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Abstract

Estimation of terrestrial carbon balance is one of the key tasks in understanding

and prognosis of climate change impacts and the development of tools and policies

according to carbon mitigation and adaptation strategies. The forest ecosystems are

one of the major pools of carbon stocks affected by controversial processes influencing

carbon stability. Monitoring forest ecosystems is a key to proper inventorying of

resources and planning their sustainable use. Development of reliable and up-to-

date systems for environmental monitoring and analysis on both local and global

scales is crucial for optimal forest management, carbon offset projects, accurate

predictions of system changes under different land-use and climate scenarios. In

this thesis, we discuss the state-of-the-art computer vision techniques applicable to

the most important aspects of forest studies through remote sensing observations.

Although there is a wide availability of remote sensing data and various machine

learning algorithm to process this data, certain questions of efficient remote sensing

pipelines development remains open. We proposed advanced approaches to address

the most occurring tasks such as forest areas mapping, tree species classification,

canopy height estimation. The goal of this study is to achieve higher quality for

environmental characteristics prediction based on novel deep learning approaches

using more available and less expensive satellite data. It involves dealing with data

imbalance, weakly markup, specific labelled data limitations, and model transferring

to new geographical regions.

The present work includes the following steps:

• Precision forest mask estimation;

• Dominant forest species classification;

• Canopy height model prediction;

• Artificial satellite band generation.
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Chapter 1

Introduction

The present Thesis tackles the task of improving existing methods for quantitative

assessment of vegetation cover characteristics. The precise and up-to-date vege-

tation variables estimation is vital for proper environmental studies, in particular,

for carbon stocks monitoring and analysis. Recently, the main uncertainty of both

local and global estimations is a matter of shortage in relevant and accurate vege-

tation parameters. On the local scale, errors occur due to insufficient amounts of

high quality reference data. On the global scale, the cause of mistakes is diverse

environmental conditions.

The Thesis aims at addressing aforementioned challenges. It comprises stud-

ies that cover computer vision techniques for the key aspects of forestry analysis.

Among these tasks, there are forest mask estimation, forest species classification, and

canopy height model estimation. The understanding of these forestry variables is

crucial for substantial environmental analysis involving global climate changes mon-

Figure 1-1: Objectives and plan of the study.
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itoring. Recently, many remote sensing data sources and computer vision techniques

are available for different research purposes. However, there are still particular lim-

itations that provoke further adjustment of approaches applicable to forestry tasks.

Deep learning algorithms strongly depend on the amount of high-quality labeled

data. Forest inventory data can be out of date, while forestry data collection is

a time-consuming procedure that often requires expert knowledge for some tasks.

For instance, only an expert can create a precise manual markup with vegetation

characteristics based on satellite imagery (distinguish forest species, estimate age).

And in most times, data collection cannot be managed without ground-based mea-

surements when it is the only option to distinguish particular forestry variables.

Therefore, labeled data limitations are accompanied by a diversity of target objects

representation. For example, tree species of different ages vary drastically in spec-

tral range. The proper classification can be affected by environmental conditions,

i.e. the surrounding vegetation in the region of interest. Moreover, forest inventory

data usually has its own limitations and specificity.

Another challenge in the remote sensing domain is posed by quality-cost ratio.

The quality of remote sensing data is defined by its spatial resolution (meters per

pixel) and spectral range. Data cost depends on the coverage area. For example,

using an unmanned aerial vehicle (UAV) to observe the entire planet is inapplica-

ble. Therefore, one of the currently important points is how to get required data

properties artificially.

Aforementioned challenges inspired us to propose approaches less demanding to

specific remote sensing labeled data and sensors. Forest species classification has

a pivotal role in this study, as it is one of the dominant forest characteristics. We

examined how forest species classification can be improved using remote sensing

imagery and computer vision algorithms (Figure 1-1). The primary task involves

forest mask estimation for different regions using limited precisely labeled data.

Then, we propose different approaches to deal with weakly labeled markup and

highly imbalanced classes. Additionally, feature generation, such as canopy height

model creation, supplied the study with less expensive remote sensing data.

Overall, by using the proposed approaches, we managed to reduce the required
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amount of labeled data, to achieve high generalization for new territories and diverse

vegetation types. We believe that precise forestry variables will help to understand

better climate changes processes.
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Chapter 2

Literature review

2.1 Introduction

Climate change adaptation and mitigation policy make relevant the development

tools for estimation and monitoring flows of greenhouse gases (GHG). Such account-

ing of ecosystem balances helps to understand and alter trends of GHG emissions.

As for now, a more accurate inventory of carbon stocks and sources is a subject

of ongoing discussions. It aims at reducing the uncertainty of carbon balance es-

timations and their prognosis in different economic and climate change scenarios.

It includes clarifying user and social choices in the decision-making process. Im-

provements of on-site measurement techniques along with scaling of the accounting

systems (models) have lead to a more detailed level for a better understanding of

the carbon cycle [Peters, 2018, Treat et al., 2018, Tharammal et al., 2019, Santoro

et al., 2021].

Among a variety of natural and artificial ecosystems, forests show mostly pre-

dominant sequestration of carbon from the atmosphere. Mostly negative net GHG

fluxes characterize territories under forests, as a result, gross carbon removals ex-

ceeded gross emissions around the world [Harris et al., 2021]. At the same time, in

the presence of disturbances, CO2 emission increases due to a release of the carbon

retained in the ecosystem [Seddon et al., 2020]. The list of main disturbing events

includes, in general, the change of forests to other land use types, the use of forest

resources for materials and energy due to harvesting, the occurrence of fires, fall-
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outs, change of water regimes, change of the community structure due to pathogens

and invasion outbreaks, and development of deadwood. Those are considered to

be managed to maintain sustainable long-term use of natural resources and receive

climate benefits [Pingoud et al., 2018, Ontl et al., 2020].

As for now, most of the forest monitoring, management, and planning needs at

different spatio-temporal scales can be covered by the use of remote sensing data

(RS) [Bourgoin et al., 2018, Kangas et al., 2018, Gao et al., 2020b, Lechner et al.,

2020]. Among these tasks are estimation of forest structural and functional diver-

sity, productivity assessment, catching the degradation processes and their patterns,

deforestation detection, and analysis, and others. RS data includes both orbital and

unmanned aerial vehicle (UAV) observations. For instance, Sentinel-2 mission can

provide multispectral information, while the Global Ecosystem Dynamics Investi-

gation (GEDI) mission provides laser measurements. Both of them can be used for

carbon cycle studies. The detailed information about orbital missions is presented

in Section 2.3. To date, many countries have already included remotely sensed earth

observations in their forest inventories within national procedures. However, only

10 to 30% of this information, depending on the data type (satellite images and

airborne photography, respectively), is considered for inventory completion [Barrett

et al., 2016]. Such data are, in fact, the primary source of information for observing

large territories or locations that are hard to access. Currently, there is a strong

demand for detailed information about the sources, sinks, and transport of CO2, as

well as about their change under different influencing factors [Janssens-Maenhout

et al., 2020, Schepaschenko et al., 2021]. It can be expected that the broad involve-

ment of the RS data into routine protocols of monitoring of natural and managed

ecosystems is merely the matter of time [Gschwantner et al., 2022]. Thus, tech-

niques for analyzing RS data are also under development, while their operational

integration is an essential part of system knowledge progress [Gao et al., 2020b].

We can notice the steady development of machine and deep learning, improve-

ment of computational resources, along with public availability of the Earth nearly

big data (diverse remotely sensed records obtained by a plethora of sensors at var-

ious spatial and temporal resolutions). It can be used for the tasks related to the
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tackling of land-atmosphere interactions, in particular, applicable to the forest ar-

eas [Salcedo-Sanz et al., 2020]. In this regard, machine learning algorithms and

computer vision (CV) are of great practical and scientific interest. In what follows,

by a CV we mean all methods for image processing, and, specifically, classical ma-

chine learning methods and deep learning methods based on neural networks. CV

techniques are recognized as a powerful tool capable of capturing information from

the data of different domains, both photo, and video, and of handling target tasks

at different scales. CV algorithms combine the usability and potential for automati-

zation, determined by transparent algorithms’ pipelines. By using the standardized

list of metrics of can tune the performance and evaluate the model quality. At the

same time, it is worth noticing the capability of CV algorithms to integrate expert

knowledge during the training procedure [Diez et al., 2021, Spencer Jr et al., 2019].

The sufficient advantage of this group of modeling and analysis methods is its po-

tential to overcome main limitations related to the lack or incompleteness of the

data [Chen et al., 2019a, Shorten and Khoshgoftaar, 2019].

There are a number of surveys covering different aspects of forestry studies pub-

lished in recent years. Particular forest properties estimation, such as aboveground

forest biomass, has been surveyed in [Tsitsi, 2016]. It was summarized that RS in

forest aboveground biomass estimation is a perspective alternative to conventional

ground-based approaches. Since the publication of this survey publishing in 2016,

new RS data sources have become available and widely used, and there has also

been a drastic rise in machine learning and deep learning, and their implementation

in environmental studies. The following surveys were focused on carbon stocks and

carbon cycle, highlighting the most commonly used RS data sources [Xiao et al.,

2019, Rodríguez-Veiga et al., 2017]. In [Gao et al., 2020b], another forestry problem

was observed, namely, forest degradation focused on the used data and its important

properties. In turn, in the current survey, we aggregated information from recent

studies related mostly to the CV algorithms application for the exact forestry prob-

lems: forest mask, tree species, and forest resources estimation. We chose exactly

these forest properties, as they are one of the core components for forestry analy-

sis and have a significant impact on carbon monitoring and various environmental
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tasks [Xiao et al., 2019]. Currently, there are a lot of data and algorithms that

allow one to solve numerous problems, including those related to obtaining forest

characteristics based on satellite data. Due to the wide variety of data sources,

their specifics, and algorithms, it is difficult for a novice researcher to find a suitable

approach that combines the use of certain data and algorithms that would give a

good result shortly. In order to have an understanding of the available data and

algorithms that best solve the particular problem, taking into account the specifics

of the problem being solved, we provide this survey. It covers the most popular data

sources and widely used methods, as they are both of high value for accurate RS

solutions. It will allow researchers to effectively select a set of suitable algorithms

and data sources that will solve a specific problem.

2.2 Review methodology

Interest in remote sensing of the environment, namely, forest characteristics estima-

tion, has been constantly growing during the last decade, as shown in Figure 2-1. To

collect year wise statistics, we used two sets of words as keywords in the "article title,

abstract, and keywords" in the Scopus database search system. The first set of words

specifies remote sensing research domain, including words "remote sensing", "UAV",

and certain widely used satellites names. The second set of words concretizes a spe-

cific forestry properties and tasks such as "tree mapping", "growing stock volume",

"age", "forest species", etc. The "AND" Boolean operator united these two sets of

words, while within each set, the "OR" operator was applied. The search resulted

in over 18000 publications from 2011 to 2021 year. The search excluded subject

areas such as Medicine, Social Science, etc. In Figure 2-1, "ML + Remote sensing"

refers to intersection of the previous search results with a set of words specifying

artificial intelligence algorithms such as "machine learning", "deep learning", "neural

networks", and names of widely used algorithms. The search resulted in over 2200

documents from 2011 to 2021 year. There is a solid growth in the number of publica-

tions considering artificial intelligence since 2015 year. Comparing the search results

for machine learning applications for different RS forest tasks, we can notice that the
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(a) (b)

Figure 2-1: Year wise publication of remote sensing papers for forest characteristics
extraction: number of publications per year; the most popular journals according to
the number of publications. The data was retrieved from the Scopus database. (a)
General search that include remote sensing for forest tasks keywords; (b) Intersection
of general remote sensing search for forest tasks results with ML-specific keywords.
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most frequently encountered task is forest resources estimation such as aboveground

biomass, growing stock, standing volume (over 900 documents from 2011 to 2021

years). Forest species classification using artificial intelligence ranks second in the

search results (over 800 documents). Classical machine learning algorithms (such as

Random forest, Gradient boosting, etc.) occur three times as often as deep learning

algorithms. Among RS data, Landsat is referred with machine learning algorithms

in over 400 publications. Sentinel data was mentioned in over 340 papers for forest

tasks using machine learning techniques, while WorldView data was mentioned in

over 100 publications. The detailed information about data sources and tasks is

presented below.

The literature analysis is performed using recently published studies from peer-

reviewed journals included in Scopus scientific database. Google Scholar database

additionally supported the search. Due to the rapid development of the data science

discipline, the survey timeline was limited, starting from the year 2017 to 2022.

An exception is applied to the research which is fundamental or was a pioneer to

the topic, according to the citation level and earlier years of publishing. For each

discussed topic, we used relevant keywords, for example, "aboveground biomass"

AND "forestry" AND "remote sensing". Results of such requests were compared with

search query after adding the words "computer vision", which was not obligatory

used firstly because of the frequent association of the phrase with neural networks

only. Then search results were manually examined with and without sorting by the

citation level, and relevant works were chosen for detailed analysis. Zero citations

were acceptable in the case of specific (influential) journals relevant to research

topics of earth science, environmental science, and environmental monitoring and

2022 year of publishing. However, to catch the general context, for the most part,

publications with more than 20 citations were considered. Our search was limited

by the keywords’ combinations in the title and abstract, the final publishing stage,

English language. We mainly considered research articles to make conclusions about

the applicability and efficiency of the algorithms. However, our analysis also includes

relevant comprehensive reviews’ references providing general trend analysis within

the topic of climate change mitigation actions and data sources.
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2.3 Remote sensing data and spectral indices for

forest analysis

2.3.1 Sources of remote sensing data

An essential part of developing a vegetation analysis methodology is the informed

choice of one or another data source. We refer the reader to the latest extensive

surveys dedicated to the descriptions of the common RS platforms and sensor com-

binations applied to the problem of vegetation analysis [Calders et al., 2020, Gao

et al., 2020b, Lechner et al., 2020, Zeng et al., 2022], while noting that this is a

rapidly evolving field. In the present study, we provide the list of main character-

istics of currently most commonly used instruments of particular importance for

forest-related tasks at different scales (Table 2.1).

Table 2.1: Commonly used instruments of remote sensing data acquisition and dis-
tribution, and their characteristics aggregated from [Salcedo-Sanz et al., 2020, Tang
et al., 2019, Zhang et al., 2019b, Rostami et al., 2022, Stych et al., 2019, Deigele
et al., 2020, Lakyda et al., 2019] and missions’ technical websites [NASA, JAXA,
NASA and the U.S. Geological Survey, European and the Space Agency, MAXAR,
Planet, Airbus]

Mission Sensor Spatial

resolution

Temporal

resolution

Distribution of

data

Terra

MODIS

Multispectral, 36

bands

250 m, 500 m,

1 km

1-2 days Open and free

basis

ALOS

PALSAR/

ALOS-2

PALSAR-

2

Synthetic Aperture

Radar, L-band

From detailed

(1-3 m) to low

(60-100 m)

depending on the

acquisition mode

and processing

level

14 days On request/com-

mercial use/ALOS

Palsar 1-free
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Landsat-

8/9

Multispectral 8

bands,

panchromatic

band, and thermal

infrared 2 bands

Multispectral:

30 m,

Panchromatic:

15 m, Thermal

Infrared Sensor:

100 m

16 days

(the

combined

Landsat 8

and 9

revisit time

is 8 days)

Open and free

basis

Sentinel-1 Synthetic aperture

radar, C-band

From detailed

(1.5 x 3.6 m) to

medium (20-40

m) depending on

the acquisition

mode and the

processing level

Mission

closed

(during

operating

time - 3

days on the

Equator,

<1 day at

the Arctic,

1-3 days in

Europe and

Canada)

Historical data is

open and free basis

Sentinel-2 Multispectral, 13

bands

10, 20, 60 m

depending on the

band range

5 and 10

days for

single and

combined

constella-

tion

revisit

Open and free

basis

WorldView-

1

panchromatic band panchromatic:

0.5 m

1.7 days Commercial use
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WorldView-

2,3

Multispectral – 8

bands,

panchromatic band

Multispectral:1.84 m,

panchromatic:

0.46 m

Up to 1.1

days

Commercial use

WorldView-

4

Multispectral – 4

bands,

panchromatic band

Multispectral:1.24 m,

panchromatic:

0.31 m

mission

closed

(during

operating

time < 1

day)

Commercial use

(archive)

GeoEye - 1 Multispectral – 4

bands,

panchromatic band

Multispectral:1.64 m,

panchromatic:

0.41 m

1.7 days Commercial use

PlanetScope Multispectral – 4

bands, from 2019

additional 4 bands

3.7-4.1 m

resampled to 3 m

1 day On request/com-

mercial

use

SPOT-6,-7 Multispectral – 4

bands,

panchromatic band

Multispectral:

6 m,

panchromatic:

1.5 m

1 to 5 days On request/com-

mercial

use

Pleiades Multispectral – 4

bands,

panchromatic band

Multispectral:

2 m,

panchromatic:

0.5 m

1 day Commercial use

RapidEye Multispectral – 5

bands

6.5 m, resampled

to 5 m

1 day Commercial use

When choosing a data source for research, various details are taken into account:

data availability, survey repeatability, spatial resolution, sensor type, sensor speci-

fications, range of spectral channels, etc. Describing RS data, one can distinguish

different spatial, temporal and spectral resolution, while the "spatial" meaning is
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the most frequent case. In the case of spatial resolution, we refer to the precision

classification as coarse (low), medium and fine (high) [Chen et al., 2019b, Xiao et al.,

2019]. Thus, low resolution corresponds to the data of pixel size of more than 30 m

per pixel, medium resolution corresponds to the data of pixel size from 10 to 30 m,

and high resolution, to the size of less than 5 m.

Many RS missions are capable of providing up-to-date and diverse information

about the object or phenomenon under consideration. Each approach has advantages

and limitations, determined by the detection conditions and the ratio between spatial

resolution, revisiting time, or cost. Active sensors such as radar are independent of

the weather conditions and do not rely on the sun as a source of illumination,

and so can provide the data regardless of the day or night conditions. On the

contrary, passive multispectral and hyperspectral sensors require solar radiation.

Additionally, the coarser the image obtained from the satellite, the more often it is

taken. To combine the frequency of low-resolution imaging with more details of the

other available data or to restore the information that was lost due to unsuitable

conditions, different machine learning fusion techniques were implemented [Salcedo-

Sanz et al., 2020].

For every particular experiment, one can use data from one of the available

for required time and region satellites. The number of available bands in different

satellites may vary. It is possible to use all bands available in the chosen satellite,

select, or combine (to obtain spectral indices) some of them. A special case of the

auxiliary use is the panchromatic channel. Due to its wide band, it gains more light;

therefore, it has higher spatial resolution. It makes it possible to adjust the resolution

of satellite imagery through pan-sharpening techniques [Javan et al., 2021].

One of the advantages of platform-distributed RS data is its availability and

easy-to-use web and scripting interfaces for collecting the data by end-users. It can

be downloaded, free of charge or for payment, from data-aggregating platforms, pro-

vided raw data, as well as pre-processed or converted into various valuable derivatives

such as spectral indices or reflectance bottom of the atmosphere (BOA). This allows

the user to generate sets of images for efficient training of machine learning algo-

rithms for different regions and relevant dates for the study. For exploring resources
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and performance capabilities, we refer the reader to, e.g., Level-1 and Atmosphere

Archive & Distribution System Distributed Active Archive Center (LAADS DAAC)

Tools and Services collection (https://ladsweb.modaps.eosdis.nasa.gov/tools-and-

services/), Copernicus Open Access Hub (https://scihub.copernicus.eu), the Planet

Platform (https://www.planet.com/products/platform/).

2.3.2 Popular spectral indices applied for forest monitoring

research

Remote sensing data is rich in information, and in the case of multispectral sources,

separate bands can be mathematically transformed and combined. Such composites,

namely spectral indices, can be used to catch specific patterns necessary for the

most common tasks of forest carbon monitoring. Among these tasks are forest area

estimation, tree stand composition classification, change or anomaly detection, and

others that will be covered further in the following sections.

There are dozens of different spectral indices, and many of them have different

modifications [Xue and Su, 2017, Zeng et al., 2022]. Here we discuss some of the

most frequently utilized. One of the most popular spectral indices is the group

of vegetation indices, lead by the Normalized Difference Vegetation Index (NDVI),

based on the near-infrared (NIR) and red reflectance bands. NDVI has derivatives,

one of which is the Vegetation Condition Index (VCI), based on the minimum and

maximum values of the NDVI for a given period. For the study of atmospheric

effects, the Atmospherically Resistant Vegetation Index (ARVI) can be used. Al-

though NDVI is a commonly used choice to analyze vegetation cover, it is affected

by a saturation problem for densely forested areas [Tesfaye and Awoke, 2021]. The

main reason is that if there is a total leaves cover in the high vegetation period (peak

of the vegetation period) leaves are not able to absorb red light, so the reflectance

of red light will increase. Moreover, intensity of NIR will also increase. Accord-

ing to equation (2.1), the calculated NDVI will be underestimated. To address the

saturation problem, Enhanced Vegetation Index (EVI) can be used. It is more ac-

curate in areas with high vegetation and considers both soil and atmospheric effects.
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Another possible choice for densely forested areas is indices based on a Red-edge

spectral band: Normalized Difference Red-edge (NDRE), the Modified Simple Ratio

(MSR) Red-edge index, and Chlorophyll Index (CI) Red-edge. However, only some

satellites have sensors for Red-edge measurements. The Red-edge band is available,

for instance, in the satellite systems such as Sentinel-2, WorldView-2 and 3, and

RapidEye. The indices are computed using the following equations:

NDV I =
NIR−Red

NIR +Red
, (2.1)

NDRE =
NIR−RedEdge

NIR +RedEdge
, (2.2)

where NIR is the near-infrared spectral band, Red is the red spectral band, RedEdge

is the red-edge spectral band,

V CI =
NDV Ii,p,j −NDV Imini,p,j

NDV Imaxi,p,j
+NDV Imini,p,j

, (2.3)

where i is the pixel, p is the period, j is the year,

ARV I =
NIR− 1 ∗ (Red− Blue)

NIR + 1 ∗ (Red− Blue)
, (2.4)

where Blue is the blue spectral band,

EV I =
2.5 ∗ (NIR−Red)

6 ∗Red− 7.5 ∗Blue+ 1
, (2.5)

CIRedEdge =
NIR

RedEdge
− 1, (2.6)

MSRRedEdge =
NIR/RedEdge− 1√
NIR/RedEdge + 1

. (2.7)

The aforementioned indices are widely used as input data (separately and along

with initial bands) to detect the vegetation cover among other different land cover

types [Pflugmacher et al., 2019], to distinguish between different plant species [Im-

mitzer et al., 2019], to evaluate plant target characteristics such as productivity and
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mortality [Rogers et al., 2018, Dang et al., 2019], or to detect insect defoliation [Marx

and Kleinschmit, 2017].

In the field of forest monitoring, one of the most relevant topics is the fire occur-

rence and spread detection and mitigation [Anderegg et al., 2020]. Thus, in addition

to described indices, other spectral combinations, mostly based on short-wave in-

frared reflectance (SWIR), are of common use. For example, one can distinguish

the Normalized Burn Ratio (NBR) and derivative Normalized Burn Ratio Thermal

(NBRT), Burned Area Index (BAI) for the purposes of the assessment of fire severity

and burn area detection [Tran et al., 2018]. The indices are defined by the equations:

NBR =
NIR− SWIR

NIR + SWIR
, (2.8)

where SWIR is the shortwave infrared band,

NBRT =
NIR− SWIR ∗ TIR
NIR + SWIR ∗ TIR

, (2.9)

where TIR is the thermal band,

BAI =
1

(0.1 + Red)2 + (0.06 +NIR)2
. (2.10)

To consider environmental characteristics and to use it as background for ter-

restrial and aquatic or coastal forest ecosystems, the following indices are used in

addition: Soil Adjusted Vegetation Index (SAVI) allowing to correct soil brightness

[Hislop et al., 2018], the Normalized Difference Water Index (NDWI), also known as

the Land Surface Water Index (LSWI), the Normalized Difference Moisture Index

(NDMI) [Hislop et al., 2018, Zaimes et al., 2019]. Such indices are also employed

for track damages other than fire such as, e.g., pathogens outbreaks [Huang et al.,

2019a]. SAVI and NDWI are computed using equations:

SAV I =
((NIR−Red) ∗ (1 + L)

NIR +Red+ L
, (2.11)

where L is the soil factor, ranging from 0 to 1, which corresponds to dense vegetation

and no vegetation, respectively, while 0.5 is considered default for the most land
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cover types,

NDWI/LSWI/NDMI =
NIR− SWIR

NIR + SWIR
. (2.12)

Use of spectral indices has certain limitations that should be taken into account.

Such indices are applicable for the work with RS data in general and include atmo-

spheric effect, the possibility of significant difference between index values in case

of different data sources [Huang et al., 2021], season dependence, in complete ac-

cordance with the objects’ features [Cunliffe et al., 2020]. However, spectral indices

provide a valuable source of information with careful pre-processing including appro-

priate atmospheric correction according to the data source, topographic correction,

and understanding the uncertainties along with the availability of the actual mea-

surements (label data). Depending on the goals and study object characteristics,

new indices can be proposed based on the previously not used band combination

sequences [Jia, 2019]. For the time series, index pattern derivatives can be used such

as standard deviation, kurtosis, and skewness [Rogers et al., 2018]. For the recog-

nition and modeling tasks, indices are usually used in combination with each other.

Hyperspectral data can also be aggregated into the indices [Marrs and Ni-Meister,

2019].

2.4 Computer vision algorithms

In this section, we describe widely useful supervised algorithms for RS data, in

particular, for forest tasks. We discuss both classical machine learning and deep

learning algorithms with their specifics, learning process details, and intuition behind

them.

Semantic segmentation is a machine-learning problem for which the algorithm

learns to determine the class of each pixel using training samples. A feature de-

scription characterizes each target object. There is a matching between the input

image pixels and ground truth image pixels, which is supposed to be a mask of a

perfectly segmented image. The model is aimed at reducing the difference between

the prediction and reference markup according to a given quality metric. For in-
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stance, in the case of forest mapping, two classes are considered: the forest cover

and the areas without forest. Below we describe the specifics and differences be-

tween the classical machine learning algorithms and the DL methods, schematically

shown in Figure 2-2. Although for CNN algorithms, task definition as a semantic

segmentation is more conventional; for classical ML approaches, the task is usually

defined as a pixel-oriented classification or regression. It means that CNNs work

with pixels and their surrounding area (neighbor pixels). ML algorithms typically

work with individual pixels independently.

Figure 2-2: Difference between classical machine learning and deep learning algo-
rithms.

2.4.1 Classical machine learning algorithms

To solve various tasks using RS data, one of the most effective and popular meth-

ods of classical machine learning is the random forest method (Random Forest,

RF), which combines the approaches of an ensemble (a composition) of algorithms,

namely, decision trees and the method of random subspaces. This method is widely

applicable, for example, for solving problems of classification of forest-forming trees,

as well as for solving regression problems, but it is not limited only to these tasks

(described in Section 2.8). The ensemble is performed over multiple trees trained

on different data subsamples, which helps one to avoid the overfitting issues occur-
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ring when only one decision tree is used. The resulting class or value prediction is

made by averaging over all trees or choosing a class that is predicted by most of

the trees. An important limitation of using a forest of trees compared to a stan-

dard decision tree is the interpretability of the results. Namely, a random forest

of trees itself is much harder to interpret. The main parameters configured in the

RF algorithm are as follows: the number of trees that determine the complexity of

the algorithm; the number of features for splitting selection; the maximum depth

of the trees responsible for the retraining and accuracy of the model; the criterion

by which the homogeneity (entropy) of each leaf in the tree will be evaluated; the

minimum number of objects at which splitting is performed, with a decrease in this

parameter, the quality of training increases, but the training time also increases.

One of the advantages of the RF algorithm is the speed of its learning process

and ease of use, meaning that the algorithm is already implemented mostly with

open-source programming languages and data analysis interfaces. For example, the

Python Scikit-learn library [Pedregosa et al., 2011b] has an implementation that

allows the user to quickly tune the hyperparameters and train and test the model.

Another effective method of classical machine learning capable of dealing with

CV tasks for RS data analysis is the Support Vector Machine (SVM). This is a

class of algorithms characterized by the use of kernels (including nonlinear ones)

and the absence of local minima; they are aimed at solving both classification and

regression problems. In the case of classification problems, the optimal hyperplane

is determined, which provides the best separation of classes. SVM requires param-

eters to be tuned at the implementation, of the main are the kernel type and its

hyperparameters. One of the most popular kernel type is the Gaussian kernel (rbf),

in which the C and γ parameters are configured for the misclassification penalty

and the width of the kernel. It is necessary to vary the above parameters to obtain

better accuracy and avoid over-fitting. Support Vector Regression (SVR) is based

on the same approach as the SVM for the classification task, specifically, error min-

imization at determining the separating hyperplane for class extraction with a few

slight differences.

The k-nearest neighbor (KNN) algorithm is a frequent choice for RS problems
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because of its simplicity and high interpretability [Altman, 1992]. It is a non-

parametric supervised learning algorithm that commonly considers the Euclidean

distance between an observed sample and its neighbors to make a prediction. The

most similar data points are located closer to each other. Therefore, the class of

a new data point can be estimated by voting the k most close points as the most

frequently observed class. The number of neighbors (k) that participate in voting is

defined empirically and depends on a particular task. The KNN algorithm can also

be used for a regression problem. So, the output of the algorithms for the observed

data point is the averaged target value for all k nearest neighbors.

The Gradient Boosting algorithm is also widely used in environmental studies

both for regression and classification tasks. The boosting technique is an efficient

ensemble approach when the model is built sequentially using weak learners [Fried-

man, 2002]. Although gradient boosting can be based on different learners, the

most common choice is decision trees. Each weak learner aims to minimize the error

of the previous learner, being highly correlated with the negative gradient of the

loss function of the previously assembled trees [Natekin and Knoll, 2013]. XGBoost

("Extreme Gradient Boosting") algorithm is an adjustment of gradient boosting over

trees that are based on the usage of a more powerful regularization technique to de-

crease over-fitting [Chen and Guestrin, 2016a]. XGBoost supports parallelization

within each tree, creating new branches independently, which makes the algorithm

faster.

To adjust the quality of machine learning algorithms, one can apply the following

approaches. For instance, the principal components analysis (PCA) is a dimension-

ality reduction method that creates a smaller dataset from a large amount of features

preserving important information. This linear unsupervised statistical transforma-

tion was successfully applied to RS multispectral and hyperspectral data [Uddin

et al., 2021]. Another approach to reduce feature space is to use the RF algorithm

for feature selection and then to train another machine learning algorithm with

selected features. However, correlated features should be excluded as their impor-

tance might be underestimated. Another important option for model performance

adjustment is optimal parameters selection. To optimize machine learning param-
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(a) (b)

(c) (d)

Figure 2-3: CNN architectures [Yakubovskiy, 2022]: (a) U-Net; (b) FPN; (c)
LinkNet; (d) PSPNet.

eters, one can leverage various optimizations tools, such as Optuna [Optuna], or

scikit-optimize [scikit optimize] (including Bayesian optimization).

2.4.2 Deep learning algorithms

One of the main and frequently used architectures of CNNs for RS image processing,

including the forest mask segmentation, is the U-Net architecture [Ronneberger

et al., 2015]. The schematic layout of various U-Net layers is shown in Figure 2-

3 (a).

The architecture comprises two parts, forming a "U"-shape. The first part in-

cludes several convolution layers (parameters can be configured) responsible for fea-

ture selection. For a convolution operation, it is typical to use a 3-sized convolution

kernel, followed by a nonlinear ReLU and Max-pooling layer for dimensionality re-

duction. The second part uses layers that convert a feature map from a compressed

space into the initial dimension (deconvolution). Also, in the second part of the

deconvolution process, there is an attachment of relevant maps of features obtained

during the roll-up. As a result, the neural networks output produces an image mask
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of the same size as the input image, where each pixel corresponds to a particular

class. Training the neural network, namely, picking up values in the kernels, is

effected by using the backpropagation method of the error. The neural network’s

weight (trainable) parameters are updated iteratively based on calculated error. The

error is computed using different loss functions such as cross-entropy function:

Loss =

∑N
i=1

∑C
k=1 yik ∗ log ŷik
N

, (2.13)

where N is the number of pixels, C is the number of target classes, ŷ is the probability

predicted by the model that a pixel belongs to a particular target class, y is the

ground truth label of membership of a pixel in a class (0 or 1).

The corresponding gradients for all layers and weights in the neural network are

then updated.

In addition, one can configure the importance of each class with weight functions

so that the neural network can work with an unbalanced number of target classes.

Another efficient architecture for solving the problems of segmentation and mask

selection is also worth mentioning — here we mean the Functional Pyramid Network

(FPN) [Lin et al., 2017]. The schematic diagram (architecture) of FPN is shown in

Figure 2-3 (b). This architecture has two parts, one from the bottom-up (convolu-

tion) and another from the top-down (deconvolution). One of the key features of

this architecture is the simultaneous utilization of features of different resolutions

and levels. The lower semantic weight (the lower generalizing ability) has high-

resolution features, and the higher semantic weight has low resolution features. The

lateral connections between the two paths make it possible to eliminate the problem

of signal attenuation. As a result, it becomes possible to process the detailed in-

formation obtained at the bottom of the first pyramid and semantically significant

features obtained at the top of the first pyramid.

Other neural network architectures relevant for RS tasks include FCN [Long

et al., 2015], DeepLab [Chen et al., 2017b], LinkNet [Chaurasia and Culurciello,

2017] (Figure 2-3 (c)), PSPNet [Zhao et al., 2017] (Figure 2-3 (d)).

All mentioned architectures have the same prediction pipeline. Input data is
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passed from the first layer to the following layers. On each layer, input signal is

transformed depending on weights of artificial neurons and then fed to activation

function. Thus, non-linear data separation is enabled [Forstmaier et al., 2020].

The neural network parameters as well as approach for its training takes a sepa-

rate vital place in the development of effective algorithms for solving RS problems,

in particular to characterize vegetation with the possibility of further conversion to

carbon stock. The training parameters include the number of training epochs, the

number of steps in each epoch, the size of the batch (sub-sample), and the size of

the images that form the batch. The choice of these parameters affects the ultimate

result of neural network predictions. Parameters monitoring and analysis during

the training allow one to choose an optimal moment of training process termination

and to avoid overfitting. Also, the convergence rate of the algorithm depends on

the value of the step in learning (learning rate) and the choice of the optimizer.

