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Abstract

Nowadays, achieving high quality in Natural Language Processing (NLP) tasks often
requires processing large amounts of data, such as WikiData with 12 billion objects,
or utilizing massive models, such as the GPT-2, GPT-3, GPT-3.5 models from the
Transformer family. However, the use of these models requires significant computing
resources, resulting in substantial energy and financial costs.

This thesis focusses on analysing computational algorithms and models for var-
ious NLP tasks. More specifically, in this thesis, we explore the use of multilinear
algebraic representations for various NLP tasks: Link Prediction, Language Mod-
elling, Natural Language Understanding, and Text Summarization. Namely, we use
tensor representation in various ways: first, by presenting input data in Knowledge
Graph in the form of tensor decomposition, and second, by presenting layers of
neural models in the form of tensor decomposition products.

Efficient implementations with low-level optimisation of the proposed techniques
are developed. Proposed optimizations lead to significant memory savings for a Link
Prediction task with a slight quality improvement. Furthermore, an implementation
of tensor representation-based layer structures is offered. These structures can be
integrated into the computational graph of a Large Language Model (LLM). These
kinds of models are validated in a large variety of tasks from the Natural Language
Understanding and Language Modelling groups. A deep study of the compara-
tive Question Answering problem is also provided and the efficient version of Large
Language Model is validated on it. Experiments demonstrate that models with
tensor-based layers outperform others when training architectures from scratch. In
experiments with compressing of pre-trained weights, tensor-based approaches ex-
hibit superior performance with larger compression rates, as opposed to smaller
ones.
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Chapter 1

Introduction

1.1 Motivation

In recent years, there have been significant advances in Natural Language Process-

ing (NLP) methods, leading to higher quality solutions. These advances can be

attributed to two interconnected factors. First, there has been a remarkable im-

provement in the hardware capabilities for processing and storing information. This

has enabled the storage of vast amounts of data for training and processing, result-

ing in more efficient and faster operations. For example, the DBpedia knowledge

dataset [Auer et al., 2007] now contains 400 million facts, while the data set for

the Bloom [Scao et al., 2022] model encompasses 350 billion tokens. Additionally,

models like Bloom or Megatron [Shoeybi et al., 2019] offer distributed training in

multiple graphic cards or clusters.

Second, the practicality of these advanced techniques has significantly enhanced

language methods. One key development was the incorporation of the attention

mechanism [Vaswani et al., 2017a] into Language Modelling. This technique enables

the identification of the most relevant parts within large textual data. By applying

the attention mechanism, models can effectively analyse semantic, grammatical,

and other implicit patterns in language, even in texts comprising several thousand

tokens.

This progress has resulted in a remarkable performance boost of NLP systems.

Presently, transformer models, trained on a large corpus of texts, can be employed in
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nearly any task with minimal modifications. Moreover, they can work in experiments

with the few-shot setup - with a few prompts and zero-shot - without any prompting.

The study [Kaplan et al., 2020] presents an empirical scaling law that demon-

strates how the performance of language models is influenced by their size and the

size of the training data. While the law discussed in that study specifically relates to

cross-entropy, works such as [Radford et al., 2019b], [Radford et al., 2019a], [Brown

et al., 2020], and [Shoeybi et al., 2019] indicate that other quality metrics also im-

prove with larger model sizes and training datasets. However, the rapid growth of

these models has revealed redundancies in both the full modules within NLP ar-

chitectures [Michel et al., 2019] and the parameters within different fully-connected

layers [Denil et al., 2013]. Increasing the size of models presents several challenges.

The computational cost associated with such models necessitates significant capi-

tal investment to reproduce them. While it is possible to interact with models via

APIs, full access to large architectures and in-depth study generally belongs only

to industrial companies. Consequently, research laboratories often face resource

constraints that make working with state-of-the-art (SOTA) models and relevant

datasets impractical or excessively time-consuming.

Another concern is related to the fact that when training and operating large

models, the issue of energy consumption and the accompanying CO2 emission be-

comes significant. For models comparable to GPT-3, the training carbon footprint

is several hundred tons [Rae et al., 2021], [Zhang et al., 2022]. The values of these

parameters depend largely on the training settings and server architecture, the type

of cards, and even the location of data centers [Patterson et al., 2021]. They are

proportional to the number of FLOPS (Floating Point Operations) needed either to

train the model or to forward the signal in inference. In this case, the effective reduc-

tion of language models due to low-ranking representations of their parts, described

in Chapters 6.4 and 5, ceteris paribus, leads to a decrease in energy consumption

and CO2 emissions.

To address these issues, our work focusses on utilising limited resources more ef-

ficiently. We achieve this by employing tensor representations [Cichocki et al., 2016]

to obtain compressed versions of either the dataset itself, as explored in Chapter 3, or
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the model architectures (as discussed in Chapters 6.4 and 5). Tensor representations

represent data in factor matrices or in a set of interconnected low-order core ten-

sors. In other words, we take tensors - multidimensional generalisations of matrices

- and represent structured datasets or part of Neural Network models in this form.

We use Canonical Polyadic Decomposition (CPD) to represent large dataset based

on Knowledge Graphs (KG) and the Tensor Train Matrix (TTM) form to represent

the weights of the Transformers layers. We then apply a decomposition technique

appropriate for the selected tensor structure, to obtain a compressed representation

of it. The compressed representation has fewer parameters with the same level of

stored information, reducing the resources required for employment data or model.

It should be noted that the request for vast resources in training and employ-

ing processes often occurs due to the specifics of the training tools and framework

settings utilised. Namely, the default algorithms of Pytorch, the most popular frame-

work for building computation graphs, can require more memory than is necessary

for the gradient computation task. The proposed work, in particular, shows optimi-

sation options in related situations. For example, Chapter 4 describes the optimisa-

tion of signal backpropagation in structures, a sequence of multidimensional objects;

Chapter 3 offers an example of a mixed type of gradient calculation for Neural Net-

work (NN) architecture. In this type, the computational graph is created for tiny

layers. On the contrary, for an embedding layer with considerable size, we count

gradient analytically, which reduces the overall memory consumed by the model.

1.2 Thesis Objectives

The purpose of the presented thesis is to study and apply the methods of low-rank

tensor approximations to language processing problems of various types. In more

detail, this work investigates the following research questions:

1. Can we make the Knowledge Graphs (KG) embedding computation more ef-

ficient using tensor structure?

2. Can we reduce the size of the Transformer-based language model by replacing
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some layers with Tensor Train Matrix (TTM) structures and how does it affect

the model performance?

3. How can we improve the quality of the compressed model? More precisely,

can we select layers more compatible with compression and can we integrate

information about the downstream model task into the compression algorithm?

1.3 Contribution, Novelty and Impact

This study highlights that certain language models and techniques may require

excessive resources for certain tasks, emphasising the importance of efficient com-

pression. In our compression methods, we employ low-rank techniques and tensor

decomposition approaches. We harness Canonical Polyadic Decomposition (CPD)

to represent large datasets based on Knowledge graph data. We use the Tensor Train

Matrix (TTM) decomposition to compress Neural Network layers and finally acquire

a smaller version of Transformer-based language models. We achieve a smaller model

in two ways: by training the complete architecture from scratch and by compress-

ing the pretrained model. For the Transformers, we performed experiments on the

encoder (BERT and BERT-based architectures) and the decoder (GPT-2).

1. The slight modifications to the CPD decomposition technique are made, which

improves the efficiency of representing Knowledge Base data.

2. An implementation of TTM-based Neural Network (NN) layers is provided,

which made them compatible for fine-tuning and training from scratch. These

layers have been incorporated into the Transformer model, replacing the tra-

ditional Fully-Connected (FC) Layer with Tensor Train Matrix (TTM)-based

and Singular Value Decomposition (SVD)-based layers.

3. A compressed version of GPT-2 is developed using TTM and SVD layers; its

performance is evaluated on both language modelling and classification tasks.

4. The most suitable modules for TTM and SVD compression are identified in

the Transformer model.
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5. A comprehensive study of abstractive and extractive approaches to question-

answering in a comparative case is conducted. For this task, FC layers in

the corresponding Transformer model are replaced with its TTM and SVD

compressed versions.

6. SVD-based and TTM-based layers for the BERT model are adjusted in a

language understanding task.

1.4 Thesis Outline

This thesis has the following structure, which is outlined below.

In Chapter 1, “Introduction”, a brief overview of the primary objectives of the

proposed work is provided, as well as the potential impact of the research on the

scientific community.

Chapter 2 “Background” introduces the notation and various tensor decomposi-

tion methods, focussing on the low-rank and full-rank representation formats used

in efficient NLP methods or relied upon by comparison baselines.

Chapter 3 “Efficient Knowledge Embedding Using Canonical Polyadic decompo-

sition” details how we used tensor methods to obtain a compact representation of

large datasets that describe real-world facts in the form of a 3D structure. To achieve

this, we employ a distribution-aware version of CP decomposition, compressing the

data into embeddings.

In Chapter 4 “SVD and TTM Representations of Fully-Connected (FC) Layers”,

we discuss the implementation details of representing Fully-Connected (FC) layers

in the TTM format. We focus on creating a Pytorch compatible layer based on

a sequence of TTM cores for time and memory-efficient fine-tuning and training

operations. We further use the proposed structures to replace FC layers in different

Transformer architectures. This choice of harnessing FC layers is motivated by the

fact that these layers are often the most significant bottleneck in Transformers.

We use these results in Chapter 5 “Efficient GPT Model using TTM Decom-

position", where we replace layers in the Transformer architecture GPT-2 with a

TTM object, training this kind of model from scratch, validating its performance
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inside and outside the domain of the Language Modelling task, as well as on some

downstream tasks.

Chapter 6, titled “Efficient Question Answering using TTM decomposition”,

explores the task of answering comparative questions. The chapter provides an

overview of generative and abstractive methods for solving this problem, with a fo-

cus on the latter - finding relevant answers in the corpus. One promising solution

is ColBERT, a model based on the BERT architecture that encodes queries and

texts simultaneously in the search space. However, as with any transformer-based

model, it is computationally intensive and heavy. In this chapter, we employ TTM

decomposition to compress the fully-connected layers within ColBERT. We search

for optimal TTM ranks that offer the best approximation. Additionally, we con-

duct a comparative analysis of models employing various compression techniques to

accomplish QA tasks.

We will also investigate whether all modules in the Transformer architecture ex-

hibit the same compression behaviour. In particular, we are investigating whether

choosing certain layers for compression results in a smaller performance hit. Specif-

ically, we investigate whether the selection of certain layers for compression results

in a less severe degradation in performance.

Chapter 7 “Transformer-based Encoders compression using TTM decomposition”

delves deeper into this topic, exploring the compression of BERT, a transformer-

based architecture used for Language Modelling. In addition, we investigate the

fine-tuning options available to improve the compressed model’s performance.
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Chapter 2

Background

In this chapter, we will discuss the matrix and tensor representations that we have

utilised in our work to enhance the efficiency of our linguistic models in terms of

speed and memory requirements. We will only introduce the representations that

were employed in our experiments, to ensure that this manuscript is self-contained

for the reader’s convenience.

To enhance convenience, Table 2.1 incorporates notation that corresponds to

algebraic objects mentioned in the text and the operations performed on them.

It is worth mentioning that there are numerous other methods for decomposition,

such as Tensor Networks [Biamonte and Bergholm, 2017] and TensorRing [Zhao

et al., 2016], along with a wide variety of algorithms [Kolda and Bader, 2009b],

which we do not cover in this chapter. A complete overview of methods is provided

in [Ji et al., 2019].

2.1 Matrix Decompositions

2.1.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) of a complex matrix M ∈ R𝑚×𝑛 is a

factorization of the form M = UΣV* where U ∈ R𝑚×𝑚 complex unitary matrix,

Σ ∈ R𝑚×𝑛 is a rectangular diagonal matrix with non-negative real numbers on the

diagonal, V ∈ R𝑛×𝑛 is a complex unitary matrix, V⋆ is the conjugate transpose of
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Figure 2-1: The interpretation of SVD. The operator of transformation M is de-
composed into rotation U, scaling Σ and rotation back VT.

V. If M is real, V⋆ is equivalent to VT.

Matrix M̃ with a rank 𝑟 is said to be a truncated approximation of the

matrix M if M̃ = UΣ̃V*, where Σ̃ is the same matrix as Σ except that it contains

only the 𝑟 largest singular values (the other singular values are replaced by zero).

As depicted in Fig. 2-1, three-factor matrices in the Singular Value Decompo-

sition can be treated as rotation, scaling and rotation back operations. In other

words, the object M is translated into a space where it can be represented as a sum

of basis functions with weights equal to singular values. In this space, we can drop

the part with minor weights (truncate it) and then transfer the object M back to

the regular world.

2.2 Tensor Decompositions

Tensor decomposition is a powerful technique for representing multidimensional ob-

jects by breaking them down into elementary operations on smaller objects. This

approach is particularly useful for addressing the curse of dimensionality, where the

number of elements in an 𝑁th-order tensor grows exponentially with the order. The

sheer volume of data in high-dimensional objects can pose significant computational

and memory challenges.

To tackle this issue, reducing the size and dimensions of the original object can
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Table 2.1: Tensor symbols and notations.

Notation/Symbol Meaning

𝒳 ∈ R𝐼1×𝐼2×...𝐼𝑁 𝑁 𝑡ℎ order tensor of size 𝐼1 × 𝐼2 × . . . 𝐼𝑁

𝑥𝑖1,𝑖2,...,𝑖𝑛 = 𝒳 (𝑖1, 𝑖2, . . . , 𝑖𝑛) (𝑖1, 𝑖2, . . . 𝑖𝑁 )𝑡ℎ entry of the tensor 𝒳

𝒢,𝒢(𝑘),𝒢𝑘 Core tensors in Tucker and Tensor Train decompositions

Λ Diagonal core tensor in Canonical Polyadic Decomposition

A,b Matrix and vector

⊙, ⊗, ∘ Khartri-Rao, Kronecker and outer Products

𝒳 ×𝑛 A Mode-n product of 𝒳 ∈ R𝐼1×𝐼2×...𝐼𝑁 and matrix A ∈ R𝐽×𝐼𝑛

A𝑇 , A−1, A† Transpose, inverse, and Moore-Penrose pseudo-inverse
of a matrix A

𝒳[n] Mode-n matricization (unfolding). This operation represents
a tensor 𝒳 ∈ R𝐼1×···×𝐼𝑛×···×𝐼𝑁 in a matrix 𝒳[n] ∈ R𝐼𝑛×𝐼1·····𝐼𝑁

lead to more efficient and faster applications. There are various options available

to represent a tensor as a set of smaller-dimensional objects, each with its own

limitations. The choice of decomposition method depends on the specific problem

statement and the types of data being used.

2.2.1 Canonical Polyadic Decomposition

One of the most popular tensor approximations is the Canonical Polyadic Decom-

position (CPD) [Hitchcock, 1927], an extension of the factorisation of the low-rank

matrix to multidimensional objects. This decomposition introduses an 𝑁 -order ten-

sor 𝒳 ∈ R𝐼1×𝐼2×···×𝐼𝑁 as a sum of 𝑅 < 𝑁 tensors of rank 1, also known as Kruskal

tensors:

𝒳 ≈
𝑅∑︁

𝑟=1

𝜆𝑟𝑏
(1)
𝑟 ∘ 𝑏(2)𝑟 · · · ∘ 𝑏(𝑛)𝑟 = Λ×1 B

(1) ×2 B
(2) · · · ×𝑁 B(𝑁) (2.1)

Here, 𝑁 >= 2 is an integer that defines the number of dimentions in the initial

tensor, 𝐵(𝑛) = [𝑏
(𝑛)
1 , 𝑏

(𝑛)
2 , 𝑏

(𝑛)
𝑅 ] ∈ R𝐼𝑛×𝑅 is one of the 𝑁 factor matrices, Λ is a diagonal

core tensor with elements 𝜆1, . . . , 𝜆𝑁 .

In other words, an 𝑁 -dimensional object is represented as 𝑅 scalar weights and

𝑁 two-dimensional matrices. These matrices are called factor matrices; they are
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Figure 2-2: The CP decomposition scheme.

usually orthogonal and represent the principal component of each mode. Since the

resulting decomposition objects are two-dimensional, CPD is good at addressing the

curse of dimensionality. Such a representation gives good compression for tensors

of many dimensions. Unfortunately, the widespread use of this decomposition is

restricted by the fact that, for a number of problems, it does not give good con-

vergence. The scheme of CPD decomposition in the 3-d tensor case is shown in

Figure 2-2.

A← argmin
A
||𝒳[0] − (B⊙C)A𝑇 ||2

B← argmin
B
||𝒳[1] − (A⊙C)B𝑇 ||2

C← argmin
C
||𝒳[2] − (A⊙B)C𝑇 ||2

(2.2)

A popular approach for computing the CP decomposition of a tensor is the

CP Alternating Least Squares (ALS) algorithm [Battaglino et al., 2018, Dunlavy

et al., 2011]. This approach aims to minimise the norm 𝐿2 between the appropriate

combination of factor matrices and the corresponding unfolding [Kolda and Bader,

2009b] of the initial tensor (see 2.2). Algorithm 1 presents this method to the 3-rd

order case. The main idea is to fix all factor matrices except for one to optimise

the non-fixed matrix. This step is then repeated for each matrix until a specific

stopping criterion is reached.

In the proposed dissertation, we use Canonical Decomposition in the one of the

Natural Language Processing task with some tips to improve convergence.
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Algorithm 1 CP-ALS [Kolda and Bader, 2009a]

Input: : Tensor 𝒳 ∈ R𝐼×𝐽×𝐾 ◁ Ground Truth Tensor
stopping criterion

Output: : A, B, C ◁ Factor matrices
Initialise factor matrices A ∈ R𝐼×𝑅, B ∈ R𝐽×𝑅, C ∈ R𝐾×𝑅

repeat
A = 𝒳[0][(B⊙C)𝑇 ]†

B = 𝒳[1][(A⊙C)𝑇 ]†

C = 𝒳[2][(A⊙B)𝑇 ]†

for 𝑖 = 1 . . . 𝑁 do
normalise columns of 𝒳[𝑖]

define 𝜆𝑖 as the norm
end for

until stopping criterion is met.

2.2.2 Tucker Decomposition

Another tensor decomposition, called the Tucker decomposition proposed by [Tucker,

1966c] — is an extension of CPD. Since the CPD considers only outer products

between factor elements with the same indexes, the Tucker representation adds

products of vectors with all possible indexes to the approximation sum. In Fig-

ures 2-2,2-3, it is seen that the Tucker decomposition has a dense core tensor 𝒢,

while the CPD assumes only a diagonal part of it. This difference allows Tucker to

more accurately approximate the object due to the more extensive set of possible

elements in sum. However, the Tucker representation has a core tensor with the

same dimension as the original compressing object. If the desired rank needs to be

larger, it can raise the curse of the dimensionality problem.

𝒳 ≈
𝑅1∑︁

𝑟1=1

· · ·
𝑅𝑁∑︁

𝑟𝑁=1

𝑔𝑟1,𝑟2..𝑟𝑁 𝑏
(1)
𝑟1
∘ 𝑏(2)𝑟2

· · · ∘ 𝑏(𝑛)𝑟𝑛 = 𝒢 ×1 B
(1) ×2 B

(2) · · · ×𝑁 B(𝑁) (2.3)

Here, 𝑁 >= 2 is an integer that defines the number of dimentions in the initial

tensor, B(𝑛), 𝑛 = 1, 𝑁 is one of the 𝑁 factor matrices, 𝒢 is a non-diagonal core

tensor.
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Figure 2-3: The scheme of Tucker decomposition in a case of 3-d tensor. The source
of the image: Cichocki et al. [2016].

2.2.3 Tensor Train Format

Tensor Train (TT) decomposition [Oseledets, 2011a] represents a 𝑁 order object as

a sequence of third-order tensors 𝐺1, . . . , 𝐺𝑁 , adjacent to each other along one of

the axes 2-4. The TT format generalises the principle of low-rank approximation

to objects of higher dimensions. A tensor 𝒳 ∈ R𝐼1×𝐼2×···×𝐼𝑁 is represented in the

Tensor Train (TT) format if each element of 𝒳 can be computed as:

𝒳 (𝑖1, . . . , 𝑖𝑁) ≈
𝑅1∑︁

𝛼1=1

· · ·
𝑅𝑁−1∑︁

𝛼𝑁−1=1

𝒢(1)(𝛼0, 𝑖1, 𝛼1)𝒢(2)(𝛼1, 𝑖2, 𝛼2) . . .𝒢(𝑁)(𝛼𝑁−1, 𝑖𝑁 , 𝛼𝑁)

(2.4)

Here 𝒢(𝑘) ∈ R𝑅𝑘×𝐼𝑘×𝑅𝑘+1 , 𝑘 = 1, 𝑁 , are 3-dimentional core tensors (cores) of TT

decomposition, 𝑁 >= 2 is a number of dimentions in the initial tensor 𝒳 . The

𝑅1, . . . , 𝑅𝑘 are called TT-ranks of the decomposition, given that 𝑅1 = 𝑅𝑘 = 1,

𝑅 = max
𝑘

(𝑅1, . . . , 𝑅𝑘). The index 𝛼𝑘 goes from 1 to the corresponding rank 𝑅𝑘 and

is related to the corresponding dimension of the kernel, 𝛼0 and 𝛼𝑁 are always equal

to 1.

In particular, the element 𝒳 (𝑖1, 𝑖2 . . . 𝑖𝑁) is effectively the product of 2 vectors

and 𝑁 − 2 matrices as depicted in Fig. 2-4:

𝒳 (𝑖1 . . . 𝑖𝑁) = 𝒢(1)[𝑖1, :]⏟  ⏞  
1×𝑅1

𝒢(2)[:, 𝑖2, :]⏟  ⏞  
𝑅1×𝑅2

. . .𝒢(𝑁−1)[:, 𝑖𝑁−1, :]⏟  ⏞  
𝑅𝑁−2×𝑅𝑁−1

𝒢(𝑁)[:, 𝑖𝑁 ]⏟  ⏞  
𝑅𝑁−1×1

, (2.5)

, where 𝑅𝑘 - the 𝑘 − 𝑡ℎ rank of the TT decomposition, 𝒢(𝑘)[:, 𝑖𝑙, :] - a slice of 𝑘-th

core tensor along the second axis, when all elements of the tensor are considered,

whose second index is equal to 𝑖𝑙.
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Figure 2-4: The example of computation tensor elements via it’s TT representation.
Source of the image: [Xu et al., 2022].

Regarding the enquiry about the existence of a TT-decomposition, the following

statement remains valid [Oseledets, 2011b]:

Theorem 1. If for each unfolding 𝒳[𝑘] of a 𝑑-dimensional tensor 𝒳 , where 𝑘 =

1, . . . , 𝑑, rank 𝒳[𝑘] = 𝑅𝑘, then there exists a decomposition of the form 2.4 with

TT-ranks not higher than 𝑅𝑘.

In other words, this statement, first, means the possibility of obtaining a TT

decomposition with ranks 1 for any data. Second, it determines the specific values

of the cores’ ranks.

In the proposed expansion, the cores store 𝑅(𝐼1+ 𝐼𝑀)+𝑅2
∑︀𝑁−1

𝑘=2 𝐼𝑘 parameters,

while the original tensor contains
𝑀∏︀

𝑚=1

𝐼𝑚. This can be cost-effective at low ranks

but not so beneficial at high ranks due to quadratic complexity.

The most common algorithms for obtaining the TT decomposition are called

TT-SVD [Oseledets, 2011b] and are generally based on the operation of the gaining

𝑘-th core. In this operation, we take an unfolding of a 𝑑- shaped tensor 𝒞 along the

dimension 𝑘 and apply truncated SVD to it, where the truncation rank 𝑟 is 𝑟𝑘,

the 𝑘-th rank of the desired TT decomposition. The matrix U forms the 𝑘 core

and multiplication ΣVT acts as object 𝐴 for further step. The entire procedure is

described in Algorithm 2.
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Algorithm 2 TT-SVD [Oseledets, 2011b]
Input: 𝑑-dimentional tensor 𝒜;

Output: Cores 𝒢1, . . . ,𝒢𝑑 of TT decomposition of 𝒜

Temporary tensor 𝒞 = 𝒜, 𝑟0 = 1

for 𝑘 = 1 to 𝑑− 1 do

C := reshape(𝒞, [𝑟𝑘−1𝑛𝑘,
prod(C.shape)

𝑟𝑘−1𝑛𝑘
]

𝑟𝑘-truncated SVD: C ≈ UΣrkV
T

𝒢𝑘:= reshape(U, [𝑟𝑘−1, 𝑛𝑘, 𝑟𝑘])

C:= Σ𝑟𝑘𝑉
𝑇

end for

𝒢𝑘 = C

Thus, the TT format potentially captures all the advantages of the previous

methods:

• We can represent every tensor in a TT form, since SVD always exists for

complex matrices.

• It can have a large compression ratio.

• It doesn’t suffer from the course of the dimensionality since the maximum

dimension of cores is 3.

The disadvantages of this method include the fact that, in practice, it is rarely

possible to obtain a decomposition with minor ranks, and the memory occupied by

the TT representation grows quadratically with 𝑅.

2.2.4 Tensor Train Matrix Format

The method is based on the representation of a matrix as a d-dimensional tensor and

applying the TT-decomposition to given object is called Tensor Train Matrix (TTM)

format. Tha main idea of this representation comes from the fact presented in [Loan

and Pitsianis, 1992]. This work shows that for matrix the Kronecker minimization

problem 𝑚𝑖𝑛||A−B⊗C||𝐹 may be transferred to a 1-rank approximation problem
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𝑚𝑖𝑛||Ã − 𝑣𝑒𝑐(B)𝑣𝑒𝑐(C)𝑇 ||𝐹 by rearranging blocks of 𝐴 by vectorization operation

vec:

X ∈ R𝑝×𝑞 → 𝑣𝑒𝑐(X) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑋(1 : 𝑝, 1)

𝑋(1 : 𝑝, 2)
...

𝑋(1 : 𝑝, 𝑞)

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R𝑝𝑞 (2.6)

The vec opearation can be used to express 𝑚𝑖𝑛||A−B⊗C||𝐹 the to rank-1 ap-

proximation problem with the amount of disperancy stayed remain. More precisely,

⃦⃦⃦⃦
⃦⃦
⎡⎣ A1,1 A2,1

A1,2 A2,2

⎤⎦−B⊗C

⃦⃦⃦⃦
⃦⃦
𝐹

=

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑎1,1 𝑎2,1

𝑎1,2 𝑎2,2

𝑎3,1 𝑎4,1

𝑎3,2 𝑎4,2

𝑎1,3 𝑎2,3

𝑎1,4 𝑎2,4

𝑎3,3 𝑎4,3

𝑎3,4 𝑎4,4

⎤⎥⎥⎥⎥⎥⎥⎦−
⎡⎣ 𝑏1,1 𝑏2,1

𝑏1,2 𝑏2,2

⎤⎦⊗
⎡⎣ 𝑐1,1 𝑐2,1

𝑐1,2 𝑐2,2

⎤⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
𝐹

(2.7)

is equivalent to

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑣𝑒𝑐(A11)

𝑇

𝑣𝑒𝑐(A21)
𝑇

𝑣𝑒𝑐(A31)
𝑇

𝑣𝑒𝑐(A41)
𝑇

⎤⎥⎥⎥⎥⎥⎥⎦− 𝑣𝑒𝑐(B)𝑣𝑒𝑐(C)𝑇

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
𝐹

=

=

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑎1,1 𝑎2,1

𝑎3,1 𝑎4,1

𝑎1,2 𝑎2,2

𝑎3,2 𝑎4,2

𝑎1,3 𝑎2,3

𝑎3,3 𝑎4,3

𝑎1,4 𝑎2,4

𝑎3,4 𝑎4,4

⎤⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎣

𝑏11

𝑏21

𝑏12

𝑏22

⎤⎥⎥⎥⎥⎥⎥⎦ [𝑏11, 𝑏21, 𝑏12, 𝑏22]

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
𝐹

,

(2.8)

where || ||𝐹 is Frobenius norm and the right parts of equations obviously represent

a product and give an object of rank 1.
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This fact can also be interpreted as representing a 2-dimensional Kronecker ma-

trix A as a 4-dimensional array 𝒜. The axes in this array have the following mean-

ings: row of an element in a matrix block, column of an element in a block, row

of a block in a "big" block matrix, column of a block in this matrix. Vectorization

operation changes the order element indexing, and thus, changes the order of these

axes:

𝒜 = 𝑝𝑒𝑟𝑚𝑢𝑡𝑒(𝒜, [1, 3, 2, 4]) (2.9)

Oseledets [2010] generalises it to the 𝑑-dimensional case - in fact, a block matrix

was created 𝑑 times from the structure obtained in the previous step. At the first

step, this structure was a two-dimensional 2 × 2 matrix; at the second step, it

was a 4 × 4 tensor with 4 dimensions. The resulting object ℬ has dimensions

2𝑑 × 2𝑑 and 𝑑 axes that determine the position of the element in superstructured

blocks. Vectorisation of elements inside the "initial" block matrix is equivalent to

the following permutation:

𝒞 = 𝑝𝑒𝑟𝑚𝑢𝑡𝑒(ℬ, [1, 𝑑
2
+ 1, 2,

𝑑

2
+ 2, . . . ,

𝑑

2
, 𝑑]) (2.10)

It is interesting to note that the compression ranks depend on the ordering of dimen-

sions; that is, the tensor can be "compressible" for one permutation of dimensions

and not compressible for another. The rank 𝑟𝑘 of decomposition is determined as

the rank of the k-unfolding matrix 𝐴𝑘 = 𝒜(𝑖1, 𝑖2, . . . , 𝑖𝑘, 𝑖𝑘+1, . . . , 𝑖𝑑) as described in

Section 2.2.3.

