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Abstract

In this work I propose a methodology for designing multicomponent alloys using
on-lattice modeling. This approach assumes that the simulated system has an ideal
lattice with fixed atomic positions. Thus, an energy minimum of a structure is
found by adjusting a chemical ordering on an ideal lattice. Such type of simulations
is computationally cheap and can be effectively used for modeling multicomponent
materials.

In my work I show how on-lattice simulations can be used in two tasks of multi-
component materials modeling, namely, crystal structure prediction (CSP) at zero
temperature and modeling phase stability when the temperature is finite. For that I
developed two separate approaches, both based on an on-lattice structure generation
algorithm and on-lattice machine learning interatomic potentials. For the prediction
of ground state structures I developed a novel structure generation algorithm, that
can automatically generate configurations with different chemical composition. By
combining this algorithm with cluster expansion (CE) and the low-rank potential
(LRP) I constructed convex hull of binary, ternary and quaternary systems. The
developed methodology was named “on-lattice CSP”. For modeling phase stability
at finite temperatures I used the well established combination of on-lattice canonical
Monte Carlo (CMC) method with the low-rank potential and extended it to inves-
tigation of a phase stability in high-entropy carbides. In each simulation method
LRP and CE are fitted to energies of the structures relaxed with DFT.

In this work, on-lattice CSP was used to predict stable binary, ternary and
quaternary compounds in Nb-Mo-Ta-W chemical space. The results were compared
to those reported in AFLOW database, and a dozen of new ground states were
found.

Next, using the on-lattice CMC I investigated phase stability of TiZrNbHfTaC5

high-entropy carbide. The simulations revealed the phase transition from several
chemically random phases to a solid solution at 1200 K as was also confirmed by
experiments.

Finally, the on-lattice CMC and LRP were applied to study short-range order in
CrCoNi alloy. The presence of short range order was observed at temperatures up
to 900 K. The impact of magnetism was observed to be negligible on the ordering
behaviour.
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These computational experiments demonstrate the efficiency of the proposed
methodology in studying the mentioned systems and, moreover, show that it can be
used for a rational design of other multicomponent materials.
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Chapter 1

Introduction

Availability of new materials is the driving factor in the development of technology.

For example, production of surface protection coatings, space vehicle parts or fusion

nuclear reactors demands materials with a high phase stability. One class of such

materials are metallic alloys. Traditionally, their properties are optimized by adding

a small concentration of secondary elements to a principle element such as Al, Fe,

Ni, etc. However, such approach substantially limits amount of all possible element

combinations and, hence, leaves a huge number of alloys unexplored. One of the

alternative approaches to optimize targeted properties of these materials is to mix

principal elements in relatively high (often equiatomic) concentration. This led to an

emergence of a new class of metallic alloys known as compositionally complex alloys

(CCA). Some of the recently discovered examples have outperformed traditional

alloys and have shown promising properties such as stability at high temperature,

phase stability under irradiation, high hardness, and corrosion resistance George

et al. [2019]. Therefore, targeted design of such materials is of high priority.

Among these multicomponent materials the most popular subject of theoreti-

cal and experimental research are high-entropy alloys (HEA) Yeh et al. [2004] and

high-entropy ceramics (HEC) Castle et al. [2018]. They usually contain five or more

principal chemical components in near equiatomic concentration. One of the fac-

tors responsible for stabilization of these materials is a high configurational entropy,

which lowers the free energy when multiple components are mixed together. Apart

from high entropy, other factors contribute to stabilization of alloy. For example,
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local stresses in crystalline lattice, caused by a difference in atomic sizes, slow down

diffusion processes, dislocation and grain boundary movements, which leads to stabi-

lization of a solid solution Tsai et al. [2013]. All these factors contribute to excellent

mechanical properties, which makes these materials high-valued in different areas of

industry.

A traditional way to design materials is to use experimental approach. The

most common techniques of synthesising HEA and HEC are melting and casting,

and milling followed by consolidation (mostly spark plasma sintering). Both these

methods require careful selection of raw materials as well as adjustment and precise

control of many parameters such as melting temperature and arc plasma current.

Moreover, parameters of a synthesis should be adjusted for each chemical compound

separately. Given this, experimental discovery of these materials is a challenging

process.

In recent decades, due to rapid development of computational power, a new

field of materials science known as computational materials design has emerged.

It comprises numerical simulation methods, that allow to investigate behavior of a

matter at atomic and electronic scales. These methods can be applied to investigate

phase stability Kostiuchenko et al. [2019, 2020], diffusion processes Wu et al. [2016],

mechanical properties Kiely et al. [2021] and even predict a crystal structure of

a material Lyakhov et al. [2013]. The most accurate are quantum-mechanical (ab

initio) methods such as density functional theory (DFT) Jensen [2007c].

However, computational efficiency of ab initio methods decreases with the in-

crease of the simulation cell. This becomes especially problematic when scales com-

parable to experiment are required. For that reason, alternative models of inter-

atomic interaction are being actively developed. As a rule, these models interpolate

quantum mechanical calculations and, therefore, can produce results of a compara-

ble accuracy. They include, for example, CE Sanchez [2010] and embedded atom

model (EAM) Deye et al. [Mar 2013]. However, efficiency of many of these models

largely depends on the number of chemical components in the system. Therefore,

their application to modeling multicomponent materials can be difficult.

Currently, for simulating multicomponent materials, new class of models are be-
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ing developed, namely machine-learning interatomic potentials. One of the first ex-

amples was Behler-Parrinello neural networks (BPNN) Behler and Parrinello [2007].

They are still being actively developed and in their last form can account for global

charge distribution, which leads to much improved results Ko et al. [2021]. There

are many types of other machine-learning potentials like, for example, Gaussian

approximation potential (GAP) Bartók et al. [2010] and spectral neighbor analysis

potentials (SNAP) Willman et al. [2020]. In principle, all these methods comprise

two parts: descriptor and regressor. First one describes the atomic environment

and should account for symmetry in interactions - energy should be invariant under

rotation, inversion and permutation of identical atoms. The second, regressor, is

a functional that maps descriptor onto interaction energies. The potentials listed

above use different regressors. Thus, BPNN uses neural networks to predict inter-

action energies, while GAP is based on gaussian process regression and SNAP - on

linear regression.

Among this class of potentials is LRP Shapeev [2017], which has been designed

specifically for the study of multicomponent materials. The main feature of this

potential is that it learns the energy of atomic environments without accounting for

atomic positions, which makes it an “on-lattice” interaction model. This potential

has been successfully applied for the study of chemical ordering in a number of

multicomponent metallic alloys Kostiuchenko et al. [2019, 2020], Ghosh et al. [2022],

Pak et al. [2023].

Another important part of numerical modeling of materials is the generation of a

structure along optimization direction. As a rule, standard optimization algorithms

are used for this task Nocedal and Wright [2006], Press et al. [1992]. However, these

methods work well in local areas of potential energy surface (PES), when geometry

of initial configuration is close to the optimal. In most of the cases, energetically

favorable areas on PES are not known apriori and other sampling methods are

required. One approach is to perform random walks on PES as implemented in

Monte Carlo method. A more optimal solution, developed quite recently, is based

on the evolutionary methods. The idea consist in applying heredity operators to

a set of low energy parent structures in order to create a new population. The
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process continues until the most stable structure remains unchanged for a certain

number of steps. The most successful implementation of evolutionary algorithms

for crystal structure prediction is USPEX code Lyakhov et al. [2013]. This method

has been successfully applied for discovering thermoelectric materials Dong et al.

[2019a], superconductors Semenok et al. [2018] and new stoichiometries of common

chemical compounds under a high pressure Zhang et al. [2016].

Even with the aforementioned advances in simulation techniques the problem of

multicomponent materials modeling is still acute. The bottleneck consists in probing

enormous number of chemical combinations from multicomponent configurational

space. As a consequence, only a limited number of discovered multicomponent

materials is reported. However, in the case of metallic alloys, an advantage can be

derived from their structure. Most of the mechanically stable alloys are described by

simple cubic and hexagonal lattices (BCC, FCC, HCP). Thus, the optimal geometry

of a material is already known and the task consists in finding the most stable

chemical ordering on a fixed lattice. This class of problems is known as ”on-lattice”

problems and has been applied to investigate phase stability of multicomponent

systems Kostiuchenko et al. [2019, 2020], Ghosh et al. [2022], Pak et al. [2023] as

well as generating a pool of potentially stable multicomponent metallic alloys Hart

and Forcade [2008, 2009], Hart et al. [2012], Gubaev et al. [2019].

The aim of this work is to develop and validate the methodology for modeling

multicomponent alloys with on-lattice approach. Specifically, I develop the meth-

ods for solving two tasks of materials modeling - crystal structure prediction and

modeling phase stability at finite temperatures. The first methodology is based on

a structure generation algorithm, called “on-lattice CSP” and it is combined with

LRP and CE. The second is a combination of canonical Monte Carlo with LRP.

Author Contribution

In the first work the author has developed the code for on-lattice CSP, performed

all the simulations and obtained the results. Also, he prepared the manuscript with

the results of the study.

In the second work the author has developed the code for on-lattice CMC, per-
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formed all the simulations, obtained the theoretical results and prepared the part

of the manuscript where his part of the work is reported. The experimental part

of the work was performed and reported by a A. Y. Pak from Tomsk Polytechnic

University, Russia.

In the third work the author has developed the code for on-lattice CMC and

contributed to the manuscript preparation. The simulations and general preparation

of the manuscript were performed by Sheuly Ghosh and Fritz Körmann from Max-

Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.

The present dissertation was written solely by the author.
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Chapter 2

Background

2.1 Limitations of conventional alloying

The problem of designing new materials is crucial for the modern industry. The

design process should address the aspects of operational environment, such as me-

chanical stress, thermal and nuclear irradiation, etc. These conditions, for example,

are ubiquitous in production of nuclear fusion reactor shells. When material of a

reactor’s chamber is subjected to a high-energy irradiation, atoms leave their lattice

positions, leading to creation of a Frenkel pair. Accumulation of Frenkel pairs stimu-

lates the formation of complex defects, such as voids, precipitations and dislocations

Zhang et al. [2018]. As a result, the operational limits of the used materials are dra-

matically reduced. Different techniques are applied to prolong their durability and

improve the structural performance. The most common among them is alloying.

This technique consists in adding a small amount of alloying agents in order to im-

prove the primary properties of the main component or invoke the secondary ones.

One of the driving factors, causing an alloy strengthening are distortions inside the

crystal lattice, induced by alloying additions. Apart from mechanical performance,

this technique is used to improve thermal stability, corrosion resistance, conductivity

and many other critical properties.

Alloying imply adding secondary elements in concentrations not exceeding 20%

of the total materials composition. Such approach is used to manufacture the so-

called traditional alloys. Among them, for example, are Al-Li (2.45 % Li), used for
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Chapter 2. Background

aerospace applications Abd El-Aty et al. [2017], Rioja and Liu [2012], Lavernia et al.

[1990], and Be-Co (0.5-3 % Be), used in a wide variety of fields from cryogenic equip-

ment to drilling industry Monzen et al. [2011], Tanner et al. [1988]. Alloying was

also applied to synthesize some multicomponent alloys, such as Al-Ni-Co (tradition-

ally 8 % Al, 26 % Ni, 24 % Co and the rest is Fe) Zhou et al. [2017] or cobalt-based

Co-Cr-Mo (60 % Co, 20 % Cr, 5 % Mo and other substances) Roudnicka et al.

[2021].

However, traditional alloys are represented, as a rule, by compounds synthesised

from a single base metal and a small amount of alloying agents. Besides, most of

them contain no more than three chemical components. Therefore, conventional

alloying strategies are very restrictive in exploring materials containing several main

components in nearly equal proportions Cantor [2014]. As a result, a sufficient

number of multicomponent alloys remains unexplored. To estimate this number

let’s consider a system containing 𝑚 components with concentration tolerance of

𝑐%. The total number of possible alloys in this system is defined as follows:

𝑁 = (100/𝑐)𝑚−1 (2.1)

Restricting to metallic elements, which are easily accessible in the industry (not rare,

toxic, etc.) gives 𝑚 = 30. Taking concentration tolerance of 1% gives the following

estimation of total number of possible alloys:

𝑁 = 1058 (2.2)

which is an enormous number of materials. Even if restricting to a five-component

subspace and equiatomic composition, the total number of alloys still remains enor-

mous:

𝑁 = 305 (2.3)

To explore this huge chemical space conceptually new approaches, going beyond

conventional alloying, are required. One of the recently developed alloying meth-

ods implies mixing multiple components (usually five or more) in high concentration.
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However, apart from traditional melting and casting, this approach requires alterna-

tive synthesis techniques. This is especially important, when dealing with elements

with a wide range of evaporation temperatures. For example, lighter elements may

evaporate before the heavier have melted, which results in the reduction of con-

centration of lighter elements in a final compound Svensson [2015], Maritsa et al.

[2022]. In this case mechanical alloying techniques, for example, are considered as

an alternative Hammond et al. [2014], Stasiak et al. [2023], Rudolf Kanyane et al.

[2019].