In many studies, it is proposed to use optimizers like SGD [Robbins and Monro,

1951], Adam [Kingma and Ba, 2014], RMSProp [Hinton and Swersky, 2012]. The

determination of the stopping moment for neural network training is often based

on such indicators as the "plateau". The "plateau" effect means that the validation

samples accuracy does not increase during several epochs. Also, among the con-

figurable parameters of the neural network, it is worth mentioning the importance

of the CNN’s optimal size (depth). The depth choice depends on the problem to

be solved and the amount of training data. Therefore, the number of layers and

neurons is task-specific. For instance, for a small dataset, it is preferable to use a

model with fewer learning parameters. However, if the dataset is large, common

architectures with large amount of parameters are required. Such neural networks

often do not fit a single GPU. To address this limitation, different approaches and

strategies can be applied in order to train large neural networks effectively [J. Gusak

and Beaumont, 2022]. To deal with overfitting on small datasets and to enhance

model generalization, the dropout technique is usually implemented. It involves dis-

carding some randomly selected nodes (both from input and hidden layers) during

each training iteration. It reduces co-adaptation between neurons. During test time,

dropout is not implemented, but weights are adjusted by the used training dropout
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ratio. However, some dropout modifications support their application during the

test phase such as Monte Carlo dropout [Abdar et al., 2021].

2.5 Evaluation metrics

In this section, we describe the most commonly used metrics to evaluate ML and

DL models. The input and output data are looked upon here as raster images

(a more conventional representation for DL algorithms). However, the described

metrics applied to evaluate ML algorithms that work with individual spatial points

and satellite features as tabular data.

2.5.1 Classification

To assess the per-pixel or region prediction quality of machine learning algorithms,

the following inputs are used:

1. per-pixel mask of the target classes, ground truth;

2. per-pixel predicted mask with target classes.

Masks are in the raster format; the value of pixels belonging to the background

is 0, and belonging to an object of the target class is 1 or more for a multiclass

case. Therefore, when we have only two classes (target class and background), the

mask has a Boolean representation. For instance, in the case of forest mask: areas

covered by forest vegetation are marked with value 1, areas of other types have label

0. To calculate the prediction quality, True Positive (TP ), False Positive (FP ), True

Negative (TN), and False Negative (FN) values are considered. True Positive is the

number of correctly classified pixels of a given class; False Positive is the number of

pixels classified as a given class while, in fact, being of another class; True Negative

is the number of correctly classified pixels of another class; False Negative is the

number of pixels of a given class, missed by the method. One can estimate the

model quality based on the ratio between correctly classified objects and all objects

representing the study area. This commonly used metric is Accuracy:
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Accuracy =
TP + TN

TP + FP + TN + FN
. (2.14)

To evaluate the performance of neural networks for semantic segmentation or

classical machine learning models, one can also apply F1-score, that is widely used

in RS tasks [Kattenborn et al., 2021a]. While the Accuracy metric is a good choice

in the case of balanced classes, the F1-score is capable of effectively assessing the

prediction quality for imbalanced classes. A high Accuracy score can be obtained for

highly imbalanced data by assigning the majority class’s label to all observations.

F1-score is computed using the following equations:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
,

F1 =
TP

TP + 1
2
(FP + FN)

=
2 ∗ Precision ∗Recall

Precision+Recall
.

(2.15)

Another popular metric for semantic segmentation tasks is IoU (intersect over

union). F1-score and IoU are positively correlated metrics. However, F1-score is

the harmonic mean, and IoU is closer to the minimum value between Precision and

Recall. The equation for IoU is

IoU =
TP

TP + FP + FN
=

Precision ∗Recall

Precision+Recall − Precision ∗Recall
. (2.16)

The area under the curve (AUC) from the receiver operating characteristic

(ROC) also helps to assess the quality of developed algorithms. True positive rate

(TPR) and False positive rate (FPR) are estimated in order to build the ROC curve

for different decision thresholds. We assume the model outputs certainty that the

object belongs to the positive class. Therefore, these thresholds determine objects

belonging to the positive class. AUC is the area for all possible decision thresholds

for TPR and FPR combinations. It shows the model ability to range predictions

correctly. TPR and FPR are computed using the following equations:

TPR =
TP

TP + FN
,FPR =

FP

FP + TN
. (2.17)
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2.5.2 Regression

One can distinguish the following metrics from the most common metrics in re-

gression tasks: Mean absolute error (MAE), Mean square error (MSE), Root mean

square error (RMSE), Coefficient of determination (R2), Mean absolute percentage

error (MAPE), Mean bias error (MBE). Although MAE, MSE, RMSE, and MAPE

aim to estimate how close the model prediction is to the actual values, they have

differences. Depending on the task, they can be effectively combined for deeper

model results analysis. Intuitive interpretation is indispensable for various practi-

cal forestry tasks. While MAE provides error in the original unit of measure of

actual target values, MAPE is commonly used to assess the error in percentages

for more straightforward competitive analysis. Comparing MAPE and MBE with

MAE, MSE, and RMSE, we can notice that only MAPE and MBE metrics take

into account the position of the actual target and predicted values, i.e., a switching

between these values leads to different results. MBE makes it possible to under-

stand the model tendency for under- or overestimation of the target values as it can

be both positive and negative. R2 shows the relation between the total variance

explained by the model and the total variance in actual target data. The metrics

are computed using the following equations:

MAE =

∑N
i=1|yi − ŷi|

N
, (2.18)

MSE =

∑N
i=1(yi − ŷi)

2

N
, (2.19)

RMSE =

√∑N
i=1(yi − ŷi)2

N
, (2.20)

MAPE =
100%

N

N∑
i=1

∣∣∣∣yi − ŷi
ŷi

∣∣∣∣, (2.21)

MBE =

∑N
i=1(ŷi − yi)

N
, (2.22)
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R2 = 1− SSres

SStot

= 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − yi)
2
, (2.23)

where ŷi is the predicted value of the ith object, yi is the true value of ith object,

N is the amount of objects (pixels), yi is the mean value for all objects, SSres is the

sum of residual squares, SStot is total sum of squares.

2.6 Forest mask estimation on the remote sensing

data

One of the initial steps in environmental studies based on RS data is the forest

mask estimation. One can extract the required vegetation properties within such

a mask, for instance, tree species, age, or canopy height. Another strongly related

task to forest mask estimation is the deforestation problem, as it directly affect

forest boundaries. The approaches to solve these two tasks are often quite similar.

Selection of optimal data type and algorithm should always take into account the

specifics of the problem to be solved. When ML methods are applied for these tasks

one usually considers the semantic segmentation problem. According to the study

requirements, different data sources can be used for this task. Therefore, both low,

medium, and high spatial resolutions cover various cases with their advantages and

disadvantages.

2.6.1 Use of data of different spatial resolution

Low spatial resolution

Low spatial resolution is recommended for regional and national assessments of forest

cover characteristics. One of the popular sources of such data is imagery of the

MODIS apparatus. Time series usage based on MODIS data with spatial resolution

of 500 m in pixels has been successfully implemented in [Hansen et al., 2008] to assess

changes in forest cover in Brazil. For the same task of vegetation changes monitoring

from MODIS images, the authors [Huang and Friedl, 2014] demonstrated accurate

results comparable to maps based on Landsat satellite data on a regional scale. The
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approach for rapid forest degradation assessment was proposed in [Morton et al.,

2005]. Another commonly used data source for vegetation monitoring is ALOS

PALSAR. In [Qin et al., 2015], it was proposed to use PALSAR radiometric data

with a spatial resolution of 50 m in combination with MODIS multi-temporal data

to get a forest cover map outside China.

Medium spatial resolution

Medium spatial resolution data are helpful for detailed forest mask segmentation.

High revisiting time, public availability of data, and spatial resolution of up to 10 m

per pixel make Sentinel-2 imagery a promising data source for many purposes such

as forest mask estimation. In [Fernandez-Carrillo et al., 2020], Sentinel-2 imagery

were used for assessing forest masks in Europe. Another source of multispectral

data for forest plots is Landsat imagery. The effectiveness of Landsat and Sentinel

imagery for forest degradation was demonstrated in [Mondal et al., 2020]. The use

of Sentinel-2 and Landsat data combination was recommended for tropical forest

disturbance estimation [Chen et al., 2021b]. In [Ganz et al., 2020], the authors

created a forest cover map for the territory of Germany and assessed the developed

approach by comparing the generated map with National forest inventory data.

It was shown that Sentinel-2 data provide an additional spectral information

enriching aerial photography data for better predictions. Illegal logging drastically

affects the state of the environment. Therefore, ERS is applied for operational mon-

itoring with the aim at recognizing and preventing illegal logging. Medium spatial

resolution satellite imagery is a suitable data source for logging detection because of

the extensive coverage areas and rapid revisit time. Studies on illegal logging recog-

nition using both multispectral and radar data were presented in [Pacheco-Pascagaza

et al., 2022, Bullock et al., 2022]. In [Khovratovich et al., 2020], the authors pro-

posed a method for forest logging detection in Russia based on Landsat imagery.

Time series are also considered in forest monitoring tasks on the medium spatial

resolution satellite data. In [Giannetti et al., 2021], time series based on Sentinel-2

imagery was used to assess the damage caused by a windstorms in Italy. Forest

degradation was also considered in [Fernandez-Carrillo et al., 2020]. For precise
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annual spatial distributions analysis, time series was implemented in [Zhang et al.,

2022b], where a robust mapping approach based on Sentinel-2 data was provided.

One can use open access maps and tools for vegetation area estimation and sup-

plementary materials extraction such as cloud masks. Sentinel-2 provides a pixel

classification map based on Level-1C data that includes the following classes: cloud,

cloud shadows, vegetation, soils/deserts, water, snow, etc. Spatial resolution of

scene classification map is 20m [SentinelHub]. Pan-European High-Resolution Lay-

ers (HRL) is another useful tool for environmental studies, in particular, for forest

cover estimation [Layers]. HRL is based on Sentinel-1 and Sentinel-2 satellite data.

Tree cover density, dominant leaf type, and forest-type products are available for

the reference year 2018 in 10m spatial resolution.

High spatial resolution

High spatial resolution data are helpful when a more detailed forest mask is re-

quired, including separation individual trees, small tree groups, and small plots in

a forest with meadows and tracks. In low or medium spatial resolution images, it is

impossible to recognize with a high accuracy such details as an individual tree: an

individual pixel covers an area exceeding 100 sq.m. To address this problem, one can

use satellite images of high spatial resolution: WorldView, Spot, RapidEye, Planet

(see Table 2.1). Mapping eucalypts trees were performed using high-resolution satel-

lite data in [Abutaleb et al., 2021], where WorldView-2 imagery usage provided a

better accuracy than Spot-7 multispectral data. In [Wagner et al., 2018], a method

based on satellite data of very high spatial resolution for allocating individual crowns

was proposed. A map with individual trees is helpful for detailed forest cover analy-

sis. To assess forest degradation and forest cover change, WorldView data were used

in [Wagner et al., 2020]. In [Aquino et al., 2021], an effective methodology was pro-

posed for detecting illegal logging on small plots for the forests of Peru and Gabon.

In [Zhang et al., 2021b], an approach using high-resolution data from RapidEye to

monitor land cover changes (and, in particular, forest areas) was put forward. The

deforestation problem was also considered using RapidEye data in [KWON et al.,

2021]. The high spatial and temporal resolution of Planet images were utilized with
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LiDAR measurements to create the model for estimating the top-of-canopy height

of tropical forests in Peru [Csillik et al., 2020]. Images obtained from PlanetScope

nanosatellite constellation were used to create a high resolution (1 m) map repre-

senting tree cover in African drylands [Reiner et al., 2021], where a possibility to

detect trees outside forests was shown.

Use of data from unmanned aerial vehicle

The very high spatial resolution provides a significantly better texture feature extrac-

tion than the medium spatial resolution. Therefore, unmanned aerial vehicle (UAV)

data are often used for environmental remote sensing studies. Masking the forest

with such data effectively used in assessing the state and environmental changes. To

evaluate the effect of forest fires, UAV data has been successfully applied in [Yeom

et al., 2019]. The approach was based on using only RGB channels and has been

tested for forest ecosystems in the Republic of Korea. In [Ocer et al., 2020], a

method for detecting and counting individual trees in images of different scales was

proposed. To detect individual trees, UAV data have been successfully applied to

mixed conifer forests [Mohan et al., 2017]. Combining data of various resolutions

and spectral ranges, one can enrich a dataset with valuable features and achieve

better prediction quality. In [Singh and Kushwaha, 2021], the authors proposed us-

ing UAV data and photogrammetry as part of the overall research methodology and

Sentinel-1 data to assess forest degradation. However, a severe drawback of UAV

data usage for large-scale studies is the time and cost-consuming of its collecting.

2.6.2 Computer vision algorithms for forest mask estima-

tion. Specifics and limitations of the approach

Vegetation indices based on satellite spectral channels were suggested in many stud-

ies. For example, a methodology for assessing forest degradation based on the LAI

index analysis using the MODIS data was given in [Richardson, 1981] almost 40

years ago. Since then, vegetation indexes have been used in various studies as a

simplest computer vision approach. In [Othman et al., 2018], the NDVI index the
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(normalized vegetation index) was shown as being applicable to the forest degrada-

tion assessing task for the tropical forests of Malaysia. A s ignificant drawback of

such approach was the requirement of a threshold choice for various satellite data,

environment conditions, and seasons. Therefore, its reliability cannot be sufficient

for precise analysis.

Classical machine learning methods are aimed at automatization of the forest

mapping process. It requires less labeled data and computing capacity to train a

model. Classical machine learning algorithms were compared in [Vega Isuhuaylas

et al., 2018] for land cover classes separation, including forest areas. The authors

reported better results for RF and SVM than for kNN. However, RF and SVM

showed close results, with AUC values 0.81 and 0.79. In [Xia et al., 2018b], the

SVM method, in combination with a submerged mangrove recognition index, was

proposed to map mangrove forests with an overall accuracy of 94%. In [Dabija

et al., 2021], SVM with an RBF kernel function outperformed the RF algorithm in

the CORINE land cover classification task. For forest area separation, an F1-score

was found to be larger than 0.9.

To solve the problem of forest mapping, one of the most common approaches

is based on deep learning methods, namely convolutional neural networks (CNNs).

The forest mask segmentation involves identification of the pixels belonging to a

forest class. It is an example of a binary semantic segmentation task. For forest

species classification (Section 2.7), the main difference is that a CNN predicts one of

several classes for each image pixel. The major advantage of using a CNN over clas-

sical machine learning methods is that it takes into account spatial characteristics.

When assessing a pixel label, CNN uses spectral information from the local area of

the processed image. This provides a more accurate estimation of forest masks due

to the forest spatial structure that the CNN also learns. The principal limitation

of deep learning methods is the need for a large amount of labeled data to train

the model. In addition, training neural networks usually requires a lot of time and

computing resources.

One of the widespread CNN architectures for forest mask segmentation is the

U-Net architecture. U-Net was implemented for very high spatial resolution in [Ko-
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rznikov et al., 2021]. For the medium spatial resolution of Sentinel-2 data (10 m per

pixel), a modified U-Net with attention mechanism shows high performance [John

and Zhang, 2022]. The authors declared the advantage of U-Net architecture versus

ResNet and FCN for experiments with different locations using RGB bands and

RGB plus NIR. An example of application and comparison of U-Net, DeepLabv3+,

FPN, PSPNet, and LinkNet architectures in Brazils Eucalyptus Forest mapping

task on medium spatial resolution data (Sentinel-2) was shown in [da Costa et al.,

2021]. The best result with IoU of 76.57 using DeepLabv3+ with the Efficient-net-b7

backbone was achieved.

To deal with limited labeled data and adjust CNN model performance, one

can apply transfer learning techniques. In transfer learning, the pre-trained model

is adopted for new tasks and data specificity. In [Ahmed et al., 2021], transfer

learning was used for forest mapping with subsequent fine-tuning of the model over

the target forest domain. The proposed approach enables one to extract features

from unlabeled data and using them for progressive unsupervised CNN training.

2.7 Forest-forming species classification on remote

sensing data

After estimation the tree cover area as a forest mask, the next important step

in forest taxation is determining tree species. This is especially relevant for large

territories and locations, which are challenging to access [Schepaschenko et al., 2021].

In terms of CV, achieving the goal of tree type classification is also based on the

solution of the image semantic segmentation task. Although the determination of

tree species includes mostly more than two classes, the approach remains the same.

Each image pixel needs to be labeled according to the class based on the test data

for the algorithm training.

The most commonly used metric for estimation of the quality of tree species

prediction from image data is the F1-score. Just as was described earlier in the

case of forest mask estimation, the evaluation of the F1-score is carried out for each

class individually. The closer the resulting value is to 1, the more similar are the
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prediction and reference labels.

2.7.1 Use of data of different spatial resolution

The use of the data of different resolutions is determined by the problem that needs

to be solved via the knowledge of the tree species composition across the area of

interest. In general, at different spatial resolutions, estimates of tree species compo-

sition may be required for purposes of mapping large and difficult-to-access areas for

biomass and carbon estimation [Grabska et al., 2020], to access succession trends

on disturbed regions for a better understanding of carbon accumulation patterns

[Reyes-Palomeque et al., 2021], to link climate effects with forest management ac-

tivities [Majasalmi et al., 2018], for tree mortality monitoring and capturing of its

patterns at different scales [Rogers et al., 2018, Koontz et al., 2021], and natural

and urban ecosystem assessment [Wang et al., 2018].

Low spatial resolution

Similarly to forest mask determination from low spatial resolution data, Terra

MODIS satellite imagery is a common choice of satellite data for forest species

classification. An approach to determining the dominant species using the MODIS

sensor data with calculation of vegetation indices from multi-temporal images was

proposed in [Waring et al., 2006]. Also, the use of low spatial resolution data for solv-

ing a similar problem was proposed in [Buermann et al., 2008], and [Fu et al., 2010].

However, it was shown that coarse-scale satellite data might not capture many of

the target processes, e.g., degradation development [Mondal et al., 2020], so recent

low-resolution data are often used for obtaining more general, aggregating character-

istics. Such information can be considered as a distribution of a set of unique surface

characteristics reflecting environmental conditions similarly, and mostly represented

by land cover type classification [Sulla-Menashe et al., 2019], temporal dynamics of

the distribution of derivatives such as vegetation indices [Cano et al., 2017], or plant

functional types [Srinet et al., 2020]. Combination of low spatial resolution data

with more detailed imagery, e.g., MODIS data together with Landsat satellite data,

as was shown in [Zhang et al., 2017], is a current trend.
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Medium spatial resolution

A more detailed forest species determination can be achieved using the data of

medium spatial resolution, for example, obtained from Landsat and Sentinel mis-

sions.

The authors in [Immitzer et al., 2016] suggested using Sentinel-2 data to iden-

tify tree species in central Europe. In [Wessel et al., 2018], an approach based on

a combination of ML algorithms was also presented for classification of tree species

in German forests. Another approach based on an application of linear discrimi-

nant analysis to medium spatial resolution images was proposed in [Mngadi et al.,

2021]. Sentinel-2 data was also proposed for solving the problem of identification

of forest species based on a series of images for different dates [Immitzer et al.,

2019]. In [Immitzer et al., 2019], the authors succeeded to increase overall accu-

racy from 72.9% to 85.7% by using of the multi-temporal analysis. Radar data can

adjust multispectral-based predictions, it was shown for Sentinel-1 and 2 data in

the task of forest and plantation mapping and stand ages prediction [Spracklen and

Spracklen, 2021]. For better understanding of forest properties and patterns, one

can use hyperspectral RS data. As an example, Hyperion instrument on board the

Earth Observing-1 (EO-1) spacecraft with 30 m spatial resolution provides 220 spec-

tral bands for diverse environmental studies. Forest properties can be also effectively

discriminated using the new hyperspectral Precursore IperSpettrale della Missione

Applicativa (PRISMA) sensor, launched in 2019 and providing spatial resolution of

30 m [Agency]. These hyperspectral data are also accompanied by 5 m panchro-

matic band. PRISMA data usage showed high results compared to Sentinel-2 for

forest categories classification [Vangi et al., 2021]. Although it is a promising RS

data source, there are at present a few studies considering its usage for vegetation

analysis compared to more conventional data such as Sentinel-1 and -2, Landsat-7

etc [Shaik et al., 2021].

High spatial resolution

High spatial resolution data allow one to operate not only with the spectral de-

scription of the object under study but also with its textural and spatial charac-
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teristics. For example, the WorldView-2 panchromatic channel with a resolution

of about 0.5 m (depending on the geographic latitude of the survey) can be ef-

fectively used to determine the shape of a tree crown. It in turn increases the

likelihood of correct classification of tree species. In addition to a more detailed

information from satellites providing high spatial resolution images, the possibility

of using time series, as in the case of data of lower spatial resolution, is also an ad-

vantage of the approach. For example, the authors in [He et al., 2019b] successfully

implemented multi-temporal WorldView images for forest hardwoods classification.

In [Ferreira et al., 2019], tree species were classified for tropical forests based on 16

high-resolution WorldView-3 bands. One of the advantages of the WorldView-3 mis-

sion is the new SWIR sensing capabilities. Mangrove species classification study was

conducted for WorldView-2 data in [Jiang et al., 2021], where the overall accuracy

95.89% was achieved. Although WorldView-2 and UAV data provided high results

individually, their combination allows one to extract the most relevant features for

classification.

Use of data from unmanned aerial vehicle

Hyperspectral and multispectral airborne images are known as a significant source

of data for determining forest inventory characteristics [Shinzato et al., 2016, Sothe

et al., 2019, Cao and Zhang, 2020]. The use of data-rich in both spectral and

spatial features can handle the recognition of multiple tree species even in the case

of complex terrain. Such approach provides an efficient classification on a small data

set in the presence of many classes. Also, it is often proposed to use a combination

of these data with LiDAR measurements [Zhang et al., 2020]. An example of multi-

copter UAVs with spatial resolution less than 2 cm was described in [Schiefer et al.,

2020]. The study area covered 51 ha in Germany, which was sufficient for the

representative analysis.
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2.7.2 Computer vision algorithms for classifying forest-forming

species types. Specifics and limitations of the ap-

proach

RF algorithm has demonstrated the ability to classify forest species, for example,

when obtaining a forest map in Wuhan, China [Liu et al., 2018]. The RF algorithm

can be used as part of a hierarchical tree type classification methodology. In the

first stage, it is possible to provide classification according to vegetative indices such

as NDVI and RBI (Ratio Blue Index), then classify forest areas and tree types using

RF. SVM is broadly used for forest type classification in [Cao et al., 2018, Sothe

et al., 2019]. A combination of LiDAR and hyperspectral data was used in [Yang

et al., 2019], where SVM outperformed other classical machine learning methods

with respect to the OA metric for species classification. However, in [Jiang et al.,

2021], better results were achieved for RF than for SVM algorithm, with the best

OA of 95.89% for species classification.

Both classical machine learning and deep learning algorithms can handle a single

image and a sequence of images covering the same region. For instance, in [Persson

et al., 2018a], all available images were combined to train an RF model and to

predict four forest species with OA of 88.2%. One of the limitations of using a series

of multispectral satellite images is the occurrence of cloud-contaminated images,

which can corrupt predictions.

Similarly to solving forest area segmentation tasks, deep learning methods (CNNs,

specifically) can be used for determination of forest species types. The main dif-

ference from the forest segmentation task is that several classes of pixels are pre-

dicted, corresponding to classes of tree species. We provide more details about the

adjustable parameters of neural networks and their features in Section 2.4. An es-

sential step in classification of tree species is determining the crown shape, for which

high spatial resolution images are needed. Thus, when working with high spatial

resolution images, a CNN makes it possible to create an optimal feature space that

characterizes various forms of crowns, leading to a more accurate classification. For

instance, in [Onishi and Ise, 2021], the developed CNN was shown as being capable
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of classifying tree species based on biological structures such as foliage shapes and

branching patterns. It is essential when just RGB bands are used, and different

forest species may have the same colors. Three of seven considered classes were

classified with OA over 90%. Due to very high spatial resolution of UAV, approach

was capable of individual tree mapping. In [Cao and Zhang, 2020], U-Net archi-

tecture was modified for forest species classification __combined U-Net with the

feature __ extraction network ResNet. The OA was equal to 87%, which is higher

than the initial model results. Another architecture improvement is described in [Qi

et al., 2022], where a class imbalance problem was addressed. The approach involves

jigsaw resampling strategy to create a balanced training dataset. New training sam-

ples with the size of 128*128 pixels are combined from smaller patches with the of

32*32 pixels where each small patch cover a single tree species. Proposed approach

improved the baseline from 66% to 80% (quality is measured as the proportion of

correctly classified pixels to total pixels). The high-resolution data provides sig-

nificant features for a CNN model and facilitates its accurate predictions when a

sufficient amount of data (over 51 ha with spatial resolution less than 2 cm) is avail-

able [Schiefer et al., 2020]. Different tile size and spatial resolution were examined.

It was shown, that large tile size is preferable in case of sufficient amount of training

data. The best model with optimal tile size and spatial resolution achieved OA of

89% and mean F1-score of 73%. It is also possible to use approaches that combine

data from several sources to provide better accuracy. RS images can be supple-

mented with phenological parameters and forest stand structure data. Although

such features can be extracted from forest inventory data, another approach is to

train a model to predict it.

2.8 Forest resources estimation on remote sensing

data

In this section, we discuss the following forest variables: aboveground biomass,

standing volume, growing stock. The definition of aboveground biomass (AGB) is

the aboveground standing dry mass of live or dead matter from tree or shrub (woody)
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life forms [Wilkes et al., 2018]. We refer to growing stock as "volume of living and

standing stems over a specified land area that includes the stem volumes from stump

height to the stem top and the bark but excludes the branches" [Gschwantner et al.,

2022]. The standing volume is defined as "the volume of standing trees, living or

dead, above stump measured over bark to the top. It includes all trees regardless of

diameter, tops of stems, large branches and dead trees lying on the ground which

can still be used for fibre or fuel" [NATIONS, 1992]. These variables have a strong

relationship and considered as quantity measurements of forest and its derivatives.

An assessment of forest resources helps to effectively determine the forest carbon

stock. Therefore, such forest attributes estimation using RS data is an important

area of machine learning methods application.

The problem of aboveground biomass, timber volume, and growing stock esti-

mation is often solved as a regression problem in the following way. The regression

task for RS data is a machine learning task, where the model is trained to assign

some real value to each pixel of the resulting digital map of the target territory. A

machine learning model uses a training set to determine the relationship between

the feature description of objects and the target value. Thus, just as in the se-

mantic segmentation problem, the ground truth image with the reference markup

is used. During the training procedure, a model reduces the difference between the

prediction and the reference values according to the chosen quality metric.

2.8.1 Use of data of different spatial resolution

Low spatial resolution

To obtain timber volume estimation on a large scale, it is often proposed to use

MODIS sensor data. Approaches for determination of forest biomass are presented

in [Fu et al., 2019, Zhang et al., 2019c, Gao et al., 2020a]. The data effectiveness was

verified for regional changes monitoring and supplemented forest inventory data for

ecological assessment. Despite the possibility of a large spatial coverage supported

by this approach, for some practical problems, more detailed maps are required.

Therefore, one can consider higher spatial resolution data.
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Medium spatial resolution

When it is necessary to estimate timber volume over a large area with greater details,

a common choice of RS data is medium spatial resolution. For example, this type

of data can be received from Sentinel and Landsat satellites. The potential of using

Sentinel-2 data to determine growing stock volume for the territory of Italy was

demonstrated in [Mura et al., 2018] where the prediction quality based on Sentinel-

2 data was shown to be better than that for Landsat images in 37.5% of cases and

for RapidEye images in 62.5% of cases, even though the resolution of the RapidEye

satellite is significantly higher than that of Sentinel-2. In [Rees et al., 2021], Sentinel-

2 data was shown as being capable of determining growing stock volume in Russia.

Also, Sentinel images were used in [Nink et al., 2015] to map the timber volume

in the coniferous forests of Norway. The relevance of using these data was also

confirmed in other works on determining the biomass and stock volume in various

territories [Malhi et al., 2022] and [Hu et al., 2020].

Another useful instrument for environmental analysis that deserves additional

consideration is the Global Ecosystem Dynamics Investigation (GEDI). It is the

first spaceborne lidar with a footprint resolution of 25 m. One of its goal is to

provide a better understanding of the aboveground carbon balance of the tropical

and temperate forests [Dubayah et al., 2020]. It can accompany other RS data for

enhanced biomass mapping and help to estimate aboveground carbon change.

High spatial resolution

Commonly, high spatial resolution data is used when it is required to estimate

timber volume down to a single tree. In the actual studies on this topic, it is

recommended to use WorldView satellite images with a resolution of about 2 m

for a spectral range of channels from 396 nm to 1043 nm and sub-meter resolution

for the panchromatic channel. An example of using WorldView-2 stereo images

was demonstrated in [Straub et al., 2013], where high-resolution data and LiDAR

measurements were compared in the problem of assessing the timber stock for the

forest area in Germany. In [Vastaranta et al., 2018], panchromatic WorldView-2

stereo-imagery is considered together with a digital elevation model derived from
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airborne laser scanning. Using WorldView imagery for different geographic regions

was also confirmed by a study of Turkish forests in [Günlü et al., 2021]. Forest

standing biomass was estimated and used to assess forest productivity in [Dube et al.,

2018] based on WorldView-2 data. The authors evaluated the importance of different

bands and vegetation indices and highlighted the Red-edge band significance. Spot-5

is another source of high-resolution data for aboveground biomass estimation [Muhd-

Ekhzarizal et al., 2018].

Use of data from unmanned aerial vehicle

UAV data are selected for land cover surveys in cases where very detailed timber

volume estimation is required. The use of UAVs makes it possible to analyze the

characteristics of an individual tree by constructing a more informative feature de-

scription of the vegetation cover with a resolution of up to several centimeters per

pixel. The approach to determining the timber volume based on UAV images and

photogrammetry was tested with success in [Gülci et al., 2021]. One well-established

approach to forest growing stock volume estimation is based on using satellite im-

agery in combination with UAV data [Puliti et al., 2018]. This approach’s advantage

is combining the spectral features obtained from the satellite with highly detailed

textural features. In [Puliti et al., 2020b], an approach to replace ground-based

measurements for growing stock volume estimation with UAV data was used with

good results. At the same time, ground-based measurement data were used in this

research only to assess the quality of algorithm predictions. In [Tuominen et al.,

2017], data with spatial resolution of less than 10 cm per pixel were used to deter-

mine the stand volume. In [Hernando et al., 2019], images with the same spatial

resolution were used to estimate forest biomass. It was presented the effective use

of UAV data for tree stem assessment in [Hyyppä et al., 2020], [Iizuka et al., 2020],

and [Yrttimaa et al., 2020]. Not only images can be used for forest analysis. Point

cloud obtained from UAV can also be considered in voxel-based representation for

further computer vision algorithms application, as shown in [Hyyppä et al., 2020].

In [Iizuka et al., 2020], dense points cloud derived from multicopter is used to ex-

tract significant characteristics for stem volume prediction using machine learning
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algorithms. For instance, they estimated the height of the forested area by subtract-

ing the digital terrain model (DTM) from the digital surface model (DSM). DTM

was obtained from terrestrial laser scanning, while an unmanned aerial system was

utilized to get DSM.

Although UAV provides very-high resolution data, one of the significant limita-

tions of UAV-based approaches compared to satellite data is the relative laborious-

ness of obtaining such data on extensive areas.

2.8.2 Computer vision algorithms for the task of forest re-

sources estimation. Specifics and limitations of the

approach

In many studies, it was demonstrated the effectiveness of the linear regression algo-

rithm in the problem of timber stock evaluation. The advantage of this approach

is the ease of implementation and use. In addition, an important characteristic is

the interpretability of the results. The work [Popescu et al., 2003] proposed to use

linear regression to estimate the diameter of tree crowns from UAV data. An ap-

proach based on multiple linear regression was presented in [Hawryło and Wężyk,

2018]. The described method makes it possible to determine the stock of planta-

tions on pine plots using Sentinel-2 images and aerial photography data. Different

RS data sources and spatial resolution make it important to preserve the same data

georeference. Ground Control Points (GCPs) were used to calculate UAV’s camera

orientation and set a correct georeferencing. Prediction of growing stock using a

linear regression algorithm based on Landsat-7 images is demonstrated in [Moham-

madi et al., 2011]. Both vegetation indices and linear regression were implemented

in [Muhd-Ekhzarizal et al., 2018].

It is also proposed to use the Random forest regression (RFR) algorithm for

timber stock estimation. The approach based on ultra-high spatial resolution data

is described in [Iizuka et al., 2020], where various RS measurements were considered.

The methodology includes a stratified random sampling of training examples and

algorithm parameter optimization. The parameters used in the RFR algorithm are
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described in more detail in Section 2.4. Besides the problem of determining the

stock of wood, the problem of estimating the stock of carbon can be also directly

solved using RS data and RFR algorithm. This approach was tested for mangrove

forests in [Li et al., 2019b]. In this research, various forest cover characteristics were

used to assess the stock: tree species, height, and textural features. Vegetation

indices based on UAV spectral data were also used to form the feature space. The

most significant features were selected based on the Boruta algorithm [Jayathunga

et al., 2019]. It is also important for UAV-derived multispectral data to conduct

a reflectance calibration of cameras to support accurate temporal analyses because

digital numbers are affected by the atmospheric and illumination conditions and

cannot be considered as quantitative values [Crusiol et al., 2020].

SVR is another relevant approach for stem volume estimation [Iizuka et al.,

2020]. An approach for biomass estimation using the SVR algorithm with a radial

basis function (RBF) kernel was proposed in [Navarro et al., 2019]. As it was shown

earlier in Section 2.4, it is important to find the optimal parameters of the algorithm,

which can have a significant effect on the final accuracy. In [Navarro et al., 2019], the

kernel parameters were selected using the grid search method. The feature space

was formed based on various RS data sources: Sentinel-1 radar data, Sentinel-2

multispectral images with 10 vegetation indices obtained on their basis, and UAV

photogrammetry data. The use of the SVR algorithm for biomass estimation was

also proposed and showed effective in other studies [Gleason and Im, 2012, Shao and

Zhang, 2016].

Above-ground biomass estimation with the use of CNNs was examined in [Dong

et al., 2020]. The prediction results, as measured by R2, were found to be equal

to 0.943. The aboveground carbon density of forests can be estimated directly

using RS data and a CNN model, as was demonstrated in [Zhang et al., 2022a],

where a CNN model was shown to perform better than classical machine learning

algorithms. In [Balazs et al., 2022], a CNN-based approach yields RMSE of 20.3%

for the volume of growing stock estimation using airborne laser scanning. Although

CNN is highly promising for such studies, no strong difference between the k-NN

and CNN performance was observed. It was suggested that additional data should
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be utilized to reveal the full potential of CNN models.