Having 2𝑑-dimention tensor 𝒞, where the adjacent dimensions are pairwise linked

(they determine the position of the pseudo-element in the matrix of level 𝑘 ∈

1, , . . . 𝑑). For element 𝑐(𝑖1, 𝑗1, . . . 𝑖𝑑, 𝑗𝑑) pair (𝑖𝑘, 𝑗𝑘) defines the multiindex, and 𝒞 has

efficient dimentionality 𝑑 and can be decomposed into TT format (see Section 2.2.3)
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with 𝑑 cores:

𝒳 (𝑖1, 𝑗1, . . . , 𝑖𝑑, 𝑗𝑑) ≈
𝑅1∑︁

𝛼1=1

· · ·
𝑅𝑑−1∑︁

𝛼𝑑−1=1

𝐺(1)(𝛼0, 𝑖1, 𝑗1, 𝛼1)𝐺
(2)(𝛼1, 𝑖2, 𝑗2, 𝛼2) . . .

𝐺(𝑁)(𝛼𝑑−1, 𝑖𝑑, 𝑗𝑑, 𝛼𝑑).

(2.11)

Note that the cores turn out to be 4-dimensional instead of 3-dimensional and are

indexed as 𝐺(𝑘)(𝛼𝑘−1, 𝑖𝑘, 𝑗𝑘, 𝛼𝑘).

2.3 Knowledge Graphs

Albert
Einshtein

German
Empire

Nobel Prize
in Physics

Physics

The Theory
of Relativity

Born In Expert In

Son Of

Hermann
Einshtein

Proposed
By

Theory
Of

Award In

<Albert Einshtein, Born In, German Empire>
<Albert Einshtein, Son Of, Hermann Einshtein>

<Albert Einshtein, Expert In, Physics>

<The Theory of Relativity, Theory Of, Physics>
<Albert Einshtein, Winner Of, Nobel Prize In Physics>

<Nobel Prize In Physics, Award In, Physics>

Winner Of
<The Theory of Relativity, Proposed By , Albert Einshtein>Proposed By

Figure 2-5: Examples of triples in a Knowledge Graph. Source of the image: Ji et al.
[2020].

A Knowledge Graphs (KG) is a well-organised framework to represent factual

information, including entities, relationships, and semantic descriptions. Entities

refer to both tangible objects and abstract concepts, while relationships depict the

connections between entities. Furthermore, entities and their relationships are char-

acterised by types and properties that possess clearly defined meanings. Although

the terms "knowledge graph" and "knowledge base" are essentially interchangeable,

there exists a subtle distinction between them. The knowledge graph involves a

structural representation of information, while a knowledge base is a technology used

to store complex structured and unstructured information. Each unit of knowledge

graph can be succinctly expressed as a factual triple in the form of (subject, relation,

object). As an example, we can consider (Albert Einstein, WinnerOf, Nobel Prize),

as depicted in Figure 2-5.

Numerous open knowledge bases and ontologies have been published, such as

WordNet [Miller, 1992], DBpedia [Auer et al., 2007], YAGO [Suchanek et al.,
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2007], and Freebase [Bollacker et al., 2008b]. Additionally, several related datasets

specifically designed for Machine Learning (ML) tasks are available, including Word-

Net, DBpedia, YAGO, and Freebase.

The information contained in knowledge graphs can be very useful for NLP ap-

plications. A knowledge graph embedding (KGE) is a representation of KG elements

in a continuous vector space. The objective of learning this representation is to sim-

plify the manipulation of graph elements (entities, relations) for downstream tasks,

such as question-answering and logical reasoning problems.

Knowledge-aware models gain significant advantages by incorporating diverse

sources of information and comprehensive semantics; common sense knowledge al-

lows us to get more complete representations of language elements.

2.4 Transformer-based Language Models

In a general sense, modelling something means predicting probability of some action

in a given context. Language model (LM) estimates the probability of a given

linguistic unit - which is called token and can be word, parts of word or char symbol

- relative to surrounding or preceding text. LM generates a probability distribution

of the appearance of each possible token in the current context. To estimate the

language model, the perplexity metric is usually used. Perplexity is related to cross-

entropy and is defined as follows:

𝑝𝑝𝑙 = 𝑒−
1
𝑛

∑︀𝑛
𝑖=1 log 𝑝(𝑦𝑖|𝑐𝑜𝑛𝑡𝑒𝑥𝑡) (2.12)

,where 𝑛 - number of token in text, 𝑝(𝑦𝑖|𝑐𝑜𝑛𝑡𝑒𝑥𝑡) - probability of the given token

under its context.

There are various types of language models, including statistical-based models,

recurrent neural network models, and models that incorporate attention mecha-

nisms.

Figures presented below 2-7, 2-8 illustrate the attention mechanism of Equa-

tion 2.13. In this representation, the text is treated as a sequence of tokens, with
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Figure 2-6: The scheme of the GPT-2 model.
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each token being transformed into a vector representation. These vectors are then

projected onto the space of queries (Q), keys (K), and values (V) through trainable

matrices. A similarity function sim is applied to estimate the proximity of the query

of the current token with the keys of all other elements. The similarity scores define

weights that determine the importance of each part when combined. The resulting

sum is then concatenated with the values of the current token.

X Q

=

X K
=

X
V

=

Figure 2-7: Visualization of Query, Key and Value claculation inside the transformer
block.

X Q

=

X K
=

X
V

=

Q

V

=

Z
softmax( )

Figure 2-8: Visualization of attention calculation inside the transformer block.

𝑎𝑡𝑡𝑛(Q,K,V) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
Q,KT√︀

(𝑑)
)V,

𝑎𝑡𝑡𝑛(𝑄,𝐾𝑖, 𝑉𝑖) =

∑︀𝑝
𝑗=1 𝑠𝑖𝑚(𝑄𝑖, 𝐾𝑗)𝑉𝑗∑︀𝑝
𝑗=1 𝑠𝑖𝑚(𝑄𝑖, 𝐾𝑗)

,

(2.13)

Transformer models possess an architecture composed of distinct modules, which

is the reason behind their name "Transformers". Each module typically comprises

an Attention layer, followed by a pair of consecutive Fully Connected (FC) layers.

These layers first reduce the size of the input vector and then restore them to their
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original dimensions with nonlinearities incorporated between them. The GPT-2

decoder transformer scheme with the corresponding sizes of the layer weights and

input activations is shown in Figure 2-6.

The variances in different model architectures often lie in the number of modules

they possess. For example, the BERT [Devlin et al., 2019] model consists of 16

blocks, while the GPT-2 [Radford et al., 2019a] model has 12, 24, or 36 blocks,

depending on the specific variant (small, medium, or large). These models also

differ in their training procedures. Encoder-based models such as BERT aim to

preserve language information and are trained to understand context by masked

language modelling and predicting subsequent sentences. Enhanced versions of the

BERT model, such as RoBERTa [Liu et al., 2019] and others, feature improved

data and learning processes. On the other hand, decoder-based models (GPT)

are utilised for sequence generation tasks and trained using language modelling

objectives, specifically generating the next token.
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Chapter 3

Efficient Knowledge Embedding

using Canonical Polyadic

Decomposition

This Chapter is based on the paper “MEKER: Memory Efficient Knowledge Embed-

ding Representation for Link Prediction and Question Answering” (cf. Section “Pub-

lications” at page 4).

In this chapter, we present MEKER: Memory Efficient Knowledge Embedding

Representation model for Knowledge Graphs (KG) embeddings. Knowledge graphs

are symbolically structured storages of facts. The KG embedding contains concise

data used in NLP tasks that require implicit information about the real world.

Furthermore, the size of KG that may be useful in real Natural Language Processing

(NLP) applications is enormous, and the creation of embedding over it has memory

cost issues. We represent a KG as a 3rd-order binary tensor and move beyond the

standard Canonical Polyadic Decomposition (CPD) [Hitchcock, 1927] by using a

generalised version specific to the data [Hong et al., 2020]. The generalisation of

the standard CP-ALS algorithm allows obtaining optimization gradients without

a Pytorch computational graph. It reduces the memory needed for training while

providing computational benefits. MEKER is a memory-efficient KG embedding

model that yields SOTA-comparable performance on link prediction tasks and KG-

based question answering.
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3.1 Introduction

NLP models have made great strides in recent years. For instance, language models

can easily generate fluent human-like text. However, some applications like ques-

tion answering and recommendation systems need correct and trustworthy answers.

Large language models like GPT-3 [Brown et al., 2020] or ChatGPT 1 are trained to

maximize human preferences in a text and often hallucinate in situations that need

trustworthy answers [Yang et al., 2023]. The presence of this limitation renders the

models unsuitable for implementation in the mentioned systems.

To avoid hallucinations, it is appropriate to leverage a KG [Bollacker et al.,

2008a, Rebele et al., 2016] as a structured repository of essential facts about the

real world. For convenience, the knowledge graph can be represented as a set of

triples. A triple is created by two entities, subject 𝑒𝑠 and object 𝑒𝑜 — and a relation

r between them. As a whole, the triple describes the fact.

For efficient use of information from KG, there is a need for low-dimensional

embedding of graph entities and relations. KG embedding models usually use a

standard Neural Networks (NN) backward mechanism for parameter tuning, dupli-

cating its memory consumption. Hence, existing approaches to embedding learning

have substantial memory requirements and can be deployed only on small datasets

under a single GPU card. Processing large KGs appropriate for the custom down-

stream task is a challenge.

There are several libraries designed to solve this problem. Framework LibKGE

[Ruffinelli et al., 2020] allows the processing of large datasets by using sparse embed-

ding layers. Despite the memory saving, sparse embedding has several limitations,

for example, in the PyTorch library, they are not compatible with several optimiz-

ers. PyTorch-BigGraph [Lerer et al., 2019] operates with large knowledge graphs by

dividing them into partitions - distributed subgraphs. Subgraphs need a place for

storing, embedding models need modifications to work with partitions and perform

poorly.

One of contributions of thesis is a memory-efficient approach to learning Knowl-
1https://openai.com/blog/chatgpt
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edge Graph embeddings MEKER (Memory Efficient Knowledge Embedding Rep-

resentation). It allows more efficient KG embedding learning, maintaining perfor-

mance comparable to state-of-the-art models. MEKER leverages generalized CPD [Hong

et al., 2020], which allows for a better approximation of given data and analytical

computation of the parameter gradient. MEKER is evaluated on a link prediction

task using several standard datasets and large datasets based on Wikidata. Experi-

ments show that MEKER achieves highly competitive results on these two tasks. To

demonstrate downstream usability, we create a Knowledge Base Question Answering

system Text2Graph and use embeddings in it. The system with MEKER embed-

dings performs better as compared to other KG embeddings, such as PTBG [Lerer

et al., 2019].

3.2 Related Work

There are three types of approaches for learning KG embedding: distance-based,

tensor-based, and deep learning-based models. The first group is based on the

assumption of translation invariance in the embedding vector space. In model

TransE [Bordes et al., 2013] relations are represented as connection vectors be-

tween entity representations. TransH [Wang et al., 2014] implies a relation as a

hyperplane onto which entities are projected. QuatE [Zhang et al., 2019] extends

the idea with hypercomplex space and represents entities as embeddings with four

imaginary components and relations as rotations in the space.

Tensor-based models usually represent triples as a binary tensor and look for

embedding matrices as factorization products. RESCAL [Nickel et al., 2011] em-

ploys tensor factorization as DEDICOM [Harshman et al., 1982], which decomposes

each tensor slice along the relationship axis. DistMult [Yang et al., 2015] adapts

this approach by restricting the matrix of relational embedding to the diagonal. On

the one hand, it reduces the number of relation parameters, on the other hand, it

losses the possibility of describing asymmetric relations. The ComplEX [Trouillon

et al., 2016] represents the object and subject variants of a single entity as complex

conjugate vectors. It combines tensor-based and translation-based approaches and
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solves the asymmetric problem. TuckER [Balazevic et al., 2019] uses Tucker de-

composition [Tucker, 1966c] to find representation of elements of knowledge graphs.

This work can also be considered a generalization of several previous link prediction

methods.

Standart CPD [Hitchcock, 1927] decomposition in the link prediction task does

not show outstanding performance [Trouillon et al., 2017]. Several papers address

this problem by improving the CPD approach. SimplIE [Kazemi and Poole, 2018]

states that low performance is due to different representations of subject and object

entity and deploys CPD with dependent learning of subjects and objects matrices.

CP-N3 [Lacroix et al., 2018] highlights the statement that the Frobenius norm reg-

ularizing is not fit for tensors of order more than 3 [Cheng et al., 2016] and proposes

a Nuclear p-norm instead of it. Our approach also uses CPD with enhancement.

We consider remark from SimplIE and set the object and subject representations

of one entity to be equals. At the same time, within the local step of the CPD

algorithm, the matrices of subjects and objects consist of different elements and are

different (see subsection 3.4.1). In contradiction to CP-N3, we do not employ a

regularizer to improve training, but change the objective. Instead of squared error,

we use logistic loss, which is appropriate for one-hot data. We abandon the gradient

calculation through the computational graph and count the gradient analytically,

which makes the training process less resource-demanding.

Subjects

Ob
jec

ts

Relations

Figure 3-1: The scheme of CPD in case of informational embedding.

Approaches based on Deep Learning convolutions and attention mechanisms

ConvE, GAT, GAAT [Dettmers et al., 2017, Nathani et al., 2019, Wang et al.,

2020] achieve high performance in link prediction. Besides, they have their disad-

vantages - it necessitate more time and memory resources than other types of models
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and usually needs pre-training.

3.3 MEKER: Memory Efficient Knowledge Embed-

ding Representation

Our approach to entity embeddings relies on generalized CPD [Hitchcock, 1927].

Namely, 𝑅-rank CPD approximates an N-dimensional tensor as a sum of 𝑅 outer

products of 𝑁 vectors. Every product can also be viewed as a rank-1 tensor. This

approximation is described by the following formula: 𝒳 ≈ ℳ = [|A,B,C|], where

𝒳 ∈ R𝐼×𝐽×𝐾 is original data and ℳ ∈ R𝐼×𝐽×𝐾 is its approximation. Factors have

the following shape A ∈ R𝐼×𝑅, B ∈ R𝐽×𝑅, C ∈ R𝐾×𝑅. The scheme of CPD applied

to the KG elements representation task is in Figure 3-1. We set matrix A equal to

matrix 𝐶 and simultaneously corresponding to subject and object entities.

3.3.1 Generalization of CPD

Following the determination of the approximation type, the next task is to find the

parameters of the factor matrices that best match the ground truth data. [Battaglino

et al., 2018, Dunlavy et al., 2011] describe the most widely used CPD algorithm, CP-

ALS. The update rules for the factor matrices are derived by alternating minimizing

squared error (MSE) loss between factor matrix, multiply by Khatri–Rao product

of rest matrices and the corresponding unfolding of the tensor. [Hong et al., 2020]

demonstrates that MSE corresponds to Gaussian data and is a particular case of

a more general solution for an exponential family of distributions. In general, the

construction of optimal factors originates from the minimisation problem:

min𝐹 (ℳ;𝒳 ) ≡
∑︁
𝑖∈Ω

𝑓(𝑥𝑖,𝑚𝑖),

𝑓(𝑥,𝑚) ≡ log 𝑝(𝑥|𝑙−1(𝑚)),

(3.1)

where 𝐹 - tensor consists of values of elementwise loss 𝑓 between elements in intial

tensor 𝒳 and restored tensorℳ , Ω - set of indices of known elements of 𝒳 , 𝑥𝑖 and
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𝑚𝑖 - the 𝑖-th elements of 𝒳 and ℳ, respectively. The 𝑙 is the link function, the

artefact of the canonical representation of the exponential family of distributions,

which relates to the expected value of the study variable. We also introduce 𝒴 -

the tensor of derivatives of the elementwise loss with the same size as 𝒳 and filled

by zeros for 𝑖 ̸∈ Ω. The data in the sparse one-hot triple tensor has a Bernoulli

distribution. The link function for Bernoulli is 𝑙(𝜌) = 𝑙𝑜𝑔(𝜌/(1− 𝜌)) and associated

probability is 𝜌 = exp(𝑚)(1 − exp(𝑚)) so the loss function and elements of 𝒴 are

defined as follows:

𝑓(𝑥𝑖,𝑚𝑖) = log(1 + exp𝑚𝑖)− 𝑥𝑖𝑚𝑖,

𝑦(𝑥𝑖,𝑚𝑖) =
𝜕𝑓(𝑥𝑖,𝑚𝑖)

𝜕𝑚𝑖

=
exp𝑚𝑖

1 + exp𝑚𝑖

− 𝑥𝑖.
(3.2)

Hong et al. [2020] derives partial derivatives of 𝐹 w.r.t. factor matrices and

presents gradients G of it in a form similar to standard CPD matrix update formulas:

GA = 𝒴[0](B⊙C)𝑇 †,

GB = 𝒴[1](A⊙C)𝑇 †,

GC = 𝒴[2](A⊙B)𝑇 †,

(3.3)

where †, ⊙ and 𝒳[n] are defined in a Chapter 2. The importance of representa-

tion (3.1) is that we can calculate the gradients via an essential tensor operation

called the matricized tensor times Khatri-Rao product (MTTKRP), implemented

and optimized in most programming languages. Algorithm 3 describes the procedure

for computing factor matrices gradients (3.3) in a Bernoulli distribution case (3.2).

3.3.2 Implementation Details

We use PyTorch [Paszke et al., 2019a] to implement the MEKER model. We set the

object and subject factors equal and correspond to matrix A for the decomposition

of the one-hot KG triplet tensor. Sparse natural and reconstructed tensors are

stored in Coordinate Format as a set of triplets (COO). We combine actual triples

and sampled negative examples in batches, and process them. The corresponding

pieces of the ground truth tensor and current factor matrices are cut out for each
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batch. Then the pieces are sent to Algorithm 3 for calculation of the gradients of

the matrix elements with the appropriate indexes. Algorithm 4 is an extension of

Algorithm 1 in Chapter 2 and describes the pseudocode of the factorisation KG

tensor using GCP gradients.

We train the MEKER model using Bayesian search optimisation to obtain the

optimal training parameters. We use the Wandb.ai tool Biewald [2020] for experi-

ment tracking and visualisation. Table 3.3 shows the best combinations of training

parameters for the proposed datasets.

Baselines As a comparison, we deploy related link prediction approaches that

meet the following criteria: 1) it should learn the KG embedding from scratch,

2) it should report high performance. We use the Tucker, Hyper, ConvKB, and

QuatE implementations from their respective repositories. For TransE, DistMult,

ComplEx, and ConvE, we use LibKGE Ruffinelli et al. [2020] library with the best

parameter setting to reproduce every model. We run each model five times for each

observed value and provide means and sample standard deviation.

Algorithm 3 GCP GRAD Bernuilli
Input: 𝒳 ◁ Ground Truth Tensor
A, B, C ◁ Factor matrices

Output: ℱ , GA, GB, GC

ℳ = {A,B,C} ◁ Model Restored tensor

𝐹 =
∑︀

𝑖 𝑓(𝑥𝑖,𝑚𝑖) =
∑︀

𝑙𝑜𝑔(1 + 𝑒𝑚𝑖 )− 𝑥𝑖𝑚𝑖 ◁ Loss

𝒴 =
∑︀

𝑖
𝛿𝑓(𝑥𝑖,𝑚𝑖)

𝛿𝑚𝑖
= ◁ Derivative tensor

=
∑︀ 1

1+𝑒(−𝑚𝑖)
− 𝑥𝑖

GA = 𝒴[0](B⊙C)𝑇 †. ◁ Element-wise gradient for A

GB = 𝒴[1](A⊙C)𝑇 † ◁ Element-wise gradient for B

GC = 𝒴[2](A⊙B)𝑇 † ◁ Element-wise gradient for C
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Algorithm 4 Factorization of the KG tensor using GCP gradients
Input: 𝒳 ◁ Ground Truth Tensor
Triplets ◁ List of triplets
𝐿𝑅 ◁ learning rate
𝑅 ◁ Desired size of embeddings
𝑁 ◁ Number of epoch

Output: A, B ◁ Updated factor matrices

Initialize factor matrices A ∈ R𝑅×𝑛𝑒 , B ∈ R𝑅×𝑛𝑟

for 𝑖 = 1 . . . 𝑁 do
for [inds𝑎, inds𝑏, inds𝑐] in Triplets do
𝒳𝑏𝑎𝑡𝑐ℎ = 𝒳 [inds𝑎, inds𝑏, inds𝑐]
𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑙𝑜𝑠𝑠 = GCP_GRAD(𝒳𝑏𝑎𝑡𝑐ℎ,A[inds𝑎], B[inds𝑏], A[inds𝑐])
A[inds𝑎].grad = 𝑔𝑎
B[inds𝑏].grad = 𝑔𝑏
A[inds𝑐].grad = 𝑔𝑐
UPDATE(A, B, 𝐿𝑅)

end for
end for

3.4 Experiments on Standard Link Prediction Datasets

3.4.1 Experimental Settings

The link prediction task estimates the quality of KG embedding. Link prediction is

a classification that predicts whether a triple over graph element is true or not. The

scoring function Φ(𝑒𝑠, 𝑟𝑒𝑙, 𝑒𝑜) returns the probability of constructing a true triple.

We test our model on this task using standard link prediction datasets.

FB15k237 [Toutanova and Chen, 2015] is the dataset based on the FB15k

adapted Freebase subset, which contains triples with the most mentioned entities.

FB15k237 devised the method to select the most frequent relations and then filter

inversions from the test and the valid parts. The WN18RR [Bordes et al., 2013]

version of WN18 is devoid of inverse relations. WN18 is a WordNet database that

contains the senses of words, as well as the lexical relationships between them. All

of these data are presented in English. Table 3.4 shows the number of entities,

relations, and train-valid-test partitions for each dataset used in the proposed work.

For evaluation, we obtain complementary candidates from the entity set for each

entity-relation pair from each test triple and estimate the probability score of the

input triple being true. The presence of an entity that really completes a triple,

among the candidates with the highest probability signifies a hit. The candidate
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Table 3.1: Link Prediction scores for various models on the FB15k237 and WN18RR
datasets. The embedding size is 200. The winner scores are highlighted in bold font,
and the second results are underlined. The group of models, marked by ⋆ is employed
using LibKGE framework.

Dataset FB15k237 WNRR18

Model MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

ConvKB Nguyen et al. [2018] 0.299 0.479 0.327 0.229 0.222 0.507 0.378 0.035
HypER Balazevic et al. [2018] 0.342 0.523 0.377 0.253 0.465 0.522 0.477 0.436
TuckER Balazevic et al. [2019] 0.345 0.541 0.389 0.261 0.465 0.526 0.478 0.436
QuatE Zhang et al. [2019] 0.361 0.554 0.401 0.271 0.482 0.572 0.496 0.436
CP-N3 Lacroix et al. [2018] 0.351 0.529 0.388 0.265 0.440 0.486 0.449 0.421

ConvE⋆ Dettmers et al. [2017] 0.337 0.521 0.368 0.238 0.428 0.505 0.449 0.393
TransE⋆ Bordes et al. [2013] 0.312 0.496 0.317 0.219 0.227 0.519 0.367 0.052
DistMult⋆ Yang et al. [2015] 0.333 0.518 0.367 0.241 0.451 0.522 0.463 0.416
ComplEx⋆ Trouillon et al. [2016] 0.339 0.526 0.372 0.247 0.475 0.547 0.481 0.436

MEKER 0.359 0.539 0.392 0.268 0.477 0.5447 0.488 0.437

Table 3.2: Sample Standard Deviation for Link Prediction scores on FB15k237 and
WN18RR datasets for different models. The embedding size is 200. These deviations
correspond to Table 3.1.

Dataset FB15k237 WNRR18

Model MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

ConvE 0.0058 0.0018 0.0016 0.0011 0.0018 0.0016 0.0016 0.0026
HypER 0.0004 0.0015 0.0007 0.0011 0.0019 0.0021 0.0030 0.0012

DistMult 0.0024 0.0027 0.0026 0.0023 0.0011 0.0014 0.0015 0.0010
ComplEx 0.0015 0.0014 0.0025 0.0013 0.0023 0.0031 0.0024 0.0027
TuckER 0.0012 0.0019 0.0009 0.0023 0.0012 0.0010 0.0011 0.0019

MEKER 0.0010 0.0014 0.0009 0.0015 0.0018 0.0026 0.0027 0.0026

ranking is performed with a filtered setting, which was first used in [Bordes et al.,

2013]. In a filtered setting, all candidates who completed a true triple in the current

step are removed from the set, except for the expected entity. We use Hit@1, Hit@3,

Hit@10 as evaluation metrics. We also use mean reciprocal rank (MRR) to ensure

that true complementary elements are ranked correctly.

Assumption of the Linearity In general, CPD assumes linearity in matrices

A, B, and C parameters. We must ensure that each of the three input matrices

is distinct. This requirement is met for the datasets considered in this thesis and

the proposed calculation conditions. Despite the fact that objects and subjects are

represented in the same matrix, in every batch step objects and subjects sets do not

intersect at any point, and matrices pieces A[𝑖𝑛𝑑𝑠𝑜𝑏𝑗], A[𝑖𝑛𝑑𝑠𝑠𝑢𝑏𝑗] are different. Fig-
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Table 3.3: The best hyperparameters of the MEKER.

Dataset FB15k237 WN18RR

Optimizer AdamW AdamW
LR 0.01 0.009
Batch Size 156 128
L2 reg 0.001 0.0
Number of negative 6 8
Step of decay LR 3 15
Gamma of decay LR 0.8 0.6

Table 3.4: Statistics of link prediction datasets (all for English language).

Number of Triplets
Dataset #ents #rels Train Valid Test

Fb15k237 14,541 237 27.2·104 17,535 20,466
WN18RR 40,943 11 8.6·104 30,034 3,134
Wiki4M 4,316·104 1,245 1,367·104 30,000 35,815

Wikidata5m 4,594·104 822 2,061·104 5,163 5,133

ure 3-2 shows a histogram of the number of intersections in the bathes of Fb15k237.

It indicates how frequently a given entity appears in one batch as both an object and

a subject role. From Figure 3-2 we can see that there are almost no intersections in

the majority of cases. At the same time, datasets with inverted relations (for exam-

ple, relations of the form award/nomenee, nomenee/award [Toutanova and Chen,

2015]) may not meet the linearity assumption in general. As a result, the proposed

method based on the GCP algorithm should be used with caution for datasets with

inversions.

Figure 3-2: Intersections of objects and subjects entities in FB15k237 training
batches.
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3.4.2 Link Prediction

Table 3.1 shows the mean value of the experiment on small datasets for the em-

bedding of size 200. The Hit@10 standard deviation for MEKER is 0.0034 for the

FB15k237 dataset and 0.0026 for the WNRR18 dataset. The table with deviations

from all experiments, comparable to Table 3.1, is in Table 3.2.

The best score belongs to the QuatE [Zhang et al., 2019] model due to its

highly expressive 4-dimensional representations. Among the remaining approaches,

MEKER outperforms its contestants’ over all metrics except for the Hit@10 - Tucker

model surpasses MEKER for Fb15k237, ComplEX by LibKGE for WNRR18. In gen-

eral, MEKER shows decent results comparable to strong baselines of Zhang et al.

