3.3B was measured as a fraction of diverged positions between germline

and MRCA sequences.

McDonald-Kreitman (MK) test

The (MK) test is designed to detect the effects of positive or negative selection on population
divergence from another species or its ancestral state (McDonald and Kreitman 1991). It is based
on the comparison of ratios of nonsynonymous to synonymous substitutions observed in
diverged and polymorphic sites, and estimates the fraction of diverged amino acid substitutions

fixed by positive selection:

n . S
P D

N n

a=1-
where Pn and PS respectively represent nonsynonymous and synonymous polymorphisms, and

Dn and Ds respectively represent nonsynonymous and synonymous divergences fixed in the

population. Under neutral evolution, nonsynonymous and synonymous changes are equally

D P
likely to be fixed or appear in the population as polymorphisms, so —= = —=and a = 0. Positive

s N

P

D
selection favors adaptive nonsynonymous changes to be fixed, and increases —* relative to 5+,

s s

resulting in a > 0. Negative selection has the opposite effect and produces a < 0.

To detect selection in the origin of clonal lineages, we considered G-MRCA SHM as divergent
changes, and the remaining SHM in a clonal lineage after the MRCA as polymorphic ones
(Figure 3.4A). If we observed different nucleotides in the germline sequence and MRCA at a
site that was also polymorphic, we considered it as divergent only if the germline variant was not
among the polymorphisms (Supplementary Table A-2, examples of codons q and r). Codons
with unknown germline state were excluded from the MK test (Supplementary Table A-2,

example of codon j). To perform the MK test on joined HBmem or LBmem cluster variation, we
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summed variation of all clonal lineages of the same cluster in each category (Dn,DS, Pn, PS).

Calculations of a of distinct clonal lineages for comparison of its distributions between two
clusters were complicated by zero G-MRCA distance in some clonal lineages, mostly belonging
to the HBmem cluster. We dealt with this using three approaches, presented in Supplementary

Table A-3. In the first, we added pseudocounts to Dn andDS in each clonal lineage, so that for

n

D
clonal lineages with zero G-MRCA distance, —— = 1. In the second, we excluded clonal

s

lineages with zero G-MRCA distance from the analysis, still adding pseudocounts to Dn and DS

in each clonal lineage in cases where the G-MRCA distance consists of just one nonsynonymous
or synonymous substitution. In the third, we compared only those clonal lineages that had at least
one nonsynonymous and at least one synonymous substitution on the G-MRCA branch. We also
calculated the MK test on joined variation for all types of exclusion criteria to check its
robustness; however, there is no need to exclude clonal lineages in the case of the joined test
(Supplementary Table A-3). In the first approach clonal lineages with zero G-MRCA distance
always produced negative a and biased median o to negative values as well. Medians of a in the
second and third approaches were more consistent with results of the test on joined variation.
However, in the third approach, the filter excluded most of the HBmem cluster, and so in the
main test we presented results of the second approach (Figure 3.4B). To check the significance
of deviation of a from neutral expectations, we used an exact Fisher test as in the original MK

pipeline (McDonald and Kreitman 1991).
aN#nS

To calculate tN#nS we identified SHMs in each clonal lineage relative to the reconstructed
MRCA sequence. In multiallelic sites (with multiple SHMs observed, see codon i in
Supplementary Table A-2 as an example) we considered each variant as an independent SHM
event. TN and nS were calculated as the number of nonsynonymous and synonymous SHMs in a
clonal lineage, normalized to the number of nonsynonymous and synonymous sites in the MRCA

sequence respectively. The resulting tNzS value is the ratio between N and nS:

53


https://www.zotero.org/google-docs/?7eK3Vc

N S
nmNTS = N s
S S
where N and S are the number of nonsynonymous or synonymous SHMs, respectively, observed

in the clonal lineage and Ns and .S'Sare the number of nonsynonymous or synonymous sites,

respectively, in the MRCA sequence of the clonal lineage, calculated as in (Gojobori 1986).

Site frequency spectrum

Site frequency spectrum (SFS) reflects the distribution of SHM frequencies in the clonal lineage.
We calculated the frequency of each SHM as a number of unique clonotypes carrying the SHM
relative to the overall number of unique clonotypes in the lineage. To visualize SFS, we binned
SHM frequencies into 20 equal intervals from 0 to 1 with a step size of 0.05, and counted SHM
density in each bin as the number of SHMs in a given frequency bin normalized to the overall
number of SHMs detected in the lineage. To obtain the cluster average SFS, we took the mean of

clonal lineages of the same cluster in each frequency bin.

Normalized N7S in bins of SHM frequencies

To compare ratios of nonsynonymous and synonymous SHMs of different frequencies between
two clusters, we calculated normalized TNznS in bins of SHM frequency. For this purpose we
used a smaller number of frequency bins (0; 0.2; 0.4; 0.6; 0.8; 1) to reduce the probability of bins
without observed SHMs. To deal with the remaining empty bins, we added pseudocounts to
nonsynonymous and synonymous SHMs in each frequency bin. Thus, normalized N=S in the

i-th SHM frequency bin was calculated as follows:

5

NV, +1)/(E N+5)/N,
normalized TNTS = =

(S, +D/(ZS+5)/5;

where N ; and S , are the number of nonsynonymous and synonymous SHMs, respectively, in the

5 5

i-th frequency bin, > N . and ) Sl, are respectively the overall number of nonsynonymous and
i=1 i=1

synonymous SHMs observed in the clonal lineage (the sum of SHMs in all frequency bins), and
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Ns and SS are the number of nonsynonymous and synonymous sites respectively in the MRCA

sequence of the clonal lineage, calculated as in (Gojobori 1986). To compare distributions of
normalized TN7S between two clusters of clonal lineages in the five frequency bins, we used the

Mann-Whitney test with Bonferroni-Holm multiple testing correction.

Data analysis and visualization

All analysis was performed using R language (R Core Team 2018) and visualized with the
ggplot2 package (Ginestet 2011). Ggtree package was used to visualize phylogenetic trees of
clonal lineages (Yu et al. 2017). The code is available at

https://github.com/EvgeniiaAlekseeva/Clonal_group_analysis.

Results

Definition of the most abundant B cell clonal lineages for phylogenetic analysis

We collected peripheral blood from six healthy donors at three time-points, where the second
sample was collected one month after the first, and the third was collected 11 months after that
(Figure 3.1, Supplementary Table A-1). These samples were subjected to
fluorescence-activated cell sorting to isolate memory B cells (Bmem: CD19 © CD20 " CD27 *),
plasmablasts (PBL: CD19 ¥* CD20 - CD27 "¢ CD138 - ) and plasma cells (PL: CD19 "¥*
CD20 - CD27 "e" CD138 * ). Most of the cell samples were collected and processed in two
independent replicates. For each cell sample, we obtained full-length IGH clonal repertoires were
obtained using a 5’-RACE-based protocol, which allows unbiased amplification of full-length
IGH variable domain cDNA while preserving isotype information, with subsequent unique
molecular identifier (UMI)-based sequencing data normalization and error correction

(Turchaninova et al. 2016; Shugay et al. 2014).
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Figure 3.1 Study design. Peripheral blood from six donors was sampled at three time points: T1
- initial time point, T2 - 1 month and T3 - 12 months after the start of the study. The figure is
adapted from (Mikelov et al., 2022).

Extensive comparative analysis of immune repertoires of B cell subsets on the general level can
be found in our publication (Mikelov et al. 2022). The part of this work, constituting the third
chapter of this thesis, is devoted to the phylogenetic analysis of the most abundant B cell clonal
lineages. Since we aimed to study associations between lineage dynamics and its evolutionary
regime, for this part of analysis immune repertoires of four of six donors from whom samples
were collected at each of the three time-points we used. We defined the most abundant clonal
lineages as lineages consisting of at least 20 unique clonotypes from the corresponding donor.
On average, these clonal lineages covered 3.4% of a given donor’s repertoire (Supplementary

Figure A-1A), and we identified 190 such lineages across the four donors.

Temporal dynamics of clonal lineages are associated with cell subset composition

First we asked how B cell subsets and isotypes were presented among these most abundant
clonal lineages. Clonal lineages were mostly composed of memory B-cell clonotypes of
non-switched isotype IgM either were largely composed of ASCs, and enriched in IgG and IgA
clonotypes (Supplementary Figure A-1B). To investigate the nature of such bimodal
distribution and perform comparative analysis of these two types of clonal lineages we divided
them into two large clusters using k-means clustering algorithm, based on the proportion of cell
subsets and BCR isotypes represented (Figure 3.2A:B, Supplementary Figure A-2A). The
more abundant HBmem cluster included 138 clonal lineages, and was mostly composed of

memory B-cell clonotypes of non-switched isotype IgM. Conversely, the smaller LBmem cluster
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(52 clonal lineages) was more diverse and largely composed of ASCs, and enriched in IgG and
IgA clonotypes. The average size of clonal lineages (i.e., the number of unique clonotypes per
lineage) did not differ between the HBmem and LBmem clusters (Supplementary Figure
A-2B), and both clusters were presented in repertoires of all donors (Supplementary Figure

A-20).