For more accurate growing stock volume estimation on the limited dataset size,

a deep neural network with transfer learning was implemented in [Astola et al.,

2021]; this approach allowed the authors to minimize the amount of ground-based

measurements over different areas in Finland.

2.9 Discussion

Based on the current trends in development of satellite imagery and data processing

algorithms, we expect the following trends in this domain. First of all, more avail-

ability of high quality data and build-in services for data processing that are provided

by the space companies. This data will be easy to use even for inexperienced users.

Satellite constellations will have better revisit time and coverage allowing near real

time observation of ground cover. Also high resolution multispectral imagery will be

wider applicable, giving important information about investigated objects including

forests. Developments of special augmentation techniques and few short learning

algorithms will allow us to detect and make quantitative assessment of rare ground

objects and events. In this section, we provide more details about current limitations

and future works.

2.9.1 Forest carbon disturbing events

Improved forest management in terms of carbon offsetting is based on carbon se-

questration from the atmosphere. Precisely, it means the storage on a long-time

basis of more carbon compared to the regional baseline in the ecosystem considering

land-use practices, maintaining existing forests, and increasing total forest coverage,

while decreasing mortality [vonHedemann et al., 2020, Kaarakka et al., 2021]. On

both large scales and in the case of small forest landowners and land rent, this means

enhancing carbon pools, thereby reducing emissions caused by different processes of

GHG into the atmosphere. At the same time, the above-ground biomass of living

trees is considered the most dynamic carbon pool affected by the plethora of factors

of distinct nature [Fahey et al., 2010]. Such forest carbon disturbing factors include

61



Chapter 2. Literature review 2.9. Discussion

the development of areas inundated with water and changes related to them and

soil hydrologic cycle in general [Cooper et al., 2019], the occurrence of deadwood

due to the influence of biotic and abiotic events [Seibold et al., 2021], wildfires and

harvesting [Kirdyanov et al., 2020, Anderegg et al., 2020]. Detection, attribution,

and monitoring of such occurrences can be covered using RS techniques. In this

way, CV approaches should also be considered for fully and semi-automated solu-

tions development, while a wide range of stakeholders can use such solutions to plan

and implement climate change mitigation strategies based on nature preservation

actions.

Studying flooded areas in terms of CV is accompanied by multi-challenging tasks.

Among the majors ones we mention the following tasks: detection of flooded terri-

tories themselves and changes catching [Ballanti et al., 2017]; distinction between

different types and classes of flooded lands [DeLancey et al., 2019]; estimation of

biomass and potential to CO2 sequestration [Dronova et al., 2021]; fusion of data of

different domains to catch emission patterns and enhance accounting [Bansal et al.,

2018, Gerlein-Safdi et al., 2021]. Such research is based on the solution of segmen-

tation and classification tasks. Broad range of tools for these tasks involves con-

ventional unsupervised and supervised ML algorithms such as RF, SVM, XGBoost,

random walker segmentation, different types of neural networks (mostly deep CNNs)

variations of edge detection, and others. In [Rezaee et al., 2018], the performance of

CNN, AlexNet was compared with classic RF to distinct and map different wetland

types, including bog, fen, marsh, swamp, and also shallow water, and deep water

along with urban areas and upland. In this study, RapidEye multispectral imagery

and a small number of input features were used. CNN was shown to overperform

RF, catching both the dominant wetland classes and detailed spatial distribution of

all studied land cover classes, with showed overall accuracy and Kappa coefficient

of 94.82 % and 0.93, respectively. In [Mahdianpari et al., 2020], RF, as declared a

computationally efficient and easily adjustable algorithm, was applied to multi-year

summer composites of Sentinel-1 and Sentinel-2 images. Wetland spatial distribu-

tion was mapped, considering wetland classes across Canada, covering an area of

approximately one billion hectares. The model accuracy varied from 74% to 84% in
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different territories.

Similarly to wetland research, studying and monitoring wildfire events are com-

prehensive and consist of the following main aspects: early fire and smoke detection;

estimation of fire severity and spread; fire behavior analysis and prediction; detec-

tion and estimation of post-fire territories. Forest fires are extremely hazardous to

both natural ecosystems and humans, destroying habitat areas, negatively affecting

agriculture, and accompanying significant emissions of retained carbon. Thus, re-

lated monitoring and detection technologies are rapidly developing, so, for instance,

several satellites with low spatial resolution but short revisiting time already have

fire detection sensors onboard [Jain et al., 2020, Bouguettaya et al., 2022]. Combi-

nation of UAV-based RS with CV techniques, based explicitly on CNN, including

previously discussed architectures such as U-Net, DeepLab, and other deep learning

architectures such as, e.g., GAN, LSTM, is an effective tool for wildfire monitor-

ing. It is extremely useful for firefighting actions and capable of catching early fire

in reduced time and more safely, comparing with ground inspections [Bouguettaya

et al., 2022]. Such solutions can provide real-time monitoring but require powerful

hardware. An original Burnt-Net inspired by U-Net architecture was used for the

development of an end-to-end solution for post-fire tracking and management. It was

utilized to map burned areas on Sentinel-2 images across different countries, includ-

ing Cyprus, Turkey, Greece, France, Portugal, and Spain, showing high robustness

and mean accuracy of more than 97% by overall accuracy [Seydi et al., 2022]. In

[Brown et al., 2018], Maximum Likelihood, SVMs classifiers, and two multi-index

methods were compared for mapping burnt area. Burn severity was also assessed

using SVMs and one hidden-layer NN on Sentinel 1,2 images on the study location

in Portugal. According to the results obtained, SVMs showed the highest accuracy

for both burnt area mapping and burn severity levels estimation, with achieved an

overall accuracy of 94.8% and 77.9%, respectively.

Deadwood represents essential carbon stock while simultaneously a significant

contributor to carbon dioxide emission and one of the major forest biodiversity loci

[Bujoczek et al., 2021]. The development of deadwood can be a consequence of the

natural course of things or triggered by biotic and abiotic factors such as pest or
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pathogen outbreaks, changes in hydrologic regime due to climatic shifts, and wind-

storms [Karelin et al., 2017, Cours et al., 2021]. Numerous studies are dedicated to

find a difference between target object (deadwood occurred due to a specific reason)

and other nontarget objects, or, for example, between damaged trees at different

stages of factor influence, existing together and displaying similar spectral signa-

tures [Safonova et al., 2019, Zielewska-Büttner et al., 2020]. For instance, in [Esse

et al., 2022], it is recommended to apply Neural Net with standard backpropaga-

tion and SVM among other supervised approaches for the deadwood detection in the

case of Chilean Central-Patagonian Forests using high-resolution multi-spectral data

(RGB+NIR) with best algorithm performance of 98%. In [Briechle et al., 2021], an

approach based on CNNs fusion of Lidar and multispectral data was applied for 3-D

tree type classification along with dead trees, showing overall accuracy of more than

90% for all classes. At the same time, it was noted that the use of lidar-based data

slightly increased the overall accuracy. The proposed comprehensive solution facil-

itates fast model convergence, as was pointed out even for datasets with a limited

number of samples due to the applied transfer learning technique.

2.9.2 Data and labeling limitations

Training an accurate and robust computer vision model requires representative data

that cover many possible scenes and are obtained under different illumination con-

ditions. Training models with many parameters on non-representative dataset with

low number of samples could lead to model overfitting. The use of models with small

parameters that could be trained on a small member of parameters does not allow

one to obtain acceptable accuracy and generalization. For a recent comprehensive

analysis of overfitting and underfitting reasons in machine learning applications for

different domains, see [Roelofs et al., 2019].

Computer vision models for processing RS data are not an exception. A large

amount of well-annotated spatial data is required to train algorithms [Pasquarella

et al., 2018]. Moreover, there are many additional issues that appear due to the

complexity of the data collection procedure. It is difficult and time-consuming to

collect and directly label the amount of representative RS data. The principal im-

64



Chapter 2. Literature review 2.9. Discussion

pediments are weather conditions (clouds) and satellite (sensor) revisit time [Notti

et al., 2018], [Misra et al., 2020]. Thus, expanding the dataset with additional

useful and reasonable data is vital. One way to solve this problem is to generate

image samples from the obtained data. The most common approach for generating

new image samples is augmentation. Several typical augmentation approaches are

widely used in different domains, starting from classical augmentations, which in-

clude geometrical, and color augmentations, and finishing with application of ML

techniques for augmentation [Buslaev et al., 2020a]. Nevertheless, new approaches

are in high demand and still appearing [Khalifa et al., 2021]. However, there are

many restrictions in applying augmentation techniques for RS data because images

may have a complex structure [Sun et al., 2021]. For example, the relative locations

of objects should be meaningful after the creation of the new image sample. That is

why it is important to carefully tune the parameters of augmentation when apply-

ing even standard augmentations carefully. However, there are some new advanced

augmentation approaches that take into account the specifics of RS domain.

The other limitation in the use of RS data in computer vision models is the

involved labeling procedure. Only an expert can create a precise manual markup

with vegetation characteristics based on these images (distinguish forest species, age,

etc.). Ground-based measurements also have particular limitations. For instance,

forest inventory data can be out of date. It also has some specificity in its organi-

zation. Information is often available for individual stands that are not necessarily

homogeneous. Therefore, the dominant forest species (and other characteristics)

are estimated in various tasks. It leads to some mismatches in training data. As a

result, CV methods in environmental studies aim to work with invalid markup in

particular cases. It is essential to develop a methodology for automatic improvement

of RS data labeling. One popular approach is the weakly supervised learning, which

is considered a fundamental problem in machine learning [Ahn et al., 2019b]. For

land cover mapping and, in particular, forest areas, weakly supervised segmentation

was suggested in [Schmitt et al., 2020]. In [Tang et al., 2021], the problem of weakly

supervised pixel-level mapping to predict tree species was addressed.

To address spatial and temporal limitations in concrete environmental and forestry
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tasks, a combination of Sentinel-2 and Sentinel-3 data can be used. In [Guzinski

et al., 2020], it was applied for evapotranspiration estimation. Although, there is

a high importance of thermal features obtained from Sentinel-3, their spatial res-

olution requires adjustment. Sharpened high-resolution thermal data usage was

suggested as a promising approach for environmental studies.

Particular uncertainty in data for forestry tasks is connected with markup ac-

quisition. This process requires field measurements that are conducted according to

special regulations. The way how data are obtained affects the model performance

and the expected range of errors. Therefore, it is crucial to understand the origin

of the used data for forestry tasks. In the Russian forestry regulation, three main

forest taxation categories are considered. The first category contains forest stands

with a total area approximately from 3 to 15 ha. The second and the third forest

inventory categories consider stands with areas from 16 to 35 ha and from 100 to

150 ha, respectively. There are different approaches for inventory data retrieval such

as eye-measuring, eye-measuring and enumerating, aerial image interpretation. The

more accurate taxation approaches are applied for territories with rapid forest ex-

ploitation. Each forest inventory category has an acceptable measurement error for

the further data usage in forestry management events.

2.9.3 Visual transformers as state-of-the-art CV algorithms

relevant for forest taxation problem

Visual transformer-based approaches, which have appeared relatively recently, have

also been used for dealing with problems of classification on environmental RS

data [Bazi et al., 2021, Zhang et al., 2021a] and change detection [Chen et al.,

2021a]. These approaches can also be applied to forest characteristics assessment.

Transformer approaches are currently the most advanced models. These approaches

use multi-purpose attention mechanisms as the main building block for obtaining

long-term contextual information and links between pixels in images rather than

standard layers. In the first step, the analyzed images are divided into groups

and then transformed into a sequence by constructing a new feature space. The
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resulting sequence is then fed to several attention layers to form the final new pre-

sentation. The first sequence of tokens is used in the classification layer at the

classification stage. The detailed description of self-attention mechanisms and pre-

training procedures in visual transformers are described in [Khan et al., 2022]. One

of the essential advantages of transformers is the possibility of compressing the

network and removing half of the layers while remaining sufficiently accurate clas-

sification [Bazi et al., 2021]. Experimental results from various environmental RS

data image datasets [Bazi et al., 2021, Zhang et al., 2021a, Chen et al., 2021a]

demonstrate the potency of transformers compared to other methods.

2.10 Conclusion

The present survey discusses the key aspects of forestry analysis based on RS data

and computer vision techniques. The study was focused on the particular forestry

problems such as estimation of forested areas, tree species classification, and forest

resources evaluation. These tasks are highly valuable for meaningful environmental

analysis involving carbon stock monitoring and global climate changes. In these

tasks, we aimed to emphasize both algorithms and data importance. Although var-

ious satellite missions and UAV-based approaches support effective solutions, the

main current limitation is a lack of high-quality reference data for artificial intelli-

gence algorithms. Also, it has been shown that data source and algorithm choice

strongly depend on the objective of the study, as temporal/spatial resolution and

cost may vary drastically. For large-scale analysis, satellite-based approaches are

more preferable because of broader coverage, while for more detailed measurements,

UAV-based approaches allow one to achieve the required results. Various RS data

combination and advanced computer vision techniques such as few-shot learning,

transfer learning, weakly supervised learning, visual transformers, augmentations

techniques show promising perspectives for further environmental studies. At the

same time, physical nature of the observed environmental objects should be taken

into account both during the data acquisition, processing for computer vision algo-

rithms, or vegetation indices implementation.
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Chapter 3

Augmentation-based Methodology

for Enhancement of Trees Map

Detalization on a Large Scale

3.1 Introduction

Artificial intelligence has already been successfully applied to solve various practical

problems, in particular tasks related to the automatization of sensing processes and

increasing their precision [Cheng and Yu, 2020, Shan et al., 2021]. With the ap-

pearance of new technologies that allow high-quality imaging data to be obtained,

the amount of collected imaging data has increased; this leads to demands for the

development of effective tools for image data processing. One of the industrial and

scientific domains that requires such tools is remote sensing [Yu et al., 2021, Angelini

et al., 2017]. Remote sensing data is widely used in various environmental studies

that include measuring of the carbon footprint, for which it is crucial to obtain

precise forest masks, boundaries of agriculture fields, type of crops, etc. Computer

vision algorithms, in particular convolutional neural networks (CNN), can automat-

ically process this data. The vital information such as environmental and vegetation

state [Kattenborn et al., 2021b], forest inventory characteristics [Illarionova et al.,

2020], and agriculture crop yield [Nevavuori et al., 2019] can be effectively extracted

by CNNs. Commonly, the first step in environmental studies is obtaining forest
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masks [Hirschmugl et al., 2020, Li et al., 2020a]. The existing satellite-based ap-

proaches for obtaining forest masks work well for vast territories where it is not

important to detect and quantify small details. The usual spatial resolution for

open-access landcover maps is more than 10 m [Malinowski et al., 2020]. Using such

datasets, it is possible to create forest masks with sufficient accuracy on a large scale

and make an adequate assessments of forest reserves. However, current approaches

usually are not intended to detect small details such as individual trees, groups of

trees, or meadows. Moreover, commonly used metrics for accuracy assessment of

automatically generated forest masks do not take into account these small details

in an adequate manner, for the following reason. Separate trees or groups of trees

represent a tiny proportion of the target forest class, which is why the impact of

detection accuracy for small objects on the overall metrics is low. Thus, a high

prediction score for the entire territory does not necessarily mean high performance

on small details.

For particular tasks, it is essential to obtain a detailed forest mask that ap-

proximates areas of forest. One such task is the monitoring of protected zones or

natural reserves, where the territory of interest is too narrow and each small group

of trees has to be taken into account [Flores-Martínez et al., 2019, Thomas et al.,

2021]. In [Malkoç et al., 2021], the authors showed the importance of trees outside

forests for ecosystem functions and ways to improve assessments based on aerial

stereo images. In such cases, unmanned aerial vehicles (UAV) or aerial photog-

raphy are usually used to obtain higher detail [Qiu et al., 2018]. Obtaining the

detailed forest mask on large scales is quite a challenging task, and it is common

to merge data with different resolutions and from different sources [DAmico et al.,

2021]. The main limitation of the UAV-based approach is its cost and the difficulty

of its implementation for vast territories on a country-wide scale [Otero et al., 2018].

Another datasource is satellite imagery with high spatial resolution, such as World-

View, Spot, RapidEye, and Planet. These data sources are often used to detect the

crown of individual trees, which in turn can be considered in a detailed forest mask.

WorldView images were used for forest cover estimation in [Karlson et al., 2014,

Wagner et al., 2020], while RapidEye data were considered in [Marx and Tetteh,
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2017, Miettinen et al., 2014]. However, these data are more expensive than low or

medium spatial resolution satellite images.

The example of low resolution data for making large scale estimations of for-

est masks is described in [Hansen et al., 2008], where the authors used image

data collected by the MODIS mission, which has a resolution of 250 m [mod, Ac-

cessed: 20 November 2021] (Moderate Resolution Imaging Spectroradiometer). Us-

ing a medium resolution (10–30 m) is most frequent because of the availability of

open-access data and comprehensive frameworks for data processing. For example,

in [Fernandez-Carrillo et al., 2019] the authors show an approach for forest mask cre-

ation over European forests using optical Sentinel-2 data. In [Mondal et al., 2020],

the authors monitor forest degradation in South Asian forest ecosystems by imple-

menting Sentinel-2 and Landsat imagery. Deforestation monitoring tasks using data

from Sentinel-1, PALSAR-2 and Landsat data are discussed in [Reiche et al., 2018].

The data fusion and preprocessing techniques for aerial and Sentinel-2 data are

shown in [Ganz et al., 2020], where the authors calculated the forest cover map for

German territory and showed the accuracy of their proposed method by comparison

with National forest inventory data. One major problem is deforestation connected

to illegal logging. In [Pałaś and Zawadzki, 2020, Bragagnolo et al., 2021], the authors

propose and validate approaches for deforestation monitoring using Sentinel-2 data.

A time series of images can be used for environmental monitoring and planning of

sustainable management. In [Chen et al., 2017a], the authors showed the potential

of using, time series of Landsat and Sentinel-1A SAR images to identify and map

mangrove forests. Time series of images can be used to detect forest degradation

caused by natural reasons, anthropogenically-influenced climate change, damage by

insects, etc. [Fernandez-Carrillo et al., 2020].

Machine learning models depend drastically on the data quality and its amount.

In many cases, using more data allows the model to reveal hidden patterns deeper

and achieve better prediction accuracy [Sun et al., 2017]. However, gathering of

a high-quality labeled dataset is a time-consuming and expensive process [Paton,

2019]. Moreover, it is not always possible to obtain additional data: in many tasks,

unique or rare objects are considered [Nesteruk et al., 2021] or access to the ob-
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jects is restricted [Huang et al., 2019b]. In other tasks, we should gather data

rapidly [Shadrin et al., 2020]. The following tasks are among such challenges: oper-

ational damage assessment in emergency situations [Novikov et al., 2018], medical

image classification [Masquelin et al., 2021]. There are different approaches to ad-

dress dataset limitations: pseudo labeling, special architectures development, trans-

fer learning [Barz and Denzler, 2020, Bullock et al., 2019, Ng et al., 2015, Zhang

et al., 2015]. Another standard method to address this issue is image augmentation.

Augmentation means applying transformations (such as flip, rotate, scale, change

brightness and contrast) to the original images to increase useful samples that allow

training more robust algorithms [Buslaev et al., 2020b].

The lack of labeled data for particular remote sensing tasks makes it crucial

to generate more training samples artificially and prevent overfitting [Zhu et al.,

2017b]. Data augmentation is especially important to enhance the efficiency of deep

learning applications in remote sensing [Ma et al., 2019]. This work aims to pro-

pose an object-based augmentation (OBA) pipeline for the semantic segmentation

task that works with high-resolution georeferenced satellite images. Naming our

augmentation methodology object-based augmentation (OBA), we imply that this

technique targets separate objects instead of whole images. The idea behind the ap-

proach is to crop objects from original images using their masks and pasting them

to a new background. This method is studied in the general domain [Ghiasi et al.,

2021, Zhou, 2019, Zoph et al., 2020], but we are the first to study its effectiveness in

remote sensing applications. For this purpose, we adopt the method to work with

geospatial data formats and experiment with case-specific features (such as objects’

shadows and large study area size). In our approach, every object and background

can be augmented independently to increase the variability of training images; shad-

ows for pasted objects also can be added artificially. We show that our approach is

superior to the classic image-based methods in the remote sensing domain despite

its simplicity. In [Illarionova et al., 2021b], we have previously shown this approach

application for the building segmentation task, while in present Chapter, we focus

on the OBA technique application for the forest mask estimation.

In this study, we propose a neural network-based approach for predicting the
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detailed forest mask using Basemap RGB images. We use a small dataset with

detailed labelling of individual trees to fine-tune a CNN model that was initially

trained on a large dataset with less accurate labels (masks) for individual trees or

groups of trees. The novelty of our study includes the implementation of the OBA

technique for new training sample generation. This approach increases the amount of

training data significantly and allows for the creation of physically meaningful data

samples, which is important in remote sensing data analysis. The main contributions

of this study are:

• We propose a novel for remote sensing domain simple and efficient augmenta-

tion scheme called OBA that improves CNN model generalization for satellite

images;

• We propose and validate a pipeline for detailed forest mask segmentation

using CNN;

• We provide an open-access tool for detailed forest mask segmentation that

can be used for environmental studies, which is available in an SAAS platform

through the link provided [Mapflow.ai, Accessed: 10 Febuary 2022].

The Chapter is organized as follows: Section 3.2 describes the characteristics

of the datasets used in the present study and the methodology of the proposed

solution and validation approach; Section 3.3 shows the obtained detailed tree maps

and compares them with the baseline maps; Section 3.4 presents concluding remarks

and plans for the possible future development of the developed methodology.

This research of forest mask begins the Thesis as a preliminary study for forest

characteristics extraction. To define more specific forest properties, an exact forest

area is required. This study can be considered independently for various environ-

mental tasks or can accompany the methods described in the next Chapters.

3.2 Materials and Methods

In this study, we considered two datasets. The first was large and lacking in precision

markup for small details, while the second represented a smaller area with each
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individual tree presented in markup.

3.2.1 Large Dataset

For the large dataset, we collected data covering more than 500.000 hectares. The study

area was located in the Republic of Tatarstan, Russia. There were about 45%

hectares of forest and 65% hectares covered by other landcover types (lawns, fields,

etc.) and manmade objects (roads and buildings). We used a cloud-free composite

orthophotomap provided by mapbox [Mapbox, Accessed: 2020-06-17] via tile-based

map service. The imagery was derived from different satellite images obtained by

the WorldView satellites series, consisting of three pansharpened spectral channels

(RGB). The spatial resolution was about 0.5 m per pixel, depending on the observa-

tion latitude. All images were taken during the summer period in 2018. The manual

markup for this region was produced based on the aforementioned images. It was

first presented in a vector GEOJSON format (as polygons coordinates), then con-

verted into georeferenced rasters (binary masks) with spatial resolutions equal to

the satellite data resolution. The study area was split into training, validation,

and testing regions at a respective proportion of 70%, 15%, 15%.

3.2.2 Detailed Small Dataset

We used a high-quality small dataset with precision individual tree masks for an

area in Dagestan, Russia. The environmental conditions differ from the large dataset

territory in that sandy surfaces partially cover the area. The manual markup was

performed for satellite images from the mapbox basemap service, with an acquisition

date in the summer period of the 2020. The spatial resolution properties of satellite

images were the same as for the large dataset. The entire area was 4.000 hectares,

of which approximately 40% was forest cover. The final forest mask was presented

in both raster (binary mask) and vector (polygon coordinates) format. The number

of individual trees in the training dataset with an area smaller than 300 pixels was

6387. The test area included more than 2000 individual trees. Each subset was

represented by the individual image and area.
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Figure 3-1: Proposed pipeline for CNN model training.

Our solution for forest segmentation included two consecutive steps, which are

shown in Figure 3-1. The first was model training on the large dataset in order

to learn important feature representation. Then, the model was fine-tuned on the

smaller and more detailed dataset that was preprocessed with an object-based aug-

mentation technique.

3.2.3 Baseline Forest Segmentation

For the baseline forest segmentation, we used a large dataset. Training samples were

cropped randomly from the entire study territory. Standard color and geometrical

transformations (random rotation, brightness, contrast, saturation adjustment, etc.)

were implemented for each sample. A neural network was trained to identify pixels

belonging to the class “forest” by minimizing the binary cross-entropy loss function

L(y, ŷ) = − 1

N

N∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi), (3.1)

where N is the number of target mask pixels, y is the target mask, and ŷ is the

model prediction. For the baseline forest segmentation we used the following imple-
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mentations of the CNNs: UNet [Ronneberger et al., 2015], FPN [Lin et al., 2017],

and DeepLab [Chen et al., 2017b]. The details of CNN training are discussed in

Section 3.2.6. Model implementation was based on the repository in [Yakubovskiy,

2022].

3.2.4 Object-Based Augmentation

After baseline training, we fine-tuned the model using a small dataset and the fol-

lowing augmentation approach.

The object-based augmentation approach has been previously proposed for the

remote sensing domain in [Illarionova et al., 2021b] for solving segmentation tasks.

For the forest segmentation problem, we provided the following augmentation scheme,

the algoritmic implementation of which can be found at the following link [Illari-

onova, 2021]. The initial detailed markup included both large areas and individual

tree masks. In the first stage, we created a list of individual trees selected by the area

according to the threshold. The threshold was established empirically and was equal

to 300 pixels. Selected individual trees were ascribed IDs associated with coordinates

and instance masks. During the augmentation step, the object’s ID was selected.

The object (individual tree) was cropped according to its boundary. Then, shadows

were added to make the generated sample more realistic. The footprint of an object

was used to add a shadow. The contrast and saturation of shadows were varied in

order to extend the variability of the training instances. Moreover, each individ-

ual tree could be augmented using classical color and geometrical transformations.

For this task, the Albumentations package [Buslaev et al., 2020b] was leveraged.

The cropped and transformed individual trees were then merged with a new back-

ground. The background was randomly selected from the initial satellite image or

from new images from another geographical location. The main requirement for the

background crop was the absence of the target objects. The selected background

patch was augmented using geometrical and color transformations. The final step

of new training sample generation was background and target object merging. A

number of objects was selected randomly for each patch from a predefined range.

The maximum number was defined empirically and set to 30 according to the patch
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size and target object size. Intersection between the objects was restricted. It is

possible that a neural network can fit exactly against generated data and lose essen-

tial properties of the original images. To avoid this, we used generated samples with

a probability of 0.4 and original samples with a probability of 0.6. Both the original

and generated samples were prepared during the training time and did not require

extra memory to store patches. Examples of the generated and original samples are

presented in Figure 3-2.

The OBA approach was compared with two alternative approaches, namely, clas-

sical augmentation (random rotation, brightness, contrast, saturation adjustment)

as described in [Illarionova et al., 2021b] (Simple_augm) and training without any

image transformations (Baseline_no_augm).

The difference between the general and remote sensing domains often relates

to image size in a dataset. The average image resolution in ImageNet dataset is

469 ∗ 387 pixels, while in many remote sensing datasets image is significantly larger.

Images in DOTA dataset have size about 4000 ∗ 4000 pixels and may contain large-

size images with only a handful of small instances [Xia et al., 2018a]. Image size for

the remote sensing domain often depends on the study area scale. A single satellite

image can cover an entire city or a large county. Moreover, target objects in remote

sensing tasks usually have dramatically lower density (as in the beforementioned

DOTA dataset) in comparison to general domain images. It is necessary to split

an initial image into crops that a CNN model can accept for training. Therefore,

sampling strategy is crucial for the remote sensing domain as simple image partition

into tiles is unproductive for large study areas [Xu et al., 2020]. Our framework

supports an efficient sampling strategy that uses objects coordinates to crop training

patches within large georeferenced images. Object-wise sampling was performed

for all experiments with model fine-tuning on the small dataset, as this is a more

powerful sampling technique for spatially distributed data in the remote sensing

domain, especially in the case of target objects with coordinates [Illarionova et al.,

2021d]. In this approach, instead of cropping random patches from an image the

target objects’ IDs were selected and then cropped according to their coordinates.

This allowed us to form a training batch for a convolutional neural network with
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more valuable instances when target objects such as individual trees were rare in the

study area and unevenly distributed. Object-wise sampling was alternated with a

classical random cropping in order not to preserve only small objects in the training

data. The probability of the object-wise sampling was set to 0.8.
The entire new sample generating process is conducted during model training.

It aimed to ensure greater diversity without memory restrictions related to addi-

tional sample storage. Therefore, all functions for object-based augmentation were

implemented into the data-loader and generator. New generated samples are also

alternated with original samples.

In summary, OBA includes the following options:

• Shadows addition (length and intensity may vary);

• Objects number per crop selection;

• Selection of base color and geometrical transformations probability;

• Background images selection;

• Selection of original and generated samples mixing probability.
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Figure 3-2: Examples of original and generated samples and tree masks. In the
generated samples, new various backgrounds were used to achieve greater diversity
and to combine trees images and masks from different areas. Artificially added
shadows provide more realistic images associated with semantic segmentation masks.

3.2.5 Different Dataset Size

We considered the following subsets of the training dataset in order to evaluate the

effect of the dataset’s size on the prediction quality: the entire dataset size, 2/3,

and 1/3 of the entire training dataset. The chosen subset was used to train the

model, while the testing area was permanent and the same for all experiments. We

analyzed three and two different dataset splits for the experiments with 1/3 and 2/3

of the entire dataset size, respectively. The final results were defined as an average

for each training subset.
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3.2.6 Experimental Setup

For the baseline model, we considered the following convolutional neural network

architectures: U-Net [Ronneberger et al., 2015], DeepLab [Chen et al., 2017b],

and FPN [Lin et al., 2017] with Inception [Szegedy et al., 2017] encoder. Each

experiment was run with the same training parameters. The batch size was equal

to 20, and the patch size was set to 256 ∗ 256 pixels. There were 20 epochs with 200

steps. For each epoch, there were 4000 random patches (with size 256 ∗ 256 pixels)

obtained using object-wise sampling or classical random cropping from the training

areas. After each epoch, the validation score was estimated. Early stopping was

employed after the model reached the plateau with patience 5 epochs. According

to the validation score, the best model was then considered in order to compute

metrics in the test area. The RMSprop optimizer was used, with a learning rate of

0.001. All experiments used Keras [Keras, Accessed: 20 November 2021].

According to the previous stage, the best model among all considered archi-

tectures was employed for fine-tuning on the small dataset. The same training

parameters (patch and batch sizes, training epochs number, etc.) were employed.

As distinct from the first stage experiments, model weights were already pretrained

on the large dataset. Therefore, the model was trained to solve individual tree seg-

mentation and detailed forest mask prediction, which is a more complicated task.

3.2.7 Evaluation

To evaluate the performance of the proposed models we used the general F1-score,

which is widely used in remote sensing tasks [Kattenborn et al., 2021b]. This allowed

us to assess prediction quality for the entire test area.

To assess the quality of our model, we also estimated the average IoU between

the predicted masks and the ground truth masks. In order to predict the forest mask,

we used test images as an input for the trained neural network. As an output, a

neural network predicts a binary mask, which we compared with the labelled binary

mask and used to calculate different metrics. For example, prediction quality (F1-

score) was calculated for each image in the test set. The overall prediction quality
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stated for each of the models is the average of the F1-scores for all images in the

test set.

3.3 Results and Discussion

Figure 3-3 shows the result of the implementation of the first methodological step,

namely, the performance on the test data of the model trained on the large dataset

(U-Net). It should be noted that the overall model performance is appropriate in

terms of metrics (see Table 3.1) as well as by visual comparison; moreover, test

images were taken from different parts of the world and represent complex environ-

ments. According to the experimental results before fine-tuning, all three consid-

ered architectures have almost the same results. Standard deviations for them are

about 0.004. Therefore, we can not indicate the statistically superiority of an exact

algorithm. For the further experiments we used U-Net architecture. The model

performance could be improved for better detection of stand-alone trees.

The results of the model performance after fine-tuning on the small dataset (for

which implementation of object-based augmentation was implemented) is shown

in Figure 3-4. For the training procedure, we generated about 72,000 patches for

the first dataset and about 28,000 patches for the second dataset. From Figure 3-

4, it can be clearly seen that the predicted forest mask (see Figure 3-4d) is very

similar to the ground truth (see Figure 3-4b), and the separate trees are much

better detected compared to the baseline model (see Figure 3-4c). The F1 scores

for the baseline and improved models are presented in Table 3.2, with the best score

being F1 = 0.929. The prediction quality for the initial large dataset using the fine-

tuned model improved (F1 = 0.971). Moreover, it should be noticed from Table 3.2

that when using 1/3 of the whole dataset and implementing OBA in the training

procedure the F1 = 0.913, which is higher than when using the whole dataset

for training the baseline model (F1 = 0.888). It is important to mention that

standard deviation for the experiment with OBA using the entire training dataset

and evaluating small test dataset equals to 0.004 (F1-score is 0.929), while the

experiment with simple augmentations for the same data shows standard deviation
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of 0.005 (F1-score is 0.888). It supports the significance of the results and shows

that our proposed approach is highly relevant in view of the limited amount of high

quality labelled remote sensing data.

(a)

(b)

(c)

Figure 3-3: Raw images (left) and predictions (right) for different ter-
ritories: (a) Baoting Li and Miao Autonomous County, Hainan, China,
18◦29′24.0′′N 109◦35′24.0′′E; (b) Zelenodolsky District, Republic of Tatarstan, Rus-
sia, 55◦55′48.0′′N 48◦44′24.0′′E; (c) Republic of Dagestan, Russia, 43◦01′09.1′′N
47◦19′28.2′′E.

The proposed approach allows us to obtain more precise results than the forest

cover masks available through OSM serves for particular areas. Examples of gener-

ated maps are presented in Figures 3-5 and 3-6. Available open-access forest masks

should be updated regularly to include both newly cultivated forests and tree felling.

Although trees within built-up areas can be missed in open-access maps, they are

crucial for environmental analysis.
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The obtained results confirmed the potential of the OBA approach for environ-

mental studies. One of the promising direction for future study is applying precision

forest mask for more accurate deforestation analysis. It can be also used for forest

species classification as this task usually requires forest boundaries.

A detailed forest mask can be combined with other landcover classes and man-

made objects such as the building segmentation task discussed in [Illarionova et al.,

2021b]. A promising extension of this research could be the implementation of vi-

sual transformers [Wu et al., 2020a] for solving segmentation tasks using remote

sensing data. The wide potential of implementing a similar augmentation approach

coupled with special image collection techniques for synthetic data generation to im-

prove neural network performance has been shown in a recent study [Nesteruk et al.,

2022]. In this study involving segmentation of damage to apples, the authors im-

proved the F1-score by up to 4% compared with common augmentation techniques.