2.2 High-entropy alloys

The new alloying method stimulated the discovery of conceptually new class of mul-

ticomponent materials with attractive mechanical and refractory properties. Their

key feature consisted in presence of a high configurational entropy, caused by mixing

of multiple components in approximately equal proportions. These materials coined

a term “high-entropy alloys”, underlining the dominant role of a high mixing entropy

in formation of these compounds. The pioneering work in investigation of these ma-

terials was performed by B. Cantor, who found that Co20Cr20Fe20Mn20Ni20 forms a

single fcc phase, i.e. all elements are mixed into a solid solution Cantor et al. [2004].

Later, Yeh et al. [2004] proposed a theoretical justification of this phenomenon and

introduced the term “high-entropy alloy”.

According to the hypothesis proposed by Yeh et al. [2004], the presence of multi-

ple components in approximately equal proportions would cause mixing entropy to

dominate over the enthalpy of formation and, thereby, contribute to the formation

of an ideal solid solution instead of potentially brittle intermetallic phases (Fig. 2-

1). The rationale behind this assumption is based on a change of Gibbs free energy

when multiple components are mixed together. The Gibbs free energy change in

the cases of formation of intermetallics and an ideal solid solution can be defined as

follows:

∆𝐺𝑓 = ∆𝐻𝑓 − 𝑇∆𝑆𝑓 (2.4)

∆𝐺mix = ∆𝐻mix − 𝑇∆𝑆mix (2.5)
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Figure 2-1: Schematic illustration of phases, which may form in HEA. Left - an ideal
solid solution; right - ordered intermetallic phase.

where ∆𝐺𝑓 , ∆𝐻𝑓 , ∆𝑆𝑓 are the Gibbs free energy change, enthalpy and entropy of

formation of an intermetallic compound; ∆𝐺mix, ∆𝐻mix, ∆𝑆mix are the Gibbs free

energy change, enthalpy and entropy of mixing of an ideal solid solution. At the

same time, the entropy of mixing is given by:

∆𝑆mix = 𝑅 ln𝑛 (2.6)

where 𝑛 is the number of chemical components in the alloy. Thus, when five and more

elements are mixed together the values for ∆𝑆𝑚𝑖𝑥 are exceeding 1.5𝑅. Based on this,

Yeh and co-workers concluded that at high temperatures (−𝑇∆𝑆𝑚𝑖𝑥) term becomes

more negative than ∆𝐻𝑓 , thereby promoting formation of an ideal solid solution

in favour of intermetallic phase. Initially, they attributed the term “high-entropy

alloy” to compounds containing five or more chemical elements in nearly equiatomic

concentrations. However, it has been proven that alloys with three principal ele-

ments, such as VCoNi, can also have high entropy Sohn et al. [2020]. Additionally,

the entropy factor starts playing a significant role in formation of a single phase

even when ∆𝑆mix > 1𝑅. To classify materials with 1𝑅 < ∆𝑆mix < 1.5𝑅 a term

"medium-entropy alloy" (MEA) was introduced Hong et al. [2020].

Apart from high mixing entropy, three other core effects, contributing to excellent

mechanical properties of HEAs, are reported in the literature. Namely, sluggish

diffusion, lattice distortion and the cocktail effect.

The reason for slower diffusion rates in HEAs is quite straightforward. When
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an atom diffuses in a lattice of a solid solution, it is quite unlikely that a local

environment of this atom will remain similar along the transition path. On the

contrary, chemical environments in two neighboring spots differ significantly and,

hence, the potential energy should be also different. When potential energy in

a neighboring spot is higher, diffusion is prevented. This case was analyzed in

CoCrFeMnNi high-entropy alloy, where high fluctuations of lattice potential energy

contributed to higher activation energies and, therefore, sluggish diffusion Tsai et al.

[2013].

Lattice distortions are caused by a presence of elements with a high difference

in atomic radii. Distortions are expected to hinder dislocation movement and con-

tribute to a strengthening of a solid solution. However, in HEAs containing lighter

elements, strengthening is barely caused by lattice distortions. For example, inves-

tigation of lattice distortions in pure Ni, CrNi, CoCrNi and CoCrFeMnNi revealed

that the magnitude of lattice strain in these alloys is similar to that of pure Ni Owen

et al. [2017]. However, it becomes larger in CoCrFeNiPd due to larger atomic radii

of Pd Tong et al. [2017]. Recently, relevance of lattice distortions was questioned due

to confounding effect of thermal vibrations on the diffraction peak intensity Picker-

ing and Jones [2016]. Nevertheless, in case of larger elements, alloy strengthening

due to lattice distortions is likely the case.

The cocktail effect is usually mentioned to underline that properties of HEAs

can’t be considered as a superposition of properties of each constituent component.

Instead, they originate from an interplay of the mentioned effects, such as lattice

distortion, interaction of different elements and phases, etc.

Even though formation of intermetallic or complex phases is damped by the high

configurational entropy, they are still possible. Different criteria were developed to

predict formation of a solid solution phase in HEAs. Many of them are based on

evaluation of configurational entropy and enthalpy of mixing. One rather successful

criteria was given by Yang and Zhang [2012] and is based on evaluation of entropy-

to-enthalpy ratio:

Ω =
𝑇𝑚∆𝑆mix

∆𝐻mix

(2.7)

where 𝑇𝑚 is the weighted average melting temperature of the constituent elements.
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Figure 2-2: Dependence between VEC and phase stability in several HEAs. Blue
symbols represent compounds with pure bcc phases; orange - a mixture of bcc and
fcc phases; red - compounds with pure fcc phases.

As such, disordered phases are expected to form when Ω > 1.1. Additionally, some

studies were done in order to formulate criteria for predicting lattice type of a final

compound. In work by Guo et al. [2011] a dependence between phase stability and

valence electron concentration (VEC) was investigated. They observed that for VEC

< 6.87 bcc phase was stable, while fcc phase was stable when VEC ≥ 8. This trend

can be observed on Fig. 2-2, where dependence between VEC and phase stability is

presented for some HEAs.

2.3 Computational materials modeling

Efficient sampling of multicomponent phase space, even restricted to HEAs, is rather

impractical with an experimental approach. This is caused by an enormous number

of all possible chemical combinations (see equations 2.1 - 2.3). To overcome this

barrier, computational materials modeling methods are widely used in the study of

multicomponent materials. They are used to investigate materials at different levels

of theory, ranging from their electronic structure to microstructure. Depending on

the level of treatment, these methods are differ in their computational complexity
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Figure 2-3: Efficiency of atomic interaction approximation methods with correspond-
ing scales of the simulated system.

and accuracy. Electronic structure methods are the most accurate at the expense of

computational efficiency. They allow to investigate various phenomena, originating

on a quantum level, such as electron transport, formation of electronic bands, etc.

Microstructural analysis can be performed using methods with a higher degree of

approximation. They require fewer computational resources and, hence, are use-

ful in simulations of materials at scales comparable to experiment. For example,

these methods can be used to study crack propagation Lee et al. [2023], Stepanova

and Bronnikov [2019], dislocation or grain boundary movements in polycrystalline

materials Hodapp et al. [2018], Grabowski and Zotov [2021].

Electronic structure methods are a part of an ab initio class of methods. They

do not require any empirical parameters and are based solely on solution of many-

particle Schrödinger equation, which describe interaction of atoms and electrons.

Since interaction itself is complex in its nature, several approximations were intro-

duced to reduce complexity of the problem. The foundational principle behind all

electronic structure methods is Born-Oppenheimer approximation Bechstedt [2015].

It implies that electrons are moving in an external field, created by immovable nu-

clei. This assumption sufficiently reduces the number of variables in many-particle
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wave function. The second ingredient consists in approximating a wave function,

accounting for physical aspects peculiar to fermionic systems. One example is the

Slater determinant Jensen [2007a], which satisfies anti-symmetry and consequently

Pauli exclusion principle. It is used in Hartree-Fock (HF) method Valatin [1961] to

determine the ground state energy of an atomic system. However, the HF method

lacks electron correlation, which is very important in describing interactions pre-

cisely. To account for electron correlation, methods like configuration interaction

(CI), coupled cluster (CC) or many-body perturbation theory (MBPT) were devel-

oped Jensen [2007b]. The listed methods belong to a class of wave function methods,

which are the most accurate in describing chemical phenomena. However, due to

dimensionality problem, their efficiency falls dramatically when size of the system is

increased. This is explicitly shown on Fig. 2-3 , where dependence between system

size and applicability of an approximation method is shown. A conceptually separate

method, known as density functional theory (DFT) Jensen [2007c], was introduced

to overcome dimensionality issues. Due to efficient approximations introduced in

DFT the method has been widely used for more than two decades in the study of

various chemical systems.

In more approximate methods, as a rule, quantum effects are neglected and atoms

are considered as classical objects. The common example is molecular mechanics,

which is based on force-fields, or in case of solid state systems, interatomic potentials

Jensen [2007d]. These potentials are represented by functions of pair or many-

body interactions. As classical models they account for mechanical deformation of

bonds like stretching, bending or torsional movement, although, some approximation

of quantum effects like electrostatic interaction can be also included. Their main

advantage in comparison to electronic structure methods consists in computational

efficiency. As shown on Fig.2-3, molecular mechanics allow to simulate systems

with up to 106 atoms, while the size of the systems that can be studied with DFT is

three orders of magnitude less. Nevertheless, DFT was extensively used in this work

to obtain accurate approximation models of interatomic interaction. The further

introduction to the used methods will start with the description of DFT.
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2.3.1 Density functional theory

Density functional theory is a quantum mechanical method to calculate an approxi-

mate electronic structure of an atomic system. The method is build upon two main

postulates. The first comes from Born-Oppenheimer approximation, described in

section two. The second is based on the fact that properties of a fermionic system

are determined by an electron density. Hence, the number of variables in Schrödinger

equation are reduced from 3𝑁 to only three.

The theoretical foundation of DFT is formulated in the Kohn-Hohenberg the-

orems. The first theorem states that ground state energy from the Schrödinger

equation is a unique electron denisty functional Jensen [2007c]. The second the-

orem states that the electron density, corresponding to the minimum of energy

functional, is the true electron density corresponding to the exact solution of the

Schrödinger equation Jensen [2007c]. Additionally, an explicit electron correlation

is neglected and, hence, the Schrödinger equation is solved for a system of effec-

tively non-interacting electrons. The reformulated equations are called Kohn-Sham

equations Sham and Kohn [1966] and are given as follows:

[︂
~2

2𝑚
∇2 + 𝑣eff(r)

]︂
𝜓𝑖(r) = 𝜖𝑖𝜓𝑖(r) (2.8)

where 𝜖𝑖 is the orbital energy of the corresponding Kohn-Sham orbital 𝜓𝑖 and the

density of 𝑁 -particle system is

𝑛(r) =
𝑁∑︁
𝑖

|𝜓𝑖(r)|2. (2.9)

The last term in 2.8 𝑣𝑒𝑓𝑓 (r) is a Kohn-Sham potential given as:

𝑣eff(r) = 𝑣ext(r) + 𝑒2
∫︁

𝑛(r′)
|r − r′|

𝑑r′ +
𝛿𝐸XC[𝑛]

𝛿𝑛(r)
(2.10)

where 𝑣𝑒𝑥𝑡(r) is electron-nuclear interaction, the second term is the Hartree potential,

and 𝛿𝐸𝑋𝐶 [𝜌]
𝛿𝜌(r) is an exchange correlation potential. The latter term is the only unknown

in Kohn-Sham DFT and is added to account for an electron correlation.
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Similar to the Hartree-Fock equation 2.8 is solved in a self-consistent fashion.

The procedure is given by the following steps:

1. Set trial electron density 𝑛(r)

2. Solve equation 2.8 using trial 𝑛(r) to obtain Kohn-Sham orbitals 𝜓𝑖 and cor-

responding orbital energies 𝜖𝑖

3. Evaluate new electron density as 𝑛KS(r) = 2
∑︀

𝑖 𝜓
*
𝑖 (r)𝜓𝑖(r)

4. If 𝑛KS(r) ≈ 𝑛(r) then the ground state of the system is found. Otherwise,

self-consistent loop continues.

One of the main problems in Kohn-Sham DFT is the choice of the exchange

correlation functional. Many variants have been developed to date and the most

common among them are local density approximation (LDA) and generalized gradi-

ent approximation (GGA) Jensen [2007c]. In LDA the exchange correlation energy

is given as:

𝐸LDA
XC [𝜌] =

∫︁
𝑛(r)𝜖XC(𝑛(r))𝑑r, (2.11)

where 𝜌(r) is the electron density and 𝜖XC is the exchange-correlation energy per

particle. The LDA is based on the assumption that the electron density locally

can be treated as a uniform electron gas. This gives an underestimation of an

exchange-correlation energy and, hence, lead to inaccurate results for some chemical

systems. The non-homogenity of the true electron density is taken into account in

GGA functionals. Specifically, an exchange-correlation integral is expanded with

the gradient of the electron density:

𝐸GGA
XC [𝜌] =

∫︁
𝑛(r)𝜖XC(𝑛r),∇𝑛(r))𝑑r. (2.12)

An account for electron density gradient make GGA more robust in describing ma-

terials with different types of bondings. In comparison with LDA, GGA’s tend to

improve total and atomization energies Perdew et al. [1992], Constantin et al. [2011],

as well as structural energy differences Hammer et al. [1993], Hamann [1996]. In
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this work GGA functional was used for an accurate calculation of total ground-state

energies of multicomponent alloys.