Next we tracked the abundance of each clonal lineage in the repertoire across each time-point.
The two clusters of lineages demonstrated different temporal behavior; while HBmem groups
were quite stable over time, LBmem lineages had a burst of increased frequency at one of the
time points (Figure 3.2C). To compare the temporal stability of clonal lineages, we defined the
lineage persistence metric, which equals 1 when a clonal lineage was equally frequent at all three
time-points and is close to 0 when it was detected at just one time-point (Figure 3.2D).
Persistence of a clonal lineage was strongly associated with its composition (Figure 3.2E:F).
Clonal lineages enriched with clonotypes or with the IgM isotype — including all HBmem
lineages — were more likely to persist through time. Conversely, lineages with larger
proportions of ASCs or IgG/IgA isotypes, including most LBmem lineages, tended to have lower
persistence, with a burst of increased frequency at one particular time-point. The time-point of
increased LBmem frequency varies among donors (Supplementary Figure A-2D). The
frequencies of clonal lineages were highly correlated among replicate samples, and the
persistence of a clonal lineage was not associated with its size (Supplementary Figure A-2E:F),

indicating that differences in persistence cannot be attributed to clonotype sampling noise.

Besides their higher persistence, the HBmem lineages were enriched in clonotypes detected at
multiple time-points (Supplementary Figure A-2G), indicating that persistent clonal lineages
are supported by persistent clonotypes. Furthermore, 29.7% of the HBmem cluster was
represented by public clonal lineages shared between at least two donors, compared to 3.8% for
the LBmem cluster. The only two shared LBmem lineages had atypically high persistence, which

made them more similar to HBmem (Figure 3.2G).

Thus we observed two types of clonal lineages, representing different stages of immune
response: persisting memory with unswitched IgM isotype (HBmem) and responding lineages

with rapidly increased frequency, producing IgG or IgA antibodies (LBmem).

57



Clonal lineage frequency ©

Clonal lineage frequency ©

n

Persistence

PC2 (15.8%)

-2

1e-02

1e-03

1e-04

1e-03

8e-04

6e-04

4e-04

2e-04

1e+00

1e-01

1e-02

1e-03

PBLo @

Bmem

IgM/IgD

T T2 T3

Time Point

fmax

1

i)

]

T T2 T3
Time point

xRk

HBr;ﬁem

Persistence

Fraction of the clonal lineage

Bmem

s

L] : L]
.
% i
.
, i ]
IgM lgG Ig A
- . .
n-‘ih e
"i:-
Nl e
.
. ]
. Y
3
H
R
: | ; W
HBmem LBmem HBmem LBmem HBmem LBmem

R=_0.56 **

O R = 059 dekokk

Ig A

(&
8o Yo
o;%%og I ad

. O
R=-036 ° o 0o CR=_04g
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Fraction of the clonal lineage
Cluster
Donor
LBmem I | 5 EBBmem o AT
mem
o IM
Clonal lineage Az
HBmem | . O MRK
private
! ! ! I ! public
0.00 0.25 0.50 0.75 1.00

Fraction of the cluster
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different colors. B: Proportion of clonotypes from the various cell subset or isotypes in clonal
lineages falling into the HBmem or LBmem clusters; C: Dynamics of clonal lineage frequency,
defined as the number of clonotypes in a lineage divided by the total number of clonotypes
detected at a given time-point. Each line connects points representing a unique clonal lineage

(N=190). D: Schematic representation of how we calculated clonal lineage persistence. fmax is
the maximum clonal lineage frequency among the three time-points, and f ,j are the frequencies

at the remaining two time-points. E: Spearman’s correlation between persistence of a clonal
lineage and proportions of its clonotypes associated with a given B cell subset or isotype. F:
Comparison of persistence between HBmem and LBmem. G: Fraction of public clonal lineages
significantly differs in HBmem (41 out of 97) and LBmem clusters (2 out of 50),
Two-proportions Z test: p < 107, Statistical significance for B and F is calculated by the
two-sided Mann-Whitney test. * = p < 0.05, ** =p < 0.01, *** = p < 107, **** =p < 10™.

LBmem clonal lineages could arise from HBmem clonal lineages

The evolutionary past of a clonal lineage can be described by inferring the history of
accumulation of SHMs leading to individual clonotypes—i.e., by reconstructing the phylogenetic
tree of the clonal lineage. The initial germline sequence of each clonal lineage partially matches
the germline VDIJ segments, and can be reconstructed in a manner corresponding to the root of
the phylogenetic tree of this lineage (see Methods). However, the first node of the phylogenetic
tree (green diamond in Figure 3.3A), the most recent common ancestor (MRCA) of the sampled
part of the lineage, can be different from the inferred germline sequence. These differences,
referred to as the G-MRCA distance, correspond to SHMs accumulated during the evolution of
the clonal lineage prior to divergence of the observed clonotypes. The G-MRCA distance
depends on how clonotypes of the tree were sampled. Sampling of clonotypes regardless of their
position on the tree results in a low G-MRCA distance (Figure 3.3A, top panel), while sampling
just those clonotypes belonging to a particular clade can conceal early stages of lineage evolution

and thus result in a large G-MRCA distance (Figure 3.3A, bottom panel).

The G-MRCA distance was on average five-fold higher in LBmem clonal lineages compared to
HBmem (median = 0.044 vs. 0.008, Figure 3.3B). This means that even though nearly all the

evolution of an HBmem clonal lineage leaves a trace in the observed diversity of that lineage
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(Figure 3.3D, G), the sequence variants of an LBmem lineage typically result from divergence
of an already-hypermutated clonotype (Figure 3.3E, H). In most (38 out of 52) LBmem
lineages, some Bmem clonotypes were observed at the time-point preceding expansion.
Moreover, clonotypes of LBmem lineages are typically characterized by lower pairwise
divergence compared to that in HBmem lineages (median = 0.11 vs 0.13, Figure 3.3C). Together
with the burst-like dynamics characteristic of LBmem lineages (Figure 3.2F), this implies that

LBmem lineages may represent recent, rapid clonal expansion of preexisting memory.

Based on these results and the compositional features of the two clusters, we further
hypothesized that LBmem clonal lineages may arise from reactivation of pre-existing memory
cells belonging to the HBmem cluster. In search of examples of such a transition, we examined
all clonal lineages that were persistent but included ASC clonotypes. We found one clear
example of a transition from HBmem to LBmem state in the evolutionary history of a clonal
lineage (Figure 3.3F, I). While the MRCA of this lineage nearly matched the germline sequence,
all ASC clonotypes were grouped in a single monophyletic clade (sublineage), such that its
ancestral node was remote from the MRCA. The ASC sublineage demonstrated all features
characteristic of LBmem, including predominance of IgG and IgA isotypes, low persistence, and
low clonotype divergence. Conversely, the remainder of the clonal lineage had features of
HBmem: predominance of IgM, high persistence, and high levels of clonotype divergence.
Position of ASC sublineage on a distant node from the root of the tree indicates gradual
accumulation of SHMs, differing ASC sublineage from the remaining clonotypes. This fact
together with the similarity of CDR3 regions of lineage clonotypes (Supplementary Figure
A-3) give a reason to conclude that the ASC sublineage has the same origin as the remaining part

of the tree with features of HBmem cluster.

To summarize, we observed that LBmem lineages had low level of clonotype divergence and the
large distance of lineage’s ancestor from the germline sequence, assuming recent origin from a
mature clonotype. The temporal dynamics of LBmem, detection of Bmem clonotypes at the time
point prior to the LBmem lineage expansion, and the relationship between HBmem and LBmem
on a clonal lineage level, together suggest that LBmem expansions may represent the result of

reactivation of pre-existing memory.
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lineage (G-MRCA distance) vary depending on which subset of clonotypes is sampled: a sample
uniform with regard to the position on the tree (top panel), or only those belonging to a particular
clade of the tree (bottom panel). B: Comparison of G-MRCA p-distance (i.e., the fraction of
differing nucleotides) for HBmem and LBmem lineages. C: Mean pairwise phylogenetic
distance (i.e., the distance along the tree) between clonotypes of the same lineage for HBmem
and LBmem clusters. D-F: Representative phylogenetic trees for clonal lineages belonging to
HBmem (D), LBmem (E), and an example of HBmem-LBmem transition (F). The LBmem
sublineage in F is nested deep in the phylogeny of the memory clonotypes, and is not
characterized by a particularly long ancestral branch, indicating that it is not an artifact of clonal
lineage assignment. Circles correspond to individual clonotypes, with the cellular subset
indicated by color, and the isotype by label. Tables at right indicate the presence or absence of
the corresponding clonotype at each time-point. The G-MRCA distance is indicated with a thick
line. G-I: Schematic representation of the hypothetical dynamics of relative size for clonal
lineages represented in D, E, and F, respectively. Significance for B and C was obtained by the

two-sided Mann-Whitney test. * = p <0.05, ** = p <0.01, *** = p < 1073, *¥¥¥* = p <10,