[2019], Balazevic et al. [2019]. It is also worth noting that MEKER significantly im-

proves the MRR and Hit@1 metrics on Freebase datasets, while on the word sense,

according to the data, it has been enhanced in Hit@10.

Model efficiency in case of parameter size increasing Given a strong mem-

ory assumption, we can reduce the size of pre-trained MEKER embeddings by ten-

fold while losing only a few percent of performance.

Figure 3-3: MRR scores in dependence
of embedding ranks.

Figure 3-4: Hit@1 scores in dependence
of embedding ranks.

Figures 3-3 and 3-4 show MRR and Hit@1 scores for MEKER, TuckER, and

ComplEX models at various embedding sizes. Each model achieves a constant value

on both metrics around rank 100. For ranks 200 and 300, difference in performance

between the three models is approximately consistent for both metrics, with MEKER

scoring the highest on rank 20. It means that the number of MEKER parameters can
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be reduced while maintaining or improving quality. The quality loss is significant

for other presented models.

3.4.3 Memory Complexity Analysis

We show the space complexity of models mentioned in the current work in the right

column of Table 3.5. In the context of the Link Prediction task, all approaches

have asymptotic memory complexity 𝒪((𝑛𝑒 + 𝑛𝑟)𝑑), which is proportional to the

size of the full dictionary of KG elements, i.e. the embedding layer or look-up table.

Other detailes of the proposed models are less significant: the convolutional layers

are not very extensive. The implementation determines the amount of real memory

used by the model during the training process. The Neural Network backpropaga-

tion mechanism is used to tune parameters in the most number of related works.

Backpropagation in Figure 3-5 creates a computational graph in which all model

parameters are duplicated. It results in a multiplicative constant 2, insignificant for

a small dictionary but critical in a large one. To summarize, the following factors

should be taken into account to decrease MEKER’s required memory:

1. In the MEKER algorithm gradients are computed analytically.

2. MEKER does not have additional neural network layers (linear, convolutional,

or attention).

To measure GPU RAM usage, we run each considered embedding model on

FB15k-237 on a single GPU and print peak GPU memory usage within the created

process. The left column of a Table 3.5 demonstrates that MEKER has objective

memory complexity that is at least twice lower than that of other linear approaches.

This property reveals the possibility of obtaining representations of specific large

databases using a single GPU card.
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Figure 3-5: The scheme of the augmented computational graph of the Neural Net-
work.

Table 3.5: Memory, reserved in the PyTorch Framework during the training pro-
cess and theoretical approximation of given implementations’ complexity. On the
FB15k237 dataset, we train 200-size representations with a batch size of 128. 𝐿𝑖𝑛
denotes the number of output features in a linear layer, 𝑐𝑜𝑛𝑣 denotes the size of
convolutional layer parameters. The constant 𝑐 represents the number of different
layers.

Model GPU Memory Theoretical Approximation
Usage, MB of Space Complexity

TuckER 357 2 · ((𝑛𝑒 + 𝑛𝑟 + 𝑐 · 𝑙𝑖𝑛) · 𝑑)
HypER 208 2 · ((𝑛𝑒 + 𝑛𝑟 + 𝑐 · 𝑙𝑖𝑛) · 𝑑)
ConvKB 3 563 2 · ((𝑛𝑒 + 𝑛𝑟) · 𝑑+ 𝑐 · 𝑐𝑜𝑛𝑣)
ConvE 229 2 · ((𝑛𝑒 + 𝑛𝑟) · 𝑑+ 𝑐 · 𝑐𝑜𝑛𝑣)
ComplEX 252 2 · (𝑛𝑒 + 𝑛𝑟) · 𝑑
DistMult 174 2 · (𝑛𝑒 + 𝑛𝑟) · 𝑑
QuatE 2 367 2 · 4 · (𝑛𝑒 + 𝑛𝑑 + 𝑐 · 𝑙𝑖𝑛)
CP (N3) 138 2 · (𝑛𝑒 + 𝑛𝑟) · 𝑑

MEKER 79 ((𝑛𝑒 + 𝑛𝑟) · 𝑑)

3.5 Experiments on Large-Scale KG Datasets

3.5.1 Experimental Settings

To test the model on large KGs, we employ two WikiData-based datasets. The

first dataset in English, Wikidata5m [Wang et al., 2021]2, is selected due to the

presence of related works and reproducible baseline Ruffinelli et al. [2020]. This

dataset is created over the 2019 WikiData dump and contains elements with links

to informative Wikipedia pages. Our experiments use the transductive setting of

Wikidata5m — triplet sets to disjoint across training, validation, and test.
2https://deepgraphlearning.github.io/project/wikidata5m
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The second English-Russian dataset is formed since its suitability for the NLP

downstream task. We leverage KG-based fact retrieval over Russian Knowledge

Base Questions (RuBQ) Rybin et al. [2021] benchmark. This benchmark is a subset

of Wikidata entities with Russian labels. Some elements in RuBQ are not covered

with Wikidata5m, so we created a link-prediction Wiki4M dataset over RuBQ. We

select triples without literal objects and obtain approximately 13M triples across

4M entities (see Table 3.4). Wiki4M also fits the concept of multilingualism and

could be used in a cross — lingual transfer or few-shot learning.

Table 3.6: Unfiltered link prediction scores for MEKER and PyTorch-BigGraph
approaches for Wiki4M and Wikidata5m datasets and memory needed in leveraging
every model. Storage means additional memory demanded for auxiliary structures.
Batch size 256. Here “RAM” is GPU RAM or main memory RAM if GPU limit of
24 GB is reached. Sparse means sparse embeddings. Models without sparse mark
employ dense embeddings matrix.

Model MRR Hit@1 Hit@3 Hit@10 Memory, GB Storage, GB

English: Wikidata5m dataset

PTBG (ComplEX) 0.184 0.131 0.210 0.287 45.15 9.25
PTBG (TransE) 0.150 0.091 0.176 0.263 43.64 9.25
LibKGE sparse (TransE) 0.142 0.153 0.211 0.252 33.29 0.00
LibKGE sparse (ComplEX) 0.202 0.160 0.233 0.316 21.42 0.00
MEKER (ours) 0.211 0.149 0.238 0.325 22.27 0.00

Russian: Wiki4M dataset

PTBG (ComplEX) 0.194 0.141 0.212 0.293 42.83 9.25
LibKGE sparse (TransE) 0.183 0.126 0.191 0.275 26.75 0.00
LibKGE sparse (ComplEX) 0.247 0.196 0.275 0.345 20.22 0.00
MEKER (ours) 0.269 0.199 0.303 0.410 21.04 0.00

3.5.2 Link Prediction

We embed the datasets for ten epochs on a 24.268 Gb GPU card with the following

model settings: LR 2.5 · 10−4, increasing in 0.5 steps every 10 epoch, batch size 256,

number of negative samples 4 for Wiki4M and 2 for Wikidata5m.

As a comparison, we use the PyTorch-BigGraph large-scale embedding sys-

tem [Lerer et al., 2019]. PyTorch-BigGraph modifies several traditional embed-

ding systems to focus on the effective representation of KG in memory. We select

ComplEX and TransE and train graphs for these embedding models, dividing large

datasets into four partitions. With a batch size of 256, the training process takes 50

epochs.
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We also deploy LibKGE [Ruffinelli et al., 2020] to evaluate TransE and ComplEX

approaches. For ComplEX model training, we use the best parameter configuration

from the repository, for TransE, we obtain a set of training parameters by grid

search.

Hyperparameters iterate over the following set: optimizer type {Adam, AdamW,

SGD}, learning rate {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05},

batch size {64, 128, 256, 512}, number of negative samples per positive {2, 4, 5, 6},

L2 regularizer {0.0, 0.001, 0.01, 0.05, 0.1}. For SGD, we switch Nesterov momentum

between {True, False} and set momentum value to {0.8, 0.9, 0.99}. We also vary

learning rate decay in {0.2, 0.5, 0.8} in every {2, 8, 10} steps.

The final learning rate for TransE is 0.5, decaying in factor 0.45 every 5 steps

and train model in 100 epochs. In both cases, we use sparse embedding in the

corresponding model setting and batch size of 256. Models from both wrappers that

did not fit in 24 GB, we train on the CPU.

Embedding sets, yielded by these experiments, we then test on the link pre-

diction task. We provide scoring without filters because the partition-based setup

of PyTorch-BigGraph does not support filtering evaluation. Tables 3.6 shows that

MEKER significantly improves the results of PyTorch-BigGraph models across all

proposed metrics. The ComplEX model with sparse embedding, fine-tuned by

LibKGE, gives results almost approaching the MEKER and exceeding the Hit@1 in

Wiki4M. The right part of Tables 3.6 shows that the baseline approaches consume

twice as much memory as MEKER, but sparse ComplEX slightly improves memory

consumption. TransE does not give such significant results as ComplEX.

3.5.3 Knowledge Base Question Answering (KBQA)

In this section, to further evaluate the proposed MEKER embeddings we test them

extrinsically on a KBQA task on two datasets for English and Russian.
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Experimental Setting

We perform experiments with two datasets: for English, we use the common dataset

SimpleQuestions [Bordes et al., 2015] aligned with Wiki4M KG3 (cf. Table 3.4),

and for Russian, we use the RuBQ 2.0 dataset [Rybin et al., 2021] which comes

with the mentioned above Wiki4M KG (cf. Table 3.4). RuBQ 2.0 is the Russian

language QA benchmark with multiple types of questions aligned with Wikidata.

For both SimpleQuestions and RuBQ, an answer is represented by a KG triple for

each question.

For training, we use a SimpleQuestions training set. For verification, we use a

SimpleQuestions and RuBQ 2.0 dataset test set for English and Russian, respec-

tively. These Q&A pairs provide ground truth answers linked to this exact version

of KG elements.

More specifically, in these experiments, we test answers to 1-hop questions, which

are questions corresponding to one subject and one relation in the knowledge graph

and take their object as an answer.

We want to leverage the KBQA model, which can process questions in English

and Russian. To measure the performance of a KBQA system, we measure the ac-

curacy of the answer / entity retrieved. This metric was used in previously reported

results on SimpleQuestions and RuBQ. If the subject of the answer triple matches

the reference by ID or name, it is considered correct.

KBQA methods

The key idea of the KBQA approaches is mapping questions in natural language

to the low-dimensional space and comparing them to graph elements’ given rep-

resentation. In KEQA [Huang et al., 2019], LSTM models detect the entity and

predicates from the question text and project it further into the entity and predicate

embedding spaces. We select the closest subject in terms of similarity to the entity

and predicate embeddings as the answer.

We created a simple approach Text2Graph which stems from the KEQA and

differs from the original work in improved question encoder, entity extractor, addi-
3https://github.com/askplatypus/wikidata-simplequestions

54

https://github.com/askplatypus/wikidata-simplequestions


Question

m-BERT eq

MLPo

MLPr

MLPs

eoeres

Graph  
Embeddings

NER

Candidate
subjects

Filtered
embeddingsOnly 

 candidates

coss + cosr + coso
Ranked  
answers

KG
Embed

Figure 3-6: Text2Graph method used in our experiments: 1-Hop QA pipeline. First,
we take an original entity and relation embeddings. The question is embedded using
m-BERT. This embedding is then processed by MLP, yielding candidate represen-
tations of an object, relation, and subject. The sum of the subject, relation, and
object cosines is the final score of the triple candidates.

tional subject embedding space and simplified retrieval pipeline. The Algorithm 5

describes projection of the input question to graph elements. The multilingual-

BERT [Devlin et al., 2019] model encodes the input question, and all word vectors

are averaged into a single deep contextualized representation 𝑒𝑞. This representation

then goes through three MLPs jointly learning candidate embeddings of an object,

relation, and subject. We minimize MSE between predicted embeddings and the

corresponding KGE model’s embeddings. The appropriateness score of every fact in

KG is a sum of cosine similarity between MLP outputs and ground truth model rep-

resentation for every element in the triple. We consider the triple with the highest

score as an answer. We train the pipeline using an AdamW optimizer with default

parameters for 10 epochs.

Baselines We evaluate our method on datasets with English and Russian ques-

tions. On every benchmark, we provide several baselines, which are described below

and are, in fact, a combination of the embedding model with a QA system.
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RuBQ 2.0

Our method MEKER is combined with several QA approaches compatible with

questions from this benchmark.

Algorithm 5 Text2Graph question projection algorithm
Input: 𝒬, 𝒢, E, text encoder 𝑀𝑒𝑛𝑐, projection modules: 𝑀𝑠,𝑀𝑟,𝑀𝑜, Subject Candidates
Extractor: NER
Output: answer ⟨𝑜𝑎, 𝑟𝑎, 𝑠𝑎⟩
𝑒𝑞 = 𝑀𝑒𝑛𝑐(𝒬)
Initialize answers A=[], scores S=[], candidates C=[]
for entity in 𝒢 do

if entity.name in NER(𝒬) then
C.append(entity)

end if
end for
for entity in C do

for relation in entity.relations do
s = entity.id, r = relation.id, o = entity[r]
triple = ⟨𝑠, 𝑟, 𝑜⟩
es = E[s], er = E[r], eo = E[o]
ys = 𝑀𝑠(𝑒𝑞), yr = 𝑀𝑟(𝑒𝑞), yo = 𝑀𝑜(𝑒𝑞)

𝑠𝑐𝑜𝑟𝑒 = cos(eo,yo) + cos(er,yr) + cos(es,ys)

A.append(triple), S.append(𝑠𝑐𝑜𝑟𝑒)
end for

end for
ind = argmax(S)
⟨𝑠𝑎, 𝑟𝑎, 𝑜𝑎⟩ = A[ind]
return ⟨𝑠𝑎, 𝑟𝑎, 𝑜𝑎⟩

QAnswer4 is a rule-based system addressing questions in several languages,

including Russian. SimBa is a baseline presented by RuBQ 2.0 authors. It is

a SPARQL query generator based on an entity linker and a rule-based relation

extractor. KBQA module of DeepPavlov Dialogue System Library [Burtsev

et al., 2018] is also based on query processing.
4https://www.qanswer.eu
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Table 3.7: Comparison of the Text2Graph system with the various KG embeddings
with the existing solutions (QA-Ru, QA-En, SimBa) on RuBQ 2.0 benchmark.

KBQA Model Embedding Model Accuracy 1-Hop

DeepPavlov - 30.5 ± 0.04
SimBa - 32.3 ± 0.05
QA-En - 32.3 ± 0.08
QA-Ru - 30.8 ± 0.03

Text2Graph PTBG (ComplEX) Wiki4M 48.16 ± 0.05
Text2Graph PTBG (TransE) Wiki4M 48.84 ± 0.06
Text2Graph MEKER Wiki4M 49.06 ± 0.06

Table 3.8: Comparison of the Text2Graph system with the various KG embeddings
with the existing embedding-based solution on the SimpleQuestions benchmark.

KBQA Model Embedding Model Accuracy 1-Hop

KEQA TransE FB5M 40.48 ± 0.10

Text2Graph PTBG (TransE) Wikidata5m 59.97 ± 0.15
Text2Graph MEKER Wikidata5m 61.81 ± 0.13

SimpleQuestions

Simple Question is an English language benchmark aligned with FB5M KG -

the subset of Freebase KG. Training and validation parts consist of 100k and 20k

questions, respectively. As a baseline solution, we employ KEQA [Huang et al.,

2019]. We realign answers from this benchmark to our system, which is compatible

with Wikidata5m. Not all of the questions from FB5M have answers among Wiki4M,

that is why we test both systems on a subset of questions whose answers are present

in both knowledge graphs.

Experimental Results

We compare the results of the Text2Graph with PTBG embeddings versus MEKER

embedding and baseline KBQA models. Results on the RuBQ 2.0 dataset are shown

in Table 3.7. Text2Graph outperforms baselines. Using MEKER embeddings in-

stead of the PTBG version of ComplEX and TransE demonstrates slightly better

accuracy.

Table 3.8 presents results on the SimpleQuestions dataset. As a Huang et al.

[2019] model uses FB5M KG and Text2Graph uses Wikidata5m KG we test both
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models on the subset of questions, which answers are present in both knowledge

graphs for a fair comparison. Our model demonstrates superior performance and

regarding the comparison within different embeddings in a fixed system, MEKER

provides better accuracy of answers than TransE embeddings on the SimpleQues-

tions benchmark.

3.6 Conclusion

In this Chapter, we apply Canonycal Polyadic representation for Knowledge graph

data, representing as a 3-dimensional tensor. This representation allows to perform

KG data in compressed way, consisting of entity and relation embeddings.

To obtain the corresponding decomposition of the original tensor, we propose

MEKER, a linear knowledge embedding model based on generalised CPD. This

method allows an analytical calculation of the gradient, simplifying the training

process under memory restriction. Compared to previous linear KG embedding

models Balazevic et al. [2019], our approach achieves high efficiency while using less

memory during training. On the standard link prediction datasets WN18RR and

FB15k-237, MEKER shows competitive results.

In addition, we created a Text2Graph KBQA system based on the learnt KB

embeddings to demonstrate the model’s effectiveness in NLP tasks. We obtained

the required representations using MEKER on the Wikipedia-based Wiki4M dataset

for questions in Russian and Wikidata5m for questions in English. Text2Graph

outperforms baselines for English and Russian, while using MEKER’s embeddings

provides additional performance gain compared to PTBG embeddings. The link

prediction scores of our model on Wiki4M and Wikidata5m outperform the baseline

results. MEKER can be helpful in question-answering systems over specific KG,

in other words, in systems that need to embed large sets of facts with acceptable

quality.

All codes for reproducing our experiments are available online5

5https://github.com/s-nlp/meker
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Chapter 4

SVD and TTM Representations of

the Fully-Connected (FC) Layers

This Chapter is based on the paper “Efficient GPT Model Pre-training using Tensor

Train Matrix Representation” (cf. Section “Publications” at page 4).

4.1 Introduction

In this Chapter, we present a methodological tool used for efficient representation

of linear layers in NLP deep neural networks.

Algebraic structures are commonly employed to represent linear layers, such

as TTM decomposition [Usvyatsov et al., 2022] or the Kronecker decomposition [Edalati

et al., 2021]. Since low-rank approaches decrease the expressivity, in Neural Net-

work an adaptive version is usually deployed [Thakker et al., 2020], [Chen et al.,

2019]. This replacement occurs to reduce the number of parameters in the layer and

the overall size of the model. To achieve this, a layer class that is compatible with

the chosen representation structure must be provided, and further can be effectively

integrated within the neural network model for training and fine-tuning. Existing

works, such as Usvyatsov et al. [2022] and Novikov et al. [2015], have addressed

this for the TTM structure. However, these implementations sometimes suffer from

high memory consumption during training due to their internal structure [Novikov

et al., 2015]. To overcome this challenge, we have developed a TTM layer class that
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incorporates time- and memory-aware signal propagation function implementations,

ensuring efficient training performance.

We develop a custom TTM-layer that first has fewer parameters than regular

Fully connected layer and, second, uses less memory during forward and backward

passes.

4.2 Method SVD

Singular Value Decomposition (SVD) is defined as follows: W = UΣVT. To

compress a linear layer with SVD, we use truncated products of it with rank 𝑟:

Ur = U[:, : r],Σr = Σ[: r, : r],Vr = V[:, : r]. In order to avoid double multiplica-

tion of the input activation matrix to a diagonal matrix Σr, we carry it inside Ur

and Vr:

W2 = U[:, : r]
√︀
Σr,W1 =

√︀
ΣrU[:, : r]T (4.1)

As a result, we get approximation of linear matrix W ≈ W2W1 and approxi-

mation of the initial layer Y ≈ XWT
1 W

T
2 + b.

This is equivalent to two sequential linear layers - first with weight W1 and zero

bias and the second one with weight W2 and bias b. If W have 𝑛𝑖𝑛, 𝑛𝑜𝑢𝑡 shape, the

number of parameters in layer before compression is 𝑛𝑖𝑛× 𝑛𝑜𝑢𝑡, after representation

by truncated SVD is 𝑟 × (𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡).

Based on this, the parameter compression rate for the SVD representation of a

linear layer can be determined as follows:

𝑐_𝑟𝑎𝑡𝑒 =
𝑟 × (𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡)

𝑛𝑖𝑛 × 𝑛𝑜𝑢𝑡

(4.2)

4.3 Method TTM

As described in section 2.2.4, Tensor Train Matrix (TTM) decomposition is effi-

cient for matrices that can be represented as the Kronecker product of objects. In

other words, such matrices are expected to be noninvariant to the permutation of
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columns (features). For a pretrained matrix of a fully connected layer of neural

network architectures, this is generally not true - in such a matrix, there is no

well-defined structure and swapping rows and columns doesn’t yield any significant

changes.

However, it is possible to construct a container that utilizes the TTM structure

to store weights. The formula 2.11 defines elements of the initial tensor in the

TTM form through core tensors and can be employed to compute the elements of

the matrix of the corresponding linear layer with the aid of these containers. By

training this structure from scratch, we can attain a compressed representation of

a “virtual” FC layer, where the weight matrix is already expressed in the TTM

decomposition form.

As described in Chapter 2, the TTM form is, in fact, a multidimensional tensor

over 2-dimensional objects with sizes 2 × 2. Consequently, the decomposed matrix

should be expressed as a mosaic of elementary blocks from R2×2 space and has

dimensions equal to the power of 2. Since matrices in FC layers are not engaged in

this, we will deviate from this rule in the experimental implementation. Therefore,

the elementary blocks have the dimensions of the factors of the initial matrix’s sizes.

According to the Subection 2.2.4, tensor 𝒯 ∈ R𝐼1×𝐽1×···×𝐼𝑀×𝐽𝑀 is represented in

TTM format with ranks (𝑅0, 𝑅1, . . . , 𝑅𝑀) if each element is computed as:

𝒯 (𝑖1, 𝑗1, . . . , 𝑖𝑀 , 𝑗𝑀) ≈
𝑅1∑︁

𝑟1=1

· · ·
𝑅𝑀−1∑︁

𝑟𝑀−1=1

𝐺(1)(𝑖1, 𝑗1, 𝑟1)𝐺
(2)(𝑟1, 𝑖2, 𝑗2, 𝑟2)

. . . 𝐺(𝑀)(𝑟𝑀−1, 𝑖𝑀 , 𝑗𝑀),

(4.3)

where 𝒢(𝑚) ∈ R𝑅𝑚−1×𝐼𝑚×𝐽𝑚×𝑅𝑚 , 𝑚 = 1, 2, . . . ,𝑀 − 1 are core tensors (cores) of

TTM decomposition, 𝑅0 = 𝑅𝑀 = 1.

Estimating the number of parameters in the original and compressed version of

the matrix W ∈ R𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 , where 𝐷𝑖𝑛 =
∏︀𝑀

𝑚=1 𝐼𝑚 and 𝐷𝑜𝑢𝑡 =
∏︀𝑀

𝑚=1 𝐽𝑚, in the

same way as in 2.2.3, we obtain that the complete representation stores
∏︀𝑀

𝑚=1 𝐼𝑚𝐽𝑚

elements, while the TTM core format contains only 𝑅(𝐼1𝐽1+𝐼𝑀𝐽𝑀)+𝑅2
∑︀𝑀−1

𝑚=2 𝐼𝑚𝐽𝑚

parameters.
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Then, the parameter compression rate for the TTM representation is:

𝑐_𝑟𝑎𝑡𝑒 =
𝑅(𝐼1𝐽1 + 𝐼𝑀𝐽𝑀) +𝑅2

∑︀𝑀−1
𝑚=2 𝐼𝑚𝐽𝑚∏︀𝑀

𝑚=1 𝐼𝑚𝐽𝑚
(4.4)

The substantial case in Neural Network (NN) modules is to define the proper

way of signal transmission. In the TTM-based layers, forward signal propagation

means sequentially tensor contraction of the input activation tensor 𝒳 with the core

tensors. Representing FC in this way, we should attend to memory and time-stable

forward and backward methods.

TTM Tensor Contraction

Given two tensors 𝒯 1 ∈ R𝐼1×···×𝐼𝑀×𝑆1×···×𝑆𝐾 and 𝒯 2 ∈ R𝑆1×···×𝑆𝐾×𝐽1×···×𝐽𝑁 the result

of tensor contraction along axis 𝑠1, . . . , 𝑠𝐾 is a tensor 𝒯 ∈ R𝐼1×···×𝐼𝑀×𝐽1×···×𝐽𝑁 , where

one element is computed using formula

𝒯 (𝑖1, . . . , 𝑖𝑀 , 𝑗1, . . . , 𝑗𝑁) =

=

𝑆1∑︁
𝑠1=1

· · ·
𝑆𝑘∑︁

𝑠𝑘=1

𝒯 1(𝑖1, . . . , 𝑖𝑀 , 𝑠1, . . . , 𝑠𝐾)𝒯 2(𝑠1, . . . , 𝑠𝐾 , 𝑗1, . . . , 𝑗𝑁)
(4.5)

and requires 𝑂(𝑆1𝑆2 . . . 𝑆𝐾) = 𝑂

(︂
𝐾∏︀
𝑘=1

𝑆𝑘

)︂
floating point operations (FLOPS).

Thus, the number of FLOPs to compute tensor 𝒯 is 𝑂

(︂
𝑀∏︀

𝑚=1

𝐼𝑚
𝑁∏︀

𝑛=1

𝐽𝑛
𝐾∏︀
𝑘=1

𝑆𝑘

)︂
. For

example, a multiplication of two matrices of shapes (𝐼, 𝑆) and (𝑆, 𝐽) can be calcu-

lated for 𝑂(𝐼𝐽𝑆) operations.

Signal Transmission

If we have input 𝒳 with batch size 𝐵, and sequentially contract it with the TTM

cores, then after contracting with 𝒢𝑀 , . . . ,𝒢𝑘+1 we get a tensor of shape

(𝐵, 𝐼1, . . . , 𝐼𝐾 , 𝐽𝐾+1, . . . , 𝐽𝑀 , 𝑅𝐾) (4.6)
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Table 4.1: Peak memory footprints for signal propagation in full GPT-2 model with
TTM layers with different ranks. At the rank 16 we have an increment in memory
consumption.

Layer TTM-16 TTM-32 TTM-64 Fully-Connected
Type

Memory, GB 75.07 48.7 48.31 48.37

Table 4.2: Memory footprints for signal propagation in TTM wiht rank 16 and
Fully-Connected Layers. PyTorch strategy leads to memory costs for TTM.

Layer TTM-16 TTM-16 Fully-Connected

Backprop Strategy PyTorch Einsum PyTorch
Autodiff Full Matrix Autodiff

Single Layer, Batch 16 1100 MB 294 MB 395 MB

, its contraction with the next core 𝒢𝑘 ∈ R𝑅𝑘−1×𝐼𝑘×𝐽𝑘×𝑅𝑘 requires

𝐵𝐼1 . . . 𝐼𝑘𝐽𝑘 . . . 𝐽𝑀𝑅𝑘−1𝑅𝑘 (4.7)

steps. Thus the computational complexity of the TTM layer is

𝑂(𝐵𝑀 max{𝐷𝑖𝑛, 𝐷𝑜𝑢𝑡}max
𝑘
{𝐼𝑘, 𝐽𝑘}(max

𝑘
𝑅𝑘)

2) (4.8)

and depends on the schedule in which we contract cores.

We measure peak memory during one training iteration in the GPT-2 model with

TTM layers on different ranks. Experiments depicted in 4.2 show that on a rank

16 the TTM layer can be more memory-consuming than the regular FC layer. The

memory footprint for FC and TTM layers for custom-defined and PyTorch signal

propagation strategies (Table 4.2) confirms this claim.

For a tensor contraction, the PyTorch framework uses Einstein summation no-

tation. Optimized Einsum library Smith and Gray [2018] optimizes the expression’s

contraction order by looking for an optimal path - a set of strings of the form “ikl,lkj-

>ij”. By default optimization, the obtained path are time-stable, not memory-stable.

We extend the existing research by proposing memory-efficient techniques to com-

pute forward and backwards through the TTM layer for a more comprehensive
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description of the proposed methods.

4.3.1 Forward Pass

Fully-connected layer. Given an input batch X ∈ R𝐵×𝐷𝑖𝑛 a forward pass through

a fully-connected layer with weight matrix W ∈ R𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 and bias vector b ∈ R𝐷𝑜𝑢𝑡

results in the output Y = XW+b ∈ R𝐵×𝐷𝑜𝑢𝑡 and requires 𝑂(𝐵𝐷𝑖𝑛𝐷𝑜𝑢𝑡) operations.