Nevertheless, DFT is very restrictive in the study of large systems: computa-

tional costs have a polynomial dependence on a size of a simulation cell (≈ 𝑁3 for

DFT, where 𝑁 is the number of particles). This imposes constraints on the study

of key properties of multicomponent materials such as phase stability, mechanical

resistance as well as prohibits high-throughput search in multicomponent chemical

space. For that reason, approximating models, allowing for simulating systems with

a large number of atoms (𝑁 ≫ 200) at accuracy comparable to DFT, are being

actively developed. These models, known as interatomic potentials, are discussed

further.

2.3.2 Empirical potentials

Empirical potentials are historically the first example of surrogate interatomic in-

teraction models. They had quite restricted applicability range, and required exper-

imental parameters in their functional form. In general, it resembles the physical

principles of interatomic interaction, as it accounts for bond stretching, bending, tor-

sional movement and electrostatic interaction. In these models, atoms are treated

as classical objects and any effects of quantum origin, such as electrostatic interac-

tion, are represented by empirical parameters. For that reason, their computational

efficiency is much higher than that of ab initio methods. One example of this class

of models is the Tersoff potential. It is used to describe silicon and Si-based com-

pounds, such as SiO2. For metallic systems, the most common potential is embedded

atom model (EAM) Deye et al. [Mar 2013]. Its functional form is given as follows:

𝐸𝑖 = 𝐹𝛼(
∑︁
𝑗 ̸=𝑖

𝜌𝛽(𝑟𝑖𝑗)) +
1

2

∑︁
𝑗 ̸=𝑖

𝜑𝛼𝛽(𝑟𝑖𝑗) (2.13)

where 𝐸𝑖 is the potential energy of atom 𝑖; 𝑟𝑖𝑗 is the distance between atoms 𝑖 and

𝑗; 𝜑𝛼𝛽 is the pair-wise potential function of atoms with types 𝛼 and 𝛽; 𝜌𝛽 is the

contribution to electron density from atom 𝑗 of type 𝛽 at the location of atom 𝑖

of type 𝛼; 𝐹𝛼 is the embedding function, representing the energy required to place
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atom 𝑖 of type 𝛼 into the electron cloud. Embedded atom model works efficiently

for single component and binary systems, but their application to multicomponent

materials is restricted. Thus, to describe interactions in a single component system

three functions are needed to be set: two embedding functions and one pair-wise

interaction function. For two components the number of required functions is seven.

Therefore, computational efficiency of the model falls down with the increase of

chemical elements in the system, since more ab initio calculations are needed to

set these parameters. To overcome this issue non-parametric potentials are being

actively developed. Usually, they do not require any physical parameters and their

accuracy depends on the quality of data obtained from ab initio calculations.

2.3.3 Machine-learning interatomic potentials

Though the functional form of empirical potentials provides high computational

efficiency, they have a number of sufficient limitations in modeling multicompo-

nent materials. Apart from a large number of ab initio calculations, required to

set the parameters for a multicomponent system, parametric potentials are loosely

transferable between different chemical systems. For example, in embedded atom

model it is assumed that the atom experiences the interaction of a local electron

gas. This assumption approximates the physical nature of metallic bonding, which

limits application of EAM to metallic systems. To overcome limited transferabil-

ity and other aforementioned issues, a conceptually new class of potentials, namely

non-parametric potentials, are being actively developed.

In general, functional form of non-parametric potentials do not resemble any

physical nature of interatomic interaction. Instead, it is represented by interpolative

models that fit the data, obtained from ab initio calculations as it is shown on

Fig.2-4. Ability of these models to yield physically meaningful results is based on

data mining. Hence, transferability of non-parametric potentials between different

systems can be achieved by providing relevant chemical data. Accuracy of non-

parametric potentials largely depends on the type of ab inito data they are fitted

to. Thus, models fitted to DFT calculations can reproduce results of a comparable

accuracy using much less computational costs.
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In modern atomistic simulations non-parametric potentials are mainly repre-

sented by machine-learning methods. One of the first examples were artificial neu-

ral network based potentials proposed by Behler and Parrinello (BPNN) Behler

and Parrinello [2007]. They use an artificial neural network (ANN) as a regressor

to map atomic configuration to their energies. Despite the absence of any physi-

cal parameters in the functional form, ANN should preserve the symmetries of an

atomic configuration, i.e, predicted energy should be invariant under any spatial

transformation of a structure. To fulfill this condition, they proposed partition-

ing total configurational energy into a sum of energy contributions of local atomic

neighborhoods of each atom. Hence, the total energy is given as follows:

𝐸tot =
∑︁
𝑖

𝑉 (𝑛𝑖) (2.14)

where 𝑉 (𝑛𝑖) is the energy contribution of atomic neighborhood 𝑛𝑖 of atom 𝑖. This

approach was implemented by using a set of subnets, where each of them is mapping

local atomic neighborhoods to corresponding energy contributions.

Further, an energy partitioning approach was implemented in other machine-

learning interatomic potentials. One of the recent examples are moment tensor po-

tentials (MTPs), proposed by A. Shapeev Shapeev [2016]. Unlike BPNN, MTP em-

ploys linear regression and the atomistic system is represented with invariant poly-

nomials. The energy contribution of an atomic environment is expanded through a

set of basis functions 𝐵𝛼:

𝑉 (𝑛) =
∑︁
𝛼

𝜉𝛼𝐵𝛼(𝑛) (2.15)

where 𝐵𝛼(𝑛) enumerate all possible contractions of moment tensor descriptors, given

as follows:

𝑀𝜇,𝜈(𝑛𝑖) =
∑︁
𝑗

𝑓𝜇(|𝑟𝑖𝑗|, 𝑧𝑖, 𝑧𝑗) 𝑟𝑖𝑗 ⊗ ...⊗ 𝑟𝑖𝑗⏟  ⏞  
𝜈 times

(2.16)

where the index 𝑗 enumerates all atoms in the environment 𝑛𝑖 of atom 𝑖; 𝑓𝜇 is the

radial distribution function; 𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗; 𝑧𝑖 and 𝑧𝑗

are chemical types of atoms 𝑖 and 𝑗. Functions 𝐵𝛼(𝑛) are invariant with respect

to translations, rotations and reflections of the atomic neighborhood. Hence, 𝑉 (𝑛)
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Figure 2-4: Illustration of an idea of fitting to ab initio data. Red markers correspond
to calculated data (structure/energy), black line illustrates the fitting model.

also preserve these symmetries. Over the last few years a sufficient improvement

of MTP was done, including an active learning algorithm Gubaev et al. [2019], and

extension which explicitly accounts for magnetic degrees of freedom Novikov et al.

[2021].

Moment tensor potentials can be used as interatomic interaction model in a

wide range of simulations including molecular dynamics, “off-lattice” Monte-Carlo

and crystal structure prediction methods such as USPEX. These potentials has been

successfully applied to prediction of new boron allotropes Podryabinkin et al. [2019],

as well as several stable compositions of Al-Ni-Ti system Gubaev et al. [2019]; study

of magnetic properties of materials Novikov et al. [2021] and investigation of thermal

conductivity Mortazavi et al. [2020a,b, 2021].

Both MTP and BPNN account for spatial degrees of freedom, i.e. atomic posi-

tions are adjusted during the simulations. This puts significant constraints on the
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study of multicomponent materials (with four or more chemical components) us-

ing these potentials, since the configurational space increases enormously. For that

reason simpler models have been developed recently. They account only for the

chemical types of atoms and the simulation is performed on a pre-defined crystal

structure. For that reason they are called “on-lattice” models. One example is the

LRP, proposed by A. Shapeev Shapeev [2017]. Being an “on-lattice” model, LRP

has a fixed geometry of an atomic neighborhood and the corresponding energy con-

tribution depends only on the local chemical order around the central site of the

neighborhood. Unlike MTP and BPNN, LRP does not have a distinctive functional

form. The potential itself is represented in a form of a multidimensional tensor,

whose parameters are obtained from fitting to DFT calculations.

Another “on-lattice” model, which is also based on data mining, though not

considered as a machine-learning method, is cluster expansion (CE) Sanchez [2010].

Unlike in aforementioned potentials, total configurational energy is partitioned into

energy contribution of atomic clusters, represented by pairs of atoms, triplets, etc.

Parameters of this model are called effective cluster interactions (ECI) and are fitted

from DFT calculations. Cluster expansion has been applied to study a number

of multicomponent systems, including quaternary Nb-Mo-Ta-W and quinary Nb-

Mo-Ta-V-W Widom [2016, 2018]. However, the number of fitting parameters of

CE model increases more rapidly than that of LRP, when the number of chemical

components is increased, as discussed further in the text. This makes the latter

a more preferable choice in the study of multicomponent materials. Both CE and

LRP were employed in the present work and their details are discussed further.

2.3.4 Cluster expansion

In cluster expansion model Sanchez [2010] the energy contribution of an atomic

neighborhood is calculated as follows:

𝑉 (𝜎1, ..., 𝜎𝑛) =
∑︁
𝑖𝑗

𝐽𝑖𝑗𝜎𝑖𝜎𝑗 +
∑︁
𝑖𝑗𝑘

𝐽𝑖𝑗𝑘𝜎𝑖𝜎𝑗𝜎𝑘 + ..., (2.17)
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where 𝐽𝑖,𝑗 and 𝐽𝑖,𝑗,𝑘 are the so-called effective cluster interactions (ECIs) of pair and

triplet atomic clusters of the neighborhood; 𝜎𝑖, 𝜎𝑗 and 𝜎𝑘 are types of atoms 𝑖, 𝑗 and

𝑘. Total configurational energy is then calculated as it was described in Eq.2.19.

The ECIs are obtained by minimizing the mean-squared error functional:

1

𝐾

𝐾∑︁
𝑘=1

|𝐸(𝜎(𝑘)) − 𝐸𝑞𝑚(𝜎(𝑘))|2, (2.18)

where 𝜎(𝑘) denotes atomic configurations, 𝐾 is the size of the training set, and

𝐸(𝜎(𝑘)) and 𝐸𝑞𝑚(𝜎(𝑘)) are the energies of 𝜎(𝑘) calculated by the CE and DFT,

respectively. The minimization is done using ordinary least squares method. In this

work the CE model is used to evaluate energies of binary and ternary configurations

during on-lattice CSP modeling. However, as will be reasoned further, energies of

structures with more chemical components are evaluated using LRP.

2.3.5 On-lattice low-rank potential

Developing an accurate non-parametric potential for multicomponent alloys is a non-

trivial task. The main problem consists in a combinatorial growth of the number of

fitting parameters as the number of chemical components in the system increases.

For example, let’s estimate the number of ECIs in a CE model with three types of

clusters: pair of nearest neighbours, triple cluster and a cluster of four atoms. The

number of ECIs for a particular cluster can be estimated as 𝑚𝑛 (where 𝑚 is the

number of chemical components, 𝑛 - number of atoms in the cluster). Thus, such

CE model will have 32 + 33 + 34 = 117, 42 + 43 + 44 = 336, 52 + 53 + 54 = 775

ECIs for ternary, quaternary and quinary systems respectively. The number of

ECIs can be truncated, but this requires additional techniques such as compressed

sensing Nelson et al. [2013], that, on practice, do not sufficiently reduce the amount

of required ab initio data in case of multicomponent systems. Hence, this model

requires an additional improvement.

The solution, proposed recently by A. Shapeev, consists in representing a fixed-

lattice interaction model in a tensor-train format Shapeev [2017]. The proposed

model was named the low-rank potential (LRP). Similarly to CE, an atomic struc-
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ture in the LRP model is represented by an ideal crystalline lattice, where each site

corresponds to an atom of a certain chemical type. The sequence of chemical types

of atoms, surrounding any atom of the crystalline lattice is called the neighborhood

of this atom. This sequence is given by a collection of neighbors of a chosen site on a

defined crystalline lattice. Usually, the atomic neighborhood is formed of the atoms

occupying nearest neighboring sites. Thus, in a bcc lattice the neighborhood con-

sists of 9 atoms, while in a fcc lattice 13 atoms form the neighborhood (including the

central atom in bcc and fcc). However, in case of bcc it is common to include second

nearest neighbors (i.e., 15 atoms in total). The LRP model can be represented as a

multidimensional tensor of size 𝑚𝑛 (𝑚 - number of chemical types, 𝑛 - size of the

chemical environment), where each element correspond to an energy contribution

from the unique atomic neighborhood. The total configurational energy, therefore,

can be calculated as a sum of energy contribution of each environment:

𝐸(𝜎) =
∑︁
𝜉∈Ω

𝑉 (𝜉) (2.19)

where Ω are lattice sites, periodically repeated in space, and 𝜉 is central atoms of

atomic environments.