Reactivation of LBmem clonal lineages is driven by positive selection

Having shown that the LBmem lineages likely originate from clonal expansion of pre-existing
memory, we further compared the contribution of positive (favoring new beneficial SHMs) and
negative (preserving the current variant) selection between the LBmem and HBmem clusters.
Since we observed only one clear example of an HBmem-LBmem transition (Figure 3.3F,
Supplementary Figure A-3), we could not claim with certainty that LBmem lineages always
emerge from preexisting HBmem lineages rather than from some other memory type. Still, we
were able to study LBmem reactivation by comparing differences in substitution patterns at the
origin of HBmem and LBmem clusters. We reasoned that the G-MRCA distance of an HBmem
lineage contains mutations fixed by primary affinity maturation after the initial lineage
activation. In contrast, the G-MRCA distance of an LBmem lineage contains both mutations
arising during primary affinity maturation and subsequent changes occurring later in the
evolution of the lineage. Differences in the characteristics of the G-MRCA mutations between
clusters are therefore informative of the process prior to the observed expansion of LBmem

lineages.
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To assess selection at the origin of the HBmem and LBmem lineages, we measured the
divergence of nonsynonymous sites relative to synonymous sites (i.e., the DnDs ratio).
Classically, DnDs > 1 is interpreted as evidence for positive selection. However, DnDs > 1 is
rare, because the signal of positive selection is usually swamped by that of negative selection. In
the McDonald-Kreitman (MK) framework, positive selection is instead revealed by excessive
nonsynonymous divergence relative to nonsynonymous polymorphism (i.e., DnDs > PnPs; see
Methods and Supplementary Table A-2 for examples), under the logic that advantageous
changes contribute more to divergence than to polymorphism (McDonald and Kreitman 1991).
The fraction of adaptive nonsynonymous substitutions (o) can then be estimated from this
excess. We designed an MK-like analysis, comparing the relative frequencies of nonsynonymous
and synonymous SHMs at the G-MRCA branch (equivalent to divergence in the MK test) to
those in subsequent evolution of clonal lineages (equivalent to polymorphism in the MK test;

Figure 3.4A, see Methods).

In both the HBmem and LBmem clonal lineages, we observed a higher ratio of nonsynonymous
to synonymous SHMs in the G-MRCA branches compared to subsequent tree branches, meaning
that a fraction of SHMs acquired by MRCA was further fixed by positive selection. However,
this fraction was higher in LBmem lineages (Fisher’s exact test: oo = 0.58 and 0.65, p < 10 and <
10" in HBmem and LBmem, respectively). a of distinct clonal lineages was also generally
higher in LBmem than in HBmem (median a = 0.57 vs a = 0.18, Figure 3.4B), showing that
positive selection more frequently preceded expansion of LBmem than HBmem lineages. The
observation of excess o in the LBmem cluster compared to HBmem was robust to the
peculiarities of the MK analysis (Supplementary Table A-3). The higher a for LBmem
compared to HBmem implies that a larger fraction of SHMs was positively selected in LBmem
clonal lineages before their expansion. This excess of advantageous SHMs in ancestors of
LBmem lineages together with previous observations that LBmem lineages likely originate from
reactivated memory suggests that reactivation was coupled with new rounds of affinity

maturation.
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Subsequent evolution of LBmem clonal lineages is affected by negative and positive

selection

Next, we considered the effects of selection on HBmem and LBmem clusters following their
divergence from their MRCAs — i.e., in the subsequent evolution of a clonal lineage leading to
the diversity of the observed clonotypes. We calculated the per-site ratio of nonsynonymous and
synonymous SHMs (nNnS) among those that originated after the MRCA. The nNznS of both
clusters was < 1 (Figure 3.4C). This deficit of nonsynonymous SHMs indicates negative
selection in the observed part of clonal lineage evolution. The nN=nS ratio was lower in the

LBmem cluster, indicating stronger negative selection.

To examine the selection affecting these post-MRCA SHMs in more detail, we studied the
frequency distribution of SHMs in individual lineages, or their site frequency spectra (SFS)
(Nielsen 2005; Neher, Kessinger, and Shraiman 2013; Nei and Kumar 2000; Horns et al. 2019;
Nourmohammad et al. 2019) (Figure 3.4A). SFS reflects the effect of selection on these SHMs.
Deleterious SHMs are held back by negative selection, so that their frequency in the lineage
remains low. By contrast, positive selection favors the spread of adaptive SHMs, increasing their
frequency. Therefore, negative selection biases the SFS towards low frequencies, and positive
selection, towards high frequencies. For each clonal lineage, we reconstructed the SFS of the
SHMs accumulated since divergence from MRCA (Figure 3.4A), and then averaged these SFSs
within the HBmem and LBmem clusters. A larger proportion of the LBmem SFS corresponds to
high frequencies compared to HBmem (Figure 3.4D), indicating weaker negative and/or

stronger positive selection in LBmem SFS.

To distinguish between these selection types, we calculated the proportion of the SFS distribution
falling into each frequency bin for nonsynonymous SHMs, and divided it by the same value for
synonymous SHMs (normalized ntN=nS; see Methods, Figure 3.4E). The inter-cluster differences
in the normalized nN=nS in low-frequency bins were generally reflective of negative selection,
while the differences in the high-frequency bins were reflective of positive selection. Normalized
nN7S was significantly higher in the high-frequency (>60%) bins of SHMs in LBmem clonal
lineages. This indicates that for LBmem, those nonsynonymous changes that were not removed

by negative selection reached high frequencies more often than in HBmem. In total, these data
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indicate that a fraction of nonsynonymous mutations accumulated by LBmem lineages were
adaptive. We thus observed that reactivation of LBmem lineages is coupled with strengthening of
both types of selection: positive on the G-MRCA branch, and both positive and negative during
subsequent clonal lineage expansion. This pattern is most likely evidence of new rounds of
affinity maturation, which result in the acquisition of new advantageous changes and preserve
the resulting BCRs from deleterious ones. HBmem, in contrast, evolved more neutrally under
weaker negative selection, suggesting absence of antigen challenge during the observation period

(Figure 3.4F).
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Figure 3.4 Signatures of positive and negative selection in HBmem and LBmem clusters. A:

Schematic of the McDonald-Kreitman (MK) test and site frequency spectrum (SFS) concept. B:

MK estimate of the fraction of adaptive non-synonymous changes (o) between germline and

MRCA in HBmem and LBmem clonal lineages. Only lineages with nonzero G-MRCA distance

are included. N = 68 for HBmem, 49 for LBmem, see Supplementary Table A-3); C:
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Comparison of mean pairwise NS of HBmem and LBmem lineages. D: Averaged SFS for
HBmem and LBmem clonal lineages. The two dashed lines correspond to f(x)=x"', which is the
expected neutral SFS under Kingman’s coalescent model (Kingman 1982), and f(x)=x>. E:
Comparison of normalized tN=S for HBmem and LBmem clonal lineages in various SHM
frequency bins. The number of polymorphisms in each bin is normalized to the overall number
of polymorphisms in a corresponding clonal lineage. F: Scheme summarizing features of
HBmem and LBmem clonal lineages. Comparisons in B, C, and E were performed by two-sided
Mann-Whitney test, with Bonferroni-Holm multiple testing correction in E. * =p < 0.05, ** =p

<0.01, *** =p < 1073, ****k =p < 104,

Discussion

Using advanced library preparation technology, we performed a longitudinal study of BCR
repertoires of the three main antigen-experienced B cell subsets — memory B cells,
plasmablasts, and plasma cells — from peripheral blood of six donors, sampled three times over
the course of a year. We tracked the most abundant B cell clonal lineages in time and analyzed

their cell subset and isotype composition, phylogenetic history, and mode of selection.

In all individuals, the observed clonal lineages clearly fell into two clusters. HBmem represents
persistent memory with a predominant IgM isotype; such clonal lineages were equally sampled
from all time-points and rarely included ASC clonotypes. The MRCA of observed clonotypes in
HBmem lineages almost matched the predicted germline sequence — and in 14.5% of the
lineages, matched completely — indicating that the probability of observing a clonotype from
these lineages has no association with the position in that lineage’s phylogeny. Horns and
colleagues observed lineages with very similar features to HBmem, which also possessed
persistent dynamics against a background of vaccine-responsive lineages and were
predominantly composed of the IgM isotype (Horns et al. 2019). However, their study was
performed on bulk B cells, so there was no possibility to track their relatedness to the Bmem

subset.

In contrast, the LBmem cluster demonstrates completely different features, with lineages largely
composed of ASC clonotypes with switched IgA or IgG isotypes, showing active involvement in

ongoing immune response. The MRCA of LBmem lineages differed from the germline sequence
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by some number of SHMs, and only 1.9% of LBmem lineages had a complete match between
the MRCA and the germline sequence. A large G-MRCA distance implies that the observed
clonotypes originated from an already-hypermutated ancestor, and that we had therefore sampled
clonotypes from a single clade of the lineage phylogeny. Such an effect can be caused both by
rapid expansion of the clade and migration of the clade’s clonotypes, diverged in the tissue of
residence (Mandric et al. 2020). We also observed that most LBmem lineages expanded at T2 or
T3 (38 out of 45, > 80%) had at least one clonotype detected in the Bmem subset at the previous
time-point, leading us to conclude that LBmems represent the progeny of reactivated memory B
cells. We found one clear example which further supports this idea: a lineage that possesses all
features of the HBmem cluster except for one monophyletic clade, typical for LBmem lineage.
This example of HBmem-LBmem transition is very similar to reactivated persistent memory, as
observed by Hoehn et al. in response to seasonal flu vaccination (Hoehn et al. 2021). In addition,
Phad et al. have recently demonstrated clonal relatedness of the emerging plasmablasts to the
persistent Bmem lineages in longitudinal immune repertoire profiling in aged healthy donors
(Phad et al. 2022). Thus, it can be assumed that at least part of the observed LBmem lineages

represent the progeny of the persistent memory represented by HBmem lineages.