TTM layer. In the TTM layer the weight W is a matrix 𝐷𝑖𝑛 × 𝐷𝑜𝑢𝑡 rep-

resented in the TTM format with 𝑀 cores 𝒢𝑚 ∈ R𝑅𝑚−1×𝐼𝑚×𝐽𝑚×𝑅𝑚 , 𝑚 = 1,𝑀 ,

where 𝐼𝑚 and 𝐽𝑚 are such that 𝐷𝑖𝑛 =
𝑀∏︀

𝑚=1

𝐼𝑚 and 𝐷𝑜𝑢𝑡 =
𝑀∏︀

𝑚=1

𝐽𝑚. More signifi-

cantly, first we reshape the 2-dimensional matrix W into a 2𝑀 dimensional array

𝒲ℳ = W.𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐼1, 𝐼2, . . . , 𝐼𝑀 , 𝐽𝑀).

Input matrix X is reshaped into a tensor 𝒳 ∈ R𝐵×𝐼1×···×𝐼𝑀 before performing a

forward pass through the layer, which outputs a tensor 𝒴 ∈ R𝐵×𝐽1×···×𝐽𝑀 , such that

𝒴(𝑗1, . . . , 𝑗𝑀) =
∑︁

𝑖1,...,𝑖𝑀

𝒲(𝑖1, 𝑗1, . . . , 𝑖𝑀 , 𝑗𝑀)𝒳 (𝑖1, . . . , 𝑖𝑀), (4.9)

where

𝒲(𝑖1, 𝑗1, . . . , 𝑖𝑀 , 𝑗𝑀) =
∑︁

𝑟1,...,𝑟𝑀−1

𝒢1(𝑟0, 𝑖1, 𝑗1, 𝑟1) . . .𝒢𝑀(𝑟𝑀−1, 𝑖𝑀 , 𝑗𝑀 , 𝑟𝑀). (4.10)

4.3.2 Forward Pass as a Contraction Process

We represent 𝒲𝑀 as a set of 𝑀 cores 𝒢. So, in equation 4.10 we should contract 𝒳

with sequence (𝒢𝑀 , . . . , 𝒢1) sequentially. Please note that we can start with the

first core (𝒢1, ...𝒢𝑀) or with the last (𝒢𝑀 , . . . , 𝒢1), in general it doesn’t matter.

We contract 𝒳 with size (𝐵,𝐷𝑖𝑛) to 𝒢𝑚 with size (𝑅𝑚−1, 𝐼𝑚, 𝐽𝑚, 1). As 𝐷𝑖𝑛 =∏︀
(𝐼1 . . . 𝐼𝑚), we contract over 𝐼𝑚 and have a tensor of shapes (𝐵,𝑅𝑚−1, 𝐽𝑚, 𝐼𝑚−1, . . . , 𝐼1)

as a result. We should contract this tensor to the core 𝒢𝑚−1 with shapes

(𝑅𝑚−2, 𝐼𝑚−1, 𝐽𝑚−1, 𝑅𝑚−1) (4.11)
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in dimensions 𝐼𝑚−1𝑅𝑚−1. This operation produces the object of shapes

(𝐵,𝑅𝑚−2, 𝐽𝑚, 𝐽𝑚−1, 𝐼𝑚−2, . . . , 𝐼1). (4.12)

Repetition of this operation K times results in the product with shapes

(𝐵, 𝐼1, . . . , 𝐼𝐾 , 𝐽𝐾+1, . . . , 𝐽𝑀 , 𝑅𝐾). (4.13)

In the end, we gain the output of sizes (𝐵, 𝐽1, . . . 𝐽𝑀) = (𝐵,𝐷𝑜𝑢𝑡).

The computational complexity of this operation is estimated above.

TTM layer: Einsum The contraction schedule computed during the forward

pass is optimized via the 𝑜𝑝𝑡_𝑒𝑖𝑛𝑠𝑢𝑚 function [Smith and Gray, 2018]. This func-

tion optimizes the time of expression’s contraction in the BLAS library for common

linear algebra operations. The default optimization strategy provides a recursive

depth-first search over all possible paths by pruning candidates that exceed the best

time.

Thus, due to some shared intermediate results, memory for saved activations

might be optimized.

TTM layer: Fixed Schedule The order of cores to contract with is fixed in

advance, we don’t optimize it with 𝑜𝑝𝑡_𝑒𝑖𝑛𝑠𝑢𝑚. In this case, saved activations

usually occupy the same amount of memory.

Algorithm 6 Forward pass (FC layer). Number of layer parameters is
𝑂(𝐵𝐷𝑖𝑛𝐷𝑜𝑢𝑡). Computational complexity is 𝑂(𝐵𝐷𝑖𝑛𝐷𝑜𝑢𝑡). SavedActivations is
𝑂(𝐵𝐷𝑖𝑛).
Input: data X ∈ R𝐵×𝐷𝑖𝑛 ; parameters W ∈ R𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 , b ∈ R𝐷𝑜𝑢𝑡 ;

Output: Y ∈ R𝐵×𝐷𝑜𝑢𝑡

Y = XW + b
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Algorithm 7 Forward pass (TTM layer, Fixed Scheduler). Number of layer pa-

rameters is 𝑂(
𝑀∑︀

𝑚=1

𝑅𝑚−1𝐼𝑚𝐽𝑚𝑅𝑚).

Input: data X ∈ R𝐵×𝐷𝑖𝑛 ;𝐷𝑖𝑛 =
𝑀∏︀

𝑚=1

𝐼𝑚, 𝐷𝑜𝑢𝑡 =
𝑀∏︀

𝑚=1

𝐽𝑚;

parameters 𝒢𝑚 ∈ R𝑅𝑚−1×𝐼𝑚×𝐽𝑚×𝑅𝑚 ,𝑚 = 1,𝑀 , 𝑅0 = 𝑅𝑀 = 1;

Output: 𝒴 ∈ R𝐵×𝐽1×···×𝐽𝑀

𝒳 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(X) ∈ R𝐵×𝐼1×···×𝐼𝑀

𝒴0 := 𝒳

𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 := (1, 2, . . . ,𝑀)

for 𝑘 in 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 do

𝒴𝑘 := 𝑒𝑖𝑛𝑠𝑢𝑚(𝒢𝑘,𝒴𝑘−1) ◁ 𝐹𝐿𝑂𝑃𝒴 = 𝑂(𝐵
𝑘+1∏︀
𝑚=1

𝐽𝑚
𝑀∏︀

𝑚=𝑘+1

𝐼𝑚𝑅𝑘𝑅𝑘+1)

𝒴 = 𝒴𝑘 ◁ 𝑀𝑒𝑚𝑜𝑟𝑦𝒴 = 𝑂(𝐵
𝑘∏︀

𝑚=1

𝐽𝑚
𝑀∏︀

𝑚=𝑘+1

𝐼𝑚𝑅𝑘)

end for

The forward path with a Fixed Scheduler approach is equivalent to a sequential

forward pass through 𝑀 linear layers. The order of contraction in the schedule

might be either (𝑀,𝑀 − 1, . . . , 1) or (1, 2, . . . ,𝑀 − 1).

Algorithm 8 Forward pass (TTM layer, Einsum). Number of layer parameters is

𝑂(
𝑀∑︀

𝑚=1

𝑅𝑚−1𝐼𝑚𝐽𝑚𝑅𝑚).

Input: data X ∈ R𝐵×𝐷𝑖𝑛 ;𝐷𝑖𝑛 =
𝑀∏︀

𝑚=1

𝐼𝑚, 𝐷𝑜𝑢𝑡 =
𝑀∏︀

𝑚=1

𝐽𝑚;

parameters 𝒢𝑚 ∈ R𝑅𝑚−1×𝐼𝑚×𝐽𝑚×𝑅𝑚 ,𝑚 = 1,𝑀 , 𝑅0 = 𝑅𝑀 = 1;

Output: 𝒴 ∈ R𝐵×𝐽1×···×𝐽𝑀

𝒳 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(X) ∈ R𝐵×𝐼1×···×𝐼𝑀

𝒴 := 𝑒𝑖𝑛𝑠𝑢𝑚(𝒢1, . . .𝒢𝑀 ,𝒴)

4.3.3 Backward Pass

While training neural networks, intermediate activations are saved during the for-

ward pass to compute gradients during the backward pass.
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Fully-connected layer. For the layer y = Wx+ b derivatives of loss ℒ w.r.t.

weight is computed as
𝜕ℒ
𝜕W

=
𝜕ℒ
𝜕y

x𝑇 (4.14)

TTM layer: Automatic Pytorch differentiation (Autodiff). Automatic

Pytorch differentiation during backpropagation through the TTM layer results in

storing many intermediate activations, as the TTM layer is considered as a sequence

of linear layers (where the number of layers corresponds to the number of core

tensors).

We propose several ways to perform a backward pass that require smaller memory

consumption.

TTM layer: Full Einsum. In the first approach for each core tensor 𝒢𝑚 we

compute the gradient of the loss with respect to its parameters:

𝜕ℒ
𝜕𝒢𝑚

=
𝜕ℒ
𝜕W

𝜕W

𝜕𝒢𝑚
= X𝑇 𝜕ℒ

𝜕𝒴
𝜕W

𝜕𝒢𝑚
. (4.15)

As a gradient computation might be considered as a tensor contraction along a

specified axis, the process includes three main steps.

Firstly, we generate a string-type expression, which specifies the shapes of input

and resulting tensors (e.g. “𝑖𝑘𝑙, 𝑙𝑘𝑗 → 𝑖𝑗” for performing tensor contraction along

two axes). Second, the schedule of contraction is defined (e.g., firstly along axis ’l’

and then along axis ’k’). And thirdly, einsum computation is performed.

In the Full Einsum approach first two steps (expression generation, contraction

scheduling) are performed independently for all 𝜕ℒ
𝜕𝒢𝑚

. The third step, in turn, tracks

simultaneously what contractions are computed for different derivatives and allows

the sharing of intermediate results. Due to this sharing we get memory savings

compared to the Autodiff approach.

TTM layer: Full Matrix. In the Full Matrix approach, we perform the

same three steps as in the Full Einsum approach. The difference is that, as a

first contraction, we usually convolve tensors 𝒳 and 𝜕ℒ
𝜕𝒴 along a batch axis, and the

schedule of the other contractions is further optimised. This provides complexity

improvements when the batch size is large (which is the case in Transformer models,
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where the batch dimension is the product of batch size by sequence length).

Algorithm 9 Backward pass (TTM layer, Autodiff).
Input: 𝜕𝐿

𝜕𝒴 ; saved activations from forward 𝒴1, . . .𝒴𝑀

Output: 𝜕𝐿
𝜕𝒳 ,

𝜕𝐿
𝜕𝒢1 , . . . ,

𝜕𝐿
𝜕𝒢𝑀

𝜕𝐿
𝜕𝒴𝑀

= 𝜕𝐿
𝜕𝒴

for 𝑘 in {𝑀, . . . , 1} do
𝜕𝐿
𝜕𝒢𝑘 = 𝑒𝑖𝑛𝑠𝑢𝑚(𝒴𝑘−1,

𝜕𝐿
𝜕𝒴𝑘 )

𝜕𝐿
𝜕𝒴𝑘−1

= 𝑒𝑖𝑛𝑠𝑢𝑚( 𝜕𝐿
𝜕𝒴𝑘

,𝒢𝑘)

end for
𝜕𝐿
𝜕𝒳 = 𝜕𝐿

𝜕𝒴0

Algorithm 10 Backward pass (TTM layer, Full Einsum).
Input: 𝜕𝐿

𝜕𝒴 ; 𝒳

Output: 𝜕𝐿
𝜕𝒳 ,

𝜕𝐿
𝜕𝒢1 , . . . ,

𝜕𝐿
𝜕𝒢𝑀

◁ Results in the below for-cycle are computed only for the first batch during

training and reused for others.

for 𝑘 in {1, . . . ,𝑀} do

Compose 𝑒𝑖𝑛𝑠𝑢𝑚𝑘 expression for 𝜕𝐿
𝜕𝒢𝑘

Optimize contraction schedule for composed 𝑒𝑖𝑛𝑠𝑢𝑚𝑘

end for

for 𝑘 in {1, . . . ,𝑀} do
𝜕𝐿
𝜕𝒢𝑘 = 𝑒𝑖𝑛𝑠𝑢𝑚𝑘(

𝜕𝐿
𝜕𝒴 ,𝒢

1, . . . ,𝒢𝑀)

end for

Backward with Full Einsum approach in the worst case has the same complexity

as backward Autodiff.
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Algorithm 11 Backward pass (TTM layer, Full Matrix).
Input: 𝜕𝐿

𝜕𝒴 ; 𝒳

Output: 𝜕𝐿
𝜕𝒳 ,

𝜕𝐿
𝜕𝒢1 , . . . ,

𝜕𝐿
𝜕𝒢𝑀

𝜕𝐿
𝜕W

= 𝑒𝑖𝑛𝑠𝑢𝑚( 𝜕𝐿
𝜕𝒴 ,𝒳 ) ◁ 𝑒𝑖𝑛𝑠𝑢𝑚 here contracts only along batch dimension

◁ 𝐹𝐿𝑂𝑃 𝜕𝐿
𝜕W

= 𝑂(𝐵𝐷𝑖𝑛𝐷𝑜𝑢𝑡)

◁ 𝑀𝑒𝑚𝑜𝑟𝑦 𝜕𝐿
𝜕W

= 𝑂(𝐷𝑖𝑛𝐷𝑜𝑢𝑡)

◁ Results in the below for-cycle are computed only for the first batch during

training and reused for others.

for 𝑘 in {1, . . . ,𝑀} do

Compose 𝑒𝑖𝑛𝑠𝑢𝑚𝑘 expression for 𝜕𝐿
𝜕𝒢𝑘

Optimize contraction schedule for composed 𝑒𝑖𝑛𝑠𝑢𝑚𝑘

end for

for 𝑘 in {1, . . . ,𝑀} do
𝜕𝐿
𝜕𝒢𝑘 = 𝑒𝑖𝑛𝑠𝑢𝑚𝑘(

𝜕𝐿
𝜕W

,𝒢1, . . . ,𝒢𝑀)

◁ 𝐹𝐿𝑂𝑃 𝜕𝐿

𝜕G𝑘
= 𝑂(𝐷𝑖𝑛𝐷𝑜𝑢𝑡 max

𝑚
(𝐼𝑚, 𝐽𝑚)(max

𝑚
𝑅𝑚)2)

end for

4.4 Experiments

Thus, FLOP for backward pass using Full Matrix strategy is:

𝐹𝐿𝑂𝑃 = 𝑂(𝐵𝐷𝑖𝑛𝐷𝑜𝑢𝑡) +𝑂(𝑀𝐷𝑖𝑛𝐷𝑜𝑢𝑡 max
𝑚

(𝐼𝑚, 𝐽𝑚)(max
𝑚

𝑅𝑚)2) (4.16)

When 𝐵 is large (as it happens usually for Transformers, where 𝐵 is batch size

multiplied by sequence length) memory complexity of Full Matrix is better than for

Full Einsum strategy as it doesn’t depend on batch size B.

The memory footprints of each of these methods for TTM layers of rank 16

are in the Table 4.3. We select the most optimal pair according to memory and

time - Einsum Forward, Full Matrix Backward - and employ it in TTM layer

implementation.
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Table 4.3: Time and memory footprints for different forward and backward strategies
for TTM-16 layer.

Forward Backward Memory, Mb Time, ms

Einsum PyTorch Autodiff 1008 23.6
Einsum Full Einsum 192 55.7
Einsum Full Matrix 192 17.5
Fixed Schedule PyTorch Autodiff 2544 58.4
Fixed Schedule Full Einsum 192 84
Fixed Schedule Full Matrix 192 125

4.5 Conclusion

This part introduces the representation of FC layers in a custom TTM format with

proved compressibility. Taking into account the properties of TTM container, we

establish a customised signal propagation strategy that maintains forward speed

without creation of redundant activations in the backward direction. In addi-

tion, TTM layers can replace the FC layer in every Neural Network architecture

in resource-restricted environments; it can be used to reduce the effective size of any

Transformer-based models.
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Chapter 5

Efficient GPT Model using TTM

Decomposition

This Chapter is based on the paper “Efficient GPT Model Pre-training using Tensor

Train Matrix Representation” (cf. Section “Publications” at page 4).

5.1 Introduction

With a sufficient amount of training data, big models usually outperform smaller

models. The paper Kaplan et al. [2020] derives an empirical law for the dependence

of the final loss on the model parameters, subject to a sufficiently large dataset and

sufficient computing resources.

Large language models such as GPT-2, GPT-3 [Radford et al., 2019a, Brown

et al., 2020] have the property of generality and show outstanding results in all areas

of natural language processing. However, models with several billion parameters

have difficulties in custom use. Training such models is associated with significant

time costs, using a large amount of electricity and a carbon footprint [Zhang et al.,

2022, Patterson et al., 2021]. Common approaches to large model compression, such

as distillation [Sanh et al., 2019b], usually preserve the quality of a particular task

while ignoring the generalisation property.

There are several approaches to simplify the employ of large language models.

Some approaches focus on reducing the size of the entire model itself by reducing
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the number of parameters [Sanh et al., 2019b, Michel et al., 2019] or the size of the

weight representation [Hubara et al., 2016]. Other approaches focus on reducing

the memory used in the training iteration [Hu et al., 2022]. Our TTM-based layers

belong to the first group and aim at representing a model in compressed form.

In turn, this subset is divided into several approaches. Distillation trains a

smaller version of the given model by aligning its output. Pruning reduces the size

of the model by cutting out its modules, methods based on linear algebra get a

compressed version of the model by getting low-rank representations of its layers.

We chose an approach based on a compressed representation of weights because

it does not require changes in the training pipeline regarding the training of the

main model, as in distillation, and it does not require the analysis of the effect of

compressed layers on the output, as in efficient pruning.

There are several performance bottlenecks in models based on the Transformer

architecture: the embedding layer, the layer that implements the attention mech-

anism, and fully connected layers, which usually hold about half of the memory

allocated to train the model.

We reduce the size of the GPT language model by representing its fully connected

layers with a custom TTM structure and train from scratch two types of model:

based on GPT-2 small and based on GPT-2 medium. To make the GPT-2-based

models easier to deploy, we replaced fully connected layers with sequential Ten-

sor Train Matrix [Oseledets, 2010] containers, based on Tensor Train (TT) [Os-

eledets, 2011a] representation. The weight matrix is generally full-rank and cannot

be approximated with low-rank objects. Therefore, we trained the model with cus-

tom TTM layers from scratch: thus, we were looking for the weights of the linear

layer not among all matrices but among those represented in the TTM format.

Then we study the behaviour of the pre-trained custom model on in-domain and

out-of-domain language modelling tasks and several downstream tasks.

In this chapter, we provide a GPT-based model with up to 40% fewer parame-

ters that show performance close to the original GPT in language modelling in the

domain and outside the domain, GLUE benchmark, and text summarization.
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5.2 Related Work

Several approaches explore ways to reduce the size of language models. The distil-

lation mechanism [Hinton et al., 2015a] was applied to BERT [Sanh et al., 2019b]

and GPT-21. Open pre-trained transformers (OPT) [Zhang et al., 2022] provide

a smaller model that mimics the behaviour of GPT-3 [Brown et al., 2020]. They

employ more efficient training and use particular datasets to improve generalisation

ability.

The Tensor Train Matrix (TTM) decomposition is an effective way to obtain

low-rank representations of inner layers and is also used to reduce the number of

parameters. Khrulkov et al. [2019] and Yin et al. [2021] reduce the size of the

embedding layer using TTM. Novikov et al. [2015] uses the TTM format of linear

layers to compress the computer vision models; however, TTM representations have

not been tested before for generative Transformers.

5.3 Present FC Layer in TTM Format
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Figure 5-1: The scheme of 4-cores TTM representation of weight matrix in the
GPT-2 small FC layer. The dimentions of the initial matrix are decomposed into 4
factors. The matrix is reshaped to these factors. Then the axis is permuted in such
a way that the input and output dimensions are adjacent. The black digits indicate
the size of the axes, and the light blue digits indicate their number.

To represent matrix W of shape 𝐷𝑖𝑛 ×𝐷𝑜𝑢𝑡 in TTM we should:

1. Reshape it to a tensor of shapes 𝐼1 . . . 𝐼𝑀 , 𝐽1 . . . 𝐽𝑀 where 𝐷𝑖𝑛 =
𝑀∏︀

𝑚=1

𝐼𝑚 and

𝐷𝑜𝑢𝑡 =
𝑀∏︀

𝑚=1

𝐽𝑚.

1https://huggingface.co/distilgpt2
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2. Permute the tensor axes so that the dimensions 𝐼𝑘, 𝐽𝑘 became adjacents.

3. Represent the tensor in a TT (see section 2.2.3 for a detailed description of it)

format.

Now the cores store only the parameters 𝑅(𝐼1𝐽1 + 𝐼𝑀𝐽𝑀) + 𝑅2
∑︀𝑀−1

𝑚=2 𝐼𝑚𝐽𝑚, the

initial matrix
𝑀∏︀

𝑚=1

𝐼𝑚
𝑀∏︀
𝑛=1

𝐽𝑛.

Figure 5-1 presents the TTM-based layer scheme and the appropriate FC layer

matrix. Purple and blue marks the dimensions of cores corresponding to the input

and output sides of the initial weight matrix, respectively.

5.4 Experiments: End-to-end Training

We conducted experiments with a GPT-2 generative model on English-based datasets.

In standard GPT-2 architectures, we replaced fully connected layers with the

TTM module, as it is described in Chapter 4, and trained the resulting models from

scratch on the task of language modelling (LM). In this section, we examine the

performance of the original model with TTM layers and also a GPT-2 compressed

with SVD (with the same parameter budget as our model).

The general intuition of TTM layers superiority w.r.t. SVD is as follows: The

TTM has been shown to be of full rank [Khrulkov et al., 2019], since the truncated

SVD is a low rank method. Training the layers from scratch, we find a structure

that defines weight matrices. The matrix M ∈ ℛ𝐼𝐽 being restored from the TTM

containers has rank 𝑅𝑇𝑇𝑀 = 𝑚𝑖𝑛(𝐼, 𝐽), otherwise the matrix assembled from the

SVD factors has a truncated rank 𝑅𝑆𝑉 𝐷 < 𝑚𝑖𝑛(𝐼, 𝐽)

We can suggest that for matrices with a certain dimension:

• TTM is seeks a proper weight in a more comprehensive space by utilizing a

set of full-rank matrices, which are more effective than a set of matrices with

truncated ranks;

• A higher rank matrix can store more information than a matrix with the same

dimensions but a lower rank.
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5.4.1 Hyperparameter Selection

The proposed layer structure assumes two sets of hyperparameters: TTM core

shapes and TTM ranks.

The matrix of the size (𝐷𝑖𝑛, 𝐷𝑜𝑢𝑡) is represented in cores 𝒢1 ∈ R1,𝐽1,𝐼1,𝑅1 ,𝒢2 ∈

R𝑅1,𝐽2,𝐼2,𝑅2 , . . . , 𝒢𝑀 ∈ R𝑅𝑀−1,𝑗𝑀 ,𝑖𝑀 ,1, where 𝐷𝑖𝑛 =
∏︀𝑀

𝑘=1 𝐼𝑘, 𝐷𝑜𝑢𝑡 =
∏︀𝑀

𝑘=1 𝐽𝑘, M -

number of cores. The compression rate in a TTM layer is defined in the formula 4.4.

Based on this equation, we state that for the maximum compression rate, the mul-

tiplication of shapes of 𝐼𝑘 *𝐽𝑘 should be as close to each other as possible among all

𝑀 cores.

We choose 𝐼𝑘 * 𝐽𝑘 in such a way that they are equal to each other and approx-

imately equal to (𝐷𝑖𝑛 * 𝐷𝑜𝑢𝑡)
1/𝑀 . Shapes selection is implemented with a custom

algorithm, which will be presented in the source code. In our case, the dimension

of GPT-2 small fully-connected layers [I, J] is [768, 3072]; 768 = 4 * 6 * 8 * 4 and

3072 = 8 * 8 * 6 * 8; 𝐼𝑘 * 𝐽𝑘 are 8*4, 8*6, 6*8, 8*4.

As for the choice of ranks, we select them based on the desired compression of

the entire model. For a small GPT, the compressions are from 50% to 90%. For a

medium GPT, the reduction is 40%.

5.4.2 In-domain Language Modelling Task

To evaluate the in-domain performance on the LM task, we provide training and

evaluation on the train and test partition of the same dataset, respectively. We

replace the fully connected GPT-2-small layers with TTM of ranks 16, 32, 64, and 80.

We train and validate the model with block size 512 on the Wikitext-103 dataset with

approximately 100 mln tokens [Merity et al., 2016] for 40 epochs using the AdamW

optimizer [Loshchilov and Hutter, 2019] and the Cosine warm-up scheduler [Goyal

et al., 2017], increasing the training step from 0 to 2.5𝑒−4. In this and subsequent

experiments, we established the maximum learning rate point relative to the total

number of training steps. Our goal was to ensure that the model reached its highest

point and completed approximately 1/10 of the entire learning process. Table 5.1

shows that the resulting perplexity is comparable to the original model. However,
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model compression has a negligible impact on quality within this domain. For

example, a reduction in parameters greater than 30% only results in a half-percent

decrease in perplexity, while a reduction greater than 40% leads to a drop in 3%. It

should be noted that the Wikitext-103 dataset is not sufficiently large and can be

used as a sandbox to evaluate the behaviour of the model.

Table 5.1: In-domain perplexities for GPT-2 small model, pre-training from scratch.

Model Training Validation Number of % of classic Perplexity
parameters GPT-2 size

GPT-2 small Wikitext-103 train Wikitext-103 test 124 439 808 100 17.55
GPT-2 small TTM-16 Wikitext-103 train Wikitext-103 test 68 085 504 54 21.33
GPT-2 small TTM-32 Wikitext-103 train Wikitext-103 test 71 756 544 57 21.06
GPT-2 small TTM-64 Wikitext-103 train Wikitext-103 test 83 606 784 67 18.08
GPT-2 small TTM-80 Wikitext-103 train Wikitext-103 test 107 698 944 86 17.61

5.4.3 Out-of-domain Language Modelling Task

In this setup, we perform validation on the Wikitext-103 test section while training

the model on other datasets for the same language modelling task.

We train the GPT-TT model on a sufficiently large OpenWebText dataset [Gokaslan

and Cohen, 2019], which contains approximately 8 million texts, imitates the Web-

Text dataset and is publicly available. We train the model for 10 epochs with a sim-

ilar optimiser and scheduler with a maximum learning rate 2.95 exp−5 and global

batch size 340. When reaching the perplexity value of 50, we halved the batch size.

We use an optimiser and scheduler as in the previous section, sequence length is

1024. The optimal parameters were chosen based on the perplexity in the validation

part of the Wikitext-103 dataset of a small GPT-2 model with classical fully con-

nected layers. After obtaining the optimal parameters for the classical model, the

learning settings were fixed. The training process continued for approximately 20

days on 4 GPUs 3090ti. To receive a GPT-based model with a compatible size, we

train from scratch under the same conditions the GPT-2 medium with linear layer

replaced with SVD-structure layers with rank 50. As shown in Table 5.2, the best

perplexity among the compressed models is related to OPT [Zhang et al., 2022] with

350 million parameters. Herewith, OPT saves 7% the full GPT-2, while TTM-72
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Table 5.2: Out-domain perplexities for GPT-2 Medium and GPT TTM-72 models,
pre-training from scratch.

Model Training Validation Number of % of classic Perplexity
parameters GPT-2 size

GPT-2 med Webtext Wikitext-103 354 823 168 100 20.56
GPT-2 TTM-72 Openwebtext Wikitext-103 218 303 488 61 30.85
GPT-2 SVD-50 Openwebtext Wikitext-103 220 920 832 62 55.46
Distill GPT-2 Openwebtext Wikitext-103 81 912 576 23 51.45
OPT 350m Openwebtext + BookCorpus Wikitext-103 331 196 416 93 24.75

+ Pile [Gao et al., 2021]

saves 40%, and the perplexity decreases to 31. At the same time, an SVD-50 of a

size similar to TTM-72 has perplexity 55, which is even worse than Distill GPT, the

model with the smallest number of parameters.

Pre-trained models are available at Hugginface 2.