The LRP model employs a tensor-train (TT) decomposition to obtain its param-

eters Oseledets [2011]. This method consists in finding a set of matrices of size 𝑟

whose product restores the elements of the original tensor. The energy of an atomic

neighborhood in a tensor-train format is given as following:

𝑉 (𝜎1, ..., 𝜎𝑛) =
∏︁
𝑖

𝐴𝑖(𝜎𝑖), (2.20)

where 𝐴𝑖 are the matrices of the tensor-train representation and 𝜎𝑖 are the types of

atoms in the neighborhood. The sizes of 𝐴1, 𝐴𝑛 are 1 × 𝑟 and 𝑟 × 1, and 𝐴2, 𝐴𝑛−1

have the size 𝑟× 𝑟, where 𝑟 is also called as the rank of decomposition. Eventually,

the product in Eq. 2.20 yields a scalar. By using a tensor-train decomposition

method, the number of parameters are reduced from 𝑚𝑛 to 𝑛𝑚𝑟2. Thus, for a

five component alloy with a bcc lattice, upon applying a decomposition with a
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rank 𝑟 = 5, the number of parameters are reduced from 𝑚𝑛 = 59 = 1953125 to

𝑛𝑚𝑟2 = 9 · 5 · 52 = 1125. The parameters are obtained by minimizing the following

functional:
1

𝐾

𝐾∑︁
𝑘=1

|𝐸(𝜎(𝑘)) − 𝐸𝑞𝑚(𝜎(𝑘))|2, (2.21)

where 𝜎(𝑘) denotes atomic configurations, 𝐾 is the size of the training set, and

𝐸(𝜎(𝑘)) and 𝐸𝑞𝑚(𝜎(𝑘)) are the energies of 𝜎(𝑘) calculated by LRP and DFT, respec-

tively. The minimization is done by the alternating least squares method (ALS),

which optimizes one matrix 𝐴𝑖 at a time, and simulated annealing that adds random

Gaussian noise to every element of 𝐴𝑖, which decreases from one ALS iteration to

the next one.

2.4 Structure generation methods

An integral part of computational materials modeling are structure generation meth-

ods. In combination with energy evaluation models they provide mechanically stable

configuration with minimum potential energy. Structure generation algorithms are

used in a number of simulations, including study of diffusion processes, structural re-

laxation or prediction of stable crystal structures. When initial configuration is close

to an energy minimum a number of well-established optimization methods can be

applied. Among them are, for example, conjugate gradient (CG), Newton-Raphson,

quasi-Newton, truncated Newton Nocedal and Wright [2006], Press et al. [1992] and

variants of molecular dynamics Schlick [2002], Hagelaar et al. [2006]. When initial

geometry is far from the optimal, local optimization methods become computa-

tionally inefficient. In this case random walk approaches are more reasonable for

sampling PES. One example, widely used in materials simulations, is Markov Chain

Monte Carlo (MCMC), based on Metropolis-Hastings algorithm Robert and Casella

[1970]. Its principle is based on the simulated annealing with acceptance/rejection

of best/worst random moves on PES. These simulations can be accelerated even

further with the use of non-parametric potentials for energy evaluation. Given this

a faster convergence to a global minimum can be provided.
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Nevertheless, structural optimization of multicomponent materials still remains

computationally complex due to a huge size of configurational space. Probing all pos-

sible atomic configurations is a combinatorially difficult task. However, for metallic

alloys the problem can be significantly simplified. The structure of these materials

is described by common lattices such as bcc, fcc or HCP within a wide temper-

ature window. Hence, the optimal geometry is already known and the structural

optimization can be reduced to finding lattice decorations (i.e., the way how atoms

occupy sites of the fixed lattice) corresponding to the lowest energy. This lattice-

based approach, also known as “on-lattice”, has been widely used in Monte Carlo

simulations to study phase stability of multicomponent alloys. Among the recent

examples are equimolar Nb-Mo-Ta-W Widom [2016], Kostiuchenko et al. [2019], Cr-

Mo-Nb-W Widom [2016] and V-Co-Ni Kostiuchenko et al. [2020], to name a few.

In this work it was demonstrated that on-lattice Monte Carlo can be applied to

investigate a wider range of physical phenomena. Among them are phase stability

of high-entropy carbides and contribution of magnetism to the short-range order in

medium-entropy alloys.

Another problem in materials design, that require a more sophisticated structure

generation method, is crystal structure prediction. An effective solution, proposed

recently, is based on evolutionary algorithms. One of the most successful examples is

USPEX Glass et al. [2006]. This method operates with population of configurations,

discarding the worst and selecting the best as ”parents” for a next generation. The

structures are selected based on their thermodynamic potential evaluated with ab

initio calculations. Population of new structures is produced using one of the three

operators: (i) heredity, which combines slabs of two parent structures; (ii) permu-

tation, which swaps atoms of different chemical types; (iii) lattice mutation, which

distorts the shape of the cell. After, the produced structures are locally optimized.

A significant number of materials with wide range of properties and chemical compo-

sition were discovered with USPEX Dong et al. [2019b, 2018], Yao et al. [2018]. The

overall number of reported works, utilizing this method, exceeds several hundred

and the method is still being actively developed.

Crystal structure prediction can be also optimized with the ”on-lattice” approach.
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One of the first examples, solving the CSP problem in a lattice-based fashion, was

an algorithm developed by Hart and Forcade [2008, 2009]. It consisted of two steps:

(1) generation of unique unit cells on a defined crystal lattice and (2) generation of

unique lattice decorations within those cells. Step 1 was accomplished by represent-

ing each unit cell in Hermite Normal Form and eliminating the identical ones under

rotations. The second step consisted in generation of all possible lattice decorations,

excluding symmetrically equivalent. This method is simply the direct enumeration

of all possible configurations. However, such approach would cause a combinatorial

explosion when the size of the unit cell is increased. For that reason, an extension

to the second step of the original algorithm was developed Hart et al. [2012]. In the

updated version, configurations only with a fixed concentrations were considered.

Later the method was combined with the machine-learning potentials Gubaev et al.

[2019], that accelerated the search by a factor of 100 to 1000. Still, the number of

discovered structures was limited to a few hundred thousand which for the case of

quaternary compounds corresponds to small unit cells, with at most nine atoms.

In this work I propose a new lattice-based CSP method, called the on-lattice CSP

Sotskov et al. [2023], that, as will be shown further, can discover multicomponent

structures with larger unit cells and various chemical composition. The proposed

algorithm is based on a principally new concept: instead of generating crystal struc-

ture prototypes as it is done in USPEX and the algrotihm proposed by Hart and

Forcade [2008], on-lattice CSP produces a crystal structure by consistently adding

atom-by-atom to an empty configuration. Further it will be shown that this new

approach is also effective in the discovery of new materials.

The working principle of the structure generation algorithms, presented in this

work, is tied with machine learning potentials. Therefore, their description will be

given along with the simulation methodology in the next section.
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Methodology of multicomponent

alloys modeling

The technical novelty of this work consists in the development and application of

on-lattice simulation tools to investigation of multicomponent alloys, namely crystal

structure prediction and modeling of phase stability. For crystal structure prediction

task a novel structure generation algorithm, called “on-lattice CSP”, was developed.

Phase stability of high-entropy alloys was investigated using well-established on-

lattice canonical Monte Carlo. However, the present work reveals the possibility of

applying this method to investigation of materials with different chemistry, such as

high-entropy carbides. The presented methodology was implemented in a stand-

alone programming package (see Sec. 8.1). It contains implementation of all the

mentioned structure generation algorithms as well as the CE and LRP potentials.

Currently, the package can be used for modeling systems with bcc and fcc lattices

as will be shown in the next chapters.

3.1 On-lattice CSP

On-lattice crystal structure prediction (on-lattice CSP) is a method for predict-

ing stable crystal structures at 0 K. Generally, this can be done using canonical

Monte Carlo at zero temperature. However, CMC is limited to configurations with

a fixed concentration, while on-lattice CSP samples the complete compositional
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space. Since the number of potentially stable structures with different compositions

is enormously large (see Eq. 2.1 - 2.3), the algorithm was designed to sample the

most prominent areas of the phase space.

To enforce importance sampling, the algorithm employs an evolutionary strategy.

During each iteration the set of structures is produced among which the candidate

with the lowest energy is chosen as a parent for the next generation. Unlike other

structure generation algorithms, on-lattice CSP does not generate candidate struc-

tures with a complete unit cell. Instead, a configuration is "grown" atom by atom

until the periodicity in the growing structure will be observed.

Structure growth procedure is presented on Fig. 3-1. As it is seen, the growth

starts from an empty configuration. After that, one atom of each chemical type is

added. This produces 𝑁 candidate structures (two in binary case). On the next

step the energies of all the produced structures are calculated and the one with

the lowest energy is selected. Next, an atom of each chemical type is added to the

selected structure and a population of new 𝑁 candidates is produced. Their energies

are calculated and the lowest energy structure is selected. This process continues

further in the same way. Note that at this stage the “growing” configuration is

not periodic (does not have a supercell) and it can be considered as the collection

of individual atoms. Therefore, during this stage the growth do not follow any

symmetry operations. The growth is guided only by an interatomic interaction

model. The atoms are simply added in the sites of the lattice without accounting

for translation, rotation or reflection symmetries.

Every time a new atom is added to the configuration, algorithm searches for

two identical atomic neighborhoods. Once they are discovered, a unit cell vector is

constructed by connecting the centers of these neighborhoods (Fig. 3-2a). After that,

the growth area is reshaped using the constructed vector (Fig. 3-2b) and outer atoms

are translated into the new growth area (3-2c). During this process “conflicting”

atoms can appear. These are the atoms of different chemical types that share the

same lattice site after the translation. In this case algorithm chooses an atom of the

chemical type that results in a lower energy of a configuration (Fig. 3-2d-e).

After these steps the structure growth continues within a new area. Once a new
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Figure 3-1: Illustration the structure “growth” process in on-lattice CSP.

pair of identical atomic neighborhoods is discovered, the second unit cell vector is

constructed. As in the previous case, the growth area is reshaped with the second

vector, atoms are translated inside and the conflicts are resolved. Finally, all the

same steps are performed until the third vector is constructed. Once all three unit

cell vectors are obtained the final structure is discovered (Fig.3-3).

During the structure growth stage, the added atoms have incomplete atomic

neighborhoods. Such atoms create a substantially large surface with less number of

pairwise interactions in comparison with the bulk. This, in turn, cause an increase

in the interaction energy, and the algorithm might choose an undesired structure

growth trajectory. To minimize this effect a strategy which I called the “alchemi-

cal” potential was applied. It consists in representing the energy of an incomplete

neighborhood as an average of energies of all the alternative neighborhoods that can

be created instead of the incomplete one. Thus, the energy of such neighborhood is

calculated as:

𝑉 (𝜎al) =
𝑉 (𝜎1) + ...+ 𝑉 (𝜎𝑁)

𝑁
(3.1)

where 𝑉 (𝜎1), ... 𝑉 (𝜎𝑛) are energies of the alternative neighborhoods, and 𝑁 is the

total number of such neighborhoods. The process of evaluating the energy of an

“alchemical” neighborhood is illustrated on Fig. 3-4. The idea of averaging instead

of choosing a lowest energy neighborhood comes from the fact that initially the

41



Chapter 3. Methodology of multicomponent alloys modeling

Figure 3-2: Construction of a first unit cell vector. Centers of identical neigh-
borhoods are connected (a). The growth area is reshaped (b). Outer atoms are
translated into a new growth area, conflicting atoms are detected (c). Resolving
conflicts by choosing lowest energy configuration (d-e)

trajectory of a structure generation algorithm is unknown. The averaging allows one

to minimize the possibility of missing the lowest energy structure without causing an

abrupt change in growth trajectory, since during this process only one “real” atom

is added. Choosing a lowest energy neighborhood instead might cause an opposite

effect.

On-lattice CSP generates only one configuration during a single run. Hence, if the

simulation is restarted with the same potential, the algorithm will discover the same

configuration each time. To discover new structures, the potential is biased after

each run. The biasing consists of adding a constant value 𝛿 to the energy contribution

of each atomic neighborhood present in the discovered structure. Therefore, during

the next run the previously discovered structure will have a higher energy and the

algorithm will adopt a different structure generation path (if it happens that the

same path is chosen, the resulting structure will be biased again until the biasing

will result in the new structure).
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Figure 3-3: Construction of second and third unit cell vectors and final structure.

Figure 3-4: Schematic illustration of evaluation of energy contribution of an ”al-
chemical” neighborhood.

3.2 On-lattice Canonical Monte Carlo method

Originally, Monte Carlo methods were developed for the study of stochastic pro-

cesses. These methods investigate evolution of the system based on repeated ran-

dom sampling from the unknown distribution. In materials science, Monte Carlo is

used, for example, to study diffusion, simulate magnetic properties of materials, or

detect a thermodynamically stable atomic structure. In this work canonical Monte

Carlo method, adapted for the case of fixed atomic positions, is used.

Most of the Monte Carlo methods, including the one used in this work, are

based on Markov process, where the current state of a system 𝐴 depends on its

previous state. Hence, the expectation value of a thermodynamic quantity 𝐹 can be
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represented as a sum over quantities, evaluated at all the previous steps, multiplied

by their probability:

𝐹 =
∑︁
𝐴𝑖

𝐹 (𝐴𝑖)𝑢𝑖, (3.2)

where 𝐴𝑖 is the state of a system, 𝐹 (𝐴𝑖) is the function, raising a thermodynamic

quantity of a system in the state 𝐴𝑖 and 𝑢𝑖 is a probability, determined by the

Boltzmann distribution:

𝑢𝑖 =
𝑒𝐸𝑖/𝑘𝑇∑︀
𝐴𝑗
𝑒𝐸𝑗/𝑘𝑇

, (3.3)

where 𝐸𝑖 is the internal energy of the system in the state 𝐴𝑖. Since 𝑢𝑖 measures

the probability of a system being in the state 𝐴𝑖, it should satisfy the normalization

requirement:

𝑢 ≥ 0,
∑︁
𝑖

𝑢𝑖 = 1. (3.4)

Using Markov chains it is possible to obtain a set of states 𝐴1, ...𝐴𝑀 with a corre-

sponding set of thermodynamic quantities 𝐹 (𝐴1), ... 𝐹 (𝐴𝑀). Hence, the expected

value of a thermodynamic quantity, obtained over 𝑀 steps will be:

𝐹 =
1

𝑀

𝑀∑︁
𝑖=1

𝐹 (𝐴𝑖) (3.5)

Let us now consider how the system transits between these states in the calculations.