Our analysis of the selection mode in HBmem and LBmem lineages supported our assumptions.
We showed that both lineages experienced positive selection from the germline sequence to the
MRCA of the observed clonotypes — as expected, assuming that primary B cell activation is
followed by affinity maturation associated with clonal lineage expansion. However, the pressure
of positive selection was stronger in LBmem lineages than in HBmem. In addition, we detected
an excess of sites under positive selection in LBmem lineages that underwent evolution after the
MRCA as well. This leads us to the hypothesis that LBmem cells underwent additional rounds of
affinity maturation after reactivation. Hoehn et al. did not study the mode of selection in their
reactivated lineages, but some clonotypes were sampled from germinal centers, supporting the
involvement of affinity maturation in the process of memory reactivation. In subsequent
evolution after the MRCA, we detected negative selection in both types of lineages — but again,
stronger in LBmem. This excessive negative selection in LBmem lineages can be considered as a
signature of purification of the clonal lineage from deleterious BCR variants in the course of

affinity maturation.
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Obviously our study is done under certain limitations. First, we used a relatively small cohort
group, which were combined from donors with different allergy status. Nevertheless, it was large
enough to reveal that all our observations were reproducible among donors independent from
their health conditions. We also observed no evidence that allergy status affects the structure of
our data, which allowed us to generalize obtained observations for the whole cohort group.
Second, we have not observed much direct evidence of the process of memory reactivation and
new rounds of affinity maturations. Reactivation process was clearly detected in only one clonal
lineage (Figure 3.3F). However, this explanation of the given data is convincing for us because
of the whole set of indirect evidence, such as large G-MRCA distance and close relatedness of
LBmem clonotypes, the presence of Bmem clonotypes prior to LBmem expansion and different
modes of natural selection in HBmem and LBmem clusters. Our hypothesis is also supported by
recent studies (Hoehn et al. 2021, Phad et al. 2022). Nevertheless, we do not deny the possibility
of other mechanisms, staying behind the structure of our data, so the functioning of B cell

immunity in homeostasis conditions requires the following investigation.

Thus, in this work, we performed a detailed longitudinal analysis of BCR repertoires from
immune-experienced B cell subsets from donors without severe pathologies, and from these data,
we have produced a framework for the comprehensive analysis of selection in BCR clonal
lineages. Our results demonstrate the long-term persistence of memory-enriched clonal lineages
in peripheral blood. Signs of positive selection were detected in both memory- and
ASC-dominated B cell lineages. Together, the results of our evolutionary analysis of B cell
clonal lineages coupled with B cell subset annotation suggest that the reactivation of pre-existing

memory B cells is accompanied by new rounds of affinity maturation.

Contribution

My contribution to this work was in the general analysis of preprocessed most abundant clonal
lineages, including their composition and temporal dynamics (Figures 3.2, Supplementary
Figures A-1 and A-2), as well as ongoing analysis of lineage’s phylogenies (Figure 3.3,
Supplementary Figure A-3) and analysis of the selection mode, affecting lineage’s evolution
(Figure 3.4). The text presented in this chapter was written with the contribution of all coauthors

of (Mikelov et al., 2022).
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CHAPTER 4: SARS-CoV-2 ESCAPE FROM CYTOTOXIC T CELLS
DURING LONG-TERM COVID-19

Here we consider the complex system of intrahost interaction between pathogens and adaptive
immunity from the side of pathogens on the example of SARS-CoV-2. SARS-CoV-2 immune
escape from broadly-neutralizing antibodies by modification of their binding is well documented
(Kemp et al. 2020; Williamson et al. 2021; Khatamzas, Rehn, et al. 2021; Starr et al. 2021;
Garrett et al. 2021), however T cell escape is much less described. Indeed, intra-host escape from
CD8 T cells was described for other long-term infections including HIV-1 and hepatitis C
(Bronke et al. 2013; Troyer et al. 2009; Goulder et al. 2001; Erdmann et al. 2015; Erickson et al.
2001). This Chapter is devoted to the analysis of intrahost viral evolution during long-term
COVID-19 under condition of depleted B cell immunity without the treatment by convalescent
plasma. We hypothesized that such immune conditions could force the viral population to avoid

T cell recognition.

Methods

Sample collection and sequencing

Special informed consent was obtained from the patient before the specimen for additional tests
were taken. RT-PCR of swabs and sequencing of viral RNA was performed in the Smorodintsev
Influenza Research Institute. All specimens were obtained and transported according to standard
sampling protocol. RNA from nasopharyngeal swabs was extracted using QIAamp Viral RNA
Mini Kit (QIAGEN). RNA from patient A post-mortem FFPE specimens was extracted using
RNeasy FFPE Kit (QIAGEN). Samples were tested for SARS-CoV-2 viral RNA by real-time
RT-PCR on thermal cycler CFX96 (BioRad) using "Intifica SARS-CoV-2" Kit (Alkor Bio).
Whole-genome amplification of SARS-CoV-2 virus genome for samples from August 2020 and
from January 2021 was performed using BioMaster RT-PCR Premium kit (Biolabmix) and
primers from ARTIC Network protocol version 3(Tyson et al. 2020) and ARTIC Network
protocol version 1 (Itokawa et al. 2020) with modifications, respectively. Nextera XT (Illumina)
kit was used for library preparation in August 2020 and DNA Prep (Illumina) kit was used for
library preparation in January 2021, and the libraries were sequenced using the MiSeq platform

(Illumina) with version 3 600-cycle chemistry.
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The DNA of patient S was extracted from peripheral blood using QIAmp Blood DNA Mini kit.
DNA sample was prepared and captured with the SureSelect Human All Exon kit v7 (Agilent),
and whole exome was sequenced using MGISEQ-2000 at Pirogov Russian National Research

Medical University (Moscow, Russia).

Flow cytometry assays

Flow cytometry assays were performed using cryopreserved PBMCs. Cells were isolated from
patients’ heparinized blood by gradient centrifugation with lymphocyte separation medium
Lymphosep (BioWest), frozen in freezing medium containing 10% DMSO (AppliChem) in FBS

(Gibco) and stored in liquid nitrogen until usage.

For B-cells analysis presented in Supplementary Figure B-5, PBMCs samples were towed in a
37°C water bath and stained with fluorescently-labeled antibodies to surface markers
CDI19-APC/Fire 750 (Clone: SJ25C1, Biolegend), BV421-CD20 (Clone: 2H7, Biolegend),
CD3-BV605 (Clone: OKT3, Biolegend). PBMCs from a healthy volunteer were used as a
control. B-cells were identified as a live CD3 /CD19 "/CD20 * population.

The T-cell response was assessed by intracellular cytokine staining. For further analysis, cells
were towed in a 37°C water bath and stimulated for 6 hours with 5 pg/ml of the commercial
available peptide mixture of SARS-CoV-2 proteins S, N, M, ORF3a and ORF7a (Generium,
Russia) (for Supplementary Figure B-6B:C) or one of the peptides PTDNYITTY,
PADNYITTY or PPDNYITTY or peptide pools (YLQPRTFLL + STNVTIATY +
KPRSQMEIDF + GPQNQRNAPRITF + VPLHGTIL and YLQPSTFLL + SINVTIATY +
KLRSQMEIDF + GTQNQRNAPRITF + VPLHGTIR) (for Figure 4.3) in the RPMI medium
(Gibco), containing 10% of FBS (Gibco), 1% of penicillin-streptomycin solution (Gibco),
Brefeldin A (BD) and costimulatory CD28/CD49 reagent (BD). Negative control samples were
stimulated with the complete medium; for positive control, PMA/ionomycin (Sigma)
combination was used. Surface markers were stained with fluorescent antibody panel containing
CD3-APC/Fire (Clone: SK7, Biolegend), CD4-AF647 (Clone: SK3, Biolegend), CD8a-AF600
(Clone: HITS8a, Biolegend), CD45RA-PE/Dazzle (Clone: HI100, Biolegend), CD197-BV421
(Clone: GO043H7, Biolegend). Intracellular cytokines were stained using IL-2-FITC (Clone:
MQI1-17H12, Biolegend), IFNy-PE (Clone: 45.15, Beckman Coulter), TNFa-BV785 (Clone:
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MADbI11, Biolegend) antibodies. Cells were permeabilized with BD Cytofix/Cytoperm™
Fixation/Permeabilization Solution Kit (BD) according to the manufacturer’s instructions. Data
were collected on a CytoFlex flow cytometer (Beckman Coulter). The results were analyzed
using the Kaluza Analysis v2.1 program (Beckman Coulter). Interleukin (IL) 2, interferon y
(IFNy) and tumor necrosis factor (TNFa) response was measured in effector memory T cells
(Tem). To identify Tem, lymphocytes were gated based on their size and granularity. Live CD3"T
cells were identified and subdivided into CD4+ and CD8+ T cells. These populations were
further subdivided based on the expression of CD45RA and CD197(CCR7). CD3+ CD4+ or
CD3+ CD8+ lymphocytes with the CD45RA-/CCR7- phenotype were considered Tem cells
(Supplementary Figure B-6A). Cut-off values for the definition of cytokine-producing T cell
responses stimulated with SARS-CoV-2 peptides were >5 events and a >2-fold difference in the

magnitude of TNF *, IFNy " or IL-2 * Tem cells compared to the non stimulated control.