The authors used DeepLab as the base model for comparing different augmentation

techniques. Despite the demonstrated strength of the proposed method, we should

take into account its limitations in processing natural scene images. We should care-

fully use the different types of trees in order to mix them and create the new scene,

and trees and scenes should be taken from approximately one period of the year.

Basemap image use makes this approach cost-effective, and high spatial resolu-

tion provides significant features for the CNN-based model at the same time. There-

fore, this data type is quite competitive with multispectral satellite images which

have wider spectral range at lower spatial resolutions. The OBA approach for small

precise datasets can be studied for multispectral images to solve other challenges

combining RGB bands and vegetation indexes. For instance, NDVI (Normalized

Difference Vegetation Index) for deforestation problems was implemented in [Skole

et al., 2021].
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(a)

(b)

(c)

(d)

Figure 3-4: Forest segmentation results for Republic of Tatarstan test territories:
(a) input image; (b) ground truth; (c) small dataset fine-tuned without OBA; (d)
small dataset fine-tuned with OBA.
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(a)

(b)

(c)

Figure 3-5: Input image from new region outside training site, Zelenodolsky District,
Republic of Tatarstan, Russia, 55◦55′48.0′′N 48◦44′24.0′′E (composite orthopho-
tomap provided by Mapbox, acquisition date: 20 March 2022) (a); Open Street
Map (acquisition date: 20 March 2022) (b); forest segmentation results of the final
CNN model fine-tuned with OBA (c).
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(a)

(b)

(c)

Figure 3-6: Input image from new region outside training site, Wickwar, England,
51◦36′26.7′′N, 2◦23′17.1′′W (composite orthophotomap provided by Google, acquisi-
tion date: 30 April 2022) (a); Open Street Map (acquisition date: 30 April 2022)
(b); forest segmentation results of the final CNN model fine-tuned with OBA (c).
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Table 3.1: Forest segmentation results for Baseline model on two datasets.

Large dataset Small dataset
Precision Recall F1 Precision Recall F1

U-Net 0.965 0.963 0.964 0.862 0.851 0.856
FPN 0.961 0.958 0.959 0.856 0.849 0.852
DeepLab 0.963 0.962 0.962 0.856 0.854 0.855

Table 3.2: Augmentation approaches comparison for different training set size on
the small dataset using fine-tuned U-Net with Inception encoder (F1-score for the
test areas from small dataset and large dataset).

Baseline_no_augm Simple_augm OBA
Training set size 1/3 2/3 1 1/3 2/3 1 1/3 2/3 1

F1-score
Small dataset test 0.861 0.866 0.871 0.867 0.875 0.888 0.913 0.921 0.929
Large dataset test 0.956 0.959 0.962 0.964 0.965 0.967 0.966 0.969 0.971

Precision
Small dataset test 0.863 0.865 0.872 0.869 0.877 0.889 0.915 0.922 0.931
Large dataset test 0.955 0.961 0.965 0.965 0.966 0.969 0.964 0.972 0.973

Recall
Small dataset test 0.86 0.867 0.871 0.866 0.873 0.887 0.911 0.921 0.928
Large dataset test 0.957 0.958 0.959 0.963 0.964 0.965 0.968 0.967 0.97

IoU
Small dataset test 0.754 0.761 0.768 0.774 0.783 0.799 0.851 0.856 0.867
Large dataset test 0.835 0.847 0.856 0.878 0.884 0.891 0.895 0.899 0.912
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3.4 Conclusions

High-resolution detailed forest masks are essential for environmental studies. How-

ever, in practice such maps are not available for large country-scale territories. Here,

we have presented a novel pipeline for forest mask creation using very high spatial

resolution basemap RGB images. CNN training included an object-based augmen-

tation approach to achieve more accurate predictions of individual trees and small

groups of trees. The created map showed high quality and detalization on various

test territories, including in Russia and China. Model prediction showed robustness

for regions with complex environmental structures. The provided approach aimed

to minimize the need for labeled training data. For the test area used in this study,

the F1-score for small details was 0.929 compared with a score of 0.856 for the base-

line approach. The created forest mask is now available for large-scale and precise

environmental studies as part of the open-access platform. As a possible evolution

of the current study, we are planning to implement automated selection of hyperpa-

rameters and thresholds for augmentation techniques and to use our approach for

solving further tree classification tasks.
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Chapter 4

Neural-Based Hierarchical

Approach for Detailed Dominant

Forest Species Classification by

Multispectral Satellite Imagery

4.1 Introduction

Algorithmic analysis of remote sensing data allows for solving a wide range of tasks

that previously required high professional skills and were time-consuming. One

of these challenges is forest species classification, which is commonly considered a

dominant species classification problem. A forest dominant species is the one that

includes the majority of the timber stock of the stand. Forest management depends

on this as a primary characteristic.

The industrial approach to the forest inventory still consists of several methods,

including manual and partly automated satellite mapping, LIDAR data analysis,

and ground-based surveys. Since the beginning of computer vision method develop-

ment, many works have aimed to replace some stages with automatic remote sensing

imagery analysis.

It is challenging to compare the performance of different methods proposed in
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the papers due to their region-specificity and evaluation data inaccessibility for other

researchers. Therefore, a comparison of the declared metrics cannot often explain

what is better, and a literature survey is mostly qualitative. The presented work

partly addresses this issue, as we provided the training markup and the images’ IDs

to compare achieved results in future studies.

A common choice of remote sensing data is medium-resolution multispectral

satellite imagery (Landsat or Sentinel), which is freely available and has a good

revisit time. This allows researchers to obtain images for any region of interest

with relative ease. The multispectral channels in visible and infra-red wavelengths

provide a good deal of information about surface reflection properties. This data

type is used in many research works both for single satellite images [Immitzer et al.,

2016, Wessel et al., 2018, Mngadi et al., 2019], and time series [Immitzer et al.,

2019, Sheeren et al., 2016b]. Although it makes it possible to automatically process

the data for vast territories and with decent accuracy, it does not produce high-

resolution semantic maps, which can be useful for the precise estimation of timber

stock.

A significant number of works cover the usage of airborne multispectral or hy-

perspectral sensing for forestry inventory classification [Kozoderov and Dmitriev,

2018, Kozoderov et al., 2017, Shinzato et al., 2017, Dalponte et al., 2012], and many

of these works leverage a combination with LIDAR scans. It allows for evaluating

different forest biomass components [Hernando et al., 2019] and estimating timber

stock [Tuominen et al., 2017]. In [Naidoo et al., 2012], they addressed the chal-

lenge of savanna tree species classification in South Africa. The basic premise is the

heterogeneous nature of the considered region. Therefore, tree height was utilized

as structural information to make classification more robust. However, this is not

suitable for the preliminary large-area examination due to the high costs of the data

and the need for expeditions to the area of interest for imagery acquisition.

A significant source in terms of information depth and availability is very high

spatial resolution satellite imagery such as WorldView satellite data (about 2 m

spatial resolution). In [He et al., 2019b], they classified deciduous-dominated forest

species through three-seasonal WorldView images. In [Immitzer et al., 2012], they
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leveraged a single Worldview high-resolution satellite image for species and age clas-

sification. The scope of the work included both object- and pixel-based approaches.

Sunlit areas of tree crowns presented dataset objects. For such a polygon, a partic-

ular species class was ascribed, keeping each object’s homogeneity. Moreover, only

instances of approximately the same age were chosen for the study, making the sam-

ples within a class less diverse. In [Ke and Quackenbush, 2007], they used QuickBird

images (a 2.44 m spatial resolution) to classify forest species. Still, a relatively small

number of works have given preference to such high-resolution satellite data instead

of UAV (unmanned aerial vehicles) images.

Although classical machine learning methods such as Support Vector Machine

[Cortes and Vapnik, 1995] and Random Forest [Breiman, 2001] are used in many

remote sensing classification studies [Naidoo et al., 2012, Immitzer et al., 2012, Guo

et al., 2018b, Belgiu and Drăguţ, 2016, Sheeren et al., 2016a], other works consider

newer approaches. In recent years, convolutional neural networks (CNNs) have

become a principal method for many computer vision problems, including image

classification, segmentation, and object detection. CNNs are applicable in different

spheres, and the remote sensing area is no exception [Li et al., 2018b, Dong et al.,

2019]. Deep neural networks showed accurate results in the task of deciduous and

coniferous classification [Li et al., 2018b], [Hamraz, 2018] and other forest inventory

characteristic estimation [Ayrey and Hayes, 2018] using LIDAR sensing data.

Hierarchical problem decomposition can often be implemented in various applied

tasks of a particular nature containing sub-classes. It has performed successfully in

medical problems [Shen et al., 2019, Huang et al., 2013]. In [Dimitrovski et al.,

2012], they implemented a hierarchical multi-label classification for diatom images

using a single predictive clustering tree. Just a few studies considered the hierar-

chical approach for forest species classification [Gerylo et al., 1998, Ahmed et al.,

2017]. However, in these works, UAV or airborne data was used with a spatial

resolution higher than 0.3 m. The classification approaches were maximum likeli-

hood classification techniques and object-based image classification [Blaschke, 2010],

respectively. Thus, all considered forest species classification studies based on satel-

lite images rely exactly on the classical multi-class classification approach [Dalponte
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et al., 2012, Immitzer et al., 2012, Ke and Quackenbush, 2007, Sheeren et al., 2016a].

The goal of the presented work is to enhance the spatial detail of dominant forest

species estimation using the high-resolution WorldView satellite imagery (2 m per

pixel). We have chosen this kind of remote sensing data because it can combine

the high availability of satellite imagery (though it is not as high as with moderate

resolution) and the spatial precision of aerial imaging. In contrast with most of

the work in this area, we did not only concentrate on homogeneous forest stands

of approximately the same age. Thus, we aimed to provide a more robust solution

applicable to real-life conditions.

We aimed to make the following contribution:

• to improve forest species multi-class image segmentation by splitting the prob-

lem into a hierarchy of binary segmentation problems;

• to study the forest height maps usefulness as supplementary data for the forest

species classification problem;

• to prepare an open-source dataset for the dominant species segmentation prob-

lem — the lack of relevant markup causes obstacles in this sphere of study, so

open-access data are crucial.

This Chapter is considered as a core of the Thesis. Forest tree species is one

of primer parameters for forest ecosystem analysis. The forest species classification

inspires further studies on its refinement in the next Chapters.

4.2 Dataset

4.2.1 Study area

The dataset for this work was created using ground-based observations of Leningrad

Oblast of Russia during the 2018 year (Figure 4-1). The total area is around 20000

hectares. The coordinates of this region are between 33◦42′ and 33◦76′ longitude

and between 60◦78′ and 61◦01′ latitude. The region’s climate is humid. The coldest
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Figure 4-1: Classes markup of study area.

92



Chapter 4. Neural-Based Hierarchical Approach for Detailed Dominant Forest Species
Classification by Multispectral Satellite Imagery 4.2. Dataset

day of the year is in February, with a temperature between 13◦F and 24◦F [Weath-

erSpark, 2020]. The topography is flat. The vegetation cover is mixed and includes

deciduous and conifer tree species.

4.2.2 Reference data

The study area was split into small regions representing individual forest stands.

The term “forest stand” in forest inventory instructions defines a contiguous forested

area sufficiently uniform in essential characteristics to distinguish it from adjacent

communities. Each stand is described by several aspects; the most important for

this work are the following:

• forest composition, i.e. the percentage of each tree species, denoted with a

stride of 10 percent of the relative timber volume (the composition is given in

percentage points, each representing 10% of the total timber volume);

• average tree height for each of the primary forest components in the forest

composition;

• average tree age for each of the primary forest components in the forest com-

position.

The rest of the parameters leveraged for the forest analysis are not considered in

the current research.

The dominant species is the one that has the highest percentage, and it is the

target value that we want to evaluate in this work. Of course, there are situations

when two or more forest species have the same or a similar percentage. This case

is defined when the difference between the dominant and the second species is not

greater than 1 percentage point, and these stands are treated as “mixed forests”.

The composition of mixed forests is beyond the current study scope, so such stands

were excluded from both training and test sets.

The dataset contains forest stands with 4 classes of dominant species: 38%

spruce (Picea spp.), 14% aspen (Pópulus tremula spp.), 26% birch (Betula spp.),

and 22% pine (Pínus spp.) (see Table 4.1). The rest of the study area species are
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Table 4.1: Dataset statistics for individual regions.

area, ha percentage
aspen 1270.1 14%
birch 2407.7 26%
spruce 3567.2 38%
pine 2063.8 22%

Table 4.2: WorldView images.

Image ID Date Off-nadir angle
0 10300100812E1700 29.07.2018 21
1 1030010081253D00 29.07.2018 29
2 10300100828A7D00 19.07.2018 26
3 103001008067D100 19.07.2018 22
4 1030010080790B00 18.07.2018 22
5 10300110829C9600 18.07.2018 32
6 103001007DCF9400 12.05.2018 14
7 103001007ECC6B00 12.05.2018 18

less distributed and do not compose the stands as a dominant species. It is worth

noting that the “dominant species” in forestry does not exactly match the biological

term “species” and is connected mostly with the timber class and quality. In this

research, the existing forest inventory standards were followed, and this inventory

does not distinguish between species within a genus and treats the whole genus as

a single class.

4.2.3 Satellite data

WorldView 2 and 3 multispectral imagery with eight spectral bands was downloaded

from GBDX [GBDX, Accessed: 2020] in a standard Level 2 format. Product of

this level includes radiometric corrections, sensor corrections, geometric corrections,

atmospheric compensation, and is processed using a course elevation model. The

spatial resolution was about 2 m per-pixel. The central wavelengths of the bands

Table 4.3: Sentinel images.

Image ID date
0 L1C_T36VWN_A007126_20180718T092026 18.07.18
1 L1C_T36VWN_A016206_20180730T090554 30.07.18
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were: Band 1: Coastal Blue, 427 nm; Band 2: Blue, 478 nm; Band 3: Green,

546 nm; Band 4: Yellow, 608 nm; Band 5: Red, 659 nm; Band 6: Red Edge,

724 nm; Band 7: Near Infrared I, 833 nm; Band 8: Near Infrared II, 949 nm.

Sentinel imagery with 13 spectral bands and a spatial resolution of about 10 m per-

pixel was downloaded from SentinelHub [Sentinel-Hub]. We considered 13 bands

with the following central wavelengths: Band 1: Coastal aerosol, 442.7 nm; Band 2:

Blue, 492.4 nm; Band 3: Green, 559.8 nm; Band 4: Red, 664.6 nm; Band 5: Red-

edge I (R-edge I), 704.1 nm; Band 6: Red-edge II (R-edge II), 740.5 nm; Band 7:

Red-edge III (R-edge III), 782.8 nm; Band 8: Near infrared (NIR), 832.8 nm; Band

8A: Narrow Near infrared (NNIR), 864.7 nm; Band 9: Water vapour, 945.1 nm;

Band 10: SWIR Cirrus, 1373.5 nm; Band 11: Shortwave infrared-1 (SWIR1),

1613.7 nm; Band 12: Shortwave infrared-2 (SWIR2), 2202.4 nm. Images were pre-

processed with the Sen2Cor package for atmospheric correction (level L2A Bottom

of Atmosphere (BoA) reflectance). All images were from the high vegetation period

from May to August. Image acquisition dates and catalogue IDs are presented

in Tables 6.1 and 8.1. Normalization procedure for satellite data is described in

Section 4.3.3.

Dataset consists of geo-referenced satellite images in the format of 8-bit TIFF

files and forestry inventory data converted into raster per-pixel masks for each class.

The additional challenge was posed by the temporal mismatch between imagery

and markup. Current forest inventory information is sparsely available. Thus, some

forest areas were felled after the ground-based observations. To deal with this, we

utilized a previously trained neural network that performs forest segmentation. It

produces an up-to-date forest mask for the images and excludes the derived non-

forested areas from the training and validation sets. We additionally cleaned the

test set manually.
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4.3 Methods

4.3.1 Problem definition

As described in Section 7.2.1, we treated an individual forest stand as a homogeneous

region with a common characteristic within its area. The aim was to develop a

method that could produce high-resolution semantic maps outlining forest stands.

Thus, the problem was formulated as image segmentation: to assign a species class

to every pixel in the image. The background classes were excluded from the dataset

before training and did not appear at the test time. The following fact complicated

the problem. Forest stands can have inconsistency and include visible parts of the

non-dominant species. These parts should be segmented as a separate stand of

another dominant species, but the training data do not support it, as the markup

is completely stand-wise.

4.3.2 Neural networks for image segmentation

As the most recent computer vision advances are connected with the novel neural

network architectures, it is vital to select a suitable one for the given task and avail-

able computational resources. Since the task was formulated as a multi-class image

segmentation problem, a fully convolutional architecture was considered, such as

U-Net [Ronneberger et al., 2015] or a Feature Pyramid Network (FPN) [Lin et al.,

2017]. Both of them show good image segmentation performance, including remote

sensing data, with FPN being more suitable for multi-class segmentation. These

architectures are constructed in an encoder-decoder fashion with skip connections,

which allows us to use various convolutional encoders. Modern architectures out-

performed the original VGG encoder used in [Ronneberger et al., 2015], so the first

variant was ResNet [He et al., 2016], used by [Lin et al., 2017]. As counterparts, we

used Inception-ResNet-v2 [Szegedy et al., 2017] and EfficientNet [Tan and Le, 2019]

as one of the most resent and advanced architectures, showing state-of-the-art results

at the ImageNet benchmark [Deng et al., 2009]. To comply with computational re-

source restrictions, the model size was limited to ResNet-34 and EfficientNet-B3 cor-
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Figure 4-2: Hierarchical model structure.

respondingly. The models’ architecture implementation was based on [Yakubovskiy,

2022].

4.3.3 Image preprocessing

As Sentinel images were contrast-enhanced and had a value range of [0 : 255] in each

channel, they were scaled as

I ′ = I/255, (4.1)

where I and I ′ are intensities before and after the normalization.

To ensure relative brightness uniformity for different images, we performed minimum-

maximum brightness normalization to the range [0, 1], as in [Jayalakshmi and San-

thakumaran, 2011].

The WorldView images have a wider dynamic range, different for each channel,

so contrast enhancement was also included in the scaling formula to suppress the

darkest and the brightest regions that lie beyond three standard deviations from the

mean value:

m = max(0,mean(I)− 3 ∗ std(I)), (4.2)
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(a)

(b)

Figure 4-3: The data flow through a level of the hierarchical process: (A) model
training, (B) inference.

Figure 4-4: Example of age and height variance within one species.

M = min(max(I),mean(I) + 3 ∗ std(I)), (4.3)
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I ′ = (I −m)/(M −m), (4.4)

where mean, std are the mean and standard deviation of the image. In equations

8.2, 8.3, we calculate m and M (minimum and maximum of the preserved dynamic

range). In equation 8.4, values are scaled to 0 and 255 linearly. The values outside

the [m,M] range are clipped. The standardization of the imagery according to the

whole dataset statistics proves profitable for the neural network training compared

to a simple scaling of the entire value range [Pal and Sudeep, 2016].

There are two ways to compute mean and standard deviation values: for all

channels simultaneously or individually for each band. The advantage of the first

type is that ratios between the channel values stay constant, which might be nec-

essary for a more in-depth nature processes evaluation. On the other hand, when

statistics within each channel are computed, connections between the same channels

of different images are more robust, and it can be useful for algorithm adaptability.

4.3.4 Dataset augmentation

The dataset augmentation is a common technique that can improve the robustness

of the neural network. In the considered case, the spatial transforms were applied to

the training images with 50% probability: rotation with a 90-degree step, a vertical

and horizontal flip, and a zoom-in and -out within 20%.

4.3.5 Oversampling

To handle the class imbalance, we added extra weights for the smaller classes during

loss computation. For this variant, weighted cross-entropy (WCE) was computed,

and optimal weights were estimated according to the class distribution in the training

set.

The other problem was that the label for the dominant species property was the

same, whether there were 50% or 90%. Still, the former represented a more “dirty”

markup for the segmentation, as about half of the pixels represented non-dominant

species. We managed to enforce the training on more clean samples by increasing
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the probability of the samples with a higher dominant species percentage. Species

distribution is provided for each forest region in Table 4.4.

4.3.6 Problem decomposition

The baseline approach used multi-class segmentation, where the output layer of the

neural network had a number of outputs that was equal to the number of classes.

The argmax (arguments of the maximum) of these values was treated as a class

label for a pixel.

The approach modification was based on the fact that forest species classification

has an explicit hierarchy: classes are divided into coniferous and deciduous tree

species. Therefore, it was reasonable to decompose the problem. The hierarchical

solution represented the multi-class segmentation as a set of binary segmentation

problems. The multi-class segmentation map was obtained by consistently applying

the method and aggregating the results (see Fig. 4-2).

The stages scheme of the hierarchical segmentation process is depicted in Fig.

4-3. We used the “parent” data obtained from the previous stages of the processing

at each step. For example, to segment coniferous and deciduous forest stands, the

forest mask was utilized to exclude non-forest regions from the observation. During

the model training, this “parent” data was used as a mask for the loss function

computation. The training loss was calculated within the parent class areas only

because, for the same example, there was no need to rely on the non-forested regions

to distinguish between the forest types. During the inference, the result of the binary

segmentation was multiplied by the “parent” mask.

We also compared this approach with “one versus all” classification, where a set

of separate neural network models is trained to predict just one class. All predictions

are then aggregated, and the most likely label is ascribed to each pixel.

4.3.7 Height data

It is worth noticing that a part of the intro-class variance is connected with the forest

height or age, with a high correlation. The same forest species at different ages shows

100



Chapter 4. Neural-Based Hierarchical Approach for Detailed Dominant Forest Species
Classification by Multispectral Satellite Imagery 4.4. Experiments

Table 4.4: Dataset statistics for individual regions (dominated species by threshold),
area in ha.

threshold pine birch aspen spruce
0.5 2063.8 2407.7 1270.1 3567.2
0.6 1781.9 951.9 659.6 2390.6
0.7 1540.9 463.5 235.8 1350.2
0.8 1234.3 178.7 84.2 643.7

different patterns (see Fig. 4-4). As the height data could be obtained from separate

sources, we studied the height data’s effect on the dominant species classification.

The input data was extracted from the same forest inventory characteristics used

for training, and it was used as an additional raster band in the network input. This

modification also contributed to the method performance in both multi-class tasks

and binary segmentation cases.

4.4 Experiments

4.4.1 Training

The training of all the neural network models was performed on a PC with GTX-

1080Ti GPUs.

The batch size varied from 16 to 30 depending on the architecture’s memory

restrictions.

During the binary segmentation models’ training within the hierarchical seg-

mentation approach, only two particular classes of the current stage were taken into

account. Accordingly, the loss function was calculated only over the part of the

image corresponding to the parent class of the current stage, as is shown in Fig. 4-3

A. The total loss for a training batch was normalized to the parent class area in the

batch.

The final model combined all these approaches.
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4.4.2 Medium resolution data

The same experiments were performed using widely spread in the forest inventory

tasks Sentinel-2 data to compare the selected data to other possible sources.

The base model used 13 bands of Sentinel imagery at a spatial resolution from

10 to 60 m. This data is available for free download. The model was trained in the

same manner as a model without height for Worldview data. The image crop size

was reduced in batch from 256 to 64 to, by giving the field of view the same size,

make the training procedure as similar as possible.

The dataset was split into training, validation, and test sets in the following

proportion: 0.7, 0.15, and 0.15. The validation set was used to choose the best

neural network parameters and architecture.

F1-score was utilized to measure the segmentation quality and compare the

method variants, for the individual classes and averaged over all the classes.

F1-score was computed only for regions covered by species with a domination of

more than 0.5, which was described in Section 7.2.1. When the optimal in terms of

the validation dataset architecture for each task had been found, the final models

were evaluated using the test set of the images, which did not overlap with the train-

ing or validation sets. We also used confusion matrices, as this is a commonly con-

sidered accuracy assessment approach in remote sensing image classification [Foody,

2002].

4.5 Results and discussion

4.5.1 Hierarchical decomposition

We compared hierarchical decomposition with two commonly used image semantic

segmentation approaches: multi-class classification and “one versus all.” All studies

were conducted both for WorldView and Sentinel images to assess the proposed

method using different data sources. The results of multi-class classification and

hierarchical decomposition before aggregation are reported in Tables 4.7. As shown

in Tables 4.11, 4.10, which have the aggregated results, the hierarchical approach
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Table 4.5: Results for multiclass classification without height (F1-score) for World-
View and Sentinel (baseline) on validation. Bold numbers — the best score (the
corresponding model was chosen for the final results aggregation). Incept — Incep-
tionresnetv2. Standard deviation is presented for average F1-score.

Unet + Unet + Unet + FPN + FPN + FPN +
Resnet34 EfficientNet Incept Resnet34 EfficientNet Incept

WorldView
aspen 0.39 0.26 0.385 0.35 0.2 0.35
birch 0.79 0.548 0.781 0.76 0.18 0.71
spruce 0.759 0.743 0.754 0.75 0.68 0.76
pine 0.868 0.847 0.859 0.87 0.81 0.859
average 0.702 0.599 0.695 0.682 0.47 0.66

± 0.005 ± 0.004 ± 0.007 ± 0.005 ± 0.006 ± 0.004
Sentinel

aspen 0.367 0.356 0.417 0.361 0.219 0.372
birch 0.713 0.687 0.738 0.694 0.258 0.681
spruce 0.717 0.708 0.658 0.721 0.669 0.722
pine 0.841 0.845 0.83 0.853 0.813 0.845
average 0.659 0.649 0.66 0.657 0.489 0.655

± 0.004 ± 0.005 ± 0.004 ± 0.005 ± 0.006 ± 0.005

Table 4.6: Results for multiclass classification with height (F1-score) for WorldView
and Sentinel on validation. Bold numbers — the best score (the corresponding
model was chosen for the final results aggregation). Incept — Inceptionresnetv2.
Standard deviation is presented for average F1-score.

Unet + Unet + Unet + FPN + FPN + FPN +
Resnet34 EfficientNet Incept Resnet34 EfficientNet Incept

WorldView
aspen 0.38 0.43 0.39 0.42 0.38 0.39
birch 0.78 0.80 0.79 0.79 0.80 0.79
spruce 0.8 0.78 0.76 0.79 0.77 0.74
pine 0.87 0.87 0.85 0.85 0.82 0.84
average 0.707 0.72 0.697 0.712 0.692 0.69

± 0.004 ± 0.004 ± 0.005 ± 0.005 ± 0.006 ± 0.004
Sentinel

aspen 0.426 0.414 0.415 0.419 0.371 0.474
birch 0.726 0.733 0.712 0.726 0.748 0.772
spruce 0.745 0.75 0.736 0.753 0.763 0.78
pine 0.837 0.851 0.847 0.844 0.846 0.864
average 0.68 0.687 0.677 0.685 0.682 0.72

± 0.006 ± 0.005 ± 0.004 ± 0.006 ± 0.007 ± 0.005

allows us to improve model performance in terms of the F1-score for WorldView from

0.716 to 0.836 and for Sentinel from 0.668 to 0.77. “One versus all” classification
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Table 4.7: Hierarchical classification with height (h+) and without height (h-) data
for WorldView and Sentinel on validation before the results aggregation (F1-score)
. Blue numbers — the best score for models without height, bold numbers — the
best score for models with height (the corresponding models were chosen for the
final results aggregation). Incept — Inceptionresnetv2.
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Table 4.8: Hierarchical approach (1) in comparison with “one versus all” classifica-
tion and (2) on test data (both approaches use height data) from the WorldView
data. Standard deviation is presented for average F1-score.

1 2
aspen 0.72 0.75
birch 0.75 0.48
spruce 0.94 0.71
pine 0.92 0.82
average 0.836 0.69

± 0.007 ± 0.006

Table 4.9: Hierarchical approach (1) in comparison with “one versus all” classifica-
tion and (2) on test data (both approaches use height data) from the Sentinel data.
Standard deviation is presented for average F1-score.

1 2
aspen 0.79 0.46
birch 0.586 0.56
spruce 0.93 0.75
pine 0.789 0.88
average 0.77 0.667

± 0.005 ± 0.006

Table 4.10: Final aggregated results (F1-score) for WorldView test data. Standard
deviation is presented for average F1-score.

hierarchy hierarchy multi-class multi-class
+ height + height

aspen 0.721 0.714 0.773 0.39
birch 0.751 0.649 0.469 0.796
spruce 0.947 0.954 0.764 0.759
pine 0.925 0.87 0.851 0.869
average 0.836 0.797 0.716 0.703

± 0.007 ± 0.005 ± 0.003 ± 0.005

also shows lower results than those of the hierarchical decomposition depicted in

Tables 4.8 and 4.9. For WorldView, there is decline in quality in the F1-score

from 0.836 to 0, while for Sentinel, that decline is from 0.77 to 0.667. There is

no significant difference between multi-class and "one versus all" classification. For

WorldView, the difference is 0.716 and 0.69; for Sentinel, it is 0.668 and 0.667.

Confusion matrices for WorldView and Sentinel data are shown in Fig. 4-5. The

WorldView prediction quality is higher than that of Sentinel. Moreover, for the
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Table 4.11: Final aggregated results (F1-score) for Sentinel test data. Standard
deviation is presented for average F1-score.

hierarchy hierarchy multi-class multi-class
+ height + height

aspen 0.79 0.612 0.608 0.586
birch 0.586 0.527 0.441 0.274
spruce 0.93 0.943 0.766 0.692
pine 0.789 0.792 0.855 0.791
average 0.77 0.72 0.668 0.58

± 0.005 ± 0.006 ± 0.007 ± 0.006

Table 4.12: Oversampling effect on the WorldView validation images (F1-score). (1)
All stands with a dominant species content larger than 50% are used. (2) Special
thresholds are defined for each class (0.7 for spruce and pine, 0.6 for birch, and 0.5
for aspen). Standard deviation is presented for average F1-score.

1 2
aspen 0.371 0.39
birch 0.746 0.79
spruce 0.732 0.759
pine 0.751 0.868
average 0.65 0.667

± 0.005 ± 0.004

WorldView imagery, coniferous and deciduous sub-classes are less often ascribed to

the wrong parent class.

One of the important issues of the hierarchical approach is that, for each classi-

fication task, the most suitable neural network architecture can be chosen.

As is shown in Tables 4.10 and 4.11, the accuracy of the classification of aspen

and birch became more adequate, and the final performance is more satisfying in

the context of available markup.

The proposed work approach is only applicable when a hierarchy of classes is

established. However, this approach can yield better results, as shown by utilizing

the semantic connections between classes. It also helps to reduce computational

costs in the case of a high number of classes (a binary logarithm instead of a linear

one).

The computational overhead from the use of four models in the hierarchical

approach instead of two in the multi-class baseline is not crucial since the problem

is neither real-time nor addressed to the mobile devices.
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(a) WorldView.

(b) Sentinel.

Figure 4-5: Confusion matrices for the best aggregated hierarchical models with
height data: (a) WorldView data, (b) Sentinel data.

4.5.2 Supplementary height data

Aggregated results for experiments with height data are presented in Tables 4.10 and

4.11. For the multi-class approach and hierarchical decomposition, height data usage

improves model performance. WorldView hierarchical decomposition enhances the

quality from 0.797 to 0.836. In multi-class classification, the F1-score without height

is 0.703; with height, it is 0.716. The same trend is observed for the Sentinel data.

Hierarchical decomposition with height improves the quality from 0.72 to 0.77; for

multi-class classification, the scores are 0.58 and 0.668, respectively.

A sample of the test region with the ground truth markup and the predictions

of the final hierarchical model with height supplementary data is presented in Fig.

4-6 and 4-7, which show a significant intersection between real classes and the arti-

ficially estimated classes. Experiments with both high and medium resolution data

confirmed the reliability of the chosen strategy.
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4.5.3 Architecture selection

We compared six neural network architectures (U-Net with Resnte34 encoder, U-

Net with EfficientNet encoder, U-Net with Inceptionresnetv2 encoder, FPN with

Resnte34 encoder, FPN with EfficientNet encoder, and FPN with Inceptionresnetv2

encoder) for each of the classification tasks in the hierarchical decomposition and

the multi-class approaches. Results are presented in Tables 4.7. Aggregated pre-

dictions were computed for the best models in each category. The batch size was

limited by the available memory properties and was reduced for larger models for the

WorldView data with a crop size of 256 ∗ 256 pixels. For Sentinel, the crop size was

smaller (64 ∗ 64 pixels); therefore, the batch size was the same for all experiments.

The best models for WorldView are the smaller ones (U-Net with Resnet34 encoder

and FPN with the same encoder). However, for Sentinel experiments, the best ar-

chitecture is considerably different. Model performance is affected by data amount

and structure. Finding a universal architecture is beyond the scope of this study,

but experimental results indicate that architecture searching is advisable. Both the

WorldView and Sentinel studies show that the correct architecture for each task can

adjust classification quality, although classification pipeline and auxiliary data are

also of high importance in such applied tasks. Therefore, we assume that these two

points should be taken into account to develop a robust computer vision model for

environmental tasks.

4.5.4 Augmentation and oversampling

For all models, we implemented geometrical augmentations. This allowed us to

achieve a higher diversity in the training dataset. As augmentation in neural network

training is well-studied, we assessed its contribution to the classification quality

for only one architecture and one classification solution: the U-Net with Resnet34

encoder in the multi-class problem definition, with WorldView images, and without

supplementary height data. The F1-score without augmentation during training is

0.67 (for validation augmented data), while the augmentation procedure increases

the quality to 0.7 (for the same validation augmented data). This effect is explained
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by the fact that a neural network treats any geometrical transformation as a new

training sample.

We conducted class oversampling according to the thresholds defined in Table

4.4. Two strategies were compared: 1) A dataset of forest stands was formed with a

dominant species content of more than 50%, and 2) a special threshold was defined

for each class (0.7 for spruce and pine, 0.6 for birch, and 0.5 for aspen). The averaged

results for a multi-class approach with WorldView images and without height data

are presented in Table 4.12. It shows that such an oversampling can increase model

performance.

(a) Input image. (b) Ground truth.

(c) Prediction.

Figure 4-6: A sample of the WorldView imagery for the test area.

4.6 Conclusions

We studied the applicability of the neural networks for the automatic extraction

of forest inventory characteristics from satellite imagery and concentrated on the

dominant species classification problem. We present the following contributions:

• We provide a labeled dataset for dominant species classification, covering a

part of Leningrad Oblast, Russia.
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(a) Input image. (b) Ground truth. (c) Prediction.

Figure 4-7: A sample of the Sentinel imagery for the test area.

• We developed a hierarchical pipeline for the neural network segmentation,

which allows outperforming the basic network approach in the multi-class

image segmentation problem. Applicability and relevance of our solution were

proved on two data sources: Sentinel and WorldView satellites.