The most computationally efficient approach of constructing the chain of states is

called importance sampling. Let 𝑝𝑖𝑗 be the probability of a transition between the

states 𝐴𝑖 and 𝐴𝑗. Then, in order to transit from 𝐴𝑖 to 𝐴𝑗 we generate a random

number 𝜀, uniformly distributed between 0 and 1. If 𝑝𝑖𝑗 ≥ 𝜀 the system goes to the

state 𝐴𝑗. Importance sampling allows to avoid evaluation of irrelevant regions of a

phase space, still providing the exact solution to the problem.

In Monte Carlo simulations, performed in this work, the system is represented

by an atomic configuration on a given crystalline lattice with a fixed concentration

and number of atoms 𝑁 . The candidate state 𝐴𝑗 is prepared by the exchange of

two atoms on neighboring lattice sites. The general algorithm of the method is the

following:
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Figure 3-5: Illustration of a site exchange during canonical Monte Carlo simulation.

1. Random atomic configuration is generated

2. The random site of a crystalline lattice is selected (with probability 1
𝑁

)

3. The neighboring site of the site, chosen during the step two, is selected

4. Atoms on this neighobring sites are exchanged as shown on Fig.3-5

5. The energy difference ∆𝐸 between configurations before and after the ex-

change is evaluated. The probability of this exchange is calculated using Eq.

3.3

6. A random number 𝜀 ∈ (0, 1) is generated. If 𝑢𝑖 ≥ 𝜀 the new configuration is

accepted

7. The desired thermodynamic variables are evaluated.

This cycle is repeated until evaluated thermodynamic quantities converge. In

this work the described Monte Carlo method is used with the LRP potential. This

combination allowed to perform simulations at much larger scales than DFT, man-

taining accuracy of the latter.

The combination of CMC with the LRP was used to study phase stability of

a wide range of multicomponent alloys including NbMoTaW Kostiuchenko et al.

[2020], VCoNi Kostiuchenko et al. [2019]. Further, it was shown, that the method

can go beyond metallic systems on the example of carbides Pak et al. [2023] and

also can implicitly account for magnetic interactions in CrCoNi Ghosh et al. [2022].
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3.3 Modeling procedure

The main bottleneck in most of the machine-learning based materials simulations

is the large number of computationally expensive DFT calculations required for

the training set. In this work a special strategy, called active leaning, is applied.

Active learning is an iterative process, which consists of a simulation, the following

selection of the obtained configurations, and DFT calculations. With this approach

the number of expensive DFT calculations can be reduced to an amount sufficient

for a construction of a representative dataset. Active learning was used in both on-

lattice CSP and on-lattice Monte Carlo simulations, albeit with minor differences.

3.3.1 Modeling with on-lattice CSP

To obtain an accurate potential for on-lattice CSP simulations a procedure shown

on Fig. 3-6 was used. It starts with constructing the initial DFT convex hull.

After, on-lattice CSP simulations are performed and the LRP/CE convex hull is

constructed. Then, the structures obtained within 5 meV/atom interval above the

LRP/CE convex hull are selected for DFT post-relaxation. Finally, post-relaxed

structures are added to the DFT convex hull. The simulation terminates if the

DFT convex hull stops updating. The process of constructing the LRP/CE convex

hull should be explained in more details. On-lattice CSP simulation starts with the

initial LRP/CE convex hull and iteratively updates each simplex. The schematic

illustration of this process is presented on Fig. 3-7. As seen, the initial convex hull

contains one simplex formed by unary structures. To update it, on-lattice CSP tries

to generate a configuration with the energy below this simplex (Fig .3-7a). After, in

the similar manner, the algorithm tries to update the simplex 1 of the new convex

hull (Fig. 3-7b-c) and so on. In such a way the algorithm iterates over each simplex.

On average 104 − 106 iterations are required to construct the final LRP/CE convex

hull.
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3.3.2 Modeling with on-lattice Monte Carlo

Thus, to obtain an accurate LRP for on-lattice Monte Carlo simulations a procedure

shown on Fig.3-8 was used. As seen, the process starts with some initial dataset with

a limited amount of DFT data. After, LRP/CE is trained using the initial training

set. Further, the simulation is performed using the obtained LRP/CE. During the

simulation additional configurations are sampled. In case of on-lattice Monte Carlo

the structures are sampled from the temperature regions with observed anomalies,

represented by an abrupt changes in specific heat capacity. As a rule, after several

selection rounds the RMSE falls below 10 meV/atom.

To assess the effectiveness of the developed methods, I used them to study several

multicomponent systems. At first, using on-lattice CSP with the LRP and CE I

constructed convex hull of Nb-W, Mo-Ta-W and Nb-Mo-Ta-W systems. Next, using

on-lattice Monte Carlo with LRP I investigated the phase stability of HfTaTiNbZrC5

solid solution. For the first time it was shown that the proposed approach can be

also applied to carbides. Finally, the same methodology was applied to study phase

stability and SRO in CrCoNi medium-entropy alloy. The results will be presented

in the corresponding order starting with investigation of phase stability in Nb-Mo-

Ta-W chemical space.
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Figure 3-6: On-lattice CSP modeling procedure.
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Figure 3-7: Convex hull construction with on-lattice CSP simulation. A potentially
new point on convex hull is marked with a dashed circle.

Figure 3-8: Algorithm for obtaining an accurate LRP during on-lattice CMC simu-
lations.
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Investigation of Nb-Mo-Ta-W system

with on-lattice CSP

The on-lattice CSP was applied to discover stable structures in Nb-Mo-Ta-W chem-

ical system. While this system has a dozen of reported stable binary and ternary

structures, little information is available about the stable quaternary compounds.

Recently, an LRP driven on-lattice Monte Carlo simulation of equimolar NbMoTaW

was performed by Kostiuchenko et al. [2019]. The studies revealed that the ground

state structure is a combination of B2(MoTa) and B32(NbW) phases with forma-

tion enthalpy of 118 meV/atom. With the impact of lattice relaxations during

DFT calculations the reconsidered LRP provided a lower ground state with for-

mation enthalpy of -124 meV/atom. The obtained structure was a combination of

Nb-Mo-Ta-W-W-Mo-Nb layers. In another work by Widom [2016, 2018] a cluster

expansion energy-based Monte Carlo revealed an even lower ground state with for-

mation enthalpy of -126 meV/atom. The studies revealed that the obtained ground

state decomposed into hR7(Mo2NbTa2W2) and cI2(Nb). Such discrepancies in the

mentioned studies suggest that there might be another low lying equimolar ground

state. Moreover, investigations of other ground state compositions have not been

performed to date. In this work I apply on-lattice CSP to discover new stable com-

positions. At first the method is validated on binary Nb-W and ternary Mo-Ta-W

systems, and after it is applied to quaternary Nb-Mo-Ta-W.
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4.1 Calculation details

The CE as well as LRP, which were used as interaction models in on-lattice-CSP,

were trained on DFT calculations. To compute reference energies for the training,

VASP 5.4.4 Kresse and Furthmüller [1996], Kresse and Hafner [1993, 1994] was

used. The projector augmented wave (PAW) Blöchl [1994] method utilizing the

Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) Perdew

et al. [1996] was employed. The training set was constructed using an active learning

approach. Reference configurations were obtained from on-lattice-CSP simulation

and, hence, had variable number of atoms. For computational efficiency we selected

configurations with no more than 16 atoms in the unit cell. The value of plane-wave

cutoff energy was set to 400 eV, which is 1.8 times larger than the highest ENMAX

energy of the utilized PAW pseudopotentials. To provide a stable convergence of

calculations for different cell shapes and sizes, we employed an automatic generation

of k-points grid using by setting KSPACING to 0.13. To account for the impact

of lattice relaxations, both ionic and cell relaxations were included. The energy

convergence criteria for these types of relaxations was set to 10−5 eV.

For each chemical system the initial lattice parameter was chosen as a mean

of lattice parameters of unary structures. For example, taking 𝑎Nb = 3.30 Å and

𝑎W = 3.16 Å, the initial lattice parameter for Nb-W alloys is 𝑎Nb-W = 3.23 Å.

For binary as well as ternary systems on-lattice CSP was used in combination

with CE, since in this case it has accuracies comparable to that of LRP. In case of

Nb-Mo-Ta-W the LRP was applied in order to limit the number of DFT calculations.

4.2 Nb-W

At first the method is applied to construct Nb-W convex hull. According to AFLOW

database Curtarolo et al. [2012], this system has three stable binary phases, namely,

NbW (B32), NbW3 and NbW7. Both pure Nb and W, as well as the stable binaries

have bcc lattice, so this system is a good test of whether the method is able to

discover the stable structures and reproduce the AFLOW convex hull.

The initial training set consisted of 3 configurations—unary Nb and W with one
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Figure 4-1: Final DFT Nb-W convex hull and unit cells of the new structures. Six
new structures were discovered with on-lattice CSP (marked with red circles on the
convex hull).

atom in the unit cell and the binary B2(Nb;W) structure. According to AFLOW

phase diagram of Nb-W system B32(Nb;W) phase is the phase that is on the convex

hull, while B2(Nb;W) has higher energy. Thus, for a fair benchmarking B32(Nb;W)

was not added to the initial training set. During the simulation additional 114

configuration were sampled from LRP/CE convex hull. Thus, the final training set

consisted of 117 configuration raising a RMSE of 5.31 meV/atom.

Fig. 4-1 shows the convex hull, constructed by CSP-on-lattice and post relaxed

with DFT. As it is seen CSP-on-lattice was able to predict all the stable phases,

reported in AFLOW (green and black markers), as well as 6 new structures (red

markers). Among the new discovered compositions are Nb3W4, NbW2, Nb3W7,

NbW4, NbW5 and NbW8. Their distance from AFLOW convex hull, measured in
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Composition Position below convex hull, meV/atom
Nb3W4 −2.7
NbW2 −4.8
Nb3W7 −4.6
NbW4 −1.3
NbW5 −2.0
NbW8 −3.4

Table 4.1: Position below convex hull of predicted Nb-W alloys.

meV/atom, is reported in Table 4.1. As it is seen, the new stable compositions

were found within a W-rich area of a phase diagram. However, ground states with

the largest distance from AFLOW convex hull, such as Nb3W4, NbW2, Nb3W7,

are observed closer to the center of a phase diagram, which indicates a significant

contribution of Nb additions to a phase stability. Additionally, the NbW7 phase,

reported as a ground state in AFLOW database, became unstable having the energy

above our convex hull of 2.3 meV/atom.

4.3 Mo-Ta-W

The on-lattice CSP next is tested on constructing the convex hull for the ternary

Mo-Ta-W system. At first, the convex hull for the three binary subsystems, namely

Mo-Ta, Mo-W and W-Ta was constructed and after the simulations were performed

for Mo-Ta-W. The initial training set for Mo-Ta-W contained 4 configurations -

unary Mo, Ta and W with 1 atom in the unit cell and a random MoTaW with 3

atoms in the unit cell. During the simulations 109 additional configurations were

selected, including both binary and ternary structures in nearly equal proportion.

The RMSE on the final training set was 8.34 meV/atom.

The resulting convex hull, post relaxed with DFT, is presented on Fig. 4-2. It

has all the ternary phases present in AFLOW as well as two new - Mo3Ta3W,

MoTa2W2. Additionally, three new binaries were discovered: TaMo5, TaMo6 and

TaW8. Since DFT was performed with automatic k-mesh generation, I accounted

for a noise in our calculations and, thereby, also add the structures obtained within

1 meV/atom above the convex hull. Among such structures presented on Fig. 4-
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Figure 4-2: Final DFT Mo-Ta-W convex hull and unit cells of the new structures.
Six new structures were discovered with on-lattice CSP (marked with red on the
convex hull).

2, MoTaW5 was newly discovered by on-lattice CSP, while MoTaW2 is an AFLOW

ground state structure. Among the new phases, Mo3Ta3W have the lowest formation
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Composition Formation enthalpy, meV/atom
MoTa −187

Mo3Ta3W −178
MoTaW −145
MoTaW2 −114
MoTaW5 −69

Table 4.2: Formation enthalpies of MoTa-based alloys.

enthalpy of -178 meV/atom. Remarkably, MoTa-rich region of a phase diagram has

another low-lying ground state, namely, equimolar MoTa with fomation enthalpy of

-187 meV/atom. Such findings reveal that MoTa-rich phases might possess a better

phase stability, than structures from other regions of a phase diagram. This trend

can be observed from the Table 4.2, where formation enthalpies for the phases with

fixed concentration of Mo and Ta are presented. As it is seen, formation enthalpy

increases from -187 meV/atom when no W is present in an alloy, to -69 meV/atom

when concentration of W exceeds 70 %.