Virus isolation and antigenicity

Live viruses (samples 30579V and 30769V from August 20, 2020 and 22748V and 23680V from
February 19, 2020) were isolated from patient S swab samples in Vero E6 cells (IZSLER
#BSCLS87). Culture was inoculated for 2 hours with swab material diluted 1/10 in DMEM
(Biolot) supplemented with 2% HI-FBS (Gibco), 1% anti-anti (Gibco) and then incubated for 3
days until first CPE signs. Samples were subsequently passaged one time in Vero cells (ATCC
#CCLS8]1).

A total of 16 serum samples were obtained during the first wave of the COVID-19 pandemic in
spring-summer 2020 from recovered volunteers with PCR-confirmed SARS-CoV-2 infection and

tested in a microneutralization assay.

Microneutralization was performed with hCoV-19/St Petersburg-3524V/2020 virus (GISAID
EPI ISL 415710, with the AF combination of mutations absent, designated as Reference), and
30769V and 23680V viruses isolated from the patient S (designated patient S August 2020 and
patient S January 2021, respectively). Serum was heat inactivated (56°C, 60 min), serially
diluted 2-fold starting from 1/10, mixed with 25 TCID50 of virus, incubated for 1h at 37°C and
inoculated into Vero cells in triplicates in 96-well plate. 5 days after inoculation, neutralizing

antibody titer was calculated as the reciprocal of the highest serum dilution preventing CPE.
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Serum samples obtained from patient S were tested for virus specific antibodies in ELISA and in
microneutralization assay with either Reference or patient S viruses. ELISA was performed with
"SARS-CoV-2-1gG-IFA-BEST" (VEKTOR BEST #D-5501) according to the manufacturer's

instructions.

HLA genotyping

HLA genotyping was performed using a commercial kit according to the manufacturer’s
instructions (PARallele™ HLA solution v3, Parseq Lab). HLA-A, -B, -C, -DRB1 and -DQB1
loci were genotyped with 3-field resolution. Simultaneously, HLA calling was performed from
WES data using HLA-HD version 1.3.0 (Kawaguchi and Matsuda 2020) with IPD-IMGT/HLA
database Release Version 3.43. The inferred alleles are listed in Supplementary Table B-3.

Using HLA-2-Haplo software tool (Geffard et al. 2020) this set of alleles was split into two
haplotypes presented in Supplementary Table B-3. A European population database was used
in this procedure. An a-posteriori probability of found combination was 97.6%. As one can see,

the found haplotypes are among the most common variants in the European population.

Consensus calling

Raw reads were trimmed with Trimmomatic version 0.39 (Bolger, Lohse, and Usadel 2014) to
remove adapter sequences and low-quality ends. Trimmed reads were mapped onto the
Wuhan-Hu-1 (MN908947.3) reference genome with BWA MEM version 0.7.17 (Heng Li 2013).
The following reads were then removed from the mapping: reads with abnormal insert length to
read ratio (greater than 10 or less than 0.8), reads with insert length greater than 1100, reads with
more than 50% soft-clipped bases. Soft-clipped ends were trimmed from the remaining reads, 10
nucleotides were cropped from read ends using custom scripts, and primer sequences were
removed with ivar version 1.3 (Grubaugh et al. 2019). Only reads with at least 30 nucleotides
remaining after the procedure were kept. SNV and short indel calling was done with LoFreq
version 2.1.5 (Wilm et al. 2012), with SN'Vs considered consensus if they were covered by at
least 4 reads and supported by more than 50% of those reads; indels were considered consensus
if they were covered by at least 20 reads with at least 50% of those supporting the variant.
Regions that were covered by fewer than 4 reads were masked as NC. We attributed several

positions that were covered by 2 or 3 reads, but matched the reference and were conserved
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throughout all samples (22612, 23680, 24160, 27064, 30579 and 30769), to the reference; as
these positions did not mutate, this decision did not affect any of our analyses. Consensus was

created by bceftools version 1.9 (H. Li 2011; Heng Li et al. 2009) consensus.

Phylogenetic analysis

255,389 genomes of SARS-CoV-2 were downloaded from GISAID on December 12, 2020, and
aligned with MAFFT v7.453 (Katoh and Standley 2013) against the reference genome
Wuhan-Hu-1/2019 (NCBI ID: MN908947.3 (Wu et al. 2020) with --addfragments --keeplength
options. 100 nucleotides from the beginning and from the end of the alignment were trimmed.
After that, we excluded sequences (1) with more than 300 positions of missing data (Ns) and
gaps, (2) excluded by Nextstrain

(https://github.com/nextstrain/ncov/blob/master/defaults/exclude.txt),

or (3) from non-human animals other than minks, leaving us with 201,948 sequences. Identical
sequences were then collapsed within the country and host and annotated by the Pangolin
package version 2.1.0 (Rambaut et al. 2020). To this dataset, we added the two patient S samples
obtained in August, 2020 as well as the patient A sample. As sequences of patient S belonged to
the B.1.1 lineage, we further only kept sequences annotated as B.1.1, excluding a large clade
defined by mutation G25563T (GH clade in GISAID (Sergei Pond 2020) nomenclature). For the
purposes of phylogenetic analysis, we additionally masked the highly homoplasic site 11083.
The final set of 49,083 sequences was used to construct the phylogenetic tree with 1Q-Tree
v2.1.1 (Nguyen et al. 2015) under the GTR substitution model and ‘-fast’ option. Ancestral
sequences at the internal tree nodes were reconstructed with TreeTime v. 0.8.0 (Sagulenko,
Puller, and Neher 2018). Having ensured that the two patient S samples form a clade rooted at
the patient A sample and not carrying any samples other than those of patient S, we then
separately reconstructed the phylogeny of all six samples of patient S, rooted it with patient A,
and manually added the resulting clade to the downsampled B.1.1 tree. For visualization
purposes, the tree was downsampled to contain 1% of samples, including the patient A sample

and the complete clade containing all patient S samples.

To estimate the molecular clock rate of the patient S lineage (Figure 4.1C), we downloaded all

sequences available in GISAID on May 31, 2021, filtered them as described above, and

74


https://www.zotero.org/google-docs/?sJsdCU
https://www.zotero.org/google-docs/?rqMpNT
https://www.zotero.org/google-docs/?JGh87c
https://github.com/nextstrain/ncov/blob/master/defaults/exclude.txt
https://www.zotero.org/google-docs/?gqXeDf
https://www.zotero.org/google-docs/?FoADX0
https://www.zotero.org/google-docs/?6OcJoc
https://www.zotero.org/google-docs/?74MyHi
https://www.zotero.org/google-docs/?74MyHi

subsampled the filtered dataset to 50,000 samples preserving all Russian sequences. To this
dataset, we added the six patient S samples and the ancestral patient A sample. We then aligned
the obtained 50,007 sequences against the reference sequence and reconstructed the phylogeny
with Fasttree version 2.1.11 (Price, Dehal, and Arkin 2010). Finally, we computed root-to-tip
distances and calculated the slope of the root-to-tip distance vs. sampling dates regression line
for the three separate datasets: (1) patient S samples, (2) B.1.1.7 samples, and (3) the remaining
samples from the subsampled GISAID dataset. To validate the difference between the estimated
clock rates for patient S samples and samples belonging to dataset (3), we subsampled this
dataset, picking six random samples collected on the same dates as the patient S samples, and
computed the linear regression slope, in each of the 10,000 trials. (For dataset (2), this procedure
was impossible because there were no B.1.1.7 samples in August 2020). None of the 10,000

samples resulted in the estimated clock rate above 15.3*10, implying the p-value of <0.0001.

Effect of viral mutations on antigen presentation

To study the effect of mutations in SARS-CoV-2 proteins on their antigen presentation, we
adapted a pipeline from Marty and et. (Marty et al. 2017) (Figure 4.2A). For each mutated site in
both its ancestral and derived states, we inferred all possible peptides of certain lengths
overlapping it, and calculated their percentile ranks (Rank El) relative to a set of random natural
peptides by netMHCpan version 4.1 and netMHClIpan version 4.0 (Reynisson et al. 2020) for
HLA T and HLA II respectively. We used peptide lengths between 8 and 12 amino acids for HLA
I alleles, and between 12 and 18 amino acids for HLA II. If the mutated site was not presented by
any of the HLA alleles either in the ancestral or derived states, we excluded it from analysis. To
exclude non-presenting peptides, we used the percentile rank < 2% threshold for HLA I, and <
10% threshold for HLA II, as recommended by the netMHCpan manual. For derived states of
deletions, we extended the peptide in the C-direction as necessary to preserve its length. We
paired the predicted A and B chains of HLA class II alleles as suggested in the tool allele list:
HLA-DQA10101-DQB10501, HLA-DQA10501-DQB10201, HLA-DPA10103-DPB10402,
HLA-DPA10103-DPB10401, DRB1 0301, DRB1_0101. We excluded the stop-codon producing
mutation ORF8:Q18* from comparisons of ancestral and derived states, since the corresponding

values for the derived state were undefined.
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As in Marty et al. (Marty et al. 2017), we used the best percentile rank (BR) among all possible
peptides overlapping the mutated site as the presentation score of this site for the particular HLA
allele. To estimate the overall presentation of the site in the patient, we calculated the patient
harmonic best rank (PHBR), i.e., the harmonic mean of BRs of HLA alleles of the same class. To
compare the effect of a mutation on site presentation, we calculated the fold change of PHBR
score as the ratio of the derived PHBR to the ancestral PHBR (so that fold change > 1 indicates

weakening of presentation).