5.4.4 Natural Languge Understanding - GLUE

Table 5.3: Performance for GPT-2-based model on GLUE benchmark after one
epoch fine-tining.

Model STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI AVG

GPT-2 med 0.76 0.45 0.82 0.78 0.87 0.87 0.53 0.92 0.43 0.74
OPT 350m 0.73 0.32 0.81 0.78 0.88 0.86 0.56 0.92 0.39 0.69
GPT-2 TTM-72 0.77 0.23 0.79 0.80 0.61 0.86 0.47 0.82 0.56 0.66
GPT-2 SVD-50 0.73 0.08 0.78 0.68 0.84 0.84 0.57 0.89 0.43 0.64
DistilGPT 0.18 0.00 0.73 0.70 0.79 0.52 0.57 0.88 0.43 0.64

Table 5.4: Text Summarization Results.

Model ROUGE-1 ROUGE-2 ROUGE-L

GPT-2 med 20.5 4.6 10.2
GPT-2 SVD-72 18.1 2.3 11.3
GPT-2 TTM-72 20.1 4.1 9.9

We take a pre-trained GPT TTM-72 model from the previous section (with-

out fine-tuning) and validate it on a General Language Understanding Evalua-

tion (GLUE) benchmark. It is a collection of nine natural language tasks, including

language acceptability, sentiment analysis, paraphrasing and natural language in-

ference. The evaluating script is based on the original Transformer repository [Wolf
2https://huggingface.co/s-nlp/
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et al., 2020]. We add a top head compatible with the given task and run one train-

ing epoch. We choose just one epoch to avoid a situation where several models, all

“large” concerning the number of tokens in the dataset but of different sizes relative

to each other, converge to approximately the same loss during the entire training

cycle [Kaplan et al., 2020]. We repeated these experiments 5 times with different

random seeds, Table 5.3 shows the averaged obtained results with a standard devi-

ation of no more than 0.0008. The classical models and models with TTM layers

show approximately equal results, periodically overtaking each other. GPT-2 TTM-

72 has a performance decrease in Acceptability and several Question-Answering

datasets (QNLI, MNLI). The result of SVD-50 is close to TTM-72.

5.4.5 Text Summarization

We also compare the behaviour of the proposed models in the text summarization

task when tuning on a small amount of data. Based on the pipeline from [Khandelwal

et al., 2019], we trained both models on 3000 objects from the CNN/Daily Mail

datasets [Hermann et al., 2015, Nallapati et al., 2016]. The obtained ROUGEs are

not high (Table 5.4) but match the result from cited paper and highlight the similar

behaviour of the classical GPT-2 and TTM-72. SVD-50 shows a bit worse outcome,

except for the metric ROUGE-L.

5.5 Conclusion

We introduced an approach to obtain the compressed version of the GPT-2 model by

representing its layer with its compressed analogue of a smaller number of parame-

ters. We incorporate custom TTM layers as Fully Connected layers in a transformer-

based GPT-2 architecture and evaluate it on Language modelling and Language

Understanding tasks on English language. This modification results in a 40% re-

duction in model size, while maintaining performance on in-domain tasks without

significant loss in quality. Furthermore, in out-of-domain tasks, our proposed model

outperforms similar architectures that use SVD instead of Fully-Connected layers

and training from scratch under the same conditions.
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We compare our method with other approaches to compressing the effective

model size: distillation (DistillGPT) and training cut version of the architechture

from scratch (OPT model). Our model significantly surpasses DistillGPT, but the

OPT model provides the best score. This trend continues in downstream tasks

such as Language Understanding and Text Summarization, where the quality of

our resulting model is lower than the original but superior to baseline compressed

models. These results show that in case of training a compressed or cut version of

the given model from scratch, the dataset and training setup play a more significant

role than the choice of method. DistillGPT2 has a week setup; OPT has a strong

setup and well-prepared dataset; our model employs a regular dataset and mimics

the training setup of the original model.
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Chapter 6

Efficient Question Answering using

TTM Decomposition

This Chapter is based on the papers “Which is Better for Deep Learning: Python

or MATLAB? Answering Comparative Questions in Natural Language”, “Retrieving

Comparative Arguments using Deep Language Models”, “Retrieving Comparative

Arguments using Ensemble Methods and Neural Information Retrieval” (cf. Sec-

tion “Publications” at page 4).

6.1 Introduction

In this Chapter, we provide a detailed description of the comparative case of the

Question-Answering problem. We have presented a demo version of the software that

allows users to compare generative, retrieval-based and template-based approaches.

Then we focus on the retrieval-based approach. More precisely, having a corpus

with passages, we offer several options to extract the answer matching the particular

question: methods based on statistics and techniques based on Ensembles of Trees.

In addition, we employ strategies based on the Transformer architecture and aim to

perform the information retrieval task (ColBERT). It provides a good result, but

consumes a lot of memory. Finally, we compressed the FC layers in this model

using SVD and TTM decomposition. For compression, we chose the layers with the

sharpest SVD spectrum change within the SVD and TTM decomposition; the same
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spectral analysis determines the rank for the TTM. This choice of layers allowed one

to significantly improve the quality obtained by compressing the model, relative to

the random selection of modules for compression.

6.2 Overview of Comparative Question-Answering

Methods

In this section, we compare three approaches of a Comparative Question Answer-

ing(Is X better than Y with respect to Z? ). Answering such questions in natural

language is important for assisting humans in making informed decisions. These

approaches are based on modern NLP methods: linguistic transformer type models

and models for extracting relevant texts from corpora. For ease of comparison, we

have created a system. The key component of our system is a natural language

interface for comparative QA that can be used in personal assistants, chatbots, and

similar NLP devices. Comparative QA is a challenging NLP task, since it requires

collecting supporting evidence from many different sources, and direct comparisons

of rare objects may not be available even on the entire Web.

Comparison of objects of a particular class (e.g. holiday destinations, mobile

phones, programming languages) is an essential daily task that many individuals

require every day. According to Bondarenko et al. [2020a], comparative questions

comprise around 3% of search question queries submitted to major search engines—a

non-negligible amount. Answering a comparative question (What is better, X or Y? )

requires collecting and combining facts and opinions about compared objects from

various sources. This challenges general-purpose question answering (QA) systems

that rely on finding a direct answer in some existing datasets or extracting from web

documents.

Nowadays, many websites (e.g. Diffen, WolphramAlpha, or Versus) provide users

with a comparison functionality. Furthermore, the task of answering comparative

questions has recently attracted the attention of the research community [Kessler

and Kuhn, 2014, Arora et al., 2017, Yang et al., 2018b]. Most of the current re-

searches suggest that an answer to a comparative question should not only indicate
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the “winner” of a comparison, but also provide arguments in favour of this decision

and arguments that support the alternative choice.

Therefore, we argue that a comparative QA system should be a combination

of an argument mining engine and a dialogue system that mimics a human expert

in the field. In this work, we make the first step towards the development of such

technology. Namely, we develop a Comparative Question Answering System (Co-

QAS), an application that consists of a Natural Language Understanding (NLU)

module that identifies comparative structures (objects, aspects, predicates) in input

questions and a Natural Language Generation (NLG) module that constructs an

answer. We tested various options for both NLU and NLG parts ranging from a

simple template-based generation to Transformers-based language models.

The main contributions of our work are threefold: (i) we design an evaluation

framework for comparative QA, featuring a dataset based on Yahoo!Answers; (ii) we

test several strategies for identification of comparative structures and for answer gen-

eration; (iii) we develop an online demo using three answer generation approaches.

A demo of the system is available online.1 Besides, we release our code and data.

Text Generation. Most of the current text natural language generation tasks

[Dušek and Jurčíček, 2016, Freitag and Roy, 2018] are based on the architecture

of sequence-to-sequence models [Sutskever et al., 2014], these existing generation

methods are developed employing the attention mechanism [Bahdanau et al., 2015]

and the pointer-generator network [See et al., 2017]. More recent work on text

generation focus on generating natural language using multitask learning from multi-

document or multi-passage sources [Hsu et al., 2018, Nishida et al., 2019]. However,

our generation task uses a list of arguments to build the final answer. This makes it

similar to unsupervised summarization. There exist several approaches for tackling

the latter task, e.g. graph-based [Litvak and Last, 2008] and neural models [Isonuma

et al., 2019, Coavoux et al., 2019]. A common approach to the summarization task

is based on TextRank graph algorithm [Mihalcea, 2004, Fan and Fang, 2017].

Comparative QA. According to Li and Roth [2002] questions can be divided

into 6 coarse and 50 fine-grained categories, such as factoid questions, list ques-
1https://skoltech-nlp.github.io/coqas
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tions or definition questions: we focus on comparative questions. Sun et al. [2006]

proposed one of the first works on automatic comparative web search, where each

object was submitted as a separate query, then system obtained an answer and com-

pared the obtained results. Opinion mining of comparative sentences is discussed by

Ganapathibhotla and Liu [2008] and Jindal and Liu [2006], yet with no connection

to argumentation mining. Instead, comparative information needs are partially sat-

isfied by several kinds of industrial systems mentioned above. Schildwächter et al.

[2019] proposed Comparative Argumentative Machine (CAM)2, a comparison sys-

tem based on extracting and ranking arguments from the web. The authors have

conducted a user study on 34 comparison topics, showing that the system is faster

and more confident at finding arguments when answering comparative questions in

contrast to a keyword-based search. Wachsmuth et al. [2017] presented args.me

system for retrieval of pros and cons (arguments) given some input statement. The

input of this system is not structured, but rather a query in a free textual form.

The Touché shared task on argument retrieval at CLEF [Bondarenko et al., 2020b]

featured a related track. The task was to retrieve from a large web corpus docu-

ments answering comparative question queries like “What IDE is better for Java:

NetBeans or Eclipse?”, which is similar to CAM and args.me.

6.2.1 System Design

Our system is designed to help the user make a proper choice by fully and reason-

ably describing the possible advantages and disadvantages of each of the matching

options. For this purpose, we have defined structures that contain significant infor-

mation about the desired comparison: compared objects, comparison aspects, and

predicates.

In the example “Which is better for Deep Learning: Python or MATLAB?”, the

objects are entities that the user wants to compare (Python, MATLAB). The pred-

icate is the entity that frames the comparison (better); it introduces a comparison

relation between the objects and is often represented by a comparative adjective or

adverb. Finally, the comparison aspects are shared properties along which the two
2https://ltdemos.informatik.uni-hamburg.de/cam

83

https://args.me
https://ltdemos.informatik.uni-hamburg.de/cam


Python or MATLAB for
Deep Learning?

Objects:
 - Python
 - MATLAB

Aspects: 
- Deep Learning

Sequence tagging:
CRF / LSTM / BERT

...

Natural Language
Understanding

CAM / args.me /
Touché ...

Python
Pros:
- ...
- ...
Cons:
- ...

MATLAB
Pros:
- ...
- ...
Cons:
- ...

We chose
Python because
it was easy to
learn and fun to
work with. It has
a large
community of ...

Comparative Argument Retrieval 

Templates / CTRL /
Snippets / ...

Natural Language
Generation

Comparative Question Answering (this work)

Figure 6-1: The comparative QA workflow. A user submits a comparative question,
the NLU module identifies compared objects and aspects and transfers them to
CAM to retrieves comparative arguments. Then, the NLG module represents the
arguments in textual form.

objects are compared, e.g. Deep Learning.

Our comparative question answering system is based on CAM [Schildwächter

et al., 2019], which retrieves pro/con arguments for a pair of compared objects.

We extend CAM by enabling it to process natural language questions and generate

coherent human-like answers as depicted in Figure 6-1.

CAM mines sentences in favour or against two compared objects with respect to

an aspect specified by the user. First, using the Elasticsearch BM25, CAM retrieves

sentences containing the two compared objects and the comparison aspect from

the Common Crawl-based corpus featuring 14.3 billion sentences [Panchenko et al.,

2018]. Then, CAM classifies the sentences as comparative or not and identifies the

“winner” of the two compared objects in the sentence context. Besides, it extracts

aspects and predicates from the retrieved comparative sentences [Panchenko et al.,

2019]. Finally, CAM outputs a list of argumentative pro/con sentences and shows

84



Enter a comparative question

Which is better for Deep Learning: Python or MATLAB? Model to generate with

CTRL

Answer

Which is better PRED  for Deep ASP  Learning: Python OBJ  or MATLAB OBJ ?

We chose Python OBJ  because it was easy PRED  to learn ASP  and fun to work with. It has a large community of developers who are

always willing to help each other out. In addition, the standard library makes developing applications with Python OBJ  very easy.The downside

is, that you have to be careful when using it. If you’re not careful, you’ll end up writing code which will crash your computer if something goes
wrong. You also need to know how to use libraries like numpy in order to get good results.

Comparative Question Answering System Github

Figure 6-2: The interface of the Comparative Question Answering System (CoQAS).

the “winner” of the comparison along with the comparison aspects.

We extend CAM with natural language question understanding (described in

Section 6.2.2) and natural language answer generation (described in Section 6.2.3)

modules. The first module is developed to automatically identify the compared ob-

jects and the comparison aspect in a user-provided natural-language comparative

question. This information is passed to CAM which queries DepCC for compara-

tive sentences. The NLG module receives the output of CAM and transforms the

retrieved argumentative sentences into a short text, the generated answer. The

structure of our modular system is presented in Figure 6-1.

The user interface (Figure 6-2) contains an input form for submitting a compar-

ative question, and an output box for a generated answer. To improve readability

of the answer and help find the arguments in it, NLU module also labels the output

with identified objects, aspects and predicates. In Figure 6-2, we present an example

of the the input-output system’s web interface in action.

In the NLG module we use several approaches to response generation: a retrieval-

based approach and approach built upon pre-trained language models. These tech-

niques provide different answers: the first is more structured, and the second one is

based on experience and opinions. Therefore, we allow user to choose a generation

model from different types: CAM, CTRL, and Snippets (cf. Figure 6-2).

Finally, for integration into NLP applications, e.g., personal assistants and chat-
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Table 6.1: Statistics of the NLU dataset.

Obj Asp Pred

# occurrences 7,555 2,593 3,990
# per sentence 2.51 1.35 1.34
Length (words) 1.04 1.37 1.16

bots, we also provide a RESTful API for our comparative QA.

6.2.2 Natural Language Understanding

The goal of NLU module is to identify the objects to compare and comparison

structure aspects and predicates, if they were specified. We cast this as a sequence

labelling task.

Training Dataset To train the NLU component, we created Comparely, a dataset

with comparative sentences manually labeled with objects, aspects, and predicates.

First, we extracted comparative sentences for 270 object pairs from the dataset of

(not) comparative sentences by Panchenko et al. [2019]. We extracted them from

DepCC corpus [Panchenko et al., 2018] using CAM. We then performed manual

labelling (two annotators) using WebAnno tool [Yimam et al., 2013]. Some of the

extracted sentences were not comparative, so the annotators were instructed to dis-

card them. The majority of sentences were labelled once, but we also labelled 200 of

them multiple times to compute the inter-annotator agreement. The Cohen’s 𝜅 for

the aspect labelling is 0.71 (substantial agreement). For predicates and objects the

values are 0.90 and 0.93, respectively—perfect agreement. The dataset consists of

3,004 sentences, each of them has a comparison of two or more distinct objects and

at least one aspect or predicate. The average length of sentence is 26.7 words (Ta-

ble 6.1). The majority of sentences compare more than one pair of objects across

multiple parameters (i.e. sentences often contain more than one aspect or predicate).

As the NLU processed not statements but questions, for the further improvement

of the dataset we could use comparative questions from [Bondarenko et al., 2020a].

This dataset is essentially similar to the ones by [Arora et al., 2017, Kessler and

Kuhn, 2014]. They also contain comparative statements labelled with objects, as-
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pects, and predicates. The primary difference of our dataset is the domain diversity.

The mentioned datasets contain the sentences of only one domain, namely, the cam-

era reviews. The information contained in such sentences is difficult to generalise.

Thus, they demonstrate a proof of concept rather than a resource which can be used

for real-world tasks. On the other hand, Comparely features objects of different do-

mains. It was created based on real-world objects which are often compared. It

contains data from three domains: brands, generic objects, and computer science.

The two former domains are more numerous: 41% and 46% of sentences deal with

objects of brands and generic domains, respectively. The rest 13% are devoted to

objects of the computer science domain.

Method Identification of comparative question components (objects, aspects, pred-

icates, or none) is a sequence-labelling task, where the classifier should tag respec-

tive tokens in an input question. We test several common baselines starting with

simple one-layer bidirectional LSTM described by Arora et al. [2017] where the in-

put is encoded with GloVe embeddings. For some further improvements, we add

Conditional Random Field [Sutton and McCallum, 2012] to LSTM and use context-

based ELMO [Peters et al., 2018] embeddings for token representations. We also

experiment with Transformers [Vaswani et al., 2017c] using a pre-trained BERT

model [Devlin et al., 2019] and RoBERTa [Liu et al., 2019].

For every classifier, during training, we tune hyperparameters by varying a batch

size (from 16 to 100) and a learning rate (from 10−6 to 10−2). To find a proper

converge of training process, we apply two types of learning rate schedulers: Linear

With Warmup and Slanted Triangular.

For the model with the highest achieved F1 (RoBERTa), we employ stochastic

weight ensembling [Goodfellow and Vinyals, 2015, Garipov et al., 2018], i.e., we

interpolate between the weights obtained by training a certain model with different

random seeds. All models were trained on the Comparely dataset and tested on

its manually re-labelled subset of 400 sentences. The overview of the classifiers’

effectiveness is shown in Table 6.2.
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Table 6.2: Evaluation in terms of F1 of the NLU tagger.

Model Objects Aspects Predicates

RoBERTa 0.925 0.685 0.894
BERT 0.829 0.563 0.869
ELMO 0.654 0.487 0.825
BiLSTM-CRF 0.631 0.475 0.766
BiLSTM 0.582 0.328 0.730

Results and Discussion The evaluation shows that comparison aspect classifica-

tion is the hardest task: the baseline one-layer BiLSTM achieves an F1 score equal

to 0.33, and the most effective RoBERTa-based classifier achieves score 0.69. The

most reliable classification was achieved for predicting the compared objects with an

F1 0.58 for the baseline, and an F1 0.93 for RoBERTa. Adding Conditional Random

Fields and deploying special ELMO embedding to the BiLSTM classifier slightly

improved the results. Transformers demonstrated significant improvement in classi-

fication effectiveness over the baseline. Finally, we choose to deploy RoBERTa-based

classifier in the NLU module of our system.

Figure 6-3: Dependence of ROUGE metrics on the maximum length of the generated
sequence (CTRL model).

6.2.3 Comparative Answer Generation

Based on comparative sentences retrieved by CAM, we develop several generation

approaches to construct a human-like concise answer: (1) generation with pre-

trained Transformers-based language models, (2) retrieval of argumentative sen-

tences ranked by CAM or TextRank, (3) extracting context of sentence retrieved by

CAM as support for the “winning” object, and (4) entering extracted comparative

structures in templates.
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Table 6.3: Evaluation of generation methods on the Yahoo! Answers. The best
models of each type are highlighted.

Method Type ROUGE-1 ROUGE-2 ROUGE-3

CTRL:Question Language Model 0.2423 0.0226 0.0023
CTRL: Which-better-x-y-for-z Language Model 0.2454 0.0200 0.0021

CAM:First snippets Doc.Retrieval 0.2162 0.0167 0.0017

CAM:Bullet points Sent.Retrieval + Slots 0.2298 0.0328 0.0040
TextRank: Bullet points Sent.Retrieval + Slots 0.2203 0.0238 0.0036

Templates Object/Aspect Slots 0.1969 0.0195 0.0016

Generation Methods

Pre-trained Language Models Pre-trained language models have been shown

to contain commonsense knowledge, so they can be successfully used for question

answering [Andrews and Witteveen, 2019] and for generating sensible and coherent

continuation of text. Therefore, we use Transformers-based CTRL [Keskar et al.,

2019] models for answering comparative questions.

It should be noted that the research has been done back in the 2019 year and

now with more powerful conditional generative models than CTRL (i.e. ChatGPT3),

better results in Comparative QA can be obtained.

CTRL allows explicit control codes to vary the domain and the content of the

text. We use the Links control code which forces the model to produce text similar

to online news and reports. We feed into CTRL phrase “Links Which is better in

respect to aspect: object1 or object2?” and a row question from the input.

We also vary a maximum number of tokens, generated by CTRL. We experiment

with different length set, including: 20, 50, 100, 150, and 200 and generate answers

to questions from the Yahoo!Answers dataset (cf. Section 6.2.4). For the evaluation

part, we calculate ROUGE-1, ROUGE-2, ROUGE-3 scores between generated texts

and corresponding Yahoo!’s “best answers”. According to the results (cf. Figure 6-3),

a model with maximum length of 100 tokens gives the highest ROUGE-3 score (we

select this length parameter for our further experiments).
3https://openai.com/blog/chatgpt
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Sentence-Retrieval-Based Methods The CAM output contains a list of the

argumentative sentences which are ranked by the BM25 inverted index-based score.

Every sentence is a supportive argument for the superiority of the respective com-

pared object. Sentence-retrieval-based methods try to extract the most representa-

tive sentences and display it in the proper form. To create an answer, CAM:Bullet

points mentions a “winner” defined by CAM with respect to aspects if they exist. It

also takes the top-3 sentences supporting each of the objects and produces a list for

highlighting the advantages and disadvantages of each object in comparison.

An alternative way of retrieving the most relevant sentences is clustering. This

approach is used in TextRank:Bullet points. TextRank is a graph-based summariza-

tion algorithm. We use the version proposed by [Mallick et al., 2019]. We represent

sentences with hidden states of a LSTM network pre-trained on Wikipedia. Tex-

tRank iteratively updates the weights of edges and sets the node weights to be

proportional to the importance of adjacent edges. To make the graph sparse, we

remove the edges with a score below average.

We create separate graphs for sentences supporting each of the objects. We ap-

ply TextRank to each of them and then cluster them. Clustering divides the nodes

in graphs by semantic similarity and thus allows identifying groups of sentences sup-

porting a particular idea. Then, we apply TextRank again to each of the clusters

separately and select the three most characteristic sentences from each cluster as

produced by Chinese Whispers [Biemann, 2006], an iterative clustering algorithm,

which assigns vertices to the most common class among their neighbours. Argu-

mentative sentences selected in this way are displayed as a bullet-list after declaring

the “winner” object of comparison.

Document-Retrieval-Based Method To compose an answer, method CAM:First

snippets takes the first sentence related to the “winner” object in CAM output. Then

it finds a document corresponding to this sentence and extracts the surrounding con-

text. The obtained context consists of 3 sentences and is considered to be a system

answer.
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Template-Based Answer Besides the argumentative sentences, CAM extracts

aspects and predicates from them. The predicates are adjectives or adverbs, which

allows using templates of the following form: “I would prefer to use Object1 because

it is Predicate1 and Predicate2. In addition, it is Predicate3, ..., and Predicate𝑖.

However, you should also take into account that Object2 is Predicate𝑖+1, ..., and

Predicate𝑘”. Here Object1 is the winner of comparison.

6.2.4 Experiments

Evaluation Dataset To evaluate answer generation module of our system, we

use information extracted from Yahoo!Answers. Namely, we get a subset of L6–

Yahoo!Answers Comprehensive Questions and Answers version 1.0 (multi-part) re-

trieved from Yahoo! Webscope. We take pairs of objects that we used for generating

Comparely and extract a subset of questions from the Yahoo!Answers dataset which

contains these objects, yielding 1,200 questions. Additionally, we extract the answers

to these questions, which are labelled by users as “best answer”, and use them to

evaluate our NLG methods.

Evaluation Metric Generated and reference texts are usually compared by num-

ber of matched N-grams: BLUE (precision), ROUGE (recall), METEOR (F-score).

For all-round representation of the texts similarity, we select F1 score from ROUGE-

N outputs as evaluation metric. We evaluate our generation models on the Ya-

hoo!Answers dataset using the “best answer” (defined by users) as the reference.

Discussion of Results Evaluation results are provided in Table 6.3. CTRL mod-

els receive the highest ROUGE-1 scores, that describe overlapping of single words,

and CTRL’s high performance relatively to it can be explained by the fact that the

pre-trained language model stores information about a vast dictionary and, with

some probability, yields the words that are placed in the standard answer. While

the systems generate grammatically correct texts they may not necessarily satisfy

the information need of the user. For example, the CTRL answers the question

“What should I eat an orange or an apple?” with “It is simple: eat what you like
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Table 6.4: User study results for answer completeness and fluency (30 questions,
3-point Likert scales).

Answers a question (%) Answer fluency (%)

Method Complete Partial Does not Complete Partial Not fluent

Yahoo! Best Answer 62 28 10 86 6 8
CTRL: Question 100 30 37 33 80 12 8
CAM: Bullet points 28 58 14 22 48 30
CAM: First snippets 23 49 28 27 38 35

and don’t worry about it.”

Despite having low ROUGE-1, sentence retrieval-based approaches (Text Rank:Bullet

points, CAM:Bullet points) have consistently higher ROUGE-2 and ROUGE-3. The

generated answers are more structured and built on sentences marked by the system

as comparative. They often contain special 2-gram and 3-gram sequences which are

typical for an explanation.

Answers from CAM:First snippets, consisting of a single comparative sentences

only, perform worse on all metrics. Interestingly, CAM:Bullet points has better per-

formance than TextRank:Bullet points. It could indicate that modelling relevance

by a standard index provides more accurate results than clustering. Meanwhile,

template-based generation performs poorly. This indicates that the grammatical

structure is essential for the answer generation task.

We choose 50 random sentences from the Yahoo! Answers dataset and calculate

ROUGE-N scores for every generation method and Yahoo!’s “best answers”. For

each group of methods we select one providing the best result—CTRL:Question

100, CAM:First snippets and CAM:Bullet points—and add them to the system

demonstration engine.

User Study

To additionally evaluate the proposed answer generation methods, we also collect hu-

man assessments in a small user study for the three models with the highest ROUGE

scores (CTRL:Question 100, CAM:Bullet points, and CAM:First snippets).
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Experimental Setup For our study, we randomly sampled 30 comparative ques-

tions from the Yahoo!Answers dataset and generated answers using three methods:

CTRL:Question 100, CAM:Bullet points, and CAM:First snippets. Additionally,

since we used Yahoo!’s “best answers” as ground truth for automatic evaluation, we

asked our participants to also assess the quality of the human “best answers”. For

the user study, we internally recruited five (under-)graduate students. We focused

on the two answer evaluation criteria: (1) Whether an answer is complete (“Does it

answer the question?”) and (2) how fluently it is written. The 120 question–answer

pairs (3 generated answers and Yahoo!’s “best answer” for 30 questions) were ran-

domly ordered and the participants had to rate the answer completeness and fluency

on a three-point Likert scale (3: fully answers/fluent, 2: partially answers/fluent, and

1: does not answer/not fluent at all).

Results and Discussion The inter-annotator agreement shows a slight overall

agreement between the five annotators (Fleiss’ 𝜅 = 0.20 for answer completeness and

𝜅 = 0.13 for fluency) such that we decided to increase the reliability by calculating

the 𝜅-scores for all combinations of three or four annotators. We then decided to

include only the three participants with the highest agreement (𝜅 = 0.32 for answer

completeness and 0.30 for fluency; both fair agreement) and to remove the two

“outlier” participants from the study.

Table 6.4 summarizes the study results as the ratio of votes collected from the

three annotators (we cannot use majority voting since about 60% of the question–

answer pairs do not have a majority vote). Not surprisingly, the human-written

answers are perceived as the most complete and fluent. The participants were

almost equally satisfied with the answers generated by CTRL:Question 100 and

CAM:Bullet points, however, they rated the CTRL answers as much more fluent.

Interestingly, the relatively low inter-annotator agreement might indicate that hu-

mans have different perceptions of answer completeness and fluency (even some “best

answers” were rated as incomplete and not fluent). For completeness, we calculated

the statistical significance of the user study results using Bonferroni corrected 𝑝-

values. For the pair CTRL:Question 100 (our best NLG model) and the Yahoo! Best
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Answer: 𝑝≪ 0.05 for the answer completeness and 𝑝≫ 0.05 for the answer fluency.

For the CTRL model, Pearson’s 𝑟 = 0.121 between the answer completeness and flu-

ency (small correlation), and for the “best answers”, 𝑟 = 0.407 (medium correlation).

The results show that our proposed system is almost as fluent as the human-written

answers, but still needs some improvement in terms of adequacy.