4.4 Nb-Mo-Ta-W

Finally, the method was applied to construct the quaternary Nb-Mo-Ta-W convex

hull. For the evaluation of energy of quaternary systems I used LRP as it requires

less DFT data for obtaining an adequate approximation accuracy as compared to

CE. The initial training set was constructed in a similar manner. That is, it had

five configurations—unary Nb, Mo, Ta and W as well as a random quaternary

NbMoTaW. After the simulation the training set was extended to 380 configura-

tions among which 114 structures had quaternary composition. The RMSE on this

training set was 7.1 meV/atom.

The resulting convex hull, post relaxed with DFT, is presented on Fig. 4-3. It

contains all the structures previously discovered by on-lattice CSP as well as all the

stable phases reported in AFLOW, where some of them were missed by the algorithm

(marked as blue). Also, I added a quaternary NbMo2Ta2W2 ground state phase,

reported by M. Widom Widom [2016], which has the formation enthalpy of −145
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Figure 4-3: Final DFT Nb-Mo-Ta-W convex hull and unit cells of the new structures.
Two new quaternary structures (9-atom NbMoTaW6 and 22-atom NbMo2TaW18)
were discovered. Stable structures discovered with on-lattice CSP are marked with
orange circles and squares on the convex hull.

meV/atom. As it is seen the algorithm has discovered one new quaternary ground

state composition—NbMoTaW6 with the formation enthalpy of −78 meV/atom.

Interstingly, NbMoTaW6 as well as the majority of other discovered structures are

W-rich phases, which makes their discovery relevant to the application of W-based

alloys.

Carefully studying the structures, generated by the algorithm, I observed some

amount of configurations with relatively large unit cells (>20 atoms). However, all
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of them were lying higher than 5 meV/atom above LRP convex hull. To investigate

their stability, the selection gap was increased to 10 meV/atom and the structures

were selected for post-relaxation. Among them, I discovered a 22-atom near-stable

NbMoTa2W18 with distance above convex hull of 0.9 meV/atom. Such findings

indicate, that the algorithm is also capable of discovering stable structures with

large unit cells without employing extensive computational resources.

Note that in this work all the predicted phases are benchmarked with AFLOW

database, that contains only 0 K DFT calculations. Thus, phase stability of the pre-

dicted phases at finite temperature is not investigated. However, it is assumed that

all the discovered phases remain ordered within a moderate range of temperatures

(0 - 300 K), i.e. they are not approximations of high-temperature disordered phases.

Investigation of order-disorder phase transition in Nb-Mo-Ta-W alloys is out of the

scope of this work.

In general, the advantage of on-lattice CSP in comparison with the state-of-

art CSP methods like USPEX can be observed when discovering materials with a

pre-defined lattice. For example, USPEX was used to search the structures in qua-

ternary C-H-N-O chemical space, where configurations have an undefined geometry

Naumova et al. [2021]. USPEX runs were performed with 8-36 atoms per unit-

cells. Eventually nearly 1800000 DFT structural relaxations were performed, which

require significant computational resources. In case of Nb-Mo-Ta-W alloys, that

are presented in this work, only a few hundreds of DFT calculations were required.

Such reduction, first of all, is possible due to application of LRP and CE for energy

evaluation. Secondly, the presence of a fixed geometry significantly reduces the size

of the configurational space of candidate materials. Moreover, the presented algo-

rithm can discover multicomponent structures among supercells with larger number

of atoms. Thus, several structures, discovered in Nb-Mo-Ta-W, had more than 140

atoms in the supercell. Though on-lattice CSP can’t operate in cases of an unde-

fined geometry (which is a significant drawback in comparison with USPEX), the

main takeaway of this work consists in possibility of applying a conceptually new

generative approach in the CSP field. The extension of on-lattice CSP to materials

with the undefined lattice geometry can be done by combining the algorithm with
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geometry-sensitive potentials like MTP. Once an atom is added to the structure, the

growing configuration can be relaxed with the MTP. Thus, the geometry is defined

in real time. Such direction is of high scientific importance and is expected to be

perfrormed in the future.
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Chapter 5

Investigation of phase stability of

HfTaTiNbZrC5 high-entropy carbide

High-entropy carbides have been a subject of intensive both experimental and the-

oretical investigation recently Castle et al. [2018], Oses et al. [2020], Hossain et al.

[2021]. These materials attracted significant attention due to their enhanced refrac-

tory properties and corrosion resistance. They form a rock-salt fcc lattice, where

carbon atoms occupy 4b and metallic atoms - 4a Wyckoff positions. The most

common method to synthesize high-entropy carbides is reactive spark plasma sin-

tering (SPS) of pre-homogenized raw materials based on individual metal carbides,

pure metals or metal oxides Demirskyi et al. [2020], Li et al. [2021]. However, the

successful synthesis of a solid solution cannot be performed every time, since the

temperature conditions responsible for the formation of that phase have not been

studied yet. As a consequence, a temperature window of a stable solid solution

remains unknown.

In the present work, on the example of HfTaTiNbZrC5, Monte Carlo simula-

tion combined with the LRP is performed to determine solid solution formation

temperature and investigate its phase-stability. Also, it is shown that the obtained

theoretical results can be used to provide a controllable synthesis of HfTaTiNbZrC5

solid solution phase.
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5.1 Calculation details

To obtain the LRP with an adequate accuracy, the algorithm described in Chapter

2 was employed. The initial dataset contained 150 random configurations with an

fcc lattice, where metallic and carbon atoms occupy positions (0, 0, 0) and (0.5, 0.5,

0.5), respectively. The size of each configuration was 2×2×2 (32 atoms), confined to

be as equimolar as possible. During subsequent Monte Carlo simulations additional

configurations were sampled for LRP retraining. After performing several iterations

of this scheme, 250 new configurations were added to the initial dataset. The final

dataset was split into training and validation subsets with 350 and 150 configurations

respectively. The RMSE on the validation set was 9 meV/atom.

The total energies of the sampled configurations were calculated using DFT.

Their computation was performed by VASP 5.4.4 Kresse and Furthmüller [1996],

Kresse and Hafner [1993, 1994] with the projector augmented wave (PAW) Blöchl

[1994] method utilizing the Perdew-Burke-Ernzerhof generalized gradient approxi-

mation (PBE-GGA) Perdew et al. [1996]. The value of plane-wave cutoff energy was

set to 540 eV. For Brilluoin zone sampling a 4 × 4 × 4 k -point mesh was generated

using the Monkhorst-Pack scheme Monkhorst and Pack [1976]. To account for the

impact of lattice relaxations, both ionic and cell relaxations were included.

To perform miscibility analysis of competitive binary and ternary phases the

vibrational contribution to the free energy was also included. The stability of the

competitive phases was analyzed by calculating Helmholtz free energy at finite tem-

perature (the pressure was neglected since the experiment was conducted under

atmospheric pressure) using the following expression:

𝐹mix (𝑇 ) =
𝐹tot (𝑇 ) −

∑︀
𝑖𝑁𝑖𝐹

MeC
𝑖 (𝑇 )∑︀

𝑖𝑁𝑖

, (5.1)

where 𝐹tot is the Helmholtz free energy of competitive carbide, 𝐹MeC
𝑖 is the Helmholtz

free energy of a constituent individual carbide and 𝑁𝑖 is its molar fraction in the

competitive compound. The values of 𝐹tot and 𝐹MeC
𝑖 can be calculated using the
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following expression:

𝐹 (𝑇, 𝑉 ) = 𝐸0 (𝑉 ) + 𝐹vib (𝑇, 𝑉 ) − 𝑇𝑆conf, (5.2)

where 𝐸0 is the total energy from the DFT calculations, 𝑇𝑆conf is the configurational

entropy, 𝐹vib is the vibrational correction calculated from the phonon density of

states by using following relation in the harmonic approximation Kern et al. [1999]:

𝐹vib (𝑇, 𝑉 ) = 𝑘B𝑇

∫︁
Ω

𝑔 (𝜔 (𝑉 ))×

× ln

(︂
1 − 𝑒

− ~𝜔(𝑉 )
𝑘𝐵𝑇

)︂
𝑑𝑥+

+
1

2

∫︁
𝑔 (𝜔 (𝑉 )) ~𝜔 𝑑𝜔,

(5.3)

Here 𝑔 (𝜔 (𝑉 )) is the phonon density of states at a given volume, calculated using

the finite displacements method as implemented in PHONOPY Togo et al. [2008]

with forces computed using VASP Kresse and Furthmüller [1996], Kresse and Hafner

[1993, 1994].

To evaluate temperature-dependent specific heat capacity configurational ener-

gies were collected over 𝑁 steps of CMC at each temperature. Specific heat capacity

then is calculated as follows:

𝐶V(𝑇 ) =
𝜎2

𝑛(𝑘𝑇 )2
, (5.4)

where 𝜎2 - energy variance, calculated over a number of CMC steps; 𝑛 - number of

atoms; 𝑘 - Boltzmann constant; T - heating temperature.

5.2 Results of HfTaTiNbZrC5 study

Before starting the simulation I investigated the probability of carbon atoms to

diffuse between 4b and 4a sites. Eventually, it was observed that the energy of

the supercells where carbon atoms occupy uncharacteristic 4a sites were higher by

6 eV on average than in the case when carbon resides strictly on 4b sites. Such
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Figure 5-1: Specific heat capacity 𝐶V(𝑇 ) for 𝑓𝑐𝑐 TiZrNbHfTaC5 from CMC simu-
lations for a 10 × 12 × 15 simulation box. Vertical dashed line marks the probable
phase transition. Blue shaded area indicates a standard deviation calculated from
40 independent runs for each temperature.

results reveal that carbon-metal interchange is a less favorable event and, hence, it

was not considered in the CMC simulations. However, carbon-metal interactions

were implicitly taken into account by training the LRP on DFT calculations with

included carbon atoms.

For a thorough study of a phase stability in multicomponent alloys it is vital to

perform a large-scale simulations (i.e., in large simulation cells). The reason for that

is an entropy contribution, which might be significant even at ambient temperatures.

As a result, these alloys might not have any observable long-range order, and hence

the true experimental phase cannot be approximated by the small simulation cells.

Thus, in this work the CMC simulations were performed on 10 × 12 × 15 supercell

(7200 metallic atoms).

To investigate temperature dependent phase transition, specific heat capacity of

TiZrNbHfTaC5 was calculated between 500 K and 2000 K with a 100 K step. After

evaluating 𝑐𝑣 at each round of CMC run, the temperature dependent behavior of

heat capacity was analyzed At each round of the simulation the resulting curve had a

temperature region with an abrupt peak in 𝑐𝑣 value, which might reflect a potential

62



Chapter 5. Investigation of phase stability of HfTaTiNbZrC5 high-entropy carbide

Figure 5-2: Crystal structures of the simulated 16×16×16 supercell of a) multi- and
b) single-phase (Ti-Zr-Nb-Hf-Ta)C at 500 and 2000 K respectively. Carbon atoms
are not shown here explicitly to make the distribution of metal atoms clearer, while
carbon atoms were considered in the MC simulations; c,d) relative concentration of
chemical elements per layer along the supercell vector 𝑏.

phase transition in this area. To refine the results, additional configurations were

sampled from this region for the LRP retraining. The final dependence of specific

heat capacity on temperature is presented on Fig. 5-1. The black curve corresponds

to a mean value of 𝑐𝑣, calculated over 40 independent CMC runs. As it is seen, the

peak of 𝑐𝑣 is observed in the region of 1100-1300 K. To estimate the phase transition

temperature more precisely, the standard deviation between 40 independent CMC

runs was evaluated (marked as a blue shaded area). The highest uncertainty is

observed near 1200 K, which indicates that phase transition in TiZrNbHfTaC5 is

likely to occur at 𝑇𝑐 = 1200 K.

Next I analyzed the resulting structures below and above the phase transition

temperature. The corresponding supercells are presented on Fig. 5-2. An ideal solid

solution was observed above 𝑇𝑐, namely at 2000 K. The corresponding supercell is
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shown on Fig. 5-2b. As seen in the figure, metallic elements have are uniformly

distributed along the simulation cell. This is additionally underlined in Fig. 5-2c,

where concentration of metallic elements in each layer along the supercell vector 𝑏

is depicted. The formation of solid solution at 𝑇 = 2000 K is a clear consequence

of an increased contribution of −𝑇∆𝑆mix term.

To further validate the results, an experimental synthesis of TiZrNbHfTaC5 sam-

ple was performed. The synthesis was done using arc plasma sintering method, pa-

rameters of which were adjusted according to the results of CMC simulation. Thus,

in order to provide a sintering temperature close to 2000 K, the direct current of

an arc plasma spark was set to 200 A, which provided temperature of 2150 ∘C.

The SEM images of an experimental sample with energy dispersive X-ray analysis

is presented on Fig. 5-3a. Each color corresponds to a certain chemical element of

the sample. Visually, the intensity of the diffracted X-ray irradiation has a uniform

distribution along the sample for every chemical element, which confirms that the

sample obtained at temperatures near 2000 K corresponds to an ideal solid solution.

To provide a quantitative analysis experimental and theoretical X-ray diffraction

diagrams of a solid solution (single) phase were constructed (Fig. 5-4a,c). As seen

in the figure the XRD intensity peaks for both experimental and simulated sam-

ples are observed at the same values of diffraction angle. The XRD diagram of an

experimental sample also contains peaks, corresponding to oxide clusters, but their

concentration is negligible. Finally, a comparison between lattice parameters of ex-

perimental and theoretical phases was performed. To calculate the lattice parameter

of the simulated phase a 32-atom supercell was extracted from the simulation do-

main and post-relaxed with DFT. Eventually, a good agreement between theoretical

and experimental values was observed, having 𝑎sim = 4.51 Å and 𝑎exp = 4.49± 0.03.