To focus on the peptides shown to be immunogenic to T cells in other SARS-CoV-2 infected
patients carrying the same HLA alleles as patient S, we used IEDB (Vita et al. 2019) (Immune
Epitope Database and Analysis Resource, accessed on June 1, 2021) with the “positive assay
only” filter. For those sites inferred to be contained in immunogenic peptide, we calculated the

best percentile rank of immunogenic peptide overlapping the site of mutation (imBR).

Population-level effects of mutations

To check the effect of detected SARS-CoV-2 mutations on presentation by the HLA alleles other
than those of patient S, we calculated the BR scores as explained above for the most frequent
classical HLA alleles of each family that together represented 95% of the HLA alleles in the
world population. The list and frequencies of such alleles were taken from Sarkisova et al. and

Solberg et al. (Solberg et al. 2008; Sarkizova et al. 2020).

For most mutations detected in immunogenic epitopes, at least one of the HLA I alleles of
patient S demonstrated extreme values of BR fold change in comparison with other alleles
(Figure 4.4A). To check the probability of such an observation happening by chance, we
performed a permutation test, calculating the probability that a randomly chosen set of alleles has
the same or a more extreme value of mean BR fold change across all mutations overlapped by
immunogenic peptides as that of alleles of patient S. This was true for 33 out of 100000
permutations, corresponding to p = 0.0033 (Figure 4.4B). None of the HLA II immunogenic
epitopes overlapped any of the mutated sites; the only mutated site adjacent to such an epitope

(S:S50L) did not stand out in the permutation test (p = 0.6996; Figure 4.4C:D).
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To compare the effects of mutations between different HLA alleles in Figure 4.4E:F, we
calculated the mean BR across all changed sites. This analysis again excluded ORF8:Q18%*,

which nevertheless prevented production of high-affinity epitopes for most alleles.

Data analysis and visualization

Data analysis was performed in R version 4.0.0 (R Core Team 2018), and figures were visualized
with ggplot2 package version 3.3.2 (Ginestet 2011). SARS-CoV-2 phylogenetic tree was
visualized with ITOL version 6 (Letunic and Bork 2007).

Data availability

Sequence data is available from the Sequence Read Archive:
https://www.ncbi.nlm.nih.gov/bioproject/PRINA749008/ (SRA: PRINA749008). Consensus

sequences are available from the GISAID.

Code availability

Code is available at https://github.com/EvgeniiaAlekseeva/patient S.

Ethics declaration

The study was approved by the Local Ethics Review Board of the Smorodintsev Research
Institute of Influenza and by the Biomedical Ethics Committee of the I.P. Pavlov First Saint
Petersburg State Medical University. All necessary patient/participant consent has been obtained

and the appropriate institutional forms have been archived.

Results

Case description

Patient S (Supplementary Note B-1), a female previously diagnosed with Non-Hodgkin's
diffuse B-cell lymphoma IV stage B, tested positive for SARS-CoV-2 for the first time on April
17, 2020. In the preceding week, she had had close contact with patient A, who later died of
COVID-19 pneumonia; paraffin blocks with post-mortem material of patient A were
subsequently analyzed for SARS-CoV-2 by PCR, followed by RNA extraction and sequencing,

as a probable source of infection. Patient S has undergone three periods of positive tests,
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alternating with two periods of negative tests, between April 17, 2020 and March 1, 2021,
spanning a total of 318 days (see Figure 4.1A, Supplementary Table B-1). She had symptoms
of severe COVID-19 between June 6 - September 1, 2020 (Supplementary Figure B-1A:B),
and again between January 9 - March 1, 2021 (Supplementary Figure B-1C), including
subfebrile fever and pneumonia with typical COVID-19 patterns. We isolated live viruses from

swab samples obtained in both of these periods (August 20, 2020 and February 19, 2021).

Between April 30, 2020 and February 16, 2021, patient S received several cycles of
chemotherapy under several different regimens, including monoclonal antibody rituximab.
Courses of chemotherapy were typically followed by a decrease in white blood cell counts,
especially lymphocyte and neutrophil counts, to values below the normal range (Supplementary
Figure B-2). On December 28, 2020, autologous haematopoietic stem cell transplantation
(auto-HSCT) was performed. In January 2021, near the end of the study period, patient S
received three doses of convalescent plasma. Six nasopharyngeal swab samples suitable for next
generation sequencing, together spanning 308 days of the disease, were obtained, alongside two

blood samples (Supplementary Table B-1).

Intrahost evolution of SARS-CoV-2

Whole-genome sequencing was performed for six nasopharyngeal swab samples obtained from
patient S in August 2020 - February 2021, as well as for an April 2020 sample obtained from
patient A (Figure 4.1A). Phylogenetic analysis (Supplementary Note B-2) indicates that both
PCR positive periods of patient S in August 2020 and January-February 2021 constitute a single
infection. Indeed, all patient S samples formed a single clade within the B.1.1 lineage on the
global SARS-CoV-2 phylogeny, with the patient A sample as its ancestor (Figure 4.1B). No
other Russian samples available in GISAID nest within the patient S clade (Figure 4.1B),

indicating that the virus evolved in patient S has not seeded observable onward transmission.

The two August 2020 samples were characterized respectively by 12 and 18 mutations specific
to patient S. In turn, the January-February 2021 samples gained additional 10 to 21 changes.
Overall, a total of 40 changes compared to the ancestral state were observed in at least one of the
samples, 34 of which were observed by the end of the study period (Supplementary Note B-3).

This corresponds to the point substitution rate of 15.3x10 per nucleotide per year, which
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substantially exceeds the evolutionary rate of SARS-CoV-2 in the general population
(permutation test, p<10®; Figure 4.1C). Nearly all accumulated changes were detected in
samples obtained before convalescent plasma transfusions (Figure 4.1A,D; Supplementary
Table B-1), indicating that these transfusions could not have affected the observed viral

evolution.

The accumulated mutations occurred throughout the viral genome, affecting 18 of the 26 viral
genes (Figure 4.1D). However, there was an excess of nonsynonymous changes in the genes
encoding surface proteins: out of the 25 changes, 8 (32%) fell in the spike gene which by length
constitutes 13% of the viral genome, while 2 (8%) fell in the envelope gene which constitutes
0.8% of the genome (two-sided Binomial test, p = 0.018 and 0.016, respectively). Many of the
observed amino acid substitutions were indicative of positive selection in the general population
(Supplementary Note B-4), and some were previously implicated in antibody escape
(Supplementary Note B-4). However, virus evolution did not lead to detectable reduction in
sensitivity to neutralizing antibodies by the end of the study period compared to a prototype viral

strain (Supplementary Figure B-4).
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Figure 4.1. Intrahost evolution of SARS-CoV-2 in patient S. A: The timeline of patient S
disease and therapy. B: The phylogenetic tree of B.1.1 pruned to contain a random set of 1% of
all samples, including the patient A sample (black dot) and the complete clade carrying the
patient S samples (red dots). The 2020 samples carried the AF combination of mutations
(S:A69-70HV and S:Y435F; Supplementary Note B-3) marked in the two inner circles in yellow
and blue. The B.1.1.7 lineage and cluster 5 are shaded. C: Regression of root-to-tip genetic
distances vs. sampling dates, for patient S samples (together with the ancestral sample of Patient
A), B.1.1.7 lineage GISAID samples, and other GISAID samples. Estimated slopes (molecular
clock rates) are provided in the inset. In B and C, the consensus nucleotides (i.e., those supported
by more than 50% of the reads, RF>50%) were used to position patient S and A samples. D:
Variant frequencies in the six patient S samples. All consensus variants (RF>50%, N=40) and
non consensus variants with 30%<RF<50% (N=7) are shown (Supplementary Table B-2). The
figure is adapted from (Stanevich et al., 2023).

Host immune response

To understand the functional features of immune response in patient S, we analyzed her blood
samples collected at multiple timepoints spanning the course of the disease (see Methods,
Supplementary Table B-1). Flow cytometry revealed the absence of B lymphocytes throughout
the period of PCR positivity (Supplementary Figure B-5). Blood serum samples were also
analyzed by ELISA for IgG antibodies specific to the SARS-CoV-2 S-antigen; a weak IgG
response was registered in one of the samples but no response in the remaining samples. No
neutralizing antibodies were detected at any time point by a VN assay using live SARS-CoV-2
strain (Supplementary Table B-1).