Summarizing, we present a comparative question answering system targeted at

answering comparative questions, such as “Is X better than Y with respect to Z?”.

Our system is based on the Comparative Argument Mining (CAM) system—a tool

which retrieves from a large corpus textual comparative arguments for two to-be-

compared objects. We extend CAM with an NLU module that identifies objects and

aspects in a user textual query and highlights them in the answer, and a generation

module that gives a concise and coherent answer based on the retrieved information.

Evaluation of generation methods showed that a CTRL-based answer generation

gives better performance with respect to ROUGE-1, and Sentence Retrieval Methods

provide superior ROUGE-2 and ROUGE-3 scores.

6.3 Comparative Information Retrieval

6.3.1 Retrieving Comparative Arguments using Ensemble Meth-

ods and BERT

In this section, we present a submission to the Touché lab’s Task 2 on Argument

Retrieval for Comparative Questions [Bondarenko et al., 2021]. Our team Katana

supplies several approaches based on decision tree ensembles algorithms to rank

comparative documents in accordance with their relevance and argumentative sup-

port. We use PyTerrier [Macdonald et al., 2021] library to apply ensembles models

to a ranking problem, considering statistical text features and features based on

comparative structures. We also employ large contextualized language modelling

techniques, such as BERT [Devlin et al., 2019], to solve the proposed ranking task.

To merge this technique with ranking modelling, we leverage neural ranking library

OpenNIR [MacAvaney, 2020].
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Our systems substantially outperforming the proposed baseline and scored first

in relevance and second in quality according to the official metrics of the competition

(for measure NDCG@5 [Wang et al., 2013] score). Presented models could help to

improve the performance of processing comparative queries in information retrieval

and dialogue systems.

In this part of work, we use ensemble methods based on mixed statistical and

comparative features to the document ranking; we are first to use neural information

retrieval approach to the task of argument retrieval; we propose a model outper-

forming the baseline and yielding the first and the second-best result according to

the relevance and quality metric, respectively.

The most relevant to this is the previous shared task Touche 2020 [Bondarenko

et al., 2020c]. 17 participants took part in the competition and submitted 41 runs.

Various approaches were tested by these participants, including methods based on

extraction of structures corresponding to claims and premises, assessing argument

quality, representation of documents by language models, expansion of the query by

similar words. The ranking function from search engine ChatNoir [Potthast et al.,

2012] based on BM25F [Robertson et al., 2004] approach was used as a baseline.

Only a few of the submitted solutions can slightly improve the baseline. The best

overall approach in the previous competition was the method based on query exten-

sion and reranking documents by relevance, credibility, and supportive quality [Abye

et al., 2020].

This work is based on our run submitted in the previous version of the Touche

shared task [Chekalina and Panchenko, 2020]. In this work, we used a pre-trained

language model to find relevance between the query and document. Extraction

of comparative structures and counting the number of comparative sentences in a

document help us to assess the quality of relevant arguments.

Therefore, the problem of argument retrieval arises in other scenarios. Com-

parative argumentation machine CAM [Schildwächter et al., 2019] retrieves com-

parative sentences with respect to accepted objects and comparison aspects. The

paper [Fromm et al., 2019] explores the influence of context on an argument detect-

ing system and proves the performance increasing related to it.
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Table 6.5: Example of query and documents with different relevances in the Touche
task dataset

Query Document Rank
What is better
for
the environment,
a real or a fake
Christmas tree?

Disease and condition content is reviewed by our medical
review board real or artificial? There is so much confusing
information out there about which is better for your health
and the environment.

2

You may think you’re saving a tree, but the plastic alter-
native has problems too. Which is “greener” an artificial
Christmas tree or a real one?

1

This entry is part 25 of 103 in the series eco-friendly fri-
day november 28th’s tip christmas trees: stuck between
choosing a real Christmas tree or a fake one?

0

Table 6.6: Example of query and documents with different relevances in the Antique
dataset

Query Document Rank
Why do we put
the letter k on
the words knife
and knob, knee?

They are saxon words. Knife would have been pronounced
ker-niff.

4

As a guess I would say that historically “kn” would have
been pronounced differently to “n” and that time has al-
tered the way the words are pronounced.

3

Because English is a funny language. 2
I don’t really (k)now! 1

Datasets and Evaluation setup The organisers provided 50 comparative ques-

tions (topics), for which we should obtain documents containing convincing argu-

ments for or against one or another option. The competition topics are available

online. 4

In addition, 50 topics and the corresponding relevance annotations of the previ-

ous year’s competition [Bondarenko et al., 2020c] were given for supervised learning.

These documents were also retrieved from ChatNoir and ranked manually to 0 (not

relevant), 1 (relevant) or 2 (highly relevant) scores. We use this data to train and

set up models based on the decision trees and fine-tune the BERT ranker. Also, last

year’s team submissions were available too.

Unfortunately, these data are not sufficient for fitting large supervised ranking
4https://webis.de/events/touche-21/shared-task-2.html
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models, for example, based on the BERT technique. In this case, we use adjacent

question-answering dataset called Antique [Macdonald and Tonellotto, 2020]. This

dataset consists of the questions and answers of Yahoo! Webscope L6 and contains

2,626 open-domain non-factoid questions and 34,011 manual relevance annotations.

The example of query and ranked answers are in Table 6.5, Table 6.6 in Appendix

A. It might be noticed that Antique dataset has a different set of ranking scores -

0, 1, 2 instead of 1, 2, 3, 4 - so we rewrite the Antique ranks according to the

following mapping 1→0, 2→1, 3→1, 4→2.

We use every topic as a query in ChatNoir [Potthast et al., 2012] search engine

and extract up to 100 unique documents from the ClueWeb12 corpus. We clean

documents’ bodies from HTML tags and markups and ranked them using one of the

developed approaches described below.

As auxiliary data, the organizers provided the topics of the previous year’s com-

petition. For each proposed topic, a set of documents from ChatNoir was retrieved

and labelled as described above. We use this data to train developing models and

valid composing approaches. In the validation phase, we split the ranked data into

40 topics in train and 10 in validation.

In the run phase, we execute produced solutions on web evaluation platform

Tira [Potthast et al., 2019]. In this stage to fit the model we use ranked data from

the previous year entirely and predict rank for current proposed topics. The runs

were evaluated using the NDCG [Wang et al., 2013] metrics based on the human

judgements of the submitted runs. Retrieved documents were judged in accordance

with two criteria: (i) document relevance, (ii) whether sufficient argumentative sup-

port is provided [Braunstain et al., 2016].

Document ranking using ensembles of trees In this section, we use ensembles

of trees as a supervised machine learning technique to solve ranking problems. We

choose either pointwise regression tree algorithms, like Random Forest, or boosted

tree algorithms like XGBoost and LightGBM. In the cases of LightGBM model we

employ LambdaMART [Wu et al., 2010] objective. It combines cost function derived

from minimizing the number of inversions in ranking (LambdaRank [Burges et al.,
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2007]) and objective for building gradient boosted decision trees (MART [Friedman,

2002]). We use PyTerrier platform for information retrieval.5 It simplifies the ex-

traction of the text features and allows expressing retrieval experiments [Macdonald

and Tonellotto, 2020].

For our ranking ML methods, we use features that came from 3 origins described

below: (i) ranking features extracted by PyTerrier, (ii) specific comparative features,

(iii) score from ChatNoir system based on custom BM25 scoring function.6

PyTerrier provides a measure of the matching of query-document texts by several

models. Among these models are statistical measures (TF-IDF), mesures based on

language models (Heimstra, Diriclet), measures based on occurrence of a document

depending on the fields that the term occurs in (BM25F, PLF). The list of all

possible models are available at the cite 7. Among these varieties we have chosen

BM25, Heimstra, DFIC, DPH, TF-IDF, DiricletLM, PL2 for our exploration.

Table 6.7: Results on validation set for text features in PyTerrier models.

Method BM25 Heimstra DFIC DPH TF-IDF DiricletLM PL2

NDCG@5 0.3637 0.3616 0.3642 0.3110 0.3637 0.3307 0.3603

We applied each of the selected methods sequentially and independently to the

training set, ranked documents by the obtained scores and evaluated the ranking

on the validation set. The result of these tests is in Table 6.7. We have chosen 3

methods with the most promising results, and these 3 methods combine 3 features.

We focus not only on finding high relevant documents as on finding documents

with a comparison of one object relative to another. The work [Chekalina et al., 2021]

assumes that the comparative issue can be represented by comparative structures -

objects for comparison, comparative aspects and predicates. We take the sequence-

labelling model suggested in the cited paper and applied it to the query. It helps

us to define objects for comparison for every topic. Then we apply the model to

document and get a comparative feature set.
5https://pyterrier.readthedocs.io/en/latest/index.html
6https://www.elastic.co/guide/en/elasticsearch/reference/current/

index-modules-similarity.html
7http://terrier.org/docs/current/javadoc/org/terrier/matching/models/

package-summary.html
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The feature is_retrieved describes are there any comparative structures in the

document at all. Characteristic objs_score defines how many objects from query

are found in document (0, 1 or 2). Feature asp_pred_score is counted in the fol-

lowing way: if at least one object from a query is in the document, every word in the

document labelled as an aspect or predicate increases the score to 0.5. Finally, we

combined defined features with scores obtained from the ChatNoir system, and a re-

sulting feature vector for pair query-document is {score_pl2, score_tf, score_bm,

score_dfic, baseline_scores, is_retrieved, ap_score, objs_score}.

Models

Random Forest We use the Random Forest model imported from Sklearn and

wrapped by the PyTerrier pipeline. To find the best setup, we vary the number of

estimators from 10 to 150, the value 20 gives the best valid score NDCG@5 of 0.408.

XGBoost We also wrapped gradient boosting library from Sklearn to PyTerrier

class and tune hyperparameters by setting the learning rate from 1e−4 to 0.1 and

max_depth from 4 to 16. The best setup is learning rate 0.01, max_depth 6 and

gives NDCG@5 0.547.

LightGBM In the case of LightGBM, we vary the number of leaves from 8 to 20

and the learning rate from 0.001 to 0.1. The best configuration with num_leaves

equal to 15 and a learning rate equal to 0.1 gives 0.579 score.

Table 6.8: Feature importance in the proposed LightGBM model

Feature Pl2 TF-IDF BM25 Dfic ChatNoir has comp objs_score asp_pred

Importance 1.76 1.19 1.51 2.3 20.8 0 1.66 1.51

The feature importance of the resulting model is in Table 6.8. It can be seen

that the most significant feature is the score retrieved from the ChatNoir, then there

is a Divergence from Independence based on Chi-square [Kocabas et al., 2013] and

the existence of comparison objects in the document.
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Document ranking using neural information retrieval based on BERT

Contextualized language models such as BERT can be much more efficient for rank-

ing tasks because they contain vast relationships between language units. In the

proposed work we use a reranking model from OpenNIR [MacAvaney, 2020]8 based

on “Vanilla” Transformer architecture [Vaswani et al., 2017b].

BERT receives a query and document and processes it jointly. A distinctive

feature of the BERT reranker is injection token similarity matrices on each layer,

which considerably improves performance [MacAvaney et al., 2019].

First, we pretrain this reranker on the Antique dataset. We clean this dataset

from incorrect symbols and makeups. We also left from the dataset documents of

length more than 300 characters, since the length of the ChatNoir retrieves usually

does not exceed 300. The training process lasted for 500 epochs with 0.001 learning

rate and 56 objects in every batch. Finally, our model gives NDCG@5 0.3362 on a

validation set. We fine-tune the model on 40 train topics from the previous year for

50 epochs with the same configuration. Fine-tuning increased the score on validation

up to 0.412.

Table 6.9: Results on validation set
Method NDCG@5 Time, ms
Random Forest 0.408 127.168
XGBoost 0.547 128.848
LightGBM 0.572 131.244
Bert Ranker 0.412 1560.947
Baseline’20 0.534 -

Results on validation set The result for every proposed approach obtained on

the validation part of data from the previous year competition is in Table 6.9. We

also evaluate the previous year’s baseline on the validation set. The best scores

come from the LightGBM model, which also outperforms the baseline. XGBoost

has fewer scores, Random Forest as a simple algorithm has the smallest score. Bert

overtakes Random Forest a little.
8https://github.com/Georgetown-IR-Lab/OpenNIR
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In the right column, we also added the time required to train each model. It

can be seen that the ensemble-based models have approximately the same time

complexity, while the Bert requires much more time to train.

Results on the test set For final testing, the retrieved documents were manually

labelled with a score from 0 to 3. Judgment was made on two independent criteria:

the relevance of the document to the given topic and the quality of the text. The

quality criterion includes good language styling, easy reading, and proper sentence

structure, and the absence of typos.

For each criterion, a separate file with the assessor’s scores is available. The

results of two evaluations are presented in Table 6.10 and Table 6.11. The runs of

our team Katana have the best result between all teams in terms of relevance and

the second result in terms of text quality.

As in the validation set, XGBoost and LightGBM give the best performance.

It is well explained, since the loss of these models is based on the ranking quality

functions, NDCG in the XGBoost case, and LambdaMART in the LightGBM case.

The first model describes the relevance a bit better (0.489) and has the first place

among all participants. For quality, in contrast, LightGBM is better. It archives

0.684 and takes second place in a quality table, slightly surrendering to Top 1. The

random forest method has scores just below the baseline in both cases. It can be

explained by a more elementary algorithm to build an ensemble. Bert gives quite

a good result for quality and a weak one for relevance. Perhaps the data from the

adjacent task (factoid QA) used for the training is the reason for not a very accurate

solution.

Table 6.10: NDCG@5 Relevance scores

Method NDCG@5

Random Forest 0.393
XGBoost (Top 1) 0.489
LightGBM 0.460

Bert Ranker 0.091

ChatNoir baseline 0.422
Thor team (Top 2) 0.478

Table 6.11: NDCG@5 Quality scores

Method NDCG@5

Random Forest 0.630
XGBoost 0.675
LightGBM (Top 2) 0.684

Bert Ranker 0.466

ChatNoir baseline 0.636
Rayla team (Top 1) 0.688
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We present our solution to the Argument retrieval shared task. We pay atten-

tion to ensembles methods and use statistic approaches, language modelling, and

comparative structure extraction to retrieve features for it. We also use a neural

reranker based on the Bert technique to use information from a contextualised model

in our task.

The best results were obtained by gradient boosting methods, training on rank-

ing cost function: XGBoost and LightGBM. The proposed approaches outperform

baseline and take first and second places in relevance and quality ranking, respec-

tively. Bert contextualized model shows the need for large learning data.

Table 6.12: Example of documents with the different relevance to query “Is admission
rate in Stanford higher than that of MIT?”

Is admission rate in Stanford higher than that of MIT?

LightGBM Top-3 Baseline Top-3

1. Stanford and Harvard have a similar
admissions rate of about 7%. MIT comes
with a somewhat greater rate of success
admitting just under 10% or 1742 for the
class of 2015. Harvard, Stanford and MIT
are global leaders in culture, commerce
and governmental policies.

1. Stanford and Harvard have a similar
admissions rate of about 7%. MIT comes
with a somewhat greater rate of success
admitting just under 10% or 1742 for the
class of 2015. Harvard, Stanford and MIT
are global leaders in culture, commerce
and governmental policies

2. For more than a decade, I have served
as an admissions officer for MIT. In that
time, i’ve read more than 10,000 applica-
tions and have watched thousands of new
students enter MIT. It is a privilege to
work at the most dynamic and exciting
university in the world.

2. For more than a decade, I have served
as an admissions officer for MIT. In that
time, i’ve read more than 10,000 applica-
tions and have watched thousands of new
students enter MIT. It is a privilege to
work at the most dynamic and exciting
university in the world.

3. Our primary enhancement was targeted
at families earning less than $75,000 —
making mit tuition free and eliminating

3. All of this factual information, plus a
lot of other detail, can be found in the mit
admissions literature. In fact, this year,
mit will award $74 million in undergradu-
ate aid.
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Table 6.13: Example of documents with the different relevance to query “Which
smartphone has a better battery life: Xperia or iPhone?”

Which smartphone has a better battery life: Xperia or iPhone?

LightGBM Top-3 Baseline Top-3

1. 1. The power saver app that will turn
down settings when battery life is low to
get as much juice out of the battery as
possible. Sony has set the benchmark with
its 12 megapixel camera inside the Xperia
S.

1. The iPhone 4 is apple’s thinnest smart-
phone yet, but offers a much better screen,
faster processor, video calling, and many
other enhancements.

2. How to increase the battery life of ap-
ple’s iPhone 4s many of those with an
iphone 4s have complaints about the bat-
tery life. Apple has acknowledged these
problems, and is working to fix them.

2. Sony Xperia’s review: an above aver-
age smartphone gizmotraker’, as far as
battery life is concerned, it last about 7 hr
30 min in talktime, 450 hrs in standby.

3. Sony Ericsson includes an 8gb card in
the sales package the Sony Ericsson Xpe-
ria arc s has below average battery life.
Most users will get around 24 hours of life
out of the Xperia. X27’s 1600mah bat-
tery before it needs a recharge, but heavy
users may need an injection of power be-
fore then.

3. How to increase the battery life of
Apple’s Iphone 4s many of those with an
iphone 4s have complaints about the bat-
tery life. Apple has acknowledged these
problems, and is working to fix them.

6.3.2 Retrieving Comparative Arguments using Deep Lan-

guage Models

In this part, we describe a submission to the Touché lab’s Task 2 on Argument

Retrieval for Comparative Questions. We continue attemting to solve the passage-

retireval task in the aim to answering a question in the Comparative case and employ

approaches based on pre-trained deep language model architecture ColBERT [Khat-

tab and Zaharia, 2020]. This BERT-based architecture is adapted to the text ranking

task by learning to represent both queries and documents as vectors and measur-

ing the similarity between them. We use a model trained on a question-answering

dataset MSMARCO, with the proposed weights and weights pre-trained by us. We

also customize ColBERT for the comparative retrieval domain by fine-tuning the

model on the data from the previous years’ Touché competitions. The proposed

experiments verify the usefulness of the transfer learning from a large pre-trained
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ranking language models to the problem of arguments extraction for comparative

topics. Our solutions rank third in both relevance, quality, and stance prediction

evaluations.

The Touché lab’s Task 2 on Argument Retrieval in 2022 [Bondarenko et al., 2022]

proposes to select passages from a corpus of 1 million texts that are most relevant to

the user’s comparative queries, as well as to determine their position - which object

in the text is proposed as the most suitable. We employ neural-network based

approach with a simplified scheme for comparing query and document embeddings.

In addition to using the pre-trained large language model, we further trained the

model on documents ranked for comparative queries.

On the validation dataset, the approach shows competitive performance, but less

than the ensemble-based method from the previous section 6.3.1. This work shows

the possibility and efficiency of the neural network technique based on the matching

of the query and document representations relatively to a specific comparative case

of informational retrieval.

The main difficulty in finding relevant documents on the web is the large size

of the text corpus. Traditionally, search engine systems depict documents using

statistic-based features, the computation of which is not complex.

A large volume of texts imposes a limitation on the use of neural networks

for ranking documents in a corpus. There are two ways of neural approaches to

information retrieval tasks: representation-based models [Huang et al., 2013] and

interaction-based models [Mitra et al., 2017]. The first one computes the represen-

tation of the topic and passage separately and only counts the score of interaction

for the pair. Interaction-based methods match the query and document in a token

or phrase-level. This set of methods is more expensive but most effective. In the

proposed paper we deploy architecture, which combines the advantages of both these

methods.

Data Provided for The Task

The organizers offer the participants 50 comparative questions (topics), for which

it was necessary to extract and rank passages from the text corpus. Topics for the
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competition are available online9. The organizers also provide a corpus of about

0.9 million texts for passage extraction. For stance detection, every topic comprises

objects that are compared in it. For stance detection support, a dataset created

from comparative questions of the MSMARCO dataset10 is proposed. The dataset

includes relevant answers with highlighted objects of comparison in it and their

position in the documents. Every text in a dataset has a detected stance.

For model validation purposes, the task presents 100 topics and corresponding

relevance annotations of the previous year’s competition [Bondarenko et al., 2020c,

2021]. These documents were also retrieved from ChatNoir and ranked manually to

0 (not relevant), 1 (relevant), or 2 (highly relevant) scores. The 2020 year assessment

contains a common ranking, last year’s competition has a separate judgment for

relevance and quality. We use this data to fine-tune the model to comparative

sub-task in document retrieval. Besides, last year’s team submissions are available

too.

The standard learning object for argument ranking consists of a triple: query,

positive passage (relevant text), negative passage (irrelevant text). Reading compre-

hension dataset MSMARCO (Microsoft Machine Reading Comprehension) [Nguyen

et al., 2016] includes 1,010,916 anonymized questions from Bing’s query and 8 mil-

lion passages extracted from the search system Bing. For the training BERT-based

model we use MSMARCO-Passage-Ranking, which comprises triplets from the men-

tioned questions and passages.

We use data from the previous years’ Touche tasks to generate a validation

dataset and dataset for fine-tuning the ColBERT model. For every topic, we retrieve

up to 100 texts from the ClueWeb12 11 corpus using the ChatNoir [Potthast et al.,

2012] system, according to Tocuhe’20-21 task rules. The validation dataset was

created on 10 topics from 2021 with corresponding quality and relevance qrels. The

rest 40 topics and 50 topics from 2020 produce data for adapting the pre-trained

model for text ranking in terms of argumentative objects comparison.

The 2020 year task topics have only one assessment dimension in qrels. If the
9https://webis.de/events/touche-22/shared-task-2.html

10https://microsoft.github.io/msmarco
11http://lemurproject.org/clueweb12
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score in this is 1 or 2, we treat this text as relevant. Irrelevant pairs were selected

from documents with ratings less than 1 or from the search results for different

topics, provided that they were not presented in the search results for the current

query. In the case of an assessment of 21 years, there are separate judgments among

two axes: quality and relevance. We calculate a sum of a quality and relevance score

and consider relevant documents having a score equal to or more than 3, otherwise

- irrelevant. The statistic of mentioned datasets is in Table 6.14.

Table 6.14: Statistics of datasets used in training from scratch and fine-tuning.

Dataset Task Number of triples

MSMARCO-Passage-Ranking train 39 780 810
Dataset based on Touché 2021 fine-tune 46 450

For document ranking, we use the ColBERT [Khattab and Zaharia, 2020] model,

pre-trained in several ways. Using the model, in the test stage, we created an index

of all documents in the provided collection of text passages. Using this index, we se-

lect the top-k most relevant texts to each of the topics. We use auxiliary information

about objects under comparison to find them in every ranked document and define

document stance using Comparative argumentation machine CAM [Schildwächter

et al., 2019] functionality. We execute produced solutions on the web evaluation

platform Tira [Potthast et al., 2019]. The retrieved documents will be manually

assessed for both metrics: general relevance and comparison quality. Relevance rep-

resents proximity to the topic and the presence of sufficient argumentative support.

Quality refers to good structure, understandable news, and text styling.

In the validation phase, we use topics of the previous year’s competition as

queries. The corpus on which the model builds the index consists of documents

from the Chat Noir issue that are relevant to topics. We retrieve documents for

every question and compare them to official Qrels judgments.

Document Ranking

The main architecture we used in the document retrieval task is Contextualized

Late Interaction over BERT (ColBERT). ColBERT provides a trade-off between
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Figure 6-4: The late interaction matching scheme, which is used in the ColBERT
model. The similarity of the query and document is the sum of the scores between
every query token and the most similar document token. Source of the image: [Khat-
tab and Zaharia, 2020].

representation-based models with low computational cost and well-performed token

interaction-based models. Actually, for approaches with a full interaction matrix

between query and document tokens, ColBERT reduces complexity by providing a

convolution over the document tokens.

The query and document processing in the ColBERT architecture contains 2

steps:

• To encode query, we add [𝑄] after [𝐶𝐿𝑆] token, process padded query by

BERT, apply convolution and normalization

• To encode document, we add [𝐷] after [𝐶𝐿𝑆] token, process padded passage

by BERT, apply convolution and normalization, also filter out punctuation

symbols.

• The conception of Late Interaction (Figure 6-4) from the entire document

considers only the token that has the highest similarity to the given query

token. The relevance of the document is estimated as the sum of maximum

similarities across all query tokens.
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• To retrieve in a large-scale set of passages, we use the Faiss library [Johnson

et al., 2019]. Faiss library implements the k-nearest neighbour approximation

of text indexing, which balances the computational complexity and approxi-

mation quality.

Thus, the ColBERT approach fine-tunes BERT main encoder and learns from

the scratch linear layers, filter and embeddings for [𝑞] and [𝑑] symbols. Leveraging

on triplets of query, document with high relevance and document with low relevance

< 𝑞, 𝑑+, 𝑑− >, the model optimizes the pairwise softmax cross-entropy loss.

ColBERT Models

For passage retrieval in the Touche task, we use three different types of pre-trained

ColBERT architecture.

ColBERT original The first is a checkpoint, generated at the University of Glas-

gow 12 on MSMARCO triples using instruction from the official ColBERT reposi-

tory 13.

ColBERT from scratch We also pre-trained ColBERT architecture, provided

in repository, from scratch by ourselves. We use L2 distance between a query and

document instead of cosine similarity, since the original paper noted that the faiss

index works faster on a square distance. The training process was carried out in a 3

epochs with the learning rate 3e−6, batch size 64, passage length no more than 180,

query length 32, similarity 𝑙2, and took about two weeks on a single GPU card.

ColBERT fine-tune We also tried to fine-tune the resulting model on data for

a comparative question-answer system obtained from information from past com-

petitions and described in section 6.14. The pre-training procedure was carried out

with the following parameters: learning rate 1e−7, batch size 64, passage length no

more than 180, query length 32, similarity 𝐿2. The weights are updated using the

AdamW optimizer during 10 epochs.
12http://www.dcs.gla.ac.uk/~craigm/colbert.dnn.zip
13https://github.com/stanford-futuredata/ColBERT
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Stance Detection

An additional challenge within the task was to determine the stances of retrieved

documents. Stance defines the document’s attitude towards the compared objects:

pro first object, pro-second object, neutral, or the absence of attitude. To detect

the stance of a given document, we note objects from topic auxiliary data, found

them in the document, and consider text between objects’ locations. Comparative

Argumentative Machine (CAM) offers the possibility of classification those pieces

of text. It decodes them into feature vectors using Infersent [Conneau et al., 2017]

and applies a pre-trained XGBoost classifier to features [Schildwächter et al., 2019].

The output of CAM is considered to be a document stance class.

Results

We run the proposed approaches in two stages: in the validation stage, the model

retrieves and ranks documents for the previous year’s topic over the ChatNoir out-

put, and in the test stage the model ranks passages for a given topics over proposed

corpus, at the same time designating their stance.

Table 6.15: NDCG@5 results for quality and relevance of retrieved document on
validation set.

Method Quality Relevance
Baseline’21 0.427 0.649
Best Answer’21 0.421 0.591
ColBERT original 0.413 0.474
ColBERT from scratch 0.342 0.314
ColBERT fine-tune 0.322 0.365

The result for every proposed approach obtained on the validation part of data

from the previous year’s competition is in Table 6.15. We compare ColBERT-based

approaches to the previous year’s baseline and LGBM Ranker, considered the best

answer. The best scores come from the frequency-based feature baseline approach,

the second place belongs to the ensembles over statistic and comparative features

set. Pre-trained ColBERT provides slightly worse results in terms of quality. In

terms of accuracy, the decrease is more significant, but the same in order as the

difference between the first and second places scores. ColBERT, trained by our
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team from scratch, provides a worse result than pre-trained ColBERT. This can

be explained by the insufficient training time of the model relative to the original

work. Fine-tuning this version on the dataset from the previous year’s task gives

a noticeable increase in relevance but makes the model perform slightly worse on

quality. This may be due to the properties of the Touche-based dataset used for

model fine-tuning. It contains passages that are less complete and grammatically

correct than MSMARCO objects, but at the same time they are more suitable

specifically for the comparative subset of questions.

The documents retrieved were manually evaluated for two dimensions. The first

criterion is relevance describing how supportive answer is contained in passage, the

second is rhetorical quality - good styling and well-understoodness of the text. The

results also contain the macro-clssification scores F1 for the stance detection. The

results for three criteria for our tean Katana and Top-1 approach for each metric

are in Tables 6.16.