A more interesting picture was observed at temperatures below 𝑇𝑐. At 𝑇 = 500

K the sample decomposed into separate multi-component phases. As seen in Fig. 5-

2a, TaC is uniformly distributed along the supercell, while HfC and ZrC do not tend

to mix with TiC and NbC. According to the concentration distribution (Fig. 5-2c),

concentration of TaC changes moderately across the supercell and average deviation

does not exceed 8%. On the contrary, TiC concentration increases in the region
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above 30 Å and saturates at 50 Å, while concentrations of HfC and ZrC decrease

towards zero within the same area. Thus, one of the phases that emerges is (Ti-Nb-

Ta)C. Additionally, as seen in Fig. 5-2a,c, NbC expresses a moderate tendency to mix

with ZrC and HfC, preferring to form a solid solution with TiC phase instead. Since

NbC still has the lowest concentration in ZrC/HfC-rich area the second phase can

be either a mixture of (Zr-Hf-Ta)C and (Zr-Nb-Hf)C or four-component (Zr-Hf-Ta-

Nb)C phases with binary (Zr-Nb)C and (Zr-Ta)C. The calculated lattice parameters

of these phases are 𝑎1 = 4.45 Å for (Ti-Nb-Ta)C and 𝑎2 = 4.52 Å for the second

potential phase. A larger simulation structure of 32000 atoms is presented on Fig. 5-

5.

An SEM image (Fig. 5-3b) with energy dispersive X-ray analysis of an experi-

mental multi-phase sample also shows phase separation. To provide a more detailed

information about the observed phases, experimental and theoretical XRD diagrams

of multi-phase samples were constructed as shown in Fig. 5-4b. A good agreement

between diffraction angles for experimental and simulated phases is again observed.

For the theoretical XRD all the potentially emerged phases in Ti-absent region were

taken into account. As seen in Fig. 5-4b,d XRD peaks for (Zr-Hf-Ta)C, (Zr-Nb-Hf)C,

(Zr-Hf-Ta-Nb)C, (Zr-Nb)C and (Zr-Ta)C appear at almost the same diffraction an-

gle, which supports the suggestion that one of these phases or their mixture can

precipitate below 𝑇𝑐. To provide more insight, Helmholtz free energy of mixing for

different competing phases at 500 K was calculated (see Calculation details). The

trend between Helmholtz free energies of different carbide phases and lattice param-

eters are presented on Fig. 5-6. Carefully studying the trend it was observed that

the two phases, corresponding to theoretical lattice parameters, are (Ti-Nb-Ta)C

and (Zr-Hf-Ta)C. Moreover, these values are in a good agreement with the lattice

parameters of the two experimentally observed phases (𝑎1 = 4.45 ± 0.01 Å for the

first solid solution and 𝑎2 = 4.59 ± 0.02 for the second) Hence, the second phase is

more likely to be a random solution of Zr, Hf and Ta carbides.

One possible reason for the formation of these phases could be a difference be-

tween diffusion rates of constituent metallic atoms. This suggestion is supported by

Castle et al. [2018], where the phase separation in (Hf-Ta-Zr-Nb)C and (Hf-Ta-Zr-
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Figure 5-3: SEM images of experimental samples with energy dispersive X-ray anal-
ysis. a) Single- and b) multi-phase samples. Dispersive X-ray analysis images show
the mapping of chemical elements across the sample. 20 points across the sample
were used to measure the elemental distributions (shown in the inset).
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Figure 5-4: X-ray diffraction patterns of the synthesized a) single- and b) multi-phase
samples of TiZrNbHfTaC5, and calculated XRD patterns of c) simulated single-
phase HEC, and d) separate phases of ZrHfTaC3, ZrNbHfC3, ZrNbHfTaC4, ZrNbC2,
ZrTaC2, and TiNbTaC3 found by the analysis of calculated Helmholtz free energies
of mixing of various multi-component carbides.
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Figure 5-5: Simulated HEC containing 64000 atoms (32000 of metal atoms and
32000 carbons) at 500 K. Carbon atoms are not explicitly displayed here to make
the distribution of metal atoms clearer. Immiscibility of TiC with HfC and ZrC
is clearly seen, while NbC and TaC are perfectly mixed with all other carbides.
Cavities where no carbides were observed except selected ones are shown by black
color.

Ti)C samples was investigated. Specifically, the limiting factors for the formation

of a fully mixed high-entropy carbide phase were studied. According to the re-

sults the main factor promoting the diffusion of metallic atoms is the formation of

nearest-neighbor vacancy that can be occupied by diffusing atoms. In that case, the

vacancy formation energies of host metallic atoms determine the diffusion rates and

solubility of diffusing species in a host domain. Vacancy formation energies of five

metals in the corresponding individual carbides, calculated with DFT, taken from

work by Yu et al. [2015] are presented in Table 5.1. The cohesive energies of the

corresponding pure metals were used as a chemical potential. As seen in the table,

vacancy formation energies of metals in ZrC and HfC are almost three times higher
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Figure 5-6: Correlation between the Helmholtz free energy of mixing as calculated
at 500 K and the lattice parameters of binary (circles), ternary (squares), qua-
ternary (triangles) carbides and HEC (star). Horizontal dashed lines and shaded
areas represent lattice parameters and error of the experimentally observed phases
respectively.

than that in TaC. That makes TaC to act as a host domain for inter-diffusion of Zr

and Hf atoms, which drives the formation of (Zr-Hf-Ta)C phase. At the same time,

vacancy formation of metals in TiC is almost two times higher than that in TaC,

which more likely stimulates diffusion of ZrC and HfC into TaC-domain, rather than

into TiC. As a consequence mixing of ZrC/HfC with TiC is not observed. Nb and

Ti having higher vacancy formation energies can diffuse into TaC domain and form

(Ti-Nb-Ta)C phase. On the contrary, due to lower vacancy formation energies of

Nb and Ta, TiC tends to mix with NbC and TaC into a solid solution.

A proposed approach was for the first time applied to investigate phase-stability

of high-entropy carbides. On the example of HfTaTiNbZrC5 it was shown how

the proposed method can predict a temperature of a solid solution formation and,

consequently, guide the synthesis.

69



Chapter 5. Investigation of phase stability of HfTaTiNbZrC5 high-entropy carbide

Element Metal vacancy formation energy, eV Yu et al. [2015]
HfC 9.3
TaC 3.5
ZrC 9.4
NbC 4.1
TiC 8.6

Table 5.1: Vacancy formation energies of five metals in the corresponding individual
carbides.
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Chapter 6

Investigation of phase stability and

short-range order of CrCoNi

The system under study represents a class of medium-entropy materials with 𝑆mix =

1.1𝑅. Practically, a reduced entropy contribution (in comparison with high-entropy

alloys) can result in emergence of an atomic-scale short-range ordering (SRO) in the

crystalline lattice of these materials. This can in principle impact thermodynamic

stability as well as magnetic Niu et al. [2015] or mechanical properties Zhang et al.

[2017]. Therefore it is important to quantify the temperature-dependent ordering

behaviour in this alloys.

A tendency for SRO in CrCoNi and its impact on thermodynamic quantities

was already studied in several works. Evaluation of an experimental phase diagram

revealed that equimolar CrCoNi forms a solid solution on a FCC lattice Omori

et al. [2014]. However, no information on possible SRO was provided. Further

experimental investigations suggested different conclusions. For example, Yin et al.

[2020] demonstrated that the strength and hardness of CrCoNi samples prepared

under different annealing conditions, and hence with presumably different degrees

of SRO, were not affected by the potential presence of SRO. However, another

experimental investigation by Zhang et al. [2020] suggested a direct impact of SRO

on the mechanical behaviour of this alloy.

The first computational investigation of SRO in CrCoNi was performed by Tamm

et al. Tamm et al. [2015], using first-principles based lattice Monte Carlo simula-
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tions. The results showed an increase of Cr-Co and Cr-Ni nearest-neighbors at the

expense of Cr–Cr pairs. The observed Cr-Cr repulsion was explained by a magnetic

frustration. Another computational study using cluster expansion was performed

by Pei et al. [2020]. The proposed FCC ground state structure had alternating Cr

rich layers and mixed Co and Ni atoms layers. However, the energy difference of

around 31 meV/atom between the random structure and the proposed ground state

is smaller than the energy difference of around 45 meV/atom reported by Tamm

et al. [2015]. This may suggest the existence of another ground state structure.

Though several experimental and theoretical studies were performed to reveal the

impact of SRO on phase stability of CrCoNi, some discrepancies still exist. In the

present work an on-lattice Monte Carlo combined with LRP is used to investigate

SRO in CrCoNi over a wide temperature window. Based on the simulation results,

SRO impact on a phase stability and the role of magnetism for it is analyzed.

6.1 Calculation details

To train the LRP, the algorithm, presented in Fig. 3-8 was employed. The initial

dataset contained 600 random configurations, each with 108 atoms. After perform-

ing Monte Carlo simulations 780 additional configurations were sampled, recalcu-

lated with DFT and added to the initial dataset. Thus, the final set contained 1380

configurations and was split into training and validation subsets of 1180 and 200 con-

figurations respectively. The RMSE on the validation subset was 2.36 meV/atom.

The reference energies were calculated using spin-polarized DFT as implemented

in VASP 5.3.5 Kresse and Furthmüller [1996], Kresse and Hafner [1993, 1994]. A

projector augmented wave (PAW) method Blöchl [1994] utilizing the Perdew-Burke-

Ernzerhof generalized gradient approximation (PBE-GGA) Perdew et al. [1996] was

employed. A lattice parameter of 3.55 Å was used, which corresponds to exper-

imentally observed lattice constant Tamm et al. [2015], Ding et al. [2018]. The

plane-wave energy cutoff was set to 300 eV. For the considered 3× 3× 3 (108 atom)

supercell an energy cut off of 300 eV and a Monkhorst-Pack Monkhorst and Pack

[1976] 4×4×4 k-mesh was used for the self-consistent calculations. The convergence
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Figure 6-1: Specific heat capacity 𝐶V(𝑇 ) for 𝑓𝑐𝑐 CrCoNi from CMC simulations for
a 6 × 6 × 6 and 12 × 12 × 12 simulation box.

criteria for total energies was set to 10−3 eV. To include magnetism, each calculated

configuration was initialized with different random arrangements of magnetic spins.

6.2 Results of CrCoNi study

Using CMC simulations, temperature dependent specific heat capacity was calcu-

lated in a range between 0 K and 1800 K. To assess the generalization ability of

the LRP, simulations were performed for two supercells with sizes 6 × 6 × 6 (864

atoms) and 12 × 12 × 12 (6912 atoms). The results are presented on Fig. 6-1.

Two characteristic peaks revealing two possible phase transitions are observed. A

first transition is found around 180 K, and the second around 975 K. Notably, the

observed peak around 975 K is in a good agreement with the previous experimental

observations at the corresponding temperature Jin et al. [2017]. As seen, increas-

ing the supercell size from 6 × 6 × 6 to 12 × 12 × 12 results only in insignificant
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Figure 6-2: Simulated structures. (a) CrCo2+CrNi2 obtained at 50 K. (b)
Cr(Co,Ni)2 obtained at 510 K. (c) Random solid solution obtained at very high
temperature.

changes in the heat capacity values. Therefore, the subsequent analysis was based

on 12 × 12 × 12 supercell size calculations.

Three characteristic configurations for the different temperature regimes are

shown in Fig. 6-2. First, a low-temperature (50 K) configuration, separated into

CrCo2 and CrNi2 is presented (Fig. 6-2a). The second, obtained at 510 K., is an

ordered structured referred to as Cr(Co,Ni)2 (Fig. 6-2b). And the last, shown on

Fig. 6-2c, is a random solid solution phase obtained at very high temperature.

Next, an ordering behavior was analyzed. To quantify the degree of ordering,

the Warren-Cowley SRO parametersCowley [1960] were calculated as,

𝛼𝑚
𝑖𝑗 = 1 −

𝑝𝑚𝑖𝑗
𝑐𝑖𝑐𝑗

, (6.1)

where 𝛼𝑚
𝑖𝑗 is the Warren-Cowley SRO parameter for the atomic types 𝑖 and 𝑗 at

the 𝑚𝑡ℎ coordination shell; 𝑝𝑚𝑖𝑗 is the probability of finding atom type 𝑗 at the 𝑚𝑡ℎ

coordination shell of atom 𝑖, and 𝑐𝑖, 𝑐𝑗 are the concentrations of elements 𝑖 and 𝑗 in

the alloy. Positive (negative) values of the SRO parameter at the 𝑚𝑡ℎ coordination
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Figure 6-3: Temperature-dependent Warren-Cowley SRO parameters for different
atom pairs in the first coordination shell in CrCoNi alloy. The panels demonstrate
qualitatively different nature of the low- and high-temperature transitions.

shell indicate repulsion (attraction) between atoms 𝑖 and 𝑗 at the corresponding

coordination shell. Dependence of Warren-Cowley SRO parameter on temperature

for different atomic pairs in the first coordination shell is shown on Fig. 6-3. At

temperatures above 975 K, a positive value of 𝛼Cr-Cr indicates Cr-Cr repulsion,

while negative values of 𝛼Cr-(Co, Ni) indicates a preference for Cr to form a bond with

Co and Ni. Nevertheless, 𝛼Cr-Cr and 𝛼Cr-(Co, Ni) are close to zero, which reflects a

some degree of randomness in Co and Ni distribution in an alloy. The tendency of

Cr to bond with Co and Ni becomes more prominent below the high-temperature

transition around 975 K. As it is seen 𝛼Cr-(Co, Ni) becomes more negative, which

indicates an increase of SRO driven by Cr-Co and Cr-Ni bonds. On the contrary

𝛼Cr-Cr shows an abrupt increase, which reflects a higher repulsion between Cr atoms.