By contrast, we detected a pronounced SARS-CoV-2 specific T-cell response. Indeed, in vitro
stimulation with a peptide mixture of SARS-CoV-2 proteins (S, N, M, ORF3a and ORF7a)
caused an expansion of SARS-CoV-2-specific CD4 and CDS8 effector memory T-cells (Tem) at
both time points (Supplementary Figure B-6).
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Mutational escape from cytotoxic T cells

Given the absence of B-cell but the presence of T-cell immune response in patient S, we
hypothesized that the 31 amino acid sequence-altering mutations acquired by SARS-CoV-2 may
have led to escape from T cell immunity. First, we asked if these mutations affect presentation of
the peptides carrying them by the HLA alleles of patient S (Supplementary Table B-3). For this,
we adapted an existing pipeline(Marty et al. 2017) to calculate the PHBR (patient harmonic best
rank) score (Figure 4.2A) for both the ancestral and the derived state at site of each of the 30
mutations (except ORF8:Q18*, Supplementary Note B-5). Most sites could be presented in
their ancestral state by at least one HLA allele of both classes (27 out of 30 by HLA I, and 24 out
of 30 by HLA 1II). We found that five of the observed mutations substantially (>3-fold) increased
the PHBR score for the peptides presented by HLA I, indicating impaired presentation (Figure
4.2B). One of these mutations, S:del141-144, also increased the PHBR score for HLA 1II (Figure
4.2C).

While an increase in PHBR score can help a peptide escape antigen presentation, this can only
affect T cell response if the corresponding peptide is recognised by T cells. To specifically
address the effect of mutations on immunogenic peptides, we used IEDB (Vita et al. 2019) to
obtain the list of SARS-CoV-2 peptides that were shown to be immunogenic in complexes with
the HLA alleles carried by patient S. There were 17 such peptides for HLA T alleles, together
overlapping the sites of 11 of the mutations (some of the sites were covered by more than one
peptide) (Supplementary Table B-4). All these mutations were fixed in the course of intra-host
evolution by the end of the study period. No HLA class Il immunogenic peptides covering the
changed sites were found in IEDB. To focus on the immunogenic peptides, we calculated the
imBR (immunogenic best rank) for each of these sites in the ancestral state and compared it to
the corresponding value for the derived state. The mutations strongly decreased presentation of
immunogenic peptides, indicating that they cause escape from CD8 T cell response (Figure
4.2D). Together with ORF8:Q18* which prevented presentation of the bulk of the ORFS protein
(Supplementary Note B-5), this totals to 12 changes with cytotoxic T cell escape effect.
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Figure 4.2. Mutational escape from cytotoxic T cells. A: Calculation of site presentation
scores (adapted from Marty et al. (Marty et al. 2017)). B, C: Change of PHBR scores caused by
mutations for HLA I (B) and HLA II (C) respectively. Dot color corresponds to PHBR fold
change; the mutations that substantially (>3-fold) increase PHBR are signed. Sites that did not
bind any of the patient’s HLA alleles both in ancestral and derived states are not shown. D:
Comparison of imBR scores for the mutated sites in their ancestral and derived states. The level

of significance is calculated by the Wilcoxon sign-rank test.

Tracking the viral escape

Next, we assessed the change in T-cell response caused by the observed mutations. First, we
focused on the two mutations causing the largest PHBR fold change (Figure 4.2B). These were
the two mutations at position 504 of the nsp3 protein, nsp3:T504A and nsp3:T504P, which were
fixed sequentially at the first (T1, August 20, 2020) and the second (T2, February 19, 2021)
sampled time points respectively (Figure 4.1D). We asked how well the peptides covering these
three amino acid variants elicited T-cell response in samples corresponding to these time points.
We used the highest ranking peptides covering the mutated site in its ancestral (PTDNYITTY)
and derived (PADNYITTY, PPDNYITTY) states; PTDNYITTY was previously shown to be
immunogenic in complex with the HLA-A:01*01 allele which is carried by patient S (Ferretti et
al. 2020; Gangaev et al. 2021; Saini et al. 2021).
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In the T1 sample, when just nsp3:T504A was detected at intermediate frequencies (Figure
4.1D), in vitro stimulation of CD8+ T cells indicated response to both the ancestral
(PTDNYITTY) and the derived (PADNYITTY) peptide changed by nsp3:T504A (Figure 4.3).
This response was mediated primarily by polyfunctional IFNyIL2 TNFa" effector memory
T-cells. The response to PADNYITTY was slightly weaker (0.035% vs 0.043% of effector CD8
T cells), suggesting a partial escape caused by nsp3:T504A. Stimulation by PPDNYITTY
corresponding to the nsp3:T504P allele caused no cytokine response in the T1 sample. In the T2
sample (Figure 4.1A), when nsp3:T504P was already fixed, still no cytokine response to
PPDNYITTY was observed, confirming invisibility of this peptide to cellular immune response
due to weak binding with HLA. Response to PTDNYITTY and PADNYITTY also vanished at
T2; this could indicate that the CD8 T cell clones specific to T and A amino acids became
irrelevant with the loss of the corresponding viral variants, and got no antigenic re-stimulation

that could drive clonal expansion after auto-HSCT (Mamedov et al. 2011).

Next, we explored the T-cell response to the pool of peptides corresponding to virus epitopes that
gained amino acid mutations between August 2020 and January 2021. The pool included 5
peptides with previously confirmed immunogenicity and characterized by a strong change in
PHBR due to the observed mutations, indicating a probable escape from the HLA alleles of
patient S. We compared the pool of peptides in their ancestral state: YLQPRTFLL (S:R273S),
STNVTIATY (nsp3:T14561), KPRSQMEIDF (endornase:P205L), GPQNQRNAPRITF (N:P6T)
and VPLHGTIL (M:L129R), to the corresponding peptides with acquired amino acid mutations
that resulted in weak or no binding: YLQPSTFLL, SINVTIATY, KLRSQMEIDF,
GTQNQRNAPRITF and VPLHGTIR (Supplementary Table B-4).

At time point T1, we found a pronounced subpopulation of polyfunctional (IFNy+/TNFa+)
cytokine producing CD8 T cells responding to initial non-mutated peptides. This subpopulation
comprised 0.95% of effector CD8 T cells, indicating a strong T cell response to this set of
epitopes (Figure 4.3C). Meanwhile, no T cell response was observed against the pool with
acquired mutations, confirming immunoediting-driven origin of the observed mutations. Both
peptide pools showed negligible response at time point T2, presumably due to poor post-HSCT
expansion of T cell clones in the absence of the cognate antigenic stimulus. Prior to the escape,

the CD8 T-cells responding to the pool of the 5 escaping peptides (0.95%), together with the
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peptide changed by nsp3:T504P (0.045%), constituted as much as ~1% of the total effector CD8

subset, and this response has been fully eliminated by viral escape.
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Figure 4.3. The CD8 T cell immune response to the SARS-CoV-2 epitopes in ancestral and
derived states. A, C: Flow cytometry plots showing the cytokine profiles of
SARS-CoV-2-specific CD8 effector memory T cells after stimulation with epitopes carrying the
ancestral and the two derived (nsp3:T504A and nsp3:T504P) amino acid variants (A), and pools
of 5 immunogenic HLA binders before and after acquiring the binder-escape mutations (C).
Amino acid variants corresponding to ancestral and derived states highlighted by gray and red

colors respectively. B, D: Corresponding bar plots representing the percentage of different
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cytokine-producing populations of SARS-CoV-2-specific CD8 T cells after mock background
subtraction. T1, August 2020 sample; T2, February 2021 sample. Statistical significance is
calculated by two-proportions Z test: * = p < 0.05, ** =p < 0.01, *** = p < 107, *¥*¥** = p < [0,
The figure is adapted from (Stanevich et al., 2023).

Possible population-level effects

It has been suggested that escape from humoral immunity in immunosuppressed patients may
give rise to SARS-CoV-2 strains with increased fitness in the general population(Harvey et al.
2021). Similarly, escape from cellular immunity in the course of intra-host evolution could affect
immune response to descendant SARS-CoV-2 strains outside the host where it evolved. We
aimed to estimate the possible effect of the viral evolution in patient S for the human population
at large. For this, we compared the BR (Figure 4.2A) fold change caused by the mutations
observed in patient S for the globally most frequent HLA alleles of each family that together
cover 95% of worldwide population frequency (Solberg et al. 2008; Sarkizova et al. 2020). This
set of alleles includes all 12 HLA alleles of both classes (I and II) of patient S, which happen to
be quite frequent globally (Supplementary Table B-3) .

As expected, the mutations observed in immunogenic epitopes tended to escape the HLA 1
alleles of patient S to a larger extent than other frequent HLA I alleles (Figure 4.4A:B); no such
difference was observed for HLA II alleles (Figure 4.4C:D). Nevertheless, these same mutations
also reduced binding for other globally frequent HLA I alleles (mean BR fold change = 1.59,
Figure 4.4E), although not HLA II alleles (mean fold change = 1.02, Figure 4.4F). This
indicates that the within-host evolution in patient S indeed could facilitate escape from cytotoxic

T cells in the global population.
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Figure 4.4. Population-level effect of T cell escape mutations. A, C: The effect of each of the
30 mutations observed in SARS-CoV-2 of patient S on T cell immune escape, for each of the
HLA I (A) or HLA II (C) alleles carried by patient A (red) and frequent globally (gray). The
mutations that change immunogenic peptides (for HLA I) or are adjacent to such peptides (for
HLA 1II) according to IEDB are highlighted. Alleles that do not present the corresponding
position in both ancestral and derived state are not shown. For the mutations that correspond to
>5-fold increase in BR, the corresponding HLA alleles are signed. B, D: Distribution of mean
BPR fold changes among immunogenic positions for HLA 1 (B) or II (D) alleles, based on 10°
random generations of individual allele composition; the red dashed line is the percentile
corresponding to the allele composition of patient S. E, F: The sum effect of the amino acid
changing mutations observed in SARS-CoV-2 of patient S on antigen presentation by the

globally most frequent HLA class I (E) and class II (F). Alleles of patient S are in red.
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Discussion

We have described a case of unprecedentedly long COVID-19 characterized by a large amount of
intrahost evolution. For over 10 months, an evolving SARS-CoV-2 lineage accumulated changes
at a rate which substantially exceeded that in the general population, suggesting prevalent viral
adaptation. Some of the observed changes recapitulated mutations previously observed in other
immunocompromised patients and/or variants of concern (Figure 2.1, Supplementary Note
B-3). This is consistent with the hypothesis that immunocompromised patients represent a
hotspot of viral adaptation, causing “saltations” in the otherwise clock-like evolutionary rate of
SARS-CoV-2 (Harvey et al. 2021); notably, such a jump could have happened at the origin of the
B.1.1.7 (“alpha”) variant which has attained global dominance in early 2021 (Harvey et al. 2021;
Peacock et al. 2021).