For the ranking document task, ColBERT, trained on the MSMARCO dataset

has the best performance according to fine-tuning the model. The difference between

the model with downloaded weights and the model trained by us from scratch is not

significant. Pre-trained model achive 3rd place in terms of relevance, while model

trained from scratch has 3rd place in the quality table. Fine-tuning comparative

data impairs the results. It may be due to the quality difference between texts

from the main and fine-tuning data - in the MSMARCO case, well-formed natural

language passages were composed by humans on the basis of the search system

outputs [Nguyen et al., 2016]. The quality of the stance detection towards the

objects expectedly depends on the ranking performance - the ColBERT with pre-

trained weights also takes third place.

Table 6.16: Final evaluation scores on the test set for Katana team as compared to
the Top-1 approaches.

Method NDCG@5 relevance NDCG@5 quality F1 stance detection

ColBERT original 0.618 (Top-3) 0.643 0.229 (Top-3)
ColBERT from scratch 0.601 0.644 (Top-3) 0.221
ColBERT fine-tune 0.574 0.637 0.212

Top-1 approach 0.758 0.774 0.313
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6.4 FC Layers Compression in Comparative QA Neu-

ral Models

In the preceding section, we discussed the utilisation of the BERT-based ColBERT

model for information retrieval tasks. In this section, we delve into compressing

deep language models for information retrieval and question answering, employing

SVD and TTM decomposition.

The architecture of ColBERT consists of the BERT pre-trained model and an

additional output linear layer. We focus on the compression of the Transformer-

based part and apply compression techniques to FC layers in all 16 Transformer

blocks. We employ SVD with a rank of 40, as well as TTM decomposition with a

rank determined through an analysis of the singular values in the internal SVD step

of the TTM decomposition Algorithm 2.

Hyperparameters selection To determine the rank for the SVD, we refer to the

desired compression rate of the model outlined in Section 5. For the decomposition

of TTM, we select the core dimensions so that the dimensions products within each

core were approximately equivalent across all 𝒢𝑘. In Section 5 we provide a detailed

explanation of this choice. As a result, we represent the BERT FC layers matrices,

initially sized as [3072, 768], as a series of cores [1, 4, 8, 𝑅], [𝑅, 6, 8, 𝑅2], [𝑅, 8, 6, 𝑅3],

[𝑅, 4, 8, 1]. The following paragraph describes the methodology for selecting the

layers which is best for TTM decomposition, as well as its desired ranks.

Selection of layers to compress and corresponding TTM ranks The rank

parameter is crucial in the TTM decomposition. To determine the rank for each

core in the sequence, we employ the truncated SVD method for the corresponding

unfolding matrix of the original tensor (like in the Algorithm 2). We extract and

visualise the spectrum of each SVD for all modules in the BERT architecture. As we

have 4 cores in decomposition, every module has 3 SVD spectra, one for each inner

rank of the TTM decomposition. Our observations led to the following conclusions:

• Linear layers in the transformer architecture in common do not have exact
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Figure 6-5: First row: singular values for the 1-st module layer, “uncompressible” ,
in ColBERT. Gradual slope of spectrum is less sharp. Second row: singular values
for the 4-th module layer,“compressible” , in ColBERT. Gradual slope of spectrum
is more sharp.

low-ranking structures (with singular values close to 0).

• Some layers have values with a more gradual slope without inflection points.

Some layers have inflection points in the plot and values decreasing by approx-

imately 2 times in the first 5-10 steps before reaching a plateau. We label the

first type of layers as “incompressible” and the latter as “compressible”

with a rank equal to the inflexion point (see Figure 6-5).

• For a particular weight matrix, all three sets of singular values within one layer

are usually correlated in terms of compressibility or incompressibility.

• The compressibility (or incompressibility) property is typically maintained

within the module. The module inside BERT consists of intermediate and

output linear layers. For instance, if one layer in the module appears to be

compressible, the other layer likely will be also compressible.

To compress the ColBERT, we chose modules 3, 4, and 5 from its architecture. In

these modules, all linear layers show singular values decrease by approximately half

among the all unfoldings. We identified that the number of singular values at which

they obtain a half decrease is approximately 5 for dense layers and 20 for output

layers inside the modules. We utilized these numbers to determine the desired ranks
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for the TTM decomposition. It results in a model that retained 80% of the original

parameters. We kept this hyperparameter — model compression rate — constant

throughout the experiments detailed in this section. Based on it, we chose the rank

value for SVD - 40.

6.5 Experimental Setup

ColBERT original In this setup we employ the ColBERT model, loaded from

the checkpoint without any compression.

ColBERT TTM In this configuration, we use the TTM structure proposed in

Section 4 to replace the modules that are most appropriate based on the rank selec-

tion procedure. We use the compression algorithm 2 to compress the intermediate

FC part in the module with rank 5 and output with rank 20.

ColBERT TTM Round (TNTorch) In this section, we provide the compression

method using the TNTorch framework [Usvyatsov et al., 2022]. First, we create

full-rank cores by reshaping the proper unfolding without any truncation. Then, we

reduce the core ranks to the desired level by applying the truncation SVD method

to the corresponding unfoldings.

ColBERT SVD To achieve the desired model compression, we replace each FC

layer in the modules by its SVD-compressed version with the desired rank.

ColBERT SVD Selection In these experiments, we apply SVD compression to

modules, which are selected based on the above heuristics for TTM decomposition.

The results (Table 6.17) show that, despite the use of TTM algorithm artefacts, this

choice can also work for SVD compression.

6.5.1 Results

We select the three “compressible” modules (under numbers 3, 4 ,5) using the pro-

posed heuristic. Table 6.17 shows that the downstream problem’s results under this
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Table 6.17: NDCG@5 results for quality and relevance of retrieved document on
MSMARCO validation set. The column “Layers” provides number of modules, which
have been selected for compression. Column “Rank” describes the corresponding
compression ranks. In the case of SVD, the intermediate and output layers were
compressed with the same rank, in the case of TTM decomposition, with different.

Method Parameters Layers Rank MRR@10 Success@5 Recall@50

ColBERT original 109 580 544 - - 0.40 0.50 0.74

ColBERT SVD 94 051 584 2-4-6-8-10 40 0.20 0.30 0.59
ColBERT SVD Select 95 447 808 3-4-5 1 0.29 0.43 0.70

ColBERT TTM 81 952 992 2-4-6-8-10 50 0.09 0.14 0.37
ColBERT TTM 95 485 518 3-4-5 20-5 0.27 0.40 0.68
(Custom)
ColBERT TTM 95 485 518 3-4-5 20-5 0.26 0.41 0.68
(Tntorch)

Table 6.18: NDCG@5 results for quality and relevance of retrieved document on
validation set. The column “Layers” provides number of modules, which have been
selected for compression. Column “Rank” describes the corresponding compression
ranks. In the case of SVD, the intermediate and output layers were compressed with
the same rank, in the case of TTM decomposition, with different.

Method Number of Parameter Layers Rank Quality Relevance

ColBERT original 109 580 544 - - 0.49 0.42
ColBERT SVD 95 447 808 3-4-5 40 0.31 0.17
ColBERT TTM 95 485 518 3-4-5 20-5 0.34 0.17

selection are improved significantly compared to the absence of selection. Selecting

for TTM decomposition-only modules, which are better compressible increases qual-

ity. However, if SVD compresses the same set of selected layers with an extremely

low rank 1, the scores will also not drop but increase. At the same time, adding to the

set of compressible modules at least one non-compressible (under number 6) drops

quality for SVD. This can be interpreted as the model based on the Transformer

architecture consists of modules with different significance. The best common strat-

egy would be to compress the FC from the less significant ones. According to the

results, FC in the ColBERT pre-trained model are better compressed by low-rank

methods like SVD than TTM decomposition.

As can be seen from the Table 6.18, on the small comparative dataset TTM with

modules selection gives the same relevance and a slight increase in quality according
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to the SVD method.

Table 6.19 provides qualitative examples of the responses recovered for the full

and compressed models. The quality characteristics of the found texts for TTM and

SVD are approximately the same: it addresses the question a little worse than the

answer found by the full model. However, in both versions of the texts retrieved by

the compressed models, key concepts such as the product name or using a cooking

appliance are presented.

Table 6.19: Example of documents with the different relevance to query “What is
better at reducing fever in children, Ibuprofen or Aspirin ?”

What are the best rice cookers? ?

ColBERT Pre-trained ColBERT Com-
pressed SVD

ColBERT Com-
pressed TTM

1.This thing is the best.
Finally I found a rice
cooker of good qual-
ity, easy to clean, and
doesn’t leave a mess all
over my counter!

1. If you’re new to
brown rice, try mixing
half white rice and half
brown rice together.

1. What they do: rice
cookers, as their name in-
dicates, are an electric
appliance that can make
perfectly cooked rice of
all varieties.

2. To find the best, read
rice cooker reviews: to
help others make good
rice cooker buying deci-
sions, take a minute and
review your current rice
cooker.

2. The main benefit of a
rice cooker is being able
to cook rice better and
faster than by traditional
stovetop cooking.

2. It cooks up to
14 cups of moist, fluffy
rice and can simultane-
ously steam vegetables
and meats for easy, all-in-
one meals.

3. Also, my other
rice cookers would al-
ways make a mess by
spewing out water every-
where. no mess with this
cooker.

3. Take the guesswork
out of making rice with
this rice cooker and food
steamer from aroma.

3. I grew up on rice
cooker rice, so I always
think the quality is the
best.

6.6 Conclusion

In this Chapter, we compare different methods to answer questions within the com-

parative case. To do this, we propose our system demonstration pipeline, which
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utilizes a Transformer-based CTRL model for generation, document and sentence

retrieval methods, and combining answers using templates. We evaluate each ap-

proach using computational metrics and human opinions and find that the Trans-

former CTRL model approach performs the best.

We also present our solution for Argument Retrieval for Comparative Questions

– a ranking task over a corpus of textual passages. We solved retrieval question-

answering assignments by seeking the proper answer for data in the custom com-

parative dataset and dataset MSMARCO. In this competition, we pay attention to

ensemble methods. To retrieve features for it, we use statistic approaches, language

modelling and comparative structure extraction. We also use neural rankers based

on the Transformer-based BERT architecture and ColBERT — model, which based

on computationally effective late interaction architecture. Inside this competition,

the best results are obtained by gradient boosting methods, training on ranking

cost functions: XGBoost and LightGBM. Among the Transformer-based models,

the best result is related to the ColBERT.

We took a ColBERT and applied TTM compression and SVD to the linear

layers inside the model. As experiments show, both compression methods give

approximately the same result on the dataset from the comparatively question-

answer case and the MSMARCO dataset. We selected the layers most suitable for

compression based on singular value analysis. The correct choice of layers seems

critical - for example, compressing “proper” modules with a lower rank performs

better than compressing all layers with a higher rank. Simultaneously, adding an

“improper” layer to the compression set impairs the results.

The source code for information retrieval competitions is available online 14, as

well as the System Demonstration code 15.

14https://github.com/sayankotor/touche
15https://s-nlp.github.io/coqas
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Chapter 7

Transformer-based Encoders

Compression using TTM

Decomposition

This Chapter based on the paper “A Computational Study of Matrix Decomposition

Methods for Compression of Pre-trained Transformers” (cf. Section “Publications”

at page 4).

7.1 Introduction

Since the performance of large language models has advanced jointly with its size,

there has been growing interest in developing techniques to compress these models

while maintaining their effectiveness.

Normally, information is lost when compressing models and the quality drops

noticeably. In this case, the models are fine-tuned until a certain quality is achieved

on the task. However, fine-tuning is also resource intensive, even for a compressed

model. To make it more efficient, we use the alignment of the low-rank compression

objective and the task objective [Hsu et al., 2022]. This makes the compressed model

more consistent with further fine-tuning.

One approach to model compression is to apply matrix factorization techniques

to the heaviest part of the Transformer – FC layers (see Table 7.1). The most
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popular and simplest choice is to use the SVD to reduce the number of parameters

while retaining the expressive power of the model.

Applying SVD to a matrix can decrease its expressibility [Yang et al., 2018a].

However, additional techniques are employed to ensure a satisfactory quality of the

resultant model. Hsu et al. [2022] introduces the Fisher Weighted SVD (FWSVD)

approach, which considers the significance of each parameter for the model’s perfor-

mance during the compression process based on gradient values.

Another method for compressing large language models is Tensor-train matrix

decomposition, or simply TTM decomposition [Oseledets, 2011b]. TTM decompo-

sition transforms a weight matrix into a high-order tensor, which is then expressed

as a product of lower-dimensional objects. In this study, we expand the application

of the Fisher Weighted SVD (FWSVD) approach to TTM decomposition, creating

a novel approach called FWTTM.

Our contributions can be summarized as follows:

• We extend the previous work by Hsu et al. [2022] and incorporate weighting

based on Fisher information inside the TTM decomposition (we denote this

approach as FWTTM).

• We provide a comprehensive analysis of the performance of the BERT model

compressed with SVD, TTM, FWSVD, and FWTTM on various ranks on the

GLUE benchmark tasks and the BART model in sequence-to-sequence tasks

of text summarization and text detoxification.

• We provide an implementation of the studied methods widely applicable to

pre-trained Transformer models, such as those at the Huggingface repository.

Table 7.1: Number of parameters for different modules in various Transformer ar-
chitectures.

Module/Model BERT BART

Full model 109 M 100% 140 M 100%
Fully connected layers 57 M 52% 84 M 60%
Embeddings 24 M 22% 38 M 27%
Attention 28 M 26% 23 M 16%
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7.2 Related Work

This section reviews methods related to model size reduction. It contains knowledge

distillation, quantisation, pruning, and low-rank approximation techniques.

The first approach, Knowledge distillation (KD), learns a student model with a

smaller parameter budget guided by a larger trainer model. These methods can also

be applied to transfer knowledge from a large teacher model to a smaller student

model [Hinton et al., 2015b]. KD can improve the generalisation performance of the

student model and reduce its size and computational cost [Jiao et al., 2020]. We use

DistilBERT [Sanh et al., 2019a] – a distilled version of the BERT model – as one of

the strong baselines in our work.

Pruning is another powerful technique to reduce the number of parameters in the

deep neural network. The goal of neural network pruning is to identify and remove

unimportant connections to reduce model size without affecting network accuracy.

Movement pruning [Sanh et al., 2020] is a very efficient method for pruning unstruc-

tured networks. This method gives high sparsity in the model, while preserving the

original quality score. On the other hand, such models will show effectiveness only

with specialised hardware and may not give any benefits to standardised devices

such as GPUs.

Block pruning is another effective method for reducing the number of parame-

ters in the deep neural network. This approach involves removing entire blocks of

unimportant connections rather than individual connections. This can result in a

more structured and efficient network architecture. An example of block pruning

is filter pruning, where all filters in a convolutional neural network are removed [Li

et al., 2017].

For attention-based Transformer architectures, head pruning Michel et al. [2019]

in which attention and self-attention heads are cut is also relevant.

The quantisation approach enables the reduction of the model size without com-

promising the parameter count, achieved by reducing the number of bits allocated to

each parameter. The concept of quantisation-aware training, which involves train-

ing the model with the reduced weights, originated in the realm of general deep
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learning models [Hawks et al., 2021] and has been extended to transformer-based

encoders [Wang et al., 2022].

Low-rank approximation techniques provide an alternative way to achieve model

compression. One such technique is SVD, which has been successfully applied to

compress various components of neural networks, such as word embeddings [Lan

et al., 2020], attention matrices [Michel et al., 2019], and transformer layers [Hu

et al., 2021]. Another approximation technique is TTM, which decomposes high-

order tensors into a sequence of low-order tensors Oseledets [2011b]. TTM has been

employed for compressing word embeddings [Hrinchuk et al., 2020], CNNs [Garipov

et al., 2016], and even visual transformers [Pham Minh et al., 2022].

7.3 Low-rank Compression Methods

In this section, we describe four low-rank approximation methods used in our com-

putational study to compress feedforward layers of Transformers: SVD, TTM,

FWSVD, and FWTTM, with the last one being a novel approach.

7.3.1 Layer Structures

We perform two types of replacement layers and, respectively, weight compression

-SVD and TTM decomposition. To implement these techniques, we employ the

corresponding PyTorch-compatible layer classes as described in Chapter 4.

Singular Value Decomposition (SVD) We compress the initial model by re-

placing Fully-Connected layers with their SVD analogues. To implement it, we em-

ploy the corresponding PyTorch compatible layer classes as described in Chapter 4.

To obtain the SVD, we use the built-in Python function to decompose pretrained

weights.

Tensor Train Matrix (TTM) decomposition We obtain a TTM-based layer,

we also use the layer class which is described in Chapter 4. For decomposition,

we harness an implementation based on the TNTorch [Usvyatsov et al., 2022] li-
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brary with additions to achieve more memory and time-aware calculation set out in

Chapter 4 and custom implementation of the algorithm from [Oseledets, 2010].

Fisher Weighted SVD (FWSVD) We inject Fisher’s information into the de-

composition algorithms to minimise the gap between the decomposition and task-

oriented objectives. Fisher information determines the importance of parameters

in relation to a given task [Bishop, 2007]. We find an approximation of the Fisher

matrix IW using the dataset 𝐷 = {𝑑1, . . . , 𝑑|𝐷|} and loss 𝐿(𝑑𝑖) on dataset element

as described by Hsu et al. [2022], for each weight matrix W ∈ R𝐼×𝐽 :

IW = E

[︃(︂
𝜕

𝜕W
log 𝑝(𝐷|W)

)︂2
]︃
,

IW ≈
1

|𝐷|

|𝐷|∑︁
𝑖=1

𝜕

𝜕W
𝐿(𝑑𝑖;W).

(7.1)

Having this, ideally, we would want to solve weighted low-rank approximation:

‖
√︀

IW * (W − Ŵ)‖2 → min
rank �̂�=𝑟

. (7.2)

Unfortunately, this problem does not have a closed-form solution. Therefore, Hsu

et al. [2022] proposes to sum Fisher matrix by rows and solve low-rank approximation

with row-wise weighting, which can be done using SVD:

ĨW = diag (IW · 1) ,

Ŵ = ĨWW = USVT,
(7.3)

where 1 = (1, . . . , 1) ∈ R𝐽×1, 𝑑𝑖𝑎𝑔 - diagonal matrix with size 𝐼 × 𝐼.

The resulted weighted factors for initial matrix W ≈ ÛŜV̂T are computed as

follows:

Û = Ĩ−1
WU, Ŝ = S, V̂ = V. (7.4)

As a result, we get low-rank approximations, which account for parameter im-

portances for the target task.
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Fisher Weighted TTM (FWTTM) Our contribution is the Algorithm 12 incor-

porating Fisher information into the TTM decomposition. The algorithm consists

of the following steps:

1. Compute the Fisher matrix IW for the original layer matrix W.

2. Apply the same transformations to IW as to W to obtain a “Fisher tensor”

ÎW.

3. For each SVD step of the TTM algorithm, we use the Fisher matrix exactly as

in the FWSVD setup. The first low-rank term is reshaped to obtain another

core in TTM, the second term goes to the next iteration, and the Fisher matrix

unfolds using U to keep the shape with the second term.

Algorithm 12 Fisher-Weighted TTM decomposition.
Input: Matrix of layer weights W, matrix of Fisher weights IW, shapes

𝐼1, 𝐽1, . . . , 𝐼𝑑, 𝐽𝑑, ranks 𝑟0, . . . , 𝑟𝑑
Output: Cores 𝒢𝑘, 𝑘 = 1 . . . 𝑑 of the TTM decomposition
1: ℬ = W.reshape (𝐼1, 𝐽1, . . . , 𝐼𝑑, 𝐽𝑑)
2: ℬℐ = IW.reshape (𝐼1, 𝐽1, . . . , 𝐼𝑑, 𝐽𝑑)
3: 𝒞 = ℬ.permute (1, 𝑑+ 1, 2, 𝑑+ 2, . . . , 𝑑, 2𝑑)
4: 𝒞ℐ = ℬℐ .permute (1, 𝑑+ 1, 2, 𝑑+ 2, . . . , 𝑑, 2𝑑) 𝑁𝑟 = 𝐼1𝐽1 . . . 𝐼𝑑𝐽𝑑
5: for 𝑘 in {1, . . . , 𝑑− 1} do
6: 𝑁𝑘 = 𝐼𝑘𝐽𝑘
7: 𝑁𝑟 =

𝑁𝑟

𝑁𝑘

8: 𝑟 = 𝑟𝑘
9: Unfolding M = 𝒞.reshape (𝑁𝑘, 𝑟𝑁𝑟) ,

10: Unfolding MI = 𝒞ℐ .reshape (𝑁𝑘, 𝑟𝑁𝑟)
11: M̃I = diag (𝑀𝐼)
12: M̃IM = USVT truncated to 𝑟𝑘
13: Ũ = M̃I

−1
U

14: M = SVT

15: MI = UTMI

16: 𝒢𝑘 = Ũ.reshape (𝑟𝑘, 𝑛𝑘, 𝑟𝑘+1)
17: 𝒢𝑘 = 𝒢𝑘.permute (2, 1, 3)
18: end for
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7.4 Transformer Compression Setup

This section describes our setup for compressing Transformer models using low-rank

approximation approaches. We focus on two methods: TTM and SVD, with and

without using Fisher information. We aim to reduce the number of parameters in

the model while maintaining its performance. Furthermore, we assume that we can

access the task-orientated model-tuning process. We use the information obtained

within this process to improve the quality of the compression, and thus speed up

the tuning by the desired values.

We run two setups for compressing and evaluating models on the GLUE [Wang

et al., 2019], ParaDetox [Logacheva et al., 2022], and XSUM [Narayan et al., 2018]

datasets:

• Single-train. We fine-tune a model for each task, compress it, and measure

performance.

• Double-train. We follow the same steps as for the Single-train and fine-tune

the compressed model again on the same task.

All datasets in this work are based on English.

7.4.1 Baselines

We compare our compressed model to the model obtained by distillation [Jiao et al.,

2020], Block Pruning [Sanh et al., 2020] and inference of the original model with

floating-point precision equal to 16. Note that Distillation and Block Pruning are

train-aware methods. It means they require fine-tuning for the desired task, so we

can use it only in the Double-train pipeline.

For mixed precision training and evaluation, we use the FP16 library, which is

built-in in PyTorch [Paszke et al., 2019b]. We set the optimisation level to 01 and

patched all torch functions and tensor methods, except those that benefit from FP32

precision (softmax, etc.) For the two models analysed, we obtained a compression

up to 52% for the BERT model and 54% for the BART model. However, since

the resulting Tables 7.5, 7.8, 7.7, 7.6 show compression of the models relative to
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the number of their parameters, but the quantisation of FP16 keeps the number of

parameters the same, we indicate the actual number of parameters with a dagger

(†).

7.4.2 Experimental Setup

We compare the performance of four proposed methods based on the BERT and

BART models. We use three compression ratios for the selected models and report

the corresponding ranks in Table 7.2. Finally, we tested compressed BERT on

nine NLU tasks, including language acceptability, sentiment analysis, paraphrasing,

and natural language inference, compressed BART – on text summarization, and

detoxification tasks.

Table 7.2: Ranks for different compression approaches.

BERT

C. Rate SVD TTM

48% (53 M) 6 10
63% (69 M) 183 60
95% (102 M) 534 110

BART

C. Rate SVD TTM

60% (83 M) 10 10
74% (102 M) 210 64
90% (125 M) 460 96

7.4.3 Selection of Hyperparameters

The proposed layer structure assumes two sets of hyperparameters: TTM core

shapes for TTM decomposition and ranks for SVD and TTM decomposition.

We state that for the maximum compression rate in TTM, cores’ non-rank shapes

should be as close to each other as possible. We choose 𝐼𝑘 ·𝐽𝑘 so that they are equal

to each other and approximately equal to (𝐼 · 𝐽)1/𝐷. The selection of shapes is

implemented with a custom algorithm, which will be presented source code. As

cores, we take objects with sizes [1× 32× 12×𝑅], [10× 3× 2×𝑅], [𝑅× 2× 2×𝑅],

[𝑅× 16× 16× 1].

The rank 𝑟 for the truncation in SVD and the set of 𝑅1 . . . 𝑅𝑀−1 is selected

according to the desired compression level.
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7.4.4 Selection the Layers for Compression

As mentioned in section 6, certain modules within the transformer architecture lend

themselves better to compression than others. This chapter proposes two methods

to distinguish between favourable and unfavourable modules.

The first approach, similar to the one described in the previous part, involves

analysing the singular values of the SVD expansions for the SVD and TTM layers.

Those layers which have “sharp” graphics of the singular values will be marked as

compressible with ranks depending on the inflection point of the graphics. We also

involve the second approach, a method based on analysing Fisher information inside

the layer.

As an additional method of selecting layers for compression, we use a metric

called Fisher information variance 𝜙(W) [Hua et al., 2022], calculated as the vari-

ance of its corresponding Fisher information Iw. We rank the calculated 𝜙(W) for

each layer in the ascending order. As candidates, we take the layers with the lowest

variance. In the following experiments, we use the same number of layers for com-

pression and the same ranks as in the singular values method to get a similar model

size after compression.

As indicated in Tables 7.3,7.4, the quality of compression for both SVD and

TTM decomposition is highly dependent on the selection of “good” layers. However,

the singular value-based method outperforms the Fisher matrix statistics in terms

of overall improvement.

Table 7.3: The results of different types of selection of BERT modules for compres-
sion in the Single-train pipeline. All compressed models has approximately 91 mln
parameters.

Compression Selection AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

SVD No select 0.64 0.79 0.1 0.76 0.6 0.79 0.84 0.52 0.89 0.51
SVD FisherS 0.58 0.82 0.26 0.6 0.32 0.63 0.82 0.5 0.8 0.49
SVD SingularS 0.71 0.86 0.43 0.72 0.78 0.83 0.84 0.56 0.9 0.52

FWSVD No select 0.77 0.87 0.54 0.83 0.83 0.88 0.87 0.63 0.91 0.52
FWSVD FisherS 0.64 0.85 0.35 0.68 0.48 0.78 0.81 0.52 0.84 0.48
FWSVD SingularS 0.73 0.87 0.42 0.75 0.8 0.82 0.79 0.62 0.9 0.56

TTM No select 0.54 0.81 0.07 0.46 0.4 0.58 0.68 0.53 0.78 0.52
TTM FisherS 0.4 0.53 0.01 0.35 0.16 0.49 0.46 0.48 0.58 0.5
TTM SingularS 0.53 0.82 0 0.51 0.16 0.74 0.69 0.50 0.82 0.55
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Table 7.4: The results of different types of selection of BERT modules for compres-
sion in the Double-train pipeline. All compressed models has approximately 91 mln
parameters.

Compression Selection AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

SVD No select 0.76 0.88 0.52 0.83 0.85 0.9 0.74 0.66 0.9 0.51
SVD FisherS 0.77 0.88 0.46 0.83 0.87 0.9 0.89 0.66 0.9 0.52
SVD SingularS 0.78 0.88 0.53 0.83 0.87 0.9 0.88 0.67 0.92 0.51

FWSVD No select 0.67 0.88 0.51 0.83 0.86 0.89 0.32 0.62 0.62 0.53
FWSVD FisherS 0.77 0.88 0.46 0.83 0.86 0.9 0.89 0.65 0.9 0.52
FWSVD SingularS 0.78 0.89 0.53 0.83 0.87 0.9 0.89 0.67 0.91 0.52

TTM No select 0.67 0.87 0.1 0.83 0.84 0.87 0.46 0.62 0.9 0.56
TTM FisherS 0.76 0.88 0.43 0.83 0.87 0.9 0.89 0.63 0.9 0.48
TTM SingularS 0.76 0.88 0.42 0.83 0.87 0.89 0.88 0.65 0.9 0.52

Table 7.5: The results of different types of compression of BERT for experiment with
task-oriented fine-tuning and further compression (Single-train). The best results
at each model size are in bold, best overall results are underlined.