• We investigated the effect of the supplementary height data, which increases

the accuracy significantly.

This approach can be extended to other forest inventory problems and can be

improved by a better training markup, both of which we are going to pursue in

future work. Moreover, the results in this study are limited to dominant species

classification only. However, in future research, we are going to cover mixed forest

cases, which will fall entirely into the hierarchical segmentation scheme. The other

goal is to add more forest inventory characteristics, which can also be estimated

from the satellite imagery.
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Chapter 5

Tree Species Mapping on

Sentinel-2 Satellite Imagery with

Weakly Supervised Classification

and Object-Wise Sampling

5.1 Introduction

Many ecological and forest management studies are based on knowledge about tree

species within a region of interest. Such knowledge can be used for the precise anal-

ysis of natural conditions [Lindenmayer et al., 2000], the development of ecological

models [Franklin et al., 2018], and for conservation and restoration decision-making

[Wallace and Clarkson, 2019]. Tree species information can be leveraged for timber

volume [Hill et al., 2018, Bont et al., 2020] and biomass estimation [Pandey et al.,

2019] accompanied by other characteristics, such as tree age and height, crown

width.

A commonly used approach for forest type data gathering is field-based mea-

surement, which has the obvious drawbacks of acquisition cost and difficulty. Many

studies are now focused on the automatization of land-cover survey through the use

of remote sensing-derived data. This approach is more preferable when analysing
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vast territories. For instance, the creation of large-scale maps has been described

in [Persson et al., 2017, Lei et al., 2016]. For such tasks, both low spatial resolu-

tion and high resolution data can be used. Examples of frequently leveraged data

sources with resolution lower than 30 m is Landsat satellite imagery [Pasquarella

et al., 2018, Gudex-Cross et al., 2017]. Promising results have been shown in studies,

both for single image and time-series data [Stoian et al., 2019, Nguyen et al., 2018,

Campos-Taberner et al., 2020]. Nevertheless, some tasks require more precise data

with higher resolution. Multispectral images with high resolution strive to provide

more thorough land-cover analysis.

Recently, image classification algorithms have demonstrated high prediction ac-

curacy in a variety of applied tasks. Algorithms based on machine learning meth-

ods are now commonly used for land-cover mapping—particularly for forest species

prediction—using satellite imagery. Classical methods, such as Random Forest

[Breiman, 2001], Support Vector Machine [Cortes and Vapnik, 1995], and Linear

Regression, usually work with feature vectors, where each value corresponds to some

spectral band or combination of bands (in the case of vegetation indices) [Hamedian-

far and Barakat A. Gibril, 2019, Chen et al., 2018]. Deep neural network approaches

have proved to be more capable for many land-cover tasks [Kussul et al., 2016, Mah-

dianpari et al., 2018, Illarionova et al., 2021c]. In [DeLancey et al., 2020], a CNN was

compared with XGBoost [Chen and Guestrin, 2016b]. In [Sun et al., 2019], a CNN

approach was examined for tree mapping, through the use of airplane-based RGB

and LiDAR data. In [Illarionova et al., 2020], neural-based hierarchical approach

was implemented to improve forest species classification.

In contrast with typical image classification tasks (such as in the Imagenet data

set), land-cover tasks involve spatial data. Vast study regions are usually supplied,

with a reference map covering the entire area. Classes within this area may not be

evenly distributed in many cases [Xia et al., 2018a]. Moreover, classes of vegetation

types of land-cover are often imbalanced within the study region. In many works, the

analysed territory can be covered by a single satellite tile (e.g., the size for Sentinel-

2 is 100 ∗ 100 km2). Therefore, researchers need to choose both how to select the

training and validation regions and how to organize the training procedure to deal
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with imbalanced classes and a spatial distribution that is usually far from uniform.

Sampling approach is vital for the remote sensing domain as simple image partition

into tiles is ineffective for vast territories [Xu et al., 2020]. The training procedure

depends on whether we use a pixel-wise [Trisasongko et al., 2017] or object-wise

approach [Hamedianfar and Barakat A. Gibril, 2019, Gudex-Cross et al., 2017]. In

a pixel-wise approach, each pixel is ascribed a particular class label and the goal

is to predict this label using a feature description of the pixel. In an object-wise

approach, a set of pixels is considered as a single object. In some classical machine

learning methods, a combination of the two approaches has also been considered

[Chen et al., 2018]. An alternative approach to classical pixel- or object-wise has

been provided in [Sun et al., 2019] for a CNN tree classification task using airplane-

based data. During the described patch-wise training procedure, the model strove

to predict one label for a whole input image of size 64 ∗ 64 pixels. However, for

some semantic segmentation tasks with lower spatial resolution, the input image can

include pixels with different labels and, therefore, the aforementioned approach is

not always applicable. The same issue was faced in [Mahdianpari et al., 2018], where

patch-wise approach was implemented for CNN for a land-cover classification task

using RapidEye satellite imagery. Some patches with mixed labels were excluded,

in order to solve the problem. In our study, we aim to provide sampling approach

for medium resolution satellite imagery for forest species classification. In contrast

to [Sun et al., 2019], we focus on the particular area within a patch and do not

exclude from training patches with mixed labels as in [Mahdianpari et al., 2018].

Another important issue is markup limitations. Field-based measurements are

commonly used as reference data. Vast territories are often split into small aggre-

gated areas comprised of groups of trees called individual stands. These stands are

not necessarily homogeneous but, in some cases, the percentages of different tree

species within the stand is available. The location of the non-dominant trees is

unknown. In such cases, machine learning algorithms are often trained to predict

the dominant class even for regions with mixed forest species [Abdollahnejad et al.,

2017], or just areas with a single dominant tree species are selected [Knauer et al.,

2019]. This raises the issue of weak markup adjustment. Among weakly supervi-
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sion tasks, this one belongs to inexact supervision when only coarse-grained labels

are given [Zhou, 2017]. Weakly supervised images occur both in the general do-

main [Guo et al., 2018a, Ahn et al., 2019a] and in specific tasks such as medical

images segmentation [Xu et al., 2019]. These studies involve new neural network ar-

chitectures or frameworks development to decrease requirements for labor-intensive

data labeling. In the remote sensing domain weakly supervised learning was also

considered in different tasks such as cropland segmentation using low spatial res-

olution satellite data [Wang et al., 2020], cloud detection through high resolution

images [Li et al., 2020c], and detection of red-attacked trees with very high resolu-

tion areal images [Qiao et al., 2020]. However, in the field of forest species classi-

fication, the weak markup problem requires additional analysis according to data

specificity (both satellite and field-based). In this study, we propose a CNN-based

approach to extract more homogeneous areas from the traditional forest inventory

data that includes only species’ content within stands and does not provide each

species’ location. We focus on semantic segmentation problem using high resolution

multispectral satellite data. The approach is particularly based on the Co-teaching

paradigm presented in [Han et al., 2018] where two neural networks are trained,

and small-loss instances are selected as clean data for image classification task. In

contrast, we split the data adjustment and training process into two separate stages

and implement this pipeline for the semantic segmentation task.

In this study, we aim to explore a deep neural network approach for forest type

classification in Russian boreal forests using Sentinel-2 images. We set the following

objectives:

• to develop a novel approach for forest species classification using convolutional

neural networks (CNN) combining pixel- and object-wise approaches during

the training procedure, and compare it with a typically used approach for

semantic segmentation; and

• to provide a strategy for weak markup improvements and examine forest type

classification both as a problem of (a) dominant class estimation for non-

homogeneous individual stands and (b) more precise homogeneous classifica-

114



Chapter 5. Tree Species Mapping on Sentinel-2 Satellite Imagery with Weakly Supervised
Classification and Object-Wise Sampling 5.2. Materials and methods

tion.

This study extends the previous Chapter on forest species classification. It shows

forest inventory data specificity in more details and provides ideas how to take it

into account. We focus on tree species estimation, while the proposed approaches

are also applicable for other forest parameters prediction.

5.2 Materials and methods

5.2.1 Study Site

The study was conducted in the Russian boreal forests of Leningrad Oblast. The

coordinates of these regions are between 33◦42′ and 33◦76′ longitude and between

60◦78′ and 61◦01′ latitude (Figure 8-1). The vegetation cover is mixed and includes

deciduous and conifer tree species. The main species are pine, spruce, aspen, and

birch. The climate in the region is humid. An average daily high temperature in the

vegetation period (from May to August) is above 15 řC. The rain period usually lasts

for 7 months (from April to November). From September to May, it is snowy (or

rain mixed with snow). Throughout the course of the year, the region is generally

cloudy (with the clearer periods during the summer time, when the probability of a

clear sky is about 20%).

5.2.2 Reference Data

Reference data was previously reported in [Illarionova et al., 2020]. It was collected

by field-based measurements carried out in July-August 2018. The methodology

of data gathering corresponded to the official Russian inventory regulation [reg,

2012]. In accordance, the study area was split into individual stands with the

following characteristics: polygonal coordinates, a certain percentage of each tree

species, average age, and height within the stand. The distribution of stand sizes

is presented in Figure 5-2. The majority of polygons had their longest side length

between 100 and 600 m. Although the percentage for each stand was defined, the

spatial distribution within the stand was unknown. The number of individual stands
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Figure 5-1: Region of interest. Enhanced RGB bands of Sentinel-2 image (tile id is
L2A_T36VWN_A010343_20170615T090713) are shown.

Table 5.1: Dataset statistics

Training Test All Area (ha)
Individual stands Individual stands Individual stands

aspen 520 205 725 2298
birch 1143 501 1644 4165
pine 1569 726 2295 3620
spruce 1087 450 1537 6315

with particular dominant tree species (larger than 50% within the stand) is shown

in Figure 5-3 and in Table 6.3. The vast majority of individual stands consisted

of mixed species; for instance, there were less than 100 stands of pure (not mixed)

birch type. Example of mixed individual stands are presented in Figure 5-4.

5.2.3 Satellite Data

For optical multispectral imagery, we acquired Sentinel-2 data. This data is available

for free download in L1C format from EarthExplorer USGS. Tiles IDs and acqui-

sition dates are presented in Table 8.1. In this study, we considered only summer

images. High cloud cover imposes limits on data for this northern region. There-
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Figure 5-2: Size distribution of individual stands within the study area. Polygons
with a side larger than 64 pixels or smaller than 8 pixels were eliminated.
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(a) (b)

(c) (d)

Figure 5-3: Distribution of classes.

Figure 5-4: Composite of B12, B08, B04 Sentinel-2 bands. Example of mixed indi-
vidual stands (red polygon) with percentages of species.
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fore, only two summer images from different years but of the comparable summer

period were used to create the training dataset. Images acquired in other summer

dates did not provide a sufficient amount of clear areas without clouds. There were

no significant forest cover changes between survey time and image acquisition time;

therefore, both images are relevant for the study. 10 bands of the following wave-

lengths were used: Band 2: Blue, 458–523 nm; Band 3: Green, 543–578 nm; Band 4:

Red, 650–680 nm; Band 5: Red-edge I (R-edge I), 698–713 nm; Band 6: Red-edge

II (R-edge II), 733–748 nm; Band 7: Red-edge III (R-edge III), 773–793 nm; Band

8: Near infrared (NIR), 785–900 nm; Band 8A: Narrow Near infrared (NNIR),

855–875 nm; Band 11: Shortwave infrared-1 (SWIR1), 1566–1651 nm; Band 12:

Shortwave infrared-2 (SWIR2), 2100–2280 nm). Images were pre-processed with

the Sen2Cor package for atmospheric correction. Although, Sen2Cor package pro-

vides a cloud and shadow map, which can be used to eliminate irrelevant pixels, we

selected cloudless images for the study. The obtained data were in L2A format, in-

cluding values of Bottom-Of-Atmosphere (BOA) reflectances. For CNN-based tasks,

image values are often brought to the interval from 0 to 1 [Vaddi and Manoharan,

2020, Debella-Gilo and Gjertsen, 2021]. Therefore, pixel values were mapped to the

interval [0, 1] through division by 10000 (the maximum physical surface reflectance

value for Sentinel-2 in level L2A) and clipping to 0 and 1. We used bands with

a spatial resolution of 10 m per pixel (B02, B03, B04, B08 bands) and 20 m per

pixel (B05, B06, B07, B11, B12, B8A bands), adjusted to 10 m by Nearest Neigh-

bor interpolation [Persson et al., 2018a]. Each image covered the entire study area,

and images were considered separately without any spatial averaging (the same as

in [Astola et al., 2019]).

5.2.4 Organizing Samples for Classification

Four tree species were considered: aspen, birch, spruce, and pine. We also considered

the ’conifer’ class as a combination of spruce and pine, and the ’deciduous’ class as

a combination of aspen and birch. As a sample for the further analysis, we chose

individual stands. There was no information on the spatial distribution of tree

species within an individual stand. Therefore, we defined the label for each stand
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Table 5.2: Sentinel-2 images from USGS. Wavelength values corresponding to each
band: Band 2: Blue, 458-523 nm; Band 3: Green, 543-578 nm; Band 4: Red,
650-680 nm; Band 5: Red-edge I (R-edge I), 698-713 nm; Band 6: Red-edge II
(R-edge II), 733-748 nm; Band 7: Red-edge III (R-edge III), 773-793 nm; Band
8: Near infrared (NIR), 785-900 nm; Band 8A: Narrow Near infrared (NNIR),
855-875 nm; Band 11: Shortwave infrared-1 (SWIR1), 1566-1651 nm; Band 12:
Shortwave infrared-2 (SWIR2), 2100-2280 nm)
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as the dominant tree species within it, if the stand contained more than 50% of this

forest type (the same approach was described in [Abdollahnejad et al., 2017]). For

conifer and deciduous classes, we summed the percentages for spruce and pine, and

for aspen and birch, respectively. The described sample definition assumed that the

markup had some pre-defined uncertainty for non-homogeneous stands. However,

it provided information necessary to the dominant species classification task. Thus,

for each sample in the data set, we know the label of the dominant forest type, the

percentage of secondary types (if any), and an ascribed polygon in a multispectral

satellite image.

For the experiment of training procedure adjustment, we selected 8 test regions

of about 450 ha each (Figure 5-5). For the experiment of weak markup improve-

ment, 30% of samples were selected randomly for test. Samples outside test regions

were split into train and validation sets randomly, in a ratio of 7:3, following the

constraint of no occurrence of the same individual stand in both validation and

training sets. For each polygon it can be more than one sample depending on the

images’ number covering the polygon. Non-overlapping parts of the same satellite

image could appear in both the training and test sets.

5.2.5 Forest Species Classification

Instead of typical multi-class classification, we used an hierarchical approach de-

scribed in [Illarionova et al., 2020]. The task of four-species prediction was split into

three tasks: (a) classification of conifer and deciduous; (b) classification of birch

and aspen; and (c) classification of spruce and pine. The final results followed from

the intersection between the predicted mask of birch and aspen and the predicted

deciduous mask (with a similar approach followed in the conifer case). Such an hi-

erarchical approach allows for solving each task independently and ensuring greater

control over experiment at each step.

For the forest type classification, we implemented a deep neural network ap-

proach, which have been widely used for image classification and segmentation tasks

when spatial characteristics are important in the remote sensing domain [Zhang

et al., 2019a, Song et al., 2019, Kattenborn et al., 2021b]. At the input of such a
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Figure 5-5: The whole study area (white polygon). Test regions (red polygons).
Enhanced RGB bands of Sentinel-2 image are shown.
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neural network, there is usually a combination of spectral bands. The output of the

semantic segmentation model is a map, where each pixel is ascribed a particular

class label. During the training procedure, a model is forced to correctly predict as

many pixel labels as possible by observing random image patches with pre-defined

size. This is achieved through the implementation of a particular loss function. The

loss is computed for each step of neural network training, when all images patches

from one batch have been processed. For our study, we implemented the categorical

cross entropy per-pixel loss function.

In this loss, all pixels in the scene are taken into account. Therefore, if the

classes are highly unbalanced, a model rarely observes pixels labeled as the smaller

class. This results in poor performance of the model for a less represented class. A

common solution is using a larger penalty for errors on the smaller class samples,

such as in the weighted categorical cross entropy:

Weighted Loss = −
∑N

i=1

∑C
k=1(yik ∗ log ŷik) ∗ weights(yik)

N
, (5.1)

where ŷik—predicted probability of the i-th pixel to belong to the k-th class, yik—

ground truth value for the i-th pixel (1 if the pixel belongs to the k-th class),

N—number of not masked pixels, C—number of classes.

Another issue that should be taken into account is that samples of particular

classes may not be evenly distributed across the study region. This means that

random selection of image patches in batch can lead to a situation where samples

concentrated in one area may be seldom observed.

To tackle this problem, we modified the classical sampling approach for semantic

segmentation with CNN, as described in the next section.

5.2.6 Object-Wise Sampling Approach

We replaced the commonly used batch creation approach. The sample content was

taken into account, instead of simply using random patch selection. The choice of

patch size was governed by the relevant size of polygons. As we eliminated polygons

with sides less than 80 m and larger than 640 m, the patch size was selected as
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64 ∗ 64 pixels. The number of patches per batch was set to 128. Although we

considered two classes, the general approach is also applicable for more classes. For

each class, we picked the same number of polygons and cut patches around these

polygons to create the batch. As the polygon size could vary in the defined range,

the patch crop could also differ for the same polygon. The only demand was that the

polygon’s bounding box should be within the patch boundary. The patch was also

geometrically augmented, in order to provide more variability during the training

procedure. We implemented random rotate, mirror, and flip operations.
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Figure 5-6: The object-wise semantic segmentation approach. The model produces
the map where the probability of a class is recorded at each pixel. Loss is computed
just for masked area of the polygon. The percentage of dominant class is also can
be taken into consideration (in the example, the dominant species percentage for
the individual stand is 0.8).

The next step was loss computation. The approach is described in the Figure 5-

6. For this purpose, we used polygon mask. Patch has dimension Patch_Rows,

Patch_Columns, Number_of_classes. The patch mask contains non-zero values

for pixels within the polygon’s area and for the appropriate correct class. Despite the

fact that individual stands are not often homogeneous, all pixels within one stand

were ascribed the same label. The loss was computed for this area. There can be

an available markup for other pixels within the patch, but this was not considered.

The main reason for this is that it can affect the balance of classes.

We compared this approach with the commonly used per-pixel semantic segmen-

tation approach, for which the batch was randomly formed and an extra penalty

for mistakes in the smaller class was added (Figure 5-7). In this approach, for cal-

culation of the weighted categorical cross-entropy loss, all pixels within the patch

were considered. The weights were set proportionally to the amount of each class

represented.

5.2.7 Weak Markup

Another adjustment was aimed at addressing weak markup. It includes two stages,

as shown in Figure 8-3. The first stage was as follows. The aforementioned reference
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Figure 5-7: The commonly used per-pixel semantic segmentation approach. The
model produces the map where the probability of a class is recorded at each pixel.
Loss is computed for the entire patch. The patch includes stands with different
dominant species (class 0, class 1, etc.)

data consisted of the percentage of each class within the individual stand. We took

this knowledge during the loss computation. The loss was calculated for each indi-

vidual stand and multiplied by the dominant species percentage. For example, for a

stand that consisted 60% of conifers and 40% of deciduous trees, the penalty will be

0.6. If the percentage is higher, then the penalty becomes stricter. For a homoge-

neous stand, all pixels have the maximum loss weights. Therefore, in Equation 5.1,

weights were defined as the dominant species percentage. When the learning curve

started to change less rapidly and could achieve sufficient results on the validation

set (after about 15 epochs), we changed the training data set. We eliminated all

individual stands with percentage less than 90%. Thus, for a few epochs (about 2

epochs), the model observes more pure data. Obviously, such a model will perform

poorly, in terms of the initial dominant species problem statement. However, at the

same time, it will not strive to label deciduous trees within a conifer individual stand

as conifer trees (as for case with 60% conifer and 40% deciduous). Then, we used

this model to predict conifer and deciduous species both for training and validation

regions. The first stage of markup adjustment results was the intersection between

the predicted mask and initial dominant species markup. It was assumed that the

map acquired in this way contained less pixels of minor (i.e., non-dominant) classes.

The next stage of the weak markup study was the implementation of the newly

126



Chapter 5. Tree Species Mapping on Sentinel-2 Satellite Imagery with Weakly Supervised
Classification and Object-Wise Sampling 5.2. Materials and methods

Figure 5-8: Markup adjustment strategy.

obtained markup in further training. We intersected the new conifer mask with the

initial spruce and pine dominant masks, and the same for the deciduous classes.

The goal of this intersection was to reduce the number of deciduous pixels within

individual stands dominated by pine and spruce, and vice versa. For this study, we

created the validation data set only from homogeneous individual stands.

5.2.8 Experimental Setup

For all experiments, the U-Net architecture [Ronneberger et al., 2015] with ResNet

[He et al., 2016] encoder was used, as it has been shown to successfully perform in

popular image classification tasks both in general and remote sensing domains [Kat-

tenborn et al., 2021b]. The model implementation referred to [Yakubovskiy, 2022].

It used Keras with Tensorflow backend. For model training, a PC with GTX-1080Ti

GPUs was used. The batch size was 128 patches, where each patch had size of 64∗64

pixels. The batch size was chosen accord-ing to GPU memory limitations. There

were 100–200 steps per epoch and the number of epochs varied from 10 to 30, de-

pending on the size of classes. Similar results reproduction was achieved by fixing a

random seed for pseudo-random number generator for all training methods.

To assess the classification quality, we considered F1-score. In the one case, we

127



Chapter 5. Tree Species Mapping on Sentinel-2 Satellite Imagery with Weakly Supervised
Classification and Object-Wise Sampling 5.3. Results

evaluated the number of correctly predicted individual stands. To this end, per-

pixel predictions within stands were aggregated and the dominant class was defined

for each stand. Based on reference and predicted stand labels, the amounts of true

positive, false positive, and false negative samples were estimated. In the second

case, we evaluated the F1-score in a per-pixel manner.

A CNN model for each experiment was trained five times with different random

seeds, and then results were averaged. Standard deviation was computed.

5.3 Results

5.3.1 Sampling Approach For Species Classification

We compared a typical sampling procedure for forest species semantic segmentation

with our modified one. The results are presented in Table 5.3. For all classes, the

object-wise sampling approach performed better. The average F1-score before ag-

gregation was improved from 0.8 to 0.85. The final aggregated results were obtained

by multiplying the predicted conifer binary mask with spruce and pine masks and

multiplying the predicted deciduous mask with aspen and birch masks. Aggregated

results for four forest classes are shown in Table 5.6. The object-wise sampling ap-

proach allows us to improve segmentation’s F1-score from 0.68 to 0.74. The larger

difference between the two methods was for the birch and aspen classes. The reason

for this is that these classes were the most difficult to distinguish due to imbalance.

The proposed approach leads to a more balanced training samples choice.

Standard deviation was computed for averaged F1-score of different model train-

ing running. It shows that achieved results are relevant for further forest analysis

studies.

Table 5.3: Forest types classification using different sampling procedure (per-pixel
F1-score)

aspen / birch pine / spruce conifer / deciduous average
Simple sampling 0.48 / 0.88 0.91 / 0.88 0.81 / 0.85 0.8 ± 0.003
Modified sampling 0.63 / 0.91 0.94 / 0.88 0.85 / 0.87 0.85 ± 0.004
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Table 5.4: Conifer and deciduous classification (average score) using source markup
and updated markup.

Per-pixel F1-score Per-stand F1-score
Source markup 0.827 0.851
Updated markup 0.769 0.854

5.3.2 Markup Adjustment

We conducted experiments aimed to improve conifer and deciduous markup. Some

areas were eliminated by the model predictions intersected with the initial dominant

species map. It aims to leave only homogeneous areas with conifer or deciduous

trees. The per-pixel metric is intended to label all pixels even within inhomogeneous

individual stand as the dominant class type. Therefore, at this stage of the task,

the goal was not to improve the per-pixel score. The average per-pixel F1-score for

conifer and deciduous classification became 0.76, in comparison with the previously

achieved 0.82 (Table 5.4). However, we aimed to preserve the score per individual

stands than the per-pixel one. The score of dominant classification per individual

stands was still approximately at the same level (F1-score 0.85). It means that the

model was trained to ignore pixels of non-dominant classes within the stand. For

the further assessment, homogeneous stands were considered.

The obtained map was then used for species classification. We compared the

model trained on the source markup and that trained on updated one. Their per-

formances were assessed on homogeneous individual stands for four species from

the test set. The results are presented in Table 5.5. Although we eliminated pixels

from the (non-homogeneous) training set, the model performed better than when

using the larger training data of weaker quality. It allowed us to improve the aver-

age F1-score for four species from 0.74 to 0.76 compared with initial markup usage

(Table 5.6). The results confirmed the benefit of the proposed approach.

Example of the final predictions using both modified sampling approach and

adjusted markup is presented in Figure 5-9.
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Table 5.5: Forest types classification for more homogeneous individual stands (per-
pixel F1-metric) using source markup and updated markup. Results on test samples.

aspen/ birch pine / spruce average
Source markup 0.77 / 0.9 0.94 / 0.88 0.87 ± 0.003
Updated markup 0.79 / 0.91 0.95 / 0.9 0.89 ± 0.002

Table 5.6: Final aggregated results for forest types classification using modified
sampling procedure and markup adjustment (F1-score)

aspen birch pine spruce average
Simple sampling procedure 0.42 0.72 0.84 0.74 0.68 ± 0.007
Modified sampling procedure 0.6 0.8 0.81 0.74 0.74 ± 0.004
Modified sampling procedure 0.62 0.83 0.82 0.76 0.76 ± 0.005
with new markup

5.4 Discussion

5.4.1 Sampling Approach for Species Classification

The analysis showed that the sampling procedure is highly essential for the forest

species classification task. The same approach can be implemented for other prob-

lems where maps of vast territories are used and some classes are distributed not

uniformly. The proposed object-wise sampling approach for CNN leads to better re-

sults than the commonly used approach where patches are chosen randomly within

the entire satellite image.

It is worth mentioning the reason why a classical patch-wise approach was not

considered suitable for our problem. It implies that we can choose the patch size

small enough to include just the pixels of one class. However, in our case, there are

two obstacles to implement this. The first being that individual stands are not of

rectangular shape and, therefore, the patch size must be rather small. The other

point is that individual stands are not homogeneous and we do not know the spatial

distributions within stands. Therefore, a random small patch within an individual

stand may turn out to, in fact, be a set of pixels of a minor class. This makes the

approach described in [Mahdianpari et al., 2018] inappropriate in the presented case.

Another alternative approach to classical pixel- and object-wise classification for
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Figure 5-9: Sentinel-2 RGB image. Final predictions using modified sampling ap-
proach and adjustment markup.

remote sensing applications (e.g., airplane-based) has been discussed in [Sun et al.,

2019]. It should be noted that, despite the apparent similarity of airplane and

satellite-derived remote sensing data, they have substantive differences. The main

difference is spatial resolution. The relevant observation field can vary by 100 times

(e.g., 0.1 m for UAV and 10 m for satellite images). Thus, the approach have to be

modified.

5.4.2 Markup Adjustment

Clear markup is essential for remote sensing tasks. In some cases, non-homogeneous

areas are excluded from training set [Knauer et al., 2019]. Another approach is to

use plots with different species and ascribed it by the dominant species class [Ab-

dollahnejad et al., 2017]. It is reasonable to move further in the direction of an

automatic markup adjustment, in order to make the data clearer without extra

manual labeling. The next step of the study can be label adjustment for all classes,

not only for conifer and deciduous. The weighted loss function adjustment can also

be considered to improve homogeneous areas detection.

Weakly supervised learning is now applied in different remote sensing tasks.

They vary by the target objects and remote sensing data properties such as spatial

resolution and spectral bands number. In our study, we focus on 10 m spatial
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resolution and 10 multispectral bands. In cases of very high spatial resolution and

just RGB bands such as in [Qiao et al., 2020] markup constraints differ significantly.

Particular tasks also pose some limitations and additional opportunities for a weakly

supervised learning approach [Li et al., 2020c]. Therefore, remote sensing datasets

can differ drastically from such datasets as MNIST or CIFAR considered in [Han

et al., 2018]. Another difference is that the forest species classification is considered

as a semantic segmentation task instead of an image classification task, such as in

the case of noisy labels problem in [Han et al., 2018].

Markup adjustment can be also studied in the case with machine learning al-

gorithms instead of neural network based such as methods described in [Xia et al.,

2020, Ha et al., 2020, Pham et al., 2018].

The main error source in such land cover tasks is diversity within each forest

species. Spectral characteristics vary drastically for different tree age and depend

on environmental conditions. Therefore, markup adjustment and optimal sampling

choice are promising approaches to improve model performance. Another error

source is mixed border pixels of neighboring individual stands. In the case of 10 m

spatial resolution, even for homogeneous forest stands, spectral characteristics on the

border can be affected by other species outside this stand. A possible approach to

address this problem for homogeneous stands is to consider just inner pixels remote

from the border.

One of the potential limitations is the time and computational cost for markup

adjustment model training. In our case, we used the same CNN architecture to

perform this stage. We trained the model for markup adjustment and the final

segmentation model sequentially. In future studies, an alternative approach can be

developed and implemented to perform markup adjustment on the fly for remote

sensing tasks.

In this study, we considered forest species classification. However, the proposed

approach can be transferred in future studies for other tasks where samples are

grouped, and for a group, label distribution is known. The described approach is also

applicable for other neural network architectures. Therefore, experiments with new

state-of-the-art architectures can be conducted using the same method. Both the
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sampling and markup adjustment approaches are transferable to new satellite data

sources. We considered multispectral Sentinel-2 imagery with a spatial resolution of

10 m. However, it can also be implemented for high-resolution multispectral data

such as WorldView or just RGB images such as base maps.

Vegetation indices are significant for environmental tasks as they provide relevant

surface characteristics. Therefore, they are widely used as features for classical

machine learning methods. However, in the case of deep neural networks, it is

assumed that neural networks can learn non-linear connections between raw input

data and use prior information for more general characteristics extraction. In our

study, we considered only multispectral satellite bands. However, future studies

might include vegetation indices or supplementary materials such as digital elevation

or canopy height models to achieve higher results and reduce training time.

It is promising to study different augmentation techniques combined with im-

proved markup and the object-wise sampling approach. For example, the object-

based augmentation described in [Illarionova et al., 2021b] can further be imple-

mented to create more variable training samples with different homogeneous stands.

Precise forest species classification can also be implemented in ecological and

environmental studies, as large forest patches have been proved to affect human

health [Kim et al., 2020]. Detailed forest characteristics can be helpful for such

analysis.

5.5 Conclusions

The sampling approach and ground truth markup quality are crucial in forestry tasks

involving remote sensing data. In this study, we analyzed the potential of combining

CNN and Sentinel-2 images for the task of forest species classification using weak

markup with non-homogeneous individual stands. During the first stage, a CNN was

trained to find the homogeneous areas within each stand, providing a more accurate

markup. During the second stage, the final model was trained to predict four forest

species. This markup adjustment allows us to increase F1-score from 0.74 to 0.76

compared to the initial markup. The experiment confirms the opportunity of finding
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weak labels and shows promising results for further classification enhancement. We

also proposed the CNN-based sampling approach for spatial data in forest species

classification. The proposed modification outperformed the prediction quality of

a commonly used per-pixel semantic segmentation model (the average F1-metric

was increased from 0.68 to 0.74). The described pipeline helps to address the issue

of highly imbalanced and not evenly distributed classes. The provided training

strategy can help solve forest species classification tasks more precisely, even when

the reference data has significant limitations. Further study for other vast territories

is promising, and the proposed sampling technique seems to be beneficial in such

spatial studies.
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Chapter 6

Estimation of the Canopy Height

Model from Multispectral Satellite

Imagery with Convolutional

Neural Networks

6.1 Introduction

Canopy height model (CHM) estimation has a long history, but advances in com-

puter vision and satellite sensing technologies have opened new opportunities in this

area. The height can be effectively utilized in different applications and broadens

the surface’s two-dimensional representation in the visible spectrum. There are both

natural [Thomas et al., 2018, Trier et al., 2018, Huang et al., 2017, Zhang et al.,

2018, Illarionova et al., 2020] and anthropogenic [Mou and Zhu, 2018, Trekin et al.,

2020] objects of landcover to be explored. The present study is focused on natural

types of landcover, especially wild forest areas. Landcover height characteristics

can be used in various applications, such as biomass evaluation [Wu et al., 2016,

Sadeghi et al., 2018, Gwenzi et al., 2017], improving the accuracy of tree species

classification [Sasaki et al., 2012, Dalponte et al., 2012], and correlated vegetation

properties extraction [Majasalmi et al., 2018].
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There are three frequently reported sources of canopy height information: 1)

field-based measurements; 2) Unmanned Aerial Vehicle (UAV)-based approaches;

and 3) satellite remote sensing data. All aforementioned approaches have advan-

tages and limitations connected with acquisition time and cost (Figure 6-1). The

first data source is forest inventory documents, usually treated as field-based obser-

vations. They are available for some regions and useful in addressing forest own-

ers’, governmental, and independent organizations’ needs [Venturas et al., 2021].

However, these data do not cover all regions of practical interest [Haakana et al.,

2017]. Furthermore, such data actualization is time-consuming and cost intensive

in difficult-to-access areas. An alternative approach is to use remote sensing data.

Figure 6-1: Cost comparison of different forest height measurement approaches (di-
agram is not to scale).

The remote sensing approach draws on both active and passive sensing tech-

nologies. During active sensing such as Light Detection and Ranging (LiDAR)

measurements, the sensor measures time between the emitted light time and its re-

turn time to estimate the distance of an object (a surface). This technology allows

digital elevation models to be produced. Passive remote sensing measures radiation

that is emitted or reflected by the object in different spectral wavelengths. Spectral

bands obtained this way can be used for future analysis and to calculate the height
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value in landcover extraction.