Unlike previously described cases, however, the case described here is characterized by an
unusual immune environment. The absence of own B cells, convalescent plasma therapy or
monoclonal antibodies therapy during most of the study period indicates that the bulk of viral
mutations have accumulated in the absence of humoral immune response. Instead, our data
shows that evolution was largely driven by T cell escape. Our computational analysis revealed
that many mutations changed the amino acid composition of known immunogenic CD8 T cell

antigens and worsened or prevented their presentations on HLA class I alleles of the patient.

We experimentally tracked the viral escape by the 2 sequential mutations affecting the same
amino acid position nsp3:T504 (nsp3:T504A and nsp3:T504P) and by the binder-escaping
mutations in a pool of 5 immunogenic HLA binders (S:R273S, nsp3:T14561, endornase:P205L,
N:P6T and M:L129R). The elicited response in these two cases comprised 0.045% and 0.95% of
all effector CD8 T cells, and this response has been eliminated by the escape. In a study of a
cohort of 254 patients, the proportion of SARS-CoV-2 specific CD8 T cells in the overall [FN-y
expressing CD8 T cell pool rarely exceeded 1% and had the median of 0.2% (Moss 2022; Cohen
et al. 2021). Thus our experiments clearly demonstrate that the proportion of the CD8+ T cell

response subject to viral escape is substantial.

Our study has certain limitations. Most importantly, it uses data from a single patient. Several

features of our case make similar cases rare. First, long-term viral persistence in COVID-19 is
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relatively rare overall. Second, poor disease outcome is common in immunocompromised
patients (Kemp et al. 2020; Williamson et al. 2021; Khatamzas, Rehn, et al. 2021; Avanzato et al.
2020; Choi et al. 2020; Sepulcri et al. 2021; Nakajima et al. 2021; Moore et al. 2020; Hueso et al.
2020; L. Wei et al. 2020; Karatas et al. 2020; C. Y. Lee et al. 2021), and such a long period of
viral persistence and high amount of intra-host evolution is extreme even among analogous
studies. Third, our case stands out among the others by the absence of convalescent plasma
treatment during most of the disease. Nevertheless, in a recent preprint by Khatamzas and
colleagues (Khatamzas, Muenchhoff, et al. 2021), apparent T cell escape was observed in a
patient with follicular lymphoma characterized by a shorter period of viral persistence and the
usage of convalescent plasma. We consider that study an independent confirmation of our

observations.

Another limitation is that our analysis only considered the effect of a subset of mutations. Our
experimental measurements considered seven mutations, and disregarded other viral mutations
that could have affected antigen presentation. Besides, some of the mutations may preserve
antigen presentation but still alter the amino acid sequence of known CD8 T cell epitopes.
Change of the epitope and prevention of recognition of the HLA-epitope complex by T cell
receptors was previously described as a mechanism of immune escape (Bronke et al. 2013;
Troyer et al. 2009; Dolton et al. 2021) and can also result in immune escape in our study. If
additional escape is provided by these mutations, our appraisal of the proportion of the CD8+ T

cell response negated by the viral escape is an underestimate.

Nevertheless, our results clearly indicate that immunoediting by cytotoxic CDS8 clones is a
prominent underappreciated factor in intrahost evolution of SARS-CoV-2. Similar to antibody
escape, the T cell escape mutations acquired within an individual host may give rise to new
epidemiologically important variants if they spill over to the general population. Notably, a
recent study has revealed that CD8 T cell count is strongly associated with the level of intrahost
diversity of the viral population in immunocompromised patients (C. Y. Lee et al. 2021). We
predict that the changes observed in our study would also substantially affect SARS-CoV-2
antigenicity in the general population in case of onward transmission of the evolved variant.
While no such transmission was detected in this case, our results emphasize an additional

dimension of SARS-CoV-2 evolution which merits careful surveillance.
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Contribution

My contribution to this work was in the analysis of mutations’s effects on viral antigens
presentation on HLA alleles of the patient. It includes results from Figure 4.2, prediction of best
candidate peptides for experimental design, used in Figure 4.3, and results of population-level
effects of observed mutations from Figure 4.2. Phylogenetic analysis of patient’s samples from
Figure 4.1 and Supplementary Figure B-3 was done by K. Safina, E. Nabieva and G. Klink.
Clinical data from Figures 4.1A, Supplementary Figure B-1 and B-2 was provided by O.
Stanevich. Experimental data from Figure 4.3, Supplementary Figure B-4, B-5 and B-6 was
obtained by A.-P. Shurygina and M. Sergeeva. The text presented in this chapter was written

with the contribution of all coauthors of (Stanevich et al., 2023).
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CHAPTER 5: CONCLUSIONS

Interaction between pathogens and adaptive immune response within a host forms a complex and
dynamic system, involving numerous interconnected elements. Coevolution is its essential
feature, since both interacting players possess a single goal — to survive and to outcompete the
second side. In this work we applied tools of evolutionary genomics and phylogenetic analysis to
study this phenomenon from two different but complementary points of view. First we tracked
phylogenies of B cell clonal lineages in healthy individuals, which allowed us to look at the
history of B cell response on previous infections (Chapter 3). We adapted the broadly used
approaches of evolutionary genomics such as SFS, dNdS and McDonald-Kreitman test to reveal
the action of positive selection in B cell clonal lineages. Obviously we observe only the most
abundant fraction of real B cell repertoire in a limited period of time in a small cohort group.
Nevertheless, evolutionary analysis showed itself as a prominent approach for understanding the
biology of B cell immunity. We know just a few of studies that considered B cell repertoires
from the phylogenetic point of view, and all of them are focused on immune response to vaccines

or viral infections (Nourmohammad et al. 2019; Horns et al. 2019; Hoehn et al. 2021).

In the second part of the work we considered interaction between host and adaptive immunity
from the point of view of the pathogen. We tracked the evolution of SARS-CoV-2 inside the
immunocompromised host with non-Hodgkin’s lymphoma, which lasted almost a year and
resulted in accumulation of 42 changes in the viral genome. Surprisingly, it was forced by viral
escape from adaptive immunity, in this time presented by cytotoxic T cells ( Chapter 4). As a
result, this case study revealed that CD8 T cell escape may be an underappreciated driving force
of SARS-CoV-2 evolution. The role of T cell escape in global SARS-CoV-2 evolution still

remains an open question.

Thus rapid intrahost evolution can be observed from both sides of the coevolving host-pathogens
system. Both hyper mutating B cell clonal lineages and population of the pathogen diversify and
adapt right during the time of host-pathogen interaction. Summing up these two studies we have

come to the following conclusions:
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e Evolutionary regimes of both maturating B cell clonal lineages and population of the
pathogen, presented by SAR-CoV-2 in this work, strongly dependent from the second
side of host-pathogens system;

e B cell immune response may use different evolutionary regimes depending on the
dynamics of interaction with the antigen: persisting B cell memory, showing weak
interaction with the antigen by production of BCRs with mostly non-switched IgM/D
isotypes, and evolving under relaxed negative selection. In contrast rapidly-expanding
antibody producing lineages, probably undergone recent antigen-challenge, show signs of
excess of both positive and negative selection in comparison with persisting memory;

e Some of antibody-producing lineages may originate from B cell immune memory
reactivation, accompanied with new rounds of coevolution to corresponding antigen by
involvement in new cycles of affinity maturation;

e Special conditions of host immune system fully determined the way of SARS-CoV-2
evolution: immune depleted therapy left the patient lack of B cell immunity, thus immune
escape from cytotoxic T cells became the major driver of intrahost evolution of
SARS-CoV-2;

e The effect of SARS-CoV-2 immune escape was strongly pronounced for a particular host
and was not universal for the general population, showing again that intrahost pathogen

evolution strongly depends on the second side of host-pathogen interaction.

This work reveals deep interdependency between the work of adaptive immunity and intrahost
pathogen reproduction. It proves that these processes should be studied taking into account the
fact that they belong to a single interconnected and coevolving system. Evolutionary and
phylogenetic analysis of its elements, such as B cell clonal lineages or intrahost viral

populations, showed itself as a powerful tool for understanding host-pathogen arms race.
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