This trend is consistent with the ordered Cr(Co,Ni)2 structure observed as shown

in Fig. 6-2b. Further, at temperatures below 300 K 𝛼Cr-Cr value saturates at a value

of 0.5 and 𝛼Ni-Ni becomes strongly negative, thus supporting the low temperature
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Figure 6-4: DFT calculated energy differences as compared to a random alloy for
the two ordered states found in the present work as well as previous works. The
calculations include purely ionic relaxations (red) as well as full relaxation (green).
The impact of electronic excitations (light red and light green) are shown as well.
The DFT calculated energy differences found in previous works (blue shades) by Pei
et al. [2020], Tamm et al. [2015] and Walsh et al. [2021] between the random alloy
and there proposed ordered state have been also added.

separation of CrCoNi into CrCo2+CrNi2.

Such results lead to a conclusion that the high-temperature phase transition

reflected in the peak in the specific heat capacity curve at 975 K is mainly driven

by the ordering of the Cr atoms. The low-temperature phase transition, reflected in

the second peak, is clearly driven by the ordering of Co and Ni. A good agreement

between the computed SRO of the ordered configuration (at 500 K) and experimental

findings was obtained as shown in Tab. 6.1.

Although the calculated SRO parameters qualitatively agree with the previous

works, some discrepancies are observed comparing the energy differences of an or-

dered structure with the random solid solution. The ordered configuration suggested

in Pei et al. [2020] is about 31 meV/atom lower in energy as compared to the ran-

dom one, while Tamm et al. [2015] an energy difference of 45.7 meV/atom at 500 K.
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This suggests that the ordered configuration proposed in Pei et al. [2020] is likely

not the energetically most favorable one. To compare findings of this work with the

mentioned studies all of the three structures (depicted in Fig. 6-2) were recalculated

using DFT. To account for a statistical divergence, DFT calculations were performed

for 30 configurations, sampled from CMC simulation, for each case (CrCo2+CrNi2,

Cr(Co,Ni)2 and random). All energy differences for CrCo2+CrNi2 and Cr(Co,Ni)2

structures with respect to the random one are shown in Fig. 6-4 and compared to

those of the ordered phases proposed in the literature. The error bars indicate the

standard deviation for the averaged computed DFT values for each case. The im-

pact of a volume relaxation as well as the inclusion of electronic excitations was

also studied. As it is evident, for every considered scenario the ordered Cr(Co,Ni)2

structure, proposed in this work, is found to be significantly lower in comparison

with previous results.

To rationalize the reason behind the energetic difference the proposed ordered

structure was analyzed and compared to the one reported in literature. Both struc-

tures are shown in Fig. 6-5. As shown in Fig. 6-5(c), a ground state ordered structure

suggested by Pei et al. [2020] have a {002} layer completely occupied by Cr and Ni

and Co sharing the other two layers in a period of three layers. An almost identical

tendency in arrangement of atomic layers is observed in ordered structure obtained

in this work (see Fig. 6-2(b)). Again a layer, completely occupied by Cr, followed

by two layers with mixed Co and Ni atoms as shown for both supercell types. How-

ever, the remarkable difference between both configurations is that in contrast to

Fig. 6-5 (c), in Fig. 6-5(a) and (b) each Cr bonds only with two nearest neighbour

Cr atoms, which is consistent with the saturated value of 𝛼Cr-Cr in Fig. 6-3 This

Table 6.1: Presently calculated low rank potentials (LRP) based Monte Carlo (MC)
simulated Warren-Cowley SRO parameters in CrCoNi alloy at a temperature of 500
K compared to previous DFT based Monte Carlo studies by Tamm et al. [2015] and
Ding et al. [2018].

Neighbor Present calculation Tamm et al. [2015] Ding et al. [2018]
atoms pair LRP MC DFT MC DFT MC
Cr-Cr 0.50 0.42 0.40
Cr-Co -0.25 -0.16 -0.25
Cr-Ni -0.25 -0.27 -0.15
Co-Co 0.06 0.01 0.06
Ni-Ni 0.06 0.12 -0.04
Co-Ni 0.19 0.15 0.19
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Figure 6-5: The arrangement of constituent atoms in (a) the presently obtained
ordered structure (in case of cubic supercell) of CrCoNi at a temperature of 510 K
compared with (c) the ground state structure as suggested by Pei et al. [2020]. In
case of (a), for clear visualization of our obtained Cr(Co,Ni)2 structure, only a certain
part of the 864-atom cell with smaller boundary is shown. Another orthorhombic
primitive cell as considered in case of orthorhombic supercell for Cr(Co,Ni)2 struc-
ture has been also added in (b) for better visualization. The half-coloured spheres
with yellow and red represents the 50% occupancy probability of Co and Ni for those
sites.

may favor magnetic contributions as previous investigations on CrCoNi suggested

that the frustration of antiferromagnetic Cr can be greatly relieved by minimizing

the amount of Cr–Cr nearest neighbors.
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Figure 6-6: The calculated temperature dependence of mean internal energies ob-
tained from magnetic and non-magnetic LRP based MC simulations for equiatomic
CrCoNi alloy with supercell size 12 × 12 × 12. The energy of high temperature
magnetic random solid solution has been included as reference (grey line).

Further, the magnetic contribution into ordering behavior is investigated. To do

so, a separate simulation with excluded magnetic degrees of freedom were performed.

The whole procedure of preparing training and validation sets was repeated with

non-spin polarized DFT and a new LRP was obtained (here and further LRP fitted

to non-spin polarized DFT is called “non-magnetic”; to spin-polarized DFT - “mag-

netic”). Further, the ordering in the system was investigated by performing CMC

simulation with LRP trained on non-spin polarized calculations. The temperature

dependency of mean total energy obtained in MC simulation is shown in Fig. 6-6

in comparison with the previous magnetic calculation. Evidently, the total energy

remains almost the same in the ordered region below 900 K, though with a slight

shift in the transition temperature. The ordering trend in the observed structure

remained exactly the same as obtained from spin-polarized calculations. Therefore,

magnetism is actually not responsible for the ordering behavior.

The proposed approach was applied to investigate phase-stability and SRO in
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CrCoNi alloy. It was revealed that magnetism does not play a leading role in ordering

behavior and SRO is mainly driven by the chemical arrangement of atoms. Moreover,

it was shown for the first time that LRP is capable to implicitly account for magnetic

degrees of freedom.
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Conclusion

In this thesis I developed an approach for the design of multicomponent materials

using the on-lattice modeling. Lattice-based simulations were applied to two prob-

lems of multicomponents materials design, namely, crystal structure prediction and

modeling of phase stability at finite temperatures. To solve these tasks I devel-

oped two separate methods both based on on-lattice structure generation algorithm

and on-lattice machine-learning interatomic potentials. A conceptually new crystal

structure prediction method, called on-lattice CSP, was developed. Unlike state-of-

art CSP algorithms, on-lattice CSP generates the structure iteratively, adding atom

by atom in the sites of the lattice. The algorithm produces population of structures

with all possible types of atoms on a chosen site, and selects the structure with the

lowest energy. Thus, by using a “smart” generation approach, combined with the

LRP or CE, on-lattice CSP discover configurations with different chemical compo-

sition and, preferably, closer to the convex hull. For modeling the phase stability

I used on-lattice CMC simulations with the LRP. In this work it was shown that

this method can also be applied to the study of high-entropy carbides and reveal

the impact of magnetism on the SRO in MEA. By using the LRP/CE as an inter-

action model, the number of required DFT calculations was substantially reduced

to an amount sufficient for constructing a training set only. The approach proposed

was implemented in a software package based on C++ backend and Python user

interface.

First, the developed methodology was applied to discover stable compounds in
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Nb-Mo-Ta-W system. Using on-lattice CSP I constructed binary Nb-W, ternary

Mo-Ta-W, and quaternary Nb-Mo-Ta-W convex hulls. The obtained results were

compared to those present in the AFLOW database. The algorithm has discov-

ered 9 new binaries (Nb3W4, NbW2, Nb3W7, NbW4, NbW5, NbW8, TaW8, TaMo5,

TaMo6) and 3 new ternaries (Mo3Ta3W, MoTa2W2 and MoTaW5). Also, two new

quaternary alloys were discovered - NbMoTaW6 and NbMo2TaW18. The results

demonstrate that the developed structure generation algorithm, combined with the

LRP and CE models, can substantially accelerate the search. Only a few hundred

DFT calculations were required to discover new compounds as well as the previously

reported in the literature.

In the next work the on-lattice CMC with the LRP was applied to study phase

stability of HfTaTiNbZrC5 high-entropy carbide. The results of the simulations were

used to guide the subsequent synthesis. The simulations revealed the presence of

a solid solution phase at temperatures above 1200 K. At ambient temperatures a

phase decomposition was observed. At 500 K the sample decomposes into random

(Ti-Nb-Ta)C and (Zr-Hf-Ta)C and phases. To obtain the corresponding samples,

the parameters of the arc plasma reactor were adjusted to provide the temperatures,

predicted in the simulations. The experimental results are in an excellent agreement

with the theory, which is evident from the provided XRD diagrams and SEM images.

Finally, the on-lattice CMC with the LRP was applied to investigate the SRO and

phase stability of CrCoNi alloy. The simulations revealed a lower energy ordering as

compared to the structures reported in the literature Tamm et al. [2015], Pei et al.

[2020]. The observed SRO is mainly driven by Cr-Ni and Cr-Co pairs. The structure

obtained is almost identical to the one, reported by Pei et al. [2020], though with a

fewer number of Cr-Cr nearest-neighbors. Such ordering can be caused by a relief of

magnetic frustration effects. To investigate the impact of magnetic frustration on the

SRO additional CMC simulations were performed. This time the LRP was trained

on non-spin polarized DFT calculations. Eventually, the same ordering behavior

was observed, which reveals the minor impact of magnetism on the SRO.

The results presented in this work demonstrate the effectiveness of on-lattice

modeling in designing multicomponent materials. First, it was demonstrated that
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on-lattice structure generation algorithms can sample multicomponent configura-

tional space with reduced computational costs. Second, the sampling was performed

in a high-throughput manner by using machine-learning interatomic potentials. As

a result, the number of required DFT calculations was reduced to the order of several

hundreds. The developed methodology also has a practical significance. In particu-

lar, as demonstrated in the second work, the simulations can assist the controllable

synthesis of materials. Thus, the developed tools also shorten the gap between

theoretical and experimental design of materials.
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Appendix

8.1 Technical realization of “on-lattice” package

The methodology described was implemented in a stand alone “on-lattice” package

using C++ and Python programming languages. It can be accessed via GitLab upon

the request (https://gitlab.com/ashapeev/on-lattice-structure-prediction).

The developed code has three levels as shown on Fig. 8-1 The first one is a core

level, that contains C++ modules. This level in turn, consists of two sub-levels.

The first sub-level contain two modules: cfg.h that is responsible for performing

manipulations with atomic structure (creating configuration with different crystal

lattices, sizes, chemical elements, etc.), and pot.h that contains technical real-

ization of LRP and CE. The second sub-level consists of cmc-simulation.h and

structure-prediction.h modules with technical realization of on-lattice Monte

Carlo and on-lattice-CSP.

The second level, called “wrapper”, is an intermediate level, written in Cython. It

is used to wrap C++ modules (using .pyx files) and connect them with the Python

user interface. The last level, is a Python-written user interface that is used to

perform the simulations, obtain and analyze the results.

Module cfg.h contains classes Lattice and Configuration. Class Lattice

is used to create a lattice object, that holds information about lattice type (bcc,

fcc, etc.). To initialize the lattice object the following parameters are passed to

constructor:
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1. cell - matrix with coordinates of a unit cell vector

2. shifts - matrix with coordinates of a subcell origin.

The attributes of the class are the following:

1. neighbors - matrix with coordinates of nearest-neighbors including the central

cite.

2. n_neighbors - number of nearest-neighbors including the central cite.

To create the object of class Configuration the following parameters are pro-

vided as input:

1. lattice - object of class Lattice.

2. shape - matrix that defines the size of configuration.

3. occupancy - vector with atomic numbers of length equal to the number of

sites.

Module pot.h contains classes PotCE and PotLRP that are used to created objects

of CE and LRP potentials. Modules cmc_simulation.h and csp_simulation.h

contain classes CMC_Simulation and CSP_Simulation respectively. To create ob-

jects of this classes the following arguments should be passed:

1. pot - object of PotCE class or PotLRP class. Represents the potential used in

the simulation.

2. cfg - object of Configuration. Represents the initial configuration.
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Figure 8-1: Structure of the developed code.
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