A common approach builds on UAV assessment. A UAV with LiDAR sensors is a

powerful tool for forest height estimation. It obtains canopy height data with minor

errors, meeting the precision requirements for almost all forestry tasks. However,

such equipment is more expensive than a spectral aerial camera system, thus there

remains the challenge of obtaining the same information using low-cost methods

[Matese et al., 2017]. Many works use LiDAR data as a reference and aim to find

a cheaper height data source. A detailed review of the alternative approaches to

LiDAR sensing is presented in [Stone et al., 2016, Lagomasino et al., 2016]. Thus,

most of the current studies in the sphere of canopy height estimation use UAVs with

optical aerial systems [Hartling et al., 2019, Marrs and Ni-Meister, 2019, Lin et al.,

2019, Nezami et al., 2020, Nguyen et al., 2019, Swinfield et al., 2019]. Despite its

advantages over field-based observations, when large regions have to be processed,

the labor involved in working with vast and remote areas is problematic. Satellite

data address this issue, providing a cheaper option for forest monitoring [Stone et al.,

2016]. Point cloud data that is useful for estimation of the canopy height can also be

derived from satellite imagery using photogrammetry approach. The comparison of

such photogrammetry approach and high-density LiDAR measurements is presented

in [Pearse et al., 2018], where authors showed photogrammetry method is slightly

less accurate (difference in R2 is about 0.07) compare to the LiDAR method for

height measurements of the forest region in New Zealand. The important benefit of

the photogrammetry method is that it could provide information for the larger scale

compare to the LiDAR method, however it requires special high resolution imagery

which is not always available for the particular region. The other limitation of the

photogrammetric method is that it is able to characterise only the upper canopy

and is not able to perform vertical characterisation of the forest such as can be done

by laser scanning. The comparison of the photogremmetry obtained by unmanned

aerial systems and areal laser scanning for the forest inventory in Oregon was pre-

sented in [Fankhauser et al., 2018], where authors stated that photogrammetry is

slightly less accurate compare to laser scanning (difference in R2 for height esti-

mation is about 0.15). However, photogrammetry is easier to integrate to existing
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forest monitoring methodologies.

Our work is focused on using satellite images for CHM estimation as it is more

preferable data source than LiDAR derived measurements in terms of cost and spa-

tial coverage. Neural networks allows us to conduct image processing automatically.

We set up the hypothesis that neural networks can extract significant spatial features

from very high-resolution RGB images of 1 m to improve performance of CHM esti-

mation. It was expected that developing a satellite-based solution compatible with

a high-resolution UAV approach would further enable the prediction of advanced

forest characteristics. Thus, this study’s objectives and contributions were:

1. to develop a method for vegetation height estimation utilizing deep neural net-

works and different configurations of input data varying spectral compound

(reducing to Blue, Green, and Red), spatial resolution and by adding topog-

raphy features;

2. to assess the generated height map, conducting a further investigation into

the classification of dominant forest species (conifer and deciduous). For this,

multispectral imagery was incorporated with height data;

3. to create the software toolchain to train a neural network to predict CHM

using single satellite non-stereo imagery.

In the Chapter on forest species classification using the neural-based hierarchical

approach, we showed how height measurements can adjust model performance in the

forest species classification task. In this Chapter, we extend the previous findings

and consider a case where LiDAR measurements are not available. The proposed

method for canopy height estimation is useful for forestry and ecological applications

and it also can be implemented in the aforementioned forest classification pipeline

to achieve higher performance using just satellite data.

6.2 Related work

For canopy height estimation studies, spectral satellite imagery can be distinguished

by the following characteristics: spatial resolution, spectral range, and availability.
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The majority of works use a spatial resolution much higher than 20 m to tackle the

canopy height evaluation problem. This approach is justified for particular tasks

when large-scale maps are produced. In [Staben et al., 2018], they conducted a

30 m spatial resolution canopy height evaluation with Landsat imagery and showed

the dynamics over 29 years in the Darwin region. In [Hansen et al., 2016], they

employed Landsat 7 and 8 time-series data (30 m spatial resolution) to estimate tree

heights in Africa. GLAS (Geoscience Laser Altimeter System) height measurements

from the ICESat satellite were used as reference data (60−70 m spatial resolution).

The same height data source was mentioned in [Tao et al., 2016]. In [Ghosh et al.,

2020], they used Sentinel-2 images that were resampled to a 20 m pixel size to predict

Mangrove forest canopy height. Other studies involving Sentinel-2 data are reported

in [Verma et al., 2016, Lang et al., 2019, Puliti et al., 2020a]. In [Lee and Lee, 2018],

they assessed SAR images from ALOS PALSAR, and upsampled them from 30 to

5 m as a LiDAR elevation model. The cases of very high spatial resolution (3.7 m)

images from the Planet Dove implementation are presented in [Csillik et al., 2020].

However, the target height map spatial resolution for that study was 1 hectare. Very

high spatial resolution (2 m) WorldView-2 satellite imagery was used in [Meddens

et al., 2018], but the working spatial resolution was adjusted to 5 m.

Another important data characteristic is the spectral range and the number

of channels. A wider wavelength range is available for satellites with low spatial

resolutions (Landsat, Sentinel) than for some very high spatial resolution satellites.

For instance, Planet (3–5 m spatial resolution) and GeoEye (2 m spatial resolution)

satellites have Blue, Green, Red, and NIR bands; RapidEye (6 m spatial resolution)

has Red Edge. The GeoEye panchromatic channel has a 0.4 m spatial resolution

and allows RGB to be enhanced. WorldView-2 provides eight spectral bands with a

spatial resolution of 2 m. An additional source of very high remote sensing data is

Basemaps, with RGB bands such as those provided by Maxar one. Nevertheless, the

majority of works focus on using only the wide multispectral range (more than eight

bands), sacrificing the spatial resolution. From the aforementioned satellite-based

studies, the minimal number of spectral bands (Blue, Green, Red, NIR) was only

considered in [Csillik et al., 2020]. However, the goal of the work was the creation
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of a large-scale country wide map, so the spatial resolution of the analysis was 1

hectare. Therefore, the issue of minimizing the number of required satellite bands

for forest height estimation has not yet been well studied.

Satellite data are frequently accompanied with data of other sensing techniques.

In [Lee et al., 2020a], they combined four Kompsat-3 multispectral bands and

PALSAR-1 radar images resampled into 2.8 m to train a neural network. Few

studies have implemented this into self-contained spectral satellite data [Ni et al.,

2019, Lee et al., 2020b, Shah et al., 2020, Lang et al., 2019]. However, the spatial

resolution of the Sentinel and Landsat images (lower than 10 m) considered in these

studies is not high enough to extract small details on the surface. Thus, the satellite

spatial resolution of 1-m per pixel is still beyond the scope of the majority of studies.

Data availability is also a significant aspect of implementation in practice. Sen-

tinel and Landsat images are available free of cost, while WorldView, Planet, and

RapidEye are commercial and contain a greater amount of the spatial information

required in applied tasks.

After data acquisition, the obvious question of data processing arises. Computer

vision algorithms enable high-quality automatic satellite imagery analysis. Such

methods are usually based on key feature extraction from input spectral bands to

describe some object, which can be a pixel or set of pixels. Then, the algorithm

aims to ascribe a label (for classification tasks) or a value (for regression tasks) to

the object. The processing methods for expansive forestry areas using satellite im-

ages are classical machine learning models, such as Random Forest [Breiman, 2001]

or Support Vector Machine [Cortes and Vapnik, 1995]. Their main advantages are

simplicity and straightforward interpretation in the case of linear models. Gener-

ally, spatial characteristics are not taken into consideration, and an algorithm relies

on spectral values or precalculated vegetation indices. In [Staben et al., 2018], a

combination of 14 vegetation indices and spectral bands were used in the Random

Forest model to predict the canopy height using Landsat images. Moreover, the

strong correlation between the normalized difference vegetation index (NDVI) and

canopy height has been well emphasized in aerial photography [Matese et al., 2017,

Lee and Lee, 2018]. Despite the importance of spectral data, other vital features can
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be also processed. For instance, there is a strong correlation between forest height

and canopy width, as discussed in [Verma et al., 2016], in which the canopy volume

was estimated using only the crown projected area and the crown diameter com-

bined in a particular regression equation. The deep neural network-based approach

is more capable than classical machine learning methods for the following reasons:

the texture and spatial features extracted by the neural networks include sufficient

information about landcover; it not only handles spectral values, but also the afore-

mentioned spatial characteristics of an object available, for instance, in UAV-based

tasks [He et al., 2019a].

Tree height is correlated with tree diameter for each forest species [Özçelik et al.,

2018]. In [Sharma et al., 2019], tree height was estimated from the exponential

equation, including diameter at breast height value. The crown form depends on the

tree species; accompanied by the crown diameter, it can provide important features

for a neural network. Tree height can also be derived from spectral information

only, as it depicts meaningful vegetation characteristics such as chlorophyll content

[Rahimzadeh-Bajgiran et al., 2012].

6.3 Materials and methods

6.3.1 Study area

The study area is located in the Arkhangelsk region of northern European Russia

with coordinates between 45◦16′ and 45◦89′ longitude and between 61◦31′ and 61◦57′

latitude (Figure 8-1). The investigated territory belongs to the middle boreal zone.

The region’s climate is humid, with the warmest month being July when the tem-

perature rises to 17◦C. The topography is flat, with a height difference in a range

between 170 and 215 m above sea level [Aakala et al., 2011]. The main species

present in the region are pine, spruce, aspen, and birch.
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Figure 6-2: Region of interest.

6.3.2 Reference data

We used forest inventory and LiDAR-derived data covering the area of about 50

thousand hectares. LiDAR measurements were continued in the end of August of

2017 and 2018 by Leica ALS 80 HP scanner. Then the Canopy Height Model (CHM)

with a 1 m spatial resolution was generated from LiDAR-derived point clouds.

The inventory data were collected in accordance with the official Russian inven-

tory regulation in 2018 and 2019. It included such characteristics as canopy height,

species percentage distribution, and age. This data was organized as a set of indi-

vidual stand coordinates with appropriate characteristics based on the assumption

that the crop was homogeneous. A species class markup was used in additional

experiments presented as a raster map of dominant conifer and deciduous classes.

The statistics of this data are shown in Table 6.3.

However, the shift in geo-referencing between the satellite data and LiDAR-

derived measurements makes the target at 1 m spatial resolution less useful. As

the typical shift lies between 2 and 3 m, the high spatial resolution CHM will show

erroneous value for the particular point in the satellite image. This forced us to

downsample the height map to 5 m to make the target value for each point represent
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Table 6.1: WorldView images.

Image ID Date Off-nadir angle
0 1030010056130F00 05.30.16 14
1 103001005683F200 05.30.16 14
2 1030010031934700 06.08.14 7
3 1030010032660800 06.08.14 7

Table 6.2: Sentinel images.

Image ID Date
0 L2A_T38VNP_A005695_20160725T082012 07.25.16
1 L2A_T38VNP_A007297_20180730T081559 07.30.18
2 L2A_T38VNP_A010986_20170730T082009 07.30.17
3 L2A_T38VNP_A013017_20190903T081606 09.03.17
4 L2A_T38VNP_A015748_20180628T082602 06.28.18
5 L2A_T38VNP_A016606_20180827T083208 08.27.18

the mean value of the area including the true location.

The distribution of the height over the study region is shown in the Figure 6-4.

Although, height is usually represented as a continues value, height categories are

essential for practical use in power lines services. Height classes are often required

instead of continues values for decision making within protected areas [Wanik et al.,

2017]. The reason is that different categories (dangerous vegetation overgrowing)

have different importance and estimation in particular categories have to be more

precise to reduce accidents on power lines corridors.

6.3.3 The test region selection

The training and test area was from the same satellite images, but without overlap-

ping. The test region was manually chosen to include a diversity of height classes.

The total test area was equal to 13% of the initial dataset. The spatial location is

presented in the Fig 6-3. The height distribution through the test areas is presented

Table 6.3: Dataset statistics for conifer and deciduous classification.

Training Testing Full dataset
(individual stands) (individual stands)

Conifer 1219 534 25913 hectares
Deciduous 756 341 24397 hectares
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Figure 6-3: The blue lines define the study area with LiDAR measurements. The
red squares are the test regions.

in the Fig 6-4.

6.3.4 Satellite data

We used Sentinel-2 and WorldView-2 satellite imagery to check the high and very

high spatial resolution data sources. The boreal location of the study area resulted

in a lack of cloudless images. All images were from the boreal growing season (from

May to August). Image IDs and dates are presented in tables 6.1, 8.1. WorldView

imagery was downloaded from GBDX. For the height estimation task, we used Red,

Green, Blue, and Near-Infrared bands, while for the species classification problem,

all eight bands were considered. The resolution of the WorldView images was 1, 2,

or 5 m depending on the experiment setup. For CNN-based tasks, image values in

the range from 0 to 1 are usually used [Vaddi and Manoharan, 2020, Debella-Gilo
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(a) (b)

(c) (d)

Figure 6-4: Reference LiDAR-derived height (Canopy Height Model (CHM) values)
distribution for the study area. (a-b) Training dataset. (c-d) Test dataset. These
height categories are the important ones for power lines services in Russia.

and Gjertsen, 2021]. Therefore, pixel values were brought into a range between 0

and 1 using Equation 8.4:

m = max(0,mean(I)− 3 ∗ std(I)), (6.1)

M = min(max(I),mean(I) + 3 ∗ std(I)), (6.2)

I ′ = (I −m)/(M −m), (6.3)

where mean, std are the mean and standard deviation of the image. In equations

8.2, 8.3, we calculate m and M (minimum and maximum of the preserved dynamic

range). The standardization of the imagery according to the whole dataset statistics

proves profitable for the neural network training compared to a simple scaling of the

entire value range [Pal and Sudeep, 2016].
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For the spatial resolution adjustment, the pansharpening procedure was imple-

mented using a panchromatic band which was obtained in the imagery bundle with

multispectral data from the data vendor. We did not consider any predefined cloud

mask for WorldView. However, during training, pixels with particular properties

were eliminated from consideration (see subsection 6.3.7). This allowed us to clean

the dataset from erroneous labels.

For the additional analysis, freely available Sentinel-2 data were downloaded in

L1C format from EarthExplorer USGS and preprocessed using Sen2Cor to an L2A

format. Pixel values were brought into a range between 0 and 1 using Equation 8.4.

We used the B02, B03, B04, B05, B06, B07, B08, B11, B12, and B8A bands, which

were adjusted to a 10 m resolution. 60m bands were discarded as they are more

affected by atmosphere than the land surface. 20 to 10 m bands were upsampled

with the nearest neighbor method to avoid initial data corruption (they can be

unambiguously downsampled back to exactly initial 20m data).

Both for Sentinel and WorldView, each image covered the entire study area,

and images were considered separately without any spatial averaging (the same as

in [Astola et al., 2019]).

As supplementary features, we used a freely available high-resolution digital ele-

vation model (DEM), ArcticDEM, covering boreal regions (Figure 6-5). It provides

a resolution of 2 m. For some experiments, the resolution was upsampled to 1 m by

interpolation (see Section 6.3.5).

Both the satellite and LiDAR data were co-registered through geo-referencing,

the same as in [Meddens et al., 2018].

We used cloud-free composite orthophotomap provided by Mapbox [Mapbox,

Accessed: 2020-06-17] via tile-based map service as an example of free-available

high-resolution RGB data-source. This image covered the same test region and was

used just for the developed model assessment. We chose this data-source, because

model implementation without expensive input data demands is crucial for open-

access platform that can handle a more available images. The spatial resolution was

1 m per pixel, and the preprocessing was the same as for WorldView data.

146



Chapter 6. Estimation of the Canopy Height Model from Multispectral Satellite Imagery with
Convolutional Neural Networks 6.3. Materials and methods

Figure 6-5: One of the ArcticDEM tiles (yellow square) with an overlay of the
studied area (blue lines). Even in boreal regions, ArcticDEM layer can have some
missing data.

6.3.5 Feature selection for deep neural network

Convolutional neural networks take a tensor as an input. The feature selection to

create this tensor is fundamental. To find the best input data representation for the

CHM estimation problem, we established a set of experiments. Firstly, we conducted

a study with the WorldView bands.

The workflow of our research is shown in Figure 8-3. For each experiment, the

RGB bands were used constantly. The variable part concerned the resolution chang-

ing and the supplementary features (NIR and ArcticDEM), which were combined

with the RGB channel in a single input tensor for the neural network model.

We studied the original (2 m), pansharpened (1 m), and downsampled (5 m)

images. For the experiments with the 1 m resolution, bands were upsampled to

the target resolution by bilinear interpolation. We used bilinear interpolation for

image resampling to avoid aliasing emerging in nearest neighbor and halo inherent

to higher-order interpolation methods, which are more problematic for neural net-
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Figure 6-6: Experiment workflow for canopy height estimation with RGB WorldView
bands. The dotted lines show optional steps for input tensor creation.

works than bilinear interpolation. A reference CHM was used during the training

procedure to estimate the model’s error. To minimize data mismatches, reference

and predicted height maps were intersected with the forest cover mask before the

loss function calculation stage. Therefore, we conducted the following experiments

for the WorldView images:

1. RGB original resolution 2 m;

2. RGB pansharpened to 1 m;

3. RGB pansharpened to 1 m + ArcticDEM upsampled to 2 m;

4. RGB + NIR original resolution 2 m;

5. RGB + NIR original resolution 2 m + ArcticDEM upsampled to 2 m;
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6. RGB pansharpened to 1 m + NIR upsampled to 1 m;

7. RGB pansharpened to 1 m + NIR upsampled to 1 m + ArcticDEM upsampled

to 1 m;

8. RGB downsampled to 5 m resolution.

For experiments 1, 2, there was three-band raster; for experiments 3, 4, 6, we

used four-band raster; and for experiments 5, 7, five-band raster was considered.

To assess the importance and restriction of the spatial resolution, we also checked

the model’s performance for the WorldView RGB bands downsampled to 5 m.

We conducted the following study to compare model’s performance for high-

resolution RGB images and less detailed but richer in terms of the spectral informa-

tion Sentinel data with 10 bands, upsampled to 10 m. There were two experiments:

1. Multispectral bands;

2. Multispectral bands + ArcticDEM downsampled to 10 m.

6.3.6 Strategies for height prediction and evaluation metrics

Regression may naturally lead to richer (continuous) estimations for practical im-

plementations than rigid class-based output maps. Therefore, we considered both

regression and classification tasks for a comparative analysis. The regression prob-

lem statement means that we ascribe each pixel with a particular value correspond-

ing to the height parameter. Then, the loss can be estimated as an error between

real height value (CHM value) and the predicted value. The considered metrics are

root mean square error (RMSE), mean absolute error (MAE), and mean bias error

(MBE).

Using the same reference data we can also solve classification task. When we

formalized the problem as a classification task, we divided the continuous values of

height into various classes. The choice of such a division often depends on an applied

task’s demands. For our study, we chose intervals 0−4, 4−10, 10−20, and > 20 m.

We rely on the amount of classes and intervals of height that described [Peterson and

Nelson, 2014]. We slightly shifted the boundaries of the height intervals, described in
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[Peterson and Nelson, 2014] according to the suggestion inventory data provider from

Arkhangelsk region. After splitting the continuous dataset to the aforementioned

classes we can compute the portion of the wrong estimated pixel classes and use F1-

score [Goutte and Gaussier, 2005] for evaluation of the trained classification models.

This refers to the area assessment, while in terms of regression, we strove to

optimize each pixel value. Therefore, these two approaches can lead to a different

local optimum. For example, if we split heights between 0 and 30 m into the following

buckets: 0 − 4, 4 − 10, 10 − 20, and 20 − 30, then it is not important that we do

not ascribe the exact values but some value from the correct bucket to some pixels.

Then, it is clear that regression predictions can also be represented in terms of

classification.

For the classification task, the multiclass weighted cross-entropy loss function was

used to make the predictions more balanced even for classes with fewer representa-

tives. The same approach was implemented for the regression task. We compared

the simple RMSE loss (Equation 6.4) and the weighted RMSE loss (Equation 6.5):

RMSE loss =
√∑n

i=1(yi − ŷi)2

N
, (6.4)

Weighted RMSE loss =
√∑n

i=1(yi − ŷi)2 ∗ weights(yi)
N

, (6.5)

where ŷi is the predicted value of the ith pixel, yi is the target value of the ith pixel,

N is the number of relevant (non-masked) pixels, weights(yi) is the extra penalty

depending on the target value of the ith pixel.

For heights with fewer representatives, the penalty for the wrong prediction was

increased by predefined weights. The weights were inversely proportional to the

height distribution. There was also a threshold for the height when the weight was

equal to 1 (no extra penalty). The range of weights and the threshold were chosen

empirically, as shown in Figure 6-7.

We needed to manage the temporal mismatch (such as logging) between LiDAR

scanning and satellite imagery. To do so, we used two heuristics. The first one was

that pixels labeled as forest by the forest cover model but with a height of less than
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1 m were considered to be a forest logging. The forest cover model classifies pixels

covered with clouds as non-forested. Therefore, the second heuristic was that pixels

not labeled as forest but with CHM > 5 m were considered clouds. Reference and

predicted height values for these pixels were not used in the loss function calculation

during the training procedure (they were treated as masked). Thus, the mask of

relevant pixels was defined by the following equations:

logging = (height_map < 1) ∗ forest_mask, (6.6)

cloud = (height_map > 5) ∗ (forest_mask == 0), (6.7)

height_mask = (logging == 0) ∗ (cloud == 0), (6.8)

where forest mask was obtained by the neural network model trained to predict

forest cover with a high accuracy, especially in terms of small details using RGB

bands. The model was implemented in the GeoAlert service [geoalert.io, 2019-2020].

6.3.7 Experimental settings

For all the neural network models, training was performed on the Skoltech supercom-

puter Zhores [Zacharov et al., 2019], using Keras with a Tensorflow backend. The

source code containing the implementation details is available in the aforementioned

repository.

Both for the regression and classification task, U-Net [Ronneberger et al., 2015]

with an Inception-ResNet-v2 [Szegedy et al., 2017] encoder was used (Figure 6-8).

U-Net is a popular CNN architecture in the remote sensing domain which has shown

high performance in various problems [Kattenborn et al., 2021a, Li et al., 2020b].

The upsampling layers follow the U-Net’s downsampling layers. Skip connections be-

tween layers allow the convolutional neural network to manipulate vital information

at large spatial scales avoiding losing local information. Skip connections also facil-

itate gradient flow during the training procedure that was highlighted in [Drozdzal
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(a)

(b)

Figure 6-7: LiDAR-derived height distribution (a) and penalty weights for errors on
corresponding height values (b). These weights are used during loss computation.

et al., 2016]. We substituted the original VGG encoder with a ResNet-based one as

it has shown high results in various works [LeClerc Arrastia et al., 2021]. Residual

connections in the Inception-ResNet-v2 encoder support shortcuts leading to better

prediction quality [Ferreira et al., 2018] and enabling substantial simplification of

the Inception blocks. We used the original U-Net decoder, where every step consists

of an upsampling of the feature map followed by a 2x2 convolution. That halves

the number of feature channels. The expansive path also includes concatenation

with the cropped feature map from the contracting path and two 3x3 convolutions

followed by a ReLU. The total number of parameters in the neural network is 62M

where the encoder includes 54M. The decoder has 5 blocks, while the encoder part

consist of 8 blocks. The models’ implementation was based on opensource library

[Yakubovskiy, 2022].
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Figure 6-8: U-Net model with Inception-ResNet-v2 encoder.

Each model was trained 25 epochs for 200 training and 100 validation steps with

a decreasing learning rate from 0.001 using RMSprop [Hinton and Swersky, 2012]

optimizer and early stopping with patience 5 epochs. For the classification task as

an activation function for the last layer, the softmax function was chosen. As an

activation function for the last layer’s regression model, we used linear function.

For all models, geometrical augmentations were implemented. This involves

random rotations, and vertical and horizontal flipping. For models using the RGB

channels only, we also implemented color transformations. For this task, the Albu-

mentations library [Buslaev et al., 2020b] was used.

6.3.8 Classical machine learning methods

We also conducted experiments with classical machine learning methods to compare

different approaches in canopy height estimation. Two approaches were considered:

Random Forest (RF) [Breiman, 2001] and Gradient Boosting (GB) [Friedman, 2002].

These approaches are widely used in the remote sensing domain due to relatively

high performance in various tasks. For the RF method, we implemented 300 decision

trees with maximum depth equal to 8, as these parameters shown the best quality.

We also compared it to decision tree numbers 100, 200, 400, 500, 600, and maximum

depth values equal to 4, 5, 6, 7, 8, 9, 10. In the GB method the parameters were

153



Chapter 6. Estimation of the Canopy Height Model from Multispectral Satellite Imagery with
Convolutional Neural Networks 6.3. Materials and methods

200 estimators with learning rate equal to 0.1, and maximum depth equal to 7, that

were also set empirically (the same grid was considered to choose number of trees

and maximum depth as in the RF case). For both two methods the implementation

was used from scikit-learn [Pedregosa et al., 2011a]. A proper feature space is

essential for machine learning algorithms, namely in classical one. The features

were selected according to the study described in [Puletti et al., 2018] as more

relevant for vegetation properties estimation from Sentinel images. Therefore, the

following vegetation indices were computed and accomplished initial multispectral

bands resulting in Sentinel-derived features: the Normalized Difference Vegetation

Index (NDVI), the Simple Ratio Index (SRI), the red-edge Normalized Difference

Vegetation Index (RENDVI), and the Anthocyanin Reflectance Index 1 (ARI1).

Thus, each pixel was considered as an input sample with 14 features (10 Sentinel

bands and 4 vegetation indexes) for a machine learning algorithm.

The following experiments were performed:

1. RF + Sentinel-derived features (Sentinel resolution 10 m)

2. RF + Sentinel-derived features (Sentinel resolution 10 m + ArcticDEM)

3. GB + Sentinel-derived features (Sentinel resolution 10 m)

4. GB + Sentinel-derived features (Sentinel resolution 10 m + ArcticDEM)

6.3.9 Forest-type classification model

To estimate the quality of the developed models, we considered a forest-type classi-

fication problem. To train the neural network model to predict two species (conifer

and deciduous), we leveraged both WorldView and Sentinel imagery. The problem

was defined as the per-pixel semantic segmentation task. Forest inventory charac-

teristics were used as reference data. Eight WorldView bands were intersected with

the forest mask. Both for the Sentinel and WorldView imagery, a height map or

age map was used as an additional channel. This was done to make the model more

robust in terms of species diversity resulting from different forest ages. Therefore,

the neural network input was formed of 10 bands.
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As mentioned above, there are two familiar sources of height values: LiDAR-

derivied data and forest inventory characteristics. The difference is in the data

representation. Forest inventory characteristics establish height for each individual

stand (small region joined according to some similar value of features such as tree

species, age, density). Although real height within each stand can differ for each

pixel, all pixels corresponding to a particular stand have the same height value.

Thus, for this experiment we used both inventory- and LiDAR-derived height data.

We compared model predictions according to the next strategies of data lever-

aging:

1. just multispectral data;

2. multispectral data and CHM data;

3. multispectral data and inventory height data;

4. multispectral data and inventory age data;

5. multispectral and artificially generated CHM by the best model height.

For these experiments, we trained a smaller U-Net model with the Resnet-34

encoder [He et al., 2016]. Individual stands from the dataset were randomly split

into a training and testing set shown in Table 6.3. During training, the cross-entropy

loss function was computed in a per-pixel manner. For testing, the F1-score was

estimated for each individual stand. The predicted class for the individual stand

was defined as a dominant class among all pixels within the stand. Each forest

classification model was trained 25 epochs for 200 training and 100 validation steps

with a decreasing learning rate from 0.001 using RMSprop [Hinton and Swersky,

2012] optimizer and early stopping with patience 5 epochs. The activation function

for the last layer was soft-max.

6.4 Results

The achieved metrics for the regression models are shown in Table 6.4. The best

quality predictions, using WorldView imagery with MAE 2.47 m (Exp. 9), were
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(a) (b)

(c) (d)

Figure 6-9: Input RGB WorldView image from test regions (a), generated CHM (b),
LiDAR-derived height (c), error (d). Height measurements are in m.

achieved with a combination of Red, Green, Blue pansharpened bands, the NIR

band, and the supplementary ArcticDEM raster with resolution upsampled to 1 m

(Figure 6-9). The smaller region is presented in Figure 6-10. For the Sentinel im-

agery, only two experimental modes were considered: with ArcticDEM and without

ArcticDEM. For both the Sentinel and WorldView data, ArcticDEM usage allowed

us to improve the prediction results (for Sentinel, the MAE improved from 4.1 to
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Figure 6-10: Input RGB WorldView image from test regions (pansharpened to 1 m)
(a), generated height (b), LiDAR height (downsampled to 5 m) (c).

Figure 6-11: Input RGB Mapbox image from test regions (a), generated height (b),
LiDAR height (c).

3.9 m, and for WorldView, the MAE improved from 2.9 to 2.58 m). The pansharp-

ening procedure also contributed to the final result, decreasing the error from 3.3

to 3.1 m (Exp. 1 and Exp. 2) for the WorldView RGB model. The NIR band

usage demonstrated an error reduction from 2.9 to 2.58 m (Exp. 3 and Exp. 7).

This effect is linked to vegetation condition, which is reflected by the NIR wave-

length. Additional weights during the loss computation reduced the MAE from 2.58

to 2.47 m (Exp. 7 and Exp. 9).

In Table 6.5, we can see a comparison between the regression model and the

classification model (Figure 6-12). These two models were trained using the same

input data. The regression model’s prediction was split into four appropriate height

classes and the F1-score was calculated. This confirmed the assumption that after
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Table 6.4: Results for regression models with errors in meters and standard deviation
for each experiment.

Exp. Description MAE RMSE MBE
1 RGB (original resolution 2 m) 3.3 ± 0.052 4.5 0.024
2 RGB (pansharpened to 1 m resolution) 3.1 ± 0.045 4.3 0.009
3 RGB (pansharpened to 1 m resolution 2.9 ± 0.038 4.1 -0.75

+ ArcticDEM)
4 RGB+NIR (original resolution 2 m) 2.9 ± 0.043 4.1 -0.661
5 RGB+NIR (original resolution 2 m 2.8 ± 0.041 4 -0.132

+ ArcticDEM)
6 RGB+NIR (RGB pansharpened to 2.9 ± 0.043 4.1 -0.8

1 m resolution)
7 RGB+NIR (RGB pansharpened to 2.58 ± 0.046 3.8 -0.99

1 m resolution + ArcticDEM)
8 RGB (downsampled to 4.4 ± 0.047 5.9 0.65

5 m resolution)
9 Weighted RMSE

RGB+NIR (RGB pansharpened to 2.47 ± 0.042 3.6 -0.267
1 m resolution + ArcticDEM)

10 Multispectral (Sentinel resolution 10 m) 4.1 ± 0.046 5.7 0.79
11 Multispectral (Sentinel 3.9 ± 0.053 5.4 0.32

resolution 10 m + ArcticDEM)
12 RF + Sentinel-derived features (Sentinel 4.3 ± 0.051 5.6 0.91

resolution 10 m)
13 RF + Sentinel-derived features (Sentinel 4.1 ± 0.043 5.4 0.82

resolution 10 m + ArcticDEM)
14 GB + Sentinel-derived features (Sentinel 4.2 ± 0.049 5.5 -0.82

resolution 10 m)
15 GB + Sentinel-derived features (Sentinel 4. ± 0.039 5.4 -0.78

resolution 10 m + ArcticDEM)

Table 6.5: Classification task (F1-score). Exp. 1: Weighted RMSE RGB+NIR
(RGB pansharpened to 1 m resolution + ArcticDEM). Exp. 2: Classification model
RGB+NIR (RGB pansharpened to 1 m resolution + ArcticDEM).

Exp. 0-4 4-10 10-20 > 20 Average F1-score
1 0.79 0.51 0.84 0.6 0.68 ± 0.004
2 0.79 0.49 0.78 0.62 0.67 ± 0.005

training the model to predict continuous values, the final results were not worse

than the discreet ones (F1-score: 0.68 and 0.67). Moreover, the regression spectrum

of values makes the model more flexible, e.g., other classes can be presented and it

does not require extra training for new splitting into target classes. This approach
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Table 6.6: Forest-type classification (average for all classes F1-score) for WorldView
and Sentinel imagery. Generated height is derivied from the best model predic-
tions: Exp. 9 Weighted RMSE RGB+NIR (RGB pansharpened to 1 m resolution
+ ArcticDEM).

Description WorldView Sentinel
multispectral 0.87 ± 0.002 0.88 ± 0.003
multispectral + CHM 0.9 ± 0.003 0.92 ± 0.005
multispectral + inventory height 0.9 ± 0.005 0.93 ± 0.003
multispectral + inventory age 0.93 ± 0.003 0.94 ± 0.002
multispectral + generated 0.89 ± 0.002 0.90 ± 0.004

would be of potential interest for use in other forest characteristics computations.

The recognition class that is most difficult to process is the height between

4−10 m. This is mainly caused by the spatial distribution specificity of the class, and

it often occurs due to the small regions between crowns and depends dramatically

on the satellite and LiDAR geo-reference data. For this study, we used LiDAR data

downsampled to 5 m, while the WorldView imagery resolution was 1 or 2 m. This

allowed us to save high-resolution spatial surface characteristics.

To assess the importance of texture information, we experimented with RGB

bands downsampled to 5 m (Table 6.4). The MAE for this case was 4.4 m. This

result is lower than that of the Sentinel images (4.1 m) and confirms that when we

reduced the spectral information, we faced stricter demands for spatial resolution.

We checked the generated height in the forestry task of species classification.

The results are presented in Table 6.6. The first objective of the experiment was to

show how supplementary features can enhance the quality of applied tasks. Both

LiDAR and inventory data helped to improve classification in comparison with sim-

ple multispectral data. The second goal was to show that the generated height is of

sufficient quality to beat the base model using just satellite data. We did not intend

to conduct a comparison between WorldView and Sentinel sources. For this reason,

in both experiments, observation dates were not equal in the data used. The supe-

rior results for the Sentinel imagery, as compared with the WorldView data, were

partially due to the wider dataset.

We also evaluated the regression model trained using RGB WorldView (pan-
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(a) (b)

(c) (d)

Figure 6-12: Input RGB WorldView image from test regions (a), original height
classes (b), generated height classes in regression (c) and classification (d) problem
statement.

sharpened to 1 m resolution) image on a cloud-free composite orthophotomap pro-

vided by Mapbox [Mapbox, Accessed: 2020-06-17] and covering the same test area.

For this experiment, the MAE was equal to 3.5, and the RMSE was 4.6. Prediction

example is shown in Figure 6-11. This promising result allows cheaper CHM esti-

mation for large areas using only high-resolution free-available satellite RGB data.

We conducted experiments with classical machine learning algorithms using

Sentinel-derived features to compare this approach to the proposed one, namely
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the CNN-based with high-resolution data. The best results were achieved for the

GB algorithm and combination of Sentinel-derived features with ArcticDEM, where

MAE was equal to 4 and RMSE was equal to 5.4 (Figure 6.4).