Method C.Rate AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

Full 100 % 0.79 0.88 0.57 0.84 0.9 0.91 0.87 0.67 0.92 0.54

DistilBERT 61 % 0.76 0.87 0.51 0.82 0.87 0.89 0.88 0.59 0.91 0.48
FP16 eval. 100%† 0.78 0.88 0.55 0.83 0.88 0.90 0.88 0.67 0.91 0.48
Block Pruning (75%) 61% 0.72 0.85 0.24 0.83 0.83 0.86 0.87 0.52 0.88 0.56

SVD 0.37 0.24 0.00 0.36 0.20 0.50 0.47 0.48 0.52 0.51
FWSVD

49 %
0.38 0.25 0.00 0.33 0.39 0.50 0.40 0.49 0.51 0.56

TTM 0.44 0.58 0.02 0.37 0.25 0.56 0.43 0.50 0.72 0.51
FWTTM 0.44 0.59 0.02 0.37 0.27 0.54 0.42 0.50 0.71 0.51

SVD 0.45 0.63 0.01 0.36 0.22 0.51 0.54 0.54 0.78 0.48
FWSVD

63 %
0.55 0.54 0.07 0.52 0.55 0.62 0.70 0.58 0.79 0.55

TTM 0.44 0.65 0.01 0.40 0.16 0.54 0.52 0.48 0.74 0.48
FWTTM 0.47 0.71 0.01 0.44 0.17 0.64 0.53 0.48 0.72 0.56

SVD 0.70 0.81 0.26 0.82 0.69 0.88 0.87 0.53 0.90 0.53
FWSVD

95 %
0.78 0.88 0.55 0.84 0.87 0.90 0.88 0.64 0.92 0.55

TTM 0.76 0.87 0.52 0.79 0.86 0.87 0.86 0.65 0.91 0.48
FWTTM 0.77 0.87 0.53 0.81 0.86 0.88 0.87 0.65 0.91 0.54

7.5 Experiments with NLU Tasks

In this section, we perform an evaluation of encoder-based Transformers using the

BERT model [Devlin et al., 2019] as the base model. We use bert-base-uncased

checkpoint from the HuggingFace [Wolf et al., 2019] model hub.

7.5.1 Experimental Settings

We perform experiments on the General Language Understanding Evaluation (GLUE)

benchmark [Wang et al., 2019] using the evaluation script and metrics provided by
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Table 7.6: The results of different types of compression of BERT for experiments
with task-oriented fine-tuning, compression, and further fine-tuning (Double-train).

Method C.Rate AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

Full (109 mln.) 100 % 0.79 0.88 0.57 0.84 0.90 0.91 0.87 0.67 0.92 0.54

DistilBERT 61% 0.76 0.87 0.51 0.82 0.87 0.89 0.88 0.59 0.91 0.48
FP16 eval. 100%† 0.78 0.88 0.55 0.83 0.88 0.90 0.88 0.67 0.91 0.48
Block Pruning (75%) 61% 0.72 0.85 0.24 0.83 0.83 0.86 0.87 0.52 0.88 0.56

SVD 0.68 0.83 0.00 0.79 0.79 0.85 0.87 0.59 0.87 0.49
FWSVD

49%
0.68 0.82 0.04 0.79 0.79 0.85 0.87 0.56 0.86 0.54

TTM 0.69 0.83 0.15 0.78 0.81 0.84 0.87 0.60 0.86 0.43
FWTTM 0.69 0.83 0.15 0.78 0.81 0.84 0.87 0.60 0.86 0.49

SVD 0.75 0.86 0.43 0.83 0.84 0.89 0.88 0.64 0.90 0.50
FWSVD

63%
0.77 0.87 0.47 0.83 0.85 0.89 0.88 0.65 0.90 0.56

TTM 0.70 0.85 0.10 0.81 0.81 0.86 0.88 0.61 0.88 0.49
FWTTM 0.70 0.85 0.08 0.81 0.82 0.86 0.87 0.61 0.88 0.53

SVD 0.78 0.89 0.56 0.84 0.88 0.91 0.89 0.68 0.91 0.44
FWSVD

95%
0.79 0.89 0.56 0.84 0.88 0.90 0.89 0.69 0.91 0.51

TTM 0.77 0.88 0.52 0.83 0.83 0.89 0.88 0.68 0.90 0.51
FWTTM 0.78 0.88 0.52 0.83 0.87 0.90 0.88 0.68 0.90 0.54
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Figure 7-1: Trade-off between accuracy and compression rate for GLUE tasks:
Single-train and Double-train average over all tasks.

HuggingFace library [Wolf et al., 2019].1 Additionally, we run our experiments with

five different random seeds and report the average performance across runs to ensure

the robustness of our results.

Results The evaluation results of the BERT model on the GLUE benchmark using

different compression methods are reported in Tables 7.5 and 7.6, respectively, for

single and double train setups. Pre-trained models are available at Hugginface 2.

The results with standard deviations are given in the Appendix, Chapter A. Fore-
1https://github.com/huggingface/transformers/tree/main/examples/pytorch/

text-classification
2https://huggingface.co/s-nlp/
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most, one may observe that the overall absolute scores for the Single-train setup are

much lower than for the Double-train which is also accounted in the prior research.

Certainly, modifying the low-rank-based compression structure of the layers neces-

sitates additional fine-tuning to restore the model’s performance to a reasonably

acceptable level. Please note that in these Thesis, we consistently present both se-

tups, since Single-train can be utilized for numerous large models that exceed the

memory capacity of the available GPU. Typically, for fine-tuning, it is necessary to

double the size of the model to store gradients.

Secondly, we observe that the TTM decomposition outperforms SVD in low

ranks, that is, in the area of high compression (49% of the original model param-

eters), while SVD performs better at higher ranks. This difference is large for a

Single-train and for a Double-train it is not so pronounced.

Thirdly, we observe that incorporating Fisher information improves SVD con-

sistently and slightly improves TTM at high ranks while not degrading its perfor-

mance at other ranks (compression levels). TTM performs poorly in some tasks,

such as CoLA, and better in other tasks, such as STSB (see Figure 7-1). Low-rank

compression methods, especially FWSVD, outperform fine-tuned baseline models of

approximately the same size at medium compression rates.

Finally, one can observe that for Double-train FWSVD (63%) compares com-

parably or better to Distillation and Pruning baselines while it could be combined

with F16 quantization in principle.
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Figure 7-2: Comparison of compression methods for GLUE, Detox, XSUM with
Double-train setup.
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Figure 7-3: Results for GLUE benchmark for bert-base-uncased model, with task-
oriented fine-tuning and further compression (Single-train).
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Table 7.7: The results of different types of compression of BART for experiments on
XSUM dataset with task-oriented fine-tuning and further compression (Single-train
and Double-train). The best results at each model size are in bold, best overall
results are underlined.

Pipeline Single-train Double-train

Metric ROUGE ROUGE

Method C. Rate 1 2 L 1 2 L

bart-base 100% 42.4 19.6 34.5 42.4 19.6 34.5
FP16 eval. 100% 32.8 11.0 25.5 32.8 11.0 25.5
Block Pruning (95%) 63% - - - 23.4 5.7 18.8
Block Pruning (65%) 74% - - - 34.6 12.2 27.9

SVD 6.2 0.5 5.4 35.2 13.1 27.9
FWSVD

60%

11.1 0.3 8.5 35.5 13.3 28.1
TTM 3.6 0.1 3.1 35.8 13.3 28.2
FWTTM 7.4 0.4 6.3 36.0 13.8 28.5

SVD 6.4 0.4 5.4 39.8 17.1 32.2
FWSVD

74%

18.5 3.2 14.5 40.6 17.8 32.9
TTM 5.6 0.2 4.7 38.3 15.9 33.6
FWTTM 5.2 0.3 5.5 39.0 16.2 32.1

SVD 32.8 11.0 25.5 41.8 18.9 33.9
FWSVD

90%

38.9 19.1 31.2 41.9 19.1 34.1
TTM 26.4 6.8 19.8 41.2 18.6 33.6
FWTTM 23.2 5.1 16.3 38.1 19.5 33.2

7.6 Experiments With Sequence-to-sequence Mod-

els

We test different layer compression methods on the encoder-decoder model BART

[Lewis et al., 2020] on two sequence-to-sequence tasks. Namely, we test different

compression methods on text summarization tasks and a subtask of textual style

transfer - text detoxification. In our experiments, we use bart-base checkpoint

from the HuggingFace [Wolf et al., 2019] model hub.

7.6.1 Text Summarization

In our text summarization experiments, we use the XSUM English dataset [Narayan

et al., 2018], which contains news articles and their corresponding single-sentence

summaries. We aim to train BART to generate accurate and concise summaries of
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Table 7.8: The results of different types of BART compression for detoxification
experiments in Single-train and Double-train pipelines. The best results at each
model size are in bold, best overall results are underlined. Italic results represent
senseless model outputs.

Pipeline Single-train Double-train

Method C. Rate STA SIM FL J STA SIM FL J

bart-base 100 % - - - - 0.89 0.60 0.82 0.44
FP16 eval. 100%† - - - - 0.89 0.60 0.82 0.44
Block Pruning (95%) 63% - - - - 0.92 0.34 0.30 0.12
Block Pruning (65%) 74% - - - - 0.82 0.60 0.73 0.36

SVD 0.97 0.18 0.10 0.01 0.75 0.59 0.65 0.28
FWSVD

60%

0.32 0.46 0.58 0.07 0.78 0.59 0.68 0.30
TTM 0.97 0.19 0.16 0.03 0.74 0.58 0.64 0.27
FWTTM 0.99 0.18 0.19 0.03 0.74 0.58 0.65 0.27

SVD 0.85 0.21 0.14 0.03 0.82 0.60 0.77 0.38
FWSVD

74%

0.32 0.46 0.58 0.07 0.87 0.61 0.80 0.42
TTM 0.99 0.17 0.06 0.01 0.82 0.61 0.75 0.37
FWTTM 0.99 0.18 0.16 0.03 0.84 0.60 0.75 0.38

SVD 0.85 0.42 0.72 0.25 0.86 0.61 0.81 0.43
FWSVD

90%

0.70 0.64 0.82 0.35 0.87 0.61 0.81 0.43
TTM 0.49 0.60 0.71 0.18 0.86 0.61 0.80 0.41
FWTTM 0.82 0.46 0.59 0.22 0.86 0.61 0.80 0.41

the input articles.

We evaluate the performance of models using the ROUGE metrics [Lin, 2004]:

we use ROUGE-1 and ROUGE-2 to measure the overlap between the generated

and reference summaries at the unigram and bigram levels. We also use ROUGE-L

to measure the longest common subsequence between the generated and reference

summaries.

Results The results for summarization are presented in Table 7.7. In the Single-

train setup, FWSVD outperforms other methods across different compression levels

by all metrics. However, in the Double-train pipeline, FWTTM emerges as the

top performer at low ranks, while TTM excels only in the Rouge-2 metric at high

ranks. In terms of the remaining metrics, SVD demonstrates superior performance.

Notably, the tensor and matrix compression techniques employed in the Double-train

setup exhibit improved results as compared to the baselines.
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7.6.2 Text Detoxification

Text detoxification aims to rewrite a sentence in a rude form into a neutrally for-

mulated sentence while preserving its meaning.

We use the English parallel dataset ParaDetox [Logacheva et al., 2022] in our

experiments. This dataset contains pairs of sentences in rude and neutral forms,

which allows us to train text detoxification models in a way similar to neural machine

translation. The scale of the dataset also makes training faster and more convenient.

We follow the evaluation pipeline presented by Logacheva et al. [2022] and measure

the performance of our models using three metrics: STA (style transfer accuracy),

SIM (similarity), and FL (fluency of generated text). STA measures how well the

model transfers the style of the input sentence from rude to neutral. SIM measures

how similar the meaning of the generated sentence is to the input sentence. FL

measures how fluent and natural the generated sentence is.

Results We show the results of our compression experiments in Table 7.8 and

provide the extended version of the table with variations included in Table A.3. Text

generation also preserves the trend shown in language comprehension. However,

unlike GLUE, in the task of detoxification, all the compressed models in the Single-

train pipeline are hallucinating and generating senseless tokens at low and medium

ranks. We represent these results with italic. Pre-trained models are available at

Hugginface 3.

In general, the TTM and SVD approaches show the best results in low ranks on

all tasks. At medium and high ranks, FWSVD breaks ahead. FWSVD demonstrates

the most significant benefits at medium ranks, while the impact becomes nearly

imperceptible at higher compression levels. Therefore, it is essential to note that

the Fisher information acquired for the language modelling task also contributes to

improvements in metrics that are not directly related to LM (such as STA and FL);

moreover, they are obtained by the auxiliary neural network model.
3https://huggingface.co/s-nlp/
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7.7 Conclusion

In the proposed work, we explore the Transformer compression techniques that in-

volve low-rank and tensor decomposition of its most heavy part – fully-connected

layers (featuring 50-60% of parameters depending on the model). We test the perfor-

mance of compressed BERT and BART models on natural language understanding

and generation tasks and compare the suggested compression with other popular

approaches, such as pruning, distillation, and quantisation. Furthermore, we for

the first time implement and adapt the method proposed by Hsu et al. [2022] to

the decomposition of TTMs incorporating Fisher information, which measures the

importance of individual layer parameters with respect to training objectives.

Our experiments, summarised in concise form in Figure 7-2, show that incor-

porating Fisher information (FW* models) consistently improves the quality of the

compression method, in the case of SVD and depending on the setup, improves

or does not degrade the quality of TTM. At a medium compression level, baseline

approaches based on training-aware distillation, pruning, and quantisation demon-

strate inferror or performance comparable to the respective methods in each group

decomposition-based methods.

In summary, we can say that the representation of pretrained layers in the TTM

form is a working method, which, however, does not give an unambiguous result for

any given compression settings. In the future, it would be interesting to test this

method not only for compressing the entire model, but also for compressing weight

gradients, as is done, for example, in the LoRA [Hu et al., 2022] approach.
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Chapter 8

Conclusion

In this dissertation, we used compressed representation of tensor structures to ad-

dress limitation of contemporary Natural Language Processing caused by large data

sizes and large sizes of linguistic models. We met three statements that appeared

in the Thesis Objectives. First, we showed the efficacy of Canonical Polyadic De-

composition in compressing the embedding layer of a Knowledge Base model while

accounting for data characteristics. This approach yielded favourable results in the

explicit embedding evaluation and downstream tasks, simplifying the training pro-

cess, and reducing memory consumption.

Then, we reduce the size of the Transformer models by replacing the linear layer

with a Tensor Train Matrix structure. To achieve this, we adapted the TTM object

for the neural network to optimise signal propagation through the TTM core. The

resulting TTM container required fewer parameters and memory while maintaining

the same efficiency level during training and fine-tuning. Consequently, this ap-

proach reduces time and memory requirements, making it more energy efficient and

suitable for low-power hardware.

With these structural components in place, we address two key questions, which

finally aimed at two types of experiment. First, we investigate the expressive power

of TTM compression compared to low-rank methods. To do so, we conducted exper-

iments on the GPT-2 decoder transformer, training it from scratch and evaluating its

performance on Language Modelling, Natural Language Understanding, and Text

summarization tasks. Finally, our findings revealed that 1) the training environment
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heavily influences the performance of the final model, and 2) under identical training

conditions, a model with TTM layers consistently outperforms other methods, such

as SVD.

Secondly, we explored the impact of compressing pre-trained models on their

quality for specific tasks. We conducted experiments on a question-answering task

within a particular comparative case. We research the different approaches to a

Question-Answering task and focus on retrieval-based techniques. Next, we evaluate

several retrieval-based groups of methods, statistics, tree structures, and transformer-

based on a comparative dataset. As a transformer method requires large transformer

models to employ, we provide compression of FC layers in them. We obtain the result

that TTM decomposition and SVD give similar compression results inside compar-

ative QA task and are highly dependent on the choice of the "proper" layer for

compression. We also provide the algorithm for finding such types of layers.

We also conducted experiments with compression and further fine-tuning on the

BERT architecture for the tasks of the Natural Language Understanding bench-

mark GLUE. We met the third point from the Objectives by injecting information

about the Language Modelling loss in the compression algorithm - SVD or TTM

decomposition - and show that it induces performance.

Under described experiment conditions, TTM decomposition outperforms SVD

at lower ranks and loses at higher ranks. According to the third point in Objectives,

we define layers inside the model that are more and less compressible. This property

is not constant and varies from one Transformer architecture to another, it can

even change during fine-tuning of a specific model. We can identify these layers by

analysing the SVD spectrum inside the TTM-SVD algorithm.

The results of two types of experiments — training from scratch in the Chapter 5

and compression in Chapters 7, 6 — support the ideas from the Chapter 4: TTM

representation of a FC layer in Transformers is effective only if we train it from

scratch. In this case, we get a compressed representation of a layer matrix that is

structured for TTM, and TTM approaches outperform SVD on downstream tasks.

In the case of compression of yet pre-trained FC layer weights, which do not have

a Kronecker structure, TTM decomposition isn’t engaged to outperform low-rank
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methods.

In terms of potential practical application of the proposed research, we make the

following observations.

The first part of the work focusses on the practical implementation of diverse con-

cepts, including developing an algorithm for knowledge base embeddings. These con-

cepts hold significant potential in tackling the language grounding problem, wherein

a model acquires a complete representation of a specific fact or phenomenon by con-

sidering inputs such as images, textual descriptions, and relevant information from

knowledge graphs.

The TTM-based layers are invariant across different transformer models. This

characteristic opens up the possibility, if desired (and with access to weights), to

optimize even massive models like ChatGPT 1 and GigaChat 2. As the size of large

language models is expected to continue growing in thein the nearest future, driven

by an increase in the number of transformer modules and the size of the processed

text, there arises a need for a more condensed parameterized layer representation.

Such a representation would offer valuable benefits in these evolving scenarios.

1https://openai.com/blog/chatgpt
2https://developers.sber.ru/portal/products/gigachat
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Appendix A

Additional results for

Transformer-based Encoders

compression using TTM

decomposition

Table A.1: The results of different types of compression of BERT for experiment with
task-oriented fine-tuning and further compression (Single-train). The best results
at each model size are in bold, best overall results are underlined.

Method Size AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

bert-base 100% 0.79 0.88 0.57 0.84 0.9 0.91 0.87 0.67 0.92 0.54

DistilBERT 61% 0.76 0.87 0.51 0.82 0.87 0.89 0.88 0.59 0.91 0.48
bert-base FP-16 100%† 0.78 0.88 0.55 0.83 0.88 0.90 0.88 0.67 0.91 0.48

SVD 0.37 ± 0.01 0.24 ± 0.12 0.00 ± 0.00 0.36 ± 0.01 0.20 ± 0.09 0.50 ± 0.02 0.47 ± 0.10 0.48 ± 0.01 0.52 ± 0.02 0.51 ± 0.07
FWSVD

49%
0.38 ± 0.03 0.25 ± 0.15 0.10 ± 0.01 0.33 ± 0.01 0.39 ± 0.33 0.50 ± 0.01 0.40 ± 0.11 0.49 ± 0.03 0.51 ± 0.01 0.56 ± 0.00

TTM 0.44 ± 0.02 0.58 ± 0.06 0.02 ± 0.03 0.37 ± 0.01 0.25 ± 0.22 0.56 ± 0.01 0.43 ± 0.17 0.50 ± 0.03 0.72 ± 0.02 0.51 ± 0.07
FWTTM 0.44 ± 0.02 0.59 ± 0.06 0.02 ± 0.03 0.37 ± 0.01 0.27 ± 0.24 0.54 ± 0.01 0.42 ± 0.18 0.50 ± 0.03 0.71 ± 0.02 0.51 ± 0.07

SVD 0.45 ± 0.02 0.63 ± 0.07 0.01 ± 0.02 0.36 ± 0.01 0.22 ± 0.11 0.51 ± 0.03 0.54 ± 0.06 0.54 ± 0.06 0.78 ± 0.03 0.48 ± 0.07
FWSVD

63%
0.55 ± 0.03 0.54 ± 0.10 0.07 ± 0.03 0.52 ± 0.02 0.55 ± 0.20 0.62 ± 0.02 0.70 ± 0.07 0.58 ± 0.05 0.79 ± 0.05 0.55 ± 0.02

TTM 0.44 ± 0.02 0.65 ± 0.03 0.01 ± 0.02 0.40 ± 0.02 0.16 ± 0.00 0.54 ± 0.06 0.52 ± 0.14 0.48 ± 0.00 0.74 ± 0.03 0.48 ± 0.08
FWTTM 0.47 ± 0.02 0.71 ± 0.02 0.01 ± 0.04 0.44 ± 0.01 0.17 ± 0.01 0.64 ± 0.06 0.53 ± 0.11 0.48 ± 0.03 0.72 ± 0.04 0.56 ± 0.00

SVD 0.70 ± 0.02 0.81 ± 0.02 0.26 ± 0.14 0.82 ± 0.00 0.69 ± 0.22 0.88 ± 0.00 0.87 ± 0.01 0.53 ± 0.06 0.90 ± 0.01 0.53 ± 0.08
FWSVD

95%
0.78 ± 0.01 0.88 ± 0.00 0.55 ± 0.02 0.84 ± 0.00 0.87 ± 0.01 0.90 ± 0.00 0.88 ± 0.01 0.64 ± 0.01 0.92 ± 0.01 0.55 ± 0.04

TTM 0.76 ± 0.01 0.87 ± 0.00 0.52 ± 0.02 0.79 ± 0.00 0.86 ± 0.01 0.87 ± 0.01 0.86 ± 0.00 0.65 ± 0.01 0.91 ± 0.01 0.48 ± 0.01
FWTTM 0.77 ± 0.01 0.87 ± 0.00 0.53 ± 0.02 0.81 ± 0.00 0.86 ± 0.01 0.88 ± 0.00 0.87 ± 0.00 0.65 ± 0.01 0.91 ± 0.01 0.54 ± 0.01
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Method Size AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

bert-base 100% 0.79 0.88 0.57 0.84 0.90 0.91 0.87 0.67 0.92 0.54

DistilBERT 61% 0.76 0.87 0.51 0.82 0.87 0.89 0.88 0.59 0.91 0.48
bert-base FP-16 100%† 0.78 0.88 0.55 0.83 0.88 0.90 0.88 0.67 0.91 0.48
B.P. (75%) 61% 0.72 0.85 0.24 0.83 0.83 0.86 0.87 0.52 0.88 0.56

SVD 0.68 ± 0.01 0.83 ± 0.00 0.00 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.85 ± 0.00 0.87 ± 0.00 0.59 ± 0.01 0.87 ± 0.00 0.49 ± 0.08
FWSVD

49%
0.68 ± 0.01 0.82 ± 0.01 0.04 ± 0.05 0.79 ± 0.00 0.79 ± 0.00 0.85 ± 0.01 0.87 ± 0.00 0.56 ± 0.03 0.86 ± 0.00 0.54 ± 0.06

TTM 0.69 ± 0.01 0.83 ± 0.00 0.15 ± 0.01 0.78 ± 0.00 0.81 ± 0.01 0.84 ± 0.00 0.87 ± 0.00 0.60 ± 0.01 0.86 ± 0.01 0.43 ± 0.08
FWTTM 0.69 ± 0.01 0.83 ± 0.00 0.15 ± 0.04 0.78 ± 0.00 0.81 ± 0.01 0.84 ± 0.00 0.87 ± 0.00 0.60 ± 0.01 0.86 ± 0.01 0.49 ± 0.00

SVD 0.75 ± 0.02 0.86 ± 0.00 0.43 ± 0.02 0.83 ± 0.00 0.84 ± 0.01 0.89 ± 0.00 0.88 ± 0.01 0.64 ± 0.02 0.90 ± 0.01 0.50 ± 0.10
FWSVD

63%
0.77 ± 0.00 0.87 ± 0.00 0.47 ± 0.02 0.83 ± 0.00 0.85 ± 0.01 0.89 ± 0.01 0.88 ± 0.01 0.65 ± 0.01 0.90 ± 0.01 0.56 ± 0.01

TTM 0.70 ± 0.01 0.85 ± 0.00 0.10 ± 0.10 0.81 ± 0.00 0.81 ± 0.01 0.86 ± 0.00 0.88 ± 0.01 0.61 ± 0.01 0.88 ± 0.00 0.49 ± 0.09
FWTTM 0.70 ± 0.02 0.85 ± 0.00 0.08 ± 0.08 0.81 ± 0.00 0.82 ± 0.00 0.86 ± 0.00 0.87 ± 0.01 0.61 ± 0.01 0.88 ± 0.00 0.53 ± 0.07

SVD 0.78 ± 0.01 0.89 ± 0.00 0.56 ± 0.02 0.84 ± 0.00 0.88 ± 0.02 0.91 ± 0.00 0.89 ± 0.01 0.68 ± 0.01 0.91 ± 0.01 0.44 ± 0.08
FWSVD

95%
0.79 ± 0.04 0.89 ± 0.00 0.56 ± 0.03 0.84 ± 0.00 0.88 ± 0.01 0.90 ± 0.00 0.89 ± 0.01 0.69 ± 0.01 0.91 ± 0.01 0.51 ± 0.08

TTM 0.77 ± 0.05 0.88 ± 0.00 0.52 ± 0.03 0.83 ± 0.00 0.83 ± 0.06 0.89 ± 0.00 0.88 ± 0.00 0.68 ± 0.02 0.90 ± 0.00 0.51 ± 0.07
FWTTM 0.78 ± 0.03 0.88 ± 0.00 0.52 ± 0.02 0.83 ± 0.00 0.87 ± 0.01 0.90 ± 0.00 0.88 ± 0.00 0.68 ± 0.02 0.90 ± 0.00 0.54 ± 0.06

Table A.2: The results of different types of compression of BERT for experiments
with task-oriented fine-tuning, compression, and further fine-tuning (Double-train).
The best results at each model size are in bold, best overall results are underlined.

Table A.3: The results of different types of compression for the bart-base model
for experiments with detoxification with task-oriented fine-tuning, compression, and
further fine-tuning (Single-train and Double-train). The best results at each model
size are in bold, best overall results are underlined. Italic results represent senseless
model outputs.

Pipeline Single-train Double-train

Method C. Rate STA SIM FL J STA SIM FL J

bart-base 100 % - - - - 0.89 0.60 0.82 0.44
FP16 𝑒𝑣𝑎𝑙.† 100 % - - - - 0.89 0.60 0.82 0.44
B.P. (95%) 63% - - - - 0.92 0.34 0.30 0.12
B.P. (65%) 74% - - - - 0.82 0.60 0.73 0.36

SVD 0.97 ± 0.04 0.18 ± 0.01 0.10 ± 0.05 0.01 ± 0.02 0.75 ± 0.01 0.59 ± 0.01 0.65 ± 0.01 0.28 ± 0.01
FWSVD

60%

0.32 ± 0.01 0.46 ± 0.01 0.58 ± 0.01 0.07 ± 0.01 0.78 ± 0.02 0.59 ± 0.01 0.68 ± 0.00 0.30 ± 0.01
TTM 0.97 ± 0.04 0.19 ± 0.02 0.16 ± 0.04 0.03 ± 0.01 0.74 ± 0.02 0.58 ± 0.01 0.64 ± 0.02 0.27 ± 0.01
FWTTM 0.99 ± 0.15 0.18 ± 0.01 0.19 ± 0.05 0.03 ± 0.02 0.74 ± 0.02 0.58 ± 0.00 0.65 ± 0.00 0.27 ± 0.01

SVD 0.85 ± 0.06 0.21 ± 0.01 0.14 ± 0.05 0.03 ± 0.01 0.82 ± 0.01 0.60 ± 0.01 0.77 ± 0.01 0.38 ± 0.01
FWSVD

74%

0.32 ± 0.01 0.46 ± 0.01 0.58 ± 0.01 0.07 ± 0.01 0.87 ± 0.00 0.61 ± 0.01 0.80 ± 0.01 0.42 ± 0.01
TTM 0.99 ± 0.02 0.17 ± 0.01 0.06 ± 0.07 0.01 ± 0.01 0.82 ± 0.01 0.61 ± 0.01 0.75 ± 0.01 0.37 ± 0.01
FWTTM 0.99 ± 0.03 0.18 ± 0.01 0.16 ± 0.05 0.03 ± 0.01 0.84 ± 0.01 0.60 ± 0.01 0.75 ± 0.01 0.38 ± 0.01

SVD 0.85 ± 0.01 0.42 ± 0.01 0.72 ± 0.01 0.25 ± 0.01 0.86 ± 0.00 0.61 ± 0.00 0.81 ± 0.00 0.43 ± 0.00
FWSVD

90%

0.70 ± 0.10 0.64 ± 0.01 0.82 ± 0.00 0.35 ± 0.01 0.87 ± 0.01 0.61 ± 0.00 0.81 ± 0.00 0.43 ± 0.00
TTM 0.49 ± 0.17 0.60 ± 0.01 0.71 ± 0.00 0.18 ± 0.01 0.86 ± 0.01 0.61 ± 0.00 0.80 ± 0.01 0.41 ± 0.01
FWTTM 0.82 ± 0.06 0.46 ± 0.01 0.59 ± 0.01 0.22 ± 0.01 0.86 ± 0.01 0.61 ± 0.00 0.80 ± 0.01 0.41 ± 0.00
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