6.5 Discussion

It is challenging to perform a fair comparison between the majority of studies related

to height estimation for various reasons. The main reason is the difference in height

distribution. For example, in [Meddens et al., 2018], the predicted height was limited

by 30 m, the spatial resolution was 5 m, and the final RMSE was 2.2 m. However,

according to the presented plots, the mean value was less than 10 m, while in our

study, it was about 15 m. In [Staben et al., 2018], the validation pixels range

was defined as being from 0 to 25 m, with a mean value of 7 m. The model’s

spatial resolution was 30 m. For this height distribution, an RMSE from 2.3 to

4.1 m was achieved. In [Ghosh et al., 2020], they studied the ranges between 0 to

18 m and 3 to 15 m, by leveraging satellite (both spectral and radar) data with a

20 m resolution. In contrast to our work, field-based observations with a sampling

frequency of the 10 largest trees per inventory plot were used as reference material.

Therefore, the achieved result (an RMSE of 1.48 m) cannot be compared with our

model’s performance. Other obstacles impeding a fair comparison are the species

diversity and regional conditions.

It is worth mentioning that although ArcticDEM provides a stable improvement

in canopy height estimation (see Table 6.4, Exp. 6 and Exp. 7), it does not cover

central or southern regions. For these areas, more powerful base models need to be

implemented, leveraging just satellite imagery.

We showed that high-resolution WorldView 3-bands images provided more sig-

nificant features than low resolution Sentinel with 10 spectral bands (see Table 6.4,

Exp. 2 and Exp. 10). However, resolution adjustment from 2 m to 5 m for the same

WorldView dataset leads to a loss of important information, in particular texture

information (see Table 6.4, Exp. 2 and Exp. 8). The aforementioned experiments,

which was performed on the same dataset and using the same NNs with only one
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difference - the adjusted spatial resolution, showed that neural networks can extract

additional spatial features from very high-resolution optical images of 1 m. Thus we

experimentally confirmed the initial hypothesis that by using high resolution data

it is possible to make CHM estimation more accurate.

Creating the model with only high-resolution RGB channels allows it to be im-

plemented in more available satellite images, such as RGB mosaic basemaps (google,

yandex, and Mapbox). Therefore, an opportunity to replace WorldView data with

satellite images derived from other sources, making the provided model more uni-

versal. We made a prediction for cloud-free composite orthophotomap provided by

Mapbox [Mapbox, Accessed: 2020-06-17] using the CNN model trained on RGB

1 m bands. The achieved quality (MAE = 3.5) confirms the opportunity for further

model application for basemaps analysis.

There are the following directions for future research. The first involves im-

proving the co-registration between LiDAR and satellite data. Now the developed

RGB-based model shows the ability to reconstruct the main patterns correspond-

ing to the CHM (Figure 6-10); large individual trees and spots within forest are

detected successfully. However, satellite data has a slight shift in comparison with

LiDAR data. Improving co-registration would allow the model’s performance to

be assessed more accurately for resolutions of less or equal to 1 m and also could

probably improve the poor performance for the class of 4–10 m.

The ability of the model to be transferred to new regions is another essential

question. As we did not have data from other regions, it is impossible to judge the

model robustness for new areas. Moreover, for some regions, the ArcticDEM layer is

not available; therefore, additional training for new areas might improve prediction

quality. However, the neural network approach has proven to be powerful enough to

extract the necessary spatial information and adapt to changing natural conditions.

Augmentation and image diversity are often applied to overcome this weakness in

real-life applications.

Another possible objective for future research is a canopy height estimation for

areas with complex topography. Neural network models rely on landcover’s spec-

tral and texture characteristics, making the initial approach promising even when
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topography is not flat. However, shadows on slopes pose additional challenges to

the multispectral satellite image analysis. LiDAR data additional preprocessing is

also considered for study areas with complex topography [Liu et al., 2017].

In this study, we used all available images both for training and testing (splitting

them into training and testing regions) as it is a common choice in the remote

sensing domain [Saralioglu and Gungor, 2020]. However, in the future work, image-

based cross-validation techniques can be used and robustness for new environmental

conditions can be considered [Illarionova et al., 2021a].

6.6 Conclusions

Overall, in this study we confirm the hypothesis that neural networks can extract

significant spatial features from very high-resolution RGB images, which can be

used for more precise canopy height estimation. We also checked whether it is

possible to get an accuracy of canopy height estimation by using of satellite-based

solutions compatible with measurements obtained by UAV approach. For checking

our assumptions, we analysed the potential of very high-resolution images with

limited spectral information in the task of canopy height model estimation. We

created a software toolchain based on a state-of-the-art neural network architecture

that enable us to extract spatial features from very high-resolution images. The

proposed approach led to a reduction in the mean absolute error to 2.4 m, while

leveraging just four spectral bands and the supplementary features from ArcticDEM.

However, in southern regions where ArcticDEM is not available and without other

sufficiently accurate DEM, the model achieved an MAE of 2.9 m. We also examined

how generated height can be successfully used in the forest classification task. Our

canopy height model estimation results using RGB bands indicated the prospect

of replacing expensive LiDAR sensing data with easily attainable satellite data.

Depending on the region of study, our technique allows a customer to promptly

collect all the necessary relevant forestry inventory information without ground-

based observations.
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Chapter 7

Generation of the NIR Spectral

Band for Satellite Images with

Convolutional Neural Networks

7.1 Introduction

Machine learning techniques allow researchers to achieve high performance in a

wide range of remote sensing tasks by leveraging spectral bands of different wave-

lengths [Maxwell et al., 2018]. One essential spectrum interval for the remote sensing

image analysis is represented by the near-infrared (NIR) channel. The classical ap-

proaches in landcover classification tasks often use NIR-based spectral indices such

as the Normalized Difference Vegetation Index (NDVI) or the Enhanced Vegetation

Index (EVI) to assess the vegetation state [Huete et al., 1999]. This spectral band

is widely used in many applications, including forestry [Li et al., 2019a, Illarionova

et al., 2020], agriculture [Kussul et al., 2017, Navarro et al., 2016], and general land-

cover classification [Scott et al., 2017, Fan et al., 2017]. However, there are still

cases when the NIR band is not presented in the available data [Flood et al., 2019,

Alias et al., 2018]. Thus, the researchers rely only on RGB. For example, the Maxar

Open Data Program [Maxar, Accessed: 2020] provides only RGB images. Many

aerial imaging systems are also limited to visible wavelength ranges.

The NIR band cannot be extracted from RGB bands. A simple example is
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Figure 7-1: Objects with the same spectral values in the RGB range can belong to
significantly different classes. For these objects, spectral values beyond the visible
range differ. These differences can be illustrated using vegetation indices such as the
NDVI in the case of an artificial object and a plant during the vegetation period.

provided in Figure 7-1. For both the green tree and the green roof, the RGB values

are the same. However, the values differ drastically in the NIR spectral range, as

the metal roof does not have the vegetation properties that affect the NIR. On the

other hand, indirect features can be used to evaluate the NIR value. In general, all

roofs have a lower NIR values than any healthy tree during the vegetation period.

Therefore, it is possible to make assumptions about the NIR value based on the

object’s shape and texture. This study investigates how neural networks can be

applied to solve the NIR generation task by learning the statistical distribution of

a large unlabeled dataset of satellite images.

In [de Lima et al., 2019], a similar problem of generating the NIR channel from

RGB was described. The proposed solution was based on the K-Nearest Neighbor

classification algorithm and was focused on the agricultural domain. The researchers

show in [de Lima et al., 2019] a high demand for the generated NIR data, which

can solve particular problems. However, the neural network approach was beyond

the scope of the present study for image generation. In [Gravey et al., 2019], they
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generated synthetic spectral bands for archive satellite images using Landsat data.

Synthetic satellite imagery generation from Sentinel-2 (with the spatial resolution

more than 10 meters per pixel) was considered in [Abady et al., 2020, Mohandoss

et al., 2020]. However, in our work, we were focused on high-resolution satellite

images as they provide valuable texture information.

Generative adversarial networks (GANs) have achieved great results in recent

years [Alqahtani et al., 2019]. The basis of this approach consists of two neural

network models that are trained to beat each other. The first network (generator)

aims to create instances as realistically as possible, and the second network (dis-

criminator) learns to verify whether the instance is fake or real. Conditional GANs

(cGAN) have proven to be a promising approach in various fields using additional

conditions in the generation process. Conditional GANs were implemented to solve

different tasks such as image colorization [Nazeri et al., 2018], including infrared

input [Suárez et al., 2017] and remote sensing data [Wu et al., 2019, Li et al., 2018a,

Tang et al., 2020, Singh and Komodakis, 2018], and style transfer [Zhu et al., 2017a,

Isola et al., 2017].

Pix2pix GAN, as described in [Isola et al., 2017], proposes an image-to-image

translation approach. Previous studies have shown a lack of generalization for other

problems. Authors of [Isola et al., 2017] aimed to develop an efficient framework

that can be successfully implemented to solve a wide variety of tasks, such as image

colorization, synthesizing images from a labeled map, generating land-cover maps

from remote sensing images, changing the style, etc. Pix2pix GAN uses a U-Net-

based architecture as a generator and a convolutional PatchGAN as a discriminator.

The model was trained to estimate image originality separately for each small region.

The authors used the following objective function G∗ = argmin
G

max
D
LcGAN (G,D)+

λLL1(G) to train the model. The Pix2pix approach enhancements were provided by

the authors of [Qu et al., 2019].

One prevalent computer vision task is image colorization, which is required to

obtain color images from grayscale ones [Wang and Liu, 2021]. One of the earliest

works using texture information for this task is [Welsh et al., 2002]. In recent

years, GANs (in particular cGANs) have become a popular approach for such a
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challenge, in particular, in the remote sensing domain [Li et al., 2018a, Wu et al.,

2020b]. In the image colorization task, cGANs take a condition that should be

utilized for new image generation. The results for such a task can be evaluated

visually. This challenge share similarities with the NIR generation problem. As an

input, grayscale images are received, and as an output, an RGB image is created.

In contrast, for NIR, we strive to obtain one channel from three channels. Unlike

mapping grayscale to RGB, NIR does not include a mixture of RGB; NIR even

lies in a distant wavelength region from RGB. It makes the task more challenging.

Moreover, in the colorization problem, the choice of color sometimes depends on the

statistical distribution in the training set (for example, the color of the car might

depend on the number of cars for each color). Such mismatches in colorization might

not be treated as a severe mistake, and it does not corrupt the sense of the natural

source of objects or phenomena. In contrast, for NIR in vegetation tasks, there is

a strong connection between chlorophyll content and the intensity of the channel

value [Yang et al., 2020]. A neural network can extract structure features such as

shape and texture characteristics. We attempt to combine them with RGB values

to generate the NIR band artificially and save the physical sense of this channel as

much as possible.

In the remote sensing domain, the opportunity to work with multiple satellite

data simultaneously is essential in various cases [Vandal et al., 2021]. In [Kwan

et al., 2018], the authors consider WorldView and Planet imagery. WorldView has

a higher spatial resolution, while Planet has a higher temporal resolution. There-

fore, by combining these data, researchers can solve particular problems rapidly and

with better quality. In [Zhang et al., 2014], Modis and Landsat images fusion was

considered in the flood mapping case. In [Sedano et al., 2021], they combine im-

ages from WorldView2, Rapid Eye, and PlanetScope platforms to solve the forest

degradation problem. When images from several sensors were available, the highest

spatial resolution images were always preferred. Therefore, in the remote sensing

domain, acquisition dates can vary for different satellites, and for monitoring, it is

crucial to work with all available data sources. However, when a computer vision

model uses data from different distributions, it can decrease prediction quality. One
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Figure 7-2: A large amount of RGB & NIR data without markup that can be
further leveraged in semantic segmentation tasks when NIR is not available in some
particular cases.

of the objectives of our study was to examine the importance of the NIR band for

cross-domain stability.

In our study, we examine whether the cGAN image generation approach can

produce sufficient results for image segmentation purposes. Multiscale contextual

features and spatial details are highly important in the remote sensing domain [He

et al., 2021]. Therefore, we aim to apply the NIR generation as a feature-engineering

method, creating a new feature (NIR reflectance) that is not present in the original

feature space (RGB reflectance). We also study original and artificially generated

NIR in the cross-domain stability problem, as convolutional neural network (CNN)

robustness for various data is vital in the remote sensing domain [Illarionova et al.,

2021a]. We aim to use a vast amount of RGB & NIR data without markup that

can be further leveraged in semantic segmentation tasks when NIR is not always

available Figure 7-2.

We propose and validate an efficient approach to produce an artificial NIR band

from the RGB satellite image. A state-of-the-art Pix2pix GAN technique is imple-

mented for this task and compared with a common CNN-based approach for the

regression task. WorldView-2 high-resolution data are leveraged to conduct image

translation from RGB to NIR with further verification on PlanetScope and Spot-5

RGB images. We also investigate how original and artificially generated NIR bands

affect both CNN and Random Forest (RF) [Pal, 2005] predictions in forest segmen-

tation tasks compared to only RGB data. The experiments involve two significant

practical cases: two data source combinations (PlanetScope and Spot-5) and differ-
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ent amount of labeled training data (the total dataset size for the segmentation task

is 500.000 hectares). The contribution of the presented work is as follows:

• We propose the approach for feature-engineering based on the NIR channel

generation via cGANs.

• We investigate the impact of artificially generated and real NIR data on the

model performance in the satellite image segmentation task. We also examine

the NIR channel contribution in reducing labeled dataset size with minimum

quality loss. The NIR channel for satellite cross-domain stability is considered.

In the Chapter on the canopy height estimation, we discussed the role of the

near-infrared spectral band. In this Chapter, we show how we can generate this

band artificially and apply it to forestry tasks.

7.2 Materials and Methods

7.2.1 Dataset

We leveraged WorldView-2 satellite imagery downloaded from GBDX [GBDX, Ac-

cessed: 2020] to train the generative models. For forest segmentation experiments,

we used the satellite data provided by the SPOT-5 satellite and the PlanetScope

satellite group. The imagery has a high spatial resolution of 2–3 meters per pixel

in four spectral channels (red, green, blue, near-infrared). All images were georefer-

enced and had values equal to the surface reflectance.

Overall, two datasets were used in this work:

The first dataset used in this work was for cGAN model training. The dataset

consists of RGB and NIR channels from the same satellite (WorldView-2). It covers

different regions of Russia and Kazakhstan with approximately the same climate

and ecological conditions. The total territory is about 900,000 ha. The datasets

consist of varying land cover classes such as crops, forests, non-cultivated fields, and

human-made objects. Images with dates from May to September were chosen to

represent the high-vegetation period.
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Figure 7-3: Training procedure for GAN using the RGB image as an input and the
NIR band as a condition.

The second dataset was used to test the real and artificial NIR channel’s influence

compared to the bare RGB image. This dataset includes PlanetScope and Spot-5

imagery. The resolution of images ranges between 2 and 3 meters, depending on

the view angle. The markup for the study region consists of the binary masks of

the forested areas and other classes in equal proportion, covering 500,000 ha. The

labeled markup was used for the binary image segmentation problem. The region

was split into test and train parts in the proportion of 0.25:0.75.

7.2.2 Artificial NIR Channel Generation

To generate the NIR band from RGB, we used cGAN. We chose the Pix2pix ap-

proach for this task because it performs quite well for image translation prob-

lems [Salehi and Chalechale, 2020, Ren et al., 2019]. For the generator, we used the

U-Net [Ronneberger et al., 2015] architecture with the Resnet-34 [Szegedy et al.,

2017] encoder. For the discriminator, the PatchGAN as described in [Isola et al.,

2017] with various receptive field sizes was used. The training procedure is shown

in Figure 7-3. There were two models: the generator and the discriminator. The

generator was trained to create artificial NIR images, using the RGB image as a

conditional input. The discriminator received an RGB image in combination with

the alleged NIR image. Then, there were few possible scenarios: (1) the NIR was

original, and the discriminator succeeded in ascertaining it; (2) the NIR was fake,

but the discriminator failed by treating it as original; (3) the NIR was original, but

the discriminator mistook for fake; (4) the NIR was fake, and the discriminator
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Figure 7-4: Original SPOT and Planet images (without any enhancements) and their
RGB spectral values distribution. The histograms were computed within the forest
area. Although the presented images are from the summer period, their spectral
values differ drastically, as the histogram shows.

exposed it. Although this model was trained simultaneously, we ultimately strove

to receive a high performing generative model, to solve the objective of the study.

For further analysis, only the generator was considered. Unlike classical machine

learning techniques, which usually work only with one particular point (see [de Lima

et al., 2019]), the U-Net generator processes a particular neighborhood and learns

how to summarize 3-dimensional information.

We compared the cGAN-based approach with the simple CNN-based one where

U-Net with Resnet-34 encoder was trained to solve the regression problem.

We considered the root mean square error (RMSE), mean absolute error (MAE),

mean bias error (MBE), (PSNR) for the model performance evaluation.

171



Chapter 7. Generation of the NIR Spectral Band for Satellite Images with Convolutional Neural
Networks 7.2. Materials and Methods

7.2.3 Forest Segmentation Task

To empirically evaluate the usefulness of the original and artificially generated NIR

channel to solve real image segmentation problems, we considered the forest seg-

mentation task with high-resolution satellite imagery. In this task, a CNN model

was trained to ascribe each pixel with the forest content label.

We used the common solution for the image semantic segmentation: U-Net [Ron-

neberger et al., 2015] with the ResNet-34 [He et al., 2016] encoder. The chosen ar-

chitecture is widely implemented in the remote sensing domain [Kattenborn et al.,

2021b]. We conducted experiments with different input channels: only RGB, RGB

& original NIR, and RGB & generated NIR. The model output was a binary mask

of the forest landcover, which was evaluated against the ground truth with an F1-

score. We also assessed the original and artificially generated NIR in the same task

using classical machine learning approach. We trained a Random Forest (RF) clas-

sifier [Pal, 2005]. The RF implementation was from [Pedregosa et al., 2011a] with

the default parameters the same as in [Pal, 2005]. Each pixel was considered as an

object for the classification.

7.2.4 NIR Channel Usage

We conducted an experiment that estimated the dependency of the segmentation

quality on the training dataset size in both RGB and RGB & NIR cases. We

randomly split and chose 50% and 30% of the initial training dataset (test data

were the same for these random splits). The same experiment was repeated both

for the SPOT and Planet imagery but separately for each data source.

In the second study, we considered data from different sources (both PlanetScope

and SPOT data) simultaneously. Even if we have two images of the same date, re-

gion, and resolution but from various providers, sensors systems and image prepro-

cessing can make them radically different from each other. The intensity distribution

for images from Spot and Planet are shown in Figure 7-4. Such differences can be

crucial for machine vision algorithms and lead to a reduction in prediction quality.

Therefore, it can be treated as a case of a more complex multi-domain satellite
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segmentation task. To estimate the importance of the original and artificial NIR

channels for different satellite data, we conducted the following experiment. The

CNN model was trained using the Planet and SPOT data simultaneously. To eval-

uate the model’s performance, three test sets were considered: only the Planet test

images, only the SPOT test images, and both the Planet and SPOT images. The

images for Planet and Spot covered the same territory.

7.2.5 Training Setup

The training of all neural network models was performed on a PC with GTX-1080Ti

GPUs, using Keras [Keras, Accessed: 20 November 2021] with a Tensorflow [Ten-

sorFlow, Accessed: 20 November 2021] backend. For the simple regression model,

the following training parameters were set. An optimizer RMSprop was chosen with

a learning rate of 0.001, which was reduced with patience 5. There were 20 epochs

with 100 steps per epoch. The batch size was specified to be 30 with an image

size of 256 × 256 pixels [Isola et al., 2017]. A model based on GAN training pa-

rameters was constructed as follows. The loss functions were chosen to be binary

cross-entropy and MAE. The optimizer was Adam. The batch size and image size

were the same as for the simple model. The models were trained for 600 epochs, 100

steps per epoch, and a batch size of 30. For the Planet data, we also conducted a

fine-tuning procedure of the pretrained generative model using a small area without

the necessity of markup. For the SPOT data, there was no additional training.

7.3 Results and Discussion

The results for NIR generation by cGAN are presented in Table 7.1 for the World-

View, SPOT, and Planet satellite data. All values for real and generated NIR were

in the range [0, 1]. For PSNR evaluation, we consider images in the range [0, 255]

as a more common representation. The simple CNN regression approach showed

significantly poor results (the MAE was 0.21 for WorldView). Therefore, we did not

select this approach for future study. The principal difference between cGANs and

the regression CNN model is the type of loss function. As our experiments show,
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both MAE and MSE loss in the regression CNN model led to the local optimum,

which was far from the global one. The loss function can be affected by the distribu-

tion of RGB values. Compared to the regression CNN model, the results of cGAN

were significantly closer to the real NIR values.

Another approach to evaluate the generated NIR band involves the forest seg-

mentation task. The segmentation model was trained on the original NIR channels

to predict the forest segmentation mask using RGB & generated NIR. The results

are presented in Table 7.2, which shows that the additional NIR channel improved

the cross-domain stability of the model. The example of segmentation prediction is

shown in Figure 7-5. The model using the generated NIR provided more accurate

results than the model trained only on RGB bands. The original NIR usage ob-

tained an F1-score of 0.953, the generated NIR obtained an F1-score of 0.947, and

the model using only RGB bands obtained an F1-score of 0.914. The predicted NIR

channel is shown in Figure 7-6, which confirms a high level of similarity between

generated and original bands. Therefore, this approach allows more efficient CNN

model usage in practical cases when data from different Basemaps are processed and

cross-domain tasks occur.

We also assessed the generated and original NIR bands using classical machine

learning approach. Results are presented in Table 7.2. For RF, the NIR band us-

age improves the classification quality from 0.841 to 0.877. The F1-score for the

generated NIR is 0.874. This experiment shows that for the classification approach

without spatial information the generated band is also provide significant informa-

tion.

The results for different dataset sizes are presented in Table 7.3 and show that

leveraging the NIR channel was beneficial in the case of smaller dataset sizes, whereas

its effect decreased with the growing amount of the training data.

GANs aim to learn dataset distribution. It is conducted by minimizing the overall

distance between the real and the generated distribution. We made an assumption

that the dataset size is enough to approximate the distribution. Thus, we train

the generator to sample according to the target distribution. The trained generator

allowed a high-realistic image-to-image translation (G : {RGB} NIR) such that the
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Figure 7-5: Forest segmentation predictions on the test regions (SPOT). One model
was trained just on RGB images; another model used RGB and generated NIR.

Figure 7-6: Example of generated NIR on the test set. The first row presents the
SPOT image; the second row is the WorldView image.
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Table 7.1: Error of the artificial NIR band for the test WorldView, SPOT, and
Planet imagery. Standard deviation is computed for PSNR values.

MAE RMSE Mean Bias PSNR
WorldView 0.09 0.31 0.058 27.62 ± 0.205
SPOT 0.037 0.194 −0.0029 28.53 ± 0.261
Planet 0.16 0.41 0.088 26.14 ± 0.217

Table 7.2: The results of the forest segmentation experiments with different data
sources. Both the RGB model and the RGB and NIR model were trained on Planet
and Spot images simultaneously. The F1-score was computed on the test set indi-
vidually for Planet and Spot and for the joined Planet and Spot test set. Standard
deviation is computed for each experiment.

Test images RGB RGB RGB and
and NIR artificial NIR

U-Net
SPOT 0.954 0.961 0.96
Planet 0.857 0.939 0.936
SPOT + Planet 0.932 0.96 0.945
Average 0.914 ± 0.001 0.953 ± 0.003 0.947 ± 0.002

(+0.039) (+0.033)

RF
SPOT 0.874 0.892 0.889
Planet 0.815 0.863 0.861
SPOT + Planet 0.836 0.876 0.872
Average 0.841 ± 0.002 0.877 ± 0.002 0.874 ± 0.001

(+0.036) (+0.033)

Table 7.3: The results for the forest segmentation experiments with different dataset
sizes. The F1-score for SPOT and Planet on the test set. The entire dataset size
was 500,000 ha.

Bands All Data 1/2 1/3

SPOT RGB 0.97 ± 0.003 0.956 ± 0.003 0.942 ± 0.002
RGB and NIR 0.97 ± 0.002 0.963 ± 0.004 0.961 ± 0.002

Planet RGB 0.939 ± 0.002 0.933 ± 0.001 0.874 ± 0.001
RGB and NIR 0.95 ± 0.001 0.942 ± 0.002 0.927 ± 0.001
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obtained NIR band is similar to those belonging to the target domain.

Example of a green roof is presented in Figure 7-7. Although, the color of the

object is green, NIR value is low. It shows that the model had a sufficient amount

of the training samples to learn such cases.

The experiments indicate that the generated NIR provides additional informa-

tion to the segmentation model. We assume that the generative model incorporates

the hidden statistical connections between the spectral channels that can be learned

from the significant amount of real RGB and NIR data. As opposed to the segmen-

tation or classification approach, the channel generation does not require the manual

ground truth markup to significantly increase the dataset size. Therefore, this ap-

proach can be used as a feature-engineering tool to create a new feature similar to

the NIR band of multispectral remote sensing imagery.

We set the goal to predict exactly the NIR band instead of vegetation indexes

such as NDVI or EVI. These indexes use the NIR band in combination with the

Red band. The NIR band generation allows further computation of other indexes

without a requirement for extra model training. The future study can be extended

by implementing different vegetation indexes. Moreover, in the case of using neural

networks with the generated NIR band, it is enough to provide input NIR and Red

bands separately (not in the form of the computed indexes) because a neural network

can approximate nonlinear functions such as vegetation indexes.

One example of a failure case is a green lake (Figure 7-8) that might be mistaken

for a green lawn. The reason is insufficient representation in the training dataset.

Another possible example is an artificial turf such as an open-air stadium. The

model can erroneously treat it as a landcover with high NIR value. On the other

hand, if we add a significant amount of such samples, it is possible that the model

learns such a distribution both.

Pix2pix architecture includes 54M parameters in the generator part and 6M

parameters in the discriminator part. The future study can be focused on trainable

parameters reduction. Light-weighted neural network models are studied currently

and show promising results in the remote sensing domain [He et al., 2021] (just 4M

parameters are used).
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Figure 7-7: Example of a case with a green roof (SPOT image). The green roof has
low NIR values both for original and generated NIR bands.

Training models independently for each data source often leads to better results.

However, it is a more expensive approach. In this study, we considered the case

when we minimize the cost. In future research, separate models training for each

datasource should be studied and analyzed.

Data providers aim to minimize time and other costs while providing imagery

to customers. For this purpose, online services for data acquisition are created [Se-

curewatch, OneAtlas] that allows one to analyze data “on the fly”. The most spread

and cheap format for such platforms is RGB images, even when original imagery

includes more spectral channels. The proposed NIR generation approach can be

implemented for such products as “basemaps”. That requires further study.

In the future, we seek to implement this feature-engineering approach to other

remote sensing tasks, such as agriculture classification and land-cover semantic seg-

mentation. In addition, the proposed approach holds potential to solve challenges

when only drones RGB channels are available. Another direction is to combine

this feature-engineering approach with different augmentation techniques for remote

sensing tasks [Yu et al., 2017, Illarionova et al., 2021b].

It is promising to investigate the application of NIR generation methods beyond

remote sensing problems in future works. Since NIR provides valuable auxiliary

data in plant phenotyping tasks, NIR generation can be extended for greenhouses

where high precision is vital [Nesteruk et al., 2021].
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Figure 7-8: Example of a failure case (SPOT image). Green lake is erroneously
treated as a surface with high NIR value.

7.4 Conclusions

The NIR band contains essential properties for landcover tasks. However, in par-

ticular cases, this band is not available. This study investigated Pix2pix cGAN im-

plementation for image-to-image translation from RGB space imagery to the NIR

band. We proposed an efficient feature-engineering approach based on an artificial

NIR band generation. We conducted forest segmentation experiments to assess the

importance of the NIR band in cases of small datasets and different satellite data

sources. The proposed approach improved the model’s robustness to data source

diversity and reduced the requirement to mark the dataset size, which is crucial for

machine learning challenges. We assume that this data generation strategy can be

implemented in practical tasks that require the NIR channel. This method can be

extended to other spectral channels and remote sensing data sources.
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Chapter 8

MixChannel: Advanced

Augmentation

for Multispectral Satellite Images

8.1 Introduction

Freely available remote sensing images with medium spatial resolution allow solving

various environmental tasks using advanced computer vision tools such as convo-

lutional neural networks (CNN) [Jia et al., 2021]. In comparison with ordinary

RGB images, satellite data usually consists of multispectral bands. Larger feature

dimensionality ensures solving more complicated tasks [Setiyoko et al., 2017] that

would not be possible to solve just by using the RGB spectrum in case of medium

spatial resolution (such as 10 m per pixel) [Wicaksono et al., 2019]. Therefore,

the lack of texture information can be efficiently compensated by a wide spectral

range. However, larger feature space poses extra complexity to features connection

that describes target objects. Changes in this relationship can lead to a severe CNN

model deterioration for new images.

In most works for relatively small remote sensing datasets, model robustness to

new territories and images is still beyond the study’s scope. Splitting into training

and testing objects is conducted within the same images, and only objects’ locations

vary. For instance, in [Wicaksono et al., 2019], they used just a single image from
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WorldView-2 for tropical seagrass classification. In [Saralioglu and Gungor, 2020],

they also used a single WorldView-2 image both for training and validation in the

task of land cover semantic segmentation. The same imagery limitations were faced

in [Erinjery et al., 2018] (two Sentinel-2 images were considered). It can lead to

particular challenges trying to implement the trained models on new data. For in-

stance, when the target territory for prediction does not have cloud-free images for

the exact dates used during model training. One of the approaches to overcome

this problem is discussed in [Zhou et al., 2020] where authors developed the spa-

tiotemporal image fusion approach based on pixels replacement for cloudy image

reconstruction. However, computer vision (CV) model generalization in such cases

is usually not studied.

In remote sensing tasks, more than one image covering the same area for different

dates is usually available. Therefore, we provide a brief overview of this topic. Ad-

ditional satellite images complement the spectral information, and a multi-temporal

dataset increases a model’s predictive power [Persson et al., 2018b]. Combining

multi-year imagery observed from a single sensor during different parts of the grow-

ing season allows one to evaluate a complete vegetation growth trajectory. However,

in practice, time series can be boisterous due to the incomplete recording of the

vegetation life cycle [Zeng et al., 2020]. Therefore, the main approaches for multi-

temporal data leveraging are: find optimal observation dates for a particular study

case and available images [Skriver, 2011]; aggregate images for different dates by

averaging [Viskovic et al., 2019].

In [Viskovic et al., 2019], they proposed a method for agricultural field clas-

sification that relies on multi-temporal properties of Sentinel-2A and Sentinel-2B

satellite images. A sequence of images during the year was collected and aggregated

by averaging pixel values with the exact location for each band. Then, standard

vegetation indices were computed to train classification models. The specificity of

the study region, namely California, is a vast amount of cloudless images per year

(24 to 37 images, depending on a geographical area) that would not be available for

boreal territories. Thus, the described approach should be verified in the case of

minimal satellite observations. In [Watkins and van Niekerk, 2019], they used seven
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cloud-free Sentinel-2 images for agriculture field boundary delineation. The edge

detection algorithm was implemented for red, blue, green, and near infrared (NIR)

bands and resulted in an individual edge layer for each band. Then, the same

as in [Viskovic et al., 2019], multi-temporal properties were used, combining edge

images for different dates into one composite.

To overcome the limitation in the number of available training images, it is com-

mon to use image augmentation. It adds variability to the data and therefore makes

a model more robust [Buslaev et al., 2020b]. Among popular image augmentations,

there exist basic geometrical transformations and color transformations that applied

to the original image. Another approach is to generate new training samples with

generative adversarial networks (GANs) [Yi et al., 2017]. All of the listed approaches

are successfully applied for RGB images in various fields, including remote sensing [Li

et al., 2021]. However, they should be additionally studied for multispectral data

for the following reasons. Geometrical transformations do not provide enough vari-

ability for satellite images with medium spatial resolution (such as 10 meters per

pixel). It is complicated to apply color transformations for such multispectral data

in the environmental domain, where dependencies between channels are more crucial

than in general CV tasks with high-resolution RGB data. No works successfully use

GANs for multispectral satellite image augmentation to the best of our knowledge.

This work presents an augmentation approach that targets multispectral images and

does not require training auxiliary models to generate samples.

In this study, we explore the efficiency of CNNs to learn spectral characteris-

tics in the case study of conifer and deciduous boreal forests classification using

Sentinel-2 [Drusch et al., 2012] images. A straightforward approach for training a

CNN classification model is to take a set of available satellite images for a given

territory during a period of active vegetation. The training set is constructed by

taking a random patch of a large image, see Section 8.2.3 for details. However, if we

test the obtained model for the image, taken on the date that was not included

in the training set, the accuracy can drop dramatically. This situation gets even

worse when the model is tested on new territory. It is supposed that the accu-

racy drop mentioned above happened due to changes in the characteristics of the
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distribution (see Section 8.2.2 for examples).

In this Chapter, we propose a novel MixChannel augmentation method aiming

to address robustness for multispectral satellite (Sentinel) images. We enlarge the

training dataset generating new samples artificially with the following procedure.

The method is based on substituting bands from original images with the same

bands from images of another date covering the same area. While all available

images are used during training, only a single image is required for inference time.

For this study, only summer images of the active vegetation period are used for

conifer and deciduous species classification. We trained CNN models with different

architectures to compare the proposed method with the standard augmentation

techniques. The result of our MixChannel augmentation consistently outperforms

commonly used normalization and augmentation strategies.

The main contributions of this research are:

• We showcase the problem of poor generalization of CNNs for multispectral

satellite images of middle resolution.

• We propose a simple and efficient augmentation scheme that improves CNN

model generalization for multispectral satellite images.

• We test the proposed method on conifer and deciduous forest types classifica-

tion and show that our approach outperforms state-of-the-art solutions.

• We show that the MixChannel approach can be efficiently combined with other

methods to achieve the synergy effect.

This Chapter finalizes the research conducted as a part of the PhD study. It

comprises an important question of model robustness through different territories

and observation dates. The presented Chapter shares ideas and findings on aug-

mentation approaches for multispectral satellite imagery. It supports the previous

Chapters with additional useful tools for computer vision methods in Remote Sens-

ing of Environment.
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Figure 8-1: Investigated region. Selected train, validation, and test sub-areas with
available ground truth labels used for image data samples creation.

8.2 Materials and Methods

8.2.1 Study Area and Dataset

The study area is located in the Arkhangelsk region of northern European Russia

with coordinates between 45◦16′ and 45◦89′ longitude and between 61◦31′ and 61◦57′

latitude that belongs to the middle boreal zone (Figure 8-1). The total area is about

For the study, we used forest inventory data collected according to the official

Russian inventory regulation. This data was organized as a set of individual stands

with appropriate characteristics based on the assumption that the stand was ho-

mogeneous. We used such a characteristic as dominant species and canopy height

for an additional experiment. Thus, inventory data was converted in a raster map

of dominant conifer and deciduous classes and a raster with height values. The as-

sumption on homogeneous means that for particular stands defined as conifer or

deciduous dominant types, these individual stands can contain another class rep-

resentative (but less than 50%). We excluded from the study non-forest areas and

areas with the equivalent conifer and deciduous composition.
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Table 8.1: Sentinel images used in this study. Date format is: month, day, year.

Image ID Date
0 L2A_T38VNP_A016606_20180827T083208 08.27.18
1 L2A_T38VNP_A010986_20170730T082009 07.30.17
2 L2A_T38VNP_A005695_20160725T082012 07.25.16
3 L2A_T38VNP_A007297_20180730T081559 07.30.18
4 L2A_T38VNP_A015748_20180628T082602 06.28.18
5 L2A_T38VNP_A013017_20190903T081606 09.03.19

8.2.2 Satellite Data

The data source used in this study is Sentinel-2 satellite multispectral images.

Sentinel-2 satellite is a part of the Sentinel program with a mission focusing on

high-resolution land cover monitoring. It was launched in 2015. Sentinel includes

13 spectral bands with a spatial resolution of 10, 20, and 60 m.

For the forest classification task, we selected images over the vegetation period

between the years 2016 and 2019 close to the date of taxation. The study region

is boreal forests with high cloud coverage during a year; therefore, the number of

appropriate imagery was severely limited. The available image IDs selected for the

study are presented in Table 8.1.

We downloaded Sentinel data in L1C format from EarthExplorer USGS [USGS,

Accessed: 2020] and preprocessed them using Sen2Cor [Sen2Cor, Accessed: 2020].

Sen2Cor is a semi-empirical algorithm that removes atmospheric effects from Sentinel-

2 images and creates a level L2A Bottom of Atmosphere (BoA) reflectance prod-

uct. This atmospheric correction processor is based on a set of Look-Up tables

created by libRadtran model [Martins et al., 2017]. Preprocessed data are more

suitable for further analysis than level L1C product. The pixel values were in the

range [0, 10, 000]. We used 10 bands with the following central wavelengths [Drusch

et al., 2012]: Band 2: Blue, 492.4 nm; Band 3: Green, 559.8 nm; Band 4: Red,

664.6 nm; Band 5: Red-edge I (R-edge I), 704.1 nm; Band 6: Red-edge II (R-edge

II), 740.5 nm; Band 7: Red-edge III (R-edge III), 782.8 nm; Band 8: Near infrared

(NIR), 832.8 nm; Band 8A: Narrow Near infrared (NNIR), 864.7 nm; Band 11:

Shortwave infrared-1 (SWIR1), 1613.7 nm; Band 12: Shortwave infrared-2 (SWIR2),
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2202.4 nm. The bands at 20 m resolution were adjusted to 10 m resolution before

classification using the same procedure discussed in [Erinjery et al., 2018].

The average values for each channel and each image within forested areas are

presented in Figure 8-2. Here, in the plot for the entire study area, it is shown that

the distribution of the mean values for images changes drastically. Even images of

the same day but one year apart (images with IDs 1 and 2 for the 30 July 2017,

and 2018 respectively) have markedly different mean spectral values. Moreover,

for each band, changes are not equivalent. Figure 8-2 also presents three random

crops 200×200 pixels each. It is shown that depending on a particular area, the mean

values for each band change. Therefore, it is impossible to bring auxiliary training

data within the same image distribution using linear transformations or noise.

For classification tasks using CNN, image values are often brought to the interval

from 0 to 1 [Vaddi and Manoharan, 2020, Debella-Gilo and Gjertsen, 2021]. It can be

done using different approaches. The first approach is to divided by the maximum

value such as in [Illarionova et al., 2020]. In our case, this values is 10,000 (the

maximum physical surface reflectance value for Sentinel-2 in level L2A):

I ′ = I/10,000. (8.1)

Another way is to normalize data by the min–max normalization technique.

In satellite remote sensing domain, it was used in [Prathap and Afanasyev, 2018]

and aims to reduce noise of each channel:

m = max(0,mean(I)− 2 ∗ std(I)), (8.2)

M = min(max(I),mean(I) + 2 ∗ std(I)), (8.3)

I ′ = (I −m)/(M −m), (8.4)

where mean, std are the mean and standard deviation of the image. In Equa-

tions (8.2) and (8.3), we calculate m and M (minimum and maximum of the pre-

served dynamic range). In Equation (8.4), values are scaled to 0 and 1 linearly.

We used both normalization techniques for evaluating our proposed approach
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Figure 8-2: Example for mean values for each channel for entire study area and
for random image crops (the crop size is 200 × 200 pixels). The mean values are
calculated from the extracted spectral information in the forested areas.

(see Section 8.2.4).

8.2.3 Baseline Description

We solve the image semantic segmentation task where a CNN model is trained to

create an output map with target classes for each pixel by processing a multispectral

input image. Therefore, the output consists of pixels for which forest types are as-

signed. The batch for model training is formed as follows. For each patch in a batch,

one image is chosen from the image set, and a patch of predefined size is cropped

randomly. The batch and the patch sizes are presented in Section 8.2.6. A patch

consists of 10 multispectral normalized bands, and it is used as a ten-layer input

for a CNN model instead of the usually used three-layer input tensor. For model
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training, namely model loss function computing, masks with target values are given

for each patch. The CNN architecture for the baseline model is U-Net [Ronneberger

et al., 2015].

8.2.4 MixChannel Augmentation

The proposed MixChannel augmentation algorithm operates by substituting some

channels of the original image by channels from the other images that cover the same

territory (Algorithm 1). MixChannel takes the set of images of the exact location,

chooses one as an anchor image, and with the predefined probability substitutes

some channels of the anchor image with the matching channels from non-anchor

images from the same set. The workflow of the developed augmentation algorithm,

in particular, the creation of the new data sample, is schematically presented in

Figure 8-3.

Input: S, P
Output: I
I ⊆ S, #I = 1
Ś = S \ I
for c ∈ {0, 1, . . . , C − 1} do

if PC > R then
Í ⊆ Ś,#Í = 1
IC = ÍC

end
end

Algorithm 1: MixChannel T (S, Ṕ )

T () is the MixChannel algorithm; S,#S ≥ 1 is the set of images covering the

same area; P = {p0, p1, . . . , pC−1}, p ∼ U([0, 1]) is the set of probabilities to substi-

tute each channel; I, I ∈ S is the anchor image; C—is the number of channels in

images; R ∼ U([0, 1]) is a random variable from the uniform distribution; IC is the

c-th channel of the image I; letters with the stroke sign denote temporal variables.

The probability choice of channel substituting is an essential parameter of the al-

gorithm to be studied. Therefore, we considered different probabilities with the step

of 0.1. The range was set from 0 to 0.7 where 0 probability is equal to the absence of

the MixChannel augmentation and defined as a baseline. To compare the proposed
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augmentation with other approaches, we conducted the following experiments (see

the short summary of experiments in the Table 8.2):

• Average-channel. This experiment is based on the approach proposed for mul-

tispectral Sentinel data in [Viskovic et al., 2019]. The idea of the method is

described in Section 8.1. For each pixel of the particular band, the correspond-

ing value is averaged within all images that cover the same territory.

• Channel-dropout. In this experiment, we used augmentation described in [Tomp-

son et al., 2015] where it was proposed for RGB images. It aims to prevent a

CNN model from overfitting for particular data. Our study implemented this

approach by substituting each channel with the predefined probability by zero

values. We investigated different probabilities in the range from 0 to 0.5 with

the step of 0.1.

• Color jittering. Color jittering [Taylor and Nitschke, 2018] is commonly used

for RGB image augmentation. In the color jittering experiment, we multiply

values in each band by the random value (fixed within each band) in the range

of 0.8–1.2. The approach aims to add variability to the initial data.

• Patching. As an additional experiment, we implemented MixChannel aug-

mentation for patch parts independently. The patch was divided into four

equal parts; for each part, channels can be substituted by bands from differ-

ent images.

• Optimization. In this experiment, we search for the optimal probabilities for

band substitution using a greedy optimization approach. The detailed descrip-

tion of the MixChannel optimization procedure is presented in Section 8.2.8.

• Height adding. In this experiment, we complemented the spectral data with

height data and used them both as input data for CNNs. Experiments Mix-

Channel augmentation for data that include height and Baseline + height are

described in details in Section 8.2.5;
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Figure 8-3: MixChannel algorithm. Schematic workflow of new image sample cre-
ation using spectral channels from other images in the investigated region with
certain probabilities.

For all experiments except channel-normalization, data were normalized using

the Equation (8.1) described in Section 8.2.2. In the Channel-normalization experi-

ment, we used Equation (8.4) for data preprocessing. In all experiments, geometrical

transformations such as rotation and random flip were applied.

8.2.5 Height Data for Stronger Robustness

As was previously shown in [Illarionova et al., 2020], additional height data can

significantly improve model performance in the forest species classification task.

Therefore, we conduct further experiments to evaluate extra height data importance

for model robustness in new images and territory. We also check the assumption

that MixChannel can be efficiently combined with other techniques to achieve the

so-called synergistic effect.

For this experiment, height measurements from inventory data were converted

into raster by assigning the same height value to each pixel within an individual
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Table 8.2: Experiments description.

No. Method Description
1 Baseline Without any data transformations or aggregations

(except geometrical).
2 Baseline + height Add extra input layer with height values.

3 Channel normalization Use normalization defined in Equation (8.4).
4 Average-channel Aggregate images for various dates by averaging.
5 Channel-dropout Substitute random channels with zero values.
6 Color jittering Multiply each channel by a random value.

7 MixChannel Our approach.
8 MixChannel + height Add extra input layer with height values.

stand. This layer was normalized by dividing by 100 and clipping into [0, 1] range

to have the same range as multispectral input data for a CNN model. The obtained

layer was stacked to initial input layers to add additional information to our model.

8.2.6 Neural Networks Models and Training Details

To evaluate the MixChannel approach on different CNN architectures, we considered

U-Net [Ronneberger et al., 2015], U-Net++ [Zhou et al., 2018], and DeeplLab [Chen

et al., 2017b]. For all mentioned architectures, we use ResNet-34 [He et al., 2016]

encoder. As a base architecture, we choose U-Net. The models’ architecture imple-

mentation was based on opensource library [Yakubovskiy, 2022] and used PyTorch

framework.

For each model, we set the following training parameters. There were 50 epochs

with 32 training steps per epoch and the same for validation. An Adam opti-

mizer [Kingma and Ba, 2014] with a learning rate of 0.001, which was reduced after

25 epochs. Early stopping was chosen with the patience of 10. The best model

according to the validation score was considered. The batch size was specified to be

16 with a patch size of 256 × 256 pixels. These sizes were chosen to meet memory

restrictions for computing using one GPU. For each model, the activation function

for the last layer was Softmax [Gao and Pavel, 2017]. As a loss function, categorical

cross entropy (3.1) was used.

The training of all the neural network models was performed at Zhores [Zacharov
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et al., 2019] supercomputer with 16Gb Tesla V100-SXM2 GPUs.

8.2.7 Evaluation

Cross-validation is an effective technique for machine learning model assessment [Roberts

et al., 2017]. It makes model evaluation more reliable. However, in most works for

relatively small datasets (where the study area can be covered by a single satellite

tile), splitting for testing and training samples is performed only within the same

images. Moreover, the cross-validation technique is not so popular for CNN tasks

because it requires extra computational resources. In cases of CNN, fixed splitting

into testing and training areas is often used [Nesteruk et al., 2021]. This study imple-

ments an image-based cross-validation approach to evaluate CNN model robustness

both for new images and territory for a relatively small dataset.

Splitting into folds for cross-validation was organized as follows (Figure 8-4).

Test, train, and validation territories are shown in Figure 8-1. Six images were

used (see Table 8.1). For each fold, one image was set aside for testing, while the

other five images were leveraged to train a model in only the training territory

(see Figure 8-1). Validation was conducted using the same five images but for the

validation territory. Thus, the reported result is reliable because it was obtained on

unseen images and territories and aggregated across five cross-validation folds.

The model outputs masks of two target classes, which are compared with the

ground truth by pixel-wise F1-score. For each experiment, a model was trained

three times with different random seeds for averaging model performance on different

initialization of trained parameters.

8.2.8 Optimization

The MixChannel algorithm supports changing the probabilities to substitute image

channels (see Algorithm 1). Different values of probability have various effects on

the final accuracy and robustness of the trained model. Thus, a task of channel

substitution probabilities optimization appears. Optimization of these probabilities

leads to better results and will be shown in Section 8.3. However, it should be noted
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Figure 8-4: Cross-validation scheme. Each experiment (Exp) in the cross-validation
procedure iteratively uses one image (Img) that represents the whole study area at
the certain time as the test (only test sub-area according to Figure 8-1). Training
data for CNNs is generated from the train sub-area (see Figure 8-1) of the rest im-
ages.

that performance evaluation using each selected probability set requires a full model

training cycle. Therefore, it is very computation-intensive to iterate over all possible

options. More precisely, it would have exponential complexity with respect to the

number of channels.

When computational resources are minimal, the baseline approach assumes that

the optimal values for all channels are the same. Then, it is possible to iterate over

several probability values and set a single global substitution probability to each

channel. The advantage of this approach is that it has constant complexity with

respect to the number of image channels because it iterates only over substitution

probabilities and does not explore interactions between channels. It allows finding

suboptimal probabilities but does not consider that optimal probability may vary

severely for some channels. This section proposes a greedy optimization scheme that

aims at finding optimal channel substitution probabilities.

Let J : H −→ R be the objective function. J maps hyperparameters H that

include model, MixChannel parameters and dataset to the resulting F1-score value.

Then, the optimization problem formulates as P ⋆ = argmax
P
J (θ⋆|T (S, P )).

The greedy optimization algorithm for MixChannel probabilities tuning operates

by iteratively searching for the optimal substitution probability for each channel with
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other channels’ probabilities fixed to sub-optimal values (Algorithm 2).

Input: S, q, n, pmax

Output: θ⋆, P, r
P = {0, 0, . . . , 0},#P = C
r = 0
for iter ∈ {0, 1, . . . , n− 1} do

for c ∈ {0, 1, . . . , C − 1} do
for p ∈ {0, pmax/q, 2pmax/q, . . . , pmax} do

Ṕ = P
ṔC ←− P
ŕ = J (θ⋆|T (S, Ṕ ))
if ŕ > r then

P = Ṕ
end
else

P = P
end
r = max(r, ŕ)

end
end

end
Algorithm 2: Greedy MixChannel Optimization

θ⋆—optimal model weights found via the gradient descent algorithm for the de-

fined hyperparameters; q is the the number of probability quantization levels; n is

the number of iterations; pmax ≤ 1 is the is the highest considered value of probabil-

ity; r is the the F1-score of the trained model with the considered hyperparameters;

v is the the number of images in the dataset covering the same area.

The described optimization algorithm considers the effect of each channel on

every other channel. It can be efficiently applied because it has linear complexity

with respect to the number of image channels.

8.3 Results

This section describes the results of the experiments with MixChannel and compares

them with other approaches.
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MixChannel Augmentation

Table 8.3 presents details of MixChannel performance. Considering the small num-

ber of available training samples, Table 8.3 shows cross-validation results to increase

the reliability of the score. Each model is trained on five training images and is val-

idated on the remaining one image. Columns represent a single global substitution

probability, set to each channel. Zero probability means that the MixChannel al-

gorithm is not applied. For a more straightforward interpretation, results for each

model aggregated to show average and standard deviation. Bold font highlights the

best result for each model. It should be noted that a better model must have a

higher F1-score but a lower standard deviation.

The baseline model shows poor performance for particular images (Figure 8-5).

It leads to a low average score (0.696) and a high standard deviation (0.17) (see

Table 8.3). The model with the same CNN architecture, namely U-Net, but trained

using the proposed MixChannel augmentation, beats the baseline approach confi-

dently. For the best substituting probability, it achieves an F1-score of 0.77 for U-Net

architecture. Moreover, the model performance for each test image became more

stable. One of the outstanding results is that, for some cases, by using MixChannel

augmentation we were able to double the scores. For example, an image with ID

5 was complex for the baseline approach (F1-score 0.381) and after application of

MixChannel augmentation the F1-score doubled and reached 0.775. The drop of the

average standard deviation from 0.17 to 0.069 proves that MixChannel enables better

model generalization. We compared different probabilities for channel substituting.

For the U-Net model, the best one is 0.6. However, it is clear that the proposed

approach leads to higher results even with not the optimal substitution probability.

To evaluate the MixChannel augmentation for different CNN architectures, we

conducted experiments with U-Net (as the base model), DeepLab, and U-Net++.

Our approach confirms to be preferable for each architecture choice than the base-

line approach trained for the same architecture. Moreover, as shown in Table 8.3 the

best score for each architecture is approximately equals to 0.77. However, the best

probability for channel substituting differs: for U-Net, it is 0.6, for U-Net++ 0.1,

and for DeepLab, it is 0.3. Unfortunately, we cannot expect the optimal substi-
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Table 8.3: MixChannel predictions with different channels replacing probabili-
ties (F1-score). Bold text in each row indicates the best result for the model.

Model Probabilities 0 (Baseline) 0.1 0.2 0.3 0.4 0.5 0.6

U-Net

Test image 0 0.8 0.762 0.79 0.8 0.77 0.813 0.815
Test image 1 0.607 0.606 0.59 0.605 0.58 0.611 0.625
Test image 2 0.86 0.829 0.83 0.81 0.835 0.84 0.826
Test image 3 0.849 0.814 0.825 0.82 0.815 0.83 0.825
Test image 4 0.675 0.733 0.76 0.745 0.725 0.771 0.775
Test image 5 0.381 0.72 0.71 0.685 0.685 0.77 0.775
Average 0.696 0.744 0.75 0.744 0.735 0.77 0.77
Standard deviation 0.17 0.073 0.082 0.076 0.086 0.077 0.069

Deeplab

Test image 0 0.804 0.793 0.784 0.803 0.817 0.805 0.806
Test image 1 0.614 0.631 0.615 0.633 0.633 0.636 0.615
Test image 2 0.855 0.811 0.824 0.829 0.832 0.833 0.829
Test image 3 0.851 0.834 0.82 0.824 0.812 0.809 0.821
Test image 4 0.697 0.76 0.761 0.789 0.774 0.771 0.777
Test image 5 0.38 0.664 0.758 0.784 0.722 0.742 0.759
Average 0.7 0.749 0.76 0.777 0.765 0.766 0.768
Standard deviation 0.167 0.076 0.069 0.066 0.069 0.066 0.0725

U-Net++

Test image 0 0.79 0.803 0.819 0.824 0.825 0.814 0.817
Test image 1 0.49 0.639 0.61 0.618 0.64 0.648 0.605
Test image 2 0.861 0.837 0.832 0.811 0.837 0.834 0.837
Test image 3 0.851 0.826 0.823 0.822 0.809 0.83 0.828
Test image 4 0.6 0.795 0.795 0.765 0.739 0.789 0.775
Test image 5 0.38 0.761 0.64 0.735 0.768 0.719 0.774
Average 0.66 0.777 0.753 0.762 0.769 0.772 0.773
Standard deviation 0.185 0.066 0.091 0.072 0.067 0.069 0.079
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tution probability to be the same for each model because it is a hyperparameter,

and therefore should be tuned for each new case. Every model represents features

differently, and augmentation affects these representations differently.

We compared MixChannel performance with the popular solutions for multi-

spectral data. The first experiment was focused on the standard normalization

techniques implemented to enhance image spectral properties. As presented in Ta-

ble 8.4, image normalization did not lead to F1-score improvement (0.678) compared

to the baseline (0.696) where spectral values were dividing by the max possible value.

Another considered approach for multispectral augmentation was Channel-dropout.

As shown in Table 8.5, it outperforms the baseline model with the best F1-score

of 0.753. However, it still does not achieve MixChannel’s results. We also com-

pared our approach with channel averaging. As presented in Table 8.4, it did not

improve the baseline model results achieved 0.672 F1-score. Color jittering also did

not outperform MixChannel (F1-score 0.685).

Experiments with additional height data are presented in Table 8.4. Both for the

baseline and MixChannel approaches, it leads to the higher results. For MixChannel

F1-score improves from 0.77 to 0.81, while for the baseline, F1-score increases from

0.696 to 0.74.
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Table 8.4: MixChannel comparison with other approaches. Predictions for U-Net
models (F1-score). Results of MixChannel application are in blue. Bold text indi-
cates the best result that was obtained by application of MixChannel with height.
Avg is average value, Std is Standard deviation.
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Table 8.5: Channel-dropout predictions for U-Net with different channels replacing
probabilities (F1-score). Bold text indicates the best result that was obtained by
application of Channel-dropout.

Probabilities 0 (Baseline) 0.1 0.2 0.3 0.4 0.5
Test image 0 0.8 0.802 0.802 0.809 0.794 0.761
Test image 1 0.607 0.57 0.576 0.56 0.504 0.55
Test image 2 0.86 0.814 0.81 0.806 0.791 0.775
Test image 3 0.849 0.804 0.803 0.816 0.791 0.624
Test image 4 0.675 0.752 0.753 0.752 0.756 0.737
Test image 5 0.381 0.689 0.739 0.778 0.766 0.733

Average 0.696 0.738 0.747 0.753 0.733 0.696

Standard deviation 0.17 0.086 0.081 0.089 0.1 0.0816

Figure 8-5: Baseline prediction.
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Figure 8-6: Channel-dropout predictions.

Table 8.6: MixChannel for four crop parts (F1-score). Bold text indicates the best
result that was obtained by application of MixChannel for four crop parts.

Probabilities Baseline 0.1 0.2 0.3 0.4 0.5 0.6
Test image 0 0.8 0.798 0.81 0.8 0.798 0.806 0.77
Test image 1 0.607 0.595 0.594 0.624 0.585 0.61 0.616
Test image 2 0.86 0.833 0.83 0.833 0.819 0.835 0.835
Test image 3 0.849 0.828 0.823 0.823 0.82 0.815 0.823
Test image 4 0.675 0.782 0.739 0.77 0.754 0.768 0.77
Test image 5 0.381 0.597 0.674 0.615 0.758 0.71 0.72

Average 0.696 0.738 0.745 0.744 0.756 0.757 0.755

Standard deviation 0.17 0.1 0.0869 0.09 0.08 0.077 0.073
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In this section above, we showed that the MixChannel algorithm consistently

improves model accuracy even with default substitution probabilities. Then, we

showed that it is possible to obtain better results tuning a single global probability

for each channel (Table 8.3). Our further experiments show that Algorithm 2 allows

finding optimal substitution probabilities separately for each channel. Our optimiza-

tion setup is as follows. We used the U-Net model; two algorithm iterations n; initial

probability values P = {0.5, 0.5, ..., 0, 5}; the highest probability value pmax = 0.7;

the number of considered probability values v = 8. It gives us 160 model training

loops in total and increased the previous best result by 1% from 0.777% to 0.791.

It is a minor improvement, but it shows that MixChannel can be tuned further.

However, for the practical application, we suggest using global probability tuning

because it can noticeably increase model accuracy in a few iterations and can be

performed in a parallel fashion.

In this Chapter we use standard deviation to assess prediction quality through

different images. Considering standard deviation in a more common sense, we can

evaluate statistical significance of the achieved results for described approaches. For

each experiment, standard deviation through different algorithm running did not

exceed the value of 0.005. It confirms the advantage of the proposed approaches

comparing with the baseline method.

8.4 Discussion

Usually, in the remote sensing domain, we do not have a sufficient amount of well-

labeled training data for solving particular tasks. The main limitation in getting

more data for boreal regions is cloud coverage. Obtaining new labeled data is a time-

consuming and costly process because it is often necessary to conduct field-based

measurements. Therefore, it is practically reasonable to find techniques that will al-

low us to enhance the existing image datasets in order to obtain better results in CV

models with minimal additional enforces. One of the commonly-used approaches for

enhancing the dataset characteristics is image augmentation. However, as is shown

above, the standard augmentation techniques are not able to principally improve
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the scores of trained on multispectral data models. Thus, it is natural to use the

distinctive feature of multispectral image data, namely different spectral channels.

We showed that generic image augmentations that include color jittering and chang-

ing brightness do not ensure robustness for new multispectral images (Table 8.4).

Randomly changing color values in different channels pushes the augmented image

out of the distribution of initial images. It may lead to better model robustness

against noise but does not ensure better model generalization. As shown in [Hataya

et al., 2020], image augmentations that better suit the distribution of the original

dataset provide better model performance than augmentations that push images out

of distribution. However, it is challenging to preserve the same data distribution

with multispectral images because the high number of dimensions makes it difficult

to reveal the dependencies between bands.

The MixChannel augmentation algorithm proposed in this study, in contrast,

tries to preserve the distribution of the original dataset. It cannot save the joint

distributions across all bands, but it saves every separate bands’ distribution. Mix-

Channel substitutes some channels of the anchor image with channels from other

images of the same location. The enormous number of possible channel mixing com-

binations ensures the increase of the number of useful training data images while

preserving the distribution characteristics of the dataset. Our experiments show

that MixChannel reduced both bias and variance error of all the considered models.

The results of the comparison of the predictions for testing and validation areas

obtained by baseline models and by using proposed augmentation are presented in

Figure 8-7. From Figure 8-7 we can visually notice that the proposed approach

works better and the prediction results are closer to ground truth. The MixChannel

algorithm gains in model performance utilizing the availability of multiple images

of the exact location. Therefore, the apparent limitation of the method is the need

for more than one image at the same spot. It is suitable in such cases as remote

monitoring and continuous stationary imaging. In our investigations, we mainly

focus on some image channels substitution with channels from other images. More

flexible schemes are also can be considered. It is possible to substitute only some

parts (Table 8.6) or patches in a channel by mask instead of the entire channel.
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Figure 8-7: Predictions for testing and validation areas obtained by baseline models
and by using proposed augmentation. F1-score for the image with date 2018-08-
27 (image0) is 0.8 for the Baseline and 0.813 for MixChannel approach. F1-score
for the image with date 2019-09-03 (image 5) is 0.38 for the Baseline and 0.77 for
MixChannel approach (with the same U-Net architecture).

Substitution masks can be either based on segmentation masks or random.

We test the MixChannel algorithm using the images with ten channels as an in-

put to CNN models for training them in order to distinguish two classes. In further

studies, we will examine the dependency between the number of image channels

and the gain of the MixChannel augmentation. It seems promising to test it with

three-channel RGB images. The other possible future extension of the current re-

search is to try out more forest species and other classification pipelines (such as a

hierarchical approach for species classification described in [Illarionova et al., 2020]).

Other target classes of vegetation can be studied (such as [Wicaksono et al., 2019]).

For instance, it can be applied for solving some tasks in precision agriculture such as

crop boundaries delineation [Watkins and van Niekerk, 2019]. Such augmentation

techniques can be applied for hyperspectral data which is widely used for environ-

mental tasks. The MixChannel algorithm allows for picking different channel substi-

tution probabilities. Our experiments show that the optimal values are not the same

for different models. Moreover, the optimal values vary from channel to channel.

In practical tasks, we suggest starting with channel substitution probabilities equal
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to 0.3 for all channels. Then, depending on the available computational resources,

an optimization algorithm can be applied to tune the probabilities if needed.

In addition to MixChannel, we show other promising ways to achieve more

robust results for CNN model predictions. Channel-dropout demonstrates signif-

icantly higher performance than Baseline approach (Table 8.5, Figure 8-6). Al-

though Channel-dropout does not outperform MixChannel, it can be applied in

cases when just a single multispectral image is available. Both MixChannel and

Channel-dropout approaches prevent the model from overfitting on training images

and allows extracting relevant information for better predictions. The combination

of these augmentations should be studied further. Additional height data is also

a powerful way to increase the model robustness (Table 8.4). It makes the model

less sensitive to shifting in spectral distribution. However, height data are not of-

ten available.

The design of the MixChannel algorithm uses the variability of the spectrum

from image to image. It brings new information when channel values may differ

for the target object within the same part of the year. Therefore, this approach is

practical for the environmental domain where vegetation characteristics correlate in

diverse locations and different years but do not match exactly. In contrast, artificial

objects such as buildings remain the same distribution over time and will not benefit

in the same way from the MixChannel algorithm. Another limitation arises from

the assumption that the objects of interest have no significant changes across the

image set. For instance, any crop will differ too much before and after harvesting.

Consequently, it is not recommended to apply MixChannel when images for the

location are spread across the year, and a CNN model is not supposed to handle

such massively different data.

8.5 Conclusions

This work examines the problem of inconsistency of convolutional neural network

generalization in the remote sensing domain. The problem occurs when the training

set and the test set of images are from different locations or times of the year. Image
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exploration shows that even the exact locations at similar dates, but different years,

can vary dramatically. It leads to model overfitting on the training set and a drop in

performance dramatically on the test set. This problem is crucial when the size of the

training set is small. This study proposes and evaluates a novel image augmentation

approach called MixChannel. MixChannel uses multiple multispectral images of the

exact location at various dates of the vegetation period to augment the training set.

MixChannel was applied to the task of forest types classification in the Northern

regions of Russia. This approach shows a noticeable increase in performance with all

the tested convolutional neural networks, namely U-Net, Deeplab, and U-Net++.

In comparison with other augmentation and preprocessing techniques popular for

multispectral images, MixChannel provides better generalization. It is superior in

both prediction bias and variance on the unseen test images. The average gain over

the baseline solution is 7.5% from 0.696 F1-score to 0.77, while the average variance

drops more than twice from 0.17 to 0.077. Further improvement was achieved by

adding auxiliary heights data, giving the overall accuracy of 0.81. It proves that the

proposed approach can be combined with other techniques to get the synergy effect.

Our study shows that MixChannel is a promising approach that enables training

more precise models for remote sensing in the environmental domain.
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Conclusion

The Thesis is focused on the estimation of vegetation characteristics using artificial

intelligence algorithms on satellite data. The most appropriate remote sensing data

was estimated to be used in the subsequent calculation of the tree species, canopy

height, and forest mask. Novel approaches were proposed to address the tasks in the

remote sensing domain using more available data sources covering larger areas. The

developed approaches will be helpful to solve related tasks. More precise vegetation

variables will allow improving environmental studies, in particular, connected with

global climate changes. Overall, the main contribution of the present work is the

following:

• We propose a novel neural network based approach for a high-detailed for-

est mask creation. It involves a novel advanced object-based augmentation

approach that outperforms standard color and geometrical image transforma-

tions in particular remote sensing tasks. The presented method combines tar-

get objects from georeferenced satellite images with new backgrounds to pro-

duce more diverse realistic training samples. We implement an object-based

augmentation technique for a minimum amount of labeled high-detailed data.

Using this augmented data we fine-tune the models, trained on a large forest

dataset with less precise labeled masks. The provided algorithm is tested for

multiple territories in Russia. The developed model is available in an SAAS

platform through the link [Mapflow.ai, Accessed: 10 Febuary 2022]. It allows

one to easily create the detailed and precise forest mask and then use it for
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solving various applied problems;

• We represent the multi-class forest classification problem as a hierarchical set

of binary classification tasks, which allows us to reach better results with both

high- and medium-resolution satellite imagery. We also examine supplemen-

tary data such as tree height to improve the species classification results for

wider tree age diversity. The proposed approach is tested on sample territories

in Leningrad Oblast of Russia, for which the field-based observations were ac-

quired and made publicly available as a single dataset. The proposed approach

shows significantly better results than a conventional multi-class classification;

• We enhance tree species classification based on a neural network approach pro-

viding automatic markup adjustment and improving sampling technique. For

forest species markup adjustment, we propose using a weakly supervised learn-

ing approach based on the knowledge of dominant species content within each

stand. We also propose substituting the commonly used CNN sampling ap-

proach with the object-wise one to reduce the effect of the spatial distribution

of forest stands. We consider four species commonly found in Russian boreal

forests: birch, aspen, pine, and spruce. We use imagery from the Sentinel-2

satellite, which has multiple bands (in the visible and infrared spectra) and

a spatial resolution of up to 10 meters. A data set of images for Leningrad

Oblast of Russia is used to assess the methods. This approach is promising for

future studies to obtain more specific information about stands composition

even using incomplete data;

• Leveraging typical data from airplane-based LiDAR (Light Detection and

Ranging), we train a deep neural network to predict the vegetation height.

The provided approach is less expensive than the commonly used drone mea-

surements, and the predictions have a higher spatial resolution (less than 5

m) than the vast majority of studies using satellite data (usually more than

30 m). The experiments, which were conducted in Russian boreal forests,

demonstrated a strong correlation between the prediction and LiDAR-derived

measurements. Moreover, we tested the generated CHM as a supplementary
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feature in the species classification task. Among different input data combi-

nations and training approaches, we achieved the mean absolute error equal

to 2.4 m using U-Net with Inception-ResNet-v2 encoder, high-resolution RGB

image, near-infrared band, and ArcticDEM. The obtained results show promis-

ing opportunities for advanced forestry analysis and management. We also

developed the easy-to-use open-access solution for solving these tasks based

on the approaches discussed in the study cloud-free composite orthophotomap

provided by mapbox via tile-based map service;

• Modern achievements in image processing via deep neural networks make it

possible to generate artificial spectral information, for example, to solve the

image colorization problem. We investigate whether this approach can produce

not only visually similar images but also an artificial spectral band that can

improve the performance of computer vision algorithms for solving remote

sensing tasks. We study the use of a generative adversarial network (GAN)

approach in the task of the NIR band generation using only RGB channels

of high-resolution satellite imagery. We evaluate the impact of a generated

channel on the model performance to solve the forest segmentation task. The

presented study shows the advantages of generating the extra band such as

the opportunity to reduce the required amount of labeled data;

• We examine the problem of inconsistency of convolutional neural network

generalization in the remote sensing domain. The problem occurs when the

training set and the test set of images are from different locations or times

of the year. Image exploration shows that even the exact locations at similar

dates, but different years, can vary dramatically. It leads to model overfitting

on the training set and a drop in performance dramatically on the test set.

This problem is crucial when the size of the training set is small. We propose

and evaluate a novel image augmentation approach called MixChannel. Mix-

Channel uses multiple multispectral images of the exact location at various

dates of the vegetation period to augment the training set. Our study shows

that MixChannel is a promising approach that enables training more precise
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models for remote sensing in the environmental domain.

We propose different approaches for environmental studies and show their ap-

plications in forestry tasks. However, the same ideas can be modified and applied

in other similar specific domains that suffer from incorrect labels and a lack of

high-quality training data. Data usage from various sensors is promising for model

quality adjustment not only in the Remote sensing domain. The same as augmenta-

tion techniques implementation or auxiliary data generation is beneficial in a wide

range of tasks to extend existing training datasets. However, method transfer to

new tasks requires knowledge about data specificity and practical limitations.
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